ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages

 

This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles.

For more information about the manual page format, see the manual page for manpages(5).



encoding(3pm)                         Perl Programmers Reference Guide                         encoding(3pm)



NAME
       encoding - allows you to write your script in non-ascii or non-utf8

SYNOPSIS
         use encoding "greek";  # Perl like Greek to you?
         use encoding "euc-jp"; # Jperl!

         # or you can even do this if your shell supports your native encoding

         perl -Mencoding=latin2 -e '...' # Feeling centrally European?
         perl -Mencoding=euc-kr -e '...' # Or Korean?

         # more control

         # A simple euc-cn => utf-8 converter
         use encoding "euc-cn", STDOUT => "utf8";  while(<>){print};

         # "no encoding;" supported (but not scoped!)
         no encoding;

         # an alternate way, Filter
         use encoding "euc-jp", Filter=>1;
         # now you can use kanji identifiers -- in euc-jp!

         # switch on locale -# locale#
         # note that this probably means that unless you have a complete control
         # over the environments the application is ever going to be run, you should
         # NOT use the feature of encoding pragma allowing you to write your script
         # in any recognized encoding because changing locale settings will wreck
         # the script; you can of course still use the other features of the pragma.
         use encoding ':locale';

ABSTRACT
       Let's start with a bit of history: Perl 5.6.0 introduced Unicode support.  You could apply "substr()"
       and regexes even to complex CJK characters -- so long as the script was written in UTF-8.  But back
       then, text editors that supported UTF-8 were still rare and many users instead chose to write scripts
       in legacy encodings, giving up a whole new feature of Perl 5.6.

       Rewind to the future: starting from perl 5.8.0 with the encoding pragma, you can write your script in
       any encoding you like (so long as the "Encode" module supports it) and still enjoy Unicode support.
       This pragma achieves that by doing the following:

          Internally converts all literals ("q//,qq//,qr//,qw///, qx//") from the encoding specified to
           utf8.  In Perl 5.8.1 and later, literals in "tr///" and "DATA" pseudo-filehandle are also con-verted. converted.
           verted.

          Changing PerlIO layers of "STDIN" and "STDOUT" to the encoding
            specified.

       Literal Conversions

       You can write code in EUC-JP as follows:

         my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
                      #<-char-><-char->   # 4 octets
         s/\bCamel\b/$Rakuda/;

       And with "use encoding "euc-jp"" in effect, it is the same thing as the code in UTF-8:

         my $Rakuda = "\x{99F1}\x{99DD}"; # two Unicode Characters
         s/\bCamel\b/$Rakuda/;

       PerlIO layers for "STD(IN|OUT)"

       The encoding pragma also modifies the filehandle layers of STDIN and STDOUT to the specified encod-ing. encoding.
       ing.  Therefore,

         use encoding "euc-jp";
         my $message = "Camel is the symbol of perl.\n";
         my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
         $message =~ s/\bCamel\b/$Rakuda/;
         print $message;

       Will print "\xF1\xD1\xF1\xCC is the symbol of perl.\n", not "\x{99F1}\x{99DD} is the symbol of
       perl.\n".

       You can override this by giving extra arguments; see below.

       Implicit upgrading for byte strings

       By default, if strings operating under byte semantics and strings with Unicode character data are
       concatenated, the new string will be created by decoding the byte strings as ISO 8859-1 (Latin-1).

       The encoding pragma changes this to use the specified encoding instead.  For example:

           use encoding 'utf8';
           my $string = chr(20000); # a Unicode string
           utf8::encode($string);   # now it's a UTF-8 encoded byte string
           # concatenate with another Unicode string
           print length($string . chr(20000));

       Will print 2, because $string is upgraded as UTF-8.  Without "use encoding 'utf8';", it will print 4
       instead, since $string is three octets when interpreted as Latin-1.

FEATURES THAT REQUIRE 5.8.1
       Some of the features offered by this pragma requires perl 5.8.1.  Most of these are done by Inaba
       Hiroto.  Any other features and changes are good for 5.8.0.

       "NON-EUC" doublebyte encodings
           Because perl needs to parse script before applying this pragma, such encodings as Shift_JIS and
           Big-5 that may contain '\' (BACKSLASH; \x5c) in the second byte fails because the second byte may
           accidentally escape the quoting character that follows.  Perl 5.8.1 or later fixes this problem.

       tr//
           "tr//" was overlooked by Perl 5 porters when they released perl 5.8.0 See the section below for
           details.

       DATA pseudo-filehandle
           Another feature that was overlooked was "DATA".

USAGE
       use encoding [ENCNAME] ;
           Sets the script encoding to ENCNAME.  And unless ${^UNICODE} exists and non-zero, PerlIO layers
           of STDIN and STDOUT are set to ":encoding(ENCNAME)".

           Note that STDERR WILL NOT be changed.

           Also note that non-STD file handles remain unaffected.  Use "use open" or "binmode" to change
           layers of those.

           If no encoding is specified, the environment variable PERL_ENCODING is consulted.  If no encoding
           can be found, the error "Unknown encoding 'ENCNAME'" will be thrown.

       use encoding ENCNAME [ STDIN => ENCNAME_IN ...] ;
           You can also individually set encodings of STDIN and STDOUT via the "STDIN => ENCNAME" form.  In
           this case, you cannot omit the first ENCNAME.  "STDIN => undef" turns the IO transcoding com-pletely completely
           pletely off.

           When ${^UNICODE} exists and non-zero, these options will completely ignored.  ${^UNICODE} is a
           variable introduced in perl 5.8.1.  See perlrun see "${^UNICODE}" in perlvar and "-C" in perlrun
           for details (perl 5.8.1 and later).

       use encoding ENCNAME Filter=>1;
           This turns the encoding pragma into a source filter.  While the default approach just decodes
           interpolated literals (in qq() and qr()), this will apply a source filter to the entire source
           code.  See "The Filter Option" below for details.

       no encoding;
           Unsets the script encoding. The layers of STDIN, STDOUT are reset to ":raw" (the default unpro-cessed unprocessed
           cessed raw stream of bytes).

The Filter Option
       The magic of "use encoding" is not applied to the names of identifiers.  In order to make
       "${"\x{4eba}"}++" ($human++, where human is a single Han ideograph) work, you still need to write
       your script in UTF-8 -- or use a source filter.  That's what 'Filter=>1' does.

       What does this mean?  Your source code behaves as if it is written in UTF-8 with 'use utf8' in
       effect.  So even if your editor only supports Shift_JIS, for example, you can still try examples in
       Chapter 15 of "Programming Perl, 3rd Ed.".  For instance, you can use UTF-8 identifiers.

       This option is significantly slower and (as of this writing) non-ASCII identifiers are not very sta-ble stable
       ble WITHOUT this option and with the source code written in UTF-8.

       Filter-related changes at Encode version 1.87


          The Filter option now sets STDIN and STDOUT like non-filter options.  And "STDIN=>ENCODING" and
           "STDOUT=>ENCODING" work like non-filter version.

          "use utf8" is implicitly declared so you no longer have to "use utf8" to "${"\x{4eba}"}++".

CAVEATS
       NOT SCOPED

       The pragma is a per script, not a per block lexical.  Only the last "use encoding" or "no encoding"
       matters, and it affects the whole script.  However, the <no encoding> pragma is supported and use
       encoding can appear as many times as you want in a given script.  The multiple use of this pragma is
       discouraged.

       By the same reason, the use this pragma inside modules is also discouraged (though not as strongly
       discouraged as the case above.  See below).

       If you still have to write a module with this pragma, be very careful of the load order.  See the
       codes below;

         # called module
         package Module_IN_BAR;
         use encoding "bar";
         # stuff in "bar" encoding here
         1;

         # caller script
         use encoding "foo"
         use Module_IN_BAR;
         # surprise! use encoding "bar" is in effect.

       The best way to avoid this oddity is to use this pragma RIGHT AFTER other modules are loaded.  i.e.

         use Module_IN_BAR;
         use encoding "foo";

       DO NOT MIX MULTIPLE ENCODINGS

       Notice that only literals (string or regular expression) having only legacy code points are affected:
       if you mix data like this

               \xDF\x{100}

       the data is assumed to be in (Latin 1 and) Unicode, not in your native encoding.  In other words,
       this will match in "greek":

               "\xDF" =~ /\x{3af}/

       but this will not

               "\xDF\x{100}" =~ /\x{3af}\x{100}/

       since the "\xDF" (ISO 8859-7 GREEK SMALL LETTER IOTA WITH TONOS) on the left will not be upgraded to
       "\x{3af}" (Unicode GREEK SMALL LETTER IOTA WITH TONOS) because of the "\x{100}" on the left.  You
       should not be mixing your legacy data and Unicode in the same string.

       This pragma also affects encoding of the 0x80..0xFF code point range: normally characters in that
       range are left as eight-bit bytes (unless they are combined with characters with code points 0x100 or
       larger, in which case all characters need to become UTF-8 encoded), but if the "encoding" pragma is
       present, even the 0x80..0xFF range always gets UTF-8 encoded.

       After all, the best thing about this pragma is that you don't have to resort to \x{....} just to
       spell your name in a native encoding.  So feel free to put your strings in your encoding in quotes
       and regexes.

       tr/// with ranges

       The encoding pragma works by decoding string literals in "q//,qq//,qr//,qw///, qx//" and so forth.
       In perl 5.8.0, this does not apply to "tr///".  Therefore,

         use encoding 'euc-jp';
         #....
         $kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/;
         #           -------- -------- -------- --------Does -------Does

       Does not work as

         $kana =~ tr/\x{3041}-\x{3093}/\x{30a1}-\x{30f3}/;

       Legend of characters above
             utf8     euc-jp   charnames::viacode()
             -----------------------------------------\x{3041} ----------------------------------------\x{3041}
             \x{3041} \xA4\xA1 HIRAGANA LETTER SMALL A
             \x{3093} \xA4\xF3 HIRAGANA LETTER N
             \x{30a1} \xA5\xA1 KATAKANA LETTER SMALL A
             \x{30f3} \xA5\xF3 KATAKANA LETTER N

       This counterintuitive behavior has been fixed in perl 5.8.1.

       workaround to tr///;

       In perl 5.8.0, you can work around as follows;

         use encoding 'euc-jp';
         #  ....
         eval qq{ \$kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/ };

       Note the "tr//" expression is surrounded by "qq{}".  The idea behind is the same as classic idiom
       that makes "tr///" 'interpolate'.

          tr/$from/$to/;            # wrong!
          eval qq{ tr/$from/$to/ }; # workaround.

       Nevertheless, in case of encoding pragma even "q//" is affected so "tr///" not being decoded was
       obviously against the will of Perl5 Porters so it has been fixed in Perl 5.8.1 or later.

EXAMPLE - Greekperl
           use encoding "iso 8859-7";

           # \xDF in ISO 8859-7 (Greek) is \x{3af} in Unicode.

           $a = "\xDF";
           $b = "\x{100}";

           printf "%#x\n", ord($a); # will print 0x3af, not 0xdf

           $c = $a . $b;

           # $c will be "\x{3af}\x{100}", not "\x{df}\x{100}".

           # chr() is affected, and ...

           print "mega\n"  if ord(chr(0xdf)) == 0x3af;

           # ... ord() is affected by the encoding pragma ...

           print "tera\n" if ord(pack("C", 0xdf)) == 0x3af;

           # ... as are eq and cmp ...

           print "peta\n" if "\x{3af}" eq  pack("C", 0xdf);
           print "exa\n"  if "\x{3af}" cmp pack("C", 0xdf) == 0;

           # ... but pack/unpack C are not affected, in case you still
           # want to go back to your native encoding

           print "zetta\n" if unpack("C", (pack("C", 0xdf))) == 0xdf;

KNOWN PROBLEMS
       literals in regex that are longer than 127 bytes
           For native multibyte encodings (either fixed or variable length), the current implementation of
           the regular expressions may introduce recoding errors for regular expression literals longer than
           127 bytes.

       EBCDIC
           The encoding pragma is not supported on EBCDIC platforms.  (Porters who are willing and able to
           remove this limitation are welcome.)

       format
           This pragma doesn't work well with format because PerlIO does not get along very well with it.
           When format contains non-ascii characters it prints funny or gets "wide character warnings".  To
           understand it, try the code below.

             # Save this one in utf8
             # replace *non-ascii* with a non-ascii string
             my $camel;
             format STDOUT =
             *non-ascii*@>>>>>>>
             $camel
             .
             $camel = "*non-ascii*";
             binmode(STDOUT=>':encoding(utf8)'); # bang!
             write;              # funny
             print $camel, "\n"; # fine

           Without binmode this happens to work but without binmode, print() fails instead of write().

           At any rate, the very use of format is questionable when it comes to unicode characters since you
           have to consider such things as character width (i.e. double-width for ideographs) and directions
           (i.e. BIDI for Arabic and Hebrew).

       The Logic of :locale

       The logic of ":locale" is as follows:

       1.  If the platform supports the langinfo(CODESET) interface, the codeset returned is used as the
           default encoding for the open pragma.

       2.  If 1. didn't work but we are under the locale pragma, the environment variables LC_ALL and LANG
           (in that order) are matched for encodings (the part after ".", if any), and if any found, that is
           used as the default encoding for the open pragma.

       3.  If 1. and 2. didn't work, the environment variables LC_ALL and LANG (in that order) are matched
           for anything looking like UTF-8, and if any found, ":utf8" is used as the default encoding for
           the open pragma.

       If your locale environment variables (LC_ALL, LC_CTYPE, LANG) contain the strings 'UTF-8' or 'UTF8'
       (case-insensitive matching), the default encoding of your STDIN, STDOUT, and STDERR, and of any sub-sequent subsequent
       sequent file open, is UTF-8.

HISTORY
       This pragma first appeared in Perl 5.8.0.  For features that require 5.8.1 and better, see above.

       The ":locale" subpragma was implemented in 2.01, or Perl 5.8.6.

SEE ALSO
       perlunicode, Encode, open, Filter::Util::Call,

       Ch. 15 of "Programming Perl (3rd Edition)" by Larry Wall, Tom Christiansen, Jon Orwant; O'Reilly &
       Associates; ISBN 0-596-00027-8



perl v5.8.8                                      2001-09-21                                    encoding(3pm)

Did this document help you?
Yes: Tell us what works for you.
It’s good, but: Report typos, inaccuracies, and so forth.
It wasn’t helpful: Tell us what would have helped.