
HeaderDoc User Guide
A User's Guide to Self-Documenting Code
Tools > Darwin

2008-04-08

Apple Inc.
© 1999, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, FireWire,
Geneva, Mac, Mac OS, Macintosh, Objective-C,
Pages, Sand, Velocity Engine, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

CDB is a trademark of Third Eye Software, Inc.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 HeaderDoc Unfettered: API Documentation From Header Files 7

What is HeaderDoc? 7
How Do I Get It? 7
Organization of this Document 8

Chapter 2 Using HeaderDoc 9

Running headerDoc2HTML.pl 9
HeaderDoc and Object-Oriented Languages 9
HeaderDoc Command-line Switches 10

Running gatherHeaderDoc.pl 11
Running the Scripts Using MacPerl 12
Cocoa Front End 12

Chapter 3 HeaderDoc Tags 13

Introduction to HeaderDoc Comments and Tags 13
HMBalloonRect 16

Multiword Names 16
Automatic Tagging 16
Specifying Information About Frameworks 17
Specifying Information About an Entire Header or Source File 17
Additional HeaderDoc Tags 18

Top-Level HeaderDoc Tags 18
Second Level HeaderDoc Tags 28

Overriding the Default Data Type: C Pseudoclass Tags 36
Unknown Tag Handling 38

Chapter 4 Basic HeaderDoc Configuration 39

Configuration File Example 42
Built-in HeaderDoc Styles 43

Chapter 5 Advanced HeaderDoc Configuration and Features 45

Creating a TOC Template File 45
Using Multiple Landing Page Templates 48
Example gatherHeaderDoc Template 48

Using the C Preprocessor 50
Parsing Rules 50
Multiply-Defined Macros 50

3
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

Embedded HeaderDoc Comments in a Macro 50
Handling of #include 51
Other Issues 51
What if I Don’t Want to See the Macros in the Documentation? 52

Chapter 6 Using the MPGL Suite 53

Man Page Generation Language (MPGL) Dialect 53
A Simple Function Example 55
A Simple Command Example 56
A Multi-Command Example 58

Appendix A HeaderDoc Release Notes 61

Languages Supported 61
Major Features 62
New Tags 63
Additional Notes 64

Appendix B Symbol Markers for HTML-Based Documentation 65

The Marker String 65
Symbol Types for All Languages 66
Symbol Types for Languages With Classes 66
C++ (cpp) Symbol Types 67
Java (java) Symbol Types 67
Objective-C (occ) Method Name Format 67
C++/Java (cpp/java) Method Name Format 67

Using resolveLinks to Resolve Cross References 68
Using Multiple API Reference Prefixes 68
Using External Cross-Reference Files 69

Appendix C HeaderDoc Class Hierarchy 71

Appendix D Troubleshooting 73

Common Error Messages 73
Unexpected Behavior 76
Other Issues 77

Document Revision History 79

4
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 3 HeaderDoc Tags 13

Table 3-1 17
Table 3-2 Top-level HeaderDoc tags 19
Table 3-3 22
Table 3-4 23
Table 3-5 Second-level tags specific to #define declarations 23
Table 3-6 Second-level tags specific to enum declarations 24
Table 3-7 Second-level tags specific to function and method declarations 24
Table 3-8 Second-level tags specific to struct and union declarations 26
Table 3-9 29
Table 3-10 37
Listing 3-1 Example of documentation with @abstract and @discussion tags 13
Listing 3-2 Example of documentation as a single block of text 14
Listing 3-3 Example of multiword names using @discussion 16
Listing 3-4 Example of multiword names using multiple lines 16
Listing 3-5 Example of @header tag 18
Listing 3-6 Example of @availabilitymacro tag 20
Listing 3-7 Example of @class tag in C++ 21
Listing 3-8 Example of @class tag in Objective-C 21
Listing 3-9 Example of @protocol tag in Objective-C 21
Listing 3-10 Example of @category tag in Objective-C 21
Listing 3-11 Example of @templatefield tag 23
Listing 3-12 Example of @const tag 23
Listing 3-13 Example of @defined tag 23
Listing 3-14 Example of @enum tag 24
Listing 3-15 Example of @function tag 25
Listing 3-16 Example of @method tag 25
Listing 3-17 Example of @functiongroup tag 25
Listing 3-18 Example of @struct tag 26
Listing 3-19 Typedef for a simple struct 27
Listing 3-20 Typedef for an enumeration 27
Listing 3-21 Typedef for a simple function pointer 27
Listing 3-22 Typedef for a struct containing function pointers 27
Listing 3-23 Example of @var tag 28
Listing 3-24 Example of @class tag 37
Listing 3-25 Example of @interface tag 37

Chapter 4 Basic HeaderDoc Configuration 39

Listing 4-1 Sample HeaderDoc configuration file 42
Listing 4-2 Built-in HeaderDoc CSS Styles 43

5
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

Chapter 6 Using the MPGL Suite 53

Table 6-1 MPGL block tags 53
Table 6-2 XHTML tags supported by MPGL 54
Table 6-3 Additional MPGL-specific inline tags 55
Listing 6-1 A simple MPGL example for a function 55
Listing 6-2 A simple MPGL example for a command 57
Listing 6-3 An MPGL example for multiple commands 58

Appendix A HeaderDoc Release Notes 61

Table A-1 HeaderDoc 8 Language Support 61

Appendix B Symbol Markers for HTML-Based Documentation 65

Table B-1 HeaderDoc API reference language types 66
Table B-2 Symbol types for all languages 66

6
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

This document describes how to use the HeaderDoc tool. It also explains how to insert HeaderDoc comments
into your headers and other files. This document corresponds with HeaderDoc 8.0. For information about
previous versions, consult the documentation installed with your HeaderDoc distribution.

What is HeaderDoc?

HeaderDoc is a set of tools for embedding structured comments in source code and header files written in
various languages and subsequently producing rich HTML and XML output from those comments. HeaderDoc
comments are similar in appearance to JavaDoc comments in a Java source file, but traditional HeaderDoc
comments provide a slightly more formal tag set to allow greater control over HeaderDoc behavior.

HeaderDoc is primarily intended for use on Mac OS X, as part of the Mac OS X Developer Tools. However, in
various versions, it has also been used successfully on other operating systems, including Linux, Solaris, and
Mac OS 9. (Your mileage may vary.)

In addition to traditional HeaderDoc markup, HeaderDoc 8 supports JavaDoc markup. HeaderDoc 8 also
supports a number of languages: Bourne shell (and Korn and Bourne Again), C Headers, C source code, C
shell, C++ headers, Java, JavaScript, Mach MIG definitions, Objective C/C++ headers, Pascal, Perl, and PHP.
Most of these languages (besides C/C++/ObjC/Pascal) support documenting only functions or subroutines.

Also included with the main script (headerDoc2HTML) is gatherHeaderDoc, a utility script that creates a
master table of contents for all documentation generated by headerDoc2HTML. Information on running
gatherHeaderDoc is provided in “Advanced HeaderDoc Techniques” (page 45).

Both scripts are typically installed in /usr/bin, as headerdoc2html and gatherheaderdoc.

Finally, HeaderDoc comes with a series of tools for man page generation, xml2man and hdxml2manxml. The
first tool, xml2man, converts an mdoc-like XML dialect into mdoc-style man pages. The second tool,
hdxml2manxml, converts HeaderDoc XML (generated with the -X flag) into a series of .mxml files suitable
for use with xml2man.

How Do I Get It?

HeaderDoc is available in two ways. First, HeaderDoc is part of the standard Mac OS X Developer Tools
installation. If you have installed the Developer Tools CD, it is already installed on your system.

Second, HeaderDoc can be downloaded from http://developer.apple.com/darwin/projects/headerdoc/.

What is HeaderDoc? 7
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

HeaderDoc Unfettered: API Documentation
From Header Files

http://developer.apple.com/darwin/projects/headerdoc/

Organization of this Document

This document is divided into several chapters describing various aspects of the tool suite.

 ■ “HeaderDoc Tags” (page 13) explains how to add HeaderDoc markup to header (and source code) files.

 ■ “Using HeaderDoc” (page 9) explains the syntax for the HeaderDoc command-line tool itself.

 ■ “Advanced HeaderDoc Techniques” (page 45) explains how to use gatherHeaderDoc to produce landing
pages and cross-linked trees of related documentation.

 ■ “Using the MPGL Suite” (page 53) explains how to use the Manual Page Generation Language (MPGL)
tool suite.

 ■ “Configuring HeaderDoc” (page 39) explains the HeaderDoc configuration file.

 ■ “Symbol Markers for HTML-Based Documentation” (page 65) describes the symbol markers used by
HeaderDoc and various other utilities to provide linking functionality.

 ■ “HeaderDoc Class Hierarchy” (page 71) describes the class hierarchy of the HeaderDoc tool itself.

8 Organization of this Document
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

HeaderDoc Unfettered: API Documentation From Header Files

HeaderDoc includes two scripts, headerDoc2HTML.pl, which generates documentation for each header it
encounters, and gatherHeaderDoc.pl, which finds these islands of documentation and assembles a master
table of contents linking them together.

GatherHeaderDoc is a postprocessing script for HeaderDoc. Its primary purpose is to take a directory containing
output from HeaderDoc and create a table of contents with links.

GatherHeaderDoc is highly configurable. You can configure it to insert custom breadcrumb links, use a custom
TOC template, and even automatically insert “framework” information into the TOC template, if desired.

This chapter is divided into three parts:

 ■ “Running headerDoc2HTML.pl” (page 9)—information about running headerDoc2HTML.pl.

 ■ “Running gatherHeaderDoc.pl” (page 11)—information about running gatherHeaderDoc.pl.

Running headerDoc2HTML.pl

Once you have a header containing HeaderDoc comments, you can run the headerDoc2HTML.pl script to
generate HTML output like this:

 > headerdoc2html MyHeader.h

This will process MyHeader.h and create an output directory called MyHeader in the same directory as the
input file. To view the results in your web browser, open the file index.html that you find inside the output
directory.

Instead of specifying a single input file (as above), you can specify an input directory if you wish. HeaderDoc
will process every .h file in the input directory (and all of its subdirectories), generating an output directory
of HTML files for each header that contains HeaderDoc comments.

HeaderDoc and Object-Oriented Languages

HeaderDoc processes C++ and Objective-C headers in much the same way that it does a C header. In fact,
until HeaderDoc encounters a class declaration in a C++ header, the processing is identical.

When HeaderDoc generates the HTML documentation for a C++ or Objective-C header, it creates one frameset
for the header as a whole, and separate framesets for each class, protocol, or category declared within the
header.

Running headerDoc2HTML.pl 9
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using HeaderDoc

A Note About Objective-C Categories: An Objective-C category lets you add methods to an existing class.
When HeaderDoc processes a batch of headers and finds comments for methods declared in a category, it
searches for the associated class documentation and adds those methods and their documentation to the
class documentation. If the class is not present in the current batch, HeaderDoc will create a separate frameset
of documentation for the category.

Within Objective-C class declarations, you can use the @method tag to document each method. Since
Objective-C is a superset of C, the header might also declare types, functions, or other API outside of any
class declaration. You would use @typedef, @function, and other C tags to document these declarations.

Note: The @method tag will generate faulty markup if the enclosing class does not have HeaderDoc markup.
If this occurs, you will receive a warning that says that the @method tag is being used outside a class. To
correct this, add a HeaderDoc comment for the enclosing class.

HeaderDoc records the access control level (public, protected, or private) of API elements declared within a
C++ class. This information is used to further group the API elements in the resulting documentation.

HeaderDoc Command-line Switches

HeaderDoc has a number of useful command-line switches that alter its behavior.

The -C switch causes HeaderDoc to output class contents as a composite page instead of breaking it up into
separate pages for functions, data types, and so on.

The -H switch turns on inclusion of the htmlHeader line, as specified in the configuration file.

The -O switch enables “outer name only” type parsing, in which tag names for typedefs are not documented
(for example, foo in typedef struct foo {...} tdname;).

The -X switch causes HeaderDoc to output XML content instead of HTML.

The -S switch causes HeaderDoc to include functions and data types from the superclass in the documentation
of child classes (if they are processed at once).

The -b switch puts HeaderDoc into “basic” mode. In this mode, numbered lists are not automatically
recognized, and embedded headerdoc comments are not removed from declarations.

The -c switch allows you to add an alternate configuration file. For example:

 > headerdoc2html -c myCustomHeaderDocConfigFile.config MyHeader.h

The -d switch turns on extra debugging output.

The -h switch causes HeaderDoc to output an XML file containing metadata about the HeaderDoc output.

The -i switch tells HeaderDoc to output the body of macro declarations.

The -l switch tells HeaderDoc not to generate link requests in declarations.

The -m switch tells HeaderDoc to generate a man page for each function found in lieu of generating XML or
HTML output.

10 Running headerDoc2HTML.pl
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using HeaderDoc

The -o switch allows you to specify another directory for the output. For example:

 > headerdoc2html -o /tmp MyHeader.h

The -p switch enables the C preprocessor. Any #define with HeaderDoc markup will affect any content that
appears after it within the same header file, and will also affect any content after the #include in any file
that includes that header file.

The -q switch makes HeaderDoc operate silently:

The -s switch causes HeaderDoc to enter a comment stripping mode, in which it outputs a copy of your
header file in the output directory from which all headerdoc comments have been removed.

The -t switch enables strict tagging mode, in which any function parameters not described with an @param
tag result in a warning.

The -u (unsorted) switch disables sorting of functions, data types, and so on in the table of contents, thus
preserving the original file order. Note that if you simply want to preserve groupings, you should use the
@group or @functiongroup tags instead.

Most of these switches can be used in combination with each other. The obvious exceptions are -X and -m
(XML vs. man page output). If you need both XML and man page output, you should specify the -X flag (XML
output), then run the scripts hdxml2manxml and xml2man to convert the XML output to a man page yourself.

Running gatherHeaderDoc.pl

The gatherHeaderDoc.pl script scans an input directory (recursively) for any documentation generated
by headerDoc2HTML. It creates a master table of contents (named masterTOC.html by default—the name
can be changed by setting a new name in the configuration file or by specifying a second argument). It also
adds a “top” link to all the documentation sets it visits to make it easier to navigate back to the master table
of contents.

Here's an example of how to create documentation for a number of headers (the sample ones provided with
the scripts) and then generate a master table of contents:

 > headerdoc2html -o OutputDir ExampleHeaders
 > gatherheaderdoc OutputDir

You can now open the file OutputDir/masterTOC.html in your browser to see the interlinked sets of
documentation.

You can also add a second argument to change the output file name. For example:

 > headerdoc2html -o OutputDir ExampleHeaders
 > gatherheaderdoc OutputDir MYTOCNAME.html

This time, gatherHeaderDoc created the file OutputDir/MYTOCNAME.html instead of
OutputDir/masterTOC.html.

For more information on configuring gatherHeaderDoc, see “Configuring HeaderDoc” (page 39).

Running gatherHeaderDoc.pl 11
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using HeaderDoc

Running the Scripts Using MacPerl

Most of HeaderDoc runs on Mac OS 9 and earlier if MacPerl is installed. (You can get MacPerl from the CPAN
ports page.) To run HeaderDoc using MacPerl:

 ■ Change the line endings in the scripts and modules (*.pm files) from UNIX to Macintosh. Many text
editors (BBEdit, for example) let you easily change line ending types.

 ■ Run MacPerl, open headerDoc2HTML.pl and gatherHeaderDoc.pl and save them as droplets. You
might save them with a different names (say, the script names minus the .pl extensions) to preserve
the original versions.

 ■ Now, you can drag a header file or folder of header files on each droplet in turn, and the files will be
processed in place.

Note: Some advanced features, including automatic linking, man page output, and XML output will not
work in Mac OS 9 because these require libxml2, which is only available for UNIX-based and UNIX-like
systems.

Cocoa Front End

Kyle Hammond has made a Cocoa front end available for HeaderDoc. Mac OS X users can download this
from http://www.cpinternet.com/~snowmint/CocoaProgramming.html.

12 Running the Scripts Using MacPerl
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using HeaderDoc

http://www.perl.com/CPAN/ports/index.html
http://www.perl.com/CPAN/ports/index.html
http://www.cpinternet.com/~snowmint/CocoaProgramming.html

Tags, depending on type, generally require either one field of information or two:

 ■ @function [FunctionName]

 ■ @param [parameterName] [Some descriptive text...]

In the tables in this chapter, the “Fields” column indicates the number of textual fields each type of tag takes.

Introduction to HeaderDoc Comments and Tags

HeaderDoc comments are of the form:

/*!
 This is a comment about FunctionName.
*/
char *FunctionName(int k);

In their simplest form (as above) they differ from standard C comments only by the addition of the ! character
next to the opening asterisk.

Historically, HeaderDoc tags were required to begin with an introductory tag that announces the type of API
being commented (@function, below). You can find a complete list of these tags in “Top-Level HeaderDoc
Tags” (page 18). Beginning in HeaderDoc 8, these top-level tags became optional. However, providing these
tags can, in some cases, be used to cause HeaderDoc to document something in a different way. One example
of this is the use of the @class tag to modify the markup of a typedef, as described in “Overriding the Default
Data Type: C Pseudoclass Tags” (page 36).

The following example shows the historical syntax:

/*!
 @function FunctionName
 This is a comment about FunctionName.
*/
char *FunctionName(int k);

Following the optional top-level @function tag, you typically provide introductory information about the
purpose of the class. You can divide this material into a summary sentence and in-depth discussion (using
the @abstract and @discussion tags), or you can provided the material as an untagged block of text, as
the examples below illustrate. You can also add @throws tags to indicate that the class throws exceptions
or add an @namespace tag to indicate the namespace in which the class resides.

Listing 3-1 Example of documentation with @abstract and @discussion tags

/*!

Introduction to HeaderDoc Comments and Tags 13
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

 @class IOCommandGate
 @abstract Single-threaded work-loop client request mechanism.
 @discussion An IOCommandGate instance is an extremely light weight mechanism
that
 executes an action on the driver's work-loop...
 @throws foo_exception
 @throws bar_exception
 @namespace I/O Kit (this is just a string)
 @updated 2003-03-15
*/
class IOCommandGate: public IOEventSource
{
...
}

Listing 3-2 Example of documentation as a single block of text

/*!
 @class IOCommandGate
 A class that defines a single-threaded work-loop client request mechanism. An
 IOCommandGate
 instance is an extremely light weight mechanism that executes an action on the
 driver's work-loop...
 @abstract Single-threaded work-loop client request mechanism.
 @throws foo_exception
 @throws bar_exception
 @updated 2003-03-15
*/
class IOCommandGate: public IOEventSource
{
...
}

Note: Once you have specified a non-inline tag such as @abstract, that tag is active until the next non-inline
tag. This means that general discussion paragraphs can only occur in one of three places:

• At the beginning of the comment.

• Immediately following an introductory top-level tag such as @class.

• Immediately following a discussion tag (@discussion).

You can also use additional JavaDoc-like tags within the HeaderDoc comment to identify specific fields of
information. These tags will make the comments more amenable to conversion to HTML. For example, a
more complete comment might look like this:

 /*!
 @function HMBalloonRect
 @abstract Reports size and location of help balloon.
 @discussion Use HMBalloonRect to get information about the size of a help
balloon
 before the Help Manager displays it.
 @param inMessage The help message for the help balloon.
 @param outRect The coordinates of the rectangle that encloses the help message.
 The upper-left corner of the rectangle has the coordinates (0,0).
 */

14 Introduction to HeaderDoc Comments and Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Tags are indicated by the @ character, which must generally appear as the first non-whitespace character on
a line (with a few notable exceptions). If you need to include an at sign in the output (to put your email
address in a class discussion, for example), you can do this by prefixing it with a backslash, that is, \@.

The first tag in a comment announces the API type of the declaration (function, struct, enum, and so on).
This tag is optional. If you leave it out, HeaderDoc will pick up this information from the declaration
immediately following the comment.

The next two lines (tagged @abstract and @discussion) provide documentation about the API element
as a whole. The abstract can be used in summary lists, and the discussion can be used in the detailed
documentation about the API element.

The abstract and discussion tags are optional, but encouraged. Their use enables various improvements in
the HTML output, such as summary pages. However, if there is untagged text following the API type tag and
name (@function HMBalloonRect, above) it is assumed to be a discussion. With such untagged text,
HeaderDoc assumes that the discussion extends from the end of the API-type comment to the next HeaderDoc
tag or to the end of the HeaderDoc comment, whichever occurs first.

HeaderDoc understands some variants in commenting style. In particular, you can have a one-line comment
like this:

 /*! @var settle_time Latency before next read. */

You can also use leading asterisks on each line of a multiline comment:

 /*!
 * @function HMBalloonRect
 * @abstract Reports size and location of help ballon.
 * @discussion Use HMBalloonRect to get information about the size of a help
balloon
 * before the Help Manager displays it.
 * @param inMessage The help message for the help balloon.
 * @param outRect The coordinates of the rectangle that encloses the help message.
 * The upper-left corner of the rectangle has the coordinates (0,0).
 */

If you want to specify a line break in the HTML version of a comment, use two newline characters between
lines rather than one. For example, the text of the discussion in this comment:

 /*!
 * @function HMBalloonRect
 * @discussion Use HMBalloonRect to get information about the size of a help
balloon
 * before the Help Manager displays it.
 *
 * Always check the help balloon size before display.
 */

will be formatted as two paragraphs in the HTML output:

Introduction to HeaderDoc Comments and Tags 15
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

HMBalloonRect

OSErr HMBalloonRect (const HMMessageRecord *inMessage, Rect *outRect);

Use HMBalloonRect to get information about the size of a help balloon before the Help Manager displays it.

Always check the help balloon size before display.

Multiword Names

Top-level HeaderDoc tags, such as @header and @function can take multiword names. This is particularly
useful for documenting anonymous types for enumerations, for example. However, HeaderDoc normally has
no way to know whether a line containing multiple words is a multiword name or a name followed by a
discussion.

There are two ways to get a multiword name. One way is to add a discussion tag, like this:

Listing 3-3 Example of multiword names using @discussion

 /*!
 * @enum example enum
 * @discussion This is a test, this is only a test.
 *
 * Because we included an \@discussion tag, the name of the enum is
 * "example enum".
 */

The other way is to simply add a line break after the name.

Listing 3-4 Example of multiword names using multiple lines

 /*!
 * @enum example enum
 * This is a test, this is only a test.
 *
 * Because the discussion contains multiple lines, the name of the enum is
 * "example enum".
 */

Automatic Tagging

Beginning in HeaderDoc 8, certain tags are often not needed. These include:

Numbered lists
It is no longer necessary to mark up numbered lists with . HeaderDoc will automatically
detect numbered lists.

16 Multiword Names
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Declaration types
Declaration type tags such as @function, @class, and @typedef are no longer required unless you
are trying to override HeaderDoc’s normal behavior (such as using @class or @interface to change
the display of a typedef struct.

Availability macros
It is no longer necessary to ignore availability macros with @ignore. The file Availability.list
in the HeaderDoc modules directory contains a mapping of availability macros to strings. When any
macros described in this file appear in a declaration, the corresponding text will automatically be
added to its documentation as an availability attribute.

You can add your own availability macros by adding them to the Availability.list file or by
adding an @availabilitymacro block in your headers.

Specifying Information About Frameworks

Framework documentation should be inserted into a file ending in .hdoc. Running HeaderDoc on this file
generates a documentation tree with special hidden markup that gatherHeaderDoc will insert into the
appropriate place within your TOC template (or at the top of the built-in template).

Table 3-1

FieldsIdentifiesExampleTag

1The name of the framework.@framework Kernel
Framework

@framework

1A short string that briefly describes a
framework. This should not contain multiple
lines (at least for the default template) for
aesthetic reasons. Save the detailed
descriptions for the @discussion tag.

@abstract In-kernel device
driver framework

@abstract

1A detailed description of the framework. This
may contain multiple paragraphs, and can
contain HTML markup.

@discussion The kernel
framework contains
functions useful to
in-kernel device drivers.

@discussion

Specifying Information About an Entire Header or Source File

Often, you'll want to add a comment for the header as a whole in addition to comments for individual API
elements. For example, if the header declares API for a specific manager (in Mac OS terminology), you may
want to provide introductory information about the manager or discuss issues that apply to many of the
functions within the manager's API. Likewise, if the header declares a C++ class, you could discuss the class
in relation to its superclass or subclasses.

The value you give for the @header tag serves as the title for the HTML pages generated by headerDoc2HTML.
The text you associate with the @header tag is used for the introductory page of the HTML website the script
produces.

Specifying Information About Frameworks 17
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

In general, however, you will not specify a filename in the @header tag, and will simply let HeaderDoc
substitute the filename. Note that you must follow @header by a line break; otherwise, the first line of your
documentation will be treated as if it were the name of the header.

Listing 3-5 Example of @header tag

/*!
 @header Repast Manager
 The Repast Manager provides a functional interface to the repast driver.
 Use the functions declared here to generate, distribute, and consume meals.
 @copyright Dave's Burger Palace
 @updated 2003-03-14
 @meta http-equiv="refresh" content="0;http://www.apple.com"
*/

Additional HeaderDoc Tags

To enhance readability of this document, the tags are organized into groups by tag level. In HeaderDoc, there
are two levels of tagging: top level tags and second level tags.

Top level tags must appear at the beginning of a HeaderDoc comment. These tags represent declaration
types. For example, the @function tag tells HeaderDoc that you are about to declare a function. These tags
are optional.

In most cases, second level tags can appear anywhere in the HeaderDoc comment. The one exception is
@constant because it conflicts with a top level tag. These tags give HeaderDoc additional information about
the declaration, such as specifying an abstract or a parameter description.

Note: Support for second level tags at the beginning of HeaderDoc comments was added in HeaderDoc
version 8.6. For compatibility with previous versions, you should always begin comments with either a top
level tag or an untagged discussion.

Top-Level HeaderDoc Tags

Top-level HeaderDoc tags tell HeaderDoc what API type to expect after the declaration. These trace their
roots back to HeaderDoc 7 and prior releases in which HeaderDoc could not interpret a declaration without
these hints. In HeaderDoc 8 and later, these tags are optional. Some of these tags provide useful features,
however, such as availability macro declarations, API element groupings, and framework-level and header-level
documentation.

Most top-level HeaderDoc tags are treated as a term and definition list. This means that if you specify multiple
words on a single line, the first will be treated as the name, and the remaining words will be treated as the
discussion. However, if the arguments span multiple lines, the entire first line will be treated as a multi-word
title. Similarly, if you specify an @discussion tag explicitly, the entire line will be treated as a multi-word
title. For more information, see “Multiword Names” (page 16).

A few top-level HeaderDoc tags do not support a discussion section. These tags automatically treat the
remainder of the line as a multi-word name. These tags are: @functiongroup, @group, @methodgroup

18 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Table 3-2 Top-level HeaderDoc tags

IdentifiesExampleTag

This tag tells HeaderDoc that
whenever the named token appears
in a declaration, the token should
be deleted and the “Availability:“
attribute for that declaration should
be set to the string that follows.

@availabilitymacro
AVAILABLE_IN_MYAPP_1_0_AND_LATER

Available in MyApp v1.0 and
later.

@availabilitymacro

The name of the class.@class myClass@class

The full name of the category, as
declared in the header. For example,
“MyClass(MyCategory)”. HeaderDoc
uses the “MyClass” portion of the
name to identify the associated
class.

@category myCat(owningClass)@category

The name of the protocol.@protocol myProtocol@protocol

Specifies the name of the constant.@constant MyConst@const or @constant

Name of the macro.@define MyDefine@define

@defined

The name of the function.

Note: For historical reasons, you can
also mark up function-like macros
with the @function tag. However,
this is not recommended.

@function myFunc@function

The name of the enumeration. This
is usually enum's tag, if it has one.
Otherwise, supply a name you want
to have the constants grouped
under in the documentation.

The member fields should be
enumerated with the @constant
tag.

@enum MyEnum@enum

See @header.@file Filename

Discussion goes here.

@file

The name of the framework. Must
be in a file ending in .hdoc. This
name is inserted as part of the
master TOC (landing page)
generation process wherever the
$$framework@@ tag appears.

@framework Kernel Framework@framework

The name of the function group.@functiongroup My Function Group@functiongroup

Additional HeaderDoc Tags 19
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

IdentifiesExampleTag

The name under which the API is
categorized. Leave the name blank
to just use the header filename.

The following additional subtags are
available:
 ■ @CFBundleIdentifier

 ■ @charset

 ■ @compilerflag

 ■ @encoding

 ■ @flag

 ■ @ignore

 ■ @ignorefuncmacro

 ■ @preprocinfo

 ■ @related

@header Repast Manager@header

The name of the Objective-C
method.

Note: For historical reasons, you can
also mark up C functions with the
@function tag. However, this is not
recommended.

@method myMethod:@method

The name of the structure. (Also
known as the structure’s tag.)

@struct myStruct@struct

The name of the defined type.@typedef MyType@typedef

The name of the union. (Also known
as the union's tag.)

@union myUnion@union

The name of a global variable or
class member variable.

@var myVariable@var

Examples of Top-Level Tags and Type-Specific Second-Level Tags

Availability Macro Tags

Listing 3-6 Example of @availabilitymacro tag

/*!
 @availabilitymacro AVAILABLE_IN_MYAPP_1_0_AND_LATER This function is available
 in version 1.0 and later of MYAPP.
*/

20 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

This is usually followed by a #define or similar, but that is not necessary. This HeaderDoc comment is a
standalone comment—that is, it does not cause the code after it to be processed in any way. If you want to
mark a #define as being an availability macro, you should follow this tag with a second HeaderDoc comment
for the #define itself.

Class Tags

Here are some examples of classes in different languages:

Listing 3-7 Example of @class tag in C++

/*!
 @class myClass
 @discussion This is a discussion.
 It can span many lines or paragraphs.
*/
 class myClass : public mySuperClass;

Listing 3-8 Example of @class tag in Objective-C

/*!
 @class myInterface
 @discussion This is a discussion.
 It can span many lines or paragraphs.
*/
@interface myInterface : NSObject
@end

Listing 3-9 Example of @protocol tag in Objective-C

/*!
 @protocol myProtocol
 @discussion This is a discussion.
 It can span many lines or paragraphs.
*/
@protocol myProtocol
@end

Listing 3-10 Example of @category tag in Objective-C

/*!
 @category myCategory(myMainClass)
 @discussion This is a discussion.
 It can span many lines or paragraphs.
*/
@interface myCategory(myMainClass)
@end

Classes have many special tags associated with them for convenience. These include:

Additional HeaderDoc Tags 21
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Table 3-3

UsageDescriptionTag

blockDescription of any common design considerations that apply
to this class, such as consistent ways of handling locking or
threading.

@classdesign

attribute (term &
definition)

Class with which this class was designed to work.@coclass

attributeExternal resource that this class depends on (such as a class
or file).

@dependency

attribute (term &
definition)

A helper class used by this class.@helper or
@helperclass

attributeIf this is a helper class, a short description of classes that
this class was designed to help.

@helps

attributeThe typical size of each instance of the class.@instancesize

blockDescribes the ownership model to which this class conforms.
For example, “MyClass objects are owned by the
MyCreatorClass object that created them.“

@ownership

blockDescribes special performance characteristics for this class.
For example, “This class is optimized for the Velocity Engine,“
or “This class is strongly discouraged in high-performance
contexts.“

@performance

blockDescribes security considerations associated with the use
of this class

@security

attributeOverrides superclass name—see note below.@superclass

The tag types are described in more detail in “Second Level HeaderDoc Tags” (page 28).

Note: The @superclass tag is not generally required for superclass information to be included. The
@superclass tag has two purposes:

• To add "superclass" info to a C pseudo-classes such as a COM interface (a typedef struct containing
function pointers).

• To enable inclusion of superclass functions, types, etc. in the subclass docs. The superclassMUST be processed
before the subclass (earlier on the command line or higher up in the same file), or this may not work correctly.

Tags for C++ Classes

Within a C++ class declaration, HeaderDoc allows some additional tags, as describe below.

22 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Additional Tags for C++ Class Declarations

Within a C++ class comment, HeaderDoc understands all the tags for C header comments. It also adds the
@templatefield tag.

Table 3-4

FieldsIdentifiesTag

2The name of the parameter followed by the description.@templatefield

For C++ template classes, if you want to document the template type parameters, you should use the
@templatefield tag. You should also be sure to define the class using @template instead of @class.

The @templatefield tag can also be used to document template parameters for C++ template functions.

Listing 3-11 Example of @templatefield tag

/*! @class mystackclass
 @templatefield Tthe data type stored in this stack */

 template <T> class mystackclass

For more usage examples, see the ExampleHeaders folder that accompanies the HeaderDoc distribution.

Constant Tags

Listing 3-12 Example of @const tag

 /*!
 @const kCFTypeArrayCallBacks
 @abstract Predefined CFArrayCallBacks structure containing a set of callbacks
 appropriate...
 @discussion Extended discussion goes here.
 Lorem ipsum....
 */
 const CFArrayCallBacks kCFTypeArrayCallBacks;

#define Tags

Table 3-5 Second-level tags specific to #define declarations

FieldsIdentifiesTag

0Marks macro as “hidden”. The macro will be parsed and used by the C preprocessor,
but will not be included as a separate #define entry in the resulting documentation.

@parseOnly

Listing 3-13 Example of @defined tag

 /*!
 @defined TRUE
 @abstract Defines the boolean true value.
 @parseOnly

Additional HeaderDoc Tags 23
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

 @discussion Extended discussion goes here.
 Lorem ipsum....
 */
 #define TRUE 1

For more usage examples, see the ExampleHeaders folder that accompanies the HeaderDoc distribution.

Enum Tags

Table 3-6 Second-level tags specific to enum declarations

FieldsIdentifiesTag

2A constant within the enumeration.@constant

@const

Note: The @constant and @const tags are also top-level tags. If you are using them to describe a field
within an enumeration, they cannot be the first thing in the comment. If you place them at the beginning
of the comment, you will get unexpected behavior.

Listing 3-14 Example of @enum tag

/*!
 @enum Beverage Categories
 @abstract Categorizes beverages into groups of similar types.
 @constant kSoda Sweet, carbonated, non-alcoholic beverages.
 @constant kBeer Light, grain-based, alcoholic beverages.
 @constant kMilk Dairy beverages.
 @constant kWater Unflavored, non-sweet, non-caloric, non-alcoholic beverages.
 @discussion Extended discussion goes here.
 Lorem ipsum....
*/
enum {
 kSoda = (1 << 6),
 kBeer = (1 << 7),
 kMilk = (1 << 8),
 kWater = (1 << 9)
}

Function and Method Tags

For C functions, use the @function tag. For methods declared in an Objective-C class, protocol, or category,
use the @method tag. For C++ methods, you can use either tag.

Table 3-7 Second-level tags specific to function and method declarations

FieldsIdentifiesTag

2Each of the function's parameters.@param

1The return value of the function. Don't include if the return value is void or
OSERR

@result

24 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

FieldsIdentifiesTag

2Each of the function’s template fields (C++).@templatefield

1Include one @throws tag for each exception thrown by this function (in
languages that support exceptions).

@throws

Listing 3-15 Example of @function tag

/*!
 @function ConstructBLT
 @abstract Creates a Sandwich structure from the supplied arguments.
 @param b Top ingredient, typically protein-rich.
 @param l Middle ingredient.
 @param t Bottom ingredient, controls tartness.
 @param mayo A flag controlling addition of condiment. Use YES for condiment,
 HOLDTHE otherwise.
 @throws peanuts
 @templatefield K The type of BLT to be generated (I want a BLT float)
 @result A pointer to a Sandwich structure. Caller is responsible for
 disposing of this structure.
 @discussion Extended discussion goes here.
 Lorem ipsum....
*/
Sandwich *ConstructBLT<K>(Ingredient b, Ingredient l, Ingredient t, Boolean
mayo);

Listing 3-16 Example of @method tag

/*!
 @method dateWithString:calendarFormat:
 @abstract Creates and returns a calendar date initialized with the date
 specified in the string description.
 @discussion [An extended description of the method...]
 @param description A string specifying the date.
 @param format Conversion specifiers similar to those used in strftime().
 @result Returns the newly initialized date object or nil on error.
*/
+ (id)dateWithString:(NSString *)description calendarFormat:(NSString *)format;

For more usage examples, see the ExampleHeaders folder that accompanies the HeaderDoc distribution.

Grouping Tags

Listing 3-17 Example of @functiongroup tag

/*!
 @functiongroup Core Functions
*/
/*!
 @methodgroup Core Methods
*/
/*!
 @group Core API
*/

Additional HeaderDoc Tags 25
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

API groups are not required, but they allow you to organize a large number of functions into near groupings.
Grouping tags remain in effect until the next grouping tag of the same type.

The @group tag provides grouping for all API elements except for methods and functions. In addition, until
HeaderDoc encounters the @functiongroup or @methodgroup tag, functions and methods are also grouped
by @group tag. In effect, the @functiongroup or @methodgroup tag provides a way to override the @group
tag in a way that only affects functions and methods.

Note: The @functiongroup and @methodgroup tags modify the groupings for both functions and methods.
The two names are provided strictly for naming consistency; both tags behave identically.

If you need to put functions or other API elements in different parts of the header into the same group, simply
give them the same name (with the same capitalization, punctuation, spacing, etc.), and it will merge the
two function groups into one.

Any functions or other API elements encountered before the first @group or @functiongroup are considered
part of the “empty” group. These functions will be listed before any grouped functions or API elements.

Struct and Union Tags

Table 3-8 Second-level tags specific to struct and union declarations

FieldsIdentifiesTag

2A field in the structure.@field

Listing 3-18 Example of @struct tag

/*!
 @struct TableOrigin
 @abstract Locates lower-left corner of table in screen coordinates.
 @field x Point on horizontal axis.
 @field y Point on vertical axis
 @discussion Extended discussion goes here.
 Lorem ipsum....
*/
struct TableOrigin {
 int x;
 int y;
}

Typedef Tags

The tags that can appear after a “@typedef” tag depend on the type that you are defining, and are inherited
from the valid tags for that enclosed type. The tags can include any of the following:

 ■ @field for typedef struct declarations

 ■ @constant for typedef enum declarations

 ■ @param for simple typedef declarations of individual function pointer types

26 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

 ■ @callback, @param, and @result for typedef struct declarations containing function pointers as
members

Listing 3-19 Typedef for a simple struct

/*!
 @typedef TypedefdSimpleStruct
 @abstract Abstract for this API.
 @field firstField Description of first field
 @field secondField Description of second field
 @discussion Discussion that applies to the entire typedef'd simple struct.
 Lorem ipsum....
*/

typedef struct _structTag {
 short firstField;
 unsigned long secondField
} TypedefdSimpleStruct;

Listing 3-20 Typedef for an enumeration

/*!
 @typedef TypedefdEnum
 @abstract Abstract for this API.
 @constant kCFCompareLessThan Description of first constant.
 @constant kCFCompareEqualTo Description of second constant.
 @constant kCFCompareGreaterThan Description of third constant.
 @discussion Discussion that applies to the entire typedef'd enum.
 Lorem ipsum....
*/
typedef enum {
 kCFCompareLessThan = -1,
 kCFCompareEqualTo = 0,
 kCFCompareGreaterThan = 1
} TypedefdEnum;

Listing 3-21 Typedef for a simple function pointer

/*!
 @typedef simpleCallback
 @abstract Abstract for this API.
 @param inFirstParameter Description of the callback's first parameter.
 @param outSecondParameter Description of the callback's second parameter.
 @result Returns what it can when it is possible to do so.
 @discussion Discussion that applies to the entire callback.
 Lorem ipsum...
*/
typedef long (*simpleCallback)(short inFirstParameter, unsigned long long
*outSecondParameter);

Listing 3-22 Typedef for a struct containing function pointers

/*! @typedef TypedefdStructWithCallbacks
 @abstract Abstract for this API.
 @discussion Defines the basic interface for Command DescriptorBlock (CDB)
commands.

Additional HeaderDoc Tags 27
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

 @field firstField Description of first field.

 @callback setPointers Specifies the location of the data buffer. The setPointers
 function has the following parameters:
 @param cmd A pointer to the CDB command interface.
 @param sgList A pointer to a scatter/gather list.
 @result An IOReturn structure which returns the return value in the structure
 returned.

 @field lastField Description of the struct's last field.
*/
typedef struct _someTag {
 short firstField;
 IOReturn (*setPointers)(void *cmd, IOVirtualRange *sgList);
 unsigned long lastField
} TypedefdStructWithCallbacks;

Variable Tags

The @var tag should be used when marking up global variables, class variables, and instance variables (as
opposed to actual declaration of new data types).

Listing 3-23 Example of @var tag

/*! @var we_are_root
 @abstract Tells whether this device is the root power domain
 @discussion TRUE if this device is the root power domain.
 For more information on power domains....
 */

 bool we_are_root;

Second Level HeaderDoc Tags

The tags in the table below (except as noted)) can be used in any comment for any data type, function,
header, or class.

The different types of tags are:

 ■ attribute—The contents of this tag will appear as an attribute in a list of attributes. These should generally
be short, but like block tags, attribute tags continue until the next block or attribute tag.

 ■ block—The contents of this tag can contain multiple paragraphs of text.

 ■ HTML tagging—The contents of this tag affect HTML tagging and are not displayed.

 ■ inline—This tag can appear within a paragraph in most other tags (but not in name or title fields). The
contents of an inline tag do not break the text flow.

 ■ page footer—This tag modifies contents in the footer at the bottom of each content page.

 ■ parsing—This tag modifies the way the source code file is parsed.

In addition, some attribute tags are labeled as “term & definition” style. This means that they behave just like
top level tags in terms of their format. This format is described in “Multiword Names” (page 16).

28 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Table 3-9

UsageIdentifiesExampleTag

block

(single short
sentence
recommended)

A short string that
briefly describes a
function, data type,
and so on. This
should not contain
multiple lines
(because it will look
odd in the
mini-TOCs). Save the
detailed
descriptions for the
discussion tag.

@abstract write the track to disk@abstract

attributeA string that
describes the
availability of a
function, class, and
so on.

@availability 10.3 and later@availability

block

(single short
sentence
recommended)

Equivalent to
@abstract. Provided
for better Doxygen
compatibility.

@brief write the track to disk@brief

attribute (term
& definition)

in struct
declaration only

Specifies the name
and description of a
callback field in a
structure.

@callback testFunc The test
function to call.

@callback

block

in class
declarations
only

Description of any
common design
considerations that
apply to this class,
such as consistent
ways of handling
locking or
threading.

@classdesign Multiple paragraphs
go here.

@classdesign

attribute (term
& definition)

in class
declarations
only

Class with which
this class was
designed to work.

@coclass myCoClass Description
of how class is used

@coclass

HTML tagging

in @header
only

Sets the character
encoding for
generated HTML
files (same as
@encoding).

@charset utf-8@charset

Additional HeaderDoc Tags 29
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

attribute (term
& definition)

enum
declarations
only

A constant within
an enumeration.

@const kSilly A silly return
value.

@constant

@const

page footer

in @header
only

Copyright info to be
added to each page.
This overrides the
config file value and
may not span
multiple lines.

@copyright Apple@copyright

attribute (term
& definition)

in @header
only

Compiler flag that
should be set when
using functions and
types in this header.

@compilerflag -lssl@compilerflag

attribute

in @header
only

Which kernel
subcomponent,
loadable extension,
or application
bundle contains this
header

@CFBundleIdentifier org.mklinux.driver.test@CFBundleIdentifier

attribute

in class
declarations
only

External resource
that this class
depends on (such as
a class or file).

@dependency This depends on the
FooFramework framework.

@dependency

attribute

in class
declarations
only

String telling when
the function, data
type, etc. was
deprecated.

@deprecated in version 10.4@deprecated

30 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

blockA block of text that
describes a function,
class, header, or
data type in detail.
This may contain
multiple
paragraphs.
@discussion may
be omitted, as
described above.

@discussionmust
be present if you
have a multiword
name for a data
type, function, class,
or header.

An @discussion
block ends only
when another block
begins, such as an
@param tag.

@discussion This is what this
function does. @some_other_tag

@discussion

HTML Tagging

in @header
only

Sets the character
encoding for
generated HTML
files (same as
@charset).

@encoding utf-8@encoding

attribute (term
& definition)

A field in a structure
declaration.

@field isOpen Specifies whether
the file descriptor is open.

@field

attribute (term
& definition)

in @header
only

Same as
@compilerflag.

@flag -lssl

The SSL Library

@flag

attribute (term
& definition)

in class
declarations
only

A helper class used
by this class.

@helper myHelperClass

Description of how class is used.

@helper or
@helperclass

attribute

in class
declarations
only

If this is a helper
class, a short
description of
classes that this
class was designed
to help.

@helps This class provides
additional stuff that does
something.

@helps

Additional HeaderDoc Tags 31
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

parsing

in @header
only

Tells HeaderDoc to
delete the specified
token.

@ignore API_EXPORT@ignore

parsing

in @header
only

Tells HeaderDoc to
unwrap occurrences
of the specified
function-like macro.

@ignorefuncmacro __P@ignorefuncmacro

block (short
strings, please)

Provides grouping
information within
the master TOC
(landing page).

In the absence of an
@indexgroup tag,
the index group is
inherited from the
enclosing class or
header.

@indexgroup Name of Group@indexgroup

attribute

in class
declarations
only

The typical size of
each instance of the
class.

@instancesize Eight hundred
megabytes and constantly
swapping.

@instancesize

32 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

inlineAllows you to insert
a link request for an
API ref. If the link
target is part of the
same .h file, you
can do this by using
only the name of
the function or data
type. If it is in a
separate file (or if
there are multiple
matches for a given
name), you must
explicitly specify
which API ref to use.

Because the
headerDoc2HTML
script does not
know the actual
target for these
links, it inserts
comments into the
output. You must
then run
gatherHeaderDoc
to actually turn
those comments
into working links.

@link
//apple_ref/c/func/function_name
link text goes here @/link

or

@link function_name link text
goes here @/link

@link

HTML tagging

in @header
only

Meta tag info to be
added to each page.
This can be either in
the form @meta
<name>
<content> or
@meta <complete
tag contents>,
and may not span
multiple lines.

@meta robots index,nofollow

or

@meta http-equiv="refresh"
content="0;http://www.apple.com"

@meta

attributeString describing
the namespace in
which the function,
data type, etc.
exists.

@namespace BSD Kernel@namespace

Additional HeaderDoc Tags 33
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

parsing

in #define
declarations
only

Disables C
preprocessor
parsing of a macro.
The macro will still
be included as a
#define entry in
the resulting
documentation.

@noParse@noParse

block

in class
declarations
only

Describes the
ownership model to
which this class
conforms.

@ownership MyClass objects are
owned by the MyCreatorClass
object that created them.

@ownership

attribute (term
& definition)

in function ,
method, and
callback
declarations
only

The name and
description of a
parameter to a
function or callback.

@param myValue The value to
process.

@param

parsing

in #define
declarations
only

Marks macro as
“hidden”. The macro
will be parsed and
used by the C
preprocessor, but
will not be included
as a separate
#define entry in
the resulting
documentation.

@parseOnly@parseOnly

block

in class
declarations
only

Describes special
performance
characteristics for
this class.

@performance This class is
strongly discouraged in
high-performance contexts.

@performance

block

in @header
only

Description of
behavior when
preprocessor
macros are set
(-DDEBUG, for
example).

@preprocinfo This header uses the
DEBUG macro to enable additional
debugging.

@preprocinfo

34 Additional HeaderDoc Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

attribute (term
& definition)

in @header
only

Indicates another
header that is
related to this one.
You may use
multiple @related
tags.

Similar to the
@seealso tag.

@related Sixth cousin of Kevin
Bacon.

@related

attribute (term
& definition)

in function,
method, and
callback
declarations
only

Describes the return
values expected
from this function.

@result Returns 1 on success, 0
on failure..

@result

attribute (term
& definition)

in function,
method, and
callback
declarations
only

Same as @result.@result Returns 1 on success, 0
on failure..

@return

block

in class and
header
declarations
only

Describes security
considerations
associated with the
use of this class

@security This class is feeling
insecure today.

@security

attributeAdds a “See:” entry
to the attributes.
Arguments are the
same as @link.

@see apple_ref Title for link@see

attributeAdds a “See Also:”
entry to the
attributes.
Arguments are the
same as @link.

@seealso apple_ref Title for link@seealso

attribute

in class
declarations
only

Overrides superclass
name—see note
below.

@superclass
fasterThanASpeedingRuntime

@superclass

Additional HeaderDoc Tags 35
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

UsageIdentifiesExampleTag

inlineTreat everything
until the trailing
@/textblock as
raw text, preserving
initial spaces and
line breaks, and
converting “<” and
“>” to “<” and
“>”.

Note that this tag
does not
automatically insert
<pre> or <tt>. You
may wrap it with
whatever formatting
you choose.

@textblock My text goes here
@/textblock

@textblock

attribute (term
& definition)

in C++ class
and method
declarations
only

Each of the
function’s template
fields (C++).

@templatefield base_type The base
type to store in the linked list.

@templatefield

attribute

in function and
method
declarations
only

Include one
@throws tag for
each exception
thrown by this
function (in
languages that
support exceptions).

@throws bananas@throws

attributeThe date at which
the header was last
updated.

@updated 2003-03-14@updated

attribute

in @header
only

the version number
to which this
documentation
applies.

@version 2.3.1@version

Overriding the Default Data Type: C Pseudoclass Tags

There are three tags provided for C pseudoclasses, such as COM interfaces. The @class tag is used for generic
pseudoclasses. The @interface tag is used for COM interfaces. The @superclass tag can be added to an
@class or @interface declaration to modify its behavior.

36 Overriding the Default Data Type: C Pseudoclass Tags
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Table 3-10

FieldsIdentifiesTag

1The name of the superclass.@superclass

You should mark up any C pseudoclasses in the same way you would mark up a C++ class. Apart from the
unusual form of function declarations (in the form of function pointers), the resulting output should be similar
to that of a C++ class.

The @superclass tag can be used when you have a superclass-like relationship between two C pseudoclasses
or COM interfaces. Using this tag will cause the documentation for the specified pseudo-superclass to be
injected into the documentation for the current pseudoclass.

The primary purpose for this feature is to reduce the amount of bloat in headers, allowing you to document
function pointers in the top level pseudoclass and then only document the additional function pointers in
pseudoclasses that expand upon them.

Note: In order for this feature to work, the super-pseudoclasses must be processed first. If it is in the same
header, it must appear before the child pseudoclass. If it is in a separate header, it must appear in a header
that the child’s header includes, and both headers must be processed at the same time.

Listing 3-24 Example of @class tag

/*!
 @class IOFireWireDeviceInterface_t
 @superclass IOFireWireDevice
*/
 typedef struct IOFireWireDeviceInterface_t
{
 IUNKNOWN_C_GUTS;
.
.
.
}

The @class tag causes the typedef structthat follows the HeaderDoc comment to be treated as a class.
This is a frequently-used technique in kernel programming. A slight variation of this tag, @interface, is
provided for COM interfaces so that they can be identified as such in the TOC. An example of this tag follows:

Listing 3-25 Example of @interface tag

/*!
 @interface IOFireWireDeviceInterface_t
 @superclass IOFireWireDevice
*/
 typedef struct IOFireWireDeviceInterface_t
{
 IUNKNOWN_C_GUTS;
.
.
.
}

Overriding the Default Data Type: C Pseudoclass Tags 37
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

Unknown Tag Handling

To avoid warnings and unexpected output, if you need to use an at sign (@) outside the scope of a HeaderDoc
tag, you should quote it by preceding it with a backslash. For example:

/*! @header
 For more information, contact myemail\@myaddress.top.
 */

If you do not quote the at sign, it will be treated as the start of a tag name, and you may get unexpected
behavior.

Beginning in HeaderDoc 8.6 and later, a warning is generated when an unknown tag is encountered, and
the tag is converted into text.

Prior to version 8.6, unknown tags were partially removed. The initial at sign (@) was deleted, leaving only
the content following it.

38 Unknown Tag Handling
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

HeaderDoc Tags

You can set values for some commonly altered variables. Currently, the configuration file lets you set these
things:

copyrightOwner
The copyright notice that appears at the bottom of the HTML pages. Unless you specify a value, no
copyright will appear.

classAsComposite
By default, HeaderDoc generates class documentation in a way that matches

appleTOC
Specifies the Apple TOC format. This format requires extensive JavaScript and CSS support, and thus
is not very useful outside of the developer.apple.com website. It is documented only for completeness.

defaultFrameName
The name of the file containing the frameset instructions (by default, index.html).

compositePageName
The name of the file containing the printable HTML page (by default, CompositePage.html).

masterTOCName
The name of the file containing the master table of contents for a series of headers (by default,
masterTOC.html). (This variable is used by the gatherHeaderDoc script, and can be overridden on
the command line.)

apiUIDPrefix
The prefix for named anchors (by default, apple_ref). In the output, HeaderDoc adds a self-describing
named anchor near each API declaration—for example . These can be useful for index generation
and other purposes. See “Symbol Markers for HTML-Based Documentation” (page 65) for more
information.

ignorePrefixes
A list of tokens to leave out of the final output if they occur at the start of a line (before any other
non-whitespace characters). While this feature still exists, it is usually better to use C preprocessor
directives.

htmlFooter
A string (generally a server-side include directive) that HeaderDoc will insert into the bottom of each
right-side and composite HTML page if you specify the -H flag on the command line. For longer
headers, use htmlFooterFile.

htmlFooterFile
A file containing a longer HTML footer. The contents of this file will be added to the end of each
content page if you specify the -H flag on the command line.

htmlHeader
A string (generally a server-side include directive) that HeaderDoc will insert into the top of each
right-side and composite HTML page if you specify the -H flag on the command line. For longer
headers, use htmlHeaderFile.

39
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Basic HeaderDoc Configuration

htmlHeaderFile
A file containing a longer HTML header. The contents of this file will be added at the top of each
content page if you specify the -H flag on the command line.

useBreadcrumbs
Setting this option to 1 tells HeaderDoc that you intend to use an external tool to create breadcrumb
links in your documents. When you specify this option, it disables the insertion of the “[Top]“ link in
the table of contents, since it is not necessary if you have such a tool. Because such breadcrumbs are
site-specific, no such tools are provided as part of HeaderDoc.

stripDotH
This option causes gatherHeaderDoc to strip the trailing .h from the names of header filenames in
header lists.

dateFormat
A string specifying the date format to be used by HeaderDoc. This date format is specified using
standard time formatting flags. For examples of valid date formats, see the man page for strftime(3).

ignorePrefixes
Specifies a list of tokens to remove from HeaderDoc markup. Generally used to remove debug macros.

HeaderDoc Styles:
These contain CSS formatting for various parts of declarations. For example:

funcNameStyle => background:#ffffff; color:#000000;

charStyle

style for characters ('a')

commentStyle

style for comments

funcNameStyle

style for function names

keywordStyle

style for keywords

numberStyle

style for numbers

paramStyle

style for function parameters

preprocessorStyle

style for preprocessor directives

stringStyle

style for strings

textStyle

style for normal text if declarations (mainly parentheses, punctuation, and spaces)

typeStyle

style for data types

varStyle

style for variable names

40
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Basic HeaderDoc Configuration

styleSheetExtrasFile
A file containing local headerdoc-specific CSS. The contents of the file specified will be inserted at
the end of the built-in HeaderDoc styles (after any styles specified by the HeaderDoc declaration
styles, such as varStyle).

Note: This option is the only style sheet option that does not disable the built-in HeaderDoc styles.

externalStyleSheets
A space-separated list of paths to external style sheet files on the server or destination volume. For
example, if you set externalStyleSheets to /CSS/mysheet.css, HeaderDoc will insert the following:

<link rel="stylesheet" type="text/css" href="/CSS/mysheet.css">

These style sheets are inserted prior to any HeaderDoc-generated styles.

Note: Using this option disables the built-in HeaderDoc styles. For your convenience, these built-in styles
are listed in “Built-in HeaderDoc Styles” (page 43).

externalTOCStyleSheets
Like externalStyleSheets, this is a space-separated list of paths to external style sheet files on the
server or destination volume. If no TOC style sheets are specified, the style sheets specified in
externalStyleSheets will be used.

Note: Using this option disables the built-in HeaderDoc styles. For your convenience, these built-in styles
are listed in “Built-in HeaderDoc Styles” (page 43).

styleImports
A string of CSS to be inserted just prior to headerdoc-generated CSS, but after any external style
sheets. This was originally intended to support the @import directive to import an external style sheet,
but may be used for any CSS content.

Note: Using this option disables the built-in HeaderDoc styles. For your convenience, these built-in styles
are listed in “Built-in HeaderDoc Styles” (page 43).

tocStyleImports
Similar to styleImports, this is a string of CSS to be inserted just prior to headerdoc-generated CSS,
but after any external style sheets. This was originally intended to support the @import directive to
import an external style sheet, but may be used for any CSS content.

If no TOC style imports are specified, the value of styleImports will be used for the TOC.

Note: Using this option disables the built-in HeaderDoc styles. For your convenience, these built-in styles
are listed in “Built-in HeaderDoc Styles” (page 43).

TOCTemplateFile
Specifies a TOC template file to use instead of the built-in TOC template. For more information, see
“Creating a TOC Template File” (page 45).

41
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Basic HeaderDoc Configuration

externalXRefFiles
A space-separated list of paths to external files, each of which contains a list of cross references outside
the current document. WhengatherHeaderDoc runsresolveLinks to link together cross-referenced
content, it passes these external cross-reference files to resolveLinks so that you can look up API
references (apple_ref-style markup) in other documents.

For more information, see “Symbol Markers for HTML-Based Documentation” (page 65).

externalAPIUIDPrefixes
A space-separated list of prefixes for API references. When gatherHeaderDoc runs resolveLinks,
it passes this list of prefixes to resolveLinks. This allows you to use (multiple) API reference prefixes
other than apple_ref.

For more information, see “Symbol Markers for HTML-Based Documentation” (page 65).

HeaderDoc looks in three places for values for these variables, in this order:

1. In the script itself (see the declaration of the %config hash near the top of headerDoc2HTML).

2. In the home directory of the user, in Library/Preferences/com.apple.headerDoc2HTML.config

3. In a file named headerDoc2HTML.config in the same folder as the script.

A variable can be assigned a value in any of these places, but only the last value read for a given variable will
affect the output of a run of the script. If you are happy with the default values for these variables (as described
above), you don't need to provide a configuration file. If you want to change just one or more values, provide
a configuration file that declares just those values.

The format of the configuration file is this:

 key1 => value1
 key2 => value2

Configuration File Example

Listing 4-1 (page 42) is an example of a very basic HeaderDoc configuration file. Several additional examples
are included as part of the HeaderDoc distribution.

Listing 4-1 Sample HeaderDoc configuration file

copyrightOwner => My Great Software Company
defaultFrameName => default.html
compositePageName => PrintablePage.html
masterTOCName => TOCCentral.html
apiUIDPrefix => greatSoftware
ignorePrefixes=> CF_EXTERN|CG_EXTERN
htmlHeader=>
dateFormat=> %m/%d/%Y

42 Configuration File Example
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Basic HeaderDoc Configuration

Built-in HeaderDoc Styles

Many of the CSS options in HeaderDoc disable the built-in styles so that it is easier to override those styles
in external style sheets. The built-in styles are listed below for your convenience.

Listing 4-2 Built-in HeaderDoc CSS Styles

a:link {text-decoration: none; font-family: lucida grande, geneva, helvetica,
arial, sans-serif; font-size: small; color: #0000ff;}
a:visited {text-decoration: none; font-family: lucida grande, geneva, helvetica,
 arial, sans-serif; font-size: small; color: #0000ff;}
a:visited:hover {text-decoration: underline; font-family: lucida grande, geneva,
 helvetica, arial, sans-serif; font-size: small; color: #ff6600;}
a:active {text-decoration: none; font-family: lucida grande, geneva, helvetica,
 arial, sans-serif; font-size: small; color: #ff6600;}
a:hover {text-decoration: underline; font-family: lucida grande, geneva,
helvetica, arial, sans-serif; font-size: small; color: #ff6600;}
h4 {text-decoration: none; font-family: lucida grande, geneva, helvetica, arial,
 sans-serif; font-size: tiny; font-weight: bold;}
body {text-decoration: none; font-family: lucida grande, geneva, helvetica,
arial, sans-serif; font-size: 10pt;}

Built-in HeaderDoc Styles 43
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Basic HeaderDoc Configuration

44 Built-in HeaderDoc Styles
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Basic HeaderDoc Configuration

HeaderDoc contains a number of advanced features intended for users with more complex needs. This
chapter describes some of these features.

Creating a TOC Template File

TOC template files are basically ordinary HTML files. They can contain any HTML content. In addition to HTML
content, they can also contain conditional HTML content—that is, content that is only included if certain
conditions are met. Finally, they can include various lists.

The template support is particularly powerful when combined with support for frameworks (which, for
HeaderDoc purposes, is essentially a loose grouping of related documentation stored in the same output
directory).

Here are the special tags that indicate conditional or list content:

$$title@@
Inserts “Foo Documentation” where Foo is the framework name.

$$tocname@@
Inserts the name of the main TOC file. Useful when used with multiple landing page templates, as
described in “Using Multiple Landing Page Templates” (page 48).

$$framework@@
Inserts the full framework name, as specified by the @framework tag in the .hdoc file.

$$frameworkabstract@@
Inserts the framework abstract, as specified by the @abstract tag in the .hdoc file.

$$frameworkdir@@
Inserts the framework’s "short name”. This is determined by taking the filename of the “.hdoc” file
and stripping off the .hdoc extension). This name is also prepended to the name of additional landing
page template, as described in “Using Multiple Landing Page Templates” (page 48).

$$frameworkdiscussion@@
Inserts the framework discussion, as specified by the @discussion tag (or implicitly as part of the
@framework tag) in the .hdoc file.

$$frameworkuid@@
Inserts a framework UID anchor.

$$headersection@@
Start of conditional block for headers. If there are no headers listed, content between this tag and
the closing conditional block tag will not appear.

$$/headersection@@
End of conditional block for headers.

Creating a TOC Template File 45
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and
Features

$$headerlist@@
A list of all headers in the output directory.

$$classsection@@
Start of conditional block for classes. If there are no classes listed, content between this tag and the
closing conditional block tag will not appear.

$$/classsection@@
End of conditional block for classes.

$$classlist@@
A list of all classes in the output directory.

$$categorysection@@
Start of conditional block for categories. If there are no categories listed, content between this tag
and the closing conditional block tag will not appear.

$$/categorysection@@
End of conditional block for categories.

$$categorylist@@
A list of all categories in the output directory.

$$protocolsection@@
Start of conditional block for protocols. If there are no protocols listed, content between this tag and
the closing conditional block tag will not appear.

$$/protocolsection@@
End of conditional block for protocols.

$$protocollist@@
A list of all protocols in the output directory.

$$datasection@@
Start of conditional block for data (globals and constants). If there are no data elements listed, content
between this tag and the closing conditional block tag will not appear.

$$/datasection@@
End of conditional block for data (globals and constants).

$$datalist@@
A list of all data elements in the output directory.

$$typesection@@
Start of conditional block for types. If there are no types listed, content between this tag and the
closing conditional block tag will not appear.

$$/typesection@@
End of conditional block for types.

$$typelist@@
A list of all types in the output directory.

$$functionsection@@
Start of conditional block for functions or methods. If there are no functions or methods listed, content
between this tag and the closing conditional block tag will not appear.

$$/functionsection@@
End of conditional block for functions or methods.

$$functionlist@@
A list of all functions/methods in the output directory.

46 Creating a TOC Template File
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

List tags default to a raw list (single column) with no border. However, you can change the number of columns,
the table width, and border quite easily. For example:

 $$functionlist cols=3 order=down atts=border="0" cellpadding="1"
cellspacing="0" width="420"@@

specifies that the table will be three columns, listed down the first column, then down the next column, and
so on. It also specifies that the additional attributes border, cellpadding, cellspacing, and width will
be inserted into the table tag automatically. Note that the atts parameter must be the last parameter listed.

Warning: The order of the arguments to the list commands is important. The order of options is listed
below

nogroups
The gatherHeaderDoc tool normally separates entries by TOC grouping. If you want this list to include
everything in a single list, add this flag. For an example, see the alphabetical list of all Mac OS X manual
pages as part of Mac OS X Man Pages.

cols
Specifies the number of columns in the table. (Note that the number of rows cannot be specified, as
it is calculated based on the number of columns and the number of entries in the table.) For example,
you might specify cols=3.

order
Specifies whether the table should read across or down. If you specify order=across, the first entry
will be in the upper left cell, the second one will be to the right, and so on. If you specify order=down,
the second entry will be below the first entry. The default is down.

trclass
Specifies a CSS class to be applied to the <tr> (table row) tags within the table. For example, you
might specify trclass=toctrclass.

tdclass
Specifies a CSS class to be applied to the <td> (table data cell) tags within the table. For example,
you might specify tdclass=toctdclass.

notable
Disables generation of tables. If you specify this option, each entry will be separated by a
 (line
break) tag followed by a newline. This is primarily intended for generating a list that can be easily
processed with custom tools, but it may be combined with CSS to create some interesting and useful
layouts as well.

addempty
This option tells gatherHeaderDoc to include blank cells containing a non-breaking space to fill in
unused slots in the last line of the table. The default, addempty=0, will simply close the final line of
the table early. To add extra empty cells (as needed) to fill the last line in the table, specify addempty=1.

This usually matters very little unless you have table borders turned on (atts=border=1, for example).

atts
Specifies a list of attributes to be added to the <table> tag. These are not CSS attributes, though
you could specify CSS attributes by specifying atts=style="CSS props here". Everything up to
the closing @@ marker is included as part of the atts option.

For example:

 $$functionlist nogroups cols=3 order=down trclass=mytrclass tdclass=mytdclass
 notable addempty=1 atts=border="0" cellpadding="1" cellspacing="0" width="420"@@

Creating a TOC Template File 47
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

Using Multiple Landing Page Templates

HeaderDoc is not limited to a single landing page template. You can generate multiple landing pages with
different content if desired. To do this, you might create two template files called toctemplate.html and
functions.tmpl, then add a line in your configuration file like this:

TOCTemplateFile => toctemplate.html functions.tmpl

When you run gatherHeaderDoc, you will now get two HTML landing pages, one for each template.

The first template file, toctemplate.html, is treated as the “main” template page. The gatherHeaderDoc
tool will generate a landing page based on that template with the filename specified by the masterTOCName
variable in the configuration file (masterTOC.html by default).

After the first template file, each additional template file (functions.tmpl, in this case) is used to produce
an HTML landing page whose name is derived from the framework’s “short name” (the name of the .hdoc
file with the .hdoc extension stripped off the end), followed by a dash, followed by the template filename
(without any “.html” or “.tmpl” extensions), followed by “.html”.

For example, if the .hdoc file is called MyFramework.hdoc, this second index file would be called
MyFramework-functions.html.

Since these templates can be used for generating multiple documents, you should not specify this entire
path in your template files, however. Instead, you should specify it relative to the framework name. To do
this, in your toctemplate.html file, you should link to the functions index like this:

Functions Index<p>

The framework’s “short name” will automatically be substituted in place of the $$frameworkdir@@ keyword.
Similarly, in the functions template, you can link to the main TOC like this:

Headers Index<p>

This will ensure that your template will generate valid links even if you change the name of the MasterTOC
in your configuration file.

Example gatherHeaderDoc Template

The following is an example template for gatherHeaderDoc:

<html>
 <head>
 <title>API Reference: Device Drivers (Kernel/IOKit)</title>
 <style type="text/css"><!--#pagehead {
 FONT-WEIGHT: bold; FONT-SIZE: 32px; COLOR: #000000;
 FONT-FAMILY: lucida grande, geneva, helvetica, arial, sans-serif; }
 td { font-size: 10px; } a:link {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #0000ff;} a:visited {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #0000ff;} a:visited:hover {text-decoration: underline;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #ff6600;} a:active {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;

48 Creating a TOC Template File
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

 color: #ff6600;} a:hover {text-decoration: underline;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 color: #ff6600;} h4 {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 font-size: tiny; font-weight: bold;} body {text-decoration: none;
 font-family: lucida grande, geneva, helvetica, arial, sans-serif;
 font-size: 10pt;} -->
 </style>
 </head>
 <Meta name="ROBOTS" content="NOINDEX">

<body bgcolor="#ffffff">
<center>

<!-- start of header -->
<!--#include virtual="/path/to/header.html"-->
<!-- end of header -->

<table border="0" cellpadding="0" cellspacing="0" width="600">

 <tr height="5">
 <td width="600" height="5">

 </td>
 </tr>
 <tr>
 <td width="600">
 <div id="pagehead">$$framework@@</div>
 </td>
 </tr>
 <tr height="10">
 <td width="600" height="10">

 </td>
 </tr>
 <tr>
 <td valign="top" width="600"><font face="Geneva,Helvetica,Arial"
 size="2"> $$frameworkdiscussion@@
 </td>
 </tr>
 <tr height="10">
 <td height="10" width="600"></td>
 </tr>
 <tr height="5">
 <td height="5" width="600">
 <hr alt="">

 </td>
 </tr>
 <tr>
 <td width="600" align="center" valign="top">
 <H2>Headers</H2>

 $$headerlist cols=3 order=down atts=border="0"
 cellpadding="1" cellspacing="0" width="420"@@
 <H2>Functions</H2>
 $$functionlist cols=3 order=down atts=border="0"
 cellpadding="1" cellspacing="0" width="420"@@
 </td>
 </tr>

Creating a TOC Template File 49
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

</table>
</center>
</body>
</html>

Using the C Preprocessor

Beginning in HeaderDoc 8.5, HeaderDoc contains a basic C preprocessor implementation (enabled with the
-p flag). Because HeaderDoc does not have access to the full compile-time environment of the headers, its
behavior may differ from normal C preprocessors in certain cases. This section describes some of those
differences.

Parsing Rules

Most #define macros are not parsed by default, even if the preprocessor is enabled. This permits you as
the user to choose which macros to process.

Macros are processed if any of the following are true:

 ■ They are preceded by a HeaderDoc comment block.

 ■ They appear between the beginning and end of a class that is preceded by a HeaderDoc comment block.

The reason for this second case is a side-effect of the way that HeaderDoc parses classes to ensure that lines
are processed in the order in which they appear in the file (which is necessary for a preprocessor to even be
possible). For maximum control, preprocessor directives should be at the start of the file, outside of class
braces.

Multiply-Defined Macros

HeaderDoc does not attempt to handle #if, #ifdef, or #ifndef directives. This may, in certain circumstances,
result in multiple definitions of a #define directive if the preprocessor is enabled. As with most preprocessors,
all such definitions are ignored except for the one that appears first in the file.

This is made slightly more complicated by the parsing rules described in “Parsing Rules” (page 50).

Embedded HeaderDoc Comments in a Macro

With most data types, HeaderDoc comments appearing inside the data type are associated with the data
type itself. This is normally true for #define macros as well. However, that behavior would create a problem
when the C preprocessor is enabled, as it is reasonable to allow macros to define contents to be blown into
a class, and those contents could potentially include HeaderDoc markup.

For this reason, when the C preprocessor is enabled, embedded headerdoc processing is disabled for #define
macros. Any HeaderDoc markup within the body of such a macro will be blown in wherever the macro is
used, and will only be processed in the resulting context.

50 Using the C Preprocessor
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

While HeaderDoc does allow a macro to insert multiple declarations and HeaderDoc comment blocks within
a class, it does not allow this outside of a class. When a macro inserts contents outside of a class scope, parsing
will end at the end of the first declaration and any other contents inserted by the macro will be skipped.

Handling of #include

HeaderDoc’s implementation of #include behaves differently than you might expect. The differences include
the following:

 ■ No notion of paths.

Because the include paths are not specified as they are with a compiler, HeaderDoc cannot reasonably
determine that <dir1/file.h> and <dir2/file.h> are distinct. For this reason, processing files with
the same name in different directories is discouraged.

 ■ Mandatory recursion protection.

Because HeaderDoc does not process #if, #ifdef, and #ifndef conditionals, HeaderDoc enforces
recursion protection by not allowing a file to get processed twice. Once a file is processed, a precompiled
copy of its macros is stored for future use, and is automatically inserted whenever another #include
requests it.

This causes two side-effects. First, a #include cannot be altered in a context-dependent way—that is,
if a header incudes <a.h> and then <b.h>, the macros defined in <a.h> will not affect the parse of
<b.h> unless <b.h> includes <a.h> on its own.

Second, #include behaves much like #import. The result is that if <a.h> includes <b.h>which includes
<c.h> which includes <a.h>, the definitions leading up to the reinclusion of <a.h> will not affect the
way <a.h> is parsed.

 ■ Macro contents will be shown in the documentation output.

Rather than try to carry around some notion of the original tokens read from the file, HeaderDoc inserts
macros into the parse tree as if the modified version had been read from the file. This means that it is
not possible, for example, for HeaderDoc to show you the unaltered definition of a macro that includes
another macro.

These differences generally do not affect headers written in a typical fashion, but may cause problems if you
are using preprocessor directives in a nonstandard way.

Other Issues

A few common function-like preprocessor macros are predefined within HeaderDoc itself to avoid parse
problems with I/O Kit headers. These will probably not affect you, but you should be aware of them.

Because HeaderDoc does not strip comments prior to processing macros (since doing so would remove
HeaderDoc markup), the preprocessor may behave in subtly different ways. In particular, newlines are
preserved, and any closing single-line (//) comments will automatically be converted into a multi-line (/*
*/) comment to avoid causing the rest of the line to disappear when that macro actually gets used.

Finally, HeaderDoc does do basic string and character handling, even within macros. As a result, mismatched
single and double quotes within a #define macro may cause serious problems.

Using the C Preprocessor 51
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

What if I Don’t Want to See the Macros in the Documentation?

Most of the time, having #define macros defined in the documentation is helpful. In some cases, though,
the macros get so big and ugly that you just want to get rid of them. For this reason, HeaderDoc has the
@parseOnly tag.

For example:

/*! This is an ugly internal macro. @parseOnly */
#define CreateStructors \
 /*! Constructor */ \
 blah(); \
 /*! Destructor */ \
 ~blah();

By adding this tag at the end of the HeaderDoc comment block for the macro, the macro will be parsed and
used by the preprocessor, but will not appear in the documentation.

52 Using the C Preprocessor
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced HeaderDoc Configuration and Features

In addition to the main headerDoc2HTML and gatherHeaderDoc scripts, the HeaderDoc suite contains
additional utilities for generating manual pages (using the mdoc macro set).

The Man Page Generation Language (MPGL) suite contains two utilities: xml2man and hdxml2manxml. The
xml2man utility converts an mdoc-like XML dialect, the Man Page Generation Language (MPGL) into manual
pages. The hdxml2manxml utility converts HeaderDoc XML output into a series of files that can then be
processed using xml2man.

Both commands have a very simple syntax. Neither takes any arguments.

hdxml2manxml filename1 filename2 ... filenameN
xml2man inputfile.mxml [outputfile.1]

In the case of xml2man, the output filename is generally left blank.

The remainder of this chapter describes the XML dialect used by these utilities.

Man Page Generation Language (MPGL) Dialect

This section describes the basic syntax of the Man Page Generation Language (MPGL). Portions of the syntax
are abridged due to complexity. For information on these details, see the examples later in this chapter.

Note: Many versions of man are exceptionally picky about blank lines. While the xml2man translator attempts
to remove most of these, you should still avoid leaving blank lines in the input files.

The MPGL syntax includes a subset of mdoc. All text is unjustified, and some redundancy was reduced. In
particular, the usage section in an MPGL file provides the source information for both the SYNOPSIS and
OPTIONS sections of a traditional man page. Beyond those changes, if you are familiar with the mdoc macro
set, you should feel right at home.

At the top level (within the outer <manpage> tag), an MPGL page consists of some or all of the following
large blocks:

Table 6-1 MPGL block tags

DescriptionBlock tag

The last modified date of the manual page.<docdate>

A description of the technology as a whole. This is the first major section of the resulting
manual page.

<description>

The title of the manual page.<doctitle>

Man Page Generation Language (MPGL) Dialect 53
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

DescriptionBlock tag

The operating system for which the manual page was written.<os>

The man section in which the manual pages should appear.<section>

Names and descriptions of functions or tools described in this manual page (see
example for syntax).

<names>

Command-line usage or function parameters (see example for syntax).<usage>

Function return value (text description).<returnvalues>

Interaction with environment variables.<environment>

Files used by a command-line tool.<files>

Usage examples.<examples>

Troubleshooting information.<diagnostics>

Function error values (generally restricted to those returned via the errno global
variable).

<errors>

Cross-references to other manual pages (see example).<seealso>

Standards to which a tool or function conforms.<conformingto>

Historical information.<history>

Known bugs in a tool or function.<bugs>

Any field can contain either a block of raw text or the following subset of XHTML:

Table 6-2 XHTML tags supported by MPGL

DescriptionXHTML tag

paragraph<p>

indented block<blockquote>

indented literal text or code<tt>

unordered (bullet) list

ordered (numbered) list

list item (within a list)

literal text<code>

term and definition list<dl>

term (within a term and definition list)<dt>

54 Man Page Generation Language (MPGL) Dialect
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

DescriptionXHTML tag

definition (within a term and definition list)<dd>

Any field can also contain any of the following MPGL-specific inline tags:

Table 6-3 Additional MPGL-specific inline tags

DescriptionTag

path name<path>

function name<function>

command name<command>

man page cross-reference (see example)<manpage>

A Simple Function Example

Listing 6-1 (page 55) is an example of how to write an MPGL manual page for a function.

Listing 6-1 A simple MPGL example for a function

<manpage>
<docdate>August 28, 2002</docdate>
<doctitle>Document title</doctitle>
<os>Mac OS X</os>
<section>3</section>
<names>
 <name>foo<desc>This is foo's description</desc></name>
 <name>bar<desc>This is bar's description</desc></name>
</names>

<usage>
 <func><type>int</type><name>foo</name>
 <arg>int k<desc>This is a k.</desc></arg>
 <arg>char *b<desc>This is a b.</desc></arg>
 </func>
</usage>

<returnvalues>
 <p>Returns kIONotANumber if you can't count.</p>
 <p>Returns kIOMoron this if you REALLY can't count.</p>
</returnvalues>

<environment>
 TEXT
</environment>

<files>
 <file>/path/to/filename<desc>This is a waste of time</desc></file>

A Simple Function Example 55
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

 <file>/path/to/another/filename<desc>This is also a waste of
time</desc></file>
</files>

<examples>
 TEXT
</examples>

<diagnostics>
 TEXT
</diagnostics>

<errors>
 TEXT
</errors>

<seealso>
 <p>This is a text container, really, but generally contains
 lines like this:</p>
 <manpage>foo<section>1</section>, </manpage>
 <manpage>bar<section>3</section></manpage>
</seealso>

<conformingto>
 <p>Here's a list of conformance:</p>

 Single UNIX Specification
 POSIX

</conformingto>

<history>
 TEXT
</history>

<bugs>
 <p>Here are some bugs:</p>
 <p>

 Bug one....
 Bug two....
 Bug three....

 </p>
 <p>I think that pretty much covers it.</p>
</bugs>
</manpage>

A Simple Command Example

Listing 6-2 (page 57) is an example of how to write an MPGL manual page for a single command or a series
of commands with the same syntax.

56 A Simple Command Example
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

Listing 6-2 A simple MPGL example for a command

<manpage>
<docdate>August 28, 2002</docdate>
<doctitle>Document title</doctitle>
<os>Darwin</os>
<section>1</section>
<names>
 <name>foo<desc>this is a description</desc></name>
 <name>bar<desc>this is also a description</desc></name>
</names>

<usage>
 <flag optional="1">a<arg>attributes</arg><desc>This is the atts
flag</desc></flag>
 <flag>d<arg>date</arg><desc>This is the date flag</desc></flag>
 <flag>x<desc>This is the -x flag</desc></flag>
 <arg>filename<desc>This is the filename</desc></arg>
</usage>

<returnvalues>
 <p>Returns kIONotANumber if you can't count.</p>
 <p>Returns kIOMoron if you REALLY can't count.</p>
</returnvalues>

<environment>
 TEXT
</environment>

<files>
 <file>/path/to/filename<desc>This is a waste of time</desc></file>
 <file>/path/to/another/filename<desc>This is also a waste of
time</desc></file>
</files>

<examples>
 TEXT
</examples>

<diagnostics>
 TEXT
</diagnostics>

<errors>
 TEXT
</errors>

<seealso>
 <p>This is a text container, really, but generally contains
 lines like this:</p>
 <manpage>foo<section>1</section>, </manpage>
 <manpage>bar<section>3</section></manpage>
</seealso>

<conformingto>
 <p>Here's a list of conformance:</p>

 Single UNIX Specification

A Simple Command Example 57
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

 POSIX

 <p>Here's a definition list:</p>
 <dl>
 <dd>foo_aaa</dd>
 <dt>This is foo</dt>
 <dd>bar</dd>
 <dt>This is bar</dt>
 </dl>

</conformingto>

<history>
 This program should be history....
</history>

<bugs>
 <p>Here are some bugs:</p>
 <p>

 Bug one....
 Bug two....
 Bug three....

 </p>
 <p>I think that pretty much covers it.</p>
</bugs>
</manpage>

A Multi-Command Example

Listing 6-3 (page 58) is an example of how to write an MPGL manual page for multiple commands in a single
page.

Listing 6-3 An MPGL example for multiple commands

<manpage>
<docdate>August 28, 2002</docdate>
<doctitle>Document title</doctitle>
<os>Darwin</os>
<section>1</section>
<names>
 <name>hdxml2manxml<desc>HeaderDoc XML to MPGL translator</desc></name>
 <name>xml2man<desc>MPGL to mdoc (man page) translator</desc></name>
 <name>examplemc<desc>MPGL to mdoc (man page) translator</desc></name>
</names>

<usage>
 <command name="hdxml2manxml">
 <arg>filename [filename ...]<desc>the filename(s) to be
processed</desc></arg>
 </command>
 <command name="xml2man">
 <arg>filename<desc>This is the filename</desc></arg>

58 A Multi-Command Example
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

 <arg optional="1">output_filename<desc>This is the
filename</desc></arg>
 </command>
 <command name="example">
 <arg>filename<desc>This is the filename</desc></arg>
 <arg optional="1">output_filename<desc>This is the
filename</desc></arg>
 </command>
 <command name="example">
 <arg>filename [filename ...]<desc>the filename(s) to be
processed</desc></arg>
 <flag optional="1">c<arg>time_to</arg><arg
optional="1">crash</arg><desc>Seems like a useful flag</desc></flag>
 </command>
</usage>

<environment>
 <p>The <name>xml2man</name> program was designed to convert Man Page
 Generation Language (MPGL) XML files into mdoc-based manual pages.
 The MPGL is a fairly direct translation of mdoc to XML.</p>

 <p>The <name>hdxml2manxml</name> tool was designed to translate
 from headerdoc's XML output to an mxml file for use with xml2man.</p>
</environment>

<seealso>
 <p>For more information on xml2man, see</p>
 <manpage>xml2man<section>1</section>, </manpage>
 <manpage>hdxml2manxml<section>1</section>, </manpage>
</seealso>

</manpage>

A Multi-Command Example 59
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

60 A Multi-Command Example
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Using the MPGL Suite

HeaderDoc 8 is the latest incarnation of the HeaderDoc tool. HeaderDoc 8.5 is an enhanced version of
HeaderDoc 8.

The HeaderDoc Tools Suite consists of a series of Perl scripts and several small C helper applications that
allows conversion of documentation embedded in header files in many languages into HTML and other
output formats.

HeaderDoc 8 is nearly a rewrite of HeaderDoc from the ground up. It incorporates the functionality of previous
versions but also provides a number of new features, such as declaration syntax coloring/highlighting and
an easier-to-use comment syntax. These features are described in “Major Features” (page 62).

HeaderDoc 8 adds a number of additional languages with various levels of support. These are described in
“Languages Supported” (page 61).

HeaderDoc 8 also adds a number of new (optional) tags for convenience. These are described in “New
Tags” (page 63).

Finally, HeaderDoc 8.5 adds a C preprocessor for more advanced header parsing. This is described in “Using
the C Preprocessor” (page 50).

For additional information, see the documentation that is packaged with HeaderDoc.

Languages Supported

HeaderDoc 8 supports many more languages than HeaderDoc 7. This table shows the various languages and
the level of support.

Table A-1 HeaderDoc 8 Language Support

HeaderDoc 8 supportHeaderDoc 7 supportLanguage

yesyesC headers

yesyesC++

yesyesObjective C

yesnoC source code

yesnoK&R C sources

yes *noJava

yes *noJavaScript

Languages Supported 61
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

HeaderDoc Release Notes

HeaderDoc 8 supportHeaderDoc 7 supportLanguage

yesnoPascal

yes **sort-ofPHP

yes **noPerl

yes **noShell Scripts

yes **noMach IPC Interface Defs

Note:

* Java and JavaScript support only functions and classes.

** Scripting languages support only functions and subroutines.

Major Features

HeaderDoc 8 has a number of new features.

 ■ Function/data type groupings

 ■ Declaration syntax coloring

 ■ New tagless syntax

/*! This is a comment about what comes next */

 ■ Support for HeaderDoc tags embedded in declarations

 ■ Support for //! markup style for embedded HeaderDoc declarations

 ■ Automatic linking of data types in declarations

 ■ Improved C++ support (namespace/template/access)

 ■ GatherHeaderdoc is now template based

 ■ PHP support (and a bunch of other languages) now included without patching

 ■ Support for linking to other methods and data types within the same file

 ■ Comment stripper

 ■ Support for exceptions

 ■ Now warns if tagged parameters don’t match declaration

 ■ Optional warning if parameters are not tagged

 ■ Improved warnings for other invalid content

 ■ Man page output path (via XML)

 ■ DTD for output validation

 ■ Translation of HTML to XHTML using xmllint when using XML output

62 Major Features
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

HeaderDoc Release Notes

 ■ Nested class handling

 ■ Customizable date format

 ■ C pseudoclass support (typedef struct)

 ■ Better nested class support

 ■ C++ constructors/destructors now sorted first in the list of class methods.

 ■ The @ignore tag—allows you to remove matching tokens from declarations

 ■ “Unsorted” flag

 ■ Summary function and method lists (a mini-TOC)

 ■ Automated detection of numbered lists

 ■ Automatic handling of availability macros

 ■ Improved overall appearance

 ■ Beginnings of a regression test suite

New Tags

This section attempts to list all of the new tags added in HeaderDoc 8 (some of which were actually available,
but undocumented, in HeaderDoc 7).

@classdesign
Text block describing the overall design of a class

@coclass
String describing a class that this class was designed to work with

@dependency
String describing a class upon which this class depends heavily

@exception
String describing an exception thrown by a function/method/class

@functiongroup
Tag for grouping functions and methods; this takes priority over the @group tag with respect to
functions and methods.

@group
Tag for grouping data, functions, and so on, thus changing the order in which they appear in the
table of contents.

(Note: the @functiongroup tag takes priority over the @group tag for functions.)

@helper
String telling what helper classes this class uses

@helps
For helper classes, string telling what sort of classes this class was designed to help

@instancesize
Text block containing the size of an instance of this class

New Tags 63
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

HeaderDoc Release Notes

@methodgroup
See @functiongroup.

@ownership
String describing what class instantiates the current class (for example, I/O Kit nubs)

@performance
Text block to describe performance characteristics of a class (for example, “This class is not appropriate
for use in high-performance environments”)

@security
Text block to describe security considerations when using this class

@superclass
Adds superclass info to a C pseudoclass; also can be used to cause members of the superclass to be
merged into the subclass

@throws
See @exception.

Additional Notes

This section lists known issues in HeaderDoc 8. We hope to improve in these areas in future versions. If you
find issues not listed here, please file bugs.

 ■ HeaderDoc 8 is somewhat slower than previous versions. This is because the entire parser has been
rewritten from the ground up and now does a token-based parse of the input file.

While this approach should significantly improve the correctness of output (colorizer bugs
notwithstanding), it is doing a lot more work than before, and thus takes longer.

 ■ The default color scheme generated by HeaderDoc matches Xcode coloring. There are a number of files
supplied as alternative color schemes, ranging from pleasant to utterly hideous and blinking (used mainly
for testing). Swap out your headerDoc2HTML.config file as desired.

 ■ The GatherHeaderDoc default template is built-in. The format for this template is described in “Advanced
HeaderDoc Techniques” (page 45). Also see “Example gatherHeaderDoc Template” (page 48) for an
example of the template format.

64 Additional Notes
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

HeaderDoc Release Notes

As HeaderDoc generates documentation for a set of header files, it injects named anchors () into the HTML to mark the location of the documentation for each API symbol. This
document describes the composition of these markers.

As you will see, each marker is self describing and can answer questions such as:

 ■ What is the name of this symbol?

 ■ What type of symbol is this (for example function, typedef, or method)?

 ■ Which class does this method belong to?

 ■ What is the language environment: C, C++, Java, Objective-C?

With this embedded information, the HTML documentation can be scanned to produce API lists for various
purposes. For example, such a list could be used to verify that all declared API has corresponding
documentation. Or, the documentation could be scanned to produce indexes of various sorts. The scanning
script could as well create hyperlinks from the indexes to the source documentation. In short, these anchors
retain at least some of the semantic information that is commonly lost when converting material to HTML
format.

The Marker String

A marker string is defined as:

marker := prefix '/' lang-type '/' sym-type '/' sym-value

A marker is a string composed of two or more values separated by a forward slash (/). The forward-slash
character is used because it is not a legal character in the symbol names for any of the languages currently
under consideration.

The prefix defines this marker as conforming to our conventions and helps identify these markers to scanners.
The language type defines the language of the symbol. The symbol type defines some semantic information
about the symbol, such as whether it is a class name or function name. The symbol value is a string
representing the symbol.

Because the string must be encoded as part of a URL, it must obey a very strict set of rules. Specifically, any
characters other than letters and numbers must be encoded as a URL entity. For example, the operator + in
C++ would be encoded as %2b.

By default, the prefix is //apple_ref. However, the prefix string can be changed using HeaderDoc's
configuration file.

The currently-defined language types are described in Table B-1 (page 66).

The Marker String 65
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Symbol Markers for HTML-Based
Documentation

Table B-1 HeaderDoc API reference language types

Cc

Objective-Cocc

Javajava

JavaScriptjavascript

C++cpp

PHPphp

Pascalpascal

perl scriptperl

Bourne, Korn, Bourne Again, or C shell scriptshell

The language type defines the language binding of the symbol. Some logical symbols may be available in
more than one language. The c language defines symbols which can be called from the C family of languages
(C, Objective-C, and C++).

Symbol Types for All Languages

The symbol types common to all languages are described in Table B-2 (page 66).

Table B-2 Symbol types for all languages

struct, union, or enum tagtag

an enumerated constant—that is, a symbol defined inside an enumeconst

typedef name (or Pascal type)tdef

macro name (without '()')macro

global or file-static datadata

function name (without '()')func

Symbol Types for Languages With Classes

cl
class name

intf
interface or protocol name

cat
category name, just for Objective-C

66 The Marker String
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Symbol Markers for HTML-Based Documentation

intfm
method defined in an interface (or protocol)

instm
an instance method 'clm' a class (or static [in java or c++]) method

C++ (cpp) Symbol Types

tmplt
C++ class template

ftmplt
C++ function template

func
C++ scoped function (i.e. not extern 'C'); includes return type and signature.

Java (java) Symbol Types

clconst
Java constant values defined inside a class

Note: The symbol value for method names includes the class name.

Objective-C (occ) Method Name Format

The format for method names for Objective-C is:

class_name '/' method_name
e.g.: //apple_ref/occ/instm/NSString/stringWithCString:

For methods in Objective-C categories, the category name is not included in the method name marker. The
class named used is the class the category is defined on. For example, for the windowDidMove: delegate
method on in NSWindow, the marker would be:

e.g.: //apple_ref/occ/intfm/NSObject/windowDidMove:

C++/Java (cpp/java) Method Name Format

The format for method names for Java and C++ is:

 class_name '/' method_name '/' return_type '/' '(' signature ')' e.g.:
//apple_ref/java/instm/NSString/stringWithCString/NSString/(char*)

For Java and C++, signatures are part of the method name; signatures are enclosed in parentheses. The
algorithm for encoding a signature is:

1. Remove the parameter name; for example, change (Foo *bar, int i) to (Foo *, int).

The Marker String 67
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Symbol Markers for HTML-Based Documentation

2. Remove spaces; for example, change (Foo *, int) to (Foo*,int).

Using resolveLinks to Resolve Cross References

HeaderDoc includes a tool called resolveLinks (in
/System/Library/Perl/Extras/5.8.6/HeaderDoc/bin) that is used for resolving cross-references for
you Wherever a cross-reference appears, a link is generated if the destination exists.

The resolveLinks tool processes an entire tree of content in two passes. In the first pass, it locates destination
anchors. These destination anchors look like this:

Each of these name values is an identifier for an API symbol. The format for these identifiers is specified in
“The Marker String” (page 65).

In the second pass, resolveLinks searches for cross-references to these destinations. These cross-references
can occur in one of two forms, depending on whether a destination is known to exist or not.

foo
<!-- a logicalPath="//apple_ref/..." -->

Each of these logicalPath values is then paired (if possible) with name values obtained during the first
pass. If a destination exists for a cross-reference, resolveLinks inserts the relative path of the destination
anchor in the cross-reference request’s href attribute. The result is that the cross-reference anchor is now
a valid link to the requested destination anchor.

If the link exists and the cross-reference request is in the form of a comment, the resolveLinks tool changes
the cross-reference request from a comment into an anchor (link) tag. Similarly, if the destination does not
exist, it changes the cross-reference from an anchor tag to a comment tag. The result is that there should
never be any broken links.

For the most part, this process is transparent to you as a user. There are two exceptions, however:
cross-references between document sets and cross-references using multiple API reference prefixes (such
as apple_ref).

Using Multiple API Reference Prefixes

If you use multiple API reference prefixes in a single tree of output content and want to link it together using
resolveLinks, you must tell resolveLinks to look for all of the prefixes you care about. There are two ways to
do this:

 ■ Run resolveLinks manually, specifying the -r flag for each prefix. For example:

resolveLinks -r david_ref -r joe_ref /path/to/dir

 ■ Specify a list of valid prefixes in yourheaderDoc2HTML.config file using theexternalAPIUIDPrefixes
option.

68 Using resolveLinks to Resolve Cross References
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Symbol Markers for HTML-Based Documentation

Using External Cross-Reference Files

Whenever resolveLinks processes a tree, it generates a cross-reference file for that content. By default, it
saves this file as /tmp/xref_out, but you can change this with the -x flag.

If you want to process a tree in read-only mode (without writing back changes to the tree itself), you can
specify the -n (no write) flag. In this mode, it will generate a cross-reference output file, but will not modify
the HTML input files.

Using resolveLinks to Resolve Cross References 69
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Symbol Markers for HTML-Based Documentation

70 Using resolveLinks to Resolve Cross References
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Symbol Markers for HTML-Based Documentation

HeaderElement (Root Class--any header entity that's significant)
 | (to HeaderDoc is a HeaderElement)
 |
 |
 |-----------APIOwner (Object that owns declared API)
 | |
 | |-------Header (Owner for header-wide API)
 | |
 | |-------CPPClass (Container for all non-Objective-C classes and
 | | C pseudoclass/COM Interface APIs).
 | |
 | |-------ObjCContainer
 | |
 | |-------ObjCClass (Owner for Objective-C class API)
 | |
 | |-------ObjCCategory (Owner for Objective-C category API)
 | |
 | |-------ObjCProtocol (Owner for Objective-C protocol API)
 |
 |
 |-----------Method (an Objective-C method)
 |
 |-----------Constant
 |
 |-----------Enum
 |
 |-----------Function (any non-objective-C function or method)
 |
 |-----------MinorAPIElement (parameter, members of structs)
 |
 |-----------PDefine
 |
 |-----------Struct (for both structs and unions)
 | |
 | |-------Var (subclass of Struct so that it can contain fields)
 |
 |-----------Typedef

DocReference (Another root class. Used by gatherHeaderDoc to store
 information about documentation framesets within an
 input folder. The script uses this information to
 construct a top-level table of contents with links
 to each frameset.)

ParseTree (Token tree instantiated from BlockParse.pm.)

ParserState (Parser state instance instantiated from BlockParse.pm and stored
 in certain tokens within a ParseTree instance.)

71
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

HeaderDoc Class Hierarchy

IncludeHash (a simple data structure for storing information about a
 #include directive.)

In addition to the classes shown above, the headerDoc2HTML script also uses the non–object-oriented
modules Utilities.pm, ClassArray.pm, and BlockParse.pm. Most class instances are instantiated from
headerDoc2HTML.pl based on the results of a call to blockParse.

The ParseTree class is instantiated in the block parser itself. It contains a token tree and a set of operations
on that tree (print the tree, return a text or html representation of the tree, walk the parse tree for parameters,
walk the parse tree for embedded headerdoc markup, and so on).

The ParserState class is also instantiated in the block parser. It contains only three methods (new,
_initialize, and print), and is primarily just a giant hash with some pre-defined values.

The IncludeHash class is essentially just a simple data structure to handle basic information about #include
directives. It has two methods (new and _initialize).

The gatherHeaderDoc tool uses an external program, resolveLinks, to convert special “link request”
comments into links to other files in the directory being processed. This tool (written in C) resides in the bin
directory within the HeaderDoc modules directory.

HeaderDoc uses xmllint (from libxml) to convert HTML into XHTML when generating XML output. HeaderDoc
also uses hdxml2manxml and xml2man from the MPGL suite to generate man pages.

72
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

HeaderDoc Class Hierarchy

This chapter explains how to troubleshoot HeaderDoc issues, including explanations of error messages, in
the form of a Q&A list.

Common Error Messages

Q:When running gatherheaderdoc, I get an error from something called resolveLinks that says “I/O error:
encoder error”. What’s going on?
A:You have a header file that was not written in UTF-8. Change the encoding for that file by adding an
@encoding or @charset entry within the @header tag.

Q:HeaderDoc keeps warning me that my LibXML2 version is too old. How do I fix this problem?
A:Obtain a more recent version of LibXML2 from http://www.xmlsoft.org.

Q:I’m trying to do an @link to a method, but HeaderDoc insists that myMethodname%58 could not be
found.
A:Beginning in HeaderDoc 8.5, you should use colons in the names of methods in @link tags, rather than
replacing them with %58.

Q:HeaderDoc is choking on classes with multiple inheritance.
A:Update to HeaderDoc 8.5.

Q:Why isn’t HeaderDoc doing C preprocessing? I thought you said this version did.
A:It does, but you have to specify an additional flag, -p, to invoke this behavior.

Q:The C preprocess keeps including the wrong files.
A:HeaderDoc has no way of knowing the final installed location of header files. To work correctly, it
depends on all header files having a unique name. Rename your header files so that no two files have
exactly the same name.

Q:I keep getting the error “Name being changed (oldname -> newname).”
A:This is usually caused by one of the following:

1.Multiple @discussion blocks. Remove one of them.
2.An extra preprocessor macro token after the close parenthesis in a function declaration. HeaderDoc
thinks you are writing a K&R C declaration. Either use @ignore to ignore the token or explicitly mark
up the preprocessor macro and enable C preprocessing.

Q:HeaderDoc says “Can’t open <filename> for availability macros.”
A:Your installation is likely missing the Availability.list file. It should normally live in
/System/Library/Perl/version/HeaderDoc.

Common Error Messages 73
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Troubleshooting

http://www.xmlsoft.org

Q:I’m getting the error “Conflicting declarations for function/method ($name1) outside a class. This is
probably not what you want.”
A:As it says, you have two functions that are not class members, but have the same name (or you forgot
to put HeaderDoc markup on the enclosing class). This is legal in C++ but is discouraged because the
apple_ref syntax does not provide a uniqueness guarantee in these instances. HeaderDoc tries to fudge
this by appending a signature when it sees this situation, but as a general rule, you should not rely on
this behavior if you care about apple_ref markup.

Q:HeaderDoc is spewing warnings about “Parsed parameter <blah> not found in declaration of
function/method/typedef <blah>.”
A:Chances are, you made a typographical error when adding @param or @fieldmarkers in the HeaderDoc
comment. Check your spelling carefully and remember that capitalization matters.

Q:HeaderDoc keeps saying “Tagged parameter <blah> not found in declaration of
function/method/typedef <blah>.”
A:You turned on the strict parameter/field checking with the -t flag. Turn it off if you don’t want those
warnings.

Q:HeaderDoc says “Braces/class braces/parentheses/square braces do not match. We may have a problem.”
A:This usually means exactly what it says. If you are depending on a C preprocessor macro to make
braces match, you should try to avoid doing so. If you cannot avoid this, make sure you enable C
preprocessing and add HeaderDoc markup to the macro definition.

Q:HeaderDoc says “End of parse tree reached while searching for matching definition”.
A:This is generally caused by either placing a HeaderDoc comment immediately prior to a close curly
brace or by placing the wrong HeaderDoc type tag in the comment (such as preceding a typedef with
an @function comment).

Q:HeaderDoc says “No matching declaration found. Last name was <blah>.”
A:This is generally caused by either placing a HeaderDoc comment immediately prior to a close curly
brace or by placing the wrong HeaderDoc type tag in the comment (such as preceding a typedef with
an @function comment).

Q:I’m getting the error “Unable to process #define macro “<name>.”
A:Please file a bug.

Q:HeaderDoc says “WARNING: multiple matches found for symbol “<blah>.” Only the first matching
symbol will be linked.”
A:You have multiple symbols with the same name (possibly in different files, or possibly different
types—for example a function and a #define). HeaderDoc has no way to know which of those two or
more “myname” symbols you’re talking about when you say @link myname. To fix this problem, look
in the HeaderDoc-generated HTML for the desired destination. Find the name anchor that looks like and instead of just giving the name, give the entire contents of that
anchor.

Q:HeaderDoc says ‘WARNING: no symbol matching “<blah>” found. If this symbol is not in this file or
class, you need to specify it with an api ref tag (e.g. apple_ref).’
A:You may not be processing all of the needed files at once, or HeaderDoc may be feeling cranky. In any
case, to fix this problem, look in the HeaderDoc-generated HTML for the desired destination. Find the
name anchor that looks like and instead of just giving the name, give
the entire contents of that anchor.

74 Common Error Messages
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Troubleshooting

Q:HeaderDoc issues the warning “WARNING: resolveLinks not installed. Please check your installation.”
A:Be sure you are installing correctly. First, type “make”, then “make realinstall”.

Q:HeaderDoc says “WARNING: Unexpected headerdoc markup found in <blah> declaration.”
A:Chances are, you followed one HeaderDoc comment with another HeaderDoc comment without
anything in-between.

Q:Headerdoc warns “Unterminated @link tag (starting field was: @link...).”
A:If you are using JavaDoc-style @link tagging ({@link symbol Link Text}), don’t forget the close
curly brace. If you are doing HeaderDoc-style @link tagging (@link symbol Link Text @/link),
don’t forget the @/link.

Q:HeaderDoc said “Parser bug: empty outer type.”
A:This is probably a bug unless you’re doing something really weird with preprocessor directives that
violate the normal C syntax rules (in which case you should either @ignore the extraneous tokens or
enable C preprocessing). In general, though, you should probably file a bug.

Q:HeaderDoc keeps saying “Objective-C method found outside a class or interface (or in a class or interface
that lacks HeaderDoc markup).”
A:Make sure you properly tagged the enclosing class or interface declaration.

Q:HeaderDoc keeps saying “Unable to find parse tree. Please file a bug.”
A:This should not happen; please file a bug.

Q:HeaderDoc keeps saying “Couldn’t find parser state. Using slow method.”
A:If you have a class that starts with a preprocessor token (such as DeclareStructors(MyClass) or
similar), this will break things badly. There are two solutions. The easiest solution is to add
@ignorefuncmacro DeclareStructors (or whatever the macro name happens to be) in your@header
declaration.
An alternative fix is to make sure that you are processing the header file that contains the macro at the
same time as you process the class. Enable C preprocessing with the -p flag. Finally, add a HeaderDoc
comment before the macro definition.
If this problem is not caused by use of a macro, please file a bug. This fallback case should not affect
output, however.

Q:HeaderDoc keeps saying ‘Could not determine include file name for “#include
FW(Carbon,CarbonEvents.h)”’ or similar.
A:Ideally, you should use a standard include file syntax. If that is not possible, you should enable the C
preprocessor with the -p flag, include the file containing the FW macro on the command line, and add
HeaderDoc markup to that macro.

Q:HeaderDoc says “Unknown regexp delimiter “...”. Please file a bug.
A:This should not happen; please file a bug.

Q:HeaderDoc keeps saying “Unknown keyword <blah> in block-parsed declaration”.
A:Make sure that the header compiles correctly with gcc. If it does, please file a bug.

Other error messages generally fall into one of two categories: self-explanatory errors (such as “Unknown
tag @whatever in function comment”) or utterly unintelligible (such as “Parser bug: empty outer type”). In
the case of the former, please fix the appropriate declaration. In the case of the latter, pleas file a bug. Which
brings us to the last question....

Common Error Messages 75
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Troubleshooting

Q:How do I file a bug?
A:Before filing a bug, you should subscribe to the HeaderDoc-dev mailing list on lists.apple.com. Ask if
anyone else has seen the problem. If not, you should file a bug. To subscribe, visit http://lists.ap-
ple.com/mailman/listinfo/headerdoc-dev.
If you are an ADC member with access to bugreport.apple.com, please log file a bug through that
mechanism. The correct component is “HeaderDoc”, with version “Darwin”.

Unexpected Behavior

Q:I’m seeing multiple copies of my functions/typedefs/defines/*. Why?
A:You probably specified a name in the @function tag (or @typedef or...) that was different from the
actual name.

Q:I’m still seeing multiple copies of a typedef, but with different names.
A:HeaderDoc, by default, also generates an entry for “tag names” and for every type name. You can
remove the tag names by specifying the -O (outer names only) flag. In the following example, the tag
name is mystruct, and the type name (a.k.a. the “outer name”) is mystruct_t:

 typedef struct mystruct {int a;} mystruct_t;

Q:Why does my function/method/type/variable/class/* have a name that appears to include an entire
paragraph of the discussion?
A:One of two things is wrong. Either you included multiple words after the
@function/@typedef/@whatever and also included an @discussion tag or you began a multi-line
declaration at the end of the @function/@typedef/@whatever line. Don’t do this. See “Multiword
Names” (page 16) for more information.

Q:A bunch of my functions/typedefs/* are being linked together with “See Also” attributes. What’s
up?
A:You probably marked a typedef with an @function comment (or some other incorrect pairing).
HeaderDoc will assume that you knew what you were doing and will keep looking through the code
until it finds whatever was requested (a function in this case). Everything in-between will get linked
together. The purpose for this is primarily to allow you to mark @typedef for a struct followed by a
typedef, but it is useful in other situations as well. Fix the incorrectly matched comment, and the
problem should go away.

Q:Why am I not getting links when I add @link tags?
A:There are several possible reasons:

1.If you used apple_ref markup, you may have made a typo.
2.If you used a symbol name that did not exist, you would get a warning when running
headerdoc2html and no link will be generated.
3.The @link tag only inserts a link request into the HTML. To turn this into an actual link, you must
run gatherheaderdoc (which in turn runs resolveLinks to create the links). Until you run
gatherHeaderDoc, all you will see in the HTML are a bunch of specially-formatted comments.

Q:Every time I run gatherheaderdoc, all of the spaces in my declarations go away. What’s going on?
A:This is a bug in libxml2 that is fixed in more recent versions. Please visit http://www.xmlsoft.org to
obtain a more recent version (or upgrade to Mac OS X 10.4 or later).

76 Unexpected Behavior
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Troubleshooting

http://lists.apple.com/mailman/listinfo/headerdoc-dev
http://lists.apple.com/mailman/listinfo/headerdoc-dev
http://www.xmlsoft.org

Other Issues

Q:I’m confused. Where can I get help?
A:The best place to get help is the HeaderDoc-dev mailing list. To subscribe, go to http://lists.ap-
ple.com/mailman/listinfo/headerdoc-dev.

Other Issues 77
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Troubleshooting

http://lists.apple.com/mailman/listinfo/headerdoc-dev
http://lists.apple.com/mailman/listinfo/headerdoc-dev

78 Other Issues
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Troubleshooting

This table describes the changes to HeaderDoc User Guide.

NotesDate

Updated for Mac OS X v10.5.2008-04-08

Significantly restructured the tagging chapter.2006-11-07

Made minor corrections.2006-10-03

Changed title from "HeaderDoc Unfettered."2005-04-29

Added troubleshooting chapter and information about HeaderDoc 8.5.2004-11-02

Added revision history, title change.

Updated for HeaderDoc 8.2004-06-28

Translated from original HTML version and updated for HeaderDoc 8 public
beta

2004-04-01

79
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

80
2008-04-08 | © 1999, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	HeaderDoc User Guide
	Contents
	Tables and Listings
	HeaderDoc Unfettered: API Documentation From Header Files
	What is HeaderDoc?
	How Do I Get It?
	Organization of this Document

	Using HeaderDoc
	Running headerDoc2HTML.pl
	HeaderDoc and Object-Oriented Languages
	HeaderDoc Command-line Switches

	Running gatherHeaderDoc.pl
	Running the Scripts Using MacPerl
	Cocoa Front End

	HeaderDoc Tags
	Introduction to HeaderDoc Comments and Tags
	HMBalloonRect

	Multiword Names
	Automatic Tagging
	Specifying Information About Frameworks
	Specifying Information About an Entire Header or Source File
	Additional HeaderDoc Tags
	Top-Level HeaderDoc Tags
	Examples of Top-Level Tags and Type-Specific Second-Level Tags
	Availability Macro Tags
	Class Tags
	Tags for C++ Classes
	Constant Tags
	#define Tags
	Enum Tags
	Function and Method Tags
	Grouping Tags
	Struct and Union Tags
	Typedef Tags
	Variable Tags

	Second Level HeaderDoc Tags

	Overriding the Default Data Type: C Pseudoclass Tags
	Unknown Tag Handling

	Basic HeaderDoc Configuration
	Configuration File Example
	Built-in HeaderDoc Styles

	Advanced HeaderDoc Configuration and Features
	Creating a TOC Template File
	Using Multiple Landing Page Templates
	Example gatherHeaderDoc Template

	Using the C Preprocessor
	Parsing Rules
	Multiply-Defined Macros
	Embedded HeaderDoc Comments in a Macro
	Handling of #include
	Other Issues
	What if I Don’t Want to See the Macros in the Documentation?

	Using the MPGL Suite
	Man Page Generation Language (MPGL) Dialect
	A Simple Function Example
	A Simple Command Example
	A Multi-Command Example

	Appendix A: HeaderDoc Release Notes
	Languages Supported
	Major Features
	New Tags
	Additional Notes

	Appendix B: Symbol Markers for HTML-Based Documentation
	The Marker String
	Symbol Types for All Languages
	Symbol Types for Languages With Classes
	C++ (cpp) Symbol Types
	Java (java) Symbol Types
	Objective-C (occ) Method Name Format
	C++/Java (cpp/java) Method Name Format

	Using resolveLinks to Resolve Cross References
	Using Multiple API Reference Prefixes
	Using External Cross-Reference Files

	Appendix C: HeaderDoc Class Hierarchy
	Appendix D: Troubleshooting
	Common Error Messages
	Unexpected Behavior
	Other Issues

	Revision History

