
Interface Builder Plug-In Programming Guide
Tools > Interface Builder

2007-07-18

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Carbon, Cocoa,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Interface Builder Plug-in Programming Guide 7

Organization of This Document 7

Chapter 1 Anatomy of a Plug-In 9

Interface Builder and Plug-ins 9
Deciding When to Create a Plug-In 9
The Structure of a Plug-in 10
Key Plug-in Objects and Files 11

The Plug-in Object 12
Library Nib Files 12
Class Description Files 12
Inspector Objects 13

The Interface Builder Kit Framework 13
Xcode Support for Interface Builder Plug-ins 13
Plug-ins and Threads 14
Plug-ins and Garbage Collection 14
Plug-in Deployment Options 15

Chapter 2 Plug-in Quick Start 17

Creating and Configuring Your Xcode Project 17
Set Up Your Custom Button Class 18
Configuring the Library Nib File 19
Building and Loading the Plug-in 22

Chapter 3 Preparing Your Custom Objects 25

Supporting the Basics 25
Registering Your Object’s Attributes 26
Additional Design-Time Guidelines 26

Avoid Cascading Setter Methods 26
Use Your Own Accessor Methods 27
Update the Display Inside Setter Methods 27
Isolate Interface Builder-Specific Methods 27

Packaging Your Custom Objects 27
Creating Your Class Description Files 27
Providing User Documentation for Your Custom Objects 28

3
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Chapter 4 The Plug-in Object 31

Configuring the Library Nib Files 31
Configuring a Library Object Template 33
Creating New Library Nib Files 36

Registering Your Plug-in’s Object Frameworks 36
Handling Load and Unload Notifications 37
Implementing Plug-in Preferences 37
Changing your Plug-in Bundle’s Principal Class 38

Chapter 5 Inspector Objects 39

Creating Your Inspector Class 40
Creating Your Inspector’s User Interface 41
Synchronizing Your Inspector’s Interface 42

Synchronizing Your Interface Using Bindings 43
Synchronizing Your Interface Manually 43
Tips for Displaying Attributes for Multiple Selected Objects 45
Disabling Your Inspector During Multiple Selection 45

Registering Your Inspector Objects 46

Chapter 6 Advanced Techniques 47

Customizing Your View’s Layout 47
Specifying Inset Boundaries for a View 48
Specifying Custom Baselines 48

Implementing a Design-Time Container View 49
Exposing Embedded Child Objects 49

Controlling the Size Attributes of Embedded Child Views 50
Controlling the Selection of Child Objects 50
Returning Geometry Information for Non-View Objects 50

Configuring Objects at Design Time 50

Document Revision History 51

4
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Anatomy of a Plug-In 9

Figure 1-1 Objects associated with an Interface Builder plug-in 11
Table 1-1 Plug-in deployment situations 15

Chapter 2 Plug-in Quick Start 17

Figure 2-1 Xcode project for Interface Builder plug-ins 18
Figure 2-2 Default view in the library nib file 19
Figure 2-3 Removing the unneeded items in the library nib file 20
Figure 2-4 Identity pane of the inspector window 21
Figure 2-5 Interface Builder preferences panel 22

Chapter 3 Preparing Your Custom Objects 25

Table 3-1 Library object template attributes 28
Listing 3-1 Registering the attributes of a custom object 26
Listing 3-2 Class description for a custom view 28

Chapter 4 The Plug-in Object 31

Figure 4-1 Default library nib file for a sample project 32
Figure 4-2 Connecting the represented object of a library entry 35
Listing 4-1 The libraryNibNames method 36
Listing 4-2 Returning the required frameworks of a plug-in 37

Chapter 5 Inspector Objects 39

Figure 5-1 The inspector window for Cocoa controls 39
Figure 5-2 Default inspector view template 41
Listing 5-1 Handling multiple objects in the refresh method 44
Listing 5-2 Returning the inspectors for an object 46

Chapter 6 Advanced Techniques 47

Figure 6-1 Frame boundaries for assorted views and controls. 47
Figure 6-2 Inset boundaries and custom baselines 48

5
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

6
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Although Mac OS X provides many useful views and controls for creating user interfaces, there may be times
when you need to extend the basic set to achieve an appearance or behavior that is more appropriate for
your application. The problem with custom views is that you generally cannot see how they will look in your
user interface until that part of your application is running. Even when your application is running, making
changes to the attributes of custom views requires modifying your code and rebuilding your application
before you can see those changes. For large applications, turning around such changes can be slow and
frustrating. Luckily, Interface Builder provides a way for you to integrate custom controls into the Interface
Builder environment, build those controls into your application’s user interface, and see the results immediately.

The infrastructure for integrating custom controls in Interface Builder version 3.0 has improved significantly
over previous versions of the application. The current infrastructure makes it possible to integrate new
controls quickly and add support for more advanced features, such as inspectors, in stages. The process for
creating inspectors has also improved dramatically and lets you focus on the new attributes exposed by your
custom objects.

You integrate controls through the use of plug-ins. Each plug-in provides Interface Builder with design-time
information about one or more custom objects, including where to find them and how to change their
attributes. Upon loading your plug-in, designers can then drag your custom controls from the Interface
Builder library window and use them to build their interfaces. Your controls can also be saved in the resulting
nib file and instantiated at runtime.

Interface Builder supports the creation of plug-ins for Cocoa-based views, controls, and objects only. You
currently cannot create plug-ins for Carbon-based objects.

Organization of This Document

This document guides you through the process of creating plug-ins for use with Interface Builder version
3.0. The chapters in this book are intended to be read more or less in order. Early chapters provide basic
information that all plug-in developers need to know, while later chapters provide more advanced topics.

 ■ “Anatomy of a Plug-In” (page 9) provides an overview of Interface Builder plug-ins, discussing their
structure and how they interact with other code modules.

 ■ “Plug-in Quick Start” (page 17) provides a quick tutorial of how to build a basic plug-in.

 ■ “Preparing Your Custom Objects” (page 25) describes the steps you need to take to prepare your custom
controls, views, and objects for incorporation into the Interface Builder environment.

 ■ “The Plug-in Object” (page 31) describes the purpose of the plug-in object and how you tailor it for use
with your custom objects.

 ■ “Inspector Objects” (page 39) describes the process for creating inspectors, which are used to modify
the attributes of your objects in the Interface Builder application.

 ■ “Advanced Techniques” (page 47) describes additional tasks associated with integrating more complex
objects and views into Interface Builder.

Organization of This Document 7
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Interface Builder Plug-in
Programming Guide

Note: This document does not provide information on how to create plug-ins for Interface Builder 2.5 and
earlier.

8 Organization of This Document
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Interface Builder Plug-in Programming Guide

This chapter provides a high-level overview of the plug-in model used by Interface Builder and discusses
some of the terminology associated with building plug-ins. If you are interested in integrating any custom
objects into the Interface Builder environment, you should read this chapter to get a basic understanding of
how Interface Builder plug-ins work.

Note: You can use Interface Builder plug-ins to incorporate custom Cocoa-based objects only. You cannot
integrate custom Carbon-based objects.

Interface Builder and Plug-ins

Interface Builder is a tool for building application user interfaces visually from a standard set of user interface
components, including windows, menus, views, controls, formatters, and controller objects. The Interface
Builder application comes configured with the standard controls available to all Cocoa and Carbon applications.
Although the standard controls are useful for many applications, they may not be sufficient in all cases. You
might want to create new controls or customize the appearance of the standard system views and controls.
Instead of creating new controls, you might want to speed your design process creating customized
configurations of the standard controls. For all of these goals, you can use Interface Builder plug-ins.

You install plug-ins from Interface Builder’s preferences window. Once installed, the plug-in acts as a liaison
between Interface Builder and the code for your custom views and objects. The plug-in specifies the initial
configuration of your views and objects and provides the means to manipulate the attributes of those views
and objects at runtime. The plug-in is therefore responsible for the following basic jobs:

 ■ It identifies which of your custom objects to add to the Interface Builder library window.

 ■ It tags various attributes of your custom objects as being user manipulable. (Interface Builder uses this
information to implement several housekeeping tasks related to your objects.)

 ■ It provides the user interface required to manipulate the attributes of your objects.

Deciding When to Create a Plug-In

Before creating an Interface Builder plug-in for your own custom objects, you should think about whether a
plug-in is an effective use of time for you. In particular, carefully consider the following:

 ■ Are your custom objects going to be used by only one application?

 ■ Do your custom objects rely on state information found only in your application?

 ■ Would it be problematic to encapsulate your custom views in a standalone library or framework?

Interface Builder and Plug-ins 9
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

If you answered yes to any of the preceding questions, your objects may not be good candidates for a plug-in.
The main purpose of integrating custom views and controls into Interface Builder is to streamline the process
of creating and customizing your user interfaces. However, putting your views and controls in a plug-in takes
effort too. If you plan to use a view for only one application, it might not be worth the extra effort needed
to create a plug-in for it. Similarly, if your views are too tightly entwined in your application logic, extracting
them from that logic may require more effort than is worthwhile. Custom objects must be able to operate
outside of your application environment so that they can be integrated into Interface Builder.

The views and controls that make good candidates for inclusion in a plug-in are those that can stand on their
own and be used by multiple applications. Each view or control you design should be self-contained and
not make any assumptions about the state of its host application. Whenever possible, views should also
avoid making assumptions about the existence or state of other views, although in some cases knowing
about other views may be necessary. For example, a scroll view is typically grouped with other views, including
a clip view and scrollers. If you do have views whose behavior is tightly intertwined, you may need to deliver
them as a preconfigured group rather than as separate pieces.

The Structure of a Plug-in

An Interface Builder plug-in is a bundle that contains a loadable executable file and some supporting resources.
Nearly all Interface Builder plug-ins actually contain at least one nib file and many can contain several nib
files. (Interface Builder relies on nib files whenever possible to simplify the plug-in creation process.) The
bundle directory for an Interface Builder plug-in must have the .ibplugin extension.

Figure 1-1 shows the high-level structure of an Interface Builder plug-in and some of the other code modules
with which it interacts. A plug-in bundle links against the object framework that contains the code for the
objects being added to Interface Builder. Inside the plug-in itself are the handful of objects and files (including
the plug-in object, inspector objects, nib files, and class descriptions) that bridge the gap between Interface
Builder and your custom framework. Any category methods that are related to Interface Builder but defined
on your custom objects should similarly be included as part of your plug-in and not as part of your object
framework.

10 The Structure of a Plug-in
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

Figure 1-1 Objects associated with an Interface Builder plug-in

IB Plug-in

Object Framework

Class
description

Interface Builder

Plug-in object

Library Nib file

Inspector UI

Inspector
object

Category Methods

The pathways through the preceding figure show the routes taken by Interface Builder to discover objects
inside of your plug-in. Once acquired, Interface Builder may cache references to various objects for easier
access later. For inspector objects, the route is shown as bidirectional to reflect the interactive nature of those
objects with the current selection.

From the figure, you can see that the discovery of all custom objects occurs through the plug-in object and
its associated library nib files. Interface Builder integrates the contents of each library nib file into the library
window. As items are dragged out of the library window and into a document, Interface Builder uses the
category methods of the dragged object to locate other needed objects. For example, when an instance of
your object is selected in a document, Interface Builder checks the category methods to see if an associated
inspector is available, and if so, assembles the pieces of the inspector user interface needed to represent
your control.

Key Plug-in Objects and Files

The following sections describe some of the key objects from Figure 1-1 (page 11) that you are responsible
for creating. For more information about the classes used to create these objects, see Interface Builder Kit
Framework Reference.

Key Plug-in Objects and Files 11
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

The Plug-in Object

The plug-in object is the main entry point to your plug-in. Interface Builder uses this object to obtain your
plug-in’s name and the list of custom objects it to integrate into the library window. This object also manages
some general plug-in features, such as your plug-in’s preferences. Every Interface Builder plug-in must have
a plug-in object, which is a subclass of the IBPlugin class.

At a minimum, every IBPlugin object must implement the libraryNibNames method, which returns the
names of the library nib files containing the objects you want to integrate into the library window. There are
other methods of the IBPlugin class you can implement, such as the label method, to return information
about your plug-in or its configuration. Beyond those basic tasks, however, your plug-in object requires little
work to implement.

For more information about the plug-in object and how you use it to manage your plug-in, see “The Plug-in
Object” (page 31).

Library Nib Files

Rather than ask your plug-in for the names of the objects it supports, Interface Builder uses nib files to gather
that information. This visual approach to reporting your plug-in’s contents makes it possible to add new
objects to your plug-in quickly and without writing any code. It also makes it possible to support the following
features easily:

 ■ You can use a proxy view to provide a different visual representation of your object, if desired.

 ■ You can see how your custom objects and views will look in the library window.

 ■ Interface Builder provides a simple way to specify visual representations for non-visual objects (such as
controllers).

For more information on library nib files and how you configure them, see “Configuring the Library Nib
Files” (page 31).

Class Description Files

Class description files are property lists that detail the outlets and actions exposed by any custom objects in
your plug-in. Because it does not have explicit access to your object code, Interface Builder uses this information
to populate the connections inspector and connections panel whenever a user attempts to create a connection
to or from your objects.

You create class description files using Xcode and place them in your plug-in’s Resources directory. When
your plug-in is loaded, Interface Builder automatically scans your plug-in bundle for these files and reads in
their information. You do not have to tell Interface Builder to do this explicitly.

For more information on how to create class description files for your objects, see “Creating Your Class
Description Files” (page 27).

12 Key Plug-in Objects and Files
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

Inspector Objects

The inspector window is where Interface Builder displays the current state of an object’s attributes. Interface
Builder uses inspector objects to synchronize the contents of the inspector window with the actual properties
of the selected objects. An inspector object is an instance of the IBInspector class. If your custom objects
contain attributes that should be modifiable at design time, you can create a custom inspector object and
accompanying user interface to allow the manipulation of those attributes.

In Interface Builder 3.0 and later, attributes are organized by class and displayed in sections inside the inspector
window. This approach differs from the one used by previous versions of the software, which presented a
panel containing intermingled attributes from various parent classes of the selected object. The class-based
organization offers some key advantages over the older approach. Now, your inspector objects need manage
only the attributes defined in your custom subclasses, as opposed to all attributes of the class. This approach
also makes it possible for Interface Builder to handle multiple selected objects gracefully, allowing the user
to modify the attributes that are common to all selected objects. The use of collapsible sections also makes
it possible for the user to make more space in the inspector window by hiding unneeded attributes.

For information on how to implement an inspector object and user interface for your custom objects, see
“Inspector Objects” (page 39).

The Interface Builder Kit Framework

The Interface Builder Kit framework (InterfaceBuilderKit.framework) provides the infrastructure needed
to create plug-ins for Interface Builder 3.0 and later. When building a plug-in, you must always link your
plug-in bundle against this framework. This framework contains the following support beyond just the key
classes (IBPlugin, IBInspector) that you use to implement your plug-in object:

 ■ The framework defines category methods for both NSObject and NSView that provide a way for Interface
Builder to discover information about your custom objects. Many of these methods provide suitable
default implementations but you must override some of them to implement specific features.

 ■ The IBDocument class provides support for accessing the data structures of a nib file. You can use
instances of this class to locate and manipulate the objects in a nib file, create new connections between
objects, and work with pasteboard data.

For more information about the classes of the Interface Builder Kit framework, see Interface Builder Kit
Framework Reference.

Xcode Support for Interface Builder Plug-ins

Xcode provides a number of templates for creating plug-ins for Interface Builder 3.0. Among these templates
are a project template that includes targets for your plug-in bundle and a separate framework for your custom
object code. Xcode also includes templates for some of the standard types of files you might add to your
plug-in project.

For plug-in development, Xcode also offers improved integration with the Interface Builder environment,
providing the ability to create nib files directly from Xcode.

The Interface Builder Kit Framework 13
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

Plug-ins and Threads

Your plug-ins run primarily from the main thread of the Interface Builder application. Because plug-in code
is called only as needed by Interface Builder, you should have no need to create additional threads in your
plug-in code. For example, you should not use your plug-in to manipulate real data sets or perform
computationally-intensive operations.

Plug-ins and Garbage Collection

The Interface Builder application does not use garbage collection for its memory management and your
plug-ins should not use garbage collection either. By extension, this also means that the framework that
implements your plug-in’s objects must be able to run without garbage collection enabled. Because your
framework could be linked into a garbage collected application by a client, however, most custom frameworks
must be designed as dual-mode frameworks.

A dual-mode framework is one that can operate both with and without garbage collection enabled. To
implement a dual-mode framework, you must first configure your framework’s Objective-C Garbage Collection
build setting so that garbage collection is “supported” and not required. Your framework code then needs
to support both memory programming models. In other words, your code must continue to retain and release
objects but it must also maintain strong references to objects and abide by other garbage collection guidelines.
At runtime, the system essentially “ignores” memory management calls that are not relevant to the current
memory mode.

To create a dual-mode framework, you should implement the following guidelines at a minimum. For detailed
information about creating a dual-mode framework, see Garbage Collection Programming Guide.

 ■ Enable the garbage collection build setting for your framework target.

 ■ Continue to retain and release your objects as you would for a non-garbage collected application. Do
not override the retain, release, and autorelease methods in your custom objects, however.

 ■ Make sure you keep strong references to objects in addition to retaining them.

 ■ Do not allocate objects in custom memory zones.

 ■ Initiate collection sweeps only if the isEnabled method of NSGarbageCollector returns YES.

 ■ Implement dealloc and finalizemethods only as necessary. Try to architect your framework to avoid
them whenever possible. (For more information about deallocation and garbage collection, see Garbage
Collection Programming Guide.)

When creating a dual-mode framework, be sure to test your framework in both garbage collected and non
garbage collected applications to ensure that it behaves correctly.

14 Plug-ins and Threads
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

Plug-in Deployment Options

How you deploy your Interface Builder plug-in to clients depends heavily on how you deploy your custom
controls to those same clients. Apple recommends that you deploy custom controls using a custom framework.
A custom framework makes plug-in integration almost trivial for yourself and for the clients of your framework.
If you are unable to use a custom framework, however, users can load your plug-in manually into the Interface
Builder environment.

Table 1-1 lists the different ways to load a plug-in into interface Builder at runtime.

Table 1-1 Plug-in deployment situations

Deployment optionSituation

If you used the standard Xcode template project, you can load your plug-in into
Interface Builder by simply building and running your plug-in target. The
template project is configured to open Interface Builder automatically and load
your plug-in. You can use this option to test your plug-in and make sure its
items appear in the library and inspector windows.

At development time…

If you are shipping a custom framework with your controls, simply include your
Interface Builder plug-in in your framework’s Resources directory. When clients
add your framework to their Xcode projects, Interface Builder automatically
loads the associated plug-in for any nib files associated with that project.

If you have a custom
framework…

You can instruct users to load your plug-in manually using the Interface Builder
preferences window. The user can add your plug-in using the provided controls
or drag the plug-in bundle into the window. In either case, the plug-in must
link against (or contain) the code for your custom controls.

If you do not have a
custom framework…

For more information about loading plug-ins, see Interface Builder User Guide.

Plug-in Deployment Options 15
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

16 Plug-in Deployment Options
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Anatomy of a Plug-In

If you already have a custom object, creating a basic Interface Builder plug-in for that object takes only a few
minutes. This chapter walks you through the creation of a plug-in for a simple NSButton subclass. After
completing the steps and installing your plug-in, a user should be able to drag your custom button out of
the library, add it to a nib file, resize it, reposition it, and save it with the nib file. The user will also be able to
customize the basic attributes of the button, since it is derived from the NSButton class. The steps for creating
the plug-in are as follows:

1. Create your plug-in project using Xcode.

2. Set up your custom button.

3. Configure the library nib file that comes with the project.

4. Build your plug-in and load it into Interface Builder.

This chapter does not cover the steps needed to set up an inspector panel. That information is covered in a
later chapter.

Creating and Configuring Your Xcode Project

Xcode provides a custom project template for creating an Interface Builder plug-in. To create a new plug-in
project, do the following:

1. In Xcode, select File > New Project.

2. In the New Project Assistant, in the Standard Apple Plug-ins section, select the “Interface Builder 3.x
Plugin” project type.

3. Enter the project name and location and click Finish.

4. In the new project window, double-click your plug-in target to open the inspector window for that target.

5. In the Properties tab of the inspector window, type a custom bundle identifier name in the Identifier
field.

The bundle identifier differentiates your plug-in from other Interface Builder plug-ins and should contain
a string that includes your company name in reverse-DNS format. For more information about bundle
identifiers, see Runtime Configuration Guidelines.

The project template includes default targets for your plug-in bundle and for a custom framework you can
use to encapsulate the code for your custom objects. The code associated with the plug-in target consists
of a default subclass of IBPlugin(your plug-in’s main class) and a basic nib file ready for you to customize.

Creating and Configuring Your Xcode Project 17
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

Figure 2-1 Xcode project for Interface Builder plug-ins

The default plug-in target is configured to build a plug-in bundle with the .ibplugin extension. Your plug-in
bundle must have this extension for it to be recognized by Interface Builder. If you create a custom Xcode
project for your plug-in, you should specify this extension in the Wrapper Extension build setting for your
plug-in target.

Set Up Your Custom Button Class

The Xcode project you created includes a framework target that you can use to package your custom objects.
Along with this target is a source file you can use for your custom object. This button class should already
have a custom name but its parent class is set to NSView by default. You need to change the parent class to
NSButton. Thus, the header file for your new widget should look something like the following:

#import <Cocoa/Cocoa.h>
@interface MyIBPluginView : NSButton {
}
@end

You do not need to add any additional code to your custom button class.

18 Set Up Your Custom Button Class
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

Configuring the Library Nib File

Each new plug-in project contains a library nib file whose name is of the form “plugin_nameLibrary.nib",
where plugin_name is the name you give to your Xcode project. Interface Builder looks in this nib file for the
custom objects that you want to integrate into the Interface Builder library window. You can use this nib file
to integrate both views and non-view objects. Inside the nib file is a default container view called “Library
Objects”. This view contains one or more library object templates, which are a special type of view used to
store the contents of a single library entry.

The library nib file that comes with your Xcode project should already contain two library object template
views. One template contains a custom view while the other contains a button and a button cell. Although
one of the templates already contains a button, the purpose of the example is to show you how to configure
any view. The following steps show you how to configure the template with the custom view.

1. Open the library nib file for your plug-in project in Interface Builder 3.0.

2. In the nib file, double-click the Library Objects view to open it in its own window. Figure 2-2 shows this
view, which contains two library object templates (one with a custom view and one with a button).

Figure 2-2 Default view in the library nib file

3. Select the bottom library object template (the one with the button) and its surrounding content and
delete it.

Configuring the Library Nib File 19
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

4. Select the custom view inside the remaining library object template. Your view should look similar to
the one in Figure 2-3.

Figure 2-3 Removing the unneeded items in the library nib file

20 Configuring the Library Nib File
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

5. Open the inspector window and select the identity pane; see Figure 2-4.

Figure 2-4 Identity pane of the inspector window

6. In the Class field of the Inspector window, type the name of your custom button subclass. (From the
preceding section, this would be the MyIBPluginView class name.)

7. Save the nib file.

Once you have saved your nib file, you can proceed to build your plug-in and load it in Interface Builder.

Configuring the Library Nib File 21
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

Building and Loading the Plug-in

To build your project, select the All target and press the Build & Go button in the toolbar (or select Build >
Build & Run from the menu). The plug-in target comes configured with a dependency on the framework
target. Xcode builds your framework in the default build directory and builds your plug-in inside the framework
itself. It then launches Interface Builder and loads your plug-in automatically. Your custom button should
appear in the library and the preferences window should show your plug-in listing; see Figure 2-5.

Figure 2-5 Interface Builder preferences panel

Xcode builds a plug-in in its corresponding framework directory to facilitate easy distribution of that plug-in
to end users. When the user opens a nib file, Interface Builder automatically scans the linked-in frameworks
of the associated Xcode project to see if they contain plug-ins. If it finds any, Interface Builder automatically
loads those plug-ins to ensure that any custom objects in the nib file can be read. For more information
about the runtime integration between Xcode and Interface Builder, see Interface Builder User Guide.

If you need to load your plug-in manually for any reason, you can do so from the Interface Builder preferences
window. To load your plug-in manually, do the following:

1. Open the Preferences window in Interface Builder.

2. Select the Plug-ins pane.

22 Building and Loading the Plug-in
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

3. Click the “+“ icon at the bottom of the window.

4. Navigate to your plug-in from the sheet and click Open. (Your plug-in should be located inside your
framework.)

Building and Loading the Plug-in 23
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

24 Building and Loading the Plug-in
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Plug-in Quick Start

As you develop your custom objects, there are some steps you can take to ensure that the integration of
those objects into Interface Builder is a smooth process. In many situations, Interface Builder relies on your
objects to provide the information needed to initiate certain actions. Wherever possible, Interface Builder
relies on standard Cocoa protocols to get the information it needs, but some information, such as your
object’s inspector class, must be obtained using custom methods.

This chapter provides you with the guidelines you should be following when designing your objects to ensure
that they are compatible with Interface Builder later. Many of these guidelines apply to the code for your
custom objects and not for the code you put into your plug-in. Some of them are relevant to your plug-in,
however, and are called out as such.

Supporting the Basics

Interface Builder uses several standard Cocoa protocols to interact with your objects. You must support these
protocols to ensure your objects behave properly in the Interface Builder environment.

 ■ Make sure your custom object is key-value observable (KVO). For more information, see Key-Value
Observing Programming Guide.

 ■ Make sure your custom object is key-value coding (KVC) compliant. For more information, see Key-Value
Coding Programming Guide.

 ■ If your custom object has settable attributes, make sure it conforms to the NSCoding protocol so that
those attributes can be archived and unarchived. For more information, see Archives and Serializations
Programming Guide for Cocoa.

These protocols make it possible for Interface Builder to offer features such as undo support, pasteboard
support, and the automatic refreshing of inspector data for free to your plug-in. You should already be
supporting these protocols in your custom code anyway and doing so should not be a significant burden.

If for some reason you cannot support these protocols directly in your object framework, you should at least
add comparable support inside your plug-in. Simply create wrapper methods in your plug-in that mimic the
behavior of the KVC, KVO, and archiving methods but call through to your object’s real accessors behind the
scenes. While such a configuration is not optimal, it does provide the overall support Interface Builder needs.

Supporting the Basics 25
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Preparing Your Custom Objects

Registering Your Object’s Attributes

Before Interface Builder can access any attributes of your custom objects, you must register those attributes
in your plug-in code. One of the category methods you must implement for each of your custom objects is
the ibPopulateKeyPaths: method. Interface Builder calls this method early on, passing it an array of
mutable sets, each of which contains a specific type of attribute. To register your object’s design-time
attributes, you add the key paths for those attributes to these sets.

Listing 3-1 shows a sample implementation of the ibPopulateKeyPaths: method for the cell of a control.
In this case, the cell has two direct attributes: a title string and a font. The cell also has a pointer to its parent
view, which in this case is the control that owns it. Because the parent view can also be manipulated in
Interface Builder, it is added to the to-one relationship set.

Listing 3-1 Registering the attributes of a custom object

- (void)ibPopulateKeyPaths:(NSMutableDictionary *)keyPaths
{
 // Always call super.
 [super ibPopulateKeyPaths:keyPaths];

 // Add any custom attributes.
 [[keyPaths objectForKey:IBAttributeKeyPaths] addObjectsFromArray:
 [NSArray arrayWithObjects:@"title", @"font", nil]];
 [[keyPaths objectForKey:IBToOneRelationshipKeyPaths] addObjectsFromArray:
 [NSArray arrayWithObjects:@"parentView", nil]];
}

Interface Builder monitors the attributes you register using key-value observing notifications. Whenever a
change occurs to one of your object’s attributes, Interface Builder performs several important tasks. First, it
records the change with the current undo manager object. Second, if the change originated in the inspector
window, it notifies the object that it should redisplay itself. (Conversely, if the change originated in the
window, Interface Builder may notify the appropriate inspector object to refresh itself.)

For a detailed description of the ibPopulateKeyPaths: method and how you use it to register your
properties, see the method description in NSObject Interface Builder Kit Additions Reference.

Additional Design-Time Guidelines

As you design your custom objects, there are some guidelines that, if followed, will make it easier for you to
integrate those objects into Interface Builder. Many of these guidelines offer benefits beyond just Interface
Builder integration, however, and should be considered in your design plans regardless.

Avoid Cascading Setter Methods

When creating the setter methods for your object’s attributes, be sure that each setter method affects only
its target attribute. Interface Builder makes extensive use of your object’s getter and setter methods to
implement undo support. Creating cascading setter methods—that is, setter methods that call additional
setter methods—creates extra work to manage the undo stack and may incur a performance penalty.

26 Registering Your Object’s Attributes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Preparing Your Custom Objects

Use Your Own Accessor Methods

When implementing a custom object, always use the object’s setter and getter methods to access attributes
instead of the underlying instance variable. Interface Builder implements undo support by monitoring all
calls to your setter and getter methods through key-value observing. If you call your own getter and setter
methods when responding to user actions, Interface Builder can make sure that those actions are recorded
on the undo stack.

Update the Display Inside Setter Methods

If changing an attribute affects the appearance of your view or control, be sure to call the setNeedsDisplay:
method inside the corresponding setter method. Because Interface Builder manages the undo stack, it may
call your setter methods at any time to undo or redo a change. If that happens, your object’s setter method
may be the only chance it has to refresh the view.

Isolate Interface Builder-Specific Methods

Be aware that in order to make your views and controls interact with it, Interface builder defines additional
methods on the NSObject and NSView classes. Interface Builder uses these methods extensively at runtime
to discover information about a particular object. these methods are therefore some of the more important
methods for you to implement in your plug-in. Rather than implement the Interface Builder-specific methods
in your object’s main implementation file, you should always place them in a category that is defined only
in your Interface Builder plug-in.

Packaging Your Custom Objects

Once you have your objects designed, you need to package them in a framework that both your client
applications and Interface Builder can use. The default Xcode project template for plug-ins includes a target
for a custom framework. You can use this target or create one of your own and configure it for your objects.
Frameworks are the cleanest way to distribute your custom objects both to your Interface Builder plug-in
and to the applications that might use your objects. A framework also lets you maintain a single set of source
files and build a single distributable binary package.

When building your framework, be sure to include your Interface Builder plug-in in the Resources directory
of the framework. When the user loads a nib file, Interface Builder checks for any linked-in frameworks in the
associated Xcode project. If those frameworks contain a bundle with an .ibplugin extension, Interface
Builder automatically loads that plug-in before it opens the nib file.

Creating Your Class Description Files

A class description is a property-list file that enumerates the outlets and actions of your class and also provides
other important information to Interface Builder. Class description files reside in your plug-in bundle and
should be created from your plug-in’s Xcode project. When your plug-in is loaded, Interface Builder searches

Packaging Your Custom Objects 27
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Preparing Your Custom Objects

its Resources directory for any files with the classdescription filename extension and reads their
contents. It uses the information in those files to configure the connections dialogs and inspector windows
with the actions and outlets you specify.

The default Xcode project contains a class description file for you to modify. If your plug-in supports multiple
objects, you can add additional class description files as needed. When creating new class description files,
be sure to update your plug-in target’s Copy Bundle Resources build phase to include the new files.

Listing 3-2 shows a sample class description file for a custom view. This view has a single outlet used to set
the object’s delegate and two action methods. The first action can be sent by any object but the second
must be sent by a view, a condition Interface Builder enforces at design time.

Listing 3-2 Class description for a custom view

{
 ClassName = MyCustomView;
 SuperClass = NSView;
 Outlets = {
 delegate = id;
 };
 Actions = {
 "myCustomAction:" = id;
 "myOtherCustomAction:" = NSView;
 };
}

You should always provide a class description for each of your custom objects. Each class should have its
own class description file and although the exact filename is not important, it is customary to name each
class description file after the class it represents. Each class description file should contain the the class name
and superclass name information at a minimum. If the class has outlets and actions, you should list those as
well; otherwise, you may omit the corresponding sections entirely.

Providing User Documentation for Your Custom Objects

All objects that appear in the library should have some sort of descriptive information describing their purpose
and behavior. When creating your plug-in, you associate this information with the library template objects
containing your custom objects. Library object templates contain several attributes that not only describe
the purpose of your custom object but also specify its location in the library. Table 3-1 lists the basic attributes
and how you configure them.

Table 3-1 Library object template attributes

DescriptionAttribute

The name of your custom object. Names should be succinct yet descriptive. Avoid using
class names and framework prefixes.

Label

28 Providing User Documentation for Your Custom Objects
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Preparing Your Custom Objects

DescriptionAttribute

The path to the group containing the object. If you do not specify path information, all
objects appear as children of your plug-in. You can specify additional paths to group
objects hierarchically. Paths start with a leading forward slash character and use additional
forward slashes to separate hierarchical groups. For example, Cocoa uses the path /Views
& Cells/Buttons to specify the group for button objects. Interface Builder automatically
creates folders in the library window for any path names you specify and nests those
folders under your plug-in.

Path

A compact description of your object. Summary text should be no more than 8 to 12 words
and should take the form “An <object> for <task>.“ Summary descriptions appear in the
item pane when descriptions are enabled. They are also used as the tool tip text whenever
the user hovers the mouse over the corresponding item.

Summary

A more complete description of your object. Descriptions should consist of 2 or 3 sentences
describing your object’s purpose and behavior. These descriptions appear in the
documentation pane of the library window when an item is selected.

Description

The scaling option for your custom object. This determines the technique used to scale
your object from its iconic form in the library to its full-fledged form in a nib file. The Image
Transformation option causes Interface Builder to scale a bitmap version of your library
entry. The View Transformation option causes Interface Builder to send setFrame:
messages to the actual view to create the animation. The Default mode chooses the mode
that looks best for the given object.

Scaling

Providing User Documentation for Your Custom Objects 29
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Preparing Your Custom Objects

30 Providing User Documentation for Your Custom Objects
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Preparing Your Custom Objects

The plug-in object is Interface Builder’s initial entry point into your plug-in and is represented by the IBPlugin
class. You must provide a subclass of this object in your plug-in and configure it as the primary class of your
plug-in bundle. Your plug-in object has one critical responsibility: provide the list of nib files identifying the
objects your plug-in represents. Beyond that, you use the plug-in object to provide support for other features
of your plug-in. For example, you use the plug-in object to implement a preferences window or customize
objects as they are dragged out of the library window.

The following sections describe the tasks you can perform from your custom plug-in object. For additional
information about the methods of the IBPlugin class, see IBPlugin Class Reference.

Configuring the Library Nib Files

The main job of the plug-in object is to provide Interface Builder with information about the custom objects
it supports. It does this by returning a set of nib file names from its libraryNibNamesmethod. These “library
nib files” are so named because they contain the objects to be integrated into Interface Builder’s library
window. Inside the nib file are one or more library object templates, which are special containers that hold
the visual representation of the objects. Because not all objects have a direct visual representation, library
template objects have accommodations for specifying both the real object and a visual proxy of that object.

The best way to understand how the library object templates inside of a library nib file work is to look at an
example. Figure 4-1 shows the default nib file that is created whenever you create a plug-in project using
the Xcode template. This nib file contains two library object templates. The first of these objects contains a
generic NSView object. The second contains an NSButton object that acts as a proxy for an NSButtonCell
object. If you were to build and install the plug-in without modifying this nib file, Interface Builder would
add two objects to the library window: a generic NSView object and a button cell (represented visually by
an NSButton object). Dragging one of these objects out of the library window would instantiate the
corresponding real object (either the NSView or NSButtonCell) in the user’s document. Because they are
existing Cocoa objects, the user could then select and configure those objects before saving them with the
document.

Configuring the Library Nib Files 31
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

Figure 4-1 Default library nib file for a sample project

There is no magic to how library object templates work. They are simply views used to identify entries for
the library window. The library object template itself is just a container into which you place a single child
view. This child view provides the visual appearance of your library entry at runtime. In most cases, this child
view is your custom view object. If your object does not descend from NSView, or if it is a view but is too
large or complex to recognize when scaled to fit the library window, you can instead place an image view
in the library object template and use that view to display an iconic representation of your object. You can
then use the representedObject and draggedView outlets of the library object template to associate the
real objects to be added to the user’s nib file.

The representedObject outlet of a library object template points to the object that should be added to
a user’s nib file in place of the visual representation displayed in the library window. For custom objects that
do not descend from NSView, you would connect this outlet to an instance of your object that you added
to the nib file. Similarly, if you use an image view to draw an iconic version of a view, you would connect this
outlet to the actual view that should be added to the user’s nib file. If you do not configure this outlet,
Interface Builder assumes the view embedded in your library object template is the object that should be
added to the user’s nib file.

The draggedView outlet points to the view that should be used during drag operations from the library
window. Dragged views are commonly used to show the user the actual size of views as they are dragged
out of the library window. If your plug-in contains a custom object that might be difficult to represent in the
limited space available in the library window, you could use a custom icon for the library window and assign
the actual view to the draggedView outlet. In such a situation, your dragged view would also be the
represented object of the entry, unless you specified a different object in the representedObject outlet.
For more information about setting up dragged views, see “Using a Custom Dragged VIew” (page 35).

32 Configuring the Library Nib Files
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

Configuring a Library Object Template

Each new library nib file contains two library object templates already configured with some sample objects.
You can reuse these existing templates or delete them and start from scratch. To reuse them, simply replace
the contents of those templates with an appropriate view (usually either a generic view or an image view)
and configure that view for your custom object.

To add new library object template, do the following in Interface Builder:

1. Open the Library Objects view in your nib file.

2. In the library window, select the Library > IB SDK group. This group contains a single entry, which is a
library object template.

3. Drag the library object template from the library window to your Library Objects view. (If you want to
resize the library object template, you can do so from the size pane of the inspector window. The width
and height of a library object template are typically set to 80 pixels.)

4. Configure the Label, Path, Summary, and Description attributes in the inspector window. For information
about what to put in these attributes, see “Providing User Documentation for Your Custom Objects” (page
28).

5. Continue configuring the library object template for your view or object as described in the sections
that follow.

Once you have an empty library object template, you can begin configuring it. For each library object template,
you should fill in the label, summary, and description fields in the inspector window. These fields provide
help information to the user at runtime and are displayed in the library window. The label field provides the
basic name of the item while the description field provides detailed information about its purpose. The
summary field contains tool tip information and is displayed when the user hovers the mouse over the item.

Configuring a Custom View

To configure a library object template with a custom object that descends from NSView, do the following:

1. Locate the generic Custom View object. (It is normally found in the Cocoa > Views & Cells > Layout Views
group.)

2. Drag a custom view from the library window and drop it into an empty library object template. (Make
sure you drop the custom view so as to make it a child of the template view.)

3. Select the custom view you just dropped and open the inspector window.

4. In the identity pane of the inspector, type the class name of your custom view in the Class field.

5. Save your nib file.

Configuring a Custom Non-View Object

To configure a library object template with a custom object that does not descend from NSView, do the
following:

Configuring the Library Nib Files 33
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

1. Configure the object’s visual representation:

a. If you have not already done so, add the image you want to use for your object to your Xcode project.
(Make sure the image is included in the Copy Bundle Resources build phase of your plug-in target.)

b. In Interface Builder, locate the Image Well object in the library window. (It is an instance of the
NSImageView class and is normally found in the Cocoa > Views & Cells > Inputs & Values group.)

c. Drag an image well from the library window and drop it into an empty library object template.

d. Select the image well and open the inspector window.

e. In the attributes pane of the inspector, select None from the Border popup menu.

f. In the Image field of the inspector, type the name of the image.

2. Configure the represented object:

a. In the library window, locate the generic Object. (It is normally found in the Cocoa > Objects &
Controllers > Controllers group.)

b. Drag a generic Object from the library window to your document window, making it a top-level
object of your nib file.

c. In the identity pane of the inspector, type the name of your custom object in the Class field.

3. Create the connection between the visual representation of your object and the actual object:

a. Control-click (or right-click) the library object template to display its connections panel.

34 Configuring the Library Nib Files
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

b. Click and drag from the representedObject outlet to the custom object in your document window,
as shown in Figure 4-2.

Figure 4-2 Connecting the represented object of a library entry

Using a Custom Dragged VIew

When the user drags your custom object out of the library window, Interface Builder uses the view inside
the library-object template as the default drag image. If you want to use a custom drag image, you can do
so by configuring the draggedView outlet of the library object template.

A dragged view lets you provide the user with a more appropriately configured view. You might use a dragged
view to provide a larger view than the one that appears in the library window. You might also use a dragged
view to support a more complex view hierarchy. For example, for a table view item, you might display a table
icon in the library window but assign a full-size table view embedded in a scroll view to the draggedView
outlet. The use of an icon in the library would let you provide a clear visual indicator of what your view
represented while the dragged view provides the actual view.

The view you assign to the draggedView outlet can be any size you like but must not be embedded inside
a library object template. In most cases, you can simply place the view next to your library object template
in your nib file, but you can also place it elsewhere in your nib file if doing so is more convenient. Once in
your nib file, configure the view the way you want it to appear when dragged from the window.

To assign a dragged view, do the following:

Configuring the Library Nib Files 35
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

1. Add a new view to your nib file to act as the dragged view. (Size it appropriately.)

2. Control-click (or right-click) the library template object containing your custom object to bring up its
connection panel.

3. Click the circle next to the draggedView outlet and drag to your dragged view to create a connection.

Creating New Library Nib Files

If you are building a plug-in for a large library of controls, you can use multiple library nib files to organize
your plug-in contents. Interface Builder lets you specify any number of library nib files in a single plug-in
project, and each nib file can in turn contain multiple library object templates. For example, you could have
five library nib files with one library object template each, or you could have one library nib file with five
library object templates. Although there is no limit to the number of library nib files your project can include,
there is a performance cost to loading many small nib files, so it is recommended that you use a reasonable
number of nib files. Creating hundreds of library nib files would not only slow down the loading of your
plug-in but would also be a lot of extra work.

You create library nib files the way you would create any nib file in Interface Builder. The new document
panel includes an IB Kit tab that when selected shows you the types of nib files you can create for your
plug-in. To create a new library nib file, select the Library object and click Choose. Interface Builder creates
a new nib file like the one shown in Figure 4-1 (page 32).

After you configure your library nib file and add it to your Xcode project, you need to update the
libraryNibNames method of your IBPlugin subclass. Listing 4-1 shows a sample implementation of this
method that returns the names of two custom nib files. You can return as many nib files from your own
implementation of this method as you want. Each library nib file can contain one object or multiple objects.

Listing 4-1 The libraryNibNames method

- (NSArray *)libraryNibNames
{
 return [NSArray arrayWithObjects:@"myLibraryNibFile1", @"myLibraryNibFile2",
 nil];
}

Registering Your Plug-in’s Object Frameworks

When you build your plug-in, you link it against the framework containing the code for your custom objects.
Thus, when Interface Builder loads your plug-in at design time, it automatically loads your custom object
frameworks as well. This is fine for manipulating your objects at design time but causes a problem during
simulation. When the user simulates a window, Interface Builder launches an entirely separate process—one
that does not load your plug-in code and therefore does not know about your object frameworks. In order
to ensure that your objects work properly in the simulator environment, you should override the
requiredFrameworks method and return the list of frameworks containing your custom objects. Interface
Builder passes this list to the simulator environment, which loads the corresponding frameworks as needed
to run the simulation.

36 Registering Your Plug-in’s Object Frameworks
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

Listing 4-2 shows a sample implementation of the requiredFrameworks method that searches for the
desired framework using its bundle identifier string.

Listing 4-2 Returning the required frameworks of a plug-in

- (NSArray*)requiredFrameworks
{
 NSBundle* frameworkBundle = [NSBundle
bundleWithIdentifier:@"com.mycompany.MyFramework"];

 return [NSArray arrayWithObject:frameworkBundle];
}

Handling Load and Unload Notifications

Most plug-ins should not require any special initialization, but if yours does, the IBPlugin class provides
notification methods to let you know when your plug-in is loaded into (or removed from) the Interface Builder
environment:

 ■ didLoad

 ■ willUnload

Most plug-ins should have little need to use either of these methods. If you do use them, do not assume that
calls to the didLoadmethod will be balanced by calls to the willUnoadmethod. Although Interface Builder
calls the didLoad method whenever your plug-in is loaded, it calls the willUnload method only when the
user explicitly removes your plug-in from the list of plug-ins in the preferences window. Therefore, you should
not use your didLoad method to acquire resources and the willLoad method to release them. You may
end up leaking those resources if you do. Instead, release any resources in the dealloc or finalizemethod
of your plug-in object.

Implementing Plug-in Preferences

When the user selects your plug-in in the preferences window, Interface Builder displays additional information
about the plug-in to the right of the plug-in list. By default, Interface Builder shows the list of library nib files
and frameworks found in your plug-in but you can use this space to display custom preferences. Doing so
is not required, however.

To display a custom preferences view, you must do the following:

1. Create a nib file with an NSView object as a top-level object.

2. Set the File’s Owner of the nib file to your IBPlugin subclass. Your plug-in object should be configured
to act as the controller for your preferences view.

3. Add your custom content to the view object and connect any outlets and actions to Files Owner.

4. Override the preferencesViewmethod in your IBPlugin subclass. In your implementation, load your
nib file and return the view object you created.

Handling Load and Unload Notifications 37
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

Your plug-in object should contain all of the outlets, actions, or binding points needed to manage your
preferences view. Other objects in your plug-in can access the information in your plug-in object by obtaining
the shared plug-in object (using the sharedInstance class method of IBPlugin) and calling its methods.

Changing your Plug-in Bundle’s Principal Class

Your custom IBPlugin subclass must be the principal class of your plug-in bundle. If you created your
project using the Interface Builder 3.x Plugin project template, this information should be configured for you
automatically. If you created your project without using the template or renamed your plug-in subclass, you
must configure this information manually by doing the following:

1. Open an inspector window for your plug-in target.

2. Select the Properties tab.

3. In the Principal Class field, enter the name of your custom IBPlugin subclass.

38 Changing your Plug-in Bundle’s Principal Class
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The Plug-in Object

The inspector window in Interface Builder provides the user with access to the attributes of the currently
selected objects. The inspector window is divided into several different panes, which are selected using
controls at the top of the window (Figure 5-1). The attributes pane is the only pane plug-in developers can
customize.

Figure 5-1 The inspector window for Cocoa controls

Title area

Attributes

Content area

Effects
Size

Bindings
Connections

Identity
AppleScript

39
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

The attributes pane displays the design-time attributes of the currently selected objects. The attributes
themselves are divided up and displayed in “sections”, which are collapsible regions consisting of a title bar
and content area. The content area of each section contains the attributes associated with a given class in
the selected object’s lineage. For example, an instance of the NSButton class contains sections displaying
the NSView attributes, NSControl attributes, and NSButton attributes.

The advantage of sections is that they promote greater editability when multiple objects are selected. When
multiple objects are selected, Interface Builder displays all of the inspectors that are common among the
selected objects. Thus, if an NSButton and NSTextField object are selected, the user sees the Control,
View, and Object inspectors. This lets the user modify any of the attributes that are common to the objects
in the selection.

Each section in the attributes pane is managed by an inspector object. An inspector object ensures that the
controls in the section’s content view remain synchronized with the attributes of the currently selected
objects. When one of your custom objects is selected, Interface Builder queries it for the names of the inspector
classes needed to display its attributes. Interface Builder provides inspector classes for all of the standard
Cocoa classes so you need to provide inspectors only for those classes you use to implement your custom
objects. In addition, an inspector class is needed only if your custom view or object classes have attributes
that are configurable at design time. If they do not, you do not need to create an inspector class.

The steps for creating an inspector object are as follows:

1. Define a custom subclass of IBInspector.

2. Create a nib file with the user interface of your inspector section.

3. Configure the bindings or write the code needed to synchronize your inspector interface with the
currently selected objects.

4. Register your inspector class with Interface Builder.

Creating Your Inspector Class

The IBInspector class provides the default controller interface for implementing your custom inspector
objects. Custom inspectors are needed only for classes that have custom design-time attributes that you
want to be configurable in Interface Builder. If your classes do not expose any public attributes, you do not
need to create an inspector class.

Every inspector class has the following responsibilities:

 ■ Provide an interface for viewing and setting attributes.

 ■ Synchronize the controls in its view with the attributes of the current selection.

The viewNibName method of IBInspector is the preferred way to provide the interface for your inspector
class. This method returns the name of the nib file containing your inspector’s interface. You can also create
your user interface programmatically if you prefer. The steps for creating your user interface are discussed
in “Creating Your Inspector’s User Interface” (page 41).

For information on how to synchronize your inspector’s interface with the current selection, see “Synchronizing
Your Inspector’s Interface” (page 42).

40 Creating Your Inspector Class
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

Creating Your Inspector’s User Interface

There are two ways to create your inspector’s user interface: programatically or using a nib file. Using a nib
file is by far the simplest way to create your inspector’s interface. In fact, if you use Cocoa bindings, it is
possible to create your inspector with little or no code at all. Whereas, creating your inspector interface
programatically is complicated and requires much more effort and testing to ensure the correct positioning
and layout of any controls.

All new plug-in projects in Xcode come with an inspector nib file for you to customize. To create additional
inspector nib files, you use Interface Builder. Interface Builder’s new document dialog includes an IB Kit tab
that contains plug-in related template nib files. From this tab, selecting the Inspector template creates a nib
file with the default content view shown in Figure 5-2. This view includes several guides to help you line up
your custom controls with the controls found in other inspectors. The view also includes some default controls
that you can use for your inspector (or delete if they are not needed). Although you should not change the
width of your inspector view, you can (and should) change its height to match the space used by your controls.

Figure 5-2 Default inspector view template

To configure the nib file containing your inspector’s user interface, do the following:

1. Open your plug-in project in Xcode. (This ensures that your class header files are accessible in Interface
Builder.)

2. Open your project’s existing inspector nib file (or create a new one).

3. Add or remove any needed controls in your inspector view.

Typically, you would provide a single control for each design-time attribute of your object you want to
expose. The type of the control would be determined by the type of data represented by the underlying
attribute.

 ■ String values are typically represented by text fields.

 ■ Numerical values may be displayed in a text field but might also have an optional stepper control
to increment or decrement the value.

 ■ Boolean values are typically represented using check boxes.

 ■ Enumerated type lists may be represented by radio buttons or pop-up menus.

4. Select the Files Owner proxy object and open the identity pane of the inspector window.

Creating Your Inspector’s User Interface 41
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

5. Set the class name of File’s Owner to your IBInspector subclass. (You set this information in the identity
pane of the inspector window.)

6. If it is not already connected, connect the inspectorView outlet of Files Owner to your inspector view.
(This outlet is provided for you by the IBInspector class and should be connected already.)

7. Create any other connections or bindings required by your code. (For example, you might want to
connect any outlets or actions to their targets.)

8. Save your nib file and add it to your Xcode project (if it has not yet been added).

Nearly all inspector nib files require some additional connections beyond the inspectorView outlet of File’s
Owner. You use these connections to make it possible to synchronize changes as the user changes the current
selection and modifies controls in your inspector. Cocoa bindings provide the simplest type of connection
by automatically synchronizing the current selection with your inspector’s controls. You can also use outlets
and actions if you prefer, however. For more information on using both of these techniques, see “Synchronizing
Your Inspector’s Interface” (page 42).

If you want to create your inspector view programmatically, you can do so by implementing a custom view
method in your IBInspector subclass. In your implementation of this method, you would create the view
object you want your inspector to display and configure it as required by your custom object. In addition to
overriding this method, you must override the viewNibName method and have it return nil to prevent
Interface Builder from automatically looking for a nib file.

Synchronizing Your Inspector’s Interface

Interface Builder relies on your inspector object to coordinate the synchronization of the currently selected
objects to your inspector’s user interface. Cocoa bindings are the preferred (and simplest) way to synchronize
data but you can also use outlets and actions if you prefer. Which technique you choose may also depend
on the complexity of your objects and how much logic is required to synchronize them with the inspector
controls. Synchronization is required in the following situations:

 ■ The user changes the current selection.

 ■ The user changes the value of one of your inspector’s controls.

When multiple objects are selected, the inspector window displays only those inspector sections that are
common to all of the selected objects. Your inspector objects must be prepared to handle this situation
gracefully by displaying appropriate values in the controls of their user interfaces. Although there are options
for situations where handling multiple selected objects is difficult or impossible, you are highly encouraged
to design your inspector interface in a way that allows it to display at least some information when multiple
objects are selected.

The following sections guide you through the steps to implement the synchronization code for your inspectors.
Remember that you can choose to use bindings, outlets and actions, or a combination of both.

42 Synchronizing Your Inspector’s Interface
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

Synchronizing Your Interface Using Bindings

Bindings provide a sophisticated and elegant way to synchronize your inspector interface with the currently
selected objects. Bindings are especially easy to use with inspectors since the whole point of an inspector is
to reflect the values in the current selection—a task for which bindings are well suited.

To establish a binding, select one of the controls in your inspector view and open the inspector window. In
the bindings pane, configure your binding to the File’s Owner object and use the
inspectedObjectsController.selection string as the initial part of the model key path. The
inspectedObjectsController property of the IBInspector class is a key-value observable property
that returns an NSArrayController object with the current selection. Binding through this object provides
you with access to the currently selected objects. If your synchronization logic is more complex, you can also
include additional controller objects in your nib file and bind to them as needed to implement your logic.

To bind a checkbox to a Boolean value in your custom object, you would do the following:

1. Select the checkbox and open the inspector window.

2. In the bindings pane, expand the Value binding so that you can configure it.

a. Set the Bind to property to the File’s Owner object.

b. Set the Model Key Path field to a value similar to the following:

inspectedObjectsController.selection.MyObjectProperty

where MyObjectProperty is the name of a KVO-compliant attribute in the target object.

3. Configure any other bindings as desired.

For more information about establishing bindings between objects, see Cocoa Bindings Programming Topics.

Synchronizing Your Interface Manually

If you prefer use actions and outlets to synchronize your interface, you must do the following to implement
your synchronization code:

 ■ Define action methods in your inspector object that synchronize changes in your inspector’s controls
with the objects in the current selection.

 ■ Implement the refreshmethod of your inspector object to respond to changes in the current selection.

Implementing action methods for your inspector’s controls is a relatively straightforward task. When invoked,
your action method should get the value from the control that initiated the action and write that value to
each of the selected objects. To get the currently selected objects, use the inspectedObjects method of
IBInspector.

Compared to bindings, implementing your refreshmethod involves a little more work, especially to support
multiple selected objects. Interface Builder calls your refreshmethod any time the application state changes
in a way that might require you to refresh your inspector. These state changes typically involve the user
changing the selection but they might also be triggered by the active undo manager or other circumstances.

Synchronizing Your Inspector’s Interface 43
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

One of the first things your refresh method should do is see how many objects are in the current selection.
If only one object is selected, you can simply extract the attribute values from that object and use them to
set the state of your inspector’s interface. If multiple objects are selected, you need to determine what to
display. If all of the values are the same, you should display the common value. If the values are different,
you need to convey a multi-selection state in the appropriate controls.

Listing 5-1 shows a refresh method for an inspector whose interface contains a single text field, which is
assigned to the titleField outlet of the inspector object. When a single object is selected, the refresh
method simply sets the value of the text field to the value of the object in the array. If multiple objects are
selected and all their titles match, this method displays the common title string in the text field. If there is a
mismatch in any of the titles, a placeholder string is displayed instead.

Listing 5-1 Handling multiple objects in the refresh method

- (void)refresh
{
 NSArray* objects = [self inspectedObjects];
 NSString* newTitle;
 NSInteger numObjects = [objects count];

 if (numObjects == 1)
 {
 newTitle = [[objects objectAtIndex:0] title];
 [titleField setStringValue:newTitle];
 }
 else if (numObjects > 1)
 {
 NSString* tempString;
 NSInteger i;
 BOOL allMatch = YES;

 // See if the titles are all the same.
 newTitle = [[objects objectAtIndex:0] title];
 for (i = 1; i < numObjects; i++)
 {
 tempString = [[objects objectAtIndex:i] title];
 if (![newTitle isEqualToString:tempString])
 {
 allMatch = NO;
 break;
 }
 }

 // Set the value of the text field.
 if (allMatch)
 [titleField setStringValue:newTitle];
 else
 {
 [titleField setStringValue:@""];
 [(NSTextFieldCell*)[titleField cell]
setPlaceholderString:@"<multiple>"];
 }
 }

 [super refresh];
}

44 Synchronizing Your Inspector’s Interface
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

When implementing a custom refresh method, you must invoke super at some point in your
implementation. Interface Builder uses the refresh message to update some of its own internal objects,
such as the inspected objects controller. Invoking super ensures these objects are updated properly.

Tips for Displaying Attributes for Multiple Selected Objects

When multiple objects are selected, Interface Builder displays only those inspectors that are common among
all of the selected objects. Although the types are the same, the attributes of each object may not be the
same, however. If the current selection contains multiple objects, your inspector needs to check the values
in the objects and determine an appropriate way to convey that information. There are two basic scenarios
that can occur:

 ■ All of the objects contain the same value for a given attribute.

 ■ At least one object has a different value for an attribute.

If all of the objects contain the same value, you should display the common value. If the values differ in any
way, you need to convey this status to the user somehow. Some controls support the ability to display a
mixed state indicator, but others may require that you simply show no value. The following list shows some
of the standard controls used in inspectors and how you might use them to display mixed state information:

 ■ Check boxes - display the mixed state setting for the checkbox.

 ■ Text fields - display a placeholder string with the value “Mixed“ or “<multiple>“.

 ■ Pop-up buttons and combo boxes - display a blank menu item—that is, a menu item with no text.

 ■ Segmented controls - deselect all segments.

 ■ Radio buttons - deselect all buttons in the group.

 ■ Color wells - display a default color

Disabling Your Inspector During Multiple Selection

If your inspector object cannot inspect a selection with multiple objects, you can tell Interface Builder not to
display your inspector when multiple objects are selected. To do this, override the
supportsMultipleObjectInspection method in your IBInspector subclass and return NO.

Returning NO from the supportsMultipleObjectInspectionmethod should be avoided if at all possible.
You might use this option, however, when no reasonable alternative exists for reflecting the data of multiple
objects. For example, if your inspector displays tabular data or some other complex data that cannot be
represented easily for more than one object at a time, you could use this option. Doing so should still be
avoided whenever possible, however. Instead, you might consider disabling your table or temporarily replacing
it with a text field and the words “Multiple selection”.

If it is easy to reflect a multi-object selection for some attributes but not others, it is preferable to disable the
one or two problematic controls when multiple objects are selected than disable your entire inspector
interface. Disabling the problematic controls lets the user continue to modify other attributes of the object,
even when multiple objects are selected.

Synchronizing Your Inspector’s Interface 45
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

Registering Your Inspector Objects

Before it can display your inspector interface, Interface Builder needs to know which objects use it. You
provide this information by implementing the ibPopulateAttributeInspectorClasses: method on
your custom object. In your implementation of this method, you add the list of inspector classes that can be
used to edit your object to the provided array. Interface Builder then creates inspector objects based on the
set of classes you return.

When implementing your ibPopulateAttributeInspectorClasses: method, be sure to call super
before adding any custom classes to the classes array. The order in which you add classes to the array
defines the resulting order of the inspector sections in the inspector window. The first class in the array
appears at the bottom of the inspector window, while the last class appears at the top. This means that you
should generally add any inherited inspectors first and add your custom inspectors after that.

Listing 5-2 shows a sample implementation of the ibPopulateAttributeInspectorClasses: method
for a custom view. This view has a single custom inspector, called MyInspector, that it adds to the inherited
inspector list.

Listing 5-2 Returning the inspectors for an object

@implementation MyCustomView (InspectorIntegration)
- (void)ibPopulateAttributeInspectorClasses:(NSMutableArray *)classes
{
 [super ibPopulateAttributeInspectorClasses:classes];
 [classes addObject:[MyInspector class]];
}
@end

For more information about the ibPopulateAttributeInspectorClassesmethod, seeNSObject Interface
Builder Kit Additions Reference.

46 Registering Your Inspector Objects
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Inspector Objects

The Interface Builder Kit provides support for tweaking the behavior of your plug-in in many different ways.
The following sections provide information about some of the more common ways to modify your plug-in.
For information about additional ways to tweak your plug-in, see the objects and methods of Interface Builder
Kit Framework Reference.

Customizing Your View’s Layout

Layout is an important feature of Interface Builder. Users need to be able to position views and controls
visually to make sure they line up properly and in accordance with the Aqua style guidelines. To help with
alignment, Interface Builder provides dynamic guides that become visible when a view or control is in close
proximity to an appropriate boundary of another object.

By default, Interface Builder uses a view’s frame as the alignment boundaries for the view. This may be
appropriate for some views but may not be for others. Many controls have frames that are actually bigger
than the main visual component of the control. This is often done to allow room for drawing shadows and
other visual effects. Figure 6-1 shows several controls along with their actual frame rectangles, which are in
blue. In most cases, the frame rectangles are slightly larger than the drawn portion of the control.

Figure 6-1 Frame boundaries for assorted views and controls.

NSButton

NSDatePicker
NSPopUpButton

NSStepper

NSTextField NSImageView

Rather than using a view’s frame rectangle for alignment, it is generally preferable to align views and controls
by other means. Most commonly, you would align controls according to the boundaries of their main visual
component. For controls with text, you might also want to align the control using the baseline of the text.
Figure 6-2 shows the frame rectangles of a set of controls but also shows the inset rectangles and custom
baselines of those controls in red. For the user, it makes more sense to use these boundaries to align controls.

Customizing Your View’s Layout 47
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Techniques

Figure 6-2 Inset boundaries and custom baselines

Custom baselines

In Interface Builder, you can provide custom baselines and inset values for each of your custom views. You
do this by overriding category methods defined on the NSView class in the Interface Builder Kit framework.
Information about the information to provide in these methods is in the sections that follow.

Specifying Inset Boundaries for a View

To specify inset boundaries for a view, you must override your view’s ibLayoutInset method. This method
is a category method provided by the Interface Builder Kit framework and is described in detail in NSView
Interface Builder Kit Additions Reference. In your implementation of this method, return an IBInset structure
containing the inset values needed to arrive at the correct bounding rectangle for your view. The inset values
{0, 0, 0, 0} result in a rectangle that matches the original frame rectangle of your view. Positive inset
values move this rectangle inward towards the center of the view. You should rarely (if ever) specify negative
inset values because doing so aligns your view along boundaries that lie outside of its frame rectangle. For
example, to specify the inset values for the NSButton control shown in Figure 6-2 (page 48), you would
write your ibLayoutInset method as follows:

- (IBInset)ibLayoutInset
{
 IBInset inset = {8, 6, 6, 4};
 return inset;
}

For information about the IBInset data type, see Interface Builder Kit Data Types Reference.

Specifying Custom Baselines

If your view renders text strings, you can specify custom baselines for each of those strings. Custom baselines
let the user align your control using its text content instead of its frame or inset boundaries. This kind of
alignment is frequently used when aligning text in different types of controls. Baselines are also the more
commonly used way to align text-only fields such as labels.

To provide Interface Builder with baseline information, you must override the ibBaselineCount and
ibBaselineAtIndex: methods in your custom view. The ibBaselineCount method returns the number
of baselines available in your view. The ibBaselineAtIndex:method returns the y-axis offset value (relative

48 Customizing Your View’s Layout
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Techniques

to the y-origin of the view’s frame rectangle) for one of those baselines. You can change the number of
baselines your view supports dynamically if you wish. If you do so, however, the ibBaselineAtIndex:
method must return a valid value for each index it receives.

For more information about the ibBaselineCount and ibBaselineAtIndex: methods, see NSView
Interface Builder Kit Additions Reference.

Implementing a Design-Time Container View

If your view is capable of acting as a container view, you should override the ibDesignableContentView
method in your custom view. Returning a valid view object from this method tells Interface Builder to treat
that view as a container at design time and let the user add child views to it. For most views, you would
simply override this method and return self, to indicate that the current view is the container, but this need
not be the case. If your main view is not the view you want to use as the container, you could return an
associated subview. For example, a scroll view contains a clip view, which in turn contains the document
view to be scrolled. In that situation, the scroll view would return its clip view object as the container view.

Although container views allow their children to be moved and resized freely for the most part, you can alter
this behavior by overriding the ibIsChildViewUserMovable: and ibIsChildViewUserSizable:
methods in your container view. You should only need to override these methods if allowing the user to
move or resize child views would cause problems for your view. For example, scroll views do not allow users
to move or resize their contained scrollers. The position and size of the scrollers remains fixed based on the
scroll view’s frame and cannot be changed by the user at design time.

For more information about these methods see NSObject Interface Builder Kit Additions Reference and NSView
Interface Builder Kit Additions Reference.

Exposing Embedded Child Objects

In each document, Interface Builder distinguishes between objects that can be selected and inspected by
the user and those that are simply there in a supporting role. Objects that can be selected and inspected are
considered “first-class” objects and are the only objects users actually see in a document. Supporting objects
are present in the nib file but cannot be configured by the user and are generally not visible. Both first-class
objects and supporting objects are saved as part of the resulting nib file.

For each library entry, Interface Builder exposes only the represented object of the entry as a first-class object
by default. (For more about the structure of library entries, see “Configuring a Library Object Template.”) The
actual implementation of a represented object can have any number of associated child objects, however,
all of which are relegated to supporting roles by default. To change child objects into first-class objects, you
expose them to Interface Builder by overriding the ibDefaultChildren method of their nearest parent
object..

The ibDefaultChildren method simply returns a list of objects to expose as first-class children of the
receiver. For each exposed child, Interface Builder calls the child’s own ibDefaultChildren method to
give that child a chance to expose its own children. When exposing child objects, give careful consideration
to which objects you want to expose. Views in a view hierarchy commonly expose configurable child views.
They may also expose cell objects, which although not views do contain configurable attributes, outlets, and
actions. It is rare for non-view objects to expose child objects—that is, you typically would not expose any
child objects from a controller object.

Implementing a Design-Time Container View 49
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Techniques

The sections that follow discuss some of the ways a parent view can manipulate the information surrounding
its child objects. For more information about implementing the ibDefaultChildren method or any of the
methods discussed in the following sections, see NSObject Interface Builder Kit Additions Reference.

Controlling the Size Attributes of Embedded Child Views

The position and size attributes of a view are controlled by its parent (or container) view. The resizing and
repositioning of child views within their parent view is handled automatically by the default editor object of
the parent view. To change this behavior, simply override the isChildViewUserMovable: or
isChildViewUserSizable: method to disable the behavior for the specified view.

Controlling the Selection of Child Objects

Normally, when the user clicks in a window at design time, Interface Builder tries to select the object that is
directly under the mouse. For some complex view hierarchies, this might involve selecting an object deep
inside the view hierarchy, which may not always be useful. If you expect users to use your view hierarchy
primarily as a group, you might want the first click to select the top-level object, making it easier to drag or
resize the entire group of views. To make sure the initial mouse click selects your top-level view, you can
override the ibIsChildInitiallySelectable: method and return NO. Overriding this method does not
prevent the child from being selected, it just forces the user to select the parent view first and then select
the child afterwards.

Returning Geometry Information for Non-View Objects

Although Interface Builder knows how to identify views at design time, it needs help when it comes to your
custom non-view objects. If you use non-view objects in the view hierarchy, you should override the
ibRectForChild:inWindowController: andibObjectAtLocation:inWindowController:methods
to provide Interface Builder with the geometry information it needs for your custom objects.

Configuring Objects at Design Time

Interface Builder sends notifications to your custom objects whenever they are added to or removed from
a user’s document. You can implement the ibAwakeInDesignableDocument:,
ibDidAddToDesignableDocument: and ibDidRemoveFromDesignableDocument: methods in your
custom object to receive these notifications. You might use these notifications to perform additional
configuration steps involving other objects in the document. For example, you could create or remove
connections between your custom objects and the File’s Owner, First Responder, or Application object of
the document.

For more information about these notification methods, see NSObject Interface Builder Kit Additions Reference.

50 Configuring Objects at Design Time
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Techniques

This table describes the changes to Interface Builder Plug-In Programming Guide.

NotesDate

New document describing the process for creating custom Interface Builder
palettes.

2007-07-18

51
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

52
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Interface Builder Plug-In Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Anatomy of a Plug-In
	Interface Builder and Plug-ins
	Deciding When to Create a Plug-In
	The Structure of a Plug-in
	Key Plug-in Objects and Files
	The Plug-in Object
	Library Nib Files
	Class Description Files
	Inspector Objects

	The Interface Builder Kit Framework
	Xcode Support for Interface Builder Plug-ins
	Plug-ins and Threads
	Plug-ins and Garbage Collection
	Plug-in Deployment Options

	Plug-in Quick Start
	Creating and Configuring Your Xcode Project
	Set Up Your Custom Button Class
	Configuring the Library Nib File
	Building and Loading the Plug-in

	Preparing Your Custom Objects
	Supporting the Basics
	Registering Your Object’s Attributes
	Additional Design-Time Guidelines
	Avoid Cascading Setter Methods
	Use Your Own Accessor Methods
	Update the Display Inside Setter Methods
	Isolate Interface Builder-Specific Methods

	Packaging Your Custom Objects
	Creating Your Class Description Files
	Providing User Documentation for Your Custom Objects

	The Plug-in Object
	Configuring the Library Nib Files
	Configuring a Library Object Template
	Configuring a Custom View
	Configuring a Custom Non-View Object
	Using a Custom Dragged VIew

	Creating New Library Nib Files

	Registering Your Plug-in’s Object Frameworks
	Handling Load and Unload Notifications
	Implementing Plug-in Preferences
	Changing your Plug-in Bundle’s Principal Class

	Inspector Objects
	Creating Your Inspector Class
	Creating Your Inspector’s User Interface
	Synchronizing Your Inspector’s Interface
	Synchronizing Your Interface Using Bindings
	Synchronizing Your Interface Manually
	Tips for Displaying Attributes for Multiple Selected Objects
	Disabling Your Inspector During Multiple Selection

	Registering Your Inspector Objects

	Advanced Techniques
	Customizing Your View’s Layout
	Specifying Inset Boundaries for a View
	Specifying Custom Baselines

	Implementing a Design-Time Container View
	Exposing Embedded Child Objects
	Controlling the Size Attributes of Embedded Child Views
	Controlling the Selection of Child Objects
	Returning Geometry Information for Non-View Objects

	Configuring Objects at Design Time

	Revision History

