
Saturn 4.5 User Guide
Tools > Performance

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Overview 7

Chapter 1 The Saturn Front-end 9

The Status Panel 9
Controlling the Back-End 10

Launching Processes for Profiling 10
Profiling Preferences 12

Displaying Results 13
What Saturn Shows You 13
The Profile Window 13
Display Preferences 16
Path Menu 17

Chapter 2 The Saturn Back-end 19

Linking the Back-end to Your Application 19
Environment Variable Controls 20
Programmatic Start/Stop Control 21

API Reference 21
A Programmatic Example 22

Document Revision History 23

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 The Saturn Front-end 9

Figure 1-1 Status Panel 9
Figure 1-2 Launch Process Panel 10
Figure 1-3 Preference Panel – Profiling Tab 12
Figure 1-4 Profile Window 14
Figure 1-5 Function Inspector Window 15
Figure 1-6 Preference Panel – Display Tab 16

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

FIGURES

After completing the first stages of program development, like design and debugging, you can use
performance tools such as Saturn to help optimize your program. Saturn helps you understand your program’s
function-calling structure and how much time was spent in each function. Saturn consists of two parts: a
graphical front-end and a dynamic library back-end. The Saturn back-end library leverages the instrumentation
infrastructure in gcc to generate an output file that summarizes how much time your program spends in
various functions. The Saturn front-end can then read this file and present a representation of the function
calling patterns and a function tree view.

UNIX implementations typically support a notion of compiler driven function instrumentation by specifying
compiler flags to request instrumentation. The compiler supplied by Apple responds to two different command
line options:

 ■ -pg— This causes the insertion of call graph profile data generating code into every function prologue
during compilation. Each execution of your program produces a gmon.out file. The standard tool for
reviewing these files is the gprof command-line tool, but Saturn’s front end can display the same
information in a graphical manner on PowerPC-based Macs only.

 ■ -finstrument-functions— This causes the insertion of separate user-defined instrumentation
routines for each function prologue and epilogue. It incurs somewhat more overhead than -pg, but
allows you to record a selection of custom data items in addition to basic timing. This option works with
both PowerPC and Intel-based Macs.

Saturn allows you to visualize the data in two ways: a traditional call-tree view and a graphical call-stack
timeline. Using this information, you can eliminate expensive calling behavior (for example, deep call stacks
which do not last long) as well as understand which functions take up the greatest portion of execution time.

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Overview

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Overview

The Saturn front-end is the application used to visualize the information recorded in an output file containing
profiles generated by the Saturn back-end. Because these profiles are deterministic, with every function entry
and exit recorded, Saturn is able to precisely display the selection of functions . This can be seen in the
graphical visualization in the front-end document window(Figure 1-4 (page 14)). You can also use the Saturn
front-end to launch your programs and, optionally, to set up what performance events you want to monitor.

The Status Panel

The Saturn front-end features a persistent status panel that provides prompts and other messages indicating
what the front-end is doing or about to do, or whether a procedure has failed and why. It is always available
(using the Window StatusPanel item, or by pressing Command-1). If things do not seem to going smoothly,
then you should check the status panel for messages from Saturn.

Figure 1-1 Status Panel

The Saturn status window has four controls:

1. Message View— This area lists messages about the operation of Saturn. Use the scroll bar at the right
side to look at older messages, if necessary.

2. Progress bar— This displays a colored bar graph that fills with blue from left to right, with progress
reflecting the percentage of the task completed, as Saturn performs any command, such as loading a
profile.

3. Stop Process Button— This button is enabled only while a child process, launched using the Launch
Panel (see “Launching Processes for Profiling” (page 10)), is running. Pressing it causes the process to
finish writing its Saturn data to disk and then exit.

The Status Panel 9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

4. Close Button— This dismisses the Saturn status panel. You normally will not need to use this, unless
you have limited screen area.

Controlling the Back-End

The Saturn front-end can help you control applications that you are profiling using the Saturn back-end. In
particular, it lets you launch applications with all of the correct environment settings already set. After profiling,
it can automatically find and open the resulting profiles.

Launching Processes for Profiling

Saturn can help you launch your applications with proper settings for recording profiling data. It does this
by providing an interface for supplying parameters and automatically presetting several key environment
variables for you. You need to have previously compiled your source code with function profiling by specifying
the -finstrument-functions option at compile time. Alternatively, on PowerPC Macs only, you may use
the -pg option, instead. In this case, Saturn must be used to launch your process, because it needs to override
the profiling functions inserted by gcc with its own code. See “The Saturn Back-end” (page 19) for more
information.

Figure 1-2 Launch Process Panel

10 Controlling the Back-End
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

To launch an application from Saturn, use the Saturn Launch Process… menu item (or Command-L). This will
bring up the “Launch Process” Panel, illustrated in Figure 1-2, where you need to “fill in the blanks” in order
to tell Saturn how to launch your application. Several default environment variables used by Saturn’s profiling
library will already be completed for you. Beyond this, you must at least choose an executable file before
pressing “OK” and continuing. However, you can also supply many other bits of information to Shark in order
to simulate the launching of your application from a command-line shell prompt, and specify a couple of
options to help limit capture of spurious samples.

1. Executable— The full path to the executable. You can either type it here or press the “Set...” button and
then find it using a normal Mac “Open File...” dialog box. For Mac applications, you can set this to be
either the entire application or the core binary file inside of it.

2. Working Dir— The full path to the working directory that the application will start using. By default, this
is the path where the executable is located, but you may point it anywhere else that you like, either by
typing a path or pressing the “Set...” button and using the resulting “Open File...” dialog box to choose
a directory. When the application is executed, it will appear to have been started from a shell that had
this directory as its working directory (i.e. the output of pwd) just before executing the command. Hence,
relative paths to data files will be resolved starting from this directory. Folders and files containing Saturn
profiling results will also be placed in this directory.

3. Arguments— Enter any arguments here that you would have normally entered onto your shell command
line after the name of the executable. Saturn will feed them into the application just as if they had come
from a normal shell. Note that since Saturn’s “shell” does not have any text I/O, you will need to provide
< stdin.txt and > stdout.txt redirection operations here if your executable expects to use stdin
and/or stdout “files.”

4. Environment Variables— Supply any environment variables that must be set before your application
starts in this table. Otherwise, Saturn will start your application with no environment variables set other
than the few it uses to control profiling (it even clears out any “defaults” that you may have had before
invoking Saturn). Pressing the “+” and “–” buttons below the table allows you to add or remove
environment variables, respectively. Once added, you can freely edit the names of the variables and their
value in the appropriate table cells. In general, you should not touch any of the default variables that
Saturn supplies for you. However, it is possible to control the PROFILE_SIZE_LIMIT and
PROFILE_TIME_LIMIT variables using the Saturn “Profiling Preferences” (page 12). These settings help
prevent runaway profiling from filling up your hard disk space with a gigantic Saturn data file. By default,
the file size is limited to 30 MB and the profiling time to 30 minutes, whichever comes first.

5. Cancel & OK— Saturn will start your application and sample it immediately after you hit OK. If you change
your mind, Cancel will leave without starting any child processes.

Controlling the Back-End 11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

Profiling Preferences

Figure 1-3 Preference Panel – Profiling Tab

Saturn’s preference panel, opened using the menu item Saturn Preferences… menu item (or Command-,),
contains two tabs. The second, “Profiling” (illustrated in Figure 1-3) lets you control the PROFILE_SIZE_LIMIT
and PROFILE_TIME_LIMIT environment variables that Saturn passes to profiled applications when executing
them. Each variable is controlled independently:

1. Time Limit— The first row of controls sets the PROFILE_TIME_LIMIT environment variable. If the
checkbox is not set, then a value of NO LIMIT is used, and no time limit will be imposed on profiling.
Otherwise, Saturn passes the time value expressed in the center edit box and pop-up menu on the right.
You can specify the time in seconds, minutes, or hours. Because the PROFILE_TIME_LIMIT variable is
expressed in seconds, Saturn will automatically convert the values you provide into seconds before
setting the variable.

2. Size Limit— The second row of controls sets the PROFILE_SIZE_LIMIT environment variable. If the
checkbox is not set, then a value of NO LIMIT is used, and the profile output file size will only be limited
by the size of your hard disk. If you are writing the output to your startup disk, this can cause serious
problems for your Mac. Otherwise, Saturn passes the size value entered into the center edit box and
pop-up menu on the right. You can specify the size in kilobytes (KB), megabytes (MB), or gigabytes (GB).
Because the PROFILE_SIZE_LIMIT variable is expressed in bytes, Saturn will automatically multiply
the values you provide by the appropriate conversion factors before setting the variable.

12 Controlling the Back-End
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

Note regarding file size: A file size between 500MB and 1GB might not open in Saturn, because opening
it may cause Saturn to exceed the available virtual memory allowed for one 32-bit program in OS X (currently
2.5 GB). Whether the expanded data will exceed the virtual memory limit is totally dependent on the number
of unique functions accessed. A very large file generated by a program with only a handful of functions will
open just fine, while a large file generated by a program with hundreds (or thousands) of functions will often
be problematic.

Displaying Results

After you record a profile, Saturn allows you to examine it using an interactive, graphical profile browser by
choosing the File Open…menu item (or Command-O) and then selecting the profile data file produced during
your sample execution with the resulting standard “Open File...” dialog box. You may also see this result in
a more automated fashion after executing your program from within Saturn. Saturn’s graphical interface lets
you see the same results that are presented textually in gprof output, but in a dynamic way that can be
flexibly sorted and rearranged in order to allow you to find the most interesting parts of the profile more
easily.

What Saturn Shows You

Saturn is most useful as a tool for understanding the function call behavior of your code. Using Saturn it is
possible to understand four types of calling characteristics:

1. Call Count— Call count is useful as a sanity check for your program’s behavior. You should ensure that
the profile call count matches your expectations. Each function call incurs a fixed calling overhead, so
making a large number of calls to a short function that performs very little useful work per call is inefficient.
Hence, functions with large call counts and short execution times are good candidates for inlining.

2. Call Time— In general, an application spends a large fraction of its time in a small fraction of its code.
Therefore, the most efficient way to utilize limited programmer time is to concentrate on optimizing
those functions that take up the largest portion of execution time.

3. Call Depth— Call depth is directly proportional to the amount of calling overhead your program incurs
in order to get to the function(s) that do the actual work. Modern programming principles such as
layering, abstraction and polymorphism lighten the burden of programming and code maintenance,
but often at the expense of calling overhead and obfuscated calling behavior. Deep call stacks that
terminate in functions with short call tenure suffer from an inordinate amount of calling overhead. In
these cases, it is often beneficial to inline all or some of the functions in the callstack in order to reduce
this overhead.

The Profile Window

When you open a profile data file, Saturn presents the profiled information in a single, unified window. After
a delay that can be up to several minutes for profiles with a high function call count, a window summarizing
the profile results will appear (see Figure 1-4 for a sample). Since Saturn profile data files can be very large,
you will probably want to keep an eye on the status panel progress bar and message view during the process
of loading the file, in order to make sure that no problems occur.

Displaying Results 13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

Figure 1-4 Profile Window

The upper half of a Saturn profile window shows the top of Call Tree view of profiled functions. Each row of
the table represents one function in the call tree, and presents key profiling information about that function.
This view is useful for understanding the average behavior of your program, such as which functions were
executing most often and how often they were called. This information is often useful because you can use
it to quickly focus in on the functions in your program that are executing most often or being called most
frequently.

The columns of the call tree view from left to right are:

1. Function Name— The name of the function, as listed in the process’ symbol table, associated with the
data on this row of the table. Except for leaf functions (ones that do not call others), there is a disclosure
triangle next to each function name. Click the triangle next to a function of interest in order to reveal all
child functions called by it on one or more new rows. Simply click it again to hide the child functions
again.

2. Count— The number of times this function was called.

3. Self Time— The amount of time spent executing this function’s own code (but not including time spent
in its children).

4. Total Time— The total amount of time spent executing this function and its children (other functions
called by this function).

You may click on the any of the column headers to have Saturn sort the profile results of sibling functions
by the information in that column. The order of functions at different levels or on different branches of the
call tree will not be affected by this, because children are always listed directly below their parents and the
group of sibling functions at each branch/level of the tree is only sorted within that group. Clicking on the

14 Displaying Results
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

small arrow at the right end of the selected column header allows you to choose an ascending or descending
sort order. Usually, sorting by “total” or “self” time is most useful, but sometimes it can be helpful to sort
based on call counts, if you are trying to find small functions that are called an extraordinarily large number
of times.

Double-clicking on any row of the table opens up an inspector window for that function. The inspector
window lists all of the individual call times (see Figure 1-5) for the given function. For non-leaf functions,
both self and total values are displayed.

Figure 1-5 Function Inspector Window

The lower half of the window is a Chart view that shows the depth of your program’s callstack (plotted
vertically) over time (plotted horizontally). Callstack levels are indicated by differing shades of blue, which
cycles vertically. Each function’s tenure, or time that it was executing, is depicted by the width (horizontal
size) of its area in the callstack graph. Look at this view to explore your profile data chronologically. This can
help you understand the sequence of calls used in your program, as opposed to the overall summary calling
behavior shown in the Call Tree View. Using this chart, you can see at a glance if your program rarely/often
calls functions and if there are any recurring patterns in the way your program calls functions. Based on this,
you can often visually see different phases of execution — areas where your program is executing different
pieces of its code in different ways. This information is useful, because each phase of execution will usually
need to be optimized in a different way.

The Chart view is very dynamic. You can select a function’s execution by clicking on it in the graph. This
action also selects the function in the Call Tree view. Similarly, selecting a function in the Call Tree view
highlights all of the tenures of that function in the Chart view. If the area of interest on the graph is too small
for you to see, then you can simply drag your mouse (click and hold) over the desired rectangular area to
have Saturn zoom into and magnify that area to fill the whole view. When you wish to return back to seeing
the entire chart, zooming out is accomplished by Option-Clicking anywhere in the chart area.

Displaying Results 15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

Note on early-exit functions: If Saturn encounters function call enter without a corresponding exit, usually
as a premature exit from a function such as a C++ exception, the function timeline entries for that call
sequence will be colored lavender instead of blue, and will highlight in yellow instead of red.

Note on generic gmon.out data files: Opening generic gmon.out files created when you start binaries
compiled with -pg by any means other than the Saturn program launcher will usually cause unexpected
results. Opening gmon.out files produced on an Intel Mac will also fail. Instead, this feature only works reliably
when you launch your application from within Saturn on a PowerPC-based Mac. Even in this case, however,
the Chart view is not displayed, because it requires information that is not captured during -pg profiling. If
you need to see the Chart view or are running on an Intel Mac, then you will need to use the
-finstrument-functions option.

Display Preferences

Figure 1-6 Preference Panel – Display Tab

Saturn’s preference panel, opened using the menu item Saturn Preferences… menu item (or Command-,),
contains two tabs. The first, “Display” (illustrated in Figure 1-6) lets you control two options regarding the
display in each profile window. Both options can also be controlled using menu items in Saturn, if desired.
The options are:

1. Time unit for display— The first pop-up menu lets you choose the time units for displaying results in
the self/total time columns of the Call Tree view here. You can choose between seconds, milliseconds,
microseconds, and nanoseconds. This can also be set using the various commands in Saturn’s Time menu.

2. Call-depth graph direction— The second pop-up menu lets you choose to have the graph on Saturn’s
Chart view grow down from the top (the default) or up from the bottom. This is purely a matter of
personal preference, as the same information is presented either way. These options may also be chosen
using Saturn’s Graph StackGrows submenu.

16 Displaying Results
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

Path Menu

This menu allows you to control how much information Saturn displays, by allowing you to focus its display
on particular parts of your trace. In very long or complex traces, this can be very helpful. The menu contains
three options:

1. Follow Longest Time Path— This reveals the callstack pattern that has the most time attributed to it,
either through one or many calls. Because the function executing most often will often be the first place
you will want to consider optimizing your programs, this is a good command to use when first examining
a profile.

2. Prune Path— This will hide all functions outside of the function you are currently examining and any
child functions that it calls. All parent functions in the callstack and functions that this function or its
children never call are simply eliminated from the display. This allows you to focus on only the effects
of this function and anything that it calls.

3. Restore Root— This restores any pruned-off paths, returning you back to the view of the entire Saturn
trace.

Displaying Results 17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

18 Displaying Results
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Saturn Front-end

The Saturn back-end is a dynamic library that is linked with the application under study. It is invoked by your
application during function prologues and epilogues in order to produce the profile traces used by the Saturn
front-end application.

After the back-end is linked with your application, it will automatically produce one or more Saturn profile
files in the active each time your application is executed. The output file name format is: “{app name}.{thread
#}.sat”. Because each execution of your application can create many different profile files, one for each
thread, Saturn creates a new directory in your working directory and names it “Saturn_profile_{app
name}_{run number}” to collect all of the separate profiles together. In this name, the run number starts at
0 and is incremented each time you run your program, if you take several profiles in succession.

Most of the time, this library will work for you with very little intervention. However, in case of problems or
if you desire more precise control over your profiling then you may need to control it more directly. This
chapter discusses some issues that may occur when linking the back-end to your application and some ways
that you can control the back-end to get more control over how it profiles your application.

Linking the Back-end to Your Application

As mentioned in the “Overview” (page 7), there are two ways to use the back-end to generate the data
files for the front-end:

 ■ -finstrument-functions— Saturn typically takes advantage of the infrastructure that GCC provides
through the -finstrument-functions option. This option works with both PowerPC and Intel-based
Macs. You can type this option right into your GCC command lines. With Xcode, you will need to enter
it as a string into the “Other C Flags” line in your target’s build settings, because Xcode does not have
pre-made setting that you can check for this option.

When program source is compiled by GCC with this flag, GCC adds a prologue function call at each
routine entry point, in each module compiled. GCC also adds an epilogue function call to each routine
in every module, before the routine returns. The prologue and epilogue functions that Saturn attaches
to your application emit an entry for a Saturn document file (*.sat format). These two functions are
included in the Saturn back-end dynamic library called libSaturn.dylib. To link to the library, either
add the file /usr/lib/libSaturn.dylib to your Xcode project (when adding this “framework,” you
will need to use Command-Shift-G in the Open file... dialog in order to access the /usr/lib folder, which
is otherwise hidden) or add -lSaturn to the link command in a makefile.

 ■ -pg— This profiling option, which works on PowerPC-based Macs only, causes gcc to use its gprof
profiling technique. Saturn can read the resulting gmon.out files and display the profiling results in a
manner similar to the command-line gprof tool.

When using this method, you do not have to make any other modifications to your source code or
compiler/linker options. The whole program will be instrumented with just the -pg option. You also do
not have to link against any special libraries.

Linking the Back-end to Your Application 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

The Saturn Back-end

Important: While you do not need to specify additional compiler or linker options, you must launch
your program using the Saturn front-end. The Saturn front-end will overload the profiling functions
inserted by gcc to collect the necessary function call graph data. If you open a gmon.out file created
without starting the application from within Saturn, unpredictable results may occur.

Apple supplies libraries already compiled with the -pg option enabled, so they may be profiled when
linked with your -pg binary. However, by default libraries without -pg are used. To select the profiling
versions of the libraries, set the environment variable DYLD_IMAGE_SUFFIX to “_profile” before
running your application.

So which option should you use? In general, the -finstrument-functions option is the better choice.
While it can incur somewhat more overhead than the -pg one, it allows Saturn to record more types of
information. To be precise, it captures more callstack timing information, which allows Saturn to display its
full callstack graph. Without this information, Saturn can present only summary statistics. Moreover, if you
are on an Intel-based Mac, this is the only option that you can use.

Important: It is very important that the program to be profiled has been compiled and linked with symbol
information. Otherwise, the Call Tree view will contain only the hex addresses of the functions that were
called; the Saturn front end will not be able to resolve those addresses with the function names that it expects
to find in the executable image. The common compiler option -g is sufficient to provide the necessary symbol
information in an executable. However, even if you specify this option, you must be careful with linker options,
because it is common practice to have the linker strip out symbol information during the link phase. Check
for enabling of any of these linker options that might strip out symbol information if you have added -g and
still see no function names in the Saturn Call Tree view.

Note on alloca(): When using the -finstrument-functions instrumentation technique, Saturn profiling
is currently unable to profile applications that use alloca()with runtime calculated allocation size, although
ones with sizes fixed at compile time do work. This is a known problem. The current workaround is to compile
your code with the -mdynamic-nopic flag.

Environment Variable Controls

If you link with the Saturn dynamic library, you can set the following environment variables in your shell,
before starting your application, in order to easily control several options:

 ■ SATURN_WORKING_DIR— Set this to the path of the directory where you want to store the Saturn data
files. Absolute paths are generally best; relative paths will be resolved relative to the current working
directory of the shell that invokes the application being profiled.

 ■ PROFILE_SIZE_LIMIT— This parameter, when supplied, forces the back-end to limit the size of the
data files produced to a fixed limit, expressed here in bytes. If this limit is reached, profiling stops
immediately. It is a good way to make sure that your application does not accidentally fill up your entire
disk with profile data, a factor that is especially important if you are writing profile data to your Mac OS
X startup disk.

 ■ PROFILE_TIME_LIMIT— This parameter, when supplied, forces the back-end to limit the time that it
records profiling information to a fixed time limit, expressed here in seconds. If this limit is reached,
profiling stops immediately. This option is an easy way to terminate profiling early for long-running

20 Environment Variable Controls
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

The Saturn Back-end

applications. (For more precise termination control, however, see “Programmatic Start/Stop Control” (page
21), instead.) In addition, like the previous PROFILE_SIZE_LIMIT variable, it can be used to prevent
your application from filling up your entire disk with profile data. However, because it provides no file
size guarantees, PROFILE_SIZE_LIMIT is generally recommended over this.

Programmatic Start/Stop Control

By default, Saturn profiles your entire application, from beginning to end, in all threads of execution. However,
in real programs you often only want to profile a subset of your application’s execution at any one time, in
order to focus your analysis on one part of the application or another. To allow you to exercise this level of
control, the Saturn back-end contains three other functions that you can use directly in your programs:
initSaturn(), startSaturn(), and stopSaturn(). These functions control generation of output data
in the back-end dynamic library, enabling profiling for a thread at each startSaturn() call and disabling
it at each stopSaturn() call.

Normally, these functions are used in a fairly simple pattern. To explicitly initialize the Saturn back-end for
tracing your program, add the call: initSaturn(char *path). This acts much like the automatic initialization,
but allows you to explicitly specify the name of your Saturn profile. Once tracing has been initialized, you
can then start and stop tracing using pairs of startSaturn and stopSaturn calls.

Note: Even if you have let the initialization of Saturn occur automatically, you can still add a call to
stopSaturn() in your code to end the profiling before the natural end of the program. This is the only way
that you should ever use mismatched startSaturn or stopSaturn calls.

If your program creates any child threads over the course of its execution, they inherit the profiling status of
their parent, by default. Hence these explicit start and stop calls are also a good way to limit profiling to a
limited number of threads of interest in a heavily multithreaded program.

API Reference

This section gives a brief reference for the three routines you can use to control Saturn directly.

 ■ initSaturn—

void initSaturn(char *path);

This must be called before any startSaturn or stopSaturn calls are made. It initializes Saturn with
the following parameter:

path— The path of the directory to write output files. This can be a full path or a path relative to the
current working directory. A NULL or an empty string argument will cause the files to be written in the
current working directory.

 ■ startSaturn—

void startSaturn(void);

Begins Saturn profiling. Data for every function that is called after this will be stored in the appropriate
data file for the thread that is executing the call.

 ■ stopSaturn—

Programmatic Start/Stop Control 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

The Saturn Back-end

void stopSaturn(void);

Ends Saturn profiling. Data collection ceases for this thread until startSaturn is called again. There
can be many startSaturn/stopSaturn function call pairs throughout an instrumented application,
if you want to see many small segments of execution scattered in different areas.

Note on Headers: Include the header file: “<Saturn.h>” in source code modules that will be making calls
to any of these API routines.

A Programmatic Example

Below is a basic example using these functions. It shows how you can use a single pair of startSaturn and
stopSaturn calls to exclude initialization and shutdown code from your profile. This is a common practice
with programs that spend minimal amounts of time in these routines, in order to avoid polluting the profile
with the large number of relatively unimportant function calls often found there. Please note that there can
be many startSaturn/stopSaturn function call pairs throughout an instrumented application, if you
want to focus even further on small segments of execution scattered in different areas.

#include <Saturn.h>
int main()
{
 // Initialize Saturn:
 // The output file will put in the current working directory.
 initSaturn ("");

 // Do work that you don't want to measure, like initialization
 . . . init code here . . .

 // Start the back-end.
 startSaturn ();

 // This portion of the program is measured
 . . . program core here . . .

 // Stop the back-end.
 stopSaturn ();

 // This isn't measured, again
 . . . shutdown core here . . .
}

22 Programmatic Start/Stop Control
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

The Saturn Back-end

This table describes the changes to Saturn 4.5 User Guide.

NotesDate

New document that explains how to analyze a program's function-calling
structure.

2007-10-31

23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Saturn 4.5 User Guide
	Contents
	Figures
	Introduction
	The Saturn Front-end
	The Status Panel
	Controlling the Back-End
	Launching Processes for Profiling
	Profiling Preferences

	Displaying Results
	What Saturn Shows You
	The Profile Window
	Display Preferences
	Path Menu

	The Saturn Back-end
	Linking the Back-end to Your Application
	Environment Variable Controls
	Programmatic Start/Stop Control
	API Reference
	A Programmatic Example

	Revision History

