
Shark User Guide
Tools > Performance

2008-04-14

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Bonjour, eMac, FireWire,
iPod, Mac, Mac OS, Macintosh, Objective-C,
Pages, Quartz, Safari, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

Finder, iPhone, and Numbers are trademarks
of Apple Inc.

DEC is a trademark of Digital Equipment
Corporation.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

MMX is a trademark of Intel Corporation or its
subsidiaries in the United States and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 13

Philosophy 13
Organization of This Document 14

Chapter 1 Getting Started with Shark 17

Main Window 17
Mini Configuration Editors 18

Perform Sampling 19
Session Windows and Files 20

Session Files 20
Session Information Sheet 21
Session Report 22
Advanced Settings Drawer 22

Shark Preferences 23

Chapter 2 Time Profiling 29

Statistical Sampling 29
Taking a Time Profile 31
Profile Browser 32

Heavy View 36
Tree View 36
Profile Display Preferences 37

Chart View 39
Advanced Chart View Settings 42

Code Browser 43
Assembly Browser 46
Advanced Code Browser Settings 48
ISA Reference Window 51

Tips and Tricks 52
Example: Optimizing MPEG-2 using Time Profiles 54

Base 55
Vectorization 56

Chapter 3 System Tracing 59

Tracing Methodology 59
Basic Usage 60
Interpreting Sessions 61

Summary View In-depth 62

3
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

Trace View In-depth 68
Timeline View In-depth 72

Sign Posts 84
Tips and Tricks 86

Chapter 4 Other Profiling and Tracing Techniques 91

Time Profile (All Thread States) 91
Malloc Trace 94

Using a Malloc Trace 95
Advanced Display Options 97

Static Analysis 99
Using Shark with Java Programs 101

Java Tracing Techniques 102
Linking Shark with the Java Virtual Machine 103

Event Counting and Profiling Overview 103
Timed Counters: The Performance Counter Spreadsheet 104
Event-Driven Counters: Correlating Events with Your Code 111

Chapter 5 Advanced Profiling Control 115

Process Attach 115
Process Launch 115
Batch Mode 117
Windowed Time Facility (WTF) 118

WTF with System Trace 120
Unresponsive Application Measurements 121
Command Line Shark 121

Basic Methodology 122
Common Options 123
Target Selection 124
Reports 124
Custom Configurations 124
More Information 125

Interprocess Remote Control 125
Programmatic Control 125
Command Line Remote Control 127

Network/iPhone Profiling 128
Using Shared Profiling Mode 131
Mac OS X Firewall Considerations 131

Chapter 6 Advanced Session Management and Data Mining 133

Automatic Symbolication Troubleshooting 133
Symbol Lookup 133
Debugging Information 134

4
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Manual Session Symbolication 134
Managing Sessions 138

Comparing Sessions 138
Merging Sessions 139

Data Mining 139
Callstack Data Mining 139
Perf Count Data Mining 145

Example: Using Data Mining with a Time Profile 146
A Performance Problem... 146
Taking Samples 147
High Level Analysis 149
Analysis Via Source Navigation 151
Introduction To Focusing 155
Dig Deeper by Charging Costs 161

Example: Graphical Analysis using Chart View with a Malloc Trace 164
Taking Samples 164
Graphical Analysis of a Malloc Trace 167

Chapter 7 Custom Configurations 171

The Config Editor 171
Simple Timed Samples and Counters Config Editor 174
Malloc Data Source PlugIn Editor 176
Static Analysis Data Source PlugIn Editor 177
Java Trace Data Source PlugIn Editor 178
Sampler Data Source PlugIn Editor 179
System Trace Data Source PlugIn Editor 179
All Thread States Data Source PlugIn Editor 180
Analysis and Viewer PlugIn Summary 181
Counter Spreadsheet Analysis PlugIn Editor 182

Using the Editor 183
Spreadsheet Configuration Example 185

Chapter 8 Hardware Counter Configuration 189

Configuring the Sampling Technique: The Sampling Tab 189
Common Elements in Performance Counter Configuration Tabs 192

Counter Control 192
Privilege Level Filtering 193
Process Marking 194

MacOS X OS-Level Counters Configuration 195
Intel CPU Performance Counter Configuration 196
PowerPC G3/G4/G4+ CPU Performance Counter Configuration 197
PowerPC G5 (970) Performance Counter Configuration 199
PowerPC North Bridge Counter Configuration 206

U1.5/U2 North Bridges 206

5
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

U3 North Bridge 207
U4 (Kodiak) North Bridge 210

ARM11 CPU Performance Counter Configuration 212

Appendix A Command Reference 215

Menu Reference 215
Shark 215
File 215
Edit 216
Format 217
Config 218
Sampling 219
Data Mining 219
Window 220
Help 220

Alphabetical Reference 221

Appendix B Miscellaneous Topics 225

Code Analysis with the G5 (PPC970) Model 225
Supervisor Space Sampling Guidelines 226

6
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Appendix C Intel Core Performance Counter Event List 229

Appendix D Intel Core 2 Performance Counter Event List 235

Appendix E PPC 750 (G3) Performance Counter Event List 245

Appendix F PPC 7400 (G4) Performance Counter Event List 247

Appendix G PPC 7450 (G4+) Performance Counter Event List 253

Appendix H PPC 970 (G5) Performance Counter Event List 263

Appendix I UniNorth-2 (U1.5/2) Performance Counter Event List 291

Appendix J UniNorth-3 (U3) Performance Counter Event List 295

Appendix K Kodiak (U4) Performance Counter Event List 299

Appendix L ARM11 Performance Counter Event List 303

Document Revision History 305

7
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

8
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Getting Started with Shark 17

Figure 1-1 Main Window 17
Figure 1-2 Process Target 18
Figure 1-3 Mini Configuration Editor 19
Figure 1-4 Session Inspector Panel 21
Figure 1-5 Sample Window with Advanced Settings Drawer visible at right 23
Figure 1-6 Shark Preferences — Appearance 24
Figure 1-7 Shark Preferences — Sampling 25
Figure 1-8 Shark Preferences — Sessions 26
Figure 1-9 Shark Preferences — Search Paths 27

Chapter 2 Time Profiling 29

Figure 2-1 Execution Before Sampling 30
Figure 2-2 Sampling Results 30
Figure 2-3 Time Profile mini-configuration editor 31
Figure 2-4 The Profile Browser 32
Figure 2-5 Tuning Advice 33
Figure 2-6 Callstack Table 35
Figure 2-7 Heavy Profile View Detail 36
Figure 2-8 Tree Profile View 37
Figure 2-9 Profile Analysis Preferences 38
Figure 2-10 Chart View 40
Figure 2-11 Advanced Settings for the Chart View 43
Figure 2-12 Code Browser 44
Figure 2-13 Hot Spot Scrollbar 46
Figure 2-14 Assembly Browser 48
Figure 2-15 Advanced Settings for the Code Browser 50
Figure 2-16 x86 Asm Browser Advanced Settings 51
Figure 2-17 ARM Asm Browser Advanced Settings 51
Figure 2-18 ISA Reference Window 52
Figure 2-19 Original Time Profile, with Tuning Advice 56
Figure 2-20 Code Browser with Vectorization Hint 57
Figure 2-21 Time Profile after Vectorizing IDCT 57
Table 2-1 MPEG-2 Performance Improvement 57

Chapter 3 System Tracing 59

Figure 3-1 Time Profile vs. System Trace Comparison 60
Figure 3-2 System Trace Mini Config Editor 61
Figure 3-3 Summary View 63

9
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

Figure 3-4 Summary View: Scheduler 64
Figure 3-5 Summary View: System Calls 65
Figure 3-6 Summary View: VM Faults 67
Figure 3-7 Summary View Advanced Settings Drawer 68
Figure 3-8 Trace View: Scheduler 70
Figure 3-9 Trace View: System Calls 71
Figure 3-10 Trace View: VM Faults 72
Figure 3-11 Timeline View 73
Figure 3-12 Timeline View: Thread Run Intervals 74
Figure 3-13 Thread Run Interval Inspector 74
Figure 3-14 Timeline View: System Calls 76
Figure 3-15 System Call Inspector 77
Figure 3-16 Timeline View: VM Faults 78
Figure 3-17 VM Fault Inspector 79
Figure 3-18 Interrupt Inspector 80
Figure 3-19 Sign Post Inspector 81
Figure 3-20 Timeline View Advanced Settings Drawer 83
Listing 3-1 ~/Library/Application Support/Shark/KDebugCodes/myFirstSignPosts 84
Listing 3-2 signPostExample.c 85
Listing 3-3 testKernelSignPost.c 86

Chapter 4 Other Profiling and Tracing Techniques 91

Figure 4-1 Time Profile (All Thread States) mini configuration editor 92
Figure 4-2 Time Profile (All Thread States) session, heavy view 93
Figure 4-3 Time Profile (All Thread States) session, tree view 94
Figure 4-4 Malloc Trace mini configuration editor 95
Figure 4-5 Malloc Trace session, profile browser 96
Figure 4-6 Malloc Trace session, chart view 97
Figure 4-7 Enabling Malloc Trace Advanced Options 98
Figure 4-8 Additional Malloc Trace Charts 99
Figure 4-9 Static Analysis mini configuration editor 101
Figure 4-10 How Shark-for-Java differs from regular Shark configurations 102
Figure 4-11 Performance Counter Spreadsheet 106
Figure 4-12 Counters Menu 106
Figure 4-13 Performance Counter Spreadsheet: Advanced Settings 108
Figure 4-14 Chart View with additional timed counter graphs 113

Chapter 5 Advanced Profiling Control 115

Figure 5-1 Process Attach 115
Figure 5-2 Launch Process Panel 116
Figure 5-3 Batch Mode 117
Figure 5-4 Normal Profiling Workflow 118
Figure 5-5 Windowed Time Facility Workflow 119

10
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 5-6 The Windowed Time Facility Timeline 120
Figure 5-7 Unresponsive Application Triggering 121
Figure 5-8 Samples Taken for Towers of Hanoi N=10..20 127
Figure 5-9 Network/iPhone Manager 129
Figure 5-10 Command Line Shark in Network Profiling Mode 131
Figure 5-11 Sharing Firewall Warning Dialog 132
Figure 5-12 Firewall Sharing Preferences, while adding a new port range for Shark 132
Listing 5-1 Towers of Hanoi Source Code 126
Listing 5-2 Instrumented Towers of Hanoi 126

Chapter 6 Advanced Session Management and Data Mining 133

Figure 6-1 Session Inspector: Symbols 135
Figure 6-2 Symbolication Dialog 136
Figure 6-3 Before Symbolication 137
Figure 6-4 After Symbolication 138
Figure 6-5 Example Callstacks 140
Figure 6-6 Heavy View 141
Figure 6-7 Tree View 142
Figure 6-8 Data Mining Advanced Settings 143
Figure 6-9 Contextual Data Mining Menu 145
Figure 6-10 Perf Count Data Mining Palette 145
Figure 6-11 Example Shapes 146
Figure 6-12 Example Shapes, Replicated 147
Figure 6-13 Sampling a Specific Process 148
Figure 6-14 Default Profile View 149
Figure 6-15 Navigation Via the Call-Stack Pane 150
Figure 6-16 Navigation Via the Call-Stack Pane with Tree View 151
Figure 6-17 Source View: SKTGraphicView selectAll 152
Figure 6-18 Source View: NSObject 153
Figure 6-19 Source View: SKTGraphicView selectGraphic 154
Figure 6-20 Source View: SKTGraphicView invalidateGraphic 155
Figure 6-21 Tree view before focusing 156
Figure 6-22 Data Mining Contextual Menu 156
Figure 6-23 After Focus Symbol -[SKTGraphicView drawRect:] 157
Figure 6-24 After focus and expansion 158
Figure 6-25 Source View: SKTGraphic drawInView:isSelected: 159
Figure 6-26 Source View: SKGraphic drawHandlesInView: 160
Figure 6-27 Source View: SKGraphic drawHandleAtPoint:inView: 161
Figure 6-28 Heavy View of Focused Sketch 162
Figure 6-29 Expanded Heavy View of Focused Sketch 162
Figure 6-30 After Charge Library libRIP.A.dylib 163
Figure 6-31 After Flatten Library 163
Figure 6-32 Malloc Trace Main Window 165
Figure 6-33 Result of Malloc Sampling 166
Figure 6-34 Chart View 167

11
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 6-35 Place to Select 168
Figure 6-36 Graph View with Call-Stack Pane 170

Chapter 7 Custom Configurations 171

Figure 7-1 Main Configuration Menu 171
Figure 7-2 Config Editor 174
Figure 7-3 Simple Timed Samples and Counters Data Source - Sampling Tab 175
Figure 7-4 Simple Timed Samples and Counters Data Source - Counter Settings 176
Figure 7-5 Malloc Data Source - Sampling Settings 176
Figure 7-6 Static Analysis Data Source - Settings 177
Figure 7-7 Java Trace Data Source - Sampling Settings 178
Figure 7-8 Sampler Data Source - Settings 179
Figure 7-9 System Trace Data Source - Settings 180
Figure 7-10 All Thread States Data Source - Settings 181
Figure 7-11 Counter Spreadsheet Analysis 183
Figure 7-12 Choosing a counter-based starting configuration 185
Figure 7-13 Enabling two performance counters 186
Figure 7-14 Performance Spreadsheet: Shortcut Equation 187

Chapter 8 Hardware Counter Configuration 189

Figure 8-1 Timed Samples & Counters Data Source - Advanced Sampling Tab 190
Figure 8-2 A typical set of performance counter controls 193
Figure 8-3 Process Marker 194
Figure 8-4 MacOS X Performance Counters Configuration 196
Figure 8-5 Intel Core 2 Configuration Tab 197
Figure 8-6 PowerPC G4+ Configuration Tab (G3 and G4 are similar) 199
Figure 8-7 PowerPC 970 Processor Performance Counters Configuration 201
Figure 8-8 PowerPC 970 IMC (IFU) Configuration Tab 202
Figure 8-9 PowerPC 970 IMC (IDU) Configuration Tab 205
Figure 8-10 U1.5/U2 Configuration Tab 207
Figure 8-11 U3 Memory Configuration Tab 209
Figure 8-12 U3 API Configuration Tab 210
Figure 8-13 U4 (Kodiak) Memory Configuration Tab 211
Figure 8-14 U4 (Kodiak) API Configuration Tab 212
Figure 8-15 ARM11 Counter Configuration Tab 213

Appendix B Miscellaneous Topics 225

Figure B-1 PPC970 Resource Modeling 226
Figure B-2 Timer Sampling in the Kernel 227
Figure B-3 CPU PMI Sampling in the Kernel 228

12
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Overview

Shark is a tool for performance understanding and optimization. Why is it called “Shark?” Performance tuning
requires a hunter’s mentality, and no animal is as pure in this quest as a shark. A shark is also an expert in his
field — one who uses all potential resources to achieve his goals. The name “Shark” embodies the spirit and
emotion you should have when tuning your code.

To help you analyze the performance of your code, Shark allows you to profile the entire system (kernel and
drivers as well as applications). At the simplest level, Shark profiles the system while your code is running to
see where time is being spent. It can also produce profiles of hardware and software performance events
such as cache misses, virtual memory activity, memory allocations, function calls, or instruction dependency
stalls. This information is an invaluable first step in your performance tuning effort so you can see which
parts of your code or the system are the bottlenecks.

In addition to showing you where time is being spent, Shark can give you advice on how to improve your
code. Shark is capable of identifying many common performance pitfalls and visually presents the costs of
these problems to you.

Philosophy

The first and most important step when optimizing your code is to determine what to optimize. In a program
of moderate complexity, there can be thousands of different code paths. Optimizing all of them is normally
impractical due to deadlines and limited programmer resources. There are also more subtle tradeoffs between
optimized code and portability and maintenance that limit candidates for optimization.

Here are a few general guidelines for finding a good candidate for optimization:

1. It should be time-critical. This is generally any operation that is perceptibly slow; the user has to wait for
the computer to finish doing something before continuing. Optimizing functionality that is already faster
than the user can perceive is usually unnecessary.

2. It must be relevant. Optimizing functionality that is rarely used is usually counter-productive.

3. It shows up as a hot spot in a time profile. If there is no obvious hot spot in your code or you are spending
a lot of time in system libraries, performance is more likely to improve through high-level improvements
(architectural changes).

Low-level optimizations typically focus on a single segment of code and make it a better match to the
hardware and software systems it is being run on. Examples of low-level optimizations include using vector
or cache hint instructions. High-level optimizations include algorithmic or other architectural changes to

Overview 13
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

your program. Examples of high-level optimizations include data structure choice (for example, switching
from a linked list to a hash-table) or replacing calls to computationally expensive functions with a cache or
lookup table.

Remember, it is critical to profile before investing your time and effort in optimization. Sadly, many
programmers invest prodigious amounts of effort optimizing what their intuition tells them is the
performance-critical section of code only to realize no performance improvement. Profiling quickly reveals
that bottlenecks often lie far from where programmers might assume they are. Using Shark, you can focus
your optimization efforts on both algorithmic changes and tuning performance-critical code. Often, even
small changes to a critical piece of code can yield large overall performance improvements.

By default, Shark creates a profile of execution behavior by periodically interrupting each processor in the
system and sampling the currently running process, thread, and instruction address as well as the function
callstack. Along with this contextual information, Shark can record the values of hardware and software
performance counters. Each counter is capable of counting a wide variety of performance events. In the case
of processor and memory controller counters, these include detailed, low-level information that is otherwise
impossible to know without a simulator. The overhead for sampling with Shark is extremely low because all
sample collection takes place in the kernel and is based on hardware interrupts. A typical sample incurs an
overhead on the order of 20µs. This overhead can be significantly larger if callstack recording is enabled and
a virtual memory fault is incurred while saving the callstack. Time profiles generated by Shark are statistical
in nature; they give a representative view of what was running on the system during a sampling session .
Samples can include all of the processes running on the system from both user and supervisor code, or
samples can be limited to a specific process or execution state. Shark’s sampling period can be an arbitrary
time interval (timer sampling). Shark also has the ability to use a performance event as the sampling trigger
(event sampling). Using event sampling, it is possible to associate performance events such as cache misses
or instruction stalls with the code that caused them. Additionally, Shark can generate exact profiles for specific
function calls or memory allocations.

Organization of This Document

This manual is organized into four major sections, each consisting of two or three chapters, plus several
appendices. Here is a brief “roadmap” to help you orient yourself:

 ■ Getting Started with Shark— This introduction and “Getting Started with Shark” (page 17) are designed
to give you an overall introduction to Shark. After covering some basic philosophy here, “Getting Started
with Shark” (page 17) describes basic ways to use Shark to sample your applications, features of the
Session windows that open after you sample your applications, and the use of Shark’s global preferences.

 ■ Profiling Configurations— Three chapters discuss Shark’s default Configurations — its methods of
collecting samples from your system or applications — and presentation of the sampled results in Session
windows. These chapters are probably the most important ones. “Time Profiling” (page 29) discusses
Time Profiling, the most frequently used configuration, which gives a statistical profile of processor
utilization. SystemTracing, discussed in “System Tracing” (page 59), provides an exact trace of user-kernel
transitions, and is useful both to debug interactions between your program and the underlying system
and to provide a “microscope” to examine multithreaded programming issues in detail. After the complete
chapters devoted to these two configurations, the remainder are covered in “Other Profiling and Tracing
Techniques” (page 91). Time Profile (All Thread States) is a variant of Time Profile that also samples blocked
threads, and as a result is a good way to get an overview of locking behavior in multithreaded applications.
Malloc Trace allows you to examine memory allocation and deallocation activity in detail. Shark can apply
Static Analysis to your application in order to quickly examine rarely-traversed code paths. Equivalents

14 Organization of This Document
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

for Time Profile, Malloc Trace, and an exact Call Trace, all customized for use with Java applications, are
also available. Finally, the chapter gives an overview of Shark’s extensive performance counter recording
and analysis capabilities.

 ■ Advanced Techniques— Shark’s basic techniques for sampling and analysis are sufficient for most
purposes, but with complex applications you may need more sophisticated techniques. “Advanced
Profiling Control” (page 115) covers ways to start and stop Shark’s sampling very precisely, allowing you
to carefully control what is sampled, in advance. You can also learn how to control Shark remotely from
other machines or even to control Shark running on iPhone OS devices attached to your machine in this
chapter. “Advanced Session Management and Data Mining” (page 133) looks at Shark’s symbol
management and datamining techniques, which are ways to very precisely select subsets of your samples
for examination after they are taken.

 ■ Custom Configurations— Shark is not just limited to its default configurations. If you want to save your
own custom settings for a configuration or create a new one from scratch, then you will want to check
out chapters “Custom Configurations” (page 171) and “Hardware Counter Configuration” (page 189). The
first describes how you may make adjustments to the existing configurations, while the latter covers the
many options relating to the use of hardware performance counters. Because there are so many different
possible combinations of performance counters, only a limited number of the possibilities are covered
by the default configurations. Hence, this is likely to be the main area where the use of custom
configurations will be necessary for typical Shark users.

 ■ Appendices— The first appendix, “Command Reference” (page 215), provides a brief reference to Shark’s
menu commands. The second, “Miscellaneous Topics” (page 225), describes several minor, miscellaneous
options that do not really fit in anywhere else or are of interest only to a small minority of Shark users.
The remainder of the appendices (“Intel Core Performance Counter Event List” (page 229), “Intel Core 2
Performance Counter Event List” (page 235), “PPC 750 (G3) Performance Counter Event List” (page 245),
“PPC 7400 (G4) Performance Counter Event List” (page 247), “PPC 7450 (G4+) Performance Counter Event
List” (page 253), “PPC 970 (G5) Performance Counter Event List” (page 263), “UniNorth-2 (U1.5/2)
Performance Counter Event List” (page 291), “UniNorth-3 (U3) Performance Counter Event List” (page
295), and “Kodiak (U4) Performance Counter Event List” (page 299)) provide a reference for the performance
counters that you can measure with Shark.

Organization of This Document 15
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

16 Organization of This Document
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Starting to use Shark is a relatively simple process. You only need to choose one or two items from menus
and press a big “Start” button in order to start sampling your applications. This chapter describes these basic
steps and a few other general Shark features, such as its preferences.

Main Window

Figure 1-1 Main Window

After launching Shark, you will be presented with Shark’s main window, as illustrated in Figure 1-1. The
default sampling configuration is timer-based sampling (Time Profile) of everything running on the system.
By default, the Time Profile configuration uses a 1 ms timer as the trigger for sampling and will record for 30
seconds (30,000 samples per processor). Opening the Sampling Configuration menu (#1) allows you to select
from various built-in profiling configurations. Here is a list:

 ■ Time Profile— This configuration, the default, performs timer-based sampling, interrupting your system
after a regular interval and taking a sample of what is executing. It is a great starting point, as it allows
you to very quickly see what code in your application is actually executing most frequently. Knowing
this is the first step to successfully optimizing CPU-bound applications. See “Time Profiling” (page 29)
for more information.

 ■ System Trace— This configuration records an exact trace of calls into the Mac OS X kernel by your
program, and which threads are running. It is useful for examining your program’s interactions with Mac
OS X and for visualizing how your threads are interacting in multithreaded programs. System Trace is
discussed in depth in “System Tracing” (page 59).

 ■ Time Profile (All Thread States)— This variation on time profiling also records the state of all blocked,
inactive threads. As a result, it’s a great way to see how much and why your threads are blocked. This is
quite helpful in the development of multithreaded programs that do a lot of synchronization. This
configuration is described in “Time Profile (All Thread States)” (page 91).

 ■ Malloc Trace— If your program allocates and deallocates a lot of memory, performance can suffer and
the odds of accidental memory leaks increase. Shark can help you find and analyze these allocations.
“Malloc Trace” (page 94) talks about this more.

 ■ Static Analysis— Shark can provide some basic optimization hints without actually running code. See
“Static Analysis” (page 99) for more information.

Main Window 17
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

 ■ Java Profiling— Because Java programs run within the Java Virtual Machine (JVM), normally sampling
them with Shark produces little useful information. However, Shark also includes several configurations
that simulate the normal Time Profile, Malloc Trace, and even an exact trace of method calls, but while
collecting information about what the JVM is executing instead of the native machine. A full description
of these options and how to attach Shark to your Java programs is given in “Using Shark with Java
Programs” (page 101).

 ■ Hardware Measurements— The L2 cache miss and Processor Bandwidth (x86 systems) or Memory
Bandwidth (PowerPC systems) configurations measure memory system activity using counters built into
the hardware. They are a great way to see how your program is being slowed because of poor cache
memory use. See “Event Counting and Profiling Overview” (page 103) for an overview of Shark’s counter
measurement capabilities.

These built-in configurations are adequate for sampling most applications. After you have used Shark for
awhile, however, you may decide that you would like to sample something in your application that is not
covered by the built-in collection of options. In particular, you may want to perform hardware measurements
using counters that are not used by the default hardware measurement configurations. The process for
building your own configurations is described in “Custom Configurations” (page 171). This process is complex
enough that you should probably familiarize yourself with Shark before attempting the creation of
configurations.

By default, Shark samples your entire system, as indicated by the “Everything” item selected for you in the
Target pop-up menu (#2). Popping open this menu allows you to select a specific process or file (Figure 1-2).
You may also choose different targets using the keyboard: Command-1 for everything, Command-2 for an
executing process, and Command-3 for a file. For a Time Profile, it is unnecessary to select a specific target,
but others like Malloc Trace and Static Analysis require you to target a specific process or file. If you select the
“Process” target, you can also choose to launch a new process. See “Process Attach” (page 115) and “Process
Launch” (page 115) for full instructions on the process attaching and launching target selection techniques.

Figure 1-2 Process Target

Mini Configuration Editors

Each configuration typically has a few parameters that are frequently modified. Shark allows you to edit these
easily using themini configurationeditors associated with each configuration. You can enable mini configuration
editors by selecting the ConfigShowMini Config Editor menu item (Command-Shift-C). Most mini configuration
editors are similar to the one depicted in “Shark Preferences,” but all have small configuration-specific
variations. The selection of controls available in each min configuration editor are described in the chapters
associated with each type of configuration.

18 Main Window
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

Figure 1-3 Mini Configuration Editor

Perform Sampling

After you choose what you would like to sample (or trace, with some configurations) and how, then actually
using Shark to sample your program is extremely simple. There are two main ways to start sampling:

1. Click the Start button (#3 in “Main Window”).

2. Press the current “Hot Key” (Option-Esc, by default).

Shark will emit a brief tone and the Shark icon in the dock will turn bright red to let you know that Shark is
now actively sampling. At this point, you should exercise your program appropriately to trigger the execution
of code that you want to measure. Sometimes this may require no active input on your part, but if you are
measuring something like user interface performance then you may need to manually perform several steps
while Shark samples.

Note: Occasionally you may notice a small delay while Shark allocates the sample buffers it needs to record
data, due to time spent in the Mac OS X virtual memory system performing the necessary memory allocations.
If this delay is long enough to cause you to miss the key events that you wanted to measure, you should just
stop Shark and try to repeat your experiment, since memory allocation delays are usually much shorter for
second and subsequent repeated Shark invocations.

After you have finished sampling the interesting portion of your program, you will need to stop Shark’s
sampling. Again, this is a simple process. You will typically use one of the following three options:

1. Click the Stop button, which is what the “Start” button becomes once sampling has started.

2. Press the current “Hot Key” (Option-Esc, by default).

3. Wait for the maximum profiling time or number of samples specified by the configuration to pass. When
either of these conditions is met, Shark will automatically stop.

Perform Sampling 19
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

After Shark stops sampling, you will see a progress bar appear at the bottom of the main Shark window as
samples are processed and symbols are gathered. During processing, Shark sorts samples both by process
and by thread. Shark also looks up the symbols corresponding to each sampled address and caches any other
information that may be needed for later browsing of your program. All of this work is done only after
sampling is complete, in order to minimize the system overhead of Shark during sampling.

If you would like to use the “Hot Key” technique, but your application already uses Option-Esc for another
purpose, then you should reassign Shark’s “Hot Key” to another key combination. See “Shark Preferences” (page
23) for information on how to do this.

In addition to the basic timing options shown here, Shark also offers many other techniques for very fine
selection of the time used for Shark’s sampling, should you need more control. See “Advanced Profiling
Control” (page 115) if you find that the basic start/stop operation described here is not enough to focus
Shark’s sampling on the parts of your application that you would like to measure.

Session Windows and Files

Once you’ve recorded samples or a trace, Shark will open up a new session window to display the results.
Depending upon the configuration you chose, the appearance of this window will vary. See the chapter on
the particular configuration that you chose for more information (in “Time Profiling” (page 29), “System
Tracing” (page 59), and “Other Profiling and Tracing Techniques” (page 91)). Nevertheless, all session windows
have some basic features in common.

Shark allows you to work with multiple sampling sessions at a time, displaying a separate window for each
session. This is useful for comparing two or more sampling sessions side-by-side. The currently displayed
session can be changed using the Window menu. By default, sessions are listed in the order they are loaded
or created. In addition, each new session is given a unique name, in the format of “Session # - Configuration.”

Session Files

Shark makes it easy to save any sessions to .mshark “session” files at any time. There are several reasons
why you might want to do this: for later analysis, to keep as archives to track performance regressions, or to
share your results. These files are particularly convenient when attached to performance bug reports, as a
session file that records samples of slow code offers a simple and effective way to document the performance
problem. Each session file contains all of the necessary data (symbols, source, and — optionally — even
program text, see “Shark Preferences” (page 23)) needed to display and explore the session on any computer
running Mac OS X, independent of that system’s hardware or software configuration. Because of this, you
can freely share your session files with any other coworkers using Shark, without regard to what type of Mac
they might have.

A session is saved to disk as a single, compressed file when you use the FileSave menu item (Command-S).
The first time you save a session, you will need to name the new session. This name will be used to name
the new session file and to replace the “Session #” part of the original window name. If you want to save the
session again at any point in time using a new name, then just choose the FileSave as... menu item
(Command-Shift-S).

20 Session Windows and Files
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

You may even choose to have Shark email your session file to someone else at any time, using the FileMail
This Session menu item. When chosen, this will send your default email program a remote message asking
it to start up a new email message for sending. Subsequently, Shark will automatically attach a session file
of the current session (saving it first, if necessary). You may then finish composing your message and send
it using the normal procedures for your email program.

Note: Shark’s session files have slowly evolved and changed over time, as new features have been added
that made it difficult to keep backwards-compatible file formats. The current file format (.mshark) is only
compatible with Shark 4.6 and later. Shark 4.0–4.5 use a transitional file format (also called.mshark) that can
still be read by more recent versions of Shark. However, users of these versions of Shark who need to read
Shark 4.6 or later files will need to upgrade. Old .shark files from Shark 3 and before and the .sample files
created by the Sampler application or command-line tool can only be read by Shark 4.3 or earlier.

Session Information Sheet

You can see many underlying details about the session by using FileGet Info (Command-I). This will drop down
the sheet shown in “Session Report” over the top of your session window.

Figure 1-4 Session Inspector Panel

This panel contains four tabbed panes:

 ■ Summary— Because Shark records samples at a very low level, the configuration of the sampled system
can often be critical when interpreting results. This pane, shown in “Session Report,” displays many facts
about the system setup when the session was originally recorded. This is very useful if you send a session
file to another person, as they can call up your system’s configuration with a single key combination.
Four different types of information are presented in the four quadrants of the view:

Session Windows and Files 21
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

1. Basic Statistics— This section of the pane contains basic information about the system at the time
the session was recorded. The system’s name, the current user, date, and time are available here.

2. Software Configuration— This shows version information about Shark and the underlying Mac OS
X and frameworks.

3. Sampling Configuration— This shows a text description of the configuration used for recording the
session. This is the same sort of summary description that you can see in the upper right corner of
the custom configuration window (as shown in “The Config Editor” (page 171)).

4. Hardware Configuration— This shows key characteristics about the machine used for sampling and
its underlying hardware components: processor, main memory, memory controller, I/O subsystem
controller, and such.

 ■ Notes— This pane is just a text box. You can type any notes and messages that you want here, and they
will be saved with the session file. This is helpful when you would like to record some additional
information about how the session was recorded, making notes about insights gained by you during
analysis, and the like.

 ■ Symbols— Here you can see a list of all binaries (application binaries, dynamic libraries, and the like)
that were sampled during the session. It also provides controls for selecting and “symbolicating” (adding
symbols to) samples taken from those binaries. See “Manual Session Symbolication” (page 134) for
instructions on how to do this.

 ■ Plug Ins— This pane displays a list of the Shark PlugIns that were used to record, analyze, and view the
session. See “Custom Configurations” (page 171) for more information on these.

Session Report

At any time, you may open a window containing a brief text summary of your session’s findings by using
the FileGenerate Report... menu item (Command-J). This report includes some information about what the
configuration was, the underlying system configuration, and a brief summary of the recorded samples. If you
need to give a quick overview of a session to someone who does not have Shark on their computer, then
this can be a useful command. Otherwise, it is probably easier just to send them your entire session file.

Advanced Settings Drawer

Most session windows in Shark have a variety of settings that can modify how the information in that window
is presented. For consistency, the controls for these settings are always presented in the Advanced Settings
Drawer, a drawer that can slide in and out of the right side of the session window by choosing theWindowShow
Advanced Settings menu item (Command-Shift-M). An example is depicted below in “Main Window.” The
controls presented will vary depending upon the current session viewer visible in the window, and so
instructions on how to use these controls are provided in sections following the descriptions of the session
viewers themselves.

22 Session Windows and Files
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

Figure 1-5 Sample Window with Advanced Settings Drawer visible at right

Shark Preferences

Shark’s global preferences are accessed from the SharkPreferences... menu item. This window allows you to
set some global options that Shark uses while recording and displaying all of your sessions. Shark’s preference
panel is divided into four tabbed panes:

 ■ Appearance— The first tab lets you control the appearance of Shark’s main window (1–2) and session
windows (3–5).

1. Sort Process Lists By— Choose whether you want the process menu in Shark’s main window to be
sorted by name or process ID here.

2. Show Only Owned Processes— This option, selected by default, reduces clutter in the process menu
by removing root (mostly daemon) processes and any processes from other users, on a multi-user
system.

3. Alternating/Solid Table Background— For tabular session window views, such as the profile browsers
and code browsers described in “Profile Browser” (page 32) and “Code Browser” (page 43), Shark
can use either a solid background color behind the text or alternate between a color and white on
every row. Select the viewing option that you prefer here.

4. Background Color— Choose either the solid background color or the color to alternate with white
by clicking on this color well.

Shark Preferences 23
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

5. Grid Color— Choose the color to use as a grid between rows in tabular session views by clicking on
this color well. If it is the same as the background color, previous, then the grid will essentially
disappear.

Figure 1-6 Shark Preferences — Appearance

 ■ Sampling— The options in this tab let you vary some of Shark’s behaviors as it starts and stops sampling.

1. Play Alert Sound— Choose whether or not you want to have Shark play an alert sound when you
start and stop sampling. This is on by default, but if you are sampling for a very short time or are
testing out something like an audio application, you may want Shark to stay quiet, instead. If you
choose to have Shark play these alert sounds, then you can choose any alert sound installed on your
system using the popup menu.

2. Auto Hide/Unhide— When checked, this option causes Shark to automatically hide its windows
whenever sampling starts and unhide them afterwards. It is useful if you need to see another
application covering the entire screen during sampling. Because you cannot press the “Stop” button
while Shark is hidden, this option is of most use if you use the “hot key” chosen below to start and
stop Shark.

3. Remain in Background— Shark normally brings itself to the front when sampling completes. This
means that it will be the main application while it analyzes samples and then displays a session
window. Generally, this is the desirable behavior, because most users want to examine their sampled
sessions immediately. However, if you want to quickly capture several sessions in a row, then this
option will force Shark to stay in the background while it processes samples. Because you cannot
press the “Stop” button without bringing Shark to the front first, this option is of most use if you
use the “hot key” chosen below to start and stop Shark.

24 Shark Preferences
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

4. Hot KeyCapture— The current “hot key” used to start Shark, as described in “Perform Sampling” (page
19), can be set here. Option-Esc is the default, because it is rarely used by other programs, but you
may want to use a different key if this collides with one of your own key combinations. Press the
Capture button and then press the new key combination immediately afterwards to change the
setting.

5. Cache Options— Caching of Program Text, Source Files, and Exited Processes allows Shark to provide
useful information for short-lived processes after they complete, but may require more memory
usage and increase sample processing time. You can disable these features if your applications of
interest will not normally exit during sampling.

Figure 1-7 Shark Preferences — Sampling

 ■ Sessions— This tab contains some options about the saving of source files.

1. Ask About Unsaved Sessions— With Shark, you can optionally disable the usual behavior of asking if
you want to individually save each session file when closing it or quitting Shark. Some users tend
to examine their data right after sampling, and therefore will rarely need to save Shark session files.
If you tend to work this way, then you might find the default behavior annoying and wish to uncheck
this box.

2. Embed Source Files— Shark allows you to optionally embed source information right into your
sessions when you save them, as discussed in “Session Files” (page 20), allowing anyone who opens
the session to see source code, even if the source files are not actually available on their system at
the time. This is usually very convenient, but may be problematic if you have a large amount of
source code — since the session file can become enormous — or if you may be sending the file to
a person who does not have permission to see all of the source. In these situations, you can choose
not to include source code. For your convenience, this preference lets you tell Shark to never embed
source, to always embed source, or to ask each time if you want to embed source (the default).

Shark Preferences 25
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

Figure 1-8 Shark Preferences — Sessions

 ■ Search Paths— This tab lets you add (using the “+” button) or delete (using the “–” button) default
directories where Shark will search for various types of files when it needs them. Shark lets you specify
default paths for four different types of files:

1. Source— Shark will usually find source files automatically if they are not moved between compilation
and session viewing times. If you must move the source at all, however, then you will need to specify
a path to the new source location here so that Shark can find your source. Probably the most common
reason why you might need to use this is if you compile the source on one system and then execute
your code and examine your session on another.

2. Kext— This tells Shark where to look for kernel extension binaries in order to find debugging
information for non-user code. By default, the standard system paths for kernel extensions are
included here.

3. Symbol-Rich— Shark will use these paths when it looks for symbol-rich binary files during attempts
at Symbolication of sessions, as described in “Automatic Symbolication Troubleshooting” (page 133).

4. UUIDServer— Shark can use these paths to automatically look up symbol-rich binary files and libraries
by matching the UUID information in the stripped version of the binary to the symbol-rich versions
of the files located here.

26 Shark Preferences
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

Figure 1-9 Shark Preferences — Search Paths

Shark Preferences 27
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

28 Shark Preferences
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started with Shark

The first and most frequently used Shark configuration is the Time Profile. This produces a statistical sampling
of the program’s or system’s execution by recording a new sample every time that a timer interrupt occurs,
at a user-specified frequency (1 KHz, for 1ms sampling intervals, by default). At each interrupt, Shark records
a few key facts about the state of each processor for later analysis: the process and thread ID of the executing
process, the program counter, and the callstack of the routine that was executing. From this sampled
information, Shark reconstructs exactly what code from which functions was executing as samples were
taken.

Statistical Sampling

This sampling process provides an approximate view of what is executing on the system. Figure 2-1 shows
the worst case of an application with a sample interval greater than the lifespan of typical function calls,
while Figure 2-2 shows the corresponding statistical sample, after post processing. In the first interval (marked
#1), sampling correctly identifies long-running routines executing in the sample interval. However, when
encountering short functions, two effects are seen because execution time is attributed to functions only at
the granularity of the sampling rate:

 ■ As seen in the third sample (marked #2), short-lived function calls can be missed entirely, so they are
underrepresented in the samples.

 ■ In contrast, when brief functions occur right on the sample points, as illustrated in the seventh sample
(marked #3), they are recorded as taking an entire time quantum and hence overrepresented in the
samples.

Luckily, over a large number of samples these errors average out in most cases, producing a collection of
samples that fairly accurately represent the actual time spent executing each function in the application. In
the example from Figure 2-1 and Figure 2-2, the rare occasions when the small subroutine bar() is measured
as taking an entire time quantum balances out the numerous times that it is missed entirely, providing a
fairly accurate measurement of the time spent executing the routine overall. As a result, execution time
measurements for the most critical routines, where the program spends most of its time executing, are
generally very good.

Statistical Sampling 29
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-1 Execution Before Sampling

Figure 2-2 Sampling Results

In exchange for this inevitable measurement error, statistical sampling incurs very little overhead as it takes
measurements, typically less than 2% with default settings. A major problem with performance-measuring
tools is that the tool often affects the very performance it attempts to measure. The profiling tool requires a
certain amount of processor time, system RAM, cache memory footprint, and other limited system resources
in order to function. Inevitably, “stealing” these resources from the measured process adds artificial overhead
to the program under test, sometimes skewing the performance measurements.

Statistical sampling minimizes this impact in two key ways. First, samples are taken at a relatively low frequency
when compared with most event-monitoring mechanisms. The sampling mechanism's low intervention rate
consumes only a small amount of processor time and memory, thereby minimizing the risk of skewed results.
Second, and more subtly, samples can occur anytime during the execution of the program; side effects of
the sampling mechanism are spread out to affect most areas of measured execution more or less equally. In
contrast, most event counting-based mechanisms, such as function or basic block counting, record data at
preset code locations, and therefore distort performance more near the preset sample points than elsewhere.

Statistical sampling provides helpful information about what executes most frequently, down to the level of
individual assembly-language instructions, without the additional overhead required for an event-based
profile at the instruction level. After sampling has ended, Shark correlates samples with the original binary
to determine which assembly-language instructions or lines of original source code were executing when

30 Statistical Sampling
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

each interrupt occurred. Shark then accumulates results across samples, determining which individual lines
of code were executing most often. In contrast, the overhead from adding the necessary code to profile at
this level of detail in a non-statistical way would distort the results enough to render them virtually useless.

Taking a Time Profile

Recording a Time Profile is generally very simple. Just use the general session-capture instructions presented
in the previous chapter with the Time Profile configuration selected, and you will capture one. Because Time
Profile is usually the default configuration, recording a session can be a matter of just starting Shark and
pressing the “Start” button. Using the process selection menu, you may choose between capturing samples
from just one process, or of the entire system at once. The former mode is usually better for analyzing most
standalone applications, while the latter is better for seeing how applications interact.

If you need more control over the sampling behavior, the mini-configuration editor (Figure 2-3) contains the
most common options. The list is reasonably short:

1. Windowed Time Facility— If enabled, Shark will collect samples until you explicitly stop it. However, it
will only store the last N samples, where N is the number entered into the sample history field (10,000
by default). This mode is also described in “Windowed Time Facility (WTF)” (page 118).

2. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.
This helps prevent Shark from sampling itself after you press “Start.”

3. Sample Interval— Enter a sampling period here to determine the sampling rate. The interval is 1 ms by
default.

4. Time Limit— The maximum amount of time to record samples. This is ignored if WTF mode is enabled
or if the sampling rate is high enough that the Sample Limit is reached first.

5. Sample Limit — The maximum number of samples to record. Specifying a maximum of N samples will
result in at most N samples being taken, even on a multi-processor system, so this should be scaled up
as larger systems are sampled. When the sample limit is reached, data collection automatically stops.
With the Windowed Time Facility mode, its sample history field replaces this one, and if the Time Limit is
very small it may be reached first.

Figure 2-3 Time Profile mini-configuration editor

Taking a Time Profile 31
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Note on short sample intervals: Shark will let you decrease the sample interval significantly, to a minimum
of 20µs, but the very high sampling rates that result from these very short intervals are not recommended
for most work, for several reasons. First, Shark will have a significant impact on system performance, since it
needs some processor time when every sample is taken. Second, sample interval timing may be more erratic,
because the inevitable sample timing error caused by interrupt response timing will be a larger percentage
of each sample time. Finally, Shark may require significant amounts of memory to record the large number
of samples that can quickly accumulate with short-interval sampling, adding significant memory pressure
on systems with smaller amounts of main memory.

Profile Browser

After you record a Time Profile session, Shark displays the a summary of the samples from the dominant
process in a tabular form called a Profile Browser. An example is shown in Figure 2-6. Samples are grouped
(usually by symbol), and the groups with the most samples are listed first. This ordering is known as the
“Heavy” view, and is described further below in “Heavy View” (page 36). This view can be modified using
the View popup menu (#8), if you would rather see the “Tree” view, which is described in “Tree View” (page
36) and organizes the sample groups according to the program’s callgraph tree, or “Heavy and Tree” view,
which splits the window and shows both simultaneously.

Figure 2-4 The Profile Browser

The window consists of several main parts:

32 Profile Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

1. Pane Tabs— These tabs let you select to view your samples using this pane, the Chart view (see “Chart
View ” (page 39)), or from among one or more Code Browsers (see “Code Browser” (page 43)).

2. Results Table Column Headers— Click on any column title to select it, causing the rows to be sorted
based on the contents of that column. You will usually want to sort by the “Self” or “Total” columns in
this window. You can also select ascending or descending sort order using the direction triangle that
appears at the right end of the selected header.

3. Results Table— The results table summarizes your samples in a simple, tabular form. User space code
is normally listed in black text while supervisor code (typically the Mac OS X kernel or driver code) is
listed in dark red text. However, this color scheme can be adjusted using the AdvancedSettings, described
below in “Profile Display Preferences” (page 37).

The Edit Find Find command (Command-F) and the related Edit Find FindNext (Command-G) and Edit Find Find
Previous (Command-Shift-G) commands are very useful when you are searching for particular entries in
a profile browser listing many symbols. Simply type the desired library or symbol name into the Find...
dialog box, and Shark will automatically find and highlight the next instance of that library or symbol.

The table consists of five columns:

a. Code Tuning Advice— When possible, Shark points out performance bottlenecks and problems. The
availability of code tuning advice is shown by a button in the Results Table. Click on the button
to display the tuning advice in a text bubble, as shown in “ISA Reference Window.”

Figure 2-5 Tuning Advice

b. Self— The percentage of samples falling within this granule (i.e. symbol) only. Sorting on this column
is a good way to locate the functions that were actively executing the most, and as a result is a good
choice for use with the bottom-up “Heavy” view. By double-clicking on this, you can view the raw
number of samples for each row in the table.

c. Total— In the “Heavy” view, this column lists the portion of each leaf entry’s time that passes through
the given function (at the root level, therefore, it is equal to the Self column). In the “Tree” view this
column lists the percentage of samples that landed in the given granule or anything called by it

Profile Browser 33
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

(self plus descendants or “children”). Sorting on this column is a good way to locate the top of
callstack trees rapidly, and as a result is a good choice for use with the top-down “Tree” view. By
double-clicking on this, you can view the raw number of samples for each row in the table.

d. Library— The name of the library (binary file) where the code of the sampled symbol is located. If
no library information is available — unlikely but not impossible — the address of the beginning
of the library is shown, instead.

e. Symbol— The symbol where this sample was located. Most of the time, this is the name of the
function or subroutine that was executing when the sample was taken, but the precise definition
is controlled by the compiler. One particular area for wariness is with macros and inline functions.
These will usually be labeled according to the name of the calling function, and not the macro or
inline function name itself. If no symbol information is available, the address of the beginning of
the symbol is shown, instead.

You may click the disclosure triangle to the left of the symbol name to open up nested row(s)
containing the name of all caller(s) (“Heavy” view) or callee(s) (“Tree” view). If you Option-Click on
the triangle, instead, then all disclosure triangles nested within will open, too, allowing you to open
up the entire stack with a single click.

4. Status Bar— This line shows you the number of active samples, the number of samples in any selected
row(s) of the Results Table, and the percent of samples that are selected. Note that the number of active
samples being displayed can be reduced dramatically using controls such as the Process pop-up, Thread
pop-up, and data mining operations (see “Data Mining” (page 139)).

34 Profile Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

5. Callstack View Button— Pressing this button opens up the function Callstack Table, shown in Figure
2-6, which allows you to view deep calling trees more easily. The most frequently occurring callstack
within the selected granule (address/symbol/library) is displayed. Once open, you can click rows of the
Callstack Table to navigate quickly to other granules that are present in the selected callstack.

Figure 2-6 Callstack Table

6. Process Popup Menu— This lists all of the sampled processes, in order of descending number of samples
in the profile, plus an “All” option at the top. When you choose an option here, the Results Table is
constrained to only show samples falling within the selected process. Each entry in the process list
displays the following information: the percent of total samples taken within that process, process name,
and process ID (PID). This information is similar to the monitoring information provided by tools such
as the command-line top program.

7. Thread Popup Menu— When you select a single process using the Process Popup, this menu lets you
choose samples from a particular thread within that process. By default, the samples from all of the
threads within the selected process are merged, using the “All” option.

8. View Popup Menu— This popup menu lets you choose from among the two different view options
(“Heavy” and “Tree”) described below, or to split the window and display both views at once (“Heavy
and Tree”).

Profile Browser 35
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Heavy View

The “Heavy” view is not flat – each symbol name has a disclosure triangle next to it (closed by default).
Opening the disclosure triangles shows you the call path or paths that lead to each function. This allows you
first to understand which functions are most performance-critical and second to see the calling paths to
those functions.

Figure 2-7 Heavy Profile View Detail

For example, Figure 2-7 shows a close-up of the “Heavy” profile view log10() entry. The library function
log10() represents 12.7% of the time spent in the Celestia process. The 12.7% of the overall time spent
in log10() is distributed between three calling paths. The Total column shows that the first path (through
StarOctree::findVisibleStars()) accounts for 12.1% of the overall time. The rest of the total time
spent in log10() is through calls made by two other functions in the example shown above

Tree View

In addition to the default “Heavy” or bottom-up profile view, Shark supports a call tree or top-down view
(select “Tree” in the Profile View pop-up button).

The “Tree” view gives you an overall picture of the program calling structure. In the sample profile (Figure
2-8), the top-level function is [CelestiaOpenGLView drawRect:], which in turn calls
[CelestiaController display], which then calls CelestiaCore::draw(), and so on.

In “Tree” view, the Total column lists the amount of time spent in a function and its descendants, while the
Self column lists the time spent only inside the listed function.

36 Profile Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-8 Tree Profile View

Note on Heavy/Tree comparisons: Please note that there may not be a one-to-one correspondence between
entries in “Tree” view and “Heavy” view. If you select a function in “Heavy” view and then switch to “Tree”
view, it will always select exactly one function in the tree. On the other hand, if you select a function in “Tree”
view and then switch back to “Heavy” view, Shark will automatically select the “heaviest” symbol corresponding
to that callpath. If several callpaths have similar weights, Shark may end up selecting one that is surprising
to you.

Profile Display Preferences

Profile analysis can help you better understand the data presented in the Profile Browser by tailoring the
formatting of the sampled information to suit your application’s code. Analysis settings are controlled
separately for each session. The analysis controls are accessed per session by opening a drawer on the Profile
Window, shown in “Advanced Session Management and Data Mining,” using FileShow Advanced Settings
(Command-Shift-M).

Profile Browser 37
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-9 Profile Analysis Preferences

This part of the Advanced Settings drawer contains many different controls:

1. Show All Branches— The default “Heavy” view lists only the leaf entries (where samples landed) for the
sampled callstacks. As a result, each sample only appears once in the profile. Opening disclosure triangles
in the “Heavy” view reveals the contribution of each calling function to the “leaf” function’s total, if you
are interested in seeing what is calling those functions. With Show All Branches on, a “sample” is counted
for all symbols (root, interior and leaf), rather than only leaf entries. This results in actual samples with
deep callstacks being over-represented in the profile, since they are counted many times, but makes it
easier to find symbols for frequently-occurring but non-leaf functions, since one no longer must drill
down through multiple levels of disclosure triangles to find them.

While Shark will allow you to use this mode with “tree” view, it is not recommended.

2. Color By Library— Uses colors to differentiate libraries in the Results table.

3. Show Symbol Length— Displays the sum of instruction lengths in bytes for each symbol.

4. Demangle C++ Symbols— Translates compiler-generated symbol names to user-friendly names in C++
code, stripping off the name additions required to support function polymorphism.

5. Granularity— Determines the grouping level that Shark uses to bind samples together.

a. Address— Group samples from the same program address.

b. Symbol— Group samples from the same symbol (usually there is a one-to-one correspondence
between symbols and functions).

c. Library— Group samples from the same library.

d. Source File— Group samples from the same source file.

e. Source Line— Group samples from the same line of source code.

38 Profile Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

6. Stats Display— Selects units and a baseline number of samples.

a. Value— Shows raw sample counts rather than percentages.

b. % of Scope— Shows percentages based on currently selected process and/or thread.

c. % of Total— Shows percentages based on total samples taken.

7. Weight By— In Shark’s default weighting method (weight by sample count), each sample contributes
a count of one. During sample processing, any time a sample lands in a particular symbol’s address range
(in the case of symbol granularity) the total count (or weight) of the granule is incremented by one. In
addition to context and performance counter information, each sample also saves the time interval since
the last sample was recorded. When samples are weighted by time, each granule is weighted instead
by the sum of the sampling interval times of all of its samples.

8. Time Unit— Selects the time unit (µs, ms, s) used to display time values. Auto will select the most
appropriate time unit for each value when weighting by “Time.”

9. Process ID— Shark normally differentiates between processes according to their process ID (PID) – a
unique integer assigned to each process running on the system. Thus, Shark groups together samples
from the same PID. Shark can also identify processes by name. In this case, samples from processes with
the same name (and possibly different PIDs) would be grouped together. This is particularly useful for
programs that are run from scripts or that fork/join many processes.

The remainder of the controls visible in the Advanced Settings Drawer, which control Data Mining, are
described in “Data Mining” (page 139).

Chart View

Click Shark’s Chart tab to explore sample data chronologically, from either a thread- or CPU-based perspective.
This can help you understand the chronological calling behavior in your program, as opposed to the summary
calling behavior shown in the Results Table. Using this chart, you can see at a glance if your program rarely/often
calls functions and if there are any recurring patterns in the way your program calls functions. Based on this,
you can often visually see different phases of execution — areas where your program is executing different
pieces of its code. This information is useful, because each phase of execution will usually need to be optimized
in a different way.

Shark’s Chart and Profile views are tightly integrated. The same level of scope (system/process/thread) is
always displayed on both. Selected entries in the Results Table are highlighted in the Chart view. Filtering of
samples using the Profile Analysis orDataMining panes (see “Data Mining” (page 139)) also affects the selection
of samples shown in the Chart view. As with the Callstack Table shown in the Profile Browser, double clicking
on any entry in the table opens a new Code Browser tab.

By default, Shark displays the currently selected scope (system, process, or thread) against an “absolute” time
x-axis. This view displays gaps wherever the currently selected process or thread was not running. Use the
Time Axis pop-up button to switch between absolute and relative time, which compresses out these
out-of-scope areas.

Chart View 39
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-10 Chart View

The chart view shown in Figure 2-10 has several parts:

1. Callstack Chart— This chart displays the depth (y-axis) of the callstack for each sample, chronologically
from left-to-right over time (x-axis). The figure also clearly shows several key features of the chart:

a. User Callstack— Most callstacks, in blue, represent user-level code from your program.

b. Supervisor Callstack— Callstacks in dark red represent supervisor-level code stacks that were sampled.

c. Selected Callstack— A yellow “pyramid” of callstacks is highlighted when you click on the graph to
select a sample. Once you have chosen a sample, you can use the left and right arrow keys to navigate
to the previous or next unique callstack “pyramid.” After highlighting the chosen sample, Shark
examines the callstacks to either side and automatically extends the selection outwards to the left
and right wherever the adjacent callstacks have the same symbol. In this way, you can easily see
the full tenures for each function (length of time that function is in the callstack). Because functions
at the base of the callstack, like main, have much longer tenures than the leaf functions at the top
of the callstack, the shape of the highlighted area will always be a pyramid of some sort.

It is also possible to select one or more individual symbols within the chart view by selecting them
in the Profile Browser and then switching over to the chart view. After you switch to the chart view,
all of the dots on the chart representing calls to the selected symbol(s) will be highlighted in yellow,
allowing you to find and examine samples containing those symbol(s) more easily in complex charts.
It is usually easy to differentiate these “symbol selections” from the “sample selections” made by
clicking within the chart view itself, because only elements of each callstack corresponding to the
selected symbols are highlighted in the former case, and not entire samples or “pyramids,” as in the
latter.

40 Chart View
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

d. Context Switch Lines— These lines indicate where the operating system switched another process
or thread into the processor. Note that because Shark uses statistical sampling, it is possible to miss
very short thread contexts. They are only visible at high levels of magnification in “absolute” time
mode (as chosen in #12, below), when you select the option to show them in the Advanced Settings.

e. Out-of-Scope Callstack— (not shown) Callstacks in gray, visible only in “absolute” time mode, are
just placeholders for samples that are outside the current process/thread scope. In “relative” mode,
they are eliminated from the graph.

2. Zoom Slider— You can zoom in or out of the chart by dragging this slider towards the “+” and “–” ends,
respectively. You can also use the mouse to zoom into a subset of the displayed samples by dragging
the mouse pointer over the desired region of the chart. Zooming out can also be accomplished by
Option-Clicking on the chart.

3. Chart Scroll Bar— If you have magnified the chart, then you can use this scroll bar to move left-and-right
within it.

4. Callstack Table Button— Press this button to expose or collapse the Callstack Table, below.

5. Callstack Table Header— This area summarizes the CPU number, process ID, thread ID, and
user/supervisor code status of the sample. This is displayed or hidden using the Callstack Table Button
(#4).

6. Callstack Table— This displays the functions within the callstack for the currently selected sample, with
the leaf function at the top and the base of the stack at the bottom. As you select different samples in
the chart, this listing will update to reflect the location of the current selection. This is displayed or hidden
using the Callstack Table Button (#4).

7. Sample Table Headers— Like most tables in Shark, you can click here to select the column used to sort
the samples in this table, and then click on the arrow at the right end of the selected header cell to
choose to sort in ascending or descending order. Choosing a column here has no other effect besides
controlling the sort order, however.

8. Sample Table— This table lists a summary of all samples recorded within the session. It lists several key
facts that are recorded with each sample:

a. Index— Number of the sample within the session, starting from 1 and going up.

b. Time— Time that has passed between this sample and the previous one. Normally, this will be a
constant amount of time equal to the sampling period, but there are some sampling modes that
allow variation here.

c. CPU— Number of the CPU on your system where this sample was recorded, starting from 1 and
going up.

d. Process— Process ID for this sample’s process, including the name of the application.

e. Thread— Thread ID for this sample’s thread.

9. Sample Table Callstacks— If you pull this window splitter to the left, you will expose a table listing all
symbol names within the callstacks of each sample, in a large grid. Effectively, this is like looking at
multiple Callstack Tables rotated 90 degrees and placed side-by-side. Most of the time, this level of detail
about your samples is not necessary, but there may be some occasions when you might find this view
helpful.

Chart View 41
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

10. Process Popup Menu— This lists all of the sampled processes, in order of descending number of samples
in the profile, plus an “All” option at the top. When you choose an option here, the Callstack Chart is
constrained to only show samples falling within the selected process. Each entry in the process list
displays the following information: the percent of total samples taken within that process, process name,
and process ID (PID). This information is similar to the monitoring information provided by tools such
as the command-line top program.

11. Thread Popup Menu— When you select a single process using the Process Popup, this menu lets you
choose samples from a particular thread within that process. By default, the samples from all of the
threads within the selected process are merged, using the “All” option.

12. Time Popup Menu— This popup lets you choose between two different viewing modes. The first,
“absolute” time mode, shows all samples from a particular processor, no matter what was executing.
Samples from outside the current process/thread scope are grayed out, but are still plotted. On the other
hand, in “relative” time mode, all out-of-scope samples are eliminated and the chart’s x-axis is adjusted
to account for the smaller number of samples.

13. View Popup Menu— This popup lets you choose to view sets of samples from different processor cores.

Advanced Chart View Settings

The first pane of the Advanced Settings drawer displays a new set of options if you switch to a Chart view
(Figure 2-11). These controls affect the appearance of the chart, and are generally fairly minor:

1. Draw Context Switch Lines— Enables or disables the drawing of gray lines between samples that are
from different process and/or thread contexts. They are quite useful, but can clutter the display at low
levels of magnification.

2. Hide Samples Not In Scope— When chosen, this hides all samples from processes or threads outside
of the ones in the current scope, as chosen by the Process and Thread pop-up menus. Any remaining
samples are compressed together to remove any gaps. This process is similar to switching to “Relative”
time using the Time pop-up menu, but the results are slightly different.

3. Coalesce Samples— When chosen, this combines adjacent samples containing the same callstacks
together, so they are no longer individually selectable. If your Time Profiles often contain large blocks
of identical samples, the use of this option can make maneuvering through the samples using the arrow
keys somewhat easier.

4. Chart Type— Selects which type of chart to plot. You will rarely need to change this, but other options
are available:

a. Saturn— The default chart type, this presents a graph consisting of a solid bar representing the
callstack at each sample point.

b. Trace— This chart type is similar to the Saturn graph type, except that it only draws an outline
around the bars instead of coloring them completely. Selections are made only on a sample-by-sample
basis, instead of in “pyramids.”

c. Delta— This is much like the trace view, including the point selections. However, it only shows
changes in the callstacks, and not their exact depth. As a result, it is of most use when you are looking
for rare changes in the callstack depth or trends over time.

42 Chart View
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

d. Hybrid— This graph looks like a Trace graph, but uses the full “pyramid” selection capability of the
Saturn graph type.

5. Weight By— Choose how to present the x-axis scale for the chart view. You may have Shark present
this axis in terms of sample count or by time. You may also use the keyboard equivalents Command-1
to use sample counts or Command-2 to use time.

6. Time Unit— Selects the time unit to use in the Time column of the Sample Table. Normally you should
just leave this on the default, “Auto,” but if you would prefer you may explicitly choose to have the
numbers displayed in µs, ms, or s.

7. Color Selection— Choose colors to use for user sample callstacks, kernel sample callstacks, and the
selection area by clicking on these color wells.

Figure 2-11 Advanced Settings for the Chart View

The remainder of the controls visible in the Advanced Settings Drawer, which control Data Mining, are
described in “Data Mining” (page 139).

Code Browser

Double-clicking on an entry in the Results Table or Callstack Table will open a Code Browser view for that entry,
as shown in Figure 2-12. If available, the source code for the selected function is displayed. Source line and
file information are available if the sampled application was compiled with debugging information (see
“Debugging Information” (page 134)). The Code Browser shows the code from the selected function and
colorizes each instruction according to its reference count (the number of times it was sampled).

Code Browser 43
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-12 Code Browser

The Code Browser window consists of several different parts:

1. Code Browser Tab— When you double-click on an entry in a Profile Browser or Chart View, Shark
dynamically adds a tab to the top of the window. This tab contains the code browser for the symbol that
you double-clicked. If you return to one of the original browsers and double-click on another symbol,
another tab will be added for that symbol. Unlike the default tabs, these additional tabs all have small
close boxes on the left end. When clicked, the tab will be eliminated. If you open up more than about
3–5 code browsers, this may be necessary because of limited space at the top of the window.

2. Browse Buttons— You can use these buttons to maneuver through function calls. After you double-click
on a function call (denoted by blue text) and go to the actual function, the “back” button here (left arrow)
will be enabled. To return to the caller, just click on the “back” button. After you have maneuvered
through a function call, you can navigate through code forward and backward just as you would navigate
web pages in a web browser.

3. Address Range— This is used with the Assembly Browser (see “Assembly Browser” (page 46)).

4. Code Table Headers— Click on any column title to select it, causing the rows to be sorted based on the
contents of that column. You will usually want to sort by the “Line” column in this window, so that you
can view your code in the original sequence order. You can also select ascending or descending sort
order using the direction triangle that appears at the right end of the selected header.

5. View Buttons— Use these buttons to choose between:, Assembly View, or a split-screen view showing
both side-by-side.

44 Code Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

 ■ Source View: This displays the original source code for the function. It is the default, if Shark can find
source code for the function. To make sure that Shark can find your source, you first need to have
debugging information enabled in your compiler (see “Debugging Information” (page 134)). Also, it
is best to avoid moving the files after you compile them, so all source paths embedded in debugging
information will still be accurate. Otherwise, you may need to adjust Shark’s source paths, as described
in “Shark Preferences” (page 23).

 ■ Assembly View: This displays the raw assembly language for the function. Because it is extracted
directly from the program binary, this option is always available, even for library code. See the
Assembly Browser section (“Assembly Browser” (page 46)) for more information.

 ■ Both: This displays both views side-by-side, and is useful when you are comparing your source input
to the compiler’s output.

6. Code Table— This table allows you to examine your source code and see how samples were distributed
among the various lines of code. Each row of the table is automatically color-coded based on the number
of samples associated with that line — by default, hotter colors mean more samples — allowing you
can see at a glance which code is executing the most.

You can use the Edit Find Find command (Command-F) and the related Edit Find Find Next (Command-G)
and Edit Find Find Previous (Command-Shift-G) commands to search through your code, much like you
can in most text editors. Just type the desired text into the Find... dialog box, and Shark will automatically
find and highlight the next instance of that text in your code. You can also use this to search for comments,
if you need to look for repeated instances of a tip in the comments, for example.

The table consists of several columns. Some of these are optional, and are enabled or disabled using
checkboxes in the Advanced Settings drawer.

a. Self— This optional column lists the percentage of displayed references for each instruction or source
line, using only the samples that fell within this particular address range. To see sample counts
instead of percentages, double-click on the column.

b. Total— This optional column lists the percentage of displayed references for each instruction or
source line, including called functions. To see sample counts instead of percentages, double-click
on the column.

c. Line— The line number for each line from your original source code file. This column is particularly
useful for sorting the browser window, in order to keep the line numbers there in sequence.

d. Code— This column lists your original source file, line-by-line. Double-clicking on this column will
take you to the equivalent location in the Assembly display. Double-clicking on any function calls
(denoted by blue text), will take you to the source code for that function.

e. Code Tuning Advice— When possible, Shark points out performance bottlenecks and problems. The
availability of code tuning advice is shown by a button in this column. Click on the button to
display the tuning advice in a text bubble, as shown in “ISA Reference Window.” The suggestions
provided in the code browser will usually be more detailed and lower-level than the ones visible
within the profile browser.

f. Comment— This column gives a brief summary of the code tuning advice, allowing you to determine
which code tuning suggestions are likely to be helpful without clicking on every last advice button.

Code Browser 45
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

g. Performance Event Column— (Not shown) This optional column, which is only available when you
are looking at a code browser while using a configuration that uses performance counters (as
described in “Event Counting and Profiling Overview” (page 103)), shows raw counts from those
counters. It cannot be enabled with normal time profiles.

7. Code Table Scrollbar— This scrollbar (Figure 2-13) is customized to show an overview of sampling hot
spots; the brightness of a location in the scrollbar is proportional to the sampling reference count of the
corresponding instruction in the Code Table. Since programmer time is best spent optimizing code that
makes up a large portion of the execution time, this visualization of hot spots helps you to quickly see
and focus your development effort on the code that has the greatest influence on overall performance.

Figure 2-13 Hot Spot Scrollbar

8. Status Bar— This line shows you the number of active samples in the currently displayed memory range,
the number of active samples in the entire session, and/or the number of samples in any selected row(s)
of the Code Table. Either or both of the active samples will be eliminated from this line if the “Self” or
“Total” columns in the code table are disabled. In addition, the percent of samples that are in each of
these categories is displayed.

9. Source File Popup Menu—A given memory range can contain source code from more than one file
because of inlining done by the compiler. You can select which source file to view using this menu.

10. Edit Button— You can open the currently displayed source file in Xcode by selecting the Edit button.
The file will open up and scroll to your selected line, or the line with the most samples if nothing is
selected.

11. Function Popup Menu— This pop-up menu allows you to jump quickly to different functions in the
current source file. Please note that sample counts are only shown for the source lines in the current
memory range — other functions not in the current memory range may be visible, and you can still look
at them, but they will show no sample counts).

Assembly Browser

In addition to displaying the source code from the current memory range, Shark also provides a detailed
assembly-level view (Figure 2-14) that can be enabled by clicking on the Assembly button or combined with
a source browser by clicking on the Both button. This browser will also pop up in place of a source browser
if Shark cannot find source code for the address range that you are examining. This will often be the case
with common system libraries, the kernel, and precompiled applications.

46 Code Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Often, it is useful to examine the relationship between a line of source code and its compiler-generated
instructions. Shark encourages this type of exploration: either use the Both button to view source and assembly
simultaneously or double-click on a line in the Source or Code columns in the Assembly Code Browser to jump
to the corresponding source line in the Source Code Browser. Conversely, double-click on a line of code in the
Source Code Browser to jump back to the corresponding instructions in the Assembly Code Browser.

Many parts of this browser are identical to their counterparts in the Source Browser, including Self, Total,
tuning advice, and Comment columns. However, there are a few differences:

1. Browse Buttons— You can use these buttons to maneuver through branches. After you double-click
on a branch with a static target address (denoted by blue text) and go to the destination, the “back”
button here (left arrow) will be enabled. To return to the branch itself, just click on the “back” button.
After you have maneuvered through branches, you can navigate through code forward and backward
just as you would navigate web pages in a web browser.

2. Address Range— Samples are displayed only for the address range between these two boxes (usually
one symbol). Code outside of this range may have samples, but they will not be displayed.

3. Code Table— About half of the columns have functions that are identical to the basic source browser,
but the others are new or slightly different:

a. Address Column— This displays the address of the assembly-language instruction displayed on this
row. With PowerPC, this value simply increases by 4 with every row, but with x86 this will change
by 1–18 bytes per row, depending upon the variable length of each instruction. You can double-click
on this column to switch to relative decimal or hexadecimal offsets from the beginning of the address
range.

b. Code Column— This column displays the assembly code used by your routine. Using Advanced
Settings, you can choose to disable disassembly and to have Shark automatically find and indent
loops based on backwards branches in the code (the default). Within this column, you can double-click
on a branch with a static target address (denoted by blue text) to follow a branch to its target address;
after double-clicking, the function containing the target instruction will be loaded, if necessary, and
the target instruction will be highlighted. Finally, double-clicking on this column will take you to
the equivalent location in the corresponding Source display.

c. Cycles Column— (not shown) This PowerPC-only column displays the latency (processor cycles before
an instruction’s result is available to dependent instructions) and repeat rate (processor cycles
between completing instructions of this type when the corresponding pipeline is full) of the assembly
instruction on this line, in processor cycles. In general, you will want to minimize the use of instructions
with high latency, especially if the values that they produce are used by immediately following
instructions. Use of instructions with poor (high number) repeat rates may also impact your
performance if you try to issue them too frequently.

d. Comment Column— In addition to its usual function of providing short versions of the code analysis
tips, on PowerPC the comment column also displays information about how long the instruction
must stall as a result of long latency by prior instructions. You will find that very low-level optimization
hints, focused on particular assembly instructions, are provided here.

e. Source Column— This shows the source file name and line number of where in the source code this
instruction originated, when this is available. As with the Code Column, you can double-click here
to get back to the Source display, scrolled to the line listed here.

4. Asm Help Button— Press this button to get help for the selected assembly-language instruction, as
described in “ISA Reference Window” (page 51).

Code Browser 47
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-14 Assembly Browser

Advanced Code Browser Settings

The Advanced Settings drawer displays a new set of options if you switch to a Code Browser view (“Manual
Session Symbolication”). These options allow you to customize the viewing of source and assembly code
and turn on and off various features of the browser. These are many controls in this view:

 ■ Code Browser— This section affects the display of both source and assembly-language browsers.

1. CPU Model— By default, Shark uses a model of the current system’s CPU architecture when analyzing
code sequences in order to determine instruction latencies and hints. You can select other CPU
architectures by changing this setting.

2. Hot Code Colors— Choose the colors that Shark uses to display the “hotness” of code here.

3. Selection Formatting— Choose the color and whether or not an outline is used for code selections.

4. Grid Lines— Adds grid lines between each line of code when checked (the default).

5. Show Total Column— Toggles display of the column that lists the percentage of displayed references
for each instruction or source line, including called functions.

6. Show Self Column— Toggles display of the column that lists the percentage of displayed references
for each instruction or source line, but not including called functions.

7. Show Perf Event Column(s)— If the current profile contains performance counter information, this
setting toggles display of that data within the browser. Otherwise, it will be disabled.

48 Code Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

8. Show Code Analysis Columns— Toggles display of the columns that provide optimization tips.

 ■ Source Browser— This section affects the display of the source browser only.

1. Line Numbers— Toggles display of the column that lists the line number from the source code.

2. Syntax Coloring— Enable this to have Shark color source code keywords, constants, comments,
and such.

3. Tab Width— Shark auto-indents loops by this number of spaces for every loop nest level.

 ■ Asm Browser— This section affects the display of the assembly-language browser only.

1. Disassemble— Choose whether to display disassembled mnemonics or raw hexadecimal values
for the instructions.

2. Indent Loops— Choose whether or not to have Shark auto-indent loops in the code here. Loops
are found based on analysis of backwards branches in typical compiled code.

3. Simplified Mnemonics— (PowerPC-only) Choose whether or not to enable full disassembly of
instructions with constant values that specify special instruction modes, or to only disassemble to
fundamental opcodes and leave the modifying constants intact for your examination.

4. Show G5 (PPC970) Dispatch Groups— (PowerPC-only) Displays outlines on the main
assembly-language grid showing the breakdown of the instructions into dispatch groups. Further
details on is can be found in “Code Analysis with the G5 (PPC970) Model” (page 225). This function
is always disabled for sessions recorded on Macs with other processor architectures.

5. Show G5 (PPC970) Details Drawer— (PowerPC-only) Shark can display graphs of instruction dispatch
slot and functional unit utilization in an additional, G5-specific “details” drawer. Further details on
is can be found in “Code Analysis with the G5 (PPC970) Model” (page 225). This function is always
disabled for sessions recorded on Macs with other processor architectures.

Code Browser 49
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-15 Advanced Settings for the Code Browser

Other architectures have slightly different options for items 3–5 of the Asm Browser settings. For x86-based
systems, illustrated in , these options are:

50 Code Browser
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

 ■ Syntax— Chooses whether to display the x86 instructions in Intel assembler syntax or AT&T syntax (the
default).

 ■ Show Prefixes— If checked, instruction prefixes (like lock and temporary mode shifts) will be displayed.

 ■ Show Operand Sizes— If checked, each instruction explicitly encodes its operand size into the mnemonic
(AT&T syntax) or operand list (Intel syntax). Otherwise, the code will be streamlined but it may not be
possible to tell 8, 16, 32, and 64-bit versions of instructions apart.

Figure 2-16 x86 Asm Browser Advanced Settings

For ARM-based systems, illustrated in , the only option is:

 ■ ISA— Selects to decode the instructions in the block as ARM (32-bit) instructions or Thumb (16-bit)
instructions. The iPhone OS uses both types of ARM instructions for different functions, so you may need
to use this menu to switch from one to the other on a symbol-by-symbol basis.

Figure 2-17 ARM Asm Browser Advanced Settings

ISA Reference Window

In order to understand the low-level analysis displayed in Shark’s Assembly Browser, it may be helpful to view
the underlying machine’s instruction set architecture (ISA). You can display the PowerPC or Intel ISA Reference
Manual (Figure 2-18) by clicking on the AsmHelp button in the Assembly Browser or choosing the appropriate
command from the Help menu: Help PowerPC ISA Reference, Help IA32 ISA Reference, or Help EM64T ISA Reference.

The ISA Reference Window provides an indexed, searchable interface to the PowerPC, IA-32 (32-bit x86), or
EM64T (64-bit x86) instruction sets. The reference is also integrated with selection in the Shark Assembly
Browser – selecting an instruction in the table causes the ISA Reference Window to jump to that instruction’s
definition in the manual.

Code Browser 51
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-18 ISA Reference Window

Tips and Tricks

This section points out a few things that you might see while looking at a Time Profile, what they may mean,
and how to optimize your code if you see them. The tips and tricks listed herein are organized according to
the view most commonly used to infer the associated behavior.

 ■ Profile Browser

 ❏ Where should I start? :

52 Tips and Tricks
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

When first presented with a Profile Browser, you will want to begin in “Heavy View” sorted by “Self”
and see what pops to the top. These will be the functions that execute the most, and probably have
inner loops that may be susceptible to optimization. Do not forget to pop open disclosure triangles
to see what functions are calling these functions; sometimes it is easier to optimize outer loops in
these calling functions, instead of inner loops in the leaf functions. If any of these outer functions
look promising, you may want to consider flipping to “Tree” view in order to see the caller-callee
relationships a little more clearly.

 ❏ No Samples Taken:

Shark will come up and report that it has not taken any samples if all of the threads in your application
are blocked when you choose to sample one process using “Process Attach” (page 115) or “Process
Launch” (page 115). In this case, you probably want to use Time Profile (All Thread States) (see “Time
Profile (All Thread States)” (page 91)) to see where your threads are blocking.

If you are using programmatic control of Shark’s start and stop points (see “Programmatic
Control” (page 125)), having no samples taken may also indicate that you are starting and stopping
so quickly that there was simply no chance to take any meaningful samples. In this case, you should
either adjust your start and stop points to increase the amount of time between them, increase the
sampling rate (see “Taking a Time Profile” (page 31)), or both.

 ❏ Too many symbols displayed:

If there is just too much clutter in the profile browser, then you need to use data mining. See “Data
Mining” (page 139) for details on how to do this. Sometimes, switching between “Tree” and “Heavy”
view can help organize the symbols in a more helpful way, also.

If you are looking for a small number of known symbols in a large browser window, the Edit Find Find
command (Command-F) and the related Edit Find Find Next (Command-G) and Edit Find Find Previous
(Command-Shift-G) commands are probably your best bet. With these commands, Shark will
automatically find and highlight the next instance of that library or symbol for you.

 ❏ Lots of symbols have almost equal weight:

If you have many symbols popping up to the top of the list, the best thing is to quickly examine
several of them using the Code Browser, while keeping an eye out for functions with loops that look
easy-to-optimize.

 ■ Chart View

 ❏ Different parts of the chart look visibly different:

Different-looking areas were probably created by different code in your program as it executes
different program phases of execution. In most applications, each of these will need to be optimized
separately. As a result, you may want to sample these with different Shark sessions, so that you can
examine the different phases separately. Alternately, you may sample them all in one session and
then use data mining (see “Data Mining” (page 139)) to focus more selectively on each phase as you
examine the session.

 ❏ What is executing at a point in the chart? :

Click on the chart at the point of interest and then open up the Callstack Table to see the stack for
that sample (#4–6 in Figure 2-10 (page 40)). You can also double-click on the chart to open a Code
Browser for the function executing at that point.

 ■ Code Browser

 ❏ The assembly browser shows lots of MOV (x86) or LD/ST (PowerPC) instructions:

Tips and Tricks 53
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

If well over half of the instructions in your Assembly Browsers are memory access instructions, instead
of actual computation, then it is quite likely that you forgot to turn on compiler optimization. One
of the most important compiler optimizations is register allocation, which assigns variables to
processor registers temporarily between operations. Without this — such as when you use Xcode’s
gcc with -O0 optimization — the compiler will typically load and store all values to-and-from
memory with every operation, resulting in multiple data movement instructions per computation
instruction. WIth register allocation, however, the compiler will use registers to route data right from
one computation instruction directly to another, resulting in significantly fewer instructions and
hence faster code.

As a result of the significant “free” performance improvement possible using this and other
optimizations, we suggest that you always use compiler optimization before using Shark (with Xcode’s
gcc we suggest -O2, -Os, or -O3).

 ❏ I do not see any source:

Shark finds source code based on the full path to the source at the time it was compiled, but it
recovers this source as you examine the session. If your source code moved or changed between
compilation and session examination, or if you are recording and examining your session on a
different Mac than you used for compilation, then you are likely to have trouble finding source. In
this case, you will want to either recompile your source, in order to reset the paths correctly, or add
the path to your source to Shark’s list of source search paths, in “Shark Preferences” (page 23).

Another common source of this problem is omitting the -g flag when you compile. You should only
use Shark on fully-optimized, release-quality code, but default settings in development environments
such as Xcode often turn off debugging options like -g when set to produce optimized code. As a
result, you will often need to manually adjust the build settings to enable this option when using
Shark. Please note that in Xcode you will need to adjust the build settings for the Target that you
are testing and the correct (optimized) build configuration. Unfortunately, it is quite easy to set
options for the wrong target or build configuration accidentally.

 ❏ I want to see code coloring based on time spent here and in functions called by this code:

By default, the code browser only shows the Self value column, and code is colored based on these
values, which are the percent of samples spent executing each line of code within the displayed
function. If you are examining your code line-by-line, this is generally how you will want to see the
weighting displayed. However, you may also be interested in seeing time spent within the function
and all descendant functions that it calls. In this case, you will want to enable the Total column using
the Advanced Settings drawer. The code browser’s color scheme will then change to show weight
coloring based on the values in this column, instead.

Example: Optimizing MPEG-2 using Time Profiles

In this section, Shark is used to increase the performance of the reference implementation of the MPEG-2
decoder (from mpeg.org) by 5.7x on a Mac Pro with 3.0 GHz Intel® Core 2™ processor cores.

Before beginning any performance study, it is critical to define your performance metric and to justify its
relevance. Measurement of your metric should be both precise and consistent. Our performance metric for
MPEG-2 was defined as the frame rate, in frames per second, of the decoder when decoding a reference
movie. Unlike most video decoders, our test harness for the mpeg.org reference code let it decode as quickly
as possible, without trying to keep the frame rate fixed at the rate at which it was originally recorded. As a
result, the frame rate was a direct function of how fast the processor was able to do the actual decoding.

54 Example: Optimizing MPEG-2 using Time Profiles
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

This kind of unlimited decoding speed is used for offline video decoding/encoding, a task performed almost
constantly by video editing programs as they read and write video clips. In addition, higher decoding speed
in playback settings where the processor is limited to a fixed frame rate is still a useful metric, because means
that the processor will have more time between frames to do other tasks, decode larger frames, or simply
shut down and save power for a longer time between frames.

Base

The reference MPEG-2 decoder source code consists of over 120 densely coded functions spread across more
than 20 files. As a result, if one were handed the code and told to optimize it, the task would appear virtually
hopeless — there is simply too much code to review in a reasonable amount of time! However, as in many
programs, a large majority of the code handles initialization tasks and unusual corner cases, and is therefore
only rarely executed. As a result, the actual quantity of code that needs modification in order to dramatically
speed up the application is probably small, but Shark is required to locate it efficiently.

After compiling and running the reference decoder, Shark generated the session displayed in Figure 2-19.
Just by pressing the “Start” and “Stop” button, we get a session that lets us see that about half the execution
time is spent in a combination of the Reference_IDCT() function and the floor() function. By clicking
the callout () button to the left of the floor() function in the display, we see that Shark suggests we
replace the floor() function with a simple, inline replacement. Following this advice garners a 1.12x
performance increase. This is not a huge improvement, but is very good for something that only takes a few
minutes to perform.

Looking at the code more closely shows whyfloor() was required: the IDCT (Inverse Discrete Cosine
Transform) function takes short integer input, converts to floating point for calculation, and then converts
the results back to short integers. While this is a good way to keep the mathematics simple in the sample
“reference” platform, the numerous type conversions and slow floating point arithmetic make this routine
slow.

Converting to integer mathematics throughout avoids expensive integer FP integer conversions and slow FP
mathematics, at the expense of more convoluted math in the code. This code is available in the mpeg2play
implementation (also available on mpeg.org). Switching the implementation to integer math resulted in a
much more dramatic speedup over the original code of 1.86x.

Example: Optimizing MPEG-2 using Time Profiles 55
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Figure 2-19 Original Time Profile, with Tuning Advice

Vectorization

Optimizing the Reference_IDCT() function by converting it from floating point to integer also presented
another possible optimization that could be helpful: SIMD vectorization. All Intel Macintoshes support the
SSE instruction set extensions, allowing them to process 128-bit vectors of data, and most PowerPC
Macintoshes support the very similar AltiVec™ extensions. Although the methodology for vectorizing your
code is beyond the scope of this document, there is a plethora of documentation and sample code available
to you online at http://developer.apple.com/hardwaredrivers/ve/index.html. The very regular, mathematically
intensive inner loops of the IDCT routine are perfect candidates for this kind of vectorization. Following the
suggestion supplied by Shark in Figure 2-20 led to converting the IDCT routine to use SSE. Surprisingly,
performance only increased to 2.05x, with only a 10% improvement from vectorization.

At a point like this, where our optimization efforts result in non-intuitive results, it is generally a good idea
to use Shark again to see how conditions have changed since our first measurement. This additional run of
Shark produced the session in Figure 2-21. The vectorized IDCT function, IWeightIDCT(), now takes up
less than 5% of the total execution time. The mystery is solved: as the IDCT function was optimized while
other routines were not modified, those other, unoptimized routines became the performance bottleneck
instead. Further examination with Shark quickly identified the key loops in several new functions. Because,
like IDCT, they were performing complex math in tight inner loops, most of the new bottlenecks were also
good targets for vectorization. As seen in Table 2-1, final optimization of motion compensation
(Flush_Buffer() and Add_Block()), colorspace conversion (dither()), and pixel interpolation
(conv420to422() and conv422to444()) achieved a speedup of 5.69x over the original code — a dramatic
improvement made possible in a relatively short amount of time thanks to the feedback provided by Shark.

56 Example: Optimizing MPEG-2 using Time Profiles
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

http://developer.apple.com/hardwaredrivers/ve/index.html

Figure 2-20 Code Browser with Vectorization Hint

Figure 2-21 Time Profile after Vectorizing IDCT

Table 2-1 MPEG-2 Performance Improvement

SpeedupOptimization Step

1.00xOriginal

1.12xFast floor()

1.86xInteger IDCT

2.05xVector IDCT

Example: Optimizing MPEG-2 using Time Profiles 57
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

SpeedupOptimization Step

5.69xAll Vector

58 Example: Optimizing MPEG-2 using Time Profiles
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Time Profiling

Shark’s System Trace configuration records an exact trace of system-level events, such as system calls, thread
scheduling decisions, interrupts, and virtual memory faults. SystemTrace allows you to measure and understand
how your code interacts with Mac OS X and how the threads in your multi-threaded application interact with
each other. If you would like to gain a clear understanding of the multi-threaded behavior of a given program,
characterize user vs. system processor utilization, or understand the virtual memory paging behavior of your
application, then System Trace can give you the necessary insight.

Tracing Methodology

System Trace complements Shark’s default Time Profiling configuration (see “Time Profiling” (page 29)) by
allowing you to see all transitions between OS and user code, a useful complement to the statistical sampling
techniques used by Time Profiling. For example, in “Basic Usage” we can see an example of a thread of
execution sampled by both a Time Profile (on top) and a System Trace (on the bottom). Time profiling takes
evenly-spaced samples over the course of time, allowing us to get an even distribution of samples from
various points of execution in both the user and system code segments of the application. This gives us a
statistical view of what the processor was doing, but it does not allow us to see all user-kernel transitions —
the first, brief visit to the kernel is completely missed, because it falls between two sample points. System
tracing, in contrast, records an event for each user-kernel transition. Unlike time profiling, this does not give
us an overview of all execution, because we are looking only at the transition borders and never in the
execution time between them, but we gain an exact view of all of the transitions. This precision is often more
useful when debugging user-kernel and multithreading problems, because these issues frequently hinge
upon managing the precise timing of interaction events properly in order to minimize the time that threads
spend waiting for resources (blocked), as opposed to minimizing execution time.

Tracing Methodology 59
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-1 Time Profile vs. System Trace Comparison

As with most other profiling options available from Shark, System Trace requires no modification of your
binaries, and can be used on released products. However, it is possible to insert arbitrary events into the
System Trace Session using Sign Posts, which are discussed in detail in “Sign Posts” (page 84), if the built-in
selection of events simply does not record enough information.

Basic Usage

In its simplest usage, all you need to do is select System Trace from the Configuration Popup and start
sampling. Shark will then capture up to 1,000,000 system events per-processor (a user-tunable limit), process
the results, and display a session (see “Interpreting Sessions” (page 61)). In most cases, this should be more
than enough data to interpret. Note that you cannot select a single process before you start tracing using
the standard pop-up menu (from “Main Window” (page 17)); instead, if you only want to see a trace for a
specific process or thread, you must narrow the scope of the traced events after the session is recorded (see
“Interpreting Sessions” (page 61)).

In order to allow direct correlation of system events to your application’s code, Shark records the following
information with each event:

 ■ Start Time

 ■ Stop Time

 ■ A backtrace of the user-space function calls (callstack) associated with each event

 ■ Additional data customized depending on the event type that triggers recording (see “Trace View
In-depth” (page 68) for details)

60 Basic Usage
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

In the course of profiling your application, it may become necessary to trim or expand the number of events
recorded. Most of the typical options are tunable by displaying the Mini Config Editor, depicted in Figure
3-2.

Figure 3-2 System Trace Mini Config Editor

The Mini Config Editor adds the following profiling controls to the main Shark window:

1. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.

2. Time Limit— The maximum amount of time to record samples. This is ignored if Windowed Time Facility
is enabled, or if Sample Limit is reached before the time limit expires.

3. Sample Limit — The maximum number of samples to record. Specifying a maximum of N samples will
result in at most N samples being taken, even on a multi-processor system, so this should be scaled up
as larger systems are sampled. On the other hand, you may need to reduce the sample limit if Shark runs
out of memory when you attempt to start a system trace, because it must be able to allocate a buffer in
RAM large enough to hold this number of samples. When the sample limit is reached, data collection
automatically stops, unless the Windowed Time Facility is enabled (see below). The Sample Limit is always
enforced, and cannot be disabled.

4. Windowed Time Facility— If enabled, Shark will collect samples until you explicitly stop it. However, it
will only store the last N samples, where N is the number entered into the Sample Limit field. This mode
is described in “Windowed Time Facility (WTF)” (page 118).

If the user-level callstacks associated with each system event are of no interest to you, it is possible to disable
their collection from within the Plugin Editor for the System Trace Data Source (see “System Trace Data Source
PlugIn Editor” (page 179)), further reducing the overhead of system tracing. With callstack recording disabled,
Shark will still record the instruction pointer associated with each event, but will not record a full callstack.
Since most system calls come from somewhere within library code, you may lose some ability to relate system
events to your code with callstack recording disabled.

Out of memory errors?: If you see these when starting a system trace, then just reduce the Sample Limit
value until Shark is able to successfully allocate a buffer for itself.

Interpreting Sessions

Upon opening a System Trace session, Shark will present you with three different views, each in a separate
tab. Each viewer has different strengths and typical usage:

 ■ The Summary View provides an overall breakdown of where and how time was spent during the profiling
session, and is very analogous to the Profile Browser used with Time Profile. You can use this information
to ensure your application is behaving more-or-less as expected. For example, you can see if your program

Interpreting Sessions 61
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

is spending approximately the right amount of time in system calls that you were expecting. You can
even click on the System Call Summary to find out which system calls are being used and open the
disclosure triangles to see where, in your code, these calls are happening.

 ■ The TraceView provides a complete trace of system events during the profiling session. Does the Summary
View show that your CPU-bound threads are only getting an average of 200 microseconds of processor
time every time they are scheduled? Flip to the Trace View to see why your threads are blocking so soon.

 ■ The Timeline View provides a complete picture of system activity over the course of a session, similar to
Time Profile’s Chart View. You can use it to verify that your worker threads are running concurrently
across all the processors in your system, or to visually inspect when various threads block.

All views show trace events from a configurable scope of your System Trace. The default scope is the entire
system, but you can also focus the session view on a specific process, and even a specific thread within that
process. Independently, you can choose to only view events from a single CPU. For example, when focusing
on CPU 1 and thread 2, you will see only the events caused by thread 2 that also occurred on CPU 1. The
current settings for the scope are set using the three popup menus at the bottom of all System Trace session
windows, which select process, thread, and CPU, respectively.

Summary View In-depth

The Summary View is the starting point for most types of analysis, and is shown in Figure 3-3. Its most salient
feature is a pie chart that gives an overview of where time was spent during the session. Time is broken down
between user, system call, virtual memory fault, interrupt, idle, and other kernel time.

62 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-3 Summary View

Underneath the pie chart, there are individual summaries of the various event types. Each of these is discussed
in turn in the following subsections.

Scheduler Summary

The Scheduler Summary tab, shown in Figure 3-4, summarizes the overall scheduling behavior of the threads
running in the system during the trace. Each thread is listed in the outline underneath its owning process,
as shown at (1). To the left of each thread’s name, Shark displays the number of run intervals of that thread
(or all threads within a process) that it recorded in the course of this session.

Interpreting Sessions 63
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-4 Summary View: Scheduler

The Total, Avg, Min and Max columns list the total, average, minimum, and maximum values for the selected
metric. A popup button below the outline (2) lists the supported metrics:

 ■ Busy Time— Total time spent running, including both user and non-idle system time

 ■ User Time— Total time spent running in user space

 ■ System Time— Total time spent running in supervisor space (kernel and driver code)

 ■ Priority— Dynamic thread priority used by the scheduler

Information about how your application’s threads are being scheduled can be used to verify that what is
actually happening on the system matches your expectations. Because the maximum time that a thread can
run before it is suspended to run something else (the maximum quantum or time slice) is 10ms on Mac OS
X, you can expect that a CPU-bound thread will generally be scheduled for several milliseconds per thread
tenure. If you rewrite your CPU-bound, performance-critical code with multiple threads, and System Trace
shows that these threads are only running for very short intervals (on the order of microseconds), this may
indicate that the amount of work given to any worker thread is too small to amortize the overhead of creating
and synchronizing your threads, or that there is a significant amount of serialization between these threads.

64 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Note on Thread IDs: Thread IDs on Mac OS X are not necessarily unique across the duration of a System
Trace Session. The Thread IDs reported by the kernel are not static, single use identifiers - they are actually
memory addresses. When you destroy a thread, and then create a new one immediately thereafter, there is
a very high probability that the new thread will have the same thread ID as the one you just destroyed. This
can lead to some confusion when profiling multithreaded applications that create and destroy many threads.

There are a couple of distinct ways to avoid this confusion. Your first option is to park your threads when
you are profiling; if you don’t let any new threads exit for the duration of profiling, it is not possible to get
duplicate thread IDs. A better option is to utilize a work queue model: create enough threads to fully populate
the processors in your system, and instead of destroying the threads when they are out of work, put them
on a work queue to be woken up later with more work.

System Calls Summary

The System Calls Summary tab, shown in Figure 3-5, allows you to see the breakdown of system call time for
each specific system call. Because System Trace normally records the user callstack for each system call, you
can use this view to correlate system call time (and other metrics) directly to the locations in your application’s
code that make system calls. This view is quite similar to Time Profile’s standard profile view, described in
“Profile Browser” (page 32). In fact, many of the same tools are available. For example, the system call profile
can be viewed as either a heavy or tree view (selected using the popup menu at the bottom). Similarly, data
mining can be used to simplify complex system call callstacks (see “Data Mining” (page 139)).

More settings for modifying this display are available in the Advanced Settings drawer, and are described in
“Summary View Advanced Settings” (page 67).

Figure 3-5 Summary View: System Calls

Interpreting Sessions 65
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Note on System Trace callstacks: In rare cases, it is not possible for System Trace to accurately determine
the user callstack for the currently active thread. In this case, it may just copy the callstack from the previous
sample. While it occurs so rarely that it is usually not a problem, this “interpolation” can occasionally result
in bad callstack information. As a result, you should carefully analyze Shark’s system trace callstacks when
the callstack information seems unusual or impossible.

Virtual Memory (VM) Faults Summary

The VM Faults Summary tab, depicted in Figure 3-6, allows you to see what code is causing virtual memory
faults to occur. The purpose of this view is to help you find behavior that is normally transparent to software,
and is obscured in a statistical time profile. Functionally, it acts just like the System Calls Summary tab.

By default, virtual memory faults are broken down by type:

 ■ Page In— A page was brought back into memory from disk.

 ■ Page Out— A page was pushed out to disk, to make room for other pages.

 ■ Zero Fill— A previously unused page marked “zero fill on demand” was touched for the first time.

 ■ Non-Zero Fill— A previously unused page not marked “zero fill on demand” was touched for the first
time. Generally, this is only used in situations when the OS knows that page being allocated will
immediately be overwritten with new data, such as when it allocates I/O buffers.

 ■ Copy on Write (COW)— A shared, read-only page was modified, so the OS made a private, read-write
copy for this process.

 ■ Page Cache Hit— A memory-resident but unmapped page was touched.

 ■ Guard Fault— A page fault to a “guard” page. These pages are inserted just past the end of memory
buffers allocated using the special MacOS X “guard malloc” routines, which can be used in place of
normal memory allocations during debugging to test for buffer overrun errors. One of these faults is
generated when the buffer overruns.

 ■ Failed Fault— Any page fault (regardless of type) that started and could not be completed. User processes
will usually die when these occur, but the kernel usually handles them more gracefully in order to avoid
a panic.

In some cases, virtual memory faults can represent a significant amount of overhead. For example, if you see
a large amount of time being spent in zero fill faults, and correlate it to repeated allocation and subsequent
deallocation of temporary memory in your code, you may be able to instead reuse a single buffer for the
entire loop, reallocating it only when more space is needed. This type of optimization is especially useful in
the case of very large (multiple page) allocations.

More settings for modifying this display are available in the Advanced Settings drawer, and are described in
“Summary View Advanced Settings” (page 67).

66 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-6 Summary View: VM Faults

Summary View Advanced Settings

When you are viewing the System Calls Summary and VM Faults Summary tabs, several options are available
in the Advanced Settings drawer (see “Advanced Settings Drawer” (page 22)), as seen in Figure 3-7:

1. Weight By Popup— the summary can construct the profile of system calls using several metrics. The
following metrics can be selected:

 ■ CPU Time— Total system call or fault time spent actively running on a processor

 ■ Wait Time— Total system call or fault time spent blocked waiting on a resource or event

 ■ Total Time— Total system call or fault time, including both CPU and waiting time

 ■ Count— Total system call or fault count

 ■ Size— (VM fault tab only) Total number of bytes faulted, since a single fault can sometimes affect
more than one page

2. Display Popup— This lets you choose between having the Self and Total columns display the raw Value
for the selected metric or the percent of total system call or fault time. You can also change the columns
between these modes individually by double clicking on either column.

3. Group by System Call/VM Fault Type— By default, the metrics are listed for each of the different types
of system calls or faults in the trace. You can see summary statistics for all system calls or faults by
deselecting this.

4. Callstack Data Mining— The System Call and VM Fault summaries support Shark’s data mining options,
described in “Data Mining” (page 139), which can also be used to customize the presentation of the data.

Interpreting Sessions 67
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-7 Summary View Advanced Settings Drawer

Trace View In-depth

The Trace View lists all of the events that occurred in the currently selected scope. Because events are most
commonly viewed with “System” scope (all processes and all CPUs), each event list has a Process and a Thread
column describing the execution context in which it took place.

68 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

As with the Summary View, the Trace View is sub-divided according to the class of event. The events in each
event class (scheduler events, system calls, and VM Faults) are separately indexed, starting from 0. Each tab
in the Trace View lists the index of the event (specific to each event class) in the Index Column.

Each tab in the Trace View supports multi-level (hierarchical) sorting of the event records, based on the order
that you click column header row cells. This provides an extremely flexible means for searching the event
lists. For example, clicking on the “CPU Time” column title will immediately sort by CPU Time. If you then
click on the “Name” column title Shark will group events by Name, and then within each group of identically
named events it will sort secondarily by CPU Time.

You may click on events in the table to select them. As with most Mac tables, you may Shift-click to extend
a contiguous selection or Command-click to select discontiguous events. Below the main Trace View table,
Shark presents a line summarizing key features of the selected trace event(s). This is particularly convenient
if you select multiple events at once, because Shark will automatically add up key features of the selected
events together and present the totals here.

You should note that double-clicking on any event in the trace list will jump to that event in the Timeline
View. This is a helpful way to go directly to a spot of interest in a System Trace, because you can reliably scroll
to the same point by double-clicking on the same trace element.

The remainder of this section will examine the three different tabs in the trace view window.

Scheduler Trace

The Scheduler Trace Tab, shown in Figure 3-8, lists the intervals that threads were running on the system. The
meanings of the columns are as follows:

 ■ Index— A unique index for the thread interval, assigned by Shark

 ■ Process— Shows the process to which the scheduled thread belongs. The process’ PID is in brackets
after the name, which can be helpful if you have multiple copies of a process running simultaneously.

 ■ Thread— The kernel’s identifier for the thread

 ■ Time— Total time (the sum of user and system time) that the thread ran

 ■ User Time— Time that the thread spent executing user code during the interval

 ■ Sys Time— Time that the thread spent executing system (kernel) code during the interval

 ■ tPrev— Time since this thread was previously scheduled

 ■ Reason— Reason that the thread tenure ended (described in “Thread Run Intervals” (page 74))

 ■ Priority— Dynamic scheduling priority of the thread

Interpreting Sessions 69
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-8 Trace View: Scheduler

System Call Trace

The System Call Trace Tab, shown in Figure 3-9, lists the system call events that occurred during the trace. In
most respects, this Tab behaves much like the scheduler tab described previously, but it does have a couple
of new features.

You can inspect the first five integer arguments to each system call by selecting an entry in the table and
looking at the arg fields near the bottom of the window.

The current user callstack is recorded for each system call. You can toggle the display of the Callstack Table

by clicking the button in the lower right corner of the trace table. When visible, the Callstack Table
displays the user callstack for the currently selected system call entry.

The meanings of the columns are as follows:

 ■ Index— A unique index for the system call event, assigned by Shark

 ■ Interval— Displays thread run interval(s) in which the system call occurred. Each system call occurs over
one or more thread run intervals . If the system call begins and ends in the same thread interval, the
Interval Column for that event lists only a single number: the index of the thread interval in which the
event occurred. Otherwise, the beginning and ending thread interval indices are listed. Because it is
possible for an event to start before the beginning of a trace session, or end after a trace session is
stopped, event records may be incomplete. Incomplete events are listed with “?” for the unknown thread
run interval index, and have a gray background in the event lists.

 ■ Process— Shows the process in which the system call occurred. The process’ PID is in brackets after the
name, which can be helpful if you have multiple copies of a process running simultaneously.

 ■ Thread— Thread in which the system call occurred

70 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

 ■ Name— Name of the system call

 ■ Return— Shows the return value from the system call. Many system calls return zero for success, and
non-zero for failure, so you can often spot useless system calls by looking for multiple failures. Eliminating
streams of these can reduce the amount of time an application spends in wasted system call overhead.

 ■ CPU Time— Time spent actively running on a processor

 ■ Wait Time— Time spent blocked waiting on a resource or event

Figure 3-9 Trace View: System Calls

VM Fault Trace

The VM Fault Trace Tab, illustrated in Figure 3-10, lists the virtual memory faults that occurred. The current
user callstack, if any, is recorded for each VM fault.

You can toggle the display of the Callstack Table, which displays the user callstack for the currently selected

VM fault entry, by clicking the button in the lower right corner of the trace table.

The columns in the trace view have the following meanings in this tab:

 ■ Index— A unique index for the VM fault event, assigned by Shark

 ■ Interval— Displays thread run interval(s) in which the VM fault occurred. Each fault occurs over one or
more thread run intervals. If the fault begins and ends in the same thread interval, the Interval Column
for that event lists only a single number: the index of the thread interval in which the event occurred.
Otherwise, the beginning and ending thread interval indices are listed. Because it is possible for an event
to start before the beginning of a trace session, or end after a trace session is stopped, event records
may be incomplete. Incomplete events are listed with “?” for the unknown thread run interval index,
and have a gray background in the event lists.

Interpreting Sessions 71
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

 ■ Process— Shows the process in which the VM fault occurred. The process’ PID is in brackets after the
name, which can be helpful if you have multiple copies of a process running simultaneously.

 ■ Thread— Thread in which the VM fault occurred

 ■ Type— Fault type (see “Virtual Memory (VM) Faults Summary ” (page 66) for descriptions)

 ■ CPU Time— Time spent actively running on a processor

 ■ Wait Time— Time spent blocked waiting on a resource or event

 ■ Library— In the case of a code fault, this lists the framework, library, or executable containing the faulted
address. In contrast, it is blank for faults to data regions, such as the heap or stack.

 ■ Address— Address in memory that triggered the fault

 ■ Size— Number of bytes affected by the fault, an integral multiple of the 4096-byte system page size

Figure 3-10 Trace View: VM Faults

Timeline View In-depth

The Timeline View, displayed in Figure 3-11, allows you to visualize a complete picture of system events and
threading behavior in detail, instead of just summaries. Each row in the timeline corresponds to a traced
thread, with the horizontal axis representing time. At a glance, you can see when and why the threads in
your system start and stop, and how they interact with the system when they are running.

Session timelines are initially shown in their entirety. Because a typical session has thousands or millions of
events in it, this initially means that you can only see a broad overview of when threads are running. Events
such as system calls and VM faults are labeled with icons, but these icons are automatically hidden if there

72 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

is insufficient space to display them, as is usually the case when the trace is completely zoomed out. Hence,
to see and examine these events, you will need to zoom in on particular parts of the timeline display and
then maneuver around to see other parts of the display. There are 3 main ways to perform this navigation:

 ■ Scroll/Zoom Bars— Use the scroll bar at the bottom of the window to scroll side to side, and zoom with
the slider at the top of the window.

 ■ Mouse Dragging— Click and drag anywhere (or “rubber-band”) within the main Timeline View to form
a box. When you release the mouse bottom, the Timeline View will zoom so that the horizontal portion
of the box fits on screen (until you reach the maximum zoom level).

 ■ Keyboard Navigation— After highlighting a Thread Run Interval by clicking on it, the Left or Right Arrow
keys will take you to the previous or next run interval from the same thread, respectively. If you highlighted
a System Call, VM Fault, or Interrupt, the arrow keys will scroll to the next event of any of these types.
Holding the Option key, however, will scroll to the next event of the same type. For example, if you had
clicked on a Zero Fill Fault, the Right Arrow would take you to the next event on the same thread, whether
it was a System Call, VM Fault, or Interrupt, but Option-Right Arrow would take you to the next Zero Fill
Fault on the same thread.

If you have too many threads, the Timeline View allows you to limit the scope of what is displayed using the
standard scope-control menus described in “Interpreting Sessions” (page 61), at the bottom of the window.
There are also many options for filtering out events in the Advanced Settings drawer, as described in “Timeline
View Advanced Settings” (page 81).

Figure 3-11 Timeline View

Interpreting Sessions 73
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Thread Run Intervals

Each time interval that a thread is actively running on a CPU is a thread run interval. Thread run intervals are
depicted as solid rectangles in the Timeline View, as is shown in Figure 3-12, with lines depicting context
switches joining the ends of the two threads running before and after each context switch.

Figure 3-12 Timeline View: Thread Run Intervals

Thread interval lines can be colored according to several metrics, including the CPU on which the thread ran,
its dynamic priority, and the reason the thread was switched out. See “Timeline View Advanced Settings” (page
81) for more information on how to control this.

You can inspect any thread run interval in the Timeline View by clicking on it. The inspector (see Figure 3-13)
will indicate the amount of time spent running in user mode and supervisor mode, the reason the thread
was switched out, and its dynamic priority.

Figure 3-13 Thread Run Interval Inspector

There are five basic reasons a thread will be switched out by the system to run another thread:

74 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Blocked— The thread is waiting on a resource and has voluntarily released the processor while it waits.
Explicit Yield— The thread voluntarily released its processor, even though it is not waiting on any
particular resource.
Quantum Expired— The thread ran for the maximum allowed time slice, normally 10ms, and was
therefore interrupted and descheduled by the kernel.
Preemption— A higher priority thread was made runnable, and the thread was interrupted in order to
switch to that thread. It is also possible to be “urgently” preempted by some real-time threads.
Urgent Preemption— Same as previous, except that the thread preempting us must have the processor
immediately, usually due to real-time constraints.

System Calls

System calls represent explicit work done on behalf of the calling process. They are a secure way for user-space
applications to employ kernel APIs. On Mac OS X, these APIs can be divided into four groups:

BSD— Syscall, ioctl, sysctl APIs

Mach— Basic services and abstractions (ports, locks, etc.)

Locks— pthread mutex calls that trap to the kernel. These are a subset of Mach system calls.

MIG Message— Mach interface generator routines, which are usually only used within the
kernel

Interpreting Sessions 75
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-14 Timeline View: System Calls

Calls from all of these groups are visible in Figure 3-14. Clicking on the icon for a system call will bring up
the System Call Inspector, as seen in Figure 3-15. The resulting inspector displays many useful pieces of
information which you can use to correlate the system call to you application’s code. The listed information
includes:

 ■ Type— The system call icon and a textual description

 ■ Name— The system call name

 ■ Number— The system call’s event index number (its number in the Trace View)

 ■ Callstack— A backtrace of user space function calls that caused the system call

 ■ Time — Total, CPU, and wait time

 ■ Result— The return value from the call

 ■ Arguments— The first four integer arguments

76 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-15 System Call Inspector

VM Faults

As is the case with almost all modern operating systems, Mac OS X implements a virtual memory system.
Virtual memory works by dividing up the addressable space (typically 4GB on a 32-bit machine, currently
256 TB on 64-bit machines) into pages (typically 4 KB in size). Pages are brought into available physical
memory from a backing store (typically a hard disk) on demand through the page fault mechanism. In addition
to efficiently managing a system’s available physical memory, this added level of indirection provided by the
virtual to physical address mapping allows for memory protection, shared memory, and other modern
operating system capabilities. There are five virtual memory events on Mac OS X, all of which are faults
(running code is interrupted to handle them the first time the page is touched) except for page outs, which
are completed asynchronously.

Page In— A page was brought back into memory from disk.

Page Out— A page was pushed out to disk, to make room for other pages.

Zero Fill— A previously unused page marked “zero fill on demand” was touched for the first
time.

Non-Zero Fill— A previously unused page not marked “zero fill on demand” was touched for
the first time. Generally, this is only used in situations when the OS knows that page being allocated will
immediately be overwritten with new data, such as when it allocates I/O buffers.

Interpreting Sessions 77
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Copy on Write (COW)— A shared, read-only page was modified, so the OS made a private,
read-write copy for this process.

Page Cache Hit— A memory-resident but unmapped page was touched.

Guard Fault— A page fault to a “guard” page. These pages are inserted just past the end of
memory buffers allocated using the special MacOS X “guard malloc” routines, which can be used in place
of normal memory allocations during debugging to test for buffer overrun errors. One of these faults is
generated when the buffer overruns.

Failed Fault— Any page fault (regardless of type) that started and could not be completed. User
processes will usually die when these occur, but the kernel usually handles them more gracefully in order
to avoid a panic.

Figure 3-16 Timeline View: VM Faults

Three of these types of faults are visible in Figure 3-16. A zero-fill fault is circled to highlight it. Clicking on a
VM Fault Icon will bring up the VM Fault Inspector, as seen in Figure 3-17. This inspector functions much like
the System Call Inspector, except instead of listing arguments and return values, the VM Fault Inspector lists
the fault address, size, and — for code faults — the library in which it occurred.

78 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-17 VM Fault Inspector

Interrupts

Interrupts are asynchronous signals that external hardware devices use to communicate to the processor
that they require servicing. Most are associated with I/O devices, and signal either that new data has been
received by an input device or that an output device needs more data to send. However, there are also other
sources of interrupts inside of the computer system, such as DMA controllers and clock timers.

Here is an interrupt icon:

Because interrupts occur asynchronously, there is no correlation between the source of the interrupt and
the thread being interrupted. As a result, and because most users of System Trace are primarily interested
in examining the threading behavior of their own programs, the display of interrupt events in the Timeline
View is disabled by default. See “Timeline View Advanced Settings” (page 81) for instructions on how to
enable these.

Clicking on an Interrupt icon will bring up the Interrupt Inspector. This inspector lists the amount of time the
interrupt consumed, broken down by CPU and wait time.

Interpreting Sessions 79
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-18 Interrupt Inspector

Sign Posts

You can often get a good idea of your application’s current state by inspecting the user callstacks associated
with the built-in VM fault and system call events that occur in your application. But an even more precise
technique is to instrument your application with Sign Post events at critical points in your code (see “Sign
Posts” (page 84) for instructions as to how you can do this). For example, if you are developing an application
that operates on video frames, you can insert a sign post marker whenever the processing of a new frame
starts.

Here is a sign post icon:

Sign posts are displayed in the timeline alongside the other events. You can inspect each sign post by clicking
its icon in the timeline. The inspector will indicate which thread it came from, its event name, the 4
user-specified ancillary data values for both the begin and the end point, and the associated user callstack
(if any). If the sign post is an “interval” sign post, an under-bar will indicate its duration on the timeline, and
the inspector will list the amount of time spent on the CPU and time spent Waiting between the begin and
end event. Since you can supply different arguments to the start and end points of an interval sign post, the
inspector supplies “Begin” and “End” tabs that display the arguments supplied to the start and end points,
respectively.

80 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-19 Sign Post Inspector

Timeline View Advanced Settings

While you are in Timeline View, several options are available in the Advanced Settings drawer (see “Advanced
Settings Drawer” (page 22)), as seen in Figure 3-20.

1. Enable Thread Coloring— When enabled (the default), Shark attempts to color-code the threads in the
timeline display using one of the algorithms selected below.

2. Color By— Assuming that you do choose to use thread coloring, this menu allows you to choose from
among several different color schemes that allow you to see different trends:

 ■ CPU— Each CPU is assigned a different color, so you can see both how a processor is bouncing from
one thread to another or, alternately, how a thread is bouncing from one processor to another. This
is the default, and usually the most useful coloration.

 ■ Priority— Thread priority is assigned a color on a gradient from deep blue-violet colors (low priority)
to bright, hot yellows and oranges (high priority). Mac OS X changes thread priority dynamically,
depending upon how much CPU time each thread gets, so this color scheme is useful to see the
effects of these dynamic changes over time.

 ■ Reason— Colors each thread run tenure based on the reason that it ended. See “Thread Run
Intervals” (page 74) for a list of the possible reasons that are used to color-code thread tenures.

3. Color Key— Displays the colors that Shark is currently using to display your threads.

4. Draw Context Switch Lines— Check this to enable (default) or disable the thin gray lines that show
context switches, linking the thread tenures before and after the switch that ran on the same CPU core.

5. Detailed Event Icons— Deselecting this instructs Shark turn off the icons that identify the various types
of VM faults and system calls and just replace them with generic “plain page” VM fault and “gray phone”
system call icons.

Interpreting Sessions 81
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

6. Label Events— These checkboxes allow you to enable or disable the display of event icons either entirely,
by type group, or on an individual, type-by-type basis. For example, you can use them to enable interrupt
icons or to remove icons for events, such as VM faults, that you may not be interested in at the present
time.

82 Interpreting Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Figure 3-20 Timeline View Advanced Settings Drawer

Interpreting Sessions 83
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Sign Posts

Even with all of the system-level instrumentation already included in Mac OS X, you may sometimes find that
it is helpful or even necessary to further instrument your code. Whether to orient yourself within a long trace,
or to time certain operations, Sign Posts can be inserted in your code to accomplish these and other tasks.

Shark supports two types of Sign Posts:

 ■ Point events (no duration)

 ■ Interval events (with beginning and ending points)

Point events can be used to orient yourself within a larger trace. For example, if you are developing an
application that operates on video frames, you can insert a sign post marker whenever the processing of a
new frame has begun. Interval events can be used to time operations, such as the length a particular lock is
held, or how long it takes to decode a frame of video.

In order to use Sign Posts, you must first make Shark aware of your Sign Posts’ definitions. Do so by creating
a Sign Post File. In your home directory, Shark creates a folder in which you can place Sign Post Files:
~/Library/Application Support/Shark/KDebugCodes. A Sign Post File is any file that contains specially
formatted lines which associate a code value with a Sign Post name. This name can be anything you like. To
create a Sign Post File, simply create a new text file in the above directory and edit it, adding one Sign Post
definition per line. Each line should only contain a hexadecimal value followed by an event name, as illustrated
in the following example:

Listing 3-1 ~/Library/Application Support/Shark/KDebugCodes/myFirstSignPosts

0x31 LoopTimer
0x32 LockHeld

Sign Post values can take any value from 0x0 to 0x3FFF, inclusive.

Note on changes to Sign Post Files: If you created your Sign Post File while Shark was running, you might
need to relaunch Shark for your new Sign Posts to appear in a System Trace. If you’ve already taken a System
Trace that generated Sign Posts, but no Sign Posts are displayed in the Viewers, then save your session and
relaunch Shark with your Sign Post Definition file(s) in place.

Once you’ve added your Sign Post File(s) to the KDebugCodes directory, you can add Sign Posts to your
code. There are two ways to accomplish this, depending on where your code runs:

 ■ User Applications using CHUD Framework: User Applications that link with the CHUD.framework, and
can simply call chudRecordSignPost(), which has the following API:

int chudRecordSignPost(unsigned code, chud_signpost_t type,
 unsigned arg1, unsigned arg2, unsigned arg3, unsigned arg4);

 ■ User Applications not using CHUD Framework: User Applications for which you prefer not to link with
the CHUD.framework can still create signposts using explicit system calls. You will need to include
<sys/syscall.h> and <sys/kdebug.h>, and then use the following call (with a “type” suffix of NONE
for a point signpost, START for begin interval, and END for end interval):

syscall(SYS_kdebug_trace, APPSDBG_CODE(DBG_MACH_CHUD, <your code number>) |
 DBG_FUNC_<<type>>, arg1, arg2, arg3, arg4);

84 Sign Posts
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

 ■ Kernel Extensions: Kernel Extensions must call kernel_debug() directly, using the APPS_DEBUG()
macro as thedebugid argument. Using this function and macro requires you to include<sys/kdebug.h>,
and then make your call like this (the “type” suffixes are the same as in the syscall case):

KERNEL_DEBUG(APPSDBG_CODE(DBG_MACH_CHUD, <your code number>) |
 DBG_FUNC_<<type>>, arg1, arg2, arg3, arg4, 0);

In both cases, the caller can record up to 4 values of user-defined data with each Sign Post that will be
recorded and displayed with the session.

The Sign Post type must be one of the following:

 ■ chudPointSignPost for a point event with no duration.

 ■ chudBeginIntervalSignPost for the start point of an interval Sign Post.

 ■ chudEndIntervalSignPost for the end point of an interval Sign Post.

When using interval Sign Posts, the start and end points will be coalesced into one Sign Post with a duration
equal to the elapsed time between the two events. You must ensure that the same code value is given for
both the start and end points of the interval Sign Post. It is possible to “nest” sign posts - just be sure you
match the code value for each start and end point.

The example uses the Sign Post defined in the above Sign Post File to create an interval Sign Post that times
a loop in a user-space application:

Listing 3-2 signPostExample.c

#include <CHUD/CHUD.h>
#include <stdint.h>

/* This corresponds to the sign post defined above, LoopTimer */
#define LOOP_TIMER 0x31
#define ITERATIONS 1000

uint32_t ii;

/* The last 4 arguments are user-defined, ancillary data */
chudRecordSignPost(LOOP_TIMER, chudBeginIntervalSignPost, ITERATIONS, 0, 0, 0);
for(ii = 0; ii < ITERATIONS; ii++) {
 do_some_stuff();
 do_more_stuff();
}

/* notice that the code value used here matches that used above */
chudRecordSignPost(LOOP_TIMER, chudEndIntervalSignPost, 0, 0, 0, 0);

Note: To compile the above example, you’ll need to instruct gcc to use the CHUD.framework:

gcc -framework CHUD -F/System/Library/PrivateFrameworks signPostExample.c

To accomplish the same task in a kernel extension, use kernel_debug() as follows:

Sign Posts 85
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Listing 3-3 testKernelSignPost.c

#include <sys/kdebug.h>
#define LOOP_TIMER 0x31
#define ITERATIONS 1000

uint32_t ii;

/*
 * Use the kernel_debug() method when in the kernel (arg5 is unused),
 * DBG_FUNC_START corresponds to chudBeginIntervalSignPost.
 */
kernel_debug(APPS_DEBUG(DBG_MACH_CHUD, LOOP_TIMER) | DBG_FUNC_START,
 ITERATIONS, 0, 0, 0, 0);
for(ii = 0; ii < ITERATIONS; ii++) {
 do_some_stuff();
 do_more_stuff();
}

/* remember to use the same debugid value, with DBG_FUNC_END */
kernel_debug(APPS_DEBUG(DBG_MACH_CHUD, LOOP_TIMER) | DBG_FUNC_END,
 0, 0, 0, 0, 0);

You should note that when using Sign Posts in the kernel, it is not necessary to add CHUD to the list of linked
frameworks. Adding the above code to your drivers will cause Sign Posts to be created in the System Trace
session without it. Similar code using the syscall(SYS_kdebug_trace,... invocation instead of
kernel_debug does exactly the same thing, but works from user code, instead.

Tips and Tricks

This section will list common things to look for in a System Trace, what they may mean, and how to improve
your application’s code using the information presented. The tips and tricks listed herein are organized
according to the view most commonly used to infer the associated behavior.

 ■ Summary View

 ❏ Short average run intervals for worker threads:

This can indicate that the amount of work given to each worker thread is too small to amortize the
cost of creating and synchronizing your threads. Try giving each thread more work to do, or
dynamically tune the amount of work given to each thread based on the number and speed of
processors present in the system (these values can be introspected at runtime using the sysctl()
or sysctlbyname() APIs).

It can also indicate that your threads frequently block while waiting for locks. In this case, it is possible
that the short intervals are inherent to your program’s locking needs. However, you may want to
see if you can reduce the inter-thread contention for locks in your code so that the locks are not
contested nearly as much.

 ❏ Inordinate count of the same system call:

86 Tips and Tricks
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Sometimes, things like select() are called too often. For system calls such as this, try increasing
the timeout value. You might also want to rethink your algorithm to reduce the number of system
calls made, if possible. Because System Trace records the user callstack associated with each system
call by default, it’s relatively easy to find the exact lines of code that cause the frequent system call(s)
in question.

 ❏ Large amount of time spent in Zero Fill Faults:

This can indicate that your application is frequently allocating and deallocating large chunks of
temporary memory. If you correlate the time spent in Zero Fill Faults to allocation and deallocation
of temporary memory, then try eliminating these allocation/deallocation pairs and just reuse the
chunks of memory whenever possible. This optimization is especially useful with very large chunks
of memory, since a large amount of time can be wasted on zero-fill faults after every reallocation.

 ■ Trace View

 ❏ System calls repeatedly failing:

As above, when system calls repeatedly return failure codes, inspect your algorithm and ensure that
you still need to be calling them. The overhead of a system call is considerable, and any chance to
avoid making a system call, such as checking for known failure conditions prior to making the call,
can improve the performance of your code considerably.

 ❏ System calls repeated too frequently (redundant system calls):

This can be indicated either by the same system call being called multiple times in a row as displayed
in the Trace View, or by a large count value when Weight By is set to Count in the Summary View.
Inspect your algorithm to ensure the repeated system call needs to be called as often as reported
— there’s a good chance you could be doing redundant work.

 ❏ Sign Posts were generated during session, but are not displayed:

If you’ve already taken a System Trace session in which your application or driver generated Sign
Posts, but no Sign Posts are displayed in the Trace view, it is possible that the correct Sign Post
definition file(s) were not in place when you launched Shark. First, save your session — if Sign Posts
were generated, they will be saved in the session regardless of whether or not they are displayed.
Ensure the correct Sign Post Files are in place in ~/Library/Application
Support/Shark/KDebugCodes/ and relaunch Shark. Opening your session should now display
the Sign Posts.

 ■ Timeline View

 ❏ Multi-threaded application only has only one thread running at a time:

First of all, ensure you’ve performed the System Trace on a multiprocessor machine. You can do this
by pressing Command+I to bring up the session inspector, which will list the pertinent hardware
information from the machine on which the session was created. Usually, this is not an issue.

Second, ensure your selected scope is not limited to a single CPU.

Once you’ve verified the session was taken on a multi-processor machine and is displaying data for
all processors, look in the timeline for Lock icons (see “System Calls” (page 75)). Their presence
indicates pthread mutex operations that have resulted in a trap to the kernel, usually as a result of
lock contention. This may indicate a serialization point in your algorithm.

Tips and Tricks 87
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Locking Note: Currently, only pthreadmutex operations are given a distinct icon. However, you can
still view semaphore system calls in the Trace and Timeline views under their Mach system calls. In
either case, only contention that results in a trap to the kernel is indicated; user space contention
will not show up in a System Trace.

Correlate the locking operations to your application’s code using the inspector (single-click the icon).
If the serialization point is not necessary, remove it. Otherwise, try to reduce the amount of time
spent holding the lock. You might also instrument your code with “Sign Posts” (page 84) in order
to characterize the amount of time spent holding the lock.

 ❏ Worker thread run intervals are shorter than expected:

Remember, the default scheduling quantum on Mac OS X is 10ms. If the thread run intervals are
near 10ms, there may not be any benefit to continuing this investigation.

If the thread run intervals are much shorter than 10ms, single-click the short thread run intervals,
making sure not to click any event icons. The resulting inspector will list the reason why the thread
in question was switched out. If it blocked, the inspector will list the blocking event and its index.
Use the trace view to correlate this event (usually a system call) to your application’s code.

An alternate approach is to look for event icons which have an underbar that extends past the end
of the thread run intervals. This generally indicates that the event in question — such as an I/O
system call or mutex lock — caused the thread to block. Clicking the event icon will display the
associated user callstack (if any), allowing you to correlate it directly to your application’s code.

If you find your threads are frequently blocking on system calls such as stat(2), open(2), lseek(2),
and the like, you may be able to use smarter caching for file system actions. If you see multiple
threads context switching back and forth, identify their purpose. If they are CPU-bound, this is not
necessarily a problem. However, if these threads are communicating with each other, it may be
prudent to redesign your inter-thread communication protocol to reduce the amount of inter-thread
communication.

Another possibility is that you’ve simply not given your worker threads enough work to do. Verify
this theory using the tip from the summary view suggestions above.

 ❏ One processor doesn’t show any thread run intervals until much later than another:

If this happens, chances are you are using the Windowed Time Facility. This is due to a fundamental
difference in how the data is recorded when using this mode. When using WTF Mode, the
user-specified number of events are right-aligned, as described in “Windowed Time Facility
(WTF)” (page 118). Because of this right-alignment, you’ll notice that all the CPUs tend to end around
the same point in time in the timeline, but may start at vastly different times.

This difference in start time is expected, and most likely means that any CPU which starts later in
the timeline was generating system events at a higher rate (on average) than CPUs that start earlier.

 ❏ My application is supposed to be creating and destroying more threads than are shown:

On Mac OS X, thread identifiers (thread IDs) are not always static, unique numbers for the duration
of a profiling session. In fact, thread IDs are merely addresses in a zone of memory used by the
kernel. When your application creates and destroys threads in rapid succession, the kernel must also
allocate and free threads from this zone of memory. Not only is this a huge amount of overhead,
but it makes it possible to create a new thread that will have the exact same thread ID as a thread
which you just destroyed.

There are a couple of ways to avoid this confusion. The first, simple option is to “park” your threads
when profiling. Simply don’t let your threads exit, and your thread IDs are guaranteed to be unique.
A second, arguably better option is to utilize a work queue model for your threads. Create just

88 Tips and Tricks
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

enough worker threads to fully populate the number of processors in your system, and two queues:
one to hold IDs of free threads and another to hold task records describing new “work” to be
completed. When a worker thread completes a task, do not destroy it. Either assign it a new task
from the task queue, or place it on the free thread queue until another task is available. This not
only reduces the overhead of allocating and freeing memory in the kernel, but also ensures that
your thread IDs will be unique while profiling.

 ❏ I see an inordinate amount of interrupt icons:

If you see a large number of interrupt icons during the run intervals of your threads, you may be
communicating with the underlying hardware inefficiently. Sometimes, it is possible to assemble
your hardware requests into larger batch requests for better performance. Inspect your algorithm
and find any places to group hardware requests.

 ❏ I need to return to a particular point X on the timeline:

If you might be returning to a location later, take a moment to note the index number and type of
a nearby event, by clicking on that event and reading the event inspector. To return, or to send
someone else there, look up that event in the Trace View and double-click on it. This will bring you
directly back to the interesting spot.

Tips and Tricks 89
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

90 Tips and Tricks
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

System Tracing

Not every performance problem stems from computation in a program or a program’s interaction with the
operating system. For these other types of problems, Shark provides a number of profiling and tracing
configurations that focus on individual types of performance problems. Any of them may be chosen using
the configuration list in the main Shark window before pressing “Start.”

Time Profile (All Thread States)

When doing certain types of operations, a program can temporarily stop running while it waits on some
other event to finish. This is commonly referred to as blocking. Blocking can be the source of many performance
problems. Portions of programs, such as startup routines, making heavy use of library calls can accidentally
waste a significant amount of time blocked at various points within those calls. In heavily multithreaded
programs, time spent blocking at locks and barriers is another serious source of performance loss.

Since a program is not running while it is blocked, Time Profile will not take many samples in routines that
spend large amounts of time being blocked. To provide some insight into blocking, Shark offers the Time
Profile (All Thread States) configuration. This configuration is similar to Time Profile, but with one key difference:
it takes samples of all threads, whether they are blocked or running. With this information, you can get a
good idea about how often your threads are blocked, and where in your code the blocking calls are being
made.

Like TimeProfile, TimeProfile (All Thread States) can be used to look at blocking behavior of a single application
or the whole system by selecting the appropriate option in the target list in Shark’s main window. While the
default settings for this configuration are often sufficient, you can also select many useful options in the
mini-configuration editor (see “Mini Configuration Editors” (page 18)), as shown in Figure 4-1. Here is a list
of options:

1. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.

2. Sample Interval— Determine the trigger for taking a sample. The interval is a time period (10 ms default).

3. Time Limit— The maximum amount of time to record samples. This is ignored if Sample Limit is enabled
and reached before the time limit expires.

4. Sample Limit — The maximum number of samples to record. Specifying a maximum of N samples will
result in at most N samples being taken, even on a multi-processor system, so this should be scaled up
as larger systems are sampled. When the sample limit is reached, data collection automatically stops.
This is ignored if the Time Limit is enabled and expires first.

5. Prefer User Callstacks— When enabled, Shark will ignore and discard any samples from threads running
exclusively in the kernel. This can eliminate spurious samples from places such as idle threads and
interrupt handlers, if your program is not affected by these.

Time Profile (All Thread States) 91
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

6. Trim Supervisor Callstacks— When enabled, Shark will automatically trim the recorded callstacks for
threads calling into the kernel down to the kernel entry points, and discarding the parts of the stack
from within the kernel itself. These shortened stacks are usually sufficient, since most performance
problems in your programs can be debugged without knowing about how the kernel is running internally.
You just need to know how and when your code is blocking, and not how Mac OS X is actually processing
the blocking operation itself.

Figure 4-1 Time Profile (All Thread States) mini configuration editor

After you record a Time Profile (All Thread States) session, you will be presented with a profile browser window
that looks almost exactly like one you might see after recording a conventional Time Profile. However, there
are some subtle differences, as you can see in the profile of “Safari” while idle in Figure 4-2 and Figure 4-3.

All threads have exactly the same number of samples, since Shark recorded samples for them whether they
were running or not. With 9 threads, as we have in this example, all threads have exactly 1/9 of the samples,
or 11.1%. This “even-division-of-samples” rule will always hold true for Time Profile (All Thread States) sessions,
unless you happen to sample an application that is actively creating and destroying threads while it is being
measured, because Time Profile (All Thread States) always records samples for all threads at each sample point,
whether they are blocking or not. This trend can be less obvious if your threads are actively calling many
different routines over the course of the measurement, but it generally holds. This kind of behavior is much
less common in conventional Time Profiles, because almost all threads block occasionally during the time
that Shark samples them.

With “Heavy” view, as shown in Figure 4-2, you will mostly see Mac OS X’s primitive blocking routines like
pthread_mutex_lock, pthread_cond_wait, mach_msg_trap, semaphore_timedwait_signal_trap,
select, and similar functions popping up to the top of the browser window. This view is mostly useful for
showing you how much time your threads are blocked and how often they are running. As a result, it is a
good “sanity check” technique to make sure that threads that are supposed to be CPU-bound are not
accidentally wasting time blocked, and that threads that are supposed to be blocked really are idle.

92 Time Profile (All Thread States)
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-2 Time Profile (All Thread States) session, heavy view

Unfortunately, this does not tell you the most important information: why your code is calling these routines
and hence blocking. It is possible to get this information by opening up disclosure triangles in “Heavy” view,
but generally “Tree” view, as shown in Figure 4-3, is the best way to track down this information. By flicking
a few disclosure triangles open, this view lets you logically follow your code paths until you reach a point
where they call blocking library routines. At that point, and possibly with the help of a code browser, you
should be able to get a good idea of which parts of your code are blocking, and how frequently this blocking
is occurring.

Time Profile (All Thread States) 93
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-3 Time Profile (All Thread States) session, tree view

Time Profile (All Thread States) can often allow you to track down and solve multithreaded blocking problems
in your applications by itself. However, it also works well in conjunction with System Trace. After you identify
which code that is blocking too often with Time Profile (All Thread States), if you cannot determine why the
code is blocking, then the precise recording of blocking timing provided by System Trace can often help by
letting you see the precise timing of blocks as multiple threads compete for resources. Conversely, using
System Trace without Time Profile (All Thread States) can often be difficult, because it is fairly easy to get
overwhelmed with data while examining a System Trace. Performing a Time Profile (All Thread States) first can
be very helpful, since it can let you know which bits of blocking code are the most important before you look
for them in a System Trace.

Note regarding launched target processes: When launching a process (as described in “Process
Launch” (page 115)) with TimeProfile (All Thread States), you may notice samples in _dyld_start. Since Shark
starts sampling the process before the launched process begins executing, some samples will fall in this
method. When profiling launch time in this way, you will want to make sure that you skip past all these
samples before paying attention to the results or use data mining to remove all callstacks with this symbol.

Malloc Trace

In today’s large and complex software applications, it is often informative to understand the scope and
pattern of memory allocations and deallocations. If you understand how your software objects are being
created and destroyed, you can often improve the overall performance of your application significantly, since

94 Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

memory allocation is a very expensive operation in Mac OS X, especially for large blocks of memory. If your
program suffers from memory leaks, Malloc Trace is also a good way to identify locations in your program
that may be the culprits.

To collect an exact trace of memory allocation and freeing function calls, selectMalloc Trace in the configuration
list. Unlike with most configurations in Shark, you must choose a particular process to examine with this
configuration. In its mini configuration editor (see “Mini Configuration Editors” (page 18)), shown in Figure
4-4, Malloc Trace offers the following tuning options to help refine the memory events that are collected:

1. Record Only Active Blocks— Collect only memory allocations that were not released during the collection
period (the default). It is most useful for catching memory leaks. If turned off, any allocation or deallocation
that takes place is recorded, an option that is more useful when you are just attempting to reduce the
overall number of allocations that occur.

2. Time Limit— Specify a maximum length of time to collect a profile. After this amount of time has elapsed
since the start of collection, Shark will automatically stop collecting the profile.

3. Start Delay— Specify a length of time that Shark should wait after being told to start collecting a profile
before the collection begins. If the program action to be profiled requires a sequence of actions to start,
this option can be used to delay the start until after the setup actions have been completed.

Figure 4-4 Malloc Trace mini configuration editor

Using a Malloc Trace

Once you have recorded a Malloc Trace, there are several ways that you can analyze the resulting trace, which
comes up in a window that superficially resembles a standard time profile. Here are a few of the most common
techniques:

 ■ Profile Browser: Get an Overview— The profile browser from aMalloc Trace, as shown in “Using a Malloc
Trace,” looks a lot like what you might obtain with a normal Time Profile, but it contains an extra column
listing the amount of memory allocated. In addition, the “Self” and “Total” columns are based on the
number of allocations made using that call instead of execution time. These figures are highlighted in
the figure. By sorting on the “Total” or “Alloc Size” columns in a “Heavy” view, you can see which routines
in your program either make the largest number of allocations or allocate the most memory at a glance.
It is often a good idea to look over the routines near the top of this list and make sure that both the
routines allocating memory are the ones you think should be allocating memory, and that the amount
of memory allocated by each routine makes sense.

Malloc Trace 95
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-5 Malloc Trace session, profile browser

 ■ Code Browsers: Locate Allocating Code— If you see a potentially troublesome routine, double-clicking
it will bring it up in a code browser window. Unlike the code browsers associated with Time Profile
sessions, lines in aMalloc Trace session are colored based on how many memory allocations they perform.
With this feedback, you can see exactly which lines of code were the cause of memory allocation. Often
these lines will be fairly obvious, but with object-oriented languages like Objective-C and C++ it is
surprisingly easy to accidently allocate and free memory implicitly, as a side effect of object method
calls. Using a code browser from a Malloc Trace session can allow you to identify which method calls are
performing memory allocation and focus your optimization efforts on these. In addition, knowing what
code is performing memory allocation implicitly can help you track down memory leaks, as these
allocations are easy to forget about when one is cleaning up and freeing memory allocations.

 ■ Chart View: Look for Patterns— The chronological view of allocations presented by the extra memory
allocation graph added below the usual callstack plot in Chart view can easily reveal unexpected repetitive
allocation and deallocation activity in your software, like the pattern shown in the highlighted part of
Figure 4-5. When you see patterns like this, it can be helpful to try and adjust your code to move memory
allocation and deallocation operations outside of loops, so that you can reuse the same memory buffers
repeatedly without reallocating them each time through the loop. Similarly, if you see repetitive allocation
without matching deallocations, then you are most likely seeing a major memory leak in progress!

96 Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-6 Malloc Trace session, chart view

Using techniques like these, you can identify and isolate memory allocation locations and patterns within
your code. This is the first step to actually eliminating these memory problems from your code, and hopefully
improving performance in the process.

Advanced Display Options

Each Malloc Trace records a few additional pieces of information at each allocation event. These are not
displayed by default, but can be useful in some situations. Display of these values can be enabled by using
the “Performance Counter Data Mining” pane in the Advanced Settings Drawer of the session window (see
“Advanced Settings Drawer” (page 22)), as shown below in Figure 4-7, and then clicking on the check boxes
in the “eye” column of each row to show that data element.

Malloc Trace 97
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-7 Enabling Malloc Trace Advanced Options

Five different types of information can be enabled or disabled in this manner:

 ■ Alloc Size— The size in bytes of each memory allocation. This is enabled by default, as it is almost always
useful.

 ■ Heap Delta— The change in size of the heap since the start of the trace. This is sometimes useful for
spotting memory leaks, which can be seen when the heap grows but never shrinks. Note that it is also
possible to get this data by using the “summation” option (as described in “Perf Count Data Mining” (page
145)) with Alloc Size.

 ■ Lifetime— The number of allocation/deallocation events between matched allocation and deallocation
pairs. This option is only useful if you disabled the “Record Only Active Blocks” option before taking your
Malloc Trace, because otherwise that option automatically screens out all matched pairs from the trace
and leaves no interesting lifetimes remaining in the trace.

 ■ Address— The address of the memory block allocated or freed. For performance analysis purposes, this
is only rarely helpful, but it can sometimes be useful during debugging of memory allocation behavior.

 ■ Is allocation?— This binary value records a 1 for allocations and 0 for frees.

When you enable display of a particular type of data, it will appear in several places. First, columns displaying
it will appear in the Profile Browser (as shown previously in Figure 4-5 (page 96)), although this type of
display is really only meaningful for Alloc Size. Raw values are displayed in the list of samples at the bottom
of the Chart View (as shown in Figure 4-8), and all types of displays are useful here. Finally, charts appear in
the main part of the chart view displaying all of the sample values graphically for your inspection. These are
useful with Alloc Size (enabled by default), Heap Delta, and Lifetime.

98 Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-8 Additional Malloc Trace Charts

The rest of the “Performance Counter Data Mining” pane, which is described more fully in the context of
performance counter analysis in the section “Perf Count Data Mining” (page 145), also has other features that
can be useful. For example, if a Malloc Trace contains allocations of wildly varying size, use of these options
may be necessary in order to make the allocation size chart readable, as no means for vertical scaling or
scrolling are provided by Shark. A particularly quick way of focusing the view on allocations of particular sizes
is to use the “remove !=,” “remove <,” or “remove >” screening options to chop off most allocations that are
vastly different in size from the ones that you are trying to examine.

All other features accessible through the Advanced Settings Drawer work just like they do for Time Profiling
(see “Profile Display Preferences” (page 37) for the “Profile Analysis” pane and “Data Mining” (page 139) for
the “Callstack Data Mining” pane).

Static Analysis

Most of Shark’s profiling methods limit their code analysis to those functions that appear dynamically in
functions that are executed during the profiling. Dead or otherwise unused code is not analyzed or presented
for optimization precisely because it has very little effect on the measured performance. However, it can
sometimes be useful to statically analyze and examine infrequently used code paths in a piece of code to
look for problems that might crop up if those code paths do become important at some point, such as with
a different input data set.

Static Analysis 99
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Shark is capable of statically analyzing either a running process or a binary file with the Static Analysis
configuration, but not your entire system. To analyze a running application, select Process in the target list
and then select the process you wish to analyze in the process list. To analyze an executable file, select File
in the target list and then select the file in file selection window.

Static Analysis’ mini config editor (see “Mini Configuration Editors” (page 18)), shown in Figure 4-9, offers a
number of tuning options to refine what types of problems to look for and where in the program to look for
them. The available options are:

1. Target Selection— These options allow you to narrow down the area of memory examined by Shark.

 ■ Application— Looks for potential performance issues in the main text segment of the target process

 ■ Frameworks— Looks for potential performance issues in the frameworks that are dynamically loaded
by the target process.

 ■ Dyld Stubs— Looks for any potential performance or behavior anomalies in the glue code inserted
into the binary by the link phase of application building.

2. Analysis Options— These allow you to enable or disable analysis.

 ■ Browse Functions— Gives each function in the text image of a process a reference count of one. This
allows you to browse all of the functions of a given process with Shark’s code browser. No analysis
(or problem weighting) is performed.

 ■ Look For Problems — search all functions in the text image of a process for problems of at least the
level of severity specified by the Problem Severity slider. Any address with a problem instruction or
code is given a reference count equivalent to its severity.

3. Problem Severity Slider— This slider acts as a filter, adjusting the minimum “importance” of problems
to report using a predefined problem weighting built into Shark. The further to the right the slider, the
less output is generated, as more and more potential problems are ignored because their “importance”
is not high enough.

4. Processor Settings— Shark needs to know which model of processor is your target before it can examine
code and find potential problems. Separate menus are provided for PowerPC and Intel processors because
it can analyze for one model of each processor family simultaneously.

 ■ PowerPC Model— Selects the PowerPC model to use when searching for and assigning problem
severities .

 ■ Intel Model— Selects the Intel model to use when searching for and assigning problem severities .

100 Static Analysis
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-9 Static Analysis mini configuration editor

Once you have created a Static Analysis session, you can examine it to see Shark’s optimization suggestions
for your program. Both the profile browser and code browser views offer optimization hints similar to those
you can see after a normal Time Profile run, and they can be used to help you analyze your application in
much the same manner.

Using Shark with Java Programs

Shark’s profiling and tracing techniques will work just fine with programs written in virtually any compiled
language. Your compiler processes your source code in these languages and creates binary files where the
various instructions in the binary are PowerPC or x86 instructions that correspond closely with your original
source code operations. Shark records program counters and callstacks from the native machine execution
as it profiles, and can use this information to reference back to your source code. Because Mac OS X imposes
requirements on how its binaries are formatted, compilers for any language use the same techniques to
record which machine instructions correspond with which source files, making it possible for Shark to show
you symbol information and source code in languages as disparate as C and Fortran.

This system breaks down when your source code is written in a compiled language that runs within a runtime
virtual machine, such as Java, or interpreted scripting languages. In these cases, Shark’s samples will only tell
you what code is executing within the virtual machine or interpreter, which will not help you optimize your
programs. For Shark to return useful information, it must move “up” a level in the software hierarchy (as
shown in Figure 4-10) and record the location within the virtual machine code or script that is executing,
instead. While support for recording this information is unavailable with most script interpreters, recent
versions of Sun’s Java virtual machine included with Mac OS X do provide an interface that Shark can use.
As a result, Shark includes some special, Java-only configurations that use this interface to allow you to
usefully profile your Java applications.

Using Shark with Java Programs 101
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-10 How Shark-for-Java differs from regular Shark configurations

Java Tracing Techniques

Shark supports three different techniques for examining your Java applications:

 ■ Java Time Profile: This is the Java version of Time Profile. The targeted Java program is periodically
interrupted and Shark records the method that was running and the callstack of method calls leading
up to the current method. You may examine the results using browsers that are almost identical to the
normal Time Profile ones described in “Profile Browser” (page 32), except that they only list Java methods
and libraries. Note that, because a fair amount of code must be executed to communicate with the JVM,
overhead requirements for a Java Time Profile are somewhat higher than for a conventional time profile.
Using the mini-config editor (see “Mini Configuration Editors” (page 18)), you can adjust the sampling
rate at the millisecond level.

 ■ Java Call Trace: This is the Java analog to the separate Saturn program. Java Call Trace records each call
into and exit from every Java method during the execution of your program. As a result, it records an
exact trace of all the method calls, much like a normal System Trace records an exact trace of all system
calls. The amount of time spent in each method is also recorded. While this provides very exact and
detailed information about the execution of your program, with no potential for sampling error, it also
incurs a significant amount of system overhead due to the frequent interruptions of your code to pass
information back to Shark. As a result, Shark’s overhead may distort the timing of your program to a
certain extent, and this factor should be considered if you have code that is sensitive to external timing
adjustments. Also, due to the large amount of data that can be collected very quickly, you probably want
to limit the use of this to relatively short timespans. When complete, Shark presents the information that
it has collected in a browser virtually identical to one produced by a Java Time Profile.

 ■ Java Alloc Trace: This records memory allocations and the sizes of the objects allocated, and is analogous
to a regular Malloc Trace (“Malloc Trace” (page 94)). Not surprisingly, the resulting session window
produced by Shark is very similar to one produced by Malloc Trace. As with Malloc Trace, the display is
just that of a Time Profile — albeit a Java Time Profile, in this case — with an added “allocation size”
column. As with the previous two techniques, the overhead imposed by the Shark while doing a Java
Alloc Trace is large enough that it may affect some programs that are very sensitive to external timing
adjustments. Also, due to the large amount of data that can be collected very quickly, you probably want
to limit the use of this to relatively short timespans.

102 Using Shark with Java Programs
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Linking Shark with the Java Virtual Machine

In order to let Shark connect to your JVM and access its internals, to get the detailed information used by all
of the techniques described earlier, the Java Virtual Machine first needs to load the “Shark for Java” extension.
The method for doing this varies, depending upon which version of the JVM you’re using (use the command
java -version to see which one you are running):

 ■ JVM 1.3 or earlier: Shark will not work with these, as they do not have the necessary external debugging
support.

 ■ JVM 1.4: Add the following flag to your Java VM command line options: –XrunShark.

 ■ JVM 1.5 or later: Add the following flag to your Java VM command line options: -agentlib:Shark.

If you are using Xcode to build your Java application, edit the program’s target. Under the Info.plist Entries,
select Pure Java Specific. In the Additional VM Options field, add -XrunShark or -agentlib:Shark as
appropriate.

When you run a Java program with Shark for Java, the program will output to the shell (or console for a
double-clickable target) a message similar to the following:

2004-06-27 03:33:24 java[4489] Shark for Java is enabled...

As soon as you see this message you can begin sampling with Shark. When you choose one of the Java
tracing configurations in Shark’s main window, the process list will change to only display Java processes
that are running with Shark for Java loaded. Non-Java processes and Java processes that have been started
without Shark support will both be eliminated.

To use source navigation, the program’s source must be on disk in package hierarchy structure. Shark does
not support inspection within jar files. If you have a jar such as
/System/Library/Frameworks/JavaVM.framework/Home/src.jar, you will need to extract it into a
directory hierarchy (jar -xvf src.jar for the example). When adding a path to the Source Search Path
(see “Shark Preferences” (page 23)), add only the path to the root of the source tree.

Event Counting and Profiling Overview

After analyzing an application using a Time Profile, you may find it informative to count system events or
even sample based on system events in order to understand why your application spends time where it does.
The best way to do this is to take advantage of the performance counters built into your Mac’s processors
(usually called PMCs) and Mac OS X itself. Shark provides built-in configurations to help you access this
information in meaningful ways:

 ■ Processor Bandwidth (x86) or Memory Bandwidth (PowerPC): These configurations track off-chip memory
traffic over time. Because of differences in the implementation of the counters, the PowerPC version
measures memory bandwidth only, while the x86 version measures processor bus bandwidth, including
traffic to memory, I/O, and other processors.

 ■ L2 (Data) Cache Miss Profile: This configuration provides an event-driven profile of L2 cache misses. As
each L2 cache miss causes the processor to stall for a significant amount of time while it accesses main
memory, algorithms that arrange accesses to memory in ways that minimize these misses will tend to
run faster than ones that do not.

Event Counting and Profiling Overview 103
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

The rest of this section attempts to describe how you can use these default configurations to get useful
information about your system with Shark, and learn about performance counters in the process. However,
the default configurations only scratch the surface of what Shark’s counter recording mechanisms can do.
Using the mini-configuration editor (see “Mini Configuration Editors” (page 18)) associated with each of
these configurations, you can adjust the same parameters used with a normal Time Profile mini-config editor
(see “Taking a Time Profile” (page 31)) to control things like sampling rate, time limit, and the like. Beyond
this, using the full Configuration Editor, you can set up a variety of other configurations to count or sample
a variety of hardware or software events, such as instruction stalls or page misses. See “Custom
Configurations” (page 171) and “Hardware Counter Configuration” (page 189) for more information.

Timed Counters: The Performance Counter Spreadsheet

This section uses the built-in Processor Bandwidth and Memory Bandwidth configurations as an example of
how to use Shark’s Performance Counter Spreadsheet, its mechanism for analyzing and displaying sessions
that record performance counters in a regular, timed fashion.

After you perform sampling with one of these configurations, you will be presented with a session window
containing a Performance Counter Spreadsheet like the one shown in Figure 4-11. This window contains many
features:

1. Column Control Table— This optional table lists the columns in the Results and PMC Summary tables
to the right, providing longer names and allowing you to hide columns. It may be hidden or exposed
using the window splitter on its right edge or a checkbox in the Advanced Settings drawer (see
“Performance Counter Spreadsheet Advanced Settings” (page 107)). Selecting rows in this list also selects
the corresponding columns in the counter table, graphing them. Use Command-clicks (for discontiguous
selection) and/or Shift-clicks (for contiguous selection) to select multiple rows simultaneously.

a. “Eye” Column— Uncheck the checkboxes in this column to hide columns in the results table(s). This
is very helpful if you have a large number of columns.

b. Term Column— Contains the short names for the columns, which can be used as terms in “shortcut
equations,” as described below.

c. Description Column— Contains the long names for the columns, for your reference. This can be
useful when you have many columns with long names that do not fit into the name cells at the tops
of the columns.

2. Results Table— This table shows the actual results from performance counters and any derived results
calculated from them. You can Control-click (or right click) anywhere on this table to bring up the Counters
menu, described in “The Counters Menu” (page 106).

a. ColumnNames— These provide a brief description of the contents of the column. If you find a name
too terse, then you may want to open up the Column Control Table and see the longer description
there. In addition, clicking on these names selects one or more columns of data to be graphed below
in the Results Chart. Use Command-clicks (for discontiguous selection) and/or Shift-clicks (for
contiguous selection) to select multiple columns simultaneously. By default, the first performance
counter column (“M/C Read/write request beats,” in this example) is automatically selected and
graphed when the window is first opened. Finally, you can resize any columns by
clicking-and-dragging on the lines separating these cells from each other.

104 Event Counting and Profiling Overview
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

b. Index Column— Lists an integer value associated with each sample, counting from 1 on up, for your
reference. This column can be hidden from display using the appropriate checkbox in the Advanced
Settings drawer (see “Performance Counter Spreadsheet Advanced Settings” (page 107)). This column
may not be selected or graphed.

c. Timebase Column(s)— Contains the time between each sample, with one column for each processor
in the system. Normally, these should be essentially constant, but you may see occasional glitches
where a sample took slightly longer than normal to record due to interrupt contention on a processor.
The first and/or last samples may also show some timing variation. In addition, you will see significant
variation here if you choose to view results from an event-driven counter run (see “Event-Driven
Counters: Correlating Events with Your Code” (page 111)) using the counter “spreadsheet.” These
columns may be shown or hidden using checkboxes in the Column Control Table to the left.

d. Counter Result Column(s)— These columns show the “raw” results recorded from performance
counters, one column per active counter. These columns may be shown or hidden using checkboxes
in the Column Control Table to the left.

e. Shortcut Result Column(s)— These columns show the performance counter results after they have
been processed by the math in any “shortcut” equations. These columns may be shown or hidden
using checkboxes in the ColumnControl Table to the left, and the “shortcut” equations may be viewed
or edited using the controls in the Advanced Settings drawer (see “Performance Counter Spreadsheet
Advanced Settings” (page 107) and “Adding Shortcut Equations” (page 111)).

3. PMC Summary Table— This window pane extends the Results Table with additional rows that list the
total, average (arithmetic mean), geometric mean, minimum, and maximum values for each column.
This pane can be hidden from display using the appropriate checkbox in the Advanced Settings drawer
(see “Performance Counter Spreadsheet Advanced Settings” (page 107)) or the window splitter at the
top of the pane.

4. Results Chart— This graph charts the values in the selected column(s) in the Results Table. There are
many options for controlling this graph in the Advanced Settings drawer (see “Performance Counter
Spreadsheet Advanced Settings” (page 107)). The chart starts out scaled so that it fits entirely within the
window allocated, but you can also magnify the chart and the scroll to any part of the magnified chart
using the magnifier sliders and scroll bars along both the right side and bottom. In addition, you can
print the contents of this graph using a command in the Counters menu (see “The Counters Menu” (page
106)) and vary the percentage of the window’s space allocated to the chart using the window splitter at
its top edge.

5. Session Summary— This line of text summarizes key facts about the session, including the number of
processors, the number of samples taken, and the total time that elapsed during counter sampling.

In Figure 4-11, the last two columns have been selected and their contents displayed together in the chart.
These last two columns are not actual event counts, but the results of “Shortcut Equations.” These equations
are simple mathematical combinations of the “raw” counts recorded by Shark. Shortcut equations can be
added to the configuration before a profile is taken, or just as easily be added to a session afterwards. In this
session, the “Read MB/s,” and “Write MB/s” columns were generated by performing some simple arithmetic
on the entries in the two “M/C Read/write request beat” columns (reads to left, writes to right). Every counter
sample is multiplied by 16 (bytes per beat), multiplied by 100 (samples per second) and divided by 220 (bytes
per megabyte), which yields MB/s in each new column. For a brief introduction to adding equations to your
sessions, see “Adding Shortcut Equations” (page 111), below. For a complete description of how to write
performance counter equations, including how to add them permanently to your configurations, see “Counter
Spreadsheet Analysis PlugIn Editor” (page 182).

Event Counting and Profiling Overview 105
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-11 Performance Counter Spreadsheet

The Counters Menu

When you switch to the Counters tab in a session made with timed performance counters, a Counters menu
will appear in the menu bar. You can also access this menu by control-clicking (or right-clicking, with a
2-button mouse) in the Results table, as shown in Figure 4-12.

Figure 4-12 Counters Menu

106 Event Counting and Profiling Overview
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

This menu contains several commands that allow you to work with the performance results:

 ■ Number Formatting— This submenu lets you adjust how the (often quite large) numbers are displayed
in the Results Table:

 ❏ Show 1000’s Separator— Add thousands separators (typically commas) to the values. You can also
choose this using the keyboard shortcut Command-/.

 ❏ Use Scientific Notation— Toggles between standard (e.g. 100) and scientific (1.0E2) notation. You
can also choose this using the keyboard shortcut Command-^.

 ❏ Increase Decimal Places— Increases the number of digits of precision used to display floating-point
values by one decimal place. Because performance event counts are integers, this normally only
affects shortcut equation results and timebase columns. You can also choose this using the keyboard
shortcut Command-.

 ❏ DecreaseDecimal Places— Decreases the number of digits of precision used to display floating point
values by one decimal place. Because performance event counts are integers, this normally only
affects shortcut equation results and timebase columns. You can also choose this using the keyboard
shortcut Command-.

 ■ Print Chart…— Allows you to print the currently displayed chart, using a standard Mac Print dialog box.

 ■ Save Text File…— Exports the current Results Table values as a comma-separated value (CSV) format
text file. This resulting text can be imported into an application like Excel for further analysis.

Performance Counter Spreadsheet Advanced Settings

With the session window in the foreground, select WindowShow Advanced Settings (Command-Shift-M), as
we described earlier in “Advanced Settings Drawer” (page 22). The palette of advanced controls will appear
(“Performance Counter Spreadsheet Advanced Settings”).

Event Counting and Profiling Overview 107
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-13 Performance Counter Spreadsheet: Advanced Settings

This drawer contains three main panels, each with many different controls that affect the presentation of
results:

108 Event Counting and Profiling Overview
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

1. Counter Shortcut Equations— This table displays the “Shortcut Equations” used to generate each of
the computed results columns in the Results Table, one equation per row. Both equations that were
included right in the configuration and ones that you add yourself after the session has been recorded
are listed here, and you can freely edit any of them here. The table consists of a few fairly straightforward
parts:

a. Term column— This column lists the “term” name for this equation (usually eq01, eq02, etc.). This
is the shorthand name that you can use to include the results of this equation in a subsequent,
dependent equation. These “term” names, plus the “term” names for the original performance
counter data, are also listed in the Column Control Table described previously in “Timed Counters:
The Performance Counter Spreadsheet” (page 104).

b. Name column— Here is where you may edit the label that will appear as the column header for this
shortcut equation’s results.

c. Equation column— You can define or edit the equation used to calculate the entries in the shortcut
column here, using the techniques described below in “Adding Shortcut Equations” (page 111).

d. Add button— Creates a new “shortcut equation” and a Results Table column for it..

e. Delete button— Removes the selected shortcut(s) and their associated columns from the Results
Table.

2. Counter Table Settings— This section of the drawer lets you adjust the appearance of the tables within
the counter spreadsheet window.

a. Show Column Control Table— Toggles display of the Column Control Table to the left side of the
Results Table.

b. Show Index Column— Toggles view of the index column in the Results Table.

c. Show PMC Summary Table— Toggles display of the PMC Summary Table below the Results Table.

d. TimebaseUnits popup— Allows you to change the units used in the time base column(s) to something
more appropriate. Selections are listed in order of increasing size: CPU cycles, bus cycles,
microseconds, milliseconds (default), and seconds.

3. Counter Chart Settings— This section of the drawer lets you adjust the appearance of the chart within
the counter spreadsheet window.

a. Multiple Data Set Chart Mode— These buttons select how you would like the chart to display when
multiple columns are selected:

 ■ One combined chart for all selected result columns

 ■ Separate charts for each selected column

b. Chart Type— Selects the type of chart that will be displayed:

 ■ Lines— Display results as line charts. There are several sub-options for displaying these charts,
which can be selected using the two menus below.

 ■ Bars— Display results using a vertical bar chart. Bars from multiple selected columns will be
superimposed over one another.

Event Counting and Profiling Overview 109
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

 ■ Stacks of Bars— Display results as stacked vertical bar charts, with the values from all selected
columns added together at each sample point. This chart is identical to the standard bar chart
if only one column is selected

c. Line Chart Subtype— This menu fine-tunes line charts by controlling the display of symbols at data
points on the line charts:

 ■ Lines and Markers— Display both symbols at each data point and lines to join them up.

 ■ Lines— (default) Only displays lines joining the data points together.

 ■ Markers— Only displays symbols at each data point.

 ■ Small Markers— Same as previous, but the symbols are significantly smaller.

d. Line Chart Data Compression— This menu lets you apply filters to smooth out the data plotted using
a line chart. These filtering options are not allowed with bar and stacked bar charts.

 ■ Average— Applies a moving average (FIR) filter to the data in order to smooth it out.

 ■ IIR Filter— Applies an IIR averaging filter to the data to smooth it out.

 ■ None— (default) No smoothing applied, so you see only actual values.

e. Enable Data Point Tool Tips— When enabled, hovering the mouse pointer over a data point in a data
set shows the x- and y-values for that point in a pop-up window.

f. X-Axis Units— The horizontal scale can be plotted in two ways:

 ■ Elapsed Time— The elapsed time since the beginning of the session, in the units specified with
the Timebase Units popup above.

 ■ Sample count— The sample index, or values from the index column.

g. Y-Axis Scale— Data can be plotted vertically on a linear or logarithmic (base 10) scale.

h. Show Grid Lines— This lets you control the display of grid lines within the chart. You can toggle all
grid lines together or independently toggle major grid lines, minor grid lines, x-axis (all vertical) grid
lines, and y-axis (all horizontal) grid lines.

i. Show Legend— Toggles whether or not to show a legend, displaying color-to-data column
associations, along with the chart. When enabled, you can select the position of the legend for the
chart — above, to the right, or below — using the popup menu just below.

j. Show/Hide Separate Chart View...— This opens or closes a separate window for the chart view, freeing
it from its normal position below the Results Table. While it does not enable any new functionality,
this option can be useful if you have a widescreen display, and want to position the Results Table
and Results Chart side-by-side instead of top-and-bottom, or if you have multiple monitors attached
to your Macintosh and would like to put the Results Table and Results Chart on different screens.

110 Event Counting and Profiling Overview
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Adding Shortcut Equations

This section gives a brief summary of how to add new “shortcut equation” results columns to your performance
counter spreadsheet. For a full description of all the capabilities of shortcut equations, see “Using the
Editor” (page 183).

1. Open up the Advanced Settings drawer, if you do not already have it open.

2. Click the “Add” button, in the Counter Shortcut Equations palette, and enter a name for your new equation.

3. Double-click on the “Equation” field in the row for your new equation, and enter your equation. You
may use any terms from previous columns (using the short names in the term list from the Column
Control Table) and numeric constants, combined using simple 4-function arithmetic — addition (+),
subtraction (-), multiplication (*), and division (/).

4. Press Enter when you are done editing your equation. A new column will immediately appear in the
Results Table with the results from your computation. You may then examine, graph, or use the numbers
in that column in subsequent equations, just as if they had been there from the start.

Event-Driven Counters: Correlating Events with Your Code

Like Time Profiling, using performance counters in “timed counter” mode only performs timed sampling of
the various counters, giving you a set of samples with a statistical view of how your application works.
However, you may want record more exact information, more like what you can record using System Trace.
This is possible using event sampling, which is used by the default L2 CacheMiss Profile configurations. In this
case, you set up a performance counter to interrupt the processor and record a new sample after it has
counted a predetermined number of events. Because hardware events happen quickly, you will usually want
to have this be a fairly large number, but with some lower-frequency counters it is possible to set the value
as low as 1, allowing you to get an exact event trace.

When complete, a standard profile browser will appear, which looks much like the ones created for Time
Profiling (see “Profile Browser” (page 32)). However, the results must be interpreted quite differently. Because
of the unusual way that sampling is triggered, the sample percentages (or counts) do not represent time
percentages, but instead show event percentages. This distinction is not clearly marked on the columns, so
you must be careful when reading and interpreting the results. With these results presented in this way, you
can get a good idea about which routines and even which lines of code are responsible for causing the largest
number of performance-draining events, such as L2 cache misses, in a manner that is completely analogous
to interpreting a conventional Time Profile.

Note: The built-in L2 cache miss profile configuration is a great way to find lines in your code that access
memory in ways that cause very slow L2 cache misses, events which can significantly slow down processors
like the ones in modern Macs. Optimizing this code to reduce the number of cache misses by adjusting your
algorithms and/or memory access patterns can be a very helpful way to improve performance significantly.

Event sampling can only be triggered by a single PMC at a time, so you can only trigger on a single event
type (such as L2 misses or off-chip data movement) per session. The value of other counters can be recorded
at the same time, but they cannot be used as triggers. While this can be a serious disadvantage, it is balanced
out by the fact that you are able to capture your program’s callstack exactly where the event is occuring,
allowing you to see exactly which lines of code are causing the events, instead of the approximate locations
returned by “counter” mode profiling. In general, if you need to visualize system-wide or process-wide

Event Counting and Profiling Overview 111
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

performance events over time without associating performance events to a specific piece of code, the timed
counter method is appropriate. On the other hand, if you need to associate performance events precisely
with source code that is causing the event to occur, then event sampling is the better choice. These various
pros and cons are summarized below:

Event SamplingTimer Sampling

 ■ Very precise; can relate performance events
to a small window of instructions.

 ■ Measure multiple performance events over
time.

 ■ Produce meaningful system and process
level chart of performance events.

 ■ Works with any processor.

 ■ Results are easy to interpret on
multiprocessors.

Pros

 ■ Trigger on only a single performance event
per session.

 ■ No chart of performance events.

 ■ It is harder to interpret results on
multiprocessors, since events do not occur
simultaneously on all processors.

 ■ Not available on older PowerPC processors
(G3 and G4).

 ■ Normally no correlation with your code.

 ■ With callstack recording enabled (see below),
event-code correlation is very approximate.

Cons

While none of the default configurations use this capability, it is also possible to essentially record callstacks
like a Time Profile simultaneously with timed counter information, giving you timed counter recording with
a way to approximately correlate results with your code, by building your own custom configuration. In this
case, the chart view adds new graphs that allow you to look for correlations between performance monitor
counts and what code was running at the time a sample was taken, merging elements of the Counters viewer
in with the standard Time Profile chart view. An example of using the Chart view with PMCs in counter mode
(raw values graphed over time) is shown in Figure 4-14. With these graphs, you can click on them at any
point to see the callstacks that correspond with that part of the profile. However, be aware that the callstack
locations only record approximately what code was executing at the time the counts were recorded, and
may not be representative if the sampling rate is significantly lower than the rate at which your program
calls functions. This potential defect is the reason why none of the default configurations use this technique,
even though it can sometimes be useful if used judiciously.

112 Event Counting and Profiling Overview
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Figure 4-14 Chart View with additional timed counter graphs

Event Counting and Profiling Overview 113
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

114 Event Counting and Profiling Overview
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Other Profiling and Tracing Techniques

Although the Start button makes starting and stopping Shark quite simple, sometimes it can be impractical,
or even impossible to use. For example, how can you press the start button on a headless server? Profiling
application launch can be hard to accomplish by hand as well. And what if you are only interested in profiling
one particular “hot” loop, buried somewhere deep within your application?

This section discusses various advanced ways to control what Shark profiles, when it profiles, and how the
resulting profile relates to your target execution.

Process Attach

It’s not always beneficial to profile the entire system — often there is just too much information. For this
reason, Shark allows you to target any process in the system individually, further focusing your profile. In this
mode, Shark will only save samples from the target process, while discarding any others.

Figure 5-1 Process Attach

When you enter this mode by selecting Process from the Target popup in Shark’s main window(or use
Command-2), the Shark window will expand, adding a new popup — the Process List, as we show in Figure
5-1. By default, the Process List is sorted by process name, and you will only see processes that you own. To
change these defaults, open the preferences by selecting the SharkPreferencesmenu item (Command-Comma)
and adjust the values for the Process List under the “Appearance” tab “Shark Preferences” (page 23).

Process Launch

Attempting to profile launch times for your application by hand can be a frustrating endeavor. Profiling an
application (or part of one) that only runs for a short time can be similarly difficult. For this reason, Shark
allows you to launch your application directly, from within Shark. To instruct Shark to launch your process,
enter Process Attach mode, by selecting Process from the Target popup (Command-2). Now, select the
“Launch...” target from the top of the process list (or use Command-Shift-L). Choosing this “process” and then
pressing “Start” will bring up the Process Launch Panel, shown below in Figure 5-2.

Process Attach 115
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Figure 5-2 Launch Process Panel

Once the Process Launch Panel has appeared, you need to “fill in the blanks” in order to tell Shark how to
launch your application. If you reach here by choosing DebugLaunch Using Performance ToolShark in Xcode,
most of these blanks will be completed for you. At the very least, you must choose an executable file before
pressing “OK” and continuing. However, you can also supply many other bits of information to Shark in order
to simulate the launching of your application from a command-line shell prompt, and specify a couple of
options to help limit capture of spurious samples.

1. Executable— The full path to the executable. You can either type it here or press the “Set...” button and
then find it using a normal Mac “Open File...” dialog box. For Mac applications, you can set this to be
either the entire application or the core binary file inside of it.

2. Working Dir— The full path to the working directory that the application will start using. By default, this
is the path where the executable is located, but you may point it anywhere else that you like. When the
application is executed, it will appear to have been started from a shell that had this directory as its
working directory (i.e. the output of pwd) just before executing the command. Hence, relative paths to
data files will start being determined from this directory.

3. Arguments— Enter any arguments here that you would have normally entered onto your shell command
line after the name of the executable. Shark will feed them into the application just as if they had come
from a normal shell. Note that since Shark’s “shell” does not have any text I/O, you will need to provide
< stdin.txt and > stdout.txt redirection operations here if your executable expects to use stdin
and/or stdout “files.”

116 Process Launch
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

4. Environment Variables— Supply any environment variables that must be set before your application
starts in this table. Otherwise, Shark will start your application with no environment variables set (it even
clears out any “defaults” that you may have had before invoking Shark). Pressing the “+” and “–” buttons
below the table allows you to add or remove environment variables, respectively. Once added, you can
freely edit the names of the variables and their value in the appropriate table cells.

5. Stop sampling if this application exits— If checked, Shark stops sampling immediately after your
application completes. Hence, this will prevent Shark from capturing a bunch of samples that have
nothing to do with your application if it completes quickly.

6. Cancel & OK— Shark will start your application and sample it immediately after you hit OK. If you change
your mind, Cancel will return you back to the main Shark window.

Batch Mode

Batch mode queues up any sessions recorded without displaying them. Pending sessions are listed in the
main Shark window. Batch mode allows multiple sessions to be recorded in quick succession, by not
immediately incurring the overhead of displaying the viewers for each session. To enter Batch Mode, select
the Sampling Batch Modemenu item (or Command-Shift-B).

Figure 5-3 Batch Mode

Batch mode is most useful when paired with remote control from within your application’s code, profiling
multiple hot loops in quick succession, during a single program execution. Using a different session label for
each loop, you can rapidly obtain multiple profiles for later investigation. See “Performance Counter
Spreadsheet Advanced Settings” (page 107) for information on using this technique.

Batch Mode 117
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Windowed Time Facility (WTF)

For measuring hard to repeat scenarios, Shark provides the Windowed Time Facility (abbreviated as WTF)
with the Time Profile and System Trace configurations. The Windowed Time Facility directs Shark to only
record and process a finite buffer of the most recently acquired samples, allowing it to run continuously for
long periods of time in the background. This continuous behavior allows you to stop profiling just after
something interesting occurs. At this point, Shark processes the samples in the window of time just before
profiling was terminated. This allows you to determine what part of your program’s execution is “interesting”
after it occurs, instead of trying to anticipate it in advance. Now, you effectively have the benefit of hindsight
for finding hard to repeat problems.

Another way of describing how WTF mode works is how it modifies Shark’s normal “start” and “stop” behavior.
Generally, Shark processes all the data between the “start” and “stop” trigger events, as is shown in Figure
5-4. Most commonly, users start Shark just before entering an “interesting” period of execution and stop it
when leaving the area of interest. However, you may not always know when you will encounter the
“interesting” region of your program in advance. WTF mode sidesteps this problem by eliminating the need
to “start” normally. While Shark stops in the normal way, as we show in Figure 5-5, the starting position is
just a fixed number of samples (or effectively amount of time, with Time Profiling) before the end, instead
of at a user-specified point.

Figure 5-4 Normal Profiling Workflow

118 Windowed Time Facility (WTF)
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Figure 5-5 Windowed Time Facility Workflow

Tracing the execution around an asynchronous event, such as inter-thread communication, the arrival of a
network packet, or OS event such as a page fault, are all situations when WTF mode can make profiling easier,
especially when these “glitches” occur at hard-to-predict times.

This mode of profiling is especially useful for game programming; often, the timing of calls to
performance-critical code regions is highly dependent upon a player’s actions, which can be hard to reproduce.
For example, assume you are developing a video game engine and occasionally see the frame rate drop
and/or video glitches. If the conditions for causing the glitch are unpredictable and inconsistent, then you
would normally have to start sampling, attempt to reproduce the problem, and then stop sampling afterwards.
If the glitch is rare, then odds will be low that you will catch the glitch within the limited sampling window,
creating an extremely frustrating workflow. With WTF mode, in contrast, you can just start Shark and forget
about it — until the glitch actually occurs, when a quick press of the “stop” button will capture the sequence
of samples involving the glitch.

WTF mode can be enabled in several different ways. In order of increasing complexity, it can be turned on
through any of the following three options:

 ■ You can select the Time Profile and System Trace configurations with “WTF” included in the name from
the Configuration popup (see “Main Window” (page 17)).

 ■ WTF is an option for the “normal” Time Profile and System Trace configurations which may be enabled
by checking the “WTF Mode” check boxes in the mini-configuration editors associated with these
configurations (see “Taking a Time Profile” (page 31) and “Basic Usage” (page 60)).

 ■ You may include this option in your own configurations that use the “Timed Samples & Counters” or
“System Trace” data source plugins (see “Simple Timed Samples and Counters Config Editor” (page 174)
and “System Trace Data Source PlugIn Editor” (page 179)).

In addition, WTF mode works perfectly well with all of the different ways to effectively press “start” and “stop”
described in this chapter. For example, instead of manually pressing “stop” at the end of your WTF region,
you might have code in your program detect “glitch” conditions and programmatically fire a “stop” signal
using the techniques described in “Programmatic Control” (page 125).

Windowed Time Facility (WTF) 119
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

WTF with System Trace

In most ways, WTF mode functions exactly the same when used with both the Time Profile and System Trace
configurations. However, there are two notable differences.

First, since System Trace is event-driven, and not time interval-driven, the “window” is actually a fixed number
of systemevents per processor, and not a fixed window of time. Therefore, the actual period of time represented
by the window is highly dependent on the rate that system events occur for each processor. If these events
occur very rapidly, the window might be quite short in time; if these events occur infrequently, the window
might represent a long interval.

Second, the beginning of a WTF System Trace Timeline (see Figure 5-6) can appear a bit strange; different
processors might first appear at vastly different points in the timeline. In the figure below, the timeline for
the processor at (1) begins well before the other three processor timelines at (2). This occurs because each
processor maintains its own “window” of samples, and system events can occur at vastly different rates on
each processor. As a result, each processor’s window of samples can correspond to different periods of time.
Since all processors’ timelines end at the same time, the effect of this is that some processors won’t show
up in the timeline until much later than other processors.

Figure 5-6 The Windowed Time Facility Timeline

120 Windowed Time Facility (WTF)
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Unresponsive Application Measurements

During the development process, there may come a point where your application goes unresponsive, and

the dreaded spinning rainbow cursor is displayed (). Often, the situations in which this happens can
be hard to repeat. For these situations, Shark provides Unresponsive Application Triggering, allowing you to
automatically sample whenever an application becomes unresponsive. This method of triggering is enabled
by selecting the SamplingUnresponsive Applications menu item (Command-Shift-A). When Unresponsive
Application Triggering is enabled, Shark will automatically switch to Batch Mode and display unresponsive
application triggering options, as shown below.

Figure 5-7 Unresponsive Application Triggering

Unresponsive application profiling can be limited to a single application by setting the Application Name
Filter check box and filling in a name or partial name in the associated text field. The threshold for the amount
of time an application is unresponsive (does not respond to mouse or keyboard events) can be set by entering
a value (in seconds) in the Unresponsive Time Threshold text field. With this, you can eliminate sampling of
expected, brief bits of unresponsive time and focus instead on the really long and painful occurrences.

Note: The Unresponsive Time Threshold value modifies the system-wide definition of what an “unresponsive
application” actually is, and will consequently change the amount of time from the last time the application
was responsive to the first time that the system presents the spinning rainbow cursor for it.

Command Line Shark

In some situations, such as profiling on headless servers, it is not possible to use the graphical user interface
at all. For these cases, use /usr/bin/shark. Command line shark supports the major features of its graphical
counterpart for data collection, but does not do much with the recorded data beyond saving sessions. In

Unresponsive Application Measurements 121
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

general, it is intended that you use it to collect sessions and then review your results with a graphical copy
of Shark later. This section will discuss some common ways to use command line shark. A more complete
description of the options available when using command line shark is available in its man page, shark(1).

Basic Methodology

There are four main ways to use command-line shark. With the exception of network mode, which can run
along with interactive and remote modes, any one invocation of shark is locked into using only one of these
modes for its entire duration.

Interactive Mode

By default, command-line shark works in a simple interactive mode. After starting up, it records sessions on
demand through a simple, three-step process:

1. shark waits in the background until it spots a “hot key” press, and then it starts sampling. On your local
system, the hot key same as graphical Shark (Option-Escape, by default), while on remote terminals it
defaults to Control-\, since this key combination can be transmitted through a generic terminal.

2. When you press the same “hot key” again, shark will stop sampling and begin analyzing its samples to
produce a standard Shark session file. It displays progress as this occurs, and then writes out the session
file to disk, using the name session_XX.mshark (XX = a number) and the current terminal directory
by default. When complete, shark waits for another “hot key” press.

3. If you press Control-c instead of a “hot key,” then sharkwill terminate and return you to the shell prompt.

After shark completes, you will have a sequence of Shark session files that you may then examine at your
leisure with graphical Shark. Of course, there are many ways to modify this basic methodology, described in
the next few sections.

Immediate Mode

Command line shark also supports immediatemode, where it starts sampling immediately after it is launched
with no user interaction, and quits after it finishes profiling — usually after 30 seconds, or when the user
presses Control-C. This is often useful for invocation from shell scripts. To launch shark in this mode, use the
-i option, as follows:

shark -i

Remote Mode

A third way to use command line shark is remote mode, which works much like the remote mode supported
by graphical Shark and described in “Interprocess Remote Control” (page 125). Once started in this mode,
shark will wait for start/stop signals from other processes to arrive in any one of three ways:

1. A program instrumented withchudStartRemotePerfMonitor()andchudStopRemotePerfMonitor()
calls can start and stop shark, respectively. This works the same as the equivalent functionality described
in “Programmatic Control” (page 125).

122 Command Line Shark
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

2. The utility program chudRemoteCtrl can start and stop shark. This works the same as the equivalent
functionality described in “Command Line Remote Control” (page 127).

3. The UNIX SIGUSR1 and SIGUSR2 signals can be sent to shark’s PID by your program or the UNIX kill
utility with the “-s USR1” and “-s USR2” options. It will interpret SIGUSR1 as a start/stop toggle and
SIGUSR2 as a command to stop sampling and generate a session.

To launch shark in this mode, use the -r option, as follows:

shark -r

Network Mode

Finally, command line shark supports network mode, where it is controlled remotely by graphical Shark
running on another computer. When enabled, shark starts up in interactive (or remote) mode, and works
normally that way. However, it also listens for network connections from graphical Shark running on different
Macintoshes. You can then use a combination of local start/stop operations and network start/stop operations
while shark is running. To launch shark in this mode, use the -N option, as follows:

shark -N

A full description of network shark usage is in “Network/iPhone Profiling” (page 128).

Common Options

Many of Shark’s configurations, such as Time Profile and System Trace, support common options such as time
and sample limits. Command line shark allows you to change these limits for configurations that support
them. These common options include:

 ■ Time Limit— shark -T allows you to change the time limit. Valid times are any integer followed by “u,”
“m,” or “s,” corresponding to microseconds, milliseconds, and seconds, respectively.

 ■ Time Interval — shark -I allows you to change the sampling interval for configurations that support
a sampling interval. Valid times are entered the same way as for time limits.

 ■ Sample Limit — shark -S allows you to specify the maximum number of samples to record during each
session.

Some other, less commonly used options change the behavior of shark:

 ■ Quiet Mode— shark -q will limit terminal output to reporting of errors only.

 ■ Ignore task exits— shark -x will instruct shark to ignore task exit notifications. Normally, shark gets
notified when tasks are about to exit while it is profiling. This allows shark to collect some basic information
about the task just before it is allowed to quit. It is possible, though not likely, that this can cause gaps
in profiling. Use of this option is discouraged. This is equivalent to the use of the similarly named
preference in “Shark Preferences” (page 23).

 ■ Change default filename— shark -o allows you to change the default session file name from
session_XX.mshark to a user supplied name. This name will be appended with a unique number to
create a unique file name. For example, shark -o myfile will result in session files names
myfile_01.mshark, myfile_02.mshark, and so on.

Command Line Shark 123
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

 ■ Change session file path— shark -d allows you to specify the directory where shark will save session
files, instead of the current working directory.

Target Selection

With command line shark, you can choose to launch and attach shark to a process, or attach shark to a
currently running process, using options similar to the ones described previously in “Process Attach” (page
115) and “Process Launch” (page 115) for graphical Shark. To launch a process, simply append the process
invocation as you normally would to the end of the shark command line. The following example would
launch /bin/ls ~/Documents, and start shark profiling immediately:

shark -i /bin/ls ~/Documents

Instead, if you wanted to attach to a running Apache daemon process, you might try this line:

shark -i -a [pid of httpd]

Making things even simpler, if you do not know the PID of the process in which you are interested, you can
specify a full or partial name as the argument to the -a option. If there are multiple matches to a partial
name, Shark will take its best guess. For these situations, it is often best to supply a PID instead.

Reports

Command line shark supports generation of textual reports, either from session files that you’ve already
created, or from new sessions as they are generated. These reports can be simple summaries (-g or -G
options), or complete analysis reports (-t option).

When creating a summary report, you can either create one from a session that is already saved on disk, with
shark -g, or create it for new sessions, with shark -G. Both options result in the creation of a sidecar file,
whose name will be the original session file name with -report.txt appended.

Creating a full analysis, either from previously saved sessions, or for any new sessions, requires passing the
-t flag to shark. The -t flag optionally takes a filename as an argument. If no file name is specified, shark
will allow you to take sessions as normal, except it will write one additional file per session — the full analysis
report. If you specify a file name, shark will instead only generate the full analysis report sidecar file, and
immediately quit. In both cases, the report filename will be the session file name, with -full.txt appended.

Custom Configurations

Because of its command line nature, shark can only operate on configurations already created by its graphical
counter-part as discussed in “Custom Configurations” (page 171). To use a custom configuration on a headless
server, export it from Shark by opening the Configuration Editor, selecting the desired Configuration, and
clicking the “Export...” button in the Configuration Editor (as described in “The Config Editor” (page 171)).
Copy the resulting .cfg file to ~/Library/Application Support/Shark/Configs on the target machine
so that command-line shark can find it.

Running shark -l will list all installed configurations, including any custom configurations (which will be
near the bottom of the list). Using a capital -L instead will additionally list a short summary of what each
configuration does, what plugins are active with each one, and their settings.

124 Command Line Shark
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Instruct shark to use your custom config by passing its corresponding number to the -c argument. For
example, if your new configuration was listed as number 13, you might use the following command line to
load that configuration into command line shark:

shark -c 13

Alternatively, you can specify the configuration file to use directly, using -m:

shark -m custom.cfg

For more information on creating and using custom profiling configurations, see “Custom Configurations” (page
171).

More Information

This section has presented some of the most common options and techniques for using command-line
shark. For more detailed information on all available options, please read the man page: shark(1).

Interprocess Remote Control

In some cases, it is best to have your programs start and stop Shark’s sampling at precisely chosen points in
their execution. Shark supports two major forms of start/stop “remote control” from other processes:
programmatic control allows you to insert code directly into your application to start and stop profiling, while
command line remote control allows you to insert commands in your perl or shell scripts to start and stop
profiling. In order for a remote client to activate Shark, Shark must first be placed in remote mode using the
SharkSamplingProgrammatic (Remote) menu item. Similarly, you can use shark -r to start command line
shark in remote mode (as mentioned in “Remote Mode” (page 122)).

Programmatic Control

It may be useful to narrow down what is profiled by Shark to a particular section of code within your
application. You can start and stop sampling from within your application’s code by calling the
chudStartRemotePerfMonitor() and chudStopRemotePerfMonitor() functions, defined in the
CHUD.framework. This can be accomplished in one of two ways:

1. Remote Profiling— instrument your code with calls to chudStartRemotePerfMonitor()/
chudStopRemotePerfMonitor(). Shark should then be placed in remote monitoring mode via the
SamplingProgrammatic (Remote) menu item (Command-Shift-R) before running your instrumented
program. For every pair of start/stop calls, Shark will create a new sampling session. This can be especially
useful with “Adding Shortcut Equations” (page 111).

2. Thread Marking— When using Hardware Performance Counters on a PowerPC machine, as discussed in
“Hardware Counter Configuration” (page 189), you can use chudMarkPID() to mark your process or
chudMarkCurrentThread() to mark the current thread around your critical sections of code. If you
configure Shark to sample only marked performance events, only code in the critical sections will be
profiled.

Interprocess Remote Control 125
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Note: Currently, Intel machines do not support process or thread marking for performance monitoring.
Consequently, this technique is only useful for PowerPC machines.

It is important to keep in mind that many profiling techniques used by Shark employ statistical sampling in
order to generate a profile. If the sampling interval is longer than the time it takes to execute the instrumented
section of code, you may see few or no samples in the resulting profile. Statistical sampling is most useful
when at least several hundred samples are taken.

Example: Towers of Hanoi

We will use the Towers of Hanoi puzzle as an example of controlling Shark from within source code. The
French mathematician Edouard Lucas invented the Towers of Hanoi puzzle in 1883 . The puzzle begins with
a tower of N disks, initially stacked in decreasing size on one of three pegs. The goal is to transfer the entire
tower to one of the other pegs, moving only one disk at a time and never a larger one onto a smaller one.
A common solution to the Towers of Hanoi problem is a recursive algorithm (see Listing 5-1, below).

Listing 5-1 Towers of Hanoi Source Code

/* This functions takes a tower of n disks and moves from peg */
/* 'source' to peg 'destination'. Peg 'temp' may be used */
/* temporarily. */
void Hanoi(char source, char temp, char destination, int n){
 if(n>0) {
 Hanoi (source, destination, temp, n-1);
 Hanoi (temp, source, destination, n-1);
 }
}

As a demonstration of source code instrumentation, we insert calls to start and stop Shark into the Towers
of Hanoi test program (see Listing 5-2, below). Shark is then placed in Remote Monitoring mode and set to
use the standard TimeProfile configuration. The test program is run for N=10..20 disks. Shark records a session
for each pair of start and stop calls.

Listing 5-2 Instrumented Towers of Hanoi

#include <CHUD/CHUD.h>

 chudInitialize();

 chudAcquireRemoteAccess();

 for(i=n_min; i<=n_max; i++) {
 sprintf(label_str, "Hanoi #%d", i);
 chudStartRemotePerfMonitor(label_str);

 Hanoi('A','B','C',i);

 chudStopRemotePerfMonitor();
 }

 chudReleaseRemoteAccess();

126 Interprocess Remote Control
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Note: To compile this example program, you must instruct gcc to link with the CHUD framework:

gcc -framework CHUD -F/System/Library/PrivateFrameworks towersOfHanoi.c

The Towers of Hanoi test program demonstrates the need for a sampling interval that is much shorter than
the time between the calls to start and stop Shark (see Figure 5-8). Less than 100 samples are taken unless
the problem size is at least 15 disks. As a result, you will often find that it is better to sample your entire
application and use Shark’s powerful “Data Mining” (page 139) mechanisms to narrow down what is displayed
after sampling.

Figure 5-8 Samples Taken for Towers of Hanoi N=10..20

B B B B B B
B

B

B

B

B

10 11 12 13 14 15 16 17 18 19 20

0

500

1000

1500

2000

2500

3000

3500

S
a
m

p
le

s
 T

a
k
e
n

N discs for Towers of Hanoi Run

Command Line Remote Control

You can also start sampling remotely through the command-line using the chudRemoteCtrl command-line
tool. Again, in order for remote clients to activate Shark, Shark must first be placed in remote mode using
the SharkSamplingProgrammatic (Remote) menu item.

To start profiling from within your shell scripts (or by hand), issue the following command:

chudRemoteCtrl -s MySessionLabel

The argument to -s, above, is an arbitrary, user-specified label that will be applied to the generated session.
To stop profiling, issue the following command:

chudRemoteCtrl -e

Interprocess Remote Control 127
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

When used to stop profiling, chudRemoteCtrl will not return until Shark has stopped profiling. In the case
of command-line shark, chudRemoteCtrlwill not exit until the session file is written to disk. More information
on chudRemoteCtrl is available from its man page, chudRemoteCtrl(1).

Network/iPhone Profiling

Shark allows you to share computers for profiling over a network and to discover other computers sharing
their copies of Shark using Bonjour or manual IP address entry. This allows you to record profiles on two
separate Macs on your desk (good for fullscreen application profiling), Macs in another room (useful when
you are profiling servers), or even Macs halfway around the world (for travelers).

Note: Because of changes required to add iPhone OS support to Shark 4.6, the networking protocol software
changed between versions 4.5 and 4.6 of Shark. As a result, you cannot control computers running versions
of Shark 4.5 or earlier from a machine running 4.6 or later, and vice-versa. Hence, it is a good idea to keep
copies of Shark that may be communicating with each other remotely synchronized to the same version.

In addition, the same user interface can be used to control Shark running on any iPhone (or other device
that runs the iPhone OS, such as the iPod Touch). Shark is included by default in the iPhone OS developer
tools, so once they are installed onto your device it can be controlled by Shark running on any Mac simply
by docking the device and attaching the dock to one of the Mac’s USB ports.

Important: Shark cannot capture symbol information on the iPhone itself, so “raw” sessions recorded from
an iPhone will appear in Shark labeled only based on sample address ranges. This can make it very difficult
to understand the results that Shark returns. Instead, you must tell Shark to recover symbol information
afterwards from a copy of your iPhone OS application which is stored locally on your Macintosh. As a result,
anybody profiling an iPhone will definitely want to check out “Manual Session Symbolication” (page 134) for
more information about how to tell Shark where your application’s symbols are located.

To use Network Profiling, select the SharkSamplingNetwork/iPhone Profiling... menu item (Command-Shift-N),
and the main window will expand to show the Network/iPhone Manager pane below the main controls, as
shown in Figure 5-9.

128 Network/iPhone Profiling
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Figure 5-9 Network/iPhone Manager

The controls in this window are described below:

1. Modes of Operation— Choose the overall network operation mode here:

 ■ Profile this computer— Profile the system that is running this instance of Shark; this is the “normal”
way of running Shark, and effectively disables Network/iPhone Mode.

 ■ Share this computer for network profiling— Shark will advertise itself as a shared profiling service to
networked computers. In this shared profiling mode, the user interface for starting and stopping
profiling on the local machine is disabled.

 ■ Control network profiling of shared computers— Any computers on the network (in the local domain)
running Shark in “shared” network mode will automatically be listed as available for control by this
instance of Shark. In addition, all iPhone OS devices in docks attached directly to this computer will
also appear as “shared computers” if they have Shark installed (because it cannot be controlled
directly on the device, Shark is automatically started in “shared” mode on these devices when
necessary). In “Control” mode, clicking on Shark’s Start button triggers profiling on the selected
shared computer(s). “Distant” computers that are outside of the local network domain can be added
to the list of controlled computers by entering the computer’s network name in the field below the
shared computer table and clicking the Add (+) button.

2. Control All Computers checkbox— When selected, all of the currently listed shared computers will be
automatically selected for control. Any new computers that become available in the list (either by Bonjour
auto-discovery or by being manually added by name to the table) will be automatically selected for
control, as well. All computers will start and stop sampling together, at approximately the same time.

Network/iPhone Profiling 129
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Additionally, changing the config or target of any shared computer causes all the controlled computers’
settings to change to the same setting, if it is available. This option is very useful when you are attempting
to control a large cluster of identical computers.

3. Auto Download checkbox— When selected, the shared computers controlled by this copy of Shark will
automatically deliver sessions to the the controller. The name of the system that generated each session
is included in the title of each session document window. Otherwise, the sessions will be saved locally
on the controlled machines for later download. This can be a better policy if you are taking many sessions
in quick succession, and network bandwidth becomes a limiting factor or impacts your measurements
adversely.

4. Computer table— This is the list of all the Macs running the Shark application in shared profiling mode
and attached iPhone OS devices. These computers can be selected for profiling control by this Shark
application. Columns are discussed in the order they are presented onscreen, left-to-right:

 ■ Use— Toggles whether or not to control Shark on a shared computer.

 ■ Computer— The name of each shared computer

 ■ Status— This shows the current “state” of Shark running on the remote system. There are several
different possible states of a shared computer running Shark in network mode:

 ❏ Unknown (–?–): Computer is not connected.

 ❏ Ready (–R–): Shark can start sampling.

 ❏ Sampling (–S–): Shark is actively collecting profile data.

 ❏ Processing (–P–): Shark is creating a profile session.

 ❏ Transmitting (–T–): The new session is being sent.

 ■ Config— The currently active Sampling Configuration on the shared computer. The entries in this
column are menus, just like the one in Shark’s main window (see “Main Window” (page 17)). The
selected configuration on the remote shared computer can be changed by changing the selection
in the menu

 ■ Target— The currently active Profiling Target on the shared computer. The entries in this column
are menus, just like the one in Shark’s main window (see“Main Window” (page 17)). The targeted
process (if any) on the remote shared computer can be changed by changing the selection in the
menu.

 ■ Cached Sessions (not pictured)— This column is only visible if “Auto Download” is not active. It lists
the number of complete profile sessions cached on each shared computer, and waiting for download
to the controlling system.

5. Refresh button— Click this button to clear the table and search for shared computers and attached
iPhone OS devices again. Computers that you have added by hand will not be cleared from the list when
you refresh.

6. Add Computer button and Name field— Pressing this button attempts to add the computer with the
name or IP address entered into the computer name field to the list of shared computers. The specified
computer must be attached to the network and running Shark in shared profiling mode, or this will fail.

7. Download One and Download All buttons— If the Auto Download checkbox is not selected, then
computers that are being controlled across the network will cache the session files they generate for
later download rather than sending them immediately to the controlling Shark application. The number

130 Network/iPhone Profiling
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

of sessions available to download is listed in the Shared Computer table’s Cached Sessions column.
Clicking the DownloadOne button will download a single session, while clicking the Download All button
will download all available sessions. Sessions are always retrieved in the order that they were created.

Using Shared Profiling Mode

Although the graphical Shark application can be placed in “Share this computer” mode, it is more typical to
use command line shark on any remote, shared computers. You can use ssh(1) to connect to a remote
computer. Once connected, launch command line shark with the –N option. The remote run of shark will
then respond to network requests to start and stop profiling. A sample transcript of a remote command line
shark in “Network Sharing” mode is shown in Figure 5-10. For more information on the usage and configuration
of command line shark, see “Timed Counters: The Performance Counter Spreadsheet” (page 104).

Figure 5-10 Command Line Shark in Network Profiling Mode

Mac OS X Firewall Considerations

The sharing firewall on Mac OS X can prevent Shark’s network profiling from working in either sharing or
control mode. When the Shark Network Manager successfully opens a network connection, the communication
port number Shark is using is listed in brackets. This is normally port number 7475. Unfortunately, this port
is not “open” through the firewall by default. If you attempt to enter “Shared Profiling” or “Network Control”
mode while the firewall is enabled, you will be presented with a warning dialog, as illustrated in Figure 5-11

Network/iPhone Profiling 131
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Figure 5-11 Sharing Firewall Warning Dialog

Click the Sharing... button in the warning dialog to bring up the System Preferences window Sharing tab.
Otherwise click the Ignore button to dismiss the dialog, but note that doing so may result in the inability to
use Shark over the network. Once in the Sharing Preference window of System Preferences, select the Firewall
tab. If you have never before added settings for Shark, then click the New… button, and fill in the sheet as
shown in Figure 5-12, and click the OK button.

Figure 5-12 Firewall Sharing Preferences, while adding a new port range for Shark

132 Network/iPhone Profiling
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Profiling Control

Often, the profile analysis windows can provide you with a very helpful view of your application’s behavior
using the default settings. However, there are also many tools available in Shark that can help you sort
through the large quantity of data that Shark can collect quite quickly. This chapter describes many of the
techniques that you can use to adjust how data is presented if the profiles are providing you with too little
or too much information.

Automatic Symbolication Troubleshooting

A common problem encountered by Shark users is a profile filled with instruction address ranges, instead of
actual names, for all of the symbols (functions) in the program. Shark is very good at finding and using symbol
information created by the compiler, but you do need to make sure that the compiler and linker actually
record the correct symbol information, or you will be stuck deciphering cryptic address ranges instead of
the names that you were expecting. This section explains how to solve some of the most common problems
that can prevent Shark from finding and displaying the symbol names in your code.

Symbol Lookup

Shark records samples from the system in both user and supervisor code. In order to look up symbols for
user space samples, the corresponding process is temporarily suspended while its memory is examined for
symbols. Symbol lookup of user space samples will fail if the option to catch exiting processes (see “Shark
Preferences” (page 23)) is disabled and the process is no longer running. In addition, if you need to profile
a task which will exit before profiling is finished, then you should execute it with an absolute path (e.g.
/usr/local/bin/foo) rather than a relative path (e.g. ../foo). Otherwise you may not be able to examine
program code in a Code Browser. Supervisor space symbol lookup is done by reconstructing the kernel and
driver memory space from user accessible files: /System/Library/Extensions for drivers and other kernel
extensions and /mach_kernel for kernel symbols. Samples from kernel extensions or drivers not in the
locations specified on Shark’s Search Paths Preference pane (see “Shark Preferences” (page 23)) will fail
symbol lookup. Developers who download the KernelDebugKit SDK and mount the disk image are able to
see source information for the kernel and base IOKit kernel extension classes (families).

If symbol lookup fails, Shark may present the missing “symbols” in two different ways. If the memory of the
process is readable — for example, a binary that has had its symbols stripped — Shark tries to determine
the range of the source function by looking for typical compiler-generated function prologue and epilogue
sequences around the address of the sampled instruction. Symbol ranges gathered in this manner are listed
as address [length]. If the memory of a process is completely unreadable, the sample will be listed with
the placeholder symbol address [unreadable].

Automatic Symbolication Troubleshooting 133
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data
Mining

Debugging Information

In order for Shark to look up symbol information, the sampled application must contain debugging information
generated by a compiler or linker.

It is almost always more useful to profile a release build rather than a debug build because compiler
optimizations can drastically alter the performance profile of an application. Debug-style code is most often
compiled without any optimizations at all (-O0). This makes debugging simpler, but produces non-optimal
code. A profile of unoptimized code is misleading because it will often have different performance bottlenecks
than optimized code.

Xcode

To generate debugging information in Xcode, select Project Edit Active Target and go to the GNU C/C++
Compiler panel. Make sure that the Generate Debug Symbols checkbox is enabled. If you want to have your
Release style products left unstripped (with symbol information), select the Unstripped Product checkbox.
Make sure that the COPY_PHASE_STRIP variable, if it is defined, is set to NO.

GCC/XLC/XLF

If you are using command-line compilers such as GCC, XLC/XLF, and/or makefiles, use the “-g” compiler flag
to specify that debugging information is generated

Manual Session Symbolication

It’s common practice for software built for public release to be stripped of debugging information (symbols
and source locations). Although this reduces the overall size of the product and helps protect proprietary
code against prying eyes, it makes it much more difficult to understand profiles taken with Shark. Shark
doesn’t require debugging information to work, but it can be much more helpful if it’s available. In case you
record a Shark session and discover that symbols have not been captured, then you can attempt to have
Shark add them in afterwards.

134 Manual Session Symbolication
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-1 Session Inspector: Symbols

The most common way to “symbolicate” or add symbols (along with other debugging information) to your
session is to simply use the File Symbolicate... command. With this command, you can quickly choose a
symbol-rich application binary to attach to your Shark session, even if the original measurement was taken
using a symbol-free binary.

Shark’s Session Inspectorwindow (see “Session Windows and Files” (page 20)) also allows you to add debugging
information to a session. This technique requires more steps, but is recommended if you are adding symbols
from a dynamic library used by your application, instead of the application itself, or if you need to selectively
add symbols from many different application binary files. The Symbols tab (1) in the window shows you the
list of all the profiled executables in the session, along with the libraries and frameworks they were linked
with. The Process popup (2) allows you to select the application you’re interested in inspecting or symbolicating.
Each row of the table lists the name, version (if available) and creation date of each binary. The full path of
each binary is displayed as a tooltip for each entry in the Name column (3). To symbolicate any particular
binary, double-click on its entry in the table or select it and click the Symbolicate button (4).

No matter which way you choose to get here, you will be presented with a Symbolication dialog (Figure 2-20).

Manual Session Symbolication 135
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-2 Symbolication Dialog

Use this dialog to select a symbol-rich (but otherwise identical) version of the binary you are symbolicating.
The version, creation date and size is shown for both the original and selected binary. For maximum flexibility
Shark does not restrict what you can select in any way. But it does indicate when something might be wrong
with the selection you have made by highlighting potential problems. Ideally, this is the list of attributes that
Shark expects for a good match:

 ■ The name of the original and symbol-rich binaries should match (for bundles, this is the bundle name).
Also, for bundles, the version strings should match.

 ■ The creation date of the symbol-rich binary should be the same or earlier than the stripped version.

 ■ The size of the symbol-rich binary should be larger than the stripped version.

Shark will warn you if you select a binary that is potentially problematic. If you do happen to select an
executable that isn’t a good match, the profile results will be incorrect. “Heavy View” and “Tree View” show
an example session before and after symbolication.

136 Manual Session Symbolication
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-3 Before Symbolication

Manual Session Symbolication 137
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-4 After Symbolication

Managing Sessions

If you have multiple sessions measuring the same application, it is possible to use Shark to compare or merge
those sessions with each other.

Comparing Sessions

Shark can be used for tracking performance regressions. Shark allows you to compare the contents of two
session files sampling the same process through the FileCompare... menu item (Command-Option-C). Note
that processes are identified by name rather than process ID (PID) by default when comparing sessions, so
do not change the name of your program between sessions if you want to use this command.

When used, a new session is created from two existing ones: Session A and Session B. The first session (Session
A) is given a negative scaling factor, and the second session (Session B) is given a positive scaling factor. The
result of a compare operation is a new session with negative profile entries for more samples in the earlier
session (Session A), and positive profile entries for more samples in the later session (Session B).

138 Managing Sessions
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

The magnitude of the scaling factor is adjusted according to the number of samples in each session so that
both sessions are given equal total weight. In the case of comparing two sessions with an equal number of
samples, the scaling factor for Session A is -1.0, and for Session B is +1.0.

Example

As an example of how the session comparison algorithm works, let’s say that Session A has 400 samples in
process foo, and Session B has 440 samples in process foo. The total weight for process foo in the combined
session will be 840.

If in Session A there were 80 samples for function bar() in process foo, and in Session B there were 120
samples for function bar() in process foo, the value of bar() is 120 – 80 = +40. The value shown for bar()
would be (+40 / 840) * 100 = +4.8%. Note that the meaning of percentage is consistent with the standard
time profile display — the baseline is the total count for the currently selected scope (system, process or
thread).

Merging Sessions

If you have profiled the individual components that make up a workload separately, you may want to merge
the resulting sessions into a single file. Shark can merge two session files through a process similar to
comparing them. The only difference is that each source session file is given a scaling factor of +1.0. Select
the FileMerge... menu item (Command-Option-M).

Data Mining

By default, Shark groups samples by symbol (although other groupings such as address, library and source
line are also possible using the controls described previously in “Automatic Symbolication
Troubleshooting” (page 133)). Although this is often sufficient, judiciously filtering out pieces of a profile can
in some cases make it easier to analyze. Data mining allows you to hide samples that may obscure important
behavioral or algorithmic characteristics in a profile.

Callstack Data Mining

In order to understand how to use data mining to better understand your application, it is necessary to first
understand a few fundamental concepts about samples and callstacks. Each Shark session contains some
number of samples. Each sample contains contextual information such as where and when it was taken
(process and thread ID, timestamp) as well as the callstack information for how the sampled thread of
execution arrived at the current program counter address. An example of several callstacks is shown in Figure
6-5.

Each callstack is made up of N stack frames (N=4 in the case of Sample 1). Note that when a sample is taken,
the program’s stack pointer points to the leaf entry at N-1 (cos in the first sample). When Shark builds up a
call tree to analyze how routines call each other, “self” counts in the profile browser are simply the number
of samples where this routine is the leaf entry function. Therefore, the “self” count represents the amount of
time that code within the function was executing. In contrast, “total” counts are the number of samples
where this function appears at any point in a callstack, and therefore represents the summation of a function’s
execution time and the time of all functions that it calls.

Data Mining 139
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Shark can combine samples into call trees in two different ways. Figure 6-6 depicts the “Heavy” call tree
assembled from the example samples, while Figure 6-7 shows the corresponding “Tree” view. As you can
see, the “heavy” view starts from the leaf functions and builds towards the base of the callstack, while the
“tree” view starts at the base of the callstack and works down to the leaves. The former view is usually better
for finding out which parts of your program are executing most often, while the latter is often better for
finding large routines farther down the callstack that call many other routines in the course of their execution.
Once you have a clear picture of how callstacks are converted into call trees, it is easier to understand the
application of the data mining operations.

Figure 6-5 Example Callstacks

main
foo
bar

sqrt

main
foo
bar

main
baz
bar

main
baz
sqrt

main
baz
cos

cos

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Nathan Slingerland - June 20, 2004

140 Data Mining
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-6 Heavy View

cos

Total:
Self:

2
2

bar

Total:
Self:

1
0

foo

Total:
Self:

1
0

main

Total:
Self:

1
0

sqrt

Total:
Self:

2
2

bar

Total:
Self:

1
0

foo

Total:
Self:

1
0

main

Total:
Self:

1
0

baz

Total:
Self:

1
0

baz

Total:
Self:

1
0

main

Total:
Self:

1
0

main

Total:
Self:

1
0

bar

Total:
Self:

1
1

baz

Total:
Self:

1
0

main

Total:
Self:

1
0

Nathan Slingerland - June 20, 2004

Data Mining 141
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-7 Tree View

main

Total:
Self:

5
0

foo

Total:
Self:

2
0

bar

Total:
Self:

2
0

cos

Total:
Self:

1
1

sqrt

Total:
Self:

1
1

baz

Total:
Self:

3
0

bar

Total:
Self:

1
1

sqrt

Total:
Self:

1
1

cos

Total:
Self:

1
1

Nathan Slingerland - June 20, 2004

Shark’s Data Mining operations allow you to prune down call trees in order to make them easier to understand.
While the small call trees in the preceding figures are fairly simple, in real applications with hundreds and
thousands of symbols, the call trees can be huge. As a result, it is often useful to consolidate or prune off
sections of the call trees that do not add useful information, in order to simplify the view that Shark provides
in controlled ways. For example, you often won’t care about the exact places that samples occur within
MacOS X’s extensive libraries — only which of your functions are calling them too much. Data Mining can
help with simplifications like this. It is accessible in three different ways.

142 Data Mining
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-8 Data Mining Advanced Settings

The Advanced Settings drawer (Figure 6-8), in its lower half, contains the following controls that apply filtering
to an entire session. This is a great way for making a few common quick trims to too-complex callstack trees.

1. Apply Callstack Data Mining— Global control that toggles the use of all data mining controls en masse,
good for quickly comparing your results before and after data mining.

2. Charge System Libraries to Callers— Removes any callstack frames from system libraries and frameworks,
effectively reassigning time spent in those functions to the callers. This is often quite useful, as you
cannot usually modify the system libraries directly, but only your code that calls them. Samples from
system libraries that aren’t called from user code, such as the system idle loop, disappear entirely.

3. Charge Code without Debug Info to Callers— Removes any callstack frames from code without
debugging information, effectively reassigning time spent in those functions to the callers. In a typical
development environment, this will effectively show all samples only in source code that you own and
compiled using a flag such as ‘–g’ with GCC or XLC, and in the process eliminating a lot of user-level
code that you probably do not have control over. Samples from code that isn’t called from debug-friendly
code are eliminated entirely.

4. Hide Weight < N— Hides any granules that have a total weight less than the specified limit. This macro
helps reduce visual noise caused by granules (i.e. symbols) that only trigger a sample or two, making it
easier to see the overall profile.

Data Mining 143
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

5. Flatten Recursion— For each branch in the call tree, this collapses functions that call themselves into
a single entry, removing all of the recursive calls entirely from the trace.

6. Flatten System Libraries— Chops off the top of callstacks beyond the entry points into system libraries,
so that any samples from the libraries are only identified by the entry points.

7. Remove Supervisor Callstacks— Completely removes (without charging to the callers) all samples in
the profile from supervisor code (kernel and drivers).

8. Granule List— Displays a list of particular granules that you have identified for data mining, using the
menu controls described next, along with the name of the operation applied to that granule. You can
modify the operation used to mine them using the menu associated with this name.

AData Mining menu appears in the menu bar whenever a Shark session is open. The menu contains the
following items that allow you to selectively apply data mining to particular granules in your code:

1. Charge Symbol X to Callers— Removes any callstack frames containing the symbol X, and frames of
functions called by X, effectively reassigning time spent in those functions to the callers.

2. Charge Library to X Callers— Removes any callstack frames containing the specified library, effectively
reassigning samples to the callers of the library.

3. Flatten Library X— Removes all but the first callstack frame for the specified library, attributing all
samples in interior functions to the entry points of the library.

4. Remove Callstacks with Symbol X— All callstacks that contain the specified symbol are removed from
the profile; samples in matching callstacks are discarded.

5. Retain Callstacks with Symbol X— Overrides all of the above operations for any callstack that contains
the specified symbol.

6. Restore All— Undo all Charge To, Flatten, Remove, and Retain operations.

7. Focus Symbol X— Makes the specified symbol the root of the call tree; removes symbols and samples
above (callers to) this symbol in the call tree and remove callstacks that do not contain this symbol. This
allows you to quickly eliminate all samples but those from an interesting part of a program.

8. Focus Library X— Makes the specified library the root of the call tree; removes symbols and samples
above (callers to) this library in the call tree and remove callstacks that do not contain this library.

9. Focus Callers of Symbol X— Removes functions called by the specified symbol and removes callstacks
that do not contain the specified symbol.

10. Focus Callers of Library X— Removes functions called by the specified library and removes callstacks
that do not contain the specified library.

11. Unfocus All— Undo all Focus operations.

This same menu appears as a contextual menu on entries in the Heavy, Tree and Callstack results tables. While
the mouse is held over a line in a table, you can control-click (or right-click) to bring up the menu, as is shown
in (Figure 6-9).

144 Data Mining
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-9 Contextual Data Mining Menu

Perf Count Data Mining

In addition to data mining based on callstack symbol and library information, it is also possible to filter out
samples based on associated performance count information (if available), using the Perf Count Data Mining
palette (Figure 6-10). The available “perf count” data mining operations are:

 ■ Equal (==)— Removes callstacks with perf counts equal to the specified value.

 ■ Not Equal (!=)— Removes callstacks with perf counts not equal to the specified value.

 ■ Greater Than (>)— Removes callstacks with perf counts greater than the specified value.

 ■ Less Than (<)— Removes callstacks with a perf counts less than the specified value.

The Perf Count Data Mining palette also supplies a global enable/disable toggle, much like the one available
with conventional data mining, and check boxes for toggling the visibility of perf count information (the eye
column) and whether or not the perf count data is accumulated across processors (the column), on a
per-counter basis.

Figure 6-10 Perf Count Data Mining Palette

Data Mining 145
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Example: Using Data Mining with a Time Profile

Our first example uses Shark’s data mining tools to help isolate a performance problem from a time profile
of the Sketch demo program. If you want to follow along with the demo, it is available in
/Developer/Applications/Examples/AppKit/Sketch.

A Performance Problem...

1. Launch Sketch (located in /Developer/Applications/Examples/AppKit/Sketch/build/ after
you build the project with Xcode)

2. Make four shapes as shown in Figure 6-11

Figure 6-11 Example Shapes

3. Repeat the following steps until the app becomes sluggish (takes a half second or second to select all):

 ■ Select All (Command-A)

 ■ Copy (Command-C)

 ■ Paste (Command-V)

146 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

This should take 8-10 times (maybe more) depending on hardware. When you are done it should look
something similar to Figure 6-12

Figure 6-12 Example Shapes, Replicated

4. Click in blank area of the window to deselect all the shapes.

5. Do select all and notice how long it takes for all of them to be selected. This is a performance problem.

Taking Samples

1. Launch Shark (in /Developer/Applications/Performance Tools/)

2. Target your application by selecting the “Sketch” process, as shown in Figure 6-13.

The start button will start and stop sampling. The Everything/Process pop-up will let you choose whether
you wish to sample the entire system or just a single process. The Time Profile pop-up will let you choose
different types of sampling that you can perform. In this case we will switch the System/Process pop-up
to Process (to target a single process.)

Example: Using Data Mining with a Time Profile 147
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

This reveals a third pop-up button that you can use to target your application. Select Sketch from the
list of running applications.

Figure 6-13 Sampling a Specific Process

3. Switch back to Sketch and make sure nothing is selected.

4. Move the Sketch window to expose the Shark window (optional but makes things easier).

5. Press Option-Escape to start sampling.

6. Press Command-A to select all and wait for the operation to complete.

148 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

7. Press Option-Escape to stop Sampling and you will get a window that looks like Figure 6-14.

Figure 6-14 Default Profile View

High Level Analysis

The session window gives you by default a summary of all the functions that the sampler found samples in
and the percentage of the samples that were found there. So in the example, 14.1% of the samples were
found in objc_msgSend. This view is very useful for doing analysis of performance when the bottlenecks
occur in leaf functions. As you can see, the above window gives you a lot of detail about where your program
is spending time, but unfortunately it is at too low a level to be of use to the developer of Sketch, or even
the developers of the Frameworks that Sketch depends on.

To get at the parts of the program that are of most interest to the developer of Sketch, you can do the
following:

1. In the Window menu, choose Show Advanced Settings.... This will open a drawer with the data mining
palette, among other things, as was shown in “Advanced Session Management and Data Mining” (page
133). We will go over each of these areas in more detail later. For now, let's turn on a couple of cool
features. In the Profile Analysis Palette, do the following:

Example: Using Data Mining with a Time Profile 149
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

 ■ Click on the Stats Display pop-up and select Value. This lets you the actual counts for the samples
rather than percentage. This may be more intuitive for some users than weighting by %, especially
while you are going through this tutorial. Use whichever you prefer.

 ■ Click on the Weight by: pop-up and select Time. You will see the samples displayed as the time spent
in that function rather than counts.

 ■ Check the Color by Library checkbox. This will display the text of symbols and library names in different
colors based on the library they came from. This is handy for visually identifying groups of related
functions.

2. In the DataMining Palette box, check Charge System Libraries to Callers. This will eliminate system libraries
and frameworks, and charge the cost of their calls to the application level functions or methods that are
calling them.

3.

Click on the callstack button on the lower right corner of the table to reveal the callstack pane,
as shown in Figure 6-15. As you click on symbols on the left, the callstack pane will show you the stack
leading up to the selected symbol. Since system libraries and frameworks were filtered out in the previous
step, you will only see your application's symbols. Note that if you click on a symbol in the callstack pane,
the outline on the left will automatically expand the outline to show that symbol.

Figure 6-15 Navigation Via the Call-Stack Pane

4.
Click on the pop-up menu on the lower right corner of the window and

select to split it in half. The top half will continue to show the Heavy
View ("Bottom-Up View") of the samples and the bottom will show the Tree View ("Top-Down View").

150 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

If you click on the symbol main in the bottom pane, you will see that the callstack view on the right will
show the stack, as shown in Figure 6-16. This view will control navigation for whichever outline that was
last selected

Figure 6-16 Navigation Via the Call-Stack Pane with Tree View

5. Looking at this outline, we see there are two areas where a lot of time is being spent: -[SKTGraphicView
drawRect:] and -[SKTGraphicView selectAll:]. Let's look at the selectAll method first.

Analysis Via Source Navigation

The following is an example of doing interior analysis across a few levels of function calls.

1. Open up the tree view as shown in Figure 6-16.

Example: Using Data Mining with a Time Profile 151
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

2. Double click on the symbol -[SKTGraphicView selectAll:] in the tree view above. You will see a
source window that looks like Figure 6-17

Figure 6-17 Source View: SKTGraphicView selectAll

The code browser uses yellow to indicate sample counts that occur in this function or functions called
by that function.

152 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

3. Double-click on the yellow colored line to navigate to the function (performSelector) called here. When
the new source window comes up, double-click in the yellow area marked with 2.7 s. This will display
the counts for this code, which should look like Figure 6-18:

Figure 6-18 Source View: NSObject

Before we go on, please notice that this is a for loop that iterates over all the items in the array, which
in this case is the array of all the graphic objects stored in Sketch's model.

Example: Using Data Mining with a Time Profile 153
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

4. Double-click on the yellow colored line [self performSelector: sel withObject:[array
ObjectAtIndex:i]]; and you'll get Figure 6-19:

Figure 6-19 Source View: SKTGraphicView selectGraphic

There are several hotspots here:

At line 116, there is a call to indexOfObjectIdenticalTo:graphic. This is a linear search of the
selected graphics. Since we are doing a "select all" operation, this is a linear search inside of a linear
search. You have just found a fundamentally O(N2) operation. Interestingly, this is not where most
of the time is being spent.
The operation in lines 118 and 119 appears to be an expensive framework call. This should be hoisted
out of the performSelector: OnEachObjectInArray loop and done once, if possible. If we
were the framework developers, it might also be interesting to investigate why these calls are so
costly.
Line 121 shows a call out to -[SKTGraphicView invalidateGraphic]. Let's dig deeper into
this since this is in Sketch's code.

154 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

5. Double-click on [self invalidateGraphic:graphic]; and you'll get Figure 6-20. This contains one
line of expensive code that tests for nested objects.

Figure 6-20 Source View: SKTGraphicView invalidateGraphic

It is interesting to note that even with this fairly quick analysis we have already identified several glaring
problems. The first problem we found was O(N2) behavior introduced by our code implementation hiding
within functions and the use of abstraction. In general it is good to create and use abstraction in your coding.
However, doing so can unintentionally introduce unnecessary performance pitfalls. Each of these functions
is well conceived locally, but when they are used together they combine to have poor scalability. Second,
we used expensive framework calls (in this case, to the undo manager) inside of a loop. Since undoing each
step of a “select all” operation really isn’t necessary, the expensive call can be moved up to a higher level, in
order to just undo all of the selects at once. This is an example of hoisting functionality to a higher level in
the execution tree. Finally, the invalidateGraphic routine was doing some heavyweight testing, and it
would clearly be worthwhile to see if we can move this testing outside of the inner loops, if possible.

Introduction To Focusing

This example will take us through analyzing the behavior of drawing the selected rectangles. Here, we will
develop ideas for analyzing larger and more complex programs (or frameworks) that involve multiple libraries.
In doing so, we will introduce the Analysis menu/context menu and the ideas of focusing and filtering. This
example will use system frameworks to demonstrate the ideas but the principles apply just as well to any
large-scale application built as a collection of modules.

Example: Using Data Mining with a Time Profile 155
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

1. Close all the source windows from the analysis of -[SKTGraphicView selectAll:] by clicking on
the close buttons in the tabs of the tab view.

2. Switch to the profile tab and do option click on the top most disclosure triangle to close all of the triangles.

3. Open the first two levels so it looks like Figure 6-21:

Figure 6-21 Tree view before focusing

4. Select -[SKTGraphicView drawRect:] and control-click to bring up a contextual menu which contains
the focus and exclusion operations available in Shark (the operations in this menu are also available via
the Data Mining Menu in the menu bar). It looks like Figure 6-22.

Figure 6-22 Data Mining Contextual Menu

In this tutorial we'll describe and demonstrate a few of them as well. A full description of these operations
is given in “Callstack Data Mining” (page 139).

156 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

5. Choose "Focus Symbol -[SKTGraphicView drawRect:]" and you will get something that looks like
Figure 6-23

Figure 6-23 After Focus Symbol -[SKTGraphicView drawRect:]

The bottom pane (Tree view) is now rooted on the symbol that we focused on and the items in the top
pane (Heavy view) have changed to reflect only the leaf times relative to the execution tree under this
new root. In the Heavy view, we see that the most time is spent in -[SKTGraphic drawHandleAtPoint:
inView]. We'll come back to this in a bit.

It is also worth noting that if you look in the Advanced Settings drawer at the bottom of the data mining
controls (you may need to scroll down the drawer if your document window is small), you will see an
entry for the symbol you just focused in the list of symbols. You can change the focus behavior here at
any time by clicking in the pop-up next to the symbol name.

Example: Using Data Mining with a Time Profile 157
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

6. Expand -[SKTGraphicView drawRect:] in the bottom outline a few times until it looks likes likeFigure
6-24:

Figure 6-24 After focus and expansion

There are two interesting things here:

 ■ The self time is pretty large in this function

 ■ A lot of time is spent in -[SKTGraphic drawHandleAtPoint: inView]

Let's look at the self time first.

158 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

7. Double click on -[SKTGraphic drawInView:isSelected] to see the source, as shown in Figure 6-25:

Figure 6-25 Source View: SKTGraphic drawInView:isSelected:

Here we see that time is split pretty evenly between the AppKit graphics primitive [path stroke] and
the call to -[SKTGraphic drawHandleAtPoint: inView]. The only option for a developer to deal
with the AppKit graphics primitive is to consider using raw Quartz calls, an option that we'll look into
using NSBezierPath a bit later. For now, let's take a look at -[SKTGraphic
drawHandleAtPoint:inView].

Example: Using Data Mining with a Time Profile 159
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

8. Double click on line 406 on the text -[self drawHandlesInView: view] and you'll get Figure 6-26:

Figure 6-26 Source View: SKGraphic drawHandlesInView:

This continues on with other calls to [self drawHandleAtPoint: inView], so it's been elided for
brevity.

160 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

9. Double click on line 502 in the text [self drawHandleAtPoint: ...] and it will take you to the
code for [SKTGraphicview drawHandleAtPoint: ...] which is shown in Figure 6-27

Figure 6-27 Source View: SKGraphic drawHandleAtPoint:inView:

Here we see another call into an NS drawing primitive. At this point, if you are a developer, your only
option is to investigate using other graphics primitives such as direct calls to Quartz. In this example
we'll do some further analysis to show some techniques useful for analyzing larger apps and frameworks.

Dig Deeper by Charging Costs

To dig deeper we will turn off “Charge System Libraries to Callers” and go through a more step-by-step
analysis of what is involved in drawing the shapes for Sketch. This will be focus more on demonstrating
various data mining operations and less on particular issues in the frameworks.

1. Go to the filter box in the advanced drawer and un-check the "Charge System Libraries to Callers"
checkbox. Since we are still focused on -[SKTGraphicView drawRect:] we avoid seeing all the
framework code that went brought us to that draw routine, and thereby avoid being overwhelmed with
symbols. In the heavy view you will now find all sorts of system symbols, so we may need some help to
make sense of these. A powerful tool for pruning useless symbols is “Filter Library.”

2. We're going to work with the “Heavy View” (the upper profile) for a bit. So click the

and set it back to .

Example: Using Data Mining with a Time Profile 161
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

3. Select the first symbol in the upper profile, as shown in Figure 6-28.

Figure 6-28 Heavy View of Focused Sketch

Notice that the stack view on the right shows a backtrace leading up to our old friend -[SKTGraphicView
drawRect:].

4. In the callstack view on the right click on -[SKTGraphicView drawRect:] and you'll get Figure 6-29:

Figure 6-29 Expanded Heavy View of Focused Sketch

Suppose we are interested in understanding the calls made into CoreGraphics. This is challenging because
AppKit calls CoreGraphics, which calls libRIP.A.dylib, which then calls back into CoreGraphics. This is a
lot of interdependency to sort out.

Fortunately there is a way to hide this complexity and see just what we are interested in. We use what
are called the exclusion commands. One of the most powerful ones is “Charge Library.” This command
tells Shark to hide all functions in a particular library and charge the costs of those functions to the
functions calling into that library. We'll show this in action in our example:

162 Example: Using Data Mining with a Time Profile
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

5. In the left hand outline select the symbol ripd_mark and control+click on it to bring up the data mining
contextual menu. Choose "Charge Library libRIP.A.dylib" and you get Figure 6-30:

Figure 6-30 After Charge Library libRIP.A.dylib

Notice that the symbols for libRIP.A.dylib are gone from the samples. Now this is a bit cleaner, but there
are still multiple layers in CoreGraphics. Notice that we have CGContextDrawPath both in the caller
chain to vecCGSColorMaskCopyARGB8888 and as a leaf function. What we really want to see is how
much time we're spending in CGContextDrawPath.

This is most easily accomplished with “Flatten Library.” “Flatten Library” is similar to “Charge Library,”
except that it leaves the first function (entry point) into the library intact. It in effect collapses the library
down to just its entry points. There is a quick click button in the Advanced Settings Drawer’s Data Mining
Palette that lets you flatten all system libraries. This is a good quick shortcut for flattening all the system
libraries, which greatly simplifies your trace in one shot.

6. Do a control+click on vecCGSColorMaskCopyARGB8888 and choose "Flatten Library CoreGraphics"
and you'll get Figure 6-31

Figure 6-31 After Flatten Library

Now this is getting interesting. Time spent has converged into CGContextFillRect and
CGContextDrawPath. These two call trees represent the two different places we saw hot spots in our
top down analysis. But now we have exposed more detail. The CoreGraphics team could now choose
to use the “Focus on Symbol” commands to study either piece of the execution tree in detail.

Example: Using Data Mining with a Time Profile 163
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

This example is a bit simplistic, but it shows the power of the exclusion operations to strip out unnecessary
information and identify where the real choke points are in the middle part of the execution tree. Please
note that using the data mining operations does not change the underlying sample data that you've recorded.
It just changes how the data is displayed, and so you can always remove all data mining choosing “Restore
All” and “Unfocus All” from the Data Mining Menu at any time. As you master the use of these operations,
you will learn how to identify the dynamic behavior of complex programs and frameworks faster than you
ever thought possible.

Example: Graphical Analysis using Chart View with a Malloc Trace

The previous example demonstrated how to use various filtering/focusing data mining techniques to identify
hot spots in your program. All of these also apply to sampling by malloc events (heap tracing), in addition
to samples obtained by time profiling.

However, graphical analysis is also a useful technique for examining the results Shark provides, when used
in conjunction with the time based analysis described previously. This technique involves looking at the
actual execution pattern using Shark’s Chart view tab (see “Chart View ” (page 39)). While time analysis helps
us prioritize which areas of complexity we wish to attack first, graphical analysis helps us identify the patterns
of complexity within these regions in a way that just doesn't come through when looking at the “average”
summaries seen in the profile browsers. While this concept applies to all configurations, it is particularly
critical with the Malloc Trace configuration (see “Malloc Trace” (page 94)), because analyzing the precise
memory allocation/deallocation patterns, and determining which calls are causing these allocations and
deallocations, is often more important than just looking at the averages seen with the browsers.

Please note an important distinction between malloc tracing and time profiling. With time profiling, you
generally want choose a data set that will take an interestingly long amount of time so that you can get a
good set of samples. In contrast, with exact tracing you generally want to scale back your operation size so
that you do one operation on just a few items, in order to keep the number of trace elements manageable.

This example uses the same Sketch demo build environment as the previous one. Complete that one up to
the end of “A Performance Problem... ” (page 146) if you have not already gone through it in order to follow
along.

Taking Samples

1. Switch to “Sketch” with your array of replicated shapes from “A Performance Problem... ” (page 146). Do
a “Select All” to select all of the shapes before continuing.

2. Launch Shark (in /Developer/Applications/Performance Tools/).

164 Example: Graphical Analysis using Chart View with a Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

3. Target your application and choose “Malloc Trace” instead of “Time Profile,” as with Figure 6-32.

Figure 6-32 Malloc Trace Main Window

4. Switch back to Sketch.

5. Move the Sketch window to expose the Shark window (optional but makes things easier).

6. Make sure everything is selected.

7. Press Option+Escape to start sampling.

8. Choose Edit Copy and wait for the menu bar highlight to go away.

9. Press Option+Escape to stop Sampling.

10. Hit Command-1 to switch the weighting to by count (or do it via the Weighting popup in the Advanced
Settings drawer).

The window should look like Figure 6-33, if you have gone through Tutorial 1 first. Otherwise, it will look
similar but not exactly the same.

Example: Graphical Analysis using Chart View with a Malloc Trace 165
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Figure 6-33 Result of Malloc Sampling

166 Example: Graphical Analysis using Chart View with a Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Graphical Analysis of a Malloc Trace

1. Click on the Chart Tab and you'll get a window that looks like Figure 6-34.

Figure 6-34 Chart View

The lower graph a standard plot of the callstacks, with sample number on the X axis and stack depth on
the Y axis, while the upper graph is a plot of the size of each allocated block plotted against the sample
number.

This plot is useful for identifying repeated execution paths in your code due to the fact that execution
trees leave a form of “fingerprint” that is often quite readily visible. Basically, if you see similar patterns
in the graph, it is a strong indication that you are going through the same code path. It may be acting
on different data each time, but these repeated patterns often represent good opportunities for improving
performance. Often, you can hoist some computation outside of the innermost loop in each nesting and
make the actual work done in the loop smaller while performing the same actual work. This kind of
change would show up in the graph by reducing the size and the complexity of the repeated structure.

Let's show an example of a repeated structure.

Example: Graphical Analysis using Chart View with a Malloc Trace 167
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

2. Select the first hump just before sample 6,000 and enlarge it, as shown in Figure 6-35:

Figure 6-35 Place to Select

The yellow indicates the tenure of different stack frames. Stack frame 0 is main and it is active the entire
time. As you get deeper into the stack the tenures get narrower and narrower. Tall skinny spikes of yellow
indicate deep chains of calls that do little work and this should be avoided.

168 Example: Graphical Analysis using Chart View with a Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

3. Now use the slider on the bottom left of the window to adjust zoom. Play with this a bit. As you zoom
in and out you'll see that there are multiple levels of unfolding complexity — much like a fractal. Here
is a sequence of zooms that show complexity at different levels:

It is a good idea to explore around your execution trace and identify every range of repeated structure
and understand what it is doing in each case. The reason this has a fractal like quality is that Mac OS X’s
library calls have many layers of libraries that encapsulate one another. Each of these layers can introduce
levels of iteration that is nested inside of other layers. This is like the problem with the nested iteration
that we showed in “Analysis Via Source Navigation” (page 151), but on a system wide scale. In order to
drastically improve performance you must attack this problem of complexity creep and eliminate it as
much as possible. Application developers obviously can't fix framework issues, but they can strive to
eliminate similar complexity issues in their libraries.

Example: Graphical Analysis using Chart View with a Malloc Trace 169
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

4.

We'll finish up with another good application of this graphical analysis. Click on the call stack
button to reveal the call stack for this sample, as shown in Figure 6-36:

Figure 6-36 Graph View with Call-Stack Pane

Using the callstack view, notice that a bunch of XML parsing to build up some kind of NSPrintInfo is
occurring. This is surprising since all we did was a clipboard copy. In fact, all of the malloc events from
about 5,000 to 15,000 are involved with manipulating printer stuff. It turns out that this is due to Sketch
actually exporting a full PDF onto the clipboard rather than using a “promise” that it has material to put
there if the user actually switches applications and then performs a “paste” operation — the uncommon
case, generally. This is a great example of how doing something fairly innocuous at the application level
can cause the system libraries to do a lot of extra work. It is also a great example of a cross-library problem
that needs to be optimized on multiple levels, ranging from the application to the printing framework
to the XML parsing code.)

170 Example: Graphical Analysis using Chart View with a Malloc Trace
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Advanced Session Management and Data Mining

Up until now, you have been using the configuration menu in Shark’s main window (in Figure 7-1) to select
from various built-in sampling methods. Each of these sampling methods is called a configuration (abbreviated
as “configs"), and Shark saves each configuration as a separate configuration file (which is also often called
a “config”). Each config file describes a variety of settings for Shark which enable it to sample or profile your
application in a particular way, plus a summary of any hardware requirements that are necessary to use it.

Figure 7-1 Main Configuration Menu

Once you have gained some experience with Shark, you might want to change some of the settings or adjust
some of the types of data Shark collects when a particular config is active. For example, you might adjust
the default sample rate of the Time Profiling config to sample more often, if your examinations routinely
need higher sampling resolution. This chapter gives an overview as to how this can be accomplished using
Shark’s sophisticated Configuration Editor.

The Config Editor

The Configuration Editor lets you individually modify settings for any of Shark’s modules, which are called
PlugIns. The properties available in each PlugIn differ depending on the nature of the work that particular
PlugIn is designed to do. Shark uses three types of PlugIns:

 ■ Data Source – These are responsible for collecting and/or generating session data. Many user-modifiable
parameters are typically available to control the sampling or profiling performed by these modules.

The Config Editor 171
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

 ■ Analysis – These process raw data and produce intermediate results that are typically shared by more
than one viewer. Only a few settings are available for these modules.

 ■ Viewer – These display analysis results and performance data. Because users typically want immediate
feedback to viewer adjustments, options for these are set by interacting directly with the visible display
or through the Advanced Settings Drawer (see “Advanced Settings Drawer” (page 22)) attached to each
analysis window, instead of here in the Configuration Editor.

Once you have decided that the built-in configs are not sufficient for the work that you are doing, the first
step to creating or editing your own configurations is to start the Configuration Editor using one of two
techniques:

 ■ Select the Config New... (Command-N) command to start a new config from scratch.

 ■ Select Config Edit... (Command-Option-Shift-C) to modify the current config.

Either technique will bring up the Configuration Editor dialog box, which allows you to examine and modify
any part of a configuration. “Adding Shortcut Equations” points out the four main major parts of this editor:

1. The Config Listing — This contains an entry for every configuration Shark knows about. This includes
documents stored in /System/Library/Application Support/Shark/Configs folder, and any
custom config documents stored in $USER/Library/Application Support/Shark/Configs in
your home folder. Some config file names may be dimmed in the list. This means they are not compatible
with the system Shark is currently running on, and therefore cannot be enabled for sampling or profiling,
but you can still select and modify them here in the Configuration Editor. The rest of the Configuration
Editor controls always modify the selected entry in this list.

Next to the main listing, various controls support basic file operations to manage these config files:

 ■ You can Duplicate any config in the list. This is usually the best way to begin making a custom config.
In fact, selecting “New...“ from the Config Menu just makes a duplicate of the current config in order
to provide a starting baseline.

 ■ You can Delete any custom config in the list, but not built-in config files. A verification message will
appear when you click the Delete button. A deleted config will be erased from the appropriate
Configs folder when you finally press the OK button.

 ■ You can Rename any custom config in the list, but not built-in config files. A renamed config will be
changed in the appropriate Configs folder immediately.

 ■ You can Import any config that you may have saved on your system or a mounted fileserver. Imported
configs are copied to your home $USER/Library/Application Support/Shark/Configs
folder. You can also perform this function without invoking the Configuration Editor by using the
Config Import... menu command.

 ■ You can Export any listed config to an arbitrary file on your system or a fileserver. This is a great way
to share configs between computers or user accounts. You can also perform this function without
invoking the Configuration Editor by using the Config Export... menu command.

2. The Summary — Explains the details of the selected config and all the PlugIn settings that will be used
to collect data.

3. The PlugIn List — Each PlugIn type in the configuration may optionally provide an editor for its properties
in the configuration. You can select the PlugIn to edit by clicking on the desired PlugIn name here. You
can also enable or disable PlugIns using the checkboxes.

172 The Config Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

The order of the plugins has a different meaning depending upon on the type of plugin. For data source
plugins, the vertical order of the enabled plugins indicates the order in which data sources will be started
and stopped. Analysis plugin order indicates the order of their creation, and viewer plugin order
determines the order of viewer tabs in the resulting Shark session window. The position of a plugin can
be changed using the Up and Down arrow buttons to the lower left of the PlugIn List.

4. The PlugIn Property Editor — This displays user-tunable options, if any, for the PlugIn currently selected
in the PlugIn List. Some PlugIns have no or only a few controls, while other PlugIns (such as the “Timed
Samples & Counters” Data Source plugin) have many properties, and require multiple tabbed window
panes to organize all the various settings available.

5. The Property View Pop-up: Each plugin’s property editor can optionally support two modes of operation:
Simple (the default) and Advanced. This menu allows you to select between them, if they are both present.
In addition, this control modifies the PlugIn List as follows:

 ■ In Simple mode, only plugins enabled by the currently selected config that have property editors
are listed.

 ■ In Advanced mode, all of the available plugins are listed with a checkbox next to each indicating
whether or not it is enabled in the current config.

The Config Editor 173
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Figure 7-2 Config Editor

The remainder of this chapter describes Shark’s wide variety of PlugIn editors that are controllable through
the Configuration Editor. In addition, because it is very complex, the “Advanced” mode of the “Timed Samples
and Counters” config editor is described in “Hardware Counter Configuration” (page 189).

Simple Timed Samples and Counters Config Editor

The Timed Samples and Counters data source is used for collecting system-wide time and performance count
profiles. This is used for several default configurations, including the Time Profiling one described in “Time
Profiling” (page 29). In Simple mode, there are two types of settings that can be modified in the editor:

 ■ Sampling Tab – The controls on this tab (see Figure 7-3) determine when to start and stop recording
samples.

1. Windowed Time Facility— If enabled, Shark will collect samples until you explicitly stop it. However,
it will only store the last N samples, where N is the number entered into the sample history field
(10,000 by default). This mode is also described in “Windowed Time Facility (WTF)” (page 118).

174 Simple Timed Samples and Counters Config Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

2. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually
begins. This helps prevent Shark from sampling itself.

3. Time Limit— The maximum amount of time to record samples. This is ignored if WTF mode is
enabled.

4. Sample Interval— Determines the sampling rate. The interval can be a time period (1 ms default),
CPU performance event count, or OS performance event count . If no performance counters (CPU
or OS) are configured as triggers, the sample interval is assumed to be a time interval, and hence
only the time entry field is enabled.

Figure 7-3 Simple Timed Samples and Counters Data Source - Sampling Tab

1
2

3

4

 ■ Counters Tab— This tab (see Figure 7-4) presents a fast and simple way to search and configure the
Processor (CPU), Operating System (OS), and Northbridge (MEM) performance counters. Enter an event
keyword or partial description in the search field to see a list of matching counter events. Use the Mode
column to select the performance counter mode (None, Counter, or Trigger). Only a small subset of
possible counter options are available here. For more, you will have to use the Advanced settings,
described in “Hardware Counter Configuration” (page 189).

Simple Timed Samples and Counters Config Editor 175
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Figure 7-4 Simple Timed Samples and Counters Data Source - Counter Settings

Malloc Data Source PlugIn Editor

The Malloc data source is used for the Malloc Trace config described in “Malloc Trace” (page 94). It is used
for collecting a memory allocation profile from a particular executable. All of its configurable controls are
contained in a single tab (see Figure 7-5), which modifies the timing of starting and stopping of memory
allocation recording behavior:

Figure 7-5 Malloc Data Source - Sampling Settings

1

2
3

176 Malloc Data Source PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

1. Record Only Active Blocks— If enabled, Shark will collect samples only in memory regions that were
allocated during a profile and not released. Otherwise, any allocation or deallocation that takes place is
recorded.

2. Time Limit— The maximum amount of time to record samples.

3. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.

Static Analysis Data Source PlugIn Editor

The Static Analysis data source is used by the Static Analysis default configuration, described in “Static
Analysis” (page 99). It is used to search for potential performance issues by looking for problems that might
crop up through some other (as yet untested) code path. All of its configurable controls are contained in a
single tab (see Figure 7-6), which modifies the type and severity of potential problems that can be identified
using the mechanism:

Figure 7-6 Static Analysis Data Source - Settings

1

2

3

4

1. Target Selection— These options allow you to narrow down the area of memory examined by Shark.

 ■ Application— Looks for potential performance issues in the main text segment of the target process

 ■ Frameworks— Looks for potential performance issues in the frameworks that are dynamically loaded
by the target process.

 ■ Dyld Stubs— Looks for any potential performance or behavior anomalies in the glue code inserted
into the binary by the link phase of application building.

2. Analysis Options— These allow you to enable or disable analysis.

 ■ Browse Functions— Gives each function in the text image of a process a reference count of one. This
allows you to browse all of the functions of a given process with Shark’s code browser. No analysis
(or problem weighting) is performed.

 ■ Look For Problems — search all functions in the text image of a process for problems of at least the
level of severity specified by the Problem Severity slider. Any address with a problem instruction or
code is given a reference count equivalent to its severity.

Static Analysis Data Source PlugIn Editor 177
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

3. Problem Severity Slider— This slider acts as a filter, adjusting the minimum “importance” of problems
to report using a predefined problem weighting built into Shark. The further to the right the slider, the
less output is generated, as more and more potential problems are ignored because their “importance”
is not high enough.

4. Processor Settings— Shark needs to know which model of processor is your target before it can examine
code and find potential problems. Separate menus are provided for PowerPC and Intel processors because
it can analyze for one model of each processor family simultaneously.

 ■ PowerPC Model— Selects the PowerPC model to use when searching for and assigning problem
severities .

 ■ Intel Model— Selects the Intel model to use when searching for and assigning problem severities .

Java Trace Data Source PlugIn Editor

The Java Trace data source supports three types of Java tracing: Time, Alloc, and Method. All of these have
default configurations described in “Java Tracing Techniques” (page 102). These types of tracing only work
on a single Java process at a time, as there is no systemwide Java tracing. The controls on the tab (see Figure
7-7) determine what type of Java Tracing to perform, and the time between samples for a Java Time Trace.

Figure 7-7 Java Trace Data Source - Sampling Settings

1
2

1. Trace Type PopUp Menu— Chooses one of the four types of Java tracing available:

 ■ Timed Samples— Selects the Java Time Trace mode. This is similar to a regular Time Profile. It
periodically stops the Java process and takes samples of the running threads.

 ■ Memory Allocations— Selects the Java Alloc Trace mode. Memory allocations and the sizes of the
objects allocated are recorded.

 ■ Method Trace— This type of Java tracing is still under development, and should not be used yet.

 ■ Call Trace— Selects the Java Call Trace mode. This records each entry into every method during the
execution of your program. Hence, this is an exact trace of the methods called (within the limitations
of the Java VM).

2. Interval field— Enter the time between samples here, for the Timed Samples mode.

178 Java Trace Data Source PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Sampler Data Source PlugIn Editor

The Sampler data source provides the same functionality as the separate Sampler application and
command-line tool. It is not used for any of the default configurations provided with Shark, as most of its
functionality has been superseded by features of the much more sophisticated “Timed Samples and Counters”
PlugIn. All configurable features can be modified on a single tab (see Figure 7-8), which adjusts basic timing
parameters:

Figure 7-8 Sampler Data Source - Settings

1
2

3
4

1. Sample Interval— Determines the sampling rate. The interval is a time period (10 ms default).

2. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.

3. Time Limit— The maximum amount of time to record samples.

4. Sample Limit — The maximum number of samples to record. Specifying a maximum of N samples will
result in at most N samples being taken, even on a multi-processor system, so this should be scaled up
as larger systems are sampled.

System Trace Data Source PlugIn Editor

This data source collects data for the System Trace default configuration, described in “System Tracing” (page
59). All configurable features can be modified on a single tab (see Figure 7-9), which adjusts basic timing
parameters:

Sampler Data Source PlugIn Editor 179
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Figure 7-9 System Trace Data Source - Settings

1
2

3
4

5

1. Sample Limit — The maximum number of samples to record. Specifying a maximum of N samples will
result in at most N samples being taken, even on a multi-processor system, so this should be scaled up
as larger systems are sampled. On the other hand, you may need to reduce the sample limit if Shark runs
out of memory when you attempt to start a system trace, because it must be able to allocate a buffer in
RAM large enough to hold this number of samples. When the sample limit is reached, data collection
automatically stops, unless the Windowed Time Facility is enabled (see below). The Sample Limit is always
enforced, and cannot be disabled.

2. Time Limit— The maximum amount of time to record samples. This is ignored if Windowed Time Facility
is enabled, or if Sample Limit is reached before the time limit expires.

3. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.

4. Record Callstacks— When enabled, Shark will collect the function backtrace along with the program
counter value for each sample. This should normally be enabled, but can be disabled if you need to
record longer traces with a limited amount of memory or if the performance impact of recording the
callstacks is too high.

5. Windowed Time Facility— If enabled, Shark will collect samples until you explicitly stop it. However, it
will only store the last N samples, where N is the number entered into the Sample Limit field. This mode
is also described in “Windowed Time Facility (WTF)” (page 118).

All Thread States Data Source PlugIn Editor

This data source collects data for the Time Profile (All Thread States) default configuration, described in “Time
Profile (All Thread States)” (page 91), which samples the callstacks of all threads on the system simultaneously,
whether they are running or blocked. All configurable features can be modified on a single tab (see Figure
7-10), which adjusts basic timing parameters:

180 All Thread States Data Source PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Figure 7-10 All Thread States Data Source - Settings

1
2

3
4

5
6

1. Sample Interval— Determine the trigger for taking a sample. The interval is a time period (10 ms default).

2. Start Delay— Amount of time to wait after the user selects “Start” before data collection actually begins.

3. Time Limit— The maximum amount of time to record samples. This is ignored if Sample Limit is enabled
and reached before the time limit expires.

4. Sample Limit — The maximum number of samples to record. Specifying a maximum of N samples will
result in at most N samples being taken, even on a multi-processor system, so this should be scaled up
as larger systems are sampled. When the sample limit is reached, data collection automatically stops.
This is ignored if the Time Limit is enabled and expires first.

5. Prefer User Callstacks— When enabled, Shark will ignore and discard any samples from threads running
exclusively in the kernel. This can eliminate spurious samples from places such as idle threads and
interrupt handlers, if your program is not affected by these.

6. Trim Supervisor Callstacks— When enabled, Shark will automatically trim the recorded callstacks for
threads calling into the kernel down to the kernel entry points, and discarding the parts of the stack
from within the kernel itself. These shortened stacks are usually sufficient, since most performance
problems in your programs can be debugged without knowing about how the kernel is running internally.
You just need to know how and when your code is blocking, and not how Mac OS X is actually processing
the blocking operation itself.

Analysis and Viewer PlugIn Summary

All Data Source PlugIns include configuration editors. However, most of the analysis and viewer editors do
not. While you generally will not need to spend much time worrying about these plugins during the
configuration process, you will still need to enable or disable the correct PlugIns in your configuration in
order to be able to see your results in the way you expect. The lists in this section give you an overview of
when to enable or disable various PlugIns.

There are only a few analysis PlugIns. They just need to be matched to the data source and viewer PlugIns
used before and after them, since they connect these PlugIns together:

Analysis and Viewer PlugIn Summary 181
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

 ■ Standard Profile and Counters— This should be enabled for all configurations except ones that use
“System Trace” or “Timed Samples and Counters” configurations that only use the “Counter Spreadsheet”
viewer.

 ■ Counter Spreadsheet— This can only be used with the “Timed Samples and Counters” data source and
the matching “Counter Spreadsheet” viewer. Unlike the rest of the analysis and viewer PlugIns, it actually
has an editor for configuring a preset list of “shortcut equations.” See “Counter Spreadsheet Analysis
PlugIn Editor” (page 182), below, for details.

 ■ System Trace— This can only be used with the “System Trace” data source and any of the four “System
Trace” viewers.

There are several viewer PlugIns. When these are enabled, the matching tabs will appear across the top of
any session windows made with these configurations, in the order that the configurations are listed in the
Configuration Editor. Like the analysis PlugIns, you can only enable these usefully when other PlugIns are also
enabled, as we note below.

 ■ Standard Profile Browser— This is the standard tabular browser view of symbols and sample counts
used by most configurations, as is described in “Profile Browser” (page 32). To use it, you need to enable
the “Standard Profile and Counters” analysis PlugIn.

 ■ Callstack & Counters Chart— This is the the Chart View used by many configurations to graphically
display the callstacks of samples over time, as is described in “Chart View ” (page 39). To use it, you need
to enable the “Standard Profile and Counters” analysis PlugIn.

 ■ Counter Spreadsheet— This presents the counter spreadsheet view described in “Timed Counters: The
Performance Counter Spreadsheet” (page 104). To use it, you must have the “Timed Samples and Counters”
data source enabled and the “Counter Spreadsheet” analysis PlugIn enabled.

 ■ System Trace: Summary— This can only be used with the “System Trace” data source and analysis
PlugIns. It displays the Summary tab used by System Trace and described in “Summary View
In-depth” (page 62).

 ■ System Trace: Trace— This can only be used with the “System Trace” data source and analysis PlugIns.
It displays the Trace tab used by System Trace and described in “Trace View In-depth” (page 68).

 ■ System Trace: Timeline— This can only be used with the “System Trace” data source and analysis PlugIns.
It displays the Timeline tab used by System Trace and described in “Timeline View In-depth” (page 72).

 ■ System Trace: Raw— This can only be used with the “System Trace” data source and analysis PlugIns.
It displays raw and unprocessed samples recorded by System Trace, and is normally not used by end
users.

Counter Spreadsheet Analysis PlugIn Editor

When PMCs are active during sampling, this analysis plugin can be enabled. The controls on this editor allow
you to create new results equations called shortcuts. The shortcuts will show up in the counter spreadsheet
as extra columns of data that you can plot in the counter spreadsheet’s chart view. With these shortcuts, you
can effectively create new types of results data that use the event counts from the sampling to derive new
information about the way the event counts may relate to each other, without forcing you to first export the
data into another application, such as a spreadsheet. These derivative results can then be viewed just as if
they were any other bit of “raw” counter data sampled by Shark.

182 Counter Spreadsheet Analysis PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Using the Editor

When using the editor, you will first be presented with the view shown in Figure 7-11:

Figure 7-11 Counter Spreadsheet Analysis

1

2
3 4

This view contains the following constituent parts:

1. PMC Sumary Table – This table summarizes all the performance counters (PMCs) that are currently
selected and enabled in the Timed Samples and Counters data source.

 ■ PMC column— This is a short description of the counter and the device in which this performance
monitor counter is found.

 ■ Mode column— The counter’s current mode. This is typically counter, because unused and trigger
PMCs are filtered out and not listed in this table.

 ■ Symbol column— This display’s the counter’s term. This is the algebraic symbol that represents the
counter in the shortcut equations .

 ■ PMCDescription column— The name of the event type currently being counted by the selected PMC,
which is also used as the header for the results column for this PMC in the Counter Spreadsheet.

2. Shortcut Equation Table – This table will list any equations that you have defined to generate extra
results in the counter spreadsheet viewer. You can edit the names of the shortcut equations in the left
column, and their formulas in the right.

3. Add Button – Creates a new shortcut equation.

4. Delete Button– Erases the existing shortcut equation that you are currently editing.

Counter Spreadsheet Analysis PlugIn Editor 183
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

If you decide that you would like to combine the existing counter results into a new, derivative result, then
simply click the Add button. A new line will be added to the Shortcut Equation Table, where you can type a
name in the left column and the equation itself in the right. The name can be whatever you like, but the
equation must follow a proscribed format consisting of input terms (using the notation in the table below)
combined together using basic four-function math symbols (+ for addition, - for subtraction, * for
multiplication, and / for division) and using parenthesis to order the operations, if necessary. You may also
include numeric constants at any point in an equation. These are most often used when you need to convert
between different types of units.

Once created, each shortcut equation is applied to each row of results (i.e. on a per-sample basis). Shark adds
a new column titled with the shortcut name to its “spreadsheet” of counter results in order to hold the newly
calculated values.

DescriptionShortcut
Equation
Terms

Represents processor-X, counter-Y. For example: p2c1 is the term that represents counter
#1 on processor #2.

X = CPU number, numbered 1, 2, 3, ...

Y = PMC number, numbered 1, 2, 3, ...

pXcY

Represents a summation of results from all processors on counter-Y. For example: pNc1 is
the term that represents event count samples for every active processor’s counter #1, all
added together. You could get the same effect with an equation of your own like
(p1c1+p2c1+p3c1+p4c1), but this would only work correctly on a four processor system.
On a two processor system, it would fail, since processors 3 and 4 do not exist, while on
an eight processor system it would get incorrect results because it would miss results from
processors 5–8.

Y = PMC number, numbered 1, 2, 3, ...

pNcY

Represents memory Controller-X, counter-Y. For example: m1c1 is the term that represents
counter #1 on memory controller #1.

X = Memory controller number, numbered 1, 2, 3, ... (At present, there are no Macs with
more than one memory controller.)

Y = PMC number, numbered 1, 2, 3, ...

mXcY

Represents operating System-X, counter-Y. For example: o1c1 is the term that represents
counter #1 in operating system image #1.

X = OS image number, numbered 1, 2, 3, ... (At present, there are no Macs with multiple
operating system images.)

Y = PMC number, numbered 1, 2, 3, ...

oXcY

Represents apple Processor Interface-X, counter-Y. For example: a1c1 is the term that
represents counter #1 in API #1.

X = Apple Processor Interface (API) number, numbered 1, 2, 3, ... (At present, there are no
Macs with multiple APIs.)

Y = PMC number, numbered 1, 2, 3, ...

aXcY

184 Counter Spreadsheet Analysis PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

DescriptionShortcut
Equation
Terms

Represents timebase Register in core X. For example: tb1 is the term that represents the
timebase register in core #1.

X = Core to take the timebase from, numbered 1, 2, 3, ...

tbX

Represents equation-X . For example: eq01 is the term that represents the result already
calculated by the first shortcut equation in the results table. In this way, new equations
can be built using results already calculated.

eqX

Spreadsheet Configuration Example

Because this editor is very flexible and powerful, an example can be helpful to illustrate how it might be
used. Starting with a predefined config, we will add some performance counter events, and activate the
Performance Counter Spreadsheet plugins. Last, we will add some shortcut equations to the analysis.

Select the configuration named “Processor Bandwidth (Intel Core 2)” (Figure 7-12).

Figure 7-12 Choosing a counter-based starting configuration

Counter Spreadsheet Analysis PlugIn Editor 185
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Click the Duplicate button. Change the name of the new configuration to be “Core CPI (Intel Core 2).”

Make sure that “Simple” is selected in the Viewpopup. Now click the Counters tab in the Config Editor window.
Add the following two performance counter events to the profile config:

1. Find the entry in the performance counter event list that reads “CPU_CLK_UNHALTED.CORE.” Select
“Counter” in the Mode column. The event name will change color (blue) to indicate that the selected
event is to be used as a counter.

2. Next search the list by typing “INST” into the search field, as is shown in Figure 7-13. Select the
“INST_RETIRED” entry and change the mode to “Counter” as with the first event.

Figure 7-13 Enabling two performance counters

Click on the Counter Spreadsheet line in the list of PlugIns to see the Performance Counter Spreadsheet. You
will see the editor described previously in “Using the Editor” (page 183). To add a new equation to the Shortcut
Equation table click the Addbutton. Enter a shortcut name (e.g. “CPI” – this equation will compute the average
number of CPU cycles per instruction for each sample).

186 Counter Spreadsheet Analysis PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

Next, enter the equation pNc3/pNc2, as is shown in Figure 7-14. This will automatically calculate the number
of cycles per completed instruction, or CPI, and allow you to display it alongside the “raw” counts of CPU
cycles, instructions completed, and the bus bandwidths already calculated by the original “Processor
Bandwidth” configuration.

Figure 7-14 Performance Spreadsheet: Shortcut Equation

Counter Spreadsheet Analysis PlugIn Editor 187
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

188 Counter Spreadsheet Analysis PlugIn Editor
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Custom Configurations

The different CPUs and North bridge chipsets available in Macintosh systems have widely varying performance
monitoring capabilities. Because there are such a wide variety of counters and ways in which they can be
combined to get useful information, the default configurations supplied with each version of Shark can only
scratch the surface of the immense variety of possible configurations. As a result, this is one of the main areas
where building custom Shark configurations can be helpful — but for the same reason it is also one of the
most complex aspects of Shark configuration.

Above and beyond its basic, system-wide sampling functionality, Shark’s main “Timed Samples and Counters”
data source offers access to this rich selection of performance counters. Its basic sampling configuration
options were already covered briefly in “Simple Timed Samples and Counters Config Editor” (page 174).
However, there are many more options available in Advanced mode of the configuration editor (see “The
Config Editor” (page 171) for how to get here), where multiple separate tabs provide access to all of the
settings that the PlugIn has. Depending upon factors such as the underlying hardware capabilities, the
number of tabs can vary. In general, Shark will present the advanced Sampling tab, one to four processor
and/or North bridge tab(s), and the MacOS performance counter tab. The “processor” tab(s) allow configuration
of processor performance counters, and are titled with the make and model of the processor. For most
processors, all counter configuration fits in a single tab, but in the case of the PowerPC 970 CPU there are so
many settings that a second IMC tab is also added. Finally, if the North bridge chipset in the system has
hardware performance counters, then there will be one or two tab(s) titled with the model of the chipset.

This chapter describes how you can configure the wide variety of hardware counters using the customized
controls available in these configuration editor panes. It will start by describing the advanced data source
PlugIn settings available on the most modern Macs and work through describing the PlugIn tabs supporting
the older systems’ CPUs and North bridge performance monitor counters (PMCs), in detail.

Configuring the Sampling Technique: The Sampling Tab

The Sampling tab is always the first tab presented when one chooses to edit the “Timed Samples and Counters”
data source in “Advanced” mode. This tab controls how to start and stop sampling, and when samples are
taken. The remainder of this section discusses the various features of the tab.

Once you have decided which counters you want to measure, and thought a bit about how you might want
to control sampling, there are several configuration steps that must be performed using the controls on the
Sampling tab, illustrated in Figure 8-1.

Configuring the Sampling Technique: The Sampling Tab 189
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-1 Timed Samples & Counters Data Source - Advanced Sampling Tab

1. Sampling Control— First, you must choose ways to start and stop sampling using the options at the
top of the configuration controls. These options are essentially identical to the basic options used to
control “Timed Samples and Counters.”

 ■ WTF Mode— If enabled, Shark will collect samples until you explicitly stop it. However, it will only
store the last N samples, where N is the number entered into the sample history field (10,000 by
default). This mode is also described in “Windowed Time Facility (WTF)” (page 118).

 ■ TimeLimit— The maximum amount of time to record samples. This is ignored if WTF mode is enabled.

 ■ Start Delay— Amount of time to wait after the user selects “Start” before data collection actually
begins. This helps prevent Shark from sampling itself.

 ■ Sample Limit— Sets the maximum number of samples to record. Specifying a maximum ofN samples
will result in at most N samples being taken on a uniprocessor machine or C*N samples taken on a
multiprocessor system with C processors. This prevents the sample buffers from growing too large
in case you happen to choose a combination of a large time limit and high sampling rate.

190 Configuring the Sampling Technique: The Sampling Tab
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

2. Sample Trigger— Next, choose when you want samples to be taken between the “start” and “stop”
events using the options in the middle of the configuration controls. There are a variety of ways, one of
which is unique to performance monitor work.

 ■ Timed Sampling— The most common way to use counters is to record the values of all counters
periodically, when a timer fires. This produces a distribution of events over time, much like a Time
Profile. Because the events are counted for the entire time between sample points, and not just at
the sample points, they are only approximately correlated with the program counter information
sampled by Shark.

 ■ Event-Triggered Sampling— An alternative is to let performance events trigger sampling themselves.
As a result, this is only possible when performance monitoring counters are used. One counter at a
time can be set to a special Trigger mode which initiates sampling when the event count reaches a
preset Sample Interval. If the event occurs frequently, many samples will be taken, while if it occurs
infrequently then only a few samples will be taken. There are pros and cons to this mode. First, you
can only trigger on one event type at a time. However, each sample point will be taken immediately
after the event occurs, so you can accurately determine which lines of code from your program are
causing the events. Hence, this mode is most helpful when you are trying to determine which code
is triggering a particular event.

 ■ Programmatic Sampling— A third alternative is to let your program determine when to take a sample.
Your program can link to the CHUD framework and call chudRecordUserSample, which will force a
performance counter sample to be taken. In this way, you will be able to see events at a rate that is
precisely controlled by you. This is useful when you want to examine issues such as how your
program’s behavior varies over time, from one loop iteration to another.

Once you have chosen a technique for controlling the sampling, just check the appropriate box in this
section of the tab and fill out any necessary parameters.

 ■ Time— A sample is taken every T time units (1 millisecond, by default). This is the same control used
ot vary the sampling frequency of a standard time profile.

 ■ CPU PMC Events— A sample is taken every N CPU PMC events from the selected CPU PMC. Only one
trigger PMC can be selected at a time. In a multi-processor system, any CPU can trigger the collection
for all CPUs.

 ■ OS PMC Events— A sample is taken every N OS performance monitor counter (PMC) events from a
selected OS PMC. Only one trigger PMC can be selected at a time.

 ■ chudRecordUserSample— A sample is recorded for every call to the
CHUD.frameworkchudRecordUserSample() function. This is analogous to using signposts (“Sign
Posts ” (page 80)) with system trace.

Finally, once you have chosen a sampling mode, there is one additional variation that can be applied to
the nominal sampling rate. The Fuzz feature, when enabled, randomizes the sampling interval by ±N%
around the specified nominal value. For example, if timer sampling is selected, the sampling period is
1ms and Fuzz is set to 5%, the actual sampling period will vary randomly between 0.95ms and 1.05ms.
Fuzz helps prevent harmonic relationships between the sampling interval and execution behavior. You
should use this if your code performs the same work repeatedly, with very little variation in its patterns.

3. Samples—Down at the bottom of the tab are a couple of “miscellaneous” options.

 ■ Record Callstacks— When enabled, Shark will collect the function backtrace along with the program
counter value for each sample. This is used by default, but can be disabled if you need to record an
extremely large number of samples into Shark’s kernel buffers or if the callstack recording is impacting
performance (a possibility if sample rates are very high).

Configuring the Sampling Technique: The Sampling Tab 191
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

 ■ Record Final Sample— By default, when sampling is stopped all collection is terminated immediately.
In a multiprocessor system, this can cause the last sample from some processors to be dropped if
they are a little bit behind the “main” processor and therefore have not quite completed a time
interval or reached an interrupt state when Shark is stopped. This setting will force collection of the
last sample from all processors, even if it is not a “full” sample.

4. Device Selection— Finally, below the tab itself are menus that let you choose a device to target. While
this will often simply be the processor and/or North bridge on your own machine, Shark also allows you
to choose other processors that aren’t even installed on your machine. This latter option is quite useful
if you are making measurements of a different machine over a network “Network/iPhone Profiling” (page
128).

 ■ CPU PopUp Menu— This selects the processor type to configure. By default, the CPU in the running
system is selected. If any CPU performance counters are enabled (in either Counter or Trigger mode,
as described in “Counter Control” (page 192)), then the configuration will only be compatible with
machines that have the specified CPU.

 ■ North Bridge PopUp Menu— This selects the memory controller type to configure. By default, the
North bridge in the running system is selected, or “none” if no North bridge counters are available
in the system. If any memory controller performance counters are enabled (in Counter mode, as
described in “Counter Control” (page 192)), then the configuration will only be compatible with
machines that have the specified memory controller. Please note that currently there are no supported
North bridge performance counters in Intel-based Macs.

Changing either of these settings will not have a visible effect on the “Sampling” tab. However, both will
change the contents of the relevant hardware tab(s), the name of those tab(s) will update immediately,
and the controls for setting up events will change if one of the hardware tabs is visible.

Common Elements in Performance Counter Configuration Tabs

All of the various performance counter configuration tabs have many unique elements, as the various
processors and North bridges supported by MacOS X are significantly different from each other in many
ways. However, Shark uses several common interfaces throughout these various tabs in order to make it
reasonably easy for you to work with more than one variety of Macintosh. To avoid repeating these descriptions
for every tab, they are discussed here.

Counter Control

Every performance counter is controlled with a consistent set of three controls, like those illustrated below
in Figure 8-2. This section describes how they work, for any variety of hardware.

192 Common Elements in Performance Counter Configuration Tabs
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-2 A typical set of performance counter controls

1
2

3

There are three controls associated with every performance counter

1. Enable Button— This button turns the counter on and off. If it is on, then it further controls whether
the counter is used as the event trigger source or not. As a result, every time it is pressed it will toggle
among three different states:

 ■ Unused— The counter will not count, and is ignored by Shark.

 ■ Counter— The counter counts the event selected using the Event List menu. Its contents will be
recorded every time that Shark takes a sample.

 ■ Trigger— The counter is enabled as the sampling trigger. Whenever it has counted the number of
events listed in the Sample Interval box, it will cause Shark to record another sample. Only one
counter at a time can be in this mode; you must switch any previous counter to use one of the other
two modes before it is possible to select this mode with a second counter. Also, note that this mode
is not available on the counters in all types of Macintosh hardware (particularly older processors
and North bridges).

2. Event List— This list displays the names of all events that can be counted by this counter. It may also
include some “reserved” event types that can be chosen, but are not actually implemented on the
hardware in any useful way. For most types of hardware, these lists are constant. However, in the case
of the PowerPC 970, the event lists can change depending upon the settings of the other controls in the
tab. See “PPC 970 (G5) Performance Counter Event List” (page 263) for more details.

3. Sample Interval— This is the number of events that must occur before this PMC will trigger sampling.
It is ignored unless this particular counter has been set to Trigger mode using the Enable Button. If a
counter cannot support Trigger mode, then this box will not be present.

Privilege Level Filtering

With the various performance counters, it is often possible to filter events such that only events from user-level
code or only events from privileged (supervisor mode) are counted. Shark disables this option if it is not
applicable to the currently selected sampling trigger.

 ■ Any — Record all performance counter events of this type.

 ■ User— Record performance counter events of this type only when running user-level code.

 ■ Supervisor— Record performance counter events of this type only when running supervisor-level code
in the OS kernel.

Common Elements in Performance Counter Configuration Tabs 193
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Process Marking

With the various performance counters, Shark can filter events such that only events from a user-defined
selection of “marked” processes are actually counted. In this way, you could limit counting to events from
your own application’s process, for example, while ignoring all others. Alternatively, a user may choose to
record events from all “unmarked” processes. This is a good choice when you want to tell Shark to ignore a
few processes — probably background ones like daemons or the Finder — while recording events from
everything else.

 ■ Any— Record all events, no matter when they occur

 ■ Marked— Record only events that occur in “marked” processes or threads that you have selected.

 ■ Unmarked— Record only events that occur in “unmarked” processes or threads.

You can mark processes with Shark’s Process Marker (Figure 8-3). The Process Marker can be opened via the
SamplingMark Process menu item. Shark disables this menu item for timer sampling, because the marked bit
is ignored in that case.

Figure 8-3 Process Marker

It is also possible to enable thread marking programmatically, using the chudMarkPID(pid_t pid, int
markflag) call (in the CHUD framework) to set the marked flag to a value of TRUE (markflag = 1) or FALSE
(markflag = 0) for any arbitrary process.

While this mechanism is powerful, it does have some limitations imposed on it by how the OS internally
tracks the “marked” state of each thread. New threads created by a process after you have marked it will not
be marked; you will need to mark the process again to make sure all of the newly created threads are marked.
In addition, the marked bit is not copied to supervisor space during system calls or other supervisor state
code done on behalf of the marked process, so if you choose to record “marked” events only you will only
see events triggered by your user-level code.

194 Common Elements in Performance Counter Configuration Tabs
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

MacOS X OS-Level Counters Configuration

This tab, illustrated in Figure 8-4, is always the rightmost tab in the editor. It provides access to a variety of
counters for operating system events, such as page faults. These OS counters support trigger mode, privilege
level filtering, and marked thread filtering on all Macintosh platforms. However, all OS performance counters
must share the same settings for privilege level and marked thread filtering. The events counted by the
operating system’s counters can be divided into the following categories:

 ■ Virtual Memory: Events such as page faults, zero fill faults, copy-on-write faults, and page cache hits

 ■ System Calls: Transfers into the kernel requested by user code, divided up into BSD and Mach syscalls

 ■ Scheduler Events: Events such as context switches, “thread ready” events, and stack handoffs

 ■ Disk I/O Events: Disk reads and writes, with optional breakdown by type (data, disk control metadata,
VM page-in, and VM page-out) and timing (synchronous and asynchronous)

No unique controls are needed to control these counters; for information on all of the controls, see “Counter
Control” (page 192).

MacOS X OS-Level Counters Configuration 195
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-4 MacOS X Performance Counters Configuration

Intel CPU Performance Counter Configuration

This section describes how you can make custom configurations for Macs equipped with Intel processors.
Macs equipped with Intel Core processors have access to two fully programmable performance counters,
and Macs equipped with Intel Core 2 processors have an additional three fixed-purpose counters. The two
families can both count a similar but not identical list of events on the programmable processors. Full event
listings are provided in “Intel Core Performance Counter Event List” (page 229) and “Intel Core 2 Performance
Counter Event List” (page 235) for the Core and Core 2, respectively.

Figure 8-5 shows the single configuration tab for the Intel Core 2 processor (the one for the Core is virtually
identical, but lacks PMCs 3–5). For the most part, it uses the standard controls from “Counter Control” (page
192). A nice feature of these cores is that control over user/supervisor event counting selection is provided
independently for each counter on these cores. On the other hand, “marked” threads and processes cannot
be used.

196 Intel CPU Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

One unique control is necessary with these cores: the Event Mask Bits control. This control, which is used
more extensively in the Core 2 than in the Core processor, acts to fine-tune the type of events counted. For
example, instead of just counting all line fetches from the L2 cache, you can use these bits to only count line
fetches of lines in particular states (such as “exclusive,” or only in this L2 cache). The selection of bits available
and their behavior varies depending upon the type of event being counted. The description of the effect
that mask bits will have on the event counting is described in a tooltip both on the event name, as you are
choosing among the various event types, and also in a tooltip that appears if you wave your mouse cursor
over each of the bit-names in the mask list. Any bit in the list labeled *Reserved* should not be enabled. A
brief summary of which bits are active for any particular event is included in the event lists in “Intel Core
Performance Counter Event List” (page 229) and “Intel Core 2 Performance Counter Event List” (page 235).

Figure 8-5 Intel Core 2 Configuration Tab

PowerPC G3/G4/G4+ CPU Performance Counter Configuration

This section describes how you can make custom configurations for Macs equipped with PowerPC G3, G4,
and G4+ processors. Macs equipped with these processors have access to four (G3, G4) or six (G4+) fully
programmable performance counters. The list of available events varies significantly from processor to
processor, since many new event types were added with each generation of PowerPC chips. Full event listings

PowerPC G3/G4/G4+ CPU Performance Counter Configuration 197
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

are provided in “PPC 750 (G3) Performance Counter Event List” (page 245), “PPC 7400 (G4) Performance
Counter Event List” (page 247), and “PPC 7450 (G4+) Performance Counter Event List” (page 253) for the G3,
G4, and G4+ processor cores, respectively.

Figure 8-6 shows the single configuration tab for the G4+ processor (the one for the G3 and G4 is virtually
identical, but lacks PMCs 5–6). For the most part, it uses the standard controls from “Counter Control” (page
192). Both user/supervisor event counting selection and “marked” threads and processes can be used, but all
counters must use the same settings at once.

Three relatively minor additional controls are provided with all of these cores, to adjust features specific to
these processors. The three controls are numbered on Figure 8-6, and are:

1. Threshold: This sets a lower limit on the number of processor cycles that a wide variety of stall events
must take before they are actually recorded, in case you want to filter out short stalls and thereby focus
in only on the most lengthy and problematic stalls.

2. TB Select: This is the divider used for timebase events that cause processor exceptions, and selects from
four different division ratios.

3. Branch Folding: PowerPC G3 and G4 CPUs have a feature that allows them to coalesce multiple branch
instructions into one instruction, instead of issuing multiple branch instructions. When this feature is
enabled (the default) performance events counting branch instructions and predictions can be inaccurate.
Hence, for best results when counting performance events dealing with branch instructions, you should
usually disable this feature. See your processor’s User Manual for more details.

Warning:If you leave branch folding disabled and exit Shark, branch folding will remain disabled. While
this will not cause any correctness problems or crashes, it can adversely affect performance.

198 PowerPC G3/G4/G4+ CPU Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-6 PowerPC G4+ Configuration Tab (G3 and G4 are similar)

PowerPC G5 (970) Performance Counter Configuration

This section describes how you can make custom configurations for Macs equipped with PowerPC G5 (970)
processors. Macs equipped with these processors have access to eight fully programmable performance
counters that can count an incredible number of different performance events, as listed in “PPC 970 (G5)
Performance Counter Event List” (page 263). Because there are so many different types of events, the G5 uses
a unique system of multiplexers to pre-filter many types of events before they reach the event counters.
Depending upon the settings supplied for these various multiplexers, it is possible to enable vastly different
selections of events in the performance counter event menus.

Figure 8-7 shows the first of two configuration tabs used by the G5 processor’s configuration control. The
top half and lower left corner just use standard controls from “Counter Control” (page 192). Both user/supervisor
event counting selection and “marked” threads and processes can be used, but all counters must use the
same settings at once.

In addition, several additional controls are provided. Most are multiplexer controls to switch the various event
pre-filtering multiplexers, but the last two adjust features specific to these processors. These controls are
numbered on Figure 8-7, and are:

1. TTM0 Event Selector: This first-stage mux selects collections of events from different processor functional
units for all four second-stage muxes (FPU = floating point unit, ISU = instruction sequencer unit, IFU =
instruction fetch unit, and VMX = Altivec processing unit).

PowerPC G5 (970) Performance Counter Configuration 199
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

2. TTM1 Event Selector: This first-stage mux selects collections of events from different processor functional
units for all four second-stage muxes (IDU = instruction dispatch unit, ISU = instruction sequencer unit,
and GPS = storage subsystem).

3. TTM3 Event Selector: This stage 1 mux selects collections of events from load/store unit #1 (LSU1), in
four different patterns for second-stage muxes 2 and 3 only (2/3 = lane 2 & 3 both “upper” LSU1 events,
2/7 = lane 2 “upper” & 3 “lower” LSU1 events, 6/3 = lane 2 “lower” & 3 “upper” LSU1 events, 6/7 = lane
2 & 3 both “lower” LSU1 events).

4. Even Lane Event Selectors: These two second-stage muxes select inputs for performance counters 1,
2, 5, and 6 from among the different first-stage muxes or directly from the load/store units (LSU0/LSU1).

5. Odd Lane Event Selectors: These two second-stage muxes select inputs for performance counters 3, 4,
7, and 8 from among the different first-stage muxes or directly from the load/store units (LSU0/LSU1).

6. Speculative Event Selector: This enables speculative event recording and performance counters 5 and/or
7. A full discussion of these counts is beyond the scope of this document. See the PowerPC 970 Docu-
mentation for more information.

7. Threshold: This sets a lower limit on the number of processor cycles that a wide variety of stall events
must take before they are actually recorded, in case you want to filter out short stalls and thereby focus
in only on the most lengthy and problematic stalls.

8. TB Select: This is the divider used for timebase events that cause processor exceptions, and selects from
four different division ratios. More information is available in the PowerPC 970 Documentation.

200 PowerPC G5 (970) Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970_and_970FX_Microprocessors
http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970_and_970FX_Microprocessors
http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970_and_970FX_Microprocessors

Figure 8-7 PowerPC 970 Processor Performance Counters Configuration

Figure 8-8 shows the second tab used to configure the PowerPC 970 performance counters, the IMC tab.
This tab provides access to the Instruction Fetch Unit's instruction marking and the Instruction Dispatch
Unit’s instruction sampling feature, a pair of mechanisms that allow you to count individual instruction types
as they are executed on the PowerPC 970.

The IFU instruction matching facility provides a CAM array to match PowerPC instructions by opcode or
extended opcode as they are fetched. When a PowerPC instruction is fetched from memory, the IFU instruction
matching facility compares the instruction with the opcode/extended opcode mask values in each of its CAM
array rows. If a PowerPC instruction matches one or more IMC array row masks, you may have it “mark” the
instruction in the L1 instruction cache. Thereafter, every time it is executed special performance counter
events may occur to count it. Please note that as long as an instruction resides in the L1 instruction cache,
its match bit will remain unchanged. Hence, if the match condition for an instruction changes, then the L1
instruction cache should be flushed to force the lines to be reloaded and the “match” bits to be recalculated.

PowerPC G5 (970) Performance Counter Configuration 201
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Another level of instruction matching — performed in the IDU — allows you to mark instructions (or their
constituent microinstructions, for the more complex PowerPC instructions) on the basis of some categories
related to how they interact with the PowerPC 970 pipeline, such as whether or not they are internally broken
up into microcode. Because this comes later in the processor’s pipeline, it is possible that it can override
previous IFU marking.

Due to the very flexible and complex nature of these mechanisms, it is highly recommended that you read
the pertinent sections of the PowerPC 970 Documentation, Sections 10.9 and 10.10 in the main user’s manual.

Figure 8-8 PowerPC 970 IMC (IFU) Configuration Tab

In the top part of the IMC pane are some general controls (black numbers on white):

1. Instruction Matching— This selects the type of instruction matching to setup and use.

202 PowerPC G5 (970) Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970_and_970FX_Microprocessors

 ■ None – (default) No instruction matching will take place

 ■ IFU – Use the Instruction Fetch Unit’s IMC capability.

 ■ IDU – Use the Instruction Dispatch Unit’s sampling capability.

2. IOP Marking – This pre-filter will limit the type of internal PowerPC microinstructions (IOPs) that are
matched or sampled.

 ■ All IOPs – (default) Any IOP will pass

 ■ µCode IOPs –Only IOPs resulting from microcode expansion will pass.

 ■ One Per Inst – Only pass one IOP per PowerPC instruction.

 ■ 1st IOP of ld/st – Only pass the first IOP to go to an LSU for every PowerPC load/store instruction, a
less restrictive form of the previous filter.

Below that, a variety of controls (white numbers on black) operate on either the IFU’s instruction matching
or IDU’s sampling. In Figure 8-8, the IFU instruction matching pane is shown:

1. IMC Row PopUp— There are six CAM rows that can be configured to match instructions in the IFU. Use
this to select one of the six rows to manage.

2. IMC Row Enable— Enable and disable the IMC rows with this check box.

3. IMC Match None/All Buttons— Flips the configuration bits to match no PowerPC or all PowerPC
instructions with a single button press. If you only want to match a small number of instructions, start
with “none” and enable the instructions you want, while if you want to match many then start with “all”
and knock off ones you don’t need.

4. MSR Configuration Bits— Selects instructions to match on the basis of a few large and coarse
categorizations about when they may execute (matching specific bits in the machine status register, or
MSR). In general, you will want to leave these set to “any” (asterisk), but you may optionally narrow down
the possible list by setting these to 0 or 1.

 ■ TA — (Target) Leave this set to “any” (asterisk), since it is ignored in all cases.

 ■ PR— (Privilege) Matches instructions on the basis of their privilege requirements.

 ❏ 0 — Matches only instructions executable in both user and supervisor mode.

 ❏ 1— Matches only privileged instructions executable in supervisor mode only.

 ■ FP— (Floating Point Unit Availablity) This matches instructions on the basis of whether or not they
need and FPU to be present.

 ❏ 0 — Matches only non-FPU instructions.

 ❏ 1— Matches only FPU instructions..

 ■ VMX— (Vector Unit Availability) This matches instructions on the basis of whether or not they need
an Altivec vector unit to be present.

 ❏ 0 — Matches only non-Altivec unit instructions..

 ❏ 1— Matches only Altivec unit instructions.

PowerPC G5 (970) Performance Counter Configuration 203
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

5. Major Opcode Bits— This allows you to select marked instructions on the basis of their six major opcode
bits (bits 0–5 of each PowerPC instruction). There is a column for each bit, and you can individually
control matching on the basis of each bit.

 ■ X— (default) Ignore the bit

 ■ 0— Only match if this bit is a zero

 ■ 1— Only match if this bit is a one

 ■ * (any)— Match any state.

6. Minor Opcode Bits— This allows you to select marked instructions on the basis of their eleven minor
opcode bits (bits 21–30 of each PowerPC instruction). There is a column for each bit, and you can
individually control matching on the basis of each bit. Note that you should only use these for major
opcodes 4 (Altivec instructions), 19 (branch unit operations), 31 (integer instructions), 59 (FP instructions),
and 63 (FP instructions); these bits are not used as part of the opcode by other types of instructions.

 ■ X— (default) Ignore the bit

 ■ 0— Only match if this bit is a zero

 ■ 1— Only match if this bit is a one

 ■ * (any)— Match any state.

7. Instruction Table— This allows you to see which instructions are actually being matched on the basis
of your various settings.

 ■ Mnemonic column— This lists the assembly language mnemonic for an instruction.

 ■ Major opcode column— This shows the actual major opcode for the instruction.

 ■ Minoropcode column— This shows the actual minor opcode for the instruction, or zero for instructions
that do not use the minor opcode.

 ■ Match Rows column— This shows which row(s) in the IMC are the cause of any match(es), so you
can see which ones need to be turned on or off as a result.

8. All Rows— If checked, the Instruction Table shows instructions that are matched by any of the IMC rows,
all combined together. This is usually the most useful view since it shows all instructions that will be
marked. Otherwise, only instructions that match the row currently selected in the IMC Row PopUp are
displayed.

9. All Instructions— If checked, the Instruction Table shows non-selected instructions in a grayed-out form.
Otherwise, they are completely omitted from the table.

Finally, in Figure 8-9, the IDU instruction filtering pane is shown:

1. Microinstruction Table— This allows you to see which classes of instructions are actually being matched
on the basis of your various settings.

 ■ BSFL column— This lists the BSFL (Branch instruction, instruction that will be Split, First instruction
in a dispatch group, and Last instruction in a dispatch group) bits associated with every instruction
in the L1 cache.

 ■ Classification column— This gives the name of every microinstruction class.

204 PowerPC G5 (970) Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

2. IMRMASK bits— These bits mask off an instruction’s BSFL bits before matching.

 ■ 0— AND this bit position with 0, requiring an IMRMATCH of 0 here.

 ■ 1— AND this bit position with 1, enabling full matching with the IMRMATCH bits here.

3. IMRMATCH bits— These bits select the value to match for any corresponding IMRMASK bits set to 1.

 ■ 0— Match this bit position with 0. Note that this must be 0 for any IMRMASK bit positions that equal
0, or no matches will ever occur.

 ■ 1— Match this bit position with 1. Normally only desired if the corresponding IMRMASK bit is 1, or
if you want to intentionally match nothing.

Figure 8-9 PowerPC 970 IMC (IDU) Configuration Tab

PowerPC G5 (970) Performance Counter Configuration 205
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

PowerPC North Bridge Counter Configuration

This section describes how you can make custom configurations to examine counters in some of the North
Bridge (memory interface) chips of Macs equipped with PowerPC processors, using the “Advanced”
configuration interface. Because some of the “useful” options for these counters require fairly complex
combinations of settings, we strongly suggest that you start using the “Simple” settings at first, as described
in “Simple Timed Samples and Counters Config Editor” (page 174), at least until you learn which combinations
of settings are best at producing useful information.

Memory controller counters are available on PowerPC machines with UniNorth v1.5 and later memory
controllers. Unfortunately, no equivalent exists for Intel processors. These counters do not support
event-triggered interrupts (PMI, or “trigger” mode), privilege level filtering, or marked thread/process filtering.
However, on most of the chips they do support filtering on the basis of which interface generated the
performance event (see the description of each chipset for details).

U1.5/U2 North Bridges

This section describes how you can make custom configurations for Macs equipped with the U1.5/U2 North
bridge chipset used in some PowerPC G4 Macs. Macs equipped with these North bridge chipsets have access
to four fully programmable performance counters that can record various memory system event types, as
listed in “UniNorth-2 (U1.5/2) Performance Counter Event List” (page 291).

Figure 8-10 shows the configuration tab for the U1.5/2’s configuration control. All controls for each of the
PMC are just standard controls from “Counter Control” (page 192), except for the Event Sources checkboxes
along the bottom. These allow filtering of events based on which North bridge interface is involved. These
sources are chosen via checkbox, so you can selectively look at events from all sources or only a specific
subset of sources that you choose. You may choose to enable or disable events from any of the following
interfaces:

1. CPU1–CPU2— Processor interface(s)

2. AGP— The AGP interface

3. PCI— The PCI interface

4. FireWire/Enet— The dedicated FireWire and Ethernet I/O ports

206 PowerPC North Bridge Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-10 U1.5/U2 Configuration Tab

U3 North Bridge

This section describes how you can make custom configurations for Macs equipped with the U3 North bridge
chipset used in some PowerPC G5 Macs. Macs equipped with these North bridge chipsets have access to
two sets of six fully programmable performance counters, on both the memory interface controller and the
Apple processor interface (API) controller. These can count a wide variety of different event types, as listed
in “UniNorth-3 (U3) Performance Counter Event List” (page 295), and also filter events on the basis of their
source interface and type of access.

Figure 8-11 shows the first of two configuration tabs used by the U3’s configuration control, the memory
interface configuration panel. The first line of each PMC’s controls are just standard controls from “Counter
Control” (page 192). Below this are four custom controls that may be set independently for each of the different
PMCs:

1. Access PopUp— This popup menu lets you restrict the event counting to only certain types of memory
accesses, either reads or writes.

a. None— Disables the counter.

b. Write— Only store requests to memory can increment the counter.

c. Read— Only load requests from memory can increment the counter.

d. Any — All memory requests cause a counter increment, read or write.

PowerPC North Bridge Counter Configuration 207
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

2. Divider PopUp— Because U3 PMCs are 32-bit, you may overflow a counter if you are counting
high-frequency events or are counting continuously for a long time. You can use this popup to set up
a division factor that will slow the rate of incoming events by a fixed power of 2 in order to make it more
difficult to overflow the main counter. Choices of every even power of 2 from 1 (no division) to 128
(effectively adds 7 bits to the counter) are available using this menu.

3. Page State— U3’s events involving DRAM access can be filtered on the basis of the current SDRAM page
state for the accessed DIMM. This allows you to monitor the effectiveness of different memory paging
policies, such as how long to keep a page open before closing it.

a. Open Hit— DRAM access events are counted if they hit on an open page in the addressed DIMM.
This is the most desirable case, and will generate the minimum latency because the data can be
returned immediately from the DRAM’s page cache.

b. OpenMiss— DRAM access events are counted if they miss on a currently open page in the addressed
DIMM. This is the least desirable case, because it will generate the maximum latency when the old
DRAM page is closed and then the new one is opened before data can be returned.

c. Closed— DRAM access events are counted if the addressed DIMM does not have an open page. This
is an intermediate case, because while a new page must be opened before data can be returned,
at least we do not have to wait for a previously-accessed page to be closed first.

4. Source Filter— Events can be filtered before they reach U3’s PMCs on the basis of the interface where
they originate. These sources are chosen via checkbox, so you can selectively look at events from all
sources or only a specific subset of sources that you choose. You may choose to enable or disable events
from any of the following interfaces:

a. CPU1–CPU4— Processor interface(s)

b. HT— The Hypertransport interface

c. CV, NCV— Obsolete interfaces, do not use

d. PCI— The PCI interface

e. AGP— The AGP interface

208 PowerPC North Bridge Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-11 U3 Memory Configuration Tab

Figure 8-12 shows the second of U3’s two configuration tabs, the API configuration panel. As with the memory
tab, the first line of each PMC’s controls are just standard controls from “Counter Control” (page 192). Below
this is a pair of custom controls that may be set independently for each of the different PMCs:

1. Source PopUp— The API controller chip has 51 different selectable event sources, mostly different types
of request queues within the chip. You must select one of these sources in order to count its events. To
count events from multiple sources simultaneously, you will have to use different PMCs for each source.
A full list of these sources is listed in “UniNorth-3 (U3) Performance Counter Event List” (page 295).

2. Divider PopUp— This is the same as the Divider PopUp on the memory tab.

PowerPC North Bridge Counter Configuration 209
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Figure 8-12 U3 API Configuration Tab

U4 (Kodiak) North Bridge

This section describes how you can make custom configurations for Macs equipped with the U4 (Kodiak)
North bridge chipset used in some PowerPC G5 Macs. Macs equipped with these North bridge chipsets have
access to two sets of six fully programmable performance counters, on both the memory interface controller
and the Apple processor interface (API) controller. These can count a wide variety of different event types,
as listed in “Kodiak (U4) Performance Counter Event List” (page 299), and also filter events on the basis of
their source interface and type of access.

Figure 8-13 shows the first of two configuration tabs used by the U4’s configuration control, the memory
interface configuration panel. The first line of each PMC’s controls are just standard controls from “Counter
Control” (page 192). Below this are three custom controls that may be set independently for each of the
different PMCs:

1. Access PopUp— This popup menu lets you restrict the event counting to only certain types of memory
accesses, either reads or writes.

a. None— Disables the counter.

b. Write— Only store requests to memory can increment the counter.

c. Read— Only load requests from memory can increment the counter.

d. Any — All memory requests cause a counter increment, read or write.

210 PowerPC North Bridge Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

2. Divider PopUp— Because Kodiak PMCs are 32-bit, you may overflow a counter if you are counting
high-frequency events or are counting continuously for a long time. You can use this popup to set up
a division factor that will slow the rate of incoming events by a fixed power of 2 in order to make it more
difficult to overflow the main counter. Choices of every even power of 2 from 1 (no division) to 128
(effectively adds 7 bits to the counter) are available using this menu.

3. Source Filter— Events can be filtered before they reach Kodiak’s PMCs on the basis of the interface
where they originate. These sources are chosen via checkbox, so you can selectively look at events from
all sources or only a specific subset of sources that you choose. You may choose to enable or disable
events from any of the following interfaces:

a. CPU1–CPU4— Processor interface(s)

b. HT— The Hypertransport interface

c. CPCIE— The PCIE interface (for coherent requests)

d. NCPCIE— The PCIE interface (for non-coherent requests)

Figure 8-13 U4 (Kodiak) Memory Configuration Tab

Figure 8-14 shows the second of U4’s two configuration tabs, the API configuration panel. As with the memory
tab, the first line of each PMC’s controls are just standard controls from “Counter Control” (page 192). Below
this are four custom controls that may be set independently for each of the different PMCs:

PowerPC North Bridge Counter Configuration 211
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

1. Source PopUp— The API controller chip has 33 different selectable event sources, mostly different types
of request queues within the chip. You must select one of these sources in order to count its events. To
count events from multiple sources simultaneously, you will have to use different PMCs for each source.
A full list of these sources is listed in “Kodiak (U4) Performance Counter Event List” (page 299).

2. Access PopUp— This is the same as the Access PopUp on the memory tab.

3. Divider PopUp— This is the same as the Divider PopUp on the memory tab.

4. Source Filter— This is the same as the filter on the memory tab, except that all PCIE events are grouped
together into a single source, whether or not they are coherent.

Figure 8-14 U4 (Kodiak) API Configuration Tab

ARM11 CPU Performance Counter Configuration

This section describes how you can make custom configurations for iPhone OS devices with ARM11 processors.
These devices have two identical, fully programmable performance counters plus one counter (#1) that can
record cycle counts only. Full event listings are provided in “ARM11 Performance Counter Event List” (page
303).

Figure 8-15 shows the configuration tab for the ARM11 processor. It just uses three sets of the standard PMC
controls from “Counter Control” (page 192), although each PMC also includes a “help” field that describes
what the currently-selected counter actually counts with some additional text.

212 ARM11 CPU Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Important: Currently, while you can make custom ARM counter configurations with Shark, there is no way
to load customized configuration files onto your iPhone OS device using the iPhone OS SDK. This restriction
may be relaxed in future versions of the SDK. In the meantime, send suggestions for useful configurations
to perftools-feedback@group.apple.com and we may include them in future iPhone OS SDK releases.

Figure 8-15 ARM11 Counter Configuration Tab

ARM11 CPU Performance Counter Configuration 213
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

214 ARM11 CPU Performance Counter Configuration
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Hardware Counter Configuration

Menu Reference

This section summarizes Shark’s commands, arranged by menu.

Shark

This menu contains the usual application-menu commands.

Where DescribedDescriptionShortcutCommand

See revision information for Shark.About Shark...

“Shark
Preferences” (page
23)

Edit some global Shark parameters.Cmd-,Preferences...

Hides Shark's window(s) and switches to the
next-frontmost application.

Cmd-HHide Shark

Hides all other applications' windows.Opt-Cmd-HHide Others

Restores all windows hidden with the previous two
commands.

Show All

Quits Shark.Cmd-QQuit Shark

File

This menu contains commands that control the processing of Shark’s session files. Most are fairly standard
File operations, but there are a few commands here that are unique to Shark and described further in the
sections noted below.

Where DescribedDescriptionShortcutCommand

Open a saved session.Cmd-OOpen

Contains a list of recently used saved sessions
— choose one to open it.

Open Recent

Menu Reference 215
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

Where DescribedDescriptionShortcutCommand

Close the frontmost window. If the frontmost
window is the main control window, this will
quit Shark.

Cmd-WClose

Close all session windows.Opt-Cmd-WClose All

“Session Files” (page 20)Save the frontmost session.Cmd-SSave

“Session Files” (page 20)Save the frontmost session to a new location.Shift-Cmd-SSave As...

“Session Files” (page 20)Attach a copy of the frontmost session to a
new email in your default email program.

Mail This Session

“Comparing
Sessions” (page 138)

Compare two saved sessions.Opt-Cmd-CCompare...

“Merging Sessions” (page
139)

Merge two saved sessions.Opt-Cmd-MMerge...

“Session Information
Sheet” (page 21)

Opens the Info sheet for the frontmost
session.

Cmd-IGet Info

“Manual Session
Symbolication” (page 134)

Add symbols to the frontmost session from
a symbol-rich copy of the target application
on disk.

Opt-Cmd-SSymbolicate...

“Session Report” (page
22)

Create a plain text summary of highlights
from the frontmost session.

Cmd-JGenerate Report...

Configure printers and print settings.Shift-Cmd-PPage Setup...

Print the frontmost window.Cmd-PPrint...

Edit

All items in this menu are standard text editing items. They work generally as expected when you are editing
or examining text in Shark, and the cut/copy/paste commands will also work with some higher-level objects.

DescriptionShortcutCommand

Undo the previous action.Cmd-ZUndo

Redo the next action.Shift-Cmd-ZRedo

Cut the selected text, placing it on the clipboard.Cmd-XCut

Copy the selected text to the clipboard.Cmd-CCopy

Paste the contents of the clipboard.Cmd-VPaste

216 Menu Reference
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

DescriptionShortcutCommand

Paste the contents of the clipboard using the same style
as existing text.

Opt-Shift-Cmd-VPaste and Match Style

Select all of whatever was most recently selected
(samples, text, etc.).

Cmd-ASelect All

Find

Open the Find text window.Cmd-FFind...

Find the next occurrence of the text search pattern.Cmd-GFind Next

Find the previous occurrence of the text search pattern.Shift-Cmd-GFind Previous

Spelling

Open the Spelling and Grammar palette.Cmd-:Show Spelling and Grammar

Check the spelling within the current text field, opening
the Spelling and Grammar palette to highlight suspected
errors.

Cmd-;Check Spelling

If ticked, spelling is checked as it is typed. Suspected
errors are underlined.

Check Spelling while Typing

Speech

Start speaking the selected text, if any, or else the
contents of the current text field.

Start Speaking

Stop speaking.Stop Speaking

Open the character palette, to access special characters
and symbols.

Opt-Cmd-TSpecial Characters...

Format

All items in this menu are standard text processing commands. Since it is generally not possible to apply
custom formats to most text within Shark, this menu is seldom used.

DescriptionShortcutCommand

Font

Show the Font palette.Cmd-TShow Fonts

Toggle the bold attribute of the selected text.Cmd-BBold

Toggle the italic attribute of the selected text.Italic

Toggle the underline attribute of the selected text.Cmd-UUnderline

Menu Reference 217
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

DescriptionShortcutCommand

Increase the font size of the selected text.Cmd-+Bigger

Decrease the font size of the selected text.Cmd--Smaller

Show the color picker palette.Show Colors

Copy the style of the selected text to the clipboard.Copy Style

Apply the style information on the clipboard to the selected text.Opt-Cmd-VPaste Style

Text

Align the current line or selected text to the left margin.Cmd-{Align Left

Center the current line or selected text.Cmd-|Center

Align the current line or selected text justified across the page.Justify

Align the current line or selected text to the right margin.Cmd-}Align Right

Show the ruler and text editing tools for the current text view.Show Ruler

Copy the current ruler configuration to the clipboard.Ctrl-Cmd-CCopy Ruler

Paste the current ruler configuration from the clipboard.Ctrl-Cmd-VPaste Ruler

Config

This menu contains commands that allow you to adjust Shark’s built-in configurations to match your needs.
These are described further in “Custom Configurations” (page 171) and “Hardware Counter Configuration” (page
189), in the sections noted below.

Where DescribedDescriptionShortcutCommand

“Mini Configuration
Editors” (page 18)

Show/Hide the mini config editor
attached to the main control
window.

Shift-Cmd-CShow/Hide Mini
Config Editor

“The Config Editor” (page 171)Edit the current configuration.Opt-Shift-Cmd-CEdit...

“The Config Editor” (page 171)Create a new configuration.Cmd-NNew...

“The Config Editor” (page 171)Export the current configuration
to a file.

Export...

“The Config Editor” (page 171)Import a configuration from a file.Import...

218 Menu Reference
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

Sampling

This menu contains commands that modify when Shark starts and stops profiling and tracing operations.
These are described further in “Advanced Profiling Control” (page 115), in the sections noted below.

Where DescribedDescriptionShortcutCommand

“Interprocess Remote
Control” (page 125)

Causes Shark to listen for programmatic
start/stop commands. It will then take sessions
using the currently selected configuration.

Shift-Cmd-RProgrammatic
(Remote)

“Unresponsive
Application
Measurements” (page
121)

Using the currently selected configuration,
Shark automatically profiles all applications
which become unresponsive. Automatically
activates Batch Mode when used.

Shift-Cmd-AUnresponsive
Applications

“Batch Mode” (page 117)Toggles Batch mode, allowing the recording
of multiple sessions before analysis begins.
Automatically enabled when Unresponsive
Applications is ticked.

Shift-Cmd-BBatch Mode

“Network/iPhone
Profiling” (page 128)

Enable Network Profiling of other computers
or iPhones, instead of local profiling, or share
this computer for others to profile.

Shift-Cmd-NNetwork/iPhone
Profiling...

Data Mining

This menu, which disappears when data mining is not possible, provides access to Shark’s powerful
symbol-level data mining capabilities. These are described in more detail in “Data Mining” (page 139).

DescriptionShortcutCommand

Add the cost of the selected symbol(s) to their caller(s),
and hide the selected symbol(s).

Cmd-ECharge Symbol to Callers

Add the cost of all calls to the selected library(ies) to their
caller(s), and hide the selected library(ies).

Shift-Cmd-ECharge Library to Callers

Just hide the selected library(ies), without adding time to
the callers.

Shift-Cmd-FFlatten Library

Hide all callstacks which contain the selected symbol(s).Cmd-KRemove Callstacks with
Symbol

Keep visible all callstacks which contain the selected
symbol(s). Callstacks retained in this way will not be hidden
even if they contain symbols that are used with "Remove
Callstacks with Symbol".

Shift-Cmd-KRetain Callstacks with
Symbol

Menu Reference 219
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

DescriptionShortcutCommand

Show all symbols and libraries previously hidden by
"Charge Symbol to Callers", "Charge Library to Callers" or
"Remove Callstacks with Symbol", and restore original costs
for all symbols.

Cmd-RRestore All

Hide all except the selected symbol(s).Cmd-YFocus Symbol

Hide all except the selected library(ies).Shift-Cmd-YFocus Library

Hide all except the caller(s) of the selected symbol(s).Opt-Cmd-YFocus Callers of Symbol

Hide all except the caller(s) of the selected library(ies).Opt-Shift-Cmd-YFocus Callers of Library

Show all symbols and libraries previously hidden by any
of the Focus commands.

Unfocus All

Window

Along with standard window control functionality, this contains the command to show or hide the Advanced
Settings drawer on the right side of each session window, as described in “Advanced Settings Drawer” (page
22).

DescriptionShortcutCommand

Minimise the frontmost window.Cmd-MMinimize

Minimise all Shark windows.Minimize All

Zoom the frontmost window.Zoom

Toggle visibility of the advanced settings drawer of the frontmost
session.

Shift-Cmd-MShow Advanced Settings

Bring all Shark windows to the front.Bring All to Front

Help

This menu provides access to Shark’s online documentation, which is what you are reading! It also provides
access to instruction reference manuals for PowerPC, 32-bit x86, and 64-bit x86 instructions, through the
viewer described in “ISA Reference Window” (page 51).

DescriptionShortcutCommand

Show the Shark User Guide (PDF).Cmd-?Shark Help

Show the PowerPC Instruction Set Architecture Reference.PowerPC ISA Reference

Show the IA32 Instruction Set Architecture Reference.IA32 ISA Reference

220 Menu Reference
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

DescriptionShortcutCommand

Show the EM64T Instruction Set Architecture Reference.EM64T ISA Reference

Show acknowledgements for open-source materials used in Shark.Acknowledgements

Alphabetical Reference

This section summarizes Shark’s unique commands, arranged alphabetically. Common text editing commands
have been omitted from this table.

MenuWhere DescribedDescriptionShortcutCommand

Sampling“Batch Mode” (page
117)

Toggles Batch mode, allowing the
recording of multiple sessions
before analysis begins.
Automatically enabled when
Unresponsive Applications is
ticked.

Shift-Cmd-BBatch Mode

Data
Mining

“Data Mining” (page
139)

Add the cost of all calls to the
selected library(ies) to their
caller(s), and hide the selected
library(ies).

Shift-Cmd-ECharge Library
to Callers

Data
Mining

“Data Mining” (page
139)

Add the cost of the selected
symbol(s) to their caller(s), and
hide the selected symbol(s).

Cmd-ECharge Symbol
to Callers

File“Comparing
Sessions” (page 138)

Compare two saved sessions.Opt-Cmd-CCompare...

Config“The Config
Editor” (page 171)

Edit the current configuration.Opt-Shift-Cmd-CEdit...

Help“ISA Reference
Window” (page 51)

Show the EM64T Instruction Set
Architecture Reference.

EM64T ISA
Reference

Config“The Config
Editor” (page 171)

Export the current configuration
to a file.

Export...

Data
Mining

“Data Mining” (page
139)

Just hide the selected library(ies),
without adding time to the
callers.

Shift-Cmd-FFlatten Library

Data
Mining

“Data Mining” (page
139)

Hide all except the caller(s) of the
selected library(ies).

Opt-Shift-Cmd-YFocus Callers of
Library

Data
Mining

“Data Mining” (page
139)

Hide all except the caller(s) of the
selected symbol(s).

Opt-Cmd-YFocus Callers of
Symbol

Alphabetical Reference 221
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

MenuWhere DescribedDescriptionShortcutCommand

Data
Mining

“Data Mining” (page
139)

Hide all except the selected
library(ies).

Shift-Cmd-YFocus Library

Data
Mining

“Data Mining” (page
139)

Hide all except the selected
symbol(s).

Cmd-YFocus Symbol

File“Session
Report” (page 22)

Create a plain text summary of
highlights from the frontmost
session.

Cmd-JGenerate
Report...

File“Session Information
Sheet” (page 21)

Opens the Info sheet for the
frontmost session.

Cmd-IGet Info

Help“ISA Reference
Window” (page 51)

Show the IA32 Instruction Set
Architecture Reference.

IA32 ISA
Reference

Config“The Config
Editor” (page 171)

Import a configuration from a file.Import...

File“Session Files” (page
20)

Attach a copy of the frontmost
session to a new email in your
default email program.

Mail This Session

File“Merging
Sessions” (page 139)

Merge two saved sessions.Opt-Cmd-MMerge...

Sampling“Network/iPhone
Profiling” (page 128)

Enable Network Profiling of other
computers or iPhones, instead of
local profiling, or share this
computer for others to profile.

Shift-Cmd-NNetwork/iPhone
Profiling...

Config“The Config
Editor” (page 171)

Create a new configuration.Cmd-NNew...

Help“ISA Reference
Window” (page 51)

Show the PowerPC Instruction Set
Architecture Reference.

PowerPC ISA
Reference

Shark“Shark
Preferences” (page
23)

Edit some global Shark
parameters.

Cmd-,Preferences...

Sampling“Interprocess Remote
Control” (page 125)

Causes Shark to listen for
programmatic start/stop
commands. It will then take
sessions using the currently
selected configuration.

Shift-Cmd-RProgrammatic
(Remote)

Data
Mining

“Data Mining” (page
139)

Hide all callstacks which contain
the selected symbol(s).

Cmd-KRemove
Callstacks with
Symbol

222 Alphabetical Reference
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

MenuWhere DescribedDescriptionShortcutCommand

Data
Mining

“Data Mining” (page
139)

Show all symbols and libraries
previously hidden by "Charge
Symbol to Callers", "Charge
Library to Callers" or "Remove
Callstacks with Symbol", and
restore original costs for all
symbols.

Cmd-RRestore All

Data
Mining

“Data Mining” (page
139)

Keep visible all callstacks which
contain the selected symbol(s).
Callstacks retained in this way will
not be hidden even if they
contain symbols that are used
with "Remove Callstacks with
Symbol".

Shift-Cmd-KRetain Callstacks
with Symbol

HelpShow the Shark User Guide (PDF).Cmd-?Shark Help

Window“Advanced Settings
Drawer” (page 22)

Toggle visibility of the advanced
settings drawer of the frontmost
session.

Shift-Cmd-MShow Advanced
Settings

Config“Mini Configuration
Editors” (page 18)

Show/Hide the mini config editor
attached to the main control
window.

Shift-Cmd-CShow/Hide Mini
Config Editor

File“Manual Session
Symbolication” (page
134)

Add symbols to the frontmost
session from a symbol-rich copy
of the target application on disk.

Opt-Cmd-SSymbolicate...

Data
Mining

“Data Mining” (page
139)

Show all symbols and libraries
previously hidden by any of the
Focus commands.

Unfocus All

Alphabetical Reference 223
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

224 Alphabetical Reference
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Command Reference

Code Analysis with the G5 (PPC970) Model

Shark offers several features designed to help the programmer understand instruction execution behavior
on the G5 (PPC970). From the Advanced Settings drawer’s Assembly Browser tab, you can set the Assembly
Browser to display an estimate of G5 dispatch group formations, using the check box near item #1 in Figure
B-1. After this is checked, the assembly display around item #2 has dark lines added to indicate breaks between
instruction dispatch groups. If you look closely, you will see that all of Shark’s samples generally fall on the
first or last instructions of dispatch groups, due to the way program counters are captured by Shark on the
G5 processor. A key factor in optimizing performance on the G5 is maximizing dispatch group sizes. A detailed
explanation of G5 dispatch group formation rules is beyond the scope of this document, but Shark accurately
models the CPU behavior as much as possible using static analysis. See the PowerPC970 User Manual (see
the PowerPC 970 documentation) for a complete description of dispatch groups.

Functional unit utilization and dispatch slot utilization are two more features that Shark offers to visualize
G5 execution behavior. When the user selects Show G5 (PPC970) Details Drawer in the Advanced Settings
drawer (at #1 in Figure B-1), the user will see the G5 Resource Utilization drawer. The Functional Unit Utilization
chart and table (item #3) provide visual feedback to the programmer about how effectively instructions are
spread among the various functional units within the G5. Similarly, the number of dispatch groups and
instructions flowing into each G5 dispatch slot are shown in the Dispatch Slot Utilization chart and table (item
#4). Please note that the data in the G5 Resource Utilization drawer is based on the currently selected
instructions in the Code Table, or on the entire code sequence if nothing is selected. The user can specify a
subset of instructions within the current Code Table, and the G5 Resource Utilization charts and tables will
update dynamically.

Code Analysis with the G5 (PPC970) Model 225
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Miscellaneous Topics

http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970_and_970FX_Microprocessors

Figure B-1 PPC970 Resource Modeling

1

2

3 4

Supervisor Space Sampling Guidelines

Supervisor space samples come from either the Mach kernel or kernel extensions. If you are a driver writer
or simply interested in the workings of the Mac OS X kernel, you may encounter inconsistent results between
timer sampling and event sampling when profiling code that executes with interrupts disabled. For example,
consider the PowerPC-specific virtual memory (VM) page-zeroing code in the kernel. When profiled with
timer sampling, Shark displays the output shown in Figure B-2. Because pmap_zero_page() disables
interrupts, any timer interrupts that occur in it are not serviced until interrupts are reenabled in ml_restore().
It is for this reason that all of the timer samples appear to come from the isync instruction at 0x96da8 (see
Figure B-2).

226 Supervisor Space Sampling Guidelines
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Miscellaneous Topics

Figure B-2 Timer Sampling in the Kernel

A more accurate picture of the kernel behavior can be seen with event sampling (Figure B-3). This is because
CPU event sampling reads the SIAR (sampled instruction address register) rather than the originating PC
when the performance monitor interrupt is serviced. Whenever a CPU performance monitor interrupt (PMI)
occurs, the SIAR register is set to the currently executing PC (program counter) . As in the timer sampling
case, the PMI is not actually serviced until interrupts are reenabled.

Supervisor Space Sampling Guidelines 227
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Miscellaneous Topics

Figure B-3 CPU PMI Sampling in the Kernel

228 Supervisor Space Sampling Guidelines
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Miscellaneous Topics

Intel’s Core processors have 2 performance counters per core. Both are programmable, and can count 111
(#1) or 112 (#2) different types of events.

Most of the events are reserved, and not listed here. The available events can be modified by enabling
Event-Mask bits, in the PMC control registers. There are eight such bits in each programmable PMC.

In addition, the available events can be modified by enabling any of the eight Event-Mask bits associated
with each programmable counter. The event-mask bits are critical to determining exactly which events will
be counted. Most of the events can be selected without enabling any event-mask bits at all. The mask bits
just modify the type of event slightly or the way the counter gets incremented when the event occurs. In
particular, the mask settings often act as an event filter, limiting or expanding the selection of related events
that can be counted simultaneously. In contrast, for some types of events youmust set event-mask bits
properly, in order to count anything at all. These bits are labeled ‘Required’ in the event-mask bit list.

The table below lists each Event Name, the counter (PMC) number(s) for counters which can count the event,
the event’s number, and the valid mask bits that can be enabled, for every useful event type. This last column
lists mask bits using numbers between 0 and 7. Missing numbers indicate bits that are reserved and should
not be enabled. If no mask bits are valid for that type of event, then “none” is listed.

In Shark, more complete documentation as to what the event names mean and how each mask bit modifies
the count are provided as “tool-tips” when you hover the mouse over an event name in the popup menu,
or over a specific bit name in the event-mask list. The event-mask bit controls are only accessible from the
Advanced View controls shown in the ““The Counters Menu” (page 106).

For more information on how to configure these counters, see “Intel CPU Performance Counter
Configuration” (page 196).

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

none1,2230BACLEARS

none1,2138BR_BAC_MISSP_EXEC

none1,2228BR_BOGUS

none1,2146BR_CALL_EXEC

none1,2147BR_CALL_MISSP_EXEC

none1,2139BR_CND_EXEC

none1,2140BR_CND_MISSP_EXEC

none1,2148BR_IND_CALL_EXEC

none1,2141BR_IND_EXEC

229
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Intel Core Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

none1,2142BR_IND_MISSP_EXEC

none1,2224BR_INST_DECODED

none1,2136BR_INST_EXEC

none1,2196BR_INST_RETIRED

none1,2197BR_MISS_PRED_RETIRED

none1,2202BR_MISS_PRED_TAKEN_RET

none1,2137BR_MISSP_EXEC

none1,2145BR_RET_BAC_MISSP_EXEC

none1,2143BR_RET_EXEC

none1,2144BR_RET_MISSP_EXEC

none1,2201BR_TAKEN_RETIRED

none1,2226BTB_MISSES

none1,297BUS_BNR_DRV

61,2100BUS_DATA_RCV

51,298BUS_DRDY_CLOCKS

61,299BUS_LOCK_CLOCKS

4 5 6 71,296BUS_REQ_OUTSTANDING

none1,2126BUS_SNOOP_STALL

5 6 71,2112BUS_TRAN_ANY

61,2101BUS_TRAN_BRD

5 6 71,2110BUS_TRAN_BURST

5 6 71,2109BUS_TRAN_DEF

61,2104BUS_TRAN_IFETCH

61,2105BUS_TRAN_INVAL

5 6 71,2111BUS_TRAN_MEM

61,2106BUS_TRAN_PWR

61,2102BUS_TRAN_RFO

230
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Intel Core Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

61,2108BUS_TRANS_IO

61,2107BUS_TRANS_P

5 6 71,2103BUS_TRANS_WB

0 11,260CPU_CLK_UNHALTED

none120CYCLES_DIV_BUSY

none1,2198CYCLES_INT_MASKED

none1,2199CYCLES_INT_PENDING_AND_MASKED

none1,267DATA_MEM_REFS

none1,269DCU_LINES_IN

none1,270DCU_M_LINES_IN

none1,271DCU_M_LINES_OUT

none1,272DCU_MISS_OUTSTANDING

0 1 61,2120DCU_SNOOPS

0 1 6219DIV

none1,273DTLB Misses

none1,2215EMON_ESP_UOPS

0 11,2218EMON_FUSED_UOPS_RET

0 11,27EMON_KNI_PREF_DISPATCHED

0 11,275EMON_KNI_PREF_MISS

none1,2248EMON_PREF_RQSTS_DN

none1,2240EMON_PREF_RQSTS_UP

none1,2206EMON_SIMD_INSTR_RETIRED

0 11,2217EMON_SSE_SSE2_COMP_INST_RETIRED

0 1 21,2216EMON_SSE_SSE2_INST_RETIRED

none1,2211EMON_SYNCH_UOPS

none1,2219EMON_UNFUSION

0 11,258EST_TRANS

231
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Intel Core Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

0 1 2 41,2119EXTERNAL_BUS_CYCLES

61,2125EXTERNAL_BUS_QUEUE

none1,2193FLOPS

none217FP_ASSIST

none116FP_COMP_OPS_EXE

01,2204FP_MMX_TRANS

none1,2200HW_INT_RX

none1,2128IFU_IFETCH

none1,2129IFU_IFETCH_MISS

none1,2134IFU_MEM_STALL

none1,2135ILD_STALL

none1,2208INST_DECODED

none1,2192INST_RETIRED

none1,2133ITLB_MISS

0 1 2 31,264L1_CACHEABLE_DATA_READS

0 1 2 31,268L1_CACHEABLE_DATA_READS_AND_WRITES

0 1 2 31,265L1_CACHEABLE_DATA_WRITES

0 1 2 31,266L1_CACHEABLE_LOCK_READS

none1,279L1_PREFETCH_REQUEST_MISSES

61,233L2_ADS

none1,234L2_DBUS_BUSY

61,235L2_DBUS_BUSY_RD

0 1 2 3 4 5 61,240L2_IFETCH

0 1 2 3 4 5 61,241L2_LD

0 1 2 3 4 5 61,236L2_LINES_IN

0 1 2 3 4 5 61,238L2_LINES_OUT

61,237L2_M_LINES_INM

232
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Intel Core Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

0 1 2 3 4 5 61,239L2_M_LINES_OUT

61,250L2_NO_REQUEST_CYCLES

61,248L2_REJECT_CYCLES

0 1 2 3 4 5 61,246L2_RQSTS

0 1 2 3 4 5 61,242L2_ST

none1,23LD_BLOCKS

none1,25MISALIGN_MEM_REF

none1,2205MMX_ASSIST

none1,2176MMX_INSTR_EXEC

0 1 2 3 4 51,2179MMX_INSTR_TYPE_EXEC

none1,2177MMX_SAT_INSTR_EXEC

none1,2207MMX_SAT_INSTR_RET

none1,2178MMX_UOPS_EXEC

none218MUL

none1,2210PARTIAL_RAT_STALLS

none1,2162RESOURCE_STALLS

none1,2214RET_SEG_RENAMES

none1,24SB_DRAINS

0 1 2 31,2213SEG_REG_RENAMES

0 1 2 31,2212SEG_RENAME_STALLS

none1,26SEGMENT_REG_LOADS

none1,2195SELF_MODIFYING_CODE

6 71,259THERMAL_TRIP

none1,2194UOPS_RETIRED

233
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Intel Core Performance Counter Event List

234
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Intel Core Performance Counter Event List

Intel’s Core 2 processors have 5 performance counters per core. Two of these are fully programmable, and
can count 116 (#1) or 115 (#2) different types of events. The other three counters are fixed, and can only
count one type of event (for counter 3: INSTR_RETIRED.ANY, 4: CPU_CLK_UNHALTED.CORE, and 5:
CPU_CLK_UNHALTED.REF).

In addition, the available events can be modified by enabling any of the eight Event-Mask bits associated
with each programmable counter. The event-mask bits are critical to determining exactly which events will
be counted. Most of the events can be selected without enabling any event-mask bits at all. The mask bits
just modify the type of event slightly or the way the counter gets incremented when the event occurs. In
particular, the mask settings often act as an event filter, limiting or expanding the selection of related events
that can be counted simultaneously. In contrast, for some types of events youmust set event-mask bits
properly, in order to count anything at all. These bits are labeled ‘Required’ in the event-mask bit list.

The table below lists each Event Name, the counter (PMC) number(s) for counters which can count the event,
the event’s number, and the valid mask bits that can be enabled, for every useful event type. This last column
lists mask bits using numbers between 0 and 7. Missing numbers indicate bits that are reserved and should
not be enabled. If no mask bits are valid for that type of event, then “none” is listed.

In Shark, more complete documentation as to what the event names mean and how each mask bit modifies
the count are provided as “tool-tips” when you hover the mouse over an event name in the popup menu,
or over a specific bit name in the event-mask list. The event-mask bit controls are only accessible from the
Advanced View controls shown in the “Timed Counters: The Performance Counter Spreadsheet” (page 104).

For more information on how to configure these counters, see “Intel CPU Performance Counter
Configuration” (page 196).

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

none1230BACLEARS

02

none1138BR_BAC_MISSP_EXEC

02

none1228BR_BOGUS

02

none1146BR_CALL_EXEC

02

none1147BR_CALL_MISSP_EXEC

02

235
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

none1139BR_CND_EXEC

02

none1140BR_CND_MISSP_EXEC

02

none1148BR_IND_CALL_EXEC

02

none1141BR_IND_EXEC

02

none1142BR_IND_MISSP_EXEC

02

none1224BR_INST_DECODED

02

none1136BR_INST_EXEC

02

0 1 2 3 6 71196BR_INST_RETIRED

0 2 3 4 5 6 72

none1197BR_INST_RETIRED.MISPRED

0 2 3 4 52

none1137BR_MISSP_EXEC

02

none1145BR_RET_BAC_MISSP_EXEC

02

none1143BR_RET_EXEC

02

none1144BR_RET_MISSP_EXEC

02

none1151BR_TKN_BUBBLE_1

236
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

02

none1152BR_TKN_BUBBLE_2

02

5197BUS_BNR_DRV

02

6 71100BUS_DATA_RCV

0 72

5198BUS_DRDY_CLOCKS

02

51122BUS_HIT_DRV

0 2 3 5 72

51123BUS_HITM_DRV

0 2 32

6 71127BUS_IO_WAIT

02

5 6 7199BUS_LOCK_CLOCKS (Core and Bus Agents masks
apply)

0 6 72

4 5 6 7196BUS_REQ_OUTSTANDING

02

5 6 71102BUS_TRAN_RFO

0 72

5 6 71112BUS_TRANS_ANY

0 72

5 6 71101BUS_TRANS_BRD

0 72

5 6 71110BUS_TRANS_BURST

0 72

237
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

5 6 71109BUS_TRANS_DEF

0 72

5 6 71104BUS_TRANS_IFETCH

0 72

5 6 71105BUS_TRANS_INVAL

0 72

5 6 71108BUS_TRANS_IO

0 72

5 6 71111BUS_TRANS_MEM

0 72

5 6 71107BUS_TRANS_P

0 72

5 6 71106BUS_TRANS_PWR

0 72

5 6 71103BUS_TRANS_WB

02

6 71125BUSQ_EMPTY

0 72

0 1 6 71120CMP_SNOOP

02

0 1160CPU_CLK_UNHALTED

02

none40CPU_CLK_UNHALTED.CORE

none50CPU_CLK_UNHALTED.REF

none120CYCLES_DIV_BUSY

0 11198CYCLES_INT

0 2 42

238
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

none1134CYCLES_L1I_MEM_STALLED

0 32

0225DELAYED_BYPASS

0219DIVIDES

0 1 2 318DTLB_MISSES

02

none158EIST_TRANS

02

0 11171ESP Register

02

0 1 3 51119EXT_SNOOP

02

0217FP_ASSIST

none116FP_COMP_OPS_EXE

0 11204FP_MMX_TRANS

02

none1200HW_INT_RCV

02

none124IDLE_DURING_DIV

none1135ILD_STALL

02

11131INST_QUEUE.FULL

02

0 1 21192INST_RETIRED

02

none30INSTR_RETIRED.ANY

1 4 61130ITLB

239
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

02

none1201ITLB_MISS_RETIRED

0 2 32

0 1167L1D_ALL_REF

0 2 3 4 52

0 1 2 3164L1D_CACHE_LD

02

0 1 2 3 4166L1D_CACHE_LOCK

02

0 1 2 3165L1D_CACHE_ST

02

none171L1D_M_EVICT

02

none170L1D_M_REPL

0 2 32

none172L1D_PEND_MISS

0 2 3 4 52

4178L1D_PREFETCH.REQUESTS

0 2 32

0 1 2 3169L1D_REPL

0 2 3 4 5 62

0 1173L1D_SPLIT

02

none1129L1I_MISSES

0 6 72

none1128L1I_READS

02

240
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

6 7133L2_ADS

02

6 7135L2_DBUS_BUSY_RD

02

0 1 2 3 6 7140L2_IFETCH

02

0 1 2 3 4 5 6 7141L2_LD

0 6 72

4 5 6 7136L2_LINES_IN

02

4 5 6 7138L2_LINES_OUT

02

0 1 2 3 4 5 6 7143L2_LOCK

0 2 3 4 52

6 7137L2_M_LINES_IN

02

4 5 6 7139L2_M_LINES_OUT

0 6 72

6 7150L2_NO_REQ

02

0 1 2 3 4 5 6 7148L2_REJECT_BUSQ

02

0 1 2 3 4 5 6 7146L2_RQSTS

0 2 3 4 5 6 72

0 1 2 3 6 7142L2_ST

0 6 72

1 2 3 4 513LOAD_BLOCK

241
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

02

none176LOAD_HIT_PRE

0 2 32

0 21195MACHINE_NUKES

0 2 3 42

31170MACRO_INSTS.CISC_DECODED

02

none1203MEM_LOAD_RETIRED

0 119MEMORY_DISAMBIGUATION

02

none15MISALIGN_MEM_REF

02

0218MULTIPLIES

0 1112PAGE_WALKS

0 2 32

none1248PREF_RQSTS_DN

02

none1240PREF_RQSTS_UP

02

0 1 2 31210RAT_STALLS

02

0 1 2 3 41220RESOURCE_STALLS

02

none1160RS_UOPS_DISPATCHED

02

0 1 2 31213SEG_REG_RENAMES

0 2 3 4 52

242
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

0 1 2 31212SEG_RENAME_STALLS

02

none16SEGMENT_REG_LOADS

0 3 4 5 6 72

none1205SIMD_ASSIST

0 2 3 4 52

0 1 2 31202SIMD_COMP_INST_RETIRED

0 2 3 4 5 62

0 1 2 3 41199SIMD_INST_RETIRED

0 2 3 4 52

none1206SIMD_INSTR_RETIRED

0 2 3 4 5 62

none1207SIMD_SAT_INSTR_RETIRED

0 2 32

none1177SIMD_SAT_UOP_EXEC

02

0 1 2 3 4 51179SIMD_UOP_TYPE_EXEC

02

none1176SIMD_UOPS_EXEC

02

4 5 6 71126SNOOP_STALL_DRV

0 72

0 117SSE_PRE_EXEC

0 2 3 52

0 1175SSE_PRE_MISS

02

0 1 314STORES BLOCKED

243
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

Valid Event-Mask BitsPMC NumberEvent NumberPerformance Counter Event Name

02

6 7159THERMAL_TRIP

02

0 1 2 31194UOPS_RETIRED

02

0 1 2 3 4 5 61193X87_OPS_RETIRED

02

244
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Intel Core 2 Performance Counter Event List

The PowerPC 750 (G3) cores contain four independent performance counters, each of which can count 12–17
different types of events. Four commonly measured types of events (CPU cycles, instructions completed,
timebase clock transitions, and instructions dispatched) can be counted on any counter, while other types
of events can only be counted on a limited subset of the counters.

The table below lists each Event Name, the counter (PMC) number(s) for counters which can count the event,
and each event’s number.

For more information on how to configure these counters, see “PowerPC G3/G4/G4+ CPU Performance
Counter Configuration” (page 197).

Event NumberPMC Number(s)Performance Counter Event Name

1632nd Spec Branch Buffer Correct

173Branch Unit LR/CTR Stall Cycles

121, 2Branch Unit Speculative Stall Cycles

144

133CacheOp L2 Hits

11, 2, 3, 4CPU Cycles

153dL1 Load Miss Cycles

101, 2dL1 Miss Cycles > Threshold

53dL1 Misses

73dL2 Misses

63DTLB Misses

64DTLB Search Cycles

51, 2EIEIO Instr

113Floating Point Instr

91, 2Instr Bkpt Matches

21, 2, 3, 4Instr Completed

41, 2, 3, 4Instr Dispatched

81, 2Instr Fetches

245
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX E

PPC 750 (G3) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

134Integer Instr

61, 2ITLB Search Cycles

54L2 Castouts

71, 2L2 Hits

123L2 Snoop Castouts

94Marked/Unmarked Supervisor Transitions

93Marked/Unmarked User Transitions

84Mispredicted Branches

01, 2, 3, 4Nothing

124Snoop Retries

103STWCX Instr

104Successful STWCX Instr

114SYNC Instr

83Taken Branches

33, 4TimeBase (Lower) 0->1 bit transitions

31, 2TimeBase (Upper) 0->1 bit transitions

111, 2Unresolved Branches

246
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX E

PPC 750 (G3) Performance Counter Event List

The PowerPC 7400 (G4) cores contain four independent performance counters, each of which can count
27–48 different types of events. Four commonly measured types of events (CPU cycles, instructions completed,
timebase clock transitions, and instructions dispatched) can be counted on any counter, while other types
of events can only be counted on a limited subset of the counters.

The table below lists each Event Name, the counter (PMC) number(s) for counters which can count the event,
and each event’s number.

For more information on how to configure these counters, see “PowerPC G3/G4/G4+ CPU Performance
Counter Configuration” (page 197).

Event NumberPMC Number(s)Performance Counter Event Name

3821st Spec Branch Buffer Correct

1432nd Spec Branch Buffer Correct

481AltiVec Load Instr

141AltiVec MFVSCR Instr Sync Cycles

161AltiVec MTVRSAVE Instr

151AltiVec MTVSCR Instr

73AltiVec VCIU Instr

74AltiVec VFPU Instr

83AltiVec VFPU Stall Cycles

342AltiVec VFPU Traps

71AltiVec VPU Instr

84AltiVec VPU Stall Cycles

171AltiVec VSCR[SAT] 0->1

81AltiVec VSIU Stall Cycles

153Branch Unit LR/CTR Stall Cycles

371Branch Unit Speculative Load Stall Cycles

131Branch Unit Speculative Stall Cycles

144

247
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX F

PPC 7400 (G4) Performance Counter Event
List

Event NumberPMC Number(s)Performance Counter Event Name

53Branches Taken

124Bus Kill Transactions (Non-Retried)

254Bus Multi Beat Write TAs

212Bus Multi-Beat Read TAs

422Bus Read TAs

202Bus Retries

281Bus Single Beat Read TAs

293Bus Single Beat Write TAs

271Bus Transactions (Non-Retried)

242Cache Inhibited Stores

181Clean L1 Castouts to L2

123Conditional Store Instr

11, 2, 3, 4CPU Cycles

101Data Bkpt match

352Data Reload Table Snoop Hits

222Data Reload Table Store Miss Merges

132Dirty L1 Castouts to L2

173dL1 CacheOp Cycles

282dL1 Castout to L2 Misses

194dL1 Castouts to L2

183dL1 Cycles

241dL1 Hits

221dL1 Load Hits

152dL1 Load Misses

111dL1 Miss Cycles > Threshold

172dL1 Misses

303dL1 Reloads

248
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX F

PPC 7400 (G4) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

234dL1 Snoop Hits

164dL1 Snoop Interventions

264

231dL1 Store Hits

162dL1 Store Misses

163dL1 Touch Hits

154dL1 Touch Misses

301dL1 Writes Hit Shared

331dL2 Hits

262dL2 Misses

243DSS Instr

224DSSALL Instr

274DST DTLB Table Successful Searches

381DST Instr Dispatched

63DTLB Misses

64DTLB Search Cycles

201DTLB Search Cycles > Threshold

51EIEIO Instr

421External Snoop Requests

52Fall through Branches

113Floating Point Instr

213Full Cache Line Store Miss Merge

283Hit Exclusive Interventions

451Hit Interventions

362Hit Modified Interventions

244Hit Shared Interventions

321iL1 Misses

249
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX F

PPC 7400 (G4) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

252iL1 Reloads

272iL2 Hits

341iL2 Misses

91Instr Bkpt match

21, 2, 3, 4Instr Completed

41, 2, 3, 4Instr Dispatched

134Integer Instr

62ITLB Misses

61ITLB Search Cycles

191ITLB Search Cycles > Threshold

351L1 Castout to L2 Hits

291L1 Load Fold Queue Reload Hits

461L1 Load Fold Queue Touch Hits

471L1 Operations Queue Snoop Hits

361L2 Allocations

441L2 Castout Snoop Hits

292L2 Sectors Castout

273L2 Snoop Hits

133L2 Snoop Interventions

261L2 Tag Accesses

251L2 Tag Lookup

174L2 Tag Snoop Writes

193L2 Tag Snoops

182L2 Tag Writes

232L2 Write Hit on Shared

184L2SRAM Cycles

192L2SRAM Read Cycles

250
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX F

PPC 7400 (G4) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

203L2SRAM Write Cycles

112Load Instr

54Mispredicted Branches

01, 2, 3, 4Nothing

102Reserved Loads

372Snoop Hits

263Snoop Retries

412Snooped TLB Invalidations

122Snoops Serviced

211Store Instr

104Successful STWCX Instr

114SYNC Instr

142System Register Unit Instr

31, 2, 3, 4TimeBase (Lower) 0->1 bit transitions

402TLBI Instr

103TLBSYNC Instr

121Unresolved Branches

92User/Supervisor Switches

82VCIU Wait Cycles

72VSIU Instr

223VTE Data Reload Table Hits

204VTE dL1 Hits

302VTE L1 Cache Misses

322VTE Line Fetches

332VTE Premature Cancels

401VTE Refresh

392VTE Resume on Context Switch

251
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX F

PPC 7400 (G4) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

411VTE Suspend Context Switch

391VTE0 Fetches

312VTE1 Line Fetches

233VTE2 Line Fetches

214VTE3 Line Fetches

431Window of Opportunity Push Address Tenures

311Write Through Stores

252
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX F

PPC 7400 (G4) Performance Counter Event List

The PowerPC 7450 (G4+) cores contain six independent performance counters, each of which can count
20–94 different types of events. CPU cycles can be measured on any counter, five other commonly measured
types of events (instructions completed, timebase clock transitions, instructions dispatched, performance
monitor interrupts, and external performance monitor events) can also be counted on any of the first four
counters, while other types of events can only be counted on a limited subset of the counters.

The table below lists each Event Name, the counter (PMC) number(s) for counters which can count the event,
and each event’s number.

For more information on how to configure these counters, see “PowerPC G3/G4/G4+ CPU Performance
Counter Configuration” (page 197).

Event NumberPMC Number(s)Performance Counter Event Name

2411st Spec Buffer Active Cycles

5622nd Spec Branch Buffer Active

2732nd Spec Branch Buffer Correct

2833rd Spec Branch Buffer Active

2743rd Spec Branch Buffer Correct

651Aligned FP Store Instr

111, 2, 4AltiVec CFX Instr

171, 2AltiVec CFX Stall Cycles

91, 2, 4AltiVec Float Instr

151, 2AltiVec Float Stall Cycles

311AltiVec Issue Queue > Threshold

113AltiVec Issue Stalls

641AltiVec Loads

181, 2AltiVec MFVSCR Instr Sync Cycles

131, 2, 4AltiVec MTVRSAVE Instr

121, 2, 4AltiVec MTVSCR Instr

81, 2, 4AltiVec Permute Instr

253
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event
List

Event NumberPMC Number(s)Performance Counter Event Name

141, 2AltiVec Permute Stall Cycles

101, 2, 4AltiVec SFX Instr

161, 2AltiVec SFX Stall Cycles

191, 2AltiVec VSCR[SAT] 0->1

263Branch Flushes

341Branch Instr

592Branch Link Stack Correct

313Branch Link Stack Mispredicts

271Branch Link Stack Prediction Used

293Branch Unit CTR Stall Cycles

251Branch Unit Stall Cycles

572

261BTIC Hits

582BTIC Misses

286Bus Outstanding Read Queue Full Cycles

466Bus Read/Writes not Retried

446Bus Reads not Retried

266Bus Retries

496Bus Retry from Collision

506Bus Retry from Intervention

476Bus Retry from L1 Retry

486Bus Retry from Prev-Adjacent

426Bus TA's for Reads

436Bus TA's for Writes

456Bus Writes not Retried

521Cache-Inhibited Stores

193Canceled iL1 Misses

254
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

321Completed 0 Instr

332Completed 1 Instr

83Completed 2 Instr

144Completed 3 Instr

322Completion Queue > Threshold

331Complex Integer Instr

11, 2, 3, 4, 5, 6CPU Cycles

532Data Bkpt Matches

203DCBF/DCBST Instr dL1 Hits

154Dispatched 0 Instr

93Dispatched 1 Instr

342Dispatched 2 Instr

291Dispatched 3 Instructions

103Dispatched AltiVec Instr

502dL1 Castouts

412dL1 Cycles

561dL1 Hits

531dL1 Load Hits

213dL1 Load Miss Cycles

372dL1 Load Misses

431dL1 Load-Miss Cycles > Threshold

232, 3dL1 Misses

223dL1 Pushes

492dL1 Reloads

481dL1 Snoop Hit in COQ

491dL1 Snoop Hit in COQ Retry

441dL1 Snoop Hit Modified

255
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

501dL1 Snoop Hits

221, 2dL1 Snoops

551dL1 Store Hits

392dL1 Store Misses

541dL1 Touch Hits

402dL1 Touch Miss Cycles

382dL1 Touch Misses

65, 6dL2 Misses

75, 6dL3 Misses

346

601DSS Instr

194DSSALL Instr

571dst-Instr Dispatched

591DSTx Search Success

183DTLB Misses

234DTLB Search Cycles

401DTLB Search Cycles > Threshold

256DTQ Full

351EIEIO Instr

71, 2, 3, 4Extern Perf Monitor

226External Interventions

236External Pushes

246External Snoop Retries

542Fall Thru Branches

303Fast BTIC Hits

294Folded Branches

941FP Denorm Result

256
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

671FP Denormalize

242FP Instr Dispatched to FPR Queue

133FP Issue Queue > Threshold

602FP Issue Stalls

791FP Load Instr

811FP Load-Double Instr

801FP Load-Single Instr

661FP Renormalize

304FP Store Double Instr

622FP Store Single Instr

681FP Store Stall Cycles

911FPSCR Renames 1/2 Busy

901FPSCR Renames 1/4 Busy

921FPSCR Renames 3/4 Busy

931FPSCR Renames All Busy

143FPU Instr

164GPR Issue Queue > Threshold Cycles

174GPR Issue Queue Stall Cycles

123GPR Rename Buffer > Threshold

411iL1 Accesses

362iL1 Miss Cycles

211, 2iL1 Misses

482iL1 Reloads

45, 6iL2 Misses

55, 6iL3 Misses

336

421Instr Bkpt Matches

257
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

21, 2, 3, 4Instr Completed

41, 2, 3, 4Instr Dispatched

281Instr Dispatched to GPR Queue

301Instr Queue > Threshold

185, 6Interventions

352ITLB Misses

391ITLB Search Cycles

173ITLB Search Cycles > Threshold

196L1 External Interventions

106L2 Castout Queue Full Cycles

86L2 Castouts

206L2 External Interventions

25, 6L2 Hits

85L2 Load Hits

195L2 Misses

296

95L2 Store Hits

135, 6L2 Touch Hits

276L2 Valid Requests

116L3 Castout Queue Full Cycles

96L3 Castouts

216L3 External Interventions

35, 6L3 Hits

316

105L3 Load Hits

356

205L3 Misses

258
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

306

326

166L3 Read Queue Full Cycles

115L3 Store Hits

366

145, 6L3 Touch Hits

376

176L3 Write Queue Full Cycles

731LD/ST Alias vs. CSQ

721LD/ST Alias vs. FSQ/WB0/WB1

861LD/ST CSQ Forwards

711LD/ST Indexed Alias Stalls

5521st Spec Branch Buffer Correct

781LD/ST LMQ Full Stalls

841LD/ST LMQ Index Alias Stalls

831LD/ST Load vs. STQ Alias Stalls

741LD/ST Load-Hit Line vs. CSQ0

751LD/ST Load-Miss Line vs. CSQ0

821LD/ST RA Latch Stall

851LD/ST STQ Index Alias Stalls

771LD/ST Touch Alias vs. CSQ

761LD/ST Touch Alias vs. FSQ/WB0/WB1

701LD/ST True Alias Stalls

262Load Instr

163Load String/Multi Instr Pieces

451Load-Miss Alias

461Load-Miss Alias on Touch

259
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

252Load/Store Instr

381LSWI/LSWX/LMW Instr

292LWARX Instr

302MFSPR Instr

284Mispredicted Branches

361MTSPR Instr

01, 2, 3, 4, 5, 6Nothing

51, 2, 3, 4Perf Monitor Interrupts

576Prefetch Engine Full

526Prefetch Engine Requests

556Prefetch Instr Fetch Collisions

536Prefetch Load Collisions

566Prefetch Load/Store/Instr Fetch Collisions

546Prefetch Store Collisions

312Refetch Serializations

581Refreshed DSTs

371SC Instr

184Simple Integer Instr

165Snoop Modified

516Snoop Requests

244Snoop Retries

155, 6

175Snoop Valid

201, 2Store Instr

522Store Merge to 32 Bytes

512Store Merge/Gathers

224Store String/Multi Pieces

260
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

272STSWI/STSWX/STMW Instr

153STWCX Instr

254Successful STWCX Instr

214SYNC Instr

253Taken Branches

31, 2, 3, 4TimeBase (Lower) 0->1 bit transitions

282TLBIE Instr

472TLBIE Snoops

204TLBSYNC Instr

471Touch Alias

871Unaligned Load Instr

891Unaligned Load/Store Instr

881Unaligned Store Instr

231Unresolved Branches

612User/Supervisor Switches

432VTE Branch Speculation Cancel

631VTE Line Fetch dL1 Hits

452VTE Line Fetch dL1 Miss

462VTE Line Fetches

442VTE Resume on Context Switch

621VTE Suspended on Context Switch

611VTE0 Line Fetches

422VTE1 Line Fetches

243VTE2 Line Fetches

264VTE3 Line Fetches

511Write-Through Stores

261
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

262
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX G

PPC 7450 (G4+) Performance Counter Event List

The PowerPC 970 (G5) cores contain an extremely sophisticated and complex set of performance counters.
Unlike the other processors used in Macintoshes, one cannot simply choose a counter and type of performance
counter event for it to count. There are simply too many different possible events in these processors that
can be counted. Instead, one must first select various options on the “TTM” and “Byte Lane” muxes in order
to narrow down the possible field of events that can be counted, before actually selecting one particular
event to count.

The table below lists each Event Name followed by the various selections of event number(s), counter (PMC)
number(s), TTM mux settings, and Byte Lane settings that can be used to count that type of event. Where
lists of both event and PMC numbers are given in a single row of the table, the corresponding event and
PMC numbers (first with first, second with second, etc.) should be used together.

For more information on how to configure these counters, see “PowerPC G5 (970) Performance Counter
Configuration” (page 199).

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

531 or more Instrs Completed

0: TTM00: FPU1, 2, 5, 619[FPU] fp0 add, mult, sub, compare, fsel

0: TTM00: FPU50[FPU] fp0 add, mult, sub, compare, fsel
+ fp1 add, mult, sub, compare, fsel

2: TTM00: FPU1, 2, 5, 624[FPU] fp0 denorm operand

2: TTM00: FPU132[FPU] fp0 denorm operand + fp1
denorm operand

0: TTM00: FPU1, 2, 5, 616[FPU] fp0 divide

0: TTM00: FPU10[FPU] fp0 divide + fp1 divide

1: TTM00: FPU3, 4, 7, 818[FPU] fp0 estimate

1: TTM00: FPU30[FPU] fp0 estimate + fp1 estimate

1: TTM00: FPU3, 4, 7, 819[FPU] fp0 finished and produced a
result

1: TTM00: FPU40[FPU] fp0 finished and produced a
result + fp1 finished and produced a
result

3: TTM00: FPU3, 4, 7, 824[FPU] fp0 fpscr

263
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

3: TTM00: FPU832[FPU] fp0 fpscr + nothing

1: TTM00: FPU3, 4, 7, 816[FPU] fp0 move, estimate

1: TTM00: FPU80[FPU] fp0 move, estimate + fp1 move,
estimate

0: TTM00: FPU1, 2, 5, 617[FPU] fp0 mult-add

0: TTM00: FPU20[FPU] fp0 mult-add + fp1 mult-add

1: TTM00: FPU3, 4, 7, 817[FPU] fp0 round, convert

1: TTM00: FPU70[FPU] fp0 round, convert + fp1 round,
convert

2: TTM00: FPU1, 2, 5, 627[FPU] fp0 single precision

2: TTM00: FPU532[FPU] fp0 single precision + fp1 single
precision

0: TTM00: FPU1, 2, 5, 618[FPU] fp0 square root

0: TTM00: FPU60[FPU] fp0 square root + fp1 square
root

2: TTM00: FPU1, 2, 5, 625[FPU] fp0 stall 3

2: TTM00: FPU232[FPU] fp0 stall 3 + fp1 stall 3

2: TTM00: FPU1, 2, 5, 626[FPU] fp0 store

2: TTM00: FPU632[FPU] fp0 store + fp1 store

0: TTM00: FPU1, 2, 5, 623[FPU] fp1 add, mult, sub, compare, fsel

2: TTM00: FPU1, 2, 5, 628[FPU] fp1 denorm operand

0: TTM00: FPU1, 2, 5, 620[FPU] fp1 divide

1: TTM00: FPU3, 4, 7, 822[FPU] fp1 estimate

1: TTM00: FPU3, 4, 7, 823[FPU] fp1 finished and produced a
result

1: TTM00: FPU3, 4, 7, 820[FPU] fp1 move, estimate

0: TTM00: FPU1, 2, 5, 621[FPU] fp1 mult-add

1: TTM00: FPU3, 4, 7, 821[FPU] fp1 round, convert

2: TTM00: FPU1, 2, 5, 631[FPU] fp1 single precision

264
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

0: TTM00: FPU1, 2, 5, 622[FPU] fp1 square root

2: TTM00: FPU1, 2, 629[FPU] fp1 stall 3

2: TTM00: FPU1, 2, 5, 630[FPU] fp1 store

2: TTM11: GPS1, 2, 5, 628[GPS] All CO state machines busy

2: TTM11: GPS1, 2, 5, 627[GPS] All read/claim state machines
busy

2: TTM11: GPS532[GPS] All read/claim state machines
busy + I=1 store queue full

2: TTM11: GPS1, 2, 629[GPS] All snoop state machines busy

1: TTM11: GPS3, 4, 7, 817[GPS] Cacheable store operation
(before gathering)

1: TTM11: GPS70[GPS] Cacheable store operation
(before gathering) + Master L2 read
transaction on bus was retried

2: TTM11: GPS1, 2, 5, 630[GPS] Cacheable store queue full

1: TTM11: GPS3, 4, 7, 816[GPS] I=1 load operation completed
on bus

1: TTM11: GPS80[GPS] I=1 load operation completed
on bus + Master L2 store transaction
on bus was retried

0: TTM11: GPS1, 2, 5, 622[GPS] I=1 store operation (before
gathering)

0: TTM11: GPS1, 2, 5, 623[GPS] I=1 store operation completed
on bus

2: TTM11: GPS1, 2, 5, 631[GPS] I=1 store queue full

0: TTM11: GPS1, 2, 5, 616[GPS] L2 access collision with L2
prefetch (DST)

0: TTM11: GPS10[GPS] L2 access collision with L2
prefetch (DST) + L2 miss, bus response
is modified intervention

0: TTM11: GPS1, 2, 5, 617[GPS] L2 access collision with L2
prefetch (non-DST)

265
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

0: TTM11: GPS20[GPS] L2 access collision with L2
prefetch (non-DST) + L2 miss, bus
response is shared intervention

0: TTM11: GPS1, 2, 5, 618[GPS] L2 access for store

0: TTM11: GPS60[GPS] L2 access for store + I=1 store
operation (before gathering)

0: TTM11: GPS1, 2, 5, 619[GPS] L2 miss on store access (R, S, I)

0: TTM11: GPS50[GPS] L2 miss on store access (R, S, I)
+ I=1 store operation completed on
bus

0: TTM11: GPS1, 2, 5, 620[GPS] L2 miss, bus response is
modified intervention

0: TTM11: GPS1, 2, 5, 621[GPS] L2 miss, bus response is shared
intervention

2: TTM11: GPS1, 2, 5, 626[GPS] Load or store dispatch retries

2: TTM11: GPS632[GPS] Load or store dispatch retries +
Cacheable store queue full

2: TTM11: GPS1, 2, 5, 624[GPS] Load or store dispatch retries
due to CO conflicts

2: TTM11: GPS132[GPS] Load or store dispatch retries
due to CO conflicts + All CO state
machines busy

2: TTM11: GPS1, 2, 5, 625[GPS] Load or store dispatch retries
due to Snoop conflicts

2: TTM11: GPS232[GPS] Load or store dispatch retries
due to Snoop conflicts + All snoop
state machines busy

1: TTM11: GPS3, 4, 7, 818[GPS] Master bus transactions
completed

1: TTM11: GPS30[GPS] Master bus transactions
completed + Master SYNC operation
competed

1: TTM11: GPS3, 4, 7, 819[GPS] Master bus transactions retried

1: TTM11: GPS40[GPS] Master bus transactions retried
+ Master SYNC operation retried

266
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

1: TTM11: GPS3, 4, 7, 821[GPS] Master L2 read transaction on
bus was retried

1: TTM11: GPS3, 4, 7, 820[GPS] Master L2 store transaction on
bus was retried

1: TTM11: GPS3, 4, 7, 822[GPS] Master SYNC operation
competed

1: TTM11: GPS3, 4, 7, 823[GPS] Master SYNC operation retried

3: TTM11: GPS3, 4, 7, 824[GPS] Snoop (external)

3: TTM11: GPS832[GPS] Snoop (external) + Snoop
caused cache transition from M to E
or S

3: TTM11: GPS3, 4, 7, 830[GPS] Snoop caused cache transition
from E or S to R or I

3: TTM11: GPS3, 4, 7, 829[GPS] Snoop caused cache transition
from E to S

3: TTM11: GPS3, 4, 7, 828[GPS] Snoop caused cache transition
from M to E or S

3: TTM11: GPS3, 4, 7, 831[GPS] Snoop caused cache transition
from M to I

3: TTM11: GPS3, 4, 7, 827[GPS] Snoop retried due to all snoop
state machines busy

3: TTM11: GPS432[GPS] Snoop retried due to all snoop
state machines busy + Snoop caused
cache transition from M to I

3: TTM11: GPS3, 4, 7, 826[GPS] Snoop retried due to any
conflict

3: TTM11: GPS332[GPS] Snoop retried due to any
conflict + Snoop caused cache
transition from E or S to R or I

3: TTM11: GPS3, 4, 7, 825[GPS] Snoop state machine dispatched

3: TTM11: GPS732[GPS] Snoop state machine dispatched
+ Snoop caused cache transition from
E to S

267
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

1: TTM11: IDU3, 4, 4, 4, 4, 4,
4, 4, 4, 7, 7, 7,
7, 7, 7, 7, 7, 8,
8, 8, 8, 8, 8, 8,
8

16, 17, 18,
19, 20, 21,
22, 23, 16,
17, 18, 19,
20, 21, 22,
23, 16, 17,
18, 19, 20,
21, 22, 23,
16, 17, 18,
19, 20, 21,
22, 23

[IDU] instruction queue fullness

1: TTM11: IDU3, 4, 7, 80[IDU] instruction queue fullness +
instruction queue fullness

3: TTM00: IFU3, 4, 7, 825[IFU] branch execution issue valid

3: TTM00: IFU732[IFU] branch execution issue valid +
nothing

3: TTM00: IFU3, 4, 7, 826[IFU] branch mispredict due to CR
value

3: TTM00: IFU332[IFU] branch mispredict due to CR
value + nothing

3: TTM00: IFU3, 4, 7, 824[IFU] branch mispredict due to target
address predict

3: TTM00: IFU832[IFU] branch mispredict due to target
address predict + valid instructions
available, but ifu held by BIQ or IDU

3: TTM00: IFU3, 4, 7, 827[IFU] cycles i L1 write active

3: TTM00: IFU432[IFU] cycles i L1 write active + nothing

2: TTM00: IFU1, 2, 2, 2, 2, 5,
5, 5, 5, 6, 6, 6,
6

24, 25, 26,
27, 24, 25,
26, 27, 24,
25, 26, 27,
24, 25, 26,
27

[IFU] i cache data source

2: TTM00: IFU632[IFU] i cache data source + instr
prefetch installed in prefetch buffer

2: TTM00: IFU232[IFU] i cache data source + instruction
prefetch request

268
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: TTM00: IFU532[IFU] i cache data source + translation
written to i erat

2: TTM00: IFU132[IFU] i cache data source + valid
instruction available

2: TTM00: IFU1, 2, 5, 630[IFU] instr prefetch installed in
prefetch buffer

2: TTM00: IFU1, 2, 629[IFU] instruction prefetch request

2: TTM00: IFU1, 2, 5, 631[IFU] translation written to i erat

2: TTM00: IFU1, 2, 5, 628[IFU] valid instruction available

3: TTM00: IFU3, 4, 7, 828[IFU] valid instructions available, but
ifu held by BIQ or IDU

0: TTM00: ISU1, 2, 5, 621[ISU] br issue queue full

0: TTM11: ISU

0: TTM00: ISU1, 2, 5, 616[ISU] completion table full

0: TTM11: ISU

0: TTM00: ISU10[ISU] completion table full + cr
mapper full

0: TTM11: ISU

1: TTM00: ISU3, 4, 7, 817[ISU] cr issue queue full

1: TTM11: ISU

1: TTM00: ISU70[ISU] cr issue queue full + flush
originated by LSU

1: TTM11: ISU

0: TTM00: ISU1, 2, 5, 620[ISU] cr mapper full

0: TTM11: ISU

3: TTM00: ISU3, 4, 7, 825[ISU] dispatch blocked by scoreboard

3: TTM11: ISU

3: TTM00: ISU732[ISU] dispatch blocked by scoreboard
+ gpr mapper full

3: TTM11: ISU

269
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: TTM00: ISU1, 2, 5, 628[ISU] dispatch reject

2: TTM11: ISU

2: TTM00: ISU1, 2, 5, 627[ISU] dispatch valid

2: TTM11: ISU

2: TTM00: ISU532[ISU] dispatch valid + group
experienced a branch mispredict

2: TTM11: ISU

3: TTM00: ISU3, 4, 7, 827[ISU] duration MSR(EE) = 0

3: TTM11: ISU

3: TTM00: ISU432[ISU] duration MSR(EE) = 0 +
MSR(EE)=0 and interrupt pending

3: TTM11: ISU

1: TTM00: ISU3, 4, 7, 823[ISU] flush (includes LSU, branch
mispredict)

1: TTM11: ISU

1: TTM00: ISU3, 4, 7, 822[ISU] flush originated by branch
mispredict

1: TTM11: ISU

1: TTM00: ISU3, 4, 7, 821[ISU] flush originated by LSU

1: TTM11: ISU

0: TTM00: ISU1, 2, 5, 619[ISU] fp0 issue queue full

0: TTM11: ISU

0: TTM00: ISU50[ISU] fp0 issue queue full + fp1 issue
queue full

0: TTM11: ISU

0: TTM00: ISU1, 2, 5, 623[ISU] fp1 issue queue full

0: TTM11: ISU

0: TTM00: ISU1, 2, 5, 617[ISU] fpr mapper full

0: TTM11: ISU

270
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

0: TTM00: ISU20[ISU] fpr mapper full + br issue queue
full

0: TTM11: ISU

3: TTM00: ISU3, 4, 7, 826[ISU] fx0 produced a result

3: TTM11: ISU

3: TTM00: ISU332[ISU] fx0 produced a result + fx1
produced a result

3: TTM11: ISU

1: TTM00: ISU3, 4, 7, 816[ISU] fx0/ls0 issue queue full

1: TTM11: ISU

1: TTM00: ISU80[ISU] fx0/ls0 issue queue full + fx1/ls1
issue queue full

1: TTM11: ISU

3: TTM00: ISU3, 4, 7, 830[ISU] fx1 produced a result

3: TTM11: ISU

1: TTM00: ISU3, 4, 7, 820[ISU] fx1/ls1 issue queue full

1: TTM11: ISU

3: TTM00: ISU3, 4, 7, 829[ISU] gpr mapper full

3: TTM11: ISU

2: TTM00: ISU1, 2, 5, 631[ISU] group experienced a branch
mispredict

2: TTM11: ISU

2: TTM00: ISU1, 2, 5, 630[ISU] group experienced a branch
redirect

2: TTM11: ISU

2: TTM00: ISU1, 2, 2, 2, 5, 5,
5, 6, 6, 6

24, 25, 26,
24, 25, 26,
24, 25, 26,
24, 25, 26

[ISU] instructions dispatched count

2: TTM11: ISU

271
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: TTM00: ISU132[ISU] instructions dispatched count +
dispatch reject

2: TTM11: ISU

2: TTM00: ISU632[ISU] instructions dispatched count +
group experienced a branch redirect

2: TTM11: ISU

2: TTM00: ISU232[ISU] instructions dispatched count +
nothing

2: TTM11: ISU

0: TTM00: ISU1, 2, 5, 622[ISU] lr/ctr mapper full

0: TTM11: ISU

1: TTM00: ISU3, 4, 7, 818[ISU] LRQ full

1: TTM11: ISU

1: TTM00: ISU30[ISU] LRQ full + flush originated by
branch mispredict

1: TTM11: ISU

3: TTM00: ISU3, 4, 7, 831[ISU] MSR(EE)=0 and interrupt
pending

3: TTM11: ISU

1: TTM00: ISU3, 4, 7, 819[ISU] SRQ full

1: TTM11: ISU

1: TTM00: ISU40[ISU] SRQ full + flush (includes LSU,
branch mispredict)

1: TTM11: ISU

0: TTM00: ISU1, 2, 5, 618[ISU] xer mapper full

0: TTM11: ISU

0: TTM00: ISU60[ISU] xer mapper full + lr/ctr mapper
full

0: TTM11: ISU

0: LSU01, 2, 5, 618[LSU0] d erat miss side 0

272
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

0: LSU060[LSU0] d erat miss side 0 + d erat miss
side 1

0: LSU01, 2, 5, 622[LSU0] d erat miss side 1

0: LSU01, 2, 5, 621[LSU0] d slb miss

0: LSU01, 2, 5, 620[LSU0] d tlb miss

3: LSU03, 4, 7, 824[LSU0] fl pt load side 0

3: LSU0832[LSU0] fl pt load side 0 + fl pt load side
1

3: LSU03, 4, 7, 828[LSU0] fl pt load side 1

0: LSU01, 2, 5, 617[LSU0] i slb miss

0: LSU020[LSU0] i slb miss + d slb miss

0: LSU01, 2, 5, 616[LSU0] i tlb miss

0: LSU010[LSU0] i tlb miss + d tlb miss

3: LSU03, 4, 7, 825[LSU0] L1 Prefetch

3: LSU0732[LSU0] L1 Prefetch + SRQ sync
duration

3: LSU03, 4, 7, 827[LSU0] L2 Prefetch

3: LSU0432[LSU0] L2 Prefetch + new stream
allocated

2: LSU01, 2, 5, 631[LSU0] larx executed 0

1: LSU03, 4, 7, 818[LSU0] marked flush from LRQ shl, lhl
side 0

1: LSU030[LSU0] marked flush from LRQ shl, lhl
side 0 + marked flush from LRQ shl,
lhl side 1

1: LSU03, 4, 7, 822[LSU0] marked flush from LRQ shl, lhl
side 1

1: LSU03, 4, 7, 819[LSU0] marked flush SRQ lhs side 0

1: LSU040[LSU0] marked flush SRQ lhs side 0 +
marked flush SRQ lhs side 1

1: LSU03, 4, 7, 823[LSU0] marked flush SRQ lhs side 1

273
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

1: LSU03, 4, 7, 816[LSU0] marked flush unaligned load
side 0

1: LSU080[LSU0] marked flush unaligned load
side 0 + marked flush unaligned load
side 1

1: LSU03, 4, 7, 820[LSU0] marked flush unaligned load
side 1

1: LSU03, 4, 7, 817[LSU0] marked flush unaligned store
side 0

1: LSU070[LSU0] marked flush unaligned store
side 0 + marked flush unaligned store
side 1

1: LSU03, 4, 7, 821[LSU0] marked flush unaligned store
side 1

2: LSU01, 2, 5, 626[LSU0] marked imr reload

2: LSU0632[LSU0] marked imr reload + marked
stcx fail

2: LSU01, 2, 5, 627[LSU0] marked L1 d cache store miss

2: LSU0532[LSU0] marked L1 d cache store miss
+ larx executed 0

2: LSU01, 2, 5, 624[LSU0] marked L1 dcache load miss
side 0

2: LSU0132[LSU0] marked L1 dcache load miss
side 0 + marked L1 dcache load miss
side 1

2: LSU01, 2, 5, 628[LSU0] marked L1 dcache load miss
side 1

2: LSU01, 2, 5, 630[LSU0] marked stcx fail

3: LSU03, 4, 7, 831[LSU0] new stream allocated

3: LSU03, 4, 7, 826[LSU0] out of streams

3: LSU0332[LSU0] out of streams + reserved

3: LSU03, 4, 7, 830[LSU0] reserved

0: LSU01, 2, 5, 619[LSU0] snoop tlbie

274
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

0: LSU050[LSU0] snoop tlbie + tablewalk
duration

3: LSU03, 4, 7, 829[LSU0] SRQ sync duration

2: LSU01, 2, 5, 625[LSU0] stcx failed

2: LSU0232[LSU0] stcx failed + stcx passed

2: LSU01, 2, 629[LSU0] stcx passed

0: LSU01, 2, 5, 623[LSU0] tablewalk duration

0: LSU13: LSU1 2|31, 2, 5, 618[LSU1] flush from LRQ shl,lhl side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|360[LSU1] flush from LRQ shl,lhl side 0 +
flush from LRQ shl,lhl side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 622[LSU1] flush from LRQ shl,lhl side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 619[LSU1] flush SRQ lhs side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|350[LSU1] flush SRQ lhs side 0 + flush SRQ
lhs side 1

3: LSU1 2|7

3: LSU1 6|3

275
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 623[LSU1] flush SRQ lhs side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 616[LSU1] flush unaligned load side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|310[LSU1] flush unaligned load side 0 +
flush unaligned load side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 620[LSU1] flush unaligned load side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 617[LSU1] flush unaligned store side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|320[LSU1] flush unaligned store side 0 +
flush unaligned store side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

0: LSU13: LSU1 2|31, 2, 5, 621[LSU1] flush unaligned store side 1

276
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

2: TTM00: FPU529

0: ISU

0: IFU

0: VMX

2: TTM11: IDU

1: ISU

1: GPS

2: LSU0

2: LSU13: LSU1 2|3

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|33, 4, 7, 819[LSU1] L1 d cache store miss

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

2: LSU13: LSU1 2|31, 2, 5, 627

3: LSU1 2|7

1: LSU13: LSU1 2|340[LSU1] L1 d cache store miss + L1
dcache entries invalidated from L2

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

2: LSU13: LSU1 2|3532[LSU1] L1 d cache store miss + LSU ls1
reject

277
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

3: LSU1 2|7

1: LSU13: LSU1 2|33, 4, 7, 823[LSU1] L1 dcache entries invalidated
from L2

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|33, 4, 7, 818[LSU1] L1 dcache load miss side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|330[LSU1] L1 dcache load miss side 0 +
L1 dcache load miss side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|33, 4, 7, 822[LSU1] L1 dcache load miss side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|33, 4, 7, 816[LSU1] L1 dcache load side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|380[LSU1] L1 dcache load side 0 + L1
dcache load side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

278
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

1: LSU13: LSU1 2|33, 4, 7, 820[LSU1] L1 dcache load side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|33, 4, 7, 817[LSU1] L1 dcache store side 0

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|370[LSU1] L1 dcache store side 0 + L1
dcache store side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

1: LSU13: LSU1 2|33, 4, 7, 821[LSU1] L1 dcache store side 1

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

3: LSU13: LSU1 2|33, 4, 4, 4, 4, 7,
7, 7, 7, 8, 8, 8,
8

24, 25, 26,
27, 24, 25,
26, 27, 24,
25, 26, 27,
24, 25, 26,
27

[LSU1] L1 reload data source

3: LSU1 2|7

3: LSU1 6|3

3: LSU1 6|7

3: LSU13: LSU1 2|3832[LSU1] L1 reload data source + L1
reload data valid

3: LSU1 6|3

3: LSU13: LSU1 2|3432[LSU1] L1 reload data source + LMQ
full

279
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

3: LSU1 6|3

3: LSU13: LSU1 2|7732[LSU1] L1 reload data source + LMQ
load hit reload merge

3: LSU1 6|7

3: LSU13: LSU1 2|3332[LSU1] L1 reload data source + LMQ
slot 0 allocated

3: LSU1 6|3

3: LSU13: LSU1 2|3732[LSU1] L1 reload data source + LMQ
slot 0 valid

3: LSU1 6|3

3: LSU13: LSU1 2|7832[LSU1] L1 reload data source + Marked
L1 reload data source valid

3: LSU1 6|7

3: LSU13: LSU1 2|7332[LSU1] L1 reload data source + Marked
SRQ valid

3: LSU1 6|7

3: LSU13: LSU1 2|7432[LSU1] L1 reload data source +
nothing

3: LSU1 6|7

3: LSU13: LSU1 2|33, 4, 7, 828[LSU1] L1 reload data valid

3: LSU1 6|3

3: LSU13: LSU1 2|33, 4, 7, 831[LSU1] LMQ full

3: LSU1 6|3

3: LSU13: LSU1 2|73, 4, 7, 829[LSU1] LMQ load hit reload merge

3: LSU1 6|7

2: LSU13: LSU1 6|31, 2, 5, 625[LSU1] LMQ reject 0 - LMQ full or
missed data coming

3: LSU1 6|7

2: LSU13: LSU1 6|3232[LSU1] LMQ reject 0 - LMQ full or
missed data coming + LMQ reject 1-
LMQ full or missed data coming

280
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

3: LSU1 6|7

2: LSU13: LSU1 6|31, 2, 629[LSU1] LMQ reject 1- LMQ full or
missed data coming

3: LSU1 6|7

3: LSU13: LSU1 2|33, 4, 7, 830[LSU1] LMQ slot 0 allocated

3: LSU1 6|3

3: LSU13: LSU1 2|33, 4, 7, 829[LSU1] LMQ slot 0 valid

3: LSU1 6|3

2: LSU13: LSU1 2|31, 2, 5, 630[LSU1] LRQ slot 0 allocated

3: LSU1 2|7

2: LSU13: LSU1 2|31, 2, 5, 626[LSU1] LRQ slot 0 valid

3: LSU1 2|7

2: LSU13: LSU1 2|3632[LSU1] LRQ slot 0 valid + LRQ slot 0
allocated

3: LSU1 2|7

2: LSU13: LSU1 6|31, 2, 5, 627[LSU1] LS0 reject - erat miss.

3: LSU1 6|7

2: LSU13: LSU1 6|3532[LSU1] LS0 reject - erat miss. + LS1
reject - erat miss

3: LSU1 6|7

2: LSU13: LSU1 6|31, 2, 5, 626[LSU1] LS0 reject - reload cdf or tag
updata collision

3: LSU1 6|7

2: LSU13: LSU1 6|3632[LSU1] LS0 reject - reload cdf or tag
updata collision + LS1 reject - reload
cdf or tag updata collision

3: LSU1 6|7

2: LSU13: LSU1 6|31, 2, 5, 631[LSU1] LS1 reject - erat miss

3: LSU1 6|7

281
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: LSU13: LSU1 6|31, 2, 5, 630[LSU1] LS1 reject - reload cdf or tag
updata collision

3: LSU1 6|7

2: LSU13: LSU1 2|31, 2, 5, 631[LSU1] LSU ls1 reject

3: LSU1 2|7

3: LSU13: LSU1 2|73, 4, 7, 828[LSU1] Marked L1 reload data source
valid

3: LSU1 6|7

3: LSU13: LSU1 2|73, 4, 7, 830[LSU1] Marked SRQ valid

3: LSU1 6|7

2: LSU13: LSU1 6|31, 2, 5, 624[LSU1] SRQ reject 0 - load hit store

3: LSU1 6|7

2: LSU13: LSU1 6|3132[LSU1] SRQ reject 0 - load hit store +
SRQ reject 1- load hit store

3: LSU1 6|7

2: LSU13: LSU1 6|31, 2, 5, 628[LSU1] SRQ reject 1- load hit store

3: LSU1 6|7

2: LSU13: LSU1 2|31, 2, 629[LSU1] SRQ slot 0 allocated

3: LSU1 2|7

2: LSU13: LSU1 2|31, 2, 5, 625[LSU1] SRQ slot 0 valid

3: LSU1 2|7

2: LSU13: LSU1 2|3232[LSU1] SRQ slot 0 valid + SRQ slot 0
allocated

3: LSU1 2|7

2: LSU13: LSU1 2|31, 2, 5, 624[LSU1] SRQ store forwarding side 0

3: LSU1 2|7

2: LSU13: LSU1 2|3132[LSU1] SRQ store forwarding side 0 +
SRQ store forwarding side 1

3: LSU1 2|7

282
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: LSU13: LSU1 2|31, 2, 5, 628[LSU1] SRQ store forwarding side 1

3: LSU1 2|7

511[SPECA] reserved

711[SPECB] reserved

512[SPECC] reserved

712[SPECD] reserved

0: TTM00: VMX1, 2, 5, 618[VMX] ALU issue marked inst

0: TTM00: VMX60[VMX] ALU issue marked inst + Store
issue marked inst

0: TTM00: VMX1, 2, 5, 616[VMX] ALU issue queue full

0: TTM00: VMX10[VMX] ALU issue queue full + Sat zero
to one

1: TTM00: VMX3, 4, 7, 819[VMX] Denorm traps

1: TTM00: VMX40[VMX] Denorm traps + nothing

1: TTM00: VMX3, 4, 7, 821[VMX] finish contention cycle

1: TTM00: VMX3, 4, 7, 816[VMX] Finish with IMR

1: TTM00: VMX80[VMX] Finish with IMR + Sat bit set

2: TTM00: VMX1, 2, 629[VMX] forwarding occurred from perm
or alu or load

1: TTM00: VMX3, 4, 7, 817[VMX] Generic forward

1: TTM00: VMX70[VMX] Generic forward + finish
contention cycle

2: TTM00: VMX1, 2, 5, 628[VMX] instruction finish with IMR

2: TTM00: VMX1, 2, 5, 630[VMX] issue valid

0: TTM00: VMX1, 2, 5, 619[VMX] Perm issue marked inst

0: TTM00: VMX50[VMX] Perm issue marked inst +
nothing

0: TTM00: VMX1, 2, 5, 617[VMX] Perm issue queue full

0: TTM00: VMX20[VMX] Perm issue queue full + VMX
mapper full

283
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

1: TTM00: VMX3, 4, 7, 820[VMX] Sat bit set

0: TTM00: VMX1, 2, 5, 620[VMX] Sat zero to one

2: TTM00: VMX1, 2, 5, 631[VMX] saturation count for valid
instruction

0: TTM00: VMX1, 2, 5, 622[VMX] Store issue marked inst

1: TTM00: VMX3, 4, 7, 818[VMX] VMA issue count

1: TTM00: VMX30[VMX] VMA issue count + nothing

0: TTM00: VMX1, 2, 5, 621[VMX] VMX mapper full

25BRU marked instr finish

111Completion Stall by other reason

1, 2, 3, 4, 5, 6,
7, 8

15CPU Cycles

34CPU Cycles (hypervisor)

45CPU Marked Instruction finish

51Dispatch Successes

3: LSU117dL2 Hit (dL1 reload from L2)

3: LSU137dL2 Miss (dL1 reload from Memory)

82External Interrupt

74FPU marked instruction finish

64FXU Marked Instr finish

62FXU0 busy and FXU1 busy

72FXU0 busy and FXU1 idle

42FXU0 Idle and FXU1 Busy

52FXU0 idle and FXU1 idle

14GCT Empty

211GCT empty by SRQ full

73Group Completed

24Group Dispatch

284
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

83Group Dispatch Reject

54Group Marked in IDU

2: TTM00: IFU16iL2 Hit (iL1 reload from L2)

2: TTM00: IFU36iL2 Miss (iL1 reload from Memory)

1, 2, 3, 4, 5, 6,
7, 8

9Instr Completed (ppc)

4, 6, 7, 81Instr Completed (ppc,io,ld/st)

2: TTM00: FPU16Instr Src Encode 0 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

2: TTM00: FPU26Instr Src Encode 1 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

285
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

2: TTM00: FPU36Instr Src Encode 2 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

286
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: TTM00: FPU46Instr Src Encode 3 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

2: TTM00: FPU56Instr Src Encode 4 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

287
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

2: TTM00: FPU66Instr Src Encode 5 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

2: TTM00: FPU76Instr Src Encode 6 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

288
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

2: TTM00: FPU86Instr Src Encode 7 (Lane 2 not set to
IFU)

0: ISU

0: VMX

2: TTM10: FPU

0: ISU

0: IFU

0: VMX

2: LSU00: FPU

0: ISU

0: IFU

0: VMX

2: LSU10: FPU

0: ISU

0: IFU

0: VMX

11Instructions Completed (ppc,io,ld/st)

2, 32LSU empty (LMQ and SRQ empty)

84LSU Marked Instr finish

289
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

Byte Lane
Number

TTM Mux NumberPMC
Number(s)

Event
Number(s)

Performance Counter Event Name

44Marked Group complete

55Marked Group Complete Timeout

12Marked group dispatch

65Marked Group issued

75Marked Instr finish in any unit

13Marked store complete

33Marked Store Complete w/int.

63Marked Store sent to GPS

1, 2, 3, 4, 5, 6,
7, 8

8Nothing

210Overflow from PMC1

310Overflow from PMC2

410Overflow from PMC3

510Overflow from PMC4

610Overflow from PMC5

710Overflow from PMC6

810Overflow from PMC7

110Overflow from PMC8

15Run Cycles

43SRQ empty

31Stop Completion

23Threshold Timeout

85Timebase Event

35VMX Marked Instruction finish

21Work Held

290
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX H

PPC 970 (G5) Performance Counter Event List

The U1.5 and U2 North bridge chipsets contain four independent counters, each of which can count any one
of 55 different types of events.

The table lists the events alphabetically by name, followed by the Event Number that must be selected to
activate counting of a particular event. Some of the events are suffixed with a term in braces at the end of
the event name. for example: If the term is [AGP], then the event can only occur if the AGP event source is
active. If an event has no suffix, it can be generated by any active event source. The events suffixed with [Bus]
are never generated by any of the sources, only by the front-side bus activities.

For more information, see “U1.5/U2 North Bridges” (page 206).

Event NumberPerformance Counter Event Name

93Addr-only Xacts Not Retried [Bus]

49AGP R/W Hit Closed Page [AGP]

48AGP R/W Hit Open Page [AGP]

50, 100AGP R/W Miss Open Page [AGP]

52AGP Read Hit Closed Page [AGP]

51AGP Read Hit Open Page [AGP]

53, 101AGP Read Miss Open Page [AGP]

90All Xacts [Bus]

88Burst Mem Reads [Bus]

77Burst Mem Reqs [Bus]

89Burst Mem Writes [Bus]

84Burst PCI Reads [Bus]

76Burst PCI Reqs [Bus]

85Burst PCI Writes [Bus]

72Burst Read Reqs [Bus]

73Burst Write Reqs [Bus]

65Burst Xacts [Bus]

91Cache Inhib. Xacts [Bus]

291
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX I

UniNorth-2 (U1.5/2) Performance Counter
Event List

Event NumberPerformance Counter Event Name

94Cycles Addr Bus Busy [Bus]

95Cycles Data Bus Busy [Bus]

1MaxBus Cycles [---]

80Mem Read Reqs [Bus]

67Mem Requests [Bus]

81Mem Write Reqs [Bus]

78PCI Read Reqs [Bus]

66PCI Requests [Bus]

79PCI Write Reqs [Bus]

17R/W Hit Closed Page [Mem]

16R/W Hit Open Page [Mem]

18R/W Miss Open Page [Mem]

39R/W Miss Open page [Mem]

28R/W Page Hit (LRU) [Mem]

27R/W Page Hit (MRU) [Mem]

30Read Hit Closed Page [Mem]

29Read Hit Open Page [Mem]

40Read Miss Open page [Mem]

31Read Miss Open Page [Mem]

99Read Prefetch Buff Hits [Mem]

98Read Prefetch Ops [Mem]

69Read Xacts [Bus]

97Retries on Maxbus [Bus]

86Single Beat Mem Reads [Bus]

75Single Beat Mem Reqs [Bus]

87Single Beat Mem Writes [Bus]

82Single Beat PCI Reads [Bus]

292
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX I

UniNorth-2 (U1.5/2) Performance Counter Event List

Event NumberPerformance Counter Event Name

74Single Beat PCI Reqs [Bus]

83Single Beat PCI Writes [Bus]

70Single Beat Read Reqs [Bus]

71Single Beat Write Reqs [Bus]

64Single Beat Xacts [Bus]

92Sync/Eieio Not Retried [Bus]

96UniN Retries on Maxbus [Bus]

68Write Xacts [Bus]

293
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX I

UniNorth-2 (U1.5/2) Performance Counter Event List

294
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX I

UniNorth-2 (U1.5/2) Performance Counter Event List

The U3 North bridge chipsets contain two distinct sets of counters.

The first set of counters counts memory events, in a manner similar to the counters for the other North bridge
chips. Six independent memory counters are present, each of which can count any one of five different
general types of events. Each of these types may be focused further by filtering events on the basis of their
source I/O interface (any combination of the nine independently selectable interfaces may be counted) and
three memory page states (for events involving DRAM interaction).

The second set of counters (“API counters”) count queueing and buffering events internal to the chip, allowing
a more detailed look at its inner workings. Six independent API counters are present, each of which can count
any one of six different general types of events. Each of these types may be focused further by filtering events
on the basis of their source queue/buffer (any one from among 51 possible sources).

The first of the three tables in this appendix lists the memory events alphabetically by name, followed by
the Event Number that needs to be selected to activate counting of a particular event. The second table does
the same for the API performance counters. Finally, the third table provides a list of the sources for API events
and their corresponding numbers.

For more information, see “U3 North Bridge” (page 207).

Event NumberMemory Performance Counter Event Name

8Cycles 1 or more queues have 0 entries

16Cycles 1 or more queues have 2 entries

1DRAM Clock Cycles (no filters apply, 1/2 DDR freq.)

0Nothing

2Number of Memory Transactions

4Read/write request beats (bytes=beats*16)

Event NumberAPI Performance Counter Event Name

0x02Accumulate Queue Requests

0x00API Cycles

0xFFNothing

0x03Queue Reservations

0x01Queue Transactions

295
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX J

UniNorth-3 (U3) Performance Counter Event
List

Event NumberAPI Performance Counter Event Name

0x05Retries

0x04Transaction Size (bytes)

Source NumberAPI Event Source Name

0x1AAPI0 Mem MI Target Rq Queue

0x16API0 Mem Rd Target Rq Queue

0x18API0 Mem Wt Target Rq Queue

0x1BAPI1 Mem MI Target Rq Queue

0x17API1 Mem Rd Target Rq Queue

0x19API1 Mem Wt Target Rq Queue

0x01Command Slot

0x13Ht Coh Rd Rq Queue

0x14Ht Coh Wt Rq Queue

0x90Ht Rd Data Queue

0x09Ht Rd Target Rq Queue

0x0EHt Response Queue

0x40Ht Wt Data Queue

0x08Ht Wt Target Rq Queue

0x03Intervention Queue

0xE00Master Tag: All

0x200Master Tag: API0

0x400Master Tag: API0 and API1

0x300Master Tag: API1

0xA00Master Tag: HT

0x900Master Tag: PCI

0x800Master Tag: VSP

0xC00Master Tag: VSP, PCI, and HT

0x70Mem Rd Data Queue

296
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX J

UniNorth-3 (U3) Performance Counter Event List

Source NumberAPI Event Source Name

0x05Mem Rd Target Rq Queue

0x0CMem Response Queue

0x20Mem Wt Data Queue

0x04Mem Wt Target Rq Queue

0x11Pci Coh Rd Rq Queue

0x12Pci Coh Wt Rq Queue

0x80Pci Rd Data Queue

0x07Pci Rd Target Rq Queue

0x0DPci Response Queue

0x30Pci Wt Data Queue

0x06Pci Wt Target Rq Queue

0xB0Reg Rd Data Queue

0x10Reg Response Queue

0x0BReg Target Rq Queue

0x60Reg Wt Data Queue

0x02Snoop Slots

0x00Synchronization Queue

0x15Vsp Coh Rd Rq Queue

0xA0Vsp Rd Data Queue

0x0FVsp Response Queue

0x0AVsp Target Rq Queue

0x50Vsp Wt Data Queue

0x100Write Data Buffer

0x130Write Data Buffer API0 MI

0x110Write Data Buffer API0 Wr

0x140Write Data Buffer API1 MI

0x120Write Data Buffer API1 Wr

297
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX J

UniNorth-3 (U3) Performance Counter Event List

298
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX J

UniNorth-3 (U3) Performance Counter Event List

The U4/Kodiak North bridge chipsets contain two distinct sets of counters.

The first set of counters counts memory events, in a manner similar to the counters for the other North bridge
chips. Six independent memory counters are present, each of which can count any one of 22 different general
types of events. Each of these types may be focused further by filtering events on the basis of their source
interface (any combination of the seven independently selectable sources may be counted).

The second set of counters (“API counters”) count queueing and buffering events internal to the chip, allowing
a more detailed look at its inner workings. Six independent API counters are present, each of which can count
any one of six different general types of events. Each of these types may be focused further by filtering events
on the basis of their source queue/buffer (any one from among 33 possible sources) and source I/O interface
(any combination of the six independently selectable interfaces may be counted simultaneously).

The first of the three tables in this appendix lists the memory events alphabetically by name, followed by
the Event Number that needs to be selected to activate counting of a particular event. The second table does
the same for the API performance counters. Finally, the third table provides a list of the sources for API events
and their corresponding numbers.

For more information, see “U4 (Kodiak) North Bridge” (page 210).

Event NumberMemory Performance Counter Event Name

7Activate commands -- open page (filtered and counted)

64Bottom entry aged (count events, no filters)

3Cache line sized transfers -- 128 bytes (filtered and counted)

5Commands with auto-precharge enabled (filtered and counted)

32Conflict detected in oldest read reorder queue (count events, no filters)

255DRAM Cycle Count (1/2 DDR frequency, no filters)

113Entries in non-coherent request queue (accumulate events, no filters)

81Entries in read reorder queue (accumulate events, no filters)

80Entries in write reorder queue (accumulate events, no filters)

83Issued transfer size (accumulate events, no filters)

97Non-coherent read request [RT #24253] (count events, no filters)

96Non-coherent request [RT #24252] (count events, no filters)

0Nothing

299
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX K

Kodiak (U4) Performance Counter Event List

Event NumberMemory Performance Counter Event Name

6Precharge commands -- close page (filtered and counted)

17Read reorder queue empty (count events, no filters)

1Read requests (filtered and counted)

16Request queue empty [RT #23441] (count events, no filters)

82Requested transfer size (accumulate events, no filters)

112Requested transfer size from non-coherent queue (accumulate events, no filters)

4RMW transfers (filtered and counted)

48Write high watermark reached (count events, no filters)

18Write reorder queue empty (count events, no filters)

2Write requests (filtered and counted)

Event NumberAPI Performance Counter Event Name

0x02Accumulate Queue Requests

0x00API Cycles

0xFFNothing

0x03Queue Reservations

0x01Queue Transactions

0x05Retries

0x04Transaction Size (bytes)

Source NumberAPI Event Source Name

0x28API Wt Data Buffer

0x10Bypass Queue

0x01Command Slot

0x27GCR Rd Data Queue

0x0BGCR Response Queue

0x08GCR Target Rq Queue

0x23GCR Wt Data Queue

300
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX K

Kodiak (U4) Performance Counter Event List

Source NumberAPI Event Source Name

0x14Ht Coh Rd Pending Queue

0x0EHt Coh Rd Rq Queue

0x15Ht Coh Wt Pending Queue

0x0FHt Coh Wt Rq Queue

0x26Ht Rd Data Queue

0x07Ht Rd Target Rq Queue

0x0AHt Response Queue

0x22Ht Wt Data Queue

0x06Ht Wt Target Rq Queue

0x29Intervention Buffer

0x2AMemory Rd Buffer (NI)

0x11Memory Request Queue

0x20Memory Response Buffer

0x24Memory Wt Data Buffer

0x12PCIE Coh Rd Pending Queue

0x0CPCIE Coh Rd Rq Queue

0x13PCIE Coh Wt Pending Queue

0x0DPCIE Coh Wt Rq Queue

0x25PCIE Rd Data Queue

0x05PCIE Rd Target Rq Queue

0x09PCIE Response Queue

0x21PCIE Wt Data Queue

0x04PCIE Wt Target Rq Queue

0x3FPower Management

0x02Snoop Slots

0x00Synchronization Queue

301
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX K

Kodiak (U4) Performance Counter Event List

302
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX K

Kodiak (U4) Performance Counter Event List

The ARM11 cores used in iPhone OS devices contain three independent performance counters. The first
counter can count only cycle counts, while the other two (which are identical) can count 25 different types
of events.

The table below lists each Event Name, the counter (PMC) number(s) for counters which can count the event,
and each event’s number.

For more information on how to configure these counters, see “ARM11 CPU Performance Counter
Configuration” (page 212).

Event NumberPMC Number(s)Performance Counter Event Name

52-3Branch instruction executed

62-3Branch mispredicted

0,2551,2-3Cycle Count

92-3Data cache access, no cache operations (cacheable accesses only)

102-3Data cache access, no cache operations

112-3Data cache miss, no cache operations

122-3Data cache writeback per 4 words

42-3Data MicroTLB miss

342-3ETMEXTOUT[0,1] asserts

322-3ETMEXTOUT[0] asserts

332-3ETMEXTOUT[1] asserts

162-3Explicit external data access

02-3Instruction cache miss requires fetch

72-3Instruction executed

32-3Instruction MicroTLB miss

152-3Main TLB miss

352-3Procedure call instruction executed

382-3Procedure return instruction executed, return address predicted
incorrectly

303
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX L

ARM11 Performance Counter Event List

Event NumberPMC Number(s)Performance Counter Event Name

372-3Procedure return instruction executed, return address predicted

362-3Procedure return instruction executed

132-3Software changed the PC

22-3Stall, data dependency

12-3Stall, instruction buffer cannot deliver

172-3Stall, LSU request queue full

182-3Write buffer drained count

304
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX L

ARM11 Performance Counter Event List

This table describes the changes to Shark User Guide.

NotesDate

TBD2008-04-14

New document that explains how to analyze code performance by profiling the
system.

2007-10-31

305
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

306
2008-04-14 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Shark User Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Getting Started with Shark
	Main Window
	Mini Configuration Editors

	Perform Sampling
	Session Windows and Files
	Session Files
	Session Information Sheet
	Session Report
	Advanced Settings Drawer

	Shark Preferences

	Time Profiling
	Statistical Sampling
	Taking a Time Profile
	Profile Browser
	Heavy View
	Tree View
	Profile Display Preferences

	Chart View
	Advanced Chart View Settings

	Code Browser
	Assembly Browser
	Advanced Code Browser Settings
	ISA Reference Window

	Tips and Tricks
	Example: Optimizing MPEG-2 using Time Profiles
	Base
	Vectorization

	System Tracing
	Tracing Methodology
	Basic Usage
	Interpreting Sessions
	Summary View In-depth
	Scheduler Summary
	System Calls Summary
	Virtual Memory (VM) Faults Summary
	Summary View Advanced Settings

	Trace View In-depth
	Scheduler Trace
	System Call Trace
	VM Fault Trace

	Timeline View In-depth
	Thread Run Intervals
	System Calls
	VM Faults
	Interrupts
	Sign Posts
	Timeline View Advanced Settings

	Sign Posts
	Tips and Tricks

	Other Profiling and Tracing Techniques
	Time Profile (All Thread States)
	Malloc Trace
	Using a Malloc Trace
	Advanced Display Options

	Static Analysis
	Using Shark with Java Programs
	Java Tracing Techniques
	Linking Shark with the Java Virtual Machine

	Event Counting and Profiling Overview
	Timed Counters: The Performance Counter Spreadsheet
	The Counters Menu
	Performance Counter Spreadsheet Advanced Settings
	Adding Shortcut Equations

	Event-Driven Counters: Correlating Events with Your Code

	Advanced Profiling Control
	Process Attach
	Process Launch
	Batch Mode
	Windowed Time Facility (WTF)
	WTF with System Trace

	Unresponsive Application Measurements
	Command Line Shark
	Basic Methodology
	Interactive Mode
	Immediate Mode
	Remote Mode
	Network Mode

	Common Options
	Target Selection
	Reports
	Custom Configurations
	More Information

	Interprocess Remote Control
	Programmatic Control
	Example: Towers of Hanoi

	Command Line Remote Control

	Network/iPhone Profiling
	Using Shared Profiling Mode
	Mac OS X Firewall Considerations

	Advanced Session Management and Data Mining
	Automatic Symbolication Troubleshooting
	Symbol Lookup
	Debugging Information
	Xcode
	GCC/XLC/XLF

	Manual Session Symbolication
	Managing Sessions
	Comparing Sessions
	Example

	Merging Sessions

	Data Mining
	Callstack Data Mining
	Perf Count Data Mining

	Example: Using Data Mining with a Time Profile
	A Performance Problem...
	Taking Samples
	High Level Analysis
	Analysis Via Source Navigation
	Introduction To Focusing
	Dig Deeper by Charging Costs

	Example: Graphical Analysis using Chart View with a Malloc Trace
	Taking Samples
	Graphical Analysis of a Malloc Trace

	Custom Configurations
	The Config Editor
	Simple Timed Samples and Counters Config Editor
	Malloc Data Source PlugIn Editor
	Static Analysis Data Source PlugIn Editor
	Java Trace Data Source PlugIn Editor
	Sampler Data Source PlugIn Editor
	System Trace Data Source PlugIn Editor
	All Thread States Data Source PlugIn Editor
	Analysis and Viewer PlugIn Summary
	Counter Spreadsheet Analysis PlugIn Editor
	Using the Editor
	Spreadsheet Configuration Example

	Hardware Counter Configuration
	Configuring the Sampling Technique: The Sampling Tab
	Common Elements in Performance Counter Configuration Tabs
	Counter Control
	Privilege Level Filtering
	Process Marking

	MacOS X OS-Level Counters Configuration
	Intel CPU Performance Counter Configuration
	PowerPC G3/G4/G4+ CPU Performance Counter Configuration
	PowerPC G5 (970) Performance Counter Configuration
	PowerPC North Bridge Counter Configuration
	U1.5/U2 North Bridges
	U3 North Bridge
	U4 (Kodiak) North Bridge

	ARM11 CPU Performance Counter Configuration

	Appendix A: Command Reference
	Menu Reference
	Shark
	File
	Edit
	Format
	Config
	Sampling
	Data Mining
	Window
	Help

	Alphabetical Reference

	Appendix B: Miscellaneous Topics
	Code Analysis with the G5 (PPC970) Model
	Supervisor Space Sampling Guidelines

	Appendix C: Intel Core Performance Counter Event List
	Appendix D: Intel Core 2 Performance Counter Event List
	Appendix E: PPC 750 (G3) Performance Counter Event List
	Appendix F: PPC 7400 (G4) Performance Counter Event List
	Appendix G: PPC 7450 (G4+) Performance Counter Event List
	Appendix H: PPC 970 (G5) Performance Counter Event List
	Appendix I: UniNorth-2 (U1.5/2) Performance Counter Event List
	Appendix J: UniNorth-3 (U3) Performance Counter Event List
	Appendix K: Kodiak (U4) Performance Counter Event List
	Appendix L: ARM11 Performance Counter Event List
	Revision History

