
Software Delivery Guide
Tools > Files & Software Installation

2006-07-24

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Panther, Tiger, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 8

Chapter 1 Overview of Software Delivery 9

Installs for Product Developers 9
Installs for Network Administrators 10

Chapter 2 Product Containers 11

Creating a Disk Image 12
Internet-Enabling a Disk Image 13
Adding a License Agreement to a Disk Image 13

Chapter 3 Manual Installs 15

Chapter 4 Managed Installs 17

Packages 18
What Is a Package? 18
Component Packages 19
Metapackages 20
Distribution Packages 21

System and Volume Requirements 22
The Installation Process 22

Component Package Installation Process 23
Metapackage Installation Process 23
Distribution Package Installation Process 24

The User Install Experience 24
Postinstallation Process Action 25
Limitations of Managed Installs 25

Chapter 5 Packaging Product Components 27

Categorize the Component 27
Create the Component Package Project Directory 28
Add the Component Files to the Package Project Directory 28
Add Executable Files to the Package Project Directory 29
Create the Component Package 29

3
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

Test the Component Package 31

Chapter 6 Defining a Managed Install 33

Creating a Metapackage 33
Create the Metapackage Project Directory 33
Create the Metapackage File 34

Creating a Distribution Package 35
Create the Distribution Package Project Directory 35
Create the Distribution Package File 36

Creating a Hybrid Metapackage 42
Placing a Packaged Product in a Container 42
Testing the Install Experience 43

Chapter 7 Specifying Install Operations 45

Overview of Install Operations 45
Arguments and Environment Variables for Install Operations 46
Example: Install Operation Script 47

Chapter 8 Performing Remote Installs 49

Appendix A Specifying System and Volume Requirements in Pre-Tiger Systems 53

Overview of Executable-Based Installation Requirements 53
Strings Files for InstallationCheck and VolumeCheck Denials 53
InstallationCheck Messages 55
VolumeCheck Messages 55

Appendix B Prebinding Applications 57

Appendix C Preserving Resource Fork Data 59

Glossary 61

Document Revision History 63

4
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Overview of Software Delivery 9

Listing 1-1 Atom—A single-component product 9
Listing 1-2 Levon—A multicomponent product 10

Chapter 2 Product Containers 11

Figure 2-1 Delivering a product using a disk image 11
Figure 2-2 A product directory in a Finder window 12
Figure 2-3 A disk image’s contents in a Finder window 13
Listing 2-1 Internet-enabling a disk image 13

Chapter 3 Manual Installs 15

Listing 3-1 A simple product 15

Chapter 4 Managed Installs 17

Table 4-1 Installation process of a metapackage 20
Table 4-2 Installation process of a distribution package 21

Chapter 5 Packaging Product Components 27

Table 5-1 Component types and installation destinations 27
Table 5-2 Categorization of the components of a multicomponent product, called Levon

28
Listing 5-1 Component-package project directories for a multicomponent product 28
Listing 5-2 Adding component files to component-package project directories 28
Listing 5-3 Adding executables to component-package project directories 29

Chapter 6 Defining a Managed Install 33

Figure 6-1 Defining a system requirement in a distribution package 37
Figure 6-2 Defining a volume requirement in a distribution package 38
Figure 6-3 Installer informs users of an unsatisfied system requirement 39
Figure 6-4 Installer indicates which volumes do not meet requirements 40
Figure 6-5 Defining an install choice for a distribution package 41
Figure 6-6 Delivering a packaged product using a disk image 43
Listing 6-1 A metapackage project directory 34
Listing 6-2 Distribution package project directory 35
Listing 6-3 JavaScript code for a volume requirement 38

5
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 7 Specifying Install Operations 45

Table 7-1 Install operations and executables 45
Table 7-2 Environment variables in operation executables 47
Listing 7-1 Sample install operation script 47
Listing 7-2 Sample Installer log entry 47

Chapter 8 Performing Remote Installs 49

Figure 8-1 Remote Desktop Install Packages task 50
Figure 8-2 Successful Install Packages task in Remote Desktop 51

Appendix A Specifying System and Volume Requirements in Pre-Tiger Systems 53

Table A-1 Localized directories 54
Table A-2 Installer default messages for InstallationCheck failures 55
Table A-3 Installer default messages for VolumeCheck failures 55
Listing A-1 A sample InstallationCheck.strings file 54
Listing A-2 A sample VolumeCheck.strings file 54

6
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled Software Distribution.

This document describes the process of packaging and delivering a software product so that it can be installed
on a user’s computer. The two major methods of delivering software are manual installs and managed installs.

A manual install is the preferred delivery solution because it offers the simplest install experience for small
or compact products, such as a single application package. For example, to install an application, a user may
drag the application package from a CD onto a folder of their choosing.

For more complex products, managed installs let you define every aspect of the install experience, including
making sure the target computer meets specific requirements. Managed installs are generally used with
products comprising several components to tailor the installation of each component depending on its kind.
A managed install uses installer packages that define an install experience. When users open such packages,
the Installer application guides them through the installation process and copies the product files to the
appropriate locations on their file system.

Network administrators can use a type of managed install, a remote install, to install a product on several
networked computers using Remote Desktop. No user interaction occurs in this type of install.

Software requirements: This document assumes that delivery solutions are created using Mac OS X v10.4
or later and Xcode 2.3 or later. The delivery solutions described in this document can be installed on computers
running Mac OS X v10.2 and later.

This document is meant to provide software delivery guidelines to product developers, product packagers,
and network administrators.

 ■ Product developers create products or product components (such as applications, frameworks, plug-ins,
and so on) using development tools such as Xcode.

 ■ Product packagers devise a delivery solution for an entire product.

 ■ Network administrators manage a group of networked computers and may need to install the same
software on several computers remotely.

Organization of This Document

This document contains the following chapters and appendixes:

 ■ “Overview of Software Delivery” (page 9) introduces the major software delivery mechanisms used in
Mac OS X: manual installs and managed installs. It also explains remote installs, which network
administrators use to install products on several computers on a network.

Organization of This Document 7
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Product Containers” (page 11) introduces general product delivery mechanisms that can be used in
manual installs and managed installs. This chapter shows how to create a disk image for a standalone
product. This chapter also shows how to create Internet-enabled disk images, which streamline manual
installs. This chapter is especially useful to product packagers.

 ■ “Manual Installs” (page 15) describes manual installs and provides an example of a simple product that
should be installed manually. Product developers and packagers should read this chapter.

 ■ “Managed Installs” (page 17) lists the major features managed installs provide, and explains when
managed installs are appropriate. This chapter describes the three types of installation package and how
they are processed by the Installer application. This chapter also describes the managed installation
process and user experience. This information is useful to product packagers and network administrators.

 ■ “Packaging Product Components” (page 27) explains how to create an installation package for a product
component or a single-component product for a remote install.

 ■ “Defining a Managed Install” (page 33) explains how to create an install experience using a distribution
package or a metapackage. Also shows how to create a hybrid metapackage. This information is useful
to product packagers and network administrators.

 ■ “Specifying Install Operations” (page 45) explains how to define install operations for a managed install.
This information is useful to product packagers and network administrators.

 ■ “Performing Remote Installs” (page 49) provides an overview of remote installs and an example of one.
This chapter is targeted to network administrators.

 ■ “Specifying System and Volume Requirements in Pre-Tiger Systems” (page 53) explains how to define
installation requirements using executable files. This information is useful to product packagers and
network administrators.

 ■ “Prebinding Applications” (page 57) explains when an application may benefit from having its prebinding
information updated after a manual install. Product developers and packagers may find this information
useful.

 ■ “Preserving Resource Fork Data” (page 59) provides an overview of resource forks and explains how the
PackageMaker and Installer applications handle payloads that include files with embedded resource
forks instead of separate resource files. Product developers and packagers may find this information
useful.

See Also

 ■ File System Overview describes the Mac OS X file system and its domains. Knowledge of the Mac OS X
directory hierarchy is paramount when packaging multicomponent products.

 ■ Runtime Configuration Guidelines explains the keys used in Info.plist files to specify some product
properties, such as version and identifier. These properties are required when packaging products to
create a managed install.

 ■ Bundle Programming Guide describes Mac OS X bundles and file packages, which are used extensively
in Mac OS X.

 ■ Apple Remote Desktop Administrator's Guide Version 3.2 explains how to use Remote Desktop to manage
a set of networked computers.

8 See Also
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction

Mac OS X provides several mechanisms you can use to deliver a software product to your customers. These
mechanisms are both flexible and easy to develop. They support the delivery of simple or complex products
to novice or expert users. In addition, Mac OS X and Apple Remote Desktop provide facilities for delivering
products to several computers on an intranet.

Whether you are a product developer or a network administrator, Mac OS X allows you to create a product
delivery solution to satisfy the product-installation needs of your customers.

Installs for Product Developers

The nature and structure of your product determine the install experience you can provide to its users. If
your product is a self-contained application (one that doesn’t need to install components at different locations
in the file system), you can distribute it as a single file or folder. Users then can drag the product from its
container or delivery vehicle to a location of their choice in their file systems. This type of installation process
is called manual install. This is the preferred method of delivering applications to Mac OS X users.

However, there are situations that require more complex products. For example, some applications require
the presence of shared resources such as frameworks or fonts, which, in general, reside at
/Library/Frameworks and /Library/Fonts, respectively. Each item that resides at a distinct location
on the file system is known as a component. To make it easy for users to install a multicomponent product,
instead of making users place each component in the appropriate location you develop an appealing install
that frees users from that tedious and error-prone task. To that end, the Installer application
(/Applications/Utilities) uses a simple interface to guide users through the process of installing
multicomponent products. This type of installation process is known as a managed install.

Note: This document uses the word component as a general term to refer to parts of a multipart product. It
has no functional relation to items that are normally placed in Library/Components directories.

Managed installs provide users with a GUI (graphical user interface) through which they specify a few details
to customize an install. The Installer application handles the file-management tasks on the users’ behalf.

You use PackageMaker (/Developer/Applications/Utilities) to develop a managed install. You can
tailor the install experience with Read Me and license agreement files and by specifying installation
requirements to ensure the product is installed only on systems that meet specific criteria, such as available
memory and disk space.

Listing 1-1 shows an example of a single-component product, called Atom. This is the kind of product users
should be able to install manually.

Listing 1-1 Atom—A single-component product

Atom_product/
 Atom.app

Installs for Product Developers 9
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Overview of Software Delivery

Listing 1-2, on the other hand, showcases a multicomponent product, called Levon, comprised of an application
package, a documentation file, and a framework. The application package should be placed in/Applications,
the documentation file in /Library/Documentation, and the framework in /Library/Frameworks. (See
File System Overview for a more complete list file system locations and component types.) For users, having
to drag three files to three locations is not an appealing install experience. A managed install is more
appropriate for a product of this kind.

Listing 1-2 Levon—A multicomponent product

Levon_product/
 Levon.app
 Levon_User_Guide.pdf
 SharedServices.framework

Installs for Network Administrators

If you’re a network administrator, you probably are often faced with the task of distributing the same software
to a set of computers. A remote install is an installation process that network administrators can use to
remotely place products on several networked computers. Remote installs use the same underlying engine
that managed installs are based on. But although the Installer application is used to perform the install tasks
on the target clients, the users of these computers do not participate in the installation process; that is, they
don’t interact with Installer. In fact, administrators can install products on computers while users are logged
in and actively using their systems. Also, administrators can schedule a Remote Desktop task that performs
a remote install, ensuring that unavailable computers receive the product when they become available. (See
Apple Remote Desktop Administrator's Guide Version 3.2 for more information.

The following chapters describe in detail how to develop a delivery solution for your product.

10 Installs for Network Administrators
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Overview of Software Delivery

Whether you devise a manual install or a managed install (introduced in “Overview of Software Delivery” (page
9)) for your product, in general you need to place your product into a container. A container is a file-based
enclosure for a product, which facilitates the product’s delivery to a user’s computer. To deliver your product
to your users, you may use a transport (delivery vehicle) such as optical media or the Internet. Figure 2-1
illustrates the preferred delivery solution for products in Mac OS X.

Figure 2-1 Delivering a product using a disk image

Computer

Product

Container

Transport

ZIP files: If your product can be used in operating systems other than Mac OS X, you may consider using a
ZIP archive as the product’s container. To create a ZIP product container in the Finder, select the product
directory in a Finder window and use the Create Archive command. You may also use the zip(1)
command-line tool.

Disk images are the preferred container for software products on Mac OS X. They allow you to group a set
of files in a compact format that is easily handled by users. These enclosures are easily transported across a
network because they appear as a single file. To access the contents of a disk image, a user double-clicks it

11
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Product Containers

in the Finder, which opens a standard Finder window showing the disk image’s contents. Compressed disk
images allow you to use delivery vehicles—space-limited optical media or bandwidth-strapped
networks—more efficiently.

The best container for delivering a product through the Internet is an Internet-enabled disk image. These
containers are automatically opened and disposed of. Users need only move the product to a convenient
location. See “Manual Installs” (page 15) for more information.

The following sections describe how to place a product on a disk image and how to configure a disk image
to provide a streamlined install experience when it’s downloaded from a network, such as the Internet or an
intranet.

Creating a Disk Image

The Disk Utility application (/Applications/Utilities) allows you to create a disk image from a folder,
as described in the following steps.

1. Create a directory named after your product, containing the product’s files, such as the Atom 1.0.0
directory shown in Figure 2-2.

Figure 2-2 A product directory in a Finder window

2. In Disk Utility, use the New Image from Folder command to create a disk image of the product directory.

To produce the smallest disk-image file possible, use the compressed disk-image format.

Figure 2-3 shows how a user may see the contents of the disk image after opening it in the Finder.

12 Creating a Disk Image
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Product Containers

Figure 2-3 A disk image’s contents in a Finder window

Tip: To make it easier for users to place disk-image-delivered applications in the /Applications directory,
include a symbolic link to the /Applications directory as part of the disk image’s contents.

Internet-Enabling a Disk Image

Although all disk images can be transported through the Internet, users need to open them, retrieve their
contents, and discard them. An Internet-enabled disk image automates this workflow. After a user downloads
an Internet-enabled disk image from a network using a web browser, the image is automatically opened, its
contents placed at the user’s download location, and discarded (in the Trash). This improves the manual
install experience by performing a few tedious tasks for the user.

To Internet-enable a disk image, use the hdiutil(1) command-line tool, as shown in Listing 2-1.

Listing 2-1 Internet-enabling a disk image

hdiutil internet-enable -yes <path_to_disk_image>

Note: Only read-only or compressed disk images can be Internet enabled.

Adding a License Agreement to a Disk Image

The Disk Utility application can display a multilingual license agreement before opening a disk image. Disk
Utility does not open the image unless the user agrees with the license.

To create a disk image with a license agreement, get the Software License Agreement for UDIFs software
development kit (http://developer.apple.com/sdk/index.html). This SDK explains how to add a license
agreement to a disk image and includes the resources necessary for this task.

Internet-Enabling a Disk Image 13
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Product Containers

http://developer.apple.com/sdk/index.html

14 Adding a License Agreement to a Disk Image
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Product Containers

A manual install is completely controlled by the user. That is, the user gets the product from its container or
delivery vehicle and drags it to their file system. This install model works best for simple products, which are
made up of one component type. Listing 3-1 shows a typical example of such a product, called Atom. For
multicomponent products, a managed install is more appropriate; see“Managed Installs” (page 17) for details.

Listing 3-1 A simple product

Atom 1.0.0/
 Atom.app
 ReadMe.rtf

The main component of the Atom product is the Atom.app file package. Users would normally place this
file in /Applications, but they are free to place it anywhere. Users may or may not copy the ReadMe.rtf
file to their file system. This file is not essential for the operation of the Atom product but can include
installation instructions for novice users in addition to information about the product.

A manual install is the ideal install experience for Mac OS X users. It is also the easiest way for you to deliver
your products. All you need to do is place the product in a container (as described in “Product Containers”)
and make it available to your customers on a delivery vehicle.

Important: If your product includes an application that has to run on Jaguar-based systems (Mac OS X v10.2),
the application should be prebound after the user installs it. See “Prebinding Applications” (page 57) for
details.

15
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Manual Installs

16
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Manual Installs

As described in “Overview of Software Delivery” (page 9), managed installs give you more control over
the installation process, which, among other things, allows you to fine-tune the user’s install experience.
However, when your product is made up of a single component that doesn’t need to be placed at privileged
locations in the file system, such as /Applications or /Library, you should provide users with a manual
install for your product. Manual installs are faster and easier to perform for novice and expert users alike. See
“Manual Installs” (page 15) for details.

Multicomponent products benefit from managed installs because you can specify how each of a product’s
components is installed. Also, remote installs—which allow you to install products remotely on several
computers on a network—are based on managed installs. For more information on remote installs, see
“Performing Remote Installs” (page 49).

Managed installs provide these features:

 ■ An automated install experience for multicomponent products

 ■ Support for upgrading your product, which may require replacing only certain components

 ■ Support for custom installs, which allow users to decide what components to install and where to install
them

On a more detailed level, managed installs provide fine control over the installation process, including:

 ■ The ability to perform operations before installing, such as:

 ❏ Making sure the target system meets specific criteria

 ❏ Requiring administrative-user authentication before installing components at privileged locations

 ❏ Performing install operations, such as quitting an application to be upgraded or launching daemons
(faceless applications)

 ■ Control over details such as whether an install:

 ❏ Allows the user to specify an alternate installation destination

 ❏ Recommends or requires restart, logout, or shutdown after completion

 ❏ Uses the ownership and access permissions of the user installing the product or those specified in
the installation package

There are three ways of defining a managed install:

 ■ Distribution packages let you define the complete install experience of your product. They also provide
you with a great deal of flexibility for defining the install choices users use to customize an install.
Distribution packages offer you and the users of your product the best installation solution for Mac OS
X–based products. Distribution packages, however, can be installed only on computers running Mac OS
X v10.4 and later.

17
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

 ■ Metapackages provide some of the features distribution packages provide but can be installed on
computers running Mac OS X v10.2 and later.

 ■ Component packages contain a single product component. They are usually included as part of a
distribution package or metapackage but can also be installed individually in computers running Mac
OS X v10.2 and later.

The following sections describe the major elements of managed installs and some of their limitations.

Packages

The central part of a managed install is the installation package, which contains your product and installation
information. The following sections describe installation packages and the various types of packages you
may need to create when developing a managed install for a product.

What Is a Package?

An installation package (also known as a package) is a file package (a directory that appears in the Finder
as a single file) created using the PackageMaker application (/Developer/Applications/Utilities).
Packages contain a product or product component—the package’s payload—to be installed on a computer,
and install configuration information that determines where and how the product is installed.

Note: Application executables are usually enclosed in a bundle: a structured directory hierarchy that contains
resources needed by the application, such as images and localized strings. Because these bundles are normally
file packages, the term application package refers to an application bundle that the Finder displays as a
single file. However, in this document the term package refers to an installation package, not an application
package. For detailed information on Mac OS X bundles, see Bundle Programming Guide.

Packages have the extension .pkg or .mpkg. When a user double-clicks a package in a Finder window, the
Installer application opens the package and walks the user through the installation process.

A package can specify details about four aspects of the package itself and its payload:

 ■ Product information:

Title
Description
Welcome file
Read Me file
License file
Conclusion file

 ■ Package properties:

Package identifier
Package version number
Resource fork processing

18 Packages
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

 ■ Installation properties:

System requirements
Volume requirements
Authentication requirement
Allowance for choosing an installation volume other than the boot volume
Installation destination on the installation volume
Relocation consent (the ability user may have to change the installation destination)
Revert consent
Directory-permissions overwrite
Postinstallation process action

 ■ Install operations:

Preflight
Preinstall/Preupgrade
Postinstall/Postupgrade
Postflight

Component Packages

A complex product, such as the Levon product introduced in “Overview of Software Delivery” (page 9), is
made up of distinct components. Except for single-component products, component packages are used in
conjunction with metapackages or distribution packages (described later in this chapter) to create an install
experience. Specifically, component packages:

 ■ Are the basis for the mechanism that allows you to provide users a way to specify which components
to install (for example, a user may not want to install a product’s tutorial files)

 ■ Let you identify required components (which must be installed) and specify the locations of components
to be installed at specific locations on the installation volume

 ■ Allow you to specify system and volume requirements for the component using executable files (see
“Specifying System and Volume Requirements in Pre-Tiger Systems” (page 53))

Component packages have the extension .pkg. Each component package contains a single product
component and specifies product information, package properties, installation properties, and install
operations.

Packages 19
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

Note: During an install of a metapackage (described in “Metapackages” (page 20)), the product information
for the contained component packages is not used or shown to the user. The product information for a
component package is used only when installing the component package by itself, with no enclosing
metapackage. Therefore, product information on a component package is generally used only by someone
creating a metapackage or a distribution package containing that component package as they define the
product information for the containing package.

Component packages can be installed on their own or as part of the install of a multicomponent product.
After the payload of a component package is installed, Installer places a receipt in the /Library/Receipts
directory of the installation volume. An installation receipt is a token that Installer uses to determine whether
a package has already been installed on a system. As long as the receipt is present, subsequent installs of
packages using the same package filename on the same volume are processed as upgrades.

Metapackages

A metapackage is an installation package that contains other installation packages. The enclosed packages
can be component packages or metapackages (but not distribution packages).

Metapackages allow you to define a simple install experience for a multicomponent product. When users
open a metapackage with the Installer application, they can choose to install only the components they
need. Each enclosed package becomes an install choice. For example, if a product includes a tutorial-files
component that the user performing the install doesn’t need, they can choose not to install that component.

Metapackages have the extension .mpkg. Table 4-1 shows what aspects of a metapackage and the packages
(component packages and other metapackages) it contains are used in the installation process.

Table 4-1 Installation process of a metapackage

Install operationsInstallation
properties

Package propertiesProduct
information

Metapackage

Contained
packages

Table 4-1 indicates that the containing metapackage specifies package properties, installation properties,
and specify install operations. However, the only aspect of the metapackage used in the installation process
is its product information. Conversely, for the packages the metapackage contains, all aspects except product
information are used in the installation process.

20 Packages
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

Compatibility: Metapackages can be installed on computers running Mac OS X v10.2 (Jaguar) or later.

Distribution Packages

A distribution package is a metapackage that specifies both product and installation information for a
product. Distribution packages provide more sophisticated facilities to tailor the installation process. The
major features distribution packages provide are:

 ■ Definition of the entire install experience in one place instead of having it spread out through several
component packages

 ■ Definition of system and volume requirements using a requirements editor instead of executables

 ■ Install choices can contain more than one component package

 ■ Users can choose an installation destination for each install choice instead of for the entire install

 ■ Installer loads a distribution package for a multicomponent product with many component packages
(and presents the user with the install experience it specifies) faster than a metapackage containing the
same product

The central part of a distribution package is the distribution script. This is a JavaScript-based script file that
contains all the information that defines an install experience. When you create a distribution package using
PackageMaker, the package’s distribution script is created for you.

Distribution packages differ from metapackages in these areas:

 ■ They can be installed only on computers running Mac OS X v10.4 (Tiger) and later.

 ■ They must contain only component packages, not metapackages or distribution packages.

 ■ Installer ignores installation properties specified in the contained component packages (installation
properties are specified by the distribution script).

Table 4-2 shows what aspects of a distribution package and the component packages it contains are used
in the installation process.

Table 4-2 Installation process of a distribution package

Install
operations

Installation
properties

Package
properties

Product
information

Distribution package

Contained packages

Table 4-2 indicates that a distribution package specifies only product information and installation properties,
and both aspects are used in the installation process. The contained packages may specify all package aspects,
but only their package properties and install operations contribute to the installation process.

Packages 21
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

Important: The system and volume requirements for a distribution package must reflect all the system and
volume requirements of each of the component packages the distribution package contains.

Compatibility: Distribution packages can be installed on computers running Mac OS X v10.4 or later.

System and Volume Requirements

Two of the installation properties you can specify in a package are system requirements and volume
requirements. These two properties define criteria the installation host must meet in order for the installation
process to proceed.

 ■ System requirements specify criteria the computer or operating system must satisfy. There are two
types of system requirements: recommended and required. If the host doesn’t meet a required system
requirement, the installation process is canceled.

 ■ Volume requirements specify criteria each of the host’s volumes must meet in order to be considered
a valid installation volume.

The Installation Process

After the Installer application opens a package, it performs the installation process in several phases:

 ■ Requirements Check

Installer ensures that the installation host meets the system and volume requirements specified by the
package.

 ■ Preinstall

Installer runs preflight and preinstall/preupgrade executables. If an executable returns anything
other than 0, the install is cancelled.

 ■ Install

Installer extracts the payload of component packages and copies it to the appropriate destinations.

 ■ Save Receipt

Installer copies the component package file (with its payload stripped) to the Library/Receipts
directory in the installation volume.

 ■ Postinstall

Installer runs postinstall/postupgrade and postflight executables.

The following sections detail the operations that the Installer application performs in the Requirements
Check, Preinstall, and Postinstall phases of the installation process for the three types of installation package
files. For details on the purpose of the executable files used to define installation requirements and install

22 System and Volume Requirements
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

operations (InstallationCheck, VolumeCheck, preflight, preinstall, preupgrade, postinstall,
postupgrade, and postflight), see “Specifying Install Operations” (page 45) and “Specifying System and
Volume Requirements in Pre-Tiger Systems” (page 53).

Component Package Installation Process

This is how Installer performs the Requirements Check, Preinstall, and Postinstall phases of a component
package’s installation process:

 ■ Requirements Check

InstallationCheck

VolumeCheck on each available volume

 ■ Preinstall

preflight

preinstall or preupgrade

 ■ Postinstall

postinstall or postupgrade

postflight

Metapackage Installation Process

This is how the Installer application performs the Requirements Check, Preinstall, and Postinstall phases of
a metapackage’s installation process:

 ■ Requirements Check

InstallationCheck for each package but not the top metapackage

VolumeCheck on each available volume for each package but not the top metapackage

 ■ Preinstall

preflight for top metapackage

preflight for each package

preinstall or preupgrade for top metapackage

preinstall or preupgrade for each package

 ■ Postinstall

postinstall or postupgrade for each package

postinstall or postupgrade for top metapackage

postflight for top metapackage

postflight for each package

The Installation Process 23
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

Distribution Package Installation Process

This is how the Installer application performs the Requirements Check, Preinstall, and Postinstall phases of
a distribution package’s installation process:

 ■ Requirements Check

Installation Check script

Volume Check script on each available volume

 ■ Preinstall

preflight for each package

preinstall or preupgrade for each package

 ■ Postinstall

postinstall or postupgrade for each package

postflight for each package

Note: Any executable-based install operations specified in the distribution package itself (not in the
component packages it contains) are ignored by the Installer application when the distribution package is
installed in computers running Mac OS X v10.4 and later. On earlier versions of the operating system, the
Installer application invokes the executable-based install operations as was done for metapackages (see
“Metapackage Installation Process” (page 23)). You can take advantage of this feature when creating a single
managed install solution for Tiger and pre-Tiger systems. See “Creating a Hybrid Metapackage” (page 42)
for more information.

The User Install Experience

The install experience that the Installer application shows users after they open an installation package has
the following phases:

 ■ System Requirements

The first task Installer performs after opening a package is to ensure that the installation host meets the
package’s installation requirements. Unsatisfied nonfatal system requirements produce a warning in
user-driven installs.

 ■ Authentication

When a package requires admin or root user authentication, Installer displays the Authentication dialog.
Users must enter the user name and password of an administrative user on the system to perform the
install.

 ■ Welcome

Installer always displays the Welcome page. To tailor the Welcome page, include a welcome file in the
package.

 ■ Read Me

24 The User Install Experience
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

If the package includes a Read Me file, Installer displays it in the Read Me page. The user can save or
print this file.

 ■ License

If the package includes a license agreement file, Installer displays it in the License page. The user must
accept the license in order to continue the installation process.

 ■ Volume Requirements

Installer checks each available volume to determine whether it meets the package’s volume requirements.
It uses the information gathered in this phase in the Volume Selection phase.

 ■ Volume Selection

Installer displays the Select Destination page if the package contains at least one package.

 ■ Customization

If the package allows both an easy install and a custom install, Installer displays the Installation Type
page, which defaults to the easy install. The user can choose to perform the easy install or the custom
install.

Note: When installing a distribution package, Installer allows users to choose individual installation
destinations for each relocatable choice. With a metapackage, the Custom Install pane doesn’t allow
users to choose install destinations for individual choices. With metapackages, Installer allows only one
customized installation destination for all relocatable packages.

 ■ Install

When the user clicks Install (and after admin or root user authentication, if needed), Installer shows the
Install page and performs the install.

 ■ Conclusion

Installer shows the Conclusion page when the installation process ends. In distribution packages, you
can include a conclusion file that Installer shows instead of the default conclusion message.

Postinstallation Process Action

After an installation process is complete, the Installer application can recommend or mandate that the user
log out of the system or restart or shut down the computer, depending on the most drastic postinstallation
process action specified in the installation package. When specifying a package’s postinstallation process
action, you must take into account the nature of your product and the way it interacts with Mac OS X and
other executables in the system.

Limitations of Managed Installs

There are some issues and limitations of managed installs:

 ■ The Installer application does not support uninstalling products.

 ■ Installer runs only on Mac OS X.

Postinstallation Process Action 25
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

 ■ Without proper care when specifying the ownership and access permissions of component files, it is
possible to render a system unusable. Make sure you test all installer packages before shipping them to
customers.

 ■ Relocation does not work in installation hosts running Mac OS X v10.3.3 or earlier.

26 Limitations of Managed Installs
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Managed Installs

After breaking down a product into distinct components (such as applications, frameworks, fonts,
documentation, and so on), you create an installation package for each of the product’s components. An
installation package is a file package that contains one component and information about the package and
its payload. See “What Is a Package?” (page 18) for more information about packages.

The Installer application can open a package and place its payload on a user’s system. Installation packages
whose payload is a component of a multicomponent product are known as component packages.

To create a component package, you perform the following tasks:

1. Categorize the component.

2. Create the component package project directory.

3. Add the component files to the project directory.

4. Add executables to the project directory if the component requires them.

5. Create the component package.

6. Test the component package.

The following sections describe these tasks in detail.

Categorize the Component

There are several types of product components available in Mac OS X. Some examples are application packages
(file packages that contain an application’s executable code and resources), frameworks (directories that
contain shared executable code and resources), font files, and plug-ins. Categorizing a component helps you
determine the appropriate installation destination for it. Table 5-1 shows some component categories and
corresponding installation destinations. See File System Overview for detailed information.

Table 5-1 Component types and installation destinations

DestinationType

/ApplicationsApplication

/Library/FrameworksFramework

/Library/FontsFont

/Library/DocumentationDocumentation

Categorize the Component 27
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Packaging Product Components

DestinationType

/usr/local/binCommand-line tool

Table 5-2 shows the categorization of a multicomponent product.

Table 5-2 Categorization of the components of a multicomponent product, called Levon

Installation destinationComponent typeComponent

/ApplicationsApplicationLevon.app

/Library/DocumentationDocumentationLevon_User_Guide.pdf

/Library/FrameworksFrameworkSharedServices.framework

Create the Component Package Project Directory

The component package project directory stores the component’s files, the package project file, and other
installation files. For easy identification, you should include the version number of the component in the
name of the project directory. For example, Listing 5-1 shows the names of the project directories for the
three components of the Levon product.

Listing 5-1 Component-package project directories for a multicomponent product

LevonApp-1.0.0/
LevonDoc-1.0/
SharedServicesFwk-1.0/

Add the Component Files to the Package Project Directory

Inside the package project directory, create a directory to hold the component files, as shown in the highlighted
lines in Listing 5-2.

Listing 5-2 Adding component files to component-package project directories

LevonApp-1.0.0/
 component/
 Levon.app
LevonDoc-1.0/
 component/
 Levon_User_Guide.pdf
SharedServicesFwk-1.0/
 component/
 SharedServices.framework

28 Create the Component Package Project Directory
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Packaging Product Components

Add Executable Files to the Package Project Directory

If your component requires tailored install operations or needs to specify system and volume requirements,
add the extras directory to the package project directory containing the appropriate executables. Listing
5-3 highlights the extras directories in two package project directories.

Listing 5-3 Adding executables to component-package project directories

LevonApp-1.0.0/
 component/
 Levon.app
 extras/
 InstallationCheck
 VolumeCheck
 preflight
 postupgrade
LevonDoc-1.0/
 component/
 Levon_User_Guide.pdf
SharedServicesFwk-1.0/
 component/
 SharedServices.framework
 extras/
 InstallationCheck
 VolumeCheck
 preflight
 postinstall
 postupgrade

See “Specifying Install Operations” (page 45) and “Specifying System and Volume Requirements in Pre-Tiger
Systems” (page 53) for details on install operations and executable-based installation requirements.

Create the Component Package

After you have created the package project directory, you use PackageMaker
(/Developer/Applications/Utilities) to create the component package project file.

To create a component package in PackageMaker:

1. Create a single package project.

2. Enter the package’s title and description.

3. Identify the directory that contains the component’s files (for example, the component directory in the
package project directory).

4. Edit the component directory’s ownership and access permissions settings using the File Permissions
editor.

Add Executable Files to the Package Project Directory 29
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Packaging Product Components

The files that the Installer application places on the installation host have the ownership and access
permissions specified in the component files in the package. Therefore, you must set up the owner and
access permissions of component files appropriately before generating the installation package; otherwise,
users may have difficulty manipulating those files after they are installed. In most cases, the owner should
be root and the group admin. Use the permissions recommended in the File Permissions editor.

Overwriting directory access permissions: The Installer application assigns access permissions to
directories that don’t exist on the installation volume but are part of a product’s structure. (These
directories are specified in the component directory when you created the component package.) When
a directory that’s part of the component hierarchy already exists on the installation volume, its permissions
are modified only if the package specifies that directory permissions must be overwritten. Because
modifying the permissions of existing directories in Mac OS X—especially standard directories in the
local and system domain—may impair the normal operation of the installation host, you should not
generally have packages overwrite directory permissions. However, components that use an internal
hierarchy that doesn’t include Mac OS X standard directories may need to overwrite the access permissions
of their internal directories to ensure a successful install.

To illustrate this situation, analyze the structure of the Nificky component directory, shown here.

component/
 Nificky/
 Nificky.app
 ReadMe.rtf

The installation destination for the Nificky application component is /Applications. Therefore, after
the component is installed, the Applications directory on the installation volume contains the Nificky
directory, which itself contains the Nificky.app file package and the ReadMe.rtf file. But, if
Applications/Nificky already exists on the volume and its access permissions do not allow
modification, the install fails. Specifying that the installation package for the Nificky application overwrite
directory access permissions ensures that the Installer application modifies the permissions on
Applications/Nificky to allow it to place files within the directory. The access permissions of the
Applications directory are untouched.

Important: Never include Mac OS X standard directories inside a component’s hierarchy. That is, do not
reflect any standard part of the Mac OS X file system (in any of the file system domains) inside your
component’s structure.

5. Set the installation destination for the component, and specify an appropriate authentication level and
postinstallation process action, if needed.

Installing into the user’s home directory: One way to place files into a user’s home directory is to
specify /Users/Shared as the installation destination and use an install operation to move the product
files into the current user’s home directory (specified by the $HOME environment variable). See “Specifying
Install Operations” (page 45) for details.

6. Identify the subdirectory in the project directory that contains executable files that specify installation
requirements or install operations, if needed.

7. Set the package identifier and version number.

30 Create the Component Package
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Packaging Product Components

A package’s identifier and version number help the Installer application determine the best way to
update a product’s files during an install on a system on which the package has already been installed.
You must set these two package properties for every package you create.

For applications and frameworks, use the bundle identifier (CFBundleIdentifier) specified in their
Info.plist files as a starting point. For example, if the bundle ID of an application is
com.mycompany.Levon, the package identifier should be com.mycompany.Levon.pkg. Keep in mind
that the package identifier must be unique. (For detailed information on the CFBundleIdentifier
and other Info.plist keys, see Runtime Configuration Guidelines.)

Note: The Info.plist file is located in the Contents directory of application and plug-in file packages
(use the Finder Show Package Contents command to reveal the contents of file packages). In a framework,
the Info.plist file is located in the Resources directory.

The package version for application, framework, and plug-in component packages should be the value
for the CFBundleShortVersionString property of the component they contain. In framework
component packages, use the value for the CFBundleVersion property. For other component types,
choose an appropriate package identifier and package version number.

Important: Installer does not use the identifier and version information specified in the Info.plist
files of a package’s payload.

After you’ve defined a package, use the PackageMaker Build command to generate the component package
(.pkg) file. You can also save the package project file in the project directory for future use.

Test the Component Package

Before adding a component package to a metapackage or a distribution package, it’s good practice to ensure
that the package installs correctly on its own. You accomplish this task by opening the package in the Installer
application and performing the installation process, confirming that the component files are installed correctly.

Test the Component Package 31
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Packaging Product Components

32 Test the Component Package
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Packaging Product Components

With a set of component packages, you have the essential ingredients for developing an install experience
for the users of your product. There are two mechanisms for creating an install experience: using metapackages
and using distribution packages, described in “Overview of Software Delivery” (page 9).

Distribution packages are a major improvement over metapackages because, using distribution packages,
you can separate the configuration of a package’s payload from the definition of the install experience it
provides.

Compatibility: Distribution packages can be installed only on Mac OS X v10.4–based systems. Metapackages
can be installed in computers running Mac OS X v10.2 and later.

To support Jaguar and Panther users while at the same time providing Tiger uses the enhanced install
experience distribution packages offer, you can create hybrid metapackages. These are metapackages into
which you copy the distribution script from a corresponding distribution package.

As described in “What Is a Package?” (page 18), an installation process is defined through four aspects of
installation packages: product information, package properties, installation properties (which include system
and volume requirements), and install operations. Metapackages and distribution packages add an additional
aspect: install choices. Install choices allow users to customize an install to, for example, prevent the installation
of a product’s tutorial component.

The following sections describe in detail how to create compelling install experiences using metapackages,
distribution packages, and hybrid metapackages.

Creating a Metapackage

To create a metapackage, you perform the following tasks:

1. Create the metapackage project directory.

2. Create the metapackage file.

The following sections describe these tasks in detail.

Create the Metapackage Project Directory

To facilitate the creation of an installation package, you should create a metapackage project directory to
store all the files you need in the process. The metapackage project directory contains directories that hold
the product’s component packages, product information files, executable-based installation requirements,
and install-operation files. Listing 6-1 shows a metapackage project directory.

Creating a Metapackage 33
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

Listing 6-1 A metapackage project directory

LevonMeta-1.0.0/
 packages/
 Levon.pkg
 LevonDoc.pkg
 SharedServices.pkg
 product_info/
 Welcome.rtf
 ReadMe.rtf
 License.rtf
 Conclusion.rtf
 extras/
 InstallationCheck
 VolumeCheck
 preflight
 postinstall
 postupgrade

Create the Metapackage File

A metapackage project specifies the following items:

 ■ Title: The name used to identify this metapackage to the user during installation.

 ■ Description: This package’s description, displayed by the Installer application in the Customization pane
for an enclosing metapackage when the user highlights this metapackage.

 ■ Packages directory: The directory that contains the packages this metapackage contains.

The directory may reside inside or outside the generated metapackage, depending on whether you want
to discourage users from installing packages individually. If the directory resides inside the metapackage,
you must copy the component packages from the packages directory in the metapackage project
directory to the directory you designated as the package holder in the metapackage.

 ■ Extras directory: The directory that contains executable files that specify installation requirements and
install operations.

To define a metapackage-based installation process, use PackageMaker to:

1. Create a metapackage project.

2. Add product information files to the project by using Installer Interface Editor.

3. In the metapackage project directory, identify the subdirectory that contains executable files specifying
installation requirements and install operations.

4. Add install choices by adding the packages in the packages subdirectory of the project directory to the
metapackage project’s packages list.

Specify the initial selection state of each choice. Choices you identify as required are selected in the
Installer Custom Install pane, but the user cannot deselect them.

5. Build the metapackage.

34 Creating a Metapackage
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

If you choose to place the metapackage’s packages inside the metapackage itself (mainly to discourage
the individual installation of product components), copy the packages to the appropriate directory in
the generated metapackage file. (You can reveal the contents of the metapackage in the Finder using
the Show Package Contents command.)

Creating a Distribution Package

Distribution packages provide a more direct, JavaScript-based mechanism for developing an install experience.
One of the benefits a JavaScript-based install experience provides is the ability to update install choices
dynamically, in response to a user’s choice selection. In addition, system and volume requirements are also
specified using JavaScript code. Other benefits of using distribution packages are that:

 ■ Users can specify custom installation destinations for relocatable choices individually, rather than as a
group.

 ■ Using JavaScript code virtually eliminates the need for the Installer application to display a dialog
informing users that it needs to run an external program as part of the installation process.

 ■ You specify the installation requirements for a product in one place instead of across its component
packages. This centralization makes it easier to set up and change a product’s requirements.

Note: When a user installs a distribution package, the InstallationCheck and VolumeCheck files in the
contained packages are not executed. This is the opposite of what happens when a user installs a metapackage.

To create a distribution package, you perform the following tasks:

1. Create the distribution package project directory.

2. Create the distribution package file.

These tasks are described in the following sections.

Create the Distribution Package Project Directory

The distribution package project directory contains directories that hold the product’s component packages
and product information files (background image, Read Me file, and so on). Listing 6-2 shows a distribution
package project directory.

Listing 6-2 Distribution package project directory

LevonDist-1.0.0./
 packages/
 Levon.pkg
 LevonDoc.pkg
 SharedServices.pkg
 product_info/
 Welcome.rtf
 ReadMe.rtf

Creating a Distribution Package 35
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

 License.rtf
 Conclusion.rtf

Create the Distribution Package File

PackageMaker allows you to specify the product information, installation properties, and install choices that
define a product’s installation process. Package properties and install operations are specified by each package
contained in a distribution package.

As you do with metapackages, you use Installer Interface Editor to specify product information. The
Requirements Editor window allows you to specify JavaScript-based installation requirements.

You create install choices using a hierarchical interface. Each install choice can have one or more packages
associated with it. To create choice groups, you add choices to an existing choice.

Just as when the Installer application processes a metapackage-based custom install, when the user selects
a choice in a custom install, the packages the choice represents are installed. The packages of unselected
choices are not installed. However, distribution packages provide additional granularity by allowing you to
specify disabled unselected choices (which the user cannot select). You can also define invisible choices
(whose existence is not revealed to the user). Three attributes specify the selection and visibility state of an
install choice:

 ■ Selected: Determines whether the choice is selected.

 ■ Enabled: Determines whether the choice’s selected state is modifiable by the user.

 ■ Visible: Determines whether the choice appears in the Installer Custom Install pane.

You can specify initial values for each of the selection and appearance attributes. But you can also use
JavaScript code to compute the initial values before Installer displays the Custom Install pane (see “The User
Install Experience” (page 24) for more information). For example, if a component requires the presence of
software that is unavailable in the installation host, you can make the install choice for that component
invisible. You can also specify dynamic values for the choice attributes. This capability allows you to, for
example, select or deselect options in response to the user’s actions. You can take advantage of this flexibility
in products with interrelated components in which option groups provide no appropriate selection mechanism.
For example, a product with a plug-in component that requires a font component could be automatically
deselected when the user deselects the option that installs the font package.

These are the tasks you perform to create a distribution package:

1. Create a distribution project.

2. Add product information files to the project.

3. Specify system and volume requirements.

Important: The system and volume requirements for a distribution package must include all the system
and volume requirements of each of the component packages the distribution package contains.

4. Configure install choices.

In PackageMaker, create a distribution project and perform the tasks described in the following sections.

36 Creating a Distribution Package
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

Add Product Information Files

Use Installer Interface Editor to add project information files to the package. These files may include a
background image and a Read Me file.

Specify System and Volume Requirements

You can specify system and volume requirements using the requirements editor. You first need to add a
global function to the project. When editing the function, use the requirements editor to specify an installation
requirement. For example, Figure 6-1 shows the definition of a system requirement.

Figure 6-1 Defining a system requirement in a distribution package

The requirements editor provides access to several system and volume properties. For example, Figure 6-2
shows the specification for a volume requirement.

Creating a Distribution Package 37
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

Figure 6-2 Defining a volume requirement in a distribution package

Before this volume requirement can work, however, you need to modify the JavaScript code generated by
the requirements editor. Modify the code as indicated in Listing 6-3.

Listing 6-3 JavaScript code for a volume requirement

/* js:pkmk:start */
function disk_space_volume_req() {
 return ten() ;
}
/* js:pkmk:end */

/* js:pkmk:start */
function ten() {
 var result = false;
 try {
 result = my.target.kilobytesAvailable > 10; // Remove
 result = my.target.availableKilobytes > 10*1024*1024*1024; // Add
 } catch (e) {}

 if(!result) {
 my.result.type = 'Fatal';
 my.result.title = '';
 my.result.message = 'This product requires 10GB of free space to
operate.';
 }
 return result;

38 Creating a Distribution Package
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

}
/* js:pkmk:end */

After the functions are defined, choose them as the system requirement and volume requirement scripts in
the distribution package project.

Installer checks system requirements as soon as it opens a distribution package. Figure 6-3 shows what users
see when their systems don’t meet that requirement.

Figure 6-3 Installer informs users of an unsatisfied system requirement

If any package in the distribution package does not specify that it’s a boot-volume-only install, Installer
displays the Select Destination page. Just before displaying this page, however, Installer runs the volume
requirement script against all the available volumes in the system. Volumes that do not meet the requirement
are badged. When the user selects such a volume, Installer displays the failure message in the volume
requirement specification, as shown in Figure 6-4. The user can continue only after selecting a volume that
meets the requirements.

Creating a Distribution Package 39
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

Figure 6-4 Installer indicates which volumes do not meet requirements

Configure Install Choices

When Installer first displays the Custom Install pane, it uses the attributes that specify the initial state of each
option. As the user selects or deselects choices, Installer applies the attributes that specify dynamic state to
each choice.

Attribute clauses are JavaScript Boolean expressions. You can use true, false, or a Boolean expression that
may include function invocations. You specify such functions as a global script of the project, similar to the
way you specify installation requirements. If you use the requirements editor to generate the JavaScript code
for such functions, the type of the requirement must be None.

Important: Although the requirements editor is accessible when you edit attribute clauses, you must not
use it. Attribute clauses are not complete JavaScript scripts, which is what the requirements editor generates.
Functions for use as part of attribute clauses must be defined as global scripts in the distribution project.

In addition to the visibility attributes, each choice has the following properties:

 ■ Title

Users see this title in the Custom Install pane.

 ■ Identifier

40 Creating a Distribution Package
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

You use this identifier to access a choice’s attributes.

 ■ Description

Users see this description when they highlight an option in the Custom Install pane.

 ■ Custom Location

The initial installation destination of the choice’s packages if you want users to be able to specify a
custom installation destination. Leave empty if you don’t want users to choose a different installation
destination for the choice’s packages.

 ■ Allow Alternate Volumes

Specifies whether users can choose a volume other than the boot volume for the install.

After adding an install choice to the distribution project, you associate one or more packages with it. The
Installer application installs these packages if the choice is selected in the Custom Install pane when the user
clicks Install. Otherwise, these packages are not installed. To associate a package with a choice, drag the
package from a Finder window to the choice in the distribution project window, or select the choice in the
project and use the Add Package command.

Figure 6-5 shows the definition of the “Levon application” install choice for the Levon product.

Figure 6-5 Defining an install choice for a distribution package

The user can choose to install the choice’s package in a location other than Applications on a volume
other than the boot volume. This choice is also selected the first time the user sees the customization pane.
However, its selection state is tied to the selection state of the “SharedServices framework” choice. If the user
deselects the framework choice, the application choice becomes deselected.

Creating a Distribution Package 41
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

You use the expression choices['<choice_identifier>'].<attribute> to access the attributes of
other choices. Therefore, the first part of the clause for selected attribute of the “Levon application” choice
evaluates to true if the user selects the “SharedServices framework” choice. That is,
choices['sharedservices_fwk_choice'].selected evaluates to true. The second part of the clause,
my.choice.selected, is needed because Installer—when the user selects or deselects a choice—evaluates
the attributes of all install choices except the choice the user changed.

For each of a choice’s packages, you can specify its authentication requirement and postinstall action.

After you’ve configured the install choices, build the distribution package using the PackageMaker Build
command.

Creating a Hybrid Metapackage

Although distribution packages are supported only on Mac OS X v10.4 and later, if your product supports
Mac OS X v10.2 and v10.3, you can create a single delivery solution that works on Tiger and pre-Tiger systems.
Such a solution is called a hybrid metapackage.

To create a hybrid metapackage, follow these steps:

1. Create component packages for your product’s components, as described in “Packaging Product
Components” (page 27).

2. Create a metapackage for your product, as described in “Creating a Metapackage” (page 33).

Place the component packages inside the metapackage file at ./Contents/Packages.

3. Create a distribution package using the same packages you used in step 1, as described in “Creating a
Distribution Package” (page 35).

4. Copy the distribution.dist file from the distribution package file to the Contents directory of the
metapackage file.

Placing a Packaged Product in a Container

If you do not have access to the computers of your product’s users, you must place your packaged product
in a container to facilitate its delivery to your customers, as illustrated in Figure 6-6. “Product Containers” (page
11) provides information on how to place products in containers.

42 Creating a Hybrid Metapackage
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

Figure 6-6 Delivering a packaged product using a disk image

Computer

Product

Container

Transport

Testing the Install Experience

Before shipping a product to users, you should ensure that the install experience is what you expect and
that the product’s files are installed correctly. You should perform this test in systems that represent the
systems your customers use while logged in as a nonadministrative user. In this way, you can make sure that
the Installer application asks for authentication when a package requires it and that the installed component
files have the appropriate ownership and access-permissions settings.

Testing the Install Experience 43
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

44 Testing the Install Experience
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Defining a Managed Install

In managed installs, install operations allow you to configure the destination environment before the payload
is copied to the file system and to perform additional processing afterward. To specify install operations, you
use executable files (known as install operation executables) that Installer invokes at specific stages during
an install, as described in “The Installation Process” (page 22).

Install operation executables must be named according to the install operation you want to define. The files
can be binary files or text files containing shell scripts. All install operations are optional. You define only the
operations required by a packaged product.

This chapter shows how you use install operation executables to define the install operations the Installer
application performs in a managed install.

Overview of Install Operations

After the Installer application finishes checking installation requirements, it performs an install through
distinct operations, known as install operations. You can define all but one of these operations, which copy
payloads to their installation destinations. You should not use install operations to fix install problems, such
as incorrect ownership and access permissions. You should use install operations only when other
managed-install features, such as installation requirements, are not adequate for the chore you need to
perform as part of installing a package or metapackage.

Table 7-1 lists the install operations in the order Installer performs them.

Table 7-1 Install operations and executables

DescriptionOperation executableInstall operation

Prepares the target system for the install; for example, quitting
or stopping specific applications or processes.

preflightPreflight

Prepares the target system for a payload for which no receipt
is found.

preinstallPreinstall

Prepares the target system for a payload for which a receipt
is found.

preupgradePreupgrade

Copies the payload to the installation destination. This
operation is not modifiable.

NonePayload Drop

Cleanup or system setup for an installed payload.postinstallPostinstall

Cleanup or system setup for an upgraded payload.postupgradePostupgrade

Overview of Install Operations 45
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Specifying Install Operations

DescriptionOperation executableInstall operation

Install postprocessing; for example, setting up cron(8) jobs
or launching the installed application.

postflightPostflight

The first three install operations, Preflight, Preinstall, and Preupgrade, can stop an install. When one of the
corresponding executables returns anything other than 0, Installer cancels the install.

Important: For install operations to work, operation executables must have their executable bit set.
PackageMaker does this automatically when it builds a package. Also, install operation executables must not
have a user interface of any kind or affect the installation process by any means other than through return
values.

Arguments and Environment Variables for Install Operations

The following list describes the arguments and environment variables available to install operation executables.
Note that not all environment variables are available to all executables (see Table 7-2 (page 47)).

$1: Full path to the installation package the Installer application is processing. For example:
/Volumes/Users/michelle/Desktop/Levon.mpkg

$2: Full path to the installation destination. For example:
/Applications

$3: Installation volume (or mountpoint) to receive the payload. For example:
/
/Volumes/Tools

$4: The root directory for the system:
/

$SCRIPT_NAME: Filename of the operation executable. For example:
preflight

$PACKAGE_PATH: Full path to the installation package. Same as $1.
$INSTALLER_TEMP: Scratch directory used by Installer to place its temporary work files. Install operations
may use this area for their temporary work, too, but must not overwrite any Installer files. The Installer
application erases this directory at the end of the install. For example:
/private/tmp/.Levon.pkg.897.install

$RECEIPT_PATH: Full path to a temporary directory containing the operation executable. This is a
subdirectory of $INSTALLER_TEMP. This location may vary between installs. The executable can use this
path to locate other files in the package. For example:
/private/tmp/.Levon.pkg.897.install/Receipts/Levon.pkg/Contents/Resources

The four arguments described earlier are available to all install operations. Table 7-2 shows the availability
of the environment variables.

46 Arguments and Environment Variables for Install Operations
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Specifying Install Operations

Table 7-2 Environment variables in operation executables

Available environment variablesOperation executable

None.preflight

$SCRIPT_NAME, $PACKAGE_PATH, $INSTALLER_TEMP.preinstall, preupgrade

$SCRIPT_NAME, $INSTALLER_TEMP, $PACKAGE_PATH,
$RECEIPT_PATH.

postinstall, postupgrade, postflight

Example: Install Operation Script

Listing 7-1 shows a postflight operation implemented as a shell script that launches an installed application.

Listing 7-1 Sample install operation script

#!/bin/sh
echo $SCRIPT_NAME: launching Levon.app
open -b com.mycompany.Levon
exit 0

After Installer executes this install operation script, its log shows an entry similar to the one in Listing 7-2.

Listing 7-2 Sample Installer log entry

Jun 20 13:30:03 Athene : postflight[2274]: postflight: launching Levon.app

Example: Install Operation Script 47
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Specifying Install Operations

48 Example: Install Operation Script
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Specifying Install Operations

Apple Remote Desktop allows you to install products on multiple client computers from an administrator
computer. This type of install is known as a remote install. You can perform remote installs immediately or
schedule them for later completion.

Remote installs are based on managed installs (described in “Managed Installs” (page 17)). Therefore, the
products to be installed on client computers must be packaged as component packages, metapackages, or
distribution packages. If the product you want to install remotely is not packaged or if you want to repackage
an existing product, you need to create a package for it first. See “Packaging Product Components” (page
27) and “Defining a Managed Install” (page 33) to learn how to create packages.

Note: Before installing a package on multiple computers using a remote install, you should install the package
on a single computer using the Installer application to familiarize yourself with the package’s install experience
and to learn whether the package has installation requirements that similarly configured computers do not
meet.

Follow these steps to install a package on multiple clients from an administrator computer (see Apple Remote
Desktop Administrator's Guide Version 3.2 for more details):

1. In Remote Desktop, select the computers onto which you want to install the package.

2. Choose Manage > Install Packages.

3. In the Install Packages task window, add the packages you want to install to the package list.

49
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Performing Remote Installs

4. Select an appropriate postinstallation process action. Figure 8-1 shows the definition of an Install Packages
task.

Figure 8-1 Remote Desktop Install Packages task

5. Click Install.

Figure 8-2 shows the result of a successful remote install.

50
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Performing Remote Installs

Figure 8-2 Successful Install Packages task in Remote Desktop

When an install fails in any of the clients specified in and Install Packages task, you may need to copy the
package to the client computer using a Remote Desktop Copy task and perform the installation by opening
the package in Installer on the client.

51
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Performing Remote Installs

52
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Performing Remote Installs

JavaScript-based system and volume requirements are not supported on Pre-Tiger systems. To check
installation requirements in computers running Mac OS X v10.2 or v10.3, you must use executable-based
installation requirements. These installation requirements rely on two executable files that you create and
include in an installation package.

You specify system and volume requirements using executables named InstallationCheck and
VolumeCheck, respectively. These executables can be binary files or text-based scripts.

This chapter shows how to define executable-based installation requirements.

Overview of Executable-Based Installation Requirements

During the installation process, the Installer application invokes InstallationCheck and VolumeCheck
when it needs to check system and volume requirements, respectively. See “The Installation Process” (page
22) for details.

Note: For executable-based installation requirements to work, the executables must have their executable
bit set. PackageMaker does this automatically when it builds a package.

The InstallationCheck executable can use any criteria to allow or disallow an install. It returns a value
that tells Installer whether to continue the installation process.

Similarly, VolumeCheck can use any criteria to accept or reject a volume as a potential installation volume.
The return value of VolumeCheck tells Installer whether to allow the user to choose a particular volume as
an installation destination.

In addition to stopping the installation process and disallowing volumes to be chosen as installation volumes,
the return values of these executables tell Installer which informational message to display to the user. You
use strings files to define these informational messages.

Strings Files for InstallationCheck and VolumeCheck Denials

When InstallationCheck cancels an install or when VolumeCheck disallows a volume to be chosen as
the installation volume, the Installer application displays a default message or the message specified by the
executable’s return value. To specify your own messages, place the files InstallationCheck.strings
and VolumeCheck.strings (for system requirement and volume requirement failure messages, respectively)
in a localized directory inside the package’s scripts directory. Table A-1 shows the directory names for the
languages Installer recognizes.

Overview of Executable-Based Installation Requirements 53
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specifying System and Volume Requirements
in Pre-Tiger Systems

Table A-1 Localized directories

Dutch.lproj

English.lproj

French.lproj

German.lproj

Italian.lproj

Japanese.lproj

Spanish.lproj

da.lproj

fi.lproj

ko.lproj

no.lproj

pt.lproj

sv.lproj

zh_CN.lproj

zn_TW.lproj

A strings file defines messages in the following format:

"<message_ID>" = "<message_string>";

<message_ID>: Integer between 16 and 31.
<message_string>: Informational message string.

Listing A-1 and Listing A-2 show sample InstallationCheck.strings and VolumeCheck.strings files,
respectively.

Listing A-1 A sample InstallationCheck.strings file

"16" = "Can't install unless you have a Super Drive.";
"17" = "Can’t install unless you have more than 128MB of RAM.";

Listing A-2 A sample VolumeCheck.strings file

"16" = "Can't install on volumes named Panther.";
"17" = "Can’t install on volumes named Jaguar.";

54 Strings Files for InstallationCheck and VolumeCheck Denials
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specifying System and Volume Requirements in Pre-Tiger Systems

InstallationCheck Messages

The InstallationCheck executable returns an integer that the Installer application uses to determine
whether to proceed with the installation process or which informational message to display as the reason
for canceling the install. To allow the install, return 0. To cancel the process, return an integer that specifies
the message ID of the localized message to display. This integer, however, must also have bits 5 and 6 set
to 1.

For example, to instruct Installer to display message 16, return 112. You can use the Calculator application
to determine the correct return value for a specific message ID, or compute it in your executable.

Table A-2 lists the message IDs of the default messages for InstallationCheck failures. If you use these
messages, you don’t need to create an InstallationCheck.strings file.

Table A-2 Installer default messages for InstallationCheck failures

Message stringMessage ID

This software cannot be installed on this computer.1

The software <package_name> cannot be installed on this computer.2

<package_name> cannot be installed on this computer.3

An error was encountered while running the InstallationCheck tool for package
<package_name>.

4

VolumeCheck Messages

The VolumeCheck executable returns an integer that the Installer application uses to determine whether to
allow the user to choose a volume as the installation volume and which informational message to display
when the user selects a disallowed volume. Returning 0 allows the user to identify a volume as the installation
volume. When a volume doesn’t meet the volume requirements, the VolumeCheck return value specifies
the message ID of the localized message to display when the user selects the volume. This integer, however,
must also have bit 5 set to 1.

For example, to disallow a volume and set the message ID of the appropriate message to 17, return 49. You
can use the Calculator application to determine the correct return value for a specific message ID, or compute
it in your executable.

Table A-3 lists the message IDs of the default messages for volumes that fail VolumeCheck. If you use these
messages, you don’t need to create a VolumeCheck.strings file.

Table A-3 Installer default messages for VolumeCheck failures

Message stringMessage ID

You cannot install this software on this disk. You are not allowed to install the software on
this disk for an unknown reason.

0

InstallationCheck Messages 55
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specifying System and Volume Requirements in Pre-Tiger Systems

Message stringMessage ID

You cannot install this software on this disk. Could not find specified message for index 1.1

You cannot install this software on this disk. An error was encountered while running the
VolumeCheck tool for package <package_name>.

2

56 VolumeCheck Messages
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specifying System and Volume Requirements in Pre-Tiger Systems

In Mac OS X v10.3.3 and earlier, when a Mach-O–based executable is launched, the dynamic link editor (or
dynamic linker) loads the symbols that the executable imports at predetermined addresses in the executable’s
address space. Prebinding is the process of computing the addresses for the imported symbols, so that the
dynamic linker needs to perform less work at launch time. In other words, the launch time of an executable
is optimized when these precomputed addresses contain valid data. With outdated prebinding information,
an executable takes longer to load. The dynamic linker Mac OS X v10.3.4 and later is implemented in a way
that makes prebinding unnecessary. But applications that need to run in earlier versions of Mac OS X may
benefit from having their prebinding information up to date.

When you build an application targeted at Mac OS X versions earlier than v10.3.4, the addresses of its imported
symbols are computed using the SDK you choose for the project. For example, an application built using the
10.2.8 SDK that is installed on a computer running Mac OS X v10.2.3 would need to have its prebinding
information recomputed in order to optimize its launch time. In managed installs, the Installer application
automatically performs this update. In manual installs, however, you must perform this task.

The update_prebinding(1) command-line tool updates an executable’s prebinding information. To
optimize the launch time of a manually installed application, users need to run this tool after installing an
application. You can provide instructions for how to run this tool in a Read Me file, printed documentation,
or other mechanism.

For more information on prebinding, see Launch Time Performance Guidelines.

57
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Prebinding Applications

58
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Prebinding Applications

In Carbon and pre–Mac OS X applications, application resources were stored in the resource fork of an
application executable. In Mac OS X applications resources should be put in the data fork of a separate
resource file, not the resource fork of the executable. The primary reason for moving application resources
out of resource forks is to enable applications to be seamlessly moved around other file systems without loss
of their resources; this would include transfer mechanisms such as BSD commands, FTP, email, and Windows
and DOS copy commands. Most other computing environments, including the web, recognize single-fork
files only and tend to delete the resource fork of HFS and HFS+ files.

When you package software with PackageMaker, you supply a location from which to gather the files to be
packaged. If any of these files (such as a Classic application) has a resource fork, PackageMaker supports
splitting the file before packaging. Such split files will be reassembled by the Installer application when the
package is installed. Although splitting files with resource forks is optional, if you do not split them, the
resource fork data will be lost and the file will be unusable.

Because resource fork splitting changes the files that are split, it is recommended that you operate on copies
of these files while creating packages.

Compatibility: Support for preserving resource fork data was added to PackageMaker and Installer for Mac
OS X v10.2.

59
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Preserving Resource Fork Data

60
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Preserving Resource Fork Data

application package A file package containing the
code and other resources that make up a Mac OS X
application. Application packages make it easy for
users to move applications around their file systems.

bundle A structured directory hierarchy that stores
files in a way that facilitates their retrieval. Bundles
are used extensively in Mac OS X; in particular most
application executables are enclosed in bundles
together with the resources the application needs to
operate.

container A file-based enclosure for a product that
facilitates delivery to its users. Disk images installation
packages, and ZIP archives are the most popular
product containers.

component A part of a software product that resides
at a distinct location on the file system. See also
component package.

component package An installation package whose
payload is one of the components of a product.

custom install A metapackage or distribution
package install that a user performs after modifying
the default option selection.

delivery vehicle Transport used by users of a product
to obtain the product’s files. These include optical
media and the Internet.

disk image A file-based enclosure that facilitates the
transport of a directory structure on the Internet. Disk
images can also be compressed to allow a product’s
files to be placed on optical media.

distribution package A metapackage that contains
a distribution script that specifies the install
experience for a product. Distribution packages

provide a streamlined packaging experience for
developers and an enhanced install experience for
users. See also distribution script;metapackage.

distribution script An XML file with the extension
.dist that contains all the information that defines
an install experience in a distribution package. See
also distribution package.

easy install A metapackage or distribution package
install that a user performs using the default option
selection.

file package A directory (often a bundle) that appears
as a single file in Finder windows. See also bundle;
file package.

hybrid metapackage A metapackage that contains
a distribution script. This type of installer package
behaves as a distribution package when installed on
computers running Mac OS X v10.4 and later. On
computers running earlier versions of the operating
system, a hybrid metapackage behaves as a regular
metapackage. See also metapackage; distribution
package.

install choice An option users can select or deselect
as part of the installation process to specify whether
a product component is to be installed.

install experience The tasks a user needs to perform
in order to install a product on their computer.

installation host The computer onto which a
package is to be installed.

install operation Installation activity performed by
an executable file that is invoked at a specific point
during the installation process.

61
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

Glossary

install operation executable An executable file that
is invoked by Installer during an install, before or after
copying a package’s payload to the installation
destination.

installation destination The directory in which
Installer places a package’s payload.

installation package A file package with the .pkg
or .mpkg extension. Installation packages (also known
as packages) contain products or product components
(known as the package’s payload) and installation
information used by the Installer application and
Remote Desktop to place product files on a file
system.

installation property Information in an installation
package that specifies an installation requirement or
an installation process detail, such as whether
relocation is allowed.

installation receipt A token that Installer uses to
determine whether a component has already been
installed on an installation volume.

installation requirement A condition that the target
computer or volume of an installation must meet in
order for the install to take place. The two types of
installation requirements are system requirements
and volume requirements.

installation volume The volume (or mountpoint)
onto which an installation package is to be installed.

managed install An Installer-driven installation
process. Users open an installer package in the
Installer application, which performs all install tasks.

manual install A user-driven installation process.
Users drag a product’s files to a location of their
choosing in their file system.

metapackage Installation package that contains
other installation packages, usually component
packages. Metapackages are used to deliver
multicomponent products to users and to provide
them with install choices that allow them to choose
which components to install. See also component
package.

package properties Installer package data that
provides Installer details about the package itself,
such as its identifier, version number, and resource
fork processing.

payload The product or product components
contained in an installation package. See also
installation package.

product container A file that contains a packaged
or unpackaged product. The two container types are
disk image and ZIP archive.

relocation The ability of users to change the
installation location of a package before an install.

remote install A network administrator–driven
installation process. An administrator uses Apple
Remote Desktop to install a package onto a set of
client computers.

system requirement A condition that must be met
by the computer (and associated operating system)
in order for the install to proceed.

volume requirement A condition that must be met
by a volume in order qualify as a possible installation
volume.

62
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Software Delivery Guide.

NotesDate

Made major changes to content and added information on distribution packages.
Changed title from "Software Distribution."

2006-07-24

Updated to reflect new and revised features in Mac OS X v10.3.2003-08-21

Added details about installation requirements.

Added list of supported localization folder names.

Added additional information on default ownership and access permissions.

First version.2003-05-13

63
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

64
2006-07-24 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Software Delivery Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of Software Delivery
	Installs for Product Developers
	Installs for Network Administrators

	Product Containers
	Creating a Disk Image
	Internet-Enabling a Disk Image
	Adding a License Agreement to a Disk Image

	Manual Installs
	Managed Installs
	Packages
	What Is a Package?
	Component Packages
	Metapackages
	Distribution Packages

	System and Volume Requirements
	The Installation Process
	Component Package Installation Process
	Metapackage Installation Process
	Distribution Package Installation Process

	The User Install Experience
	Postinstallation Process Action
	Limitations of Managed Installs

	Packaging Product Components
	Categorize the Component
	Create the Component Package Project Directory
	Add the Component Files to the Package Project Directory
	Add Executable Files to the Package Project Directory
	Create the Component Package
	Test the Component Package

	Defining a Managed Install
	Creating a Metapackage
	Create the Metapackage Project Directory
	Create the Metapackage File

	Creating a Distribution Package
	Create the Distribution Package Project Directory
	Create the Distribution Package File
	Add Product Information Files
	Specify System and Volume Requirements
	Configure Install Choices

	Creating a Hybrid Metapackage
	Placing a Packaged Product in a Container
	Testing the Install Experience

	Specifying Install Operations
	Overview of Install Operations
	Arguments and Environment Variables for Install Operations
	Example: Install Operation Script

	Performing Remote Installs
	Appendix A: Specifying System and Volume Requirements in Pre-Tiger Systems
	Overview of Executable-Based Installation Requirements
	Strings Files for InstallationCheck and VolumeCheck Denials
	InstallationCheck Messages
	VolumeCheck Messages

	Appendix B: Prebinding Applications
	Appendix C: Preserving Resource Fork Data
	Glossary
	Revision History

