
What's New in Xcode
Tools > Xcode

2009-01-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Finder and iPhone are trademarks of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Organization of This Document 7

Xcode 3.1 Feature Overview 9

iPhone SDK 9
Project Package Format 9
Toolbar Items 9
Text Editor 10
Property List Editor 10
Framework and Library Use 10
Build System 10
New Project and New Target Assistants 11
Open Quickly 11
FileMerge Application 11
SCM Workflow 12
Compilers 12
Xcode Persistent Cache 12

Xcode 3.0 Feature Overview 13

Text Editor 13
Streamlined Debugging 16
Refactoring 19
Project Snapshots 21
Build Settings Editor 22
Architecture-Specific Build Settings 23
The Research Assistant 24
Data Model Versioning and Mapping 25
SCM Repository Management 26
Debugging Information Format 28
Editing List Items 29
Building for Multiple Architectures 29
Project File Compatibility Checking 29
The Documentation Window 30

Document Revision History 31

3
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

4
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Figures

Xcode 3.0 Feature Overview 13

Figure 1 The editor focus ribbon 14
Figure 2 Highlighting code using the focus ribbon 15
Figure 3 Inline code completion 15
Figure 4 Message bubble displaying a build error 16
Figure 5 Debugging code through an editor window 17
Figure 6 The debugger HUD in a running program 18
Figure 7 The debugger HUD in a paused program 18
Figure 8 The Refactoring window 20
Figure 9 The snapshot window 21
Figure 10 The build settings editor 23
Figure 11 The Research Assistant window 25
Figure 12 Versioned data models and the mapping model editor 26
Figure 13 The Repositories window 27
Figure 14 The Repositories preferences pane 28
Figure 15 The Compatibility pane in the project editor 30

5
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

6
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

This document provides an overview of the new and improved features in Xcode releases.

This document is intended for people interested in the changes Xcode releases bring about. You can use
this document to learn about features that enhance your workflow, improve your efficiency, and increase
your productivity.

Organization of This Document

This document includes the following articles:

 ■ “Xcode 3.1 Feature Overview” (page 9)

 ■ “Xcode 3.0 Feature Overview” (page 13)

Organization of This Document 7
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Introduction

8 Organization of This Document
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Introduction

Xcode 3.1 is a major revision to the Xcode IDE. The main goal of this release is to support iPhone application
development. However, this release also includes new features to enhance your workflow.

This article describes the new features and improved functionality in Xcode 3.1.

iPhone SDK

Using Xcode 3.1 and the iPhone SDK you can develop applications for iPhone OS. The iPhone SDK includes
iPhone OS frameworks and developer tools with which you can build iPhone applications. It also includes
iPhone Simulator, an environment that allows you to run iPhone applications on your Mac to perform initial
testing. You can also run your application on actual devices, after becoming a member of the iPhone Dev
Center.

For more information on the iPhone SDK, see Xcode Overview.

Project Package Format

Xcode 3.1 introduces the 3.1 project-package format.

Xcode 3.1 reads and builds project packages v2.1–3.0 and automatically upgrades project packages v1.5–2.0
to v3.1.

In general, project packages v3.1 can be opened and built in Xcode 3.0 and 2.5. Xcode tells you when a
project package uses a feature it doesn’t support.

Toolbar Items

Xcode 3.1 introduces two toolbar items:

 ■ Active SDK. Lets you specify the SDK to use to build the active target. You can choose between iPhone
OS SDKs and Mac OS X SDKs.

 ■ Overview. Groups the “active” project settings into one, easily accessible control. With this toolbar item
you can set a project’s active target, SDK, build configuration, architecture and executable.

See "Setting Build Factors" in Xcode Project Management Guide for more information.

iPhone SDK 9
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.1 Feature Overview

Text Editor

In Xcode 3.1 the text editor gains two new features:

 ■ Edit All in Scope. The Edit All in Scope command allows you to edit several symbolname occurrences
at the same time in a more convenient way than using Find & Replace. For example, you can change
the name of a method argument, and Xcode replicates the change within the method’s body at the
same time. See "Editing Symbol Names" in Xcode Workspace Guide for details.

 ■ Symbol assist menu. The symbol assist menu is an automatic shortcut menu that appears when you
select a symbolname in a source code file. This menu allows you to perform one of several symbol-related
commands on the selected symbols, including Edit All in Scope and Jump to Definition.

Note: The symbol assist menu appears only when Edit All in Scope is active. See "Code Sense Preferences"
in Xcode Workspace Guide for details.

Property List Editor

The user interface of the Property List Editor application has been revamped to make it easier to edit property
list files. Among the improvements are:

 ■ Reorder/move elements

 ■ Cut/Copy/Paste element

 ■ Property list types

You can create files based on particular property-list schemas (such as the iPhone Settings schema used
in iPhone applications)

Xcode now provides property list editor that uses the same user interface the Property List Editor application
uses.

Framework and Library Use

Xcode 3.1 provides a new, straightforward way for adding frameworks and libraries to a target. See "Managing
Files and Folders in a Project" in Xcode Project Management Guide for details.

Build System

The Xcode 3.1 build system received several improvements:

 ■ Conditional build settings

10 Text Editor
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.1 Feature Overview

In Xcode 3.0 you can define build setting specifications for particular architectures and build variants.
Xcode 3.1 adds another condition: The SDK to use to build the active target.

See "Conditional Build Settings" in Xcode Build System Guide for details.

 ■ Support for weak/required frameworks (new)

Similar to symbol weak-linking, framework weak-linking allows you to build a product that is able to use
a framework that may not be present at runtime. See "Managing Libraries and Frameworks" in Xcode
Project Management Guide for details.

 ■ Compiler Version build setting group (new)

The C/C++ Compiler Version build setting is more visible in the settings editor; it’s now in the Compiler
Version build setting group.

 ■ New xcodebuild options

The xcodebuild tool supports these new options:

 ❏ -sdk <sdk_name> Specifies the SDK to use.

 ❏ -fine <tool_name> Provides the filepath to tool_name.

For details, see the man page for xcodebuild.

 ■ Strings files output encoding option (new)

The new STRINGS_FILE_OUTPUT_ENCODING build setting lets you specify the output encoding of
strings files.

New Project and New Target Assistants

Xcode 3.1 updates the New Project and New Target assistants with new project and target types. For details,
see "Creating Projects" and "Creating Targets" in Xcode Build System Guide.

Open Quickly

Xcode 3.1 simplifies the Open Quickly dialog and makes it more effective. See "Opening Files by Filename
or Symbolname" in Xcode Workspace Guide for details.

FileMerge Application

Xcode 3.1 improves the FileMerge application by:

 ■ Performing faster comparisons

 ■ Handling files with different line encodings properly

 ■ Ignoring whitespace on lines

New Project and New Target Assistants 11
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.1 Feature Overview

SCM Workflow

In Xcode 3.1 you can use drag-and-drop to import and check-out directories. And, when you check out a
project directory, Xcode configures SCM in the project packages the directory contains so that you can
perform SCM operations without having to configure SCM first (as in previous Xcode releases). For details,
see "Browsing and Modifying Repositories" in Xcode Source Management Guide.

Compilers

Xcode 3.1 adds support for GCC 4.2 and LLVM-GCC 4.2 (see LLVM-GCC Release Notes).

Xcode Persistent Cache

To improve the security of Xcode caches, Xcode 3.1 places them in a more secure location. If you don’t use
earlier versions of Xcode, you should delete /Library/Caches/com.apple.Xcode and
/Library/Caches/Xcode.

In Xcode 3.1 you can also delete Xcode caches using the Empty Caches command. For more information,
see "Xcode Persistent Cache" in Xcode Project Management Guide.

12 SCM Workflow
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.1 Feature Overview

Xcode 3.0 is a major revision to the Xcode application. The main goal of this version of Xcode is to streamline
your development workflow. The new or improved Xcode features that enhance your workflow are grouped
in the following areas:

 ■ Text editing

 ■ Program debugging

 ■ Software architecture

 ■ Data modeling

 ■ Documentation access

 ■ SCM repository management

 ■ Project integrity

The following sections describe new or improved functionality in Xcode 3.0.

Text Editor

The text editor is substantially improved in Xcode 3.0 to improve its performance and streamline your
development workflow.

 ■ Focus ribbon: The editor now includes a focus ribbon. This ribbon shows the scope depth of the
corresponding code in the editor pane using a gray scale: a white ribbon identifies code at the highest
scope; increasingly darker shades of gray identify code within lower scopes. Figure 1 identifies the focus
ribbon.

Text Editor 13
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 1 The editor focus ribbon

Focus ribbon

 ■ Code focus: You can use the focus ribbon to survey the scope levels of a source file. Moving the pointer
along the focus ribbon, you can highlight the code at particular focus levels, as shown in Figure 2.

14 Text Editor
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 2 Highlighting code using the focus ribbon

 ■ Code folding: To allow you to concentrate on specific areas of a source file, editor windows now allow
you to collapse scoped code or comments so that they are not shown in the content area. To fold or
unfold code you can use the triangles that appear in the focus ribbon or the commands in the View >
Code Folding menu or the editor shortcut menu. Folded text is represented by a small graphic in the
editor pane until it is unfolded.

 ■ Inline code completion: The editor now suggests the most likely completion inline (reducing the need
to choose a completion from the completion pop-up menu). To accept the suggested completion, press
Tab. To display the completion pop-up menu with all the suggested completions, press Option-Escape.

Figure 3 shows that the editor suggests the tableCopy completion to the mu text. The text table is
highlighted to indicate that all the suggested completions to mu start with table. Pressing Tab takes
the table subcompletion.

Figure 3 Inline code completion

Code completion works with C-based source code, filenames in #include and #import statements,
and build setting names in build configuration files.

Text Editor 15
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

 ■ Message bubbles: Xcode now displays information about your project in source editor windows using
message bubbles, as shown in Figure 4. This feature lets you, for example, determine the cause of a build
error without having to examine up the Errors & Warnings group in the Groups & Files list. As you fix
errors, you can jump to the next one by choosing Build > Next Build Warning or Error.

Figure 4 Message bubble displaying a build error

Message bubble menu

The bubble menu in a source editor window lets you specify the kind of message bubbles you’re interested
in: error bubbles, warning bubbles, or breakpoint bubbles.

 ■ Function menu: In addition to C-based languages, the function menu now works with Java, Perl, Ruby,
and other languages.

Streamlined Debugging

Xcode 3.0 improves your debugging workflow and allows you to debug applications in their natural
environment. The new features that improve your debugging experience are:

16 Streamlined Debugging
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

 ■ The debugger strip provides editor-based debugging. The debugger strip is a small control strip that
appears above the editor pane in source editor windows. With the debugger strip you can perform a
number of debugging tasks without moving away from your code. That is, you don’t have to open the
Debugger window to pause your program or to step through it.

 ■ The debugger HUD (heads-up display) lets you debug your program without activating the Xcode
application. The debugger HUD is a window tied to a particular program that floats about other windows
in your desktop. This application-centered debugging lets you debug you program in its natural
environment.

 ■ The debugger datatip allows you to view the values of variables at runtime in a source editor window.
You don’t have to switch to the Debugger window to view a variable’s values.

Figure 5 shows an editor window in which a program is being debugged.

Figure 5 Debugging code through an editor window

Debugger strip

Pause

Step over

Step into

Step out

Call stackBreakpoint
activation

Variable info

Thread list

Show debugger window

Show debugging console

The debugger datatip appears when you place the pointer over a variable. This datatip lets you view details
about the variable, such as its type and value, while debugging a program without leaving the editor.

Note: To turn on datatips for variables while debugging, choose the feature from the Debug menu.

In addition to being able to debug code from an editor window, you can debug your program without making
Xcode the active application using the debugger HUD (Figure 6). This feature provides you the benefits of a
GUI-based debugger without introducing interactions that would not happen during normal execution, such
as another application becoming active.

Streamlined Debugging 17
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 6 The debugger HUD in a running program

Stop

Pause

Project

Breakpoint
activation

To open the debugger HUD for a running program, choose HUD from the Debug menu in the corresponding
Xcode project. Alternatively, in the Debug preferences pane, you can specify that Xcode open the HUD
automatically when you run your application.

When you pause a program through the HUD or it reaches a breakpoint (and breakpoints are active), the
HUD displays the source file containing the breakpoint reached in a source editor, as shown in Figure 7. The
HUD source editor provides the same functionality that source editor windows provide in Xcode. That is, you
can perform the same debugging operations in the HUD that you can perform within a source editor in
Xcode.

Figure 7 The debugger HUD in a paused program

Debugger strip

18 Streamlined Debugging
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Note: The Console window now combines the functionality of the Run Log and Standard IO windows.

Refactoring

Xcode now provides the ability to refactor your code. Refactoring allows you to improve the readability and
maintainability of a program’s source code while retaining its functionality and behavior. The refactoring
operations that modify source code are called transformations. The transformations Xcode performs are
tailored to the Xcode IDE. Therefore, in addition to source files, Xcode can process nib files and
key-value-coding (KVC) methods.

Xcode 3.0 implements five refactoring transformations:

 ■ Rename: Transformation that renames a declaration. Xcode renames the symbol in the appropriate
source files and nib files in the project.

 ■ Create superclass: Transformation that creates a superclass for an Objective-C class. Xcode inserts a new
class in the inheritance hierarchy of the class being operated on. Skeleton interface and implementation
code for the new superclass is placed in the interface and implementation files of the class being
transformed.

 ■ Move up: Transformation that moves instance variables and methods from an Objective-C class to the
parent class.

 ■ Encapsulate: Transformation that creates accessors for an instance variable or C struct field.

 ■ Modernize for loop: Transformation that converts for and while loops to use the less verbose and
more efficient Objective-C 2 for loop. This transformation is performed only on loops that iterate over
all members of an array or set.

Note: Project indexing must be completed before Xcode can perform refactoring transformations. In addition,
files that don’t compile successfully may not be processed by the refactoring engine.

To perform a refactoring operation:

1. Select the symbol to refactor in a text editor window.

If it’s possible to perform a transformation on the symbol, the Refactor command in the Edit menu is
available.

2. Choose Edit > Refactor.

The Refactoring window appears.

3. Choose the refactoring operation to perform.

The refactoring-operation pop-up menu allows you to choose an operation Xcode can perform on the
selected symbol.

4. Preview the refactoring operation.

Refactoring 19
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Click Preview. The Refactoring window (Figure 8) displays the files that the refactoring operation would
modify.

Figure 8 The Refactoring window

Highlighting a file displays a comparison pane pinpointing the changes Xcode would perform if you
execute the operation. The left side of the comparison pane shows the unmodified file. The right side
shows how the file would look after applying the changes.

5. Apply the proposed changes.

Click Apply. Xcode makes the changes you previewed on the selected files in the file list.

If Snapshot is selected in the Refactoring window, Xcode creates a snapshot of your project before
making the changes. For more on snapshots, see “Project Snapshots” (page 21).

20 Refactoring
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Important: Refactoring works only in pure C or Objective-C source files, that is, headers files and
implementation files with no C++ code. In addition, the refactoring engine doesn’t process Objective-C++
files (those with the .mm extension. If you have .mm files that do not contain Objective-C++ code, you must
change their extension to .m so that they are processed by the refactoring engine.

Project Snapshots

To allow you to more easily revert changes you made to your project, Xcode now lets you create snapshots
of your entire project directory. With snapshots you can revert to a previously saved state when you need
to discard changes you made to several files in a project. This feature is particularly useful when you need
to make exhaustive or risky modifications across several files and you want to ensure that you can safely
discard those changes.

The Snapshots window (Figure 9) lets you view the files that make up particular snapshots as well as restore
or delete snapshots (to conserve disk space).

Figure 9 The snapshot window

In the Snapshots window you can also rename snapshots to identify specific snapshots with suitable names.

Xcode stores snapshots in your home directory at~/Library/Application\ Support/Apple/Developer
Tools/Snapshot Repository. To change this location, use the XCSnapshotRepositoryPath Xcode
expert setting. For example, the following command sets the snapshot directory to /Volumes/Backup/Xcode
Snapshots:

> defaults write com.apple.Xcode XCSnapshotRepositoryPath /Volumes/Backup/Xcode\
 Snapshots/

To learn more about snapshots, see “Project Snapshots” (page 21).

Project Snapshots 21
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Build Settings Editor

The build settings editor contains organizational improvements to make build settings easier to find and
functional changes that let you view the buildtime values of all build settings.

The build setting list now shows how Xcode organizes build settings by listing them under the build setting
category they belong to. You can reveal and hide the build settings under each category to display only the
build settings you are interested in. When the Research Assistant is open, it displays the description of the
build setting selected in the list. See “The Research Assistant” (page 24) for details.

Using the build settings shortcut menu, you can now configure the build setting list to display build setting
titles (for example, Build Products Path, Build Variants, and so on) or the corresponding build setting names
(for example, SYMROOT, BUILD_VARIANTS, and so forth). You can also configure the list to display build
setting definitions (also known as build setting specifications) or the values the build settings at the project
or target level (which is what the build setting editor in earlier versions of Xcode displays).

The build settings editor now displays build setting values using text, checkboxes, or pop-up menus, depending
on the value type of the build setting. To edit a build setting, you can double-click it; select it, wait, and click
it again (see “Editing List Items” (page 29) for details); or select it and choose Edit Definition at This Level
from the Action pop-up menu.

The Action pop-up menu also lets you add architecture-specific build settings. See “Architecture-Specific
Build Settings” (page 23) for more information.

To delete a build setting definition, select the build setting from the list and choose Delete Definition at This
Level from the Action pop-up menu.

Using the search field you can now filter the build setting list using one of the following criteria: name, title,
definition, value, category, or description.

Figure 10 shows the improved build settings editor.

22 Build Settings Editor
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 10 The build settings editor

Architecture-Specific Build Settings

The build settings editor now lets you define architecture-specific build settings. Architecture-specific build
settings allow you to specify build options for specific architectures, such as PowerPC or Intel. This feature
is particularly useful when building universal binaries of your applications, which can be used in PowerPC-based
Macs and Intel-based Macs.

To add an architecture-specific build setting:

1. Select the build setting to which you want to an architecture-specific version.

2. Choose Add Per-Architecture Setting from the Action pop-up menu.

Architecture-Specific Build Settings 23
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Note: Architecture-specific build settings override their corresponding architecture-independent build
setting. To use the architecture-independent value in the definition of an architecture-specific build setting,
add $inherited to the definition.

Important: Architecture-specific build settings are supported only in Xcode 3.0. See “Project File Compatibility
Checking” (page 29) for details about maintaining compatibility with earlier versions of Xcode.

The Research Assistant

In earlier versions of the Xcode application, you can Option–double-click a symbol in the text editor to view
its reference documentation in the documentation window. However, this practice takes your focus away
from the code you’re working on. It may also provide you with more documentation than you need. In most
cases, you may be looking for a symbol’s declaration or availability information. The documentation window
shows the entire reference documentation for the symbol together with documentation for other symbols,
which you must scan to find the information you need. Xcode 3.0 provides a mechanism to view reference
documentation that addresses these issues: the Research Assistant.

The Research Assistant window (Help > Research Assistant) offers a concise view of essential reference
documentation for a specific symbol. The information you can view in the Research Assistant includes a
symbol’s declaration, description, and availability information. You can also access sample code and related
documents through hyperlinks. In addition, you can configure the order in which these items are displayed
and whether they are shown in the window. The Research Assistant also provides reference documentation
on build settings when you configure them in the build settings editor or in configuration files.

When you edit source code or a build setting, the Research Assistant window, shown in Figure 11, unobtrusively
displays the corresponding reference documentation in the way you prefer to view it.

24 The Research Assistant
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 11 The Research Assistant window

Configure display

Open header file

After analyzing the information the Research Assistant provides for a symbol, you can access the symbol’s
entire reference documentation or open the symbol’s header file from within the Research Assistant.

Data Model Versioning and Mapping

Xcode 3.0 adds the ability to have versioned data models. With this feature you can have multiple versions
of a data model in a project. A versioned data model appears as a group containing data model files (each
for each version of the data model) in the Groups & Files list.

After creating a version of a data model, you may need to migrate your Core Data stores. To perform this
task at runtime, you use new Core Data API and a mapping model file, which describes how to move data
from one model to another.

To create a new version of a data model:

1. Select the data model in the Groups & Files list.

2. Choose Design > Data Model > Add Model Version.

Data Model Versioning and Mapping 25
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

To create a mapping model file for a new version of a data model use the Design > Mapping Model new-file
template. Then use the mapping model editor to define the mappings between the source and target models.
Figure 12 shows two versions of a data model and the mapping model editor.

Figure 12 Versioned data models and the mapping model editor

For detailed information on versioned data models and the data model migration process, see Core Data
Model Versioning and Data Migration Programming Guide.

Important: Versioned data models are supported only in Xcode 3.0. See “Project File Compatibility
Checking” (page 29) for details about maintaining compatibility with earlier versions of Xcode.

SCM Repository Management

Xcode now provides a GUI that allows you to navigate SCM repositories. The Repositories window (Figure
13) lets you import an unmanaged project into a repository and check out projects from a repository to your
computer.

26 SCM Repository Management
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 13 The Repositories window

You configure access to repositories in Xcode Preferences > Repositories. The Repositories preferences pane,
shown in Figure 14, allows you to enter repository access information for the SCM systems Xcode supports:
Subversion, CVS, and Perforce (the settings shown are the ones used for Subversion repositories). It also lets
you store passphrases for the SSH keys in your home directory (~/.ssh), which Xcode uses in SSH-based
connections.

SCM Repository Management 27
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 14 The Repositories preferences pane

Debugging Information Format

In new Xcode 3.0 projects the format for debugging information is DWARF (Debugging With Attributed
Record Formats). The Stabs format is still available, however. DWARF’s extensibility attributes as well as its
ability to describe complex execution environments provide a strong foundation upon which future debugging
facilities in Xcode and Mac OS X can be built.

For more information on DWARF, see http://dwarf.freestandards.org.

Xcode also supports storing debug information in dSYM files. A dSYM file stores an executable’s debug
information to minimize the size of the executable file without compromising the program’s debugging
experience. For example, if you or your customer need to debug an executable on the customer’s computer,
you don’t have to build a debug version of the program and deliver it to the customer. All you would need
to do is make the executable’s dSYM file available to the user. You or the use can then debug the program
just as you would debug it during development.

28 Debugging Information Format
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

http://dwarf.freestandards.org

Editing List Items

The procedure to edit text items in lists—such as the Groups & Files list or the build setting list in the build
setting editor—has changed to resemble how filenames are changed in Finder windows. To change a list
item:

1. Select the item by clicking it once.

2. Click the item again and wait about half a second.

The item’s text can now be edited.

Building for Multiple Architectures

The Architectures build setting editor—which appears when you double-click the Architectures (ARCH) build
setting—now offers 32-bit and 64-bit as its options:

 ■ Selecting only 32-bit produces a 32-bit universal binary (ARCH=ppc i386).

 ■ Selecting only 64-bit produces a 64-bit universal binary (ARCH=ppc64 x86_64)

 ■ Selecting both 32-bit and 64-bit produces a universal binary for 32-bit and 64-bit architectures (ARCH=ppc
ppc64 i386 x86_64).

In Debug configurations of Xcode 3.0 projects, Architectures is defined as $NATIVE_ARCH, referring to the
architecture of the computer Xcode is running on. Selecting or deselecting the 32-bit or 64-bit options in
the Architectures build setting editor when the build setting is defined as $NATIVE_ARCH produces a binary
appropriate for debugging on the host computer:

 ■ Selecting only 32-bit produces a 32-bit binary for the host architecture (ARCH=$NATIVE_ARCH_32_BIT).

 ■ Selecting only 64-bit produces a 64-bit binary for the host architecture (ARCH=$NATIVE_ARCH_64_BIT).

 ■ Selecting both 32-bit and 64-bit produces a 32-bit binary on a 32-bit computer and a 64-bit binary on
a 64-bit computer (ARCH=$NATIVE_ARCH_ACTUAL).

When you need to define the Architectures build setting to a more granular degree, use the textual editor
(see “Editing List Items” (page 29)). For example, to generate a binary for the host architecture containing
both 32-bit and 64-bit object code, define Architectures as $NATIVE_ARCH_32_BIT $NATIVE_ARCH_64_BIT.

Project File Compatibility Checking

Some of the features Xcode 3.0 introduces are not compatible with the project file format used in Xcode 2.4.
In a team environment you may need to ensure a project file can be used in either Xcode 2.4 or Xcode 3.0.
The Compatibility pane in the project editor (Figure 15) lets you specify the Xcode version with which a
project file must remain compatible.

Editing List Items 29
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

Figure 15 The Compatibility pane in the project editor

Important: Xcode performs some compatibility checking while you make changes to your project. However,
to make sure your project remains compatible with a particular version of Xcode, you should confirm that
the the Compatibility pane doesn’t list any conflicts before sharing the project with other members of your
team.

The Documentation Window

The content shown in the Xcode documentation window is now made up of document sets, which can be
searched individually. Each document set can be installed individually. With this feature you can select a
document set, such as Core Reference Library or Java Reference Library, to confine a search to a smaller set
of documents. Confining searches to particular document sets produces smaller and more relevant search
results. In addition, a new type of search, called Title Search, allows you to base Reference Library searches
on document titles.

Note: Document sets other than the Core Reference Library set are considered additions to the core set.
Therefore, when you install individual document sets, you must always install the Core Reference Library set,
as well.

Coming soon: Xcode’s support for multiple documentation sets will be open to third parties to add their
own documentation to Xcode. At that time, Apple will provide a specification and tools for integrating
documentation into Xcode.

30 The Documentation Window
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Xcode 3.0 Feature Overview

This table describes the changes to What's New in Xcode.

NotesDate

Made minor corrections.2009-01-06

Updated for Xcode 3.1.2008-05-22

New document that provides an overview of new and improved features in the
Xcode application.

2006-08-01

31
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

32
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	What's New in Xcode
	Contents
	Figures
	Introduction
	Xcode 3.1 Feature Overview
	iPhone SDK
	Project Package Format
	Toolbar Items
	Text Editor
	Property List Editor
	Framework and Library Use
	Build System
	New Project and New Target Assistants
	Open Quickly
	FileMerge Application
	SCM Workflow
	Compilers
	Xcode Persistent Cache

	Xcode 3.0 Feature Overview
	Text Editor
	Streamlined Debugging
	Refactoring
	Project Snapshots
	Build Settings Editor
	Architecture-Specific Build Settings
	The Research Assistant
	Data Model Versioning and Mapping
	SCM Repository Management
	Debugging Information Format
	Editing List Items
	Building for Multiple Architectures
	Project File Compatibility Checking
	The Documentation Window

	Revision History

