
Xcode Build System Guide
Tools > Xcode

2009-02-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Bonjour,
Carbon, Cocoa, Keynote, Mac, Mac OS,
Macintosh, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder and iPhone are trademarks of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Organization of This Document 9

Chapter 1 Targets 11

Target Overview 12
Managing Targets 15

Creating Targets 15
Editing Targets 18
Duplicating Targets 23
Removing Targets 23
Defining Target Dependencies 23

Managing Target Files 27
Viewing the Files in a Target 27
Adding and Removing Target Files 28
Setting the Role of Header Files 29

Chapter 2 Build Phases 31

Build Phase Overview 31
Using Build Phases 32
Build Phase Processing Order 35

Build Phase Processing Order in Native Targets 36
Build Phase Processing Order in Jam-Based Targets 36
Reordering Build Phases 36

Adding and Deleting Build Phases 37
Adding Files to a Build Phase 37
Compile Sources Build Phase 38
Copy Files Build Phase 38
Run Script Build Phase 39

Using Build Settings in Run Script Build Phases 42
Build Rules 42

System Build Rules 44
Creating a Build Rule 44
Creating a Build Rule Script 45
Execution Environment for Build Rule Scripts 46

Chapter 3 Build Settings 47

Build Setting Overview 47
Build Setting Syntax 48

3
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Conditional Build Settings 48
Build Setting Evaluation 50

Multilayer Build Setting Definitions 53
Build Setting References 55

Build Setting Troubleshooting 57
Finding Build Setting Definitions 57

Chapter 4 Build Configurations 61

Build Configuration Overview 61
Predefined Build Configurations 62
Managing Build Configurations 63

Editing Build Configurations 65
Build Configuration Files 65

Creating a Configuration File 66
Basing Build Configurations on Configuration Files 67
Build Setting Evaluation and Configuration Files 68

Chapter 5 Linking 73

Specifying the Type of Binary to Create 73
Specifying the Search Order of External Symbols 74
Preventing Prebinding 74
Linking to a Dynamic Library in a Nonstandard Location 75
Reducing the Number of Exported Symbols 75
Reducing Paging Activity 75
Dead-Code Stripping 75

Enabling Dead-Code Stripping in Your Project 76
Identifying Stripped Symbols 77
Preventing the Stripping of Unused Symbols 77
Assembly Language Support 78

Chapter 6 Reducing Build Times 81

Using a Precompiled Prefix Header 81
Creating the Prefix Header 82
Configuring Your Target to Use the Precompiled Header 82
Sharing Precompiled Header Binaries 83
Regenerating Precompiled Headers 83
Controlling the Cache Size Used for Precompiled Headers 84
Restrictions 84

Predictive Compilation 85
Using Multiple SDKs 85
Distributing Builds Among Multiple Computers 86

Shared Workgroup Builds 86
Dedicated Network Builds 89

4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Getting the Most Out of Distributed Builds 90
Distributed Builds Preferences 91

Document Revision History 95

5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Targets 11

Figure 1-1 Targets and products 11
Figure 1-2 A target 13
Figure 1-3 Files in a Copy Bundle Resources build phase 13
Figure 1-4 Build settings in a build configuration 14
Figure 1-5 General pane in the Target Info window 19
Figure 1-6 Target editor: Properties pane 21
Figure 1-7 Groups & Files list: Target dependency 25
Figure 1-8 Three projects with dependencies 26
Figure 1-9 Target files in the project window 27
Figure 1-10 File-info editor: Targets pane 29
Table 1-1 iPhone OS target templates 16
Table 1-2 Mac OS X target templates 16
Table 1-3 Header file roles 30

Chapter 2 Build Phases 31

Figure 2-1 Presentation tasks 32
Figure 2-2 Building an application 33
Figure 2-3 Building an application using build phases 33
Figure 2-4 Viewing build phases 35
Figure 2-5 Copy Files build phase editor 38
Figure 2-6 Run Script build phase Info window 41
Figure 2-7 Target editor: Rules pane 43
Table 2-1 Build phases available in Xcode 34
Table 2-2 Input files and output files of build phases 34
Table 2-3 Destination names and example destination paths of the Copy Files build phase

39
Table 2-4 Environment variables accessible from a Run Script build phase 40
Table 2-5 System build rules 44
Table 2-6 Environment variables for build rule scripts 46
Listing 2-1 Example Run Script–build-phase script 40

Chapter 3 Build Settings 47

Figure 3-1 Build setting layers 51
Figure 3-2 Evaluation of the LAYERED build setting 54
Figure 3-3 Evaluation of the STAGGERED build setting 55
Figure 3-4 Evaluation of the STAGGERED build setting with CAPTION overridden in the target

layer 56
Figure 3-5 Finding build setting definitions 58

7
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Table 3-1 Configuration of the LAYERED build setting 53

Chapter 4 Build Configurations 61

Figure 4-1 Project editor: Configurations pane 64
Figure 4-2 Build settings editor: Choosing a configuration file 68
Figure 4-3 Build setting layers and configuration files 69
Figure 4-4 Evaluation of the LAYERED build setting using configuration files 70
Figure 4-5 The LAYERED build setting overridden in the project inspector 71
Listing 4-1 Referring to other configuration files 66

Chapter 5 Linking 73

Table 5-1 Xcode build settings for dead-code stripping 76
Table 5-2 Linker options for dead-code stripping 76

Chapter 6 Reducing Build Times 81

Figure 6-1 Shared workgroup build process 87
Figure 6-2 Allowing distributed builds traffic through the Mac OS X firewall 89
Figure 6-3 Distributed Builds preferences pane 92

8
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

The build system is the part of the Xcode that is responsible for transforming the components of a project
into one or more finished products. The build system takes a number of inputs and performs operations such
as compiling, linking, copying files and so forth to produce an output—usually an application or other type
software.

Xcode includes a powerful build system that can create a wide variety of Mac OS X and iPhone OS products,
such as frameworks, libraries, applications, command-line tools and more. Using Xcode’s predefined project
and target templates you can build these products right out of the box. However, the Xcode build system is
also flexible enough to allow you to customize the build process—to tailor it to meet the special needs of
your projects or support your preferred workflow.

You should read this document if you need to have a deep understanding of the Xcode build system to
customize the building of your product or to use advanced features of the build system to speed up the
build process.

The following chapters show how to build a product in Xcode, describe targets and the build system inputs
that they organize, and show how to take advantage of build phases, build settings, and build configurations
to customize the build process. These chapters also describe a number of Xcode features that you can take
advantage of to shorten the edit-build-debug cycle. These features include distributed builds, precompiled
prefix headers, and predictive compilation.

Organization of This Document

This document contains the following chapters:

 ■ “Targets” (page 11) describes Xcode targets and how to manage them.

 ■ “Build Phases” (page 31) provides an overview of build phases, explains how Xcode determines the
order in which build phases are processed to build a product.

 ■ “Build Settings” (page 47) explains how build settings are implemented and how you can take advantage
of them to communicate with the build system.

 ■ “Build Configurations” (page 61) provides a general explanation of build configurations, describes the
predefined build configurations you get when you create a target or project in Xcode, and explains how
to modify and define your own build configurations.

 ■ “Linking” (page 73) provides details about how Xcode links code together into images and how you
can customize this task.

 ■ “Reducing Build Times” (page 81) describes the Xcode features that help reduce build times: precompiled
headers, predictive compilation, and distributed builds.

This document also has a revision history.

Organization of This Document 9
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

10 Organization of This Document
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The organizing principle of the Xcode build system is the target. A target contains the instructions for building
a finished product from a set of files in your project—for example, a framework, library, application, or
command-line tool. Each target builds a single product. A simple Xcode project has just one target, which
produces one product from the project’s files. A larger development effort with multiple products may require
a more complex project containing several related targets. For example, a project for a client-server software
package may contain targets that create a client application, a server application, command-line tool versions
of the client and server functionality, and a private framework that all the other targets use.

Figure 1-1 shows the targets you may have in a project such as the one described earlier, and the products
that those targets create. The following list shows the project’s main components.

Figure 1-1 Targets and products

MyClientApp

 MyClient.nib

 MyClientUI.c

 MyClient.c

 Carbon.framework

 MyFramework.framework

 MyClient.app

MyServerApp

 MyServer.c

 MyServer.nib

 MyServerUI.c

 Carbon.framework

 MyFramework.framework

 MyServer.app

MyFramework

 MyFW.c

 Carbon.framework

 MyFramework.framework

MyClientTool

 MyClient.c

 CoreFoundation.framework

 MyFramework.framework

 MyClient

MyServerTool

 MyServer.c

 CoreFoundation.framework

 MyFramework.framework

 MyServer

MyProject.xcodeproj

 ■ Project

MyProject.xcodeproj: The file package containing the information about the project and its targets.

 ■ Targets

MyServerTool: Builds a server-side command-line tool.
MyClientApp: Builds a client-side application.
MyClientTool: Builds a client-side command-line tool.
MyFramework: Builds a framework.
MyServerApp: Builds a server-side application.

 ■ Products

MyServer: A server-side command-line tool
MyClient.app: A client-side application.
MyClient: A client-side command-line tool.
MyFramework.framework: A framework.

11
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

MyServer.app: A server-side application.

When you initiate a build, Xcode builds the product specified by the active target and any targets on which
the active target depends (see “Defining Target Dependencies” (page 23) to learn about dependent targets).
In the Groups & Files list, the active target is marked by a checkmark in a green circle. You can also see which
target is active, as well as change the active target, in the Active Target pop-up menu in the project and Build
Results windows. When you execute the Build command, Xcode builds the product of the active target.

This chapter describes Xcode targets and how to manage them.

Target Overview

A target is a blueprint for creating a product. To build a product, the build system takes a set of inputs—source
files and the instructions for processing them—and produces an output (such as an application or a framework).
The inputs to the build system are:

 ■ Build settings. A build setting contains information on how to perform the operations required to build
a product. For example, a build setting can specify command-line options for Xcode to pass to the
compiler. Build settings can contain tool-specific options, paths to build files and product directories,
and other information used by Xcode to determine how to perform build operations.

Because build settings represent variable aspects of the build process, they are the most flexible means
of customizing the build process. See “Build Settings” (page 47) for more information on using build
settings.

 ■ Files. For each product, the build system takes a set of files as inputs and performs various operations
on them—such as compiling, linking, copying, and so forth—to arrive at the final output. Examples of
source files are header files, implementation files, resource files, and so forth.

 ■ Per-file compiler flags. Per-file compiler flags are additional options Xcode passes to the compiler as it
compiles each source file. See "Per-File Compiler Flags" in Xcode ProjectManagementGuide to learn more.

A target, illustrated in Figure 1-2, organizes the inputs required to create a single product.

12 Target Overview
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Figure 1-2 A target

Product type: Application

Target: MyApp

Build phases
Copy Bundle Resources
Compile Sources
Link Binary With Libraries

Build configurations

Build rules

Debug
Release

System C rule
 Process C source files using GCC
System lex rule
 Process Lex source files using Lex

A target contains:

 ■ Build phases. Build phases organize the build files of a target according to the operations required to
build the target’s product. Each build phase consists of a list of input files and a task to be performed
on each of those files. Common build phases include compiling files, linking object files, and copying
resource files. Figure 1-3 shows the files that may be in a typical build phase.

Figure 1-3 Files in a Copy Bundle Resources build phase

Product type: Application

Target: MyApp

Build phases
Copy Bundle Resources
Compile Sources
Link Binary With Libraries

Build configurations

Build rules

Debug
Release

System C rule
 Process C source files using GCC
System lex rule
 Process Lex source files using Lex

Copy Bundle resources
MyApp.nib
Localized.strings

Xcode populates each new target with a predetermined set of build phases. You can add or remove
build phases to change the operations Xcode performs when it builds the target. For further details on
build phases, see “Build Phases” (page 31).

Target Overview 13
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

 ■ Build configurations. Each target contains one or more named collections of build settings, called build
configurations. A build configuration specifies a set of build settings that are used to build a target's
product in a particular way. By defining multiple configurations for a target, you can quickly build different
variations on the target's product. You can also modify all of a target's build configurations at once to
define build settings that are shared by all configurations. Figure 1-4 shows some of the build settings
that might be defined by one build configuration of a target.

Figure 1-4 Build settings in a build configuration

Product type: Application

Target: MyApp

Build phases
 Copy Bundle Resources
Compile Sources
Link Binary With Libraries

Build configurations

Build rules

Debug
Release

System C rule
 Process C source files using GCC
System lex rule
 Process Lex source files using Lex

MyApp Debug
Optimization Level (GCC_OPTIMIZATION_LEVEL) = None(-O0)
Generate Debug Symbols (GCC_GENERATE_DEBUGGING_SYMBOLS) = ON
Preprocessor Macros (GCC_PREPROCESSOR_DEFINITIONS) = “debug”

 ■ Build rules. A target’s build rules determine how each source file in the target is processed. Each build
rule consists of a condition—such as files matching the type .c—and an action. Typically, this action
specifies the tool Xcode invokes to process files that meet the condition; this is how Xcode determines
the compiler to use for compiling source files, for example. Xcode maintains a list of build rules for targets
that use the native build system. For targets that use an external build tool, you maintain the instructions
for processing the build files with a makefile or other method.

Important: Build rules apply only to the Compile Sources and Build ResourceManager Resources build
phases.

Xcode defines a default set of build rules, but you can define custom build rules for a target. For more
information on using build rules, see “Build Rules” (page 42).

A target and the product that it creates are closely related; every target has an associated product type. When
you create a target from a target or project template, you choose the target’s product type, as described in
“Creating Targets” (page 15).

Based on the product type, Xcode specifies initial values for certain product-specific build settings. For
example, when you create a target that builds an application, Xcode assigns it the build setting specification
INSTALL_PATH = "/Applications" based on the product type. Any subsequent changes you make to
the target after creating it may override these default values. Note that the project and target templates
contain additional configuration information that Xcode uses when it creates targets.

14 Target Overview
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Managing Targets

When you need to work on a software package with multiple products—for example, an application, a
command-line tool, and a framework—an easy way to group all the pieces into one project is to use multiple
targets. This section describes the tasks you may need to perform on a project that requires multiple targets,
including creating, editing, duplicating, and removing targets. It also teaches how to create target
dependencies so that, for example, Xcode builds your framework before building the application that uses
it.

Creating Targets

When you create a project from one of the Xcode project templates, Xcode automatically creates a target
for you. If, however, your project needs to contain more than one target—usually because you are creating
more than one product—you can also add targets to an existing project.

If you are adding targets to your project, chances are you’ve already made a number of decisions about
product type, programming language, and framework. Xcode provides a number of target templates to
support your choices. The selection of target templates is similar to the selection of project templates. The
target specifies the target’s product type, a list of default build phases, and default definitions for some build
settings. A target template typically includes all build settings and build phases required to build an instance
of the specified product. Unlike the project templates provided by Xcode, the target templates do not specify
any default files; you must add files to the target yourself, as described in “Managing Target Files” (page 27).

Note: Targets created with target templates have no framework references. Any frameworks or libraries that
the target is configured to link with are added to the Other Linker Flags build setting. You can add framework
references to the target yourself, as described in Figure 1-10 (page 29).

To create a target and add it to an existing project:

1. Choose Project > New Target.

Xcode displays the New Target assistant, which lets you choose from a number of possible target
templates. Each target template corresponds to a particular type of product, such as an application or
loadable bundle.

2. Select one of the templates and click Next.

3. Enter the name of the target.

If more than one project is open, you can choose which project to add the target to from the Add to
Project pop-up menu.

4. Click Finish.

Xcode creates a target configured for the specified product type. Xcode also creates a reference to the
target’s product and places it in your project, although the product does not exist on the file system
until you build the target.

Managing Targets 15
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Table 1-2 lists templates that create targets using the native build system. Because it performs all target and
file-level dependency analysis for targets using the native build system, Xcode can offer detailed feedback
about the build process and integration with the user interface for these targets.

Table 1-1 iPhone OS target templates

CreatesTarget template

Cocoa Touch

An iPhone application.Application

A static library.Static Library

Table 1-2 Mac OS X target templates

CreatesTarget template

BSD

A dynamic library, written in C, that makes use of BSD.Dynamic Library

A single-module object file using BSD API.Object File

A command-line utility, written in C.Shell Tool

A static library, written in C, that makes use of BSD.Static Library

Carbon

An application, written in C or C++, that links against the Carbon framework.Application

A dynamic library that links against the Carbon framework.Dynamic Library

A framework based on the Carbon framework.Framework

A bundle, such as a plug-in, that can be loaded into a running program.Loadable Bundle

A Resource Manager resource file.Resource File

A command-line utility based on the Carbon framework.Shell Tool

A static library, written in C or C++, based on the Carbon framework.Static Library

A target that compiles test code into a bundle, links it with the Unit Test
framework and an executable to be tested, and runs a series of unit tests.

Unit Test Bundle

Cocoa

An application, written in Objective-C or Objective-C++, that links against the
Cocoa framework.

Application

A dynamic library that links against the Cocoa framework.Dynamic Library

A framework based on the Cocoa framework.Framework

16 Managing Targets
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

CreatesTarget template

A bundle, such as a plug-in, that can be loaded into a running program.Loadable Bundle

A command-line utility based on the Cocoa framework.Shell Tool

A static library, written in Objective-C or Objective-C++, based on the Cocoa
framework.

Static Library

A target that compiles test code into a bundle, links it with the Unit Test
framework and an executable to be tested, and runs a series of unit tests.

Unit Test Bundle

Kernel Extension

A kernel extensionGeneric Kernel Extension

A device driver that uses the I/O Kit.IOKit Driver

Ruby

A Ruby unit test target.Unit Test Target

In addition to these target templates, Xcode defines a handful of target templates that do not necessarily
correspond to a particular product type. These targets are known as special targets and can be used to:

 ■ Build a group of targets together

 ■ Copy files to a specific file system location

 ■ Build a product using an external build system

 ■ Run a shell script

These are the special target types:

 ■ Aggregate Target

Xcode defines a special type of target that lets you build a group of targets at once, even if those targets
do not depend on each other. An aggregate target has no associated product and no build rules. Instead,
an aggregate target depends on each of the targets you want to build together. For example, you may
have a group of products that you want to build together. You would create an aggregate target and
make it depend on each of the product targets. To build all the products, just build the aggregate target.

An aggregate target may contain a custom Run Script build phase or a Copy Files build phase, but it
cannot contain any other build phases. Any build settings that the aggregate target contains are not
interpreted but are passed to the build phases that the target contains. For more information on aggregate
targets, see “Defining Target Dependencies” (page 23).

 ■ Copy Files Target

A Copy Files target is an aggregate target that contains only one build phase, a Copy Files build phase.
Building a Copy Files target simply copies the associated files to the specified destination in the file
system. Copy Files targets are useful if you have custom build steps that require files that are not specific
to any other targets to be copied. While Copy Files build phases allow you to add a step to the build
process for a single target that copies files in that target, a Copy Files target lets you copy files that are
not specific to any one target. For example, if your project has several targets that require the same files

Managing Targets 17
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

to be installed at a particular location, you can use a Copy Files target to copy the files, and make each
of the other targets depend upon the Copy Files target. For more information on the Copy Files build
phase, see “Copy Files Build Phase” (page 38).

 ■ External Target

Xcode allows you to create targets that do not use the native Xcode build system but instead use an
external build tool that you specify. For example, if you have an existing project with a makefile, you can
use an external target to run make and build the product.

An external target creates a product but does not contain build phases. Instead, it calls a build tool in a
directory. With an external target, you can take full advantage of the Xcode text editor, class browser,
and source-level debugger. However, many Xcode features—such as Fix and Continue—rely on the
build information maintained by Xcode for targets using the native build system. As a result, these are
not available to an external target. Furthermore, you must maintain your custom build system yourself.
For instance, if you need to add files to an external target built using make, you must edit the makefile
yourself. To learn how to work with non–Xcode-based projects in a more straightforward way, see Using
the Organizer.

 ■ Shell Script Target

A Shell Script target is an aggregate target that contains only one build phase, a Run Script build phase.
Building a Shell Script target simply runs the associated shell script. Shell Script targets are useful if you
need to perform custom build steps. While Run Script build phases allow you to add custom steps to
the build process for a single target, a Shell Script target lets you define a custom build operation that
you can use with many targets. For example, if your project has several targets that use the files generated
by a Shell Script target, you can make each of those targets depend upon the Shell Script target. For
more information on using shell scripts as part of the build process, see “Run Script Build Phase” (page
39).

Editing Targets

To edit a target you use the target editor, which allows you to view and modify target settings. As described
in “Target Overview” (page 12), a target defines the instructions necessary to create a product. Each target
has an associated set of files, tasks, and settings that together constitute these instructions. You can edit and
view many of these settings in the target editor.

The information available in the target editor varies, depending on the type of target. The target editor for
native targets lets you view and edit all target settings and build information associated with that target.
The target editor for external targets contains only general information. To edit build information for either
of these types of targets, you must use the target editor.

To learn how to modify the files and build phases associated with a target, see “Managing Target Files” (page
27) and “Build Phases” (page 31), respectively.

The Target Info window is the primary mechanism for viewing and editing target information. Figure 1-5
shows the target editor.

18 Managing Targets
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Figure 1-5 General pane in the Target Info window

The target editor contains the following panes:

 ■ General. The General pane contains global information about a target, such as its name, the name of
the associated product, and target dependencies. To learn more, see “Editing General Target
Settings” (page 20).

 ■ Build. The Build pane lets you view and edit build settings for the target. It is described in "Editing Build
Settings" in Xcode Project Management Guide.

 ■ Rules. The Rules pane displays the current system build rules, as well as any custom build rules defined
for the current target. For more information, see “Build Rules” (page 42).

 ■ Properties. The Properties pane lets you edit information property list entries for targets that create
products requiring Info.plist files, such as applications and other bundles.

Note: If the target does not have an Info.plist file, the Properties pane is not visible in the target
editor. This pane is described in “Editing Information Property List Entries” (page 20).

 ■ Comments. The Comments pane lets you associate notes or other documentation with the target. See
"Adding Comments to Project Items" in Xcode Workspace Guide for more information.

Managing Targets 19
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Editing General Target Settings

In the General pane of the target editor, you can edit basic target settings for any target in an Xcode project.
The General pane contains the following settings:

 ■ Name. The name Xcode uses to refer to the target. It may also specify the product name (see Xcode Build
Setting Reference for more information).

 ■ Type. The type of product created by the target. The product type is determined when you create the
target; you cannot change it.

 ■ Direct Dependencies list. The Direct Dependencies list identifies the targets upon which the current
target depends. See “Adding Target Dependencies” (page 24) to learn more about target dependencies.

Editing Information Property List Entries

Information property list entries contain information used by the Finder and other system software. This
information ends up in a file, called Info.plist that is contained within the product bundle. If a product
does not come in the form of a bundle, it has no Info.plist file.

The Info.plist file defines for the Finder such things as the bundle’s icon, the documents it can open, the
URLs it can handle, and so on. Unlike build settings, property list entries do not affect the build process; they
are copied into the bundle’s Info.plist file at the end of the build process. Note, however, that Xcode
evaluates build settings referenced in the Info.plist file, and you can have Xcode preprocess the
Info.plist file with the GCC preprocessor. For a list of entries used by the system, see RuntimeConfiguration
Guidelines.

Information Property List Entries for Native Targets

The Properties pane of the target editor, shown in Figure 1-6, allows you to edit information property list
entries for native targets. This pane is visible only for targets that create products with Info.plist files.

20 Managing Targets
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Figure 1-6 Target editor: Properties pane

The top section of the Properties pane allows you to edit essential information about the product, such as
the name of the associated executable, bundle identifier, type and creator, version information, and the icon
to associate with the finished product. Note that the name of the icon here must match the name of an icon
file that is copied into the Resources directory of the product bundle.

The Principal Class and Main Nib File settings are specific to Cocoa applications and bundles, and Automator
actions. Principal Class corresponds to the NSPrincipalClass property list key. Main Nib File specifies the
nib file that’s automatically loaded when the application launches. It corresponds to the information property
list key NSMainNibFile.

The Document Types list allows you to specify which documents your finished product can handle. These
are the aspects each entry in the list specifies:

 ■ Name. The name of the document type. For example, “Apple Sketch Document.”

 ■ UTI. A list of Uniform Type Identifiers (UTIs) for the document. UTIs are strings that uniquely identify
abstract types. They can be used to describe a file format or data type but can also be used to describe
type information for other sorts of entities, such as directories, volumes, or packages. For more information
on UTIs, see Uniform Type Identifiers Overview.

 ■ Extensions. A list of the filename extensions for this document type. Don’t include the period in the
extension. For example, sketch and draw2.

Managing Targets 21
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

 ■ MIME Types. A list of the MIME types for the document.

 ■ OS Types. A list of four-letter codes for the document. These codes are stored in the documents’ resource
or information property list files. For example, sktc.

 ■ Class. The subclass of NSDocument that this document uses. Use this field only if you’re writing a
document-based Cocoa application.

 ■ Icon File. The name of the file that contains the document type’s icon.

 ■ Store Type. The store type is the type of backing store to use to serialize the document. For more
information on store types, see Core Data Programming Guide.

 ■ Role. A description of how the application uses the documents of this type. You can choose from three
values:

 ❏ Editor. The application can display, edit, and save documents of this type.

 ❏ Viewer. The application can display, but not edit, documents of this type.

 ❏ None. The application can neither display nor edit documents of this type but instead uses them in
some other way. For example, the Finder could declare an icon for font documents.

 ■ Package. Specifies whether the document is a single file or a file package.

Note: Instead of the Document Types table, the Properties pane for Automator action targets provides a
different interface for editing Automator-specific property list keys. These property list keys are discussed in
Automator Programming Guide.

You may have additional keys that you need to include in your Info.plist file; for example, applications
that include Apple Help help books need two additional Info.plist entries. To add these additional keys,
you can edit the Info.plist file directly by clicking the Open Info.plist as File button at the bottom of the
Properties pane. Note that you can refer to build settings in the Info.plist file. For example,
$(PRODUCT_NAME) expands to become the base name of the product built by the target.

You can set properties on multiple targets; simply select the targets in the project window and open the
target editor. In the Properties pane, you can edit the values of properties that apply to more than one target.

Preprocessing Info.plist Files

You can specify that Xcode process the Info.plist file using the GCC preprocessor. This allows you to
include headers, use #if-style conditional statements, and take advantage of macro expansion in the
Info.plist file.

To preprocess the Info.plist file in a target, turn on the Preprocess Info.plist File (INFOPLIST_PREPROCESS)
build setting.

You can also use the following build settings to control preprocessing of Info.plist files:

 ■ Info.plist Preprocessor Definitions (INFOPLIST_PREPROCESSOR_DEFINITIONS). A list of preprocessor
macros to define when preprocessing the Info.plist file. For example, DEBUG=1.

 ■ Info.plist Preprocessor Prefix File (INFOPLIST_PREFIX_HEADER). The path to a prefix file to include when
preprocessing the Info.plist file. Use a project-relative or an absolute path.

22 Managing Targets
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

 ■ Info.plist Other Preprocessor Flags (INFOPLIST_OTHER_PREPROCESSOR_FLAGS). A list of additional flags
to pass to GCC when preprocessing the Info.plist file. For more on the flags you can pass here, see
GNU C 4.0 Preprocessor User Guide.

Duplicating Targets

There are two main reasons you might need to duplicate a target: You require two targets that are very
similar but contain slight differences in the files or build phases that they include, or you have a complicated
set of options that you build with and would prefer to simply start with a copy of a target that already contains
those build settings.

Xcode allows you to duplicate a target, creating a copy that contains the same files, build phases, dependencies
and build configuration definitions of the original.

To create a copy of a target:

1. Select the target you want to copy in the Groups & Files list.

2. Choose one of these:

 ■ Edit > Duplicate

 ■ Groups & Files list shortcut menu > Duplicate

Removing Targets

When your project contains targets that are no longer in use, you may want to remove them to reduce clutter.

To remove a target from a project:

1. Select the target to delete in the Groups & Files list.

2. Press the Delete key or choose:

 ■ Edit > Delete.

When you delete a target, Xcode also deletes the product reference for the product created by that target
and removes any dependencies on the deleted target.

Defining Target Dependencies

In a complex project, you may have several targets that create a number of related products. Frequently,
these targets need to be built in a specific order. Returning to the example of the client-server software
package created by the project shown in Figure 1-1 (page 11), you see that the client application, server
application, and command-line tool targets each link to the private framework created by another target in
the same project.

Managing Targets 23
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Before the application and command-line tool targets can be built, the framework target must be built.
Because they require the private framework in order to build, each of the application and command-line tool
targets is said to depend upon the target that creates the framework. You can use a target dependency to
ensure that Xcode builds targets in the proper order; in this example, you would add a dependency upon
the framework target to each of the application and command-line tool targets.

However, the applications and command-line tool in the client-server package must still be built individually.
None of these targets requires the product created by any target other than the framework target. Xcode
provides another mechanism for grouping targets that you want to build together but that are otherwise
unrelated; this is an aggregate target (see “Creating Targets” (page 15) for details). This section shows how
to add a target dependency and create an aggregate target, and gives an example of how you can use these
tools to organize a software development effort with multiple products and projects.

Creating Aggregate Targets

To build several targets together, even if they aren’t dependent on each other, create an aggregate target.
As described in “Creating Targets” (page 15), an aggregate target does not produce a product itself and it
does not contain build rules or information property list entries. Instead it exists so that you can make it
dependent on other targets. When you build the aggregate target, the build system builds the targets it
depends on sequentially or in parallel. To learn about building targets concurrently, see "Building in Parallel"
in Xcode Project Management Guide.

To create an aggregate target:

1. Choose Project > New Target.

2. Select Aggregate from the New Target Assistant.

For each target you want to build with this aggregate target, add a target dependency to the aggregate
target, as described in the “Adding Target Dependencies” (page 24).

Note that, although it does not contain any other build phases, an aggregate target can include a Run Script
or Copy Files build phase. Any build setting defined for the aggregate target will not be interpreted, but will
be passed to any build phases that the target contains.

Adding Target Dependencies

When you build a target (target A) with a dependency upon another target (target B), Xcode makes sure that
target B is built and up to date before building target A. That way, you can be sure that when target A needs
the product created by target B, target B is built before target A. In addition, if there are errors building target
B, Xcode doesn’t build target A.

You can view and modify a target’s dependencies in two ways:

 ■ In the General pane of the target editor. The Direct Dependencies list shows the targets upon which the
current target depends.

To add a target dependency, click the plus-sign button. (For the plus sign button to be available, the
project must contain or reference more than one target.) The list of targets shown includes all the other
targets in the current project, as well as the targets in any referenced projects. Targets in referenced
projects are grouped according to the project to which they belong. For more information on referencing
other projects, see "Referencing Other Projects" in Xcode Project Management Guide. You may also drag
a target from the Targets group to the Direct Dependencies list.

24 Managing Targets
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

To remove a target dependency, select it in the list and click the minus button.

 ■ In the Groups & Files list. Open the Targets group; the targets that the current target depends on are
listed before the build phases in the target. You can make the current target depend on another target
by dragging that target to the current target in the Groups & Files list.

Figure 1-7 shows a target dependency in the Groups & Files list.

Figure 1-7 Groups & Files list: Target dependency

Target dependency

Removing Target Dependencies

To remove a target dependency:

1. Select the target to modify in the Groups & Files list.

2. Open the target editor and display the General pane.

3. In the Direct Dependencies list, select the target dependency to delete.

4. Click the minus (-) button.

Managing Targets 25
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Multiple Target Example

Suppose that your organization has two teams working on separate applications, that one application includes
an internal library, and that each application relies on a framework supplied by a third team. Figure 1-8 shows
one way to set up your software development with three Xcode projects, using project references, target
dependencies, and aggregate targets to relate the various products.

Figure 1-8 Three projects with dependencies

Mixer_framework project

Juicer_app project

Aggregate target

Name: Juicer_aggregate

Dependency: Juicer_app

Dependency: Blender_app

Dependency: Mixer_framework

Blender_app project

Target

Name: Juicer_app

Product type: Application

Dependency: Juicer_lib

Dependency: Mixer_framework

Target

Name: Mixer_framework

Product type: Framework

Target

Name: Blender_app

Product type: Application

Dependency: Mixer_framework

Target

Name: Juicer_lib

Product type: Library

In Figure 1-8, the Juicer_app project contains the Juicer_app target for building the Juicer application,
and the Juicer_lib target for building an internal library. The application target depends on the library
target, and also has a cross-project dependency on the Mixer_framework target in the Mixer_framework
project. Finally, the Juicer_app project contains the Juicer_aggregate target as a convenience for
building the entire suite of projects.

Note: Aggregate targets are typically used to build targets that don’t otherwise depend on each other.

In Figure 1-8, the Blender_app project contains a target for building the Blender application. The Blender
target also has a cross-project dependency on the Mixer framework.

Finally, the Mixer_framework project contains a target for building the Mixer framework, used by both the
Juicer and Blender applications.

Given this combination of projects, targets, and dependencies, the following statements are true:

26 Managing Targets
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

 ■ Building the Juicer target builds the Juicer library if it needs updating, and also builds the Mixer framework,
if it needs updating.

 ■ Building the Juicer aggregate target builds the Juicer application, which builds the Juicer library if it
needs updating. The aggregate target also builds the Blender application and the Mixer framework.

 ■ Building the Juicer library does not cause any other targets to be built.

 ■ Building the Blender target builds the Mixer framework if it needs updating.

Managing Target Files

When you add files to a project, you can have Xcode also add those files to one or more targets. This is the
easiest way to add files to a target. However, you may have existing files in your project that you wish to add
to a target, or find that you no longer need a target file. This section describes how to view the files in a
target and shows you how to add and remove target files.

Viewing the Files in a Target

To view all of the files included in a target, select the target in the Groups & Files list; all targets are grouped
under the Targets group. The detail view shows all the files and folders in the target, similar to what you see
in Figure 1-9. If one is not already open in the current window, open a detail view by choosing:

 ■ View > Detail

Figure 1-9 Target files in the project window

Managing Target Files 27
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

You can also see a target’s files grouped according to the operation performed on those files during the
build process. If you open a target in the Groups & Files list (by clicking the disclosure triangle next to it), you
see the build phases for that target. Build phases, described in further detail in “Build Phases” (page 31),
represent a task performed when the target is built. To see the files in a particular build phase, do one of the
following in the Groups & Files list:

 ■ Select the build phase. The build phase files appear in the detail view.

 ■ Open the build phase. The build phase files appears under the build phase name.

Adding and Removing Target Files

Xcode provides several ways to modify a set of target files. In the project window, you can see all the files in
a target and you can add files to, or remove files from, the target. You can also use file-info editors to see
which targets include them and change their target membership.

To add files to a target, you can:

 ■ Drag the file reference or references to the appropriate build phase of the given target in the Groups &
Files list. For native targets, Xcode does not let you drag a file to a build phase that does not accept that
type of file as an input. For example, you cannot drag a nib file to the Compile Sources build phase. See
“Build Phases” (page 31) for more information on the available build phases and their files.

 ■ Specify that a file be included in a target when you add that file to your project, as described in "Managing
Files and Folders in a Project" in Xcode Project Management Guide.

 ■ Add a file to the active target. Find the file in the detail view or in the Groups & Files list and select the
checkbox in the Target column for that file. If the Target column is not visible, select either these:

 ❏ Groups & Files list header shortcut menu > Target Membership

 ❏ Detail view header shortcut menu > Target

To remove a file from a target, in the Groups & Files list:

1. Open the target to reveal its build phases.

2. Open the build phase to which the file belongs.

3. Select the file to remove from the target, and either:

 ■ Choose Delete from the shortcut menu

 ■ Choose Edit > Delete

To remove a file from the active target, find the file in the detail view or in the Groups & Files list and deselect
the checkbox in the Target column for that file. Xcode removes the file from the target but does not remove
the file reference from the project.

To see which targets a file belongs to and modify the file’s target membership, select the file reference in
the project window, open the file-info editor, and display the Targets pane, shown in Figure 1-10.

28 Managing Target Files
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

Figure 1-10 File-info editor: Targets pane

The Targets Membership table shows all the targets in the current project. The checkbox next to each target
indicates whether the file is included in that target.

If you have multiple files selected, the Targets pane may show a dash in the checkbox next to a target. This
indicates that some of the selected files are included in that target, while others are not. If the checkbox next
to a target is dimmed, that target does not contain a build phase appropriate for processing the selected file
or files.

Setting the Role of Header Files

Header files have a special purpose in a target: They publish the programming interface to symbols defined
or implemented in the target’s implementation files. Implementation files in a target use header files to gain
access to symbols defined in other implementation files. But implementation files may also require access
to the programming interface to frameworks, libraries, or plug-ins that are not part of the project.

When you define a target, you may implement symbols you want to make public to clients of the target’s
product. But, to make your product easy to use (and to keep implementation details hidden), you may want
to keep many of its symbols inaccessible to clients of your product. Also, if you develop products to be used
both by the development team and by end users, you may need to publish interfaces to symbols that must
be used only by other team members but that end users must not use. You use a header file’s role within its
target to specify the purpose of the header file.

Managing Target Files 29
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

To set the role of header files in a target:

1. Select the target containing the header files whose role you want to set.

2. Select the target’s Copy Headers build phase.

3. Choose the desired role for each header file from the Role column in the detail view.

There are three roles available: public, private, and project. Table 1-3 describes these roles.

Table 1-3 Header file roles

Header file dispositionRole

The header file is included as part of the build product. Its location is specified by the Public
Headers Folder Path (PUBLIC_HEADERS_FOLDER_PATH) build setting. You should publish as
public only interfaces that are finalized and meant to be used by your product’s end users.

public

The header file is included as part of the build product. Its location is specified by the Private
Headers Folder Path (PRIVATE_HEADERS_FOLDER_PATH) build setting. You should publish as
private interfaces that you don’t intend to be used by end users or that are in early stages of
development.

private

The header file is available only for use by implementation files in the current project. This
header file is not included as part of the built product.

project

30 Managing Target Files
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Targets

A build phase represents a task to be performed on a set of files. Each build phase specializes in a specific
kind of file, such as header files, source files, resource files, and frameworks and libraries. Each build phase
also performs specific operations on the files associated with it. That way, changes in the way files of the
same kind are processed can be made by customizing the operations that the build phase performs.

This chapter provides an overview of build phases, explains how Xcode determines the order in which build
phases are processed to build a product, describes in detail some of the build phases available, and explains
how build rules allow you to customize the Compile Sources build phase and the Build ResourceManager
Resources build phase in a target.

Build Phase Overview

A build phase performs a set of operations on a group of files as part of building a product. To illustrate this
process, think of the tasks you would perform to prepare for and deliver a presentation; many of the required
tasks contain a set of inputs and outputs:

1. Specify the purpose of the presentation and identify the audience.

This task has no prerequisites but produces a set of criteria that serve as the guiding principles for the
presentation.

2. Gather the appropriate data, such as articles, reports, and surveys.

Information gathering requires a set of criteria that specify what to look for and where to look for it. The
outcome is a set of documents containing the data gathered.

3. Purchase a business suit.

This task has no inputs or outputs that directly relate to the presentation.

4. Analyze the data by collating facts, extrapolating trends, and summarizing representative opinions.

This task uses the data gathered in task 2 and produces one document containing the information on
which the presentation is based.

5. Develop a set of slides, including compelling illustrations, from the information produced by your analysis.

This task requires the information produced in task 4 and produces a set of slides and illustrations, which
could be presented using Keynote.

6. Deliver the presentation by showing the slides and illustrations in sequence and by engaging the audience
with a loud, clear voice while maintaining eye contact with them.

Build Phase Overview 31
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

The order in which build phases are executed in a target depends on their inputs and outputs. Most of the
tasks shown earlier contain a set of inputs and outputs that associate them with each other in an
anterior/posterior relationship. Tasks that contain inputs that are the outputs of other tasks or outputs that
are the inputs of other tasks are ordered tasks. These are tasks that are executed in the order determined
by their inputs and outputs. Unordered tasks, on the other hand, are tasks with no inputs and outputs, or
tasks whose inputs are not the outputs of other tasks and whose outputs are not the inputs of other tasks.
In Figure 2-1 the presentation tasks shown earlier are categorized as ordered and unordered.

Figure 2-1 Presentation tasks

Input: slides
Output: presentation

Deliver Presentation

Input: <nothing>
Output: criteria

Specify Purpose

Input: criteria
Output: data

Gather Data

Input: data
Output: information

Analyze Data

Input: information
Output: slides

Develop Slides

Ordered tasks Unordered tasks

Input: <nothing>
Output: <nothing>

Purchase Suit

Most of the tasks illustrated depend on another task’s outputs. The Specify Purpose task is the only task
among the ordered tasks that doesn’t depend on the output of any other task; therefore, it’s performed first.
The Purchase Suit task is the only unordered task; that is, it’s neither the anterior nor the posterior of other
tasks. Therefore, it can be executed at any time during the preparation of the presentation.

Using Build Phases

To build an application, you typically compile source files and link them to system frameworks and libraries.
Figure 2-2 shows some of the operations needed to build the CircleView example application.

32 Using Build Phases
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Figure 2-2 Building an application

InfoPlist.strings
MainMenu.nib
README.rtf

CircleView.m
main.m

Cocoa.framework

Copy to CircleView.app/Contents/Resources

Compile into CircleView.o
Compile into main.o

Link with CircleView.o and main.o into
CircleView.app/Contents/MacOS/CircleView

This simple project shows that there are many things to take into account when building a product. You
have to copy resource files to the appropriate places, compile implementation files into object files, and link
object files with the appropriate frameworks to produce a binary file. If you modify an implementation file,
you must compile it, and link the generated object file with the other object files and the necessary frameworks.

If you analyze the files and the operations illustrated in Figure 2-2 (page 33), you notice that the project
contains three types of files: Files that are copied or installed, files that are processed or compiled to produce
intermediate files (such as object files), and frameworks that are linked with the object files to produce a
binary file. To build a product, appropriate operations are performed on the files, depending on their type.

Build phases associate groups of files with operations to be performed on them in order to build a product;
for example, installing header files within frameworks, compiling source files, linking object files with system
libraries or frameworks, and so on. As you add files to a project, Xcode associates them with the appropriate
build phase, based on the files’ type (specified by each file’s extension). If you want to compile implementation
files with a different compiler, you make the change once, at the build phase level (see “Compile Sources
Build Phase” (page 38) and “Build Rules” (page 42) for details). Build phases help make the process of building
an application, plug-in, library, or framework, understandable and easy to customize, as illustrated in Figure
2-3.

Figure 2-3 Building an application using build phases

Compile sources
inputs:
 CircleView.m
 main.m
outputs:
 CircleView.o
 main.o

Link binaries with libraries
inputs:
 CircleView.o
 main.o
 Cocoa.framework
outputs:
 CircleView.app
 Contents
 MacOS
 CircleView

Copy bundle resources
inputs:
 InfoPlist.strings
 MainMenu.nib
 README.rtf
outputs:
 CircleView.app
 Contents
 Resources
 README.rtf
 English.lproj
 MainMenu.nib
 InfoPlist.strings

Using Build Phases 33
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

A build phase operates both on its inputs, which are the files associated with it (either by you or intrinsically
by Xcode), and on its outputs, which are the files produced after the build phase is executed. Each build
phase executes its task by invoking tools to perform the operations needed to accomplish the task.

Xcode offers several build phases, which are shown in Table 2-1. The name of the build phase reflects the
task performed by that build phase.

Table 2-1 Build phases available in Xcode

DescriptionBuild phase

Installs header files with public or private roles in the appropriate
locations in the product. See “Setting the Role of Header Files” (page 29)
for details.

Copy Headers

Installs files by copying the associated files from the project to the
Resources directory in the product.

Copy Bundle Resources, Build
Java Resources

Installs files by copying the associated files from the project to a location
in the product or to a specific location in the target file system, such as
/Library/Frameworks or /Library/Application Support.

Copy Files

Compiles source files into object files using a predefined tool, a tool you
specify, or a build-rule script.

Compile Sources

Executes a shell script. You can use any scripting language whose scripts
you can execute from the command line, such as AppleScript, Perl, Python,
Ruby, and so on.

Run Script

Links object files with frameworks and libraries to produce a binary file.Link Binary With Libraries

Compiles .r files into resources that go into a separate resource file or
into the executable's resource fork.

Build ResourceManager
Resources

Compiles .applescript files and places the resulting .scpt files in the
product’s Resources/Scripts directory.

Compile AppleScripts

Table 2-2 lists the build phases and their possible inputs and outputs.

Table 2-2 Input files and output files of build phases

OutputsInputsBuild phase

Copies in appropriate locations in the
product.

.h filesCopy Headers

.o files in target’s build directory..c, .m, .y, .l, among other types
of source files

Compile Sources

Binary file, framework, or library in product
destination directory.

.framework, .dylib, and the.o
files in the target’s build directory

Link Binary With Libraries

Copies in the product’s Resources
directory.

.nib files, .strings files, image
files, and others

Copy Bundle Resources

34 Using Build Phases
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

OutputsInputsBuild phase

Resource (.rsrc) files in the product’s
Resources directory.

.r, and .rsrc filesBuild ResourceManager
Resources

AppleScript script (.scpt) files in the
product’s Resources/Scripts directory.

.applescript filesCompile AppleScripts

Each target has a set of build phases, separate from the build phases in other targets in your project. To view
the build phases in a target, click the disclosure triangle next to the target in the Groups & Files list.

Figure 2-4 Viewing build phases

Build phases for target
ʻMLTE Showcaseʼ

Build Phase Processing Order

The order in which the build system executes build phases is important because some build phases produce
files that are part of the inputs of other build phases. Therefore, the former must be executed before the
latter. In native targets, dependencies between build phases determine the order of execution. In Jam-based
targets, you must ensure that the build phases within a target are ordered appropriately.

Build Phase Processing Order 35
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Build Phase Processing Order in Native Targets

In some cases, a build phase inherently includes the outputs of other build phases as its inputs. For example,
the outputs (.o files) of the Compile Sources build phase are part of the inputs of the Link Binary With Libraries
build phase. This makes the Compile Sources build phase an antecedent of the Link Binary With Libraries
build phase. Therefore, the order in which build phases are executed in a target depends on their inputs and
outputs.

Most build phases have their inputs and outputs defined implicitly. However, Run Script build phases may
have neither. Here, the build system tries to run the associated script in the order specified within the target,
but the actual point in the build process at which the script is run is undetermined. If you assign either input
or output files to a Run Script build phase, the script’s point of execution in the build process is determined
by other targets having the build phase’s outputs as their inputs, or the inputs of the build phase being the
outputs of other build phases.

Figure 2-3 (page 33) illustrates this. Regardless of the order of the Compile Sources and the Link Binary With
Libraries build phases in the target, the Compile Sources build phase is executed before the Link Binary With
Libraries build phase. This is because the inputs to the Link Binary With Libraries build phase rely on output
from the Compile Sources build phase.

In the Compile Sources build phase, the build system determines the order in which files are processed
through the inputs and outputs of the target’s build rules, in a similar way in which the order of build phases
is determined.

Build Phase Processing Order in Jam-Based Targets

The order in which the build system executes the build phases in Jam-based targets is determined by the
order of the build phases within a target. The order of the input files within the build phase determines the
order in which the build system processes each file in that build phase.

You must make sure that build phases that produce files required by other build phases are listed first within
the target. For example, the Compile Sources build phase must always be listed before the Link Binary With
Libraries build phase.

Within the Compile Sources build phase, you must ensure that source files that generate derived files are
placed above dependent files. For example, if a target has Yacc (.y) and Lex files (.l) files and processing
the Lex files requires the C (.c) files generated from the Yacc files, within the build phase the Yacc files must
be listed before the Lex files.

Reordering Build Phases

Typically, there is no need to change the order of build phases in a target; the default arrangement works
for the majority of cases. If, however, you find that you need to change the position of a build phase—for
example, when adding custom build phases to a Jam-based target—you can reorder a build phase by
dragging the icon for the build phase to its new location in the target.

36 Build Phase Processing Order
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Adding and Deleting Build Phases

New targets—whether created through the New Target Assistant or as part of creating a project—already
include a set of predefined build phases. The predefined build phases for a target vary, depending on the
type of product created by the target. For example, a target that builds an application typically includes a
Copy Bundle Resources build phase to copy resources into the application bundle; however, a target that
builds a shell tool does not include this build phase. The predefined build phases work for most simple
targets; however, you can accommodate more complex products and build steps by adding your own build
phases.

To add a build phase:

1. (Optional) Select the target to which you want to add the build phase. Otherwise, Xcode adds the build
phase to the active target.

2. Choose a build phase from:

 ■ Project > New Build Phase

Table 2-1 (page 34) shows the available build phases.

Xcode adds the new build phase after the currently selected build phase, or, if no build phase is selected,
adds it as the last build phase in the target. Several types of build phases can appear only once in a target;
for example, there can be only one Compile Sources build phase. However, a target can contain multiple
instances of the Copy Files and Run Script build phases.

To delete a build phase, select it in the Groups & Files list and press Delete, or choose Edit > Delete. Deleting
a build phase does not delete the files in the build phase from the project or from the file system.

Adding Files to a Build Phase

When you add a file to a project, Xcode lets you choose whether to also add the file to any targets in the
project. When you add files to a target this way, Xcode automatically assigns the files to build phases, based
on each file’s type.

To view the inputs to a particular build phase, you can:

 ■ Select the build phase in the Groups & Files list. The files assigned to the build phase are displayed in
the detail view.

 ■ Open the build phase in the Groups & Files list.

Intermediate files—files generated by Xcode in other build phases—are not listed. Xcode handles these
intermediate files automatically.

If the default file placement is not sufficient for your needs, you can drag the file or files from their current
build phase to the new build phase. You can also drag existing files from the project group to the appropriate
build phase in the Groups & Files list. To remove a file from a build phase, select the file and press Delete.

Adding and Deleting Build Phases 37
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Compile Sources Build Phase

The Compile Sources build phase is one of the most easily customized build phases (the other one being the
Run Script build phase). The reason is that this build phase must handle a wide variety of file types. Xcode
is preconfigured to process several types of source files, but you may have to compile source files that Xcode
doesn’t know about.

The feature that makes the Compile Sources build phase so flexible is its support of build rules. They specify
the tool or script the build system invokes to process files in Compile Sources and Build ResourceManager
Resources build phases when building a product. For details on build rules, see “Build Rules” (page 42).

Copy Files Build Phase

A Copy Files build phase allows you to copy files and resources of any type to specific locations as part of
the build process. It complements the build phases that copy specific types of files. An example is the Copy
Headers build phase, which deals only with header files. You can have as many Copy Files build phases as
you need in a target.

For example, using a Copy Files build phase, you can copy fonts to/Library/Fonts. Or, if you’re developing
a plug-in, a Copy Files build phase can copy the generated plug-in to the appropriate location. You can have
as many Copy Files build phases in a target as you need.

To create a Copy Files build phase:

1. In the project window, open the target to which you want to add the build phase, and select the build
phase after which to add the new build phase.

2. Choose Project > New Build Phase > New Copy Files Build Phase. Xcode adds the new Copy Files build
phase after the build phase selected in the Groups & Files list.

3. Drag the files you want to copy from the Groups & Files list to the Copy Files build phase.

To configure the new Copy Files build phase, select it and open the Copy Files build phase editor, shown in
Figure 2-5.

Figure 2-5 Copy Files build phase editor

38 Compile Sources Build Phase
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Together, the Destination pop-up menu and the Path field specify the location to which Xcode copies the
files in the Copy Files build phase. The Destination pop-up menu lets you choose from a number of standard
locations. Table 2-3 shows the destination-location names you can choose in a Copy Files build phase for an
application called MyApp and the resulting destination path. All the options, except Absolute Path and
Products Directory, specify paths inside the generated bundle.

Table 2-3 Destination names and example destination paths of the Copy Files build phase

Destination pathDestination name

Anywhere.Absolute Path

MyApp.appWrapper

MyApp.app/Contents/MacOSExecutables

MyApp.app/Contents/ResourcesResources

MyApp.app/Contents/Resources/JavaJava Resources

MyApp.app/Contents/FrameworksFrameworks

MyApp.app/Contents/SharedFrameworksShared Frameworks

MyApp.app/Contents/SharedSupportShared Support

MyApp.app/Contents/PlugInsPlug-ins

The directory in which Xcode places the project’s built products. See "Build Locations"
in Xcode Project Management Guide.

Products Directory

The Path field specifies the path, relative to the location specified in the Destination pop-up menu, to the
target directory. If you choose Absolute Path from the menu, the Path field must contain the complete path
to the destination directory for the files.

The “Copy only when installing” option lets you specify whether the build phase copies the files only in install
builds of the product. That is, when using the install option of xcodebuild or when the Deployment
Location (DEPLOYMENT_LOCATION) build setting is turned on. For more on xcodebuild, see "Building with
xcodebuild" in Xcode Project Management Guide.

Run Script Build Phase

A Run Script build phase lets you execute any commands you need to perform a task. You can archive files
using tar, send mail, write messages to a log file, execute AppleScript scripts, and so on. You can use any
of the shell languages available in your system. And you can have any number of Run Script build phases in
a target.

Before executing your script, Xcode assigns the values of most build settings to environment variables. In
particular, it sets the environment variables listed in Table 2-4 (page 40), as well as any build settings that
are defined for the active target. This includes build settings defined at the target layer, as well as any build
settings inherited from lower layers. If you are building using xcodebuild, Xcode also passes any build
settings defined on the command line to the environment.

Run Script Build Phase 39
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Listing 2-1 shows how to print the value of a build setting by printing the value of the corresponding
environment variable.

Listing 2-1 Example Run Script–build-phase script

echo "Building ${PRODUCT_NAME}"

This is the corresponding entry in the build transcript in the build results window:

Building Sketch

Note: If you change the value of environment variables in one script, the change is not visible in another
script. This is because Xcode does not recognize changes made to those environment variables during the
script’s execution and because shell scripts are independent of each other. For details on the build settings
that are reflected in the script’s environment variables, see “Using Build Settings in Run Script Build
Phases” (page 42).

To perform operations on intermediate files, you can use several build settings, whose value—which Xcode
sets before executing your script—you access through environment variables. A few of these build settings
are listed in Table 2-4; the complete list of build settings that Xcode sets is much larger; see XcodeBuild Setting
Reference for the complete list of build settings.

Table 2-4 Environment variables accessible from a Run Script build phase

DescriptionEnvironment variable

The action being performed on the current target, such as build or clean.ACTION

The variations—debug, profile or normal—that Xcode is creating for the
product being built.

BUILD_VARIANTS

The name of the project containing the target that is being built.PROJECT_NAME

The name of the product being built, without any extension or suffix.PRODUCT_NAME

The name of the target being built.TARGET_NAME

The location of the target being built.TARGET_BUILD_DIR

The directory that holds the products created by building the targets in a project.BUILT_PRODUCTS_DIR

The directory that holds intermediate files for a specific target.TEMP_FILES_DIR

The directory that holds intermediate source files generated by the Compile
Sources build phase.

DERIVED_FILES_DIR

The location of the installed product.INSTALL_DIR

The script executes using the permissions of the logged-in user. Xcode runs the script with the initial working
directory set to the project directory.

To create a Run Script build phase:

40 Run Script Build Phase
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

1. In the Groups & Files list, open the target to which you want to add the build phase, and select an existing
build phase.

2. Choose Project > New Build Phase > New Shell Script Build Phase.

To configure the new Run Script build phase, open the Run Script build phase Info window, shown in Figure
2-6.

Figure 2-6 Run Script build phase Info window

The Run Script build phase editor contains these fields:

 ■ Shell. Specifies the path to the appropriate shell.

 ■ Script. Specifies the script itself. You can type the contents of the script directly in the text field or invoke
it from a file, as in the example shown above.

 ■ Run script only when installing. Runs the script only during install builds, that is, when using the
install option of xcodebuild or when the build settings Deployment Location
(DEPLOYMENT_LOCATION) and Deployment Postprocessing (DEPLOYMENT_POSTPROCESSING) are on.

 ■ Show environment variables in build log. Lists the build system’s environment variables in the build
log.

 ■ Input Files. Specifies the names of the input files the script operates on.

Run Script Build Phase 41
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

 ■ Output Files. Specifies the files that the script produces.

In these two tables, file paths are interpreted relative to the project directory.

Xcode uses the input and output files to determine whether to run the script and to determine the order in
which the script is executed. Specifying input and output files ensures that Xcode runs the script only when
the modification date of any of the input files is later than the modification date of any of the output files
(reducing the time it takes to build your product), and that the files the script produces are included in the
dependency analysis the build system performs before building your product. If you provide no outputs,
Xcode runs the script every time you build the target.

After the script terminates, Xcode uses the script’s exit value to determine whether to continue the build.
When the script exits with a nonzero exit value, Xcode stops the build. If you want to perform other
actions—such as writing to a log file—in the event of a build failure, you must perform the appropriate action
in the script.

Using Build Settings in Run Script Build Phases

As Xcode constructs the command-line invocations for the various tools it uses to build a product, it accesses
the build settings available at the target level. Also, when it sets the environment variables for shell scripts
in Run Script build phases, it resolves most build settings and sets environment variables with their values.

Note: Modifying the values of the environment variables that the build system sets for shell scripts in Run
Script build phases has no effect on the value of the corresponding build setting. That is, shell scripts executed
as part of the same build process after one in which you modify the environment variables get the unmodified
values. This is the expected UNIX scoping behavior for environment variables.

Build Rules

Build rules specify how particular types of files are processed in Compile Sources build phases and specify
which tool is used to process files in Build ResourceManager Resources build phases. For example, a build
rule may indicate that all C source files be processed with the GCC compiler. Each build rule consists of a
condition and an action. The condition determines whether a source file is processed with the associated
action. Usually, the condition specifies a file type.

Xcode provides default build rules that process C-based files, assembly files, Rez files, and so on. You can add
rules to process other types of file to each target. You can see the build rules in effect for a target in the Rules
pane of the Target Info window, shown in Figure 2-7. Build rules are processed in the order they appear in
the Rules pane.

42 Build Rules
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Figure 2-7 Target editor: Rules pane

There are two types of build rules:

 ■ System build rules. System build rules are predefined and unmodifiable, although you can override
them. They include rules for processing C-based, Assembler, and Rez source files. See “System Build
Rules” (page 44) for details. System rules are the same for all targets in a project.

 ■ Target-specific build rules. Target-specific build rules are custom rules that you have defined for a
particular target.

Target-specific build rules can specify files that the system build rules do not directly address, and can override
the existing system build rules. For example, there’s a system build rule for the processing of C-based source
files, which means that .c and .m files are processed by the same build rule. You can, however, add a
target-specific build rule indicating that .m files be processed by a different compiler. In addition, instead of
specifying a particular type of file, you can set the build rule’s condition to a pattern that matches a set of
files. See “Creating a Build Rule” (page 44).

You can view all build rules for a target, including available system build rules, by choosing All Rules from
the pop-up menu at the top of the Rules pane in the target editor. To see only those build rules defined for
the target, choose Rules Specific to Target.

Build Rules 43
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

A build rule’s action typically specifies the tool or compiler to use when processing files that meet the given
condition. But you can also specify a build-rule script. The default interpreter is /bin/sh. However, you can
specify any script interpreter by entering #!<interpreter_path> as the first line of the script. When you
use a build-rule script, you must specify the files the script produces as the build rule’s output files. See
“Creating a Build Rule Script” (page 45).

When processing a source file, Xcode evaluates the build rules from top to bottom and chooses the first one
whose condition matches the source file being processed. Because custom build rules appear above the
built-in system rules, the custom build rules can override the system build rules.

After a file is processed by a build rule, the output produced may be processed by another build rule when
the second build rule takes as input files of the type the first build rule produces. For example, say you have
a command-line tool that generates a Rez (.r) file from another type of file. You create a custom build rule
that takes the specialized file as input an processes it using your command-line tool. Because the product of
your custom build rule is a Rez file, the Rez file is then processed by the Rez system rule, which produces a
.rsrc file.

System Build Rules

System build rules are predefined rules in all targets and are used to process several well-known file types.
Table 2-5 lists the system build rules that Xcode provides.

Table 2-5 System build rules

OutputsInputsRule

.mom.xcdatamodelData Model Compiler

.o.c, .m, .cpp, .mmC

.o.sAssembler

.h, .c.yYacc

.c.lLex

.rsrc.rRez

.c.defsMiG

Creating a Build Rule

In addition to having system build rules, Xcode lets you define custom build rules on a per-target basis.
Custom build rules allow you to change the way files of a particular type are processed or add support for
types of files not directly addressed by the system rules.

To define a build rule’s condition, choose a file type from the Process pop-up menu. You can also define rules
that match arbitrary file names by choosing “Source files with names matching:” from the Process pop-up
menu, and specifying a filename pattern in the text field that appears. This field accepts file name substitution

44 Build Rules
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

(or globbing), accepting the same kinds of file patterns that you can use in a command shell editor. For
example, to match all files whose names start with a capital letter and end with a .def suffix, you specify
[A-Z]*.def as the pattern.

You define the build rule’s action by choosing one of the available compilers from the “using” pop-up menu.
Xcode provides a number of built-in compilers to choose from. Alternatively, you can define a custom script
for processing files that meet the build rule’s condition, as described in “Creating a Build Rule Script” (page
45).

When processing a source file in the target, Xcode evaluates the build rules from top to bottom and chooses
the first one whose condition matches the source file being processed. For this reason, you should put the
most specific build rules above the more general ones. For example, a rule that matches only C++ files should
appear above a rule that matches all C-like files—that is, C, C++, Objective-C, and Objective-C++ files.

To reorder a custom rule, drag it from its background.

Note: System rules cannot be reordered.

Creating a Build Rule Script

Instead of choosing one of Xcode’s built-in compilers to process the files specified by a build rule’s condition,
you can create a custom script to process those files.

To create a custom script for a build rule, choose:

 ■ “using” > “Custom script”

You can enter your script in the text field that appears, or you can store your script as a separate file in your
project and invoke it from the text field using its project-relative path. In this case, you are actually defining
a one-line build rule script that calls the script in your project.

In addition to defining the script, you also need to tell Xcode the paths of any output files that the script
produces. Enter the path to each separate output file that is produced by the script in the “with output files”
table below the script text field. For each file, create a row by clicking the plus (+) button. In this row, specify
either the full (absolute) path or the project-relative path to the file. You can use any of the environment
variables listed in Table 2-6 (page 46).

For example, suppose that you need to define a build rule to process files with the extension .abcdef. Also
suppose that the build rule script produces a .c file for each .abcdef file and that the generated .c files
are placed in the default directory for intermediate files. In this case, the output-files specification could look
like this:

$(DERIVED_FILES_DIR)/$(INPUT_FILE_BASE).c

Note the use of parentheses in this example. The output-files specification uses the standard Xcode syntax
for accessing build settings. Your custom script, however, must use standard shell syntax to access any
environment variables corresponding to Xcode build settings, as described in “Execution Environment for
Build Rule Scripts” (page 46).

The generated files are automatically fed back to the rule-processing engine. For example, continuing the
.abcdef example rule, Xcode processes the .c files the script produces using the rule that processes .c
files.

Build Rules 45
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

Execution Environment for Build Rule Scripts

Before executing a build-rule script, Xcode sets environment variables to reflect the values of some build
settings used to build the product. See “Using Build Settings in Run Script Build Phases” (page 42) for details.
In addition, Xcode sets a few environment variables to values the script may need to access. Table 2-6 describes
these environment variables.

Table 2-6 Environment variables for build rule scripts

ExampleDescriptionVariable

/Users/me/project/build/Project.build/
Target.build/DerivedSources

Path of the directory for
derived (intermediate) files.

DERIVED_FILES_DIR

/Users/me/ProjectDirectory containing the
source file.

INPUT_FILE_DIR

sourceBase filename of the source
file being processed.

INPUT_FILE_BASE

source.cppFilename of the source file
being processed, including
its extension.

INPUT_FILE_NAME

/Users/me/Project/source.cppPath to the source file being
processed.

INPUT_FILE_PATH

en_US.lproj/Directory containing the
source file being processed
when it’s localized.
Otherwise, an empty string
"".

INPUT_FILE_REGION_-
PATH_COMPONENT

.cppSuffix of the source file
being processed, including
the leading period.

INPUT_FILE_SUFFIX

/Users/me/Project/build/DevelopmentPath to the directory into
which the target’s products
are being built.

TARGET_BUILD_DIR

For example, you can use these environment variables to access the current input file, as in the following
shell script:

cat ${INPUT_FILE_NAME} > ${DERIVED_FILES_DIR}/${INPUT_FILE_BASE}.c

Note that the build rule script uses standard shell syntax to access the environment variables, rather than
the Xcode syntax for referencing build settings.

Xcode runs build rule scripts with the current working directory set to the project directory. This behavior
lets you access specific source files by using their project-relative paths.

46 Build Rules
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Build Phases

A build setting is a variable that contains information used to build a product. For each operation performed
in the build process—such as compiling Objective-C source files—build settings control how that operation
is performed. For example, the information in a build setting can specify which options Xcode passes to the
tool—in this case, the compiler—used to perform that operation.

Build settings constitute the main method of customizing the build process. They represent variable aspects
of the build process that Xcode consults as it builds a product.

This chapter explains how build settings are implemented and how you can take advantage of them to
communicate with the build system.

Build Setting Overview

A build setting in Xcode has two parts: The name and the specification. The build setting name identifies
the build setting and can be used within other settings; in that sense, it is similar to the names of environment
variables in a command shell. The build setting specification is the information Xcode uses to determine
the value of the build setting at build time. A build setting may also have a display name, or build setting
title, which is used to display the build setting in the Xcode user interface.

Build setting

Name

Title

Specification

The build system consults the value of build settings as it generates tool invocations. For example, to generate
profiling code for all the source files compiled with GCC, you turn on the Generate Debug Symbols
(GCC_GENERATE_DEBUGGING_SYMBOLS) build setting. When Xcode creates the gcc command-line invocation
to compile a source file, it evaluates compiler build settings (such as Generate Debug Symbols) to construct
the argument list.

Build setting values may come from a number of sources at build time. Xcode stores build setting specifications
in dictionaries spread across several layers. Typically, you are most interested in the target layer; however, it
is important to understand the various layers from which build setting values can be derived. See “Build
Setting Evaluation” (page 50) for details.

Xcode has many built-in build settings that you can use to customize the build process. Furthermore, you
can define your own build settings, which you can use to configure standard build settings across several
targets or access within scripts in Run Script build phases to perform special tasks. To learn how to use each
build setting, see Xcode Build Setting Reference.

Build Setting Overview 47
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

In addition to build settings, you can set per-file compiler flags that the build system uses when creating
tool invocations. With them you can change how a file is compiled without affecting any other files in the
project. See "Per-File Compiler Flags" in Xcode Project Management Guide for details.

Build Setting Syntax

Build setting names start with a letter or underscore character; the remaining characters can be letters,
underscore characters, or numbers. The Xcode application doesn’t allow you to define build settings whose
names don’t follow this convention. Because build setting names are case sensitive, however, project_name
is irrelevant to the build system and doesn’t override the value of the PROJECT_NAME build setting.

Xcode displays titles for most of its predefined build settings in the Build pane of project and target editors.
For example, the title of the PRODUCT_NAME build setting is Product Name. The xcodebuild tool doesn’t
use build setting titles.

The value of a build setting is determined by evaluating the build setting specification. A build setting
specification can be a value such as a string, number, and so forth, or it can reference the value of other build
settings.

To reference a build setting value in a build setting specification, use the name of the build setting surrounded
by parentheses and prefixed by the dollar-sign character ($). For example, the specification of a build setting
that refers to the value of the Product Name build setting could be similar to The name of this target's
product is $(PRODUCT_NAME).

Note: When referring to build setting values in build setting specifications, you must use the build setting
name, such as PRODUCT_NAME, instead of its title.

In addition to the build settings provided by Xcode, you can add user-defined build settings to a project.
A user-defined build setting is one that is not defined by the build system. You can add them at the
command-line, target, project and environment levels. You can reference user-defined build settings in build
setting specifications, and scripts in Run Script build phases. User-defined build settings don’t have a title.

The following list describes some circumstances in which you may need to add user-defined build settings
to a project:

 ■ To modify the value of build settings that are not displayed in the Xcode application

 ■ To specify a value that can be used by several build settings in different layers (see “Build Setting
Evaluation” (page 50) for details)

 ■ To define a build setting you want to use in Run Script build phase scripts or a build-rule script

Conditional Build Settings

In general, build setting specifications apply to a target regardless of the SDK used to build it or the
architectures for which the product is built. There are occasions, however, when you may need to specify a
build setting value that must apply only when the product is built using a particular SDK, or when Xcode is

48 Build Setting Syntax
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

generating a executable code for a particular architecture or for a particular variant of the product. Conditional
build setting definitions allow you to add build setting values that apply only when one or more conditions
are met (for example, the product is being built using the iPhone Simulator SDK).

These are the conditions available in conditional build setting definitions:

 ■ Architecture

The architecture condition lets you create build setting definitions for particular architectures.

This is the format of a build setting definition conditionalized on architecture:

<build_setting_name>[arch=<architecture_pattern>] = <build_setting_specification>

These are examples of architecture patterns:

armv6 // ARM v6
i386 // 32-bit Intel
x86_64 // 64-bit Intel
* // Any architecture

For example, to specify Other C Flags as -dM for the i386 architecture, you would use:

OTHER_CFLAGS[arch=i386] = -dM

 ■ SDK

The SDK condition lets you create build setting definitions for particular SDKs.

This is the format of a build setting definition conditionalized on SDK:

<build_setting_name>[sdk=<sdk_pattern>] = <build_setting_specification>

You can set the SDK condition to match one or any release of an SDK. These are examples of SDK patterns:

iphoneos2.0 // The iPhone OS 2.0 Device SDK
iphoneos* // Any release of the iPhone OS SDK
iphonesimulator2.0 // The iPhone OS 2.0 Simulator SDK
iphonesimulator* // Any release of the iPhone OS Simulator SDK
macosx* // Any release of the Mac OS X SDK
* // Any SDK

 ■ Variant

Build variants specify the purpose of a product. These are the available build variants:

 ❏ normal: The normal build variant produces a binaries that can be released to end users.

 ❏ profile: The profile variant produces binaries to be used to profile program execution.

 ❏ debug: The debug variant produces binaries you can use to debug your programs.

You can use build setting variants in build setting definitions to tailor build aspects to particular binary
variants.

This is the format of a build setting definition conditionalized on variant:

<build_setting_name>[variant=<variant_name>] = <build_setting_specification>

Build Setting Syntax 49
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

You can specify one or more conditions in a conditional build setting definition by concatenating the
conditions enclosing each condition with square brackets or by separating the conditions with commas:

<build_setting_name>[sdk=<sdk_pattern>][arch=<arch_pattern>] =
<build_setting_specification>
<build_setting_name>[sdk=<sdk_pattern>,arch=<arch_pattern>] =
<build_setting_specification>

To define conditional build settings at the command line on in shell scripts, surround the definition with
single or double quotation marks:

"OTHER_CFLAGS[arch=i386]=-dM"

The conditional build setting syntax provides a way to define build settings, not to access the conditions or
values of the build settings at built time. At build time, referencing a build setting that has been conditionalized
provides the conditional value of the build setting. For example, setting OTHER_CFLAGS[arch=i386] to
-dM, results in $(OTHER_CFLAGS) returning -dM at build time when the active architecture is i386. You
cannot use the condition patterns at build time to access the build setting conditions.

Note: You cannot use conditional build settings in Run Script build phases.

This section describes the literal syntax of conditional build setting definitions, used in build configuration
files, environment variables, shell scripts, or xcodebuild invocations. To learn how to use the build settings
editor to define conditional build setting definitions, see "Editing Build Settings" in Xcode ProjectManagement
Guide.

Note: The build settings editor doesn’t show the variant condition, but you can specify build settings
conditionalized on product variants in configuration files.

Build Setting Evaluation

To take advantage of build settings in your project, you must understand how they are evaluated when
Xcode builds your product. By defining build settings at several build setting layers you can, for example,
quickly change an aspect of a product when building from the command line, configure a product aspect
only in one of a product’s alternate “flavors” but not in all of them, or specify an aspect for all the projects
that you work on.

At build time, Xcode evaluates each build setting individually. Figure 3-1 shows the layers in which build
settings can be defined; the specifications of build settings defined in higher layers override the specifications
of the same build settings at lower layers. Using this layered approach, you can define a build setting in terms
of itself, in multiple layers. That is, you can include the value of a build setting as part of the specification of
the build setting in more than one layer. The value of the build setting at build time is a composite of the
specifications of that build setting in all the layers where it’s defined. For an example of how this process
works, see “Multilayer Build Setting Definitions” (page 53).

50 Build Setting Evaluation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

Figure 3-1 Build setting layers

Xcode application

Target

Project

xcodebuild tool

Command line

Project

Application Settings

Target

Built-in Defaults

Environment

Application Settings

Built-in Defaults

Environment

Note: The build setting layers may not all be available when you build a product. If you build from the Xcode
application, the command-line layer is not used.

When the build system needs the value of a build setting, it starts at the highest build setting layer available
to it and works down in the order shown in the following list:

1. Command-line layer (xcodebuild only). The command-line layer includes build settings defined in the
xcodebuild invocation.

The xcodebuild tool’s command invocation represents the highest layer in which you can define build
settings when building a product. The build settings defined in this layer are accessible only to
xcodebuild.

This layer gives you a way to customize builds performed from the command line without requiring
access to the Xcode application.

Note: In the build settings editor (the Build pane in project and target editors), Xcode provides data
editors appropriate for particular build settings. For example, build settings with a Boolean value use a
checkbox and those whose value is a list of paths use a list editor. In the command line, however, you
don’t have access to checkboxes or list editors when specifying the value of build settings. When specifying
build settings at the command line, you should consult Xcode Build Setting Reference to find out the
proper text-based format for the build settings’ specifications.

2. Target layer. The target layer contains build settings defined in the active build configuration of the
target being built.

This is the main layer for specifying how a product is built. The build setting specifications in this layer
override the ones defined at lower layers; this applies to both user-defined build settings and built-in
build settings that have titles.

Build Setting Evaluation 51
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

Each target can define several named collections of build settings, called build configurations. This lets
you produce different “flavors” of a target’s product without having to create separate targets. When
you build, you build a specific configuration of the target.

Note: A build configuration can inherit build setting definitions from a configuration file. For more
information on how configuration files affect build setting precedence, see “Build Configurations” (page
61).

Xcode evaluates build settings for a target independently from the build settings defined in other targets.
This is true even for dependent and aggregate targets.

For more information on targets, see “Targets” (page 11).

3. Project layer. The project layer contains build settings defined in the active build configuration of the
current project—the project in which the current target is defined.

Xcode and xcodebuild use the project layer to specify projectwide aspects, such as the location of the
project itself. You can define build settings that you want all targets in the project to share at this layer.
These build settings can be overridden by individual targets (at the target layer). When you have multiple
targets with build settings that should be synchronized, the project layer can be a convenient way to
do so.

Projects, like targets, also define build configurations; for more information, see “Build
Configurations” (page 61).

4. Application settings layer. The application build settings layer contains application-wide build settings
defined for the current user.

The application settings layer contains per-user settings, such as any source trees defined by the current
user. In Figure 3-1 (page 51), this layer appears dimmed because Xcode provides limited access to build
settings at this layer. Xcode Preferences > Building provides an interface for changing the OBJROOT and
SYMROOT build settings at this layer.

5. Built-in defaults. The built-in defaults layer contains a number of default values for build settings that
are built into Xcode. Most of the build settings defined at this layer are build settings that specify required
attributes of Mac OS X products.

6. Environment layer. Build settings defined in the Xcode application environment or the shell from which
xcodebuild is launched.

The environment layer is composed of environment variables that correspond to build setting names.
You can use it to configure build settings that must apply to more than one project. This layer, however,
cannot access build settings configured in any other layer. For example, defining an environment variable
named MY_PRODUCT_NAME as My Company $(PRODUCT_NAME) results in an undefined-variable error,
unless you also define an environment variable named PRODUCT_NAME.

You must follow the syntax described in “Build Setting Syntax” (page 48) when defining the environment
variables in your session.

Note: If you associate additional compiler flags with a file, as described in "Per-File Compiler Flags" in
Xcode ProjectManagementGuide, those flags are always used when the file is processed as part of a build.
They cannot be overridden in any of the build setting layers.

52 Build Setting Evaluation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

As soon as the build system finds a definition for the build setting it’s looking for, it stops traversing the build
setting layers. However, if the build setting specification found includes references to other build settings,
it resolves them. This starts the traversing process again, as many times as necessary to compute the value
of the original build setting.

If a build setting refers to itself (that is, the build setting specification includes a reference to the build setting
being evaluated), the build system resolves the reference starting at the subsequent build setting layer. The
following sections provide examples of this process.

Note: Xcode uses bold text in the build setting editors for projects and targets to indicate build settings
specified at the current level—that is, at the level that you are currently viewing, either the project or the
target. Build settings that are not in bold text are specified at lower layers.

Multilayer Build Setting Definitions

Imagine that, to build a product, you need to define a single build setting at every build setting layer. This
is a very unlikely case to be sure, but one that illustrates how the process works. Table 3-1 shows an example
configuration for the LAYERED build setting throughout the build setting layers. This example assumes that
the product is built from the command-line using xcodebuild:

Table 3-1 Configuration of the LAYERED build setting

Build setting specificationBuild setting layer

command line, $(LAYERED)Command line

target, $(LAYERED)Target

project, $(LAYERED)Project

environmentEnvironment

Figure 3-2 shows how the build system would evaluate the LAYERED build setting when building using
xcodebuild.

Build Setting Evaluation 53
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

Figure 3-2 Evaluation of the LAYERED build setting

Command line

Look for a
definition for
LAYERED

Target

Project

Environment

LAYERED: environment

1

LAYERED: project, $(LAYERED)

LAYERED: target, $(LAYERED)

LAYERED: command line, $(LAYERED)

2

3

4

Found

To evaluate the LAYERED build setting, the build system does the following:

1. Looks for a definition for LAYERED in the command-line layer (the highest available to xcodebuild). It
finds the specification command line, $(LAYERED).

2. Resolves $(LAYERED) starting at the next layer down, the target layer. At this layer, it obtains the
specification target, $(LAYERED). Because this specification also references the value of the LAYERED
build setting, the build system continues to look in lower layers for the build setting specification.

3. Resolves $(LAYERED) starting at the project layer, obtaining project, $(LAYERED).

4. Resolves $(LAYERED) starting at the environment layer, obtaining environment.

The evaluation of LAYERED stops here because there are no build setting layers below the environment
layer. When all the references are resolved, the final value of the build setting is computed as command
line, target, project, environment.

This example uses $(LAYERED) to access the value of the same build setting at a lower layer. However, you
can get the same result in the example by replacing $(LAYERED) with $(value) in any of the build setting
specifications at the command-line, target, or project layers.

The process of evaluating a build setting specification that references itself repeats recursively until the build
system reaches the environment layer or until the build system finds a build setting specification that does
not reference its own value.

54 Build Setting Evaluation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

Build Setting References

The build system gives you a great deal of flexibility when defining build settings. The following example
illustrates how the build system evaluates the STAGGERED build setting, which is defined in the target layer
and references the values of several other build settings.

The value of the STAGGERED build setting is composed of data and a caption for the data, with the caption
shown first and both elements separated by a colon (:) and a space. The specification for STAGGERED contains
references to two other build settings: LAYERED (the data, explained in “Multilayer Build Setting
Definitions” (page 53)) and CAPTION (the caption for the data). It also contains static elements (the colon
and space characters).

Figure 3-3 shows how the build system evaluates the STAGGERED build setting.

Figure 3-3 Evaluation of the STAGGERED build setting

Target

1

2

Command line

Look for
specification

STAGGERED

Look for
specification
CAPTION

Look for
specification
LAYERED

Project

Not found

3

Environment

LAYERED: environment

4

3a

3b

3c

4a

CAPTION: evaluation order

Found

LAYERED: project, $(LAYERED)

LAYERED: command line, $(LAYERED)

STAGGERED: $(CAPTION): $(LAYERED)

LAYERED: target, $(LAYERED)

These are the steps the build system takes to evaluate the STAGGERED build setting:

1. Look for a definition of STAGGERED in the command-line layer. None is found.

2. Look for a definition of STAGGERED in the target layer.

The build system finds a definition of STAGGERED: STAGGERED = $(CAPTION): $(LAYERED). Here is
where the evaluation of the STAGGERED build setting begins.

3. Resolve $(CAPTION) starting at the command-line layer:

a. Look for a definition of CAPTION in the command-line layer. None is found.

Build Setting Evaluation 55
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

b. Look for a definition of CAPTION in the target layer. None is found.

c. Look for a definition of CAPTION in the project layer. The build system finds the specification
evaluation order.

The evaluation of CAPTION stops here because there are no references to other build settings. The
final value of the CAPTION build setting is evaluation order.

4. Resolve $(LAYERED) starting at the command-line layer.

a. Look for a definition of LAYERED in the command-line layer. The build system finds the specification
command line, $(LAYERED). The build system resolves the specification for LAYERED at this
build setting layer as described in the previous section. The final value of the LAYERED build setting
is command line, target, project, environment.

5. Get the final value for the STAGGERED build setting by replacing the two references in the build setting’s
specification with their values: evaluation order: command line, target, project,
environment.

Knowing the precedence that the build system uses when evaluating build settings makes it easy to determine
where to configure build settings to tailor the build process for special situations. Following the STAGGERED
example, imagine you want to override the value of the CAPTION build setting for a particular target. All you
would have to do is configure the CAPTION build setting in that target with the appropriate value.

Figure 3-4 shows the effects of overriding CAPTION in the target layer.

Figure 3-4 Evaluation of the STAGGERED build setting with CAPTION overridden in the target layer

Target

1

2

Command line

Look for
specification

STAGGERED

Look for
specification
CAPTION

Look for
specification
LAYERED

Project

Not found

3

Environment

LAYERED: environment

4

3a

3b

4a

LAYERED: project, $(LAYERED)

LAYERED: command line, $(LAYERED)

STAGGERED: $(CAPTION): $(LAYERED)

CAPTION: order of evaluation

Found

CAPTION: evaluation order

LAYERED: target, $(LAYERED)

56 Build Setting Evaluation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

These are the steps the build system takes to evaluate the STAGGERED build setting after overriding CAPTION
in the target build setting layer:

1. Look for a definition of STAGGERED in the command-line layer. None is found.

2. Look for a definition of STAGGERED in the target layer. The build system finds STAGGERED =
$(CAPTION): $(LAYERED).

3. Resolve $(CAPTION) starting at the command-line layer:

a. Look for a definition of CAPTION in the command-line layer. None is found.

b. Look for a definition of CAPTION in the target layer. The build system finds order of evaluation.

The evaluation of CAPTION stops here because there are no references to other build settings in its
specification. Even though CAPTION is configured in the project layer, that specification has been
overridden in the target layer; therefore, it’s ignored. The final value of CAPTION in this example is
order of evaluation.

4. Look for a definition of LAYERED in the command-line layer. The build system finds LAYERED = command
line, $(LAYERED).

a. Resolve the specification for LAYERED at this build setting layer as described earlier in this section,
obtaining command line, target, project, environment.

5. Get the final value for the STAGGERED build setting by replacing the two references in the build setting’s
specification with their values: order of evaluation: command line, target, project,
environment.

Build Setting Troubleshooting

As you work on a project, you may need to determine where and how a build setting is defined. Because
build settings can be identified by their name and their title (see “Build Setting Syntax” (page 48) for details).
Depending on where a build setting is defined—in the xcodebuild invocation, in an environment variable,
or in the Xcode application’s user interface—you may need to map between a build setting name and its
corresponding build setting title.

This section provides tips on how to troubleshoot build setting problems you may encounter.

Finding Build Setting Definitions

During the development process you may need to find the top definition of a build setting in order to change
its value during a build. That is, you want to find the specification that overrides all other specifications
throughout the build setting layers (see “Build Setting Evaluation” (page 50) for details). This section showcases
a technique you can use to quickly locate the top definition of a build setting.

Look for the top definition of a build setting in these places:

Build Setting Troubleshooting 57
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

 ■ The xcodebuild invocation (when building using xcodebuild)

 ■ The active configuration of the target you’re interested in

 ■ The active configuration of the project

 ■ The output of the env command

Figure 3-5 shows the steps you would take to find the definition of a build setting when you know the build
setting’s name, title, or its specification.

Figure 3-5 Finding build setting definitions

Command line

Project

Target

Environment

Yes

Yes

Yes

Build
setting is
undefined

Definition
found

Yes

Yes

Using
xcodebuild?

Line
through

text?
Found?

Found?

YesFound?

Found?

Start search

Bold text?

1. If you’re building using xcodebuild, look for the build setting name (or its specification) in the tool’s
invocation. If the build setting is part of the invocation, you found the definition.

2. Look for the build setting in the target you’re interested in. You can locate a particular build setting by
choosing All Settings from the Show pop-up menu of the build settings editor and entering the name,
the title, or the specification (shown in the Value column) of the build setting you’re looking for. You
can look in all configurations of the target at once by choosing All Configurations from the Configuration
pop-up menu:

a. If the build setting is displayed in bold text, it means that it’s defined in the target. This is the top
definition of the build setting. If the build setting's definition is displayed as “Multiple values,” the
build setting has a different definition in the various configurations of the target. Select a specific
configuration from the Configuration pop-up menu to see its definition of the build setting. Choose
Active Configuration to see the definition in the active build configuration.

58 Build Setting Troubleshooting
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

b. If the build setting is displayed in nonbold text, the build setting is defined in the project layer or
the environment layer (see “Build Setting Evaluation” (page 50) for details).

3. Look for the build setting in the active configuration at the project level.

4. Look for the build setting in the build environment (the definitions of all the environment variables the
Xcode application or xcodebuild have access to during the build process).

a. Add a Run Script build phase to the target you’re interested in and make it the first build phase to
make it easier to locate the script’s output.

b. Add an invocation to the env command to the build phase’s shell script.

c. If you’re building using the Xcode application, open the Build Results window, reveal the build log
pane, and build the product. If you’re building using xcodebuild, invoke the tool from your shell
as you normally would. See "Building Products" for information on how to build in Xcode.

d. Look at the build log (the detailed log in the Build Results window if using the Xcode application).
The build environment is listed after the group of setenv invocations that set environment variables
that reflect most of the build setting values for the current build. Search that group for the name of
the build setting you’re interested in. If the build setting is not in that group, the build setting is not
defined for the target you are investigating.

If the build setting is defined in the setenv group and the env group, you can override its value
only in the target layer or above. If the build setting is defined only in the env group, look for the
build setting definition among the environment variables defined in the user-configuration files for
the logged-in user. If you find the build setting there, change its specification, log out, and log in.

Build Setting Troubleshooting 59
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

60 Build Setting Troubleshooting
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Build Settings

Build configurations are named collections of build settings that allow you to build one or more products in
a project in different ways for different situations. For example, you can define separate debug and release
build configurations. You can then use these build configurations to build debug and release versions of
your product, without creating separate targets. Build configurations are a flexible tool for quickly “tweaking”
your product or for saving different groups of build settings to apply to a target depending on the current
circumstances.

This chapter provides a general explanation of build configurations, describes the predefined build
configurations you get when you create a target or project in Xcode, and explains how to modify and define
your own build configurations.

Build Configuration Overview

Build configurations allow you to build two or more “flavors” of a product without having to create separate
targets for each product flavor. When you build a target, Xcode uses the build settings defined by that target
for the current build configuration.

A common use of build configurations is to build a given target differently to create debug and release
versions of a product. There are a handful of build settings—for example, optimization settings for the
compiler—whose values are different, depending upon whether you are building a product for debugging
purposes or to release to customers. In each situation, the target you build is identical in every other way—files,
build phases, and build rules—because the product you want to generate for each is essentially the same.
The only difference is in how the source files of the target are processed to build that product.

If you were to create two targets—one for debugging and one for the final build—you would have to
remember to keep both targets in sync. When you added a file to one target, you would have to remember
to add it to the other, and so forth. With a build configuration, you can build using a different group of build
settings without changing the target’s build phases or build rules. It is much simpler to create build
configurations containing the build settings whose values you want to change, and then build based on the
appropriate configuration.

The project defines the list of build configurations; all targets in a project share the same namespace for build
configurations. The actual definition of any given build configuration—the particular build setting definitions
in that configuration—is specific to each target. You can also define project-level configurations. As described
in “Build Setting Evaluation” (page 50), build settings defined at the target level take precedence over any
values assigned to those build settings at the project level. This gives you a great deal of flexibility. For
example, you can use project-level build configurations to define build settings that apply to all or most
targets in the project. You can then modify or override these build settings for individual targets at the target
layer.

The active build configuration is the build configuration Xcode uses when building the active target and
any targets it depends upon. When you initiate a build, Xcode builds the active target and any targets it
depends upon. For each target, Xcode applies the build settings defined by that target for the active build

Build Configuration Overview 61
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

configuration, as well as any build settings defined for the active build configuration at the project level. See
"Setting the Active Target and Build Configuration" in Xcode Project Management Guide for a description of
how to change the active build configuration.

For each target, Xcode evaluates the build settings defined by that target for the active build configuration,
as well as any build settings defined for the active build configuration at the project level. As described in
“Managing Build Configurations” (page 63), the list of build configurations is the same for all targets within
a project. When building targets in a referenced project, Xcode uses the build settings defined in the
corresponding build configuration of that project.

If your project includes cross-project references, it is possible that the referenced project defines a different
set of build configurations from those of the current project; the active build configuration may not exist in
the referenced project. In this case, Xcode falls back on the default configuration for the referenced project
and its targets.

For each target and project involved in a build, here is how the build configuration is selected when building
from the Xcode application.

1. Xcode checks for a build configuration with the same name as the active build configuration. If this
configuration is found, Xcode uses it.

2. If no matching build configuration is found, Xcode then uses the default build configuration.

The process of selecting build configurations is similar when building from the command line with
xcodebuild:

1. If a specific build configuration is passed as a command-line argument to xcodebuild , xcodebuild
first looks for a build configuration with that name in the project. If that configuration is found, Xcode
uses it.

2. If no build configuration is specified on the command line or if the project does not define the specified
build configuration, xcodebuild uses the default configuration.

New Xcode projects contain two predefined build configurations, Debug and Release. You can edit those
build configurations or define new build configurations of your own.

In addition to the predefined Debug and Release build configurations, you may need to define a special build
configuration to satisfy particular needs, such as configuring an environment to measure the performance
of your application. In such a build configuration you may define build settings that add a library or framework
that gathers and logs performance-related information. You may also need to target your application to
specific Mac OS X versions. In that case, you may need to build your product slightly differently for each
version. For example, you can have build configurations named Mac OS X 10.3 and Mac OS X 10.4 that build
a product tailored for Mac OS X v10.3 and Mac OS X v10.4, respectively, by setting Mac OS X Deployment
target (MACOSX_DEPLOYMENT_TARGET), and any other build settings necessary, to the appropriate values.

Predefined Build Configurations

A debug build of a product may include debugging information to assist you in fixing bugs. However, this
extra information can consume valuable space in a user’s system. A debug build should contain only the
code necessary to run the application.

62 Predefined Build Configurations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Some build settings tell Xcode to add debugging information to an executable or specify whether to optimize
its execution speed. Other build settings turn on features such as Fix and Continue, which are useful only
during debugging.

All Xcode project and target templates include two build configurations, the Debug build configuration and
the Release build configuration. By default, the Debug build configuration turns on Fix and Continue, and
debug-symbol generation, among others, while turning off code optimization. The Release build configuration
turns off Fix and Continue. The code-optimization level is set to its highest by default, through the Optimization
Level (GCC_OPTIMIZATION_LEVEL) build setting. Note that the Release build configuration doesn’t turn on
Deployment Location (DEPLOYMENT_LOCATION); therefore, the product is not copied to the location where
it would be installed on a user’s system. It also doesn’t turn on Deployment Postprocessing
(DEPLOYMENT_POSTPROCESSING), which specifies whether to strip binaries and whether to set their
permissions to standard values.

Managing Build Configurations

Generally, the predefined build configurations described in “Predefined Build Configurations” (page 62) are
enough for most people. You can use them as they are or add additional build settings to them. For example,
you can specify that the Debug build configuration for a target or project display more compiler warnings.

If you’re thinking about creating a target, consider whether it might be best to create a build configuration
instead. In general, create a target to create a product, and create a build configuration to modify how that
product is built. If you’re creating targets that differ only in their build settings, consider creating one target
with several build configurations. If you need to create targets that differ in other ways—such as build
phases—you need to create separate targets.

To see the list of build configurations defined for a project, open the project editor, and display the
Configurations pane, shown in Figure 4-1. The configuration list displays all of the build configurations defined
in the current project. You can edit the list of configurations as described in “Managing Build
Configurations” (page 63).

Managing Build Configurations 63
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Figure 4-1 Project editor: Configurations pane

These are the components of the Configuration pane of the project editor:

 ■ Configuration list. List of the project’s build configurations.

 ■ Duplicate button. Duplicates the selected build configuration throughout the project. In this way, if you
have a number of build settings common to all configurations in a target, you do not have to set them
all up again.

 ■ Rename button. Renames the selected build configuration name. throughout the project.

 ■ Delete button. Deletes the selected build configuration from the project.

 ■ Default configuration pop-up menu. Specifies which of the build configuration is the default build
configuration.

the default build configuration is used when the project being built does not have a definition for the
active build configuration, as described in “Build Configuration Overview” (page 61).

64 Managing Build Configurations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Editing Build Configurations

As you've seen, you often want to vary the value of a build setting depending on the circumstances of the
build. Xcode lets you edit individual build configurations to define build settings specific to that particular
build variation. You typically also have some build settings that remain the same regardless of the current
build configuration. Rather than editing each build configuration in the target or project separately, you can
define the same build setting for all build configurations by editing all of a target or project's build
configurations at once. Both approaches are described next.

 ■ To edit a particular build configuration, choose that build configuration from the Configuration pop-up
menu in the project or target build settings editor, and make your changes. See "Editing Build Settings"
in Xcode Project Management Guide to learn how to use the build settings editor.

 ■ To edit build settings for the active build configuration, choose Active Configuration from the
Configuration pop-up menu.

 ■ To edit build settings for all build configurations in a target or project, choose All Configurations from
the Configuration pop-up menu. Build settings that have the same value for all configurations in the
target or project display that value. Build settings that have different values for different build
configurations display the string “Multiple values” or a checkbox with a dash. You can still edit the value
for these build settings; doing so changes the definition of the build setting across all of the available
build configurations to have the same value. To edit the definition of a build configuration in multiple
targets at once, select those targets and open the target editor.

Build Configuration Files

When you work on large software endeavors with several projects and targets, many of which sharing a
number of common build setting definitions, it can be time-consuming and repetitive to define the same
build settings over and over again. For this reason, Xcode allows you to base a build configuration on build
configuration file. A build configuration file (or configuration file for short) contains a list of build setting
definitions. Using build configuration files, you can easily share a set of build setting definitions among all
the individuals working on your team, or quickly configure targets and projects with common build setting
definitions.

When you base a target or project’s build configuration on a build configuration file, that build configuration
automatically inherits the build setting definitions in that configuration file (and the configuration files it
includes), as well as any subsequent changes to the configuration file (or the configuration files it includes).
If you then modify the value of any of those build settings in the target or project, the new value is used
instead of the value in the configuration file.

For example, if you have a standard list of debugging build settings that you use to build debug versions of
all your products, you can define a configuration file—say MyDebugSettings.xcconfig —that contains
these build settings. You can then base the Debug build configurations for all your targets on this file. Each
Debug configuration inherits the build settings in the MyDebugSettings.xcconfig file. You can then
modify any of these build settings for individual targets or projects, as necessary.

Build Configuration Files 65
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Creating a Configuration File

A configuration file is simply a plain text file with a list of build setting names and assignments, one per line.
(You may also add comments using the // comment marker.) You can use build settings recognized by the
Xcode build system or define your own custom build settings in a configuration file. For example, to specify
that profiling code be generated for all build configurations based on a particular file, add the following to
the file:

GENERATE_PROFILING_CODE = YES // Turn on profiling code

Note that you must use the name of the build setting, not the build setting title. If the build setting can
contain a list of values—such as OTHER_CFLAGS—separate each value with a space.

This format is the same format that Xcode copies to the clipboard when you copy and paste build settings
from the build setting list. You can quickly create a configuration file by selecting the build settings you want
to include, copying them, and pasting them into a new text file. You can then make any necessary modifications
to the build setting definitions. Xcode also includes a configuration file template, which you can use to create
a configuration file.

To create a configuration file:

1. Choose File > New File.

2. In the New File Assistant, select Xcode > Configuration Settings File.

Configuration files must have the extension .xcconfig to be recognized by Xcode.

Note: In the build settings editor, Xcode provides data editors appropriate for particular build settings. For
example, build settings with a Boolean value use a checkbox and those whose value is a list of paths use a
list editor. In configuration files, however, you don’t have access to checkboxes or list editors when specifying
the value of build setting. As described earlier, you can specify the value of such build settings in the build
settings editor and copy the build setting from the editor to the configuration file. When editing the values
directly in the file, you should consult “Build Setting Syntax” (page 48) and Xcode Build Setting Reference to
find out the proper text-based format for the build settings’ specifications.

A configuration file may refer to one or more additional configuration files using the #include directive, as
shown in Listing 4-1. You can use relative or absolute paths to specify the location of the configuration file
to include. The group of configuration files joined together by #include directives is known as a configuration
unit. A single configuration file that doesn’t include other configuration files is also a configuration unit.

Listing 4-1 Referring to other configuration files

// File: MyConfig.xcconfig
#include "/Network/ProductDevelopmentSpecs/TeamConfig"
ARCHS = ppc i386
#include "/Network/ProductPackagingSpecs/ProductConfig"

Xcode analyses build setting definitions in the order specified in the configuration unit. For example, the
MyConfig configuration file in Listing 4-1 includes two other configuration files: TeamConfig and ProductConfig.
Xcode processes the build setting assignments in the configuration unit in this order:

Build setting definitions in TeamConfig

66 Build Configuration Files
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Build setting definitions in MyConfig
Build setting definitions in ProductConfig

When a configuration unit contains more than one definition for a particular build setting, Xcode uses the
last definition in the unit. Keep in mind that configuration files do not have access to build setting definitions
made in configuration files they include. That is, you cannot modify the definition made in an included
configuration file; you can only replace it.

Basing Build Configurations on Configuration Files

To base a build configuration on a configuration file:

1. Add the configuration file to your project, as described in "Managing Files and Folders in a Project" in
Xcode Project Management Guide.

Note: Do not add the configuration file to the target when you add it to the project.

2. In the build settings editor, choose the build configuration you want to modify from the Configuration
menu.

Build Configuration Files 67
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

3. Choose the configuration file from the Based On pop-up menu, below the build settings table, as shown
in Figure 4-2. This menu displays all the build configuration files in the project.

Figure 4-2 Build settings editor: Choosing a configuration file

Your project can contain any number of configuration files; however, each individual build configuration can
be based on only one configuration file.

Build Setting Evaluation and Configuration Files

Build settings are defined in a number of different layers, with definitions in higher layers overriding definitions
in lower layers.

Of course, build settings at the target and project layers can be defined in the Xcode user interface or inherited
from build configuration files. Figure 4-3 shows the build setting layers and their relationship to the build
settings defined in configuration files.

68 Build Configuration Files
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Figure 4-3 Build setting layers and configuration files

xcodebuild tool

Command line

Application Settings

Built-in Defaults

Environment

Project

Target

.xcconfig file
Project inspector

.xcconfig file
Target inspector

Note: Figure 4-3 shows the build setting layers available when building from the command-line with
xcodebuild. If you are building from the Xcode application, the command-line layer is not available to you.
However, all other layers are available.

When you use configuration files, the target and project layers themselves are each divided into two separate
build setting layers. These are:

1. Build setting definitions listed in the build settings editor. Build settings configured in the Xcode user
interface override build settings defined in the configuration file for the same build configuration of the
target or project. This lets you customize the build for one or more targets or projects that otherwise
share a common set of build settings.

2. Build setting definitions in the configuration file on which the active build configuration for the target
or project is based. You can use configuration files to share build setting definitions across one or more
build configurations in multiple targets or projects.

To understand how to use configuration files effectively, you must understand how configuration files affect
the evaluation of build settings. The following example builds on the example used in “Multilayer Build
Setting Definitions” (page 53) to show how Xcode evaluates build settings in a project that uses configuration
files. Figure 4-4 shows how the build system would evaluate the LAYERED build setting when using
xcodebuild.

Build Configuration Files 69
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Figure 4-4 Evaluation of the LAYERED build setting using configuration files

Command line

Look for a
definition for
LAYERED

1

Target
LAYERED: target, $(LAYERED)
Based on: ConfigFile

LAYERED: command line, $(LAYERED)

2

3

4

Found

LAYERED =
configuration
 file, $(LAYERED)

ConfigFile

6
LAYERED =
configuration
 file, $(LAYERED)

ConfigFile
Project

LAYERED: project, $(LAYERED)
Based on: ConfigFile

Environment

LAYERED: environment

5

To evaluate the LAYERED build setting, Xcode does the following:

1. Looks for a definition for LAYERED in the command-line layer (the highest available to xcodebuild). It
finds the specification command line, $(LAYERED).

2. Resolves $(LAYERED) starting at the next layer down, the target layer. At this layer, it obtains the
specification target, $(LAYERED); this is the specification defined in the Xcode application for the
active build configuration of the target. Because the specification also references the value of the LAYERED
build setting, the build system continues to look for the build setting specification. In this case, the build
configuration is based on a configuration file, so the build system continues its search there.

3. Looks in the ConfigFile.xcconfig file on which the active build configuration of the active target is
based. In the configuration file, it obtains the specification configuration file, $(LAYERED).
Because this specification also references the value of the LAYERED build setting, the build system
continues to look in lower layers for the build setting specification.

4. Resolves $(LAYERED) starting at the project layer, obtaining project, $(LAYERED).

5. Looks in the ConfigFile.xcconfig file on which the active build configuration of the project is based,
again obtaining the specification configuration file, $(LAYERED). In this example, the project-level
build configuration is based on the same configuration file as the target-level build configuration;
however, they could just as easily be based on different configuration files.

6. Resolves $(LAYERED) starting at the environment layer, obtaining environment.

The evaluation of LAYERED stops here because there are no build setting layers below the environment
layer. When all the references are resolved, the final value of the build setting is computed as command
line, target, configuration file, project, configuration file, environment.

70 Build Configuration Files
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

Knowing how the build system evaluates build settings in configuration files lets you easily determine where
to configure build settings. For example, say you have a configuration file that contains settings common to
most of your Xcode projects. Imagine that, for a particular project, you want to override the value of a single
setting in the configuration file. Rather than creating a separate configuration file that defines this one build
setting differently, you can simply define that build setting in the project inspector for that project. Figure
4-5 shows how the build system evaluates the LAYERED build setting when that build setting is overridden
in the project inspector of the Xcode application.

Figure 4-5 The LAYERED build setting overridden in the project inspector

Command line

Look for a
definition for
LAYERED

1

Target

LAYERED: command line, $(LAYERED)

2

3

4

Found

LAYERED =
configuration
 file, $(LAYERED)

ConfigFile

Project

Environment

LAYERED: environment

LAYERED: target, $(LAYERED)
Based on: ConfigFile

LAYERED: project
Based on: ConfigFile

LAYERED =
configuration
 file, $(LAYERED)

ConfigFile

These are the steps the build system takes to evaluate the LAYERED build setting:

1. Looks for a definition for LAYERED in the command-line layer (the highest available to xcodebuild). It
finds the specification command line, $(LAYERED).

2. Resolves $(LAYERED) starting at the next layer down, the target layer. At this layer, it obtains the
specification target, $(LAYERED).

3. Looks in the ConfigFile.xcconfig file on which the active build configuration of the active target is
based. In the configuration file, it obtains the specification configuration file, $(LAYERED).

4. Resolves $(LAYERED) starting at the project layer, obtaining project.

The evaluation of CAPTION stops here because there are no references to other build settings in its
specification. Even though CAPTION is configured in the project layer, that specification has been
overridden in the target layer; therefore, it’s ignored. The final value of CAPTION in this example is
command line, target, configuration file, project.

Build Configuration Files 71
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

72 Build Configuration Files
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Build Configurations

The Link Binary With Libraries build phase in Xcode projects links frameworks and libraries with object files
to produce a binary file. Source files that use code in a framework or a library must include a reference to
the appropriate programming interface contained in them.

Specifying the Type of Binary to Create

The binary file (or image) a target produces can be of one of these types:

 ■ Executable. Executable files are binaries containing the core logic of a program. Specifically, they contain
the program’s entry point, which in C-based programs is the main function. Once loaded, however, these
programs may require the loading of dynamic libraries to perform functionality they don’t implement.
To generate an executable file, a target may include static libraries directly, or dynamic libraries, either
directly or through frameworks. Executable binaries don’t have an extension; for example, MyProgram).

 ■ Bundle. Bundles are executable files that can be loaded at runtime by other products. Plug-ins are
implemented using bundles. The term bundle in this context refers to the binary itself, not to a structured
hierarchy. Bundles have the .bundle extension; for example, MyBundle.bundle.

 ■ Static Library. Static libraries (also known as archives) are repositories of code that other programs
incorporate as their own, which produces larger images. The code obtained from the static library is
loaded at the same time the product is loaded. These products, however, do not benefit from
improvements made in the static library after they are built. To get new functionality, the products must
be rebuilt with the improved version of the static library. Static libraries have the .a extension; for
example, MyLibrary.a.

 ■ Dynamic Library. Dynamic libraries contain code that programs load at runtime. The images of products
that use dynamic libraries are smaller because they don’t incorporate the library’s code into their own.
Instead, these products load the appropriate library at runtime. Using dynamic libraries, products can
automatically take advantage of features introduced in versions of the libraries that were not available
when the products were built. That is, a program can take advantage of new functionality without being
rebuilt. Dynamic libraries have the .dylib extension; for example, libMyLibrary.1.0.dylib.

The Mach-O Type (MACH_O_TYPE) build setting allows you to specify the type of binary a target produces.
By default, this build setting is set to the appropriate value depending on the target’s type. For example, in
a Cocoa static library target, Mach-O Type is Static Library; in a BSD dynamic library target, Mach-O Type is
Dynamic Library. However, you can change Mach-O Type for a target when you need a different binary type
than the target default. For example, if you want to implement a Cocoa plug-in as a dynamic library instead
of a bundle, create a Cocoa-bundle project and change Mach-O Type from Bundle to Dynamic Library.

Specifying the Type of Binary to Create 73
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

Specifying the Search Order of External Symbols

The order in which frameworks and libraries are listed in the Link Binary With Libraries build phase specifies
the order in which external symbols are resolved by the static linker at build time and the dynamic linker at
runtime. When either of the linkers encounters an undefined external symbol, they look for the symbol
starting with the first framework or library listed in the build phase.

When a program is built, the static linker replaces references to external symbols with the addresses of the
symbols in the referenced libraries (this is called prebinding), or tells the dynamic linker to resolve the
references when a program is loaded or when a symbol is referenced. Having the dynamic linker resolve
references to external symbols at runtime provides the most flexibility, because a program can link with new
versions of the symbols as they become available. However, this approach is not recommended for all
situations, because linking with newer versions of a method or a function may cause problems during a
program’s execution.

In addition, how frameworks and libraries are listed in a Link Binary With Libraries build phase tells the static
linker the approach (or the semantics) to use when binding or resolving references to external symbols
defined in libraries.

Placing static libraries after dynamic libraries in the Link Binary With Libraries build phase ensures that the
static linker binds references to external symbols defined in static libraries at build time, even when newer
versions of the static libraries the application originally was linked with are present in the user’s system.

When static libraries are listed before a dynamic library in the Link Binary With Libraries build phase, the
static linker doesn’t resolve references to symbols in those static libraries. Instead, those symbols are resolved
by the dynamic linker at runtime. This may cause problems when the static libraries are updated, because
the application links to the new, potentially incompatible versions of the symbols instead of the ones the
developer intended.

For details on how symbols are resolved, see “Finding Imported Symbols” in Executing Mach-O Files in Mac
OS X ABI Mach-O File Format Reference and the ld man page.

Preventing Prebinding

Mac OS X includes a prebinding mechanism used to speed up application launch in programs that link against
dynamic libraries. When a user installs an application or upgrades the operating system, a prebinding agent
links the application against new versions of the dynamic libraries. Sometimes, however, you may want to
prevent this behavior for specific applications.

To link the binary file, framework, library, or plug-in so that prebinding is never performed on it, you need
to add the -nofixprebinding option to the linker invocation. To do this, add -nofixprebinding to the
Other Linker Flags (OTHER_LDFLAGS) build setting. See the ld man page for more information.

74 Specifying the Search Order of External Symbols
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

Note: Prebinding is essential for applications running on Mac OS X version 10.3.3 or earlier. Improvements
to the dynamic linker in Mac OS X v10.3.4 made prebinding applications unnecessary and in Mac OS X v10.4
prebinding is no longer recommended for applications. By default, prebinding is off for all products except
dynamic libraries when targeting Mac OS X v10.4.

Linking to a Dynamic Library in a Nonstandard Location

When you need to link with a custom version of a dynamic library but don’t want to replace the standard
version of the library, you can use the -dylib_file option of the linker to tell it where to find the nonstandard
version of the library. Just add -dylib_filestandard_library_path:nonstandard_library_path to the Other
Linker Flags (OTHER_LD_FLAGS) build setting, where standard_library_path is the path to the standard library
and nonstandard_library_path is the path to the custom version of the library.

For more information on linking to dynamic libraries, see Using Dynamic Libraries.

Reducing the Number of Exported Symbols

By default, Xcode builds binary files that export all their symbols. To reduce the number of symbols you want
to export from a binary file, create an export file and set the Exported Symbols File (EXPORTED_SYMBOLS_FILE)
build setting to the name of the file. For more information, see Minimizing Your Exported Symbols in Code
Size Performance Guidelines.

Reducing Paging Activity

To help reduce your application’s paging activity at runtime, you may specify an order file to the linker. You
do this by setting the Symbol Ordering Flags (SECTORDER_FLAGS) build setting to -sectorder __TEXT
__text <order_file>. For information on order files, see Improving Locality of Reference in Code Size
Performance Guidelines.

Dead-Code Stripping

The static linker (ld) supports the removal of unused code and data blocks from executable files. This process
(known as dead-code stripping) helps reduce the overall size of executables, which in turn improves
performance by reducing the memory footprint of the executable. It also allows programs to link successfully
when unused code refers to an undefined symbol (instead of resulting in a link error).

Dead-code stripping is not limited to removing only unused functions and executable code from a binary.
The linker also removes any unused symbols and data that reside in data blocks. Such symbols might include
global variables, static variables, and string data, among others.

When dead-code stripping is enabled, the static linker searches for code that is unreachable from an initial
set of live symbols and blocks. The initial list of live symbols and blocks may include the following:

Linking to a Dynamic Library in a Nonstandard Location 75
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

 ■ Symbols listed in an exports file; alternatively, it would include the symbols absent from a list of items
marked as not to be exported. For dynamic libraries or bundles without an exports file, all global symbols
are part of the initial live list. See “Preventing the Stripping of Unused Symbols” (page 77) for more
information.

 ■ The block representing the default entry point or the symbol listed after the -e linker option, either of
which identifies the specific entry point for an executable. See the ld man page for more information
on the -e option.

 ■ The symbol listed after the -init linker option, which identifies the initialization routine for a shared
library. See the ld man page for more information.

 ■ Symbols whose declaration includes the used attribute. See “Preventing the Stripping of Unused
Symbols” (page 77) for more information.

 ■ Objective-C runtime data.

 ■ Symbols marked as being referenced dynamically (via the REFERENCED_DYNAMICALLY bit in
/usr/include/mach-o/nlist.h).

Enabling Dead-Code Stripping in Your Project

To turn on dead-code stripping in your project, you must pass the appropriate command-line options to the
linker. From Xcode, you add these options in the Build pane of the target or project inspector; otherwise,
you must add these options to your makefile or build scripts. Table 5-1 lists the Xcode build settings that
control dead-code stripping. Turning on either of these build settings causes Xcode to build with the
corresponding linker option.

Table 5-1 Xcode build settings for dead-code stripping

Linker optionBuild setting

-dead_stripDead Code Stripping (DEAD_CODE_STRIPPING)

-no_dead_strip_inits_and_termsDon’t Dead-Strip Inits and Terms
(PRESERVE_DEAD_CODE_INITS_AND_TERMS)

Table 5-2 lists the basic dead-code stripping options.

Table 5-2 Linker options for dead-code stripping

DescriptionLinker option

Enables basic dead-code stripping by the linker.-dead_strip

Prevents all constructors and destructors from being stripped
when the -dead_strip option is in effect, even if they are not
live.

-no_dead_strip_inits_and_terms

After turning on dead-code stripping, you may want to set the strip style used. The strip style specifies the
level of stripping performed. There are three levels of stripping available:

76 Dead-Code Stripping
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

 ■ All Symbols. All symbols are stripped from the binary, which includes the symbol table and relocation
information.

 ■ Non-Global Symbols. Nonglobal symbols are removed. External symbols remain.

 ■ Debugging Symbols: Debugging symbols are removed. Local and global symbols remain.

Use the Strip Style (STRIP_STYLE) build setting to specify the desired strip level.

You must recompile all object files using the compiler included with Xcode 1.5 or later before dead-code
stripping can be performed by the linker. You must also compile the object files with the -gfull option to
ensure that the resulting binaries can be properly debugged. In Xcode, change the value of the Level of
Debug Symbols (GCC_DEBUGGING_SYMBOLS) build setting to All Symbols (-gfull).

Note: The GCC compiler’s -g option normally defaults to -gused, which reduces the size of .o files at the
expense of symbol information. Although the -gfull option does create larger .o files, it often leads to
smaller executable files, even without dead-code stripping enabled.

Identifying Stripped Symbols

If you want to know what symbols were stripped by the static linker, you can find out by examining the
linker-generated load map. This map lists all of the segments and sections in the linked executable and also
lists the dead-stripped symbols. To have the linker generate a load map, add the -M option to your linker
command-line options. In Xcode, you can add this option to the Other Linker Flags build setting.

Note: If you are passing this option through the cc compiler driver, make sure you pass this flag as -Wl,-M
so that it is sent to the linker and not the compiler.

Preventing the Stripping of Unused Symbols

If your executable contains symbols that you know should not be stripped, you need to notify the linker that
the symbol is actually used. You must prevent the stripping of symbols when external code (such as plug-ins)
use's those symbols but local code does not.

There are two ways to tell the linker not to strip a symbol. You can include it in an exports file or mark the
symbol declaration explicitly. To mark the declaration of a symbol, you include the used attribute as part of
its definition. For example, you would mark a function as used by declaring it as follows:

void MyFunction(int param1) __attribute__((used));

Alternatively, you can provide an exports list for your executable that lists any symbols you expect to be used
by plug-ins or other external code modules. To specify an exports file from Xcode, use the Exported Symbols
File (EXPORTED_SYMBOLS_FILE) build setting; enter the path, relative to the project directory, to the exports
file. To specify an exports file from the linker command line, use the -exported_symbols_list option.
(You can also specify a list of symbols not to export using the -unexported_symbols_list option.)

If you are using an exports list and building either a shared library, or an executable that will be used with
ld's -bundle_loader flag, you need to include the symbols for exception frame information in the exports
list for your exported C++ symbols. Otherwise, they may be stripped. These symbols end with .eh; you can
view them with the nm tool.

Dead-Code Stripping 77
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

Assembly Language Support

If you are writing assembly language code, the assembler now recognizes some additional directives to
preserve or enhance the dead-stripping of code and data. You can use these directives to flag individual
symbols, or entire sections of assembly code.

Preserving Individual Symbols

To prevent the stripping of an individual symbol, use the .no_dead_strip directive. For example, the
following code prevents the specified string from being stripped:

.no_dead_strip _my_version_string

.cstring
_my_version_string:
.ascii "Version 1.1"

Preserving Sections

To prevent an entire section from being stripped, add the no_dead_strip attribute to the section declaration.
The following example demonstrates the use of this attribute:

.section __OBJC, __image_info, regular, no_dead_strip

You can also add the live_support attribute to a section to prevent it from being stripped if it references
other code that is live. This attribute prevents the stripping of some code that might actually be needed but
not referenced in a detectable way. For example, the compiler adds this attribute to C++ exception frame
information. In your code, you might use the attribute as follows:

.section __TEXT, __eh_frame, coalesced, no_toc+strip_static_syms+live_support

Dividing Blocks of Symbols

The .subsections_via_symbols directive notifies the assembler that the contents of sections may be
safely divided into individual blocks prior to dead-code stripping. This directive makes it possible for individual
symbols to be stripped out of a given section if they are not used. This directive applies to all section
declarations in your assembly file and should be placed outside of any section declarations, as shown below:

.subsections_via_symbols

; Section declarations...

If you use this directive, make sure that each symbol in the section marks the beginning of a separate block
of code. Implicit dependencies between blocks of code might result in the removal of needed code from the
executable. For example, the following section contains three individual symbols, but execution of the code
at _plus_three ends at the blr statement at the bottom of the code block.

.text

.globl _plus_three
_plus_three:
addi r3, r3, 1
.globl _plus_two
_plus_two:
addi r3, r3, 1

78 Dead-Code Stripping
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

.global _plus_one
_plus_one:
addi r3, r3, 1
blr

If you were to use the .subsections_via_symbols directive on this code, the assembler would permit
the stripping of the symbols _plus_two and _plus_one if they were not called by any other code. If this
occurred, _plus_threewould no longer return the correct value because part of its code would be missing.
In addition, if _plus_one were stripped, the code might crash when it continued executing into the next
block.

Dead-Code Stripping 79
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

80 Dead-Code Stripping
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Linking

Xcode offers a number of features you can take advantage of to decrease build time for your project. For
example, you can use distributed builds to shorten the time it takes to build your whole project or multiple
projects. ZeroLink and predictive compilation, on the other hand, improve turnaround time for single file
changes, thereby speeding up the edit–build–debug cycle. All of these features reduce the amount of time
you spend idle while waiting for your project to build.

This chapter describes the following features:

 ■ Precompiled prefix headers let you decrease the amount of time spent building compiling each source
file in a target by specifying a single header file that includes all of the headers commonly used by the
target’s files and compiling this header a single time.

 ■ Predictive compilation reduces the time required to compile single file changes by beginning to compile
a file while you are still editing it.

 ■ Distributed builds can dramatically reduce build time for large projects by distributing compiles to
available machines on the network.

Fix and Continue, described in Modifying Running Code, improves your debugging efficiency by allowing
you to make changes to your application and see the results of your modifications without stopping your
debugging session.

Using a Precompiled Prefix Header

A precompiled header is a file in the intermediate form used by the compiler to compile a source file. Using
precompiled headers, you can significantly reduce the amount of time spent building your product. Often,
many of the source code files in a target include a subset of common system and project headers. For example,
each source file in a Cocoa application typically includes the Cocoa.h system header, which in turn includes
a number of other headers. When you build a target, the compiler spends a great deal of time repeatedly
processing the same headers.

You can significantly reduce build time by providing a prefix header that includes the set of common headers
used by all or most of the source code files in your target and by having Xcode precompile that prefix header.

If you have indicated that Xcode should do so, Xcode precompiles the prefix header when you build the
target. Xcode then includes that precompiled header file for each of the target's source files. The contents
of the prefix header are compiled only once, resulting in faster compilation of each source file. Furthermore,
subsequent builds of the target can use that same precompiled header, provided that nothing in the prefix
header or any of the files on which it depends has changed. Each target can have only one prefix header.

When Xcode compiles your prefix header, it generates a variant for each C language dialect used by your
source files; it stores these in the folder specified by the SHARED_PRECOMPS_DIR (Precompiled Headers
Cache Path) build setting. It also generates—as needed—a variant for each combination of source header
and compiler flags. For example, you may have per-file compiler flags set for some of the files in the target

Using a Precompiled Prefix Header 81
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

you are building. Xcode will create a variant of the precompiled header by precompiling the prefix header
with the set of compiler flags derived from the target and the individual source file. As Xcode invokes the
compiler to process each source file in your target, the compiler searches the precompiled header directory
for a precompiled header variant matching the language and compiler flags for the current compile. Xcode
uses the first precompiled header variant that is valid for the compilation.

Precompiled headers can be reused across targets and projects. Targets that share the same prefix header
and common compiler settings will automatically share the same precompiled header.

Xcode automatically regenerates the precompiled header whenever the prefix header, or any of the files it
depends on are changed, so you don't need to manually maintain the precompiled header.

Creating the Prefix Header

To take advantage of precompiled headers in Xcode, you must first create a prefix header. Create a header
file containing any common #include and #define statements used by the files in your target.

Note: You can use a prefix header to include a common set of header files for each source file in your target
without precompiling the prefix header.

Do not include in the prefix header anything that changes frequently. Xcode recompiles your precompiled
header file when the prefix header, or any of the headers it includes, change. Each time the precompiled
header changes, all of the files in the target must be recompiled. This can be an expensive operation for large
projects.

Because the compiler includes the prefix header file before compiling each source file in the target, the
contents of the prefix header must be compatible with each of the C language dialects used in the target.
For example, if your target uses Cocoa and contains both Objective-C and C source files, the prefix header
needs to include the appropriate guard macros to make it compatible with both language dialects, similar
to the example shown here:

 #ifdef __OBJC__
 #import <Cocoa/Cocoa.h>
 #endif
 #define MY_CUSTOM_MACRO 1
 #include "MyCommonHeaderContainingPlainC.h"

Configuring Your Target to Use the Precompiled Header

Once you have created the prefix header, you need to set up your target to precompile that header. To do
this, you must provide values for the two build settings described here. You can edit these build settings in
the Build pane of the target inspector or Info window. The settings you need to change are:

 ■ GCC_PREFIX_HEADER (Prefix Header). Change the value of this build setting to the project-relative path
of the prefix header file. If you have a precompiled header file from an existing project, set the prefix
header path to the path to that file.

 ■ GCC_PRECOMPILE_PREFIX_HEADER (Precompile Prefix Header). Make sure that this option is turned
on. A checkmark is present in the Value column if this option is enabled.

82 Using a Precompiled Prefix Header
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

You must provide values for these settings in each target that uses a precompiled prefix header, even if those
targets use the same prefix header.

By default, Xcode precompiles a version of the header for each C-like language used by the target (C, C++,
Objective-C, or Objective-C++). The GCC_PFE_FILE_C_DIALECTS (C Dialects to Precompile) build setting
lets you explicitly specify the C dialects for which Xcode should produce versions of the precompiled header.

Sharing Precompiled Header Binaries

It is possible to share a precompiled header binary across multiple targets in multiple projects, provided that
those targets use the same prefix header and compiler options. In order to share a precompiled header
binary, each individual target must have the same prefix header specified. To use the same prefix header for
multiple targets, for each target set the value of the Prefix Header build setting to the path to the header.

Each target must also specify a common directory as the destination for the precompiled header generated
by Xcode. The SHARED_PRECOMPS_DIR (Precompiled Headers Cache Path) build setting specifies the location
of the directory to which Xcode writes the precompiled header binary. By default, this is defined as
<Xcode_Persistent_Cache>/com.apple.Xcode.$(UID)/SharedPrecompiledHeaders for all newly
created or upgraded projects. When Xcode invokes GCC to compile each source file in a target, GCC searches
this common directory for the appropriate header binary. For any targets that use the same prefix header
and compiler options, GCC uses the same precompiled header binary when it builds those targets.

Xcode also defines the build setting PRECOMPS_INCLUDE_HEADERS_FROM_BUILT_PRODUCTS_DIR
(Precompiled Header Uses Files From Build Directory). This build setting is a hint to the build system; it
indicates whether a target's prefix header includes headers files from the target's build directory. If your prefix
header includes header files from the build directory, set this build setting to YES by selecting the checkbox
next to the build setting in the Build pane. If your targets share a common build directory outside of the
project directory, Xcode still shares precompiled headers across compatible targets. If, however, you use the
default build directory location within the project directory, Xcode shares precompiled headers across
compatible targets only within the same project.

If your target's prefix header does not include headers from its build directory, set the
PRECOMPS_INCLUDE_HEADERS_FROM_BUILT_PRODUCTS_DIR build setting to NO, to increase the chances
that Xcode will be able to use a shared precompiled header when building the target.

If you specify the same prefix header for multiple targets but do not specify a common location for the
precompiled binary, Xcode precompiles the prefix header once for each target as it is built.

Regenerating Precompiled Headers

Xcode compiles your prefix header whenever it fails to find a matching precompiled header binary in the
shared precompiled header location. As described earlier in this chapter, Xcode automatically rebuilds your
precompiled prefix header if you make changes to the prefix file or to any files it includes. Xcode also
recompiles your prefix header if you make changes to your target's build settings that affect the compiler
options used to build the target's files.

You can also force Xcode to rebuild your precompiled header by:

 ■ Touching the prefix file.

Using a Precompiled Prefix Header 83
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

 ■ Cleaning the target. By default, cleaning a target removes all of the intermediate and product files
generated for that target by the build system, including any precompiled headers. The next time you
build the target, Xcode rebuilds the target's precompiled header files, along with all other files in the
target. See "Removing Build Products and Intermediate Build Files" in Xcode Project Management Guide.

By default, cleaning a target removes the precompiled header for that target—whether or not Xcode initially
generated the precompiled header binary as part of building that target. Because rebuilding precompiled
headers can be time consuming, you may want to clean an individual target without discarding the
precompiled header binaries for that target if you are sharing precompiled headers across many targets in
multiple projects. When you initiate a clean, Xcode displays a dialog that lets you choose whether to preserve
precompiled headers. To keep precompiled headers, deselect the Also Remove Precompiled Headers option.
By default, this option is enabled.

Controlling the Cache Size Used for Precompiled Headers

Xcode caches the precompiled header files that it generates. To control the size of the cache devoted to
storing those files, use the BuildSystemCacheSizeInMegabytes user default. In the Terminal application,
type:

defaults write com.apple.xcode BuildSystemCacheSizeInMegabytes defaultCacheSize

Specifying 0 for the cache size gives you an unlimited cache. The default cache size set by Xcode is 1024 MB.
If the cache increases beyond the default size, Xcode removes as many precompiled headers as is necessary
to reduce the cache to its default size when Xcode is next launched. Xcode removes the oldest files first.

Restrictions

To take advantage of Xcode’s automatic support for precompiled headers you must:

 ■ Use GCC 3.3 or later.

 ■ Use a native target. Automatic support by Xcode for precompiled prefix headers using PCH is available
only for targets that use the Xcode native build system. Xcode automatically handles many of the
restrictions upon using precompiled headers with GCC. If you are using an external target to work with
another build system—such as make—you can still use precompiled headers, but you must create and
maintain them yourself. For more information on using precompiled headers with GCC, see GNU
C/C++/Objective-C 3.3 Compiler. Jam-based targets can also use precompiled prefix headers, but they
are limited to the PFE (persistent front end) mechanism introduced with GCC 3.1. PFE is no longer
recommended.

 ■ Use one and only one prefix header per target.

 ■ Set the Prefix Header and Precompile Prefix Header build settings for every target that uses precompiled
headers.

84 Using a Precompiled Prefix Header
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

Predictive Compilation

Predictive compilation is a feature introduced to reduce the time required to compile single file changes and
speed up the edit–compile–debug cycle of software development. If you have predictive compilation enabled
for your project, Xcode begins compiling the files required to build the current target even before you tell
Xcode to build.

Predictive compilation uses the information that Xcode maintains about the build state of targets that use
the native build system. Xcode keeps the graph of all files involved in the build and their dependencies, as
well as a list of files that require updating. At any point in time, Xcode knows which of the files used in building
a target’s product are out of date and what actions are required to bring those files up to date. A file can be
updated when all of the other files on which it depends are up to date. As files become available for processing,
Xcode begins to update them in the background, even as you edit your project.

Xcode will even begin compiling a source code file while you are editing it. Xcode begins reading in and
parsing headers, making progress compiling the file even before you initiate a build. When you do choose
to save and build the file, much of the work has already been done.

Until you explicitly initiate a build, Xcode does not commit any of the output files to their standard location
in the file system. When you indicate that you are done editing, by invoking one of the build commands,
Xcode decides whether to keep or discard the output files that it has generated in the background. If none
of the changes made subsequent to its generation affect the content of a file, Xcode commits the file to its
intended location in the file system. Otherwise, Xcode discards its results and regenerates the output file.

You can turn on predictive compilation by selecting “Use Predictive Compilation” option in the Building pane
of the Xcode Preferences window.

Predictive compilation works only with GCC 4.0 or later and native targets. All predictive compilation is done
locally on your computer, regardless of whether you have distributed builds enabled. On slower machines,
enabling predictive compilation may interfere with Xcode performance during editing.

Using Multiple SDKs

When developing Mac OS X applications, you normally use a system SDK, such as the Mac OS X v10.4 SDK or
the Mac OS X v10.5 SDK. In this document, an SDK (software development kit) is a set of frameworks or
libraries that provide particular functionality to your product. A system SDK is one included in Xcode to
provide an interface to core Mac OS X functionality. System SDKs reside in <Xcode>/SDKs.

There may be times when, in addition to a system SDK, you need link against sparse SDKs. A sparse SDK is
an SDK that is not a system SDK. Sparse SDKs may be provided by third parties, or you may build them
yourself.

To specify additional SDKs to link against, use the ADDITIONAL_SDKS (Additional SDKs) build setting. You
can specify the paths to sparse SDKs in this build setting.

At build time, the build system groups the target’s additional SDKs into a single SDK, known as a composite
SDK. Composite SDKs are cached in the <Xcode_Persistent_Cache> directory (see "Overview of Xcode
Projects" for details on the Xcode persistent-cache location). Therefore, targets (from any of your projects)
that list the same set of additional SDKs, share the composite SDK the build system generates, which improves
compilation times.

Predictive Compilation 85
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

Distributing Builds Among Multiple Computers

Building a product involves several tasks. Some tasks, such as compiling precompiled headers and linking a
binary, can be performed effectively only by the computer that hosts a build. However, the main task performed
in a build—compiling source files—can be carried out in parallel by several computers. Builds that use several
computers to compile source files are known as distributed builds. When you use distributed builds, Xcode
distributes as many compilation tasks among the computers available for this purpose within a network.

Distributed builds use two types of computers: build clients and build servers.

 ■ A build client is the computer that performs the build. This is the computer that runs the Xcode or
xcodebuild instance that carries out the build command.

 ■ A build server is a computer that a build host can use to perform compilation tasks. Build servers do
not need to run Xcode or xcodebuild to aid a build host. But they must at least be running the same
version of the Mac OS as the build server.

 ■ A build set is made up of the host names of build servers to which a build client distributes compilation
tasks. To distribute a build, you must define at least one build set on the build client, or use the Bonjour
set when available.

There are two types of distributed builds available in Xcode: shared workgroup builds and dedicated network
builds.

 ■ A shared workgroup build works best with small to medium-sized projects and on up to 10 build servers.

 ■ A dedicated network build is more effective on large projects using 10 or more build servers.

To specify whether builds started by a particular user on a computer are to be distributed to other computers
(that is, whether the computer acts as a build client for that user), use the “Distribute via” option and pop-up
menu in the Distributed Builds preference pane in Xcode Preferences while logged in as that user (see
“Distributed Builds Preferences Pane” for details). You may also specify build servers in xcodebuild invocations.

The following sections describe the two types of distributed builds in more detail and provide guidelines for
deciding which type of distributed build to use for a particular project.

Shared Workgroup Builds

Shared workgroup builds work best when building small to medium projects using up to ten build servers.
Their main advantage is easy set up (including Bonjour support). Their main disadvantage is the requirements
it imposes on the computers to be used as build servers by a build client.

How Shared Workgroup Builds Work

To perform a shared workgroup build, build clients distribute compilation tasks to the build servers specified
in the host list in Xcode Preferences > Distributed Builds or in the build-server list given to xcodebuild. The
build client performs the build set-up, such as compiling precompiled headers, and linking. (Precompiled
headers are compiled by the build client to ensure that all build servers use the same precompiled header
in a build.)

86 Distributing Builds Among Multiple Computers
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

To distribute the compilation task of a build, Xcode and xcodebuild invoke the distcc tool instead of gcc.
The distcc tool is the client-side process that distributes compilation tasks among build servers.

Build servers run the distccd daemon, which responds to compilation requests sent by distcc in the build
client. When a build server receives a compilation request, it obtains the preprocessed implementaton files
from the build client, invokes gcc to compile the files into an object file, and sends the object file to the build
client. Figure 6-1 illustrates this process.

Figure 6-1 Shared workgroup build process

Build

Perform on all source files

Compile .c 1

Compile .i

Return .o

distccd
2

Write .o 4

3

5

distcc

This list explains the process shown in Figure 6-1:

1. Xcode (or xcodebuild) invokes distcc in the build client to compile a source file.

2. Process distcc preprocesses the source file using the compiler specified by the target, finds a compatible
build server, and sends the preprocessed source file to the distccd process running on that computer.
See “Requirements for Using Shared Workgroup Builds” (page 88) for information on how compatible
build servers are identified.

3. The distccd process in the build server invokes gcc with the file provided by distcc as input and
returns the output gcc generates.

4. The distcc process in the build client places the output from distccd in the project’s build directory.

5. The distcc process tells Xcode (or xcodebuild whether the compilation task was successful.

If a build client’s compilation request fails—for example, if communication with the build server is lost or
the build server cannot execute the compilation request—Xcode (or xcodebuild) performs the compilation
on the build client.

Build servers respond to compilation requests as they are able. That is, a build server that is processing a
compilation request, may not respond to another compilation request from a build client until it’s done.
Xcode and xcodebuild distribute compilation operations to the most capable build servers first. But, when

Distributing Builds Among Multiple Computers 87
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

there are enough compilation operations to distribute among the available build servers, Xcode uses all of
them, regardless of their processing power. For example, when a build client has three build servers available,
two fast ones and one slow one, and a build requires three compilation tasks, all the servers receive a
compilation request, even it the two fast servers would complete the tasks faster by themselves than when
the slower server is used.

Build servers cache precompiled headers to speed-up subsequent build requests that require the same
precompiled header. Before compiling a preprocessed file, the build server determines whether it needs to
get a new copy of the precompiled header from the build client. Therefore, modifying precompiled headers
(as for in non–distributed builds) adversely affects the performance of shared workgroup builds.

Requirements for Using Shared Workgroup Builds

Use of distributed builds is subject to the following constraints:

 ■ You must use GCC 3.3 or later.

 ■ Computers that compilation tasks are distributed to must be running the same version of the compiler
specified by the target and the same operating system as the build client. These computers must also
have the same architecture as the build client. For example, an Intel-based Macintosh can distribute
builds only among other Intel-based Macintosh computers. A PowerPC-based Macintosh can distribute
builds only among other PowerPC-based Macintosh computers.

 ■ Shared workgroup builds are available only to native targets. Jam-based targets or targets using another
external build system are not compatible with shared workgroup builds.

 ■ Shared workgroup builds support C, C++, Objective-C, and Objective-C++.

 ■ Shared workgroup builds are enabled on a per-user basis for all projects and targets built by that user.

Sharing a Computer as a Shared Workgroup Build Server

To advertise a computer as a shared workgroup build server, select the appropriate option in Xcode Preferences
> Distributed Builds. As an alternative, you may execute the following command:

sudo /bin/launchctl load -w /System/Library/LaunchDaemons/distccd.plist

Note: When you make a computer a build server, build clients may use it at any time, whether Xcode is
running and whether you are logged in to the computer. See “Distributed Builds Preferences Pane” for more
information.

You should not share your computer if you are using it to host distributed builds. That is, you should not
have both “Share my computer for building” and “Distribute builds” selected in the Distributed Builds
preference pane. Because precompilation and the distribution of build tasks are done on your local computer,
allowing others to distribute build tasks to your computer can significantly slow down your own builds.

88 Distributing Builds Among Multiple Computers
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

Shared Workgroup Builds and Firewalls

To use shared workgroup builds across a firewall, the firewall must allow traffic on port 3632. Some firewalls
allow Bonjour traffic, making build servers behind the firewall visible in the Bonjour distributed-build set.
However, the distributed build will not work. When Xcode attempts to distribute compilation tasks and
receives no response from the build servers behind the firewall, it times out and performs the compilation
tasks on the build client.

To allow traffic on port 3632 on build clients with a firewall active, use the Firewall pane in Sharing Preferences,
as shown in Figure 6-2.

Figure 6-2 Allowing distributed builds traffic through the Mac OS X firewall

Dedicated Network Builds

Dedicated network builds are appropriate for large projects and and with more than 10 build servers. Dedicated
network builds offer better performance than shared workgroup builds when building large projects. However,
they don’t offer autodiscovery of build servers.

Distributing Builds Among Multiple Computers 89
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

How Dedicated Network Builds Work

To perform a dedicated network build, build clients distribute compilation tasks to the build servers specified
in the host list in the Xcode Preferences > Distributed Builds or in the build-server list given to xcodebuild.
The build client performs the build set-up, including compiling precompiled headers, and linking. (Precompiled
headers are compiled by the build client to ensure that all build servers use the same precompiled header
in a build.)

Because build servers must download several files from the build client before they can start compiling, the
first two or three builds of the same project a build client carries out are slow. Subsequent builds become
faster as the build servers cache the necessary files.

Requirements for Using Dedicated Network Builds

For a build client to successfully distribute compilation operations using dedicated network builds to a set
of build servers, the following requirements must be met:

1. The build client and build servers must run Mac OS X v10.4 or later.

2. The build client and build servers must run the same version of Mac OS.

3. The build servers must have Xcode 2.3 or later installed.

Sharing a Computer as a Dedicated Network Build Server

To advertise a computer as a dedicated network build server, select the appropriate option in Xcode
Preferences > Distributed Builds. Alternatively, you may execute the following command:

sudo /bin/launchctl load -w
/System/Library/LaunchDaemons/com.apple.dnbvolunteer.plist

Dedicated Network Builds and Firewalls

To use shared workgroup builds across a firewall, the firewall must allow traffic on port 51500.

Getting the Most Out of Distributed Builds

Using Xcode to distribute builds across multiple computers will reduce the time it takes to build your product.
However, the degree of improvement in build times you get depends on many factors. These are a few of
them:

 ■ Networking speed. In shared workgroup builds Xcode sends files to be built on other computers; those
computers, in turn, send back the resulting object files. To see a significant reduction in build time, your
network must be fast enough that the cost of transferring files between computers is minimal. Very busy
or slow networks may have a detrimental effect on distributed build performance.

In dedicated network builds, the first few builds of a particular project may be slow as the build client’s
files are distributed to build servers. As build servers cache those files, subsequent builds become faster.

90 Distributing Builds Among Multiple Computers
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

 ■ Number of available computers. The more processors you have at your disposal, the more compilation
tasks can be performed in parallel and the more significant the reduction in build time that you see. If
you have a limited number of build servers available—especially if those computers do not have significant
processing capacity—you may not see any noticeable improvements in build performance. The overhead
of managing the distribution of compilation tasks may overcome the benefit you get from compiling
on additional machines. You may find that you get better build performance from utilizing other
optimizations, such as precompiled headers or parallel builds, on your local computer.

Shared workgroup builds work best with 10 or fewer build servers. Dedicated network builds are more
efficient when using 10 or more build servers.

 ■ Avoid using the host computer as a build server. Xcode automatically performs compilation operations
locally when there’s a shortage of available build servers or when a build server is unable to carry it out
a request within a certain period.

Xcode must completely finish building one target before starting to build another, which means that all the
source files for a given target must complete compiling before any files from dependent targets can start
compiling. Therefore, to maximize the potential for parallel compilation, instead of many targets with few
source files per target, you should have fewer targets with more source files per target. A target with a single
file will effectively stall all the build servers.

For shared workgroup builds, Xcode provides the default preference XCMaxNumberOfDistributedTasks
to control the maximum number of parallel compilation tasks allowed during a build. Use this preference
only if you want to reduce the number of compilation tasks Xcode creates to complete a build. For more
information on these preferences, and on how to set them, see Xcode User Default Reference.

Distributed Builds Preferences

The Distributed Builds pane in Xcode preferences contains options for distributing build tasks to other
computers in your network. Figure 6-3 shows the Distributed Builds pane.

Distributing Builds Among Multiple Computers 91
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

Figure 6-3 Distributed Builds preferences pane

Here is what the pane contains:

 ■ Share my computer for shared workgroup builds. Turning on this option makes your computer available
to shared workgroup build clients.

When you select this option, the pop-up menu specifies the priority assigned to compilation tasks that
are distributed to your computer. This setting determines the amount of processing time allocated for
a compilation task in relation to other tasks the computer is performing during a compilation task. You
can choose high, low, or medium priority. The default value is “medium priority.” This value is appropriate
for most situations. When you want build tasks to take precedence over any other tasks, choose “high
priority.” When you want tasks other than build tasks to use the most processing power, choose “low
priority.”

 ■ Share my computer for dedicated network builds. Turning on this option makes your computer available
to dedicated network build clients.

 ■ My Computer OS. This text field indicates the operating system the local host is running.

 ■ Compilers. This text field indicates the compilers available on the local host.

 ■ Distribute via. This option specifies whether to use distributed builds and the type of distributed build
to use for builds started by the logged in user. This option is selected, Xcode distributes builds to the
sets selected in the build set list, explained next. Otherwise, all compilation tasks are performed on your
computer.

92 Distributing Builds Among Multiple Computers
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

 ■ Set list. This list contains the names of build server sets to which builds can be distributed to. When
“Distribute via” is selected, Xcode (or xcodebuild) distributes builds to the build servers that are members
of the selected sets. A set’s members are displayed in the host list when the set is highlighted in the
build set list.

The Bonjour set appears in the build set list only when you’re distributing builds using shared workgroup
builds. The build servers in this set are dynamically added or removed as they become available or
unavailable for shared workgroup builds in your local network. When “Share my computer for shared
workgroup builds” is selected, the host name of your computer (the build client) appears in the Bonjour
build set. See Xcode Build System Guide for more information.

You can add, remove, and duplicate build sets using the buttons below the list. You can add host names
to a set by dragging or copying names from another set or from a text file. (Note that you cannot modify
the Bonjour build set.) Conversely, you can create host-list file containing the hosts in a build set by
dragging or pasting a set to a text file. For example, you can create a host-list file identifying hosts you
want members of your team to use for their distributed builds, and send it to them in an email message.
Your colleagues can then create an empty build set and drag the host-list file onto it.

 ■ Host list. This list contains the names of the hosts that are members of the sets highlighted in the build
set list. The host list contains these columns:

 ❏ Host: The name or IP address that identifies a build server. Note that once you add a host name or
IP address to a build set, if the name or IP address of that host subsequently changes, Xcode (and
xcodebuild) won’t be able to locate it. You must update the name or IP address in the host list in
order to distribute builds to that host.

 ❏ OS: The operating system the host is running. When the host is not available, “Unavailable” appears
in this column.

 ❏ Resources: The compilers and other resources available in the host. Compilers that are incompatible
with the corresponding compilers in the build client are shown in red. Xcode doesn’t distribute a
compilation task to a build server when the compiler required by the task is shown in red.

 ❏ Status: The sharing state of the host. This column can have these values:

 ❏ Sharing: The host is available as a build server. The host has been advertised as a build server.
See Xcode Build System Guide for details.

 ❏ Not Sharing: The host is not available as a build server because it hasn’t been advertised as
such.

 ❏ Incompatible Service: The host is not available as a build server because the version of the
distributed build tool in the host is not compatible with the version in the build client. Make
sure both computers have the same version of Xcode installed.

 ❏ Unreachable: The host is not available as a build server because the local host cannot access
it.

When you place the pointer over a host in the host list, a tooltip indicates the number of processors and
speed of that host.

You can add and remove hosts from highlighted sets by using the buttons below the host list. You can
also add hosts in the host list to a build set by dragging or pasting the hosts to the build set you want
to add them to. You can create a host-list file with the host names of one or more hosts by selecting
hosts in the host list and dragging or copying them to a text file. Then you can drag the host-list file into
a build set to add the hosts identified in the file to the build set.

 ■ Search field. This search field allows you to narrow the hosts shown in the host list.

Distributing Builds Among Multiple Computers 93
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

For more information about distributed builds in Xcode, see Xcode Build System Guide.

94 Distributing Builds Among Multiple Computers
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Reducing Build Times

This table describes the changes to Xcode Build System Guide.

NotesDate

Made minor content changes.2009-02-04

Made minor changes.2009-01-06

Added example script to “Run Script Build Phase” (page 39).

Made minor content addition.2008-11-19

Added “Distributed Builds Preferences” (page 91) (previously published in Xcode
Workspace Guide).

Made minor content organization changes.2008-09-09

New document that provides a detailed description of the Xcode build system
and shows how to customize it.

2008-07-08

The content for this document was previously published in Xcode User Guide.

95
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

96
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Xcode Build System Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Targets
	Target Overview
	Managing Targets
	Creating Targets
	Editing Targets
	Editing General Target Settings
	Editing Information Property List Entries
	Information Property List Entries for Native Targets
	Preprocessing Info.plist Files

	Duplicating Targets
	Removing Targets
	Defining Target Dependencies
	Creating Aggregate Targets
	Adding Target Dependencies
	Removing Target Dependencies
	Multiple Target Example

	Managing Target Files
	Viewing the Files in a Target
	Adding and Removing Target Files
	Setting the Role of Header Files

	Build Phases
	Build Phase Overview
	Using Build Phases
	Build Phase Processing Order
	Build Phase Processing Order in Native Targets
	Build Phase Processing Order in Jam-Based Targets
	Reordering Build Phases

	Adding and Deleting Build Phases
	Adding Files to a Build Phase
	Compile Sources Build Phase
	Copy Files Build Phase
	Run Script Build Phase
	Using Build Settings in Run Script Build Phases

	Build Rules
	System Build Rules
	Creating a Build Rule
	Creating a Build Rule Script
	Execution Environment for Build Rule Scripts

	Build Settings
	Build Setting Overview
	Build Setting Syntax
	Conditional Build Settings

	Build Setting Evaluation
	Multilayer Build Setting Definitions
	Build Setting References

	Build Setting Troubleshooting
	Finding Build Setting Definitions

	Build Configurations
	Build Configuration Overview
	Predefined Build Configurations
	Managing Build Configurations
	Editing Build Configurations

	Build Configuration Files
	Creating a Configuration File
	Basing Build Configurations on Configuration Files
	Build Setting Evaluation and Configuration Files

	Linking
	Specifying the Type of Binary to Create
	Specifying the Search Order of External Symbols
	Preventing Prebinding
	Linking to a Dynamic Library in a Nonstandard Location
	Reducing the Number of Exported Symbols
	Reducing Paging Activity
	Dead-Code Stripping
	Enabling Dead-Code Stripping in Your Project
	Identifying Stripped Symbols
	Preventing the Stripping of Unused Symbols
	Assembly Language Support
	Preserving Individual Symbols
	Preserving Sections
	Dividing Blocks of Symbols

	Reducing Build Times
	Using a Precompiled Prefix Header
	Creating the Prefix Header
	Configuring Your Target to Use the Precompiled Header
	Sharing Precompiled Header Binaries
	Regenerating Precompiled Headers
	Controlling the Cache Size Used for Precompiled Headers
	Restrictions

	Predictive Compilation
	Using Multiple SDKs
	Distributing Builds Among Multiple Computers
	Shared Workgroup Builds
	How Shared Workgroup Builds Work
	Requirements for Using Shared Workgroup Builds
	Sharing a Computer as a Shared Workgroup Build Server
	Shared Workgroup Builds and Firewalls

	Dedicated Network Builds
	How Dedicated Network Builds Work
	Requirements for Using Dedicated Network Builds
	Sharing a Computer as a Dedicated Network Build Server
	Dedicated Network Builds and Firewalls

	Getting the Most Out of Distributed Builds
	Distributed Builds Preferences

	Revision History

