
Xcode Tools for Core Data
Tools > Xcode

2008-04-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Objective-C, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Xcode Entity Modeling Tools for Core Data 7

Organization of This Document 7

Creating a Data Model File 9

Workflow 11

Basic Features 11
Workflow 12

Navigation 12
Contextual menus 13

The Info Window 13

The Browser View 15

Overview 15
Table view panes 15
Detail pane 17

The Entities Pane 17
The Properties Pane 17

Properties table 18
Fetch requests view 19

The Detail Pane 20
General pane 20
User Info pane 21
Configurations pane 21
Synchronization pane 22

The Diagram View 23

Diagram Elements 23
Nodes 23
Lines 23

Diagram Tools 24
Editing the Model 24
Layout 25
Roll-Up and Expansion 26
Colors and Fonts 27

3
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder 29

Fetched Properties and Fetch Request Templates 29
The Predicate Builder 29
Left-Hand Side 30
Right-Hand Side 32
Compound Predicates 32
Expressions 33

Code Generation 35

Model Versioning 37

Compiling a Data Model 39

Creating a User Interface From a Data Model 41

Document Revision History 43

4
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Figures

Creating a Data Model File 9

Figure 1 New File assistant 9
Figure 2 Creating a Data Model File 10

Workflow 11

Figure 1 Browser view and diagram view for a data model 11
Figure 2 The Elements pop-up menu 13
Figure 3 Appearance pane 14

The Browser View 15

Figure 1 The browser view 15
Figure 2 Browser column options 16
Figure 3 Property list view options 16
Figure 4 Entity view options 17
Figure 5 Properties table options 17
Figure 6 Property column display options 18
Figure 7 Adding a property 19
Figure 8 Fetch request templates for a selected entity 20
Figure 9 The control for choosing a pane in the detail pane 20
Figure 10 Configurations pane of the detail pane 22

The Diagram View 23

Figure 1 A diagram view of an entity model 23
Figure 2 Diagram tools 24
Figure 3 Diagram view showing element handles 25
Figure 4 A rolled-up node and a partially expanded rolled-down node 26
Figure 5 Appearance pane showing multiple selection 27

The Predicate Builder 29

Figure 1 Fetched property detail pane 29
Figure 2 The predicate builder 30
Figure 3 Predicate keys 31
Figure 4 Adding a key path 31
Figure 5 Right-hand side expression type 32
Figure 6 Creating a compound predicate 33
Figure 7 The expression editor 33

5
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Code Generation 35

Figure 1 The Managed Object Class Generation pane 35

Compiling a Data Model 39

Figure 1 Project build panel showing momc warning flags 40

6
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Xcode data modeling tool deals with entities and the relationships between them. You use the tool to
define a schema for Core Data. The model ultimately becomes part of your build product and is used by your
application at runtime.

Important: This document describes the features of the data modeling tool and how to use it. It does not
explain the basic features and functionality of the Core Data framework. You must read the introductory
material in CoreData ProgrammingGuide before reading this chapter or attempting to use the data modeling
tool. For more about specific Core Data classes, see the relevant API reference documentation.

The purpose of the Core Data data modeling tool is to create a data model (or schema) for use with the Core
Data framework. At runtime, the model is turned into an instance of NSManagedObjectModelwith a collection
of NSEntityDescription, NSAttributeDescription, NSRelationshipDescription, and
NSFetchRequest objects. In some respects this is analogous to the behavior of Interface Builder. With
Interface Builder, you graphically create a collection of objects that are then saved in a file (a nib file) and
re-created at runtime. As with user interface elements, it is possible to create a model directly in code at
runtime; however, it is typically easier to do so graphically using the appropriate tool. Similarly, just as it is
possible to modify the user interface after it has been loaded, it is also possible to customize a model after
it has been loaded. (Note that a model does have a constraint not shared with a nib file: once loaded, a model
cannot be modified after it has been used.)

As your application evolves, to accommodate new features you may need to change the schema. Core Data
provides an infrastructure for migrating data from one schema (model version) to another—see Core Data
Model Versioning and Data Migration Programming Guide. To use this infrastructure, you need to define a
versioned model, and mappings between model versions. You create a versioned model using Xcode’s data
modeling tool (see “Model Versioning” (page 37)) and the mapping model using Xcode’s mapping model
tool.

You should read this document to learn how to use the Xcode entity modeling tool to create a managed
object model for a Core Data application. For a task-based example of how to create a data model, see
Creating a Managed Object Model with Xcode.

Organization of This Document

This document contains the following sections:

 ■ “Creating a Data Model File” (page 9) describes how to create a model file.

 ■ “Workflow” (page 11) describes the basic features of the data modeling tools and how you use them.

 ■ “The Browser View” (page 15) describes the diagram view of the data modeler.

 ■ “The Diagram View” (page 23) describes the diagram view of the data modeler.

 ■ “The Predicate Builder” (page 29) describes the predicate builder.

Organization of This Document 7
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Xcode Entity Modeling Tools for Core Data

 ■ “Code Generation” (page 35) describes how to generate source code for model entities and their
properties.

 ■ “Model Versioning” (page 37) describes how to create a versioned model and how to specify the current
version in a versioned model.

 ■ “Compiling a Data Model” (page 39) describes how to compile a data model and what compiler flags
are available.

 ■ “Creating a User Interface From a Data Model” (page 41) describes how to use the data modeler in
conjunction with Interface Builder to create a user interface.

8 Organization of This Document
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Xcode Entity Modeling Tools for Core Data

This article describes what the data modeling tool is and why you use it, and how you create a new model
file.

If you create a Core Data–based project, a data model is automatically created for you and added to the
project. If you need to create a new model, choose File > New File and in the the New File assistant—shown
in Figure 1—select Design > Data Model and press Next.

Figure 1 New File assistant

In the pane that appears (see “The Properties Pane” (page 17)), give the file a suitable name.

9
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Creating a Data Model File

Figure 2 Creating a Data Model File

Press Next, and in the following pane select any groups or files that you want to be parsed for inclusion in
the model (if any); then click Finish.

If you have an existing compiled (.mom) model file (see “Compiling a Data Model” (page 39)), you can import
it into a model by choosing Design > Data Model > Import and selecting the .mom file in the open panel that
is displayed.

Note: Data model files are actually file packages. Make sure you take this into account when setting up
source code management (SCM), copying, and so on.

Since the data model is a runtime resource (it is compiled, and deployed, as part of the application), you
should add new data models not only to the project, but also to the relevant target(s).

10
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Creating a Data Model File

This article describes the basic features of the data modeling tools and how you use them.

Basic Features

The data modeling tool employs a browser that you can use to navigate the entity hierarchy, to view the
properties of an individual entity or the properties of a collection of entities, and to inspect attributes of a
property; and a diagram view that you can use to visualize their contents. Figure 2 shows the entity browser
and the diagram view. They are described in greater detail in “The Browser View” (page 15) and “The Diagram
View” (page 23).

Figure 1 Browser view and diagram view for a data model

Basic Features 11
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Workflow

The diagram and browser views have different roles. The diagram view is typically best when you need a
high-level overview of the schema. The browser view gives you more detailed information, and it can be
especially useful when, for example, you want to edit several attributes simultaneously. When you have large
collections of entities, you can minimize the information shown in the diagram (for example, view just entity
names and relationship lines) and get the detailed information from browser. The diagram view offers a
variety of different configurations, so you can tailor your view to any need.

Workflow

The Xcode design tools offer a wide range of options and features to ease your workflow, from automatic
page creation and deletion in the diagram view, to multiple selection editing in the browser. In addition, it
is possible to add to the toolbar shortcuts for actions such as Add Entity, and Add Attribute.

Navigation

You can use the browser and diagram views in conjunction for navigation—the selection in the two views
is kept synchronized. As a result, if you make a selection in the browser, the same item is selected in the
diagram, and vice versa.

If you want to see a large model in the diagram view, you can maximize the viewable area of a diagram in
the main project window by hiding the toolbar, the navigation bar, the status bar, the Favorites bar, and the
browser.

If you have a large diagram, there are two strategies you can use to aid navigation. First, you can begin typing
the name of the entity you want. As you type characters, Xcode selects the alphabetically “topmost” entity
whose name has the prefix you typed. Second, you can use the pop-up menu at the top of the document
pane. The pop-up shows a list of elements . When you select an item from the pop-up menu (see Figure 2),
the corresponding element is selected and brought into view in the browser and diagram view. This feature
may be particularly useful if the browser is hidden.

12 Workflow
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Workflow

Figure 2 The Elements pop-up menu

The browser view, however, is useful when you have a large schema with all compartments rolled up and
you want to see more details about a given entity but don’t want to make the diagram bigger. The browser
also shows more information than is available in the diagram (such as the property type).

Contextual menus

Most menu-based commands are also available from contextual menus associated with the relevant user
interface element. You can Control-click a node for immediate access to operations that apply to it or its
context—for example, to expand compartments. You can Control-click the diagram background to perform
operations related both to the visual representation and to the model itself. For example, you can hide grid
lines, zoom, set the alignment of drawing elements, and add entities.

The Info Window

The Info Window (inspector) contains an Appearance pane and a Versioning pane. You use the Appearance
pane to set default colors and fonts for element names and properties. Figure 3 shows an Appearance pane
with custom settings. You use the Versioning pane to set the model version identifier—for more about the
identifier, see Core Data Model Versioning and Data Migration Programming Guide.

The Info Window 13
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Workflow

Figure 3 Appearance pane

Important: To use the Info window, you must make a selection within the browser or the diagram in the
document (you can just click the background of the diagram view, for example), not in the Groups & Files
browser (for a quick model there may not even be a file icon). If you select a model icon in the Groups & Files
list and then choose Get Info, you get an Info window with General, File, and SCM panes.

14 The Info Window
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Workflow

The browser view gives you a different perspective on the whole of your model. It has three separate parts:
two table view panes—the entity pane and the properties pane—and the detail pane. You can resize a pane
by dragging the vertical divider. You can also hide a pane by resizing its width to zero—to hide the detail
pane you must drag the divider on its left side most of the way to the right, past its minimum size.

Overview

The browser view is by default always present in the model’s editor view—you cannot shrink it beyond a
minimum height. You can hide it by choosing Design > Hide Model Browser (and show it again by choosing
Design > Show Model Browser). The view has three separate parts: the entities pane, the properties or fetch
requests pane, and the detail pane. The detail pane itself has four separate views: the General pane, the User
Info pane, the Configurations pane, and the Sync pane, as shown in Figure 1.

Figure 1 The browser view

Table view panes

The left-most pane displays and allows you to edit information about the entities that are in the model. The
middle pane displays and allows you to edit information about the properties of the currently selected entity.
If you make a multiple selection in the entity table, the properties table shows the union of all properties of
the selection.

As with most table views, you can rearrange and re-sort the columns. You rearrange the columns simply by
dragging a header cell; you can change the sort order by clicking in header cells.

Overview 15
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

You can choose which columns to see by Control clicking table header cells to display a pop-up list that you
can use to toggle the display of columns (see Figure 2). If you have a multiple selection, Show All Columns
means that only the set of columns common to all members of the selection may be displayed, otherwise
you get a specific set (dependent upon what you have selected).

Figure 2 Browser column options

You can also choose which properties are shown by viewing the command pop-down menu in the property
table. Each command, shown in Figure 3, acts as a toggle to change the visibility of properties and operations
in the table view.

Figure 3 Property list view options

Finally, you can display the entity list either as a flat list or as an inheritance hierarchy. Select the view option
you want in the pop-down menu of the leftmost pane, as shown in Figure 4.

16 Overview
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

Figure 4 Entity view options

Detail pane

The detail pane displays detailed information about whatever was last selected in either the entity or the
property table. If you make a multiple selection, the editor shows the best representation it can of the union
of the selected items. If you’re using the data modeling tool, you can easily apply changes to a number of
entities or properties simultaneously.

The Entities Pane

The table in the entities pane (the leftmost pane) lists all the entities in the model, either as a flat list or in
an inheritance hierarchy. The table has three columns, showing the entity name, the class used to represent
the entity, and a checkbox that indicates whether the entity is abstract. You can edit the entity and class
names directly in the text field cells—double click the text to make it editable—and toggle the abstract
setting of an entity by clicking the checkbox. For more about entities, see NSEntityDescription.

To add a new entity to the model, you click the plus (+) button to the left of the horizontal scroll bar, or
choose Design > Data Model > Add Entity. You delete a selected entity or selected entities by clicking the
minus (−) button , or by pressing the Delete key.

The Properties Pane

The table in the properties pane lists the properties or fetch requests associated with the selected entities.
You choose what features you want to view by choosing from the command pop-down menu shown in
Figure 5.

Figure 5 Properties table options

The Entities Pane 17
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

Note that the properties table shows the set of all properties of all entities selected in the entities table.
Moreover, you can select and edit multiple properties at the same time so if several entities have a similar
property you can change them all simultaneously.

Properties table

The properties table has up to six columns:

1. A text field that shows the name of the property

2. A checkbox that indicates whether the property is optional

3. A checkbox that indicates whether the property is transient

4. A checkbox that indicates whether the property is a sync identity key

5. A text field that shows the kind of property (attribute, relationship, or fetched)—this text field is not
editable

6. A popup menu that shows type (for example, date or integer if the property is an attribute) or destination
entity (if the property is a relationship) of the property

Displaying columns

You can add and remove columns from the properties view by Control-clicking the table header cell—this
displays a popup menu, as shown in Figure 6; selecting a menu item toggles the corresponding column’s
visibility.

Figure 6 Property column display options

You can re-order the columns in the view by dragging the table header cells. You can order the contents of
the table view by clicking on the column header.

18 The Properties Pane
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

Adding properties

There are several ways to add new properties:

 ■ You can choose Design > Data Model and select the appropriate menu item (such as Add Attribute).

 ■ If you have chosen to view just a single type of property, you click the plus (+) button to the left of the
horizontal scroll bar to add a new property of the displayed type.

 ■ If you have chosen to view all properties, you click the plus (+) button to the left of the horizontal scroll
bar to display the pop-down menu shown in Figure 7). From the pop-down menu, you choose what sort
of property you want to add.

Figure 7 Adding a property

Editing properties

You can edit most property values directly in the properties table—the exception is the property type (“Kind”),
which you specify when you first add the property.

You typically edit the predicate associated with fetched properties from the detail pane, using the predicate
builder (see “Fetched Properties and Fetch Request Templates” (page 29)). Note that for a fetched property
youmust select a destination entity before you edit the predicate. If you do not do so, the predicate builder does
not display any properties.

Fetch requests view

The fetch requests view displays the fetch requests associated with an entity as shown in Figure 8. You add
fetch requests using the plus sign button. Although you can edit the name of the fetch request and the
predicate directly in the table view, you typically construct the predicate graphically using the predicate
builder from the detail pane. For more about fetch requests, see NSFetchRequest, and for details about
the predicate syntax, see Predicate Format String Syntax in Predicate Programming Guide.

The Properties Pane 19
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

Figure 8 Fetch request templates for a selected entity

When you add a fetch request to an entity, you are specifying that that entity is the one against which the
fetch will be performed. For example, if you add a fetch request called “highlyPaidEmployees” to the Employee
entity, in code you would retrieve it from the model using:

 NSFetchRequest *fetchRequest = [managedObjectModel
 fetchRequestTemplateForName:@"highlyPaidEmployees"];

The entity for the returned fetch request is set to Employee. Since fetch requests are nevertheless general
to the model, fetch request namesmust be unique across all entities. If you try to set a duplicate name, you get
a warning sheet, and you must choose a unique name before you can proceed.

The Detail Pane

The detail pane itself has four panes: the General pane, the User Info pane, the Configurations pane, and the
Synchronization pane. You choose which pane to display by clicking the corresponding element in the
segmented control in the upper right of the pane, as shown in Figure 9.

Figure 9 The control for choosing a pane in the detail pane

General pane

The general pane is different for entities, attributes (and for different types of attribute), relationships, and
fetch requests. It changes automatically to the appropriate view depending on the last selection. Each view
shows, and allows you to edit, details of the selected element.

 ■ For entities, you can edit the entity name, the name of the class used to represent the entity, and the
parent entity, and you can specify whether or not the entity is abstract.

 ■ For attributes, you can specify the name and type, and whether or not it is optional, transient, or indexed.
When you specify the type, the pane updates to allow you to specify other options for the attribute.

20 The Detail Pane
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

For example, for numeric and date attributes you can specify maximum, minimum, and default values;
for string attributes you can specify maximum and minimum length, a default value, and a regular
expression that the string must match; for transformable attributes, you specify the name of the value
transformer to use.

 ■ For relationships, you can specify the name, cardinality, and destination of the relationship. You can also
specify a delete rule, and—for to-many relationships—maximum and minimum counts.

 ■ For fetched properties, you specify the name, the destination entity, and the predicate to be used for
the fetch. To edit the predicate using the predicate builder, click the Edit Predicate button. For more
details about the predicate builder, see “The Predicate Builder” (page 29).

 ■ For fetch requests, you specify the name and the predicate. As with fetched properties, to edit the
predicate using the predicate builder, click the Edit Predicate button—see “Fetched Properties and Fetch
Request Templates” (page 29).

User Info pane

Entities, attributes, and relationships may have an associated info dictionary that you can retrieve at runtime
(see NSPropertyDescription and NSEntityDescription). The user info pane shows the info dictionary
associated with the currently selected model element. The dictionary comprises key-value pairs. You use the
info dictionary pane to specify any custom keys and string values that may be of use to you in your application.
You add and remove key-value pairs using the plus (+) and minus (–) buttons respectively; you edit the values
directly in the table view.

Using the User Info pane, you can also set a version hash modifier for entities and properties. You use a
modifier to mark or denote an entity or property as being a different “version” than another even if all of the
values which affect persistence are equal. Such a difference is important in cases where, for example, the
structure of an entity is unchanged but the format or content of data has changed. For more details, see
Versioning in Core Data Model Versioning and Data Migration Programming Guide.

Configurations pane

A configuration is a named collection of entities in the model. The configuration pane (show in Figure 10)
therefore applies only to entities. You use it to add and remove configurations and to associate entities with
configurations. For more about configurations and how to use them, see Managed Object Models.

The Detail Pane 21
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

Figure 10 Configurations pane of the detail pane

A model may have an arbitrary number of configurations. You add configurations using the plus (+) button.
Configurations appear in the list for all entities. The checkbox specifies whether the currently-selected entity
is associated with the given configuration.

Synchronization pane

You use the synchronization pane to configure entities and properties for use with Sync Services (see Sync
Services Programming Guide). For more about sync schemas, see Creating a Sync Schema; see also “Adding
Information to Managed Object Models” in Syncing Core Data Applications.

22 The Detail Pane
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Browser View

This section describes the diagram view of the model.

Diagram Elements

The diagram view contains two main elements, rounded rectangles—which represent nodes—and lines, as
shown in Figure 1.

Figure 1 A diagram view of an entity model

Nodes

Nodes are the base elements in the model—the entities.

A node may be split into two sections: The title bar containing the name of the entity, and a compartment
that shows attributes and relationships (see Figure 4 (page 26)).

Lines

Lines represent relationships between entities and entity inheritance hierarchies.

A line with one or two open arrow heads represents a relationship. A single arrowhead denotes a to-one
relationship; a double arrowhead denotes a to-many relationship. The direction of an arrow indicates the
direction of the relationship—the arrow points to the destination entity. Figure 1 shows an example of the
diagram view of a simple data model, with all compartments expanded.

Diagram Elements 23
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Diagram View

A line with a closed arrowhead denotes inheritance.

Diagram Tools

The diagram view provides several tools, whose function should be familiar from other drawing packages.
You select the tools from the palette in the bottom-left corner of the diagram view, shown in Figure 2.

Figure 2 Diagram tools

 ■ Arrow. You use the arrow tool to make selections and to move and resize graphic elements.

 ■ Line. You use the line tool in data model to add a relationship. To connect two elements, select the line
tool, then drag from one end of the connection to the element at the other end. You make the connection
from the source to the destination of the relationship.

 ■ Magnifying glass. You use the magnifying tool to zoom into part of the diagram or, by holding down
the Option key, to zoom out. See “Layout” (page 25) for other ways to zoom. To effect the zoom, you
select the tool, then click inside the diagram.

 ■ Hand. You use the hand tool to move the diagram if its bounds extend beyond the current view.

Editing the Model

You can edit the model directly from the diagram:

 ■ To add a new entity, you Control-click the background of the diagram and select Add Entity from the
contextual menu.

 ■ To add properties to an entity, you Control-click within its node and select the appropriate item from
the contextual menu.

 ■ To delete entities and properties, you select the item then press the Delete key.

 ■ To establish new relationships, you select the line tool then drag from the source node to the destination
node.

Note that although most relationships are implicitly bidirectional, relationships do not have to be modeled
in both directions—although unless you have very good reason not to model a relationship in both
directions, you are strongly encouraged to do so. To specify a bidirectional relationship, you must model
both sides of the relationship. Moreover, within the model, you must specify which relationships are the
inverse of each other. To do this you need to use the model browser.

24 Diagram Tools
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Diagram View

Layout

There are a number of options for moving and resizing elements; you can also constrain the way the elements
can be moved and resized, and even prevent them from being moved and resized. Furthermore, you can
zoom into and out of the diagram and arrange the page layout as you wish.

 ■ Moving and resizing shapes. You can rearrange elements in a diagram to suit your needs—lines that
join elements are updated appropriately. Use the arrow tool to select an element, and then simply drag
it. You can move all the elements in the current selection (see “Multiple Selection”) in the same way.

When you select a shape, “handles” appear around its edges (as shown in Figure 3). You can drag the
handles to resize the shape.

Figure 3 Diagram view showing element handles

You can also automatically resize elements in several ways, by choosing the Design > Diagram > Size.
In the Size submenu, Make Same Width and Make Same Height resize the selected elements appropriately;
Size to Fit resizes the selected elements so that they fully enclose their contents with minimal padding.

 ■ Multiple selection. You can use multiple selection in the diagram view to move a collection of elements
in a flotilla drag, or for roll-up, expand all, and so on. You can make multiple selection in several ways:

 ❏ You can select a single element, then hold down the Shift key and click additional elements.
Unselected elements are added to the current selection; selected elements are removed from the
current selection.

 ❏ You can drag the background of the diagram to create a selection rectangle. Elements whose
boundaries intersect with this rectangle are selected.

 ❏ You can select entities in the browser—the browser selection and diagram selection are kept
synchronized.

Choose Edit > Select All to select all elements in the diagram. Note that for items in the Diagram menu,
clicking on the background (rather than on a drawn element) is the equivalent of selecting all but may
be faster.

Layout 25
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Diagram View

 ■ Alignment and grid. You can use a variety of options to automatically align selected elements and to
help you keep elements aligned. By choosing Design > Diagram > Alignment menu, you can perform a
number of operations—aligning specified edges or centers of a selection and aligning a selection in a
row or column.

You can also use a grid to help keep elements aligned. By default, the diagram view displays a background
grid, and move and resize operations are snapped to it. By choosing Design > Diagram, you can turn
the grid display on and off; you can also independently turn the snap-to-grid feature on and off.

 ■ Locking. You can lock individual graphic elements in place by choosing Design > Diagram > Lock, or
the Lock contextual menu. If you subsequently apply automatic layout, locked elements are unaffected.
To unlock an item, choose Design > Diagram > Unlock, or use the Unlock contextual menu.

 ■ Zoom. You can zoom into and out of the diagram in three different ways:

 ❏ Choose Design > Diagram to zoom in, out, and to fit.

 ❏ Use the pop-up menu to select a percentage zoom.

 ❏ Use the magnifying glass tool (click to zoom in; Option-click to zoom out).

 ■ Page layout. If you move diagram elements outside the current diagram bounds (whether directly, or
through applying automatic layout, or by unhiding elements), the page area automatically expands.
Conversely, if you remove elements such that a page is left blank, the page area automatically contracts.

To adjust the size of a page, choose File > Page Setup. The page layout adjusts automatically to
accommodate a change in page size.

Roll-Up and Expansion

You can display a node and the compartments within it in a variety of ways:

 ■ Rolled up, so that just the name of the entity is showing. This gives the most compact representation,
with maximum information density in the diagram. (In Figure 4 the Department node is rolled up.)

 ■ Compartment titles showing. The titles are Attributes and Relationships in the data model. This gives a
compact representation but with easy access to detail.

 ■ Compartments expanded. All the information in a compartment is visible but at the cost of screen real
estate. (In Figure 4 the Relationships compartment of Employee is expanded, but the Attributes
compartment is not.)

Figure 4 A rolled-up node and a partially expanded rolled-down node

26 Roll-Up and Expansion
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Diagram View

To roll up or roll down the node, choose, respectively, Design > Roll Up Compartments or Design > Roll Down
Compartments. To hide or expose compartment information, you use the disclosure triangle within a
compartment or choose Design > Expand Compartments (or Design > Collapse Compartments).

Colors and Fonts

The diagram view provides default coloring for various elements. By default, all text is black, and the title bar
and outline of drawing elements are colored. In the data model the color is the same for all entities.

You change the background color of the title bar and color of the outline of elements by dropping a color
swatch from the Color panel onto the element. You change the other color settings, and the font used for
the title, property, and operations text, using the Appearance pane of the Info window (inspector). You can
also select multiple elements and change their color and text settings simultaneously, as shown in Figure 5.

Figure 5 Appearance pane showing multiple selection

You can also change the default settings for the entire model using the Appearance pane—see “The Info
Window” (page 13).

Colors and Fonts 27
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Diagram View

28 Colors and Fonts
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Diagram View

You use the predicate builder to create predicates for fetched properties and for fetch request templates. As
with the rest of the modeling tool, the predicate builder simply provides a graphical means of defining a
collection of objects that you could otherwise create programmatically.

Fetched Properties and Fetch Request Templates

Fetched properties are weak, unidirectional relationships from one entity to another, defined by a fetch
request. For more about fetched properties, see NSFetchedPropertyDescription. Note that fetched
property names must begin with a lowercase letter.

Fetch request templates allow you to create predefined instances of NSFetchRequest that are stored in
the model. You can either define all aspects of a fetch or you can allow for runtime substitution of values for
given variables. Fetch templates are associated with the entity against which the fetch will be made, that is,
instances of which the fetch will return. For more about fetch request templates, see Creating Predicates and
the reference documentation for NSManagedObjectModel. For more about predicates in general, see
Predicate Programming Guide.

The Predicate Builder

You access the predicate builder by clicking the "Edit Predicate" button that appears in the detail pane for
fetched properties and for fetch request templates (see “The Browser View” (page 15) and Figure 1 (page
15) respectively).

Figure 1 Fetched property detail pane

Fetched Properties and Fetch Request Templates 29
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder

Using the predicate builder, you can build predicates of arbitrary complexity. The initial display shows a
simple comparison predicate. The left-hand side is pop-up menu that allows you to choose the key used in
a key path expression, the right-hand side is a text field that allows you to specify a constant value, and
between them is a pop-up menu that allows you to choose a comparison operator. Note that for a fetched
property you must specify the destination entity before you edit the predicate, otherwise the predicate builder
does not display any properties.

Figure 2 The predicate builder

Left-Hand Side

The key pop-up menu, shown in Figure 3, displays attributes of the entity with which the predicate is
associated. You can choose Expression to replace the pop-up menu-based expression editor with a free-form
text field editor—see “Properties table” (page 18).

30 Left-Hand Side
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder

Figure 3 Predicate keys

To use a key path (that is, to follow relationships), choose the Select Key item in the key pop-up menu. This
displays a browser, shown in Figure 4, from which you can choose the key or key path you want.

Figure 4 Adding a key path

Left-Hand Side 31
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder

Right-Hand Side

You change the type of the right-hand side expression using the contextual menu shown in Figure 5 (you
must Control-click “empty space” in the line of the criteria—for example, at the end of the line or between
the pop-up menus). This changes the constant value field into a variable field or a key pop-up menu as
appropriate.

Figure 5 Right-hand side expression type

In addition to a constant value, you can also define the right-hand side of a comparison predicate to be a
variable or another key. You use this if you are creating either a fetch request template that requires
substitution variables or defining a fetched property and need to use the $FETCH_SOURCE or
$FETCHED_PROPERTY variables in the predicate.

Compound Predicates

You can add logical operators (AND, NOT, and OR) to create compound predicates of arbitrary depth and
complexity. To add a specific logical operator, use the contextual menu shown in Figure 6.

32 Right-Hand Side
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder

Figure 6 Creating a compound predicate

You can also add peer predicates by either clicking the plus (+) button, or choosing Add Criteria in the
contextual menu—these add an AND operator. You can change the logical operator using the pop-up menu.

You can rearrange the predicate hierarchy by dragging a row or part of the predicate hierarchy.

To remove a predicate, click the minus (−) button, or use the contextual menu. The predicate builder will try
to rebuild the remaining predicate as it can, removing comparison operators where appropriate.

Expressions

To replace the pop-up menu-based expression editor with a free-form text field editor, you can choose
Expression from the left-hand side key pop-up menu shown in Figure 3 (page 31). The text field allows you
to create more complex expressions that include, for example, functions such as sum and avg. “Displaying
columns” (page 18) shows a simple predicate that you could use for a fetch request template to fetch
departments where the sum of the salaries of the employees is greater than a given amount.

Figure 7 The expression editor

You would use the template as shown in the following code fragment.

NSFetchRequest *fetchRequest = [theManagedObjectModel
 fetchRequestFromTemplateWithName:@"departmentsExceedingSalaryAverage"

Expressions 33
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder

 substitutionVariables:[NSDictionary dictionaryWithObject:salaryAverage
 forKey:@"salaryAverage"]];

For more about fetch request templates, see Creating Predicates and the reference documentation for
NSManagedObjectModel. For more about fetched properties, see the reference documentation for
NSFetchedPropertyDescription.

34 Expressions
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

The Predicate Builder

For each entity in the model, you specify a class that will be used to represent it in your application. By default,
the class is set to NSManagedObject, which is able to represent any entity. Typically, at the beginning of a
project, you use NSManagedObject for all your entities. Later, as your project matures, you define custom
subclasses of NSManagedObject to provide custom functionality.

You can use the New File Assistant to create a default implementation of a managed object class. First, select
an entity or a collection of entities in the model, then choose File > New File. In the file type outline view
select Design > Managed Object Class and press Next. (If you have not selected any entities, you do not see
the entry for Managed Object Class.) In the subsequent pane select the appropriate project and targets, then
again press Next. In the following pane (see Figure 1), select the entities for which you want Xcode to generate
default class implementations. Check the relevant boxes to specify whether or not the implementations
should contain custom accessor, validation methods, or Objective-C properties (see Properties). When you
press Finish, Xcode creates the files you specified.

Figure 1 The Managed Object Class Generation pane

35
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Code Generation

36
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Code Generation

A managed object model can contain multiple schema versions. (For more about model versioning, see Core
Data Model Versioning and Data Migration Programming Guide.)

To create a versioned model, select a model file and choose Design > Data Model > Add Version. This converts
an existing .xcdatamodel file into a .xcdatamodeld directory containing the original model and a copy
of the original model with “ 2” appended to the filename.

You can add more versions using Design > Data Model > Add Version.

The current version of the model is denoted by a green check mark on the file symbol. You can change the
current version by selecting a different model and choosing Design > Data Model > Set Current Version.

37
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Model Versioning

38
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Model Versioning

A data model is a deployment resource. A data model must not only be a project file, it must be associated
with the target that uses it. In addition to details of the entities and properties in the model, the model
contains information about the diagram—its layout, colors of elements, and so on. This latter information is
not needed at runtime. The model file is compiled to remove the extraneous information and make runtime
loading of the resource as efficient as possible.

The model compiler, momc, is located in
Library/Xcode/Plug-ins/XDCoreDataModel.xdplugin/Contents/Resources/ in the Developer
directory. If you want to use it in your own build scripts, its usage is momc source destination, where
source is the path of the Core Data model to compile and destination is the path of the output mom
file.

The compiler can generate warnings for various model configuration problems (such as unidirectional
relationships). You can toggle these warnings by checking the appropriate boxes in the Warnings section of
the project Build panel, as shown in Figure 1.

39
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Compiling a Data Model

Figure 1 Project build panel showing momc warning flags

40
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Compiling a Data Model

You can use the Xcode modeling tool to quickly create a user interface for managing entity instances in a
Cocoa application. This provides a useful strategy for testing a model—with little effort you can create an
application to use for testing.

1. Open a nib file (from your project) in Interface Builder, and ensure that you can see the user interface
window in which you want the user interface to be created.

2. In Xcode, click an entity node in the diagram view of the data modeling tool.

3. Option-drag the entity node to the user interface window so that a cursor appears showing a “+” symbol.
(You must make sure that Xcode is the foreground application when you start to do this—Option-clicking
Xcode while it is not foreground makes it foreground and hides all other applications, including Interface
Builder.)

4. Release the mouse. You will be presented with an alert asking you to select the interface style and
options. From the popup menu, you can select an interface for a single item, a master/detail view, or a
collection view. Choose whichever is appropriate.

Each interface style has a different set of options, for example the collection view allows you to add a
box and a search field.

41
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Creating a User Interface From a Data Model

Interface Builder automatically creates a user interface appropriate for the selection you made. For example,
if you select Master/Detail, the interface contains a table view, a search field, text fields for individual attributes,
pop-up menus for to-one relationships, and optionally buttons to add, remove, and fetch instances of the
entity. Object controllers are also added to the nib file to manage collections of entities as appropriate. (Recall
that object controllers that contain managed objects use the entity name, and not the name of the class. If
at a later stage in the development cycle you specify and implement a custom class for an entity, the interface
will continue to work.)

42
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Creating a User Interface From a Data Model

This table describes the changes to Xcode Tools for Core Data.

NotesDate

New document that describes the Xcode modeling tools for Core Data.2008-04-15

43
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

44
2008-04-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Xcode Tools for Core Data
	Contents
	Figures
	Introduction
	Creating a Data Model File
	Workflow
	Basic Features
	Workflow
	Navigation
	Contextual menus

	The Info Window

	The Browser View
	Overview
	Table view panes
	Detail pane

	The Entities Pane
	The Properties Pane
	Properties table
	Displaying columns
	Adding properties
	Editing properties

	Fetch requests view

	The Detail Pane
	General pane
	User Info pane
	Configurations pane
	Synchronization pane

	The Diagram View
	Diagram Elements
	Nodes
	Lines

	Diagram Tools
	Editing the Model
	Layout
	Roll-Up and Expansion
	Colors and Fonts

	The Predicate Builder
	Fetched Properties and Fetch Request Templates
	The Predicate Builder
	Left-Hand Side
	Right-Hand Side
	Compound Predicates
	Expressions

	Code Generation
	Model Versioning
	Compiling a Data Model
	Creating a User Interface From a Data Model
	Revision History

