
Xcode Refactoring Guide
Tools > Xcode

2009-01-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Objective-C, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Refactoring Overview 9

Chapter 2 Refactoring Workflow 11

Chapter 3 Refactoring Transformations 13

Rename 13
Extract 14
Encapsulate 14
Create Superclass 15
Move Up 15
Move Down 15
Modernize Loop 16
Convert to Objective-C 2.0 17

Document Revision History 19

3
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

4
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 2 Refactoring Workflow 11

Figure 2-1 Xcode refactoring workflow 11

Chapter 3 Refactoring Transformations 13

Listing 3-1 Renaming an index variable in a for loop (before) 13
Listing 3-2 Renaming an index variable in a for loop (after) 14
Listing 3-3 Modernizing a for loop (before) 16
Listing 3-4 Modernizing a for loop (after) 17
Listing 3-5 Modernizing a while loop (before) 17
Listing 3-6 Modernizing a while loop (after) 17

5
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

6
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

As programmers develop and maintain a software product, despite their best efforts, the changes they make
may degrade the quality of the product’s source code. Good-quality source code is easy to understand and
allows programmers to get up to date on a project in a short time. In such a project, for example, classes
have well-defined responsibilities; they do few things and do them well, Bad-quality source code is hard to
understand. The classes in such a project may have several areas of responsibility, making it hard to decide
where to add code to implement a new feature.

Projects with good-quality source code tend to lose their quality as they are changed. For example, fixing a
set of problems in a product in time to meet a deadline may require making hastily conceived changes that
may make the product’s source code harder to understand for people not familiar with the product. New
team members, and even the developers who made changes to the source code in the past, may have trouble
understanding that same source code as a whole or its individual components at a later date because the
purpose of classes and methods is not obvious or clear.

To address this problem, developers use a quality-improvement process called “refactoring.” In short,
refactoring makes code easier to understand and maintain without changing the behavior of the product.

This document shows how to perform refactoring operations using Xcode. It does not teach you refactoring.

Organization of This Document

This document contains the following chapters:

 ■ “Refactoring Overview” (page 9). Provides a brief introduction to source code refactoring.

 ■ “Refactoring Workflow” (page 11). Shows the workflow used to perform refactoring operations in Xcode.

 ■ “Refactoring Transformations” (page 13). Describes the refactoring operations (transformations) in Xcode.

See Also

To learn about refactoring, you should consult the books that cover this topic in depth. One such book is
Refactoring: Improving the Design of Existing Code, by Martin Fowler. This book provides in-depth discussions
about the refactoring process and describes refactorings that solve common problems in source code that
make it hard to understand

Organization of This Document 7
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8 See Also
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Refactoring allows you to improve the readability of a product’s source code while retaining its functionality
and behavior. The refactoring operations that modify source code are called refactorings or transformations.

Programmers perform refactoring operations all the time, without thinking about it. Every time you rename
a variable so that it reflects its purpose clearly (for example, changing i to item_index in loop), you are
refactoring code. However, more intricate refactoring operations may require many more steps, such as
moving the implementation of a feature from a superclass to the subclass that is actually responsible for that
aspect of the product.

These changes, while making it easier for programmers to understand a product’s source code, do no change
the functionality or behavior of the code. But they make it easier to make functional improvements or to add
features because programmers spend less time determining where to make the necessary changes. They
can hit the ground running, so to speak.

In Xcode 2, programmers use Search and Replace, and Copy and Paste commands to carry out such refactoring
operations. Performing a single operation with these tools requires careful planning. You must:

1. Identify all the files that need to be modified

2. Delineate the changes needed on each file

3. Make the changes

4. Make sure the changes don’t affect the behavior of the product

Xcode performs the mundane, low-level refactoring steps for you, allowing you to focus on the high-level
implications of a refactoring operation, such as whether it actually helps to make the code easier to understand.

The refactoring transformations Xcode performs work in C and Objective-C source code, and Cocoa-based
projects, which may use key-value coding (KVC), Core Data model files, nib files, and so on. Therefore, in
addition to source code files, Xcode can transform nib files, key-value methods, and Core Data properties.

A refactoring is a change in source code. As such, you must ensure that the modified code works as expected
before and after a transformation. Using snapshots, Xcode lets you revert one or more refactorings. (A
snapshot is a copy of your entire project saved on your file system, so that you can undo changes across
several files in a project.) This capability allows you to experiment freely with refactorings; you can make a
refactoring and determine whether it really improves the readability of the code. If it doesn’t, you can back-out
the changes and try another approach.

As part of your refactoring workflow, you should develop unit tests for code you plan to refactor. Unit tests
provide a way to ensure that code behaves as it was designed to behave. Running these tests before and
after a refactoring lets you verify that the transformation doesn’t change the behavior of the modified code.

The following sections show how you can use Xcode to perform some of the refactorings described in Fowler’s
book and other Xcode-specific transformations.

9
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Refactoring Overview

10
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Refactoring Overview

Figure 2-1 illustrates the refactoring workflow in Xcode.

Figure 2-1 Xcode refactoring workflow

Select code
to refactor

Choose a
transformation

Specify
transformation

options

Preview the
transformation

Apply the
transformation

Transformation
errors/warnings?

Yes

No

Compilation
errors/warnings?

Yes

No

Unit test
errors/warnings?

Yes

No

Start
transmission

End of transmission

Solve
transformation
errors/warnings

Solve compilation
errors/warnings

Solve unit test
errors/warnings

Compile

Run unit
tests

These are the steps of a refactoring:

11
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Refactoring Workflow

1. Select the code to transform, which identifies the transformation item.

The selected code can be located in any source file that’s part of the current project. The selected
codelines, including code fragments, always identify only one transformation item. The transformation
item is either the name of a symbol or a code fragment:

 ■ Symbol name. The transformation affects the header and implementation files that declare and
define the item, and other files that directly access the item, including nib and Core Data–model
files.

 ■ Code fragment. The transformation affects the scope containing the codelines (within a single file).

2. Choose a transformation.

For transformations that operate on a single transformation item, choose Edit > Refactor.

and choose a transformation from the transformation pop-up menu in the Refactoring window.

Note: There are additional transformations available, such as Convert to Objective-C 2.0, which you
execute by choosing them from the Edit menu.

3. Define the transformation.

You define the transformation in the Refactoring window, which contains:

 ■ The transformation menu

 ■ Transformation specifiers (vary according to the transformation)

 ■ Transformation options (vary according to the transformation)

 ■ Transformation editor pane

4. Preview/modify the transformation.

In the transformation editor you can choose which changes to include in the transformation. Xcode
selects all changes it deems necessary for the transformation.

5. Apply the transformation.

To ensure that you can revert the transformation if it doesn’t prove beneficial, make sure the Snapshot
option is selected before clicking Apply.

6. Compile the source code.

Some transformations require that you perform additional work outside the transformation editor to
complete them. You can use compilation errors and warning to determine the fixes you need to make.

7. Test the code.

If you created unit tests for the code involved in the transformation, run them to ensure the transformed
code behaves as expected.

If there are problems, you can revert the transformation in the Snapshots window (if the Snapshot option
was selected when you applied the transformation).

12
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Refactoring Workflow

Xcode performs transformation operations (refactorings) within the current project; it doesn’t perform
transformations across project references.

This chapter describes each of the refactorings Xcode helps you perform.

Rename

The Rename transformation renames the transformation item throughout the project files.

Note: This transformation can rename items other than methods, such as functions, structures, structure
fields, and so on.

This transformation contains the following specifiers and options:

 ■ New Name. The new name for the transformation item.

 ■ Rename related KVC/Core Data Members. Specifies whether to change related KVC methods and Core
Data properties.

 ■ Rename Related Files. Available when the transformation item is declared in a header file named after
the transformation item, and defined in the corresponding implementation file.

The project elements this transformation modifies include:

 ■ The transformation item’s declaration/definition

 ■ Related KVC methods and Core Data properties, when indicated

 ■ The names of the header and implementation files that define the item and the corresponding
import/include statements in files that use the item, when indicated

 ■ Code that directly references the transformation item

Listing 3-1 and Listing 3-2 show an example of a rename transformation.

Listing 3-1 Renaming an index variable in a for loop (before)

- (int) myMethod {
 int j = 1;
 int i;
 i = 5;
 if (j == 1) {
 int i;
 for (i = 0; i < 10; i++) {
 printf("Item index: %i\n", i);

Rename 13
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Refactoring Transformations

 ...
 }
 }
 return i;
}

Listing 3-2 Renaming an index variable in a for loop (after)

- (int) myMethod {
 int j = 1;
 int i;
 i = 5;
 if (j == 1) {
 int item_index;
 for (item_index = 0; item_index < 10; item_index++) {
 printf("Item index: %i\n", item_index);
 ...
 }
 }
 return i;
}

Extract

The Extract transformation creates a function or method with the selected code as its body.

Xcode analyzes the context of the selected code and the variables it uses to determine the generated routine’s
parameters and return value.

This transformation contains the following specifiers:

 ■ Extracted Routine Name. The name of the function or method, including parameter names and types
and return-value type, which you can customize according to your preferences.

 ■ Extract To. The type of routine to which the selected code is to be extracted: a method or a function.

Note: When extracting code from a method into a function, this transformation generates parameters for
all the implicit data the code uses that would otherwise be inaccessible to a function.

Encapsulate

The Encapsulate transformation creates accessors for the transformation item, reduces its visibility, and
changes code that directly accesses the item to use the accessors instead.

Note: This transformation can operate on instance variables, too.

This transformation contains the following specifiers:

14 Extract
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Refactoring Transformations

 ■ Getter. The method to use to get the value of the transformation item.

 ■ Setter. The method to use to set the value of the transformation item.

Create Superclass

The Create Superclass transformation creates a superclass for the selected class.

This transformation contains the following specifiers:

 ■ Superclass Name. The name of the new superclass for the selected class.

 ■ Declaration and Definition Location. You can choose between placing the new class’s declaration and
definition in:

 ❏ The the same header and implementation files where the selected class is declared/defined

 ❏ New header and implementation files

To complete the transformation, you may need to correct the import/include statements of the source files
that declare/define the selected class and the new header/implementation files.

Move Up

The Move Up transformation moves the declaration and definition of the transformation item to the
superclass of the class that declares and defines the item.

This transformation contains the following option:

 ■ Move Up Related Methods. Specifies whether to move methods that directly access the transformation
item—and are declared/defined in the class that defines the item—to the superclass, too.

Move Down

The Move Down transformation moves the declaration and definition of the transformation item to one or
more of the subclasses of the class that declares/defines the item.

This transformation contains the following specifier:

 ■ Subclasses to Move the Item To. List of classes to which the transformation item is moved.

Create Superclass 15
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Refactoring Transformations

Note: This refactoring removes the transformation item’s declaration/definition from the class that
declares/defines it.

Modernize Loop

The Modernize Loop transformation modifies the selected loop to use the less verbose and more efficient
Objective-C 2.0 for loop.

This transformation operates only on a loop that meets the following requirements:

 ■ The loop iterates over all the elements of a collection: an NSArray or NSSet object.

 ■ The loop accesses each item in the collection in sequential order, starting at the first item.

 ■ Each of the loop’s iterations processes only one item of the collection at a time; it doesn’t access any
preceding or succeeding items.

These are additional restrictions on for loops:

 ■ The loop iterates over the elements of an NSArray object.

 ■ The loop uses a variable as the index into the collection, and this variable goes from 0 to [<collection>
count] - 1.

 ■ The loop gets the current element with [<collection> objectAtIndex:<index>] and, either saves
it once into an element variable that’s accessed in the rest of the loop’s body, or uses this expression to
retrieve the current element throughout the loop’s body.

These are additional restrictions on while loops:

 ■ The loop uses an NSEnumerator object to iterate over the collection.

 ■ The loop gets the current element with [<enumerator> nextObject] and exits when the current
element is nil.

 ■ The loop does not change the loop control variables.

 ■ The loop’s containing code does not access the loop’s control variables.

Listing 3-3 and Listing 3-4 show a Modernize Loop transformation on a for loop.

Listing 3-3 Modernizing a for loop (before)

{ NSArray *array = ...;
 NSObject *object = ...;
 int index;
 int array_count = [array count];
 for (index = 0; index < array_count; index++) {
 [object someMethod:[array objectAtIndex:index]];
 NSLog(@"%@, [array, objectAtIndex:index]);
 }
}

16 Modernize Loop
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Refactoring Transformations

Listing 3-4 Modernizing a for loop (after)

{ NSArray *array = ...;
 NSObject *object = ...;
 for (foo in array) {
 [object someMethod:foo];
 NSLog(@"%@, foo]);
 }
}

Listing 3-5 and Listing 3-6 show a Modernize Loop transformation on a while loop.

Listing 3-5 Modernizing a while loop (before)

{ NSSet *set = ...;
 NSEnumerator *enumerator = [set objectEnumerator];
 NSObject *item;
 while ((item = [enumerator nextObject]) != nil) {
 NSLog(@"%@", item);
 }
}

Listing 3-6 Modernizing a while loop (after)

{ NSArray *set = ...;
 NSObject *item;
 for (item in set) {
 NSLog(@"%@", item);
 }
}

Convert to Objective-C 2.0

The Convert to Objective-C 2.0 transformation modifies all the source files of the current project to take
advantage of features that Objective-C 2.0 introduces.

This transformation has the following specifiers:

 ■ Modernize Loops. Specifies whether to perform the transformation on all source code files.

 ■ Use Properties. Specifies whether to replace instance variables with Objective-C properties.

Convert to Objective-C 2.0 17
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Refactoring Transformations

18 Convert to Objective-C 2.0
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Refactoring Transformations

This table describes the changes to Xcode Refactoring Guide.

NotesDate

Made minor content changes.2009-01-06

New document that describes source code refactoring and shows how to perform
refactoring operations in Xcode.

2008-05-19

This content was previously published in Xcode User Guide.

19
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Xcode Refactoring Guide
	Contents
	Figures and Listings
	Introduction
	Refactoring Overview
	Refactoring Workflow
	Refactoring Transformations
	Rename
	Extract
	Encapsulate
	Create Superclass
	Move Up
	Move Down
	Modernize Loop
	Convert to Objective-C 2.0

	Revision History

