
Xcode 2.0 User Guide
(Legacy)

Tools > Xcode

2006-11-07

Apple Inc.
© 2004, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, AppleScript
Studio, Bonjour, Carbon, Cocoa, Keynote, Mac,
Mac OS, Macintosh, MPW, Objective-C, Panther,
Sherlock, WebObjects, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder, Numbers, and Spotlight are trademarks
of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Xcode 2.0 User Guide 25

Organization of This Document 25
See Also 26

Chapter 1 Developing a Software Product With Xcode 27

Defining a Product 30
Creating a Project 31
Project Organization and Navigation 32

Organizing a Project 32
Project Navigation 32
Finding Information 33
Using the Documentation 33

Editing Files 34
Resources and Localization 35

Information Property List Files 35
Strings Files 35
Nib Files 36
Resource Manager Files 36

The Edit/Build/Debug Cycle 36
Tools 36
Building 37
Debugging 37
Optimizing the Edit/Build/Debug Cycle 38

Analyzing and Optimizing Your Software 38
Customizing Your Work Environment 38

Preferences 39
Customizing the Xcode User Interface 39
Working in a Shell 39

Part I Projects 41

Chapter 2 Projects in Xcode 43

Components of an Xcode Project 43
The Project Directory 46

Chapter 3 Creating a Project 47

Choosing a Project Template 47

3
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a New Project 51
Importing a Project 52

Importing CodeWarrior Projects 53
Converting a Project Builder Project 54
Importing Projects From ProjectBuilderWO 54

Opening and Closing Projects 54

Chapter 4 The Project Window 55

The Project Window and its Components 55
The Groups & Files List 56
The Detail View 60
The Project Window Toolbar 63
The Project Window Status Bar 64

Project Window Layouts 64
The Default Layout 64
The Condensed Layout 66
The All-In-One Layout 68
Changing the Project Window Layout 71
Saving Changes to the Current Layout 71

Viewing Additional Information on Project Items and Operations 72
Inspector and Info Windows 73
Viewing the Progress of Operations in Xcode 74

Chapter 5 Files in a Project 75

Files in Xcode 75
The Files in a Project 76
How Files Are Referenced 77
Adding Files, Frameworks, and Folders to a Project 78

Adding Files and Folders 78
Adding Frameworks 80
Removing Files 80

Source Trees 81
Referencing Other Projects 81

Chapter 6 Organizing Xcode Projects 83

Software Organization Tips 83
Dividing Your Work Into Projects and Targets 83

Identifying the Scope 84
Trade-offs of Putting Many Targets in One Project 84
Trade-offs of Using Multiple Projects 85

Organizing Files 86
Organizing Files into Source Groups 86
Using Smart Groups to Organize Files 87

4
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Viewing Groups and Files 89
Saving Commonly Accessed Locations 90

The Favorites Bar 90
Saving Commonly Accessed Locations as Bookmarks 91

Adding Comments to Project Items 92

Chapter 7 Inspecting Project Attributes 95

Chapter 8 Finding Information in a Project 97

Searching in a Project 97
The Project Find Window 98
Choosing What to Search For 98
Specifying Which Files to Search 99
Viewing Search Results 99
Creating Sets of Search Options 101
Replacing Text in Multiple Files 103

Viewing Project Symbols and Classes 104
Code Sense 104
Viewing the Symbols in Your Project 105
Viewing Your Class Hierarchy 107

Viewing Documentation 110
Using the ADC Reference Library 110
Browsing ADC Reference Library Content 112
Searching for Documentation 114
Finding Documentation for Command-Line Tools 118
Working With Documentation Bookmarks 118
Obtaining Documentation Updates 118
Controlling the Appearance of the Documentation Viewer 119

Part II Design Tools 121

Chapter 9 Overview of Xcode Design Tools 123

Class Modeling 123
Data Modeling 124
Why Are Modeling Tools Useful? 124

Chapter 10 Common Features of the Xcode Design Tools 125

The Diagram View 126
Diagram Elements 126
Diagram Tools 126
Roll-Up and Expansion 127
Layout 128

5
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Multiple Selection 129
Colors and Fonts 130

The Browser View 131
Table View Panes 131
Detail Pane 132

Info Window 133
Workflow 133

Model Files 134
Navigation 135
Contextual Menus 136

Chapter 11 Class Modeling With Xcode Design Tools 137

Creating Models 137
Creating a Quick Model 137
Creating a Class Model File 138

Indexing and Tracking 138
The Diagram View for Class Modeling 139

Nodes in a Class Model 140
Lines 141
Annotations 142
Filtering and Hiding 142

The Browser View for Class Modeling 145

Chapter 12 Data Modeling With Xcode 147

The Diagram View for Data Modeling 147
The Model Browser for Data Modeling 148

The Entities Pane 149
The Properties Pane 149
The Detail Pane 151

The Predicate Builder 153
Right-Hand Side 154
Left-Hand Side 154
Compound Predicates 155

Workflow 156
Creating a Model 156
Custom Classes 157
Compiling a Data Model 157

Part III Editing Source Files 159

Chapter 13 Inspecting File Attributes 161

Inspecting File, Folder, and Framework References 161

6
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Choosing File Encodings 163
Changing Line Endings 163
Overriding a File’s Type 164

Chapter 14 Opening, Closing, and Saving Files 165

Opening and Closing Files 165
Opening Project Files 165
Opening Header Files and Other Related Files 165
Opening Files by Name or Path 166
Closing Files 166

Saving Files 166

Chapter 15 The Xcode Editor 169

The Xcode Editor Interface 169
Editing Files in a Separate Editor Window 170
Using the Attached Editor 172
Splitting Code Editors 172

Navigating Source Code Files 173
The Navigation Bar 174
Searching in a Single File 176
Shortcuts for Finding Text and Symbol Definitions From an Editor Window 178

Controlling the Appearance of the Code Editor 179
Setting Default Fonts and Colors 179
Displaying a Page Guide 180
Displaying the Editor Gutter 180
Viewing Column and Line Positions 180

Chapter 16 Formatting and Syntax Coloring 183

Setting Syntax Coloring 183
Controlling Syntax Coloring and Syntax Coloring Rules 183
Controlling Syntax Coloring for a Single File 184

Wrapping Lines 185
Indenting Code 185

Syntax-Aware Indenting 185
Indenting Code Manually 186
Setting Tab and Indent Formats 186

Matching Parentheses, Braces, and Brackets 187

Chapter 17 Code Completion 189

Using Code Completion 189
Changing Code Completion Settings 190
Text Macros 191

7
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 18 Using an External Editor 193

Overriding How a File is Displayed 193
Changing the Preferred Editor for a File Type 193
Opening Files With an External Editor 195
Opening Files With Your Preferred Application 196

Chapter 19 Customizing for Different Regions 197

Marking Files for Localization 198
Adding Files for a Region 199

Part IV Version Control 201

Chapter 20 Overview of Version Control 203

Chapter 21 Managing Projects 205

Project Packages 205
Configuring Repository Access 206

Chapter 22 Managing Files 211

Viewing File Status 211
Adding Files to the Repository 213
Updating Files 214
Removing Files From the Repository 215
Renaming Files 217
Viewing Revisions 219
Comparing Revisions 219

The Compare Command 220
The Diff Command 221
Specifying Comparison and Differencing Options 222

Committing Changes 223
Resolving Conflicts 224
Development Workflow 226

Update Your Local Copy 226
Make Changes 226
Resolve Conflicts 227
Publish Your Changes 227

8
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Part V The Build System 229

Chapter 23 Targets 231

Anatomy of a Target 232
Creating Targets 233

Creating a New Target 233
Special Types of Targets 236
Duplicating a Target 238
Removing a Target 238

Target Dependencies 238
Adding a Target Dependency 239
Creating an Aggregate Target 240
An Example With Multiple Targets and Projects 240

Working with Files in a Target 241
Viewing the Files in a Target 242
Adding and Removing Target Files 242

Inspecting Targets 243
Inspecting Native Targets 243
Inspecting Legacy and External Targets 245
Editing General Target Settings 245
Editing Information Property List Entries 245

Converting a Project Builder Target 247

Chapter 24 Build Phases 249

Overview of Build Phases 249
Build Phases in Xcode 250
Adding and Deleting Build Phases 253
Adding Files to a Build Phase 254
Processing Order 254

In Native Targets 255
In Jam-Based Targets 255
Reordering Build Phases 255

Compile Sources Build Phase 256
Copy Files Build Phase 256
Run Script Build Phase 258
Build Rules 261

System Rules 262
Creating a Custom Build Rule 262
Creating a Custom Build Rule Script 263
Execution Environment for Build-Rule Scripts 264

9
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 25 Build Settings 267

Overview of Build Settings 267
Build Setting Syntax 268
Build Setting Layers 269
Build Setting Evaluation 271

Overview of Build Setting Evaluation 271
Evaluating a Build Setting Defined in Multiple Layers 272
Evaluating a Build Setting Specification Using Several Values 274

Editing Build Settings in the Xcode Application 277
Viewing Build Settings in an Inspector 277
Collections of Build Settings 279
Editing Build Setting Specifications 280
Adding and Deleting Build Settings 282
Editing Search Paths 282
Creating Multi-Architecture Binaries 283
Editing Build Settings for Legacy and External Targets 283

Using Build Settings With Run Script Build Phases 284
Troubleshooting Build Settings 284

Finding Where a Build Setting is Defined 284
Build Setting Names and Their Corresponding Titles 286

Per-File Compiler Flags 294

Chapter 26 Build Styles 297

Overview of Build Styles 297
Predefined Build Styles 298
Editing Build Styles 298

Viewing Build Styles for a Project 298
Adding and Deleting Build Styles 299
Modifying Build Settings in a Build Style 300

Chapter 27 Building a Product 301

Build Locations 301
Changing the Default Build Location for All Projects 302
Overriding the Default Build Location for a Project 303

Building From the Xcode Application 304
Setting the Active Target and Build Style 304
Initiating a Full Build 304
Viewing Preprocessor Output 305
Compiling a Single File 305
Cleaning a Target 305

Viewing Build Status 305
Viewing Detailed Build Results 306
Specifying When Detailed Build Results are Shown 308

10
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Viewing Errors and Warnings 309
Viewing Errors and Warnings in the Project Window 309
Viewing Errors and Warnings in the Build Results Window 311
Viewing Source Code for an Error or Warning 312
Controlling Errors and Warnings 312

Building From the Command Line 312

Chapter 28 Linking 315

Specifying the Search Order of External Symbols 315
Preventing Prebinding 316
Linking With System Frameworks 316
Linking to a Dynamic Library in a Nonstandard Location 316
Reducing the Number of Exported Symbols 316
Reducing Paging Activity 317
Dead-Code Stripping 317

Enabling Dead-Code Stripping in Your Project 317
Identifying Stripped Symbols 318
Preventing the Stripping of Unused Symbols 318
Assembly Language Support 319

Using ZeroLink 320
Customizing ZeroLink 321
Caveats When Using ZeroLink 322

Chapter 29 Optimizing the Edit-Build-Debug Cycle 325

Using a Precompiled Prefix Header 325
Creating the Prefix Header 326
Configuring Your Target To Use the Precompiled Header 326
Sharing Precompiled Header Binaries 327
Controlling the Cache Size Used for Precompiled Headers 327
Restrictions 327

Distributing Builds Among Multiple Computers 328
How Distributed Builds Work 328
Requirements for Using Distributed Builds 329
Discovering Available Computers 329
Sharing a Computer 330
Distributed Builds and Firewalls 330
Getting the Most Out of Distributed Builds 330

Predictive Compilation 331

11
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 30 Using Cross-Development in Xcode 333

Part VI Debugging 335

Chapter 31 Executable Environments 337

Executable Environments in Xcode 337
Setting the Active Executable 338
Creating a Custom Executable Environment 338
Editing Executable Settings 339

General Settings 339
Setting Command-Line Arguments and Environment Variables 340

Running a Development Product 342
The Run Log 342

Chapter 32 Running in Xcode’s Debugger 345

Generating Debugging Information 345
Configuring Your Executable for Debugging 346
Starting Your Program in the Debugger 347

The Debugger Window 347
Troubleshooting 349

Lazy Symbol Loading 349
The Console Window 350
Debugging a Command-Line Program 350
Xcode and Mac OS X Debugging 350

Using Debug Variants of System Libraries 351
Using Guard Malloc in Xcode 351

Chapter 33 Controlling Execution of Your Code 353

Breakpoints 353
The Breakpoints Window 353
Adding Breakpoints 354
Deleting Breakpoints 356
Disabling and Reenabling Breakpoints 356

Stopping on C++ Exceptions 356
Stopping on Core Services Debugging Functions 357
Stepping Through Code 357
Stopping and Starting Your Program in the Debugger 360

Chapter 34 Examining Program Data and Information 363

Viewing Stack Frames 363
Viewing Variables in the Debugger Window 363

12
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Using Custom Data Formatters to View Variables 364
Using a Different Display Format to View a Variable 366
Using the Globals Browser 367

Using the Expressions Window 368
Viewing Disassembled Code and Processor Registers 369
Browsing the Contents of Memory 369

Chapter 35 Shared Libraries Window 371

Chapter 36 Using Fix and Continue 373

About the Fix Command 373
GDB and the Fix Command 373
Debugging With Patched Code 374

Using Fix and Continue 374
Restrictions on Using the Fix Command 375

Restrictions Reported by GDB 376
Additional Restrictions 376
Supported Fixes 377

Chapter 37 Remote Debugging in Xcode 379

Configuring Remote Login 379
Creating a Shared Build Location 381
Configuring Your Executable for Remote Debugging 381

Part VII Customizing Xcode 383

Chapter 38 Customizing Key Equivalents 385

Customizing Command-Key Equivalents for Menu Items 387
Customizing Keyboard Equivalents for Other Tasks 389

Chapter 39 Xcode Preferences 393

General Preferences 393
Code Sense Preferences 394
Building Preferences 396
Distributed Builds Preferences 399
Debugging Preferences 400
Key Bindings Preferences 401
Text Editing Preferences 403
Fonts & Colors Preferences 405
Indentation Preferences 406
File Types Preferences 408

13
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Opening Quickly Preferences 410
Source Trees Preferences 411
SCM Preferences 412
Documentation Preferences 413

Chapter 40 Using Scripts To Customize Xcode 415

Executing Shell Commands 415
The Startup Script and the User Scripts Menu 415

How Xcode Creates the User Scripts Menu 416
How to Add an Item to the User Scripts Menu 417
How to Remove Items From the User Scripts Menu 418
Using Variables in a Menu Definition Script 418
Working With Built-in Utility Scripts 420
Additional Customization With Scripts 420

Menu Script Reference 421
Menu Script Definition Variable Expansion 421
Pre-Execution Script Variable Expansion 422
Special User Script Output Markers 423
Built in Utility Scripts 424

Appendix A Using CVS 427

The cvs and ocvs Tools 427
Creating a CVS Repository 427

Creating the cvsusers Group 427
Creating the Root Directory 428
Initializing the Repository 428

Accessing a CVS Repository 429
Importing Projects Into a CVS Repository 429
Checking Out Projects From a CVS Repository 430
Updating a Local Project File to the Latest Version in a CVS Repository 430

Appendix B Using Subversion 431

Installing the Subversion Software 431
Creating a Subversion Repository 431

Creating the svnusers Group 432
Creating and Initializing the Root Directory 432

Accessing a Subversion Repository 432
Importing Projects Into a Subversion Repository 433
Checking Out Projects From a Subversion Repository 433
Updating the Project File to the Latest Version in a Subversion Repository 434

14
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Appendix C Configuring Your SSH Environment 435

Document Revision History 437

15
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

16
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Developing a Software Product With Xcode 27

Figure 1-1 Xcode and the software development process 28

Chapter 2 Projects in Xcode 43

Figure 2-1 The key components of a project 43
Figure 2-2 An Xcode project 45

Chapter 3 Creating a Project 47

Figure 3-1 The New Project Assistant 52
Table 3-1 Xcode project templates 47

Chapter 4 The Project Window 55

Figure 4-1 Xcode’s default project window 55
Figure 4-2 Outline view of the project 58
Figure 4-3 Splitting the Groups & Files view 59
Figure 4-4 The split Groups & Files view 60
Figure 4-5 Choosing the type of information to display in the Detail view 61
Figure 4-6 Searching for files with “dialog” in their name 62
Figure 4-7 The project window toolbar 63
Figure 4-8 The Default Workspace project window 65
Figure 4-9 The Condensed Project Workspace project window 67
Figure 4-10 The project page of the All-In-One project window 69
Figure 4-11 The build page of the All-In-One project window 70
Figure 4-12 An Info window 73
Figure 4-13 The Activity Viewer Window 74
Table 4-1 Additional windows available with the Default project window layout 66
Table 4-2 Additional windows available with the Condensed project layout 68
Table 4-3 Additional windows available with the All-In-One layout 71

Chapter 5 Files in a Project 75

Figure 5-1 A source file 75
Figure 5-2 The project contents in the Groups & Files list 76
Figure 5-3 Adding files to a project 79

17
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 6 Organizing Xcode Projects 83

Figure 6-1 Configuring a smart group 88
Figure 6-2 Viewing the contents of a group 89
Figure 6-3 Viewing bookmarks 92
Figure 6-4 The Comments pane 93

Chapter 7 Inspecting Project Attributes 95

Figure 7-1 The project inspector 96

Chapter 8 Finding Information in a Project 97

Figure 8-1 The find window 98
Figure 8-2 Find Results in the project find window 100
Figure 8-3 Search results in the project window 101
Figure 8-4 The Batch Find Options window 102
Figure 8-5 Viewing symbols in your project 105
Figure 8-6 Filtering the symbols in a project 106
Figure 8-7 The Class Browser window 107
Figure 8-8 The class browser options dialog 109
Figure 8-9 The documentation window 113
Figure 8-10 API search in the documentation viewer 115
Figure 8-11 Results of a full-text search in the documentation window 116

Chapter 10 Common Features of the Xcode Design Tools 125

Figure 10-1 Browser view and diagram view for a class model 125
Figure 10-2 Diagram tools 126
Figure 10-3 A rolled up node and a partially expanded rolled down node 127
Figure 10-4 Diagram view showing element handles 128
Figure 10-5 Appearance pane showing multiple selection 130
Figure 10-6 The Browser View 131
Figure 10-7 Browser column options 132
Figure 10-8 Property list view options 132
Figure 10-9 Class / Entity View Options 132
Figure 10-10 Appearance pane 133
Figure 10-11 New File Assistant 134
Figure 10-12 Elements pop-up menu 135

Chapter 11 Class Modeling With Xcode Design Tools 137

Figure 11-1 Selecting groups and files to be in the model 138
Figure 11-2 Adding a file in the Tracking pane 139
Figure 11-3 Info window for a class model diagram 141

18
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 11-4 General pane of the Info window 143
Figure 11-5 The filter editor 144
Figure 11-6 Setting hiding in the detail pane 145
Figure 11-7 The browser view in the class modeling tool 145

Chapter 12 Data Modeling With Xcode 147

Figure 12-1 Example diagram view of a data model 148
Figure 12-2 Example of a browser view for a data model 149
Figure 12-3 Properties table options 149
Figure 12-4 Properties view 150
Figure 12-5 Adding a property 150
Figure 12-6 Fetch requests view 151
Figure 12-7 Control for choosing the pane in the detail pane 151
Figure 12-8 Configurations pane of the detail pane 152
Figure 12-9 Predicate builder 153
Figure 12-10 Right-hand side expression type 154
Figure 12-11 Predicate keys 155
Figure 12-12 Adding a key path 155
Figure 12-13 Creating a compound predicate 156
Figure 12-14 Creating a New Data Model File 157

Chapter 13 Inspecting File Attributes 161

Figure 13-1 Inspecting a file 162

Chapter 15 The Xcode Editor 169

Figure 15-1 The Xcode Editor 169
Figure 15-2 The Xcode editor in a standalone window 171
Figure 15-3 Editor in a project window 172
Figure 15-4 Splitting a code editor 173
Figure 15-5 The navigation bar in the editor 174
Figure 15-6 The function pop-up menu 175
Figure 15-7 The Single File Find window 177
Figure 15-8 Line and column positions in the File History pop-up menu 181
Table 15-1 Shortcuts for performing a project-wide search using the current selection in the

editor 178

Chapter 16 Formatting and Syntax Coloring 183

Table 16-1 Syntax coloring rules 184

19
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Chapter 17 Code Completion 189

Figure 17-1 Using code completion 190

Chapter 18 Using an External Editor 193

Figure 18-1 Changing how a file is viewed 194

Chapter 19 Customizing for Different Regions 197

Figure 19-1 Inspecting a localized group 197
Figure 19-2 A localized group in the Groups & Files list 198

Chapter 21 Managing Projects 205

Figure 21-1 The SCM System pop-up menu 207
Figure 21-2 Client configuration dialog for CVS 208
Figure 21-3 Authentication dialog for Subversion 209
Figure 21-4 SCM Error dialog 209

Chapter 22 Managing Files 211

Figure 22-1 The SCM group in the Groups & Files list 212
Figure 22-2 The SCM column in Xcode’s detail view 212
Figure 22-3 The SCM Results and editor panes in the SCM Results window 213
Figure 22-4 Files to be added to the repository 214
Figure 22-5 The SCM group in an Xcode project whose project file needs to be updated 215
Figure 22-6 The Delete References dialog 216
Figure 22-7 The Remove From SCM Repository dialog 216
Figure 22-8 File to be removed from the repository 217
Figure 22-9 Renaming a managed file 218
Figure 22-10 Uncommitted rename operation 218
Figure 22-11 Info window displaying the revisions of a file 219
Figure 22-12 Comparing two revisions of a file using FileMerge 220
Figure 22-13 Identifying differences between two revisions of a file 221
Figure 22-14 The SCM pane in the Xcode Preferences window 222
Figure 22-15 Dialog indicating that changes cannot be committed because there are files that

need to be updated 224
Figure 22-16 Unable to save project dialog 225
Figure 22-17 Dialog indicating that the project file has been changed by an application other

than Xcode 225

Chapter 23 Targets 231

Figure 23-1 Targets and products 231

20
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 23-2 A target 233
Figure 23-3 The New Target Assistant 234
Figure 23-4 A target dependency in the Groups & Files list 239
Figure 23-5 Three projects with dependencies 241
Figure 23-6 Viewing targets in the project window 242
Figure 23-7 The Info window for a native target 244
Figure 23-8 The Properties pane of the target inspector window 246
Table 23-1 Xcode target templates 235
Table 23-2 Legacy target templates 236

Chapter 24 Build Phases 249

Figure 24-1 Presentation tasks 250
Figure 24-2 Building an application 251
Figure 24-3 Building an application using build phases 251
Figure 24-4 Viewing build phases 253
Figure 24-5 The Info window for a copy files build phase 257
Figure 24-6 The Info window for a Run Script build phase 260
Figure 24-7 The Rules pane of the Info window 261
Table 24-1 Build phases available in Xcode 252
Table 24-2 Input files and output files of build phases 252
Table 24-3 Destination names and example destination paths of Copy Files build phases 257
Table 24-4 Environment variables that you can access from a Run Script build phase 258
Table 24-5 System rules 262
Table 24-6 Environment variables for build-rule scripts 264

Chapter 25 Build Settings 267

Figure 25-1 A build setting 267
Figure 25-2 Build setting layers 269
Figure 25-3 Build setting evaluation precedence 271
Figure 25-4 Evaluation of the LAYERED build setting 273
Figure 25-5 Evaluation of the STAGGERED build setting 274
Figure 25-6 Evaluation of the STAGGERED build setting with CAPTION overridden in the Build

Style layer 276
Figure 25-7 Sharing build setting values among targets 277
Figure 25-8 The Build pane of a target Info window 278
Figure 25-9 Choosing a build setting collection 280
Figure 25-10 Changing the value of a build setting 281
Figure 25-11 [Finding the definition of a build setting 285
Figure 25-12 The Build pane of the file inspector 295
Table 25-1 Configuration of the LAYERED build setting 272
Table 25-2 General build settings by build setting name 286
Table 25-3 General build settings by build setting title 288
Table 25-4 GNU C/C++ compiler build settings by build setting name 289
Table 25-5 GNU C/C++ compiler build settings by build setting title 292

21
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Table 25-6 GCC 4.0 build settings by build setting title 294

Chapter 26 Build Styles 297

Figure 26-1 The Styles pane 299

Chapter 27 Building a Product 301

Figure 27-1 Specifying the default location for build results 302
Figure 27-2 Build status message in the project window 306
Figure 27-3 The Build Results window 307
Figure 27-4 Viewing errors and warnings in the project window 310
Figure 27-5 An error in the Build Results window 311
Table 27-1 Build settings for installing a framework in the local domain 313

Chapter 28 Linking 315

Table 28-1 Xcode build settings for dead stripping 318
Table 28-2 Linker options for dead stripping 318

Chapter 31 Executable Environments 337

Figure 31-1 The General pane of the Info window for an executable 339
Figure 31-2 Arguments and environment variables in the Info window for an executable 341
Figure 31-3 The Run Log window 342

Chapter 32 Running in Xcode’s Debugger 345

Figure 32-1 The Debugging pane of the Info window for an executable 346
Figure 32-2 The debugger window 348

Chapter 33 Controlling Execution of Your Code 353

Figure 33-1 The Breakpoints window 354
Figure 33-2 A breakpoint in a gutter 355
Figure 33-3 Execution of a program stopped at a breakpoint 358
Figure 33-4 Stepping over a line of code 359
Figure 33-5 Stepping into a function 360

Chapter 34 Examining Program Data and Information 363

Figure 34-1 The variables view 364
Figure 34-2 The Globals Browser 367
Figure 34-3 Viewing disassembled code in the debugger 369
Figure 34-4 The memory browser window 370

22
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Table 34-1 365

Chapter 36 Using Fix and Continue 373

Figure 36-1 Changing the position of the program counter 375

Chapter 38 Customizing Key Equivalents 385

Figure 38-1 The Key Bindings pane in the Xcode Preferences window 386
Figure 38-2 Supplied sets of key bindings 386
Figure 38-3 Some of the glyphs for available key equivalents 387
Figure 38-4 The Help menu commands 388
Figure 38-5 Editing the menu key equivalent for the Show Release Notes menu item 389
Figure 38-6 Text Key Bindings in the Preferences window 390
Figure 38-7 Editing the Text Editing shortcut for Capitalize Word 391

Chapter 39 Xcode Preferences 393

Figure 39-1 General Xcode Preferences 393
Figure 39-2 Code Sense Preferences 395
Figure 39-3 Building Preferences 397
Figure 39-4 Distributed Builds Preferences 399
Figure 39-5 Debugging Preferences 401
Figure 39-6 Key Bindings Preferences 402
Figure 39-7 Text Editing Preferences 403
Figure 39-8 Fonts & Colors Preferences 405
Figure 39-9 Indentation Preferences 407
Figure 39-10 File Types Preferences 409
Figure 39-11 Opening Quickly Preferences 410
Figure 39-12 Source Trees Preferences 411
Figure 39-13 SCM Preferences 412
Figure 39-14 Documentation Preferences 413

Chapter 40 Using Scripts To Customize Xcode 415

Figure 40-1 The User Scripts menu 417
Listing 40-1 The menu definition file 10-sort.sh 418

23
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

24
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The information in this document is obsolete and should not be used for new development.

Software development can be thought of as a complex problem space in which you manage files to produce
products. The types of files can include source files, resource files, and supporting files (documentation,
timelines, notes, or any other files that help you build the software but aren’t part of the product). You use
various tools to process the files into a variety of outputs. To automate the process and keep track of all the
details and interactions, you use an IDE.

The Xcode IDE is designed to help you work in this type of problem space. It allows you to perform most
tasks quite simply, using its basic user interface. Many features should be familiar to most developers. Xcode
is Apple's tool suite and integrated development environment (IDE) for creating Mac OS X software. The
Xcode application includes a full-featured code editor, a debugger, compilers, and a linker. The Xcode
application provides a user interface to many industry-standard and open-source tools, including GCC, javac,
jikes, and GDB. It provides all of the facilities you need to build a program for Mac OS X, whether it’s an
application, kernel extension, or command-line tool.

This document describes the Xcode application and how you can use it to develop software for Mac OS X.
It provides a comprehensive guide to Xcode’s features and user interface. This document is intended for
developers using Xcode to build software for Mac OS X. This document is written for Xcode 2.0.

Organization of This Document

This document contains several parts, each of which contains chapters devoted to a major functional area
of the Xcode application. These parts are:

 ■ “Developing a Software Product With Xcode” (page 27) describes the development process and how
Xcode helps you with each step along the way.

 ■ “Projects” (page 41) introduces the Xcode project and its primary components, and covers important
project management concepts. The chapters in this part show you how to create an Xcode project, add
and manage project files, organize project items, and modify project attributes. They describe the project
window and other important Xcode user interface conventions; as well as mechanisms for finding
information in your Xcode project, including documentation lookup, project-wide searches, and the
class browser.

 ■ “Design Tools” (page 121) describes the class modeling and data modeling design tools included in
Xcode. The chapters in this part describe common user interface features of these two tools, demonstrate
how to model classes in your application, and describe how to create a schema for use with the Core
Data framework.

 ■ “Editing Source Files” (page 159) describes Xcode’s source code editor. The chapters in this part describe
the user interface for Xcode’s built-in editor, and show you how to use features such as code completion,
text macros, and the navigation bar to quickly author source code and navigate source code files. They
also discuss how to use an external application to edit project files.

Organization of This Document 25
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Xcode 2.0 User Guide

 ■ “Version Control” (page 201) discusses the version control systems supported by the Xcode application.
The chapters in this part show you how to configure a version control system in Xcode and how to
perform common version control tasks, such as updating files, committing changes, and comparing file
revisions.

 ■ “The Build System” (page 229) describes Xcode’s build system and how to use Xcode to build a product.
The chapters in this section describe targets, build styles, and the other information that Xcode uses to
build a product. They also show you how you can customize the build process by adding custom tasks
to the build process or change the way a product is built by modifying build settings. This part also
includes information on features that you can use to reduce the amount of time it takes to build, such
as distributed builds, precompiled prefix headers, and predictive compilation.

 ■ “Debugging” (page 335) describes Xcode’s graphical debugger and shows you how to run and debug
your program in Xcode. The chapters in this part demonstrate how to use features such as Fix and
Continue, which lets you make changes to your program while it is running and continue your debugging
session, and remote debugging, which allows you to debug an application running on a remote host.

 ■ “Customizing Xcode” (page 383) describes how you can customize your work environment using scripts,
preferences, and custom key bindings sets.

See Also

For an introduction to the developer tools available for Mac OS X, see Getting Started With Tools.

For an introduction to Mac OS X system architecture and system technologies, see Mac OS X Technology
Overview.

To see a full list of the tools available with Xcode Tools, see Mac OS X Developer Tools inMacOS X Technology
Overview.

To learn more about the types of software you can create for Mac OS X, see Software Development Overview
in Mac OS X Technology Overview.

To learn more about the Mac OS X standard user interface, see Apple Human Interface Guidelines.

For a tutorial introduction to Xcode, see Xcode Quick Tour for Mac OS X.

For tips on converting Code Warrior projects and other existing code to build in Xcode, see PortingCodeWarrior
Projects to Xcode.

To learn more about the GNU compiler collection, see GNU C/C++/Objective-C 3.3 Compiler.

For more information on debugging with GDB, see Debugging with GDB.

For information on using cross-development to develop for multiple versions of Mac OS X, see
Cross-Development Programming Guide.

In addition, many other documents are referred to or recommended throughout this document.

26 See Also
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Xcode 2.0 User Guide

Xcode can help you at each step in the process of developing a software product. That includes steps such
as researching Apple technologies; writing and compiling code; and building, linking, testing, debugging,
and optimizing the software for your product. By taking a closer look at these steps, you’ll see how Xcode
fits into the development process.

This section gives a brief overview of the software development process and how Xcode helps you at each
stage in that process. Figure 1-1 shows the typical development process and how it relates to Xcode.

27
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Figure 1-1 Xcode and the software development process

Debug
&

Tune

Project

Class design
&

Data modeling

Editor

Source control
management

Build
system

Debugger

Interface
Builder

Optimization
tools:

Shark, etc.,

Development Process Xcode

no

Deploy

Define
product

Design
program

Build

Good
enough?

Test

yes

Version
control

Write
source
code

Briefly, the stages of the development process are as follows:

 ■ Define a product. The earliest stages in the creation of an application are conceptual; you decide what
problem you are trying to solve and think about the best programmatic approach and the best interface
design. You make fundamental decisions about the programming language you will use, the architecture
of your application, and the Mac OS X technologies you will use. No matter what your decisions, chances
are Xcode has a project template to support them.

 ■ Design your program. The design process doesn’t stop with your decisions about programming language,
Mac OS X technology, and product type. If your product has a graphical user interface, you can use the
Interface Builder application to design the user interface for your application. Xcode knows how to work

28
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

with Interface Builder nib files; a nib file contains the resources that describe the various user interface
elements in our program’s interface. When you double-click a nib file in the Xcode application, the
Interface Builder application opens. For more information on Interface Builder, see Interface Builder Help.

If you are programming in an object-oriented language, Xcode’s design tools let you model classes in
your application and entities that represent your data. The class modeling tool lets you understand the
classes in your project, whether they’re written in Objective-C, C++, Java, or a mixture of those languages.
The data modeling tool lets you diagram entities and the relationships between them, and define a
schema for use with the Core Data framework. For more on Xcode’s design tools, see “Design Tools” (page
121).

 ■ Write source code. Once you have designed your program and user interface, you need to implement
your design. Xcode’s editor has many features to facilitate your job, including code completion, direct
linking to function, class, and method descriptions, support for syntax coloring, and many shortcuts for
moving between files. For more on Xcode’s editor, see “Editing Source Files” (page 159).

 ■ Choose a version control system. Version control systems let you track changes to your source files. Using
version control, several developers can work on the same project at the same time. Xcode works with
three version control systems: Concurrent Versions System (CVS), Subversion, and Perforce. To learn
more about using version control in Xcode, see “Version Control” (page 201).

 ■ Build your product. To create a program that you can run and test, you must first build the product.
Building a product involves many steps, including compiling source files, linking object files, copying
resource files, and more. Xcode includes a powerful build system that can build any Mac OS X software
product. Xcode’s build system provides a user interface to industry-standard tools such as the GNU
compiler collection. In addition, Xcode provides numerous opportunities to tailor the build process. To
learn more about Xcode’s build system, see “The Build System” (page 229).

 ■ Debug and test your program. In most large application projects, debugging and tuning the code
proceeds in parallel with implementation. Xcode includes a source-level debugger that provides a
graphical user interface to the GNU debugger, GDB. GDB is a command-line debugger for C, Objective-C,
C++, and Objective-C++ code. For more information on using GDB, see Debugging with GDB and GDB
Quick Reference.

The Xcode application lets you step through your code line by line, set and modify breakpoints, view
variables, stack frames, and threads, and access GDB directly through a command line.

In order to enhance your users’ perception of your application, you should minimize the application’s
launch time, execution time, and memory footprint. Xcode Tools includes a number of tools, such as
Shark, to help you achieve those goals. You can launch your program with many of these performance
tools directly from Xcode. For more information on the performance tools included with Xcode Tools
and on performance tuning in general, see Performance Overview.

 ■ Deploy your product. The last step in application development is bundling the various object files,
frameworks, and data files into a package that can be installed by the user. Xcode automatically packages
all of the files that it knows are part of the application. Whenever possible, you should package your
application for drag-and-drop installation. When necessary, however, as when you want to let the user
install a new version of an application over an old one without replacing all the files, you can use the
PackageMaker application to create an installation package. Installer, located in
/Applications/Utilities, is the native installer for Mac OS X. PackageMaker and Installer are
documented in Software Delivery Guide.

29
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Defining a Product

As you work to define a software product, you typically draw from a number of sources, such as requirements
specifications, existing software products, technology documentation, and your own knowledge of what
you need to accomplish. In doing your analysis, you don’t want your choices to be restricted by your
development environment—rather, you want to have confidence that the IDE supports the product decisions
you make.

The following are some of the questions you might ask as you focus on defining a product. In most cases,
you’ll find that Xcode can accommodate the requirements identified by your answers.

 ■ What kind of product do you want to create: a new application, a plug-in for an existing application, a
library to be used by several other products?

Xcode provides project templates for creating applications, plug-ins, dynamic libraries, kernel extensions,
and more. “Creating a Project” (page 47) describes the project templates provided by Xcode. For a
description of the various types of software you can develop on Mac OS X, see Software Development
Overview in Mac OS X Technology Overview.

 ■ Does the product have multiple parts? For example, is it an application with an embedded framework?

An Xcode project can contain multiple targets, which each build a different product. For particularly
large or complex products, you might choose separate projects—and Xcode can manage dependencies
between them.

 ■ What Mac OS X technologies are appropriate for your product?

Xcode documentation contains both conceptual and reference material for a wide range of available
technologies. For a good introduction, see Mac OS X Technology Overview.

 ■ Do you need to deploy your product on multiple versions of Mac OS X?

Xcode supports cross-development for different versions of Mac OS X, so that you can develop on one
version and deploy to many, taking advantage of features in each version. For example, you can build
on Mac OS X version 10.3 (Panther) and target version 10.1 or 10.2, as well as 10.3. To be able to use this
feature, you must install SDKs as part of installing Xcode. For detailed information, see Cross-Development
Programming Guide, in Tools Xcode Documentation.

 ■ Do you need to do some rapid user-interface prototyping, or provide a complex interface for an
administrative tool?

AppleScript Studio lets you use AppleScript (or system languages such as C, Objective-C, or Java) to drive
applications with complex user interfaces. For more information, see the learning path “Creating an
AppleScript Studio Application” in Getting Started With AppleScript.

 ■ Do you need to work on an existing CodeWarrior or Project Builder project?

Xcode can import these projects. For details, see “Creating a Project” (page 31).

 ■ Do you have existing code that uses Cocoa or Carbon?

Cocoa is an object-oriented application environment designed specifically for developing native
applications for Mac OS X. Cocoa applications are written in Objective-C or Java, but can also make use
of C.

Carbon is a set of procedural C APIs for developing full-featured, high-performance, applications for Mac
OS X.

Xcode supports development with C, C++, Objective-C, Objective-C++, and Java, and provides project
and target templates for many types of products.

30 Defining a Product
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

 ■ Do you need to provide a cross-platform solution or have existing code that uses Java?

The Java application environment in Mac OS X provides a development environment, a runtime
environment, and an application framework that includes AWT and Swing. For more information, see
the documents in Java Documentation, as well as Mac OS X Technology Overview.

 ■ Are you working as part of a team? With an existing code base?

Xcode’s source control management (SCM) can manage your code, using CVS, Subversion, or Perforce.

Team members can use source trees to define commonly named paths that point to different directories
on different machines. For example, Xcode uses source trees when you import a CodeWarrior project.
(For more on importing, see “Creating a Project” (page 31).)

Xcode scales well, from small to large projects, so you can divide the work into as many projects and
targets as its scope requires. For more information on dividing up large projects, see “Dividing Your Work
Into Projects and Targets” (page 83).

Of course these are not the only questions that you may need to resolve in the course of defining your
product.

Creating a Project

Once you have made your decisions about the type of product (application, library, command-line tool, and
so on) and language or languages (C, C++, Objective-C, Java, and others) you plan to use, you’re ready to
create a project.

Xcode provides the project as the primary workplace for your software development. When your design has
reached the point where it’s time to start working on the code, you can do one of the following:

 ■ Create a new project based on one of the templates described in Table 3-1 (page 47).

The new project contains a default target that is preconfigured to build a product of the type you specified
when you chose the project template. Most projects also contain default source files, resource files,
framework references, and other items.

 ■ Import an existing Project Builder project by simply opening the project with Xcode.

 ■ Import an existing CodeWarrior project.

To import a CodeWarrior project, you must have CodeWarrior available on the same computer, and must
take a specific import step. After importing, the new project is likely to require some modification before
you can successfully build it. You can find detailed information on this process in Porting CodeWarrior
Projects to Xcode.

 ■ Import an existing PBWO project (a project built with the older Project Builder for WebObjects application).
Projects of this type should build with a minimum of additional steps.

Once you’ve created an Xcode project, you can add files, add targets, modify target settings, and make any
required modifications to develop your software.

Creating a Project 31
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Project Organization and Navigation

Before you plunge headlong into working with the project that you have just created, it’s a good idea to
familiarize yourself the many ways in which you can organize and quickly access project information and
items. Xcode provides many different ways for you to view, organize, and find information in your project,
so you can work efficiently.

Organizing a Project

The Xcode project is the primary mechanism for grouping the files and information you need to build one
or a set of related products. Within a project, a target specifies the files and other information needed to
build a specific product. In addition, Xcode provides groups, as a way to organize information within a project,
and to navigate to project files, symbols, and so on.

Xcode defines groups for source code, targets, errors and warnings, bookmarks and other items. You can
also create your own groups to help you organize information in ways that make sense to you. To learn more
about groups in Xcode, see “Groups in Xcode” (page 56).

“Organizing Xcode Projects” (page 83) provides a detailed look at the high-level issues involved in organizing
complex projects and targets. It includes “Organizing Files” (page 86), which provides a more detailed look
at working with groups.

Project Navigation

Xcode provides convenient navigation at several levels, whether you’re editing source code in multiple files,
looking up technical documentation, building, debugging, or performing other tasks.

The project window, described in “The Project Window” (page 55), offers several options for navigation:

 ■ You can find any project file by first selecting the project group (which reveals a list of all the files in the
project), then use filtered searching to find the file you’re looking for.

 ■ You can define bookmarks to access specific file locations, then use the Bookmarks group to locate
specific bookmarks.

 ■ You can use the Project Symbols group to find a method or function and go directly to its source code.

 ■ You can use the Errors and Warnings group to go directly to the specific line in your code where an error
occurred.

To examine the hierarchy of classes defined in object-oriented languages, Xcode provides a class browser.
Using the browser, you can navigate to code (both for Apple frameworks and for classes you have defined)
and documentation.

Xcode also provides options for jumping between header and implementation files, jumping to methods or
functions within a file, or instantly opening a selected or typed filename. And you can locate text by performing
single-file or batch find operations, described in “Searching in a Project” (page 33).

32 Project Organization and Navigation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Finding Information

An IDE should help you find the information you need while you’re working on a project. Here are some
ways to search for information in Xcode.

Filtered Searching

Filtered searching is available in many places across the Xcode user interface. It refers to the ability to type
letters in a search field so that as you type, Xcode filters an associated list, removing any items that don’t
match the text you type.

For example, filtering is available in the project window for items such as files, symbols, and errors and
warnings; in Info windows (described below) for build settings; and in the Developer Documentation window
for symbol names defined by various Mac OS X technologies.

Searching in a Project

Searching for text in your project is a common task that must be fast and convenient. In Xcode, you can
perform search and replace operations in a single file, or perform batch searches on multiple files and
frameworks. You can search for text, regular expressions, or symbol definitions. You can also define complex
search criteria to reuse, and you can store your search results for later reference. To learn more about searching
in Xcode projects, see “Searching in a Project” (page 97).

Getting Information About Items in a Project

The project window is the main starting point for getting information about items in your project. For most
kinds of information, you won’t need more than a few steps:

1. Select an item in the project window.

2. If you need more information about a selected item, open an Info window (by pressing Command-I,
choosing Get Info from the File menu, or clicking the Info button in the project window toolbar).

An Info window allows you to view, and in some cases modify, information on items in your project. For
example, you can view and change file attributes for one or more selected files. To learn more about Info
windows, see “Inspector and Info Windows” (page 73).

Using the Documentation

The importance of documentation in software development can’t be overemphasized. The technical
documentation distributed with Xcode provides critical conceptual and reference documentation for creating
high-quality, high-performance software for Mac OS X.

At different times in the product cycle, you’re likely to use the documentation to:

 ■ Learn about the operating system and the technologies it supports

 ■ Find and compare solutions for technical requirements

 ■ Read about supported languages and frameworks

Project Organization and Navigation 33
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

 ■ Look up individual API definitions

 ■ Learn how to use a required tool

When you install Xcode, technical documentation is installed on your hard drive. You can view it in the
Developer Documentation window, accessed through the Help menu.

The Mac OS X documentation distributed with Xcode includes both Apple and open source documentation.
Xcode also includes a variety of sample code, installed at /Developer/Examples. Documentation and
sample code are also available, free of charge, at the Apple Developer Connection website at http://develop-
er.apple.com. To learn more about viewing documentation in Xcode, see “Viewing Documentation” (page
110).

HeaderDoc

Apple provides the open source HeaderDoc system for creating HTML reference documentation from
embedded comments in C, C++, and Objective-C header files. Similar to JavaDoc, the system allows you to
document your interfaces and export that information into HTML. For more information on HeaderDoc, see
http://developer.apple.com/darwin/projects/headerdoc/.

Editing Files

As you develop your software, you spend a lot of time editing files. To be efficient, you want to be able to
work with familiar keystrokes and have access to features such as code completion, automatic indenting,
syntax coloring, and so on. You also want to open files quickly, find API documentation, enter API declarations,
move between header and implementation files, and work with as many or as few windows as you need.

Xcode handles these requirements through an advanced editor with many customizable features:

 ■ You can, in Xcode’s Preferences window:

 ❏ View and modify settings for syntax coloring, indenting, and source code formatting.

 ❏ Turn on code completion, so the editor suggests context-sensitive function names, method names,
and arguments as you type.

 ❏ Customize keystroke equivalents for menu items and editing tasks to use the keystrokes you are
most familiar with; Xcode provides predefined sets that are compatible with BBEdit, CodeWarrior,
and even MPW (Macintosh Programmer’s Workshop, the Apple development environment for Mac
OS 9).

 ❏ Choose an external editor for any file type.

 ■ You can edit in one or more standalone editor windows, or in an editor pane in the project window.

 ■ You can use many Xcode shortcuts, such as Command–double-click to go from a selected function name
to its definition.

 ■ You can use features described in previous sections to quickly find a desired file, symbol, or text string.

For more information on Xcode’s editor, see “The Xcode Editor” (page 169). To learn more about code
completion, see “Code Completion” (page 189). To learn how to use an external editor with Xcode, see “Using
an External Editor” (page 193).

34 Editing Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

http://developer.apple.com
http://developer.apple.com
http://developer.apple.com/darwin/projects/headerdoc/

Resources and Localization

In addition to source code, most projects include resources such as images, sounds, and nib resource files.
Many project templates provide default resource files when you create a new project; these resource files
are typically organized in the Resources source group. In addition, when you add resource files to a target,
Xcode automatically adds them to the correct step of the build process, so that they will be added to your
software.

Most Mac OS X software, including applications, plug-ins, and frameworks, is packaged in the form of a
bundle. Xcode provides mechanisms both to help you localize resource files that need it, and, when you
build your product, to copy localized resources into localized directories in your software bundle. At runtime,
your source code can use various APIs provided by Mac OS X to obtain localized information from the bundle.

The following sections provide an overview of how to work with resources, support localization, and provide
needed information to the Mac OS X system. To learn more about working with localized files in Xcode, see
“Customizing for Different Regions” (page 197).

Information Property List Files

Any Mac OS X software that is packaged in the form of a bundle requires an information property list file
named Info.plist. This file, which is critical to configuring your software, contains key-value pairs that
specify various information used at runtime, such as the version number. Information in the property list is
used by Mac OS X (for example, when launching applications) and is also available to the product that contains
the property list.

When you create a new project for a bundled product, Xcode automatically creates an Info.plist file for
the project. When you build the product, Xcode copies the property list file into the product’s bundle. The
information property list is associated with a target, and you can open an Info window on the target to modify
property list values. You can also double-click a property list file in the project window to edit it as an XML
text file.

Strings Files

Any text strings in your project that may be displayed to users should be localized. To do this, you place
them in strings files, providing one localized variant for each language you support. A strings file, which has
the extension strings, stores a series of keys and values, where the values are the strings and the keys
uniquely identify the strings. Xcode supports localization with strings files by providing options to make a
file localizable and to add files for local variants.

When you build your product, Xcode copies each localized strings file into the appropriate localized directory
within the Resources directory of the product bundle. For example, if you localize for French, the French
version of a strings file is copied to the French.lproj directory in the bundle. Mac OS X provides various
APIs you can use in your source code to obtain localized information from a bundle, such as the correct text
string to display for the user’s current locale. For more information, see Internationalization Programming
Topics.

Resources and Localization 35
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

The InfoPlist.strings file is an example of a strings file. It is used to provide localized values for any
properties in the Info.plist file that may be displayed to users. When you create a new project for a
bundled product, Xcode automatically creates this file in the Resources group. By default, it provides just an
English variant, but you can add localized strings files for other languages you support.

Nib Files

A nib file, which has the extension nib, is a resource file that stores user interface information for a product.
You create nib files with Interface Builder, which provides a powerful mechanism for graphically laying out
the user interface for your software. When you add a nib file to a target, Xcode adds it to the correct stage
of the build process, which causes it to be copied into the product’s bundle when you build the product.
Your code then has access, at runtime, to user interface items in the nib file.

Important: Because nib files are bundles, which means they are really a directory structure, not a single file,
you must use special mechanisms to check them in and out with some SCM systems.

Resource Manager Files

In previous versions of the Mac OS, applications traditionally used Resource Manager .r (text) and .rsrc
(compiled) resource files. While nib files are now the preferred mechanism for defining user interface items,
Xcode has built-in support for Resource Manager resources as well.

When you add a Resource Manager resource file to a target, Xcode recognizes it by its extension. When it
builds the target, Xcode automatically compiles .r files with the Rez tool. Xcode then copies the resulting
.rsrc file into the Resources folder of the product bundle. If you localize any .r files, a .rsrc file is copied
into the appropriate localized directory as well.

For related information about these types of resources, see “Working With Resources” in Porting CodeWarrior
Projects to Xcode.

The Edit/Build/Debug Cycle

Once a product has been designed, you spend time in the edit/build/debug cycle: adding or modifying code,
building the product, testing it, and repeating these steps, as you find and correct bugs or add additional
features. You’ve seen Xcode’s editing features in “Editing Files” (page 34). The following sections describe
tools, features, and performance enhancements Xcode provides so that you can take control of the coding
cycle.

Tools

The Xcode Tools include the Xcode application, Interface Builder, and a set of integrated compilers, debuggers,
and build tools. Along with many tools created by Apple, Xcode incorporates several tools from the UNIX
open source community. Together, these tools build on years of software development experience and take
advantage of the UNIX-compatible underpinnings of Mac OS X.

36 The Edit/Build/Debug Cycle
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Among the open source tools available in the Xcode IDE are the GCC compiler (which supports development
in C, C++, Objective-C and Objective-C++), the GDB source code debugger, and the javac and Jikes Java
compilers. Apple contributes to improvements in many of these open source tools. Standard UNIX tools are
available in subdirectories of /usr.

Tools that originate with Apple include:

 ■ ld, a linker that supports dynamic shared libraries.

To work efficiently with dynamic shared libraries at runtime, the Mac OS X runtime architecture provides
the dyld (dynamic loader) library manager.

 ■ xcodebuild, a command-line tool for building Xcode projects.

 ■ Terminal, an application for doing command-line work in shell windows.

In addition, Xcode includes tools to help you locate hard-to-find bugs, such as memory leaks and bugs in
threaded code, as well as tools to help you analyze and optimize the performance of your software.

For more information, see the documents in Tools Xcode Documentation and Performance Documentation.

Building

The Xcode build system provides flexibility and customizability to your workflow. You can control the build
process from the toolbar or with keyboard shortcuts, can view errors in the project window or in a separate
Build Results window, and can go quickly from errors to the offending line of source code. In the Build Results
window, you can control the level of detail—for example, you can choose whether to show warning messages
and whether to display build steps.

What takes place at build time depends on several factors. When you create a new project in Xcode, it contains
a great deal of build information, including default build settings, build rules that specify tools for processing
source files, build styles for development and deployment builds, and build phases for performing the steps
of the actual build. To learn more about the information that goes into building a product, see “The Build
System” (page 229).

For a simple project, default values are sufficient for Xcode to build your product, performing such steps as
compiling, linking, and copying files to the appropriate locations in an application bundle. For projects with
special requirements, Xcode provides numerous options for controlling the process. For example, you can
set per-file compiler flags or add a step to the build process that executes a shell script to perform special
processing.

Debugging

The open source GNU Debugger, GDB, sits behind Xcode’s debugger user interface. It also makes available
powerful command-line debugging features. As a result, you can debug at whatever level is most comfortable
for you. You can work in the user interface for most of your debugging tasks, but drop down to the command
line to take advantage of advanced features that are less commonly needed. For debugging Java products,
Xcode communicates directly with the Java Virtual Machine. To learn more about Xcode’s debugger, see
“Running in Xcode’s Debugger” (page 345).

The Edit/Build/Debug Cycle 37
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Optimizing the Edit/Build/Debug Cycle

Beside the standard features you expect in an IDE, Xcode sports a number of innovative features that can
speed up your edit/build/debug cycle and make a big contribution to an efficient workflow:

 ■ Code completion allows the editor to suggest context-sensitive function names, method names, and
arguments as you type.

 ■ Predictive compilation reduces the time required to compile single file changes by beginning to compile
a file while you are still editing it.

 ■ Distributed builds can dramatically reduce build time for large projects by distributing compiles to
available computers on the network. And if you have a dual-CPU machine, Xcode automatically takes
advantage of the second CPU for compiling and other operations.

 ■ Fix and Continue improves your debugging efficiency by allowing you to change the source in a file,
recompile just that file, and run the changed code without stopping the current debugging session.

 ■ ZeroLink shortens link time for development builds and lets you quickly relaunch your application after
making changes. (Don’t forget to turn ZeroLink off for deployment builds!)

To learn more about these features, see “Optimizing the Edit-Build-Debug Cycle” (page 325), “Using
ZeroLink” (page 320), and “Using Fix and Continue” (page 373).

Analyzing and Optimizing Your Software

Performance optimization should be an integral part of the development cycle, and should include steps
such as providing a plan to continually measure and improve the performance of your code. Xcode Tools
provide a number of tools to help you fine-tune your software, including tools to:

 ■ Examine memory use and find leaks

 ■ Analyze where your software spends its time, in both application code and system code

 ■ Determine what an unresponsive application is doing

 ■ Graphically track the activity of an application’s threads

You can launch your program in many of these tools directly from the Xcode application. For more information
on analyzing and optimizing your software in Mac OS X, see the learning paths in Getting Started With
Performance.

Customizing Your Work Environment

You can work most efficiently when your development environment complements the way you like to work.
Xcode provides many options for customizing its interface, from setting the keystrokes for menu and
text-editing equivalents, to configuring the contents and layout of the project window, to setting conventions
for editing code.

38 Analyzing and Optimizing Your Software
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

Preferences

The Xcode Preferences window is the key to customization, and you should spend some time investigating
it. It provides access to settings for features such as text editing, syntax coloring, indentation, navigation,
building, debugging, source code management, and key bindings for menus and text editing. To learn more
about Xcode’s Preferences, see “Xcode Preferences” (page 393).

Customizing the Xcode User Interface

You can customize Xcode’s project window and many other windows too. For example, Xcode provides a
number of different project window configurations, or layouts, for you to choose from. You can embed an
editor and specify which columns and groups should be shown in the project window. You can also customize
toolbars and menus, and control the amount of information shown in the Build Results window.

Working in a Shell

Mac OS X incorporates the FreeBSD variant of UNIX, which includes a command-shell environment. The
Terminal application provides an interface for invoking command-line utilities and executing shell scripts.
You can build Xcode projects from a shell with the xcodebuild command, in order to, for example, run
nightly builds. For more information, see “Building From the Command Line” (page 312).

Xcode also makes it easy to execute shell scripts as part of your development work. You can execute selected
text as a shell script or run scripts from the User Scripts script menu. That menu contains default scripts that
you can execute as is, or use as examples for scripts you write. You can also write shell scripts that Xcode
executes during the build process.

For more information on modifying your work environment and working with shell scripts in Xcode, see
“Customizing Xcode” (page 383).

Customizing Your Work Environment 39
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

40 Customizing Your Work Environment
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Developing a Software Product With Xcode

A project is a repository for all the information required to build one or more software products. It contains
all the elements used to build your products and maintains the relationships between those elements. You
can think of it as a kit that contains all the parts to build one or more products, plus the instructions on how
to build them. A project gives you a convenient place to find every file and piece of information associated
with your work.

The following chapters introduce the various parts of a project, show you how to create new Xcode projects
or convert existing projects, and describe how you can organize the contents of a project. They also describe
the project window, Xcode’s interface for performing project management tasks; and show you how to use
that interface to find and discover information in Xcode.

41
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Projects

42
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Projects

To carry out the development process, Xcode relies on certain key components. It uses projects to organize
this information. The project is a repository for all of the information needed to build one or more software
products. It is also the primary workspace for your software development. This chapter describes the contents
of an Xcode project and gives an overview of the information required to develop software with Xcode.

Components of an Xcode Project

A project contains and organizes everything you need to create one or more software products. Your Xcode
project serves two important purposes; it:

1. Organizes build system inputs for building a product.

2. Maintains information on the items in your project and their relationships, to assist you in the development
process.

To develop a product using Xcode, you must understand the key components of your project. Figure 2-1
shows a simplified representation of a project and its essential pieces.

Figure 2-1 The key components of a project

Project

Name

Source files

Targets

Build styles

Executables

The project’s contents include the following essential items; in the course of developing a product, you will
work with each of these:

1. Files. Source files are the files used to build a product. These include source code files, resource files,
image files and others.

A project keeps all of the source files you use for a particular product or suite of related products. A
project can also contain files that are not directly used by Xcode to build a product, but contain
information that you use during the development process, such as notes, test plans, and more.

In the course of developing a product you edit project files—using Xcode’s built-in editor or an external
editor—to author source code for a product, and organize files into a target (described below) to define
the build system inputs for creating the product.

Components of an Xcode Project 43
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Projects in Xcode

A project keeps a reference to each file you add to the project. A project can also contain folder references,
if you want to manipulate a group of files as a whole; framework references to access the contents of a
framework, or references to other projects. “Files in a Project” (page 75) describes how Xcode stores
these references and discusses the files in a project in more detail.

2. Targets. When it comes time to actually create, or build, a product, you use a target. A target defines a
single product; it organizes the inputs into the build system—the source files and instructions for
processing those source files—required to build that product. To create a finished product, build its
target. Projects can contain one or more targets, each of which produces one product.

Targets, and the products they create, may be related. If a target requires the output of another target
in order to build, the first target is said to depend upon the second. Xcode lets you add target
dependencies to express this relationship. “Targets” (page 231) describes targets and the instructions
they contain in more detail.

For each target in your project, Xcode adds a product reference. This is a file reference to the output
generated by the target, such as an application. You can use this product reference to refer to the
products in your project the same way you use a file reference to refer to a file; however, the product
reference does not actually refer to anything in the file system until you build the product.

3. Executables. After you’ve successfully built a product, you need to test it to make sure that it works.
When it comes time to run or debug your product, you use an executable environment to tell Xcode
how to do so. An executable environment tells Xcode

a. What program to launch when you run or debug from within Xcode.

b. How to launch the program. The executable environment lets you tell Xcode what command-line
arguments to pass, environment variables to set, debugger to use, and so forth.

If you are building a product that can be run on its own—an application, command-line tool, and so
forth—Xcode automatically sets the default executable to the target’s product. However, if you have a
product such as a plug-in or framework, you must create an executable environment to specify a program
to run and test your product with.

Even if your product generates an executable that can run on its own, you may want to customize the
executable environment to specify command-line arguments for Xcode to pass to the program on launch,
environment variables to set, and so forth. “Executable Environments” (page 337) describes executable
environments in Xcode in more detail, and explains how to modify executable settings.

A project can contain any number of executables. There is not a one-to-one correspondence between
targets and executables, although Xcode automatically creates an executable environment for each
target that creates a product that can be run on its own. You can, however, define multiple executable
environments to use to test the product of a single target under different circumstances.

In addition to these fundamental building blocks of the development process, your Xcode project also
maintains a great deal of information about the items in your project and their current state. Figure 2-2 shows
a representation of a project with this additional information.

44 Components of an Xcode Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Projects in Xcode

Figure 2-2 An Xcode project

Project

Name

OS version to build for

SCM System

Source files

Current build style

Build styles

Current target

Targets

Current executable

Executables

Build settings

Products

Your Xcode project tracks:

 ■ Organizational information that Xcode uses to help you do your work. For example, projects can contain
groups to help you organize and find files, or bookmarks to your favorite locations. Xcode also maintains
a symbolic index for your project; it uses this information to provide assistance such as code completion,
project-wide symbol searching, and more. Groups and other features for organizing project contents
are described in “Organizing Xcode Projects” (page 83); project-wide searches and other features for
finding information in your project are described in “Finding Information in a Project” (page 97).

 ■ Project-wide settings that affect the build process and other software-development operations for all
targets and project items. For example, the project tracks the “active” target; this is the target that Xcode
builds when you hit the Build button.

The settings that an Xcode project tracks include:

 ■ Source control management system (SCM). Xcode supports the CVS, Perforce, and Subversion version
control systems for managing changes to source code. “Version Control” (page 201) describes how to
choose a version control system and how to work with version control features in Xcode.

 ■ Mac OS X SDK version. Using Xcode, you can develop software that can be deployed on versions of Mac
OS X different from the one you are developing on. You can choose which version (or SDK) of Mac OS
X headers and libraries to build with. “Using Cross-Development in Xcode” (page 333) briefly describes
how to choose a Mac OS X system version in Xcode. For detailed information, see Cross-Development
Programming Guide.

 ■ Build styles. A build style lets you modify how a target is built. It contains build settings that let you
override some of the information in a target, without creating a whole new target. In this way, you can
rapidly try variations on a target without maintaining multiple copies. The project keeps track of the
available build styles and their definitions. See “Build Styles” (page 297) for more information on build
styles in Xcode.

Components of an Xcode Project 45
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Projects in Xcode

 ■ Active target and build style. The active target is the target that gets built when you initiate a build in
Xcode. The active build style is the build style that Xcode applies to the active target, and any targets
it depends upon, when you build. See “Setting the Active Target and Build Style” (page 304) for more
information.

 ■ Active executable. The active executable is the executable environment that specifies which program
is launched, and how, when you run or debug from within Xcode.

Because active build style, choice of version control system, and SDK version are all attributes of the project,
they must be the same for all targets in a project. For example, if you have a target that uses the Perforce
source control system, you can’t have another target in the same project that uses the CVS system. You can,
however, use cross-project references and dependencies to tie together targets in separate projects that use
different version control systems.

A project can have multiple targets and multiple executables. However, there can only be one active target,
one active build style, and one active executable. So, for example, if a project builds more than one application,
only one executable—corresponding to one application—can be active and that’s the only executable you
can debug in Xcode’s graphical debugger. If you want to debug both applications at once with the graphical
debugger, you’ll have to build them in separate projects.

The Project Directory

When you create a new project, Xcode creates a project directory to hold your project’s contents. The project
directory contains the project package, which holds project metadata—as described in the previous
section—and user information. The project package has the same name as the project and carries the
extension .xcode. For more on the project package, see “Project Packages” (page 205).

In addition to the project package, the project directory can also contain:

 ■ Project files and folders. Source files can live anywhere on your system, but keeping them in your project
directory makes it easy to move the project and its contents around. By default, Xcode interprets most
paths relative to the project directory.

You can organize files into any number of subfolders within the project directory. This includes folders
for localized resources, as described in “Customizing for Different Regions” (page 197).

If you create a project from one of Xcode’s project templates, the project directory already contains a
number of example source files. For more on the files in a project, see “Files in a Project” (page 75).

 ■ Build folder. When you build a target, Xcode generates a number of files, including the target’s finished
product. By default, Xcode creates a build folder in the project directory to hold the files that it creates.
The build folder can, however, reside at any location in the filesystem. For more information on the build
folder, see “Build Locations” (page 301).

46 The Project Directory
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Projects in Xcode

Once you know what product you are working on, you need an Xcode project. If you are working on a new
product, and do not already have an Xcode project, you can create one from scratch. Xcode provides project
templates to help you create a wide variety of products.

If you are working on an existing product, you probably already have a project. If you have an existing Xcode
project, you can simply open the project in Xcode, as described in “Opening and Closing Projects” (page 54).
If you have an existing CodeWarrior project, you can import your project into a new Xcode project. Or, if you
have an existing Project Builder project, you can simply open it in Xcode.

This chapter shows you how to create a new project and describes the available project templates. It also
shows you how to import CodeWarrior, Project Builder, and ProjectBuilderWO projects.

Choosing a Project Template

Fairly early in your design process, you make decisions related to the type of product (application, library,
command-line tool, and so on) and language or languages (C, C++, Objective-C, Java, and others) you plan
to use. For a Mac OS X product, you also decide which Apple technologies to use, and whether to use an
application framework, such as Cocoa or Java.

Once you’ve resolved these issues, you’ll find that Xcode provides a wide variety of project templates to
support your goals. Table 3-1 provides brief descriptions for the project templates currently supplied by
Xcode. You can find similar descriptions when you select a project template in the New Project Assistant in
Xcode. When you add a target to a project, you’ll get a selection of targets to choose from that is similar to
the list of available project templates. For more information on targets and target templates, see “Creating
Targets” (page 233).

The project template you choose specifies a default target and it also determines the default source files,
resources, framework references, and other information that Xcode includes automatically in the project. A
project generally contains all the information it needs to build a product for its default target. This includes
a minimal set of source files that you can compile into a running product, as well as default build settings.

Table 3-1 Xcode project templates

Use to createProject template

A project with no files or targets.Empty Project

Action

Automator actions are loadable bundles that perform discrete tasks for users to link together in a workflow,
using the Automator application. For more information, see Automator Programming Guide .

An Automator action written using AppleScript.AppleScript Automator Action

Choosing a Project Template 47
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Use to createProject template

An Automator action written in Objective-C.Cocoa Automator Action

Application

An AppleScript Studio application: a simple Cocoa application
which can be written in AppleScript, Objective-C, and other
languages.

AppleScript Application

An AppleScript Studio application that uses the Cocoa document
architecture.

AppleScript Document-based
Application

An AppleScript Studio application that processes files dropped
on it.

AppleScript Droplet

An application, based on the Carbon framework, that uses nib
files for resources (a nib file typically defines and lays out objects
for a product’s graphical interface).

Carbon Application

An application, based on the Cocoa framework, that is written in
Objective-C and relies on nib files to define its graphical interface.

Cocoa Application

A Cocoa application that uses the Cocoa document architecture.Cocoa Document-based Application

A Cocoa application that is written in Java.Cocoa-Java Application

A Cocoa application that is written in Java and uses the Cocoa
document architecture.

Cocoa-Java Document-based
Application

An application, based on the Cocoa framework, that is written in
Objective-C and uses the Core Data framework to save and restore
objects. For more information on the Core Data framework, see
Data Modeling Guide and Core Data Programming Guide.

Core Data Application

A Core Data application that uses the Cocoa document
architecture.

Core Data Document-based Application

Bundle

A bundle is a file system directory that stores executable code and the software resources related to that
code. Bundle templates are for loadable bundles—code (such as application plug-ins) that can be loaded
when it is needed. For more information, see Bundle Programming Guide.

A bundle that links against the Carbon framework.Carbon Bundle

A bundle that links against the Core Foundation framework.CFPlugin Bundle

A bundle that links against the Cocoa framework.Cocoa Bundle

Command Line Utility

A command-line tool is a utility without a graphical user interface. Command-line utilities are typically used
in the command-line environment.

48 Choosing a Project Template
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Use to createProject template

A tool that links against the stdc++ library.C++ Tool

A tool that links against the Core Foundation library.CoreFoundation Tool

A tool that links against the Core Services library.CoreServices Tool

A tool that links against the Foundation framework. (Foundation
is one of the frameworks in the Cocoa framework.)

Foundation Tool

A tool written in C.Standard Tool

Dynamic Library

A dynamic library is a library for which binding of undefined symbols is delayed until execution; code in
dynamic shared libraries can be shared by multiple, concurrently running programs.

A dynamic library, written in C, that makes use of BSD (a part of
the Mac OS X kernel environment; BSD stands for Berkeley
Software Distribution)

BSD Dynamic Library

A dynamic library that links against the Carbon framework.Carbon Dynamic Library

A dynamic library that links against the Cocoa framework.Cocoa Dynamic Library

A project that contains no files but has a single target which you
can configure to use any command-line build tool.

External Build System

Framework

In Mac OS X, a framework is a hierarchical directory that encapsulates a dynamic library and shared resources
in a single package. You access many Mac OS X technologies in Xcode through frameworks. For more
information, see Framework Programming Guide. Note that Cocoa is an application framework—one which
supplies the basic building blocks of an application, to which you add your own code and features—that
is implemented as a framework (as defined above).

A framework that links against the Carbon framework.Carbon Framework

A framework that links against the Cocoa framework.Cocoa Framework

Java

An application, written in Java and built as a JAR file (JAR is the
Java Archive file format). The application is built using the Ant
build tool. The project contains a default build.xml file.

Ant-based Application Jar

An empty project with no files, that contains a single external
target configured to use the Ant build tool. You must supply the
build.xml file.

Ant-based Empty Project

A library, written in Java and packaged as a JAR file, that is built
using the Ant build tool. The project contains a default build.xml
file.

Ant-based Java Library

Choosing a Project Template 49
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Use to createProject template

An AWT-based Java applet, built as a JAR file (AWT is the Advanced
Windowing Toolkit).

Java AWT Applet

An AWT-based application, built as an application bundle.Java AWT Application

A JAR file-based JNI Application (JNI is the Java Native Interface).Java JNI Application

A Swing-based Java applet, built as a JAR file.Java Swing Applet

A Swing-based application, built as an application bundle.Java Swing Application

A library or application, built as a JAR file.Java Tool

Kernel Extension

A kernel extension (or KEXT) is a piece of code that can be dynamically loaded into the Mac OS X kernel.
A driver is a kernel extension that supports one or more devices.

A kernel extension.Generic Kernel Extension

A device driver that uses the I/O Kit (an object-oriented framework
for developing device drivers for Mac OS X).

IOKit Driver

Standard Apple Plug-ins

Plug-ins for standard Apple applications, including Interface Builder, preference panes, the Screen Effects
pane in System Preferences, and Sherlock.

A C-based plug-in that implements an Address Book action. See
Address Book Programming Guide for Mac OS X for more
information.

Address Book Action Plug-in for C

An Objective-C-based plug-in that implements an Address Book
action.

Address Book Action Plug-in for
Objective-C

An AppleScript-based plug-in for Xcode.AppleScript Xcode Plug-in

A plug-in for Interface Builder that adds a palette of user-interface
items.

IBPalette

An Objective-C-based plug-in that implements one or more image
filters for Core Image. For more information on creating image
units, see Core Image Programming Guide.

Image Unit Plug-in for Objective-C

An Objective-C-based plug-in that implements a custom interface
for the Installer.

Installer Plug-in

A metadata importer that allows Mac OS X to extract metadata
from custom document formats for use with Spotlight. See
Spotlight Importer Programming Guide.

Metadata Importer

50 Choosing a Project Template
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Use to createProject template

A plug-in for a preference pane bundle that can be used with the
System Preferences application or an application’s user
preferences.

PreferencePane

A plug-in for a screen saver bundle that can be used with the
Screen Effects panel in the System Preferences application.

Screen Saver

A plug-in for a Sherlock Channel that can be used with the
Sherlock Internet search application. See Sherlock Channels.

Sherlock Channel

A .syncschema bundle that allows your application to sync user
data with other applications and devices on the same computer
using Sync Services. See Sync Services Programming Guide.

Sync Schema

Static Library

A library for which all referenced symbols are bound at link time.

A static library, written in C, that makes use of BSD (see BSD
Dynamic Library above)

BSD Static Library

A static library that links against the Carbon framework.Carbon Static Library

A static library that links against the Cocoa framework.Cocoa Static Library

The project template names and descriptions should give you a good idea of which project template is right
for your product. One way to learn more about a project template is to create a project with that template,
examine its contents, and see what happens when you build it. Project templates may change, and new
templates are added from time to time with releases of Xcode, but by trying out a template, you can easily
examine its default contents in that version of Xcode.

Creating a New Project

To create a new project, choose File > New Project. Xcode displays the New Project Assistant, shown here.

Creating a New Project 51
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Figure 3-1 The New Project Assistant

The first screen of the assistant shows the available project templates; these are described in “Choosing a
Project Template” (page 47). You can choose a project template from this list, or you can select Empty Project
to create a new project with nothing in it.

When you select a template from this list, a brief description appears in the text field directly below the
template list. If there is no text field visible, grab the resize control below the template list and drag it upward.

After you select a project template, click Next; Xcode displays the second screen of the assistant. In this screen,
assign a name to the new project and select a location for the project folder. If you type in a path containing
directories that do not exist on disk, Xcode will create those directories for you before creating the new
project. By default, the Project Directory path is set to '~/' which specifies that the project directory be placed
at the top-level of your home directory. When you click Finish, Xcode creates a new project from the specified
template.

Importing a Project

If you already have existing code in another IDE, you can import your project contents into Xcode. Xcode
provides an assistant for importing CodeWarrior and ProjectBuilderWO projects. Xcode also opens Project
Builder projects. This section describes how to use Xcode’s project importer and open Project Builder projects
in Xcode.

52 Importing a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Importing CodeWarrior Projects

If you have existing code in a CodeWarrior project, you can use the Xcode importer to import your CodeWarrior
project and create a corresponding Xcode project. This section gives a brief description of how to import a
CodeWarrior project into Xcode and lists a few steps that you can take to make the conversion process easier.
While this section assumes that you are converting a project that builds an application, many of the steps
apply to other types of software as well.

Before You Import

To make it easier to get your project building in Xcode, you may need to make some changes to your project
before you import it. Each of these steps is described in further detail in Moving Projects from CodeWarrior to
Xcode.

1. Convert your code to use Carbon.

2. Set the Project Type setting of your CodeWarrior project to Application Package to build your application
as a package.

3. Build the application in the Mach-O format. Mach-O is the native executable format in Mac OS X and is
the only format supported by Xcode.

4. Remove unnecessary targets from the project.

Importing Your CodeWarrior Project into Xcode

To import your project:

 ■ Choose File > Import Project, which opens the Import Project Assistant.

 ■ Select Import CodeWarrior Project and click the Next button.

 ■ Click the Choose button and navigate to the CodeWarrior project file to import (or type in the path and
filename).

You can specify a name for the new project in the New Project Name field. Otherwise, Xcode automatically
uses the same name as that of the project that you are importing. The Xcode importer creates the new
project in the same folder as the CodeWarrior project file.

 ■ When you import a CodeWarrior project, Xcode determines the location of the CodeWarrior root folder
(referred to as {Compiler} in CodeWarrior’s search path) and adds it to the Source Trees list in the
Preferences window.

Select Import “Global Source Trees” from CodeWarrior if you want the importer to add any global source
trees from CodeWarrior’s preferences to the Source Trees list in Xcode.

 ■ Select 'Import referenced projects' to import any additional CodeWarrior projects referenced by the
project you are currently importing.

 ■ Click the Finish button to dismiss the assistant and start the import.

When the import is complete, the new project window opens.

Most projects will not build immediately; seeMoving Projects fromCodeWarrior to Xcode for more information
on how to get your new Xcode project to build.

Importing a Project 53
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

Converting a Project Builder Project

If you already have an existing Project Builder project, there is very little you have to do to get it converted
to, and building in, Xcode. Xcode works seamlessly with Project Builder projects. You can simply open the
project in Xcode, by double-clicking on the project (.pbproj) bundle, dragging the project bundle to the
Xcode application, or using the Open command in Xcode and selecting the project bundle.

Note that if you also have Project Builder installed on your computer, double-clicking the .pbproj bundle
will open the project in Project Builder. To open the project in Xcode, you will have to use one of the other
methods mentioned here.

Once you have opened your Project Builder project in Xcode, it should build with little or no additional work
on your part. If you wish to take advantage of some of Xcode’s more significant features, such as ZeroLink,
Fix and Continue, and the like, you will have to convert the targets in your project to use the native build
system. Xcode does not automatically upgrade the existing targets, which use Project Builder’s Jam-based
build system, when you open the project. To learn more about converting native targets, see “Converting a
Project Builder Target” (page 247).

Importing Projects From ProjectBuilderWO

Xcode also supports importing projects from ProjectBuilderWO. To import a ProjectBuilderWO project, do
the following:

1. Choose File > Import Project.

2. From the Import Project Assistant, choose Import ProjectBuilderWO Project and click Next.

3. Type the path to the ProjectBuilderWO project in the ProjectBuilderWO Project field or click Choose to
select the project from an Open dialog.

4. Type the name you want to use for the new Xcode project in the New Project Name field and click Finish.
If you do not specify a different name, Xcode uses the name of the existing project.

Xcode imports the ProjectBuilderWO project and creates a new Xcode project file. Where possible, Xcode
imports the targets in the ProjectBuilderWO project as native targets. If the ProjectBuilderWO project contains
targets not supported by Xcode’s native build system, the importer imports those targets as Jam-based
targets.

Opening and Closing Projects

To open any project, choose File > Open. To open a project you’ve recently used, select the project from the
File > Recent Projects menu. To close a project, you can choose File > Close Project, or close the project
window.

You can have Xcode automatically remember the state of a project’s windows and restore them when you
next open the project. To do so, choose Xcode > Preferences, click General, and select “Save window state”
in the Environment options. If this option is disabled, opening a project displays only the project window. If
this option is enabled, opening the project restores the project window and any other open windows to the
state they were in when you last closed the project.

54 Opening and Closing Projects
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Creating a Project

The project window is where you do most of your work in Xcode. The project window displays and organizes
your source files, targets, and executables. It allows you to access and edit all of the pieces of your project.
To work effectively in Xcode, you need to recognize the parts of the project window and understand how
to use them to navigate your project’s contents.

Of course, everyone has their own way of organizing their workspace. To help you be as efficient and
productive as possible, Xcode provides several different project window configurations or layouts. A project
window layout specifies a particular project window configuration, as well as ancillary task-specific windows.

This chapter introduces the basic project window components and describes the available project window
layouts. It also introduces other important Xcode windows and provides tips on effectively using the Xcode
interface to locate information on project items.

The Project Window and its Components

When you first launch Xcode as a new user, Xcode displays the default project window configuration, shown
here.

Figure 4-1 Xcode’s default project window

Groups and
files list

Detail
view

Toolbar

Status bar

Favorites bar

The project window contains the following key tools for navigating your project:

The Project Window and its Components 55
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

 ■ The Groups & Files list provides an outline view of your project contents. You can move files and folders
around and organize your project contents in this list. The current selection in the Groups & Files list
controls the contents displayed in the detail view.

 ■ The detail view shows the item or items selected in the Groups & Files list. You can browse your project’s
contents in the detail view, search them using the Search field, or sort them according to column. The
detail view helps you rapidly find and access your project’s contents.

 ■ The toolbar provides quick access to the most common Xcode commands.

 ■ The status bar displays status messages for the project. During an operation—such as building or
indexing—Xcode displays a progress indicator in the status bar to show the progress of the current task.

 ■ The Favorites bar optionally lets you store and quickly return to commonly accessed locations in your
project. The Favorites bar is described in “The Favorites Bar” (page 90).

The project window can also contain an attached editor that lets you edit files directly in the project window.
You can navigate through the views in a window, including the attached editor, by pressing the Tab key. To
take the focus away from the editor, press Control-Tab.

The exact configuration of the project window depends on the current layout; nonetheless, each layout uses
these components help you view and access project items. For a description of each of the available project
window layouts, see “Project Window Layouts” (page 64).

The Groups & Files List

The Groups & Files list provides an outline view of your project’s contents. The contents of your project—files,
folders, targets, executables, and other project information—are organized into groups. A group lets you
collect related files or information together. The Groups & Files list gives you a hierarchical view of these
groups.

Using the Groups & Files list, you can:

 ■ View your project’s contents, organized hierarchically. You can have as much or as little of your project’s
contents as you want visible at once.

 ■ Create additional Groups & Files list views to focus on multiple groups at once.

 ■ Drag files, folders, groups, and other project items to rearrange and organize them.

 ■ Rename files, folders, and other project items. To do so, Option-click the item and type the new name;
or Control-click and choose Rename from the menu.

Groups in Xcode

Xcode supports two types of groups; you can view and edit groups of either type in the Groups & Files list:

 ■ Source groups organize your project’s source files, including implementation files, resources, frameworks,
headers, and other files. A source group, indicated by a yellow folder icon, can contain any number of
files and other source groups. Source groups help you organize the files in your project into more
manageable chunks. The project group, represented by the project icon at the top of the Groups & Files
list, is a source group that contains all of the files, frameworks, and libraries included in your project.

 ■ Smart groups collect files or information that match a certain rule or pattern. Xcode provides several
built-in smart groups:

56 The Project Window and its Components
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

 ❏ The Targets group contains all of the targets in your project. As mentioned earlier, a target contains
the instructions for creating a single software product. Targets are described in more detail in
“Targets” (page 231).

 ❏ The Executables group contains all of the executables defined in your project.

 ❏ The Errors and Warnings smart group lists the errors and warnings generated when you build. This
group is described further in “Viewing Errors and Warnings” (page 309).

 ❏ The Find Results smart group contains the results of any searches you perform in your project. Each
search creates a new entry in this group. For more information on the Find Results group, see
“Viewing Search Results” (page 99).

 ❏ The Bookmarks smart group lists those commonly accessed locations—files or specific locations
within a file—that you have saved in order to return to them easily. For more information on the
Bookmarks smart group, see “Saving Commonly Accessed Locations as Bookmarks” (page 91).

 ❏ The SCM smart group lists all of the files that have source control information. This group is described
further in “Viewing File Status” (page 211).

 ❏ The Project Symbols smart group lists all of the symbols defined in your project. This group is
described further in “Viewing the Symbols in Your Project” (page 105).

Xcode also lets you create your own smart groups and define your own rules for what they contain; these
smart groups are indicated with a purple folder icon. For more information on using smart groups and source
groups to organize your project contents, see “Organizing Files” (page 86).

Hiding and Showing Groups

Xcode provides a number of smart groups to help you organize and find information; however, you may not
need all of those smart groups all of the time. You can customize the display of the current Groups & Files
list to show only those smart groups that you currently need. You can rearrange or delete any of the smart
groups that appear in a Groups & Files list view, including those that Xcode supplies.

To rearrange a smart group, drag it to its new position in the Groups & Files list. To hide a smart group in the
current Groups & Files list, select it and press Delete or choose Edit > Delete. To view the smart group again,
choose it from the View > Show menu, as described in the next section.

Xcode also provides contextual menu items to show and hide smart groups in the Groups & Files list.
Control-click in the Groups & Files list to show the contextual menu and choose the smart group from the
Preferences menu. If the smart group is currently visible, choosing it from this menu hides the smart group.
Otherwise, it shows the smart group in the Groups & Files list. A checkmark next to the smart group’s name
in the Preferences menu indicates that the smart group is currently visible. You can show and hide Xcode’s
built-in smart groups, as well as any smart groups that you have defined for your projects.

Viewing the Contents of a Group

You have a couple of options for viewing the contents of a group in the Groups & Files list. If you prefer the
outline view, you can disclose the group’s contents directly in the Groups & Files list. You can also select one
or more groups to view their contents in a simple, searchable list in the detail view, described in “The Detail
View” (page 60).

To view the contents of a group in the Groups & Files list you can:

The Project Window and its Components 57
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

1. Double-click the group to expand its contents in the outline view, shown below. Double-clicking the
group a second time closes the group.

2. Click the disclosure triangle next to the group to show its contents in the outline view.

3. Choose any of Xcode’s built-in smart groups from the View > Show menu to disclose that group’s contents
in the outline view. Xcode also selects the group and displays its contents in the detail view. Choosing
View > Show > All Files discloses the contents of the project group. You can use the Vie w > Show menu
to display a smart group, even if you had previously deleted from the current Groups & Files list.

4. Select the group to show the contents of the group, and of any other groups it contains, in the detail
view.

You can sort the contents of a source group in the Groups & Files list by choosing an item from the View >
Sort menu. You can sort by name or by file types. Xcode sorts the contents of the currently selected group.

The Groups & Files list can display additional information for files in the list. You can view status for files under
version control or see whether a file is included in the active target. To see this information in the Groups &
Files list, choose View > Groups & Files Columns > SCM or View > Groups & Files Columns > Target Membership,
respectively.

Figure 4-2 Outline view of the project

Source groups

Smart groups

To view more information on any item in the Groups & Files list, select that item. Xcode displays additional
information about that item in the associated detail view, if one is open.

58 The Project Window and its Components
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Splitting the Groups & Files View

In large projects, the Groups & Files list can get quite long, making it difficult to move items around. You can
split the Groups & Files view by clicking the icon in the scrollbar next to the Groups & Files list, as shown
here. You can also split a view by choosing View > Split 'Files' Vertically or typing Command–double-quote.
Xcode splits the view that currently has focus.

Figure 4-3 Splitting the Groups & Files view

Each view can display a different location, making it easy to keep commonly accessed groups handy or to
move items between groups. You can drag the resize control between the Groups & Files views to repartition
the space between them as you see fit. Each view has its own split-view button; you can split each of these
views, creating as many split-views as you need. After you create a split, a new button appears below the
split-view button; to close a split Groups & Files view, click this second button. You can also close a split view
by choosing View > Close Split 'Files'.

By default, Xcode splits the view vertically. However, you can also split a view horizontally. To split a view
horizontally, hold down the Option key while clicking the split-view button or choosing View > Split 'Files'
Horizontally. You can also type Option–Command–double-quote.

The Project Window and its Components 59
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Figure 4-4 The split Groups & Files view

Split view
Close split

The Detail View

As you learned, the Groups & Files view lets you see the contents of your project in an organized outline. In
contrast, the detail view shows you items in a flat list. You can quickly search and sort the items in this list,
gaining rapid access to important information in your project.

You control the scope of the information shown in the detail view with your selection in the Groups & Files
list. If the selected item is a group, the detail view displays information for all of the members of that group
and of any sub-groups that it contains. You can select multiple items in the Groups & Files list; the detail view
displays all of the selected items and their members. This applies to both contiguous selections and to
selections of items that are not adjacent.

Note: Note that the content of groups such as frameworks and bundles are only shown in the detail view
when that framework or bundle is directly selected in the Groups & Files view, to avoid mixing items such
as external framework headers and project headers.

The Information Displayed in the Detail View

The type of information displayed in the detail view varies, depending on the item selected in the Groups &
Files list. For example, if you select a group of source files in the Groups & Files list, the detail view displays
each of the files in that group, along with information about those files, such as the file’s build status or code

60 The Project Window and its Components
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

size. However, build status and code size make no sense for errors and warnings, so when you select the
Errors and Warnings group, you see a list of error and warning messages and the locations at which they
occurred.

You can choose what information Xcode shows in the detail view by choosing which columns are visible. To
make a column visible, choose it from the View > Detail View Columns menu. You can also Control-click any
of the column headings; Xcode brings up a menu like the one shown below, which allows you to choose
which columns are visible.

Note: Some columns in the detail view are required, depending on the currently selected group. These
columns do not appear in the View > Detail View Columns menu or in the contextual menu.

Figure 4-5 Choosing the type of information to display in the Detail view

You can display the columns of the detail view in any order. To reorder the columns, drag the heading of
any column to its new position.

You can use the menu items View > Previous Detail and View > Next Detail, or their keyboard shortcuts, to
move the selection up or down in the detail view. To disclose the currently selected detail in the Groups &
Files list, choose View > Reveal in Group Tree. For example, if the current selection in the detail view is an
individual source file, Xcode selects that file in the Groups & Files list, disclosing the contents of any source
groups that the file belongs to, as necessary.

To rename an item in the detail view, Option-click the item and type the new name; or Control-click the item
and choose Rename from the menu.

Searching and Sorting in the Detail View

With the detail view you have a couple of ways to find and view information. You can sort the contents of
the detail view according to the information in any of the visible categories simply by clicking on the column
heading for that category. For example, to sort by file name, click the File Name heading.

Using the search field in the toolbar, you can quickly search the contents of the detail view. As you type,
Xcode filters the contents of the detail view, displaying only those items that have matching text in at least
one of the columns.

The Project Window and its Components 61
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

The Search field supports several different types of search; you can choose the search type from the pop-up
menu in the Search field. Xcode supports the following searches:

1. String Matching. Xcode determines a match using simple string comparison, filtering out items that do
not match the string in the Search field. This is the default type of search for the Search field. It is also
the fastest.

2. Regular Expression. Xcode uses the regular expression in the Search field to find matching items. For
example, to find all C implementation and header files in a source group, enter \.(c|h)$

3. Wildcard Pattern. Xcode uses the wildcard pattern in the Search field to find items that contain the
specified characters anywhere in any of the visible columns. For example, enter *View*.h to find all
header files with “View” in their name.

For example, in a large list of source files, you can find all of the files with the word “dialog” in their title by
choosing a String Matching search and typing “dialog” in the Search field, as shown here.

Figure 4-6 Searching for files with “dialog” in their name

As you type, the status bar displays the scope of the search—the current selection in the Groups & Files
list—and the number of items found. Pressing the “Home” key or choosing the project item (indicated by
the project icon) from the search field’s pop-up menu changes the focus of the search field to the whole
project.

By default, Xcode clears the Search field when you select a different smart group in the Groups & Files list.
To tell Xcode to preserve the contents of the Search field, open the General pane of Xcode Preferences and
disable the “Automatically clear smart group filter” option in the Environment options.

62 The Project Window and its Components
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

The Project Window Toolbar

The project window toolbar gives you quick access to the most common Xcode commands. The project
window toolbar for the Default layout contains the following items:

Figure 4-7 The project window toolbar

 ■ Active Target pop-up menu. The target menu lists the active target, which is the target that is used
whenever you build the project. You can change the active target using this menu.

 ■ The Action button. The Action button lets you perform common operations on the currently selected
item in the project window. The actions available from this button are those appropriate for the selected
item; they are the same actions available in the contextual menu that appears when you Control-click
the selected item. For example, when the current selection is a file, available operations include opening
the file in a separate editor, performing version control operations, and grouping files.

 ■ The Build buttons. The Build buttons initiate common build actions, such as building, cleaning, and
running. The triangle at the bottom of the Build buttons indicates that there are multiple actions associated
with them. A single click on one of these buttons performs the action represented by the button’s icon.
If you press and hold the mouse button over one of these buttons, you get a pull down menu of all of
the actions associated with the button. You can initiate any of these actions by selecting it.

 ■ Tasks button. The Tasks button allows you to stop any operation that is currently in progress in your
project. The badge in the lower right corner of the Tasks button indicates the operation that is stopped
when you click the button. If more than one operation is in progress, the Tasks button lets you select
the one you want to stop. For example, if you have both a build and a search running, you can stop
either operation by pressing and holding the Tasks button. Xcode displays a pop-up list of the tasks
currently in operation; choose a task to stop it.

 ■ Editor button. The Editor button shows and hides the code editor in the project window. Using this
editor, you can view and edit files directly in the project window. You can also view the source associated
with an error or warning or with a search result. The editing features of Xcode are described further in
“Editing Source Files” (page 159).

 ■ Info button. The Info button brings up an Info window, allowing you to examine and edit groups, files,
targets, and other items in your project. See “Inspector and Info Windows” (page 73) for more information
on inspecting items in your project.

 ■ The Search field. The Search field allows you to search the items currently displayed in the detail view.
As you type, Xcode filters the list of items in the detail view to include only those items with matching
content in one of the visible columns. See “The Detail View” (page 60) for more information on using
the Search field to find items in the detail view.

You can customize the project window’s toolbar by choosing View > Customize Toolbar. Drag one or more
toolbar items to or from the toolbar to get the set that is most useful to you.

The Project Window and its Components 63
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

The Project Window Status Bar

The project window status bar lets you view the progress of the current operation in Xcode. It gives you
feedback during potentially lengthy tasks, such as building, as well as displaying the results of those tasks.
In particular, the status bar lets you quickly access important information about project operations. From the
status bar, you can:

 ■ Click the progress indicator during an operation to open a more detailed account of the currently running
operations in the Activity Viewer window, described in “Viewing the Progress of Operations in
Xcode” (page 74).

 ■ Click the build result message, or error or warning icon, to open the Build Results window and view build
system commands and output. For more information on the ways in which Xcode displays the status of
build operations, see “Viewing Build Status” (page 305).

Project Window Layouts

There are many factors affecting the optimal workspace arrangement for you. How much screen real estate
do you have? What do you spend most of your time working on? How many projects do you normally have
open at once?

Configuring your development environment to allow you to be as productive as possible is critical. Whatever
your preferred workflow, Xcode provides several different project window layouts for you to choose from.
Xcode defines the following layouts:

 ■ Default. This configuration provides the traditional Xcode project window experience, described in the
previous section. This is Xcode’s default layout, combining outline and detail views to let you quickly
navigate your project.

 ■ Condensed. This layout provides a smaller, simpler project window with an outline view of your project
contents and separate windows for common development tasks, such as debugging and building.

 ■ All-in-One. This layout provides a single project window that lets you perform all of the tasks typical of
software development—such as debugging, viewing build results, searching, and so forth—within a
single window.

This section describes each project window layout and the differences between them.

The Default Layout

Xcode’s default layout provides the project window described in “The Project Window and its
Components” (page 55). As mentioned there, the default project window contains:

64 Project Window Layouts
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Figure 4-8 The Default Workspace project window

1. The Groups & Files list gives you an outline view of your project contents, as described in “The Groups
& Files List” (page 56).

2. The detail view shows a flat list of the items selected in the Groups & Files list, as described in “The Detail
View” (page 60). In the Default layout, you can hide the detail view by collapsing the project window.
To collapse the detail view, double-click the button above the split-view control in the Groups & Files
list. Double-clicking the button a second time shows the detail view again.

In addition, you can customize the toolbar shown for the project window in each of these states, both
collapsed and uncollapsed. To do so, collapse or expand the project window to the appropriate state
and customize the toolbar in the usual way, described in “The Project Window Toolbar” (page 63). Xcode
stores the contents of the toolbar for each state separately.

3. An optional attached editor. In the Default layout, you can choose to view and edit all files within the
project window, using the attached editor. Or, you can choose to have Xcode use a separate editor
window, and use only the Groups & Files list and the detail view in the project window.

Although you can accomplish most of your daily development tasks in the project window, Xcode also
provides a number of other task-specific windows that let you focus on a particular part of the development
process. Table 4-1 shows the separate windows available in the Default layout.

Project Window Layouts 65
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Table 4-1 Additional windows available with the Default project window layout

Use toWindow

View the build system output generated when you build a target. To open, choose
Build > Build Results or Window > Tools > Build Results. See “Viewing Build
Status” (page 305).

Build Results

Debug your program; you can control execution of your code, view threads, stack
frames and variables, and so forth. To open, choose Debug > Debugger or Window
> Tools > Debugger. See “The Debugger Window” (page 347).

Debugger

View the status of only those files under version control. To open, choose SCM > SCM
or Window > Tools > SCM. See “Viewing File Status” (page 211).

SCM

Search for text, symbol definitions, and regular expressions in your project. To open,
choose Find > Find in Project or Window > Tools > Project Find. See “Searching in a
Project” (page 97).

Project Find

Interact with the debugger on the command line and see debugger commands and
output. To open, choose Debug > Console Log or Window > Tools > Debugger Console.

Debugger Console

View information or messages logged by your program when running in Xcode. To
open, choose Debug > Run Log or Window > Tools > Run Log.

Run Log

View the class hierarchy of your project and browse classes and class members. To
open, choose Project > Class Browser or Window > Tools > Class Browser. See “Viewing
Your Class Hierarchy” (page 107).

Class Browser

View and edit all breakpoints set in your project. To open, choose Debug > Breakpoints
or Window > Tools > Breakpoints.

Breakpoints

View your project’s bookmarked locations in a dedicated window. To open, choose
Window > Tools > Bookmarks or double-click the Bookmarks smart group.

Bookmarks

The Condensed Layout

The Condensed layout provides a smaller, more compact version of the project window. In this configuration,
the project window contains several views, each showing a different subset of the items in your project in
the Groups & Files list. You can switch between these outline views using the tabs at the top of the project
window.

66 Project Window Layouts
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Figure 4-9 The Condensed Project Workspace project window

The condensed project window contains:

1. The Files pane shows your project and all of the source groups and files in your project.

2. The Targets pane shows the targets and executables defined in your project.

3. The Other pane shows all of the remaining smart groups. This includes the standard smart groups defined
by Xcode, as well as any smart groups you have added to the project.

You can show any of the built-in smart groups, opening the appropriate pane if necessary, by choosing an
item from the View > Show menu.

The toolbar of the Condensed project window layout is also simpler than that of the other available layouts.
By default, the condensed project window toolbar contains only the Build buttons, Tasks button, and Info
button. These buttons are described in “The Project Window Toolbar” (page 63).

The Condensed layout provides the same additional windows as the Default layout, listed in Table 4-1 (page
66). The Condensed layout also includes the following additional windows:

Project Window Layouts 67
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Table 4-2 Additional windows available with the Condensed project layout

Use toWindow

Edit project files. Although each of the available layouts let you open files in a separate editor
window, the condensed project window is the only one that does not include an attached editor;
when you open a file from the project window, Xcode opens a new editor window.

Editor

View and search your project’s contents in a simple list. The Condensed layout does not include
a detail view in the project window; you can open a separate Detail window that includes a
Groups & Files list on the left side of the window and a detail view on the right side. The Groups
& Files list is tabbed to allow you to see different parts of your project. To open choose View >
Detail or Window > Tools > Detail.

Detail

The All-In-One Layout

The All-In-One project window layout provides a single project window in which you can perform all of the
tasks necessary for software development. In this project window, you can edit files, view project items in
an outline view or detail view, view build system output, run and debug your executable, search and more.
The project window of the all-in-one configuration provides three different views, or pages. To switch between
pages, use the Page control in the project window toolbar, shown in Figure 4-10. The available pages are:

1. Project. This page lets you perform general project management tasks, such as searching, sorting and
viewing SCM status. To open the project page, click the project icon.

2. Build. This page lets you view build results and the run log. To open the build page, click the hammer
icon.

3. Debug. This page includes an integrated debugger view, similar to the standalone debugger window
available with the other layouts. To open the debug page, click the spray can icon. For a description of
the debugger interface, see “The Debugger Window” (page 347).

In addition to using the Page control, choosing any of the menu items for opening other Xcode windows
will, in the All-In-One layout, open the appropriate page to the correct pane. For example, choosing Build >
Build Results opens the Build page and selects the Build pane.

Each page of the All-In-One layout has a different project window toolbar, that contains items specific to the
development tasks performed in that page.

The Project Page

The project page, shown here, lets you perform typical project management tasks. You can view the contents
of your project in outline view, search for project items in the detail view, perform a project-wide find, and
view status for the files under version control in your project.

68 Project Window Layouts
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Figure 4-10 The project page of the All-In-One project window

The project page contains a Groups & Files list, which shows all of the contents of your project in outline
view; an attached editor, which lets you edit source files right in the project window; and a tabbed view,
which lets you switch between several panes, each of which provides an interface for a common project
management task. These panes are:

 ■ The Detail pane includes a detail view, which lets you view additional information about project items
selected in the Group & Files list or quickly filter project items. The detail view is described in “The Detail
View” (page 60).

 ■ The Project Find pane lets you perform project-wide searches and view search results. The interface is
the same as that provided by the Project Find window in other layouts. See “Searching in a Project” (page
97).

 ■ The SCM Results pane opens a dedicated view displaying only those project items under version control
and their status. It is similar to what you see in the SCM window with other layouts. See “Viewing File
Status” (page 211).

The default toolbar for the project page of the All-In-One layout is the same as that of the Default project
window, described in “The Project Window Toolbar” (page 63), with the addition of the Page control.

The Build Page

The build page, shown here, provides an interface for common build tasks. It lets you see the progress of
your build, view errors and warnings, and see the run log.

Project Window Layouts 69
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Figure 4-11 The build page of the All-In-One project window

The build page contains an attached editor, that lets you view source code and jump to the location of any
build errors; a Groups & Files list that shows your project contents in an outline; and tabs that let you switch
between:

1. The Build pane displays the commands used to build your project and the output of the build system.
This is the same information as that in the Build Results window available with the other layouts. See
“Viewing Build Status” (page 305).

2. The Run pane displays any information logged by your program while running in Xcode.

If the outline view is not visible in the build page, you can open it by dragging or double-clicking the splitter
at the far left side of the window, or by choosing an item from the View > Show menu.

The default toolbar of the build page contains items that give you easy access to commands you commonly
use when building and running.

Other Windows in the All-In-One Layout

The All-In-One layout is designed to let you perform all development tasks in the project window; it does,
however, include a few additional windows, listed in Table 4-3. These windows let you view content already
available from the project window in a separate window, should you choose to do so.

70 Project Window Layouts
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Table 4-3 Additional windows available with the All-In-One layout

Use toWindow

View the class hierarchy of your project and browse classes and class members. To open,
choose Project > Class Browser or Window > Tools > Class Browser. See “Viewing Your Class
Hierarchy” (page 107).

Class Browser

View and edit all breakpoints set in your project. To open, choose Debug > Breakpoints or
Window > Tools > Breakpoints.

Breakpoints

View your project’s bookmarked locations in a dedicated window. To open, choose Window
> Tools > Bookmarks or double-click the Bookmarks smart group.

Bookmarks

View the contents of the run log, available in the Run pane of the build page, in a separate
window. To open, choose Window > Tools > Run Log.

Run Log

Perform a project-wide search and view search results in a separate window. This window
shows the same information as the Project Find pane of the project page. To open, choose
Window > Tools > Project Find.

Project Find

View the status of files under version control in your project. This window contains the
same information as the SCM pane of the project page. To open, choose Window > Tools
> SCM.

SCM

Changing the Project Window Layout

You can change the current project window layout in the General pane of Xcode Preferences. From the
Layout menu, choose the Default, Condensed, or All-In-One layouts. Selecting a layout from this menu shows
a brief description of the layout below the menu. Note that you cannot change the project window layout
when any projects are open; you must first close all open projects. The project window layout is a user-specific
setting; it applies to all projects that you open.

Saving Changes to the Current Layout

Xcode’s available project window layouts give you the flexibility to choose the configuration that best suits
your preferred workflow. You can further customize your work environment by saving the changes that you
make to the windows in an open project and applying them to all projects using that layout.

For example, the project window of the condensed layout shows three different outline views, each of them
focused on a different subset of a project’s groups. By default, the Files view shows only the project group,
which contains all files and folders in the project. The Other view shows all smart groups. If you want access
to both your project files and your bookmarked locations in the same view, you could add the Bookmarks
smart group to the Files view by choosing View > Show > Bookmarks.

Project Window Layouts 71
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Note: If the Bookm arks smart group exists in another pane, choosing View > Show > Bookmarks opens
that pane in the project window. However, if you have previously deleted the smart group from the project
window, choosing View > Show > Bookmarks adds that smart group to the current pane.

To save this change, and have the Bookmarks smart group appear in the Files pane for all projects using the
Condensed layout, choose Window > Defaults.

In the dialog that Xcode displays, click Make Layout Default to save your changes to the current layout.
Clicking Restore to Factory Default discards all of your changes—both current changes and those you’ve
previously saved—to the current layout. Xcode restores the original configuration settings for the layout.

You can save changes to:

 ■ Window size and position.

 ■ Visibility of views—whether they are hidden or revealed—in a window.

 ■ Contents and visibility of outline views.

 ■ The default set of toolbar items.

If the “Save window state” option in the General pane of Xcode Preferences is enabled, Xcode saves the state
of the open windows for each project when you close that project. However, when you choose Window >
Defaults, you save configuration changes that apply to all projects when you open them using the modified
layout.

Viewing Additional Information on Project Items and Operations

Knowing how to use Xcode’s user interface to find and view project items and information is essential to
working efficiently in Xcode. Xcode gives you a number of different ways to find and access project contents.
In previous sections, you’ve learned how to use the Groups & Files list to see an organized outline view of
your project and how to use the detail view to quickly filter project contents. Using these tools, you can view
as wide or as narrow a cross-section of your project as you choose. However, these tools aren’t as useful
when you wish to view or modify individual items in your project. For this, Xcode provides inspector and
Info windows.

In previous chapters you also learned how the project window status bar lets you view the progress and
results of operations in Xcode. However, the amount of information visible in the status bar is limited and it
reflects only operations in the current project. To let you view a more detailed account of all operations in
Xcode, Xcode provides the Activity Viewer window.

This section describes the Info and inspector windows, as well as the Activity Viewer and shows you how to
use them to obtain additional information on project items and Xcode operations.

72 Viewing Additional Information on Project Items and Operations
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

Inspector and Info Windows

Xcode includes two special types of windows that you will use frequently to view and modify items that
appear in your project window. These are the Info window and the inspector window. The Info and inspector
windows allow you to examine the components of your project in detail and make changes to them. You
can inspect any item that is selected in the project window or is open in the active editor window. Xcode
provides inspectors for the following project items:

 ■ File and folder references

 ■ User-defined smart groups

 ■ Localized file variants

 ■ Targets

 ■ Executables

 ■ Build phases

 ■ The project itself

The type of information displayed in the inspector and Info windows changes, depending on the type of
item you are inspecting. For example, here is the Info window for a target:

Figure 4-12 An Info window

Viewing Additional Information on Project Items and Operations 73
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

For any particular item in your project, the Info window and inspector window both display the same
information. However, the two windows behave differently. The Info window continues to display information
about the item that was selected in the project window when you opened it, regardless of the current
selection. You can have multiple Info windows open at any time, each describing a different component of
your project, and that information will continue to be visible until you close those windows. To open an Info
window, choose File > Get Info, click the Info button in the project window toolbar, or double-click the item
to inspect.

The inspector window tracks the current selection in the project window. As you select different files, targets,
and groups in the project window, the inspector window changes to show information about that item. To
open an inspector window, hold down the Option key and choose File > Show Inspector or click the Inspector
button. The Inspector button is not in the project window toolbar by default; to add it to the toolbar, choose
View > Customize Toolbar.

Specific inspector and Info windows are described in more detail later in this document, when the objects
that they modify—files, targets, projects, groups, and so forth—are discussed. In general, however, if you
are at a loss as to how to make a change to a basic project component, try inspecting it. Throughout this
document, wherever an inspector window is used, remember that you can also use an Info window, and vice
versa.

Viewing the Progress of Operations in Xcode

The Activity Viewer window lets you watch the operations currently in progress in Xcode. While the Tasks
button in the project window toolbar lets you control the progress of tasks in the current project, the Activity
Viewer lets you see the progress of all Xcode operations across all open projects. The Activity Viewer provides
a single, persistent window which you can leave open to monitor the progress of all running tasks. To open
the Activity Window, shown here, choose Window > Activity Viewer or click the progress indicator in the
project window status bar.

Figure 4-13 The Activity Viewer Window

The operations in the Activity Viewer are grouped by project; you can show or hide the operations specific
to any project by clicking the disclosure triangle next to the project name. To stop any of the tasks shown
in the Activity Viewer, simply click the Stop sign icon next to that task. You can cancel the most recently
initiated operation in the active project by choosing Project > Stop<taskname> or typing Command—period.

74 Viewing Additional Information on Project Items and Operations
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Project Window

The files in a project are the fundamental building blocks from which you create your end product. Files
contain the source code that you write and serve as the inputs to the build system for creating a product.
They can also hold notes, performance metrics, and the like to aid you in the development process.

This chapter discusses the files in a project, describes how Xcode references project files, and shows you how
to add files, frameworks, and folders to your project. It also describes how to use source trees to set up
alternative access paths for project files and how to use a cross-project reference to access the contents of
another project.

Files in Xcode

For each source file included in a project, Xcode tracks file attributes, such as the name and type, as well as
other information. Figure 5-1 shows the information that Xcode tracks for source files.

Figure 5-1 A source file

Source file

...

Name

File type

Path

Path type

SCM information

The name is the file system name for the file. The file type identifies the file as being one of several
classifications (source file, image file, text file, and so on.) Depending on the file type, Xcode stores additional
information about the file, such as the file encoding, type of line endings and so forth.

The path to the file specifies the file system location for the file; the path type—which you can
modify—indicates how Xcode stores the path; that is, whether it is absolute or relative to the project directory
or another location. “How Files Are Referenced” (page 77) describes the various ways in which Xcode stores
paths.

You can view and edit these file attributes in the file inspector.

Files in Xcode 75
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

The Files in a Project

The project lets you pull together all of the files and other information required to build a set of related
software products. Within a project, you use a target to specify the files needed for an individual product.
The files can reside at any location in your file system; they do not need to be placed in your project folder.
A project can contain:

 ■ Files. A source file is any file that Xcode uses in building a target, including source code files, resource
files, image files, and others. For files you need direct access to in Xcode—for example, files you wish to
edit using Xcode’s editor—you should explicitly add a reference to each file to the project. This includes
source code files you want Xcode to compile.

 ■ Folders. If you have a folder of files that you manipulate as a whole—such as a folder of help files—you
can simply add a reference to the folder to your project. This allows you to manipulate the folder in
Xcode instead of touching each file individually. (To access any of the files individually from Xcode, you
must also add a reference to the file to your project.)

 ■ Frameworks. You can add a reference to each of the frameworks that your product links against. This
gives you easy access to the framework’s headers, directly in the project window.

When you create a project using Xcode’s project templates, described in “Choosing a Project Template” (page
47), Xcode populates the project with a small set of default files required to build the associated product.
For example, the figure below shows the contents of a new project created using the Carbon Application
project template. This project builds a small C application with a NIB-based interface that links to the Carbon
framework. The project contents have been expanded in the Groups & Files list to display its contents in
outline view. Of course, keep in mind that the contents of a project vary depending on the project template
and the products it creates.

Figure 5-2 The project contents in the Groups & Files list

76 The Files in a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

The example project contains the following items:

 ■ The Sources group contains implementation files; in this case the main.c file.

 ■ The Resources group contains resource files for the application. This includes the main.nib file that
defines the user interface, the Info.plistproperty list file, and the Infoplist.strings files containing
strings used in the interface.

 ■ The External Frameworks and Libraries group contains references to the frameworks that define the
system interfaces used by the application’s code. You can view a framework’s header files by disclosing
the contents of the framework in the Groups & Files list.

 ■ The Products group contains references to the products created when the project’s targets are built. A
product reference is a special type of file reference that refers to the build system output for a particular
target. A product reference lets you view your target’s products right in the Groups & Files list. You can
use the product reference to refer to the product in the same way you use a file reference to refer to a
project file. Note, however, that the product reference does not actually refer to anything until you have
built that target.

Xcode keeps a reference to each file, folder, and framework you add to your project. In this way, Xcode can
find your files directly when it builds a product. However, Xcode also provides build settings for specifying
general search paths for various items, such as headers and libraries. These include the Header Search Paths,
Library Search Paths, and Framework Search Path build settings.

How Files Are Referenced

Xcode stores the location, or path, for each file, framework, and folder in a project. Xcode uses this path to
locate the item. Xcode can store this as an absolute path or relative to another file system location. You
choose the way that a given file, framework, or folder is referenced when you add it to the project. You can
also change the reference type for an item in the file inspector. Xcode supports the following reference styles,
each of which is available in the Reference Type menu:

 ■ Relative to Enclosing Group. The path is relative to the folder associated with the file’s group. If the file
is not in a group or the group has no associated folder, the path is relative to the project’s folder. This
is the default setting for files in your project’s folder.

 ■ Relative to Project. The path is relative to the project’s folder, regardless of whether the file is in a group
with an associated folder.

 ■ Relative to Build Product. The path is relative to the folder that contains the project’s build products.
This reference style is the default for items that are created by one of the project’s targets.

 ■ Relative to source path. The path is relative to a user-defined source path. You can define a source path
in the Source Trees pane of Xcode Preferences. Note that this reference type is not available to you until
you have defined at least one source tree.

 ■ Absolute Path. The path is absolute from the root directory (/). This is useful in a limited set of
circumstances, when you want to locate a file at a particular path. In most cases, you should use a relative
path; absolute paths are fragile and break easily when you move projects between computers.

If a file is inside your project folder or its build folder (created by Xcode when it creates a new project), use
one of the first three reference styles.

How Files Are Referenced 77
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

If Xcode can’t find a file, folder, or framework at the path stored for it in the project, Xcode displays the item
in red in the project window.

Adding Files, Frameworks, and Folders to a Project

If you created a new project using one of the project templates, or if you converted an existing project, your
project will already have a number of groups and files in it, as well as frameworks, folders, and product
references. Regardless of whether your project already includes files or was created completely empty, you
will likely have to add files or frameworks to your project at some point.

You can add a file, folder, or framework to your project by dragging it from the Finder to the project source
group or by choosing Project > Add to Project and using the navigation dialog to choose the item to add.

Adding Files and Folders

There are two ways for you to add files or folders to your project:

 ■ In the project window Groups & Files list, select the group to add the files to, and choose Project > Add
to Project. Use the resulting dialog to navigate to and choose the file or files to add. If you want to add
all of the files in a given folder, you may simply choose the folder. The files or folders you add are placed
after the items currently selected in the Groups & Files list, if any.

 ■ Drag the icons for the files or folders from the Finder to the project window Groups & Files list. A line
shows you where the files will be added.

As a shortcut, you can add a file that is open in an editor window to the project by selecting Project > Add
Current File to Project. The editor window must have focus.

Once you have selected the file or files to add to the project, using either of the two methods described
above, Xcode displays a dialog, shown below, that allows you to specify how the files are added to the project.

78 Adding Files, Frameworks, and Folders to a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

Figure 5-3 Adding files to a project

Here is what the dialog contains:

1. The “Copy items into destination group’s folder (if needed)” option controls whether or not the files are
copied into your project folder on disk. If you select this option, Xcode copies over any files that are not
already present in the project folder. If the project folder contains subfolders for groups, then the files
are copied into the appropriate subfolder.

2. The Reference Type menu specifies how the location of the file is stored. For a description of the various
reference styles available to you, see “How Files Are Referenced” (page 77). Note that this menu does
not contain any source paths until you have defined one or more source trees in the Xcode Preferences
window. Once you have defined a source path, it appears at the bottom of the Reference Type menu
and you can choose it for the files and folders you add.

3. The Text Encoding menu specifies the encoding for the file or files. This is the character set that Xcode
uses to display and save a file. For more information on file encodings, see “Choosing File Encodings” (page
163).

4. The Add To Targets group allows you to add the file to one or more of the targets currently defined in
your project. If the checkbox next to a target name is checked, the file is added to that target when it is
added to the project. When you add a file to a target, that file is built when the target is built. You can
specify which files are included in a target at any time; this option allows you to add the file to your
project and to any necessary targets in one step.

The remaining options apply only if the selection of files to add to the project includes one or more folders.
Xcode can add folders in two ways:

Adding Files, Frameworks, and Folders to a Project 79
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

1. Group. Xcode recursively creates groups for the folder and its subfolders. Each of the files in these folders
is added to the project and is placed in the group for the appropriate folder. If you choose to copy the
files into the project’s folder, Xcode duplicates the folder hierarchy. If you move a file to the folder outside
of Xcode, Xcode does not add the file to the project.

To add a folder as a group, select “Recursively create groups for any added folders.”

2. Folder Reference. Xcode adds the folder itself to the project but not its contents. This is useful if you
need to manipulate the folder as a whole but not the individual items within it. One example is a folder
of help files that you edit outside of Xcode and that you want Xcode to move into the application’s
Resources folder when you build the application.

To add a folder as a folder reference, select “Create Folder References for any added folders.”

Adding Frameworks

Similar to adding files, you add frameworks to a project by doing either of the following:

 ■ Select the group to add the framework to in the Groups & Files list, and choose Project > Add to Project.
Use the resulting dialog to navigate to and choose the appropriate framework on the system—for
example, AddressBook.framework.

 ■ Drag the framework to the project window Groups & Files list.

After you have selected a framework, Xcode presents the same options described in “Adding Files and
Folders” (page 78). The following options apply to frameworks:

 ■ The Reference Type menu in the dialog specifies how the location of the framework is stored. For a
description of the various reference styles available to you, see “How Files Are Referenced” (page 77).

 ■ The Add to Targets group box allows you to add the framework to one or more of the targets currently
defined in your project. If the checkbox next to a target name is checked, the framework is also included
in that target when it is added to the project.

 ■ The Text Encoding menu specifies the encoding used for the files in the framework. For more information
on file encodings, see “Choosing File Encodings” (page 163).

Removing Files

You can remove any files, folders, or frameworks from your project by selecting them in the Groups & Files
list and pressing Delete. You can also select the files to remove and choose Edit > Delete.

Xcode displays a dialog asking whether you wish to delete the actual files or just the project’s references to
them. If you choose Delete References, Xcode deletes only the project’s references to those files; the files
remain intact on the disk. If you choose Delete References & Files, Xcode deletes the references from the
project, and deletes the referenced files from the disk. The files are deleted immediately; they are not moved
to the Trash.

80 Adding Files, Frameworks, and Folders to a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

Source Trees

Source trees are root paths that can be used to define common access paths and locations for target outputs.
A source tree defines a name and a location on the local file system. When you add files and folders to your
project, you can specify their location relative to any source tree defined for your computer. Xcode stores
the file reference relative to this source tree. Any other user who has the same source tree defined is able to
work on the same project seamlessly, provided that the file actually exists at the source tree location on their
computer as well.

Source trees let you keep common resources in locations other than the project folder of an individual project
and still transfer projects back and forth between team members and their various computers without
breaking the project’s file references. This is particularly useful if you have a set of common files or resources
that are used in a number of projects, and therefore cannot live in the project folder. Everyone working on
a common project should have the same source trees defined; while the locations assigned to those source
trees may differ, the names must be the same in order for Xcode to locate the necessary files and materials
on the developer’s computer.

Xcode supports global source trees; that is, any source trees that you define are available to all of your projects.
Source trees are stored for each user, so if you have multiple developers using a single computer, you will
have to define the source trees for each user, even though the location for those source trees is the same.
Once you have defined a source tree, it is available to you from the Add Files dialog, to use when adding file,
folder, and framework references to your project. You can also select the source tree from the Path Type
pop-up menu in the file inspector, described in “Inspecting File, Folder, and Framework References” (page
161).

You can edit source trees in the Source Trees pane of Xcode Preferences. To open this pane, choose Xcode
> Preferences and click Source Trees. To add a source tree, click the plus (+) button beneath the source tree
table. Xcode adds an entry in the table. Add the following information to the entry:

 ■ Setting Name is the name of the source tree. This name must be the same for all users who wish to use
this same source tree to refer to common files.

 ■ Display Name is the name that Xcode shows for the source tree in dialogs, inspectors, and anywhere
else the source tree is used in the user interface. For example, this is the name used in the Path Type
menu of the file inspector.

 ■ Path is the full path to the files and other resources located using this source tree on the user’s system.
This path may vary from computer to computer, and from user to user.

To delete a source tree, select the source tree in the table and click the minus (-) button. To edit a source
tree, double-click the entry for the source tree in the appropriate table column and type the changed text.

Referencing Other Projects

In addition to file, framework, and folder references, Xcode projects can contain a cross-project reference;
that is, they can refer to another project outside of the current one. It is not always feasible or desirable to
keep all related targets and products in a single project. However, you may still need to reference targets or
products that reside in a different project. For example, you may have several applications that rely on a

Source Trees 81
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

common framework that resides in a different project. In this case, you can add a reference to the project
containing the framework to the project containing the application. This reference, called a cross-project
reference, lets you access the targets and products of the referenced project from your current project.

To create a reference to another project, choose Project > Add to Project and select the project bundle (the
.xcode bundle) of the project you wish to reference. Xcode adds a reference to the source group for your
current project, visible in the Groups & Files list. The project reference is indicated by the project icon. Clicking
the disclosure triangle next to the project reference shows the product references that the other project
contains. These product references can be added to targets in the current project.

You can relate targets in the current project to targets in the referenced project by creating a target
dependency. You can add a dependency on a target in the referenced project in the same way that you
would add a dependency to a target within the same project. See “Adding a Target Dependency” (page 239)
to learn more about target dependencies.

For projects that use cross-project references, you should use a common build location; doing so ensures
that Xcode can automatically locate products created by targets in those projects. For more on build locations,
see “Build Locations” (page 301).

82 Referencing Other Projects
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Files in a Project

Some of the organizational decisions you make when you first set up a project—such as how many targets
you need for your software development effort—affect your entire development experience. This chapter
provides tips and tricks for organizing your software as you develop with Xcode. It also describes some of
the features Xcode provides that let you group and organize information in the user interface for rapid and
easy access. For instance, you can save commonly accessed locations as bookmarks or in the Favorites bar,
or document project items by adding comments to them.

Software Organization Tips

The following are some general guidelines for organizing your software in Xcode. In subsequent sections,
you’ll get more detailed information to flesh out these tips.

 ■ Follow standard software development practice to factor your software into logical units of reasonable
size, which you can implement as applications, shared libraries, tools, plug-ins, and so on. In Xcode, each
of these products requires one target.

 ■ Put together projects and targets based on such factors as:

 ❏ How do the products interact?

 ❏ How many individuals (or teams) will be working on each task?

 ❏ Do the products use different source code management systems?

 ❏ Must the products run on different versions of Mac OS X?

 ■ For smaller development tasks, it generally makes sense to keep targets for related products in a single
project.

 ■ For tasks that are reasonably separate, and especially if they are to be implemented by separate teams,
use multiple projects.

 ■ Use cross-project dependencies when targets in one project need to depend on targets in other projects.

 ■ Use the information in “Build Locations” (page 301) to ensure that a target can access the build products
of other targets when needed.

Dividing Your Work Into Projects and Targets

To develop software with Xcode, you are going to need at least one project, containing at least one target,
and producing at least one product. Those are the basic structures you use for all your development.

Software Organization Tips 83
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

Beyond that, there are no hard and fast rules for how you divide your work. For simple products or products
that are closely tied together, you might use a single project with multiple targets. For large development
tasks with many products, and especially with separate development teams, you’ll want to use multiple
projects and targets, perhaps connected with cross-project dependencies.

The following sections provide additional information and tips on organizing your software.

Identifying the Scope

In organizing your software, many decisions depend on the scope of the design goal and the number of
products it requires. For example, if you’re working alone on a simple application, you can create a project
for the desired application type (such as a Cocoa or Carbon application) and get right to work. Here are some
of the decisions you might face:

 ■ If you decide to move some code to an internal library, you might add a target for the library.

 ■ To take advantage of existing code in another project, you might choose to develop the existing code
as a shared library and add a dependency so that the application project depends on the shared library
project and makes use of its output.

 ■ You might choose not to use a source code management (SCM) system, although even simple projects
can sometimes benefit from such use.

Suppose, however, that you are working on a more complex software design, one that will be implemented
by several individuals or development teams. Let’s say you are asked to create a new application for “an
easy-to-use recording studio.” You may already have components of this application, such as a shared library
for presenting music tracks. As you refine the product specification, you identify other common tasks that
might belong in a shared library, tool, or companion application. You determine that the main application
should rely on Apple technologies to provide certain features, such as burning CDs or making the application
scriptable.

Eventually, you have identified a set of products to build, which gives you a good idea of the scope of the
task. And that in turn can help you determine how to organize it into Xcode projects and targets.

Trade-offs of Putting Many Targets in One Project

You can help determine whether to put many or all of your targets in one project by considering some of
the trade-offs involved. Here are some of the advantages of combining multiple targets in one project:

 ■ Indexing works across all targets.

Indexing information is required to access classes in the class browser, view symbols in the Project
Symbols smart group, and to take full advantage of code completion. It is also necessary to use
Command-double-click to jump to a definition and to use symbolic counterparts.

 ■ You can easily set up dependencies between targets in the project.

 ■ Anyone using the project has access to all its files.

 ■ If you have access to extra CPUs on your network, you can use distributed builds to build a large project
more rapidly.

Here are some of the disadvantages of putting all your targets in one project:

84 Dividing Your Work Into Projects and Targets
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

 ■ All of the code is visible to any individuals or teams using the project, even if they’re working on only
one target or a small subset of the overall project.

 ■ The project size may become unwieldy; this can cause Xcode to take a long time to perform operations
such as indexing.

 ■ All targets must use the same SCM system.

 ■ All targets must build for the same Mac OS X system version (SDK).

 ■ All targets use the same build styles (for example, you can’t have variations on a Deployment build style
for different targets).

 ■ You can’t use the graphical debugger to debug two executables in one project at the same time.

Trade-offs of Using Multiple Projects

There are also trade-offs in breaking up a software development task into multiple projects and targets. Here
are some of the advantages of using multiple projects:

 ■ You can use the project as a unit for dividing work among different individuals or teams. The separate
projects allow you to segregate the code (for example, to limit access to confidential information).

 ■ Each individual project can be of a more manageable size, and Xcode can perform indexing, building,
and other operations more quickly.

 ■ If projects need to share outputs, they can build into a common directory, as described in “Build
Locations” (page 301).

 ■ You can use cross-project dependencies to build other projects needed by the current project.

 ■ Each project can use source code stored in a different SCM system. However, if individuals have physical
access to other projects, it is still possible to look at SCM information from multiple projects that use the
same SCM system.

 ■ Each project can build for different Mac OS X systems (SDKs).

 ■ Each project can define separate build styles.

 ■ You can use the graphical debugger to debug two or more executables at the same time, one in each
project. This is useful when products communicate directly or otherwise interact.

Here are some of the disadvantages of having multiple projects and targets:

 ■ You won’t have cross-project indexing, and thus you will have access only to symbols that are specifically
exposed by other projects. This means, for example, that you can’t automatically look up definitions in
other projects unless you have physical access to them (not just to their end products).

Similarly, you will not be able to take full advantage of other features that depend on indexing. That
includes using code completion, using Command-double-click to jump to a definition, and using symbolic
counterparts.

 ■ Management of many smaller projects is likely to incur additional overhead. For example, to set up a
target that depends on other targets in multiple projects, you’ll first have to set up cross-project references.

Similarly, use of multiple projects may require additional communication between teams.

 ■ For an individual working on multiple projects, it may become unwieldy to switch between many open
projects.

Dividing Your Work Into Projects and Targets 85
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

 ■ Individual projects are smaller, and are less likely to be able to take advantage of distributed builds.

Organizing Files

Decisions about how to partition projects and their targets affect the organization of your entire software
development effort. However, it is also important that your work in a project is organized and accessible to
you. Particularly in larger projects, the number of files can be daunting. To help organize files into manageable
chunks, Xcode lets you group them.

A group lets you collect related files together. A source group lets you group an arbitrary set of file, folder,
and framework references in your project. A smart group, on the other hand, lets you group together files
fitting a particular pattern or rule. This section shows you how to organize files using source and smart groups.

Organizing Files into Source Groups

In the Groups & Files list, source groups look like folders. However, they don’t have to correspond to folders
on the disk. You can instead arrange files into groups that make sense to you while working on them in
Xcode. For example, in a project containing multiple targets, your project could store all the nib files in one
folder and all of the implementation files in another folder on disk. But in the Groups & Files list, you could
group the files according to target; that is, the nib files and implementation files for target A would be in
one group, the nib files and implementation files for target B would be in another group, and so on. A group
doesn’t affect how a target is built.

Creating a New Source Group

You can create a new source group in any of the following ways:

 ■ Create an empty group. Choose File > New Group and type the name.

 ■ Create a group from existing items. Select the items you wish to group and choose File > Group. You
can also Control-click the selected files and choose Group from the contextual menu.

 ■ Create a new group based on an existing directory structure. Choose Project > Add to Project, select the
folder, and check “Recursively create groups for added folders.” This is described further in “Adding Files
and Folders” (page 78).

Adding Files to a Group

You can add files to a group at any time by dragging the file icons to the group’s folder in the Groups & Files
list. A line appears to indicate where you are moving the files. Xcode automatically expands groups as you
drag items onto them.

Deleting Groups

When you remove a group from your project, you can choose whether to remove the files in that group from
the project or simply ungroup the files.

86 Organizing Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

 ■ To remove a group and the project’s references to the files in that group, select the group, and choose
Edit > Delete or press the Delete key.

 ■ To remove a group and keep the files it contains,press Shift and choose File > Ungroup or Control-click
the group and choose Ungroup from the contextual menu.

Using Smart Groups to Organize Files

Smart groups are also represented by folder icons in the Groups & Files list; however, they are colored purple
to distinguish them from source groups. As was mentioned earlier, smart groups group files that adhere to
a common pattern or rule. For example, you could define a smart group to collect all implementation files
ending in .m or .c. When you make a change to your project that alters the set of files matching a smart
group’s rule—for example, adding a new .c file—the smart group automatically updates to reflect the
change. You do not need to add files to a smart group yourself. In fact, Xcode does not allow you to drag
files to a smart group.

Creating a New Smart Group

To create a new smart group, choose File > New Smart Group and select one of the following options

 ■ Simple Filter Smart Group creates a smart group that collects files whose names contain a specified
string.

 ■ Simple Regular Expression Smart Group creates a smart group that uses a regular expression to specify
the pattern that file names must follow.

Xcode adds a new smart group of the selected type to your project and brings up an Info window that allows
you to configure the group. Xcode provides templates for each type of smart group; it uses these templates
to configure new smart groups with a default set of options. For example, the default Simple Filter Smart
Group collects all files with "*.nib" in their name. The default Simple Regular Expression Smart Group collects
all C, C++, Objective-C, Objective-C++, Java, and AppleScript implementation files in your project.

Configuring a Smart Group

To configure a smart group, select the group in the Groups & Files list and open an Info window. The Info
window for a smart group looks similar to the following figure:

Organizing Files 87
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

Figure 6-1 Configuring a smart group

Here is what the smart group Info window contains:

1. The Name field specifies the name of the new smart group. By default, this is set to the type of the smart
group, for example, “Simple Filter Smart Group.”

2. The Image well displays the icon used for the smart group in the project window. The default image for
a smart group is the purple folder icon, but you can also use a custom image to represent your new
smart group. To change the icon, click the Choose button and navigate to the image file to use.

3. The settings that define how the smart group decides to include a file are those in the center of the
smart group Info window. The Start From menu specifies the directory from which the smart group starts
its search for matching files; by default, this is the project folder. If the Recursively option is enabled, the
smart group also searches through subfolders of that folder.

4. The Using Pattern field specifies the actual pattern that files must match in order to be included in the
smart group. As mentioned, this pattern can be either a simple string that the smart group filters on or
it can be a regular expression, depending on the value of the radio buttons beneath the field. For examples
of each of these, look at the smart group templates. The Simple Filter Smart Group template uses the
pattern *.nib. Any files with “.nib” in their name are included in this smart group. The Simple Regular
Expression Smart Group, on the other hand, uses the regular expression
\.(c|cpp|C|CPP|m|mm|java|sh|scpt)$ to collect all implementation files ending in any one of
these suffixes, regardless of the case of the filename and extension.

88 Organizing Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

5. The Save For menu determines the scope for which this smart group is defined.You can have this new
smart group appear in all of your projects, or you can specify that the smart group you have created
remains specific to the current project.

Viewing Groups and Files

As you learned in “The Project Window” (page 55), you have two ways to view the contents of your project.
You can view the groups and files in your project in outline view to see a hierarchical representation of your
project organization. You can also view the groups and files in your project as a simple list, in the detail view.
The detail view presents a flat list of all the files contained in the source group selected in the Groups & Files
list. For example, if you select your project in the Groups & Files list, the detail view shows all of the files in
the project. If you select an individual file in the Groups & Files list, only that file is displayed in the detail
view. To view the contents of a source group in your project, select that group in the Groups & Files list. The
following figure shows the project, selected in the Groups & Files list.

Figure 6-2 Viewing the contents of a group

File kind Build status

Build errors
Code size Warnings

Membership in
active target

All of the files in the project are displayed in the detail view. The detail view for any file shows the following
information:

Organizing Files 89
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

1. The first column, with an empty column heading, shows an icon indicating the type of the file. For
example, a nib file is marked by the Interface Builder file icon. The icon for a C++ class file displays the
characters “C++”.

2. The File Name column displays the names of the files.

3. The column marked by the hammer icon displays the build status of each file. If a file has been changed
since the active target was last built, this column displays a checkmark, indicating that the file needs to
be built. If the file is up to date, this column is empty.

4. The Code column displays the size of the compiled code generated from the file.

5. The column marked by the error icon displays the number of errors in the file. If this column is empty,
the file either contains no errors or has not yet been built.

6. The column marked by the warning icon displays the number of warnings for the file. If this column is
empty, the file either has no warnings or has not yet been built.

7. The column marked by the target icon indicates whether the file is included in the active target. If the
checkbox next to a file is checked, then the active target includes that file.

8. The column marked by the source code management (SCM) icon shows the current SCM status of the
file.

9. The Path column shows the file system path to the file or folder.

10. The Comments column displays any note or other information that you have associated with the file in
the Comments pane of the file inspector.

Not all of these columns are visible by default. You can choose which columns are shown in the detail view
by using the View > Detail View Columns menu or by Control-clicking anywhere in the heading of one of
the detail view’s columns. This brings up a contextual menu from which you can choose the columns to
display. For more information, see “The Detail View” (page 60).

Saving Commonly Accessed Locations

In any project, there are locations that you find yourself accessing again and again; files that you edit frequently,
headers that you browse, even smart groups that you find yourself using often. Xcode lets you save locations
that you access frequently and provides ways for you to quickly jump to these locations. You can bookmark
project items. You can also use the Favorites bar to store locations. This section describes how to take
advantage of bookmarks and the Favorites bar to provide quick access to project contents.

The Favorites Bar

The Favorites Bar in the project window lets you save commonly accessed items and return to them quickly.
By default, the Favorites bar is hidden. To show the Favorites bar, choose View > Show Favorites Bar. To hide
the Favorites bar, choose View > Hide Favorites Bar.

90 Saving Commonly Accessed Locations
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

To add an item to the Favorites bar, simply drag it to the Favorites bar in the project window. You can save
any of the same locations you can bookmark, including files, technical documentation, URLs, and so forth.
In addition, you can add smart groups and source groups to the Favorites bar. The Groups & Files list can get
quite long as you reveal the contents of more and more groups, scrolling the items at the bottom of the list
out of view; you can add groups—including any of the built-in smart groups—to the Favorites bar to quickly
jump to that group in the Groups & Files list. To reorder items in the Favorites bar, drag them to the desired
location; dragging an item off of the Favorites bar deletes the item from the Favorites bar. To rename an
item in the Favorites bar, Option-click the item and type the new name. This changes the name of the entry
in the Favorites bar; it does not affect the name of the actual item that the entry represents.

To open a saved location, simply click or double-click it in the Favorites bar. If the item saved in the Favorites
bar is a container, such as a group or folder, pressing the item (holding the mouse button down) brings up
a pop-up menu that shows the items contents and lets you navigate to them. Each of the items in the Favorites
bar serves as a proxy for the actual item. Thus, Control-clicking the item brings up a contextual menu that
allows you to perform operations appropriate for the selected item.

Saving Commonly Accessed Locations as Bookmarks

Another way that Xcode lets you organize your project and provide easy access to the information you need
is with bookmarks. If you have files or locations in your project that you access often, you can bookmark
those spots and return to those locations at any time simply by opening the bookmark.

To create a bookmark, open the location you want to bookmark and choose Find > Add to Bookmarks. Xcode
prompts you for the name of the bookmark; you can enter a name to help you remember which location
the bookmark marks, or you can use the default name suggested by Xcode. You can bookmark project files,
technical documentation, URLs, and so forth.

You can see the bookmarks in your project in several ways:

 ■ Bookmarks smart group. Select the Bookmarks group in the Groups & Files list to see the bookmarks in
the detail view. The detail view shows the name and file of all of the bookmarks in your project. If the
attached editor is open, selecting a bookmark opens that location in the editor. Otherwise, you can
double-click the bookmark to open the bookmarked location in a separate editor window.

 ■ Bookmarks window. To open this window, double-click the Bookmarks smart group or choose Window
> Tools > Bookmarks. You can see all bookmarks in your project in this window; double-click any of these
bookmarks to open the location.

 ■ The bookmarks pop-up menu in the navigation bar of Xcode’s editor. Choose any bookmarked location
from this menu to open it in the editor, as described in “The Xcode Editor Interface” (page 169).

Saving Commonly Accessed Locations 91
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

Figure 6-3 Viewing bookmarks

Adding Comments to Project Items

To help you keep track of your project contents, you can write comments and associate them with any of
the items in your project. Xcode remembers these comments across sessions. In this way, you can document
your project and its components, keep design notes, or track improvements you still wish to make. This is
especially useful if you are working with large or complex projects that have many different pieces, or if you
are working with a team of developers and have multiple people modifying the project.

For example, imagine a large project containing targets that build a suite of applications, a framework used
by each of those applications, a command line tool for debugging, and a handful of plug-ins for the
applications. With such a large number of targets it might be hard to keep track of exactly what each of the
products created by those targets does. To make it easier to remember what each of them does, you could
add a short description of the product that it creates to the Comments field for that target. This also aids
others who may be working on the project with you; if they can read the comments, they can quickly get
up to speed with the project and easily learn about changes made by other members of the development
team.

To add comments to a project item:

 ■ Select that item in the Groups & Files list or in the detail view and bring up an Info or inspector window.

 ■ Click Comments to open the Comments pane, shown here.

92 Adding Comments to Project Items
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

Figure 6-4 The Comments pane

This pane contains a single text field into which you can type any information you wish. To add comments,
click in the Comments field and type. You can also link to additional resources from the Comments pane;
hypertext links, email addresses and other URLs are clickable in this field.

You can add comments to any project item other than smart groups, including projects, targets, files, and
executables. You can view comments you have added to project items in the detail view and you can search
the content of those comments using the Search field. If the Comments column is not already visible, choose
View > Detail View Columns > Comments or Control-click anywhere in the column heading and choose
Comments from the contextual menu.

Adding Comments to Project Items 93
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

94 Adding Comments to Project Items
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Organizing Xcode Projects

Xcode tracks certain settings at the project-level. These settings include your choice of version control system,
the version of Mac OS X to develop for, and the build styles available in the project. You can view and modify
project-level settings in the project inspector.

To open the project inspector, you can either:

 ■ Select the project in the Groups & Files list and click the Info or Inspector buttons, or choose the Get Info
or Show Inspector items from the File menu, as described in “Inspector and Info Windows” (page 73).

 ■ Choose Project > Edit Project Settings.

The project inspector contains the following panes:

 ■ General. This pane, described below, contains options that let you control various project-level settings,
such as the Source Control Management (SCM) system used by the project or the minimum version of
Mac OS X the project is built to run on.

 ■ Styles. This pane contains all of the build styles defined for your project. A build style is a collection of
build settings that are applied to one or more targets when you build; this allows you to vary the way
in which a target is built. In the Styles pane, you can add, edit, and delete build styles. Build styles are
described further in “Build Styles” (page 297).

 ■ Comments. This pane lets you associate notes and other text with the project. The Comments pane is
described further in “Adding Comments to Project Items” (page 92).

95
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Inspecting Project Attributes

Figure 7-1 The project inspector

1.

2.

5.

4.

3.

The General pane of the project inspector, shown here, contains the following information:

1. The name of the project, set when you first create the project using Xcode’s project templates.

2. The location of the project folder in the filesystem.

3. The location at which the build products and intermediate files for the project’s targets are placed. The
options under the heading “Place Build Products In” specify the location where Xcode places the products
created when building the project’s targets. The options listed under “Place Intermediate Build Files In”
specify where files generated in the course of building the product, but not included in the final product,
are placed. See “Build Locations” (page 301) for more information.

4. The cross-development options let you choose the minimum version of Mac OS X to build your product
for. This lets you target versions of the operating system other than the one you are currently developing
on. Use the Cross-Develop Using Target SDK pop-up menu to specify which SDK to use. See “Using
Cross-Development in Xcode” (page 333) for more information.

5. The source control management (SCM) system to use with the project. You specify an SCM system at
the project level. In the General pane of the inspector, you can turn SCM on and off, as well as choose
the particular SCM system to use with the project. See “Configuring Repository Access” (page 206) for
more information.

6. The Rebuild Code Sense Index button lets you rebuild the symbolic index that Code Sense, described
in “Code Sense” (page 104), uses to provides features such as code completion and symbol definition
searches.

96
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Inspecting Project Attributes

Being able to find information—both knowing how to leverage the user interface to locate items in a project,
as well as knowing how to find information about your project—is critical to working effectively in Xcode.

The Xcode user interface gives you many different ways to location project information and items. “The
Project Window” (page 55) describes the common paradigms of the Xcode user interface that let you find
and manage project contents, including the Groups & Files list, which lets you organize and access the items
in your project in an outline view, and the detail view, which lets you quickly filter your project contents. In
addition, the Activity Viewer window lets you see additional information on Xcode operations, while the Info
and inspector windows let you examine and modify items in your project.

Xcode also maintains a great deal of information about your project’s contents, which it uses to assist you
in the development process. The Xcode feature called Code Sense maintains an index that contains symbolic
information for your project; Xcode uses this information as the basis for a number of features that let you
browse the symbols in your project, view the class hierarchy of projects that use an object-oriented
programming language, and search your project for symbol definitions.

As you are working on your software product, you often need to find information on system technologies.
Xcode also includes a full-featured documentation viewer and installs a comprehensive suite of technical
documentation. Using Xcode’s documentation lookup features, you can quickly and easily search all or part
of Apple’s technical documentation for questions, keywords, or symbols.

This chapter describes how to use Xcode to find information about your project’s contents and about Apple
technologies. It covers:

 ■ Searching your project for text, symbols, or using regular expressions.

 ■ Using the Project Symbols smart group to find information on the symbols in your project.

 ■ Viewing classes and class members for projects that include object-oriented code, using the class browser.

 ■ Using the documentation window to browse Apple’s technical documentation and search the Reference
Library for keywords or symbols.

Searching in a Project

Xcode provides a number of ways to search for information in your project. You can search for text, regular
expressions, or symbol definitions in a single file or across multiple files in your project. You can also easily
substitute replacement text for one or more instances of matching text or symbols, either within a file or
throughout the entire project.

This section describes how to use Xcode’s project-wide search features to search through multiple files in
your project and its included frameworks for text, regular expressions, and symbol definitions. This section
also describes how to view search results. The single-file find is discussed further in “Searching in a Single
File” (page 176). In addition, shortcuts for performing searches from an Xcode editor window are described
in “Shortcuts for Finding Text and Symbol Definitions From an Editor Window” (page 178).

Searching in a Project 97
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

For more information on Code Sense, the technology that provides symbol definition searches, see “Code
Sense” (page 104).

The Project Find Window

The Project Find window allows you to search for information in some or all of the files included in your
project. Using the Project Find window, you can search your project for text, symbol definitions, or regular
expressions. To open the Project Find window, choose Find > Find In Project. A window similar to the following
appears.

Note: In the All-In-One project window layout, choosing Find > Find In Project opens the Project Find pane
in the project page. The Project Find pane contains the same information as the Project Find window shown
here.

Figure 8-1 The find window

Choosing What to Search For

Using the fields and menus at the top of the Project Find window, you can control what Xcode searches for.

1. The Find field specifies what to find. Xcode interprets this field differently, depending on the value of
the pop-up menu to the right of the Replace field.

2. The pop-up menu to the right of the Replace field specifies the type of search; it contains the following
options:

 ■ Textual finds any text that matches the text in the Find field.

98 Searching in a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

 ■ Regular Expression finds any text that matches the regular expression in the Find field.

 ■ Definitions finds any symbol definition matching the symbol name in the Find field.

3. The pop-up menu to the right of the Display Results in Find Smart Group option controls how Xcode
determines a match to the contents of the Find field. The available options are:

 ■ Contains. Choose this option to find text or symbol definitions that contain what is in the Find field.

 ■ Starts with. Choose this option to find text or symbol definitions that begin with the contents of the
Find field.

 ■ Whole words. Choose this option to find text or symbol definitions that contain only what is in the
Find field.

 ■ Ends with. Choose this option to find text or symbol definitions that end with the contents of the
Find field.

4. The “Ignore case” option specifies whether or not the search is case sensitive.

As a shortcut, you can also perform a quick search of selected text or regular expressions in an editor window,
as described in “Shortcuts for Finding Text and Symbol Definitions From an Editor Window” (page 178).

Specifying Which Files to Search

To control the scope of a search, use the pop-up menu to the right of the Find field in the Project Find window.
This menu contains sets of search options that specify which projects and frameworks to search in. Xcode
provides the following default sets of search options:

 ■ In Project. Choose this option to search the files that are directly included in your project.

 ■ In Project and Frameworks. Choose this option to search both the files and the frameworks included in
your project.

 ■ In Frameworks. Choose this option to search files that are in the frameworks included by your project.

 ■ In All Open Files. Choose this option to search all open files.

 ■ In Selected Project Items. Choose this option to search only in the currently selected project items.

You can further tailor these default sets of search options or define your own sets with the Batch Find Options
window, described in “Creating Sets of Search Options” (page 101).

Viewing Search Results

When you perform a project-wide find, the results of the search are collected in the find results pane of the
Project Find window; results are organized according to the file in which they appear, as shown in the figure
below. You can view a particular search result by selecting it in the Project Find window; Xcode opens the
file to the matching text and displays it in the attached editor. Double-click a search result to open it in a
separate editor window.

Searching in a Project 99
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Figure 8-2 Find Results in the project find window

Each search, and its results, is also collected in the Find Results smart group that appears in the Groups &
Files list of the project window. If you select the Display Results in Find Smart Group option, Xcode
automatically brings the project window to the front and discloses the contents of the Find Results smart
group when you perform a search, instead of showing the results in the Project Find window.

You can see all the searches you have performed by clicking the disclosure triangle next to the Find Results
smart group in the Groups & Files list. To view the results of a given search, select that search in the Groups
& Files list and, if necessary, open a detail view. The detail view shows all of the results for the selected search,
as shown below. You can view the combined results of several searches by selecting those searches in the
Groups & Files list. Double-clicking an item in the Find Results group in the Groups & Files list opens a Project
Find window with the corresponding search specification as well as a detailed find results list. This allows
you to rerun previous searches.

100 Searching in a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Figure 8-3 Search results in the project window

The detail view shows the context for each search result and the file in which the match occurs. The context
of a search result is the surrounding text in which it appears for text searches, and the type and name of the
matching symbol for a symbol definition search. To show or hide either of these two columns, use the View
> Detail View Columns menu items or Control-click in any column header and choose the desired column
from the contextual menu.

To view the source for a particular result, select the result in the detail view. If the project window or detail
view has an attached editor, selecting a search result displays the source in the editor. You can double-click
a search result to open the source for the result in a separate window.

You can sort the results of a search according to the file in which they occur. Click the Location column
heading to sort the detail view by location. You can also filter the search results using the Search field in the
project window toolbar. Using the location of the search result as an example again, you can type all or part
of a filename to see only those results that occur in the file of that name.

Creating Sets of Search Options

The Batch Find Options window lets you modify Xcode’s default sets of search options, or define your own
sets. This is particularly useful if you find yourself searching the same set of files over and over again. Instead
of configuring the set of files to search each time, simply configure it once and save it as a search option set.
To reuse the search option set, simply select it from the pop-up menu next to the Find button in the Project
Find window.

To open the Batch Find Options window, click the Options button in the Project Find window. You should
see a window similar to the following:

Searching in a Project 101
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Figure 8-4 The Batch Find Options window

The Find Sets menu at the top of the Batch Find Options windows lists the available search option sets. To
create a new set, click Add. Specify a name for the new set in the dialog that appears. Xcode creates a new
set of search options with default values. To delete a set of search options, choose that set from the Find
Sets menu and click Delete.

To edit a search option set, choose that set from the Find Sets menu and set the search options you wish to
include. The Batch Find Options window provides the following options to control which files Xcode searches:

1. “Search in open documents” includes all files that are open in an editor in the search.

2. “Search in open projects” includes open projects in the search. You can further control which files in
those projects are searched using the radio buttons below the “Search in open projects” option.

The top set of radio buttons controls which projects are searched:

 ■ “Selected files in this project” searches the selected files in the current project.

 ■ “All files in this project” searches all files in the current project.

 ■ “All open projects” searches all files in all open projects.

The bottom set of radio buttons lets you specify whether to include project or framework files in the
search:

 ■ “Project files and frameworks” searches both the project’s files and the files of any frameworks
included in the project.

102 Searching in a Project
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

 ■ “Project files only” confines the search to project files.

 ■ “Frameworks only” confines the search to the frameworks included in the project.

3. “Search in files and folders” allows you to add specific files or directories to the search. Any files or
directories listed in the table below this option are included in the search. To add an entry to this table,
click the plus (+) button and choose a file or directory from the dialog that appears; or drag the file or
directory from the Finder. You can also click in the table and press Return. To delete a file or directory
from this table, select the entry and click the minus (-) button.

You can further restrict the files that are searched by a search option set using the radio buttons on the right
side of the Batch Find Options window, next to the “Search in open documents” and “Search in open projects”
options. You have the following options:

 ■ “All candidate files” does not limit the searched files further. This searches all of the files in the search
scope specified by the other options in the Batch Find Options window.

 ■ “Source files only” limits the search to files containing source code.

 ■ “Filter files using regex patterns” lets you filter the files to search using one or more regular expressions.
These regular expressions are specified in the table beneath this radio button. To add an expression to
this list, click the plus (+) button.

Use the first column in this table to specify whether Xcode returns only those files that match a given
regular expression or returns only files that do not match the regular expression. If this column is blank,
Xcode does not use the regular expression. This column is blank by default for all regular expressions
that you add; click in the column next to the regular expression to choose a different value.

Replacing Text in Multiple Files

You can use the Project Find window to replace some or all occurrences of the search string specified in the
Find field. To replace text in multiple files:

1. Type the substitution text in the Replace field

2. Select one or more entries to replace. To choose which occurrences of the given search string to replace,
do either of the following:

 ■ Select one or more entries to replace in the find results pane of the Project Find window.

 ■ Choose a search from the Find Results smart group in the project window. In the detail view, select
one or more occurrences of the search string to replace.

3. Click the Replace button in the Project Find window.

If the contents of the Project Find window’s find results pane are disclosed, Xcode uses the selection in the
Project Find window to determine which occurrences to replace. If the find results group is closed, Xcode
uses the selection in the detail view of the project window.

Searching in a Project 103
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Viewing Project Symbols and Classes

Xcode includes a technology, called Code Sense, that maintains detailed information about the symbols in
and utilized by your project to assist you in the development process. Code Sense uses the information in
this symbol index, allowing you to browse the symbols and classes in your project, and perform symbol
definition searches. It also uses this information to provide completion suggestions when editing source
code, as described in “Code Completion” (page 189).

This section introduces Code Sense and discusses two of the features that it enables: the Project Symbols
smart group and the class browser. In this chapter you will learn how you can use the Project Symbols smart
group to view symbols and how you can take advantage of the class browser to find information on the
classes defined in your project and its included frameworks. The other features provided by Code Sense are
described in other parts of this document.

Code Sense

Code Sense makes it simple to find and view information about your code and to gain easy access to project
symbols. Code Sense maintains detailed information about the code in your project and in libraries used by
your project; this information is stored in a project index. Using this project index, Code Sense provides
support for features such as the following:

 ■ Code completion. Code completion, described in “Code Completion” (page 189), assists you in writing
code by providing API suggestions from within the editor. Code completion uses the stored information
about the symbols, as well as the contextual information from your source code, to offer a list of classes,
methods, functions, or other appropriate symbols for the code you are working on.

 ■ Class browser. Using the class browser, you can view the classes in your project and its included
frameworks. From the class browser, you can easily access declarations, source code, and documentation
for these classes and their members. The class browser is discussed in the section “Viewing Your Class
Hierarchy” (page 107).

 ■ Project Symbol smart group. The Project Symbol smart group allows you to view all of the symbols in
your project directly in the project window. You can search these symbols or sort them according to
type or name to quickly find the symbols you need. The Project Symbols smart group also gives you
easy access to a symbol’s definition. The Project Symbols smart group is described in “Viewing the
Symbols in Your Project” (page 105).

 ■ Searching. Xcode offers numerous ways to search for symbols and other information in your project. For
instance, you can perform a project-wide search for symbol definitions, or you can select an identifier
in an editor window and jump to its definition. These and other search features are described in “Searching
in a Project” (page 97).

The project index used by Code Sense is created the first time you open a project. Thereafter, the index is
updated in the background as you make changes to your project. Indexing occurs on a background thread,
to keep it from interfering with other operations in Xcode. The index can be completely rebuilt, if necessary,
by opening the General pane in the project inspector and clicking the Rebuild Code Sense Index button.

Indexing is enabled by default. You can disable indexing for all projects that you open. To do so, choose
Xcode > Preferences, click Code Sense, and deselect the “Enable for all projects” checkbox in the Indexing
section.

104 Viewing Project Symbols and Classes
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Note that if you turn off indexing, you will be unable to use those features that rely on the project index,
such as code completion, the class browser, and the other features mentioned in this section. You can specify
whether Xcode includes a particular file in the project index using the “Include in index” checkbox in the file
inspector, described in “Inspecting File, Folder, and Framework References” (page 161).

Viewing the Symbols in Your Project

The Project Symbols smart group, one of the built-in smart groups provided by Xcode, allows you to view
all of the symbols defined in your project. You can sort symbols by type, name, file, and file path, and you
can search for symbols that match a string. To see the symbols defined in your project, select the Project
Symbols smart group in the Groups & Files list. The detail view displays the symbols in your project. Here is
what you see when you select the Project Symbols group for a project:

Figure 8-5 Viewing symbols in your project

The detail view shows the following information for each symbol:

 ■ An icon indicating the symbol type, such as structure, function, method, and so on. The icon is a visual
cue that allows you to glance at a group of symbols and easily discern the type. The letter in the icon
reflects the symbol type; for example, “M” for method, or “V” for variable. The color of the icon indicates
the relative grouping of the symbols. For instance, purple icons indicate top-level elements such as
Classes or Categories while orange icons represent basic types like structures, unions, typedefs and
others.

 ■ The symbol name.

 ■ The symbol type. While the symbol type icon provides a handy visual cue as to the symbol type, the
Kind column states the type explicitly.

Viewing Project Symbols and Classes 105
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

 ■ The file containing the symbol definition or declaration, and the line number at which the symbol appears.

To sort the symbols listed in the project window according to any of these categories, simply click the
appropriate category heading. In addition, you can use the Search field in the project window toolbar to
narrow the list of symbols to those matching a string or keyword. You can search the contents of any one of
the categories—symbol name, symbol kind, or location—or you can search them all. In the PathDemo project,
for example, you can search for all symbols declared in files pertaining to views by selecting “Search By
Location” from the pop-up menu in the search field and typing “view.” The symbols listed in the detail view
are narrowed to include only those symbols defined in files whose names contain the word “view,” as shown
in the following figure. By default, the search field searches the content of all categories in the detail view.

Figure 8-6 Filtering the symbols in a project

You can configure which information is displayed in the detail view, as described in “The Detail View” (page
60).

To view the symbol definition, select the symbol in the detail view. If you have an editor open in the project
window or detail view, the symbol definition appears there. If you prefer a separate editor window, double-click
the symbol to open the file containing the symbol definition in a separate editor.

If you Control-click a symbol in the detail view, Xcode displays a menu that contains a number of useful
commands. The commands available to you are:

 ■ Reveal in Class Browser. If the selected symbol can be displayed in a class browser—for example, a class
or a method—choosing this menu item opens the class browser window and selects the symbol in the
browser. You can also reveal the selected symbol by choosing View > Reveal in Class Browser.

106 Viewing Project Symbols and Classes
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

 ■ Find Symbol Name in Project. When you choose this item, Xcode searches your project for the selected
symbol name. It performs a textual search, just as if you had typed the symbol name into the Project
Find window and selected “Textual” from the search type menu. The results of the search are displayed
in the Find Results smart group.

 ■ Copy Declaration for Method/Function. This command copies the declaration for the selected symbol
to the pasteboard; you can then paste this declaration into any text field or editor using Command-V.
This command only works for functions and methods.

 ■ Copy Invocation for Method/Function. This command copies the invocation string for the selected symbol
to the pasteboard, which you can then paste into any text field or editor. The invocation string is the
same string that is inserted into your code when you select a code completion option. This command
works only for functions and methods.

You can also reveal the file in which the selected symbol is defined in the Groups & Files list by choosing
View > Reveal in Group Tree.

Viewing Your Class Hierarchy

If you are programming in an object-oriented language, you can view the class hierarchy of your project
using the Xcode class browser. To open the class browser, choose Project > Class Browser. You can also open
the class browser by selecting a symbol in the Project Symbols smart group and choosing View > Reveal in
Class Browser. The following figure shows the class browser for a sample Cocoa application.

Figure 8-7 The Class Browser window

Viewing Project Symbols and Classes 107
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Classes and other top-level symbols—protocols, interfaces, and categories—are listed in the Class pane on
the left side of the Class Browser window. When you select a class from this list, Xcode displays the members
of that class in the table to the right of the Class pane. When you select a member name from this table, the
declaration of that member item is displayed in the editor pane below. To see the item’s definition, Option-click
its name.

If the class browser does not list any classes, your project may not be indexed. To rebuild the index, select
your project and open the inspector. Open the General pane and click Rebuild Code Sense Index.

A book icon beside a class or member’s name indicates that documentation is available for that member.
You can view this documentation by clicking the book icon.

The class browser uses fonts to distinguish between different types of classes and class members:

 ■ Classes defined in your project’s source code are in blue. Classes defined in a framework are in black.

 ■ Members defined in the class are black. Inherited members are gray.

The Option Set pop-up menu and Configure Options button in the toolbar of the class browser window
control which classes and class members are displayed in the browser. The New Class Browser button allows
you to open additional class browser windows.

To see the file that a class or member in your project is declared in, select the class or member in the class
browser and choose View > Reveal in Group Tree. This option is also available in the contextual menu for
classes and class members. Xcode reveals the file in the Groups & Files list in the project window.

You can bookmark a class or class member by selecting it in the class browser and choosing Find > Add to
Bookmarks or by choosing Add to Bookmarks from the contextual menu. Xcode creates a bookmark to the
class or member’s definition.

Choosing What the Class Browser Displays

You choose which information Xcode displays in the class browser using the Option Set pop-up menu at the
top of the browser window. This menu lets you switch between sets of display options. Xcode provides a
few sets of predefined display options that allow you to choose:

 ■ Whether to view all classes included in your project, or just those defined in your project

 ■ Whether to view classes as a flat list or a hierarchical list

When you view classes as a hierarchical list, you can see the subclasses of a class by clicking the disclosure
triangle next to that class.

To create your own set of display options or to make changes to an existing set, click the “Configure options”
button. Xcode displays a dialog that lets you further refine which information is displayed in the class browser.
The Class List Display Settings group, on the left half of the dialog, controls what is displayed in the Class list.
The Member List Display Settings group, on the right, controls what is displayed in the members list.

108 Viewing Project Symbols and Classes
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Figure 8-8 The class browser options dialog

To choose how to display classes, use the radio buttons under Class List Display Settings:

 ■ Choose Hierarchical Outline to view a hierarchical list of classes, where subclasses are listed under their
superclasses.

 ■ Choose Flat List to view an alphabetical list of classes, where all classes are at the same level and sorted
alphabetically.

The pop-up menus under the Class List Display Settings options let you choose which items the class browser
displays in the Class list. The first pop-up menu determines which classes the class browser shows:

 ■ Show Project Entries Only. Shows only those classes defined in your project.

 ■ Show Framework Entries Only. Shows only those classes defined in the frameworks that your project
includes.

 ■ Show Project & Framework Entries. Shows all of the classes defined in your project and in the frameworks
that your project includes.

The second pop-up menu determines whether to show only classes, only protocols and interfaces, or classes,
protocols and interfaces.

If you are programming in Objective-C, the Show Obj-C Categories menu lets you choose how Xcode displays
Objective-C categories in the Class list:

 ■ As Subclasses. The class browser lists categories under the classes that they extend.

 ■ As Subclasses for Root Classes. The class browser lists categories under the root class of the classes that
they extend.

 ■ Always Merged into Class. The class browser lists all members of a class and any categories that extend
that class together. The category does not appear as a separate entry in the Class list.

The Member List Display Settings let you control which items are included in the class members table in the
class browser. You can choose the following:

Viewing Project Symbols and Classes 109
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

 ■ Whether to display members inherited from the class’s superclass. To display inherited members, select
the Show Inherited Members option.

The inherited members that the class browser shows are limited by the scope of the selection in the first
pop-up menu under Class List Display Settings. For example, if you have Show Project Entries Only
selected, the class browser displays only inherited members from inherited classes in the project. To see
all inherited members from all classes, choose Show Project & Framework Entries from the first pop-up
menu in the Class List Display Settings group.

 ■ Whether to display only methods, only data members, or both methods and data members, using the
first pop-up menu in the section.

 ■ Whether to display only instance members, only class members, or both instance and class members,
using the second pop-up menu in the section.

Saving and Reusing Class Browser Options

You can save and reuse sets of class browser options. To reuse an existing set, choose it from the Options
Set pop-up menu above the Class list. To create and delete sets, click the Configure Options button next to
this pop-up menu.

 ■ To create a new set of search options, click the Configure Options button, click Add, enter a name for
your options set, and configure your options.

 ■ To remove a set of search options, click the Configure Options button, choose the options set from the
pop-up menu, and click Delete.

Viewing Documentation

Technical documentation is an important part of the software development process. As you develop a Mac
OS X software product with Xcode, you’re likely to use documentation to learn about the operating system
and the technologies it supports, read about system frameworks, and look up individual API definitions.

Xcode includes its own documentation window, which you can use to view the technical documentation
and other resources distributed as part of the ADC Reference Library. Xcode’s documentation window gives
you several ways to find documentation: you can browse documentation by title and category, search for
symbol names, or perform a full-text search for a word or phrase. In addition, Xcode gives you access to the
latest documentation available from Apple with downloadable documentation updates.

This section describes the documentation window and the ADC Reference Library content that is distributed
with the Xcode Tools. It shows you how to use the API lookup and full-text search features to find Reference
Library information, and how to obtain documentation updates.

Using the ADC Reference Library

Apple's ADC Reference Library is a complete collection of technical resources for developers, including
documentation, sample code, release notes, technical notes, and technical Q&As. Xcode integrates this
content into your development environment, letting you browse or search the ADC Reference Library from
the documentation window.

110 Viewing Documentation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Obtaining ADC Reference Library Content

The ADC Reference Library is available on Apple's developer website and as part of the Xcode Tools installation.
You can automatically detect and download updates to the installed ADC Reference Library content through
Xcode's documentation update mechanism, described in “Obtaining Documentation Updates” (page 118),
or you can subscribe to the Developer Connection mailing to receive the entire ADC Reference Library on
DVD each quarter. The Developer Connection mailing and Developer DVD Series are described further on
the ADC website.

The Documentation package included with the Xcode Developer Tools installs a subset of the ADC Reference
Library content on your local volume, at /Developer/ADC Reference Library. This content includes:

1. HTML versions of technical documentation, release notes, and API reference.

2. Category pages that let you browse documents by subject.

3. Full-text and symbol indexes that let you search all ADC Reference Library content.

This core documentation installation does not include PDF, sample code, technical notes, or technical Q&As.
However, you can still access this content, referred to as “extended documentation,” from Xcode. You can
also find additional sample code, in the form of sample Xcode projects, at /Developer/Examples on your
local volume.

Extended Documentation Locations

When you click a documentation link or search result in the Xcode documentation window, Xcode first looks
for that content at /Developer/ADC Reference Library. If it does not find the requested content there,
Xcode then looks at the extended documentation locations defined in Xcode's documentation preferences.
If Xcode cannot find the requested content after checking the extended locations, it notifies you that it was
unable to locate the specified documentation.

Xcode's default extended documentation location points to the full ADC Reference Library on Apple's
developer website. You can see where Xcode looks for additional documentation in Xcode's preferences, in
the Extended Locations table. You can also add your own locations. For example, if you have the full ADC
Reference Library content on DVD, you can add a new location specifying that Xcode look for additional
content on that DVD volume.

To add an alternative location for locating extended documentation:

1. Open Xcode Preferences by choosing Xcode > Preferences or typing Command-comma. Open the
Documentation pane.

2. Under Extended Locations, click the '+' button.

3. Navigate to the volume or folder where the documentation is located and select the ADC Reference
Library folder.

4. Click Add or press Return to add the new location to the Extended Locations table. Xcode adds the new
documentation location to the list and makes it active. Click Apply or OK to apply your changes.

Viewing Documentation 111
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

http://developer.apple.com/membership/mailing.html

Xcode looks for content at the extended locations in the order in which they appear in the table, looking at
the top entry first. You can change the order of a location by dragging its entry to the appropriate spot in
the table. For example, if you want Xcode to look at the DVD copy of the ADC Reference Library before going
to the web, add the DVD as an extended location and drag that entry to the top of the list.

If you don't want Xcode to look for documentation at a location that appears in the Extended Locations table,
you can either remove the entry from the list or disable the location. To remove a location from the list, select
the entry for that location and click the '-' button. To disable a location, deselect the checkbox in the On
column next to the location. You cannot remove the default Web location, although you can disable it.

Browsing ADC Reference Library Content

Xcode has its own built-in documentation viewer, shown below, which allows you to find documentation
quickly and easily. To open the documentation window you can:

 ■ Select an item from the Help menu.

 ■ Option–double-click a symbol name in an editor.

 ■ Click a book icon next to a symbol name in the class browser.

 ■ Select text in an editor window and choose Help > Find Selected Text in API Reference or Help > Find
Selected Text in Documentation.

 ■ Control-click the selected text in an editor window and choose Find Selected Text in API Reference or
Find Selected Text in Documentation from the contextual menu.

Reference Library content is organized by category; you can see these categories in the Search Groups list
in the documentation window, shown in Figure 8-9. Many of these categories have additional subcategories,
which you can see by clicking the turn-down arrow next to the category name. When you select a category
or subcategory in the Search Groups list, Xcode displays its contents in the documentation pane. Selecting
the top-level Reference Library group, or a group with additional subcategories, displays a navigation page
such as the one below that shows you the categories in this group with a brief description. From there you
can further narrow the subject matter to look for specific documents.

112 Viewing Documentation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Figure 8-9 The documentation window

When you perform a full-text or API reference search in Xcode, Xcode searches only in documents in the
currently selected group and any groups it might contain. To search all of the ADC Reference Library content,
select the Reference Library group in the Search Groups list.

If you prefer to have more than one document open and visible at a time, the documentation window lets
you open a document in the documentation window, in a separate Xcode window, or in your preferred
browser.

 ■ To open the current document in a separate Xcode window, Control-click in the content area of the
document and choose Open Page in New Window or Open Frame in New Window.

 ■ To open the current document in your preferred browser, Control-click in the content area of the
document and choose Open Page in Browser.

When following links that appear in the documentation, you can choose to open those links in the
documentation window, in a separate editor window, or in your preferred browser.

 ■ To open a link in the documentation window, click the link.

 ■ To open a link in a separate Xcode window, you can either Control-click the link and choose Open Link
in New Window from the contextual menu or simply Command-click the link.

 ■ To open a link in your preferred browser, Control-click the link and choose Open Link in Browser or
simply Option-click the link.

Viewing Documentation 113
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

You can also copy a link or an image to the clipboard by Control-clicking the link or image and choosing
Copy Link from the contextual menu.

Searching for Documentation

When you know the term you're looking for, searching is often the fastest way to find documentation. Xcode's
documentation window supports two search modes:

 ■ API reference search. This lets you quickly search the available reference documents for a symbol name.

 ■ Full-text search. This lets you search the available documentation for a word or phrase. Xcode's full-text
search supports simple search term matches, as well as more complex queries using Boolean operators
and wildcard searches.

The current selection in the Search Groups list determines the scope of both API-reference and full-text
searches. For full-text searches, the selection in the Search Groups list determines the documentation set
that Xcode searches. For example, if you search for the term “button” with the Cocoa category selected in
the Search Groups list, Xcode returns only documents from the Cocoa category that contain the word “button.”

For API-Reference searches, the selection in the Search Group list determines the programming languages
for which Xcode returns results. To search all available documentation, select Reference Library in the Search
Groups list.

API Reference Search

When you are writing code, you often need to find documentation for a function, method, data type, or other
symbol. Xcode's API reference search lets you quickly find the information you need.

To perform an API reference search in Xcode's documentation window, select API Search from the pull-down
menu of the Search field and begin typing the name of the symbol. Xcode's API lookup supports type-ahead;
as you type, the detail view displays all of the symbols whose names start with the string in the Search field,
as shown in Figure 8-10. As a shortcut, you can also Option–double-click a symbol’s name in any Xcode editor
window to open the documentation for that symbol in the documentation window.

114 Viewing Documentation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Figure 8-10 API search in the documentation viewer

The current selection in the Search Group list determines the programming languages for which Xcode
returns results. For example, if you select “Reference Library,” Xcode returns all matching symbols, regardless
of the type or language. If you select Carbon in the Search Groups list and perform an API lookup, Xcode
returns only matching C and C++ symbols.

You can also specify additional language filters for Xcode's API-reference search by clicking the Configure
Options button in the documentation window toolbar. In the dialog that Xcode displays, choose which
languages Xcode includes in API-reference searches. To include a language in the API search, select the
checkbox in the On column next to that language. If you don't want Xcode to return results for a particular
language, deselect the checkbox next to that language. These filters are applied to all API-reference searches
regardless of the current selection in the Search Groups list. By default, all of the languages are enabled.
Xcode supports API lookup for C, C++, Java, and Objective-C.

To view the documentation associated with one of the symbols returned in a search, select its name from
the table. The documentation is displayed in the pane below the table view.

Full-Text Search

Xcode's full-text search lets you search the installed documentation for a word or phrase. You can enter a
simple search term, such as “button,” or create more advanced queries using Boolean operators and wildcard
characters. Xcode's full-text search uses Apple's Search Kit technology, described in Search Kit Programming
Guide

Viewing Documentation 115
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

To perform a full-text search choose Full-Text Search from the pull-down menu in the Search field of the
documentation window. Type your query and press Return. Xcode searches the installed documentation for
the given term or terms and displays the results in the documentation window, as shown in Figure 8-11. The
table view displays the relevance, location, page title, and document title for each page returned by the
search. To view a page returned as a search result, select that page in the search results table. The scope of
the search is determined by the selection in the Search Groups list.

Figure 8-11 Results of a full-text search in the documentation window

By default, Xcode performs an exact-match search. That is, when you enter a search term, Xcode returns only
those documents that contain the entire term. For example, searching for “button” returns documents
containing the word “button,” but not documents containing only the word “buttons.” If you type a phrase,
such as “bevel button,” Xcode returns those documents that contain both the word “bevel” and the word
“button.”

Note: You can use a wildcard search, described in “Wildcard Search” (page 118), to search for variations on
a term.

As a shortcut, you can also search the installed documentation for text in an editor window. Select the text
to search for and choose Help > Find Selected Text in Documentation. Xcode performs a full-text search and
returns all documents containing that text.

116 Viewing Documentation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

You can further refine your search by combining search terms using Boolean operators, searching for required
terms, or using a wildcard search. The following sections describe the various queries you can construct for
searching the developer documentation.

Constructing Queries Using Boolean Operators

If you wish to further restrict the parameters of your search, you can combine search terms using Boolean
operators. You can create arbitrarily complex queries to narrow your search to fit your particular criteria.

Note: The smallest unit at which search results are evaluated is a single HTML file; in Apple's developer
documentation, this typically corresponds to a section in a chapter, a group of function descriptions, or a
class. If your query is too restrictive, you may not get any results at all.

Xcode supports the following Boolean operators, listed in order of precedence from highest to lowest:

logical grouping()

NOT!

AND&

OR|

For example, to find documents about the font panel in Mac OS X, you want to find documents that contain
the phrase “font panel.” Just to be safe, you also want to catch any documents that don't contain the exact
phrase “font panel,” but do contain both search terms “font” and “panel.” You can do that with the following
query:

"font panel" | (font & panel)

Required Terms Search

Simpler than a Boolean query, a required-terms search lets you search for terms that must or must not appear
in documents returned as a search result. A required terms search uses the following operators:

Indicates a term that must appear in any document returned+

Indicates a term that must NOT appear in any document returned-

For example, entering +window returns all documents containing the word “window,” similar to the behavior
you get by simply entering “window” as a search term. However, if you enter +window -dialog, you will
get all documents containing the word “window,” but NOT the word “dialog.”

Using Boolean operators to construct the previous query, you would write:

window & (!dialog)

Viewing Documentation 117
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Wildcard Search

If you are not sure exactly how a particular term appears in the documentation, you can use a wildcard search
to include all variations of a search term in the search results. For example, if you are looking for all
documentation about buttons in Mac OS X, you probably really want to see all documentation containing
either the word “button” or the word “buttons.” Rather than have to specify each of these as separate terms,
you can simply use the wildcard character to construct the following query, which returns all documents
containing the word “button” or any word with the prefix “button.”

button*

You can use the wildcard character anywhere within a search string. Using a wildcard character at a location
other than at the end of a search term may result in longer search times.

Finding Documentation for Command-Line Tools

To find documentation on a command-line tool, choose Help > Open man page. Use the “man page name”
option to display documentation on a command-line tool. You can optionally specify a man page section;
for example, access(5). Use the “search string” option to find commands that are related to a keyword.

Working With Documentation Bookmarks

The Xcode documentation window also supports bookmarks, to provide easy access to documentation that
you use frequently. To view the available bookmarks in the documentation window, click the disclosure
triangle next to the Bookmarks group in the Search Groups list of the documentation window. Xcode includes
a default set of bookmarks, but you can delete any of these default bookmarks or create your own.

To add a bookmark, choose Find > Add to Bookmarks. This bookmarks the page currently open in the
documentation window and adds the bookmark to the Bookmarks group. You can also add a bookmark by
dragging the document proxy icon in the titlebar of the documentation window to the Bookmarks group in
the Search Groups list.

To open a bookmarked location, select the bookmark in the Search Groups list. To rename a bookmark,
Option-click the name of the bookmark in the Search Groups list and type the new name.

Obtaining Documentation Updates

In addition to the full ADC Reference Library content available with the Xcode Tools DVD and Developer DVD
Series, Apple also provides downloadable packages of the documentation installed on your local computer
at /Developer/ADC Reference Library. Xcode automatically detects these updates as they become
available. Documentation updates are released more frequently than the full Xcode Tools package, so this
is a quick and easy way to stay up-to-date with the latest technical information from Apple.

118 Viewing Documentation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Checking for Updates

Xcode automatically checks for a documentation update the first time you launch Xcode after installing a
new version of the Xcode tools. Any time you access the documentation after the initial check, Xcode checks
for an update if the interval specified in Xcode's Documentation preferences has passed since the last check.
By default, Xcode checks for updates on a weekly basis, but you can choose a different interval.

To change the interval at which Xcode checks for documentation updates:

1. Open the Documentation pane of Xcode Preferences.

2. Choose an interval from the “Check for documentation updates” pop-up menu that appears in the
Updates settings group. You can choose to have Xcode check for updates on a daily, weekly, or monthly
basis. Click Apply or OK to apply your changes.

If you don't want Xcode to automatically check for updates at all—for example, if you use Xcode on a computer
that does not usually have an internet connection—deselect the checkbox next to the “Check for
documentation updates” menu.

To check for a documentation update immediately, click the Check Now button. The “Last check” field shows
the date and time at which Xcode last successfully checked for updated documentation.

Installing an Update

When it checks for a documentation update, Xcode compares the version of the documentation on Apple's
server to the version installed on your computer. If the documentation on the server is newer, Xcode notifies
you that updated documentation is available. To download the documentation package, click Download.

Xcode launches your default browser application to download the documentation package. When the
download is complete, the disk image automatically mounts. Double-click the documentation package to
launch the Installer. The installer updates the local installation of the ADC Reference Library at
/Developer/ADC Reference Library.

If Xcode is running when the installation is successfully completed, Xcode notifies you that the documentation
has been updated. Click OK to reload the Search Groups and ADC Reference Library entry page in the
documentation window. Otherwise, Xcode loads the new documentation when it next launches.

Controlling the Appearance of the Documentation Viewer

You can change the minimum font size used for viewing documentation. To do so, open the Documentation
pane of the Xcode Preferences window. To enforce a minimum font size for documents displayed in the
documentation window:

1. Under Universal Access, select the “Never use font sizes smaller than” option.

2. Choose a font size from the corresponding pop-up menu.

You can temporarily change the font size used to display an HTML file—even if its font size is controlled by
a CSS file—by choosing Format > Font > Bigger or Format > Font > Smaller.

Viewing Documentation 119
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

120 Viewing Documentation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Finding Information in a Project

Xcode includes two separate design tools, with similar forms but different functions. Together, the tools
allow you to model both the classes in your application and entities that represent your data. The class
modeling tool allows you to understand and explore the classes in your project, whether they’re written in
Objective-C, C++, Java, or a mixture of those languages. The data modeling tool is like the class modeling
tool in that you can, for example, lay out a diagram to represent your model visually, but different in that it
deals with entities and the relationships between them, not with classes and hierarchies. You use the data
modeling tool to define a schema for Core Data. The following chapters describe Xcode’s design tools.

121
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Design Tools

122
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Design Tools

Xcode includes two separate design tools, with similar forms but different functions. Together, the tools
allow you to model both the classes in your application and entities that represent your data. Although they
are in some respects similar, class modeling and entity-relationship modeling are fundamentally different
and serve different purposes—both are discussed below.

The two tools share some common functionality. They allow you to create models that form part of your
project. They allow you to browse through the contents of the model using a set of table views and to visualize
the contents in a diagram.

Control over how models are displayed is where Xcode differs from other design tools. Other IDEs that provide
a graphic class browser typically give you little control over display—you see what it wants to show you.
With Xcode, you have coarse-, medium-, and fine-grained control over what is displayed and how. You can
edit the diagram in the same way you might in common graphics editors. For example, you can color, move,
and align elements to arrange them how you wish; zoom in and out of the diagram; and choose whatever
page and grid sizes you want. Moreover, your models never become stale.

Class Modeling

Class modeling allows you to understand and explore the classes in your project, whether they’re written in
Objective-C, C++, Java, or a mixture of those languages. You can get a bird’s eye view of your project structure,
look at relationships among classes, or scan quickly through class member and method types, parameters,
and return values. You can use class modeling to augment or replace the Xcode class browser. The class
model is saved with your project (you can even commit it to your repository), so other team members can
get an overview of your code structure from the class model.

You can use the tool to visualize and browse class hierarchies not only in terms of the class relationships
(subclass and superclass), but also in terms of what protocols (or interfaces in Java) a class implements, and
what categories are present. You can even add comments to call out notable things about specific classes.

Unlike most other modeling tools, you control the set of files (groups, targets, and so forth) that are modeled,
the position and layout of the classes in the diagram, and even what classes are shown. Moreover the Xcode
class information is always up to date. Class models always represent the actual classes in files, groups, and
targets in your project, and are automatically updated as you change your source code—even if you add,
remove, or refactor classes.

Class Modeling 123
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Overview of Xcode Design Tools

Data Modeling

The data modeling tool is like the class modeling tool in that you can, for example, lay out a diagram to
represent your model visually, but different in that it deals with entities and the relationships between them,
not with classes and hierarchies. There is not necessarily a 1:1 relationship between entities and classes—for
example, the same class may be used to represent more than one entity. For more about data modeling, see
[Modeling Document].

More importantly, however, you use the data modeling tool to define what is in effect a source file—a schema
for Core Data. The data model ultimately becomes part of your build product and is used by your application
at run time. Instances of entities are typically stored in a persistent store (typically a file).

Why Are Modeling Tools Useful?

There are a number of reasons why modeling tools are useful. Some reasons apply to both the class and data
models, some apply to one or the other.

A graphical representation of your project gives you a better conceptual overview of your project than raw
XML or a mass of source files . In particular, with Xcode, it gives you a developer’s eye view of your project,
not a computer-generated representation . You can customize the view to see the information you need,
not what the computer thinks is important or requires you to see . This is especially useful for communication
between members of a team, or for homing in on a specific aspect of a project [see filtering]. In addition, the
class modeling tool may also be useful for learning about functionality provided by existing libraries.

In terms of navigation, the browser view gives you an alternate means of navigating through your source,
following relationships where appropriate. It provides a compact representation and summary of the classes
or entities in your project, including their properties and behaviors, and (for the class browser) an easy way
to get to relevant documentation.

Both class and data models are project resources. A class model is stored with the project as it is an integral
part of development process . A data model is stored as part of the project because it is essential to Core
Data—it is also included in a target as it is compiled for deployment .

124 Data Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Overview of Xcode Design Tools

Although the class and data modeling tools are different, and have different purposes, they share common
functionality and usage patterns. Both employ a browser that you can use to navigate the class or entity
hierarchy, to view the properties of an individual class or entity or the properties of a collection of classes
and entities, and to inspect attributes of a property. Both tools also have a diagram view that you can use to
visualize their contents.

The diagram and browser views have different roles. The diagram view is typically best when you need a
high-level overview of the project . The browser view gives you more detailed information , and it can be
especially useful in data models when, for example, you want to edit several attributes simultaneously. When
you have large collections of classes or entities, you can minimize the information shown in the diagram (for
example, just class names and inheritance relationship lines) and get the detailed information from browser
. The diagram view offers a variety of different configurations, so you can tailor your view to any need. Figure
10-1 shows the class browser and a class hierarchy diagram.

Figure 10-1 Browser view and diagram view for a class model

125
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

The Diagram View

The diagram view contains two important elements, rounded rectangles, which represent nodes, and lines.
Class diagrams may also contain annotations (described in “Class Modeling With Xcode Design Tools” (page
137)).

Diagram Elements

The diagram view contains two important elements, “roundtangles” and lines. Class diagrams may also
contain annotations (described in the “Class Modeling With Xcode Design Tools” (page 137)).

Nodes

Nodes are the base elements in the model. In the class model, they are classes, categories, and protocols
(interfaces in Java); in the data model they are entities.

A node may be split into three sections: The title bar containing the name of the element (including the
namespace or package for C++/Java), and two compartments. The compartments show attributes and
relationships in data models and properties (instance variables) and operations (methods or member functions)
in class models (see Figure 10-3 (page 127)).

Lines

The semantic meaning of a line is different in the class and data models, and it further depends on whether
the line is solid or dashed, what sort of arrowhead is present, and what objects it connects. In class diagrams,
you can only edit lines to or from annotations—they are created automatically based on the inheritance
hierarchies defined by the code in your project.

Diagram Tools

The diagram view provides several tools, whose function should be familiar from other drawing packages.
You select the tools from the palette in the bottom-left corner of the diagram view, shown in Figure 10-2.

Figure 10-2 Diagram tools

Arrow

You use the arrow tool to make selections and to move and resize graphic elements.

126 The Diagram View
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Text (Class Diagrams Only)

You use the text tool to annotate diagrams in a class model. To edit text in the text area, simply double click
inside the element. You can use the Formatting menu, Font panel, Colors panel and so on to format the text
as you wish. You can use the line tool to connect a text area to a specific class.

Line

You use the line tool to add a relationship in data model or to connect a comment to a specific class in a
class model. To connect two elements, select the line tool, then drag from one end of the connection to the
element at the other end. Note that in a data model, when you are establishing a relationship, you must
make the connection from the source to the destination of the relationship.

Magnifying Glass

You use the magnifying tool to zoom into part of the diagram, or, by holding down the Option key, to zoom
out . See “Zoom” (page 129) for other ways to zoom. To effect the zoom, you select the tool, then click inside
the diagram.

Hand

You use the hand tool to move the diagram if its bounds extend beyond the current view.

Roll-Up and Expansion

You can display a node and the compartments within it in a variety of ways:

 ■ Rolled up, so that just the name of the class or entity is showing. This gives the most compact
representation, with maximum information density in the diagram. (In Figure 10-3 the NSDocument
node is rolled up.)

 ■ Compartment titles showing. The titles are Attributes and Relationships in the data model, Properties
and Operations in the class model. This gives a compact representation, but with easy access to detail .

 ■ Compartments expanded. All the information in a compartment is visible but at the cost of screen real
estate. (In Figure 10-3 the properties compartment of MyDocument is expanded, but the opertations
compartment is not.)

Figure 10-3 A rolled up node and a partially expanded rolled down node

The Diagram View 127
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

To roll up or roll down the node, use Design > Roll Up Compartments or Design > Roll Down Compartments
respectively. To hide or expose compartment information, you use the disclosure triangle within a
compartment, or Design > Expand Compartments or Design > Collapse Compartments .

Layout

There are a number of options for moving and resizing elements; you can also constrain the way the elements
can be moved and resized, and even prevent them from being moved and resized at all. Furthermore, you
can zoom into and out of the diagram, and arrange the page layout as you wish.

Moving and Resizing Shapes

You can rearrange elements in a diagram to suit your needs—lines that join elements are updated
appropriately. Use the arrow tool to select an element, and then simply drag it. You can move all the elements
in the current selection (see “Multiple Selection” (page 129)) in the same way.

When you select a shape, “handles” appear around its edges (as shown in Figure 10-4). You can drag the
handles to resize the shape as you wish.

Figure 10-4 Diagram view showing element handles

You can also automatically resize elements in several ways, using the Design > Diagram > Size menu: Make
Same Width and Make Same Height resize the selected elements appropriately; Size to Fit resizes the selected
elements so that they fully enclose their contents with minimal padding.

Alignment and Grid

You can use a variety of options to automatically align selected elements and to help you keep elements
aligned . You can use the menu items in the Design > Diagram > Alignment menu to perform a number of
operations, aligning specified edges or centers of a selection and aligning a selection in a row or column.

You can also use a grid to help keep elements aligned. By default, the diagram view displays a background
grid, and move and resize operations are snapped to it. Using the Design > Diagram menu, you can turn the
grid display on and off; you can also independently turn the snap-to-grid feature on and off.

128 The Diagram View
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Automatic Layout

The class modeler provides two ways to automatically lay out elements in a diagram, force-directed layout
and hierarchical layout. You access them using the Design > Automatic Layout menu.

With hierarchical layout , parent elements are typically at the top of the diagram, children at the bottom.
This gives a generally horizontal layout, and is generally better for deep hierarchies.

The force-directed layout tends to produce circular arrangements, with commonly referenced classes in the
middle. This is usually better for shallow hierarchies. Note that the force-directed layout can take unbounded
time to calculate—it is not recommended for very large collections.

You can apply the automatic layout feature just to selected items or to the whole diagram. The layout respects
the current size of elements in the selection. If you expand or contract a node, then perform automatic layout
again, the result is different from what it was prior to the change in size .

Locking

You can lock individual graphic elements in place using Design > Diagram > Lock, or the Lock contextual
menu. If you subsequently apply automatic layout, locked elements are unaffected. To unlock an item, use
Design > Diagram > Unlock, or the Unlock contextual menu.

Zoom

You can zoom into and out of the diagram in three different ways:

 ■ Use the Design > Diagram menu to zoom in, out, and to fit.

 ■ Use the pop-up menu to select a percentage zoom.

 ■ Use the magnifying glass tool (click to zoom in, Option-click to zoom out).

Page Layout

If you move diagram elements outside the current diagram bounds (whether directly, or through applying
automatic layout, or by unhiding elements), the page area automatically expands. Conversely, if you remove
elements such that a page is left blank, the page area automatically contracts.

You can adjust the size of a page using the File > Page Setup menu. The page layout adjusts automatically
to accommodate a change in page size.

Multiple Selection

You can use multiple selection in the diagram view to move a collection of elements in a flotilla drag, or for
roll-up, expand all, and so on. You can make multiple selection in several ways:

 ■ You can select a single element, then hold down the Shift key and click additional elements. Unselected
elements are added to the current selection; selected elements are removed from the current selection.

 ■ You can drag the background of the diagram to create a selection rectangle. Elements whose boundaries
intersect with this rectangle are selected.

The Diagram View 129
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

 ■ You can select classes or entities in the browser—the browser selection and diagram selection are kept
synchronized.

You can use Edit > Select All to select all elements in the diagram. Note that for items in the Diagram menu,
clicking on the background (rather than a drawn element) is the equivalent of selecting all, but may be faster.

Colors and Fonts

The diagram view provides default coloring for various elements . By default, all text is black, and the title
bar and outline of drawing elements are colored. In the data model the color is the same for all entities.

You change the background color of the title bar and color of the outline of elements by dropping a color
swatch from the Color panel onto the element. You change the other color settings, and the font used for
the title, property, and operations text, using the Appearance pane of the Info window (inspector). You can
also select multiple elements and change their color and text settings simultaneously, as shown in Figure
10-5.

Figure 10-5 Appearance pane showing multiple selection

You can also change the default settings for the entire model using the Appearance pane—see “Info
Window” (page 133).

130 The Diagram View
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

The Browser View

The browser view gives you a different perspective on the whole of your model (note that all classes are
shown in the browser view, even if they are hidden in the diagram view). It has three separate parts: two
table view panes—the class/entity pane and the properties pane—and the detail pane. You can resize a
pane by dragging the vertical divider. You can also hide a pane by resizing its width to zero—to hide the
detail pane you must drag the divider on its left side most of the way to the right past its minimum size.

Figure 10-6 The Browser View

Table View Panes

The left-most pane displays and allows you to edit information about the classes or entities that are in the
model. The middle pane displays and allows you to edit information about the properties of the currently
selected class or entity. If you make a multiple selection in the class/entity table, the properties table shows
the union of all properties of the selection.

As with most table views, you can rearrange and re-sort the columns. You rearrange the columns simply by
dragging a header cell; you can change the sort order by clicking in header cells.

You can choose which columns to see by Control clicking table header cells to display a pop-up list that you
can use to toggle the display of columns (see Figure 10-7). If you have a multiple selection, Show All Columns
means that only the set of columns common to all members of the selection may be displayed, otherwise
you get a specific set (dependent upon what you have selected).

The Browser View 131
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Figure 10-7 Browser column options

You can also choose which properties are shown by clicking the “v” button to the left of the horizontal scroll
bar in the property table. This again displays a pop-up list that you can use to toggle the visibility of properties
and operations, as shown in Figure 10-8.

Figure 10-8 Property list view options

Finally, you can display the class/entity list as a flat list or as an inheritance hierarchy. Click the “v” button to
the left of the horizontal scroll bar to choose the view option you want as shown in Figure 10-9.

Figure 10-9 Class / Entity View Options

Detail Pane

The detail pane displays detailed information about whatever was last selected in either the entity/class or
the property table. If you make a multiple selection, the editor shows the best representation it can of the
union of the selected items. If you’re using the data modeling tool, this makes it easy to apply changes to a
number of entities or properties simultaneously.

132 The Browser View
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Info Window

The Info Window (inspector) is different for data and class models . Both have Appearance panes and the
class browser has a General pane with visibility settings and a Tracking pane —see “Indexing and
Tracking” (page 138)). You can use the Appearance pane to set default colors and fonts for element names,
properties, and operations. Figure 10-10 shows an Appearance pane with custom settings.

Figure 10-10 Appearance pane

Note: To use the Info window, you must make a selection within the browser or the diagram in the document
(you can just click the background of the diagram view, for example), not in the Groups & Files browser (for
a quick model there may not even be a file icon). If you select a model icon in the Groups & Files list and then
choose Get Info, you get an Info window with General, File, and SCM panes.

Workflow

The Xcode design tools offer a wide range of options and features to ease your workflow, from automatic
page creation and deletion in the diagram view, to multiple selection editing in the browser. In addition, it
is possible to add to the toolbar shortcuts for actions such as Add Entity, Attribute, and Quick Model.

Info Window 133
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Model Files

The usual way you create a new model file is with the File > New File command and the New File Assistant,
shown in Figure 10-11.

Figure 10-11 New File Assistant

For class models, you can also create a quick model from the currently selected items using the Design >
Class Model > Quick Model command (see “Creating a Quick Model” (page 137)).

Models are considered integral to the project , so you should typically add new class and data models to the
project . The exceptions are quick models. Since they are initially considered temporary, you do not have to
add them to the project immediately. If you decide to save a quick model, you can add it to the project at a
later time. A data model, on the other hand, is a runtime resource (it is compiled, and deployed as part of
application), and you should add new data models not only to the project, but also to the relevant target.

Note: Both class model and data model files are actually file packages. Make sure you take this into account
when setting up source code management (SCM), copying, and so on.

You might find it useful to create several different class models in your project. Each model may present
subsets of the data in different ways. Each gives a its own perspective on the project, so may be useful for
different situations.

134 Workflow
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Navigation

You can use the browser and diagram views in conjunction for navigation—the selection in the two views
is kept synchronized, so if you make a selection in the browser, the same item is selected in the diagram, and
vice-versa.

If you want to see a large model in the diagram view, you can maximize the viewable area of a diagram in
the main project window by hiding the toolbar, the navigation bar, the status bar, the Favorites bar, and the
browser.

If you have a large class diagram, there are two strategies you can use to aid navigation. First, you can type
to select classes or entities. As you type characters, the alphabetically “topmost” class or entity whose name
has the prefix you typed is selected. Second, you can use the pop-up menu at the top of the document pane.
The pop-up shows a list of elements . When you select an item from the pop-up menu (see Figure 10-12),
the corresponding element is selected in the diagram and brought into view. This feature may be particularly
useful if the browser is hidden.

Figure 10-12 Elements pop-up menu

The browser view, however, is useful when you have a large class diagram with all compartments rolled up,
and you want to see more details about a given class, but don’t want to make the diagram bigger. The
browser also shows more information than is available in the diagram (parameters, return types and so on).

Workflow 135
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

Contextual Menus

Most menu-based commands are also available from contextual menus associated with the relevant user
interface element. You can Control-click a node for immediate access to operations that apply to it or its
context, for example to expand compartments, or navigate to documentation. You can Control-click the
diagram background to perform operations related both to the visual representation and (in the data model)
to the model itself. For example, you can hide grid lines, zoom, set the alignment of drawing elements, and
add entities.

136 Workflow
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Common Features of the Xcode Design Tools

The Xcode class modeling tool helps you to explore and understand the classes in your project, whether
they’re written in Objective-C, C++, Java, or a mixture of those languages. It allows you to see class relationships
(subclass and superclass relationships—including support for multiple inheritance in C++), protocols (or
Interfaces in Java), and categories. In the diagram view, color and text coding help you to quickly distinguish
between classes, categories, and protocols; and between project and framework code. The visibility (public,
private, protected) of member functions and variables is shown appropriately. (If you are not familiar with
any of these terms, you should consult suitable programming texts.)

You can use the tool as an index into your project. From within the tool, you can navigate to the source code
of your own classes (both the declaration and implementation), to the declaration in framework classes (those
for which you do not have source code), and to corresponding documentation. You can create models that
persist as part of your project to communicate design details to other team members, and you can create
temporary models (quick models) that serve to illuminate an immediate problem.

The tool’s basic features and behavior are described in “Common Features of the Xcode Design Tools” (page
125). This chapter describes features and behavior that are unique to the class modeler.

Creating Models

Xcode allows you to create models in two ways, as quick models and as project class model files (model files
you create with the New File Assistant). At first glance it may appear that the two sorts of class model are
somehow different. It is important to realize that they are functionally the same but created in different ways
and usually with a different immediate purpose in mind.

When you create a model, you add the source or the header files (or both), or containers (such as groups,
targets, or projects, but not smartgroups, build phases, find results, and so on) that you want to contribute
to the model. A model is dynamic, though. It is continuously updated in response to changes in your source
code and the organization of your project. For this reason, you might add both a file and a group containing
that file to a model, so that if the file is moved out of group it remains in the model (this strategy may be
particularly useful early in a project’s lifetime when groups are likely to change).

Note that since class model files depend on the project index, they can’t survive outside the project. Note
also that when you add a class to a model, its immediate superclass is implicitly added to the model (even
if it’s not in the project).

Creating a Quick Model

To create a Quick Model, select in the Groups & Files list the files and containers that you want to contribute
to the model. Then choose Design > Class Model > Quick Model . Xcode displays the class browser and
diagram.

Creating Models 137
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

A quick model is untitled and ephemeral. It does not appear in the project file browser, and if unchanged, it
is closed without warning. If you make changes, however, you are prompted to save when the project is
closed. You can also save the model at any point using Save or Save As if you decide you want to keep the
model.

Creating a Class Model File

To create a class model file, choose File > New File and select Class Model from the Design group. You then
name the file, and click Next. From the subsequent panel, shown in Figure 11-1, you select the files and
containers that you want to contribute to the model.

Figure 11-1 Selecting groups and files to be in the model

When you click Finish, Xcode creates the model file, adds it to the project, and displays the class browser
and diagram.

Indexing and Tracking

The tool uses the project indexer to track changes to your project. The class models always represent the
actual classes in the files and groups in your project, and are automatically updated as you change your
source code—even if you add, remove, or refactor classes. In order to function properly, therefore, the class
model requires that the project indexer be enabled.

138 Indexing and Tracking
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

If the project indexing is not complete, the model pane simply displays the word “Indexing” until indexing
is complete. If indexing is disabled, or you open a project on a read-only partition, you see an appropriate
warning.

To change the list of tracked items that belong to the model you can use the Tracking pane of the Info
window (inspector) as shown in Figure 11-2. Click the plus sign or minus sign (in the lower left of the pane)
to add or remove files and groups respectively.

Figure 11-2 Adding a file in the Tracking pane

As you add and remove files from any project groups that make up a model, corresponding classes appear
in and disappear from the browser and diagram as appropriate.

The Diagram View for Class Modeling

The diagram contains two important shapes, rounded rectangular nodes and lines. It may also contain
annotations. Although you can change the layout and visual appearance of the nodes and lines (and optionally
hide classes, properties and so forth), you can modify classes, the relationships between them, their properties,
and so forth only by editing source files. For editing annotations, see “Annotations” (page 142).

The Diagram View for Class Modeling 139
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

Nodes in a Class Model

In class models, nodes can be classes, categories, or protocols (interfaces). The name is given in the title bar,
and for C++/Java, includes the namespace or package. Nodes are color-coded to help you readily identify
different types; different text styles help to further differentiate element and method types. Compartments
within a node represent features of the class —properties for instance variables, operations for methods.

You can use the nodes for navigation. To go to your source files (or to the header file for system files), you
can click the (>) symbol in the title bar; you can also use the Design -> Class Model menu or the contextual
menu to navigate to any declaration, definition, or documentation that is available.

Text and Color Coding

The names of classes, categories, and protocols are represented differently: Class names appear unadorned;
category names are surrounded by parentheses, and protocol names are surrounded by angle brackets. If
an operation name is underlined, it is a class method .

By default, classes are represented in blue, categories in gray, and protocols (interfaces) in red. Project and
framework classes are further differentiated by the saturation of the color (externals are dimmer) . You can
change both the default colors and colors for individual nodes (see “Common Features of the Xcode Design
Tools” (page 125)).

Compartments and View Options

Compartments within a node represent features of the class . The Properties compartment lists instance
variables ; the Operations compartment lists methods—class method are underlined.

Within a node, you can display additional information. Using the General pane of the Info window (shown
in Figure 11-3), you can choose whether or not to show:

 ■ Visibility flags (public, private, and protected may be indicated by an icon in the compartment)

 ■ Property type (for each property, shown after a colon in the compartment)

 ■ Operation return types and parameter types

 ■ Package information

140 The Diagram View for Class Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

Figure 11-3 Info window for a class model diagram

You have further control over what is displayed in the diagram—see “Filtering and Hiding” (page 142).

Lines

Lines indicate different things depending on whether they are solid or dashed, what sort of arrowhead is
present, and what objects they connect.

A solid line with an open arrowhead:

 ■ Denotes inheritance when it connects classes

 ■ Specifies the class of which the category is a category when it connects a class and a category

A dashed line with an open arrowhead denotes implementation of a protocol (or interface in Java).

You cannot edit lines other than to or from annotations—they are created automatically based on the
contents of your project.

The Diagram View for Class Modeling 141
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

Annotations

You can add annotations to the diagram to provide explanatory text using the text tool. You have full access
to text styling options from the Format menu. You can connect a comment to a class using the line tool.

Filtering and Hiding

Sometimes diagrams contain more information than you want to see, and it can be useful to reduce clutter.
Removing irrelevant classes makes it easier to concentrate on important ones—for example, you might
remove NSObject from a class diagram to make it easier to see other relationships; or it may be that a tracked
file contains definitions of several classes, and you are interested in only one of them. You might also want
to hide other details, such as private variables, or instance variables whose name starts with an underscore.

You can use a predicate to filter what classes and methods are shown in the diagram. On a class level, you
can choose to use or override the filter. You can show a class if a filter would normally hide it, and vice versa.

Filtering and hiding settings affect only the diagram. The browser view still lists all the contents (you need
a way to be able to select a class if it’s hidden!). Filtering and hiding are different from tracking. Tracking
determines whether or not files contribute to the model at all.

Filtering

Filters apply as changes are made to files that contribute to the model. If you chose, for example, to hide all
classes whose names begin with “XYZ”, then in your header file you rename the class “XYZWidget” to
“WXYWidget”, a node for “WXYWidget” will appear in your diagram. To set up filtering, you use the General
pane of the Info window, shown in Figure 11-4.

142 The Diagram View for Class Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

Figure 11-4 General pane of the Info window

You can set up independent filters for classes, properties, and operations, based on their name and kind. You
can also toggle filters on and off as required. If you click Edit Filter, a sheet in which you can edit the filter
appears, as shown in Figure 11-5. You can either enter a predicate directly into the appropriate text field or
use the predicate builder (see “The Predicate Builder” (page 153)).

The Diagram View for Class Modeling 143
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

Figure 11-5 The filter editor

Note: Filters are labeled to hide classes, properties, or operations. Sometimes you want to show only a
subset. You can apply a “NOT” expression to a predicate to invert its meaning. Therefore if you wanted to
show only those classes whose names begin with “XYZ”, you hide those whose names do not begin with
“XYZ”.

Hiding

Hiding allows you to override the filtered state of a class (or protocol, or category). You can specify that an
element should follow the filtered setting, or be either always shown or always hidden. You can set the hiding
state using the browser view, in either the Hidden column in the property pane or using the pop-up menu
in the detail pane, as shown in Figure 11-6 .

144 The Diagram View for Class Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

Figure 11-6 Setting hiding in the detail pane

In the detail pane, you choose the setting from the pop-up menu. The browser has a three state checkbox
you can use to modify the hiding setting. The states correspond to the same states defined in the pop-up
menu.

Note: If you find you are making frequent changes to the hiding settings, you may consider creating different
models to provide different perspectives. Models are lightweight, so do not consume significant system
resources, and they use tracking so are always up to date.

The Browser View for Class Modeling

Most features of the browser view behavior are common to both the class model and the data model, and
described in “Common Features of the Xcode Design Tools” (page 125).

Figure 11-7 The browser view in the class modeling tool

The table view in the left-most pane lists the classes, categories, and protocols in the model. The columns in
the class list show the element name, the element type (class, category, or protocol), the hidden status, and
a link to documentation if there is any associated with the element.

The table view in the properties pane shows summary information about the properties and methods
associated with the current selection in the classes table, including the name, type, and visibility, and again
a link to documentation if there is any associated with the element.

The Browser View for Class Modeling 145
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

The detail pane shows information about the most recently selected element in the classes or properties
table. You use the detail panel to set the hidden status of individual class elements. This setting affects what
is displayed in the diagram view, as described in “Hiding” (page 144).

146 The Browser View for Class Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Class Modeling With Xcode Design Tools

The purpose of the data modeling tool is to create a data model (or schema) for use with the Core Data
framework. Rather than dealing with classes, instance variables, and methods, you use the tool to define
entities, the attributes they have, and the relationships between them. For more about entity-relationship
modeling, object modeling, why these are important, and definitions of terms (inverse relationship, optional
attribute, and so on), see Object Modeling. For more about specific Core Data classes, see the relevant API
reference documentation.

Ultimately, at runtime, the model is turned into an instance of NSManagedObjectModel with a collection of
NSEntityDescription, NSAttribute, NSRelationship, and NSFetchRequest objects. In some respects this is
analogous to the behavior of Interface Builder. With Interface Builder, you graphically create a collection of
objects that are then saved in a file (a nib file) and recreated at runtime. As with user interface elements, it
is possible to create a model directly in code at runtime; however it is typically easier to do so graphically
using the appropriate tool. Similarly, just as it is possible to modify the user interface after it has been loaded,
it is also possible to customize a model after it has been loaded. (Note that a model does have a constraint
not shared with a nib file: once loaded, a model cannot be modified after it has been used.)

The tool’s basic features and behavior are described in “Common Features of the Xcode Design Tools” (page
125). This chapter describes features and behavior that are unique to the data modeler.

The Diagram View for Data Modeling

The diagram view for the data modeler contains the same sort of graphic elements as the class modeler, as
illustrated in Figure 12-1 (page 148). The semantics of the elements, however, are different:

 ■ Nodes are entities, not classes.

 ■ Compartments within a node show attributes and relationships.

 ■ Lines represent relationships between entities.

Arrowheads on lines also have meaning. A single arrowhead denotes a to-one relationship; a double arrowhead
denotes a to-many. The direction of an arrow indicates the direction of the relationship—the arrow points
to the destination entity. Figure 12-1 shows an example of the diagram view of a data model, with all
compartments expanded.

The Diagram View for Data Modeling 147
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Figure 12-1 Example diagram view of a data model

You can edit the model directly from the diagram using contextual menus. To add a new entity, you
Control-click the background of the diagram. To add properties to an entity, you Control-click within its node.
You can also delete entities and properties using the Delete key. Finally, you can use the line tool to establish
new relationships. You select the line tool, then drag from the source node to the destination node.

Note that although relationships are typically implicitly bidirectional, relationships do not have to be modeled
in both directions. If do you want to specify a bidirectional relationship, you must model both sides of the
relationship—the reasons for this are given in the Core Data documentation. Moreover, within the model
you must specify which relationships are the inverse of each other. To do this you need to use the model
browser.

The Model Browser for Data Modeling

The data modeling tool browser’s three parts are the entities pane, the properties or fetch requests pane,
and the detail pane. The detail pane itself has three separate views: the General pane, the User Info pane,
and the Configurations pane.

148 The Model Browser for Data Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Figure 12-2 Example of a browser view for a data model

The Entities Pane

The table in the entities pane lists all the entities in the model, either as a flat list or in an inheritance hierarchy.
The table has three columns, showing the entity name, the class used to represent the entity, and a checkbox
that indicates whether the entity is abstract.

You can edit the entity and class names directly in the text field cells—double click the text to make it
editable—and toggle the abstract setting of an entity by clicking the checkbox.

To add a new entity to the model, you click the plus sign to the left of the horizontal scroll bar, or choose
Design > Data Model > Add Entity. You delete a selected entity or selected entities by clicking on the minus
sign, or by pressing the Delete key.

The Properties Pane

The table in the properties pane lists the properties or fetch requests associated with the selected entities.
You choose what features you want to view by choosing from the pop-up menu available from the button
with the “v” to the left of the horizontal scroll bar, as shown in Figure 12-3.

Figure 12-3 Properties table options

Note that the properties table shows the set of all properties of all entities selected in the entities table.
Moreover, you can select and edit multiple properties at the same time. If several entities have a similar
property, you can change them all simultaneously if you wish.

The Model Browser for Data Modeling 149
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Properties View

The properties table has five columns showing the name of the property, a checkbox that indicates whether
the property is optional, a checkbox that indicates whether the property is transient, the kind of property
(attribute, relationship, or fetched), and the type (for example, date or integer if the property is an attribute)
or destination entity (if the property is a relationship) of the property (see Figure 12-4).

Figure 12-4 Properties view

You can edit most property values directly in the properties table—the exception is the property type (“Kind”)
which you specify when you first add the property. You typically edit the predicate associated with fetched
properties from the detail pane, using the predicate builder(see “The Predicate Builder” (page 153)).

You add new properties using the pop-up menu from the plus sign to the left of the horizontal scroll bar (as
shown in Figure 12-5), or by using the Design > Data Model menu. From the pop-up menu, you choose what
sort of property you want to add—an attribute, a relationship, or a fetched property.

Figure 12-5 Adding a property

Fetch Requests View

The fetch requests view displays the fetch requests associated with an entity as shown in Figure 12-6. You
add fetch requests using the plus sign button. You can edit the name of the fetch request and the predicate
directly in the table view; however you typically construct the predicate graphically using the predicate
builder from the detail pane.

150 The Model Browser for Data Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Figure 12-6 Fetch requests view

When you add a fetch request to an entity, you are specifying that that entity is the one against which the
fetch will be performed. For example, if you add a fetch request called “comedies” to the Movie entity, in
code you would retrieve it from the model using:

 NSFetchRequest *fetchRequest = [managedObjectModel
 fetchRequestTemplateForName:@"comedies"];

The returned fetch request’s entity is set to Movie. Since fetch requests are nevertheless general to the model,
fetch request names must be unique across all entities. If you try to set a duplicate name, you get a warning
sheet and you must choose a unique name before you can proceed.

The Detail Pane

The detail pane itself has three panes, the General pane, the User Info pane, and the Configurations pane.
You choose which pane to display by clicking on the corresponding element in the segmented control in
the upper right of the pane, shown in Figure 12-7.

Figure 12-7 Control for choosing the pane in the detail pane

General Pane

The general pane is different for entities, attributes (and for different types of attribute), relationships, and
fetch requests. It changes automatically to the appropriate view depending on the last selection. Each view
shows, and allows you to edit, details of the selected element.

 ■ For entities, you can edit the entity name, the name of the class used to represent the entity, and the
parent entity, and you can specify whether or not the entity is abstract.

 ■ For attributes, you can specify the name and type, and whether it is optional or transient. When you
specify the type, the pane updates to allow you to specify various constraints on the values the attribute
may take. For example, for numeric and date attributes you can specify maximum, minimum, and default
values, and for string attributes you can specify maximum and minimum length, a default value, and a
regular expression that the string must match.

The Model Browser for Data Modeling 151
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

 ■ For relationships, you can specify the name, cardinality, and destination of the relationship. You can also
specify a delete rule, and—for to-many relationships—maximum and minimum counts.

 ■ For fetched properties, you specify the name, the destination entity, and the predicate to be used for
the fetch. You edit the predicate using the predicate builder by clicking the Edit Predicate button. For
more details about the predicate builder, see “The Predicate Builder” (page 153).

 ■ For fetch requests, you specify the name and the predicate. As with fetched properties, you edit the
predicate using the predicate builder by clicking the Edit Predicate button—see “The Predicate
Builder” (page 153).

User Info Pane

The user info pane shows the info dictionary associated with the currently selected model element. Most
elements in the model (entities, attributes, and relationships, but not fetch requests) may have an associated
info dictionary that you can retrieve at runtime. The dictionary comprises key-value pairs. Using the info
dictionary pane, you can specify any keys and string values you wish that may be of use in your application.

Configurations Pane

A configuration is a named collection of entities in the model. The configuration pane (show in Figure 12-8)
therefore applies only to entities. You use it to add and remove configurations and to associate entities with
configurations.

Figure 12-8 Configurations pane of the detail pane

A model may have an arbitrary number of configurations. You add configurations using the plus sign button.
Configurations appear in the list for all entities. The checkbox specifies whether or not the currently selected
entity is associated with the given configuration.

152 The Model Browser for Data Modeling
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

The Predicate Builder

You use the predicate builder to create predicates for fetched properties and for fetch request templates.
For more about predicates, see NSPredicate and for more about fetched properties, see
NSFetchedPropertyDescription. Fetch request templates allow you to create predefined instances of
NSFetchRequest that are stored in the model. You can either define all aspects of a fetch, or you can allow
for runtime substitution of values for given variables. Fetch templates are associated with the entity against
which the fetch will be made, that is, instances of which the fetch will return. For more about fetch templates,
see NSManagedObjectModel.

With the predicate builder, you can build predicates of arbitrary complexity. The initial display shows a simple
comparison predicate. The left-hand side is pop-up menu that allows you to choose the key used in a key
path expression; the right-hand side is a text field that allows you to specify a constant value; and between
them is a pop-up menu that allows you to choose a comparison operator.

Figure 12-9 Predicate builder

As with the rest of the modeling tool, the predicate builder simply provides a graphical means of defining a
collection of objects that you could otherwise create programmatically. The code equivalent of the predicate
revenue >= 100000000 is as follows.

NSExpression *lhs = [NSExpression expressionForKeyPath:@"revenue"];
NSExpression *rhs = NSExpression *rhs = [NSExpression
expressionForConstantValue:[NSDecimalNumber numberWithInt:100000000]];
NSComparisonPredicate *predicate = [NSComparisonPredicate
 predicateWithLeftExpression:lhs
 rightExpression:rhs
 modifier:NSDirectPredicateModifier
 type:NSGreaterThanOrEqualToPredicateOperatorType
 options:0];

The Predicate Builder 153
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Right-Hand Side

In addition to a constant value, you can also define the right-hand side of a comparison predicate to be a
variable or another key. This is necessary if you are creating either fetch request templates that require
substitution variables or defining fetched properties and need to use the $FETCH_SOURCE variable in the
predicate.

You change the type of the right hand side expression using the contextual menu shown in Figure 12-10
(you must Control-click “empty space” in the line of the criteria—for example, at the end or between the
pop-up menus). This changes the constant value field into a variable field or a key pop-up menu as appropriate.

Figure 12-10 Right-hand side expression type

Left-Hand Side

The key pop-up menu, shown in Figure 12-11, displays only attributes of the entity with which the predicate
is associated. To use a key path (that is, to follow relationships), choose the Select Key item in the key pop-up
menu. This displays a browser, shown in Figure 12-12 (page 155), from which you can choose the key or key
path you want.

154 The Predicate Builder
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Figure 12-11 Predicate keys

Figure 12-12 Adding a key path

Compound Predicates

You can add logical operators (AND, NOT, and OR) to create compound predicates of arbitrary depth and
complexity. To add a specific logical operator, use the contextual menu, shown in Figure 12-13.

The Predicate Builder 155
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Figure 12-13 Creating a compound predicate

You can also add peer predicates by clicking the round button with the plus sign, or using the Add Criteria
command in the contextual menu—these add an AND operator. You can change a logical operator using
the pop-up menu. You can rearrage the predicate hierarchy by dragging. To remove a predicate, click the
round button with the minus sign, or use the contextual menu. The predicate builder will try to rebuild the
remaining predicate as it can, removing comparison operators where appropriate.

Workflow

The typical steps you take are defining your entities, specifying the attributes they have; specifying relationships
between them; and adding business logic in the form of default values and value constraints. You may also
define fetch templates for an entity. Although you can edit the model in the diagram view, it is more usual
to do so in the browser, since it gives you more detail and greater flexibility. Creating a Managed Object
Model Using Xcode provides a task-based approach to creating an entire model, from start to finish.

Creating a Model

If you create a Core Data–based project, a data model is automatically created for you and added to the
project. If you need to create a new model, from the File menu choose New File and add a file of type Data
Model (from the Design list). In the pane that appears (see Figure 12-14), give the file a suitable name and
ensure that the file is added to your application target.

156 Workflow
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Figure 12-14 Creating a New Data Model File

Click Next, and in the following pane select any groups or files that you want to be parsed for inclusion in
the model (if any), then click Finish.

Custom Classes

For each entity in the model, you specify a class that will be used to represent it in your application. By default
the class is set to NSManagedObject, which is able to represent any entity. Typically, at the begnining of a
project, you just use NSManagedObject for all your entities. Later, as your project matures, you define custom
subclasses of NSManagedObject to provide custom functionality.

If you create a custom subclass of NSManagedObject to represent an entity, you typically implement custom
accessor methods for the class’s properties. This is generally tedious, repetitive work, so the data modeling
tool provides menu items to automatically generate declarations and implementations for these methods
and put them on the Clipboard so you can paste them into the appropriate source file.

Compiling a Data Model

A data model is a deployment resource. A data model must not only be a project file, it must be associated
with the target that uses it . In addition to details of the entities and properties in the model, the model
contains information about the diagram, its layout, colors of elements, and so on. This latter information is
not needed at runtime. The model file is compiled to remove the extraneous information and make runtime
loading of the resource as efficient as possible.

Workflow 157
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

The model compiler is momc in /Library/Application Support/Apple/Developer
Tools/Plug-ins/XDCoreDataModel.xdplugin/Contents/Resources/. If you want to use it in your
own build scripts, its usage is: momc source destination, where source is the path of the Core Data model
to compile, and destination is the path of the output mom file.

158 Workflow
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

Data Modeling With Xcode

Much of the development process is actually spent writing source code. You spend a lot of time editing the
files in your project, from authoring source code to modifying file characteristics, such as the file’s encoding.
Xcode includes a full-featured editor that supports a number of features that make coding easier. For example,
syntax coloring helps you distinguish the various code elements in a source file. Syntax-aware indenting
makes it simple to generate readable, well-formatted source code by automatically indenting source code,
and matching braces, as appropriate for the current context.

Xcode’s editor can display a great deal of information about the current file, such as line numbers, the location
of breakpoints and build errors, and more. It supports a number of quick-access features, such as the ability
to jump to any symbol definition or declaration in a file, jump between header and implementation files,
and look up documentation for a symbol. In this way, you can quickly move around within or between files
and find the information you need.

Using the symbol information available through Code Sense, Xcode’s editor also supports code completion.
As you type in a source code file, code completion suggests symbols appropriate for the current context.
You can have Xcode automatically insert the symbol name and prototype, instead of typing all of the
information yourself.

Xcode gives you many ways to open files and access information in an Xcode editor. You can choose to have
the editor open as a standalone window, or you can use the attached editor to open files directly in the
project, Build Results, Project Find, or Debugger windows.

Of course, many people are accustomed to the behavior of one particular text editor for authoring source
code. They are extremely productive in this environment and prefer to keep using this editor, rather than
learning the ins and outs of a new text editor. For this reason, Xcode also lets you specify an external program
for opening and editing files in your project. In this way, you can manage project files and perform all other
development tasks in Xcode while still opening and editing files in your usual editor. If you do decide to use
Xcode’s editor, you can use Xcode’s built-in Metrowerks, BBEdit or MPW key binding sets for text editing
operations to make your editing environment as familiar as possible.

The chapters that follow describe Xcode’s editor, show how to open and access files with Xcode’s editor or
with an external editor, and show you how to take advantage of features such as code completion and syntax
coloring to make the process of authoring source code easier and more efficient.

159
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART III

Editing Source Files

160
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART III

Editing Source Files

For each file, framework, and folder added to your project, Xcode stores a number of important settings,
such as the path to the file and the file’s type. You can view and edit settings for file, framework, and folder
references in the file reference inspector or Info window.

This chapter describes how to inspect file, folder, and framework references in your project. It also describes
how to change the way in which Xcode handles a file by changing its type; and how to control the way a file
is displayed and saved, by changing the file encoding and line ending.

Inspecting File, Folder, and Framework References

You can view and edit settings for file, framework, and folder references in the file reference inspector or Info
window. To bring up the Info window, click the Info button in the project window toolbar. If you select more
than one file reference, Xcode displays one Info window that applies to all selected files. Attributes whose
values are not the same for all selected files are dimmed. Changing an attribute’s value applies that change
to all selected file references.

The Info window for a file, folder, or framework reference or source group contains the following:

 ■ The General pane, shown below, lets you modify a number of basic file attributes, including filename,
location, reference style, and so forth.

 ■ The Build pane lets you specify additional compiler flags for the file. The Build pane appears only when
the file being inspected is a source code file. See “Per-File Compiler Flags” (page 294) for more information
on the contents of this pane.

 ■ The SCM pane lets you view SCM information for the file. This pane is only available for files under version
control. See “Viewing Revisions” (page 219) for more information.

 ■ The Comments pane lets you add notes, documentation, or other information about the file. See “Adding
Comments to Project Items” (page 92) for more information on adding comments.

Inspecting File, Folder, and Framework References 161
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

Inspecting File Attributes

Figure 13-1 Inspecting a file

1.

3.

2.

9.

6.

7.

4.
5.

8.

Here is what you can see and edit in the General pane of the file reference inspector:

1. The Name field displays the file’s name. To rename the file, type the new name in this field.

2. The Path field shows the location of the file; that is, it shows the path to the file. To change this location,
click the Choose button next to the path. You will get a dialog that lets you choose a new path.

3. The Path Type menu indicates the reference style used for the file. These reference styles are described
in “How Files Are Referenced” (page 77). To change the way the file is referenced, choose a style from
this menu.

4. The File Type menu lets you explicitly set the file’s type, overriding the actual file type of the file. How
to change a file’s type is described further in “Overriding a File’s Type” (page 164).

5. The “Include in index” checkbox controls whether Xcode includes the file when it creates the project’s
symbolic index. See “Code Sense” (page 104) for more information.

6. The File Encoding menu specifies the character set used to save and display the file. File encodings are
discussed further in “Choosing File Encodings” (page 163).

7. The Line Endings pop-up menu specifies the type of line ending used in the file. Line endings are discussed
further in “Changing Line Endings” (page 163).

162 Inspecting File, Folder, and Framework References
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

Inspecting File Attributes

8. The next several options control tab and indent settings for the individual file. The Tab Width and Indent
Width fields control the number of spaces that Xcode inserts when it indents your code or when you
press the Tab key when you edit the file in the Xcode editor. To change either of these values, type
directly in the field.

The “Editor uses tabs” setting indicates whether pressing the Tab key inserts spaces or a tab when you
are editing this file in Xcode’s editor. Controlling indentation in the editor is discussed further in “Setting
Tab and Indent Formats” (page 186).

The Reset to Text Editing Defaults restores the line ending, file encoding, tab and indent settings to
Xcode’s built-in defaults.

9. The Make File Localizable and Add Localization buttons at the bottom of the pane let you customize
files for different regions.

Choosing File Encodings

The file encoding of a file defines the character set that Xcode uses to display and save a file. If you type a
character that isn’t in the file’s encoding, Xcode asks whether you want to change the encoding. Xcode uses
the default single-byte string encoding, if possible (usually Mac OS Roman), or Unicode if the file contains
double-byte characters.

To change the file encoding for one or more files, select those files and open an inspector window. In the
General pane of the inspector window, choose the desired file encoding from the File Encoding menu.
Generally Unicode (UTF-8) is best for source files and Unicode (UTF-16) is best for .strings files. You can
also change the file encoding of an open file by choosing an item from the Format > File Encoding menu.
When Xcode next saves the file, it uses the new file encoding.

To choose the default file encoding for new files, open the Text Editing pane in the Xcode Preferences window
and choose an encoding from the Default File Encoding menu.

Note: GCC, the compiler used by Xcode for C, C++, and Objective-C, expects its source files to contain only
ASCII characters, with the exception that comments and strings can contain any characters. Also, some
encodings use escape sequences to handle non-ASCII characters, and those escape sequences can cause
unexpected results when GCC interprets them as ASCII. For example, some characters in the Japanese (Shift
JIS) encoding look like */ and will end your comment before you intended. Unicode (UTF-8) avoids this
confusion.

Changing Line Endings

UNIX, Windows, and Mac OS use different characters to denote the end of a line in a text file. Xcode can open
text files that use any of these line endings. By default, it preserves line endings when it saves text files.
However, other utilities and editors may require that a text file use specific line-ending characters. You can
change the type of line endings that Xcode uses for a single file, or you can change the default line ending
style that Xcode uses for all new or existing files.

Choosing File Encodings 163
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

Inspecting File Attributes

To change an individual file’s line endings, select the file in the project window and open the inspector. In
the General pane of the inspector window, use the Line Endings menu to choose Unix Line Endings (LF),
Classic Mac Line Endings (CR), or Windows Line Endings (CRLF).

To choose the default line endings used for all new or existing files, choose Xcode > Preferences, click Text
Editing, and choose Unix (LF), Mac (CR), or Windows (CRLF) from the Line Encodings pop-up menus:

 ■ The “For new files” menu lets you choose the default line encoding that Xcode uses for all new files.

 ■ The “For existing files” menu specifies the type of line encoding that Xcode uses when saving existing
files that you have opened for editing in Xcode. To have Xcode preserve line endings for existing files,
choose “Preserve” from this menu; this is the default value for the menu.

Generally, you don’t need to worry about line endings. If you find that you must change line endings from
the defaults assigned by Xcode, keep these guidelines in mind when deciding which line endings to use:

 ■ Most Mac OS development applications, including CodeWarrior and BBEdit, can handle files that use
UNIX, Mac OS, or Windows line endings.

 ■ Many BSD command-line utilities, such as grep and awk, can handle only files with UNIX line endings.

Overriding a File’s Type

By default, Xcode uses the type stored for a file on disk to determine how to handle that file. A file’s type
affects which editor Xcode opens the file in, how the file is processed when you build a target that includes
the file, and how Xcode colors the file when syntax coloring is enabled. You can change the way that Xcode
handles a file by overriding the file’s type.

The File Type menu in the General pane of the file inspector lets you explicitly set the file’s type, overriding
the actual file type of the file. The File Type menu lists all of the file types that Xcode is aware of; to set a file’s
type, choose it from this menu. Choosing Default For File discards any explicit file type set for the file in Xcode
and reverts to using the type stored for the file on disk.

For more information on how Xcode determines how to process files of a certain type, see “Build Rules” (page
261) and “Adding Files to a Build Phase” (page 254). For more information on how Xcode chooses the editor
to use for files of a certain type, see “Overriding How a File is Displayed” (page 193).

164 Overriding a File’s Type
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

Inspecting File Attributes

Xcode gives you a number of ways to get to, and open, files in your project. This chapter describes how to
open files in your preferred editor—by default, Xcode’s editor—and describes a number of shortcuts for
opening files by name or from an open editor.

Opening and Closing Files

There are many ways to open files in Xcode. From an open project, you can open any of your project files by
clicking or double-clicking the file. Files open in the preferred editor for the file’s type. If this is Xcode’s editor,
you have the option of opening file in a separate editor window or in the editor attached to most Xcode
windows.

There are also many shortcuts for opening files. The Open Quickly command lets you type a path or filename
to open a file. From an editor, you can open a file by name, jump to the header associated with an
implementation file and vice versa, or jump to files included by the current file.

Opening Project Files

If you already have a project window open, you can open a file by selecting it in the Groups & Files list in the
project window. If you have the editor open inside of the project window, a single click on the file name will
open the file in the editor. Otherwise, double-clicking the file in the Groups & Files list opens the file in a
separate editor window.

If the file’s name is in red, Xcode cannot find the file. Select the file, open the inspector, and click the Choose
button next to Path in the General pane.

If you have a code editor open and you have previously opened the file, you can choose the file’s name from
the pop-up menu that lists recently viewed files, in the navigation bar at the top of the code editor.

Opening Header Files and Other Related Files

You can quickly open a header or source file that’s related to the file displayed in the editor.

To open the related header for an implementation file open in the editor, and vice versa:

 ■ Click the Go to Counterpart icon in the navigation bar of the code editor, as described in “The Navigation
Bar” (page 174)

 ■ Choose View > Switch to Header/Source File.

For example, if main.c is in the editor, this opens main.h; if main.h is in the editor, it opens main.c.

Opening and Closing Files 165
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

Opening, Closing, and Saving Files

You can also view all the files that the current file includes, as well as all the files that include the current file.
To view the list of files that the file in the editor includes and that include this file, click the Included Files
icon in the navigation bar of the code editor. A menu pops up with the name of the current file in the center.
Above it are the names of the files that this file includes. Below it are the names of the files that include this
file. To open one of the files, choose it from the menu.

Opening Files by Name or Path

In addition to shortcuts to open related files, Xcode also provides a shortcut that allows you to open files by
name or path, without having to navigate to the file using the Open File dialog. To open a file by name, use
one of the following shortcuts. You can open files using these shortcuts even if the file is not in your project.

 ■ To open a file whose name appears in a code editor, select the name and choose File > Open Quickly.

 ■ To open a file by typing its name, choose File > Open Quickly and enter the filename in the Path field.

Xcode first looks for the file in the current project and then searches a list of directories that it maintains for
use with the Open Quickly command. A number of common directories—such as
System/Library/Frameworks—are already included in this list by default. You can add your own commonly
accessed directories to this list in the Opening Quickly pane of Xcode Preferences, described in “Opening
Quickly Preferences” (page 410).

Open Quickly searches the directories in the order in which they appear in this pane. If Open Quickly doesn’t
display the file you expected, check whether a file with the same name as the one you wish to open exists
in your project or at a location higher up in the list of directories to search.

If you know the path to a file, you can also use the Open Quickly command to open the file, without adding
a new directory to the list of search paths, by choosing File > Open Quickly and entering the path. For example,
to open the fileMyNotes.rtf located in your Documents folder you would type~/Documents/MyNotes.rtf.

Closing Files

Files in a project remain open until you explicitly close the file or close the project. Open files in an editor
appear in the pop-up menu of recently viewed files. To close a file, choose File > Close File filename.

Saving Files

Xcode indicates which files you’ve modified by highlighting their icons in gray in the Groups & Files list, detail
view, and in the pop-up menu of recently viewed files. You can save your changes in a number of ways:

 ■ To save changes to the current file, choose File > Save.

 ■ To save a copy of a file, choose File > Save As. Xcode saves a copy of the file under the name you specify.
If the file is part of your project, Xcode also changes the file reference in your project to refer to the copy.

 ■ To make a backup of a file, hold the Option key and choose File > Save a Copy As. Xcode saves a copy
of the file under the name you specify, but does not modify the file reference in your project, if one
exists.

 ■ To save all open files, choose File > Save All.

166 Saving Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

Opening, Closing, and Saving Files

Xcode can also be configured to automatically save all changed files before beginning a build. To specify
whether files are saved automatically when you build a target:

1. Choose Xcode > Preferences and click Building.

2. In the “For Unsaved Files” menu, choose Ask Before Building, Always Save, Never Save, or Cancel Build.

If you don’t have write permission for a file, Xcode warns you when you try to edit it. You can choose to edit
such files, but you can save your changes only if you have write permission for the containing folder. In this
case, you can choose whether Xcode changes the file’s permissions to make it writable.

To have Xcode change the file’s permissions, choose Xcode > Preferences, click Text Editing, and select “Save
files as writable” in Save Options. Otherwise, Xcode preserves the file’s current permissions.

Saving Files 167
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

Opening, Closing, and Saving Files

168 Saving Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

Opening, Closing, and Saving Files

Xcode contains a full-featured editor for editing your project files. You have many options for using this editor
to view and modify the files in your project; you can edit files in a dedicated editor window or use the editor
attached to most Xcode windows. You can also choose whether to have multiple editor windows open at
once, or use a single editor window for all files that you open.

This chapter describes Xcode’s editor, shows how to open files in a standalone editor window or in an attached
editor, and how to control the appearance of Xcode’s editor.

The Xcode Editor Interface

When you edit a file in Xcode, you have the choice of using a standalone editor window or editing the file
directly in any of the other Xcode windows, such as the project window, debugger window, build results
window, and so forth. Regardless of your choice, Xcode uses a common interface for the editor. When you
open a file in Xcode’s editor, you see a view similar to that in Figure 15-1.

Figure 15-1 The Xcode Editor

Navigation
bar

Editor pane

Gutter

Here’s what the Xcode editor contains:

The Xcode Editor Interface 169
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

1. Gutter. The gutter displays file line numbers, as well as information about the location of breakpoints,
errors, or warnings in the file. See “Displaying the Editor Gutter” (page 180) to learn more about the
contents of the gutter, as well as how to show and hide the gutter.

2. Editor. The text editing pane displays the contents of the file.

3. Navigation bar. The bar along the top of the editor contains several menus and buttons that let you
quickly see, and jump to, locations within the current file and in other files open in the editor. “The
Navigation Bar” (page 174) describes the contents of the navigation bar and how to use it to navigate
source code files.

Note: You can also modify the attributes of the file reference associated with a file open in the editor, as
described in “Inspecting File, Folder, and Framework References” (page 161).

Editing Files in a Separate Editor Window

If you prefer, you can use a dedicated window for editing source files in Xcode. Regardless of your preference
for whether Xcode automatically opens the attached editor in Xcode windows, you can always open a file
in a separate editor by doing any of the following:

 ■ Double-click the file in the Groups & Files list or the detail view in the project window.

 ■ Select the file and choose View > Open in Separate Editor.

 ■ Control-click the file and choose Open in Separate Editor from the contextual menu.

Figure 15-2 shows the Xcode editor in a separate window.

170 The Xcode Editor Interface
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

Figure 15-2 The Xcode editor in a standalone window

In addition to the basic editor interface, the standalone editor window also contains a toolbar and a status
bar. The status bar is similar to the status bar of other Xcode windows, described in “The Project Window
Status Bar” (page 64). Like the toolbar in other Xcode windows, the editor window toolbar provides easy
access to common tasks. By default, it includes buttons to build, run, and debug the current target. It also
contains the following two buttons:

 ■ The Project button lets you quickly jump to the file in the project window. Clicking this button brings
the project window to the front.

 ■ The Grouped and Ungrouped buttons control whether opening a file, using any of the methods described
above, opens a new standalone editor window for that file or opens the file in the current window.
Clicking the button toggles the state. If the button is Grouped, indicated by the icon of a single window,
double-clicking a file opens it in the current editor. If the button is Ungrouped, indicated by an icon of
multiple layered windows, each file opens in a new editor window.

To preserve the state of any open editor windows when you close a project, choose Xcode > Preferences,
click General, and select “Save window state” in the Environment options.

The Xcode Editor Interface 171
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

Using the Attached Editor

You can also edit your source files from within other Xcode windows, such as the project window and the
debugger window. To open a file in the attached editor, make sure that the editor is visible in the window.
If the editor is not already visible, you can open it by clicking the Editor button or choosing View > Zoom
Editor In. This opens the attached editor to its maximum size. If the editor was already at its maximum size,
clicking the Editor button or choosing View > Zoom Editor Out returns the attached editor pane to its previous
size. To adjust the size of the attached editor to a different size, drag the separator to the size that you prefer.

Selecting a file, an error or warning, a bookmark, a find result or a project symbol opens the associated file
in the editor as long as the editor is visible. You can also have Xcode automatically show the attached editor
when you select one of these items in the detail view. To specify that Xcode automatically open the attached
editor, select “Automatically open/close attached editor” in the Editing options in the General pane of the
Xcode Preferences window.

Figure 15-3 Editor in a project window

Splitting Code Editors

Xcode allows you to simultaneously view multiple files or multiple sections of the same file without increasing
the number of open windows. It does this by splitting a code editor. The figure seen here shows an editor
that has been split to display two parts of the same file.

172 The Xcode Editor Interface
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

Figure 15-4 Splitting a code editor

Split editor
view
Close split

Note that you can split an editor whether that editor appears in a separate window or as an attached editor.

To split a code editor, make sure that the editor has focus and do one of the following:

 ■ To split the editor vertically, choose View > Split filename Vertically, or click the split button. The split
button—identical to the split button in the Groups & Files list, described in “Splitting the Groups & Files
View” (page 59)—appears above the scrollbar of the editor window.

 ■ To split a code editor horizontally, hold down the Option key and choose View > Split filenameHorizontally,
or Option-click the split button.

To close a split, choose View > Close Split View, or press the Close Split button. You can resize the panes of
a split editor by dragging the resize control between them.

Navigating Source Code Files

Xcode provides many ways to find and navigate to information in a file and move between files in an editor.
The navigation bar of the editor provides a number of menus that let you jump to related header or source
files, move between open files, and jump to bookmarks, breakpoints, or other locations in the current file.
Xcode’s single file find lets you search the contents of a file in the editor. Xcode also provides a number of
shortcuts for opening files, jumping to symbol definitions or declarations, or finding documentation, all from
the editor.

Navigating Source Code Files 173
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

This section describes the contents of the navigation bar and shows you how to search within a file. It also
shows some of the shortcuts you can use in Xcode’s editor to find text and symbol definitions.

Some tricks for finding information from an editor are described in other chapters. “Opening Files by Name
or Path” (page 166) describes shortcuts you can use to open a file whose name or path appears in an editor.
“Searching for Documentation” (page 114) describes shortcuts you can use to jump to the documentation
for a symbol whose name appears in the editor, or search the installed documentation for a word or phrase.

The Navigation Bar

The navigation bar contains a number of controls that you can use to move between open files, jump to
symbols, and open related files. Figure 15-5 shows the navigation bar.

Figure 15-5 The navigation bar in the editor

Previous file
Next file

File history menu

Breakpoints menu

Included files menu
Goto counterpart button

Function menu

Bookmarks menu

Here is what the navigation bar contains:

1. The Previous and Next arrows move between open files in the editor.

2. The File History pop-up menu lists recently viewed files. Selecting a file from this menu displays that file
in the editor, without having to repeatedly click Next or Previous.

3. The Function pop-up menu lists the function and method definitions in the current file. When you select
a definition from this menu, the editor scrolls to the location of that definition. For information on how
to configure the Function pop-up menu, see “The Function Pop-up Menu” (page 175).

4. The Bookmarks pop-up menu lists any bookmarked locations in the current file. When you select a
bookmark from this menu, the editor scrolls to the location of the bookmark. See “Saving Commonly
Accessed Locations as Bookmarks” (page 91) to learn more about bookmarks in your project.

5. The Breakpoints pop-up menu lists any breakpoints in the current file. Choosing a breakpoint from this
menu scrolls the editor to the location at which the breakpoint is set. See “Breakpoints” (page 353) to
learn more about breakpoints in Xcode.

6. The Go To Counterpart button opens the counterpart of the current file or jumps to the symbolic
counterpart of the currently selected symbol. See “Jumping to a File’s or Symbol’s Counterpart” (page
176) for more information on the Go To Counterpart button.

7. The Included Files pop-up menu lists all of the files included by the file that is currently being edited, as
well as all of the files that include the current file. Selecting a file from this list opens that file in the editor
window. This menu is described more in “Opening Header Files and Other Related Files” (page 165).

174 Navigating Source Code Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

The File History Menu

The File History pop-up menu lists all of the files that you have viewed in the current editor, with the current
file at the top of the menu. To return to any of the these files, simply select it from the menu.

You can clear the File History menu by choosing Clear File History. This removes all but the file currently open
in the editor from the editor’s history list. By default, Xcode does not place a limit on the number of files that
it remembers in this menu. However, you can limit the size of the file history menu by choosing the number
of files you want remembered from the History Capacity menu. For example, if you choose 5 from this menu,
Xcode only remembers the five most recently viewed files in the File History menu.

The Function Pop-up Menu

The function pop-up menu lets you jump to many points in your file, including any identifier it declares or
defines. You can also add items that aren’t definitions or declarations. The function pop-up menu is in the
navigation bar, next to the File History menu. In this menu, you can see:

 ■ Declarations and definitions for classes, functions, and methods

 ■ #define directives

 ■ Type declarations

 ■ #pragma marks

To scroll to the location of any of these identifiers, select it from the menu. Figure 15-6 shows the function
pop-up menu.

Figure 15-6 The function pop-up menu

By default, the contents of the function pop-up menu are sorted in the order in which they appear in the
file. You can hold down the Option key while clicking the function pop-up menu to toggle the sort order of
the items in the menu between alphabetical and the order in which they appear in the source-file.

Navigating Source Code Files 175
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

You can also change the default behavior for the function pop-up menu. To choose which items appear in
the function pop-up menu and the order they appear in, choose Xcode > Preferences, click Code Sense, and
use the Editor Function Pop-up options:

 ■ Select “Show declarations” to include declarations in the function pop-up menu. Otherwise, the function
pop-up menu shows only definitions.

 ■ Select “Sort list alphabetically” to have Xcode display the contents of the function pop-up in alphabetical
order. Otherwise, the contents are sorted in the order in which they appear in the file.

Note: Syntax coloring must be enabled for the function pop-up menu to be available in the editor window.

To add a marker to a C, C++, or Objective-C source file and make that marker appear in the function pop-up
menu, use the #pragma mark statement in your source code. For example, the following statement adds
“PRINTING FUNCTIONS” to the function pop-up menu:

#pragma mark PRINTING FUNCTIONS

To add a separator to the function pop-up, use:

#pragma mark -

Jumping to a File’s or Symbol’s Counterpart

Clicking the Go To Counterpart button opens the related header or source file for the file currently open in
the editor. For example, if the file currently open in the editor is MyFile.c, clicking this button opens
MyFile.h, and vice versa. When your project contains files with the same name, Xcode gives preference to
files located in the same folder as their counterparts. You can also open the current file’s related header or
implementation file by choosing View > Show Header/Source File.

Option-clicking the Go To Counterpart button displays the counterpart of the currently selected symbol—class,
method, function, and so on—opening the corresponding file and scrolling to the appropriate section within
it if necessary. If the selected symbol is a class, method, or function declaration, Xcode jumps to the definition
for that item. If a class, function, or method definition is currently selected, Xcode jumps to the symbol’s
declaration. You can specify a key binding for the Switch to Symbolic Counterpart action in the Key Bindings
pane of Xcode Preferences. For information on configuring key bindings for actions, see “Customizing Key
Equivalents” (page 385).

By default, Xcode opens the file or symbol counterpart in the same editor; however, you can have Xcode
open counterparts in a separate editor window. This makes it easy to view both a header and its
implementation file, or a symbol declaration and its definition, at once. To have Xcode open counterparts in
a separate window, open the General pane of Xcode Preferences and select “Open counterparts in same
editor” in the Editing options.

Searching in a Single File

When editing files in the code editor, it is fairly common to find that you need to make the same change in
several places in the file. For example, when you rename a function, you also have to find all of the places
where you call that function and change those calls to use the new name. Xcode provides a single-file find
that allows you to search for and replace text within a single file. You can perform a simple textual search or
search using regular expressions.

176 Navigating Source Code Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

Specifying Search Terms

To search for text in a file that you have open in an Xcode editor, choose Find > Single File Find or press
Command-F. Xcode displays the Single File Find window, shown here.

Figure 15-7 The Single File Find window

You can search using a text string or a regular expression; choose the appropriate search type from the
pop-up menu next to the Ignore Case option in the Find Options group. Choosing “Textual” searches for text
matching the string in the Find field. Choosing “Regular Expression” searches for text matching the regular
expression in the Find field.

Type the text string or regular expression pattern to use for the search in the Find field of the Single File Find
window. Xcode keeps track of search strings; to reuse a previous search string, click the arrow in the Find
field and choose the string from the menu.

The other options in the Find Options group give you additional control over how the search is performed;
these options are:

 ■ Ignore Case. Use this option to ignore whether letters are uppercase or lowercase.

 ■ Wrap around. Select this option to search the whole file; otherwise, Xcode searches from the current
location of the insertion point to the end of the file.

 ■ The pop-up menu next to the Wrap Around option specifies how Xcode determines a match to the
search term in the Find field. Choose “Contains” to search for words that contain matching text in a
substring, “Starts with” to search for words that begin with text matching the search term, “Whole words”
to search for words that contain only text matching the contents of the Find field, or “Ends with” to
search for words that end with matching text.

Use the Next and Previous buttons to continue searching for the same text in a file. Alternatively, you can
choose Find > Find Next or hold down the Shift key and choose Find > Find Previous. Pressing Return finds
the next (or first) match and dismisses the Single File Find window.

Replacing Text

You can use the Single File Find window to replace some or all occurrences of text matching the string or
regular expression specified in the Find field. To search for and replace text in a file:

1. Open the Single File Find window and specify the search criteria, as described in the previous section.

Navigating Source Code Files 177
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

2. Type the replacement text in the Replace field. As with search strings, Xcode keeps track of substitution
strings; to reuse a previous substitution string, choose it from the menu in the Replace field.

Use the replace buttons in the bottom-right portion of the Single File Find window to perform the text
substitution. The scope of the replacement varies, depending on the button you choose. Here are the buttons
available to you:

 ■ Replace substitutes the replacement text for the current selection.

 ■ Replace & Find substitutes the replacement text for the current selection and then finds and selects the
next occurrence of text matching the contents of the Find field.

 ■ Replace All searches the entire file or selection and replaces all occurrences of text matching the contents
of the Find field with the replacement text.

If you choose Replace All, the Replace All Scope radio buttons control the scope of the search and replace
operation. To search for and replace instances of the given search text throughout the entire file, select
the Entire File option. To perform the search and replace operation within only the current selection,
choose Selected Text.

Each of these buttons also has a menu item equivalent in the Find menu. To replace the current selection or
to replace the current selection and find the next match, choose Find > Replace or Find > Replace and Find
Next, respectively. To replace all occurrences of the search text, hold the Option key and choose Find >
Replace All.

You can also replace the current selection and find the previous match in the file. To do so, hold the Shift
key and either choose Find > Replace and Find Previous or click the Replace & Find button.

Shortcuts for Finding Text and Symbol Definitions From an Editor
Window

Xcode provides a number of shortcuts for searching using text or other content that appears in an editor
window. You can use these shortcuts to perform single-file and project-wide searches without going through
the Single File Find or Project Find windows. When you use these shortcuts, Xcode performs the search using
the same options specified the last time you used the Single File Find or Project Find windows. These windows
are described in further detail in “Searching in a Single File” (page 176) and “Searching in a Project” (page
97).

To search a single file for text that appears in an editor window, select the text to search for, and choose Find
> Find Selected Text.

To perform a project-wide search using the current selection in an editor window, use the shortcuts listed
in Table 15-1.

Table 15-1 Shortcuts for performing a project-wide search using the current selection in the editor

ChooseSearch project for

Find > Find Selected Text in ProjectSelected text

Hold Option key and choose Find > Find Selected RegEx in ProjectSelected regular expression

178 Navigating Source Code Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

ChooseSearch project for

Find > Find Selected Definition in ProjectSelected symbol definition

You can also jump directly to the definition for a symbol identifier by doing either of the following:

 ■ Command—double-click the symbol name.

 ■ Select the symbol name and choose Find > Jump to Definition. The Jump to Definition menu item does
not have a keyboard shortcut by default, but you can assign a keyboard shortcut to it in the Key Bindings
pane of the Xcode Preferences window.

Each of the searches described in Table 15-1 (page 178) uses the last set of search options used when searching
your project. If you want to perform a project-wide search using the current selection in an editor window,
but do not want to use the last set of search options, you can open a Project Find window with the current
selection by doing either of the following:

 ■ To use the current selection as a search term, choose Find > Use Selection For Find. Xcode opens a Project
Find window and places the contents of the current selection in the Find field.

 ■ To use the current selection as a substitution string, choose Find > Use Selection for Replace. Xcode
opens the Project Find window and places the contents of the current selection in the Replace field.

Controlling the Appearance of the Code Editor

Xcode gives you a great deal of flexibility to customize the appearance of the editor. You can change the
fonts and colors used to display text in the editor to suit your own preferences. You can also control the
amount of information that Xcode displays about file locations and contents. This section describes how to
change the default font and text editing colors for Xcode editors, and how to use the gutter, page guide,
and file history menu to locate information in a file.

Setting Default Fonts and Colors

You can change the font and colors used for text editing in Xcode in the Xcode Preferences window. Choose
Xcode > Preferences and select Fonts & Colors. The Editor Font section displays the font used for text in the
editor; to change this font, click the Set Font button.

Note: This font is also used for all text, regardless of its role, when syntax coloring is enabled, unless you
specify otherwise. See “Setting Syntax Coloring” (page 183) for more information.

To change the colors used in the editor, use the Editor Colors options. To change the color of an item, click
its color well and choose a new color. You can change the default color for the following elements:

 ■ Text. This option controls the default color used for text in an editor. You can specify additional colors
for text that represents particular code elements, such as strings. For a description of how to use syntax
coloring in Xcode, see “Setting Syntax Coloring” (page 183).

 ■ Background. This option specifies the background color used for editor windows.

Controlling the Appearance of the Code Editor 179
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

 ■ Selection. This option specifies the highlight color used to indicate selected text.

 ■ Insertion Point. This option controls the color of the blinking insertion point character in an editor window.

Displaying a Page Guide

To help keep code lines no longer than a specified length, you can have Xcode display a guide line in every
code editor at that column position in the file. To display a guide line, open the Text Editing pane of Xcode
Preferences and select “Show page guide” in Display Options. Enter the location, in number of characters, at
which you want the guide line displayed in the text field titled “Display at column.” Xcode displays a gray
line in the right margin of all open editors, at the specified column.

Xcode does not wrap your code lines when they reach the guide line. The line serves only as a guide.

Displaying the Editor Gutter

The gutter that appears on the left side of a code editor helps you quickly locate items in a file. This gutter
can display:

 ■ Line numbers for the current file. Line numbers make it easy to find a location in a file. Xcode does not
show line numbers by default; to change this, open the Text Editing pane of Xcode Preferences and
select “Show line numbers” in Display Options.

 ■ Errors and warnings. To help you locate and fix problems in your code, Xcode displays error and warning
icons next to the line at which an error or warning occurred. Clicking on the icon or pausing with the
mouse over the icon displays the error or warning message.

 ■ Breakpoints. You can use the gutter to set, remove, and otherwise control the breakpoints in a file. Xcode
indicates the location of a breakpoint by displaying an arrow next to the line at which the breakpoint is
set. For more information on using breakpoints, see “Breakpoints” (page 353).

You can control the visibility of the gutter in a single editor or set the default behavior for all editors. To
change the visibility of the gutter for all editors that you open, standalone and attached, open the Text Editing
pane of Xcode Preferences and use the “Show gutter” option in Display Options. If this option is selected, as
it is by default, the gutter is visible in all editors that you open. Otherwise, the gutter appears in all code
editors only when you start debugging.

To show or hide the gutter in a particular instance of the editor, bring the window to the front and use the
View > Hide Gutter and View > Show Gutter commands.

Viewing Column and Line Positions

As you’ve seen in “The Navigation Bar” (page 174), the File History pop-up menu in the navigation bar not
only lets you move between currently open files, it also shows you your current location in the file. For the
file currently open in the editor, the File History menu shows the name and the line number of the line
containing the insertion point. You can also have the File History menu display the column position of the
insertion point; that is, the offset of the insertion point, in number of characters, from the left margin of the
editor. Figure 15-8 shows the location of the current insertion point in the File History menu.

180 Controlling the Appearance of the Code Editor
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

Figure 15-8 Line and column positions in the File History pop-up menu

File name

Column position
Line number

By default, Xcode does not display the column position of the insertion point. To change this, open the Text
Editing pane of Xcode Preferences and select “Show column position.”

Controlling the Appearance of the Code Editor 181
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

182 Controlling the Appearance of the Code Editor
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

The Xcode Editor

Xcode provides a number of formatting and coloring options to help you keep your code well formed and
readable. Syntax coloring makes it easy to understand the structure of your code by using different fonts or
colors to identify different code elements, such as comments. With syntax-aware indenting, Xcode makes it
simple to keep your code well-formed and neat by automatically indenting code and formatting it as
appropriate for the current context. This chapter describes options for indenting code, matching parentheses,
and using syntax coloring.

Setting Syntax Coloring

Xcode uses colors and fonts to distinguish among different types of code elements in a source code file. For
example, you can display comments in green and keywords in boldface. Xcode maintains syntax coloring
rules that specify a color and font for each code element you can customize. These rules apply to all languages
for which Xcode supports syntax coloring.

Xcode supports syntax coloring for many different programming languages; to see the languages that it
supports, use the Format > Syntax Coloring menu. Xcode uses a file’s type to determine how to interpret
and color the contents of the file.

By default, syntax-coloring is enabled for all files that you open in Xcode’s editor. You can disable
syntax-coloring, or customize the syntax-coloring rules, in the Fonts & Colors pane of Xcode Preferences. For
more information on the Fonts & Colors preference pane, see “Fonts & Colors Preferences” (page 405). You
can also enable or disable syntax-coloring for individual files open in an editor.

Controlling Syntax Coloring and Syntax Coloring Rules

To turn syntax coloring on and off for all files that you open, choose Xcode > Preferences, click Fonts & Colors,
and use the Syntax Coloring option.

Note: Syntax coloring must be enabled for the function pop-up menu to be available in the editor window.

To set the color for a particular type of code element, select the code element from the Syntax Coloring
pop-up menu and change its color and font. For example, to change the color used for strings, select Strings
from this pop-up menu and click the color well to bring up the color palette. You can customize syntax
coloring rules for the code elements listed in Table 16-1.

Setting Syntax Coloring 183
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

Formatting and Syntax Coloring

Table 16-1 Syntax coloring rules

Specifies font and color forSyntax Coloring Rule

Comments in source code, denoted by // or enclosed between ‘/*’
and ‘*/’ character pairs.

Comments

Text of documentation using HeaderDoc or JavaDoc style markup.Documentation Comments

Keywords used to identify documentation using HeaderDoc or
JavaDoc style markup.

Documentation Comment Keywords

String constants in source code.Strings

Keywords in source code.Keywords

Character constants in source code.Characters

Numeric constants in source code.Numbers

Preprocessor directives.Preprocessor

By default, all syntax-coloring rules use the same font—the font specified by the Editor Font option, described
in “Setting Default Fonts and Colors” (page 179)—but different colors. You can, however, have Xcode change
both font and color based on the code element. To use other fonts for other types of code elements, choose
Xcode > Preferences, click Fonts & Colors, and select the “Allow separate fonts” option. Unless this option is
enabled, Xcode does not allow you to change the font for an individual syntax-coloring rule.

To change the font used for a particular code element, choose that code element from the Syntax Coloring
pop-up menu and click Set Font to open the Fonts window.

Xcode uses the syntax coloring rules in the Fonts & Colors pane to determine how to display files in its editor.
You can, however, have Xcode preserve syntax coloring when copying and pasting, or when printing text
from a code editor. These options are available in the Fonts & Colors pane of Xcode Preferences. To have
syntax coloring appear when you print a file, select the “Use colors when printing” option. Otherwise, if you
have specified different fonts for any of the code elements, Xcode uses those when printing, but uses only
a single color.

To choose whether to preserve colors and fonts when copying code from an editor, use the “Copy colors
and fonts” option. When this option is enabled, as it is by default, Xcode preserves both font and color
information when it copies text to the clipboard.

Controlling Syntax Coloring for a Single File

You can control syntax coloring for individual files using the Format > Syntax Coloring menu. This menu lets
you turn syntax coloring on or off for a file in an editor window and set the type of syntax coloring used for
that file. By default, Xcode uses the file type of the current file to determine how to color the file’s contents.
However, you can specify that Xcode use syntax coloring appropriate for a particular language by choosing
that language from the Format > Syntax Coloring menu.

To turn syntax coloring off for a file, choose Format > Syntax Coloring > None. To turn syntax coloring back
on, using the type of the file to determine the appropriate syntax coloring, choose Format > Syntax Coloring
> Default for file type.

184 Setting Syntax Coloring
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

Formatting and Syntax Coloring

Wrapping Lines

To keep all of your code visible in the editor, you can have Xcode wrap lines when they reach the right edge
of a code editor. To turn on line wrapping for all files you open in Xcode, choose Xcode > Preferences, click
Indentation, and select “Wrap lines in editor.” Otherwise, Xcode does not move text to the next line until you
insert a carriage return. To wrap lines for an individual file in an editor window, choose Format > Wrap Lines.

You can also have Xcode automatically indent wrapped lines, to visually distinguish them from other lines.
Enter the number of spaces to indent lines by in the “Indent wrapped lines by” field.

Indenting Code

Xcode’s editor supports syntax-aware indenting to make it simple to author neat and readable code. When
you use syntax-aware indenting, Xcode automatically indents and formats your code as you type; pressing
Return or Tab moves the insertion point to the appropriate level by examining the syntax of the surrounding
lines. You can also choose to indent code manually.

This section shows you how to configure syntax-aware indenting, how to manually format text in the editor,
and how to control the format of tabs and automatic indentation.

Syntax-Aware Indenting

Xcode gives you a number of ways to control how it automatically formats your code. You can control which
characters cause Xcode to indent a line, what happens when you press the Tab key, and how Xcode indents
braces and comments.

Syntax-aware indenting is not enabled by default; to turn it on, choose Xcode > Preferences, click Indentation,
and select the “Syntax-aware indenting” option. For more information on the options available in the
Indentation preferences pane, see “Indentation Preferences” (page 406).

Choosing What the Tab Key Does

When you use syntax-aware indenting, you usually press the Tab key to tell the editor to indent the text on
the current line. But when you’re at the end of the line, you may want to insert a tab character before, say,
you insert a comment. To choose the circumstances when pressing the Tab key reindents a line, open the
Indentation pane of Xcode Preferences and use the “Tab indents” menu in the syntax-aware indenting options.
You can choose the following options:

 ■ “In leading white space” indents only when the insertion point is at the beginning of a line or in the
white space at the beginning of a line.

 ■ “Always” indents when the insertion point is anywhere in the line.

 ■ “Never” never indents the line.

To insert a tab character regardless of this option’s setting, press Option-Tab. Similarly, to perform syntax-aware
indenting, regardless of this option’s setting, press Control-I.

Wrapping Lines 185
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

Formatting and Syntax Coloring

Choosing How to Indent Braces

You can have Xcode automatically indent braces to help you easily see the level of nesting in your code and
keep your code readable. In addition, to help you keep braces balanced, you can opt to have Xcode
automatically insert a closing brace when you type an opening brace.

To choose how much an opening brace is indented when it appears on a line by itself, choose Xcode >
Preferences, click Indentation, and use the “Indent solo ‘{’ by:” field. If this field is greater than 0, Xcode
automatically indents opening braces to the level of the previous line plus the specified number of characters.
By default, the value of this field is 0.

To choose whether to insert a closing brace automatically when you type an opening brace, choose Xcode
> Preferences, click Indentation, and use the “Automatically insert closing ‘}’” option.

Choosing Which Characters Reindent a Line

To choose which characters cause Xcode to a automatically indent a line whenever they’re typed, choose
Xcode > Preferences, click Indentation, and use the “Automatically indented characters” options.

Choosing How to Indent C++-Style Comments

You can choose how to indent C++-style (//) comments when they appear on lines by themselves. You
cannot automatically indent C++-style comments that appear at the end of code lines.

To automatically indent C++-style comments that appear on lines by themselves, choose Xcode > Preferences,
click Indentation, and use the “Indent // comments” option.

To align consecutive C++-style comments that appear on lines by themselves, choose Xcode > Preferences,
click Indentation, and use the “Align consecutive // comments” option.

Both these options are on by default when syntax-aware indenting is enabled.

Indenting Code Manually

If you choose not to use syntax-aware indenting, you must do any indentation and formatting manually.
When syntax-aware indenting is disabled, pressing Tab inserts a tab and pressing Return inserts a carriage
return and moves the cursor to the same level as the previous line. You can also indent a block of text to the
left or right by selecting the text and choosing Format > Shift Left or Format > Shift Right.

When syntax-aware indenting is turned off, Xcode may still indent newly added lines to the level of the
previous line when you press Return. To turn this off, add the Return key to the key-equivalents list of the
Insert Newline action in Key Bindings preferences. For information on configuring key bindings for actions,
see “Customizing Key Equivalents” (page 385).

Setting Tab and Indent Formats

Whether you indent a line manually, or rely on Xcode’s syntax-aware indenting, you can control the width
of tabs and indents, as well as whether Xcode inserts Tab characters or spaces. You can specify default values
for all files you open in Xcode, as well as customizing these settings for individual files.

186 Indenting Code
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

Formatting and Syntax Coloring

Changing the Indent and Tab Width

You can set how many spaces to indent when the editor automatically indents or when you press the Tab
key. To set the default indent or tab width for every file you open, open the Indentation pane of Xcode
Preferences and change the “Tab width” or “Indent width” setting.

To override the default indent or tab width for one or more specific files, select the files in the Groups & Files
list and open the inspector window. In the General pane, change the Indent Width or Tab Width setting.

If you change a file’s default indent or tab width, those settings are in effect for everyone who views that
file.

Using Spaces Instead of Tabs

The editor can insert a series of spaces instead of a tab whenever it indents code or you press Tab. This
ensures that your code looks the same on other computers no matter how wide their tabs are set. However,
this means that changing the width of tabs won’t affect code you’ve already written.

To specify that the editor uses spaces instead of tabs, choose Xcode > Preferences, click Text Editing, and
select “Insert ‘tabs’ instead of spaces” option. These options are saved in your own preferences but not in
the file itself. When other people edit the file, their preferences for that file take effect.

You can also specify this setting on a per-file basis. To choose whether the editor uses tabs or spaces when
editing a certain file, select the file in the Groups & Files list, open the inspector window, and select “Editor
uses tabs.”

Matching Parentheses, Braces, and Brackets

Xcode provides a number of ways to help you match pairs of delimiters (parentheses, braces, and brackets).
Xcode assists you in the following ways:

 ■ When you type a closing delimiter, Xcode causes its counterpart to blink.

 ■ When syntax-aware indenting is enabled, Xcode can automatically insert a closing brace each time you
type and opening brace, as described in “Choosing How to Indent Braces” (page 186).

 ■ When you double-click any delimiter, Xcode selects the entire expression that it and its counterpart
enclose. You can also choose to select the delimiters themselves.

 ■ You can use the Format > Balance command to select the text surrounding the insertion point, up to
the nearest set of enclosing delimiters.

You can further control Xcode’s behavior when selecting text within a pair of enclosing delimiters in the Text
Editing pane of Xcode Preferences. Use the following Editing Options:

 ■ Select to matching brace. When this option is enabled, double-clicking a delimiter automatically selects
the enclosed expression, including the delimiters themselves. This option is enabled by default when
you turn on syntax-aware indenting.

 ■ Omit braces in selection. When this option is enabled, double-clicking a delimiter selects the enclosed
expression, but does not include the delimiters themselves in the selection. This option is disabled by
default.

Matching Parentheses, Braces, and Brackets 187
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

Formatting and Syntax Coloring

188 Matching Parentheses, Braces, and Brackets
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

Formatting and Syntax Coloring

Xcode includes a feature, called Code Sense, which maintains a rich store of information about the symbols
defined in your project and its included files. Xcode uses this feature as a basis for code completion. Xcode
supports code completion for C, C++, Objective-C, Objective-C++, Java, and AppleScript.

When you are writing code, you often must type out or copy and paste long identifier names and lists of
arguments. Code completion offers you a shortcut. As you type the beginning of an identifier or a keyword,
Xcode suggests likely matches, based on the text you have already typed and the surrounding context of
the file. This chapter describes how to use code completion and how to set code completion options. It also
describes text macros, a feature that provides shortcuts for inserting common code constructs, using the
code completion mechanism.

Note: Code completion relies on the symbolic index created for your project. If you disable indexing, code
completion does not work.

Using Code Completion

As you type, Xcode builds a list of likely symbol names, based on the text you have already typed and the
surrounding context of the file. If completion suggestions are available, Xcode indicates this by underlining
the text that you have entered. You can view and select from the possible matches by:

1. Bringing up the completion list and choosing a symbol name. Pressing the Escape key or choosing Edit
> Completion List brings up a list of all of the possible matches for the current context. For functions
and methods, this includes the return type as well as the function or method prototype. The button in
the bottom-right corner of the completion list lets you toggle the sort order of the completion suggestions.
By default, the list is sorted alphabetically, indicated by the letter “A” in this button. You can also choose
to sort the list according to relevance ranking; click the button to change the sort order.

You can choose the appropriate match from this list or continue typing to narrow the list further. To
enter a symbol from the completion list, select it and hit Return or Tab. Xcode enters the remaining text
for you and optionally inserts placeholders for any necessary function or method arguments.

The completion list stays open until you select a completion suggestion or dismiss the list by typing the
completion key or choosing Edit > Completion List again.

2. Cycling through the available completions. Instead of bringing up a list of all completions, can you choose
to have Xcode insert the next available completion directly in your code. When you choose Edit > Next
Completion or type Control-period, Xcode inserts and selects the first completion in the completion list,
without displaying the entire list. Choosing Edit > Next Completion or typing Control-period again
replaces the previous completion with the next completion in the list, and so forth. In this way, you can
cycle through the available suggestions until you get the correct symbol name.

Using Code Completion 189
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Code Completion

Figure 17-1 Using code completion

Xcode uses information about symbols and their scope within your code to determine the contents of the
completion list. When there are syntax errors in the context, Xcode limits its scope analysis to the current
code line.

Xcode also provides keyboard shortcuts for common code completion tasks. For example, to bring up the
completion list, you can type Escape. To move to the next argument in a declaration that Xcode has completed
for you, type Control–slash. To change the keyboard shortcuts associated with these commands, open the
Key Bindings pane of Xcode Preferences, as described in “Customizing Key Equivalents” (page 385). In the
Text Key Bindings pane, change the key sequences associated with the Code Sense actions. These are Code
Sense Complete List, Code Sense Next Completion, Code Sense Previous Completion, Code Sense Select Next
Placeholder and Code Sense Select Previous Placeholder.

Changing Code Completion Settings

The previous section describes the default interface for code completion. However, Xcode provides a number
of options for customizing code completion behavior. Code completion settings apply to all projects that
you open.

You can control how much or how little information Xcode gives you as you type. To control how code
completion suggestions are made, use the following options:

 ■ Select “Indicate when completions are available” to have Xcode indicate when it has suggestions for
matching symbols by underling the text you have typed. This option is enabled by default. If you turn
it off, completions are still available to you, but Xcode does not underline the text. You can open the
completion list to see suggestions, or cycle through the available completions, as described in the
previous section.

190 Changing Code Completion Settings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Code Completion

 ■ Select “Automatically suggest on member call / access” to have Xcode automatically display the
completion list when in the context of a function or method call, or when accessing the members of a
data structure. If you choose this option, you can also specify the amount of the delay, after you stop
typing, before Xcode displays the completion list. Specify the amount of time, in seconds, of this delay
in the “Suggestion delay” field. By default, this delay is half a second.

Xcode also lets you control how functions and methods are completed. To have Xcode insert the name, as
well as placeholders for the arguments to the function or method, select “Insert argument placeholders for
completions.”Otherwise, Xcode only inserts the name of the function or method. This option is on by default.

To choose how functions and methods are displayed in the completion list, use the “Show arguments in
pop-up list” option. Select this option to have Xcode display functions and methods with their list of arguments
in the completion list. Otherwise, Xcode only displays the function or method name. This option is on by
default.

Text Macros

Using code completion to automatically complete symbol names saves you a lot of typing. In the course of
writing source code, however, you still spend a lot of time typing the same basic code constructs—such as
alloc and init methods in Objective-C programs, for example—over and over again. To help you with
this, Xcode includes a set of text macros. Text macros let you insert common constructs and blocks of code
with a menu item or keystroke, instead of typing them in directly.

You can insert a text macro in either of the following two ways:

1. Choose Edit > Insert Text Macro and then choose a text macro from one of the language-specific menus.
Xcode provides built-in text macros for common C, C++, Objective-C, Java, and HTML constructs.

2. Type the completion prefix for the text macro and use code completion to insert the remaining text,
just as you would complete a symbol name. Each text macro provided by Xcode has a completion prefix,
a string that Code Sense uses to identify the text macro. When you type this string, Xcode includes the
text macro in the completion list; you can select it from this list or cycle through the appropriate
completions, as described in “Using Code Completion” (page 189).

The inserted text includes placeholders for arguments, variables, and other program-specific information.
For example, choosing Edit > Insert Text Macro > C > If Block inserts the following text at the current insertion
point in the active editor:

if (<#condition#>) {
 <#statements#>
}

Replace the placeholders <#condition#> and <#statements#>with your own code. You can cycle through
the placeholders in a text macro in the same way you can cycle through function arguments with code
completion. A text macro can also define one placeholder to be replaced with the current selection, if any.
When you select text in the active editor and insert a text macro, Xcode substitutes the selected text for this
placeholder. For the If Block text macro described above, Xcode substitutes the selected text for the
<#statements#> placeholder. For example, if the current selection in the text editor is
CFRelease(someString);, inserting the If Block text macro gives you the following:

if (<#condition#>) {

Text Macros 191
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Code Completion

CFRelease(someString);
}

If there is no selection, Xcode simply inserts the <#statements#> placeholder, as in the previous example.

Some text macros have several variants. For example, the text macro for inserting an HTML heading has
variants for the different levels of headings. For text macros that have multiple variants, repeatedly choosing
that text macro from the Insert Text Macro menus cycles through the different versions of that macro. For
example, choosing Insert Text Macro > HTML > Heading a single time inserts <$(h1)><#!text!#></$(h1)>;
choosing it again inserts <$(h2)><#!text!#></$(h2)>.

192 Text Macros
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

Code Completion

Xcode lets you choose the editors used for the files in your project. You can use Xcode’s built-in editor or
use an external editor such as BBEdit. Generally, Xcode uses the filename extension to choose how to edit a
file. For example, it edits an .rtf file with its own built-in RTF editor and a .c file with its own built-in source
code editor.

You can temporarily change how a file is viewed, or permanently change how files of a certain type are
viewed. To change how a file is viewed, you can do any of the following:

 ■ To have files of a certain type always open in a different editor, change the preferred editor for that file
type to that editor.

 ■ To have files of a certain type always open in the application specified for them in the Finder, change
the preferred editor for that file type to “Open With Finder.”

 ■ To temporarily force Xcode to treat a file as a different file type, and open it with the appropriate editor,
use the Open As command.

 ■ To temporarily force Xcode to open a file with the default application chosen for it in the Finder, use the
Open With Finder command.

Note: HTML files are handled differently. If Xcode determines that an HTML file is documentation, Xcode
assumes you want to view the file and displays the file with its built-in HTML viewer. Otherwise, Xcode
assumes you want to edit the file and uses its built-in source code editor.

Overriding How a File is Displayed

You can temporarily override how Xcode displays a file. For example, you can choose to view a particular
HTML file as plain text, so you can edit it instead of viewing it as rendered HTML.

To force a file to be displayed differently than is specified by the default rule for that file type, select the file
in the Groups & Files list or detail view and choose an option from the File > Open As menu. You can also
Control-click the file, and choose an option from the Open As menu in the contextual menu Xcode displays.

Changing the Preferred Editor for a File Type

You can permanently change how Xcode edits a particular type of file. In particular, you can specify how files
of a certain type are treated and you can choose which editor is used to handle those files. For example, you
can choose to view all HTML files as plain text, so you can edit them. Or you can choose to edit all your source
files in BBEdit.

Overriding How a File is Displayed 193
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Using an External Editor

To see the file types that Xcode recognizes, choose Xcode > Preferences and click File Types. The File Types
pane lists all of the folder and file types that Xcode handles and the preferred editor for each of those types.
These file and folder types are organized into groups, from the most general to the most specific. Click the
disclosure triangle next to an entry in the File Type column to reveal its contents.

To change the editor used for a particular file type, find the entry for the file type, click in the Preferred Editor
column, and choose an option from the menu that appears. For example, to change Xcode to view all HTML
files—including documentation files—as plain text, expand the following entries: file, then text, and then
text.html. As mentioned earlier, Xcode already treats most HTML files as plain text by default; the value in
the Preferred Editor column for the text.html entry is “Plain Text File,” indicating the preferred editor for plain
text files. However, the value in the Preferred Editor column for the text.html.documentation entry is “HTML
File,” which overrides the text.html setting. To make Xcode treat HTML documentation files as plain text,
select text.html.documentation, click in the Preferred Editor column and choose “Plain Text File” from the
pop-up menu, as shown here.

Figure 18-1 Changing how a file is viewed

With this change, Xcode uses the preferred editor for plain text files to open all HTML files. In the example
shown in the previous figure, the preferred editor for plain text files is Xcode’s default text editor.

You can also specify an external editor to use or have Xcode use the user’s preferred application, as specified
by the Finder, when opening files of a given type, as described in the following sections.

194 Changing the Preferred Editor for a File Type
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Using an External Editor

Opening Files With an External Editor

Xcode does not limit you to using its built-in editors to view and edit your files. You can specify an external
editor of your choosing as the preferred editor for opening files of a given type. To choose an external editor
for all files of a particular type:

1. Choose Xcode > Preferences, and click File Types.

2. Find the appropriate file type and click in the Preferred Editor column; a pop-up menu appears.

3. Select an option from the External Editor submenu. Currently, you can choose from the following options:

 ■ BBedit.

 ■ Text Wrangler.

 ■ SubEthaEdit.

 ■ emacs.

 ■ xemacs.

 ■ vi. Note that support for vi in Xcode is limited to opening the file in the editor.

 ■ Other. Choose this option to specify an external editor other than the ones specified earlier. When
you select this option, a dialog that allows you to navigate to the application you wish to use as
your external editor appears.

Note that many of these external editors do not appear in the External Editor menu unless they are
installed on your computer.

For example, to edit all your source files with BBEdit, open the File Types preference pane and expand these
entries: file, then text. Select the source code entry, and choose External Editor > BBEdit from the pop-up
menu that appears when you click in the Preferred Editor column.

There are some restrictions when you’re using an external editor:

 ■ When you build a project, Xcode lists modified files and asks you whether you want to save them. Files
in BBEdit and Text Wrangler are listed, but files in other editors are not. You need to save those files
yourself before starting a build.

 ■ When you double-click a find result or a build error, most editors do not scroll to the line with the find
result or error. BBEdit and Text Wrangler can.

To use emacs as an external editor, you must add these lines to your ~/.emacs file:

(autoload 'gnuserv-start "gnuserv-compat"
 "Allow this Emacs process to be a server for client processes." t)
(gnuserv-start)

Opening Files With an External Editor 195
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Using an External Editor

Opening Files With Your Preferred Application

You can choose to open a file with the application chosen for it in the Finder. This lets you open files that
Xcode cannot handle, or view a file using your preferred editor. If you edit a file in almost any other application,
Xcode cannot save it for you before building a target. Some applications, such as Interface Builder and
WebObjects Builder, communicate with Xcode and so can save your files before your project is built. Check
the application’s documentation to see if it can, too.

To always have Xcode use your preferred application to open files of a certain type:

 ■ Choose Xcode > Preferences and click File Types.

 ■ Find the appropriate file type and choose Open With Finder from the pop-up menu that appears when
you click in the Preferred Editor column.

Note that you can only set this preference for file types that Xcode recognizes. To open files that Xcode
cannot handle, or to temporarily override the settings in the File Types pane of Xcode Preferences and open
a file using the Finder-specified application:

 ■ In the Groups & Files list or detail view, Control-click the file and choose Open with Finder.

If you have the embedded editor open, single-clicking a filename still loads the file in the editor. But if you
configure Xcode to use an external editor to edit the file, you cannot edit the file within Xcode. That is, the
file is read-only in Xcode’s built-in editor.

196 Opening Files With Your Preferred Application
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

Using an External Editor

Xcode lets you create applications, bundles, and frameworks that are customized for different regions.
Generally, you’ll start by creating a variant for one particular region, called the development region, and add
more variants later.

In the Groups & Files list, a file customized for different regions appears as a localized group, which has a file
icon with a triangle beside it. To see the file’s variants, click the triangle. To add and remove variants, select
the localized group, open the inspector window, and use the two buttons at the bottom of the General pane,
as shown in the following figure.

Figure 19-1 Inspecting a localized group

For more information on localizing your product for different regions, see Internationalization Programming
Topics.

197
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Customizing for Different Regions

Marking Files for Localization

To mark files for localization, select the files, open the inspector, and click the Make File Localizable button.
Xcode moves the files into the development region's .lproj folder. If a file was already in another .lproj
folder, Xcode copies it to the development region’s .lproj folder.

Xcode creates a localized group in the Groups & Files list, with the file’s name and icon. To view the individual
localization variants, click the disclosure triangle next to the localized group icon. The following figure shows
the localized group for an application’s main nib file in the Groups & Files list.

Figure 19-2 A localized group in the Groups & Files list

You can inspect any of the localized variants individually or you can inspect the localized group as a whole.

To remove files from localization, select the files, open the inspector, and click the Remove All Localizations
button. Xcode moves the files from the development region’s .lproj folder into the folder for nonlocalized
resources. Other localized versions of the files are removed from the project but are not deleted from the
disk.

198 Marking Files for Localization
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Customizing for Different Regions

Adding Files for a Region

To add files for a region, select the file or localized group for which you want to add another region, open
the inspector window, and click the Add Localization button. Xcode queries you for the name of the localization
region and copies the development region’s version of the files to the new region’s .lproj folder.

Adding Files for a Region 199
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Customizing for Different Regions

200 Adding Files for a Region
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

Customizing for Different Regions

Version control is a set of tools and procedures that streamline the safekeeping of files and their change
histories. Version control also allows several developers to work on the same project at the same time. Xcode
provides a user interface to the client programs of version control systems in order to facilitate working with
source files maintained in a version control repository.

Version control systems use the client/server model: A server program manages the repository (a directory
tree or a database) that holds the managed files; developers use client programs to communicate with the
server and perform tasks such as retrieving files from the repository or submitting changes to them. Typically,
the clients are command-line tools, although there are also clients that use a graphical user interface.

The following chapters show how to use Xcode to work on projects under version control. They provide a
client-side perspective of manipulating source code and resources hosted in a version control repository.
This document doesn't provide an exhaustive treatment of version control.

201
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART IV

Version Control

202
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART IV

Version Control

Version control (also known as Source Control Management or SCM) is a set of tools and procedures to
safeguard and manage files and changes made to them over time. A version control system frees you from
having to manually manage access to the files that comprise a software project and track changes. Version
control systems take care of these details, allowing you to concentrate on writing and testing code.

You should read this chapter if you’re new to version control and are interested in adopting version control
practices in your projects. After reading this overview, you’ll understand how version control provides an
infrastructure that improves the development experience for single developers and multiple developers
working in the same project.

This chapter describes the essential aspects of version control systems. If you’re familiar with version control,
you can skip this chapter.

Have you ever wondered which files you modified to correct a problem in one of your projects? Or, how
about undoing changes you made the previous day because you came up with a better solution to the
problem? A version control system can give you answer to the first question quickly; you don’t need to check
modification dates or comments inside source files. It would also let you discard multifile changes so you
can reimplement the solution to a problem without manually identifying and removing each change in every
file you touched.

A version control system has three major parts: a repository, a client, and a server. The repository is a directory
tree or database that contains the files managed by a version control system. The files stored in the repository
are called managed files. Repositories can reside anywhere but are usually placed in a computer managed
by a system administrator who sets access to the repository and ensures the persistence of its contents
through regular backups.

The client is the program developers use to interact with a repository. The server is the process that actually
modifies the repository. When a developer issues a command to the client, the client talks to the server
process to carry it out.

Every developer authorized to access the repository can copy files from the repository into a local directory,
also known as a working copy. This is where developers make changes to the project; they never work with
the files in the repository. Developers normally don’t have access to each other’s working copies. This feature
provides privacy and security because developers are unaware of what their peers are doing until they publish
or submit their changes to the repository.

When a developer submits changes to a file in the repository, its version number (also known as the revision
number) is incremented. The history of each file is recorded as a set of revisions, which you can retrieve and
compare individually.

Version control provides several benefits, including:

 ■ Centralized location of files

When multiple developers work on a project concurrently, version control ensures that the project’s
official files are kept in a central location. As a result, the project’s products can be built at any time
without having to get the latest files from multiple locations.

203
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

Overview of Version Control

 ■ Complete history of every file

Because all the changes made to each file in the repository are maintained in the repository, you can
review the evolution of each file or an entire project since its inception. This information can be valuable
when investigating the causes of software bugs.

 ■ Change management infrastructure

Version control systems don’t allow developers to submit changes to the repository without describing
the purpose of the change, which forces developers to document their work. This requirement saves
time in the long run because it allows everybody to determine the reason for a particular change without
having to find the person who performed the change. Version control also lets developers group changes
in the way that best fits the them and their team. For example, developers can submit changes on a
daily basis, whether the items they’re working on are finished. This feature reduces the amount of data
loss that can occur in case a developer’s computer fails unexpectedly; however, it also reduces the stability
of the project. Submitting changes to the repository only after a feature is completely implemented and
tested is a better approach, especially for sensitive features that should be kept secret for some time.

Consider using version control when several developers work on one project at the same time. Single
developers can also benefit from the structure that version control adds to the development process, such
as revisions and change management.

Xcode provides a common interface to various version control systems, which include the open-source CVS
(Concurrent Versions System) and Subversion, and Perforce. Xcode makes it easy to perform most version
control tasks as you develop. It also tells you whether you’ve modified managed files in your local copy of
the project. “Managing Projects” (page 205) and “Managing Files” (page 211) describe Xcode’s version control
interface in detail.

204
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

Overview of Version Control

Xcode provides an easy-to-use interface to your version control client tool; you can perform the most common
version control tasks as you perform normal development tasks. However, there are some tasks you must
perform using your client tool, such as adding projects to a repository and checking out projects. You seldom
need to perform these tasks. For example, you need to check out a project to work on it for the first time on
a particular computer. See “Using CVS” (page 427) and “Using Subversion” (page 431) for details.

This chapter describes the files that store project and user information for Xcode projects. You manage these
files like any files that you modify directly during development under version control. This chapter also shows
how to configure access to the repository a project is housed in.

Project Packages

Xcode saves project metadata and individual developer settings in the project package, which is named
after the project and with the extension .xcode. (Earlier versions of Xcode used the .pbproj or .pbxproj
extensions.) The project package is located in the project directory, for example, Sketch/Sketch.xcode.
This package contains two files that you need to pay particular attention to in order to keep the project
package in sync with the rest of the files in the project and to maintain personal project settings in the
repository: The project file and the user file.

 ■ The project file, which Xcode maintains in the project package under the name project.pbxproj,
stores project-related information, such as the files that are part of the project, the groups in the Groups
& Files list, build settings, target definitions, and so on. Xcode constantly writes out this file; therefore,
most of the time its status is 'M' (for details on file status codes, see “Viewing File Status” (page 211)).

If you make structural changes to the project, such as adding or removing files, you must commit this
file along with the other changes (for example, when you commit a file you added to your working copy,
you must also commit the project package). Otherwise, the project file may become out of sync with
the rest of the project’s files (source code files, resource files, and so on).

 ■ The user file stores user-related information, such as bookmarks, the active build style, and so forth.
Xcode maintains this file inside the project package as <username>.pbxuser. So, for the user name
clare, the corresponding user file is called clare.pbxuser.

Xcode adds your user file to a project package when you open the project if there isn’t a user file for you
inside the package. You should include your user file in your commits and updates if you want to safeguard
your personal settings for the project in the repository or if you work on the project on more than one
computer and want to use the same settings on all of them.

Project Packages 205
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

Managing Projects

Configuring Repository Access

A managed project is one whose root directory is stored in a repository and whose access is controlled by
a version control system. Before you can work on a managed project, you must check it out of the repository
into a local copy.

Important: Xcode doesn’t check out projects from a repository. You must use your client tool to create local
copies of the projects you want to work on. See “Checking Out Projects From a CVS Repository” (page 430)
and “Checking Out Projects From a Subversion Repository” (page 433) for details.

After you check out a project directory, you must open the project in Xcode and configure your
repository-access settings. These include the name of the version control system that manages the repository,
the path to the client tool, authentication information, and whether version control is active. These settings
are saved in your user file in the project package. For more information on the project package, see “Project
Packages” (page 205).

Follow these steps to configure your repository-access settings for a project:

1. Open the project in Xcode.

If you use a version control system that locks files in working copies, you may have to tell it that you
intend to modify the project package before opening the project. For example, with Perforce, you would
execute the following commands:

% cd ~/Working/Echo
% p4 edit Echo.xcode/...
% open -a Xcode Echo.xcode # Or open it using the Xcode Open command.

206 Configuring Repository Access
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

Managing Projects

2. Choose your version control system from the SCM System pop-up menu in the General pane in the
Project Info window, shown in Figure 21-1.

Figure 21-1 The SCM System pop-up menu

3. Tell Xcode how to use your client tool.

Click Edit and enter the path to the client program in the client configuration dialog.

Configuring Repository Access 207
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

Managing Projects

If you use SSH to access a CVS repository, select “Use ssh instead of rsh for external connections” as
shown in Figure 21-2. See “Accessing a CVS Repository” (page 429) for further details.

Figure 21-2 Client configuration dialog for CVS

4. Activate version control for your copy of the project.

Select Enable SCM in the General pane in the Project Info window.

208 Configuring Repository Access
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

Managing Projects

If you use SSH to access a Subversion repository, Xcode may ask you to enter your passphrase in the
Authentication dialog, shown in Figure 21-3.

Figure 21-3 Authentication dialog for Subversion

If Xcode is unable to talk to your client, a dialog describing the problem appears. In it you may choose
to disable SCM or to leave it enabled. For example, if you try to access a project that contains wrapped
bundles with a version of CVS that doesn’t support wrappers, the dialog shown in Figure 21-4 appears.

Figure 21-4 SCM Error dialog

5. Commit your user file to the repository.

Configuring Repository Access 209
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

Managing Projects

This step is not required; however, saving your user file in the repository provides two main benefits:

 ■ It ensures that you’ve correctly configured version control for your working copy of the project.

 ■ It allows you to use the same personal settings for the project in any computer you use to work on
it.

You now know how to set up version control in your projects. “Managing Files” (page 211) explains how to
add version control operations to your development workflow.

210 Configuring Repository Access
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

Managing Projects

Version control allows you to maintain a history of a project’s development and lets you share projects with
other developers. Xcode, in conjunction with your version control system, allow you to stay up to date with
your team’s progress. Through the Xcode user interface, you can perform most of the version control tasks
needed to work on a software project successfully.

This chapter introduces common version control tasks and explains how to accomplish them in Xcode. It
also provides the recommended workflow you should follow when working on managed Xcode projects.

Viewing File Status

As you work on a project, the version control status of its files in relation to the repository change. Xcode
tells you which files you have changed in your local copy of the project, which files need to be updated to
the latest version in the repository, and so forth.

Xcode uses a one-letter code to represent the status of each file. Here’s what each code means:

 ■ Blank: The file is up to date with the latest version in the repository. You haven’t changed your local copy
of it.

 ■ ? Unknown: The file is not in the repository. See “Adding Files to the Repository” (page 213).

 ■ - Dash: The file is in a directory that’s not in the repository, or this is a directory that’s not in the repository.
To add a directory to the repository, you must use your client tool. After that, add the files in the directory
using Xcode. If you don’t use Xcode to add the files, Xcode will not add the files to the project file. In
turn, when you commit your changes, Xcode will not notify other developers that files have been added
to the project.

 ■ U Update: The latest version of the file in the repository is newer than your version. To check for conflicts
between your version and the latest revision and then get the latest revision if there are no conflicts,
select the file in the detail view and choose SCM > Update To > Latest.

 ■ C Conflict: Your changes may conflict with the changes in the latest version. To see conflicts, select the
file in the detail view and choose SCM > Compare With > Latest.

 ■ M Modified: The next time you commit your changes to the file, either by selecting it and choosing SCM
> Commit Changes or by choosing SCM > Commit Entire Project, the modified version of this file is added
to the repository.

 ■ A To Be Added: The next time you commit your changes, this file is added to the repository.

 ■ R To Be Removed: The next time you commit your changes, this file is removed from the repository.

You can view the version control status of files in several places: The SCM Group, the detail view, and the
SCM Results window.

Viewing File Status 211
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

The SCM group in the Groups & Files list in the project window shows the status of all the files that differ
from the latest version in the repository or for which you’ve specified a version control operation to be
performed later, such as adding a new file to the repository. Figure 22-1 shows the SCM group.

Figure 22-1 The SCM group in the Groups & Files list

Xcode’s detail view lists all the files in a project. When using version control, you can add the SCM column
to the detail view by selecting the project group in the Groups & Files list and choosing View > Detail View
Columns > SCM. The SCM column shows the status of each file in the project. Figure 22-2 shows the SCM
column in Xcode’s detail view.

Figure 22-2 The SCM column in Xcode’s detail view

The SCM column

212 Viewing File Status
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

The SCM Results window provides the same information the SCM group does, plus an editor and the SCM
results pane. The window appears when you double-click the SCM group or when you choose SCM > SCM
Results. The button on the bottom-right corner of the top pane toggles between the file list pane and the
SCM results pane. Figure 22-3 shows the SCM Results window with the SCM results pane and the editor pane.

Figure 22-3 The SCM Results and editor panes in the SCM Results window

You can refresh the status of the files in your project anytime by choosing SCM > Refresh Entire Project.

Adding Files to the Repository

After you add a file to your local copy of a managed Xcode project, its status is ? (unknown). This means that
the file is not part of the repository. If you want to add the file to the repository the next time you commit
your changes, select the file in the project window or the SCM Results window and choose SCM > Add to
Repository. The status of the file changes from ? to A. Figure 22-4 shows files in the SCM group to be added
to the repository in the next commit.

Adding Files to the Repository 213
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Figure 22-4 Files to be added to the repository

When you commit file additions, you must commit the project file (project.pbxproj) as well, at the same
time. This lets other developers know there’s a new file in the project as soon as you commit the addition.
If you don’t commit the project file when you commit the file removal (that is, you select a file with a status
of A, choose SCM > Commit Changes, and commit it without also selecting the project file), other developers
will not be able to get the added file into their local copies of the project because Xcode wouldn’t know that
a file was added to the project.

Updating Files

When a file in your local copy of a project becomes outdated, Xcode assigns it a status of U. This means that
another developer has submitted changes to that file to the repository and your working copy doesn’t include
them. You can update your local copy of a file that needs updating one of two ways:

 ■ Select the file in the project window and choose SCM > Update To > Latest.

 ■ Choose SCM > Update Entire Project to update all files in the SCM group that have a status of U.

When the project file (project.pbxproj) has a status of U, you need to update the project file and reopen
the project in Xcode. Figure 22-5 shows the SCM group of an Xcode project whose project file needs to be
updated.

214 Updating Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Figure 22-5 The SCM group in an Xcode project whose project file needs to be updated

To update the project file, select project.pbxproj in the SCM group and choose SCM > Update To > Latest.
Alternatively, you can choose SCM > Update Entire Project. After the update operation is completed, close
the project and reopen it.

If you updated only the project file, when you reopen the project, the SCM group may display files with a
status of U using red text. These files were added to the project after your last update. To get the new files
into your working copy, select them in the project window and chose SCM > Update To > Latest. After the
update operation is complete, choose SCM > Refresh Entire Project to refresh the status of the files in your
working copy.

Removing Files From the Repository

To remove a file from your local copy of a project and from the repository when you commit the operation,
remove the file as you normally would; that is, select the file in the project window and choose Edit > Delete
or press Command-Delete. The Delete References dialog, shown in Figure 22-6, appears.

Removing Files From the Repository 215
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Figure 22-6 The Delete References dialog

To remove the file from your local copy of the project, click Delete References & Files. The Remove From SCM
Repository dialog appears, shown in Figure 22-7.

Figure 22-7 The Remove From SCM Repository dialog

To tell Xcode you want the file removed from the repository, click Remove. The file’s status changes to R and
the filename appears in gray, as shown in Figure 22-8.

216 Removing Files From the Repository
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Figure 22-8 File to be removed from the repository

When you commit the file-removal operation, you must commit the project file (project.pbxproj), at the
same time. Other developers can then keep their project files in sync with the project directory by updating
their local copies. If you don’t commit the project file when you commit the file-removal operation (for
example, you select a file with a status of R, choose SCM > Commit Changes, and commit it without also
selecting the project file), Xcode notifies other developers that the file you removed needs to be updated.
When they update their local copy with the repository, the file is removed from their local copy, but their
copy of the project file still references the nonpresent file, and the file appears in red in the detail view. This
may confuse developers, who will then have to find out why a file that’s supposed to be in their project
directories is missing.

Renaming Files

Renaming a file produces two version control operations: the removal of the file under the old name and
the addition of the file with the new name. Therefore, Xcode shows the R status next to the old name and
the A status next to the new name.

Warning: When you rename a managed file, the change information for the file under the old name
is unavailable under the new name.

To rename a file, select the file in the project window and choose File > Rename. The Rename dialog appears,
as shown in Figure 22-9.

Renaming Files 217
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Figure 22-9 Renaming a managed file

To proceed with the rename, click Rename. The SCM group in the Groups & Files list, as well as the detail
view, show that the file under the old name will be removed and the file with the new name will be added,
as shown in Figure 22-10.

Figure 22-10 Uncommitted rename operation

218 Renaming Files
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Viewing Revisions

The SCM pane in the inspector or a file’s Info window contains a list of each revision of the file. The information
displayed in the list includes the revision number, the author, and a message about the changes made. The
change message may be truncated in the list. To see the entire change message for a revision, select the
revision in the revision list. The change message, as well as the other properties of the list, appears in the
text field below the revision list. Figure 22-11 shows the revision of a file in an Info window.

Figure 22-11 Info window displaying the revisions of a file

You can compare any two versions of a file by selecting them in the list and clicking the Compare or Diff
buttons, as appropriate. To update your copy of the file to a specific revision, select the revision and click
Update.

Comparing Revisions

With Xcode you can compare different versions of a file in a project. This way, you can see changes made to
a file from version to version. For example, you can compare your locally modified version of a file with the
latest revision submitted by another member of your team. Or you can compare the two most recent revisions
in the repository to see what has changed.

Viewing Revisions 219
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

To compare your version of a file or project with a version in the repository, use the Compare With and Diff
With commands in the SCM menu. You can also select any two revisions of a file in its Info window and
compare them using the Compare and Diff buttons.

Xcode gives you a choice of tools to use when comparing files. The Compare With command lets you compare
files using a visual tool, such as FileMerge. Alternatively, you can have Xcode perform the comparison using
the differencing facility of your client.

The Compare Command

The Compare With command allows you to compare files using a visual tool. Figure 22-12 shows the result
of comparing two revisions of a file.

Figure 22-12 Comparing two revisions of a file using FileMerge

To compare your version of a file with a revision in the repository:

1. Select the file in the project window.

2. Choose SCM > Compare With and select the revision to compare against:

 ■ Latest. Choose this option to compare a file with the latest version in the repository.

 ■ Base. Choose this option to compare a file with the version you checked out of the repository.

 ■ Revision. Choose this option to get the revision list for the selected file. This option is useful if you’re
not sure of the revision you want to compare against.

 ■ Specific Revision. When you know the revision you want to compare against, choose this option
and enter the revision number in the dialog that appears.

220 Comparing Revisions
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

 ■ File. Choose this option to compare a file in your project with any file on disk. Choose the other file
from the dialog that appears.

You can also compare any two revisions of a file in its Info window by doing the following:

1. Select the file, open its Info window, and click SCM.

2. Select the revisions you want to compare in the revision list and click Compare.

The Diff Command

Another way to compare revisions using Xcode is to identify the differences between them by using the
differencing facility of your client tool. Xcode displays the output of the diff command in a separate editor
window. Figure 22-13 shows an example of comparing two revisions of a file using svn diff.

Figure 22-13 Identifying differences between two revisions of a file

You can specify the format used in the comparison in the Differencing section in the SCM pane in the Xcode
Preferences window. See “Specifying Comparison and Differencing Options” (page 222) for details.

Comparing Revisions 221
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

To identify the differences between your copy of a file with a revision in the repository, select the file in the
project window, choose SCM > Diff With, and choose a version to compare against. The options you can
choose from are:

 ■ Latest. Choose this option to compare a file with the latest revision in the repository.

 ■ Base. Choose this option to compare a file with the revision you checked out of the repository.

 ■ Revision. Choose this option to get the revision list for the selected file. This option is useful if you’re not
sure which revision you want to compare against.

 ■ Specific Revision. When you know the revision you want to compare against, choose this option and
enter the revision number in the dialog that appears.

You can also identify the differences between any two revisions of a file in its Info window by doing the
following:

1. Select the file, open its Info window, and click SCM.

2. Select the revisions you want to compare from the revision list and click Diff.

Specifying Comparison and Differencing Options

Xcode stores personal settings such as comparison and differencing preferences, whether Xcode saves open
files before performing version control operations, and so forth, in your user file (<username>.pbxuser) in
the project package (<project_name>.xcode). You specify those settings in the SCM pane in the Xcode
Preferences window, shown in Figure 22-14. (See “Project Packages” (page 205) for more information on
project packages.)

Figure 22-14 The SCM pane in the Xcode Preferences window

222 Comparing Revisions
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

The Comparison Handling section of the SCM preferences pane allows you to specify how comparisons are
performed:

 ■ The “View comparisons using” pop-up menu lets you choose the tool you want Xcode to invoke when
you execute the Compare command. You can choose between FileMerge, BBEdit, or Other to specify an
application of your choosing.

 ■ The “Display local files on the” pop-up menu specifies whether local files are displayed on the left or the
right in FileMerge comparison windows.

The Operations section specifies whether Xcode saves files before performing version control operations
through the “Save files before SCM operations” option.

The Differencing section lets you specify how you want the differencing performed:

 ■ The Format pop-up menu specifies the output format used to display the results of the comparison. The
possible formats are:

 ❏ Default. This is the default output format used by your client’s diff command.

 ❏ Contextual. The output uses the context format, displaying differences between the two revisions
with the number of lines of context specified in the Lines text field.

 ❏ Side by Side. The output is a side-by-side comparison of the files.

 ❏ Unified. Uses the unified format, which is similar to the context format but omits redundant lines
of context.

 ■ Ignore blank lines. Ignore changes that insert or remove blank lines.

 ■ Ignore whitespace. Ignore whitespace when comparing lines.

Committing Changes

When you’re done making changes to a file and you want to submit your modifications to the repository,
you can tell Xcode to commit the file in one of two ways:

 ■ Select the file in the project window and choose SCM > Commit Changes.

 ■ Choose SCM > Commit Entire Project. This commits changes in every file listed in the SCM group with
the status A, M, or R.

Both actions bring up a dialog with a text field in which you enter a message describing your changes. To
execute the command, click Commit.

If your client tool encounters a problem during the commit process (for example, a file to be processed is
outdated), Xcode displays a dialog showing your client’s error message, as shown in Figure 22-15.

Committing Changes 223
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

Figure 22-15 Dialog indicating that changes cannot be committed because there are files that need to be
updated

You must correct the problem by, for example, updating any files with a status of U, before you can commit
your changes.

Resolving Conflicts

A file with a status of C contains changes that clash with the latest revision in the repository. For example,
you may have removed a method from a class definition that another developer published changes to before
you had a chance to commit your own changes. To view how your version of a file in conflict differs from
the latest revision, use the Compare or Diff commands. See “Comparing Revisions” (page 219) for details.

Version control systems cannot resolve conflicts. They can only make you aware of the presence of conflicts.
In some cases, you may be able to resolve the conflict yourself. However, in the majority of cases (if you work
in a team), you need to communicate with the person who published the changes that conflict with your
own before determining the best way to resolve the conflict.

There are two ways of resolving a conflict between your version of a file and the latest revision in the repository:

 ■ Merge the changes published to the repository with your local changes and edit the resulting file as
necessary:

1. In the project window, select the file with the conflict.

2. Choose SCM > Update To > Latest.

3. Edit the file to resolve the conflicts.

4. Save the file. If you’re using Subversion, you must also choose SCM > Resolved.

224 Resolving Conflicts
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

 ■ Discard your copy of the file in favor of the latest revision in the repository:

Select the file in the project window and choose SCM > Discard Changes.

Conflicts in the project file (project.pbxproj) result from developers adding, removing, or renaming files
from their local copies and committing those files without committing the project file at the same time. You
cannot resolve conflicts in the project file. If your copy of the project file gets a status of C, choose SCM >
Update Entire Project or select the project file in the project window and choose SCM > Update To > Latest.
You may get a dialog like the one in Figure 22-16.

Figure 22-16 Unable to save project dialog

Click Discard My Changes to discard your modifications to the project file and use the latest version in the
repository. If the dialog in Figure 22-17 appears, click Read From Disk to force Xcode to re-read the project
file from disk (which is the latest version in the repository).

Figure 22-17 Dialog indicating that the project file has been changed by an application other than Xcode

Resolving Conflicts 225
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

If Xcode is unable to open your project due to a corrupted project file, you must use your client tool to update
the project file to the latest version in the repository. See “Updating a Local Project File to the Latest Version
in a CVS Repository” (page 430) and “Updating the Project File to the Latest Version in a Subversion
Repository” (page 434) for more information.

Development Workflow

When working on a managed project, you have two major objectives: To maintain you local copy of the
project up to date with the latest version in the repository and to keep the repository up to date with your
changes. If you update your working copy regularly, you reduce the probability that the changes you make
conflict with the changes other members of your team have published to the repository.

This section describes the workflow you should follow when working on a managed project with Xcode that
allows you to keep your local copy of it up to date with the latest published changes and to submit your
changes to the repository as appropriate to keep your teammates abreast of your work.

When working on a managed project, you should perform the following tasks on a regular basis—hourly,
daily, weekly, or as convenient—depending on your team’s needs and requirements:

 ■ Update your local copy with the latest version in the repository.

 ■ Make changes to your local copy of the project.

 ■ Resolve conflicts.

 ■ Publish your changes.

Update Your Local Copy

Before you start making changes to a project, you should make sure your local copy contains the latest
changes your peers have published.

To determine whether your project is up to date, choose Refresh Entire Project from Xcode’s SCM menu. You
need to update any files that have a status of U. Files with a status of C are in conflict. You should examine
the files in conflict before deciding whether to update them. See “Updating Files” (page 214) and “Resolving
Conflicts” (page 224) for details.

Make Changes

To modify files all you need to do is edit them. (If you’re using a version control system that locks files in your
local copy, you need to choose SCM > Edit before you can save your changes to disk.)

Making structural changes to a project, such as adding or removing files, creating or removing groups in the
Groups & Files list, and configuring build settings produce changes in the project file (project.pbxproj).
You must commit the project file after making structural changes to a project, along with the files you
operated on.

226 Development Workflow
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

In general, you should make structural changes to a project only after updating it from the repository. You
should then commit those operations immediately, along with the project file, before making additional
modifications. Then inform the rest of your team so that they update their project files to the new version.
This procedure helps reduce conflicts between your teammates’ copies of the project file and the latest
version in the repository, as well as keep the contents of their local project directories and their corresponding
project files in sync. See “Project Packages” (page 205), “Updating Files” (page 214), and “Committing
Changes” (page 223) for details.

Resolve Conflicts

Before you commit your changes to the repository, refresh the status of the project to determine whether
conflicts exist. In Xcode, choose SCM > Refresh Entire Project. If the SCM group in the Groups & Files list
doesn’t contain files with a status of C, you can commit your changes. Otherwise, you must resolve the
conflicts. See “Resolving Conflicts” (page 224) for details.

Publish Your Changes

After you’ve confirmed that your local modifications don’t conflict with published changes, you may commit
them to the repository. See “Committing Changes” (page 223) for more information.

Development Workflow 227
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

228 Development Workflow
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

Managing Files

The build system is the part of the Xcode that is responsible for transforming the components of a project
into one or more finished products. The build system takes a number of inputs and performs operations such
as compiling, linking, copying files and so forth to produce an output—usually an application or other type
software.

Xcode includes a powerful build system, that can create a wide variety of Mac OS X products, such as
frameworks, libraries, applications, command-line tools and more. Using Xcode’s predefined project and
target templates you can build these products right out of the box. However, the Xcode build system is also
flexible enough to allow you to customize the build process, to tailor it to meet the special needs of your
projects or support your preferred workflow.

The following chapters show you how to build a product in Xcode, describe targets and the build system
inputs that they organize, and show you how you can take advantage of build phases, build settings, and
build styles to customize the build process. These chapters also describe a number of Xcode features that
you can take advantage of to shorten the edit-build-debug cycle, such as distributed builds, precompiled
prefix headers, and predictive compilation.

229
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART V

The Build System

230
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART V

The Build System

The organizing principle of the Xcode build system is the target. A target contains the instructions for building
a finished product from a set of files in your project. Some common types of products are frameworks, libraries,
applications, and command-line tools. Each target builds a single product. A simple Xcode project has just
one target, which produces one product from the project’s files. A larger development effort with multiple
products may require a more complex project containing several related targets. For example, a project for
a client-server software package may contain targets that create these products:

 ■ A client application

 ■ A server application

 ■ Command-line tool versions of the client and server functionality

 ■ A private framework that all the other targets use

Figure 23-1 shows the targets you may have in a project such as the one described above, and the products
that those targets create.

Figure 23-1 Targets and products

MyClientApp

 MyClient.nib

 MyClientUI.c

 MyClient.c

 Carbon.framework

 MyFramework.framework

 MyClient.app

MyServerApp A

 MyServer.c

 MyServer.nib

 MyMyServerUI.c

 Carbon.framework

 MyFramework.framework

 MyServer.app

MyFramework

 MyFW.c

 Carbon.framework

 MyFramework.framework

MyClientTool

 MyClient.c

 CoreFoundation.framework

 MyFramework.framework

 MyClient

MyServerTool

 MyServer.c

 CoreFoundation.framework

 MyFramework.framework

 MyServer

MyProject.xcode

When you initiate a build, Xcode builds the product specified by the current, or active, target and any targets
on which the active target depends. In the Groups & Files list, the active target is marked by a checkmark in
a round green circle. You can also see which target is active, as well as change the active target, in the Active
Target pop-up menu in the project and Build Results windows, as described in “Building a Product” (page
301).

This chapter describes targets in Xcode and the information that they contain, and shows you how to create
and modify targets.

231
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Anatomy of a Target

A target is a blueprint for creating a product; the target organizes the inputs to the build system process—the
source files and the instructions for processing them—required to create that product. These inputs are:

 ■ Files. Each target contains a list of files that the build system takes as inputs and performs various
operations on—such as compiling, linking, copying, and so forth—to arrive at the final product. Examples
of source files are source code files, headers, resource files, and so forth.

 ■ Build phases. Build phases organize the source files of a target according to the operations required to
build a target’s product. Each build phase consists of a list of input files and a task to be performed on
each of those input files. Common build phases include compiling files, linking object files, and copying
resource files.

Xcode populates each new target with a default set of build phases. You can add or remove build phases
to change the operations performed by Xcode when building the target. For further details on build
phases, see “Build Phases” (page 249).

 ■ Build settings. A build setting contains information on how to perform the operations required to build
a product. For example, a build setting can specify command-line options for Xcode to pass to the
compiler. Build settings can contain tool-specific options, paths to build files and product directories,
and other information used by Xcode to determine how to perform build operations.

Each target contains a list of build settings. Although you will most likely make most of your build setting
changes at the target level, build settings can be modified in a number of other locations, such as build
styles, as well. By modifying build settings at these other layers, you can quickly make a change and
apply it to multiple targets, conditionally change the way a product is built, and so forth.

Because build settings represent variable aspects of the build process, they are the most flexible means
of customizing the build process. See “Build Settings” (page 267) for more information on using build
settings.

 ■ Build rules. A target’s build rules determine how each source file in the target is processed. Each build
rule consists of a condition—such as files matching the type “.c”—and an action. Typically, this action
specifies the tool Xcode should invoke to process files that meet the condition; this is how Xcode
determines the compiler to use for compiling source files. Build rules apply only to the Compile Sources
and Build ResourceManager Resources build phases. Xcode defines a default set of build rules, but you
can define your own custom build rules for a target. For more information on using build rules, see “Build
Rules” (page 261).

232 Anatomy of a Target
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Figure 23-2 A target

Product type: Application

Target: MyApp

Build phases

Headers MyApp.h

Sources = MyApp.c
Bundle resources MyApp.nib

Frameworks Carbon.framework

Build settings
PRODUCT_NAME = "MyApp"
GCC_PREFIX_HEADER = "MyAppPrefixHeader.pch"

Build rules

A target and the product that it creates are closely related; every target has an associated product type. When
you create a new target from a target or project template, you choose the target’s product type, as described
in “Creating a New Target” (page 233).

Based on the product type, Xcode specifies initial values for certain product-specific build settings. For
example, when you create a target that builds an application, Xcode assigns it the build setting specification
INSTALL_PATH = "/Applications" based on the product type. Any subsequent changes you make to the
target after creating it may override these default values. Note that the project and target templates contain
additional configuration information that Xcode uses when it creates new targets.

Creating Targets

When you create a new project from one of the Xcode project templates, Xcode automatically creates a
target for you. If, however, your project needs to contain more than one target—usually because you are
creating more than one product—you can also add new targets to an existing project. This section shows
you how to:

 ■ Create a new target.

 ■ Duplicate an existing target.

 ■ Remove unused targets from the project.

Creating a New Target

If you are adding new targets to your project, chances are you’ve already made a number of decisions about
product type, programming language, and framework. Xcode provides a number of target templates to
support your choices. The selection of target templates is similar to the selection of project templates. The

Creating Targets 233
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

target specifies the target’s product type, a list of default build phases, and default specifications for some
build settings. A target template typically includes all build settings and build phases required to build a
basic instance of the specified product. Unlike the project templates provided by Xcode, the target templates
do not specify any default files; you must add files to the target yourself, as described in “Working with Files
in a Target” (page 241).

You can create a new target and add it to an existing project in either of the following ways:

 ■ Choose Project > New Target.

 ■ Control-click in the Groups & Files list and choose Add > New Target from the contextual menu.

Xcode presents you with the New Target Assistant, shown here, which lets you choose from a number of
possible target templates. Each target template corresponds to a particular type of product, such as an
application or loadable bundle. Select one of these templates and click Next. Enter the name of the target;
if more than one project is open, you can choose which project to add the new target to from the Add to
Project menu. When you click Finish, Xcode creates a new target configured for the specified product type.
Xcode also creates a reference to the target’s product and places it in your project, although the product
does not exist on disk until you build the target.

Figure 23-3 The New Target Assistant

Xcode provides the target templates listed in the following tables. Table 23-1 lists templates that create
targets using Xcode’s native build system. Because it performs all target and file-level dependency analysis
for targets using the native build system, Xcode can offer detailed feedback about the build process and
integration with the user interface for these targets.

234 Creating Targets
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Table 23-1 Xcode target templates

CreatesTarget template

BSD

A dynamic library, written in C, that makes use of BSD.Dynamic Library

A command-line utility, written in C.Shell Tool

A static library, written in C, that makes use of BSD.Static Library

Carbon

An application, written in C or C++, that links against the Carbon framework.Application

A dynamic library that links against the Carbon framework.Dynamic Library

A framework based on the Carbon framework.Framework

A bundle, such as a plug-in, that can be loaded into a running program.Loadable Bundle

A command-line utility based on the Carbon framework.Shell Tool

A static library, written in C or C++, based on the Carbon framework.Static Library

Cocoa

An application, written in Objective-C or Objective-C++, that links against the
Cocoa framework.

Application

A dynamic library that links against the Cocoa framework.Dynamic Library

A framework based on the Cocoa framework.Framework

A bundle, such as a plug-in, that can be loaded into a running program.Loadable Bundle

A command-line utility based on the Cocoa framework.Shell Tool

A static library, written in Objective-C or Objective-C++, based on the Cocoa
framework.

Static Library

Java

An application, written in Java, and packaged as an application bundle.Application

A Java applet, built as a JAR file.Applet

A command-line utility, written in Java and built as a JAR file.Tool

Kernel Extension

A kernel extensionGeneric Kernel Extension

A device driver that uses the I/O Kit.IOKit Driver

Creating Targets 235
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Xcode also supports targets that use Project Builder’s Jam-based build system. Table 23-2 lists the templates
that create targets using the Project Builder build system, called legacy targets. Note that Jam-based targets
are supported only for compatibility with existing Project Builder projects. Where possible, you should use
native targets instead. Legacy targets are discussed further in “Converting a Project Builder Target” (page
247).

Table 23-2 Legacy target templates

CreatesTemplate

An application bundle.Application

A standard bundle.Bundle

Cocoa

An application, written in Objective-C or Objective-C++, that links against the
Cocoa framework

Application

A framework.Framework

Java

An application, written in Java, and packaged as an application bundle.Application

A Java applet, built as a JAR file.Applet

Package

A command-line utility, written in Java and built as a JAR file.Tool

Kernel Extension

A kernel extensionGeneric Kernel Extension

A device driver that uses the I/O Kit.IOKit Driver

A dynamic or static libraryLibrary

A command-line utility.Tool

In addition to the target templates described above, Xcode defines a handful of target templates that do not
necessarily correspond to a particular product type. These targets are described in the next section.

Special Types of Targets

Xcode defines a handful of target templates that do not necessarily correspond to a particular product type.
Instead, these targets can be used to:

 ■ Build a group of targets together

 ■ Build a product using an external build system

 ■ Run a shell script

236 Creating Targets
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

 ■ Copy files to a specific location in the filesystem

Aggregate

Xcode defines a special type of target that lets you build a group of targets at once, even if those targets do
not depend on each other. An aggregate target does not have an associated product and it does not contain
build information, such as build rules. An aggregate target depends on each of the targets you want to build
together. For example, you may have a suite of applications and want to build them at once for a final build.
You would create an aggregate target and make it depend on each of the individual application targets; to
build the entire application suite, just build the aggregate target.

An aggregate target may contain a custom Run Script build phase or a Copy Files build phase, but it does
not contain any other build phases.

External

Xcode allows you to create targets that do not use Xcode’s own native build system but instead use an
external build tool that you specify. For example, if you have an existing project with a makefile, you can use
an external target to run make and build the product.

An external target creates a product but does not contain build phases. Instead, it calls a build tool in a
directory. With an external target, you can take full advantage of Xcode’s editor, class browser, and source-level
debugger. However, many Xcode features—such as ZeroLink and Fix and Continue—rely on the build
information maintained by Xcode for targets using the native build system. As a result, these are not available
to an external target. Furthermore, you must maintain your custom build system yourself. For instance, if
you need to add files to an external target built using make, you must edit the makefile yourself.

Shell Script

A Shell Script target is an aggregate target that contains only one build phase, a Run Script build phase.
Building a Shell Script target simply runs the associated shell script. Shell Script targets are useful if you have
custom build steps that need to be performed. While Run Script build phases allow you to add custom steps
to the build process for a single target, a Shell Script target lets you define a custom build operation that you
can use with many different targets. For example, if your project has several targets that each use the files
generated by a Shell Script target, you can make each of those targets depend upon the Shell Script target.

Copy Files

A Copy Files target is an aggregate target that contains only one build phase, a Copy Files build phase.
Building a Copy Files target simply copies the associated files to the specified destination in the filesystem.
Copy Files targets are useful if you have custom build steps that require files that are not specific to any other
targets to be copied. While Copy Files build phases allow you to add a step to the build process for a single
target that copies files in that target, a Copy Files target lets you copy files that are not specific to any one
target. For example, if your project has several targets that require the same files to be installed at a particular
location, you can use a Copy Files target to copy the files, and make each of the other targets depend upon
the Copy Files target.

Creating Targets 237
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Duplicating a Target

There are a number of reasons why you might need to duplicate a target: you require two targets that are
very similar but contain slight differences in the files or build phases that they include, or you have a
complicated set of options that you build with and would prefer to simply start with a copy of a target that
already contains those build settings.

Xcode allows you to duplicate a target, creating a copy that contains all of the same files, build phases,
dependencies and build settings. You can create a copy of a target in the following way:

1. In the Groups & Files list, select the target you which to copy.

2. Choose Edit > Duplicate or Control-click and choose Duplicate from the contextual menu.

Removing a Target

If your project contains targets that are no longer in use, you can remove them from the project in the
following ways:

1. Select the target to delete in the Groups & Files list.

2. Press the Delete key or choose Edit > Delete.

When you delete a target, Xcode also deletes the product reference for the product created by that target
and removes any dependencies on the deleted target.

Target Dependencies

In a complex project, you may have several targets that create a number of related products. Frequently,
these targets need to be built in a specified order. Returning to the example of the client-server software
package created by the project shown in Figure 23-1 (page 231), you’ll see that the client application, server
application, and command-line tool targets each link to the private framework created by another target in
the same project.

Before the application and command-line tool targets can be built, the framework target must be built.
Because they require the private framework in order to build, each of the application and command-line tool
targets is said to depend upon the target that creates the framework. You can use a target dependency to
ensure that Xcode builds targets in the proper order; in this example, you would add a dependency upon
the framework target to each of the application and command-line tool targets.

However, the applications and command-line tool in the client-server package must still be built individually.
None of these targets requires the product created by any target other than the framework target. Xcode
provides another mechanism for grouping targets that you want to build together, but that are otherwise
unrelated; this is an aggregate target. The following sections show you how to add a target dependency and
create an aggregate target, and gives an example of how you can use these tools to organize a software
development effort with multiple products and projects.

238 Target Dependencies
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Adding a Target Dependency

When you build a target with a dependency upon another target, Xcode makes sure that this other target
is built and up-to-date before building the active target. That way, you can guarantee that when target A
needs the product created by target B, target B is built before target A. In addition, if there are errors building
target B, Xcode doesn’t build target A.

You can view and modify a target’s dependencies:

 ■ In the General pane of the target inspector. The Direct Dependencies list in the bottom half of the General
pane shows the other targets upon which the current target depends.

To add a target dependency, click the plus sign button and select the target upon which you want the
current target to depend in the resulting dialog. The list of targets includes all of the other targets in the
current project, as well as the targets in any referenced projects. Targets in referenced projects are
grouped according to the project to which they belong; click the disclosure triangle next to the project
icon to see the targets in that project. For more information on referencing other projects, see “Referencing
Other Projects” (page 81).

To remove a target dependency, select it in the list and click the minus button.

 ■ In the Groups & Files list. Click the disclosure triangle next to the target; the targets that the current
target depends on are listed before the build phases in the target. You can make the current target
depend on another target by dragging that target to the current target in the Groups & Files list. To
delete a target dependency, select it in the Groups & Files list and press Delete or choose Edit > Delete.
Figure 23-4 shows a target dependency in the Groups & Files list.

Figure 23-4 A target dependency in the Groups & Files list

Target dependency

Target Dependencies 239
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Creating an Aggregate Target

To build several related targets at the same time, even if they aren’t dependent on each other, create an
aggregate target. As described in “Special Types of Targets” (page 236), an aggregate target does not produce
a product itself and it does not contain build rules or information property list entries. Instead it exists so
that you can make it dependent on other targets. To build a group of related targets, just build the aggregate
target.

To create an aggregate target, choose Project > New Target and select Aggregate from the New Target
Assistant. For each target you want to build with this aggregate target, add a target dependency to the
aggregate target, as described in the “Adding a Target Dependency” (page 239).

Note that, while it does not contain any other build phases, an aggregate target can include a Run Script or
Copy Files build phase.

An Example With Multiple Targets and Projects

Suppose that your company has two teams working on separate applications, that one application includes
an internal library, and that each application relies on a framework supplied by a third team. Figure 23-5
shows one way to set up your software development with three Xcode projects, using target dependencies,
aggregate targets, and cross-project dependencies to relate the various products.

In Figure 23-5, the Juicer_app project contains the Juicer_app target, for building the Juicer application,
and the Juicer_lib target, for building an internal library. The application target depends on the library
target, and also has a cross-project dependency on the Mixer_framework target in the Mixer_framework
project. Finally, the Juicer_app project contains the Juicer_aggregate target, as a convenience for
building the entire suite of projects.

Note: Aggregate targets are typically used to build targets that don’t otherwise depend on each other.

In Figure 23-5, the Blender_app project contains a target for building the Blender application. The Blender
target also has a cross-project dependency on the Mixer framework.

240 Target Dependencies
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Figure 23-5 Three projects with dependencies

Mixer_framework project

Juicer_app project

Aggregate target

Name: Juicer_aggregate

Dependency: Juicer_app

Dependency: Blender_app

Dependency: Mixer_framework

Blender_app project

Target

Name: Juicer_app

Product type: Application

Dependency: Juicer_lib

Dependency: Mixer_framework

Target

Name: Mixer_framework

Product type: Framework

Target

Name: Blender_app

Product type: Application

Dependency: Mixer_framework

Target

Name: Juicer_lib

Product type: Library

Finally, the Mixer_framework project contains a target for building the Mixer framework, used by both the
Juicer and Blender applications.

Given this combination of projects, targets, and dependencies, the following statements are true:

 ■ Building the Juicer target builds the Juicer library, if it needs updating, and also builds the Mixer framework,
if it needs updating.

 ■ Building the Juicer aggregate target builds the Juicer application, which builds the Juicer library, if it
needs updating. The aggregate target also builds the Blender application and the Mixer framework.

 ■ Building the Juicer library does not cause any other targets to be built.

 ■ Building the Blender target builds the Mixer framework, if it needs updating.

Working with Files in a Target

When you add files to a project, you can have Xcode also add those files to one or more targets. When you
add files to a target in this way, Xcode automatically assigns them to the appropriate build phase, based on
the file’s type. This is the easiest way to add files to a target. However, you may have existing files in your
project that you wish to add to a target, or find that you no longer need a target file. This section describes
how to view the files in a target and shows you how to add and remove target files.

Working with Files in a Target 241
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Viewing the Files in a Target

To view all of the files included in a target, select the target in the Groups & Files list; all targets are organized
into the Targets smart group. The detail view shows all of the files and folders in the target, similar to what
you see in the following figure. If one is not already open in the current window, open a detail view by
choosing View > Detail.

Figure 23-6 Viewing targets in the project window

You can also see a target’s files grouped according to the operation performed on those files during the
build process. If you click the disclosure triangle next to a target, you will see the build phases for that target.
Build phases, described in further detail in “Build Phases” (page 249), represent a task performed when the
target is built. To see the files in a particular build phase, click the disclosure triangle next to the build phase
or select the build phase and open a detail view.

Adding and Removing Target Files

You can change which files are included in a target from the project window. To add files to a target, you
can:

 ■ Drag the file reference or references to the appropriate build phase of the given target in the Groups &
Files list. For native targets, Xcode does not let you drag a file to a build phase that does not accept that
type of file as an input. For example, you cannot drag a NIB file to the Compile Sources build phase. See
“Build Phases” (page 249) for more information on the available build phases and their files.

 ■ Specify that a file be included in a target when you add that file to your project, as described in “Adding
Files, Frameworks, and Folders to a Project” (page 78).

242 Working with Files in a Target
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

 ■ To add a file to the active target, find the file in the detail view or in the Groups & Files list and select the
checkbox in the Target column for that file. If the Target column is not visible, choose View > Detail View
Columns > Target or View > Groups & Files Columns > Target.

To remove a file from a target, do the following in the Groups & Files list:

1. Click the disclosure triangle next to the target to reveal the target’s build phases.

2. Click the disclosure next to the build phase to which the file belongs.

3. Select the file to remove from the target and click Delete or choose Edit > Delete.

To remove a file from the active target, find the file in the detail view or in the Groups & Files list and deselect
the checkbox in the Target column for that file. Xcode removes the file from the target, but does not remove
the file reference from the project.

Inspecting Targets

Like most other project items, targets have inspector and Info windows that allow you to view and modify
target settings. As previously described in “Anatomy of a Target” (page 232), a target defines the instructions
necessary to create a product. Each target has an associated set of files, tasks and settings that together
constitute these instructions. You can edit and inspect many of these settings in the target inspector.

Note: To learn how to modify the files and build phases associated with a target, see “Working with Files
in a Target” (page 241) and “Build Phases” (page 249), respectively.

The information available in the inspector window varies, depending on the type of target. The inspector
window for native targets lets you view and edit all target settings and build information associated with
that target. The inspector window for legacy and external targets contains only general information. To edit
build information for either of these types of targets, you must use the target editor.

Inspecting Native Targets

The inspector window is the primary means of viewing and editing the information in native targets. Figure
23-7 shows the inspector window for a native target.

Inspecting Targets 243
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Figure 23-7 The Info window for a native target

This window contains the following panes:

 ■ The General pane contains general information about a target, such as its name, the name of the
associated product, and target dependencies. The General pane is described in “Editing General Target
Settings” (page 245).

 ■ The Build pane lets you view and edit build settings for the target. The Build pane is described in “Editing
Build Settings in the Xcode Application” (page 277).

 ■ The Rules pane displays the current system build rules, as well as any custom build rules defined for the
current target. The Rules pane is described in “Build Rules” (page 261).

 ■ The Properties pane lets you edit information property list entries for targets that create products requiring
Info.plist files, such as applications and other bundles. If the target does not have an Info.plist file, this
pane is not visible in the inspector. This pane is described in “Editing Information Property List
Entries” (page 245).

 ■ Comments. The Comments pane lets you associate notes or other documentation with the target. See
“Adding Comments to Project Items” (page 92) for more information.

244 Inspecting Targets
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Inspecting Legacy and External Targets

You can view and edit only general target information in the inspector window for Jam-based Project Builder
targets and external targets. You cannot configure build information for these targets. The inspector window
for legacy and external targets contains the following panes:

 ■ The General pane contains general information about a target, such as its name, the name of the
associated product, and target dependencies. The General pane is described in “Editing General Target
Settings” (page 245).

 ■ Comments. The Comments pane lets you associate notes or other documentation with the target. See
“Adding Comments to Project Items” (page 92) for more information.

If you have an existing Project Builder project with a Jam-based target, you can convert your target to use
the Xcode native build system to edit build settings or build rules for the target in an inspector or Info window.

To edit the build settings for Jam-based and external targets in Xcode, use the target editor, described in
“Editing Build Settings for Legacy and External Targets” (page 283).

Editing General Target Settings

In the General pane of the target inspector, you can edit basic target settings for any target in Xcode. The
General pane contains the following settings:

 ■ Name. This is the name Xcode uses to refer to the target. To rename the target, click in the text field and
type the new name.

 ■ Type. This is type of product created by the target. The product type is determined when you create the
target; you cannot change it.

 ■ Product. The name of the product created from the target; for example, “MyApp.app.” The Product Name
(PRODUCT_NAME) build setting specifies the product name, excluding any extension; in this example,
“MyApp.”By default, this is the same as the target name. To change the name of the product, you can
change the name of the target or customize the Product Name build setting.

To change the product extension—in this case, “app”—change the value of the Wrapper Extension
(WRAPPER_EXTENSION) build setting.

 ■ Dependencies. A list of the targets upon which the current target depends. See “Adding a Target
Dependency” (page 239).

Editing Information Property List Entries

Information property list entries contain information used by the Finder and system software. This information
ends up in a file called Info.plist that’s contained within the product’s bundle. If a product does not come
in the form of a bundle, it has no Info.plist file.

The Info.plist file tells the Finder what the bundle’s icon is, what documents it can open, what URLs it
can handle, and so on. Unlike build settings, property list entries do not affect the build process but are
simply copied directly into the bundle’s Info.plist file at the end of the build process. For a list of entries
used by the system and Finder, see Runtime Configuration Guidelines.

Inspecting Targets 245
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

For Native Targets

The Properties pane of the target inspector, shown below, allows you to edit information property list entries
for native targets. This pane is only visible for targets that create products with Info.plist files.

Figure 23-8 The Properties pane of the target inspector window

The top section of the pane allows you to edit basic information about the product, such as the name of the
associated executable, the identifier, type and creator, version information, and an icon to associate with the
finished product. Note that the name of the icon here must match the name of an icon file that is copied
into the Resources folder of the product bundle.

The Principal Class and Main Nib File options are specific to Cocoa applications and bundles. The Principal
Class corresponds to NSPrincipalClass. The Main Nib File field specifies the nib file that’s automatically
loaded when the application is launched. It corresponds to the information property list key NSMainNibFile.

The Document Types table allows you to specify which documents your finished product can handle. You
can add and remove document types from this list using the plus and minus buttons. Here is what’s in the
Document Types table:

 ■ Name is the name of the document type. For example, “Apple Sketch Document.”

 ■ Class is the subclass of NSDocument that this document uses. Use this field only if you’re writing a
document-based Cocoa application.

246 Inspecting Targets
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

 ■ Extensions contains a list of the filename extensions for this document type. Don’t include the period in
the extension. For example, “sketch” and “draw2”.

 ■ UTI contains a list of Uniform Type Identifiers (or UTIs) for the document. UTIs are strings that uniquely
identify abstract types. They can be used to describe a file format or data type, but can also be used to
describe type information for other sorts of entities, such as directories, volumes, or packages. For more
information on UTIs, see the header file UTType.h, available as part of LaunchServices.framework in
Mac OS X v. 10.3 and later.

 ■ MIME Types contains a list of the MIME types for the document.

 ■ OS Types contains a list of four-letter codes for the document. These codes are stored in the documents’
resources or information property list files. For example, “sktc”.

 ■ Icon File is the name of the file that contains the document type’s icon.

 ■ Role describes how the application uses the documents of this type. You can choose from three values:

 ❏ Editor means this application can display, edit, and save documents of this type.

 ❏ Viewer means this application can display, but not edit, documents of this type.

 ❏ None means this application can neither display nor edit documents of this type but instead uses
them in some other way. For example, the Finder could declare an icon for font documents.

 ■ Package specifies whether the document is a single file or a file package.

To edit a document type, click the type’s line in the Document Types list and edit the document type
information.

You may have additional keys that you need to include in your Info.plist file; for example, applications
that include Apple Help help books need two additional Info.plist entries. To add these additional keys,
you can edit the Info.plist file directly, by clicking the Open Info.plist as File button at the bottom of the
Properties pane. You can refer to build settings in the Info.plist file. For example, $(PRODUCT_NAME)
expands to the base name of the product built by the target.

You can set properties on multiple targets; simply select the targets in the project window and open an Info
or inspector window. In the Properties pane, you can edit the values of properties that apply to more than
one target.

For Legacy Targets

You cannot configure Info.plist entries for Jam-based Project Builder targets in the target inspector. To edit
the Info.plist entries for Jam-based targets in Xcode, select the target in the Groups & Files list. If you have
an editor open in the project window, Xcode displays the Project Builder target editor. To view this target
editor in a separate window, double-click the target. Select Info.plist Entries in the left side of the target
editor; Xcode displays the target’s Info.plist entries in the target editor.

Converting a Project Builder Target

Xcode supports existing Project Builder targets that use the Project Builder build system, based on the Jam
software build tool. Based on the information it maintains for a Jam-based target—build phases and build
settings—Xcode creates a text-based Jamfile for the target and then invokes the jam command to perform
the build. You can continue to use your existing Project Builder targets, or even create new Jam-based targets.

Converting a Project Builder Target 247
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

Although Xcode recognizes and can build Project Builder targets using the Jam-based build system, there
are many advantages to converting to “native” targets that use Xcode’s native build system. One advantage
is shorter build times, particularly for incremental builds. In addition, many of the new Xcode features—such
as ZeroLink, and Fix and Continue—work only with native targets.

Xcode’s native build system performs its own dependency analysis and directly invokes the necessary build
commands. The native build system takes advantage of the detailed information that the Xcode application
maintains about a project’s targets and relationships to provide finer control over the build process and
better feedback from the build system than you can obtain from using an external tool.

To convert all Jam-based targets in your project to the native build system, choose Project > Upgrade All
Targets in Project to Native.

To upgrade a single target to use the native build system, select that target in the Groups & Files list and
choose Project > Upgrade target name to Native.

Xcode creates a new copy of each target, configures it to create the appropriate product type, and adds it
to the Targets group. Your existing Jam-based targets remain unchanged. Xcode preserves all target
dependencies when upgrading targets to the native build system.

Xcode generates a log file that shows you the results of the upgrade to native targets. The information in
this log file includes the product type created by the upgraded target, locations of common support files—such
as Info.plist files, and changes made to any build settings.

248 Converting a Project Builder Target
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

Targets

In Xcode a build phase represents a task to be performed on a set of files. Each build phase specializes in a
specific kind of file, such as header files, source files, resource files, and frameworks and libraries. Also, each
build phase performs specific operations on the files associated with it. That way, changes in the way files
of the same kind are processed can be made by customizing the operations that the build phase performs.

This chapter provides an overview of build phases, explains how Xcode determines the order in which build
phases should be processed to build a product, describes in detail some of the build phases available, and
explains how build rules allow you to customize the Compile Sources build phase and the Build
ResourceManager Resources build phase in a target.

Overview of Build Phases

A build phase collects a group of files and performs a set of operations on them in the process of building a
product. To illustrate this, think of the tasks you would take to prepare for and deliver a presentation; many
of the required tasks contain a set of inputs and outputs:

1. Specify the purpose of the presentation and identify the audience.

This task has no prerequisites but produces a set of criteria that serve as the guiding principles for the
presentation.

2. Gather the appropriate data, such as articles, reports, and surveys.

Information gathering requires a set of criteria that specifies what to look for and where to look for it.
The outcome are a set of documents containing the data gathered.

3. Purchase a business suit.

This task has no inputs or outputs that directly relate to the presentation.

4. Analyze the data by collating facts, extrapolating trends, and summarizing representative opinions.

This task uses the data gathered in task 2 and produces one document containing the information on
which the presentation is based

5. Develop a set of slides, including compelling illustrations, from the information produced by your analysis.

This task requires the information produced in task 4 and produces a set of slides and illustrations, which
could be presented using Keynote.

6. Deliver the presentation by showing the slides and illustrations in sequence and engaging the audience
with a loud, clear voice and maintaining eye contact.

Overview of Build Phases 249
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

The order in which build phases are executed in a target depends on their inputs and outputs. Most of the
tasks shown earlier contain a set of inputs and outputs that associate them with each other in an
anterior/posterior relationship. Tasks that contain inputs that are the outputs of other tasks or outputs that
are the inputs of other tasks are ordered tasks. These are tasks that are executed in the order determined
by their inputs and outputs. Unordered tasks, on the other hand, are tasks with no inputs and outputs, tasks
whose inputs are not the outputs of other tasks, or tasks whose outputs are not the inputs of other tasks.
Figure 24-1 shows the presentation tasks shown earlier categorized as ordered and unordered.

Figure 24-1 Presentation tasks

Input: slides
Output: presentation

Deliver presentation

Input: <nothing>
Output: criteria

Specify purpose

Input: criteria
Output: data

Gather data

Input: data
Output: information

Analyze data

Input: information
Output: slides

Develop slides

Ordered tasks Unordered tasks

Input: <nothing>
Output: <nothing>

Purchase suit

Most of the tasks illustrated depend on another task’s outputs. The Specify Purpose task is the only task
among the ordered tasks that doesn’t depend on the output of any other task; therefore, it’s performed first.
The Purchase Suit task is the only unordered task; that is, it’s neither the anterior nor the posterior of other
tasks. Therefore, it can be executed at any time during the preparation of the presentation.

Build Phases in Xcode

To build an application, you typically compile source files and link them to system frameworks and libraries.
Figure 24-2 shows some of the operations needed to build the CircleView application (the CircleView project
is located in /Developer/Examples/AppKit).

250 Build Phases in Xcode
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Figure 24-2 Building an application

InfoPlist.strings
MainManu.nib
README.rtf

CircleView.m
main.m

Cocoa.framework

Copy to CircleView.app/Contents/Resources

Compile into CircleView.o
Compile into main.o

Link with CircleView.o and main.o into
CircleView.app/Contents/MacOS/CircleView

This simple project shows that there are many things to take into account when building a product. You
have to copy resource files to the appropriate places, compile implementation files into object files, and link
object files with the appropriate frameworks to produce a binary file. If you modify an implementation file,
you would have to compile it, and link the generated object file with the other object files and the necessary
frameworks.

If you analyze the files and the operations illustrated in Figure 24-2, you notice that the project contains three
types of files: files that are copied or installed; files that are processed or compiled to produce intermediate
files, such as object files; and frameworks that are linked with the object files to produce a binary file. To
build a product, appropriate operations need to be performed on the files depending on their type.

Build phases associate groups of files with operations to be performed on them in order to build a product;
for example, installing header files within frameworks, compiling source files, linking object files with system
libraries or frameworks, and so on. As you add files to a project, Xcode associates them with the appropriate
build phase, based on the files’ type (specified by each file’s extension). If you want to compile implementation
files with a different compiler, you make the change once, at the build phase level (see “Compile Sources
Build Phase” (page 256) and “Build Rules” (page 261) for details). Therefore, build phases help make the process
of building an application, plug-in, library, or framework, understandable and easy to customize, as illustrated
in Figure 24-3.

Figure 24-3 Building an application using build phases

Compile sources
inputs:
 CircleView.m
 main.m
outputs:
 CircleViw.o
 main.o

Link binaries with libraries
inputs:
 CircleView.o
 main.o
 Cocoa.framework
outputs:
 CircleViw.app
 Contents
 MacOS
 CircleView

Copy bundle resources
inputs:
 InfoPlist.strings
 MainMenu.nib
 README.rtf
outputs:
 CircleViw.app
 Contents
 Resources
 README.rtf
 English.lproj
 MainMenu.nib
 InfoPlist.strings

Build Phases in Xcode 251
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

A build phase operates on its inputs, which are the files associated with it (either by you or intrinsically by
Xcode), and outputs, which are the files produced after the build phase is executed. Each build phase executes
its task by invoking tools to perform the operations needed to accomplish the task.

Xcode offers several build phases, which are shown in Table 24-1. The name of the build phase reflects the
task performed by that build phase.

Table 24-1 Build phases available in Xcode

DescriptionBuild phases

Installs header files with Public or Private roles in the appropriate locations
in the product. In addition, header files associated to this build phase are
added to the target’s header map (.hmap) file in a way that makes it easier
for the compiler to locate them; that is, you don’t have to specify their path
explicitly.

Copy Headers

Installs files by copying the associated files from the project directory to the
appropriate locations in the product.

Copy Bundle Resources, Build
Java Resources

Installs files by copying the associated files from the project directory to a
location in the product or to a specific location in the target file system,
such as /Library/Frameworks or /Library/Application Support.

Copy Files

Compiles source files into object files using a predefined tool, a tool you
specify, or a build-rule script.

Compile Sources

Executes a shell script. You can use any scripting language whose scripts
you can execute from the command-line, such as AppleScript, Perl, Python,
and so on.

Run Script

Links object files with frameworks and libraries to produce a binary file.Link Binary With Libraries

Compiles .r files into resources that go into an application’s resource fork.Build ResourceManager
Resources

Compiles .applescript files and places the resulting .scpt files in the
product’s Contents/Resources/Scripts directory.

Compile AppleScripts

Table 24-2 lists the build phases and their possible inputs and outputs.

Table 24-2 Input files and output files of build phases

OutputsInputsBuild phase

Copies in appropriate locations in the
product.

.h filesCopy Headers

.o files in target’s build directory..c, .m, .y, .l, among other types
of source files

Compile Sources

Binary file, framework, or library in
product destination directory.

.framework, .dylib, and the.o
files in the target’s build directory

Link Binary With Libraries

252 Build Phases in Xcode
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

OutputsInputsBuild phase

Copies in the product’s Resources
directory.

.nib files, .strings files, image
files, and others

Copy Bundle Resources

Localized.rsrc file in product’s
Resources directory.

.r, and .rsrc filesBuild ResourceManager
Resources

.scpt files in the product’s
Resources/Scripts directory.

.applescript filesCompile AppleScripts

Each target has a set of build phases, separate from the build phases in other targets in your project. To view
the build phases in a target, click the disclosure triangle next to the target in the Groups & Files list.

Figure 24-4 Viewing build phases

Build phases for target
ʻMLTE Showcaseʼ

Adding and Deleting Build Phases

New targets—whether created through the New Target Assistant or as part of creating a new project—already
include a set of default build phases. The default build phases for a target vary, depending on the type of
product created by the target. For example, a target that builds an application typically includes a Copy
Bundle Resources build phase to copy resources over to the application bundle; however, a target that builds

Adding and Deleting Build Phases 253
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

a shell tool does not include this build phase. The default build phases work for most simple targets; however,
you can accommodate more complex products and build steps by adding your own build phases.To add a
build phase:

 ■ Select the target to add the build phase to; otherwise, Xcode adds the build phase to the active target.

 ■ Choose a build phase from the Project > New Build Phase menu or from the Add > New Build Phase
menu in the contextual menu that Xcode displays when you Control-click the target. Table 24-1 (page
252) shows the available build phases.

Xcode adds the new build phase after the currently selected build phase, or, if no build phase is selected,
adds it as the last build phase in the target. Many types of build phases can only appear once in a target; for
example, there can be only one Compile Sources build phase. If they already exist in the target, the menu
items to add these build phases are dimmed. However, a target can contain multiple instances of the Copy
Files and Run Script build phases.

To delete a build phase, select it in the Groups & Files list and press Delete or choose Edit > Delete. Deleting
a build phase does delete the files in the build phase from the project or from the disk.

Adding Files to a Build Phase

When you add a file to a project, Xcode lets you choose whether to also add the file to any targets in the
project. When you add files to a target in this way, Xcode automatically assigns the files to build phases,
based on each file’s type. To view the inputs to a particular build phase, you can do either of the following:

 ■ Select the build phase in the Groups & Files list and, if necessary, open a detail view. The files assigned
to the build phase are displayed in the detail view.

 ■ Click the disclosure triangle next to the build phase in the Groups & Files list.

Intermediate files—files generated by Xcode in other build phases—are not listed. Xcode handles these
intermediate files automatically.

If Xcode’s default file placement is not sufficient for your needs, you can easily move files among build phases
by dragging the file or files from their current build phase to the new build phase. You can also add files that
are already in your project to a build phase by dragging the files from the project source group to the
appropriate build phase in the Groups & Files list. To delete a file from a build phase, select the file and press
Delete.

Processing Order

The order in which the build system executes build phases is important because some build phases produce
files that are part of the inputs of other build phases. Therefore, the former must be executed before the
latter. In native targets, dependencies between build phases determine the order of execution. In Jam-based
targets, you must ensure that the build phases within a target are ordered appropriately.

254 Adding Files to a Build Phase
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

In Native Targets

In some cases, a build phase inherently includes the outputs of other build phases as its inputs. For example,
the outputs of the Compile Sources build phase (.o files) are part of the inputs of the Link Binary With Libraries
build phase. This makes the Compile Sources build phase an antecedent of the Link Binary With Libraries
build phase. Therefore, the order in which build phases are executed in a target depends on their inputs and
outputs.

Most build phases have their inputs and outputs defined implicitly. However, Run Script build phases may
have neither. In that case, the build system tries to run the associated script in the order specified within the
target, but the actual point in the build process at which the script is run is undetermined. If you assign either
input or output files to a Run Script build phase, the script’s point of execution in the build process is
determined by other targets having the build phase’s outputs as their inputs, or the inputs of the build phase
being the outputs of other build phases.

Figure 24-3 (page 251) illustrates this. Regardless of the order of the Compile Sources and the Link Binary
With Libraries build phases in the target, the Compile Sources build phase is executed before the Link Binary
With Libraries build phase because part the latter’s inputs is constituted by the former’s outputs.

In the Compile Sources build phase, the build system determines the order in which files are processed
through the inputs and outputs of the target’s build rules, in a similar way in which the order of build phases
is determined.

In Jam-Based Targets

In Jam-based targets, the order of build phases within a target and the input files within the build phase
determines the order in which the build system executes the build phases and processes each file within
each build phase.

You must make sure that build phases that produce files required by other build phases are listed first within
the target. For example, the Compile Sources build phase must always be listed before the Link Binary With
Libraries build phase.

Within the Compile Sources build phase, you must ensure that source files that generate derived files are
placed above dependent files. For example, if a target has Yacc (.y) and Lex files (.l) files and processing
the Lex files requires the C (.c) files generated from the Yacc files, the Yacc files must be listed before the
Lex files within the target.

Reordering Build Phases

Typically, there is no need to change the order of build phases in a target; the default arrangement works
for the majority of cases. If, however, you find that you need to change the position of a build phase—for
example, when adding custom build phases to a Jam-based target—you can reorder a build phase by
dragging the build phase’s icon to its new location in the target.

Processing Order 255
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Compile Sources Build Phase

The Compile Sources build phase is one of the most customizable build phases (the other one being the Run
Script build phase). The reason is that this build phase must handle a wide variety of input-file types. Xcode
is preconfigured to process several types of source files, but you may have to compile source files that Xcode
doesn’t know about.

The feature that makes the Compile Sources build phase so flexible is its support of build rules. They specify
the tool or script the build system invokes to process files in Compile Sources and Build ResourceManager
Resources build phases when building a product. For details on build rules, see “Build Rules” (page 261).

Copy Files Build Phase

A Copy Files build phase allows you to copy and install files and resources of any type to specific locations
as part of the build process. It complements the build phases that copy and install specific types of files, such
as the Copy Headers build phase, which deals only with header files. You can have as many Copy Files build
phases as you need in a target.

For example, using a Copy Files build phase, you can copy fonts to/Library/Fonts. Or, if you’re developing
a plug-in, a Copy Files build phase can copy the generated plug-in to the appropriate location. You can have
as many Copy Files build phases in a target as you need.

To create a Copy Files build phase:

1. In the project window, click the disclosure triangle next to the target you want to add the build phase
to and select the build phase after which to add the new build phase.

2. Choose Project > New Build Phase > New Copy Files Build Phase. Xcode adds the new Copy Files build
phase after the build phase selected in the Groups & Files list.

3. Drag the files you want to copy from the Groups & Files list to the Copy Files build phase.

To configure the new Copy Files build phase, select it and open an Info or inspector window. You should see
a window similar to the one shown here.

256 Compile Sources Build Phase
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Figure 24-5 The Info window for a copy files build phase

Together, the Destination pop-up menu and the Path field specify the location to which Xcode copies the
files in the Copy Files build phase. The Destination pop-up menu in the inspector window lets you choose
from a number of standard locations. Table 24-3 shows the destination-location names you can choose in a
Copy Files build phase for a framework called MyFramework and the resulting destination path. All the
options, except Absolute Path and Products Directory, specify paths inside the generated bundle.

Table 24-3 Destination names and example destination paths of Copy Files build phases

Destination pathDestination name

Anywhere.Absolute Path

MyFramework.frameworkWrapper

MyFramework.framework/Versions/A/ResourcesExecutables

MyFramework.framework/Versions/A/ResourcesResources

MyFramework.framework/Versions/A/Resources/JavaJava Resources

MyFramework.framework/Versions/A/FrameworksFrameworks

MyFramework.framework/Versions/A/SharedFrameworksShared Frameworks

Copy Files Build Phase 257
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Destination pathDestination name

MyFramework.framework/Versions/A/ResourcesShared Support

MyFramework.framework/Versions/A/ResourcesPlug-ins

The directory in which Xcode places the project’s built products. See “Build
Locations” (page 301).

Products Directory

The Path field specifies the path, relative to the location specified in the Destination menu, to the target
directory. If you choose Absolute Path from the Destination pop-up menu, the Path field should contain the
complete path to the destination directory for the files.

The “Copy only when installing” option lets you specify whether the build phase copies the files only in install
builds of the product. That is, when using the install option of xcodebuild or when the Deployment
Location (DEPLOYMENT_LOCATION) build setting is turned on. For more on xcodebuild, see “Building From
the Command Line” (page 312).

Run Script Build Phase

A Run Script build phase lets you execute any commands you need to perform a task. You can archive files
using tar, send mail, write messages to a log file, execute AppleScript scripts, and so on. You can use any
of the shell languages available in your system. You can have any number of Run Script build phases in a
target.

Before executing your script, Xcode assigns the values of most build settings to environment variables. In
particular, it sets the environment variables listed in Table 24-4, as well as any build settings that are defined
at the target and build style layers for the active target and build style. However, keep in mind that Xcode
does not recognize changes made to those environment variables during the script’s execution and that
shell scripts are independent of each other. If you change the value of environment variables in one script,
the change is not visible in another script. For details on the build settings that are reflected in the script’s
environment variables, see “Using Build Settings With Run Script Build Phases” (page 284).

To perform operations on intermediate files, you can use several environment variables that Xcode sets
before executing your script. They are listed in Table 24-4.

Table 24-4 Environment variables that you can access from a Run Script build phase

DescriptionEnvironment variable

The action being performed on the current target, such as “build” or “clean.”ACTION

The variations—debug, profile or normal—that Xcode is creating for the product
being built .

BUILD_VARIANTS

The name of the project containing the target that is being built.PROJECT_NAME

The name of the product being built, without any extension or suffix.PRODUCT_NAME

The name of the target being built.TARGET_NAME

258 Run Script Build Phase
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

DescriptionEnvironment variable

The location of the target being built.TARGET_BUILD_DIR

The directory that holds the products created by building the targets in a project.BUILT_PRODUCTS_DIR

The directory that holds intermediate files for a specific target.TEMP_FILES_DIR

The directory that holds intermediate source files generated by the Compile
Sources build phase.

DERIVED_FILES_DIR

The location for the installed product.INSTALL_DIR

Keep in mind that the script executes using the permissions of the logged-in user. Xcode runs the script with
the initial working directory set to the project directory.

To create a Run Script build phase:

1. In the project window, click the disclosure triangle next to the target you want to add the build phase
to and select an existing build phase.

2. Choose Project > New Build Phase > New Shell Script Build Phase.

To configure the new Run Script build phase, select the build phase and open an Info or inspector window.
You should see a window similar to the one shown here.

Run Script Build Phase 259
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Figure 24-6 The Info window for a Run Script build phase

The Shell field specifies the path to the appropriate shell. Specify the script itself in the Script text field. You
can type the contents of the script directly in the text field or invoke it from a file, as in the example shown
above.

The “Run script only during deployment builds” option lets you specify that the script be run only during
install builds; that is, when using the install option of xcodebuild or when the build settings Deployment
Location (DEPLOYMENT_LOCATION) and Deployment Postprocessing (DEPLOYMENT_POSTPROCESSING) are
on.

The Input Files and Output Files tables specify the names of input files and output files the script uses and
produces. The Input Files table specifies the files that the script operates on; the Output Files table specifies
the files that the script produces. To add an entry to either of these tables, click the “+” button below the
table and type the name of the input or output file in the resulting text field. File paths are interpreted relative
to the project directory.

Xcode uses the input and output files to determine whether to run the script, and to determine the order in
which the script is executed. Specifying input and output files ensures that Xcode runs the script only when
the modification date of any of the input files is later than the modification date of any of the output files
(reducing the time it takes to build your product), and that the files the script produces are included in the
dependency analysis the build system performs before building your product. If you provide no outputs,
Xcode runs the script every time you build the target.

260 Run Script Build Phase
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Build Rules

Build rules specify how particular types of files are processed in Compile Sources build phases and specify
the tool used to process files in Build ResourcesManager Resources build phases. For example, a build rule
may indicate that all C source files be processed with the GCC 3.3 compiler.Each build rule consists of a
condition and an action. The condition determines whether a source file is processed with the associated
action. Usually, the condition specifies a file type.

Xcode provides default build rules that process C-based files, assembly files, Rez files, and so on. You can add
rules to process other types of files to each target. You can see the build rules in effect for a target in the
Rules pane of the target inspector, shown below.

Figure 24-7 The Rules pane of the Info window

Rule condition

Rule action

Add rule
Delete rule

There are two types of rules:

 ■ System rules. These are predefined and unmodifiable, although you can override them. They include
rules for processing C-based, Assembler, and Rez source files. See “System Rules” (page 262) for details.
System rules are the same for all targets in a project.

 ■ Target-specific rules. These are custom rules that you have defined for a particular target.

Build Rules 261
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Target-specific rules can specify files that the system rules do not directly address or override the existing
system rules. For example, there’s a system rule for the processing of C-based source files, which means that
.c and .m files are processed by the same rule. You can, however, add a target-specific rule indicating that
.m files be processed by a different compiler. In addition, instead of specifying a particular type of file, you
can set the rule’s condition to a pattern that matches a set of files. See “Creating a Custom Build Rule” (page
262).

You can view all rules for a target, including available system rules, by choosing All Rules from the pop-up
menu at the top of the Rules pane. To see only those build rules defined for the target, choose Rules Specific
to Target.

A build rule’s action typically specifies the tool or compiler to use when processing files that meet the given
condition. But you can also specify a build-rule script. The default interpreter is /bin/sh. However, you can
specify any script interpreter by entering #!<interpreter_path> as the first line of the script. When you
use a build-rule script, you must specify the files the script produces as the build rule’s output files. See
“Creating a Custom Build Rule Script” (page 263).

When processing a source file, Xcode evaluates the build rules from top to bottom and chooses the first one
whose condition matches the source file being processed. Because custom build rules appear above the
built-in system rules, the custom build rules can override the system build rules.

System Rules

System rules are predefined rules in all targets and are used to process several well-known file types. Table
24-5 lists the system rules that Xcode provides.

Table 24-5 System rules

OutputsInputsRule

.mom.xcdatamodelData Model Compiler

.o.c, .mC

.o.sAssembler

.h, .c.yYacc

.c.h, .cLex

.rsrc.rRez

.c.defsMiG

Creating a Custom Build Rule

In addition to the system build rules, Xcode lets you define custom build rules on a per-target basis. Custom
build rules allow you to change the way files of a particular type are processed or add support for types of
files not directly addressed by the system rules.

262 Build Rules
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

To add a new build rule to a target, click the plus (+) button at the bottom of the Rules pane in the target
inspector. Likewise, you can delete any rule—other than the system rules—by selecting the rule and clicking
the minus (-) button.

To define a build rule’s condition, choose a file type from the Process pop-up menu. You can also define rules
that match arbitrary file names by choosing the last item in the pop-up menu (“Source files with names
matching:”) and specifying a filename pattern in the text field that appears. This field accepts the same kinds
of file patterns that a Terminal shell accepts. For example, to match all files whose names start with a capital
letter and end with a .def suffix, you specify [A-Z]*.def as the pattern.

You define the build rule's action by choosing one of the available compilers from the “using” pop-up menu.
Xcode provides a number of built-in compilers for you to choose from. Alternatively, you can define your
own custom script for processing files that meet the build rule’s condition, as described in “Creating a Custom
Build Rule Script” (page 263).

When processing a source file in the target, Xcode evaluates the build rules from top to bottom and chooses
the first one whose condition matches the source file being processed. For this reason, you should put the
most specific build rules above the more general ones. For example, a rule that matches only C++ files should
appear above a rule that matches all C-like files—that is, C, C++, Objective-C, and Objective-C++ files. You
can reorder custom rules by clicking in their background and dragging them. System rules cannot be reordered.

Creating a Custom Build Rule Script

Instead of choosing one of Xcode’s built-in compilers to process the files specified by a build rule’s condition,
you can create a custom script to process those files. To do so, choose the “Custom script:” menu item. You
can enter your script in the text field that appears, or you can store your script as a separate file in your project
and invoke it from the text field using its project-relative path. In this case, you are actually defining a one-line
script that calls the script in your project.

In addition to defining the script, you also need to tell Xcode the paths of any output files that the script
produces. Enter the path to each separate output file that is produced by the script in the “with output files”
table below the script text field. For each file, create a new row by clicking the plus (+) button. In this row,
specify either the full (absolute) path or the project-relative path to the file. You can use any of the environment
variables listed in Table 24-6 (page 264).

For example, suppose that you need to define a build rule to process files with the extension .abcdef. Also
suppose that the build-rule script produces a .c file for each .abcdef file and that the generated .c files
are placed in the default directory for intermediate files. In this case, the output-files specification could look
like this:

$(DERIVED_FILES_DIR)/$(INPUT_FILE_BASE).c

The generated files are automatically fed back to the rule-processing engine. For example, continuing the
.abcdef example rule, Xcode processes the .c files the script produces using the rule that processes .c
files.

Build Rules 263
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Execution Environment for Build-Rule Scripts

Before executing a build-rule script, Xcode sets environment variables to reflect the values of some build
settings used to build the product. See “Using Build Settings With Run Script Build Phases” (page 284) for
details. In addition, Xcode sets a few environment variables to values the script may need to access. Table
24-6 describes these environment variables.

Table 24-6 Environment variables for build-rule scripts

ExampleDescriptionVariable

/Users/me/Project/source.cppPath to the
source file
being
processed.

INPUT_FILE_PATH

/Users/me/ProjectDirectory
containing the
source file.

INPUT_FILE_DIR

source.cppFilename of
the source file
being
processed,
including its
extension.

INPUT_FILE_NAME

sourceBase filename
of the source
file being
processed.

INPUT_FILE_BASE

.cppSuffix of the
source file
being
processed,
including the
leading
period.

INPUT_FILE_SUFFIX

/Users/me/project/build/Project.build/Target.build/Derived-
Sources

Path of the
directory for
derived
(intermediate)
files.

DERIVED_FILES_DIR

/Users/me/Project/buildPath to the
directory into
which the
target’s
products are
being built.

TARGET_BUILD_DIR

264 Build Rules
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

Xcode runs build-rule scripts with the current working directory set to the project directory. This lets you
access specific source files by using their project-relative paths.

Build Rules 265
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

266 Build Rules
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

Build Phases

A build setting is a variable that contains information used to build a product. For each operation performed
in the build process—such as compiling Objective-C source files—build settings control how that operation
is performed. For example, the information in a build setting can specify which options Xcode should pass
to the tool—in this case, the compiler—used to perform that operation.

Build settings constitute the main method of customizing the build process. They represent variable aspects
of the build process that Xcode consults as it builds a product.

This chapter explains how build settings are implemented and how you can take advantage of them to
communicate with the build system. It explains the build setting syntax, the layers in which you can specify
build settings, and how you can use them to customize the build process.

Overview of Build Settings

A build setting in Xcode has two parts: the name and the specification. The build setting name identifies
the build setting and can be used within other settings; in that sense, it is similar to the names of environment
variables in a command shell. The build setting specification is the information Xcode uses to determine
the value of the build setting at build time. A build setting may also have a title, which is used to display the
build setting in the Xcode user interface.

Figure 25-1 A build setting

Build setting

Name

Title

Specification

The build system consults the value of build settings as it generates tool invocations. For example, to generate
profiling code for all the source files compiled with gcc, you turn on the Generate Profiling Code
(GCC_GENERATE_PROFILING_CODE) build setting. When Xcode creates the gcc command-line invocation
to compile a source file, it evaluates build settings such as Generate Profiling Code to construct the argument
list.

Build setting values may come from a number of different sources at build time. Xcode stores build setting
definitions in dictionaries spread across several layers. Typically, you will be most interested in the target and
build style layers; however, it is important to understand the various layers from which build setting values
can be derived. See “Build Setting Layers” (page 269) for details.

Xcode has many built-in build settings that you can use to customize the build process. Furthermore, you
can define your own build settings, which you can use to configure standard build settings across several
targets or access within scripts in Run Script build phases to perform special tasks.

Overview of Build Settings 267
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

In addition to build settings, you can set per-file compiler flags that the build system uses when creating
tool invocations. They allow you to make changes to how a file is compiled that do not affect any other files
in the project. See “Per-File Compiler Flags” (page 294) for details.

Build Setting Syntax

Build setting names start with an uppercase letter or underscore character; the remaining characters can be
uppercase letters, underscore characters, or numbers. For example, the build setting that specifies the name
of a product is called PRODUCT_NAME. This restriction on the names of build settings helps identify build
settings from other environment variables in shell scripts. The Xcode application doesn’t allow you to define
build settings whose names don’t follow this convention. You can define build settings at the command-line
layer that circumvent this restriction; for example, you can define a build setting called “project_name” in
the command-line layer. Because build setting names are case-sensitive, however, the build system considers
it a distinct build setting and doesn’t override the value of the PROJECT_NAME build setting.

The Xcode application displays titles for most of its standard build settings in the project and target inspectors.
For example, the title of the PRODUCT_NAME build setting is Product Name. xcodebuild doesn’t use build
setting titles.

The value of a build setting is determined by evaluating the build setting specification. A build setting
specification can be a value such as a string, number and so forth; or it can reference the value of other build
settings.

To reference a build setting value in a build setting specification, use the name of the build setting surrounded
by parentheses and prefixed by the dollar-sign character ($). For example, the specification of a build setting
that refers to the value of the Product Name build setting could be similar to The name of this target's
product is $(PRODUCT_NAME).

Note: When referring to build setting values in build setting specifications, you must use the build setting
name, such as PRODUCT_NAME, instead of its title.

In addition to the build settings provided by Xcode, you can add user-defined build settings to a project.
A user-defined build setting is one that is not referenced by the build system. You can add them at the
command line, build style, target, and environment levels. You can reference properly named user-defined
build settings in build setting specifications and scripts in Run Script build phases. User-defined build settings
don’t have a title.

The following list describes some circumstances in which you may need to add user-defined build settings
to a project:

 ■ modify the value of build settings that are not displayed in the Xcode application

 ■ specify a value that can be used by several build settings in different layers (see “Build Setting
Evaluation” (page 271) for details)

 ■ define a build setting you want to use in Run Script build phase scripts or a build-rule script

268 Build Setting Syntax
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build Setting Layers

Build setting specifications are defined in a number of layers depending on whether you build using the
Xcode application or the xcodebuild tool. Figure 25-2 shows these layers.

Figure 25-2 Build setting layers

Xcode application

Build style

Target

Environment

Project

Xcodebuild tool

Command line

Build style

Project

Environment

Target

The specifications of build settings configured in higher layers override the specifications set at lower layers.
The following sections describe each of the build system layers in detail:

1. Command-line layer (xcodebuild only)

The xcodebuild tool’s command invocation represents the highest layer in which you can configure
build settings when building a product. The build settings configured in this layer are accessible only to
xcodebuild.

This layer gives you a way to customize builds done in batch mode from the command line without
needing access to the Xcode application.

2. Build style layer

The build style layer is available to both the Xcode application and the xcodebuild tool. It defines build
setting variations for a build. These are changes to build setting definitions in the target layer and lower
layers that allow you to produce different “flavors” of a product without having to create separate targets.

Another use of the build style layer is to provide values for build settings to be shared by more than one
target. All targets have access to the build settings in the active build style. When you have multiple
targets with build settings that should be synchronized, a build style can be a convenient way to do so.
See “Build Setting Evaluation” (page 271) for details.

For more information on build styles, see “Build Styles” (page 297).

3. Target layer

Build Setting Layers 269
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

This is the main layer for specifying how a product is built. Generally, it’s the one that defines the largest
number of build settings.

The Xcode user interface displays most of the build settings defined in this layer. However, the
specifications displayed may not correspond to the values the build system obtains when building a
product, unless you’ve customized the specification. For example, Installation Path (INSTALL_PATH) has
a default value of /usr/local/lib for targets that produce a static library. This value is not shown in
the target inspector; that is, the value shown for Installation Path is empty. But if you set the build setting
to $(INSTALL_PATH)/mylib in the target inspector, at build time, INSTALL_PATH is
/usr/local/lib/mylib.

Each target has its own set of build settings. That is, Xcode evaluates build settings for a target
independently from the build settings defined in other targets. This is true even for dependent and
aggregate targets.

For more information on targets, see “Targets” (page 231).

4. Project layer

Xcode and xcodebuild use the Project layer to specify project-wide aspects, such as the location of
the project itself. Build settings such as TEMP_DIR are specified in this layer. There is no mechanism for
you to add build settings to this layer or modify the build setting specifications in it because you customize
them in higher layers.

Note: The SYMROOT, OBJROOT and SDKROOT build settings are exceptions. Xcode provides a user
interface for modifying these build settings in the project inspector. The SYMROOT and OBJROOT build
settings identify the build locations for build products and intermediate build files, respectively. The
interface for setting these locations is described in “Build Locations” (page 301). The SDKROOT build
setting specifies the path to the SDK to build against; “Using Cross-Development in Xcode” (page 333)
describes how to choose an SDK in the project inspector.

5. Environment layer

The environment layer is composed of environment variables that correspond to build setting names.
You can use it to configure build settings that must apply to more than one project. This layer, however,
cannot access build settings configured in any other layer. For example, defining an environment variable
named MY_PRODUCT_NAME as My Company $(PRODUCT_NAME) results in an undefined-variable error,
unless you also define an environment variable named PRODUCT_NAME.

You must follow the syntax described in “Build Setting Syntax” (page 268) when defining the environment
variables in your session.

Note: If you associate additional compiler flags with a file, as described in “Per-File Compiler Flags” (page
294), those flags will always be used when the file is processed as part of a build. They cannot be overridden
in any of the build setting layers.

270 Build Setting Layers
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build Setting Evaluation

To take advantage of build settings in your project, you must understand how they are evaluated when
Xcode builds your product. Placing build setting specifications in particular build setting layers provides you
the ability to, for example, quickly change an aspect of a product when building from the command line,
configure a product aspect only in one of a product’s alternate “flavors” but not in all of them, or specify an
aspect for all the projects that you work on.

This article describes how Xcode evaluates build settings. It provides details that help you determine where
to place build setting specifications to greatly customize the build process.

Overview of Build Setting Evaluation

At build time, Xcode evaluates each build setting individually. Figure 25-3 shows the order in which the build
system evaluates build settings.

Figure 25-3 Build setting evaluation precedence

Environment

Command line

Build style

Target

Project

Note: Remember that the build setting layers may not all be available when you build a product. If you build
from the Xcode application, the command-line layer is not used. See “Build Setting Layers” (page 269) for
details.

When the build system needs the value of a build setting, it starts at the highest build setting layer available
to it and works down in the order shown in the following list:

1. Command invocation: Build settings defined in the xcodebuild invocation.

2. Build style: Build settings defined in the active build style.

3. Target: Build settings defined in the target being built.

Build Setting Evaluation 271
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

4. Product: Build settings whose value depends on the type of product built by the target.

5. Environment variables: Build settings defined in the Xcode application environment or the shell from
which xcodebuild is launched.

As soon as the build system finds a definition for the build setting it’s looking for, it stops traversing the build
setting layers. However, if the build setting specification found includes references to other build settings,
it resolves them, which starts the traversing process again, as many times as necessary to compute the value
of the original build setting.

If a build setting refers to itself (that is, the build setting specification includes a reference to the build setting
being evaluated), the build system resolves the reference starting at the subsequent build setting layer. The
following sections provides examples illustrating this process.

Evaluating a Build Setting Defined in Multiple Layers

Imagine that you need to define a single build setting at every build setting layer (except the noncustomizable
project layer) in order to build a product. This is a very unlikely case to be sure, but one that illustrates how
the process works. Table 25-1 shows an example configuration for the LAYERED build setting throughout
the build setting layers. This example assumes that the product is built from the command-line using
xcodebuild:

Table 25-1 Configuration of the LAYERED build setting

Build setting specificationBuild setting layer

command line, $(LAYERED)Command line

build style, $(LAYERED)Build style

target, $(LAYERED)Target

environmentEnvironment

Figure 25-4 shows how the build system would evaluate the LAYERED build setting when building using
xcodebuild.

272 Build Setting Evaluation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Figure 25-4 Evaluation of the LAYERED build setting

Command line

Look for a
definition for
LAYERED

Build style

Target

Environment

LAYERED: environment

1

LAYERED: target, $(LAYERED)

LAYERED: build style, $(LAYERED)

LAYERED: command line, $(LAYERED)

2

3

4

Found

Note: The project layer is omitted from Figure 25-4 because you cannot configure build settings in that
layer.

To evaluate the LAYERED build setting, the build system does the following:

1. Looks for a definition for LAYERED in the command-line layer (the highest available to xcodebuild). It
finds the specification command line, $(LAYERED).

2. Resolves $(LAYERED) starting at the next layer down, the build style layer. At this layer, it obtains the
specification build style, $(LAYERED). Because this specification also references the value of the
LAYERED build setting, the build system continues to look in lower layers for the build setting specification.

3. Resolves $(LAYERED) starting at the target layer, obtaining target, $(LAYERED).

4. Resolves $(LAYERED) starting at the environment layer, obtaining environment.

The evaluation of LAYERED stops here because there are no build setting layers below the environment
layer. When all the references are resolved, the final value of the build setting is computed as command
line, build style, target, environment.

This example uses $(LAYERED) to access the value of the same build setting at a lower layer. However, you
can also use $(value) for that purpose. That is, replacing $(LAYERED) with $(value) in the any of the
build setting specifications at the command-line, build-style, or target layers in the example above yields the
same result.

The process of evaluating a build setting specification that references itself repeats recursively until the build
system reaches the environment layer or until the build system finds a build setting specification that does
not reference its own value.

Build Setting Evaluation 273
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Evaluating a Build Setting Specification Using Several Values

The build system gives you a great deal of flexibility when configuring build settings. The following example
illustrates how the build system evaluates the STAGGERED build setting, which is defined in the Target layer
and references the values of several other build settings.

The value of the STAGGERED build setting is composed of data and a caption for the data, with the caption
shown first and both elements separated by a colon (:) and a space. The specification for STAGGERED contains
references to two other build settings: LAYERED (the data, explained in the previous section) and CAPTION
(the caption for the data). It also contains static elements (the colon and space characters).

Figure 25-5 shows the evaluation of the STAGGERED build setting.

Figure 25-5 Evaluation of the STAGGERED build setting

1

2

3

Command line

Look for
specification

STAGGERED

Look for
specification
CAPTION

Look for
specification
LAYERED

Build style

Not found

4

Target

Environment

LAYERED: environment

STAGGERED: $(CAPTION): $(LAYERED)

5

4a

4b

4c

5a

CAPTION: evaluation order

Found

LAYERED: target, $(LAYERED)

LAYERED: build style, $(LAYERED)

LAYERED: command line, $(LAYERED)

These are the steps the build system takes to evaluate the STAGGERED build setting:

1. Look for a specification for STAGGERED in the command-line layer. None is found.

2. Look for a specification for STAGGERED in the build style layer. None is found.

3. Look for a specification for STAGGERED in the target layer.

The build system finds a specification for STAGGERED: $(CAPTION): $(LAYERED). Here is where the
evaluation of the STAGGERED build setting begins.

4. Resolve $(CAPTION) starting at the command-line layer:

274 Build Setting Evaluation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

a. Look for a specification for CAPTION in the command-line layer. None is found.

b. Look for a specification for CAPTION in the build style layer. None is found.

c. Look for a specification for CAPTION in the target layer. The build system finds the specification
evaluation order.

The evaluation of CAPTION stops here because there are no references to other build settings. The
final value of the CAPTION build setting is evaluation order.

5. Resolve $(LAYERED) starting at the command-line layer.

a. Look for a specification for LAYERED in the command-line layer. The build system finds the
specification command line, $(LAYERED). The build system resolves the specification for LAYERED
at this build setting layer as described in the previous section. The final value of the LAYERED build
setting is command line, build style, target, environment.

6. Get the final value for the STAGGERED build setting by replacing the two references in the build setting’s
specification with their values: evaluation order: command line, build style, target,
environment.

Knowing the precedence that the build system uses when evaluating build settings makes it easy to determine
where to configure build settings to tailor the build process for special situations. Following the STAGGERED
example, imagine you want to override the value of the CAPTION build setting at the build style layer. All
you would have to do is configure the CAPTION build setting in the active build style with the appropriate
value.

Figure 25-6 shows the effects of overriding CAPTION in the build style layer.

Build Setting Evaluation 275
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Figure 25-6 Evaluation of the STAGGERED build setting with CAPTION overridden in the Build Style layer

Build Style

1

2

3

Command line

Look for
specification

STAGGERED

Look for
specification
CAPTION

Look for
specification
LAYERED

Not found

4

Target

Environment

LAYERED: environment

STAGGERED: $(CAPTION): $(LAYERED)

5

4a

4b

5a

CAPTION: evaluation orderFound LAYERED: target, $(LAYERED)

LAYERED: build style, $(LAYERED)

LAYERED: command line, $(LAYERED)

CAPTION: order of evaluation

These are the steps the build system takes to evaluate the STAGGERED build setting after overriding CAPTION
in the build style build setting layer:

1. Look for a specification for STAGGERED in the command-line layer. None is found.

2. Look for a specification for STAGGERED in the build style layer. None is found.

3. Look for a specification for STAGGERED in the target layer. The build system finds $(CAPTION):
$(LAYERED).

4. Resolve $(CAPTION) starting at the command-line layer:

a. Look for a specification for CAPTION in the command-line layer. None is found.

b. Look for a specification for CAPTION in the build style layer. The build system finds order of
evaluation.

The evaluation of CAPTION stops here because there are no references to other build settings in its
specification. Even though CAPTION is configured in the target layer, that specification has been
overridden in the build style layer; therefore, it’s ignored. The final value of CAPTION in this example
is evaluation order.

5. Look for a specification for LAYERED in the command-line layer. The build system finds command line,
$(LAYERED).

276 Build Setting Evaluation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

a. Resolve the specification for LAYERED at this build setting layer as described earlier in this section,
obtaining command line, build style, target, environment.

6. Get the final value for the STAGGERED build setting by replacing the two references in the build setting’s
specification with their values: order of evaluation: command line, build style, target,
environment.

A build style can define build settings that are shared among all the targets processed during a build. Figure
25-7 illustrates how two targets can use a build setting configured in the active build style.

Figure 25-7 Sharing build setting values among targets

Aggregate target

Build style

STYLE: eclectic

Subtarget A

DRESS_STYLE: $(STYLE)

Subtarget B

HAIR_STYLE: $(STYLE)

When the aggregate target is built, DRESS_STYLE in target A and HAIR_STYLE in target B evaluate to eclectic.

Editing Build Settings in the Xcode Application

The Xcode application lets you access and edit build settings at the target and build style layers. It provides
a convenient graphical user interface for changing build setting specifications. For native targets, the target
inspector lets you see build setting specifications at the target layer. The project inspector lets you examine
the build settings defined for the project’s build styles. To view and edit build settings for legacy Project
Builder targets and external targets, use the target editor.

Viewing Build Settings in an Inspector

You can view and edit build settings at the target level in the Build pane of the target inspector. To modify
build settings at the build style level, use the Styles pane of the project inspector. The interface for modifying
build settings in these two inspector window panes is almost identical.

Editing Build Settings in the Xcode Application 277
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Figure 25-8 The Build pane of a target Info window

Build setting description

Edit value
Add setting
Delete setting

Search

Figure 25-8 shows the Build pane of the target inspector. The target’s build settings appear in a table in the
Build pane. The columns show, from left to right:

 ■ An icon indicating the type of setting. For example, settings that control warnings and errors are indicated
by the warning icon.

 ■ The Setting column contains the build setting title. This is a brief English-language description of the
setting. To see the build setting name, open the help field, as described later in this section.

 ■ The Value column contains the build setting specification. For Xcode’s standard build settings, this may
be a string, a pop-up menu of possible values, or an on/off value. This specification can also reference
the value of other build settings.

If you do not know what a particular build setting does, the help field displays a longer description of the
selected build setting. If the help field is not visible, drag the resize control below the build settings table to
view the contents of the help field. If you want to know the name of the build setting, you can also find that
in the help field.

You can search the table of build settings for a keyword or other text string using the search field at the top
of the pane. As you type, Xcode filters the list to include only those settings that match the text in the search
field. For example, you can find all build settings related to search paths by typing “search.” Xcode searches
both the build setting title and the build setting description in the help field.

If you know the title of the build setting you are looking for and keyboard focus is in the build settings table,
you can simply start typing the build setting name to select that build setting.

278 Editing Build Settings in the Xcode Application
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Note that the inspector does not tell you all the build settings used when you press the Build button. The
inspector shows only the build settings defined at the target or build style layer. To learn how to view all
build settings used when you build, see “Finding Where a Build Setting is Defined” (page 284).

As mentioned earlier in “Build Setting Layers” (page 269), build settings defined in a build style have higher
precedence than those defined in the target layer. If a build setting is defined in both the active build style
and in the active target, the definition in the build style overrides that in the target. Xcode indicates this in
the target inspector by crossing out settings that are overridden by the active build style. You can jump to
the active build style’s definition of that build setting by Control-clicking the build setting and choosing
Jump to Active Build Style. Xcode opens the project inspector to the Styles pane and selects the build style’s
definition for the build setting. Build settings that are defined at the target level are shown in boldface in
the target inspector.

You can modify build settings for multiple targets at once; the Build pane of the target inspector supports
multiple selection. To edit build settings for more than one target at a time, select those targets in the project
window and open an inspector window.

For a list of the build settings available in the Xcode application’s user interface see “Build Setting Names
and Their Corresponding Titles” (page 286). For a complete list of Xcode build settings, see Xcode Build
Settings or choose Help > Show Build Settings Notes.

Collections of Build Settings

For easy access to sets of related build settings, Xcode groups build settings into several different collections.
The Collection pop-up menu above the build settings table contains a list of all available groups of build
settings. To view the build settings in a group, choose that group from the pop-up menu, as shown in the
following figure.

Editing Build Settings in the Xcode Application 279
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Figure 25-9 Choosing a build setting collection

Xcode provides groups for build settings that affect general aspects of the build process—such as the location
at which build products are placed—as well as collections for tool-specific build settings that affect compiler
options. Build setting collections have no effect on how the target is built.

To see all of the possible build settings and their definitions, if any, choose All Settings from the Collection
menu. Note that tool-specific build settings appear in the target inspector only if the target contains files
that are built using that tool. For example, if the target does not contain any resource files processed using
the Rez tool, the Rez-specific build settings do not appear in the Collection menu.

The Customized Settings collection shows all of the build settings that are defined at the current target or
build style layer. Like a smart group, the Customized Settings collection automatically updates to reflect
changes to build settings at the current layer. For example, if you make a change to the value of a build
setting in one of the other collections, the Customized Settings collection changes to include that build
setting and its new definition.

Editing Build Setting Specifications

For standard build settings, the interface for modifying a build setting’s specification in the target and project
inspectors depends on the possible values for that build setting. These possible values are:

280 Editing Build Settings in the Xcode Application
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

 ■ String. If a build setting takes a string as its value, select the build setting row and click Edit. If the build
setting takes a single string as its value, Xcode displays a text field; type the string into this field. You
can also edit the string simply by clicking in the Value column for the build setting and typing the value.

If the build setting can contain one or more strings—for example, Header Search Paths—Xcode displays
a table. To enter a string in this table, click the plus button and type the string into the table row added
by Xcode. You can re-order the strings in the table by dragging the rows to the location at which you
want them to appear.

If you are entering file paths, you can simply drag the file or folder from the Finder into the text field or
table, instead of typing the paths in yourself. Xcode will insert the path to the file.

 ■ Boolean. If a build setting can have two states—enabled or disabled—the Value column contains a
checkbox. A checkmark indicates that the build setting is enabled. To change the state of the build
setting, click the checkbox.

 ■ If a build setting has a finite number of possible values, Xcode displays a pop-up menu in the Value
column. You can choose the desired value from this menu. For example, here is how you might select
a build setting value from a menu:

Figure 25-10 Changing the value of a build setting

In addition, Xcode provides a custom user interface for modifying certain search path and architecture build
settings, as described in “Editing Search Paths” (page 282) and “Creating Multi-Architecture Binaries” (page
283).

Editing Build Settings in the Xcode Application 281
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Adding and Deleting Build Settings

If you do not see the build setting you wish to modify, or if you want to define your own custom build settings,
you can add build settings to the build settings table in the Build pane of the inspector window. To add a
new build setting to a target or build style, click the plus (+) button below the build settings table. Double-click
in the Setting column and type the name of the build setting, then double-click in the Value column and
type the build setting specification.

To delete a build setting from a target, select that build setting and click the minus button (-).

Editing Search Paths

Xcode defines a number of build settings for specifying general search paths for files and frameworks used
by targets in your project. These build settings are:

 ■ Header Search Paths (HEADER_SEARCH_PATHS)

This is a list of paths to folders to be searched by the compiler for included or imported header files
when compiling C, Objective-C, C++, or Objective-C++ source files.

 ■ Library Search Paths (LIBRARY_SEARCH_PATHS)

This is a list of paths to folders to be searched by the linker for static and dynamic libraries used by the
product.

 ■ Framework Search Paths (FRAMEWORK_SEARCH_PATHS)

This is a list of paths to folders containing frameworks to be searched by the compiler for both included
or imported header files when compiling C, Objective-C, C++, or Objective-C++, and by the linker for
frameworks used by the product.

 ■ Rez Search Paths (REZ_SEARCH_PATHS)

This is a list of paths to search for files included by Carbon Resource Manager resources and compiled
with the Rez tool.

Xcode supports recursive search paths. For each path that you enter in one of these search path build settings,
you can specify that Xcode search the directory at that path, as well as any subdirectories that directory
contains.

You can edit search paths in much the same way that you edit other build settings that contain lists of strings,
as described in “Editing Build Setting Specifications” (page 280). However, to specify that Xcode perform a
recursive search for items at a particular path, select the checkbox next to that path in the Recursive column
of the table that Xcode displays when you click Edit in the target or build style inspector. When this is selected,
Xcode searches the directory at the specified location, and all subdirectories in it, for the header, framework,
library or resource.

282 Editing Build Settings in the Xcode Application
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Note: Xcode does not search the contents of certain bundle structures and other special directories. These
are .nib, .lproj, .framework, .gch, .xcode, CVS and .svn directories, as well as any directory whose
name is in parentheses.

Xcode performs a breadth-first search of the directory structure at the search path, following any symlinks.
Xcode searches locations in the order in which they appear in the search paths table, from top to bottom. It
stops when it finds the first matching item, so if you have multiple files or libraries of the same name at the
locations specified by a set of search paths, Xcode uses the first one it finds.

Note that adding very deep directory structures to a list of recursive search paths can increase your project’s
build time. The maximum number of paths that Xcode will expand a single recursive search path to is 1024.

Creating Multi-Architecture Binaries

Xcode can create multi-architecture (or “fat”) binaries, which are executable files that can contain code and
data for more than one CPU architecture. You can target multiple PowerPC-architecture CPUs with a single
binary file. The Architectures (ARCHS) build settings lets you specify which architectures Xcode builds for.
You can edit this build setting in the target inspector: in the Build pane, select the Architectures build setting
and click Edit. Xcode displays a list of all of the supported architectures. Select the checkbox next to the
architectures for which you want to build. You can build for any of following architectures:

 ■ 32-bit architectures:

 ❏ G3

 ❏ G4

 ❏ G5

 ■ 64-bit architecture: G5

Xcode compiles for each architecture individually and creates a single fat file from these input files. For more
information on multi-architecture files, see Mac OS X ABI Mach-O File Format Reference.

Editing Build Settings for Legacy and External Targets

You cannot configure build information for Jam-based Project Builder targets and external targets in the
target inspector. To edit the build settings for Jam-based and external targets in Xcode, select the target in
the Groups & Files list. If you have an editor open in the project window, Xcode displays the Project Builder
target editor. To view this target editor in a separate window, double-click the target.

On the left side of the target editor, Xcode displays a number of groups of target settings appropriate for
the current target. Selecting any of these groups displays its settings in the editor on the right side of the
Target window.

To view the build settings for an external target, select the Custom Build Settings group. To view the build
settings for a legacy Project Builder target, select the Expert View item in the Settings group. The target editor
displays a table of build settings:

 ■ The Name column contains the build setting name.

Editing Build Settings in the Xcode Application 283
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

 ■ The Value column contains the build setting specification.

Similar to the Build pane of the inspector window for native targets, you can add and delete build settings
using the plus (+) and minus (-) buttons below the table. To edit a build setting, double-click in the appropriate
column and type the build setting name or specification. The target editor for legacy targets also includes a
simpler interface for a number of common build settings in the Simple View.

Using Build Settings With Run Script Build Phases

As Xcode constructs the command-line invocations for the various tools it uses to build a product, it accesses
the appropriate build settings. Also, when it sets the environment variables for shell scripts in Run Script
build phases, it resolves most build settings and sets environment variables with their values. Notable build
settings that are not passed as environment variables to shell scripts are those geared specifically to tools
such as gcc, lex and yacc. You can identify these build settings by examining the prefixes of build setting
names. For example, Enable Trigraphs (GCC_ENABLE_TRIGRAPHS) contains the prefix GCC, indicating that
it’s exclusively tailored for the gcc tool; therefore, it isn't passed to shell scripts defined in Run Script build
phases.

Note: Modifying the values of the environment variables that the build system sets for shell scripts in Run
Script build phases has no effect on the value of the corresponding build setting. That is, shell scripts executed
as part of the same build process after one in which you modify the environment variables get the unmodified
values. This is the expected UNIX scoping behavior for environment variables.

Troubleshooting Build Settings

As you work on a project, you may need to determine where and how a build setting is defined. Because
build settings can be identified by their name and their title (see “Build Setting Syntax” (page 268) for details),
depending on where a build setting is defined (in the xcodebuild invocation, in an environment variable,
or the Xcode application’s user interface), you need to map between a build setting name and its corresponding
build setting title.

This article provides tips on how to use the build system to help you find build setting specifications and
troubleshoot build setting problems you may encounter.

Finding Where a Build Setting is Defined

During the development process you may need to find the top definition of a build setting to change its
value during a build. That is, the specification that overrides all other specifications throughout the build
setting layers (see “Build Setting Evaluation” (page 271) and “Build Setting Layers” (page 269) for details). This
section showcases a technique you can use to quickly locate the top definition of a build setting.

Look for the top definition of a build setting in these places:

 ■ The xcodebuild invocation (when building using xcodebuild)

 ■ The target you’re interested in

284 Using Build Settings With Run Script Build Phases
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

 ■ The active build style

 ■ The output of the env command

Figure 25-11 shows the steps you would take to find the definition of a build setting when you know the
build setting’s name or title.

Figure 25-11 [Finding the definition of a build setting

Command line

Build style

Target

Environment

Yes

Yes

Yes

Build
setting is
undefined

Definition
found

Yes

Yes

Yes

Using
xcodebuild?

Line
through

text?
Found?

Locate
definition

Found?

Found?

Start search

Bold text?

1. If you’re building using xcodebuild, look for the build setting name in the tool’s invocation. If the build
setting is part of the invocation, you found the definition.

2. Look for the build setting in the target you’re interested in. You can locate a particular build setting by
selecting the All Settings collection in the Build pane of the target inspector and entering the name or
the title of the build setting you’re looking for. See “Build Setting Names and Their Corresponding
Titles” (page 286) for mappings of most build setting titles to the corresponding build setting names and
vice versa.

a. If the build setting has a line through it, it means that the build setting is overridden by the active
build style. Look up the build setting in the active build style to find its definition. You can jump to
the definition of the build setting in the active build style by Control-clicking the build setting and
choosing Jump to Active Build Style.

Troubleshooting Build Settings 285
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

b. If the build setting is displayed in bold text, it means that it’s defined in the target and isn’t overridden
by the active build style. This is the top definition of the build setting.

c. If the build setting is displayed in nonbold text and doesn’t have a line through it, the build setting
is defined in the project layer or the environment layer (see “Build Setting Layers” (page 269) for
details).

3. Look for the build setting in the build environment (the definitions of all the environment variables the
Xcode application or xcodebuild have access to during the build process).

a. Add a Run Script build phase to the target you’re interested in and make it the first build phase to
make it easier to locate the script’s output.

b. Add an invocation to the env command to the build phase’s shell script.

c. If you’re building using the Xcode application, open the Build Results window, reveal the build log
pane, and build the product. If you’re building using xcodebuild, invoke the tool from your shell
as you normally would. See “Building a Product” (page 301) for information on how to build in Xcode.

d. Look at the build log (the detailed log in the Build Results window if using the Xcode application).
The build environment is listed after the group of setenv invocations that set environment variables
that reflect most of the build setting values for the current build. Search that group for the name of
the build setting you’re interested in. If the build setting is not in that group, the build setting is not
defined for the target you are investigating.

If the build setting is defined in the setenv group and the env group, you can override its value
only in the target layer or above. If the build setting is defined only in the env group, look for the
build setting definition among the environment variables defined in the user-configuration files for
the logged-in user. If you find the build setting there, change its specification, log out, and log in.

Build Setting Names and Their Corresponding Titles

This section contains several tables that map build setting names to build setting titles and build setting
titles to build setting names for the general and compiler-related build settings displayed in the Xcode user
interface.

Table 25-2 maps the build setting names with the corresponding build setting titles of the general build
settings.

Table 25-2 General build settings by build setting name

Build setting titleBuild setting name

Alternate Install PermissionsALTERNATE_MODE

Alternate Permissions FilesALTERNATE_PERMISSIONS_FILES

Alternate Install OwnerALTERNATE_OWNER

Alternate Install GroupALTERNATE_GROUP

286 Troubleshooting Build Settings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting titleBuild setting name

Preserve HFS DataCOPYING_PRESERVES_HFS_DATA

Current Project VersionCURRENT_PROJECT_VERSION

Deployment LocationDEPLOYMENT_LOCATION

Deployment Post-processingDEPLOYMENT_POSTPROCESSING

Compatibility VersionDYLIB_COMPATIBILITY_VERSION

Current VersionDYLIB_CURRENT_VERSION

Exported Symbols FileEXPORTED_SYMBOLS_FILE

Framework Search PathsFRAMEWORK_SEARCH_PATHS

Framework VersionFRAMEWORK_VERSION

Force Package Info GenerationGENERATE_PKGINFO_FILE

Header Search PathsHEADER_SEARCH_PATHS

Info.plist FileINFOPLIST_FILE

Initialization RoutineINIT_ROUTINE

Install GroupINSTALL_GROUP

Install PermissionsINSTALL_MODE_FLAG

Install OwnerINSTALL_OWNER

Installation PathINSTALL_PATH

Library Search PathsLIBRARY_SEARCH_PATHS

Library StyleLIBRARY_STYLE

Mac OS X Deployment TargetMACOSX_DEPLOYMENT_TARGET

Other Linker FlagsOTHER_LDFLAGS

PrebindingPREBINDING

Private Headers Folder PathPRIVATE_HEADERS_FOLDER_PATH

Product NamePRODUCT_NAME

Public Headers Folder PathPUBLIC_HEADERS_FOLDER_PATH

Rez Search PathsREZ_SEARCH_PATHS

Symbol Ordering FlagsSECTORDER_FLAGS

Troubleshooting Build Settings 287
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting titleBuild setting name

Skip InstallSKIP_INSTALL

Unstripped ProductUNSTRIPPED_PRODUCT

Versioning SystemVERSIONING_SYSTEM

Warning Linker FlagsWARNING_LDFLAGS

Wrapper ExtensionWRAPPER_EXTENSION

Zero LinkZERO_LINK

Table 25-3 maps the build setting titles with the corresponding build setting names of the general build
settings.

Table 25-3 General build settings by build setting title

Build setting nameBuild setting title

ALTERNATE_GROUPAlternate Install Group

ALTERNATE_OWNERAlternate Install Owner

ALTERNATE_MODEAlternate Install Permissions

ALTERNATE_PERMISSIONS_FILESAlternate Permissions Files

DYLIB_COMPATIBILITY_VERSIONCompatibility Version

CURRENT_PROJECT_VERSIONCurrent Project Version

DYLIB_CURRENT_VERSIONCurrent Version

DEPLOYMENT_LOCATIONDeployment Location

DEPLOYMENT_POSTPROCESSINGDeployment Post-processing

EXPORTED_SYMBOLS_FILEExported Symbols File

GENERATE_PKGINFO_FILEForce Package Info Generation

FRAMEWORK_SEARCH_PATHSFramework Search Paths

FRAMEWORK_VERSIONFramework Version

HEADER_SEARCH_PATHSHeader Search Paths

INFOPLIST_FILEInfo.plist File

INIT_ROUTINEInitialization Routine

INSTALL_GROUPInstall Group

288 Troubleshooting Build Settings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting nameBuild setting title

INSTALL_MODE_FLAGInstall Permissions

INSTALL_OWNERInstall Owner

INSTALL_PATHInstallation Path

LIBRARY_SEARCH_PATHSLibrary Search Paths

LIBRARY_STYLELibrary Style

MACOSX_DEPLOYMENT_TARGETMac OS X Deployment Target

OTHER_LDFLAGSOther Linker Flags

PREBINDINGPrebinding

COPYING_PRESERVES_HFS_DATAPreserve HFS Data

PRIVATE_HEADERS_FOLDER_PATHPrivate Headers Folder Path

PRODUCT_NAMEProduct Name

PUBLIC_HEADERS_FOLDER_PATHPublic Headers Folder Path

REZ_SEARCH_PATHSRez Search Paths

SKIP_INSTALLSkip Install

SECTORDER_FLAGSSymbol Ordering Flags

UNSTRIPPED_PRODUCTUnstripped Product

VERSIONING_SYSTEMVersioning System

WARNING_LDFLAGSWarning Linker Flags

WRAPPER_EXTENSIONWrapper Extension

ZERO_LINKZero Link

Table 25-4 maps the build setting names with the corresponding build setting titles of the compiler-related
build settings.

Table 25-4 GNU C/C++ compiler build settings by build setting name

Build setting titleBuild setting name

Enable AltiVec ExtensionsGCC_ALTIVEC_EXTENSIONS

C Language DialectGCC_C_LANGUAGE_STANDARD

'char' Type Is UnsignedGCC_CHAR_IS_UNSIGNED_CHAR

Troubleshooting Build Settings 289
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting titleBuild setting name

CodeWarrior-Style Inline AssemblyGCC_CW_ASM_SYNTAX

Level of Debug SymbolsGCC_DEBUGGING_SYMBOLS

Generate Position Dependent CodeGCC_DYNAMIC_NO_PIC

Allow 'asm', 'inline', 'typeof'GCC_ENABLE_ASM_KEYWORD

Enable C++ ExceptionsGCC_ENABLE_CPP_EXCEPTIONS

Enable C++ Runtime TypesGCC_ENABLE_CPP_RTTI

Fix & ContinueGCC_ENABLE_FIX_AND_CONTINUE

Enable Objective-C ExceptionsGCC_ENABLE_OBJC_EXCEPTIONS

Enable Objective-C Garbage CollectionGCC_ENABLE_OBJC_GC

Recognize Pascal StringsGCC_ENABLE_PASCAL_STRINGS

Enable TrigraphsGCC_ENABLE_TRIGRAPHS

Relax IEEE ComplianceGCC_FAST_MATH

Accelerated Objective-C DispatchGCC_FAST_OBJC_DISPATCH

Generate Debug SymbolsGCC_GENERATE_DEBUGGING_SYMBOLS

Generate Profiling CodeGCC_GENERATE_PROFILING_CODE

Compile Sources AsGCC_INPUT_FILETYPE

Target CPUGCC_MODEL_CPU

Use 64-bit Integer MathGCC_MODEL_PPC64

Instruction SchedulingGCC_MODEL_TUNING

No Common BlocksGCC_NO_COMMON_BLOCKS

Assume Non-nil ReceiversGCC_NO_NIL_RECEIVERS

Use One Byte 'bool'GCC_ONE_BYTE_BOOL

Optimization LevelGCC_OPTIMIZATION_LEVEL

C Dialects to PrecompileGCC_PFE_FILE_C_DIALECTS

Precompile Prefix HeaderGCC_PRECOMPILE_PREFIX_HEADER

Prefix HeaderGCC_PREFIX_HEADER

Preprocessor MacrosGCC_PREPROCESSOR_DEFINITIONS

290 Troubleshooting Build Settings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting titleBuild setting name

Make Strings Read-OnlyGCC_REUSE_STRINGS

Short Enumeration ConstantsGCC_SHORT_ENUMS

Enforce Strict AliasingGCC_STRICT_ALIASING

Treat Nonconformant Code Errors as WarningsGCC_TREAT_NONCONFORMANT_CODE_ERRORS_AS_WARNINGS

Treat Warnings as ErrorsGCC_TREAT_WARNINGS_AS_ERRORS

Unroll LoopsGCC_UNROLL_LOOPS

Missing Function PrototypesGCC_WARN_ABOUT_MISSING_PROTOTYPES

Mismatched Return TypeGCC_WARN_ABOUT_RETURN_TYPE

Incomplete Objective-C ProtocolsGCC_WARN_ALLOW_INCOMPLETE_PROTOCOL

Check Switch StatementsGCC_WARN_CHECK_SWITCH_STATEMENTS

Effective C++ ViolationsGCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONS

Four Character LiteralsGCC_WARN_FOUR_CHARACTER_CONSTANTS

Hidden Virtual FunctionsGCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS

Inhibit All WarningsGCC_WARN_INHIBIT_ALL_WARNINGS

Non-virtual DestructorGCC_WARN_NON_VIRTUAL_DESTRUCTOR

Initializer Not Fully BracketedGCC_WARN_INITIALIZER_NOT_FULLY_BRACKETED

Missing Braces and ParenthesesGCC_WARN_MISSING_PARENTHESES

Pedantic WarningsGCC_WARN_PEDANTIC

Hidden Local VariablesGCC_WARN_SHADOW

Sign ComparisonGCC_WARN_SIGN_COMPARE

Typecheck Calls to printf/scanfGCC_WARN_TYPECHECK_CALLS_TO_PRINTF

Uninitialized Automatic VariablesGCC_WARN_UNINITIALIZED_AUTOS

Unknown PragmaGCC_WARN_UNKNOWN_PRAGMAS

Unused FunctionsGCC_WARN_UNUSED_FUNCTION

Unused LabelsGCC_WARN_UNUSED_LABEL

Unused ParametersGCC_WARN_UNUSED_PARAMETER

Unused ValuesGCC_WARN_UNUSED_VALUE

Troubleshooting Build Settings 291
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting titleBuild setting name

Unused VariablesGCC_WARN_UNUSED_VARIABLE

Other C FlagsOTHER_CFLAGS

Other C++ FlagsOTHER_CPLUSPLUSFLAGS

Other Warning FlagsWARNING_CFLAGS

Table 25-5 maps the build setting titles with the corresponding build setting names of the compiler-related
build settings.

Table 25-5 GNU C/C++ compiler build settings by build setting title

Build setting nameBuild setting title

GCC_FAST_OBJC_DISPATCHAccelerated Objective-C Dispatch

GCC_ENABLE_ASM_KEYWORDAllow 'asm', 'inline', 'typeof'

GCC_NO_NIL_RECEIVERSAssume Non-nil Receivers

GCC_PFE_FILE_C_DIALECTSC Dialects to Precompile

GCC_C_LANGUAGE_STANDARDC Language Dialect

GCC_CHAR_IS_UNSIGNED_CHAR'char' Type Is Unsigned

GCC_WARN_CHECK_SWITCH_STATEMENTSCheck Switch Statements

GCC_CW_ASM_SYNTAXCodeWarrior-Style Inline Assembly

GCC_INPUT_FILETYPECompile Sources As

GCC_WARN_EFFECTIVE_CPLUSPLUS_VIOLATIONSEffective C++ Violations

GCC_ALTIVEC_EXTENSIONSEnable AltiVec Extensions

GCC_ENABLE_CPP_EXCEPTIONSEnable C++ Exceptions

GCC_ENABLE_CPP_RTTIEnable C++ Runtime Types

GCC_ENABLE_OBJC_EXCEPTIONSEnable Objective-C Exceptions

GCC_ENABLE_OBJC_GCEnable Objective-C Garbage Collection

GCC_ENABLE_TRIGRAPHSEnable Trigraphs

GCC_STRICT_ALIASINGEnforce Strict Aliasing

GCC_ENABLE_FIX_AND_CONTINUEFix & Continue

GCC_WARN_FOUR_CHARACTER_CONSTANTSFour Character Literals

292 Troubleshooting Build Settings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting nameBuild setting title

GCC_GENERATE_PROFILING_CODEGenerate Profiling Code

GCC_GENERATE_DEBUGGING_SYMBOLSGenerate Debug Symbols

GCC_DYNAMIC_NO_PICGenerate Position Dependent Code

GCC_WARN_SHADOWHidden Local Variables

GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONSHidden Virtual Functions

GCC_WARN_ALLOW_INCOMPLETE_PROTOCOLIncomplete Objective-C Protocols

GCC_WARN_INHIBIT_ALL_WARNINGSInhibit All Warnings

GCC_WARN_INITIALIZER_NOT_FULLY_BRACKETEDInitializer Not Fully Bracketed

GCC_MODEL_TUNINGInstruction Scheduling

GCC_DEBUGGING_SYMBOLSLevel of Debug Symbols

GCC_REUSE_STRINGSMake Strings Read-Only

GCC_WARN_ABOUT_RETURN_TYPEMismatched Return Type

GCC_WARN_MISSING_PARENTHESESMissing Braces and Parentheses

GCC_WARN_ABOUT_MISSING_PROTOTYPESMissing Function Prototypes

GCC_NO_COMMON_BLOCKSNo Common Blocks

GCC_WARN_NON_VIRTUAL_DESTRUCTORNon-virtual Destructor

GCC_OPTIMIZATION_LEVELOptimization Level

OTHER_CFLAGSOther C Flags

OTHER_CPLUSPLUSFLAGSOther C++ Flags

WARNING_CFLAGSOther Warning Flags

GCC_WARN_PEDANTICPedantic Warnings

GCC_PRECOMPILE_PREFIX_HEADERPrecompile Prefix Header

GCC_PREFIX_HEADERPrefix Header

GCC_PREPROCESSOR_DEFINITIONSPreprocessor Macros

GCC_ENABLE_PASCAL_STRINGSRecognize Pascal Strings

GCC_FAST_MATHRelax IEEE Compliance

GCC_SHORT_ENUMSShort Enumeration Constants

Troubleshooting Build Settings 293
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

Build setting nameBuild setting title

GCC_WARN_SIGN_COMPARESign Comparison

GCC_MODEL_CPUTarget CPU

GCC_TREAT_NONCONFORMANT_CODE_ERRORS_AS_WARNINGSTreat Nonconformant Code Errors as Warnings

GCC_TREAT_WARNINGS_AS_ERRORSTreat Warnings as Errors

GCC_WARN_TYPECHECK_CALLS_TO_PRINTFTypecheck Calls to printf/scanf

GCC_WARN_UNINITIALIZED_AUTOSUninitialized Automatic Variables

GCC_WARN_UNKNOWN_PRAGMASUnknown Pragma

GCC_UNROLL_LOOPSUnroll Loops

GCC_WARN_UNUSED_FUNCTIONUnused Functions

GCC_WARN_UNUSED_LABELUnused Labels

GCC_WARN_UNUSED_PARAMETERUnused Parameters

GCC_WARN_UNUSED_VALUEUnused Values

GCC_WARN_UNUSED_VARIABLEUnused Variables

GCC_MODEL_PPC64Use 64-bit Integer Math

GCC_ONE_BYTE_BOOLUse One Byte 'bool'

Table 25-6 shows GCC 4.0 build settings.

Table 25-6 GCC 4.0 build settings by build setting title

Build setting nameBuild setting title

GCC_AUTO_VECTORIZATIONAuto-vectorization

GCC_FEEDBACK_DIRECTED_OPTIMIZATIONFeedback-Directed Optimization

GCC_SYMBOLS_PRIVATE_EXTERNSymbols Hidden by Default

GCC_INLINES_ARE_PRIVATE_EXTERNInline Functions Hidden

Per-File Compiler Flags

The build system provides facilities for customizing the build process for groups of files assigned to specific
build phases. It includes the Other C Flags (OTHER_CFLAGS), Other C++ Flags (OTHER_CPLUSPLUSFLAGS),
Other Warning Flags (WARNING_CFLAGS), and Preprocessor Macros (GCC_PREPROCESSOR_DEFINITIONS)
build settings, among many others, to customize the invocation of the compiler when processing C-based

294 Per-File Compiler Flags
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

source files. However, sometimes it’s necessary to specify compiler flags on a per-file basis. For example, in
a project that treats warnings as errors in general, you may have a set of cross-platform source files where
it’s more convenient to allow some warnings to remain.

To set compiler flags for a file, select the source file and open an inspector or Info window. Click Build to
open the Build pane, as shown in Figure 25-12. Type any compiler flags you wish to assign to the file in the
Additional Compiler Flags for Target field. Multiple flags should be separated by spaces. You can use multiple
selection to assign compiler flags to a subset of the files in a target. Note that the Build pane is only available
for files containing source code.

For each target that a file belongs to, Xcode maintains a separate list of compiler flags assigned to a file. To
specify compiler flags for use with a file when it is built as part of a particular target, select the file from the
appropriate build phase in that target and open an inspector window, as described above. If you open an
inspector window for the file from any other source or smart group in the project window, Xcode assumes
you want to assign compiler flags to the file in the active target; thus, the Build pane is only available if the
file is part of the active target.

Figure 25-12 The Build pane of the file inspector

When the build system constructs the command-line invocation for the tool that processes the source file,
it adds the additional compiler flags assigned to the file to the invocation. The build system doesn’t validate
the flags you add; that is, it doesn’t test whether the compiler actually supports the options you add, and it
doesn’t investigate whether the options you add conflict with the ones it generates. If you add a group of

Per-File Compiler Flags 295
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

compiler options and flags for a file and the file no longer compiles, you should remove all the flags you
added and add them back one at a time, making sure the file compiles after you add each flag. You should
also consult the tool’s documentation to learn about possible conflicts.

The additional compiler flags specified for a file will always be used when the file is processed as part of a
build and cannot be overridden in any of the build setting layers. See “Build Settings” (page 267) for information
on build settings.

296 Per-File Compiler Flags
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

Build Settings

A build style is a variation on a target that allows you to override some of the build settings in a target without
creating a whole new target. While a target contains a list of files, build rules, build phases, and build settings,
a build style contains only build settings. You can apply the same build style to all targets in your project.
Build styles are a flexible tool for quickly “tweaking” your product or for saving different groups of build
settings to apply to a target depending on the current circumstances.

This article provides a general explanation of build styles, describes the predefined build styles you get when
you create an Xcode project, and explains how to define your own build styles.

Overview of Build Styles

Build styles allow you to build two or more “flavors” or styles of a product without having to change build
settings in the target or create separate targets for each product flavor. When you perform a build, the build
settings defined in a build style modify or add to the group of build settings defined in the targets being
built.

A common use of build styles is to build a given target differently to create development and deployment
versions of a product. There are a handful of build settings—for example, optimization settings for the
compiler—whose values are different, depending upon whether you are building a product for development
purposes or to deploy to customers. In each situation, the target you build is identical in every other way—files,
build phases, and build rules—because the product you want to generate for each is essentially the same.
The only difference is in how the source files of the target are processed to build that product, the “style,” if
you will, in which the target is built.

If you were to create two targets—one for debugging and one for the final build—you would have to
remember to keep both targets in sync. When you added a file to one target, you would have to remember
to add it to the other, and so forth. With a build style, only the build settings defined in the build style are
overridden. A build style does not override a target’s build phases or build rules. It is much simpler to create
build styles containing the build settings whose values you wish to change and then build with the appropriate
build style.

Build styles are defined and used on a per-project basis. When you initiate a build, Xcode builds the active
target, and any targets it depends on, with the active build style. Whatever build settings the active build
style contains override any values assigned to those build settings in the target. See “Build Settings” (page
267) for details.

New Xcode projects contain two predefined build styles, Development and Deployment. You can edit those
build styles or define new build styles of your own.

In addition to the Development and Deployment build styles present in all project types in Xcode, you may
need to add a special build style to satisfy particular needs, such as configuring an environment to measure
the performance of your application. In such a build style you may add build settings that include the addition
of a library or framework that gathers and logs performance-related information. You may also need to target
your application to specific Mac OS X versions. In that case, you may need to build your application slightly

Overview of Build Styles 297
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

Build Styles

differently for each version. For example, you can have build styles named Mac OS X 10.2 and a Mac OS X
10.3 that build a product tailored for Mac OS X version 10.2 and Mac OS X version 10.3, respectively, by setting
Mac OS X Deployment target (MACOSX_DEPLOYMENT_TARGET), and any other build settings necessary, to
the appropriate values.

Predefined Build Styles

A development build of a product may include debugging information to assist you in fixing bugs. However,
this extra information can consume valuable space in a user’s system. A deployment build should contain
only the code necessary to run the application.

Some build settings tell Xcode to add debugging information to an executable or specify whether to optimize
its execution speed. Other build settings turn on features such as ZeroLink and Fix and Continue, which are
useful only during development.

All Xcode project templates include two build styles, the Development build style and the Deployment build
style. By default, the Development build style turns on ZeroLink, Fix and Continue, and debug-symbol
generation, among others, while turning off code optimization. The Deployment build style turns off ZeroLink
and Fix and Continue. The code-optimization level is set to its highest by default, through the Optimization
Level (GCC_OPTIMIZATION_LEVEL) build setting. Note that the Deployment build style doesn’t turn on
Deployment Location (DEPLOYMENT_LOCATION); therefore, the product is not copied to the location where
it would be installed on a user’s system. It also doesn’t turn on Deployment Postprocessing
(DEPLOYMENT_POSTPROCESSING), which specifies whether to strip binaries and whether to set their
permissions to standard values.

For more information on building products for deployment, see “Building From the Command Line” (page
312).

Editing Build Styles

Generally, the two default build styles are enough for most people. You can use them as they are or add
additional build settings to them. For example, you can specify that the Development build style display
more compiler warnings.

If you’re thinking of creating a new target, consider whether it might be best to create a new build style
instead. In general, create a new target to create a new product, and create a new build style to modify how
a target is built. If you’re creating targets that differ only in their build settings, consider creating one target
and several build styles. If you need to create targets that differ in other ways—such as build phases or
information property list entries—you need to create separate targets for each.

Viewing Build Styles for a Project

To view the build styles in your project, select your project, open an Info window. and click Styles to open
the Styles pane, shown in Figure 26-1. You can also choose Project > Edit Active Build Style to open the Styles
pane of the project inspector and select the active build style.

298 Predefined Build Styles
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

Build Styles

Figure 26-1 The Styles pane

The build styles defined in your project are listed in the Build Style pop-up menu at the top of the Styles
pane. To view the contents of a build style, select it from this menu. You can see the build settings defined
in the build style and their specifications in the table below the Build Style menu.

The active build style is the build style applied to the active target, and to any targets it depends upon,
when you build a project. Choose Project > Set Active Build Style or use the Active Build Style toolbar item
in the Build Results window to change the active build style. You can also customize the project window
toolbar to include the Active Build Style item; this allows you to change the active build style directly from
the project window. To customize the toolbar, choose View > Customize Toolbar and drag the Active Build
Style item to the toolbar.

Adding and Deleting Build Styles

Although the Development and Deployment build styles are sufficient in most cases, you may find that you
wish to create your own build style. You can add and remove build styles from your project in the Styles
pane of the inspector window. To create a new build style choose New Build Style from the Build Style pop-up
menu. You can duplicate existing build styles as well.

Editing Build Styles 299
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

Build Styles

To remove a build style from your project:

 ■ Choose Edit Build Styles from the Build Style pop-up menu.

 ■ Select the build style you want to remove in the resulting dialog and click the Delete button.

Modifying Build Settings in a Build Style

You can modify the value of a build setting in a build style in the same way that you change the value of a
build setting in a target, described in “Editing Build Setting Specifications” (page 280).

To add a new build setting to the build style, click the plus (+) symbol in the lower left corner of the build
settings table. Double-click in the Setting column and type the name of the build setting, then double-click
in the Value column and type the value.

To delete a build setting from a build style, select that build setting in the build settings table and click the
minus sign (-) in the lower-left corner.

300 Editing Build Styles
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

Build Styles

To translate the source files and the instructions in a target into a product, you must build that target. You
can build from the Xcode application or from the command-line, using xcodebuild. Building from the
application provides detailed feedback about the progress of the build operation and integration with the
Xcode user interface. For example, when you build from the Xcode application, you can easily jump from an
error message to its location in a source file, make the fix and try the build again. Building from the command
line lets you easily automate builds of a large number of targets across multiple projects.

This chapter describes how to initiate a build from the Xcode application or from the command line; describes
build locations in Xcode and shows you how to create a shared build folder; and shows you how to view
build status, errors, and warnings in Xcode.

Build Locations

When Xcode builds a target, it generates intermediate files, such as object files, as well as the product defined
by the target. As you build software with Xcode, you need to know where Xcode places the output of a build.
For example, suppose you have an application in one project that depends on a library created by a second
project. When building the application, Xcode must be able to locate the library to link it into the application.

By default, Xcode places both the build products and the intermediate files that it generates in the build
folder inside of your project directory. If the software you are developing is contained in a single project, this
default location is probably fine. However, if you have many interdependent targets—particularly if these
targets are divided across multiple projects—you’ll need a shared build folder to ensure that Xcode can
automatically find and use the product created by each of those targets.

Xcode lets you control where the results of a build are placed. In the Building pane of the Xcode Preferences
window, you can specify where Xcode should put build products—that is, the products of a build—for all
projects that you create. You can override this location on a per-project basis. Therefore, a useful approach
is to set your Building preferences to support your most common behavior, then change that behavior in a
particular project when you need a different behavior.

For example, if you are developing a group of related applications, libraries, plug-ins, and so on, you might
set a shared build location in Xcode Preferences. Then the output of each project will end up in the same
location, and can be accessed when building the other projects (such as the previously-mentioned application
that needs to link to a separately-built library).

Xcode also supports the concept of an installation location, which is supported by the Deployment Location
and Installation Path build settings. If you’re building a Deployment build and you turn on the Deployment
Location build setting and you supply a path for the Installation Path build setting, the built product is placed
at the specified location.

Build Locations 301
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

Changing the Default Build Location for All Projects

When you first start up Xcode as a new user, Xcode asks you to specify the directories in which it places the
files generated by the build system, both intermediate files and built products. This default build location is
used for all new projects that you create.

If you don’t supply a build location, Xcode sets the path to the build folder to /, indicating a relative path in
the project directory. Xcode creates a build folder in the project directory and places any build products in
this build folder; by default, it also places intermediate files in a subdirectory of the build folder.

You can change the default build location used for projects that you create in the Building pane of the Xcode
Preferences window. To open this pane, choose Xcode > Preferences and click Building. Figure 27-1 shows
the Building pane of the Xcode Preferences window.

Figure 27-1 Specifying the default location for build results

Build location
settings

To specify the default location for build products, use the “Place Build Products in” options. These are:

 ■ Project directory. Xcode places build products in the build folder inside of the project directory. This
option is set in Xcode by default.

 ■ Customized location. Xcode places build products in the folder identified in this field. Type the full path
to the folder, or click Choose and navigate to the folder you want to use.

302 Build Locations
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

Choose this option to create a shared build folder into which Xcode places the build products of all of
your projects. When Xcode builds a target, it looks first in the project’s build location for any files it
depends upon. For example, given an application target that links against a library built by a target in
different project, using a shared build folder, Xcode automatically finds the most recently built version
of the library and links against it when it builds the application. Without a shared build folder, you must
manually add the library’s build folder into the application’s library search path.

People who use the same project can set their own build folders. This means that every person on a
team can have his or her own shared build folder.

Note: If you use a shared build folder, your products must have different names. Otherwise, products
with the same name overwrite each other.

To set the default location used for the intermediate files—such as object files—generated by Xcode during
a build, use the “Place Intermediate Build Files in” options. Choose one of the following:

 ■ With build products. Xcode places the intermediate build files at the same location as the build products,
whether this is in the project directory or in a separate folder that you have specified. This option is set
in Xcode by default.

 ■ Customized location. Xcode places intermediate files in the folder identified in this field. Type the full
path to the folder, or click Choose and navigate to the folder you want to use.

Overriding the Default Build Location for a Project

Each time you create a new project, Xcode sets the build location for that project to the default build location
specified in the Building pane of the Xcode Preferences window. You can, however, override this default
build location on a per-project basis. This lets you choose a default build location that works best for most
of your projects, and specify another location for the build results of individual projects as needed.

You can override the build location used for an individual project in the General pane of the project inspector.
To override the default location for a project’s build products, use the options under “Place Build Products
In.” These are:

 ■ Default build products location. Xcode uses the default location for build products, specified in Xcode
Preferences. This option is set by default for each project you create.

 ■ Custom location. Xcode places the build products for the project in the folder specified in this field. Type
the full path to the folder in the text field, or click Choose and navigate to the desired location.

To override the default location for a project’s intermediate build files, use the options under “Place
Intermediate Build Files In.” These are:

 ■ Default intermediates location. Xcode uses the default location for intermediate build files, as specified
in Xcode Preferences. This option is set by default for each project you create.

 ■ Build products location. Xcode places intermediate build files with the build products, whether this is
the default location specified in Xcode Preferences or a separate location specified for the individual
project.

Build Locations 303
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

 ■ Custom location. Xcode places the intermediate build files for the project in the folder specified in this
field. Type the full path to the folder in the text field, or click Choose and select the folder in the resulting
dialog.

Building From the Xcode Application

You can perform all of the common build operations directly in the Xcode application. Building in the Xcode
application, you can view build system output, see error and warning messages, and jump to the location
of an error or warning in source files, all in a single window.

You can perform a full build of the active target and any targets on which it depends, compile a single file,
or view the preprocessor output for a file. You can also remove the build products and intermediate files
generated by the build system for a target.

Setting the Active Target and Build Style

When you build from the Xcode application, Xcode uses the current, or active, target to determine which
product to create. Xcode also applies any build settings defined by the active build style to the target and
its dependencies.

Before you start a build, make sure that the target you want to build is the active target. To make a target
active, you can choose it from the Active Target pop-up menu or from the Project > Set Active Target menu.

To make a build style active, choose it from the Active Build Style pop-up menu in the Build Results window,
or choose it from the Project > Set Active Build Style menu.

To learn more about configuring a target, see “Targets” (page 231); to learn how to configure a build style,
see “Editing Build Styles” (page 298).

Initiating a Full Build

When it does a full build of a target, the build system performs all of the tasks specified by the build phases
in that target, and in all targets that it depends on. After the initial build of the target, Xcode performs only
those actions necessary to update changed files during subsequent builds. For example, if the only change
to the target since the last time it was built was a minor edit to a single source code file, Xcode recompiles
that file and relinks the object files to create the finished product.

There are several different ways you can initiate a build:

 ■ To build the active target’s product, choose Build > Build or click the Build button.

 ■ To build the active target’s product and run it if the build succeeds, choose Build > Build and Run, or
click the Build and Run button.

 ■ To build the active target’s product and start the debugger if the build succeeds, choose Build > Build
and Debug, or click the Build and Debug button.

You may encounter errors or warnings when building your target; see “Viewing Errors and Warnings” (page
309) for information on how to find and fix build errors.

304 Building From the Xcode Application
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

If your product does not build properly and there are no error messages, make sure your files have correct
dates. Files with invalid dates (before 1970) won’t compile correctly.

Viewing Preprocessor Output

You can see the preprocessor output for a C, C++, or Objective-C source file in the active target. To do so,
select that file and choose Build > Preprocess.

You can see a list of all #define directives in effect for a file by adding the flag -dM to the Other C Flags
(OTHER_C_FLAGS) build setting in your target. Instead of the normal preprocessor output, Xcode shows all
of the macros defined during the execution of the preprocessor (including predefined macros) when you
choose Build > Preprocess. For more information on the C preprocessor, see GNU C Preprocessor.

Compiling a Single File

A full build can take a long time if you have a large project. You can compile a single file to ensure that it
builds correctly without having to rebuild the entire target. To compile a single file

1. Open the file in an editor window or select the file in the Groups & Files list.

2. Choose Build > Compile or type Command-K. You can also Control-click in the editor or on the file in
the Groups & Files list to bring up a contextual menu. Choose Compile from this menu to build the file.

The file must be part of the active target. Note that if you are trying to compile a file that is open in an editor,
the editor must have focus for the Compile menu item to be available.

Cleaning a Target

As you learned in “Initiating a Full Build” (page 304), after the initial build of a target, Xcode performs only
those actions required to update changed files during subsequent builds. You can, however, force Xcode to
do a full rebuild of the target by cleaning that target and rebuilding.

When you clean a target, Xcode removes all of the product files, as well as any object files (.o files) or other
intermediate files created during the build process. The next time you build, every file in every build phase
is processed according to the action associated with that phase.

To clean only the active target, choose Build > Clean or click the Clean button. To clean all targets in your
project, choose Build > Clean All Targets or click the Clean All button.

Viewing Build Status

During a build, you want to see how that build is progressing. Especially for long build operations, it is useful
to know the status of that operation. When you build from the Xcode application, Xcode displays the build
status in the project window status bar. The status bar message lets you know the operation currently being

Viewing Build Status 305
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

performed, as in the figure below. It also displays the name of the target and build style used for the build.
When the build is complete, Xcode displays the result of the build—whether the build succeeded or failed
and whether there were any errors or warnings—on the right side of the status bar.

Figure 27-2 Build status message in the project window

You can click the build message in the status bar to see more detailed information about the build in the
Build Results window. You can also click the progress indicator in the status bar during the course of the
build to open the Activity Viewer, as described in “Viewing the Progress of Operations in Xcode” (page 74).

In addition, Xcode displays a progress indicator which shows the status of the build in its dock icon. If an
error or warning occurs, Xcode indicates the number of errors or warnings with a red badge on the dock
icon.

Viewing Detailed Build Results

The Build Results window lets you see a more detailed account of the progress of a build. It shows each step
of the build process, as well as the full output of the build system, and can take you directly to the source of
any errors or warnings. To open the Build Results window choose Build > Build Results or click the build result
message—”Failed,” “Succeeded” and so on—on the right side of the project window status bar. Figure 27-3
shows the Build Results window.

306 Viewing Build Status
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

Note: If you are using the All-In-One project window layout, this opens the Build pane in the build page.
You can also navigate to this page by clicking the hammer icon in the page control and clicking Build. The
Build pane shows the same contents as the Build Results window.

Figure 27-3 The Build Results window

Build
results

Build log

Show
build steps

Show
warnings

Show
build log

Auto-open
build results
window

Here’s what you see in the Build Results window:

 ■ Toolbar. The toolbar of the Build Results window contains buttons that let you perform common
build-related tasks, such as building, cleaning a target, and running or debugging the built product. By
default, they also contain pop-up menus to let you change the active target, active executable, and
active build style.

 ■ Status Bar. The status bar displays the current status of the build. It contains the same build information
as the status bar of the project window.

 ■ Build results. This pane shows status output from the Xcode build system. You can control what
information is shown here with the view options described below.

 ■ View options. The buttons below the build results pane let you control how to view detailed build results.
These options are as follows:

 ❏ The build steps button, indicated by a checkmark icon, determines whether each of the individual
build steps is shown as part of the detailed build results. Select this option to display each of the
individual steps used to build the product, such as compiling and copying files. Otherwise, Xcode
shows only those build steps that produce warnings or errors.

Viewing Build Status 307
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

 ❏ The show warnings button, indicated by a warning icon, controls whether Xcode shows warning
messages in the detailed build results. If this option is selected, Xcode displays both error and
warning messages; otherwise, Xcode shows only error messages.

 ❏ The build log button, indicated by an icon showing console text, opens and closes the build log,
described below. Select this option to reveal the build log; deselect it to close the build log.

 ❏ The arrow button brings up a menu that lets you choose when to display detailed build results. You
can have Xcode automatically show and hide the Build Results window in the course of a build. To
specify when detailed build results are shown, choose an item under “Temporarily Open During
[project name] Builds.” To specify when detailed build results are hidden, choose an item under
“Temporarily Hide After [project name] Builds.” These options are described further in “Specifying
When Detailed Build Results are Shown” (page 308).

Choosing an item from this menu affects only the current project. Changes made here do not persist
across Xcode sessions. To set the default behavior of the Build Results window for all projects choose
Open Global Build Preferences to open Xcode Preferences.

 ■ Build log. The build log displays all of the commands used to build your target and the outputs of those
commands, including compiler invocations. For example, you can see the flags passed to the compiler
in this log. You can show and hide the build log using the build log button. When you select a build step
in the top pane of the build window, Xcode selects the corresponding command in the build log.

 ■ Editor. The Build Results window includes an attached editor. Selecting an error or warning message in
the build results pane opens the file to the line containing the error or warning in the editor.

Specifying When Detailed Build Results are Shown

Having to open and close the Build Results window can get repetitive if you do it every time you build. If you
know you always want to see the detailed build results when building, you can have Xcode automatically
open the Build Results window when you start a build. Likewise, you can have Xcode automatically close the
Build Results window when the build is complete. Xcode provides preferences to control the default behavior
of the Build Results window. By default, Xcode does not automatically open or close the Build Results window
when building.

To change Xcode’s default behavior for showing and hiding detailed build results for all projects, choose
Xcode > Preferences and click Building. Under “Build Results Window,” use the following menus:

 ■ To control when the Build Results window is shown, use the “Open during builds” menu

 ■ To control when the Build Results window is hidden, use the “Close after builds” menu.

You can temporarily override this default behavior for an individual project using the pop-up menu in the
Build Results window, as described in “Viewing Detailed Build Results” (page 306).

Choose one of the following options to control when the Build Results window is shown:

 ■ Never. Xcode does not automatically open the Build Results window. This is the default value of this
setting.

 ■ Always. Xcode always automatically opens the Build Results window when a build starts.

 ■ On Errors. Xcode automatically opens the Build Results window only if an error is encountered during
the build.

308 Viewing Build Status
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

 ■ On Errors or Warnings. Xcode automatically opens the Build Results window when an error or warning
occurs.

Choose one of the following options to control when the Build Results window is hidden:

 ■ Never. Once opened, the Build Results window stays open until you close it or the project. This is the
default value for this setting.

 ■ Always. Xcode automatically closes the Build Results window immediately after the build stops, whether
the build was successful or not.

 ■ On Success. Xcode automatically closes the Build Results window when the build successfully completes
and the product is built.

 ■ On No Errors. Xcode automatically closes the Build Results window after the build is complete only if
there are no errors.

 ■ On No Errors or Warnings. Xcode automatically closes the Build Results window after the build is complete
only if there are no errors or warnings.

Viewing Errors and Warnings

The Xcode application lets you easily see any errors or warnings generated during a build. You can view
errors and warnings directly in the project window with the Errors and Warnings smart group, or you can
view them in the Build Results window. You can also jump directly from the error or warning message to the
location of errors or warnings in source files. This lets you quickly fix the problem and try the build again.

Viewing Errors and Warnings in the Project Window

If you prefer to keep the project window in front of you while you are working, Xcode lets you view errors
and warnings directly in the project window. You can view errors and warnings in the Errors and Warnings
smart group in the Groups & Files list, as shown below. Before you build your project, the Errors and Warnings
group is empty; it is populated as errors and warnings occur during the build.

To view errors and warnings, you can:

 ■ Click the disclosure triangle next to the Errors and Warnings smart group. This displays the list of files in
which errors or warnings occurred. To see the errors and warning messages for a particular file, select
that file.

 ■ Select the Errors and Warnings smart group in the Groups & Files list. This displays all errors and warnings
generated during the last build attempt in the detail view.

 ■ Click the error or warning icon that appears on the right of the project window or editor window status
bar. This opens the Build Results window and selects the first error or warning in the build steps pane
and in the build log.

You can also specify that Xcode automatically open the Errors and Warnings smart group in the Groups &
Files view when an error or warning occurs during a build, as described later in this section.

Viewing Errors and Warnings 309
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

Figure 27-4 Viewing errors and warnings in the project window

Link to build
results window

Option-click to
jump to error

Errors grouped
by location

Error in gutter

When you select the Error and Warnings group or any of its members in the Groups & Files list, the detail
view to the right displays the error and warning messages and the location at which each occurred. The icon
next to each item in the detail view identifies it as an error or a warning.

Similar to the Build Results window, you can have Xcode automatically show and hide the contents of the
Errors and Warnings smart group. To control when Xcode hides and shows the contents of the Errors and
Warnings smart group, choose Xcode > Preferences, click Building, and use the menus under “Errors and
Warnings Smart Group.”

The “Open during builds” menu lets you choose when Xcode automatically selects the Errors and Warnings
smart group and discloses its contents in the Groups & Files list. It provides the following options:

 ■ Never. Xcode does not automatically open the Errors and Warnings smart group, even if an error or
warning occurs during a build. This is the default.

 ■ Always. Xcode always automatically opens the Errors and Warnings smart group when a build starts.

 ■ On Errors. Xcode automatically opens the Errors and Warnings group only if an error is encountered in
the build.

 ■ On Errors and Warnings. Xcode automatically opens the Errors and Warnings group if an error or warning
occurs during the build.

The “Close after builds” menu gives you the following options for controlling when Xcode hides the Errors
and Warnings group:

 ■ Never. Once opened, the Errors and Warnings group stays open until you close it. This is the default.

 ■ Always. Xcode automatically closes the Errors and Warnings group immediately after the build stops.

310 Viewing Errors and Warnings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

 ■ On Success. Xcode automatically closes the Errors and Warnings group when the build is successfully
completed and the product is built.

 ■ On No Errors. If there are no errors, Xcode automatically closes the Errors and Warnings group after the
build is complete.

 ■ On No Warnings. If there are no errors or warnings, Xcode automatically closes the Errors and Warnings
group after the build is complete.

Viewing Errors and Warnings in the Build Results Window

The Build Results window also displays all the warnings and errors that occur as Xcode builds your target.
The example below shows an error in the Build Results window.

Figure 27-5 An error in the Build Results window

Build system
output

Error message

Error in
source code

Jump to first warning
Jump to first error

To navigate through warning and error messages even when the Build Results window is hidden, choose
Build > Next Build Warning or Error (Command–equals-sign) and Build > Previous Build Warning or Error
(Command–plus-sign). This highlights the next error or warning in the Build Results window. It does not,
however, bring the Build Results window forward if it is hidden. If you are working in an editor window,
choosing Build > Next / Previous Build Warning or Error highlights the line at which the error or warning
occurred, opening the related file if it is not already open.

Viewing Errors and Warnings 311
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

You can easily copy error and warning messages, so you can include them in email messages or other
documents. To copy error and warning messages, select the messages and drag them to another document.

Viewing Source Code for an Error or Warning

From either the project window or the Build Results window, you can jump directly to the source code
associated with an error or warning. In the project window, select the error or warning in the detail view; in
the Build Results window, select the error or warning in the build steps pane. If the option to automatically
disclose the attached editor is enabled, Xcode reveals the editor in the project or Build Results window and
opens the source file to the location of the problem. Otherwise, you can double-click the error or warning
to open the file in a separate editor window.

Xcode also displays error and warning icons in the gutter of the editor, next to the lines at which the errors
and warnings occurred. This allows you to easily spot the errors and warnings in a file, either from the attached
editor in the project or Build Results windows, or from a dedicated editor window. Marks in the scrollbar of
an editor let you quickly scroll to the location of an error or warning; you can Option-click on a mark to jump
to that location. If you pause with the mouse above an error or warning in the status bar, the detail view, or
the gutter, Xcode displays a tooltip with the full text of the error message.

Controlling Errors and Warnings

You can choose what Xcode does when it first encounters an error while building a project. To choose whether
Xcode stops building when it encounters an errors or continues to compile the next file in the target, choose
Xcode > Preferences and click Building. Use the “Continue building after errors” checkbox in the Build Options.

Building From the Command Line

In addition to building your product from within the Xcode application, you can use xcodebuild to build
a target from the command line. Building from the command line gives you additional flexibility compared
to building from within the Xcode application that may be useful in certain circumstances. For example,
using the xcodebuild tool, you can create a script that automatically builds your product at a specific time
or build targets from multiple projects at the same time.

Note: If you need root privileges to install a product in its deployment location, you must build the product
with the xcodebuild tool, because Xcode cannot grant you these privileges.

The xcodebuild tool reads your .xcode project bundle and uses the target information it finds there to
build a product. However, there are differences between building within Xcode and building from the
command line:

 ■ When you build within Xcode, it uses the active target and build style. When you build from the command
line, xcodebuild uses the first target in the project’s target list and no build style, unless you specify a
target or build style with a command-line option.

 ■ If you run xcodebuild as the root user, the preferences you set in the Xcode Preferences window are
not used. Preferences are stored per user, and there are no preferences stored for the root user (unless
you logged in as root and used Xcode at some point).

312 Building From the Command Line
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

To build a target using xcodebuild, use the cd command to change to your project’s directory and enter
the xcodebuild command with any command-line options you wish to specify. The project’s directory
contains your project’s .xcode bundle. For example, if your project is in ~me/Projects/MyProj, enter cd
~me/Projects/MyProj.

You can use xcodebuild to build a product suited for deployment and install the product in its final
destination path. To do that, use the xcodebuild tool with the install option, which places the product
in the distribution root specified by the DSTROOT, Installation Path (INSTALL_PATH), and Deployment Location
(DEPLOYMENT_LOCATION) build settings. For example, to install a framework in /Library/Frameworks,
configure the build settings as shown in Table 27-1.

Table 27-1 Build settings for installing a framework in the local domain

ValueBuild setting name

/DSTROOT

$(LOCAL_LIBRARY_DIR)/FrameworksINSTALL_PATH

YESDEPLOYMENT_LOCATION

The DSTROOT build setting can be set only in the xcodebuild command-line specification:

% sudo xcodebuild install -buildstyle Deployment DSTROOT=/
INSTALL_PATH=/Library/Frameworks DEPLOYMENT_LOCATION=YES

See the xcodebuild man page for information on the available options and command usage. For details
on framework placement, see Mac OS X Frameworks.

Building From the Command Line 313
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

314 Building From the Command Line
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

Building a Product

The Link Binary With Libraries build phase in Xcode projects links frameworks and libraries with object files
to produce a binary file. Source files that use code in a framework or a library must include a reference to
the appropriate programming interface contained in them.

Libraries and frameworks are linked to object files when building an executable file. However, this process
is slow and can detract from the development experience. Xcode provides a feature, called ZeroLink, that
eliminates the link step while you work on a project; see “Using ZeroLink” (page 320) for details.

Specifying the Search Order of External Symbols

The order in which frameworks and libraries are listed in the Link Binary With Libraries build phase specifies
the order in which external symbols are resolved by the static linker at build time and the dynamic linker at
runtime. When either of the linkers encounters an undefined external symbol, they look for the symbol
starting with the first framework or library listed in the build phase.

When a program is built, the static linker replaces references to external symbols with the addresses of the
symbols in the referenced libraries (this is called prebinding), or tells the dynamic linker to resolve the
references when a program is loaded or when a symbol is referenced. Having the dynamic linker resolve
references to external symbols at runtime provides the most flexibility, as a program can link with new
versions of the symbols as they become available. However, this approach is not recommended for all
situations, as linking with newer versions of a method or a function may cause problems during a program’s
execution.

In addition, how frameworks and libraries are listed in a Link Binary With Libraries build phase, tells the static
linker the approach (or the semantics) to use when binding or resolving references to external symbols
defined in libraries.

Placing static libraries after dynamic libraries in the Link Binary With Libraries build phase, ensures that the
static linker binds references to external symbols defined in static libraries at build time, even when newer
versions of the static libraries the application originally was linked with are present in the user’s system.

When static libraries are listed before a dynamic library in the Link Binary With Libraries build phase, the
static linker doesn’t resolve references to symbols in those static libraries. Instead, those symbols are resolved
by the dynamic linker at runtime. This may cause problems when the static libraries are updated, as the
application links to the new, potentially incompatible versions of the symbols instead of the ones the developer
intended.

For details on how symbols are resolved, see “Finding Imported Symbols” in “Executing Mach-O Files” inMac
OS X ABI Mach-O File Format Reference and the ld man page.

Specifying the Search Order of External Symbols 315
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Preventing Prebinding

Mac OS X includes a prebinding mechanism used to speed-up application launch in programs that link against
dynamic libraries. When a user installs an application or upgrades the operating system, a prebinding agent
links the application against new versions of the dynamic libraries. Sometimes, however, you may want to
prevent this behavior for specific applications.

To link the binary file, framework, library, or plug-in, so that prebinding is never done on it, you need to add
the -nofixprebinding option to the linker invocation. To do this, add -nofixprebinding to the Other
Linker Flags (OTHER_LDFLAGS) build setting. See the ld man page for more information.

Linking With System Frameworks

When linking with system frameworks (located in /System/Library/Frameworks), include only the
umbrella header files in your source files and link only with the appropriate umbrella framework for your
application. For example, in a Carbon application that uses the Address Book framework, you would include
the following line in the header files of modules that access the Address Book programming interface:

#include <Carbon/Carbon.h>

You would also add AddressBook.framework to the list of files in the Frameworks & Libraries build phase.

Linking to a Dynamic Library in a Nonstandard Location

When you need to link with a custom version of a dynamic library but don’t want to replace the standard
version of the library, you can use the -dylib_file option of the linker to tell it where to find the nonstandard
version of the library. Just add -dylib_file standard_library_path:nonstandard_library_path to the Other
Linker Flags build setting, where standard_library_path is the path to the standard library and
nonstandard_library_path is the path to the custom version of the library.

Reducing the Number of Exported Symbols

By default, Xcode builds binary files that export all their symbols. To reduce the number of symbols you want
to export from a binary file, create an export file and set the Exported Symbols File (EXPORTED_SYMBOLS_FILE)
build setting to the name of the file. For more information, see “Minimizing Your Exported Symbols” in Code
Size Performance Guidelines.

316 Preventing Prebinding
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Reducing Paging Activity

To help reduce your application’s paging activity at runtime, you may specify an order file to the linker. You
do this by setting the Symbol Ordering Flags (SECTORDER_FLAGS) build setting to -sectorder __TEXT
__text <order_file>. For information on order files, see “Improving Locality of Reference” in Code Size
Performance Guidelines.

Dead-Code Stripping

The static linker (ld) supports the removal of unused code and data blocks from executable files. This process
(known as dead-code stripping) helps reduce the overall size of executables, which in turn improves
performance by reducing the memory footprint of the executable. It also allows programs to link successfully
in the situation where unused code refers to an undefined symbol, something that would normally result in
a link error.

Dead-code stripping is not limited to removing only unused functions and executable code from a binary.
The linker also removes any unused symbols and data that reside in data blocks. Such symbols might include
global variables, static variables, and string data among others.

When dead-code stripping is enabled, the static linker searches for code that is unreachable from an initial
set of live symbols and blocks. The initial list of live symbols and blocks may include the following:

 ■ Symbols listed in an exports file; alternatively, the symbols absent from a list of items marked as not to
be exported. For dynamic libraries or bundles without an exports file, all global symbols are part of the
initial live list. See “Preventing the Stripping of Unused Symbols” (page 318) for more information.

 ■ The block representing the default entry point or the symbol listed after the -e linker option, either of
which identifies the specific entry point for an executable. See the ld man page for more information
on the -e option.

 ■ The symbol listed after the -init linker option, which identifies the initialization routine for a shared
library. See the ld man page for more information.

 ■ Symbols whose declaration includes the used attribute. See “Preventing the Stripping of Unused
Symbols” (page 318) for more information.

 ■ Objective-C runtime data.

 ■ Symbols marked as being referenced dynamically (via the REFERENCED_DYNAMICALLY bit in
/usr/include/mach-o/nlist.h).

Enabling Dead-Code Stripping in Your Project

To enable dead-code stripping in your project, you must pass the appropriate command-line options to the
linker. From Xcode, you add these options in the Build pane of the target inspector; otherwise, you must add
these options to your makefile or build scripts. Table 28-2 lists the Xcode build settings that control dead-code
stripping. Enabling either of these build settings causes Xcode to build with the corresponding linker option.

Reducing Paging Activity 317
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Table 28-1 Xcode build settings for dead stripping

Build settingLinker option

Dead Code Stripping (DEAD_CODE_STRIPPING)-dead_strip

Don’t Dead-Strip Inits and Terms
(PRESERVE_DEAD_CODE_INITS_AND_TERMS)

-no_dead_strip_inits_and_terms

Table 28-1 lists the basic dead-code stripping options.

Table 28-2 Linker options for dead stripping

DescriptionLinker option

Enables basic dead-code stripping by the linker.-dead_strip

Prevents all constructors and destructors from being stripped
when the -dead_strip option is in effect, even if they are not
live.

-no_dead_strip_inits_and_terms

You must recompile all object files using the compiler included with Xcode 1.5 or later before dead-code
stripping can be performed by the linker. You must also compile the object files with the -gfull option to
ensure that the resulting binaries can be properly debugged. In Xcode, change the value of the Level of
Debug Symbols (GCC_DEBUGGING_SYMBOLS) build setting to All Symbols (-gfull).

Note: The GCC compiler’s -g option normally defaults to -gused, which reduces the size of .o files at the
expense of symbol information. Although the -gfull option does create larger .o files, it often leads to
smaller executable files, even without dead-code stripping enabled.

Identifying Stripped Symbols

If you want to know what symbols were stripped by the static linker, you can find out by examining the
linker-generated load map. This map lists all of the segments and sections in the linked executable and also
lists the dead-stripped symbols. To have the linker generate a load map, add the -M option to your linker
command-line options. In Xcode, you can add this option to the Other Linker Flags build setting.

Note: If you are passing this option through the cc compiler driver, make sure to pass this flag as -Wl,-M
so that it is sent to the linker and not the compiler.

Preventing the Stripping of Unused Symbols

If your executable contains symbols that you know should not be stripped, you need to notify the linker that
the symbol is actually used. You must prevent the stripping of symbols in situations where external code
(such as plug-ins) use those symbols but local code does not.

318 Dead-Code Stripping
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

There are two ways to tell the linker not to dead strip a symbol. You can include it in an exports file or mark
the symbol declaration explicitly. To mark the declaration of a symbol, you include the used attribute as part
of its definition. For example, you would mark a function as used by declaring it as follows:

void MyFunction(int param1) __attribute__((used));

Alternatively, you can provide an exports list for your executable that lists any symbols you expect to be used
by plug-ins or other external code modules. To specify an exports file from Xcode, use the Exported Symbols
File (EXPORTED_SYMBOLS_FILE) build setting; enter the path, relative to the project directory, to the exports
file. To specify an exports file from the linker command line use the -exported_symbols_list. option.
(You can also specify a list of symbols not to export using the -unexported_symbols_list option.)

If you are using an exports list and building either a shared library, or an executable that will be used with
ld's -bundle_loader flag, you need to include the symbols for exception frame information in the exports
list for your exported C++ symbols. Otherwise, they may be stripped. These symbols end with .eh; you can
view them with the nm tool.

Assembly Language Support

If you are writing assembly language code, the assembler now recognizes some additional directives to
preserve or enhance the dead-stripping of code and data. You can use these directives to flag individual
symbols or entire sections of assembly code.

Preserving Individual Symbols

To prevent the dead stripping of an individual symbol, use the .no_dead_strip directive. For example, the
following code prevents the specified string from being dead stripped:

.no_dead_strip _my_version_string

.cstring
_my_version_string:
.ascii "Version 1.1"

Preserving Sections

To prevent an entire section from being dead stripped, add the no_dead_strip attribute to the section
declaration. The following example demonstrates the use of this attribute:

.section __OBJC, __image_info, regular, no_dead_strip

You can also add the live_support attribute to a section to prevent it from being dead stripped if it
references other code that is live. This attribute prevents the dead stripping of some code that might actually
be needed but not referenced in a detectable way. For example, the compiler adds this attribute to C++
exception frame information. In your code, you might use the attribute as follows:

.section __TEXT, __eh_frame, coalesced, no_toc+strip_static_syms+live_support

Dead-Code Stripping 319
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Dividing Blocks of Symbols

The .subsections_via_symbols directive notifies the assembler that the contents of sections may be
safely divided into individual blocks prior to dead-code stripping. This directive makes it possible for individual
symbols to be stripped out of a given section if they are not used. This directive applies to all section
declarations in your assembly file and should be placed outside of any section declarations, as shown below:

.subsections_via_symbols

; Section declarations...

If you use this directive, make sure that each symbol in the section marks the beginning of a separate block
of code. Implicit dependencies between blocks of code might result in the removal of needed code from the
executable. For example, the following section contains three individual symbols, but execution of the code
at _plus_three ends at the blr statement at the bottom of the code block.

.text

.globl _plus_three
_plus_three:
addi r3, r3, 1
.globl _plus_two
_plus_two:
addi r3, r3, 1
.global _plus_one
_plus_one:
addi r3, r3, 1
blr

If you were to use the .subsections_via_symbols directive on this code, the assembler would permit
the stripping of the symbols _plus_two and _plus_one if they were not called by any other code. If this
occurred, _plus_threewould no longer return the correct value because part of its code would be missing.
In addition, if _plus_one were dead stripped, the code might crash as it continued executing into the next
block.

Using ZeroLink

ZeroLink speeds application development time by eliminating the link process from development builds.
Instead, Xcode generates an application stub that contains the full paths to the object files that make up the
application. At runtime, each object (.o) file is linked as it’s needed. This works only when running your
application within Xcode. You cannot deploy applications using ZeroLink.

To turn ZeroLink on or off, use the ZeroLink (ZERO_LINK) build setting. ZeroLink is enabled by default in the
Development build style. If you build with this build style, you automatically get ZeroLink functionality. See
“Build Styles” (page 297) for more information on using build styles. ZeroLink works only for native targets.

The following sections explain how you can customize ZeroLink to further reduce application launch times
and identify issues you must keep in mind when using ZeroLink.

320 Using ZeroLink
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Customizing ZeroLink

ZeroLink postpones the linking of object files until the last moment possible. However, there are some
symbols that, by default, are always resolved (that is, the corresponding object files are linked against the
application and the code is executed). These symbols are static initializers in C++ and +load methods and
categories in Objective-C. You can tell ZeroLink not to search the object files of your application for these
symbols to reduce the application’s launch time.

There are situations that require the initialization of objects before a program’s main function is called. For
example, a class may declare global variables that can be accessed by other code before the class has a
chance to initialize them. In Objective-C, the +initializemethod may be executed too late (see “Initializing
a Class Object” in The Objective-C 2.0 Programming Language. The purpose of static initializers in C++ and
+loadmethods in Objective-C is to provide developers with a mechanism to initialize variables at the earliest
possible point during a program’s launch process. In Objective-C–based applications, categories are also
loaded before main is called.

When you build an application, the static linker adds the standard entry-point function to the main executable
file. This function sets up the runtime environment state for the kernel and the application before calling
main, which involves calling static initializers for C++ code and loading categories and invoking +load
methods for Objective-C code.

When using ZeroLink, you can further reduce the launch time of the application by postponing the execution
of static initializers and +load methods, and the loading of categories. But you must be certain that code in
your application doesn’t rely on static initializers or +loadmethods being called before main or on categories
being loaded before main is called. Otherwise, your application may crash or behave unexpectedly.

There are three linker options you can use to customize ZeroLink in your project. To use these options, add
them to the Other Linker Flags (OTHER_LDFLAGS) build setting:

 ■ -no-run-initializers-before-main: If an application contains C++ code, the linker looks for static
initializers at launch time before calling main in all the object files that make up the application and, if
it finds any, links the object files containing them into the application. This may slow down application
launch. If you’re developing an application using C++ and it doesn’t depend on static initializers being
run before main, use this option to prevent ZeroLink from scanning object files in search of static
initializers before calling main.

Keep in mind that if there’s code that requires that static initializers be run before main, your application
could crash. This specially true for applications that use static initializers to register code with a registry.
If the sole purpose of the static initializers is to perform the registration (that is, if no other code would
ever trigger the execution of the static initializers by accessing a global variable, for example), no
registration would take place. For example, when reading a serialized file, the reader reads the name of
the class of each serialized object and tells the class to reconstruct an instance from the data. In C++
there is no infrastructure to look up a class by name. Instead, a common idiom is for each class capable
of serializing and deserializing instances of itself to register its class name and deserialization method
address with the reader using a static initializer.

 ■ -no-load-categories-before-main: If an application contains Objective-C code, the linker looks
for categories at launch time before calling main in all the object files that make up the application and,
if it finds any, links the object files containing them into the application. As with
-no-run-initializers-before-main, this may slow application launch. If your application doesn’t
depend on categories, use this option to prevent ZeroLink from scanning object files in search of categories
before calling main.

Using ZeroLink 321
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Some developers rely on the use of categories in the implementation of their class hierarchies. In such
a model, the implementation of a class spans one or more categories of that class. Using this design
model, a program may run incorrectly when the categories that implement additional class functionality
are not loaded. With ZeroLink, classes can be loaded when need because there’s a direct reference to
them, but ZeroLink cannot load categories dynamically. Therefore, if your application depends on
categories, it may crash or behave unexpectedly if you use the -no-load-categories-before-main
flag.

 ■ -no-run-load-methods-before-main: Similarly to-no-load-categories-before-main, ZeroLink
scans object files for +load methods in Objective-C code before main is invoked to link them to the
application. Using this option prevents the scanning of object files for +load methods before ZeroLink
calls main. +load methods in Objective-C are similar to static initializers in C++: They are executed early
during application launch, before main is called, to perform tasks that must be performed at the earliest
possible time. However, the order of execution of +loadmethods is not guaranteed. If your code depends
on +load methods to be run before main, your application may crash or run incorrectly if you use this
flag.

When building an application that uses static libraries (.a files), each static library is linked to produce a
bundle. At runtime, each bundle is loaded on demand. If your application starts slowly while using ZeroLink
and has a large number (100 or more) of object files, you can try adding an intermediate static library target,
containing the relatively stable parts of your source code. This gives you the best of both worlds: static (build
time) linking for stable code and dynamic (runtime) linking for code that changes frequently.

If you want to view information about the loading and linking of object files as your application runs, set the
ZERO_LINK_VERBOSE environment variable to any value. The information appears in run log of the application
or stderr.

Caveats When Using ZeroLink

These are some things you should keep in mind when using ZeroLink:

 ■ ZeroLink doesn’t support the use of private external symbols; that is symbols declared as
__private_extern__.

Private external symbols are visible only to other modules within the same Mach-O file as the modules
that contain them. If you use a private external symbol in your project while ZeroLink is turned on, you
get an unknown-symbol error when your code tries to access it. For example, if you have the definition
__private_extern__ int my_extern = 800; in a source file and the declaration extern int
my_extern; in another source file, when the second module accesses my_extern, your application
exits with the following log output:

ZeroLink: unknown symbol '_my_extern'
MyApplication has exited due to signal 6 (SIGABRT)

For more information on private external symbols, see “Scope and Treatment of Symbol Definitions” in
“Executing Mach-O Files” in Mac OS X ABI Mach-O File Format Reference.

 ■ When setting breakpoints on methods, you must use full method specifiers, not just selectors. For
example, if your project has a class named MyClass with an instance method called myMethod, you must
specify a breakpoint on myMethod like this:

-[MyClass myMethod]

 ■ If you get an error similar to this one:

322 Using ZeroLink
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

dyld: /Users/user_name/MyApp/build/MyApp.app/Contents/MacOS/MyApp Undefined
symbols:
Foundation undefined reference to _objc_exception_set_functions expected to be
 defined in
/System/Library/PrivateFrameworks/ZeroLink.framework/Versions/A/Resources/libobjc.A.dylib

delete
/System/Library/PrivateFrameworks/ZeroLink.framework/Versions/A/Resources/libobjc.A.dylib.

You would get this error if you install the Xcode tools in a system with a prerelease version of Mac OS
X. The libobjc.A.dylib file contains a developmental copy of the Objective-C runtime. It’s not necessary
for normal development.

Using ZeroLink 323
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

324 Using ZeroLink
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

Linking

Xcode offers a number of features you can take advantage of to decrease build time for your project. For
example, you can use distributed builds to shorten the time it takes to build your whole project or multiple
projects. ZeroLink and predictive compilation, on the other hand, improve turnaround time for single file
changes, thereby speeding up the edit–build–debug cycle. All of these features reduce the amount of time
you spend idle while waiting for your project to build.

This chapter describes the following features:

 ■ Precompiled prefix headers let you decrease the amount of time spent building compiling each source
file in a target by specifying a single header file that includes all of the headers commonly used by the
target’s files and compiling this header a single time.

 ■ Predictive compilation reduces the time required to compile single file changes by beginning to compile
a file while you are still editing it.

 ■ Distributed builds can dramatically reduce build time for large projects by distributing compiles to
available machines on the network.

Other features that you can use to optimize the edit-build-debug cycle include:

 ■ Fix and Continue, described in “Using Fix and Continue” (page 373), improves your debugging efficiency
by allowing you to make changes to your application and see the results of your modification without
stopping your debugging session.

 ■ ZeroLink, described in “Using ZeroLink” (page 320), shortens build time by eliminating the linking step
for development builds.

Using a Precompiled Prefix Header

A precompiled header is a file in the intermediate form used by the compiler to compile a source file. Using
precompiled headers, you can significantly reduce the amount of time spent building your product. Often,
many of the source code files in a target include a subset of common system and project headers. For example,
each source file in a Cocoa application typically includes the Cocoa.h system header, which in turn includes
a number of other headers. When you build a target, the compiler spends a great deal of time repeatedly
processing the same headers.

You can significantly reduce build time by providing a prefix header that includes the set of common headers
used by all or most of the source code files in your target and having Xcode precompile that prefix header.

If you have indicated that Xcode should do so, Xcode precompiles the prefix header when you build the
target. Xcode then includes that precompiled header file for each of the target's source files. The contents
of the prefix header are compiled only once, resulting in faster compilation of each source file. Furthermore,
subsequent builds of the target can use that same precompiled header, provided that nothing in the prefix
header or any of the files on which it depends has changed. Each target can have only one prefix header.

Using a Precompiled Prefix Header 325
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

When Xcode compiles your prefix header, it generates a variant for each C language dialect used by your
source files; it stores these in a folder in your project’s build directory. It also generates—as needed—a variant
for each combination of source header and compiler flags. For example, you may have per-file compiler flags
set for some of the files in your target. Xcode will create a variant of the precompiled header by precompiling
the prefix header with the set of compiler flags derived from the target and the individual source file. As
Xcode invokes the compiler to process each source file in your target, the compiler searches this directory
for a precompiled header variant matching the language and compiler flags for the current compile. The first
precompiled header variant that is valid for the compilation is used.

Xcode automatically regenerates the precompiled header whenever the prefix header, or any of the files it
depends on are changed, so you don't need to manually maintain the precompiled header.

Creating the Prefix Header

To take advantage of precompiled headers in Xcode, you must first create a prefix header. Create a header
file containing any common #include and #define statements used by the files in your target.

Note: You can use a prefix header to include a common set of header files for each source file in your target
without precompiling the prefix header.

Do not include anything that changes frequently in the prefix header. Xcode recompiles your precompiled
header file when the prefix header, or any of the headers it includes, change. Each time the precompiled
header changes, all of the files in the target must be recompiled. This can be an expensive operation for large
projects.

Because the compiler includes the prefix header file before compiling each source file in the target, the
contents of the prefix header must be compatible with each of the C language dialects used in the target.
For example, if your target uses Cocoa and contains both Objective-C and C source files, the prefix header
needs to include the appropriate guard macros to make it compatible with both language dialects, similar
to the example shown here:

 #ifdef __OBJC__
 #import <Cocoa/Cocoa.h>
 #endif
 #define MY_CUSTOM_MACRO 1
 #include "MyCommonHeaderContainingPlainC.h"

Configuring Your Target To Use the Precompiled Header

Once you have created the prefix header, you need to set up your target to precompile that header. To do
this, you must provide values for the two build settings described here. You can edit these build settings in
the Build pane of the target inspector or Info window. The settings you need to change are:

 ■ Prefix Header (GCC_PREFIX_HEADER). Change the value of this build setting to the project-relative path
of the prefix header file. If you have a precompiled header file from an existing project, set the prefix
header path to the path to that file.

 ■ Precompile Prefix Header (GCC_PRECOMPILE_PREFIX_HEADER). Make sure that this option is turned on.
A checkmark is present in the Value column if this option is enabled.

326 Using a Precompiled Prefix Header
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

You must provide values for these settings in each target that uses a precompiled prefix header, even if those
targets use the same prefix header.

By default, Xcode precompiles a version of the header for each C-like language used by the target (C, C++,
Objective-C, or Objective-C++). The C Dialects to Precompile (GCC_PFE_FILE_C_DIALECTS) build setting lets
you explicitly specify the C dialects for which Xcode should produce versions of the precompiled header.

Sharing Precompiled Header Binaries

It is possible to share a precompiled header binary across multiple targets, provided that those targets use
the same prefix header and compiler options. In order to share a precompiled header binary, each individual
target must have the same prefix header specified. To use the same prefix header for multiple targets, set
the value of the Prefix Header build setting for each target to the path to the header.

The PRECOMP_DESTINATION_DIR build setting specifies the location of the directory to which Xcode writes
the precompiled header binary. For each target, set this location to a common directory. When Xcode invokes
GCC to compile each source file in a target, GCC searches this common directory for the appropriate header
binary. For any targets that use the same prefix header and compiler options, GCC uses the same precompiled
header binary when it builds those targets.

This build setting is not exposed in the Xcode user interface. To change the value of this build setting, add
a new entry in the build settings table that appears in the Build pane of the target inspector. Enter
PRECOMP_DESTINATION_DIR as the name of the build setting and enter the path to the directory you want
to use for precompiled binaries in the Value column for the build setting.

If you specify the same prefix header for multiple targets, but do not specify a common location for the
precompiled binary, Xcode precompiles the prefix header once for each target as it is built.

Controlling the Cache Size Used for Precompiled Headers

Xcode caches the precompiled header files that it generates. To control the size of the cache devoted to
storing those files, use the BuildSystemCacheSizeInMegabytes user default. In the Terminal application,
type:

defaults write com.apple.xcode BuildSystemCacheSizeInMegabytes defaultCacheSize

Specifying 0 for the cache size gives you an unlimited cache. 200 MB is the default cache size set by Xcode.
If the cache increases beyond the default size, Xcode removes as many precompiled headers as is necessary
to reduce the cache to its default size when Xcode is next launched. Xcode removes the oldest files first.

Restrictions

To take advantage of Xcode’s automatic support for precompiled headers you must:

 ■ Use GCC 3.3 or later. Xcode uses GCC 3.3’s PCH mechanism to create precompiled headers. PCH is not
available with previous versions of GCC.

 ■ Use a native target. Xcode’s automatic support for precompiled prefix headers using PCH is only available
for targets that use Xcode’s own native build system. Xcode automatically handles many of the restrictions
upon using precompiled headers with GCC. If you are using an external target to work with another

Using a Precompiled Prefix Header 327
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

build system—such as make—you can still use precompiled headers, but you must create and maintain
them yourself. For more information on using precompiled headers with GCC, seeGNUC/C++/Objective-C
3.3 Compiler. Jam-based targets can also use precompiled prefix headers, but they are limited to the PFE
(persistent front end) mechanism introduced with GCC 3.1. PFE is no longer recommended.

 ■ Use one and only one prefix header per target.

 ■ Set the Prefix Header and Precompile Prefix Header build settings for every target that uses precompiled
headers.

Distributing Builds Among Multiple Computers

Building a product involves many small operations. Many of these operations—such as compiling source
files—can be performed in parallel, decreasing the total amount of time it takes to build your product. If you
have a dual-processor computer, Xcode automatically uses both processors. However, the greater the number
of processors available to you, the greater the number of build tasks you can run in parallel. Distributed builds
give you the ability to distribute build tasks among multiple computers on a network. When you use distributed
builds, Xcode distributes as many build operations as possible among the computers available for that
purpose.

How Distributed Builds Work

Xcode uses distcc to manage distributed builds. The distcc client manages the setup and distribution of
build tasks. The server process (distccd) manages communication with the remote computers hosting the
build tasks. The server process runs on both the local, or client, computer and on the remote computer.

When you initiate a build, Xcode invokes the distcc client on your local computer. For each source module
that needs to be compiled, the client process connects to the server process running on the local machine
and gives it the information required to distribute that task. Namely, the client process tells distccd the
operation to perform and gives it any necessary arguments, a list of files to copy to the remote host (input
files) and a list of files to copy from the remote host (output files). The server process broadcasts a work
request for that operation. When an available computer responds, distccd sends the inputs to that computer.
When the compile is complete and the remote computer returns the results, distccd places the output files
in the appropriate locations in the file system and returns the results to the client process.

On a remote computer accepting build operations, the server process listens for requests for assistance.
When it receives a request, it creates a connection with the client computer, obtains the inputs required for
the compilation, and invokes gcc. When the compile is complete, distccd sends the results—the generated
.o files, stderr and stdout—back to the client computer.

If the attempt to distribute a build task fails—for example, if communication with the remote host is lost, or
the remote host cannot execute the compile—the compilation is performed on your local computer.

Xcode only distributes compilation of individual source modules. Your local computer still performs all of
the build setup, linking, and product packaging. Preprocessing is also done on your local computer; this is
done to avoid the problem of ensuring that all machines participating in a build have exactly the same version
of all headers used in the build. For each source file, the distcc client invokes GCC to generate a .i file
containing the preprocessed source; this is the input file sent to the remote host.

328 Distributing Builds Among Multiple Computers
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

Computers that are shared respond to requests for assistance as they are able. Xcode determines how best
to use available machines for a build, based on processing capacity. A computer’s processing capacity is
determined through a combination of availability and processing power.

You can use precompiled headers with distributed builds. If a precompiled header is present, the path to
that header is listed in the preprocessed file generated from each source file. Before it sends a file to a remote
computer, distcc checks for this path and, if found, sends the precompiled header to the remote computer.

Requirements for Using Distributed Builds

Use of distributed builds is subject to the following constraints:

 ■ You must use GCC 3.3 or later.

 ■ Machines that tasks are distributed to must be running the same version of the compiler, operating
system, and Xcode.

 ■ Distributed builds work with native targets. Jam-based targets or targets using another external build
system are not compatible with distributed builds.

 ■ Distributed builds support C, C++, Objective-C and Objective-C++.

 ■ Distributed builds are enabled on a per-user basis, for all projects and targets built by that user.

Discovering Available Computers

To enable distributed builds on your computer, choose Xcode > Preferences and click Distributed Builds. To
use other computers on the network for your builds, select “Distribute builds to.”

Xcode uses Bonjour to automatically discover computers that are set up to broadcast their availability. The
Distributed Builds preference pane lists the computers currently available for sharing build tasks. Services
discovered through Bonjour display the Bonjour name of the computer on which distccd is running.

By default, Xcode will use any computers that are available when you begin a build. You can restrict which
computers are used by selecting “trusted computers only” from the “Distribute builds to” menu. When you
choose this option, Xcode distributes builds only to computers that you explicitly designate as “trusted.” A
computer is trusted if the checkbox in the Trusted column next to its entry is selected.

Each entry in the Distributed Builds preference pane represents a single computer. However, shared computers
with dual processors run two instances of distccd, each of which can accept build tasks. The Max Connections
column displays the number of processors of, and therefore the number of possible connections with, each
available computer.

Computers to which tasks are distributed to must be running the same version of the compiler, operating
system, and Xcode. The Status column shows whether a shared computer is compatible or not. If a computer
goes to sleep, its services disappear from the preference pane, and that computer is no longer available for
performing compilations.

Distributing Builds Among Multiple Computers 329
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

Sharing a Computer

To allow other computers to use your computer for their builds, select the “Share my computer for building
with” option in the Distributed Builds pane of the Xcode Preferences window and choose a priority for sharing
your computer from the menu.

Don’t share your computer if you are using it to host a distributed build as well. Because precompilation and
the distribution of build tasks are done on your local machine, sharing it for others to distribute build tasks
to can significantly slow down your own build.

Distributed Builds and Firewalls

To distribute builds across a firewall, the firewall must allow traffic on ports 3632 and 7264. Some firewalls
allow Bonjour traffic, making shared computers behind the firewall visible in the Distributed Builds preference
pane. However, the distributed build will not work. When Xcode attempts to distribute build tasks and receives
no response from the computers behind the firewall, it times out and builds the project on the local machine.

To allow traffic on ports 3632 and 7264 on computers with a firewall enabled, use the Firewall pane of
Sharing Preferences.

Getting the Most Out of Distributed Builds

Using Xcode to distribute builds across multiple computers can greatly decrease the time it takes to build
your product. To get the most benefit from using distributed builds, you should consider the following:

 ■ Networking speed. The distributed build system sends files to be built on other computers; those
machines, in turn, send back the resulting object files. To see a significant reduction in build time, your
network must be fast enough that the cost of transferring files between machines is minimal. This occurs
around 100 Mbit/s (megabits per second). For this reason, using distributed builds over a wireless network
does not show any build speed benefits.

 ■ Number of available computers. As stated at the beginning of this article, the more processors you have
available to you, the more build tasks can be performed in parallel and the more significant the reduction
in build time that you see. If you have a limited number of computers available for sharing—especially
if those computers do not have significant processing capacity, whether due to limited availability or
slow processor speed—you may not see any noticeable improvements in build performance. The
overhead of managing distribution of build tasks may overcome the benefit you get from building on
additional machines. You may find that you get better build performance from utilizing other
optimizations, such as precompiled headers or parallel builds, on your local computer.

 ■ Differing processing capacity between the computers managing the build and those hosting the build
tasks. If you have a number of different computers available to you, of varying speed, you will get better
performance if you use the faster computers for building and the slower computer to manage the build
and farm out build tasks. For example, if you have a G4 and a G5 available, on a fast network, host the
project on the G4 and make the G5 available for shared builds.

330 Distributing Builds Among Multiple Computers
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

Predictive Compilation

Predictive compilation is a feature introduced to reduce the time required to compile single file changes and
speed up the edit-compile-debug cycle of software development. If you have predictive compilation enabled
for your project, Xcode begins compiling the files required to build the current target even before you tell
Xcode to build.

Predictive compilation uses the information that Xcode maintains about the build state of targets that use
the native build system. Xcode keeps the graph of all files involved in the build and their dependencies, as
well as a list of files that require updating. At any point in time, Xcode knows which of the files used in building
a target’s product are out of date and what actions are required to bring those files up to date. A file can be
updated when all of the other files on which it depends are up to date. As files become available for processing,
Xcode begins to update them in the background, even as you edit your project.

Xcode will even begin compiling a source code file as you are editing it. Xcode begins reading in and parsing
headers, making progress compiling the file even before you initiate a build. When you do choose to save
and build the file, much of the work has already been done.

Until you explicitly initiate a build, Xcode does not commit any of the output files to their standard location
in the file system. When you indicate that you are done editing, by invoking one of the build commands,
Xcode decides whether to keep or discard the output files that it has generated in the background. If none
of the changes made subsequent to its generation affect the content of a file, Xcode commits the file to its
intended location in the file system. Otherwise, Xcode discards its results and regenerates the output file.

You can turn on predictive compilation by selecting “Use Predictive Compilation” option in the Building pane
of the Xcode Preferences window.

Predictive compilation works only with GCC 3.3 or later and native targets. All predictive compilation is done
locally on your computer, regardless of whether you have distributed builds enabled. On slower machines,
enabling predictive compilation may interfere with Xcode performance during editing.

To conserve battery power, Xcode turns off predictive compilation on laptop machines running under battery
power.

Predictive Compilation 331
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

332 Predictive Compilation
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

Optimizing the Edit-Build-Debug Cycle

Using Xcode, you can develop software that can be deployed on, and take advantage of features from,
different versions of Mac OS X, including versions different from the one you are developing on.

When you install the developer tools shipped with Mac OS X v10.3, you can also install SDKs, or Software
Development Kits, which are complete sets of header files and stub libraries as shipped in previous versions
of Mac OS X. In order to take advantage of cross-development, you must install the SDKs for the OS versions
you plan on targeting. You then specify which version (or SDK) of Mac OS X headers and libraries to build
with. You can also specify the earliest Mac OS X system version on which the software will run.

In some cases, Apple may seed an SDK for an upcoming version of the operating system, allowing you to
prepare your application to work with future versions of the Mac OS before they have been released to the
general public.

Important: Cross-development in Xcode requires native targets. For more information on how to upgrade
existing Jam-based targets to use the native build system, see “Converting a Project Builder Target” (page
247).

To set up your Xcode project for cross-development, take the following steps:

1. Choose an SDK to develop for. Select your project in the Groups & Files list and open an Info window.
In the General pane, choose the SDK—for example, Mac OS X version 10.2.7—from the “Cross-Develop
Using Target SDK” pop-up menu. When you choose an SDK, Xcode builds targets in your project against
the set of headers corresponding to the specified version of Mac OS X, and links against the stub libraries
in that SDK. This allows you to build products on your development machine that can be run on the
system targeted by the SDK. Your software can use features available in system versions up to and
including the one you select. The default value is to build for the current operating system.

You can also type a path directly in the text field or click the Choose button to select an SDK other than
a Mac OS X SDK, or to choose a Mac OS X SDK that is stored in a nonstandard location.

2. Choose a deployment version of the Mac OS. If your software must run on a range of operating system
versions, choose a Mac OS X deployment operating system for each individual target that requires one.
The deployment operating system identifies the earliest system version on which the software can run.
By default, this is set to the version of Mac OS X corresponding to the SDK version. If no SDK is specified
and the Mac OS X Deployment Target build setting is not set, the compiler targets Mac OS X version
10.1 by default.

To set the deployment version for a target, select the target in the Groups & Files list and open an Info
window. Click Build to open the Build pane.

Find the Mac OS X Deployment Target setting and choose a deployment operating system from the
pop-up menu in the “Value” column. If this build setting is not visible, select Deployment from the
Collections menu.

333
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

Using Cross-Development in Xcode

3. For each target, supply a prefix file that takes into account the selected SDK. To use an umbrella framework
header from an SDK as your prefix file, add the appropriate #include <Framework/Framework.h>
directive to your target's prefix file, instead of setting a Prefix Header path to the umbrella framework
header directly.

There is a lot more to successfully developing software for multiple versions of the Mac OS. For more
information see Cross Development in Tools Documentation.

334
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

Using Cross-Development in Xcode

Once a product has been designed and an initial version built, you spend time testing it, to find and correct
bugs. Xcode contains a full-featured source-level debugger that lets you step through your code line by line,
set breakpoints, and view variables, stack frames, and threads. The following chapters introduce executable
environments, and show you how to use them to run your program under different conditions from within
Xcode. They also describe Xcode’s graphical debugger, and how to use it to examine program data and
control execution of your code; as well as how to use Fix and Continue to make changes to your source code
and continue debugging.

335
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART VI

Debugging

336
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART VI

Debugging

An executable environment defines how a product is run when you run it from Xcode. The executable
environment tells Xcode which program to launch when you run or debug, as well as how to launch it. Xcode
automatically creates an executable environment for each target that produces a product that can run on
its own. However, you can create your own executable environments for testing products such as plug-ins
or frameworks. You can also set up multiple custom executable environments for testing your program under
varying sets of circumstances, or use a custom executable environment to debug a program you do not have
the source to. This chapter describes how to view the executables in your project and how to configure an
executable environment.

Executable Environments in Xcode

The executable environment defines:

 ■ What executable file is launched.

 ■ Command-line arguments to pass to the program upon launch

 ■ Environment variables to set before launching the program.

 ■ Debugging options that tell Xcode which debugger to use and how to run the program under the
debugger.

Generally, you do not have to worry about executable environments. If you are creating a target that produces
a product that can be run by itself—such as an application—Xcode automatically knows to use the application
when you run or debug the target.

However, if you have a product that can’t be run by itself—such as a plug-in for a third party application—you
need to create your own custom executable environment. This custom executable environment specifies
the program to launch when you run or debug, such as the third-party application that uses your plug-in.

Even if your target creates a product that can run on its own, you may also wish to customize the executable
environment associated with it, in order to pass different arguments to the executable or test it with different
environment variables.

Executable environments defined for a project are organized in the Executables group in the Groups & Files
list of the project window. To see these executables, select that group in the Groups & Files list or click the
disclosure triangle next to the group. Executable environments that you define are stored in your project’s
user file—that is, in the .pbxuser file in the project bundle. As a result, each developer working on a project
needs to define their own executable environments. When you run or debug in Xcode, Xcode launches the
program specified by the active executable, as described in the next section.

Executable Environments in Xcode 337
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

Setting the Active Executable

The active executable is the executable environment that Xcode uses when you click Run or Debug (or
choose one of the corresponding menu items). Xcode tries to keep the active target and the active executable
in sync; if you set the active target to a target that builds an executable, Xcode makes that executable active.
Otherwise, the active executable is unchanged. If you use a custom executable environment to test your
product, you have to make sure that the active executable is correct for the target you want to build and run
or debug.

The active executable is indicated by the blue (selected) button in the detail view. To change the active
executable yourself, you can:

 ■ Select the executable in the detail view. Click the radio button next to the executable to select it.

 ■ Choose the executable from the Active Executable pop-up menu. By default, this menu appears in the
toolbar of the Build Results window, but not in the project window toolbar. To add this menu, choose
View > Customize Toolbar and drag the menu to the toolbar.

Creating a Custom Executable Environment

Many targets create a product that can be run by itself, such as an application or command-line tool. When
you create such a target, Xcode adds an entry to your project’s executable list that points to the target’s
product, and it knows to use that executable environment when you run or debug the target.

Sometimes, though, you have a product that can’t run by itself, such as a plug-in or a framework. Even if your
product can run by itself, you may want to run the product under different conditions to test it. For example,
you may want to test a command-line tool by passing it different flags. Or you may have an application that
performs differently depending on the value of an environment variable.

In these cases, you need to create a custom executable environment. You may have several executable
environments for exercising the product of a single target. For example, you could have several applications
that test different aspects of a framework. Or you could have several lists of command-line arguments and
environment variables that test different aspects of a command-line tool.

To create a custom executable, choose Project > New Custom Executable. Xcode displays an assistant in
which you can specify:

 ■ Executable Name is the name used to identify the executable environment in Xcode.

 ■ Executable Path is the path to the executable to launch.

 ■ The Add To Project menu lets you choose which of the currently open projects to add the custom
executable to.

When you click Finish, Xcode adds the new executable environment to the project. You can change the
program that Xcode launches when using this executable environment—along with other executable
settings—in the inspector, as described in “Editing Executable Settings” (page 339).

338 Setting the Active Executable
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

Editing Executable Settings

Executable environments contain a number of settings that give you control over how your product is run
when you launch it from Xcode. To configure an executable, select it in the Groups & Files list or in the detail
view and open an inspector or Info window. The executable inspector contains the following panes:

 ■ The General pane lets you view and edit basic information about the executable environment, such as
the executable to use, the working directory, and so forth.

 ■ The Arguments pane lets you specify arguments to pass to the executable on launch, as well as any
environment variables for Xcode to set before launching the executable.

 ■ The Debugging pane lets you specify which debugger to use when debugging the executable, as well
as a number of other debugging options. The options in this pane are described in “Configuring Your
Executable for Debugging” (page 346).

 ■ The Comments pane lets you add notes or other arbitrary text to associate with the executable.

General Settings

The General pane, shown here, lets you edit basic information about an executable environment.

Figure 31-1 The General pane of the Info window for an executable

1.

2.

3.

4.

Editing Executable Settings 339
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

The General pane contains the following:

1. The “Executable path” field shows the name and location of the executable that Xcode launches when
you run or debug. When you create a custom executable environment, you specify the executable to
run when that executable environment is active. However, you can change the executable associated
with an executable environment at any time. To specify a different executable, either type the path to
the new executable directly in the text field or click the Choose button and navigate to the executable
in the dialog.

2. The first pop-up menu from the top lets you control which framework variant is used when loading
frameworks used by the executable. Xcode tells the dynamic linker to look for frameworks with the suffix
specified in this pop-up menu. This lets you test with debug versions of many system frameworks.

3. The second pop-up menu from the top specifies the device used for standard input and output when
running the executable.

4. The options under “Set the working directory to” let you specify the working directory used when running
the executable. By default, Xcode uses the Build Products directory, which is set for the current project,
as described in “Build Locations” (page 301).

Setting Command-Line Arguments and Environment Variables

If you have a command-line tool that takes certain arguments, you can assign those arguments to the
executable environment you run the tool with and Xcode will pass those arguments to your tool when you
run or debug. To test your command-line tool under different conditions, you can create multiple executable
environments, each with different arguments. Changing your test environment becomes as simple as changing
the active executable.

The Arguments pane of the inspector and Info window for an executable lets you specify arguments to pass
to the executable, as well as environment variables that Xcode sets before launching the executable. Figure
31-2 shows the Arguments pane of the executable environment Info window.

340 Editing Executable Settings
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

Figure 31-2 Arguments and environment variables in the Info window for an executable

1. Command-line arguments

2. Environment variables

The Arguments pane of the inspector window includes:

1. A table titled “Arguments to be passed on launch.” This table contains a list of command-line arguments
that Xcode passes to the executable on launch. The arguments table contains two columns: the Argument
column contains the argument and the Active column contains a checkbox that enables or disables the
use of that argument.

 ■ To add a new argument, click the plus-sign button. Xcode adds an empty entry to the table.

 ■ To edit an argument line, double-click in the Argument column and type the argument. To disable
or enable the argument, use the Active checkbox; when this checkbox is selected, Xcode passes the
given argument to the executable when it is launched. To reorder the arguments list, drag the
argument line to its new location in the list.

 ■ To remove an argument, single-click to select that argument in the table and click the minus-sign
button.

2. The table titled “Variables to be set in environment” specifies environment variables that Xcode sets
before it launches the executable. These environment variables are available to your program when it’s
running. They can be accessed with such BSD system calls as getenv.

The environment variables table contains three columns: the Name column contains the variable name,
the Value column contains the value of the environment variable, and the active column contains a
checkbox indicating whether or not the given environment variable is used.

Editing Executable Settings 341
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

 ■ To add a new variable, click the plus-sign button. Xcode adds an empty entry to the table.

 ■ To edit a variable’s name, double-click in the Name column and type the name of the variable. To
edit a variable’s value, double-click in the Value column and type the value of the variable. To disable
or enable the variable, use the Active checkbox; when this checkbox is selected, Xcode sets the
environment variable before launching the executable.

 ■ To remove a variable, select it and click the minus-sign button.

Running a Development Product

Once you have built a target’s product, you can test that product by running it from within Xcode. To build
a development version of the selected target’s product and run it if the build succeeds, click the Build and
Run button or choose Build > Build and Run. To run the active executable, click Run or choose Debug > Run
Executable.

If the Build and Run button is not available, try the following:

 ■ Build the selected target.

 ■ Make sure the active executable is set correctly. See “Setting the Active Executable” (page 338).

The Run Log

Many programs print messages to stdout, as well as logging debugging messages to the console or stderr.
When you run your program in Xcode—with the Run or Build and Run commands—you can see this output
in the Run Log window. In addition, if you are creating a command-line program that takes input from stdin,
you can use the Run Log window to interact with your program. To open the Run Log window, choose Debug
> Run Log. Figure 31-3 shows the Run Log window.

Figure 31-3 The Run Log window

342 Running a Development Product
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

Note: When you run your program in Xcode’s debugger, you must use the Standard I/O window to
communicate with your program on stdin. You can view debugging output to the console or to stderr
in the Console Log window.

The Run Log 343
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

344 The Run Log
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

Executable Environments

While running your program can expose bugs in its operation, it does not help you pinpoint the source of
the problem in your source code. For that, you need to run your program in the debugger. The purpose of
a debugger is to allow you to pause the execution of your program, examine its contents, and locate and fix
problems in your code. Xcode’s debugger provides a graphical user interface to gdb for debugging C, C++,
Objective-C, and Objective-C++ programs; and communicates directly with the Java virtual machine to debug
Java programs.

This chapter describes how to run your program in the debugger in Xcode; this includes configuring debugger
options for an executable and enabling debugging facilities, as well as launching your program in the
debugger and viewing debug output.

Generating Debugging Information

Before you can take advantage of Xcode’s source-level debugger, the compiler must collect information for
the debugger. To generate debugging symbols for a product, enable the Generate Debug Symbols
(GCC_GENERATE_DEBUGGING_SYMBOLS) build setting and build the product. This setting is enabled by
default in the Development build style provided by Xcode. If you use this build style as the active build style
when you build your target, the compiler generates the necessary debugging information.

To view the build settings set in the Development build style:

1. In the project window select the project and bring up the inspector window.

2. Click Styles to bring up the Styles pane.

3. Choose Development from the Build Style pop-up menu at the top of the pane. You should see the
Generate Debug Symbols setting in the table of build settings. Make sure that this setting is turned on;
if it is, a checkmark appears in the Value column for this setting. Otherwise, turn on the setting by clicking
the checkbox in the Value column.

You can use the Active Build Style pop-up menu to change the active build style. This menu is available by
default in the toolbar of the Build Results window; otherwise, you can add it to the toolbar of other project
windows by choosing View > Customize Toolbar and dragging the Active Build Style menu into the toolbar.
For more information on build styles, see “Build Styles” (page 297).

Generating Debugging Information 345
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

Configuring Your Executable for Debugging

When you start your program in the debugger, Xcode launches it with the command-line arguments,
environment variables, and other settings specified in the executable environment. The executable
environment also contains a number of debugger-specific options that control which debugger Xcode uses,
as well as how Xcode launches and communicates with the program. These options are set in the Debugging
pane of the executable inspector, shown in Figure 32-1.

Figure 32-1 The Debugging pane of the Info window for an executable

1.

4.

2.

3.

5.

6.

Here is what the Debugging pane contains:

1. When using. This pop-up menu lets you choose the debugger used when you debug the executable.
The next several options below this menu pertain only to the selected debugger.

2. Use [device] for standard input/output. This pop-up menu lets you specify how standard input and output
are handled when debugging the executable. By default, Xcode uses a pseudo terminal device to display
stdin and stdout in the Standard I/O Log window, described in “Debugging a Command-Line
Program” (page 350). You can also choose System Console from this menu to have Xcode redirect your
program’s output to the system console (console.log).

346 Configuring Your Executable for Debugging
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

3. Options for remote debugging. The “Debug executable remotely via SSH” option lets you set up the
executable for remote debugging using GDB in the Xcode debugger window. The “Connect to” field
specifies the host machine on which the executable is run. See “Remote Debugging in Xcode” (page
379).

4. Start executable after starting debugger. This option lets you control whether Xcode starts the executable
running immediately after loading it in the debugger. If this option is enabled, Xcode loads the executable
in the debugger but does not start it until you press “Restart.” This allows you to perform operations in
the debugger—such as setting breakpoints—before the executable runs.

5. Break on Debugger() and DebugStr(). This option tells Xcode to set the USERBREAK environment variable,
which suspends execution of your program on calls to the Core Services framework debugging functions
Debugger or DebugStr.

6. Additional directories to find source files in. This table lets you specify additional folders in which Xcode
can look for source files corresponding to the symbol information in the executable code. To add a
directory, click the plus-sign button and type the path to the directory in the Source Directory field. You
can also drag folders to the table from the Finder; Xcode will insert the path to the folder. To remove a
directory, select it in the table and click the minus-sign button.

Starting Your Program in the Debugger

You can start a debugging session using the buttons available in the toolbar of most Xcode windows, or
using the menu items in the Build and Debug menus. To build a development version of the active target’s
product and start the debugger if the build succeeds, choose Build > Build and Debug, or click the Build and
Debug button. To load an executable that has already been built, choose Debug > Debug Executable or click
the Debug button.

When you start a debugging session, Xcode uses the active executable for the current project to determine
which executable file to load. It loads that program in the debugger, sets any environment variables specified
by the executable environment, and starts the program, passing any specified command-line arguments.
You can debug only one executable in a project at a time. You can, however, have multiple projects open at
once, each with its own instance of the debugger. In this way, you can debug multiple executables at a time.
If, for example, you have a project that builds both client and server executables, you can debug them both
at once by creating an empty project and adding a custom executable that points to the client or server
product. You can then run the client executable under the debugger from one project and the server
executable from the other. “Creating a Custom Executable Environment” (page 338) describes how to create
a custom environment.

To choose which debugger is used, edit the debugging settings for the executable, as described in “Configuring
Your Executable for Debugging” (page 346).

The Debugger Window

Xcode automatically opens the Debugger window, if necessary, when you start a debug session. You can
also display the debugger window at any time by choosing Debug > Debugger. Figure 32-2 shows the
Debugger window.

Starting Your Program in the Debugger 347
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

Figure 32-2 The debugger window

Toolbar

Status bar

Variable
viewThread

view

Editor

Here’s what the debugger window contains:

 ■ Toolbar buttons for stepping through code and displaying related windows.

 ❏ The Build and Debug and the Debug buttons load the project’s active executable in the debugger.
When a debugging session is active, the Terminate button is available; this button stops the active
debugging session.

 ❏ The Fix button compiles a single file fix and modifies your executable to run the changed code
without stopping the current debugging session. For more information on how to use this feature,
see “Using Fix and Continue” (page 374).

 ❏ The Pause, Continue, and Restart buttons control execution of the program.

 ❏ The Step Into, Step Over, and Step Out buttons step through lines of code.

 ❏ The Breakpoints button opens the breakpoints window, which allows you to create and view
breakpoints, described further in “Breakpoints” (page 353).

 ❏ The Console button opens the debugger console.

 ■ The status bar displays the current status of the debugging session. For example, in the window shown
above, Xcode indicates that GDB has just finished loading symbols for a single shared library.

 ■ The Thread view on the upper-left side of the debugger window displays the call stack of the current
thread. The pop-up menu above this view lets you select different threads to view when debugging a
multi-threaded application.

 ■ The Variables view on the upper-right side of the debugger window shows the variables defined in the
current scope and their values. This section also shows the current state of all processor registers when
the disassembly view is enabled (see “Viewing Disassembled Code and Processor Registers” (page 369)
for more information).

348 Starting Your Program in the Debugger
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

 ■ The editor displays the source code you are debugging. When execution of your program is paused, the
debugger indicates the line at which execution is paused by displaying the PC indicator, which appears
as a red arrow. The line of code is also highlighted. You can change the color used to highlight the
currently executing statement by choosing Xcode > Preferences, selecting Debugging, and choosing a
new color from the Instruction Pointer Highlighting color well.

You can change the layout of the debugger window by choosing Debug > Toggle Debugger Layout. In this
alternate layout, the Variables view is on the left side of the debugger window, under the Thread view, and
the editor is on the right side of the window.

Troubleshooting

If the Build and Debug button is not available, try the following:

 ■ Build the selected target.

 ■ Associate an executable with the selected target. See “Executable Environments” (page 337).

If the debugger does not display source for a file, try the following:

 ■ Make sure you have the source. Apple’s frameworks and many third-party libraries don’t include source
code.

 ■ Make sure debugging is enabled for the target.

 ■ If the file is in your project’s Groups & Files list, make sure its name is not in red, which means it can’t be
found.

 ■ If the file is not in the Groups & Files list and your target might need to process it, add the file to the
project. See “Adding Files, Frameworks, and Folders to a Project” (page 78).

 ■ If the file is for a library or framework that was built for you, do one of the following:

 ❏ Place the source in the same location used by the person who built the library or framework. When
someone builds a debuggable binary, the compiler stores the paths of its source files in the binary.

 ❏ Add the file’s directory to the source directories list. In the project window, select the executable
and open an Info window. Click Debugging and enter the file’s directory in the table titled “Additional
directories to find source files in.”

Lazy Symbol Loading

Lazy symbol loading reduces the initial memory footprint for debugging large applications by reading
debugging symbols only when they are needed. When the “Load symbols lazily” option is enabled—as it is
by default in Xcode’s Debugger Preferences pane—the gdb debugger reads a minimal amount of symbol
information to support symbolic breakpoints and calling functions in the debugger console. To set a file and
line breakpoint Xcode gives hints to gdb about the symbols needed to set the breakpoint. When a stack
trace is generated, gdb automatically reads the full debugging symbols as needed, providing line number
and file information to Xcode. When lazy symbol loading is disabled, Xcode reads the full debugging symbols
when the debugger starts up.

Lazy Symbol Loading 349
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

The Console Window

Xcode’s graphical interface for GDB, the GNU debugger, and for the Java debugger lets you perform most
necessary debugging tasks. You may, however, encounter situations—such as working with watchpoints in
GDB—that require you to interact directly with the debugger on the command line. Using the Console Log
in Xcode, you can:

 ■ View the commands that Xcode sends to gdb or the Java command-line debugger.

 ■ Send commands directly to gdb or the Java command-line debugger.

 ■ View the debugger output for those commands.

 ■ See debugging messages printed to stderr by your program or by system frameworks.

To open the Console Log, click the Console button in the toolbar of Xcode’s Debugger window or choose
Debug > Console Log. To enter commands, click in the console window and type at the gdb or JavaBug
prompt. To get help with GDB and Java debugging commands, enter help at the console. To learn more
about command-line debugging with GDB, see Debugging With GDB in Tools Compilers & Debuggers
Documentation.

To make the Console Log easily readable, Xcode lets you choose the text colors and fonts used in the console
window. You can use different fonts and colors for the text you type in the console, the text the debugger
writes to the console, and the debug console’s prompt. To change the colors used for text in the Console
window, choose Xcode > Preferences, click Debugging, and use the Fonts and Colors options. See “Debugging
Preferences” (page 400) for more information.

Debugging a Command-Line Program

If you are debugging a command-line program that requires input from stdin, you must use the Standard
I/O Log to communicate with your program when it is running in the debugger. To open the Standard I/O
Log window, choose Debug > Standard I/O Log. This window is only available when your program is running
under the debugger.

Xcode and Mac OS X Debugging

Many of the subsystems in Mac OS X include debugging facilities that you can use to help you in your
debugging tasks. You can use most of these debugging facilities along with Xcode. Many debugging facilities
are enabled or disabled by setting an environment variable; you can modify the executable environment to
set these environment variables from Xcode. Xcode also includes several options for enabling specific
debugging options, such as libgmalloc (Guard Malloc), loading debug library variants, and stopping on Core
Services debugging functions (described in “Stopping on Core Services Debugging Functions” (page 357)).
For more on the many debugging facilities available in Mac OS X, see TN2124: Mac OS X Debugging Magic.

350 The Console Window
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

Using Debug Variants of System Libraries

Many Mac OS X system frameworks include debug versions, in addition to the production version. These
library variants are identified by their _debug suffix. Debug variants of the system frameworks usually include
debugging symbols, extra assertions, and often extra debugging facilities. You can modify the executable
environment to have Xcode use the debug variants for libraries that your program loads. To use the debug
variant of a library, open the inspector for the executable environment that you use to run your program. In
the General pane, choose “debug” from the menu “Use [suffix] suffix when loading frameworks.”

Using Guard Malloc in Xcode

Xcode also integrates Guard Malloc (libgmalloc) into the debugger interface. Guard Malloc helps you debug
memory problems by causing your program to crash on memory access errors. Because Guard Malloc causes
your program to crash, you should use Guard Malloc with the debugger. When a memory access error occurs
and your program crashes, you can look at the stack trace, determine exactly where the error occurred, and
quickly jump to the location of the problem.

To enable debugging with Guard Malloc from Xcode, choose Debug > Enable Guard Malloc, before starting
the debugging session. You can also use Guard Malloc with gdb from the command line, by setting the
DYLD_INSERT_LIBRARIES environment variable, as described in the man page for libgmalloc.

Guard Malloc has a number of additional options available. You can take advantage of these by setting the
appropriate environment variables on the executable. In the inspector window for the executable, open the
Arguments pane and add the environment variables to the environment variables table at the bottom of
the window. See the man page for libgmalloc for additional details and information.

Xcode and Mac OS X Debugging 351
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

352 Xcode and Mac OS X Debugging
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

Running in Xcode’s Debugger

The purpose of the debugger is to help you identify and resolve problems in your code by analyzing the
internal operation of your program. Using the debugger, you can halt the execution of your program when
you encounter a problem and inspect the program in its current state. The debugger can stop your program
when certain events occur or when a particular line of code is reached. It also lets you execute individual
machine instructions or lines of code, pausing after each to examine the contents of your program.

This chapter shows you the various facilities that the Xcode debugger provides for pausing and then resuming
execution of your program. It describes how to use breakpoints to stop at a particular line of code or at a
function or method call, as well as how to stop when your program throws an exception. It also describes
how to step through code, to view changes effected in your program one line or machine instruction at a
time.

Breakpoints

Breakpoints let you pause the execution of your program in the debugger whenever certain events occur in
your code. You can set a breakpoint to stop your program when:

 ■ Execution reaches a specific line of code. When you set a breakpoint for a particular line number in a
source code file, the debugger stops your program just before it executes any of the code on that line.

 ■ A particular function or method is called. You can specify the name of a function or method to set a
breakpoint at the entry to that function or method; this is referred to as a symbolic breakpoint.

In Xcode, you can set and view breakpoints for a project from the code editor or from the Breakpoints window.
Xcode stores all your breakpoints when you close your project and restores them when you open it again.
Breakpoints are stored per-project.

GDB also supports special kinds of breakpoints that let you halt execution of your program when a particular
event, such as the loading of a certain library, occurs; or when the value of an expression changes. To set
breakpoints of this nature—called catchpoints and watchpoints—you must use the command line interface,
described in “The Console Window” (page 350).

The Breakpoints Window

The Breakpoints window lets you view and modify all of the breakpoints set in the current project. This
includes function and method breakpoints, as well as breakpoints associated with a particular line of code
in a source file. To open the Breakpoints window, click the Breakpoints button in the toolbar of the debugger
window or choose Debug > Breakpoints. Figure 33-1 shows the Breakpoints window:

Breakpoints 353
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Figure 33-1 The Breakpoints window

Breakpoints on a function or method are assigned to the Symbolic Breakpoints group. File line breakpoints
are grouped by the file in which they appear; Xcode displays the line number at which each breakpoint is
set and the surrounding context of the line. The checkbox next to each breakpoint indicates whether that
breakpoint is enabled. When a breakpoint is enabled, the debugger stops when it encounters the specified
line or function.

You can delete, disable, or reenable any existing breakpoint in your project in the Breakpoints window. You
can also create new symbolic breakpoints. However, you can only add a new breakpoint to a specific line of
code from the editor.

To view the source code for a breakpoint, double-click the breakpoint in the Breakpoints window. This opens
the source file in which the breakpoint is set or the function is defined in a separate editor window.

Adding Breakpoints

Xcode’s debugger lets you add a breakpoint to a specific line of code or to a function or method. You can
set a breakpoint on a line of code directly in the editor. To set a symbolic breakpoint, use the Breakpoints
window.

354 Breakpoints
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Setting a Breakpoint at a Line of Code

To add a file line breakpoint, click the margin beside the line of code in the code editor or place the insertion
point in the line and choose Debug > Add Breakpoint at Current Line (or type Command-\). Xcode adds a
breakpoint at the current line and displays it in the gutter of the editor. Breakpoints appear as a dark arrow
in the gutter, pointing to the specified line of code, similar to the following:

Figure 33-2 A breakpoint in a gutter

You can easily move a breakpoint associated with a specific line of code to another line by dragging the
breakpoint arrow to the new line within the code editor.

Once you’ve set a breakpoint at a particular line, you can see that breakpoint in the Breakpoints window as
well, as described in the previous section. However, you cannot set a new file line breakpoint from the
Breakpoints window.

Setting a Breakpoint on a Function or Method

To set a breakpoint at a function or method, use the Breakpoints window. You can open the breakpoints
window by clicking the Breakpoint button or choosing Debug > Breakpoints. To add a new breakpoint, click
the New Symbolic Breakpoint button. Xcode adds an item to the Symbolic Breakpoints group; type the name
of the function or method at which to set the breakpoint in this field. For example, to stop whenever something
in your code calls malloc, enter malloc.

When you set a breakpoint on an Objective-C method, you must include the brackets and a plus or minus
sign. For example, to stop whenever a Cocoa exception is raised, enter -[NSException raise].

Breakpoints 355
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Deleting Breakpoints

If you no longer need a breakpoint, you can delete it from the project using the Breakpoints window or, if
the breakpoint is set on a specific line of code, from within the code editor. To remove any breakpoint in
your project—symbolic or line number—open the Breakpoints window, select the breakpoint you want to
delete, and choose Edit > Delete or press the Delete key.

To remove a breakpoint that is set on a line of code, you can also do either of the following in the editor:

 ■ Click the breakpoint marker—the arrow symbol—in the gutter of the editor.

 ■ Place the insertion point in the line and choose Debug > Remove Breakpoint at Current Line.

Xcode removes the breakpoint marker from the breakpoint gutter and deletes the breakpoint from the
Breakpoints window.

Disabling and Reenabling Breakpoints

In the course of debugging a program, you may find that you don’t currently want the debugger to use a
particular breakpoint that you have set, but you don’t want to delete it entirely, either, in case you want to
use it again at a later time. Instead of deleting the breakpoint from your project, you can simply disable it.
This renders the breakpoint inactive, but retains all of the information for that breakpoint, so you can enable
it again later. A disabled breakpoint appears in the breakpoint list and is saved in the project, but Xcode
doesn’t stop at it. The breakpoint remains disabled until you enable it again.

You can disable or reenable any breakpoint in your project—whether a symbolic breakpoint or a line number
breakpoint—from the Breakpoints window. To disable or reenable a breakpoint, open the Breakpoints window
and click the checkbox beside the breakpoint you want to modify. A breakpoint is enabled when this checkbox
is selected.

You can also disable or reenable file line breakpoints from the code editor by Control-clicking the breakpoint
in the gutter and choosing Disable Breakpoint or Enable Breakpoint from the contextual menu. Alternatively,
Command-clicking the breakpoint arrow in the gutter toggles the state of the breakpoint between enabled
and disabled. A disabled breakpoint on a line of code appears as a light grey arrow in the breakpoint gutter
of the code editor.

Stopping on C++ Exceptions

If you are debugging C++ code, you can specify that the Xcode debugger stop on catch and throw. You
can enable this feature using the following two menu items in the Debug menu:

 ■ Stop on C++ throw. Enable this option to halt execution when an exception is thrown.

 ■ Stop on C++ catch. Enable this option to halt execution when an exception is caught.

356 Stopping on C++ Exceptions
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Stopping on Core Services Debugging Functions

The Core Services framework includes routines, such as Debugger and DebugStr, that break into the debugger
with a message. If your code contains calls to these functions, you can tell Xcode’s debugger to stop when
it encounters these functions.

You can enable this feature for an individual executable, as described in “Configuring Your Executable for
Debugging” (page 346), or for all executables in the current project using the Debug menu. To enable stopping
on calls to Debugger and DebugStr from the Debug menu, choose Debug > Stop on Debugger()/DebugStr().
If this feature is already enabled, choosing the menu item a second time disables it.

Xcode sets the USERBREAK environment variable to 1, which causes these functions to send a SIGINT signal
to the current process, breaking into the debugger.

Stepping Through Code

Once execution of your program has been suspended in the debugger—for example, after hitting a
breakpoint—you have a number of options for resuming execution. You can simply resume execution of
your program from its current location, continuing until the program exits or the debugger encounters
another breakpoint, or you can step through your program’s code. When you step through code, you tell
the debugger to execute just one more code line or machine instruction and pause the program once more.
This lets you examine changes in your program in detail and pinpoint problems.

The Xcode debugger provides toolbar buttons and menu items to let you control the execution of your code.
The following example uses the CalendarView sample application to illustrate how to step through code in
the debugger using some of these commands. In Figure 33-3 the execution of the CalendarView program is
halted at a breakpoint set in the CalendarViewHandler function.

Stopping on Core Services Debugging Functions 357
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Figure 33-3 Execution of a program stopped at a breakpoint

The line of code at which execution is paused—the line at which the breakpoint is set—is highlighted in the
editor. The red arrow next to the code line, the PC indicator, shows the position of the program counter. You
can see the chain of function calls from which the CalendarViewHandler function was invoked in the
Thread view, located in the top left of the debugger window. The arguments and local variables of the
function or method selected in the thread list are visible in the Variable view, to the right of the thread list
in the debugger window. To go to the next line of code, staying within the current function, press Step Over.

358 Stepping Through Code
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Figure 33-4 Stepping over a line of code

The PC indicator has advanced to the next line of code, where it is again paused. The next line of code has
a function call. To go to the next line of code, stepping into the function if possible, press Step Into.

Stepping Through Code 359
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Figure 33-5 Stepping into a function

The PC indicator is now paused at a line in the CalendarViewConstruct function, which was called from
the line of code in the CalendarViewHandler function that you stepped into. The local variables and
arguments for CalendarViewConstruct are shown in the variable display and the call chain now lists this
function above the CalendarViewHandler function. To go to the end of the current function and back to
the statement of the CalendarViewHandler function from which it was called, press Step Out.

You can also use the Step Into Instruction and Step Over Instruction commands to step through individual
machine instructions. See “Viewing Disassembled Code and Processor Registers” (page 369) for more
information.

All of the commands in this section also have equivalent menu items in Xcode’s Debug menu. You can change
the location at which execution will start when you continue the program or resume stepping through code
by dragging the PC indicator to the appropriate line of code.

Stopping and Starting Your Program in the Debugger

In addition to the commands demonstrated in the previous section, you can further control the execution
of your program in the debugger using the following commands:

 ■ To force-quit your application and restart it, press Restart.

 ■ To pause your program while it’s running, press Pause.

 ■ To continue it again, press Continue.

 ■ To force the application to quit immediately, press Terminate.

360 Stopping and Starting Your Program in the Debugger
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

Xcode provides buttons in the Debugger window toolbar, as well as menu items in the Debug menu, for
each of these commands.

Stopping and Starting Your Program in the Debugger 361
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

362 Stopping and Starting Your Program in the Debugger
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

Controlling Execution of Your Code

When execution of your program is paused, Xcode displays a great deal of information on the current state
of your program. Xcode’s graphical debugging interface makes it easy to examine the call stack, and view
variables and their values. This chapter describes how to view variables, expressions, and disassembled code.
It also describes how to use the Memory Browser to view the contents of memory.

Viewing Stack Frames

For each function call that your program makes, the debugger stores information about that call in a stack
frame. These stack frames are stored in the call stack. When execution of your program is paused in the
debugger, Xcode displays the call stack for the currently running process in the Thread view display on the
left of the debugger window, with the most recent call at the top.

Selecting any function call in the call stack displays the stack frame for that function. The stack frame includes
information on the arguments to the function, variables defined in the function, and the location of the
function call. Xcode displays the frame’s variables in the Variable list and displays its currently executing
statement in the code editor with a red arrow. If a stack frame is grayed out, no source code is available for
it.

In the pop-up menu above the call stack in the debugger window, Xcode displays all the threads for your
application. To view a thread, choose it from the pop-up menu. Xcode displays its call chain in the Thread
list.

Viewing Variables in the Debugger Window

The variables view shows information—such as name, type and value—about the variables in your program.
Variables are displayed for the stack frame that is currently selected in the debugger window. The variables
view, shown in Figure 34-1, appears in upper-right portion of the Debugger window by default. The variables
view can have up to four columns:

1. The Variable column shows the variable’s name.

2. The Type column displays the type of the variable. This column is optional. To display it, choose Debug
> Variables View > Show Types.

3. The Value column shows the variable’s contents. If a variable’s value is in red, it changed when the
application was last active. You can edit the value of any variable; the changed value is used when you
resume execution of your program.

4. The Summary column gives more information on a variable’s contents. It can be a description of the
variable or an English language summary of the variable’s value. For example, if a variable represents a
point, its summary could read “(x = x value, y = y value).” You can edit the summary of a variable by

Viewing Stack Frames 363
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

double-clicking the Summary column or choosing Debug > Variables View > Edit Summary Format. For
a description of how you can format variable summaries, see “Using Custom Data Formatters to View
Variables” (page 364).

You can choose which columns the debugger shows in the variables view; Xcode remembers these columns
across debugging sessions.

Figure 34-1 The variables view

Variables in the variables view are grouped by category; to view variables in any of these groups, click the
disclosure triangle next to that group. These groups are:

 ■ The Arguments group contains the arguments to the function that is currently selected in the call stack.

 ■ The Locals group contains the local variables declared in the function that is currently selected in the
call stack.

 ■ The Globals group shows global variables and their values. By default, there are no global variables in
this section; you must select those variables you want to track in the Globals Browser, described in “Using
the Globals Browser” (page 367).

 ■ The File Statics group shows file statics, if any. This group is not shown if none are present.

To view the contents of a structured variable, click the disclosure triangle beside the variable’s name. You
can also use a data formatter to display a variable’s contents in the Summary column, as described in “Using
Custom Data Formatters to View Variables” (page 364), or you can view a variable in its own window. Viewing
a variable in its own window is particularly useful for viewing the contents of complex structured variables.
To open a variable in its own window, double-click the variable’s name or select it and choose Debug >
Variables View > View Variable in Window.

Using Custom Data Formatters to View Variables

Xcode allows you to customize how variables are displayed in the debugger by specifying your own format
strings for the Value or Summary columns. In this way, you can display program data in a readable format.
Xcode includes a number of built-in data formatters for data types defined by various Mac OS X system
frameworks. You can edit these format strings or create your own data formatters.

Working With Data Formatters

The menu item Debug > Variables View > Enable Data Formatters lets you turn data formatters on and off.
If a checkmark appears next to the menu item, data formatters are enabled; select the menu item again to
turn data formatters off. Data formatters are enabled by default.

364 Viewing Variables in the Debugger Window
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

If you are debugging heavily threaded code, where more than one thread is executing the same code, data
formatters may cause threads to run at the wrong time and miss breakpoints. To avoid this problem, disable
data formatters.

Writing Custom Data Formatters

You can provide your own data format strings to display data types defined by your program. To edit the
format string associated with a variable value or variable summary, double-click in the appropriate column
of the variables view. You can also choose Debug > Variables View > Edit Summary Format.

Data format strings can contain:

 ■ Literal text. You can add explanatory text or labels to identify the data presented by the format string.

 ■ References to values within a structured data type. You can access any member of a structured variable
from the format string for that variable. The syntax for doing so is %pathToValue%, where pathToValue
is the .-delimited path to the value you want to access in the current data structure.

 ■ Expressions, including function or method calls. The syntax for an expression is {expression}. To reference
the variable itself in the expression, use $VAR. For example, to display the name of a notification—of
type NSNotification—you can use {(NSString *)[$VAR name]}:s.

When it displays the data format string, Xcode replaces the member reference or expression with the contents
of the Variable view’s Value column for the value obtained by evaluating the reference or expression. You
can, however, specify that Xcode use the contents of any column in the Variables view—Variable name, Type,
Value, or Summary. To do so, add :referencedColumn after the expression or member reference, where
referencedColumn is a letter indicating which Variables view column to access. So, the syntax for accessing a
value in a structured data type becomes %pathToValue%:referencedColumn. Table 34-1 shows the possible
values for referencing variable display columns.

Table 34-1

Variables view columnReference

Variable (shows the variable name)n

Valuev

Typet

Summarys

The following example uses the CGRect data type to illustrate how you can build format strings using member
references and expressions. (Note that Apple provides format strings for the CGRect data type, so Xcode’s
debugger already knows how to display the contents of variables of that type). The CGRect data type is
defined as follows:

struct CGRect { CGPoint origin; CGSize size; }; typedef struct CGRect CGRect;

Assuming that the goal is to create a format string that displays the origin and size of variables of type
CGRect, there are many ways you can write such a format string. For example, you can reference to members
of the origin and size fields directly. Of course, each of these two fields also contain data structures, so
simply referencing the values of those fields isn’t very interesting; the values you actually want are in those
data structures. One way you can access those values is to simply include the full path to the desired field

Viewing Variables in the Debugger Window 365
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

from the CGRect type. For example, to access the height and width of the rectangle, in the height and
width fields of the CGSize structure in the size field, you could use the references %size.height% and
%size.width%. An example format string using these references might be similar to the following:

height = %size.height%, width = %size.width%

You could write a similar reference to access the x and y-coordinates of the origin. Or, if you already have
data formatter for values of type CGPoint that displays the x and y coordinates of the point in the Summary
column of the Variables view—such as “(%x%, %y%)”— you can leverage that format string to display the
contents of the origin field in the data formatter for the CGRect type. You can do so by referencing the
Summary column for CGPoint, as in the following format string:

origin: %origin%:s

When Xcode evaluates this format string, it accesses the origin field and retrieves the contents of the
Summary column for the CGPoint data type, substituting it for the reference to the origin field. The end
result is equivalent to writing the format string origin: (%origin.x%, %origin.y%).

You can combine this with the format string for the size field and create a data format string for the CGRect
type similar to the following:

origin: %origin%:s, height = %size.height%, width = %size.width%

Given a rectangle with the origin (1,2), a width of 3, and a height of 4, this results in the following display:
origin: (1, 2), width=3, height=4. You can also write a data formatter to display the exact same information
using an expression, such as the following:

origin: {$VAR.origin}:s, height = {$VAR.size.height}, width = {$VAR.size.width}

When Xcode evaluates this expression for a variable, it replaces $VAR with a reference to the variable itself.
Of course, using an expression to perform a simple value reference is not necessary. Another example of an
expression in a format string is {(NSString *)[$VAR name]}:s, to display the name of a notification, of type
NSNotification.

When you specify a custom format string for a variable of a given type, that format string is also used for all
other variables of the same type. Note, however, that you cannot specify a custom format for string types,
such as NSString, char*, and so on. Custom format strings that you enter in Xcode’s debugger window
are stored at ~/Library/Application Support/Apple/Developer
Tools/CustomDataViews/CustomDataViews.plist.

In addition to supplying custom format strings to display variables in the debugger, you can also write your
own code that constructs descriptions for variables displayed in the debugger. These functions can be
packaged as a bundle that is loaded into the process being debugged and can be invoked from format
strings.

Using a Different Display Format to View a Variable

You can view the value of a variable in a variety of formats, including hexadecimal, octal, and unsigned
decimal. To display a variable’s value in a different numeric format, select the variable in the variables view
and choose the numeric format from the Debug > Variables View menu. Choose Debug > Variables View >
Natural to use the default format for a variable’s value, based on the type of that variable.

366 Viewing Variables in the Debugger Window
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

You can also cast a variable to a type that’s not included in the menu. For example, a variable may be declared
as void *, but you know it contains a char * value. To cast a variable to a type, select the variable, choose
Debug > Variables View > View Value As and enter the type.

In addition to changing the display format used for a variable’s contents in the Value column, Xcode lets you
track the value of the variable as an expression or see the contents of the variable in memory. To open the
Expressions window and add a variable to it, select the variable and choose Debug > Variables View > View
Variable As Expression. The Expressions window is described further in “Using the Expressions Window” (page
368). To see the contents of a variable in memory, using the Memory Browser window, select the variable and
choose Debug > Variables View > View As Memory. See “Browsing the Contents of Memory” (page 369) for
more information on the Memory Browser window.

You can also access any of the menu items described in this section from the contextual menu displayed
when you Control-click a variable.

Using the Globals Browser

By default, Xcode does not display global variables in the variables view. The variables view contains a Globals
group, but it is empty. You can choose which global variables to display in the Globals section of the debugger’s
variable view using the Globals Browser, shown in Figure 34-2. The Globals Browser lets you search for global
variables by library.

Figure 34-2 The Globals Browser

Global
variables
table

Path to current library

Search

Number of
symbols

Libraries list

You can open the Globals Browser by choosing Debug > Tools > Global Variables. The debugger must be
running and execution of the program being debugged must be paused for this item to be available. If you
attempt to disclose the contents of the Globals group in the variables view, Xcode automatically opens the
Globals Browser.

Viewing Variables in the Debugger Window 367
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

The list on the left of the Globals Browser window, titled “Library,” lists the available libraries, including system
libraries and your own libraries. To see a library’s global variables, select that library in the list; the global
variables defined by that library are shown in the table to the right. In the globals table, you can see:

1. The name of the global variable.

2. The file in which the global variable is defined.

3. The current value of the global variable.

4. The type of the global variable.

You can use the search field at the top of the Globals Browser window to filter the contents of the global
variables table. To the right of the search field, Xcode displays the number of global variables currently visible,
as a fraction of the total number of global variables in the currently selected library.

To add a global variable to the Globals list in the debugger window’s variable view, select the checkbox in
the “View” column next to the global variable. You can remove the global variable from this Globals list by
deselecting this checkbox at any time.

When you select a library in the Library list, the full path to that library is displayed below the list.

Using the Expressions Window

The Expressions window lets you view and track the value of an expression, including a global value or a
function result, over the course of a debugging session. To open the Expressions window, choose Debug
>Tools > Expressions. Type the expression you wish to track in the Expression field. Xcode adds the expression,
evaluates it, and displays the value and summary for that expression. The display format of the value and
summary information is determined by any data formatters in effect.

The expression can include any variables that are in scope at the current statement and can use any function
in your project. To view processor registers, enter an expression such as '$r0', '$r1'.

You can also add a variable to the Expressions window by selecting the variable in the variables view and
choosing Debug > Variables View > View As Expression. To remove an expression, select it and press Delete.

Here are some tips on using the Expressions window:

 ■ The expression is evaluated in the current frame. As the frame changes, the expression may go in and
out of scope. When an expression goes out of scope, Xcode notes this in the Summary column.

 ■ Always cast a function to its proper return type. The debugger doesn’t know the return type for many
functions. For example, use (int)getpid() instead of getpid().

 ■ Expressions and functions can have side effects. For example, i++, increments i each time it’s evaluated.
If you step though 10 lines of code, i is incremented 10 times.

368 Using the Expressions Window
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

Viewing Disassembled Code and Processor Registers

The disassembly view of the debugger window allows you to observe disassembled code. The editor in the
debugger window supports three states: Code, Disassembly, and Code and Disassembly. To change the state
of the disassembly view choose Debug > Toggle Disassembly Display. The mark next to this menu item
indicates the current state of the disassembly view: a line for Disassembly, a checkmark for Code and
Disassembly, and no mark for Code.

When there’s no source code available for the function or method selected in the Thread list, Xcode displays
the disassembled code in the editor. Figure 34-3 shows disassembled code in the Xcode debugger.

Figure 34-3 Viewing disassembled code in the debugger

When disassembly view is enabled, the Variables list contains a Registers group containing all the processor
registers.

Browsing the Contents of Memory

When execution of the current program is paused in the debugger, you can browse the contents of memory
using the memory browser. To open the memory browser, shown here, choose Debug > Tools > Memory
Browser. You can also open the Memory Browser to the location of a particular variable; in the Debugger
window, select the variable and choose Debug > Variables View > View As Memory.

Viewing Disassembled Code and Processor Registers 369
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

Figure 34-4 The memory browser window

In the Memory Browser, you can see:

 ■ A contiguous block of memory addresses.

 ■ The contents of memory at those addresses, represented in hexadecimal.

 ■ The contents of memory at those addresses, represented in ASCII.

 ■ The Address field controls the starting address of the memory displayed in the table below. You can
enter an address, a variable name or expression. Hexadecimal values must be preceded by 0x.

 ■ The arrows next to the Address field “step” through memory; clicking the up arrow shows the previous
page of memory, while clicking the down arrow returns the next page of memory.

 ■ The Bytes field controls the number of bytes displayed in the memory browser. You can choose one of
the options from the pop-up menu in the Bytes field or type a number directly into the field. However,
the number of bytes will be rounded up to the next full row of memory fetched.

 ■ The Word Size and Columns menus control how the memory is divided up and displayed. The Word Size
menu specifies the size, in bytes, of a single chunk of memory. The Columns menu controls how many
units, of the size specified by the Word Size menu, are displayed for an address.

370 Browsing the Contents of Memory
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

Examining Program Data and Information

The Shared Libraries window lets you see which libraries have been loaded by an executable running in
Xcode’s debugger. To open the Shared Libraries window, choose Debug > Tools > Shared Libraries.

The Module Information table lists all of the individual libraries that the executable links against. In this table,
you can see the name and address of each shared library, as well as which symbols the debugger has loaded
for that library. The Starting column shows which symbols the debugger loads by default for a given library
when the current executable is running. The Current Level column shows which symbols the debugger has
loaded for the library during the current debugging session. When an entry has a value in the Address and
Current Level columns, the library has been loaded in the debugging session.

The path at the bottom of the window shows where the currently selected library is located in the file system.
You can quickly locate a particular library by using the search field to filter the list of libraries by name. You
can add and delete libraries from this list using the ‘+’ and ‘-’ buttons.

Using the Shared Libraries window you can also choose which symbols the debugger loads for a shared
library. This can help the debugger load your project faster. You can specify a default symbol level for all
system and user libraries; you can also change which symbols the debugger loads for individual libraries.

For any shared library, you can choose one of three levels of debugging information:

 ■ All loads all debugging information, including all symbol names and the line numbers for your source
code.

 ■ External loads only the names of the symbols declared external.

 ■ None loads no information.

You can specify a different symbol level for system libraries and user libraries. User libraries are any libraries
produced by a target in the current project. System libraries are all other libraries.

By default, the debugger loads only external symbols for system and user libraries and automatically loads
additional symbols as needed, as described in “Lazy Symbol Loading” (page 349). Disabling the "Load symbols
lazily" option, described in “Debugging Preferences” (page 400), changes the default symbol level for User
Libraries to “All.” This is a per-user setting and affects all executables you define. You can also customize the
default symbol level settings for system and user libraries on a per-executable basis, using the Default Level
pop-up menus in the Shared Libraries window.

For some special cases—applications with a large number of symbols—you may wish to customize the
default symbol level for individual libraries when running with a particular executable. To set the initial symbol
level to a value other than the default, make a selection in the Starting column. While debugging you can
increase the symbol level using the Current Level column. This can be useful if you need more symbol
information while using GDB commands in the Console. Clicking Reset sets all of the starting symbol levels
for the libraries in the Module Information table back to the Default value.

371
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 35

Shared Libraries Window

372
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 35

Shared Libraries Window

A very powerful feature of Xcode is the ability to modify your executable while it is running and see the
results of your modification. This feature is implemented through the Fix command in the Xcode interface.

The Fix command is not intended as a replacement for building your project regularly. Instead, it is a
convenience feature for viewing the effect of small changes without restarting your debugging session. This
feature is useful in situations where it takes a significant amount of time to reach the place in your application’s
execution cycle that you want to debug. You can use the feature to learn more about potential bug fixes or
to see the immediate results of code changes.

About the Fix Command

The Fix command in Xcode is a way to modify an application at debug time and see the results of your
modification without restarting your debugging session. This feature can be particularly useful if it takes a
lot of time to reach your application’s current state of execution in the debugger. Rather than recompile your
project and restart your debugging session, you can make minor changes to your code, patch your executable,
and see the immediate results of your changes.

Important: Use of the Fix command is subject to certain requirements and restrictions, which are listed in
“Restrictions on Using the Fix Command” (page 375).

GDB and the Fix Command

The process of fixing source files while debugging is tricky. GDB must manipulate your executable while it
is running, inserting new code while not disturbing the state of your program execution. The actual process
involves compiling your code with special flags and rewriting portions of your binary to call the new code
when appropriate. At all times, the Fix command modifies the in-memory image of your executable. It does
not permanently modify the files of your original application binary.

When it receives a patched binary, GDB compares that binary against the code in the application’s original
binary. GDB checks for several modifications that cannot be patched into a running application. If it detects
any of these modifications, it reports back to Xcode that it could not incorporate the patch. If this occurs,
you can stop debugging and rebuild your application or continue debugging without the patch.

If GDB does not report any problems with your patch, it integrates the patched code into your application’s
memory image. It does this by making the following modifications:

 ■ GDB modifies functions in your original binary to jump to any patched versions.

 ■ GDB modifies any static or global variables in the patched file to point back to the versions in the original
binary.

About the Fix Command 373
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

Using Fix and Continue

Debugging With Patched Code

After patching your application, you should be able to continue debugging your code as before. The next
time you encounter a patched function, you should see the changes you made appear in the debugger
window. However, there are some caveats to be aware of when working with patched code.

If you patch a function that is on the stack, you may not see the results of that patch immediately. GDB is
capable of patching the function that is currently at the top of the stack. However, if you patch a function
that is further down the calling chain, the patch does not take effect until the next time you call it. Thus, the
function must return and be called again before it receives the patch. Until that time, the function on the
stack continues to execute the original code.

While your program is paused in the debugger, you can move the program counter around and resume
execution from any point in the current function. This feature lets you rerun a patched function from the
beginning, or from any point, to account for the changes you made.

If you quit your debugging session for any reason, you must rebuild your program to acquire any changes
made by patching. The effects of the Fix command are only applicable to your executable while it is active
in the debugger. The reason is that the command does not modify your program’s compiled object files.
Instead, it creates temporary object files and loads them into the memory space of your process dynamically.
When you quit the debugger, GDB discards the temporary object files containing the patches. Recompiling
your project recreates your application’s original object files from the patched code.

Using Fix and Continue

If you are running your executable in the debugger and you make changes to your source code, you can
patch your executable by doing either of the following:

 ■ Click the Fix button.

 ■ Choose Debug > Fix.

If you change more than one source file, you must fix each file separately. Xcode compiles the changes,
patches the executable to use the new code, and resumes execution from the location at which the program
was halted. If the changes to your code appear before the line at which execution is set to resume, you will
not see the effect of your change until that code is called again. However, you can get around this by manually
altering the location at which execution resumes. When your program is paused, you can drag the PC
indicator—the red arrow pointing to the line of code where execution is paused—to the location at which
you want to resume execution, as shown here.

374 Using Fix and Continue
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

Using Fix and Continue

Figure 36-1 Changing the position of the program counter

Xcode automatically locates the correct target to use when creating the fix bundle. For example, if you are
debugging an application suite that relies on a framework you created, you can make a change in the
framework code. When you click the Fix button, Xcode automatically uses the correct framework target,
instead of the target associated with the running executable, to create the fix. Xcode will also follow
cross-project references to targets in other projects.

Restrictions on Using the Fix Command

The Fix command in Xcode is a powerful way to make small changes to a source file without restarting your
debugging session. Although powerful, there are some things you need to do before you can take advantage
of the Fix command. The command itself is enabled only when you are actively debugging an executable.
In addition, you must make sure you build your program using the following settings:

 ■ Build using native targets

 ■ Compile your code with GCC version 3.3 or later

 ■ For C++ developers, link your code using ZeroLink

 ■ Build your code without optimizations

 ■ Build your code with debugging symbols enabled

Restrictions on Using the Fix Command 375
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

Using Fix and Continue

In general, if you build using the Development build style provided by Xcode, the correct settings are used.
However, if you try to patch your executable and get a file-not-found error, check your target’s build settings
and make sure that debugging symbols are turned on, as described in “Generating Debugging
Information” (page 345). You can also check the build log to make sure that the patch bundle was created.

The Fix command works on only one file at a time. If you make changes to multiple source files, you must
fix each file separately before continuing with your debugging session.

Important: If you attempt to fix multiple files, pause your application until you finish integrating all of the
patches.

Restrictions Reported by GDB

There are many types of code changes that cannot be patched. The GDB debugger reports an error if it
cannot integrate any of your changes due to a known restriction. If GDB reports one of these errors, you must
rebuild your program and restart your debugging session or continue debugging the program without the
changes.

GDB recognizes the following changes to your code and reports an error if you try to include them as part
of a fix:

 ■ Changes to the number or type of arguments in a function or method that is currently on the stack

 ■ Changes to the return type or name of a function or method that is currently on the stack

 ■ Changes to the number or type of local variables in a function or method that is currently on the stack

 ■ Changes to the type of global or file-static variables

 ■ Symbol type redefinitions, that is, changing a function to a variable or a variable to a function.

Additional Restrictions

In addition to the restrictions reported by GDB, there are additional restrictions that GDB currently does not
check. If you attempt to include any of these changes in a patch, your application may crash or exhibit other
undefined behavior when it encounters the code. The solution is to avoid using the Fix command for the
change. Instead, rebuild your program and restart your debugging session.

The following is a list of changes that cannot be included as part of a fix:

 ■ Changes to a nib file

 ■ Changes to the definition of a structure or union

 ■ The addition of a new Objective-C class

 ■ The addition or removal of class instance variables

 ■ The addition or removal of class methods

 ■ The addition or removal of methods to an Objective-C category. These methods are not registered with
the Objective-C runtime and thus cannot be called. (You can fix existing methods in a category.)

 ■ Any reference to an unresolved external variable or function. Link errors of this nature cannot be resolved
by the dynamic linker.

376 Restrictions on Using the Fix Command
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

Using Fix and Continue

 ■ The addition of a static variable across multiple patches in one session. GDB maintains a copy of the
static in each patch; however, because there is no original to refer to, each variable remains separate
from the others, which can lead to unpredictable results.

 ■ The addition of a function to one file when it is called from a different patched file. New functions are
private to the patch file in which they appear.

 ■ The addition of a new try block or the addition of a catch handler to an existing block

 ■ The addition of a C++ template class specialization

 ■ Changes to functions that require two-level namespaces during linking to prevent known symbol conflicts
across different libraries. GDB supports patching two-level namespace binaries but currently does so
using flat namespace conventions.

Important: Be aware that other conditions may also cause patched code to fail or exhibit other undefined
behavior. If you encounter such a problem, you should rebuild your program and start a new debugging
session.

Supported Fixes

Although there are many restrictions to what you can fix, there are also some features that are explicitly
supported by the Fix command, including the following:

 ■ Storing pointers to a patched function still works. GDB inserts code to jump from the old function to the
newly-patched function. Thus, despite your code having a pointer to the original function, using that
pointer executes the patched version.

 ■ You can add new file-local static variables to a file. One caveat to adding such variables is that GDB does
not execute any initialization code associated with them. Thus, if you declare a new class instance as a
global static, GDB does not execute any constructors or static initializers for the instance. Also, there are
limitations on how those variables behave after multiple patches. See “Additional Restrictions” (page
376) for more information.

 ■ You can add new C++ classes as part of a patch.

Restrictions on Using the Fix Command 377
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

Using Fix and Continue

378 Restrictions on Using the Fix Command
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

Using Fix and Continue

Xcode’s integrated debugger supports remote graphical debugging when debugging with GDB. Remote
debugging lets you debug a program running on another computer. This is good for programs that you
cannot easily debug on the host on which they are running. For example, you may be trying to debug a
full-screen application, such as a game, or a problem with event handling in your application’s GUI. Interacting
with the debugger on the same computer interferes with the execution of the program you are trying to
debug. In these cases, you have to debug the program remotely.

With Xcode’s remote graphical debugging, you can debug a program running on a remote machine within
the Xcode debugger, as you would any local executable, without resorting to the command-line.

Note: Standard input (stdin) does not work with remote debugging; if you have a command-line tool that
requires user input, you must use gdb’s command-line interface to debug your program remotely.

This chapter introduces remote debugging in Xcode and walks you through enabling remote debugging in
Xcode. To set up your project for remote debugging, you must perform the steps described in the following
three sections:

1. “Configuring Remote Login” (page 379) describes how to configure your local computer and the remote
host to allow remote login using SSH public key authentication.

2. “Creating a Shared Build Location” (page 381) describes how to set up a shared build directory that both
computers can access via the same path.

3. “Configuring Your Executable for Remote Debugging” (page 381) describes how to configure the
executable of the program you wish to debug for remote debugging in Xcode.

Configuring Remote Login

Remote debugging in Xcode relies on SSH public key authentication to create a secure connection with the
remote computer. To facilitate authentication, Xcode integrates with ssh-agent. This lets you use encrypted
private keys for added security without having to re-enter your passphrase each time Xcode establishes a
connection to the remote host. If you already use a third party utility to set up the environment variables
used by ssh-agent, Xcode attempts to use those settings. Otherwise, Xcode uses its own agent for
authentication.

Before starting a remote debugging session, you need to be able to login to the remote computer. To do
this, you must:

1. Enable remote login on the computer that will host the program being debugged. In the Sharing pane
of System Preferences, under “Services,” select Remote Login. This allows access to the remote computer
via SSH.

Configuring Remote Login 379
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

Remote Debugging in Xcode

2. Ensure that you can connect to the remote host using SSH public key authentication. If you are unsure
whether you are using SSH public key authentication, you can test this by logging in to the remote
computer with ssh. If you are prompted for the user’s password, you are not using public key
authentication. If you are prompted for a passphrase—or for nothing at all—you are already using public
key authentication.

If you are not set up to log in to the remote host using SSH public key authentication, you need to create a
public/private key pair, and configure the local and host computers to use it. You can do so with the following
steps:

1. Generate a public / private key pair using ssh-keygen. On the command line, type the following line:

ssh-keygen -b 2048 -t dsa

This generates 2048-bit DSA keys. You should see output similar to the following:

Generating public/private dsa key pair.
Enter file in which to save the key (/Users/admin/.ssh/id_dsa):
/Users/admin/.ssh/id_dsa already exists.
Overwrite (y/n)? y
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/admin/.ssh/id_dsa.
Your public key has been saved in /Users/admin/.ssh/id_dsa.pub.
The key fingerprint is:

Note: Do not leave the passphrase empty; if you do so, your private key will be unencrypted.

2. Copy the public key to the authorized_keys file on the remote computer. This file is usually stored at
~/.ssh/authorized_keys. If the authorized_keys file already exists on the remote computer, be
careful not to overwrite the file. You can add the public key, which is stored in the file you specified to
ssh-keygen (id_dsa.pub by default), by entering the following on the command line:

cat id_dsa.pub >>! ~/.ssh/authorized_keys

3. Make sure that the authorized_keys file is not readable by anybody else. Change the permissions on
the file by entering the following on the command line:

chmod go-rwx ~/.ssh/authorized_keys

4. Test the connection by logging in to the remote computer using ssh. From the command-line, type
“ssh username@hostname”. Ensure that you are not asked for the user’s password. If you did not leave
it empty in Step 1, you should be prompted for your passphrase, as in the following example:

Enter passphrase for key '/Users/admin/.ssh/id_dsa':

If you are debugging a GUI application, you must be logged into the remote computer as the same user that
you connect to using ssh. This user must have permission to read the build products.

380 Configuring Remote Login
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

Remote Debugging in Xcode

Creating a Shared Build Location

For remote debugging to work, both computers—both the local computer running Xcode and the remote
host running the program you are debugging—must have access to your project’s build products and
intermediate files via the same access path. You can do this in either of two ways:

 ■ Create a single shared location. This is easiest with a network home directory, although you can use any
shared folder that both computers can access. In Xcode, set the build products and intermediates location
to this shared folder. If necessary, create symlinks to the build folder on the remote host so the path to
the build products is the same on both computers. For details on how to set the location of the build
folder in your Xcode project, see “Build Locations” (page 301).

 ■ Copy the files to the remote host. Alternatively, you can copy the build products and intermediate files
over to the remote host after each build, although this is considerably less convenient. These must be
located at the same path on the remote computer.

Note: When debugging an application built with ZeroLink, it is essential that the build products be accessible
using the same path on the remote computer.

Configuring Your Executable for Remote Debugging

Once you have configured both computers to allow for remote login and set up a common build products
location, the last step is configuring the executable you want to debug remotely. You may consider creating
a separate custom executable environment for remote debugging. Using separate executable environments,
you can specify different options for debugging remotely and debugging locally and easily switch between
the two modes.

To configure an executable for remote debugging:

1. Select the executable and open an inspector or Info window. Click Debugging to open the debugging
pane.

2. Make sure that “GDB” is selected in the “When using” pop-up menu at the top of the Debugging pane.
Select the option for “Debug executable remotely via SSH.” In the Host field, type in the user you will
log in as and the address of the remote host; for example, “admin@cowpuppy.apple.com.”

3. From the “Use <device> for standard input /output” menu, choose “Pipe.”

To start a remote debugging session, make sure the active executable is correctly set, then build and debug
your product as normal. Before it launches the executable, Xcode displays an authentication dialog that asks
you to type in your passphrase. After you have authenticated once, Xcode does not prompt you for your
pass phrase again until the next time you initiate a remote debugging session after restarting Xcode.

If you are experiencing problems debugging on the remote host, look in the debugger console for error
messages. To view the debugger console, choose Debugger > Console Log.

Creating a Shared Build Location 381
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

Remote Debugging in Xcode

382 Configuring Your Executable for Remote Debugging
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

Remote Debugging in Xcode

The Xcode development environment does its best to provide an easy, intuitive interface for the most common
development tasks that you face. However, there are many different factors that affect your requirements
for your development environment. Luckily, Xcode is also a very flexible tool, providing many different ways
to customize the development process.

The following chapters describe many of the ways in which you can customize Xcode to make it a more
productive and custom-tailored environment for your development. Some features are of particular use to
developers who are familiar with BBEdit, CodeWarrior, or MPW, but most should be useful to any developer.

In particular, these chapters show you how to customize Xcode’s user interface, change user settings with
Xcode Preferences, and add functionality to the Xcode application using the User Scripts menu. In addition,
many of the chapters that appear in previous sections of this document also describe ways in which you can
use Xcode to customize your development environment. It does not describe how to extend the Xcode
application.

Xcode offers many opportunities for customization, including:

 ■ Customizing the build process. Xcode provides many different ways for you to customize the behavior
of the build system. The Copy Files and Run Script build phases, described in “Build Phases” (page 249),
let you add your own operations to the build process for a target; “Build Rules” (page 261) let you customize
the way in which files in a target’s build phases are processed. You can use Shell Script targets to add
reusable custom operations to the build process; external targets let you build using an external build
tool of your own choice. See “Special Types of Targets” (page 236). You can also invoke xcodebuild
from shell scripts to automatically build one or more products.

 ■ “Setting Command-Line Arguments and Environment Variables” (page 340) shows how to set environment
variables that are available to your executable when running in the Xcode development environment.

 ■ “Using Smart Groups to Organize Files” (page 87) describes how to use smart groups to organize the
files of a large project.

 ■ “Project Window Layouts” (page 64) describes how to customize the configuration of the project window
and other Xcode windows.

 ■ “Customizing Key Equivalents” (page 385) shows you how to set Command-key equivalents for menu
items and keyboard equivalents for common editing tasks.

 ■ “Using Scripts To Customize Xcode” (page 415) describes how to use shell commands and scripts to
customize your programming environment.

383
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART VII

Customizing Xcode

384
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART VII

Customizing Xcode

Xcode lets you change the Command-key equivalents for its menu items and lets you change the keyboard
equivalents for common editing tasks, such as paging through a document or moving the cursor. You can
choose a pre-defined set of key bindings for menu items and other tasks, or create your own set. The
pre-defined sets include sets that mimic BBEdit, Metrowerks CodeWarrior, and MPW.

To work with key bindings, choose Preferences from the Xcode menu, then click Key Bindings. Figure 38-1
shows the Key Bindings preferences pane, with the key equivalents for the Xcode menu visible. Menu item
key equivalents do not require the Command key.

You can use the pop-up menu and buttons to choose a predefined set of key bindings, copy one of the
supplied sets and delete sets you have created. Use the Duplicate button to copy the set that is currently
selected in the Key Binding Sets pop-up menu. You cannot edit any of the Xcode’s preexisting key bindings
sets; to customize key bindings, duplicate an existing set and modify the copy. Use the Delete button to
delete the currently selected set. You can’t delete a supplied set, only a set you have created or copied.

385
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

Figure 38-1 The Key Bindings pane in the Xcode Preferences window

Figure 38-2 shows the supplied sets provided in the Key Binding Sets pop-up menu, including sets that mimic
the menu and shortcut equivalents of Metrowerks CodeWarrior, and other popular Macintosh IDEs and text
editors.

Figure 38-2 Supplied sets of key bindings

386
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

Customizing Command-Key Equivalents for Menu Items

The Menu Key Bindings pane provides access to almost all of the menus and menu items in Xcode. The Text
Key Bindings pane, which provides access to key equivalents for common editing tasks, is described in
“Customizing Keyboard Equivalents for Other Tasks” (page 389).

Xcode currently lists key equivalents using the traditional menu glyphs shown in Figure 38-3 (not all glyphs
are shown).

Figure 38-3 Some of the glyphs for available key equivalents

Command

Option

Left Arrow

Right arrow

Up arrow

Down arrow
Backspace

Delete

Escape

Shift

Control

Home

End

Page up

Page down

Return

Enter

The following steps describe how to create a custom set of key bindings, based on the supplied CodeWarrior
set, and how to add a menu item key equivalent. In this example, the equivalent automatically opens the
release notes, an option available from the Help menu.

1. Navigate to the Key Bindings pane in the Preferences window:

Xcode > Preferences, then click Key Bindings.

2. Choose Metrowerks Compatible in the Key Binding Sets pop-up menu, as shown in Figure 38-2.

3. Click the Duplicate button to create a copy of that set. When prompted for a name for the set, type My
Custom Keys.

4. Click the Menu Key Bindings tab.

Customizing Command-Key Equivalents for Menu Items 387
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

5. Scroll to the Help menu and click the disclosure triangle in the Action column to open the menu. Figure
38-4 shows the Help menu actions.

Figure 38-4 The Help menu commands

6. Double-click in the Key column next to the Show Release Notes menu item to open an editing field, then
type Command-Control-H (holding the keys down simultaneously). The result is shown in Figure 38-5.

If you try to assign a key equivalent that is already assigned to another action in the current key binding
set, Xcode displays a message indicating which action it is assigned to below the key bindings table.

Note that Xcode displays the letter “h” in its capitalized form. Whether or not you include the Shift key
as part of a menu key equivalent, Xcode shows letters as they appear in menus (as capitals).

388 Customizing Command-Key Equivalents for Menu Items
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

You can use the - button (shown in Figure 38-5) to clear a menu key equivalent. You can use the + button
to assign multiple equivalents to a single action (where you can use any of the equivalents to initiate
the action).

Figure 38-5 Editing the menu key equivalent for the Show Release Notes menu item

7. You can repeat the previous step to add or change other menu key equivalents.

8. Click the Apply button to apply your changes.

9. You can now type Command-Control-H to choose the Show Release Notes menu item, which opens the
release notes from the Help menu. If you open the Help menu, you will see the keystroke glyphs shown
in Figure 38-5 next to the Show Release Notes menu item.

Customizing Keyboard Equivalents for Other Tasks

You can customize keyboard equivalents for tasks such as editing and formatting text, cursor movement,
and project navigation using steps similar to those described for menu items in “Customizing Command-Key
Equivalents for Menu Items” (page 387). You can start by copying one of the predefined sets of key bindings
shown in Figure 38-2 (page 386). In addition to its default settings, Xcode provides sets that are compatible
with BBEdit, Metrowerks CodeWarrior, and MPW.

Figure 38-6 shows the contents of the Text Key Bindings pane, with some of the key equivalents for Text
Editing actions visible. The current set is the My Custom Keys set, created in “Customizing Command-Key
Equivalents for Menu Items” (page 387).

Customizing Keyboard Equivalents for Other Tasks 389
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

Figure 38-6 Text Key Bindings in the Preferences window

The following steps show how to set a shortcut for the Capitalize Word action:

1. Navigate to the Key Bindings pane in the Preferences window: Xcode > Preferences, then click Key
Bindings.

2. Choose My Custom Keys (created previously in “Customizing Command-Key Equivalents for Menu
Items” (page 387)) in the Key Binding Sets pop-up menu.

3. Click the Text Key Bindings button.

4. Double-click in the Keys column next to the Capitalize Word item to open an editing field, then type
Control-Shift-C (holding the keys down simultaneously). The result is shown in Figure 38-7.

390 Customizing Keyboard Equivalents for Other Tasks
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

You can use the - button (shown in Figure 38-5) to clear a keyboard equivalent. You can enter more than
one key combination for an action by clicking the + button.

Figure 38-7 Editing the Text Editing shortcut for Capitalize Word

5. You can repeat the previous step to add or change other keyboard equivalents for editing actions (or
other actions not shown here).

6. Click the Apply button to apply your changes.

7. You can now type Control-Shift-C to capitalize the currently selected word in a project.

Customizing Keyboard Equivalents for Other Tasks 391
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

392 Customizing Keyboard Equivalents for Other Tasks
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

Customizing Key Equivalents

Another simple way in which you can customize your work environment in Xcode is through Xcode’s
preferences. Xcode provides preferences that let you enable and disable features, customize the behavior
of operations in Xcode, and provide default values for project and file-level settings.

To open the Xcode Preferences window, choose Xcode > Preferences. The Xcode Preferences window contains
options for controlling many different parts of the Xcode application. This chapter describes each of the
preference panes in Xcode Preferences and the options that they contain.

You can open the preference pane for a particular group by clicking its icon. Note that any changes you make
in a preference pane do not take effect until you click OK or Apply.

General Preferences

The General pane of the Xcode Preferences window lets you control general environment settings for the
Xcode application, such as your project window configuration and windowing preferences. Figure 39-1 shows
the General pane of Xcode Preferences.

Figure 39-1 General Xcode Preferences

1.

2.

3.

4.

Here is what the pane contains:

1. Layout menu. This menu lets you choose the project window configuration for all open projects. See
“Project Window Layouts” (page 64) for a description of the available layouts.

General Preferences 393
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

2. Layout description. This gives you a brief explanation of the layout selected in the Layout menu.

3. Editing options. These options control Xcode’s windowing policy for editor windows. See “The Xcode
Editor Interface” (page 169) to learn more about Xcode’s editor. The options are:

a. “Open counterparts in same editor” controls how Xcode displays files when jumping to a related
header or source file, or to a related symbol definition or declaration. If this option is selected, Xcode
always opens file and symbol counterparts in the current editor window; otherwise, it opens the a
separate editor to display the counterpart. By default, this option is disabled. See “Opening Header
Files and Other Related Files” (page 165) describes how to jump to a file’s or symbol’s counterpart.

b. “Automatically open/close attached editor” controls when Xcode shows or hides the editor pane
attached to the project, Build Results, Project Find, or Debugger windows. If this option is selected,
Xcode will automatically show the attached editor for a window when you select an editable item.
By default, this item is disabled. See “Using the Attached Editor” (page 172) for more information on
attached editors.

4. Environment options. These control general user interface settings across many different Xcode windows.
These are:

a. “Automatically clear smart group filter” controls whether Xcode clears the contents of the Search
field in the toolbar when you select a different item in the Groups & Files list. If this option is selected,
Xcode clears the contents of the Search field when you change the currently selected smart group.
Otherwise, the contents of the Search field are preserved. This option is enabled by default. See
“Searching and Sorting in the Detail View” (page 61) for more information on Search field.

b. “Automatically clear log” controls whether Xcode clears the contents of the run and console logs
between sessions. If this option is selected, Xcode automatically clears the contents of the Run Log
and Console Log windows each time you relaunch an executable in Xcode. Otherwise, information
from the current session is appended to the existing log. This option is disabled by default.

c. “Save window state” controls whether Xcode saves the state of the windows in a project across
sessions. If this option is selected, Xcode saves the state of a project’s open windows when you close
the project and restores those windows when you next open the project. Otherwise, Xcode does
not save the state of a project’s windows; reopening a project opens only the project window. By
default, this option is enabled.

Code Sense Preferences

The Code Sense pane of the Xcode Preferences window contains options for controlling project indexing
and Xcode’s interface for code completion. Figure 39-2 shows the Code Sense pane of Xcode Preferences.

394 Code Sense Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Figure 39-2 Code Sense Preferences

1.

2.

3.

Here is what the pane contains:

1. Indexing. The “Enable for all projects” option lets you turn indexing on and off for all projects. If this
option is selected, Xcode generates a symbolic index for each project that you open. Xcode uses the
information in this index to provide features such as code completion, symbol definition searching, and
more.

Disabling this option turns indexing off for all projects and discards any existing project index. Features
that rely on this index, such as the Project Symbols smart group, will not work. This option is enabled
by default. See “Code Sense” (page 104) for more information.

2. Editor Function Pop-up. These options let you control the information and appearance of the function
pop-up menu that appears in the navigation bar of Xcode’s editor. The function pop-up is described
further in “The Function Pop-up Menu” (page 175). These options are:

a. “Show declarations” controls whether Xcode shows function and method declarations in the function
pop-up menu. If this is selected, the function pop-up menu shows both declarations and definitions;
otherwise it displays only definitions. This option is enabled by default.

b. “Sort list alphabetically” controls how Xcode sorts the contents of the function pop-up menu. If this
option is selected, the items in the menu appear in alphabetical order. Otherwise, they are sorted
in the order in which they appear in the file. This option is disabled by default.

3. Code Completion. These options control Xcode’s code completion interface. Code completion, described
in “Code Completion” (page 189), suggests matches for symbol names and keywords as you type. The
options are:

a. “Indicate when completions are available” controls whether Xcode shows you when it has suggestions
for completing the current text. If this option is selected, Xcode underlines the text you have entered
in the editor when there are suggestions for matching symbol names or keywords. Otherwise, Xcode
does not underline the text, although completion suggestions are still available to you, as described
in “Using Code Completion” (page 189). This option is enabled by default.

Code Sense Preferences 395
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

b. “Show arguments in pop-up list” controls whether Xcode displays arguments for functions and
methods in the completion list. When this option is selected, Xcode displays the return type and
arguments for functions and methods in the list of completion suggestions. Otherwise, Xcode shows
only the symbol name. This option is on by default.

c. “Insert argument placeholders for completions” controls whether Xcode inserts the arguments to
a function or method when you insert a completion suggestion. If this option is enabled, inserting
a function or method using code completion also inserts placeholders for arguments. Otherwise,
Xcode only inserts the symbol name. This option is on by default.

d. “Automatically suggest on member call / access” controls whether Xcode automatically shows
completion suggestions when accessing class members. When this option is enabled, Xcode
automatically displays the completion list in the context of a method call or field access. Otherwise,
you must bring up the completion list yourself, as described in “Using Code Completion” (page 189).
This option is off by default.

e. “Suggestion delay” specifies the amount of time, in seconds, after you stop typing, before Xcode
automatically displays the completion list. This delay only applies if “Automatically suggest on
member call / access” is enabled. By default, this delay is set to half a second; to change it, type the
new value in the field.

Building Preferences

The Building pane of the Xcode Preferences window contains options for setting default build locations and
controlling the display of the Build Results window. Figure 39-3 shows the Building pane of Xcode Preferences.

396 Building Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Figure 39-3 Building Preferences

1.

2.

3.

4.

5.

6.

Here is what the pane contains:

1. Place Build Products In. This setting controls the location at which Xcode places the output generated
when you build a target—such as an application, tool, and so forth—for all new projects that you create.
The default value for this option is “Project directory”; for all development builds of a target, Xcode places
the product that is generated in the build folder in your project directory.

To specify a different folder for build products, select “Customized location”; Xcode places build products
in the folder specified in the associated text field. You can type the path to that folder in the field or click
Choose to locate the folder using the standard navigation dialog.

You can also override this setting for individual projects. For information on build locations in Xcode,
see “Build Locations” (page 301).

2. Place Intermediate Files In. This setting controls the location at which Xcode places the intermediate
files generated by the Xcode build system when you build a target—such as object (.o) files—for all
new projects that you create. The default value for this option is “With build products”; for all builds of
a target, Xcode places the intermediate files that are generated in the location specified for build products.
This is the location indicated by the “Place Build Products In” option, described above, either in the
Building preferences or at the project level.

To specify a different folder for build products, select “Customized location”; Xcode places intermediate
files in the folder specified in the associated text field. You can type the path to that folder in the field
or click Choose to locate the folder using the standard navigation dialog.

Building Preferences 397
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

You can also override this setting for individual projects. For information on build locations in Xcode,
see “Build Locations” (page 301).

3. Build Results Window. These pop-up menus control when Xcode opens the Build Results window or
pane. These menus are:

a. Open during builds. This menu lets you specify when (or whether) Xcode automatically opens the
Build Results window or pane when you build a target. By default, the value of this option is “Never”
and Xcode does not automatically open the Build Results window.

b. Close after builds. This menu lets you specify when (or whether) Xcode automatically closes the
Build Results window or pane after a build completes. By default, the value of this option is “Never”
and Xcode does not automatically close the Build Results window.

These menus, and their possible values, are described further in “Specifying When Detailed Build Results
are Shown” (page 308).

4. Error and Warnings Smart Group. These pop-up menus control when Xcode selects the Errors and
Warnings smart group in the Groups & Files list and discloses its contents before bringing the project
window to the front. These menus are:

a. Open during builds. This menu lets you specify when (or whether) Xcode automatically shows the
contents of the Errors and Warnings smart group when you build a target. By default, the value of
this option is “Never” and Xcode does not automatically open the Errors and Warnings smart group.

b. Close after builds. This menu lets you specify when (or whether) Xcode automatically shows the
contents of the Errors and Warnings smart group after a build completes. By default, the value of
this option is “Never” and Xcode does not automatically close the Errors and Warnings smart group.

These menus, and their possible values, are described further in “Viewing Errors and Warnings” (page
309).

5. Build Options. These options let you choose how Xcode reacts to build errors and whether Xcode tries
to speed up the build process by using Predictive Compilation. The options are:

 ■ “Continue building after errors” controls what Xcode does when it encounters a build error. If this
option is selected, Xcode continues trying to build the next file in the target after encountering an
error. Otherwise, Xcode stops the build. By default, this option is disabled.

 ■ “Use Predictive Compilation” turns Xcode’s Predictive Compilation feature on and off. When this
option is selected, Xcode tries to shorten build time by beginning to compile source files in the
background, even before you initiate a build. Otherwise, Xcode does nothing until you hit Build. By
default, this option is disabled. Predictive Compilation is described further in “Predictive
Compilation” (page 331).

6. For Unsaved Files. This menu determines what Xcode does with files that have unsaved changes when
you start a build. The options are:

 ■ Ask Before Building. If there are files containing unsaved changes when you click Build, Xcode
displays a dialog asking you what to do before it starts the build. You can choose to save or discard
the changes and then continue the build, or you can cancel the build operation. This is the default
value for the For Unsaved Files menu.

 ■ Always Save. Xcode automatically saves all unsaved changes before it begins building.

398 Building Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

 ■ Never Save. Xcode automatically discards all unsaved changes before it begins building.

 ■ Cancel Build. If there are files containing unsaved changes, Xcode cancels the build operation.

For more information on building in Xcode, see “Building a Product” (page 301).

Distributed Builds Preferences

The Distributed Builds pane of the Xcode Preferences window contains options for distributing build tasks
to other computers on your network. Figure 39-4 shows the Distributed Builds pane of Xcode Preferences.

Figure 39-4 Distributed Builds Preferences

1.

3c.

3d.

2a.2.

3a.
3b.
3.

Here is what the pane contains:

1. “Share my computer for building with.” Selecting this option makes your computer available to other
computers on your local network for performing build tasks. This option is disabled by default.

If you enable this option, the pop-up menu specifies the priority assigned to build tasks that are distributed
to your computer. This determines the amount of processing time allocated for that task. You can choose
high, low, or medium priority. The default value is “high priority.”

2. “Distribute builds to.” This option turns distributed builds on and off. If this option is selected, Xcode
looks for available computers on your local network and distributes build tasks to them. Otherwise, all
building is done on your local computer. This option is off by default.

Distributed Builds Preferences 399
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

3. Table of available computers. Xcode automatically discovers computers on the local network that are
available for building. This table shows all of the computers available on the current network. For each
available computer, the table shows:

a. Whether the computer is trusted. You can restrict which computers Xcode distributes builds to,
using the pop-up menu described in item 4. If you do so, you must indicate which of the available
computers you “trust;” that is, which of the computers you allow Xcode to use for building. A
computer is trusted if the checkbox in the Trusted column is selected.

b. The name of the computer. The Computer column displays the Bonjour name of the computer that
is available for building.

c. The number of builds the computer can handle. Dual-processor machines can use both processors
for building. The Max Connections columns shows the number of processors, and therefore the
maximum number of connections to, the computer.

d. Whether the available computer is compatible. To distribute build tasks to another computer, that
computer must be running the same versions of Mac OS X, GCC, and Xcode as you are running on
your computer. The Status column indicates whether the computer broadcasting its services is
compatible with yours

4. The “Distribute builds to” pop-up menu lets you restrict the computers that Xcode distributes builds to.
You can choose:

 ■ All computers. Xcode distributes build tasks to any of the available computers, listed in the table.
By default, Xcode distributes builds to any available computer.

 ■ Trusted computers only. Xcode distributes builds only to those computers marked “Trusted” in the
table.

For more information about distributed builds in Xcode, see “Distributing Builds Among Multiple
Computers” (page 328).

Debugging Preferences

The Debugging pane of the Xcode Preferences window contains options for controlling the appearance of
Xcode’s debugger window and specifying how the debugger loads debugging symbols. Figure 39-5 shows
the Debugging pane of Xcode Preferences.

400 Debugging Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Figure 39-5 Debugging Preferences

1.

3.

2b.
2a.

Here is what the pane contains:

1. Fonts and Colors. These options let you control the color and font used for text in the debugger console
and standard I/O windows. To see or change the color or font for a text item, select it form the pop-up
menu. To change the font for an item, click Set Font and choose a new font from the Fonts window. To
change irs color, click the color well and choose a new color from the Colors window.

2. Symbol Loading Options. These options let you control which symbols Xcode’s debugger load and when.
These options are:

a. “Load symbols lazily” controls when Xcode loads debugging symbols for an executable when you
run it in Xcode’s debugger. If this option is selected, Xcode loads symbols only as they are needed.
Otherwise, Xcode loads all symbols for the executable and its libraries when you launch it in the
debugger. This option is enabled by default. You can further customize which symbols are loaded
in the Shared Libraries window. See “Shared Libraries Window” (page 371) for more information.

b. “Load CFM symbol infomration” specifies whether Xcode loads symbol information for CFM-based
binaries.

3. Instruction Pointer Highlight. This option controls the color used to highlight the location of the instruction
pointer in the debugger window when execution of the current program is stopped. To change this
color, click the color well and choose the new color from the Colors window. For more information on
the instruction pointer and controlling execution of your code, see “Controlling Execution of Your
Code” (page 353)

Key Bindings Preferences

The Key Bindings pane of the Xcode Preferences window lets you see and customize the list of Xcode
commands and their keyboard shortcuts. Figure 39-6 shows the Key Bindings pane of Xcode Preferences.

Key Bindings Preferences 401
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Figure 39-6 Key Bindings Preferences

3.
2.

1.

4.

5.

Here is what the pane contains:

1. Key Bindings Sets. This menu lets you choose which set of key bindings are in effect. Xcode provides
four predefined sets: Xcode Default, BBEdit Compatible, Metrowerks Compatible, and MPW Compatible.
You can also add your own custom sets of key bindings.

2. Duplicate. You cannot edit any of the built-in key bindings sets. To create your own set of custom key
bindings, click this button to create a copy of the current set and edit that copy.

3. Menu Key Bindings. This pane lists the key bindings for menu items in Xcode.

4. Text Key Bindings. This pane lists the key bindings for text editing actions in Xcode’s editor.

5. Key bindings. The key bindings table lists all of the available key bindings in Xcode. The Action column
lists the Xcode action—a menu item or text editing command—and the Key column lists the keyboard
shortcut for that action. To edit the key binding for a command, double-click in the Key column and type
the key combination. You can assign more than one keyboard shortcut to an action. To add additional
key combinations, click the plus (+) button.

For more information on customizing key bindings, see “Customizing Key Equivalents” (page 385).

402 Key Bindings Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Text Editing Preferences

The Text Editing pane of the Xcode Preferences window lets you control display options for the Xcode editor,
as well default settings for saving files that you edit in Xcode’s editor, such as file encoding, and so forth.
Figure 39-7 shows the Text Editing pane of Xcode Preferences.

Figure 39-7 Text Editing Preferences

1.

2.

3.

4a.

4b.

5.

Here is what the pane contains:

1. Display Options. These options control the appearance of Xcode’s editor, whether it appears as a separate
window or as a pane attached to another Xcode window. See “Controlling the Appearance of the Code
Editor” (page 179) to learn more about changing the appearance of Xcode’s editor. The options are:

a. “Show gutter” controls when Xcode displays the gutter in the editor. The Xcode gutter shows
information about the current file such as the location of breakpoints, line numbers, and the location
of errors or warnings. If this option is selected, Xcode always shows the gutter in all open editors;
otherwise, it shows the gutter only when debugging. By default, this option is enabled. See “Displaying
the Editor Gutter” (page 180) for more information.

b. “Show line numbers” controls whether Xcode shows a file’s line numbers in the editor gutter. If this
option is selected, Xcode shows line numbers for a file whenever the editor gutter is visible. By
default, this item is disabled. See “Displaying the Editor Gutter” (page 180) for more information

c. “Show column position” controls whether Xcode shows the current position of the cursor in the
function pop-up of the editor. If this option is selected, Xcode shows the current position of the
insertion point, as the offset from the left margin of the line. This is measured in number of characters.
By default, this item is disabled. See “Navigating Source Code Files” (page 173) for more information.

Text Editing Preferences 403
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

d. “Show page guide” controls whether Xcode displays the page guide in the editor. If this option is
selected, Xcode displays a grey guide line in the editor to show you the right margin of the editor.
This is just a guide, and does not actually affect the margin width in the editor. By default, this item
is disabled. See “Displaying a Page Guide” (page 180) for more information.

e. The “Display at column” field controls the column position at which Xcode displays the page guide
discussed in the previous item. This position is specified in number of characters. To change the
position at which the page guide is shown, enter a new number in the field. See “Displaying a Page
Guide” (page 180) for more information.

2. Editing Options. These options control Xcode’s selection behavior for source code. The options are:

a. “Select to matching brace” controls whether Xcode automatically selects text contained in braces
when you double-click the brace. If this option is selected, double-clicking a brace, bracket, or
parenthesis in a source code file automatically selects the text up to, and including, the matching
brace. By default, this option is enabled. See “Matching Parentheses, Braces, and Brackets” (page
187).

b. “Omit braces in selection” controls whether Xcode includes the braces themselves in text selected
by double-clicking a brace, bracket, or parenthesis. If this option is selected, double-clicking a brace,
bracket, or parenthesis selects the text between the braces, but not the braces themselves. By default,
this item is disabled. See “Matching Parentheses, Braces, and Brackets” (page 187) for more information
on attached editors.

3. Save Options. The Save Options on the right side of the Text Editing pane let you specify how Xcode
stores files that you edit in the Xcode editor. The next several items in this list describe these options.

“Save files as writable” controls the permissions that Xcode uses for files that it saves. If this option is
selected, Xcode adds write permission to files that you edit and save in Xcode. Otherwise, Xcode preserves
permissions for files as they are on disk. Files that you create in Xcode already have write permission.
This option is disabled by default. See “Saving Files” (page 166) for a description of the available layouts.

4. Line Encodings. These menus control the default line endings used for files in Xcode. You can use Unix,
Windows, or Mac line endings for files that you open and edit in Xcode; the type of line endings used
for a file can affect which file editors and other tools can interpret the file. See “Changing Line
Endings” (page 163) for more information on line endings. The menus are:

a. For new files. This menu lets you choose the type of line endings used for files that Xcode creates.
You can choose Unix, Mac, or Windows line endings. The default value for this setting is Unix.

b. For existing files. This menu lets you choose the type of line endings used for preexisting files that
you open and edit in Xcode. If you choose Unix, Mac, or Windows from this menu, Xcode saves all
files that you open and edit in Xcode with line endings of this type, changing them the next time
it saves the file, if necessary. If you choose Preserve from this menu, Xcode uses whatever type of
line endings the file already has. The default value for this setting is Preserve.

5. Default File Encoding. This menu lets you choose the default file encoding that Xcode uses for new files
that you create in Xcode. By default, this is set to “System default;” Xcode uses the same default file
encoding as the system. You can choose any of the file encoding supported by your Mac OS X system
from this menu. See “Choosing File Encodings” (page 163) for more information.

404 Text Editing Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Fonts & Colors Preferences

The Fonts & Colors pane of the Xcode Preferences window controls the font used in Xcode’s user interface,
and the font and font colors used for text in Xcode’s editor, including syntax coloring used to display different
code elements in source code files. Figure 39-8 shows the Fonts & Colors pane of Xcode Preferences.

Figure 39-8 Fonts & Colors Preferences

3a.

3b.
3c.

1.

2. 4.

5.
6.
7.

8.

3.

Here is what the pane contains:

1. Table and Outline Font. This option controls the font used to display text in the Groups & Files list and
detail views in Xcode. The name and size of the current font is shown in the Table and Outline Font field.
To change this font, click Set Font and choose a new font from the Font window. See “The Project Window
and its Components” (page 55) for more information on the Groups & Files list and the detail view.

2. Editor Font. This option controls the font that Xcode uses for plain text in the Xcode editor. The name
and size of the current font is shown in the Editor Font field. To change this font, click Set Font and
choose a new font from the Font window. You can change the color used for plain text in the editor
using the Text color well, described in item 4a. See “The Xcode Editor” (page 169) for more information
on the Xcode editor.

3. Syntax Coloring. This option, and the options below it, control syntax coloring for code elements in
source code files in Xcode’s editor. If this option is selected, Xcode uses different fonts and / or colors
for each of the different code elements listed in the pop-up menu when it displays source code files in
the editor. This option is enabled by default. See “Setting Syntax Coloring” (page 183) to learn more. The
options are:

Fonts & Colors Preferences 405
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

a. The syntax coloring pop-up menu shows the various code elements that Xcode’s syntax coloring
supports. To see or modify the font and font color for a particular type of code element, choose it
from this menu.

b. The syntax coloring color well controls the font color used for the code element currently selected
in the pop-up menu described in item 3a. To change this color, click the color well and choose a
new color from the Colors palette.

c. The syntax coloring font field displays the name and size of the font used to display the code element
currently selected in the pop-up menu indicated in item 3a. To change the font for the current item,
click the Set Font button and choose a font in the Fonts window. All code elements use the font
specified by the Editor Font option described in item 2, unless the “Allow separate fonts” option is
selected, as described in item 7.

4. Editor Colors. These options control the colors used for various elements in Xcode’s editor. To change
the color for an item, click its color well and choose a new color from the Colors window. See “Controlling
the Appearance of the Code Editor” (page 179) for a description of how to control the editor’s appearance.
You can change the colors used for the following items:

a. Text. This option controls the color used for plain text in the editor. When syntax coloring is off, this
is the font color used for all text in the editor. When syntax coloring is enabled, this is the color used
for all text that does not constitute one of the code elements described in item 3a.

b. Selection. This option controls the color used to highlight selected text in the editor.

c. Insertion point. This option controls the color used for the insertion point in the editor.

d. Background. This option controls the color used for the background of the editor window or pane.

5. “Copy colors and fonts” controls whether Xcode preserves syntax coloring when copying and pasting
from an editor. If this option is selected, Xcode copies color and font information to the clipboard when
you copy or cut text from an Xcode editor. This option is enabled by default.

6. “Use colors when printing” controls whether Xcode preserves syntax coloring information when printing
files from and editor. If this option is selected, Xcode prints source code files using the colors and fonts
specified by the syntax coloring rules. This option is disabled by default.

7. “Allow separate fonts” controls whether Xcode lets you set fonts individually for the code elements used
for syntax coloring, as described in item 3. If this option is selected, you can set the font for each code
element separately. Otherwise, Xcode uses the font specified by the Editor Font option (described in
item 2) for all text in an editor, regardless of the code element. This option does not affect the colors
used for various code elements when syntax coloring is on. This option is disabled by default.

8. Set to Factory Defaults. This button returns all of the font and color options in the Fonts & Colors pane
to their original settings.

Indentation Preferences

The Indentation pane of the Xcode Preferences window controls formatting options for files in Xcode’s editor.
Figure 39-9 shows the Indentation pane of Xcode Preferences.

406 Indentation Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Figure 39-9 Indentation Preferences

1.

2. 3d.

3a.

3f.
3e.

3b.
3c.

Here is what the pane contains:

1. Tabs. These options control how Xcode inserts space into files when editing files. See “Setting Tab and
Indent Formats” (page 186) for more information. These options are:

a. “Insert ‘tabs’ instead of spaces” controls whether Xcode inserts tab characters when you press the
Tab key in the editor. If this option is selected, pressing the Tab key inserts a Tab character. Otherwise,
Xcode inserts space characters. This option is enabled by default.

b. Tab width. This option specifies the default width, in number of characters, used to display tabs in
the editor. To change the width of a tab, type a number in the text field. You can override this setting
for individual files, as described in “Inspecting File Attributes” (page 161).

c. Indent width. This option specifies the default width, in number of characters, used to indent lines
in the editor. To change the indentation width, type a number in the text field. You can override
this setting for individual files, as described in “Inspecting File Attributes” (page 161).

2. Line Wrapping. These options control how Xcode wraps lines in files displayed in the editor. These options
do not affect line breaks or other information stored with the file, simply how the file is displayed onscreen.
See “Wrapping Lines” (page 185) for more information. These options are:

a. “Wrap lines in editor” controls whether Xcode wraps lines in an editor. If this option is selected,
Xcode wraps text to the next line when it reaches the outer edge of the text editing area onscreen.
Otherwise, Xcode only moves text to the next line when a return or new line characters is inserted.
This option is disabled by default.

Indentation Preferences 407
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

b. “Indent wrapped lines by” controls how Xcode indents text that it wraps to the next line in an editor.
If this number is greater than 0, Xcode indents wrapped text by the specified number of characters,
as a visual indication that the text has been wrapped (as opposed to being moved to the next line
by the insertion of a carriage return or new line character). This option is only available if “Wrap lines
in editor is enabled.” To change the amount by which lines are indented, type a new number in the
field.

3. Syntax-aware indenting. This option, and the options below it, control automatic formatting options for
source code in Xcode editors. If this option is selected, Xcode assists you in writing source code by
automatically inserting formatting information appropriate for the current context. This option is disabled
by default. See “Indenting Code” (page 185) to learn more. The options are:

a. Tab indents. This menu controls when pressing Tab in the editor inserts an indentation. You can
choose the following:

In leading white space. Pressing Tab inserts an indentation only at the beginning of a line or
following a space. If syntax-aware indenting is enabled, this is the default value for the Tab
indents setting.
Never. Pressing Tab never causes an indentation.
Always. Pressing Tab always causes an indentation.

b. “Indent solo “{“ by” controls the amount by which a “{“ character on a line by itself is indented. If
this number is greater than 0, Xcode automatically indents a left brace that appears on a line by
itself (that is, a left brace that is preceded by a new line or carriage return) by the specified number
of characters. The default value of this field is 0.

c. “Automatically insert closing “}”” controls whether Xcode automatically inserts a matching right
brace when you type an opening brace. If this option is selected, typing an opening brace causes
Xcode to insert a matching closing brace. If syntax-aware indenting is enabled, this option is off by
default.

d. “Automatically indented characters.” These options control which characters trigger Xcode to
automatically cause an indentation. When any of the following options is selected, typing that
character in an editor causes Xcode to indent the current line or the following line. By default, each
of these characters is selected (when syntax-aware indenting is enabled).

e. “Indent // comments” controls whether Xcode automatically indents C++-style comments. If this
option is selected, Xcode automatically indents comments beginning with //. This option is enabled
by default when syntax-aware indenting is enabled.

f. “Align consecutive //comments” controls whether Xcode automatically indents consecutive C++-style
comments to the same level. This option is enabled by default when syntax-aware indenting is
enabled.

File Types Preferences

The File Types pane of the Xcode Preferences window displays all of the file types recognized by Xcode and
the default application for opening files of that type. Figure 39-10 shows the File Types pane of Xcode
Preferences.

408 File Types Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Figure 39-10 File Types Preferences

1.

2.

3.

The file types are shown in the table in the File Types pane. This table contains the following information:

1. File type. The File Type column contains entries for each file type that Xcode recognizes. For example,
audio.mp3.

2. File type categories. File type entries are organized into groups, from most general to most specific. For
example, the audio.mp3 and audio.aiff file types belong to the “audio” group, which belongs to
the “file” group. In this way, you can control the default editor used for an entire class of files. To see the
file types in a group, click the disclosure triangle next to that group.

3. Preferred Editor. The pop-up menu in this column lets you choose the preferred editor for a file type.
You can choose:

 ■ Open With Finder. This opens files and folders of this type with the application chosen for it in the
Finder.

 ■ External Editor. This lets you choose a specific application to use for opening files and folders of this
type.

 ■ Default. This opens files and folders of this type in the default editor assigned to it by Xcode. For
file types that Xcode can open and display, this is usually the Xcode editor. For example, the default
preferred editor for the text.rtf file type is Default (RTF File); Xcode opens files of this type in its
own editor and interprets them as RTF files.

For file types that Xcode’s editor can display, this menu also contains items for choosing how the Xcode
editor interprets them. For example, Xcode’s editor usually interprets and displays text.sdef files as
AppleScript dictionaries. However, you can choose Plain Text File from the Preferred Editor menu to
force Xcode to display files of this type as plain text files in the editor.

File Types Preferences 409
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

For more information on choosing how to open and display files in Xcode, see “Using an External Editor” (page
193). To learn how to override a file’s type, see “Overriding a File’s Type” (page 164).

Opening Quickly Preferences

The Opening Quickly pane of the Xcode Preferences window contains the list of directories that Xcode uses
to find files with the Open Quickly command. Figure 39-11 shows the Opening Quickly pane of Xcode
Preferences.

Figure 39-11 Opening Quickly Preferences

2.

1.

3.

Here is what the pane contains:

1. The list of directories that Xcode uses to find and open files, one directory per line. Paths to a number
of common directories—such as System/Library/Frameworks—are already included in this list by
default. Open Quickly searches the directories in the order in which they appear in this list.

2. The plus (+) button. Click this button to add a directory to this list by navigating to it with the Open File
dialog. You can also add a file or directory to the list by dragging it from the Finder.

3. Skip panel if selection is file name. This option controls the behavior of the Open Quickly feature when
you select a file name in an editor and choose File > Open Quickly. If this option is enabled, Xcode skips
the Open Quickly dialog and searches for the selected file name. Otherwise, Xcode displays the Open
Quickly dialog, and uses the selected filename to fill out the Path field. This option is enabled by default.

For more information on using the Open Quickly command, see “Opening Files by Name or Path” (page 166).

410 Opening Quickly Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Source Trees Preferences

The Source Trees pane of the Xcode Preferences window lets you define source trees for all projects that you
open. A source tree defines a common access path or output location for the files used or generated by your
project. Figure 39-12 shows the Source Trees pane of Xcode Preferences.

Figure 39-12 Source Trees Preferences

1.

1c.

1b.

3.

1a.

2.

Here is what the pane contains:

1. Source trees table. This table lists all of the source trees that you have defined. The columns are as follows:

a. Setting Name is the name used to identify the source tree. This name must be the same for all users
accessing items with the source tree.

b. Display Name is the name that Xcode uses to display the source tree in the user interface. This can
be any string you like.

c. Path is the path to the root directory of the source tree on your local filesystem.

2. Plus (+) button. This button adds a new source tree entry to the table. You must add a new entry before
you can edit it. In addition to using this button to add an entry, you can also drag a folder from the Finder
to the source trees table.

3. Minus (-) button. This button deletes the selected source tree from the table.

Any source tree in this table is available to any of your projects. To learn more about source trees, see “Source
Trees” (page 81).

Source Trees Preferences 411
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

SCM Preferences

The SCM preferences pane contains options that let you control how Xcode performs version control and
file comparison operations. Figure 39-13 shows the SCM pane of Xcode Preferences.

Figure 39-13 SCM Preferences

1a. 1b.
1b.

2.

1b.

3c.
3d.

Here is what the pane contains:

1. Comparison Handling options. These options control how Xcode compares files using the Compare With
command, described in “The Compare Command” (page 220). These options are:

a. View comparisons using. This menu lets you choose the application used to compare files.

b. The “Display local files on the” menu lets you choose the side of the screen on which you want the
local version of the file to appear when comparing file versions.

2. Operations. The “Save files before SCM operations” option specifies whether Xcode automatically saves
changed files before performing any version control operations. This option is on by default.

3. Differencing options. These options control how Xcode performs file comparisons using the diff
command. These options are:

a. Format. This menu lets you choose the format in which output from the diff command is displayed.
For a list of the possible formats, see “Specifying Comparison and Differencing Options” (page 222).

b. Lines displayed specifies the number of lines of context displayed around each difference.

c. Ignore blank lines indicates whether blank lines are skipped when differencing files.

d. Ignore whitespace tells Xcode whether to ignore whitespace when differencing files.

412 SCM Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Documentation Preferences

The Documentation pane of the Xcode Preferences window controls options for viewing and updating
technical documentation with Xcode’s documentation window. Figure 39-14 shows the Documentation pane
of Xcode Preferences.

Figure 39-14 Documentation Preferences

1a. 1b.

3.

1c. & 1d.

2.

Here is what the pane contains:

1. Updates. These options control how Xcode checks for updates to the installed developer documentation.
These options are:

a. Check for documentation updates. This option determines whether Xcode automatically checks for
updated documentation. If this option is selected, Xcode automatically performs a periodic check
for the presence of an updated documentation package on Apple’s developer website. Otherwise,
Xcode checks only when you tell it to. This option is enabled by default.

The pop-up menu specifies how often Xcode checks for updates. You can have Xcode check once
every day, week, or month. By default, Xcode is set to check on a weekly basis.

b. Check Now. This button lets you manually check for available updates. Clicking this button causes
Xcode to perform the check immediately.

c. Last check. This displays the date and time at which Xcode last successfully performed a check for
updated documentation.

Documentation Preferences 413
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

d. Status. This displays the status of the last check.

For more information on obtaining documentation updates, see “Obtaining Documentation
Updates” (page 118).

2. Extended Locations. This table lets you specify alternate locations for Xcode to use to locate
documentation. To add an entry to this table, you can click the plus (+) button or drag a directory from
the Finder. Xcode searches for documentation in these locations from top to bottom. For each location
that you add, the Extended Locations table shows the following:

 ■ On. This column shows whether or not the current location is actively being used by Xcode when
it looks for documentation. A location is being used if the checkbox in this column is selected.
Otherwise, Xcode skips the location when it looks for documentation. When you add a new location,
it is on by default.

 ■ Name. This column contains the display name for the location. This name has no effect on how
Xcode looks for documentation; it is there to help you identify the location.

 ■ Path. This column contains the full path to the folder containing documentation.

For more information on using extended documentation locations, see “Extended Documentation
Locations” (page 111).

3. Universal Access. These options control how Xcode displays documentation in its documentation window.
The “Never use font sizes smaller than” option specifies whether Xcode enforces a minimum font size
for HTML pages that it displays in the documentation window. When this option is selected, Xcode uses
the minimum font size—specified in the pop-up menu—to display all text that uses a smaller font size.
This option is disabled by default.

414 Documentation Preferences
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

Xcode Preferences

Xcode provides a number of mechanisms for working with scripts and customizing your work environment,
including:

 ■ The ability to execute text in a text editor window as a shell command or series of commands

 ■ The automatic execution of a startup script when Xcode is launched

 ■ The automated creation of an extensible User Scripts menu with menu items that execute shell scripts

 ■ A number of built-in script variables and utility scripts you can use in menu scripts or other scripts

 ■ A shell-file build phase that lets you add the execution of shell script files to the build process for a target.
Build phases described in “Build Phases” (page 249).

Executing Shell Commands

Xcode provides a keyboard equivalent for executing any shell command that appears in a text editor window.
To use this feature, you select the command text and press Control-R. The results appear below the command
in the text editor window, autoscrolling if necessary to show the output.

Xcode creates a new shell each time you execute a command, so there is no shared context between different
executions. For example, if you execute a command that changes the directory, the next command you
execute will not execute in that directory. To overcome this, you can select two commands together and
press Control-R.

You might recognize the similarity between this feature and using the Enter key to execute commands in
MPW. One way to take advantage of this feature is to keep a file of commonly used commands and execute
them as needed. Or you might use an empty text file as a scratch area to type and execute commands.

You can also add custom menu items to execute frequently used shell scripts. Any scripts you execute can
take advantage of many special script variables and built-in scripts defined by Xcode. For more information,
see “The Startup Script and the User Scripts Menu” (page 415).

The Startup Script and the User Scripts Menu

Xcode provides a number of scripting mechanisms to enhance your productivity and customize your work
environment. Xcode can run a startup script every time it is launched. This script can perform whatever
custom actions you want to happen on each startup, but is also responsible for creating custom menus in
its menu bar, specifically for launching your own specialized scripts. When you launch Xcode, it looks for a
script named StartupScript and executes it if found. Xcode first looks for a StartupScript file at

Executing Shell Commands 415
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

~/Library/Application Support/Apple/Developer Tools/; if none is found, Xcode falls back to
the default StartupScript file installed at /Library/Application Support/Apple/Developer Tools/.
This script can use any shell, as long as it starts with a standard #! comment to identify the shell.

Xcode provides a default startup script and menu definition files that together add a User Scripts menu to
the Xcode menu bar. The User Scripts menu is identified by the script icon in the Xcode menu bar, shown
Figure 40-1. A menu definition file is a special kind of shell script that contains one or more menu definitions
and some associated script statements. A menu definition uses variables and built-in scripts defined by
Xcode to add menus or menu items to the User Scripts menu (or to other menus). Choosing one of the
resulting menu items causes the associated script statements to be executed.

The default menu definition files add items to the User Scripts menu that let you open files, perform searches,
add comments to your code, sort text, and even add HeaderDoc templates that can help you document your
header files. And you can use these files as examples to help write additional menu definitions.

You can customize Xcode’s existing StartupScript and User Scripts menu, or you can override them entirely,
by placing your own versions at ~/Library/Application Support/Apple/Developer Tools/.

The following sections describe how Xcode creates the User Scripts menu and provide examples of how you
can take advantage of the startup script and the User Scripts menu to customize your Xcode environment.
For a full description of the available variables and how they are used in scripts, see “Menu Script
Reference” (page 421).

How Xcode Creates the User Scripts Menu

When you install Xcode, the following files are installed in /Library/Application
Support/Apple/Developer Tools/:

 ■ the default version of the script StartupScript; this version is a Perl script that builds the User Scripts
menu

 ■ a Scripts folder containing a number of menu definition files; these are simply shell scripts that define
menu items and the commands to execute when those items are chosen. Menu definition files are
interpreted in UTF-8 encoding, which is a strict superset of ASCII, so plain ASCII is fine too

You can override either or both of these default files by placing your own StartupScript file and Scripts
directory at ~/Library/Application Support/Apple/Developer Tools. Note that doing so entirely
overrides the default StartupScript or Scripts folder installed with Xcode. You might find it easier to create
copies of Xcode’s default StartupScript file and Scripts folder and modify these. If you do so, be aware that
you will not automatically see bug fixes or improvements made to the default scripts installed at
/Library/Application Support/Apple/Developer Tools/, as Xcode will load the scripts you have
installed at ~/Library/Application Support/Apple/Developer Tools. To work around this, you can
compare the files in the two locations (using diff or a similar comparison tool) and update your copies of
the scripts as needed.

When you launch Xcode, the following steps take place:

1. Xcode looks for a StartupScript file finds the file~/Library/Application Support/Apple/Developer
Tools/StartupScript and, if found, executes it. If no StartupScript file is found at the user location,
Xcode looks in the default location, /Library/Application Support/Apple/Developer Tools.
The StartupScript script is invoked with no arguments or input and its output is discarded.

416 The Startup Script and the User Scripts Menu
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

2. The startup script looks for directories in ~/Library/Application Support/Apple/Developer
Tools/Scripts. If no Scripts directory exists at this location, Xcode then looks in the default location,
/Library/Application Support/Apple/Developer Tools/Scripts. If the script finds any
directories in the Scripts folder, it creates a new menu corresponding to that directory. If Xcode finds
an image file named menuIcon.tiff at the top level of the directory, it uses the image as the menu’s
title in Xcode’s menu bar. Otherwise, it uses the textual name of the directory as the menu’s title.

Take a look inside the Scripts directory. Navigate through the 10-User Scripts directory and see
how the scripts are categorized and divided. Those with the extension .sh are shell files, while those
with the extension .pl are Perl files.

3. For each valid menu definition file Xcode finds within each directory, the startup script adds corresponding
menu items to the appropriate menu.

 ■ Files with a numeric prefix in their names are added in ascending order.

 ■ Files that do not have a prefix are added alphabetically, after files that do have prefixes.

 ■ Files that have a numeric prefix followed immediately by three dashes are interpreted as a request
for a menu separator.

 ■ The User Scripts menu supports a menu hierarchy. The name of each immediate subdirectory of
~/Library/Application Support/Apple/Developer Tools/Scripts becomes the name
of the corresponding menu. The immediate subdirectories of each of those directories become
submenus of the corresponding menu.Menu definition files within the subdirectories are added as
commands in the corresponding submenu. You can specify where subdirectory and submenu names
appear in the menus by adding numeric prefixes to the filenames.

Figure 40-1 shows the default User Scripts menu that results from the scripts that ship with Xcode. The Search
submenu is open, showing several menu items. In this case the menu items do not have key equivalents,
though some items in other submenus do have key equivalents.

Figure 40-1 The User Scripts menu

How to Add an Item to the User Scripts Menu

You can easily customize your work environment by adding menus, submenus, and menu items to the menu
bar to handle frequently performed operations. To do so, you create a menu definition file, name it
appropriately to specify its location in the User Scripts menu (or a menu of your own creation), and place it
in the appropriate location in the Scripts directory.

The Startup Script and the User Scripts Menu 417
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

For a simple example, the following steps describe how to copy one of the menu definition files from the
Sort submenu and use it to add two new menu items to the Sort submenu. That section also describes how
the startup script determines where to insert menu items (either into the main User Scripts menu or into a
submenu), and how to insert a menu separator.

1. Duplicate the file 10-sort.sh in ~/Library/Application Support/Apple/Developer
Tools/Scripts/10-User Scripts/50-Sort.

2. Rename the new file 20-reverse_sort.sh.

3. Open the file in Xcode.

4. Change the line # %%%{PBXName=Sort Selection}%%% to # %%%{PBXName=Reverse Sort
Selection}%%%. This line provides the name for the first new menu item.

5. The five lines starting with # %%%{PBXNewScript}%%% actually define a second menu item. Change
the line # %%%{PBXName=Sort File}%%% to # %%%{PBXName=Reverse Sort File}%%%. This line
provides the name for the second new menu item.

6. Change the line sort <&0 to sort -r <&0. This tells the sort command to reverse the result of
comparison, so that lines with greater key values appear earlier in the output instead of later.

7. Quit Xcode, then launch it again. The items Reverse Sort Selection and Reverse Sort File now appear in
the Sort submenu of the User Scripts menu. Choosing the items performs sorts that are reversed from
those performed by the original menu items.

The section “Using Variables in a Menu Definition Script” (page 418) takes a closer look at the special variables
you worked with in this example.

How to Remove Items From the User Scripts Menu

You can remove items from the User Scripts menu by removing their menu definition files from
~/Library/Application Support/Apple/Developer Tools/Scripts. If you don’t need the User
Scripts menu at all, you can either move the entire Scripts directory, or move the StartupScript file,
from ~/Library/Application Support/Apple/Developer Tools.

Using Variables in a Menu Definition Script

Xcode provides a number of variables you can use in menu definition scripts to get information from, or pass
information to, Xcode. These special variables start with %%%{ and end with }%%%. You can use them to
specify the menu name, key equivalent, input treatment, output treatment, and arguments for the script.
They can also control whether the script’s output is displayed incrementally or all at once when the script is
finished. (For a full description of the available variables and other options you can use in scripts, see “Menu
Script Reference” (page 421).)

Listing 40-1 shows the original menu definition file 10-sort.sh, which was referred to in “How to Add an
Item to the User Scripts Menu” (page 417). The numbered lines in this script are described below.

Listing 40-1 The menu definition file 10-sort.sh

#! /bin/sh -1-

418 The Startup Script and the User Scripts Menu
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

#
sort.sh - alphabetically sorts the lines of the selection or file
#
-- PB User Script Info --
%%%{PBXName=Sort Selection}%%% -2-
%%%{PBXInput=Selection}%%% -3-
%%%{PBXOutput=ReplaceSelection}%%% -4-
%%%{PBXKeyEquivalent=}%%% -5-
#
%%%{PBXNewScript}%%% -6-
%%%{PBXName=Sort File}%%%
%%%{PBXInput=AllText}%%%
%%%{PBXOutput=ReplaceAllText}%%%
%%%{PBXKeyEquivalent=}%%%

-7-
echo -n "%%%{PBXSelection}%%%"
sort <&0
echo -n "%%%{PBXSelection}%%%"

1. This line identifies the shell for the menu definition. A menu definition can use any shell, as long as it
starts with a standard #! comment to identify the shell. As mentioned previously, menu definition files
are interpreted in UTF-8 encoding, which is a strict superset of ASCII, so plain ASCII is fine too.

2. The built-in variable in this line (%%%{PBXName=Sort Selection}%%%) is the first of four built-in
variables the script uses in its first menu definition. The variable specifies the name of the menu or menu
item; if you don’t specify a name, the name of the menu file is used.

3. %%%{PBXName=Selection}%%% specifies that the script for this menu item should take its input from
the current selection; if you don’t specify an input location, the script gets no input. The possible input
options are described in “Specifying Where to Get Input” (page 421).

4. %%%{PBXOutput=ReplaceSelection}%%% specifies that the script’s output should replace the current
selection (that is, the sorted text should replace the original, unsorted text); if you don’t specify an output
location, the output is discarded. The possible input options are described in “Specifying Where to Place
Output” (page 422).

5. %%%{PBXKeyEquivalent=}%%% specifies the key equivalent for the menu item; in this case, there is no
key equivalent specified. The characters you use to specify key equivalents are listed in “Specifying the
Menu Item’s Key Equivalent” (page 421).

6. This line, containing the variable %%%{PBXNewScript}%%%, starts a second menu definition. It is similar
to the first definition, except that it gets all the text of the current document as its input
(%%%{PBXInput=AllText}%%%) and replaces all the text with its output
(%%%{PBXOutput=ReplaceAllText}%%%). For related information, see “Placing Multiple Menu Items
in One Script” (page 422).

7. Both menu definitions use the same three lines at the bottom of the file to perform the sort operation.
The variable %%%{PBXSelection}%%% specifies an exact selection within the output. Inserting this
variable before and after the sort operation (by echoing it, with -n to omit a trailing newline character)
results in Xcode selecting the entire output text—that is, selecting the sorted text.

The Startup Script and the User Scripts Menu 419
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

Working With Built-in Utility Scripts

In addition to the variables described in “Using Variables in a Menu Definition Script” (page 418), Xcode
provides several useful built-in utility scripts. These scripts can be used in menu definition files or in other
scripts you write.

To use one of these scripts, you preface it with the expansion variable %%%{PBXUtilityScriptsPath}%%%,
which specifies the location of the script. For example, the following statement displays a dialog to get input
from the user and places the result in the variable STRING. The original text displayed in the dialog is
“DefaultString”.

STRING = `%%%{PBXUtilityScriptsPath}%%%/AskUserForStringDialog "DefaultString"`

In addition to the AskUserForStringDialog script, Xcode provides built-in scripts to:

 ■ Choose an existing file or folder

 ■ Choose a new file

 ■ Choose an application

 ■ Add a menu item from a menu definition file, or from any script file

 ■ Add a submenu

 ■ Add a menu separator

 ■ Remove a custom menu item or remove all custom menu items from a menu

For details, see “Built in Utility Scripts” (page 424).

Additional Customization With Scripts

As described previously, when you launch Xcode, it looks for a file named StartupScript located at
~/Library/Application Support/Apple/Developer Tools/ and executes it if found. Xcode ships
with a default StartupScript and a number of menu definition files that together create and populate the
User Scripts menu.

These simple features clearly provide many options for customizing your Xcode environment:

 ■ You can modify the User Scripts menu by deleting unused menu definition files or adding new ones you
write.

 ■ You can modify StartupScript to, for example, call additional scripts you write. Or you can replace
StartupScript completely.

 ■ Xcode provides many built-in script variables and utility scripts you can use in menu scripts or other
scripts. You can even add items to other menus or create new custom menus and menu items.

 ■ Many Xcode build settings can be accessed from scripts.

 ■ Your scripts can use Perl or other languages.

 ■ Your shell scripts can execute AppleScript scripts, using the osascript command.

420 The Startup Script and the User Scripts Menu
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

Menu Script Reference

The following sections describe the features and terminology you can use in working with menu scripts.
Topics covered include menu script definition variable expansion, pre-execution variable expansion, and
special user output script markers.

Menu Script Definition Variable Expansion

In addition to the standard script statements in a menu script definition, Xcode parses certain special directives
from the file content to allow control over various menu script options. These directives can specify the menu
name, key equivalent, input treatment, output treatment, and arguments for the script. They can also control
whether the script's output is displayed incrementally or all at once when the script is finished. These special
variable expansions start with "%%%{" and end with "}%%%". Any recognized directives will be parsed and
deleted from the script text as the file is first being read in (even so, all the example scripts put these directives
in shell comments). The following directives are supported.

Specifying the Menu Item’s Name

%%%{PBXName=menu-title}%%% sets the name of the script currently being defined to menu-title. If not
set, the menu item’s name is the file name.

Specifying the Menu Item’s Key Equivalent

%%%{PBXKeyEquivalent=key-equiv}%%% sets the key equivalent for the menu item to key-equiv. If not
set, the menu item will have no key equivalent. A key-equiv begins with characters specifying the modifiers
and ends with a character that will actually be the key equivalent. Modifier characters are:

 ■ @ is Command

 ■ ~ is Option

 ■ ^ is Control

 ■ $ is Shift

Most key equivalents should begin with @. Modifier characters are recognized until the first non-modifier
character. The rest is the actual key. If the key is also a modifier character, precede it with a \. For example
@b is Command-B, and @~\@ is Command-Option-@. Remember that a menu script definition file must be
Unicode (UTF-8) if it contains non-ASCII characters (such as function keys) as key equivalents. Note that you
can insert a function key into a file by pressing Control-Q and then the function key (such as Home, F5, or
Page Up).

Specifying Where to Get Input

%%%{PBXInput=input-treatment}%%% specifies where the script gets its input for stdin. If not set, the
script gets no input. The possible values for input-treatment are:

 ■ None uses no input

 ■ Selection uses the selected text as input

Menu Script Reference 421
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

 ■ AllText uses all the text in the window as input

Specifying Where to Place Output

%%%{PBXOutput=output-treatment}%%% specifies where to send the output from the script. If not set,
the output is discarded. The possible values for output-treatment are:

 ■ Discard discards any output

 ■ ReplaceSelection replaces the current selected text with the output

 ■ ReplaceAllText replaces the complete text with the output

 ■ InsertAfterSelection inserts the output after the currently selected text

 ■ AppendToAllText appends output to the end of the complete text

 ■ SeparateWindow shows output in a separate window (currently an alert panel)

 ■ Pasteboard puts the output on the pasteboard

Specifying Script Arguments

%%%{PBXArgument=arg}%%% specifies an argument to pass to the script. You can use this expansion zero
or more times, each one adds a new argument to pass to the script.

Specifying How to Display the Menu Item’s Output

%%%{PBXIncrementalDisplay=flag}%%% specifies whether to display the script’s output as it arrives. If
flag is YES and the output goes to the text view (that is, not to a separate window or the clipboard), then
the output is displayed as it arrives. If flag is NO, the output is displayed after the script finishes. The default
is NO.

Placing Multiple Menu Items in One Script

%%%{PBXNewScript}%%% signals the beginning of a new script. Use this directive if you want to define more
than one menu item, each with its own settings, in a single script. When this directive is encountered, all the
previous directives are considered complete, a menu command is created, and everything is reset to start
specifying settings for a new menu item.

Pre-Execution Script Variable Expansion

Menu Scripts can also contain a variety of special variables that will be expanded by Xcode each time the
script is executed. Several variables are supported.

Getting Text From the Active Window

These variables are replaced by text in the active window:

 ■ %%%{PBXSelectedText}%%$ is replaced by the selected text in the active text object.

422 Menu Script Reference
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

 ■ %%%{PBXAllText}%%% is replaced by the entire text in the active text object.

The text is expanded verbatim with no quoting. In most shells this would be fairly dangerous because the
selection might include single or double quotes or any number of other special shell characters. One safe
way to use this in a Bourne shell script, for example, is to have it expand within "here-doc" style input
redirection like so:

cat << EOFEOFEOF
%%%{PBXSelectedText}%%%
EOFEOFEOF

The above script would simply print the selected text to the standard output.

Getting Information on the Active Window’s Contents

These variables are replaced by information on the text in the active window:

 ■ %%%{PBXTextLength}%%% is replaced by the number of characters in the active text object.

 ■ %%%{PBXSelectionStart}%%% is replaced by the index of the first character in the selection in the
active text object.

 ■ %%%{PBXSelectionEnd}%%% is replaced by the index of the first character after the selection in the
active text object.

 ■ %%%{PBXSelectionLength}%%% is replaced by the number of characters in the current selection in
the active text object.

Getting the Pathname for the File in the Active Window

%%%{PBXFilePath}%%% is replaced by the path to the file for the active text object, if it can be determined.
This may not be accurate. Xcode tries to find the file path first by walking up the responder chain looking
for an NSWindowController that has an NSDocument. If it finds one it will use the document's fileName. If
it does not find one, it will use the representedFilename of the window, if it has one.

Note that this implies that sometimes this will expand to nothing and sometimes it may expand to a file
name that is not really a text file containing the text of the active text object. In Xcode text file editors, this
works correctly, in other text areas in Xcode (like the build log or any text field) it will not do anything
reasonable.

Getting the Pathname for the Utility Scripts

%%%{PBXUtilityScriptsPath}%%% is replaced by the path to the folder that contains a number of built
in utility scripts and commands that can be used from user scripts to provide functionality such as using a
dialog to ask the user for a string or to ask the user to choose a folder or file, or to add to the menu bar of
the host application. See below for descriptions of the available utility scripts.

Special User Script Output Markers

When a User Script is done executing, Xcode scans the output for certain special markers. Currently only one
marker is supported.

Menu Script Reference 423
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

%%%{PBXSelection}%%% specifies an exact selection within the output. By default Xcode will set the selection
to be an insertion point after all the newly inserted output text. But if the output contains one or two instances
of this special marker, it will use them to determine the selection. If there is one such marker, it identifies an
insertion point selection. If there are two, all the text between them is selected. The markers are removed
from the output.

Built in Utility Scripts

Xcode provides several useful utility scripts that are built-in to Xcode itself. These scripts can be used in menu
definition file scripts or in MPW-style worksheet content. To use one of these scripts, use the
%%%{PBXUtilityScriptsPath}%%% expansion variables. For an example, see “Working With Built-in Utility
Scripts” (page 420).

Specifying a String

AskUserForStringDialog [default-string]

Displays a dialog in the active application and returns the string that the user enters. If supplied,
default-string is the initial contents of the text field.

Choosing an Existing File or Folder

AskUserForExistingFileDialog [prompt-string] AskUserForExistingFolderDialog
[prompt-string]

Displays a standard open dialog and returns the path of the file or folder that the user chooses. If supplied,
prompt-string is the prompt in the dialog. Otherwise a default prompt is used.

Choosing a New File

AskUserForNewFileDialog [prompt-string [default-name]]

Displays a standard save dialog and returns the path of the new file. If supplied, prompt-string is the
prompt in the dialog. Otherwise, a default prompt is used. If supplied, default-name is the default name
for the new file

Choosing an Application

AskUserForApplicationDialog [title-string [prompt-string]]

Displays an application picker dialog and returns path of the application the user chose. If supplied,
title-string is the title for the dialog. Otherwise, a default title is used. If supplied, prompt-string is
the prompt in the dialog. Otherwise, a default prompt is used.

Adding a Menu Item From Any Script File

SetMenu add script script menu-title key-equiv input-treatment output-treatment
index [menu-path ...]

424 Menu Script Reference
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

Adds a new menu item to an existing menu in Xcode. The menu item has the name menu-title, and the
key equivalent key-equiv. (Use "" for no key equivalent.) When the user chooses this command, it invokes
the script script, getting its input from input-treatment and placing its output in output-treatment.
The new item is inserted at index in the menu identified by menu-path. If you don’t specify menu-path the
item appears in the main menu bar. menu-path contains the titles of menus and submenus that lead to the
desired menu.

index is a zero-based index starting at the end of all the original items in the menu. For example, the index
0 in the File menu would generally be the first item after Print (usually the last item in the File menu of an
application.) Index 2 would be after the second custom item in a menu. Use negative indices to count from
the end of a menu. Index -1 means at the end, and Index -2 means right before the last item.

The key-equiv, input-treatment, and output-treatment arguments use the same syntax as the values
of the menu definition file directives PBXKeyEquivalent, PBXInput, and PBXOutput respectively. For
example, if input-treatment is Selection, the selected text is the input for the new menu item's script.

This is the most complicated form of the SetMenu command. Usually it is better to use the next form in
conjunction with menu script definition files.

Adding a Menu Item From a Menu Definition Script

SetMenu add scriptfile script-path index [menu-path ...]

Adds new menu items to an existing menu in Xcode. The items are read from script-path. See the menu
script definition files notes above for details on the file format. Details such as the menu titles key equivalents,
and input and output treatment are defined within the file. The new items are inserted at the given index
in the menu specified by menu-path. If you don’t specify menu-path the item appears in the main menu
bar. menu-path contains the titles of menus and submenus that lead to the desired menu.

index is a zero-based index starting at the end of all the original items in the menu. For example, the index
0 in the File menu would generally be the first item after the Print (usually the last item in the File menu of
an application.) Index 2 would be after the second custom item in a menu. Use negative indices to count
from the end of a menu. Index -1 means at the end, and Index -2 means right before the last item

Adding a Submenu

SetMenu add submenu submenu-name index [menu-path ...]

Adds a new submenu to an existing menu in Xcode. The submenu's title is submenu-name. Initially, it has
no items. The new submenu is inserted at index in the menu specified by the menu-path. If you don’t
specify menu-path the item appears in the main menu bar. menu-path contains the titles of menus and
submenus that lead to the desired menu.

index is a zero-based index starting at the end of all the original items in the menu. For example, the index
0 in the File menu would generally be the first item after the Print (usually the last item in the File menu of
an application.) Index 2 would be after the second custom item in a menu. Use negative indices to count
from the end of a menu. Index -1 means at the end, and Index -2 means right before the last item

Adding a Menu Separator

SetMenu add separator index [menu-path ...]

Menu Script Reference 425
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

Adds a new separator to an existing menu in Xcode. The new separator is inserted at index in the menu
specified by the menu-path. If you don’t specify menu-path the item appears in the main menu bar.
menu-path contains the titles of menus and submenus that lead to the desired menu.

index is a zero-based index starting at the end of all the original items in the menu. For example, the index
0 in the File menu would generally be the first item after the Print (usually the last item in the File menu of
an application.) Index 2 would be after the second custom item in a menu. Use negative indices to count
from the end of a menu. Index -1 means at the end, and Index -2 means right before the last item

Removing a Custom Menu Item

SetMenu remove item index [menu-path ...]

Removes a custom item from an existing menu in Xcode. The custom item at index in the menu specified
by the menu-path. If you don’t specify menu-path the item is removed from the main menu bar. menu-path
contains the titles of menus and submenus that lead to the desired menu.

index is a zero-based index starting at the end of all the original items in the menu. For example, the index
0 in the File menu would generally be the first item after the Print (usually the last item in the File menu of
an application.) Index 2 would be after the second custom item in a menu. Use negative indices to count
from the end of a menu. Index -1 means at the end, and Index -2 means right before the last item

Only items and submenus added by a SetMenu command may be removed by the SetMenu remove item
command. You cannot remove Xcode's real menu items.

Removing All Custom Menu Items From a Menu

SetMenu remove all [menu-path ...]

Removes all custom items from an existing menu in Xcode. All custom items in the menu identified by the
given menu-path are removed. If you don’t specify menu-path the item is removed from the main menu
bar. menu-path contains the titles of menus and submenus that lead to the desired menu.

This command applies to items and custom submenus, but does not recurse into original submenus. For
example, if you added an item to the File menu and you added a whole submenu called My Scripts to the
main menu bar, SetMenu remove all removes the My Scripts submenu, but does not remove the custom
item in the File menu. SetMenu remove all File removes the custom item from the File menu.

Only items and submenus added by a SetMenu command can be removed by the SetMenu remove all
command. You cannot remove Xcode's real menu items.

426 Menu Script Reference
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

Using Scripts To Customize Xcode

This appendix provides instructions on performing a few essential version control operations using the CVS
client tool. It doesn’t offer detailed guidance on using CVS. Consult the CVS documentation for in-depth
explanations.

The cvs and ocvs Tools

CVS is installed in Mac OS X. Max OS X version 10.4 includes two versions of CVS: the legacy version (version
1.10), which supports wrappers and the current version (version 1.11.18), which doesn’t support wrappers.
CVS with wrapper support is required when you work on projects that contain bundles, such as nibs, which
are directories that group a set of files as a discrete package (see Bundle ProgrammingGuide for details). When
you use CVS with wrappers, bundles are compressed into a single file before they are placed in the repository
and decompressed when they are checked out to local copies.

In Mac OS X v10.4, the CVS tool that supports wrappers is /usr/bin/ocvs, (this is the same version of the
tool that shipped on earlier versions of Mac OS X). The current version of the CVS tool is /usr/bin/cvs. It
incorporates fixes to security problems in earlier versions of CVS. Xcode is initially configured to use ocvs.

You must use the ocvs tool when working on projects hosted on repositories created using CVS 1.10 or
earlier. Also, you must host new projects containing bundles in repositories created using CVS 1.10 or earlier.
You should host new projects that don’t use bundles in repositories created using CVS version 1.11.18 or
later.

Creating a CVS Repository

Most developers don’t need to worry about creating or managing repositories. This task is usually handled
by system administrators. However, if you’re a member of a very small team or the sole programmer in your
organization, you may have to create and maintain the repository that holds your company’s source code.
Or you may create a local repository to experiment with version control in your computer.

To create a CVS repository, create the CVS root directory (the directory that contains the repository) and
initialize the repository. If you want others to access the repository, you should create a group containing
their user names and assign the group to the root directory.

Creating the cvsusers Group

To create the CVS users group, execute these commands in Terminal:

// 1% sudo nicl . -create /groups/cvsusers
// 2% sudo nicl . -append /groups/cvsusers gid 600

The cvs and ocvs Tools 427
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Using CVS

// 3% sudo nicl . -append /groups/cvsusers users <user1> <user2> ... <userN>
// 4% lookupd -flushcache
// 5% memberd -r

This is what the commands do:

1. Creates the cvsusers group.

2. Assigns an ID number to the cvsusers group. You can use any unused group ID number.

3. Assigns a list of user names to the cvsusers group.

4. Flushes the directory information cache.

5. Resolves the memberships of the new group.

Creating the Root Directory

To create the repository’s root directory, execute the following commands:

// 1% sudo mkdir /cvsrep
// 2% sudo chgrp cvsusers /cvsrep
// 3% sudo chmod g+w /cvsrep

This is what the commands do:

1. Creates the /cvsrep directory.

2. Assigns the cvsusers group to the directory.

3. Gives write permission to the cvsusers group for the directory.

Initializing the Repository

To initialize the repository, execute the following commands:

% setenv CVSROOT /cvsrep # 'export CVSROOT=/cvsrep' in bash
% sudo cvs init

428 Creating a CVS Repository
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Using CVS

Important: Users who want to access your repository must set the CVSROOT environment variable to the
path to your repository in their login scripts. In addition, every user must execute the cvs login command
before the user can use the cvs tool to access the repository.

Accessing a CVS Repository

You can access local repositories (that is, repositories that reside on the same computer on which you develop)
directly. For repositories located in remote computers, however, CVS uses secure connection methods, such
as SSH. See the CVS documentation for information on other secure connection methods.

This section shows how to configure environment variables to enable SSH-based access to a CVS repository.
For information on how to set up the required private and public keys, see “Configuring Your SSH
Environment” (page 435).

To access a CVS repository through SSH, you need to configure the CVSROOT and CVS_RSH environment
variables for your user account:

1. Set CVSROOT so that it defines the user under which to log in, the computer the repository resides in,
and the path to the repository's root directory, using the following format:

:ext:<user>@<host><repository_path>

For example:

setenv CVSROOT :ext:ming@server.apple.com:/cvsrep

2. Set CVS_RSH to ssh:

setenv CVS_RSH ssh

For more information on using SSH to access a remote CVS repository, consult the CVS documentation.

Importing Projects Into a CVS Repository

To add a project directory to a CVS repository, use the cvs import command, which operates on the current
working directory. You must have the CVSROOT environment variable set to the CVS root directory (see
“Creating a CVS Repository” (page 427)). The command’s syntax is:

cvs import -m "<import_comment>" <module_name> <tag> start

For example, to import the project directory /Developer/Examples/Networking/Echo, you issue the
following commands in Terminal:

% cd /Developer/Examples/Networking/Echo
% cvs import -m "Echo added to repository" Echo Echo_1 start

Accessing a CVS Repository 429
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Using CVS

Before adding a project directory to a repository, you should move or delete the build directory if it resides
in the project directory. You should also move or delete any other directories you don’t want to add to the
repository. Otherwise, changes to files in those directories are tracked by your version control system and
added to the repository.

Checking Out Projects From a CVS Repository

To check out a project in a CVS repository, use the cvs checkout command. The command's syntax is:

cvs checkout <module_name>

For example:

% cd ~/src
% cvs checkout Echo

Updating a Local Project File to the Latest Version in a CVS
Repository

When Xcode is unable to open a project because its project file (project.pbxproj) is corrupted, you must
use the cvs update command to get the latest version from the repository. For example, to update the
project package in a project named Grape using cvs, you execute the cvs update command on the project
file, as shown here:

% cvs update -C Grape.xcode/project.pbxproj
(Locally modified project.pbxproj moved to .#project.pbxproj.1.4)
U Grape.xcode/project.pbxproj

To do the same using ocvs, execute the following commands:

% mv Grape.xcode/project.pbxproj /tmp
% ocvs update Grape.xcode/project.pbxproj
ocvs update: warning: Grape.xcode/project.pbxproj was lost
U Grape.xcode/project.pbxproj

430 Checking Out Projects From a CVS Repository
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Using CVS

This appendix provides instructions on performing a few essential version control operations using the
Subversion client tool. It doesn’t offer detailed guidance on using Subversion. Consult the Subversion
documentation for in-depth explanations.

Installing the Subversion Software

This section shows how to install the server and client software of the Subversion version control system in
a computer using Fink. Fink is an open-source project that simplifies the installation of UNIX software in
several platforms, including Mac OS X.

To install Fink on your computer, go to http://fink.sourceforge.net and follow the download instructions.

To install the Subversion server software, execute these commands in Terminal:

// 1% sudo apt-get update
Hit us.dl.sourceforge.net 10.3/release/main Packages
Hit us.dl.sourceforge.net 10.3/release/main Release
...

// 2% sudo apt-get install svn
Reading Package Lists... Done
Building Dependency Tree... Done
...

This is what the commands do:

1. The apt-get update command updates Fink’s list of available packages.

2. The apt-get install svn command installs the svn package, which contains the Subversion server
software.

To install the Subversion client software, execute the following command:

% sudo apt-get install svn-client

Creating a Subversion Repository

Most developers don’t need to worry about creating or managing repositories. This task is usually handled
by system administrators. However, if you’re a member of a very small team or the sole programmer in your
organization, you may have to create and maintain the repository that holds your company’s source code.
Or you may create a local repository to experiment with version control in your computer.

Installing the Subversion Software 431
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Using Subversion

http://fink.sourceforge.net

To create a Subversion repository, create its root directory (the directory that contains the repository) and
initialize the repository. If you want others to access the repository, you should to create a group containing
their usernames and assign the group to the root directory.

Creating the svnusers Group

To create the Subversion users group, execute these commands in Terminal:

// 1% sudo nicl . -create /groups/svnusers
// 2% sudo nicl . -append /groups/svnusers gid 700
// 3% sudo nicl . -append /groups/svnusers users <user1> <user2> ... <userN>
// 4% lookupd -flushcache
// 5% memberd -r

This is what the commands do:

1. Creates the svnusers group.

2. Assigns an ID number to the svnusers group. You can use any unused group ID number.

3. Assigns a list of user names to the svnusers group.

4. Flushes the directory information cache.

5. Resolves the memberships of the new group.

Creating and Initializing the Root Directory

To create the repository’s root directory, execute the following commands:

// 1% sudo svnadmin create /svnrep
// 2% sudo chgrp svnusers /svnrep/db
// 3% sudo chmod -R g+wx /svnrep/db

This is what the commands do:

1. Creates and initializes the /svnrep repository directory.

2. Assigns the svnusers group to the repository’s data directory.

3. Gives write and execute permissions to the svnusers group for the data directory.

Accessing a Subversion Repository

Subversion uses URLs (Uniform Resource Locators) to identify repositories. Using URLs, you can work with
several Subversion repositories at a time. To access a local repository, you use a URL like the following:

file://<repository_root>/<project_path>

432 Accessing a Subversion Repository
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Using Subversion

For repositories located on remote computers, Subversion offers a variety of options; one of them is SSH. To
access a repository on a remote computer using SSH, use a URL like the following:

svn+ssh://<computer_name>/<repository_root>/<project_path>

Before you can access a remote repository using SSH, you have to configure your SSH environment. See
“Configuring Your SSH Environment” (page 435) for details. Consult the Subversion documentation for
information on other access methods.

Importing Projects Into a Subversion Repository

To add a project directory to a Subversion repository, use the svn import command. Its syntax is:

svn import -m "<import_comment>" <source> <repository>

For example, to import the project directory /Developer/Examples/Networking/Echo into a local
repository, you issue the following commands in Terminal:

% svn import -m "Echo added to repository" /Developer/Examples/Networking/Echo
 file:///svnrep/Echo
Adding /Developer/Examples/Networking/Echo/EchoContext.c
Adding /Developer/Examples/Networking/Echo/main.c
...
Committed revision 1.

Before adding a project directory to a repository, you should move or delete the build directory if it resides
in the project directory. You should also move or delete any other directories you don’t want to add to the
repository. Otherwise, changes to files in those directories are tracked by your version control system and
added to the repository.

Checking Out Projects From a Subversion Repository

To check out a project in a Subversion repository, use the svn checkout command. Its syntax is:

svn checkout <repository> <target>

For example:

% svn checkout file:///svnrep/Echo ~/src/Echo
A /Users/ernest/src/Echo/EchoContext.c
A /Users/ernest/src/Echo/main.c
...
Checked out revision 1.

Importing Projects Into a Subversion Repository 433
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Using Subversion

Updating the Project File to the Latest Version in a Subversion
Repository

When Xcode is unable to open a project because its project file (project.pbxproj) is corrupted, you must
use the svn revert command to restore the project file to the version you last obtained from the repository.
For example, to update the project package in a project named Sketch, you execute the svn revert
command on the project file, as shown here:

% svn revert Sketch.xcode/project.pbxproj
Reverted 'Sketch.xcode/project.pbxproj'

434 Updating the Project File to the Latest Version in a Subversion Repository
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Using Subversion

This appendix explains how to configure SSH access from one computer (the server) to another (the client)
for a single user. This allows you to connect securely from your workstation to the computer where your
repository is located.

1. The server’s administrator must create a user account for you on that computer. Make sure you can log
in to the server.

% ssh ernest@server.apple.com
ernest@server.apple.com's password:
Last login: Thu Sep 30 15:56:52 2004 from xx.xx.xx.xx
Welcome to Darwin!

2. If it doesn’t already exist, create the .ssh directory in your home directory in the server computer.

% mkdir ~/.ssh
% exit

3. Using the ssh-keygen command, create a private and public key pair and store it in your home directory
in the client computer:

% ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/Volumes/Athene/ernest/.ssh/id_dsa:
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has ben saved in /Volumes/Athene/ernest/.ssh/id_dsa.
Your public key has been saved in /Volumes/Athene/ernest/.ssh/id_dsa.pub.
The key fingerprint is:
##:##:##:##:##:##:##:##:##:##:##:##:##:##:##:## ernest@work.apple.com
% cd ~/.ssh
% ls
id_dsa id_dsa.pub known_hosts

4. Using the scp command, copy the public key file (id_dsa.pub) to your home directory in the server as
authorized_keys (unless the authorized_keys file already exists there):

% scp id_dsa.pub ernest@server.apple.com:~/.ssh/authorized_keys
ernest@server.apple.com's password:
id_dsa.pub 100% 613 1.2MB/s 00:00

If the authorized_keys file if it already exists, add your public key to it using a text editor.

5. Ensure you can connect to the server using your passphrase:

% ssh ernest@server.apple.com
Enter passphrase for key '/Users/ernest/.ssh/id_dsa':
Last login: Thu Sep 30 16:06:45 2004 from xx.xx.xx.xx
Welcome to Darwin!

435
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Configuring Your SSH Environment

436
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Configuring Your SSH Environment

This table describes the changes to Xcode 2.0 User Guide.

NotesDate

Moved document to legacy because 2.0 is not the current version of Xcode.2006-11-07

TBD2005-04-29

New document that describes how to develop software with Xcode. Replaces
Xcode Help, "Xcode Build System," "Customizing Xcode," "Xcode Source Control
Management," and "Xcode Workflow."

437
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

438
Legacy Document | 2006-11-07 | © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Xcode 2.0 User Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Developing a Software Product With Xcode
	Defining a Product
	Creating a Project
	Project Organization and Navigation
	Organizing a Project
	Project Navigation
	Finding Information
	Filtered Searching
	Searching in a Project
	Getting Information About Items in a Project

	Using the Documentation
	HeaderDoc

	Editing Files
	Resources and Localization
	Information Property List Files
	Strings Files
	Nib Files
	Resource Manager Files

	The Edit/Build/Debug Cycle
	Tools
	Building
	Debugging
	Optimizing the Edit/Build/Debug Cycle

	Analyzing and Optimizing Your Software
	Customizing Your Work Environment
	Preferences
	Customizing the Xcode User Interface
	Working in a Shell

	Part I: Projects
	Projects in Xcode
	Components of an Xcode Project
	The Project Directory

	Creating a Project
	Choosing a Project Template
	Creating a New Project
	Importing a Project
	Importing CodeWarrior Projects
	Before You Import
	Importing Your CodeWarrior Project into Xcode

	Converting a Project Builder Project
	Importing Projects From ProjectBuilderWO

	Opening and Closing Projects

	The Project Window
	The Project Window and its Components
	The Groups & Files List
	Groups in Xcode
	Hiding and Showing Groups
	Viewing the Contents of a Group
	Splitting the Groups & Files View

	The Detail View
	The Information Displayed in the Detail View
	Searching and Sorting in the Detail View

	The Project Window Toolbar
	The Project Window Status Bar

	Project Window Layouts
	The Default Layout
	The Condensed Layout
	The All-In-One Layout
	The Project Page
	The Build Page
	Other Windows in the All-In-One Layout

	Changing the Project Window Layout
	Saving Changes to the Current Layout

	Viewing Additional Information on Project Items and Operations
	Inspector and Info Windows
	Viewing the Progress of Operations in Xcode

	Files in a Project
	Files in Xcode
	The Files in a Project
	How Files Are Referenced
	Adding Files, Frameworks, and Folders to a Project
	Adding Files and Folders
	Adding Frameworks
	Removing Files

	Source Trees
	Referencing Other Projects

	Organizing Xcode Projects
	Software Organization Tips
	Dividing Your Work Into Projects and Targets
	Identifying the Scope
	Trade-offs of Putting Many Targets in One Project
	Trade-offs of Using Multiple Projects

	Organizing Files
	Organizing Files into Source Groups
	Creating a New Source Group
	Adding Files to a Group
	Deleting Groups

	Using Smart Groups to Organize Files
	Creating a New Smart Group
	Configuring a Smart Group

	Viewing Groups and Files

	Saving Commonly Accessed Locations
	The Favorites Bar
	Saving Commonly Accessed Locations as Bookmarks

	Adding Comments to Project Items

	Inspecting Project Attributes
	Finding Information in a Project
	Searching in a Project
	The Project Find Window
	Choosing What to Search For
	Specifying Which Files to Search
	Viewing Search Results
	Creating Sets of Search Options
	Replacing Text in Multiple Files

	Viewing Project Symbols and Classes
	Code Sense
	Viewing the Symbols in Your Project
	Viewing Your Class Hierarchy
	Choosing What the Class Browser Displays
	Saving and Reusing Class Browser Options

	Viewing Documentation
	Using the ADC Reference Library
	Obtaining ADC Reference Library Content
	Extended Documentation Locations

	Browsing ADC Reference Library Content
	Searching for Documentation
	API Reference Search
	Full-Text Search

	Finding Documentation for Command-Line Tools
	Working With Documentation Bookmarks
	Obtaining Documentation Updates
	Checking for Updates
	Installing an Update

	Controlling the Appearance of the Documentation Viewer

	Part II: Design Tools
	Overview of Xcode Design Tools
	Class Modeling
	Data Modeling
	Why Are Modeling Tools Useful?

	Common Features of the Xcode Design Tools
	The Diagram View
	Diagram Elements
	Nodes
	Lines

	Diagram Tools
	Arrow
	Text (Class Diagrams Only)
	Line
	Magnifying Glass
	Hand

	Roll-Up and Expansion
	Layout
	Moving and Resizing Shapes
	Alignment and Grid
	Automatic Layout
	Locking
	Zoom
	Page Layout

	Multiple Selection
	Colors and Fonts

	The Browser View
	Table View Panes
	Detail Pane

	Info Window
	Workflow
	Model Files
	Navigation
	Contextual Menus

	Class Modeling With Xcode Design Tools
	Creating Models
	Creating a Quick Model
	Creating a Class Model File

	Indexing and Tracking
	The Diagram View for Class Modeling
	Nodes in a Class Model
	Text and Color Coding
	Compartments and View Options

	Lines
	Annotations
	Filtering and Hiding
	Filtering
	Hiding

	The Browser View for Class Modeling

	Data Modeling With Xcode
	The Diagram View for Data Modeling
	The Model Browser for Data Modeling
	The Entities Pane
	The Properties Pane
	Properties View
	Fetch Requests View

	The Detail Pane
	General Pane
	User Info Pane
	Configurations Pane

	The Predicate Builder
	Right-Hand Side
	Left-Hand Side
	Compound Predicates

	Workflow
	Creating a Model
	Custom Classes
	Compiling a Data Model

	Part III: Editing Source Files
	Inspecting File Attributes
	Inspecting File, Folder, and Framework References
	Choosing File Encodings
	Changing Line Endings
	Overriding a File’s Type

	Opening, Closing, and Saving Files
	Opening and Closing Files
	Opening Project Files
	Opening Header Files and Other Related Files
	Opening Files by Name or Path
	Closing Files

	Saving Files

	The Xcode Editor
	The Xcode Editor Interface
	Editing Files in a Separate Editor Window
	Using the Attached Editor
	Splitting Code Editors

	Navigating Source Code Files
	The Navigation Bar
	The File History Menu
	The Function Pop-up Menu
	Jumping to a File’s or Symbol’s Counterpart

	Searching in a Single File
	Specifying Search Terms
	Replacing Text

	Shortcuts for Finding Text and Symbol Definitions From an Editor Window

	Controlling the Appearance of the Code Editor
	Setting Default Fonts and Colors
	Displaying a Page Guide
	Displaying the Editor Gutter
	Viewing Column and Line Positions

	Formatting and Syntax Coloring
	Setting Syntax Coloring
	Controlling Syntax Coloring and Syntax Coloring Rules
	Controlling Syntax Coloring for a Single File

	Wrapping Lines
	Indenting Code
	Syntax-Aware Indenting
	Choosing What the Tab Key Does
	Choosing How to Indent Braces
	Choosing Which Characters Reindent a Line
	Choosing How to Indent C++-Style Comments

	Indenting Code Manually
	Setting Tab and Indent Formats
	Changing the Indent and Tab Width
	Using Spaces Instead of Tabs

	Matching Parentheses, Braces, and Brackets

	Code Completion
	Using Code Completion
	Changing Code Completion Settings
	Text Macros

	Using an External Editor
	Overriding How a File is Displayed
	Changing the Preferred Editor for a File Type
	Opening Files With an External Editor
	Opening Files With Your Preferred Application

	Customizing for Different Regions
	Marking Files for Localization
	Adding Files for a Region

	Part IV: Version Control
	Overview of Version Control
	Managing Projects
	Project Packages
	Configuring Repository Access

	Managing Files
	Viewing File Status
	Adding Files to the Repository
	Updating Files
	Removing Files From the Repository
	Renaming Files
	Viewing Revisions
	Comparing Revisions
	The Compare Command
	The Diff Command
	Specifying Comparison and Differencing Options

	Committing Changes
	Resolving Conflicts
	Development Workflow
	Update Your Local Copy
	Make Changes
	Resolve Conflicts
	Publish Your Changes

	Part V: The Build System
	Targets
	Anatomy of a Target
	Creating Targets
	Creating a New Target
	Special Types of Targets
	Aggregate
	External
	Shell Script
	Copy Files

	Duplicating a Target
	Removing a Target

	Target Dependencies
	Adding a Target Dependency
	Creating an Aggregate Target
	An Example With Multiple Targets and Projects

	Working with Files in a Target
	Viewing the Files in a Target
	Adding and Removing Target Files

	Inspecting Targets
	Inspecting Native Targets
	Inspecting Legacy and External Targets
	Editing General Target Settings
	Editing Information Property List Entries
	For Native Targets
	For Legacy Targets

	Converting a Project Builder Target

	Build Phases
	Overview of Build Phases
	Build Phases in Xcode
	Adding and Deleting Build Phases
	Adding Files to a Build Phase
	Processing Order
	In Native Targets
	In Jam-Based Targets
	Reordering Build Phases

	Compile Sources Build Phase
	Copy Files Build Phase
	Run Script Build Phase
	Build Rules
	System Rules
	Creating a Custom Build Rule
	Creating a Custom Build Rule Script
	Execution Environment for Build-Rule Scripts

	Build Settings
	Overview of Build Settings
	Build Setting Syntax
	Build Setting Layers
	Build Setting Evaluation
	Overview of Build Setting Evaluation
	Evaluating a Build Setting Defined in Multiple Layers
	Evaluating a Build Setting Specification Using Several Values

	Editing Build Settings in the Xcode Application
	Viewing Build Settings in an Inspector
	Collections of Build Settings
	Editing Build Setting Specifications
	Adding and Deleting Build Settings
	Editing Search Paths
	Creating Multi-Architecture Binaries
	Editing Build Settings for Legacy and External Targets

	Using Build Settings With Run Script Build Phases
	Troubleshooting Build Settings
	Finding Where a Build Setting is Defined
	Build Setting Names and Their Corresponding Titles

	Per-File Compiler Flags

	Build Styles
	Overview of Build Styles
	Predefined Build Styles
	Editing Build Styles
	Viewing Build Styles for a Project
	Adding and Deleting Build Styles
	Modifying Build Settings in a Build Style

	Building a Product
	Build Locations
	Changing the Default Build Location for All Projects
	Overriding the Default Build Location for a Project

	Building From the Xcode Application
	Setting the Active Target and Build Style
	Initiating a Full Build
	Viewing Preprocessor Output
	Compiling a Single File
	Cleaning a Target

	Viewing Build Status
	Viewing Detailed Build Results
	Specifying When Detailed Build Results are Shown

	Viewing Errors and Warnings
	Viewing Errors and Warnings in the Project Window
	Viewing Errors and Warnings in the Build Results Window
	Viewing Source Code for an Error or Warning
	Controlling Errors and Warnings

	Building From the Command Line

	Linking
	Specifying the Search Order of External Symbols
	Preventing Prebinding
	Linking With System Frameworks
	Linking to a Dynamic Library in a Nonstandard Location
	Reducing the Number of Exported Symbols
	Reducing Paging Activity
	Dead-Code Stripping
	Enabling Dead-Code Stripping in Your Project
	Identifying Stripped Symbols
	Preventing the Stripping of Unused Symbols
	Assembly Language Support
	Preserving Individual Symbols
	Preserving Sections
	Dividing Blocks of Symbols

	Using ZeroLink
	Customizing ZeroLink
	Caveats When Using ZeroLink

	Optimizing the Edit-Build-Debug Cycle
	Using a Precompiled Prefix Header
	Creating the Prefix Header
	Configuring Your Target To Use the Precompiled Header
	Sharing Precompiled Header Binaries
	Controlling the Cache Size Used for Precompiled Headers
	Restrictions

	Distributing Builds Among Multiple Computers
	How Distributed Builds Work
	Requirements for Using Distributed Builds
	Discovering Available Computers
	Sharing a Computer
	Distributed Builds and Firewalls
	Getting the Most Out of Distributed Builds

	Predictive Compilation

	Using Cross-Development in Xcode

	Part VI: Debugging
	Executable Environments
	Executable Environments in Xcode
	Setting the Active Executable
	Creating a Custom Executable Environment
	Editing Executable Settings
	General Settings
	Setting Command-Line Arguments and Environment Variables

	Running a Development Product
	The Run Log

	Running in Xcode’s Debugger
	Generating Debugging Information
	Configuring Your Executable for Debugging
	Starting Your Program in the Debugger
	The Debugger Window
	Troubleshooting

	Lazy Symbol Loading
	The Console Window
	Debugging a Command-Line Program
	Xcode and Mac OS X Debugging
	Using Debug Variants of System Libraries
	Using Guard Malloc in Xcode

	Controlling Execution of Your Code
	Breakpoints
	The Breakpoints Window
	Adding Breakpoints
	Setting a Breakpoint at a Line of Code
	Setting a Breakpoint on a Function or Method

	Deleting Breakpoints
	Disabling and Reenabling Breakpoints

	Stopping on C++ Exceptions
	Stopping on Core Services Debugging Functions
	Stepping Through Code
	Stopping and Starting Your Program in the Debugger

	Examining Program Data and Information
	Viewing Stack Frames
	Viewing Variables in the Debugger Window
	Using Custom Data Formatters to View Variables
	Working With Data Formatters
	Writing Custom Data Formatters

	Using a Different Display Format to View a Variable
	Using the Globals Browser

	Using the Expressions Window
	Viewing Disassembled Code and Processor Registers
	Browsing the Contents of Memory

	Shared Libraries Window
	Using Fix and Continue
	About the Fix Command
	GDB and the Fix Command
	Debugging With Patched Code

	Using Fix and Continue
	Restrictions on Using the Fix Command
	Restrictions Reported by GDB
	Additional Restrictions
	Supported Fixes

	Remote Debugging in Xcode
	Configuring Remote Login
	Creating a Shared Build Location
	Configuring Your Executable for Remote Debugging

	Part VII: Customizing Xcode
	Customizing Key Equivalents
	Customizing Command-Key Equivalents for Menu Items
	Customizing Keyboard Equivalents for Other Tasks

	Xcode Preferences
	General Preferences
	Code Sense Preferences
	Building Preferences
	Distributed Builds Preferences
	Debugging Preferences
	Key Bindings Preferences
	Text Editing Preferences
	Fonts & Colors Preferences
	Indentation Preferences
	File Types Preferences
	Opening Quickly Preferences
	Source Trees Preferences
	SCM Preferences
	Documentation Preferences

	Using Scripts To Customize Xcode
	Executing Shell Commands
	The Startup Script and the User Scripts Menu
	How Xcode Creates the User Scripts Menu
	How to Add an Item to the User Scripts Menu
	How to Remove Items From the User Scripts Menu
	Using Variables in a Menu Definition Script
	Working With Built-in Utility Scripts
	Additional Customization With Scripts

	Menu Script Reference
	Menu Script Definition Variable Expansion
	Specifying the Menu Item’s Name
	Specifying the Menu Item’s Key Equivalent
	Specifying Where to Get Input
	Specifying Where to Place Output
	Specifying Script Arguments
	Specifying How to Display the Menu Item’s Output
	Placing Multiple Menu Items in One Script

	Pre-Execution Script Variable Expansion
	Getting Text From the Active Window
	Getting Information on the Active Window’s Contents
	Getting the Pathname for the File in the Active Window
	Getting the Pathname for the Utility Scripts

	Special User Script Output Markers
	Built in Utility Scripts
	Specifying a String
	Choosing an Existing File or Folder
	Choosing a New File
	Choosing an Application
	Adding a Menu Item From Any Script File
	Adding a Menu Item From a Menu Definition Script
	Adding a Submenu
	Adding a Menu Separator
	Removing a Custom Menu Item
	Removing All Custom Menu Items From a Menu

	Appendix A: Using CVS
	The cvs and ocvs Tools
	Creating a CVS Repository
	Creating the cvsusers Group
	Creating the Root Directory
	Initializing the Repository

	Accessing a CVS Repository
	Importing Projects Into a CVS Repository
	Checking Out Projects From a CVS Repository
	Updating a Local Project File to the Latest Version in a CVS Repository

	Appendix B: Using Subversion
	Installing the Subversion Software
	Creating a Subversion Repository
	Creating the svnusers Group
	Creating and Initializing the Root Directory

	Accessing a Subversion Repository
	Importing Projects Into a Subversion Repository
	Checking Out Projects From a Subversion Repository
	Updating the Project File to the Latest Version in a Subversion Repository

	Appendix C: Configuring Your SSH Environment
	Revision History

