Mac OS X Assembler Reference

Tools > Compiling & Debugging

¢

2009-01-07

.

[

Apple Inc.

© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Logic, Mac, Mac OS,
Objective-C, and Xcode are trademarks of Apple
Inc,, registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

MMX is a trademark of Intel Corporation or its
subsidiaries in the United States and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Organization of This Document 9

Chapter 1 Using the Assembler 11

Command Syntax 11
Assembler Options 11
-0 11
- 11
-f 12
-g 12
v 12
-n 12
-l 13
-L 13
-V 13
-W 13
-dynamic 13
-static 13
Architecture Options 13
-arch 14
-force_cpusubtype_ALL 14
-arch_multiple 14
PowerPC-Specific Options 14
-no_ppc601 14
-static_branch_prediction_Y_bit 14
-static_branch_prediction_AT_bits 15

Chapter 2 Assembly Language Syntax 17

Elements of Assembly Language 17

Characters 17

Identifiers 17

Labels 18

Constants 18

Assembly Location Counter 20
Expression Syntax 20

Operators 20

Terms 21

Expressions 22

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 3 Assembly Language Statements 25

Label Field 25
Operation Code Field 25

Intel i386 Architecture-Specific Caveats 26
Operand Field 27

Intel 386 Architecture-Specific Caveats 28
Comment Field 28
Direct Assignment Statements 29

Chapter 4 Assembler Directives 31

Directives for Designating the Current Section 31
.section 31
zerofill 31
Section Types and Attributes 32
Built-in Directives 37

Directives for Moving the Location Counter 43
align 44
.org 44

Directives for Generating Data 45
.ascii and .asciz 45
.byte, short, .long, and .quad 45
.comm 46
fill 46
dcomm 47
.single and .double 47
.Space 47

Directives for Dealing With Symbols 48
.globl 48
.indirect_symbol 48
reference 48
.weak_reference 49
Jazy_reference 49
.weak_definition 49
.private_extern 50
.stabs, .stabn, and .stabd 50
.desc 50
set 51
dsym 51

Directives for Dead-Code Stripping 51
.subsections_via_symbols 51
.no_dead_strip 52

Miscellaneous Directives 52
.abort 52
.abs 53

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

.dump and .load 53

file and .line 54

if, .elseif, .else, and .endif 54

.include 55

.machine 55

.macro, .endmacro, .macros_on, and .macros_off 55
PowerPC-Specific Directives 56

flag_reg 56

.greg 56

.no_ppc601 57

.noflag_reg 57
Additional Processor-Specific Directives 57

Chapter 5 PowerPC Addressing Modes and Assembler Instructions 59

PowerPC Registers and Addressing Modes 59
Registers 59
Operands and Addressing Modes 60
Extended Instruction Mnemonics & Operands 61
Branch Mnemonics 61
Branch Prediction 64
Trap Mnemonics 65
PowerPC Assembler Instructions 66
67
68
82
85
87
88
92
92
92
96
101
102
103
103
105
113
115
124

X< -4 wvwmImMUOWOoOzZzZr>S"TmQgNw>

Chapter 6 i386 Addressing Modes and Assembler Instructions 125

i386 Registers and Addressing Modes 125
Instruction Mnemonics 125

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Registers 125
Operands and Addressing Modes 127
Register Operands 127
Immediate Operands 127
Direct Memory Operands 128
Indirect Memory Operands 128
i386 Assembler Instructions 129
129
131
132
134
135
135
142
142
144
147
149
151
152
153
154
157
162
163
163
163

><§<—|MJJ'UOZ§I—‘——I-nmUmm)>

Appendix A Mode-Independent Macros 165

Document Revision History 167

Index 169

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

Figures

Chapter 6 i386 Addressing Modes and Assembler Instructions 125

Figure 6-1 Register Names in the 32-bit i386 architecture 126

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

FIGURES

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The Mac OS X assembler serves a dual purpose. It assembles the output of gcc, Xcode's default compiler, for
use by the Mac OS X linker. It also provides the means to assemble custom assembly language code written
for its supported platforms.

This document provides a reference for the use of the assembler, including basic syntax and statement layout.
It also contains a list of the specific directives recognized by the assembler and complete instruction sets for
the PowerPC and i386 processor architectures.

Important: The “i386 Addressing Modes and Assembler Instructions” (page 125) section is considered
preliminary. It has not been updated with the latest revisions to the i386 addressing modes and instructions.
While most of the information is technically accurate, the document is incomplete and is subject to change.
For more information, please see the section itself.

Organization of This Document

This document contains the following chapters:

m “Using the Assembler” (page 11) describes how to run the assembler and its relevant input/output files.
It also discusses specific options that can be passed to the assembler on the command line.

= “Assembly Language Syntax” (page 17) describes the basic syntax of assembly language elements and
expressions.

= “Assembly Language Statements” (page 25) describes in greater detail the assembly language statements
that make up an assembly language program.

m “Assembler Directives” (page 31) describes assembler directives specific to the Mac OS X assembler and
how to use them in your assembly code.

m “PowerPC Addressing Modes and Assembler Instructions” (page 59) contains information specific to the
PowerPC processor architecture and provides a complete list of addressing modes and instructions
relevant to it.

m “i386 Addressing Modes and Assembler Instructions” (page 125) contains information specific to the i386
processor architecture and provides a complete list of addressing modes and instructions relevant to it.

= “Mode-Independent Macros” (page 165) introduces the macros included in the Mac OS X v10.4 SDK to
facilitate the development of assembly code that runs in 32-bit PowerPC and 64-bit PowerPC
environments.

This document also contains a revision history, and an index.

Organization of This Document 9
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

10 Organization of This Document
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Using the Assembler

This chapter describes how to run the as assembler, which produces an object file from one or more files of
assembly language source code.

Note: Although a. out is the default file name that as gives to the object file that's created (as is conventional
with many compilers), the format of the object file is not standard 44BSD a . out format. Object files produced
by the assembler are in Mach-O (Mach object) file format. See Mac OS X ABI Mach-O File Format Reference for
more information.

Command Syntax

To run the assembler, type the following command in a shell:
as [option 1 ... [file 1 ...

You can specify one or more command-line options. These assembler options are described in “Assembler
Options” (page 11).

You can specify one or more files containing assembly language source code. If no files are specified, as uses
the standard input (stdin) for the assembly source input.

Note: By convention, files containing assembly language source code should have the . s extension.

Assembler Options

The following command-line options are recognized by the assembler:

-0

-0 name

The name argument after - o is used as the name of the as output file, instead of a. out.

Command Syntax n
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

12

CHAPTER 1
Using the Assembler

Use the standard input (std1in) for the assembly source input.

f

-f

Fast; no need to run app (the assembler preprocessor). This option is intended for use by compilers that
produce assembly code in a strict “clean” format that specifies exactly where whitespace can go. The app
preprocessor needs to be run on handwritten assembly files and on files that have been preprocessed by
cpp (the C preprocessor). This typically is needed when assembler files are assembled through the use of
the cc (1) command, which automatically runs the C preprocessor on assembly source files. The assembler
preprocessor strips out excess spaces, turns each character surrounded by single quotation marks into a
decimal constant, and turns occurrences of:

number filename Tevel
into:
.line number;.file filename

The assembler preprocessor can also be turned off by starting the assembly file with #NO_APP\n. When the
assembler preprocessor has been turned off in this way, it can be turned on and off with pairs of ##APP\n
and #NO_APP\n at the beginning of lines. This is used by the compiler to wrap assembly statements produced
from asm() statements.

-9

-9

Produce debugging information for the symbolic debugger gdb (1) so the assembly source can be debugged
symbolically. For include files (included by the C preprocessor’s #inc1ude or by the assembler directive
.include) that produce instructions in the (__TEXT,__text) section, the include file must be included
while a . text directive is in effect (that is, there must be a . text directive before the include) and end with
the a . text directive in effect (at the end of the include file). Otherwise the debugger will have trouble
dealing with that assembly file.

-V

-V

Print the version of the assembler (both the Mac OS X version and the GNU version that it is based on).

-N

-n

Don't assume that the assembly file starts with a . text directive.

Assembler Options
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1
Using the Assembler

-Idir

Add dir to the list of directories to search for files included with the . include directive. The default place
to search is the current directory.

-L

-L

Save defined labels beginning with an L (the compiler generates these temporary labels). Temporary labels
are normally discarded to save space in the resulting symbol table.

-V

-V

Print the path and the command-line invocation of the assembler that the assembler driver is using.

-W

-W

Suppress warnings.

-dynamic

-dynamic

Enables dynamic linking features. This is the default.

-static

-static

Causes the assembler to treat any dynamic linking features as an error. This also causes the . text directive
to not include the pure_instructions section attribute.

Architecture Options

The program /usr/bin/as is a driver that executes assemblers for specific target architectures. If no target
architecture is specified, it defaults to the architecture of the host it is running on.

Architecture Options 13
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1
Using the Assembler

-arch

-arch arch_type

Specifies the target architecture, arch_type, the assembler to be executed and the architecture of the resulting
object file. The target assemblers for each architecture are in /usr/1ibexec/gcc/darwin/arch_type/as
or /usr/local/libexec/gcc/darwin/arch_type/as. The specified target architecture can be processor
specific, in which case the resulting object file is marked for the specific processor. See then man page
arch(3) for the current list of specific processor names for the -arch option.

-force_cpusubtype_ALL

-force_cpusubtype_ALL

Set the architecture of the resulting object file to the ALL type regardless of the instructions in the assembly
input.

-arch_multiple

-arch_multiple

This is used by the cc (1) driver program when it is run with multiple -archarch_type flags and instructs
programs like as (1) that, if it prints any messages, to precede them with one line stating the program
name—in this case as —and the architecture (from the -archarch_type flag) to distinguish which architecture
the error messages refer to. This flag is accepted only by the actual assemblers (in /1ib/arch_type/as) and
not by the assembler driver, /bin/as.

PowerPC-Specific Options

14

The following sections describe the options specific to the PowerPC architecture.

-no_ppc601

-no_ppc601

Treat any PowerPC 601 instructions as an error.

-static_branch_prediction_Y_bit

-static_branch_prediction_Y_bit

Treat a single trailing + or - after a conditional PowerPC branch instruction as a static branch prediction that
sets the Y bit in the opcode. Pairs of trailing ++ or - - always set the AT bits. This is the default for Mac OS X.

PowerPC-Specific Options
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1
Using the Assembler

-static_branch_prediction_AT_bits

-static_branch_prediction_AT_bits

Treat a single trailing + or - after a conditional Power PC branch instruction as a static branch prediction sets
the AT bits in the opcode. Pairs of trailing ++ or - - always set the AT bits, but with this option a warning is
issued if that syntax is used. With this flag the assembler behaves like the IBM tools.

PowerPC-Specific Options 15
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1
Using the Assembler

16 PowerPC-Specific Options
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Assembly Language Syntax

This chapter describes the basic lexical elements of assembly language programming, and explains how
those elements combine to form complete assembly language expressions.

This chapter goes on to explain how sequences of expressions are put together to form the statements that
make up an assembly language program.

Elements of Assembly Language

This section describes the basic building blocks of an assembly language program—these are characters,
symbols, labels, and constants.

Characters

The following characters are used in assembly language programs:

= Alphanumeric characters—A through Z, a through z, and 0 through 9
= Other printable ASClI characters (suchas #, $,:, ., +,- % /,,and |)

= Nonprinting ASCII characters (such as space, tab, return, and newline)

Some of these characters have special meanings, which are described in “Expression Syntax” (page 20) and
in “Assembly Language Statements” (page 25).

Identifiers

An identifier (also known as a symbol) can be used for several purposes:

m Asthe label for an assembler statement (see “Labels” (page 18))
m Asa location tag for data

m As the symbolic name of a constant

Each identifier consists of a sequence of alphanumeric characters (which may include other printable ASCII
characters such as ., _, and $). The first character must not be numeric. Identifiers may be of any length, and
all characters are significant. The case of letters is significant—for example, the identifier var is different
from the identifier Var.

Itis also possible to define an identifier by enclosing multiple identifiers within a pair of double quotation
marks. For example:

Elements of Assembly Language 17
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

18

CHAPTER 2
Assembly Language Syntax

"Object +new:":
.long "Object +new:"

Labels

A label is written as an identifier immediately followed by a colon (:). The label represents the current value
of the current location counter; it can be used in assembler instructions as an operand.

Note: You may not use a single identifier to represent two different locations.

Numeric Labels

Local numeric labels allow compilers and programmers to use names temporarily. A numeric label consists
of a digit (between 0 and 9) followed by a colon. These 10 local symbol names can be reused any number
of times throughout the program. As with alphanumeric labels, a numeric label assigns the current value of
the location counter to the symbol.

Although multiple numeric labels with the same digit may be used within the same program, only the next
definition and the most recent previous definition of a label can be referenced:

= To refer to the most recent previous definition of a local numeric label, write digitb, (using the same digit
as when you defined the label).

= To refer to the next definition of a numeric label, write digitf.

The Scope of a Label

The scope of a label is the distance over which it is visible to (and referenceable by) other parts of the program.
Normally, a label that tags a location or data is visible only within the current assembly unit.

The . glob1 directive (described in “.globl” (page 48)) may be used to make a label external. In this case, the
symbol is visible to other assembly units at link time.

Constants

Four types of constants are available: Numeric, character, string, and floating point. All constants are interpreted
as absolute quantities when they appear in an expression.

Numeric Constants

A numeric constant is a token that starts with a digit. Numeric constants can be decimal, hexadecimal, or
octal. The following restrictions apply:

= Decimal constants contain only digits between 0 and 9, and normally aren’t longer than 32 bits—having
a value between -2,147,483,648 and 2,147,483, 647 (values that don't fit in 32 bits are bignums,
which are legal but which should fit within the designated format). Decimal constants cannot contain
leading zeros or commas.

Elements of Assembly Language
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2
Assembly Language Syntax

m Hexadecimal constants start with 0x (or 0X), followed by between one and eight decimal or hexadecimal
digits (0 through 9, a through f, and A through F). Values that don't fit in 32 bits are bignums.

= Octal constants start with 0, followed by from one to eleven octal digits (0 through 7). Values that don’t
fit in 32 bits are bignums.

Character Constants

A single-character constant consists of a single quotation mark (') followed by any ASCII character. The
constant’s value is the code for the given character.

String Constants

A string constant is a sequence of zero or more ASClI characters surrounded by quotation marks (for example,
"a string").

Floating-Point Constants

The general lexical form of a floating-point number is:
Oflt_char[{+-}]dec...[.][dec...]lexp_char[{+-}][dec...]]

where:

Item Description

fit_char A required type specification character (see the following table).

[{+-11 The optional occurrence of either + or -, but not both.
dec... A required sequence of one or more decimal digits.

[] A single optional period.

[dec...] An optional sequence of one or more decimal digits.

[exp_char] | An optional exponent delimiter character (see the following table).

The type specification character, flt_char, specifies the type and representation of the constructed number;
the set of legal type specification characters with the processor architecture, as shown here:

Architecture | flt_char | exp_char

ppc {dDfF} | {eE}

i386 {fFdDxX} | {eE}

When floating-point constants are used as arguments to the .single and .doub1e directives, the type
specification character isn't actually used in determining the type of the number. For convenience, r or R
can be used consistently to specify all types of floating-point numbers.

Elements of Assembly Language 19
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2
Assembly Language Syntax

Collectively, all floating-point numbers, together with quad and octal scalars, are called bignums. When as
requires a bignum, a 32-bit scalar quantity may also be used.

Floating-point constants are internally represented as flonums in a machine-independent,
precision-independent floating-point format (for accurate cross-assembly).

Assembly Location Counter

A single period (.), usually referred to as “dot,” is used to represent the current location counter. There is no
way to explicitly reference any other location counters besides the current location counter.

Even if it occurs in the operand field of a statement, dot refers to the address of the first byte of that statement;
the value of dot isn't updated until the next machine instruction or assembler directive.

Expression Syntax

20

Expressions are combinations of operand terms (which can be numeric constants or symbolic identifiers)
and operators. This section lists the available operators, and describes the rules for combining these operators
with operands in order to produce legal expressions.

Operators

Identifiers and numeric constants can be combined, through the use of operators, to form expressions. Each
operator operates on 64-bit values. If the value of a term occupies less than 64 bits, it is sign-extended to a
64-bit value.

The assembler provides both unary and binary operators. A unary operator precedes its operand; a binary
operator follows its first operand, and precedes its second operand. For example:

lvar | unary expression
var+s | binary expression

The assembler recognizes the following unary operators:

Operator | Description

- Unary minus: The result is the two's complement of the operand.

~ One’s complement: The result is the one’s complement of the operand.

! Logical negation: The result is zero if the operand is nonzero, and 1 if the operand is zero.

The assembler recognizes the following binary operators:

Operator | Description

+ Addition: The result is the arithmetic addition of the two operands.

Expression Syntax
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Assembly Language Syntax

Operator | Description

- Subtraction: The result is the arithmetic subtraction of the two operands.

* Multiplication: The result is the arithmetic multiplication of the two operands.

/ Division: The result is the arithmetic division of the two operands; this is integer division, which
truncates towards zero.

% Modulus: The result is the remainder that’s produced when the first operand is divided by the
second (this operator applies only to integral operands).

>> Right shift: The result is the value of the first operand shifted to the right, where the second
operand specifies the number of bit positions by which the first operand is to be shifted (this
operator applies only to integral operands). This is always an arithmetic shift since all operators
operate on signed operands.

<K Left shift: The result is the value of the first operand shifted to the left, where the second operand
specifies the number of bit positions by which the first operand is to be shifted (this operator
applies only to integral operands).

& Bitwise AND: The result is the bitwise AND function of the two operands (this operator applies
only to integral operands).

A Bitwise exclusive OR: The result is the bitwise exclusive OR function of the two operands (this
operator applies only to integral operands).

| Bitwise inclusive OR: The result is the bitwise inclusive OR function of the two operands (this
operator applies only to integral operands).

< Less than: The result s 1 if the first operand is less than the second operand, and zero otherwise.

> Greater than: The result is 1 if the first operand is greater than the second operand, and zero
otherwise.

<= Less than or equal: The result is 1 if the first operand is less than or equal to the second operand,
and zero otherwise.

>= Greater than or equal: The result is 1 if the first operand is greater than or equal to the second
operand, and zero otherwise.

== Equal: The result is 1 if the two operands are equal, and zero otherwise.

1= Not equal (same as <>): The result is zero if the two operands are equal, and 1 otherwise.

Terms

A term is a part of an expression; it may be:

= An identifier.

= A numeric constant (its 32-bit value is used). The assembly location counter (.), for example, is a valid
numeric constant.

Expression Syntax 21
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

22

CHAPTER 2
Assembly Language Syntax

= Anexpression or term enclosed in parentheses. Any quantity enclosed in parentheses is evaluated before
the rest of the expression. This can be used to alter the normal evaluation of expressions—for example,
to differentiate between x * y + zand x * (y + z) orto apply a unary operator to an entire
expression—for example, -(x * y + z).

m Aterm preceded by a unary operator (for example, ~var). Multiple unary operators may be used in a
term (for example, !~var).

Expressions

Expressions are combinations of terms joined together by binary operators. An expression is always evaluated
to a 32-bit value, but in some situations a different value is used:

= If the operand requires a 1-byte value (a . byte directive, for example), the low-order 8 bits of the
expression are used.

= [f the operand requires a 16-bit value (a . short directive or a movem instruction, for example), the
low-order 16 bits of the expression are used.

All expressions are evaluated using the same operator precedence rules that are used by the C programming
language.

When an expression is evaluated, its value is absolute, relocatable, or external, as described below.

Absolute Expressions

An expression is absolute if its value is fixed. The following are examples of absolute expressions:

= An expression whose terms are constants
= An identifier whose value is a constant via a direct assignment statement

= Values to which the . set directive is applied

Relocatable Expressions

An expression (or term) is relocatable if its value is fixed relative to a base address but has an offset value
when it is linked or loaded into memory. For example, all labels of a program defined in relocatable sections
are relocatable.

Expressions that contain relocatable terms must add or subtract only constants to their value. For example,
assuming the identifiers var and dat are defined in a relocatable section of the program, the following
examples demonstrate the use of relocatable expressions:

Expression | Description

var Simple relocatable term. Its value is an offset from the base address of the current control
section.
var+h Simple relocatable expression. Since the value of var is an offset from the base address of

the current control section, adding a constant to it doesn’t change its relocatable status.

Expression Syntax
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Assembly Language Syntax

Expression | Description

varx? Not relocatable. Multiplying a relocatable term by a constant invalidates the relocatable
status of the expression.

2-var Not relocatable. The expression can't be linked by adding var’s offset to it.

var-dat+b | Relocatable expression if both var and dat are defined in the same section—that is, if neither

is undefined. This form of relocatable expression is used for position-independent code.

External Expressions

An expression is external (or global) if it contains an external identifier not defined in the current program.
In general, the same restrictions on expressions containing relocatable identifiers apply to expressions
containing external identifiers. An exception is that the expression var-dat is incorrect when both var and
dat are external identifiers (that is, you cannot subtract two external relocatable expressions). Also, you
cannot multiply or divide any relocatable expression.

Expression Syntax 23
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2
Assembly Language Syntax

24 Expression Syntax
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Assembly Language Statements

This chapter describes the assembly language statements that make up an assembly language program.
This is the general format of an assembly language statement:

[Tabel_field 1 [opcode_field [operand_field]] [comment_field 1]

Each of the depicted fields is described in detail in one of the following sections.

A line may contain multiple statements separated by the @ character for the PowerPC assembler (and a
semicolon for the i386 assembler), which may then be followed by a single comment preceded by a semicolon
for the PowerPC assembler (and a #f character for the i386 assembler):

[statement [@ statement ...] 1 [; comment_field]
The following rules apply to the use of whitespace within a statement:

m Spaces or tabs are used to separate fields.
m At least one space or tab must occur between the opcode field and the operand field.
m Spaces may appear within the operand field.

= Spaces and tabs are significant when they appear in a character string.

Label Field

Labels are identifiers that you use to tag the locations of program and data objects. Each label is composed
of an identifier and a terminating colon. The format of the label field is:

identifier: [identifier: 1]

The optional label field may occur only at the beginning of a statement. The following example shows a label
field containing two labels, followed by a (PowerPC-style) comment:

var: VAR: ; two labels defined here

As shown here, letters in identifiers are case sensitive, and both uppercase and lowercase letters may be
used.

Operation Code Field

The operation code field of an assembly language statement identifies the statement as a machine instruction,
an assembler directive, or a macro defined by the programmer:

Label Field 25
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

26

CHAPTER 3

Assembly Language Statements

A machine instruction is indicated by an instruction mnemonic. An assembly language statement that
contains an instruction mnemonic is intended to produce a single executable machine instruction. The
operation and use of each instruction is described in the manufacturer’s user manual.

An assembler directive (or pseudo-op) performs some function during the assembly process. It doesn't
produce any executable code, but it may assign space for data in the program.

Macros are defined with the . macro directive (see “.macro, .endmacro, .macros_on, and .macros_off” (page
55) for more information).

One or more spaces or tabs must separate the operation code field from the following operand field in a
statement. Spaces or tabs are optional between the label and operation code fields, but they help to improve
the readability of the program.

Intel i386 Architecture-Specific Caveats

i386 instructions can operate on byte, word, or long word data (the last is called “double word” by Intel).
The desired size is indicated as part of the instruction mnemonic by adding a trailing b, w, or 1:

Mnemonic | Description

b Byte (8-bit) data.
W Word (16-bit) data.
1 Long word (32-bit) data.

For instance, a movb instruction moves a byte of data, but a movw instruction moves a 16-bit word of
data.

If no size is specified, the assembler attempts to determine the size from the operands. For example, if
the 16-bit names for registers are used as operands, a 16-bit operation is performed. When both a size
specifier and a size-specific register name are given, the size specifier is used. Thus, the following are all
correct and result in the same operation:

movw BbX, hcx
mov %bx,%hcx
movw hebx,kecx

An i386 operation code can also contain optional prefixes, which are separated from the operation code
by a slash (/) character. The prefix mnemonics are:

Prefix Description

datalé6 Operation uses 16-bit data.

addrl6 Operation uses 16-bit addresses.
lock Exclusive memory lock.

wait Wait for pending numeric exceptions.
cs, ds, es, fs, gs, ss | Segment register override.

Operation Code Field
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Assembly Language Statements

Prefix Description

rep, repe, repne Repeat prefixes for string instructions.

More than one prefix may be specified for some operation codes. For example:
lock/fs/xchgl %hebx,4(%ebp)

Segment register overrides and the 16-bit data specifications are usually given as part of the operation
code itself or of its operands. For example, the following two lines of assembly generate the same
instructions:

movw Bbx,%5fs:4(%ebp)
datal6/fs/movl %bx,4(%ebp)

Not all prefixes are allowed with all instructions. The assembler does check that the repeat prefixes for
strings instructions are used correctly but doesn't otherwise check for correct usage.

Operand Field

The operand field of an assembly language statement supplies the arguments to the machine instruction,
assembler directive, or macro.

The operand field may contain one or more operands, depending on the requirements of the preceding
machine instruction or assembler directive. Some machine instructions and assembler directives don’t take
any operand, and some take two or more. If the operand field contains more than one operand, the operands
are generally separated by commas, as shown here:

[operand [, operand] ...]
The following types of objects can be operands:

= Register operands

m Register pairs

= Address operands

= String constants

= Floating-point constants
= Register lists

m Expressions

Register operands in a machine instruction refer to the machine registers of the processor or coprocessor.
Register names may appear in mixed case.

Operand Field 27
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Assembly Language Statements

Intel 386 Architecture-Specific Caveats

The Mac OS X assembler orders operand fields for i386 instructions in the reverse order from Intel’s conventions.
Intel’s convention is destination first, source second; Mac OS X assembler’s convention is source first, destination
second. Where Intel documentation would describe the Compare and Exchange instruction for 32-bit operands
as follows:

CMPXCHG r/m32,r32 # Intel processor manual convention

The Mac OS X assembler syntax for this same instruction is:

cmpxchg r32,r/m32 # Mac 0S X assembler syntax

So, an example of actual assembly code for the Mac OS X assembler would be:

cmpxchg %ebx, (%eax) # Mac 0S X assembly code

Comment Field

The assembler recognizes two types of comments in source code:

= Aline whose first nonwhitespace character is the hash character (#) is a comment. This style of comment
is useful for passing C preprocessor output through the assembler. Note that comments of the form:

Tine_number file_name level
get turned into:
.line line_number; .file file_name

This can cause problems when comments of this form that aren’t intended to specify line numbers
precede assembly errors, since the error is reported as occurring on a line relative to that specified in
the comment. Suppose a program contains these two lines of assembly source:

500
.var

If .var hasn't been defined, this fragment results in the following error message:
var.s:500:Unknown pseudo-op: .var

= A comment field, appearing on a line after one or more statements. The comment field consists of the
appropriate comment character and all the characters that follow it on the line:

Character | Description

; Comment character for PowerPC processors

Comment character for i386 architecture processors

An assembly language source line can consist of just the comment field; in this case, it's equivalent to
using the hash character comment style:

28 Comment Field
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Assembly Language Statements

This is a comment.
; This is a comment.

Note the warning given above for hash character comments beginning with a number.

Direct Assignment Statements

This section describes direct assignment statements, which don't conform to the normal statement syntax
described earlier in this chapter. A direct assignment statement can be used to assign the value of an expression
to an identifier. The format of a direct assignment statement is:

identifier = expression

If expression in a direct assignment is absolute, identifier is also absolute, and it may be treated as a constant
in subsequent expressions. If expression is relocatable, identifier is also relocatable, and it is considered to be
declared in the same program section as the expression.

The use of an assignment statement is analogous to using the . set directive (described in “.set” (page 51)),
except that the . set directive makes the value of the expression absolute. This is used when an assembly
time constant is wanted for what would otherwise generate a relocatable expression using the position
independent expression of symbo11 - symbol2. For example, the size of the function is needed as one of
the fields of the C++ exception information and is set with:

.set L_foo_size, L_foo_end - _foo
.long L_foo_size ; size of function _foo

where a position independent pointer to the function is another field of the C++ exception information and
is set with:

.long _foo - . ; position independent pointer to _foo
where the runtime adds the address of the pointer to its contents to get a pointer to the function.

Once an identifier has been defined by a direct assignment statement, it may be redefined—its value is then
the result of the last assignment statement. There are a few restrictions, however, concerning the redefinition
of identifiers:

= Register identifiers may not be redefined.

= An identifier that has already been used as a label should not be redefined, since this would amount to
redefining the address of a place in the program. Moreover, an identifier that has been defined in a direct
assignment statement cannot later be used as a label. Only the second situation produces an assembler
error message.

Direct Assignment Statements 29
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Assembly Language Statements

30 Direct Assignment Statements
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

This chapter describes assembler directives (also known as pseudo operations, or pseudo-ops), which allow
control over the actions of the assembler.

Directives for Designating the Current Section

The assembler supports designation of arbitrary sections with the .section and .zerofi11 directives
(descriptions appear below). Only those sections specified by a directive in the assembly file appear in the
resulting object file (including implicit . text directives—see “Built-in Directives” (page 37). Sections appear
in the object file in the order their directives first appear in the assembly file. When object files are linked by
the link editor, the output objects have their sections in the order the sections first appear in the object files
that are linked. See the 1d (1) Mac OS X man page for more details.

Associated with each section in each segment is an implicit location counter, which begins at zero and is
incremented by 1 for each byte assembled into the section. There is no way to explicitly reference a particular
location counter, but the directives described here can be used to “activate” the location counter for a section,
making it the current location counter. As a result, the assembler begins assembling into the section associated
with that location counter.

Note: If the -n command-line option isn't used, the (__TEXT,__text) section is used by default at the
beginning of each file being assembled, just as if each file began with the . text directive.

.section

SYNOPSIS
.section segname , sectname [[[, type] , attribute] , sizeof_stub]

The . section directive causes the assembler to begin assembling into the section given by segname and
sectname. A section created with this directive contains initialized data or instructions and is referred to as
a content section. type and attribute may be specified as described under “Section Types and Attributes” (page
32).If typeis symbo1_stubs, then the sizeof_stub field must be given as the size in bytes of the symbol stubs
contained in the section.

.zerofill

SYNOPSIS

.zerofill segname , sectname [, symbolname , size [, align_expression 1]

Directives for Designating the Current Section 31
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

32

CHAPTER 4

Assembler Directives

The .zerofi11 directive causes symbolname to be created as uninitialized data in the section given by
segname and sectname, with a size in bytes given by size. A power of 2 between 0 and 15 may be given for
align_expression to indicate what alignment should be forced on symbolname, which is placed on the next
expression boundary having the given alignment. See “.align” (page 44) for details.

Section Types and Attributes

A content section has a type, which informs the link editor about special processing needed for the items in
that section. The most common form of special processing is for sections containing literals (strings, constants,
and so on) where only one copy of the literal is needed in the output file and the same literal can be used
by all references in the input files.

A section’s attributes record supplemental information about the section that the link editor may use in
processing that section. For example, the pure_instructions attribute indicates that a section contains
only valid machine instructions.

A section’s type and attribute are recorded in a Mach-O file as the f1ags field in the section header, using
constants defined in the header file mach-o/1oader.h. The following sections describe the various types
and attributes by the names used to identify themina . section directive. The name of the related constant
is also given in parentheses following the identifier.

Type Identifiers

The following sections describe section type identifiers.

regular (S_REGULAR)

A regular section may contain any kind of data and gets no special processing from the link editor. This is
the default section type. Examples of regular sections include program instructions or initialized data.

cstring_literals (S_CSTRING_LITERALS)

Acstring_literals section contains null-terminated literal C language character strings. The link editor
places only one copy of each literal into the output file’s section and relocates references to different copies
of the same literal to the one copy in the output file. There can be no relocation entries for a section of this
type, and all references to literals in this section must be inside the address range for the specific literal being
referenced. The last byte in a section of this type must be a null byte, and the strings can’t contain null bytes
in their bodies. An example ofa cstring_literals section is one for the literal strings that appear in the
body of an ANSI C function where the compiler chooses to make such strings read only.

4byte_literals (S_4BYTE_LITERALS)

A 4byte_literals section contains 4-byte literal constants. The link editor places only one copy of each
literal into the output file’s section and relocates references to different copies of the same literal to the one
copy in the output file. There can be no relocation entries for a section of this type, and all references to
literals in this section must be inside the address range for the specific literal being referenced. An example
ofadbyte_literals section is one in which single-precision floating-point constants are stored for a RISC
machine (these would normally be stored as immediates in CISC machine code).

Directives for Designating the Current Section
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

8byte_literals (S_8BYTE_LITERALS)

An 8byte_literals section contains 8-byte literal constants. The link editor places only one copy of each
literal into the output file’s section and relocates references to different copies of the same literal to the one
copy in the output file. There can be no relocation entries for a section of this type, and all references to
literals in this section must be inside the address range for the specific literal being referenced. An example
ofa8byte_literals section is onein which double-precision floating-point constants are stored for a RISC
machine (these would normally be stored as immediates in CISC machine code).

literal_pointers (S_LITERAL_POINTERS)

A literal_pointers section contains 4-byte pointers to literals in a literal section. The link editor places
only one copy of a pointer into the output file’s section for each pointer to a literal with the same contents.
The link editor also relocates references to each literal pointer to the one copy in the output file. There must
be exactly one relocation entry for each literal pointer in this section, and all references to literals in this
section must be inside the address range for the specific literal being referenced. The relocation entries can
be external relocation entries referring to undefined symbols if those symbols identify literals in another
object file. An example ofa 1iteral_pointers section is one containing selector references generated by
the Objective-C compiler.

symbol_stubs (S_SYMBOL_STUBS)

A symbol_stubs section contains symbol stubs, which are sequences of machine instructions (all the same
size) used for lazily binding undefined function calls at runtime. If a call to an undefined function is made,
the compiler outputs a call to a symbol stub instead, and tags the stub with an indirect symbol that indicates
what symbol the stub is for. On transfer to a symbol stub, a program executes instructions that eventually
reach the code for the indirect symbol associated with that stub. Here's a sample of assembly code based
on a function func () containing only a call to the undefined function foo():

.text
.align 2
.globl _func
_func:
b L_foo$stub
.symbol_stub
L_foo$stub: ;
.indirect_symbol _foo ;
1is rll,hal6(L_foo$lazy_ptr) ;
Twz r12,70l6(L_foo$lazy_ptr)(rll) ; the symbol stub
mtctr rl2 ;
addi rl1l,rl11,7016(L_foo$lazy_ptr) ;
bctr ;
.lazy_symbol_pointer
L_foo$lazy_ptr: ;
.indirect_symbol _foo ; the symbol pointer
.long dyld_stub_binding_helper ; to be replaced by _foo's address

The symbol-stub sections in the |A-32 architecture—instead of using a stub and a lazy pointer—use one
branch instruction that specifies the target. This is the corresponding IA-32 assembly code:

.text

.align 2

.globl _func
_func:

pushl %ebp

Directives for Designating the Current Section 33
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

34

CHAPTER 4

Assembler Directives

mov 1 %esp, %ebp
subl $8, Z%esp
call L_foo$stub
leave
ret
.symbol_stub
L_foo$stub:
.indirect_symbol _foo
h1it ; h1t ; hlt ; hlt ; hi1t

In the assembly code, _func branches to L_foo$stub, which is responsible for finding the definition of the
function foo (). On PPC (and PPC64), L_foo$stub jumps to the contents of L_foo$Tazy_ptr. This value
is initially the address of the dy1d_stub_binding_helper code, which after executing causes it to overwrite
the contents of L_foo$1azy_ptr with the address of the real function, _foo, and jump to _foo.

On IA-32, the branch instruction points to the dynamic linker. The first time the stub is called, the dynamic
linker modifies the instruction so that it jumps to the real function in subsequent calls.

The indirect symbol entries for _foo provide information to the static and dynamic linkers for binding the
symbol stub. Each symbol stub and lazy pointer entry must have exactly one such indirect symbol, associated
with the first address in the stub or pointer entry. See “.indirect_symbol” (page 48) for more information.

The static link editor places only one copy of each stub into the output file’s section for a particular indirect
symbol, and relocates all references to the stubs with the same indirect symbol to the stub in the output file.
Further, the static link editor eliminates a stub if it determines that the target is in the same linkage unit and
doesn't need redirecting at runtime. No global symbols can be defined in symbo1_stubs sections.

On PPC, the stub can refer only to itself, one lazy symbol pointer (referring to the same indirect symbol as
the stub), and the dy1d_stub_binding_helper() function.

lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS)

Alazy_symbol_pointers section contains 4-byte symbol pointers that eventually contain the value of
the indirect symbol associated with the pointer. These pointers are used by symbol stubs to lazily bind
undefined function calls at runtime. A lazy symbol pointer initially contains an address in the symbol stub
of instructions that cause the symbol pointer to be bound to the function definition (in the example in
“symbol_stubs (S_SYMBOL_STUBS)” (page 33), the lazy pointer L_foo$1azy_ptr initially contains the
address for dy1d_stub_binding_helper but gets overwritten with the address for _foo). The dynamic
link editor binds the indirect symbol associated with the lazy symbol pointer by overwriting it with the value
of the symbol.

The static link editor places a copy of a lazy pointer in the output file only if the corresponding symbol stub
is in the output file. Only the corresponding symbol stub can make a reference to a lazy symbol pointer, and
no global symbols can be defined in this type of section. There must be one indirect symbol associated with
each lazy symbol pointer. An example of a Tazy_symbol_pointers section is one in which the compiler
has generated calls to undefined functions, each of which can be bound lazily at the time of the first call to
the function.

Directives for Designating the Current Section
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS)

Anon_lazy_symbol_pointers section contains 4-byte symbol pointers that contain the value of the
indirect symbol associated with a pointer that may be set at any time before any code makes a reference to
it. These pointers are used by the code to reference undefined symbols. Initially these pointers have no
interesting value but get overwritten by the dynamic link editor with the value of the symbol for the associated
indirect symbol before any code can make a reference to it.

The static link editor places only one copy of each non-lazy pointer for its indirect symbol into the output
file and relocates all references to the pointer with the same indirect symbol to the pointer in the output file.
The static link editor further can fill in the pointer with the value of the symbol if a definition of the indirect
symbol for that pointer is present in the output file. No global symbols can be defined in this type of section.
There must be one indirect symbol associated with each non-lazy symbol pointer. An example of a
non_lazy_symbol_pointers section is one in which the compiler has generated code to indirectly reference
undefined symbols to be bound at runtime—this preserves the sharing of the machine instructions by
allowing the dynamic link editor to update references without writing on the instructions.

Here's an example of assembly code referencing an element in the undefined structure. The corresponding
C code would be:

struct s {
int memberl, member?;
b
extern struct s bar;
int func()
{
return(bar.member?2);
}

The PowerPC assembly code might look like this:

.text
.align 2
.globl _func
_func:
1is r3,hal6(L_bar$non_lazy_ptr)
Twz r2,10l6(L_bar$non_Tlazy_ptr)(r3)
Twz r3,4(r2)
blr
.non_lazy_symbol_pointer
L_bar$non_lazy_ptr:
.indirect_symbol _bar
.long 0

mod_init_funcs (S_MOD_INIT_FUNC_POINTERS)

Amod_init_funcs section contains 4-byte pointers to functions that are to be called just after the module
containing the pointer is bound into the program by the dynamic link editor. The static link editor does no

special processing for this section type except for disallowing section ordering. This is done to maintain the
order the functions are called (which is the order their pointers appear in the original module). There must

be exactly one relocation entry for each pointer in this section. An example of a mod_init_funcs section

is one in which the compiler has generated code to call C++ constructors for modules that get dynamically
bound at runtime.

Directives for Designating the Current Section 35
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

36

CHAPTER 4

Assembler Directives

mod_term_funcs (S_MOD_TERM_FUNC_POINTERS)

Amod_term_funcs section contains 4-byte pointers to functions that are to be called just before the module
containing the pointer is unloaded by the dynamic link editor or the program is terminated. The static link
editor does no special processing for this section type except for disallowing section ordering. This is done
to maintain the order the functions are called (which is the order their pointers appear in the original module).
There must be exactly one relocation entry for each pointer in this section. An example of amod_term_funcs
section is one in which the compiler has generated code to call C++ destructors for modules that get
dynamically bound at runtime.

coalesced (S_COALESCED)

A coalesced section can contain any instructions or data and is used when more than one definition of a
symbol could be defined in multiple object files being linked together. The static link editor keeps the data
associated with the coalesced symbol from the first object file it links and silently discards the data from
other object files. An example of a coalesced section is one in which the compiler has generated code for
implicit instantiations of C++ templates.

Attribute Identifiers

The following sections describe attribute identifiers.

none (0)

No attributes for this section. This is the default section attribute.

S_ATTR_SOME_INSTRUCTIONS

This attribute is set by the assembler whenever it assembles a machine instruction in a section. There is no
directive associated with it, since you cannot set it yourself. It is used by the dynamic link editor together
with S_ATTR_EXT_RELOC and S_ATTR_LOC_RELOC, set by the static link editor, to know it must flush the
cache and other processor-related functions when it relocates instructions by writing on them.

no_dead_strip (S_ATTR_NO_DEAD_STRIP)

The no_dead_strip section attribute specifies that a particular section must not be dead-stripped. See
“Directives for Dead-Code Stripping” (page 51) for more information.

no_toc (S_ATTR_NO_TOC)

The no_toc section attribute means that the global symbols in this section are not to be used in the table
of contents of a static library as produced by the program ran11ib(1).This is normally used witha coalesced
section when it is expected that each object file has a definition of the symbols that it uses.

live_support (S_ATTR_LIVE_SUPPORT)

The 1ive_support section attribute specifies that a section’s blocks must not be dead-stripped if they
reference code that is live, but the reference is undetectable. See “Directives for Dead-Code Stripping” (page
51) for more information.

Directives for Designating the Current Section
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

pure_instructions (S_ATTR_PURE_INSTRUCTIONS)

The pure_instructions attribute means that this section contains nothing but machine instructions. This
attribute would be used for the (__TEXT,__ text) section of Mac OS X compilers and sections that have a
section type of symbol_stubs.

strip_static_syms (S_ATTR_STRIP_STATIC_SYMS)

The strip_static_syms section attribute means that the static symbols in this section can be stripped
from linked images that are used with the dynamic linker when debugging symbols are also stripped. This
is normally used with a coalesced section that has private extern symbols, so that after linking and the
private extern symbols have been turned into static symbols they can be stripped to save space in the linked
image.

self_modifying_code (S_ATTR_SELF_MODIFYING_CODE)

The sel1f_modifying_code section attribute identifies a section with code that can be modified by the
dynamic linker. For example, 1A-32 symbol stubs are implemented as branch instructions that initially point
to the dynamic linker but are modified by the dynamic linker to point to the real symbol.

Built-in Directives

The directives described here are simply built-in equivalents for . section directives with specific arguments.

Designating Sections in the __TEXT Segment

The directives listed below cause the assembler to begin assembling into the indicated section of the _ TEXT
segment. Note that the underscore before ___TEXT, __text, and the rest of the segment names is actually
two underscore characters.

Directive Section
.text (__TEXT,__text)
.const (__TEXT,__const)

.static_const (__TEXT,__static_const)

.cstring (__TEXT,__cstring)
.literal4d (__TEXT,_ _literald)
.literal8 (__TEXT,__literal8)
.literall6 (__TEXT,__literallb)
.constructor (__TEXT,__constructor)
.destructor (__TEXT,__destructor)

.fvmlib_init0 (__TEXT,__fvmlib_init0)

Directives for Designating the Current Section 37
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

38

CHAPTER 4

Assembler Directives

Directive Section

Lfvmlib_initl (__TEXT,__fvmlib_initl)

.symbol_stub (__TEXT,__symbol_stublor__TEXT,

jump_table)

.picsymbol_stub | (__TEXT, picsymbolstubl or __ TEXT, picsymbol_stub)

The following sections describe the sections in the __ TEXT segment and the types of information that should
be assembled into each of them.

text

This is equivalent to .section __TEXT,__text,regular,pure_instructions when the default
-dynamic flag is in effect and equivalent to .section __TEXT,__text,regular whenthe -staticflag
is specified.

The compiler places only machine instructions in the (__TEXT,__text) section (no read-only data, jump
tables or anything else). With this, the entire (__TEXT,__text) section is pure instructions and tools that
operate on object files. The runtime can take advantage of this to locate the instructions of the program and
not get confused with data that could have been mixed in. To make this work, all runtime support code
linked into the program must also obey this rule (all Mac OS X library code follows this rule).

.const

This is equivalent to .section ___TEXT,_ const

The compiler places all data declared const and all jump tables it generates for switch statements in this
section.

.static_const

This is equivalentto .section __TEXT,__static_const

This is not currently used by the compiler. It was added to the assembler so that the compiler may separate
global and static const data into separate sections if it wished to.

.cstring

This is equivalentto .section __TEXT,__cstring, cstring_literals

This section is marked with the section type cstring_literals, which the link editor recognizes. The link
editor merges the like literal C strings in all the input object files to one unique C string in the output file.
Therefore this section must contain only C strings (a C string in a sequence of bytes that ends in a null byte,
\0, and does not contain any other null bytes except its terminator). The compiler places literal C strings
found in the code that are not initializers and do not contain any embedded nulls in this section.

Jliteral4

This is equivalentto .section __TEXT,__Tliteral4,4byte_literals

Directives for Designating the Current Section
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

This section is marked with the section type 4byte_literals, which the link editor recognizes. The link
editor can then merge the like 4 byte literals in all the input object files to one unique 4 byte literal in the
output file. Therefore, this section must contain only 4 byte literals. This is typically intended for single
precision floating-point constants and the compiler uses this section for that purpose. On some architectures
it is more efficient to place these constants in line as immediates as part of the instruction.

Jliteral8

This is equivalentto .section __TEXT,__Tliteral8,8byte_literals

This section is marked with the section type 8byte_literals, which the link editor recognizes. The link
editor then can merge the like 8 byte literals in all the input object files to one unique 8 byte literal in the
output file. Therefore, this section must contain only 8 byte literals. This is typically intended for double
precision floating-point constants and the compiler uses this section for that purpose. On some architectures
it is more efficient to place these constants in line as immediates as part of the instruction.

Jiteral16

This is equivalentto .section __TEXT,__literall6,l6byte_literals

This section is marked with the section type 16byte_literals, which the link editor recognizes. The link
editor can then merge the like 16 byte literals in all the input object files to one unique 16 byte literal in the
output file. Therefore, this section must contain only 16 byte literals. This is typically intended for vector
constants and the compiler uses this section for that purpose.

.constructor

This is equivalentto .section __TEXT,__constructor

.destructor

This is equivalentto .section __ TEXT,__destructor

The .constructor and .destructor sections are used by the C++ runtime system, and are reserved
exclusively for the C++ compiler.

fvmlib_init0

This is equivalentto .section __TEXT,__fvmlib_init0

fvmlib_init1

This is equivalentto .section __TEXT,__fvmlib_initl

The .fvmlib_init0Oand .fvmlib_initl sections are used by the obsolete fixed virtual memory shared
library initialization. The compiler doesn't place anything in these sections, as they are reserved exclusively
for the obsolete shared library mechanism.

Directives for Designating the Current Section 39
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

40

CHAPTER 4

Assembler Directives

.symbol_stub

This section is of type symbo1_stubs and has the attribute pure_instructions. The compiler places
symbol stubs in this section for undefined functions that are called in the module. This is the standard symbol
stub section for nonposition-independent code.

Symbol stubs are implemented differently on PPC (and PPC64) and on IA-32. The following sections describe
each implementation.

PowerPC .symbol_stub

On PowerPC (PPC and PPC64), . symbo1_stub is equivalentto .section __TEXT,
symbol_stubs, pure_instructions, 20.

symbol_stubl,

The standard symbol stub on PPC and PPC64 is 20 bytes and has an alignment of 4 bytes (.align 2). For
example, a stub for the symbol _foo would be (using a lazy symbol pointer L_foo$lazy_ptr):

.symbol_stub

L_foo$stub:
.indirect_symbol _foo
1is ril,hal6(L_foo$lazy_ptr)
Twz ri2,10l6(L_foo$lazy_ptr)(rll)
mtctr riz
addi ril,r1l,l0l6(L_foo$lazy_ptr)
bctr

.lazy_symbol_pointer
L_foo$lazy_ptr:

.indirect_symbol _foo

.long dyld_stub_binding_helper

IA-32 .symbol_stub

On IA-32, .symbol_stub is equivalentto .section __ IMPORT,__ jump_table, symbol_stubs,
self_modifying_code + pure_instructions, 5.

On IA-32 this section has an additional attribute, se1f_modifying_code, which specifies that the code in
this section can be modified at runtime. At runtime, the dynamic linker uses this feature in 1A-32 stubs to
change the branch instruction in the stub so that it jumps to the real symbol instead of their initial target,
the dynamic linker itself. This is an example of a symbol stub of the _foo symbol:

.section
__IMPORT,__jump_table,symbol_stubs,self_modifying_codetpure_instructions,5
L_foo$stub:

.indirect_symbol _foo

hit ; hi1t ; hlt ; hlt ; hlt

.picsymbol_stub

In PowerPC, this directive translates to .section __TEXT, __picsymbolstubl, symbol_stubs,
pure_instructions, NBYTES.

This section is of type symbo1_stubs and has the attribute pure_instructions. The compiler places
symbol stubs in this section for undefined functions that are called in the module. This is the standard symbol
stub section for position-independent code. The value of NBYTES is dependent on the target architecture.

Directives for Designating the Current Section
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

The standard position-independent symbol stub for the PowerPC is 36 bytes and has an alignment of 4 bytes
(.align 2).Forexample, a stub for thesymbol _foo would be (using a lazy symbol pointer L_foo$lazy_ptr):

.picsymbol_stub
L_foo$stub:
.indirect_symbol _foo
mflr r0
bcl 20,31,L0$_foo
L0$_foo:
mflr rll
addis rl1l,rl1l,hal6(L_foo$lazy_ptr - LO0$_foo)
mtir r0
lwz r12,1016(L_foo$lazy_ptr - L0$_foo)(rll)
mtctr rl2
addi rl1l,rl1l,l0l6(L_foo$lazy_ptr - LO$_foo)
bctr

Designating Sections in the __DATA Segment

These directives cause the assembler to begin assembling into the indicated section of the __DATA segment:

Directive Section
.data (__DATA,__data)
.static_data (__DATA,_ static_data)

.non_lazy_symbol_pointer | (__DATA,_ nl_symbol_pointer)

.lazy_symbol_pointer (__DATA,__Ta_symbol_pointer)
.dy1d (__DATA,__dy1d)
.mod_init_func (__DATA,__mod_init_func)
.mod_term_func (__DATA,__mod_term_func)
.const_data (__DATA,__const)

The following sections describe the sections in the ___DATA segment and the types of information that should
be assembled into each of them.

.data

This is equivalent to .section __ _DATA, _ data

The compiler places all non-const initialized data (even initialized to zero) in this section.

.static_data

This is equivalent to .section __DATA, static_data

This is not currently used by the compiler. It was added to the assembler so that the compiler could separate
global and static data symbol into separate sections if it wished to.

Directives for Designating the Current Section 1
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

42

CHAPTER 4

Assembler Directives

.const_data

This is equivalentto .section __DATA, __const, regular.

This section is of type regular and has no attributes. This section is used when dynamic code is being
compiled for const data that must be initialized.

Jazy_symbol_ptr

This is equivalent to .section ___DATA, __Ta_symbol_ptr,lazy_symbol_pointers

This section is of type 1azy_symbol_pointers and has no attributes. The compiler places a lazy symbol
pointer in this section for each symbol stub it creates for undefined functions that are called in the module.
(See “.symbol_stub” (page 40) for examples.) This section has an alignment of 4 bytes (.align 2).

.non_lazy_symbol_ptr

This is equivalentto .section __DATA, __nl_symbol_ptr,non_lazy_symbol_pointers

This section is of type non_lazy_symbol_pointers and has no attributes. The compiler places a non-lazy
symbol pointer in this section for each undefined symbol referenced by the module (except for function
calls). This section has an alignment of 4 bytes (.align 2).

.mod_init_func

This is equivalentto .section __DATA, __mod_init_func, mod_init_funcs

This section is of type mod_init_funcs and has no attributes. The C++ compiler places a pointer to a
function in this section for each function it creates to call the constructors (if the module has them).

.mod_term_func

This is equivalent to .section __DATA, __mod_term_func, mod_term_funcs

This section is of type mod_term_funcs and has no attributes. The C++ compiler places a pointer to a
function in this section for each function it creates to call the destructors (if the module has them).

.dyld

This is equivalentto .section __DATA, dyld,regular

This section is of type regular and has no attributes. This section is used by the dynamic link editor. The
compiler doesn’t place anything in this section, as it is reserved exclusively for the dynamic link editor.

Designating Sections in the __OBJC Segment

These directives cause the assembler to begin assembling into the indicated section of the __0BJC segment
(or the __TEXT segment):

Directives for Designating the Current Section
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

Directive

Section

.objc_class

(__0BJC,__class)

.objc_meta_class

(__0BJC,__meta_class)

.objc_cat_cls_meth

(__0BJC,__cat_cls_meth)

.objc_cat_inst_meth

(__0BJC,__cat_inst_meth)

.objc_protocol

(__0BJC,__protocol)

.objc_string_object

(__0BJC,__string_object)

.objc_cls_meth

(__0BJC,__cls_meth)

.objc_inst_meth

(__0BJC,__inst_meth)

.objc_cls_refs

(__0BJC,__cls_refs)

.objc_message_refs

(__0BJC,__message_refs)

.objc_symbols

(__0BJC,__symbols)

.objc_category

(__0BJC,__category)

.objc_class_vars

(__0BJC,__class_vars)

.objc_instance_vars

(__0OBJC,__instance_vars)

.objc_module_info

(__0BJC,__module_info)

.objc_class_names

(__TEXT,__cstring)

.objc_meth_var_types

(__TEXT,__cstring)

.objc_meth_var_names

(__TEXT,__cstring)

.objc_selector_strs

(__0OBJC,__selector_strs)

All sections in the __0BJC segment, including old sections that are no longer used and future sections that
may be added, are exclusively reserved for the Objective-C compiler’s use.

Directives for Moving the Location Counter

This section describes directives that advance the location counter to a location higher in memory. They
have the additional effect of setting the intervening memory to some value.

Directives for Moving the Location Counter
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

44

CHAPTER 4

Assembler Directives

align

SYNOPSIS

.align align_expression [, lbyte_fill_expression [,max_bytes_to_fill]]
.p2align align_expression [, lbyte_fill_expression [,max_bytes_to_fill]]
.p2alignw align_expression [, 2byte_fill_expression [,max_bytes_to_fill]]
.p2alignl align_expression [, 4byte_fill_expression [,max_bytes_to_fill]]
.align32 align_expression [, 4byte_fill_expression [,max_bytes_to_fill]]

The align directives advance the location counter to the next align_expression boundary, if it isn't currently
on such a boundary. align_expression is a power of 2 between 0 and 15 (for example, the argumentof .align
3 means 2 A 3 (8)-byte alignment). The fill expression, if specified, must be absolute. The space between the
current value of the location counter and the desired value is filled with the fill expression (or with zeros, if
fill_expression isn't specified). The space between the current value of the location counter to the alignment
of the fill expression width is filled with zeros first. Then the fill expression is used until the desired alignment
is reached. max_bytes_to_fill is the maximum number of bytes that are allowed to be filled for the align
directive. If the align directive can't be done in max_bytes_to_fill or less, it has no effect. If there is no
fill_expression and the section has the pure_instructions attribute, or contains some instructions, the
nop opcode is used as the fill expression.

Note: The assembler enforces no alignment for any bytes created in the object file (data or machine
instructions). You must supply the desired alignment before any directive or instruction.

EXAMPLE

.align 3
one: .double 0rl1.0

.org

SYNOPSIS
.org expression [, fill_expression]

The . org directive sets the location counter to expression, which must be a currently known absolute
expression. This directive can only move the location counter up in address. The fill expression, if specified,
must be absolute. The space between the current value of the location counter and the desired value is filled
with the low-order byte of the fill expression (or with zeros, if fill_expression isn't specified).

Note: If the output file is later link-edited, the . org directive isn't preserved.

EXAMPLE

.org 0x100,0xff

Directives for Moving the Location Counter
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

Directives for Generating Data

The directives described in this section generate data. (Unless specified otherwise, the data goes into the
current section.) In some respects, they are similar to the directives explained in “Directives for Moving the

Location Counter” (page 43)—they do have the effect of moving the location counter—but this isn't their
primary purpose.

.ascii and .asciz

SYNOPSIS

.ascii ["string"

[, "string"]
.asciz ["string" L

, "string"]

[

These directives translate character strings into their ASCII equivalents for use in the source program. Each
directive takes zero or more comma-separated strings surrounded by quotation marks. Each string can contain
any character or escape sequence that can appear in a character string; the newline character cannot appear,
but it can be represented by the escape sequence \012 or \n:

m The .ascii directive generates a sequence of ASCIl characters.

m The .asciz directive is similar to the .ascii directive, except that it automatically terminates the

sequence of ASCII characters with the null character (\0), necessary when generating strings usable by
C programes.

If no strings are specified, the directive is ignored.
EXAMPLE

.ascii "Can't open the DSP.\0"
.asciz "%s has changes.\tSave them?"

.byte, .short, .long, and .quad

SYNOPSIS

.byte [expression 1 [, expression 1]
.short [expression] [, expression]
.long [expression] [, expression]
.quad [expression 1 [, expression]

These directives reserve storage locations in the current section and initialize them with specified values.
Each directive takes zero or more comma-separated absolute expressions and generates a sequence of bytes
for each expression. The expressions are truncated to the size generated by the directive:

m .Dbyte generates 1 byte per expression.
m .short generates 2 bytes per expression.
= . long generates 4 bytes per expression.

= .quad generates 8 bytes per expression.

Directives for Generating Data 45
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

46

CHAPTER 4

Assembler Directives

EXAMPLE

.byte 74,0112,0x4A,0x4a,"'J | the same byte
.short 64206,0175316,0xface | the same short
.long -1234,037777775456,0xfffffb2e | the same long
.quad -1234,01777777777777777775456,0xfffffffffffffb2e | the same quad

Note: The . quad directive doesn’t handle a relocatable expression of the form .quad foo - bar when
the values of foo or bar are more than 32 bits.

comm

SYNOPSIS
.comm name, size

The . comm directive creates a common symbol named name of size bytes. If the symbol isn’t defined elsewhere,
its type is “common.”

The link editor allocates storage for common symbols that aren’t otherwise defined. Enough space is left
after the symbol to hold the maximum size (in bytes) seen for each symbol in the (__DATA,__common)
section.

The link editor aligns each such symbol (based on its size aligned to the next greater power of two) to the
maximum alignment of the (__DATA, __common) section. For information about how to change the maximum
alignment, see the description of -sectaligninthe 1d(1) Mac OS X man page.

EXAMPLE

.comm _global_uninitialized,4

fill

SYNOPSIS
.fil1l repeat_expression , fill_size , fill_expression
The . fi11 directive advances the location counter by repeat_expression times fill_size bytes:

m fill_size is in bytes, and must have the value 1, 2, or 4
m repeat_expression must be an absolute expression greater than zero

= fill_expression may be any absolute expression (it gets truncated to the fill size)

EXAMPLE

.fi11 69,4,0xfeadface | put out 69 Oxfeadface’s

Directives for Generating Data
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

dcomm

SYNOPSIS
.lcomm name, size [, align]

The . 1comm directive creates a symbol named name of size bytes in the (__DATA,__bss) section. It contains
zeros at execution. The name isn’t declared as global, and hence is unknown outside the object module.

The optional align expression, if specified, causes the location counter to be rounded up to an align
power-of-two boundary before assigning the location counter to the value of name.

EXAMPLE

.Tcomm abyte,1 | or: .lcomm abyte,1,0
.1comm padding,7

.Tcomm adouble,8 | or: .lcomm adouble,8,3

These are the same as:

.zerofill __DATA,_ bss,abyte,l
.lcomm __DATA,__bss,padding,7’
.lcomm __DATA,_ bss,adouble,8

.single and .double

SYNOPSIS

.single [number 1 [, number]
.double [number 1 [, number]

These directives reserve storage locations in the current section and initialize them with specified values.
Each directive takes zero or more comma-separated decimal floating-point numbers:

m .single takes IEEE single-precision floating point numbers. It reserves 4 bytes for each number and
initializes them to the value of the corresponding number.

m .double takes IEEE double-precision floating point numbers. It reserves 8 bytes for each number and
initializes them to the value of the corresponding number.

EXAMPLE

.single 3.33333333333333310000e-01
.double 0.00000000000000000000e+00
.single +Infinity

.double -Infinity

.single NaN

.space

SYNOPSIS

.space num_bytes [, fill_expression]

Directives for Generating Data 47
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

The . space directive advances the location counter by num_bytes, where num_bytes is an absolute expression
greater than zero. The fill expression, if specified, must be absolute. The space between the current value of
the location counter and the desired value is filled with the low-order byte of the fill expression (or with
zeros, if fill_expression isn't specified).

EXAMPLE

ten_ones:
.space 10,1

Directives for Dealing With Symbols

48

This section describes directives that have an effect on symbols and the symbol table.

.globl

SYNOPSIS
.globl symbol_name

The .glob1 directive makes symbol_name external. If symbol_name is otherwise defined (by . set or by
appearance as a label), it acts within the assembly exactly as if the . g1ob1 statement was not given; however,
the link editor may be used to combine this object module with other modules referring to this symbol.

EXAMPLE

.globl abs
.set abs,1

.globl var
var: .long 2

.indirect_symbol

SYNOPSIS:
.indirect_symbol symbol_name

The .indirect_symbol directive creates an indirect symbol withsymbol_name and associates the current
location with the indirect symbol. An indirect symbol must be defined immediately before each item in a
symbol_stub, Tlazy_symbol_pointers, and non_lazy_symbol_pointers section. The static and
dynamic linkers usesymbol_name to identify the symbol associated with the item following the directive.

.reference

SYNOPSIS

.reference symbol_name

Directives for Dealing With Symbols
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

The . reference directive causes symbol_name to be an undefined symbol present in the output file’s
symbol table. This is useful in referencing a symbol without generating any bytes to do it (used, for example,
by the Objective-C runtime system to reference superclass objects).

EXAMPLE

.reference .objc_class_name_Object

.weak_reference

SYNOPSIS
.weak_reference symbol_name

The .weak_reference directive causes symbol_name to be a weak undefined symbol present in the output
file's symbol table. This is used by the compiler when referencing a symbol with the weak_import attribute.

EXAMPLE

.weak_reference .objc_class_name_0Object

Jazy_reference

SYNOPSIS
.lazy_reference symbol_name

The .Tazy_reference directive causes symbol_name to be a lazy undefined symbol present in the output
file's symbol table. This is useful when referencing a symbol without generating any bytes to do it (used, for
example, by the Objective-C runtime system with the dynamic linker to reference superclass objects but
allow the runtime to bind them on first use).

EXAMPLE

.lazy_reference .objc_class_name_0Object

.weak_definition

SYNOPSIS
.weak_definition symbol_name

The .weak_definition directive causes symbol_name to be a weak definition. symbol_name can be defined
onlyina coalesced section. This is used by the C++ compiler to support template instantiation. The compiler
uses a coalesced section with the .weak_definition directive for implicitly instantiated templates. And
it uses a regular section (. text, .data, aso on) for an explicit template instantiation.

Directives for Dealing With Symbols 49
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

50

CHAPTER 4

Assembler Directives

.private_extern

SYNOPSIS:
.private_extern symbol_name

The .private_extern directive makes symbol_name a private external symbol. When the link editor
combines this module with other modules (and the -keep_private_externs command-line option is not
specified) the symbol turns it from global to static. If both .private_externand .glob1 assembler directives
are used on the same symbol, the effect is as if only the .private_extern directive was used.

.stabs, .stabn, and .stabd

SYNOPSIS

.stabs n_name , n_type , n_other , n_desc , n_value
.stabn n_type , n_other , n_desc , n_value
.stabd n_type , n_other , n_desc

These directives are used to place symbols in the symbol table for the symbolic debugger (a “stab” is a symbol
table entry).

m .stabs specifies all the fields in a symbol table entry. n_name is the name of a symbol; if the symbol
name is null, the . stabn directive may be used instead.

m .stabnissimilarto .stabs, except thatit usesa NULL ("") name.

m .stabdissimilarto . stabn, except that it uses the value of the location counter (.) as the n_value field.

Note: The n_other field of a . stabs directive is ignored, and the value of the n_sect field (what was the
n_other field) is set based on the symbol used for the n_value parameter.

In each case, the n_type field is assumed to contain a 4.3BSD-like value for the N_TYPE bits (defined in
mach-o/stab.h).For .stabs and .stabn, the n_sect field of the Mach-O file’s n11st is set to the section
number of the symbol for the specified n_value parameter. For . stabd, the n_sect field is set to the current
section number for the location counter. The n11 st structure is defined in mach-o/nlist.h.

EXAMPLE
.stabs "hello.c",100,0,0,Ltext

.stabn 192,0,0,LBB2
.stabd 68,0,15

.desc

SYNOPSIS
.desc symbol_name , absolute_expression

The .desc directive sets the n_desc field of the specified symbol to absolute_expression.

Directives for Dealing With Symbols
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

EXAMPLE

.desc _environ, 0x10 ; set the REFERENCED_DYNAMICALLY bit

set

SYNOPSIS
.set symbol_name , absolute_expression

The . set directive creates the symbol symbol_name and sets its value to absolute_expression. This is the
same as using symbol_name=absolute_expression.

EXAMPLE

.set one,1
two = 2

dsym

SYNOPSIS
.1sym symbol_name , expression

A unique and otherwise unreferenceable symbol of the symbol_name, expression pair is created in the symbol
table. The symbol created is a static symbol with a type of absolute (N_ABS). Some Fortran 77 compilers use
this mechanism to communicate with the debugger.

Directives for Dead-Code Stripping

Dead-code stripping is the process by which the static link editor removes unused code and data blocks from
executable files. This process helps reduce the overall size of executables, which in turn improves performance
by reducing the memory footprint of the executable. It also allows programs to link successfully in the situation
where unused code refers to an undefined symbol, something that would normally result in a link error. For
more information on dead-code stripping, see "Linking" in Xcode 2.1 User Guide.

The following sections describe the dead-code stripping directives.

.subsections_via_symbols

SYNOPSIS
.subsections_via_symbols

The . subsections_via_symbols directive tells the static link editor that the sections of the object file can
be divided into individual blocks. These blocks are then stripped if they are not used by other code. This
directive applies to all section declarations in the assembly file and should be placed outside any section
declarations, as shown here:

Directives for Dead-Code Stripping 51
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

.subsections_via_symbols
; Section declarations...

When using this directive, ensure that each symbol in the section is at the beginning of a block of code.
Implicit dependencies between blocks of code may result in the removal of needed code from the executable.
For example, the following section contains three symbols, but execution of the code at _plus_three ends
at the b1r statement at the bottom of the code block:

.text
.globl _plus_three
_plus_three:

addi r3, r3, 1
.globl _plus_two
_plus_two:

addi r3, r3, 1
.globl _plus_one

_plus_one:
addi r3, r3, 1
bTr

If you use the . subsections_via_symbols directive on this code and _plus_twoand _plus_three are
not called by any other code, the static link editor would not add _plus_two and _plus_one to the
executable. In that case, _plus_three would not return the correct value because part of its implementation
would be missing. In addition, if _plus_one is dead-stripped, the program may crash when _plus_three
is executed, as it would continue executing into the following block.

.no_dead_strip

SYNOPSIS
.no_dead_strip symbol_name

The .no_dead_strip directive tells the assembler that the symbol specified by symbo_name must not be
dead-stripped. For example, the following code prevents _my_version_string from being dead-stripped:

.no_dead_strip _my_version_string
.cstring

_my_version_string:

.ascii "Version 1.1"

Miscellaneous Directives

52

This section describes additional directives that don't fit into any of the previous sections.

.abort

SYNOPSIS

.abort ["abort_string"]

Miscellaneous Directives
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

The .abort directive causes the assembler to ignore further input and quit processing. No files are created.
The directive could be used, for example, in a pipe-interconnected version of a compiler—the first major
syntax error would cause the compiler to issue this directive, saving unnecessary work in assembling code
that would have to be discarded anyway.

The optional abort_string is printed as part of the error message when the . abort directive is encountered.
EXAMPLE
#ifndef VAR

.abort "You must define VAR to assemble this file."
ffendif

.abs

SYNOPSIS
.abs symbol_name , expression

This directive sets the value of symbol_name to 1 if expression is an absolute expression; otherwise, it sets
the value to zero.

EXAMPLE

.macro var
.abs is_abs,$0

if is_abs==

.abort "must be absolute"
.endif

.endmacro

.dump and .load

SYNOPSIS

.dump filename
.load filename

These directives let you dump and load the absolute symbols and macro definitions for faster loading and
faster assembly.

These work like this:

.include "big_file_1"
.include "big_file_2"
.include "big_file_3"

.include "big_file_N"
.dump "symbols.dump"

The . dump directive writes out all the N_ABS symbols and macros. You can later use the . 10ad directive to
load all the N_ABS symbols and macros faster than you could with . include:

.load "symbols.dump"

Miscellaneous Directives 53
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

54

CHAPTER 4

Assembler Directives

One useful side effect of loading symbols this way is that they aren’t written out to the object file.

file and .line

SYNOPSIS

.file file_name
.line Tine_number

The . fi7e directive causes the assembler to report error messages as if it were processing the file file_name.

The . 11ne directive causes the assembler to report error messages as if it were processing the line line_number.
The next line after the . 11ine directive is assumed to be line_number.

The assembler turns C preprocessor comments of the form:
line_number file_name level

into:

.Tine Tine_number; .file file_name

EXAMPLE

.line 6
nop | this is line 6

if, .elseif, .else, and .endif

SYNOPSIS

.1f expression
.elseif expression
.else

.endif

These directives are used to delimit blocks of code that are to be assembled conditionally, depending on the
value of an expression. A block of conditional code may be nested within another block of conditional code.
expression must be an absolute expression.

For each . i f directive:

m there must be a matching .endif
m there may be as many intervening .elseif’s as desired

= there may be no more than one intervening . else before the tailing .endif

Labels or multiple statements must not be placed on the same line as any of these directives; otherwise,
statements including these directives are not recognized and produce errors or incorrect conditional assembly.

EXAMPLE

if a==

Miscellaneous Directives
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

.long 1
.elseif a==
.long 2
.else

.long 3
.endif

.include

SYNOPSIS
.include "filename"

The . include directive causes the named file to be included at the current point in the assembly. The - Idir
option to the assembler specifies alternative paths to be used in searching for the file if it isn't found in the
current directory.

EXAMPLE

.include "macros.h"

.machine

SYNOPSIS
.machine arch_type

The .machine directive specifies the target architecture of the assembly file. arch_type can be any
architecture type you can specify in the - arch option of the assembler driver. See “Assembler Options” (page
11) for more information.

.macro, .endmacro, .macros_on, and .macros_off

SYNOPSIS

.macro
.endmacro
.macros_on
.macros_off

These directives allow you to define simple macros (once a macro is defined, however, you can't redefine it).
For example:

.macro var
instruction_1 $0,%1
instruction_2 $2

instruction_N
.long $n
.endmacro

Miscellaneous Directives 55
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

$d (where d is a single decimal digit, 0 through 9) represents each argument—there can be at most 10
arguments. $n is replaced by the actual number of arguments the macro is invoked with.

When you use a macro, arguments are separated by a comma (except inside matching parentheses—for
example, xxx(1,3,4),yyy contains only two arguments). You could use the macro defined above as follows:

var #0,@sp,4
This would be expanded to:

instruction_1 #0,@sp
instruction_2 4

instruction_N
.long 3

The directives .macros_on and .macros_off allow macros to be written that override an instruction or
directive while still using the instruction or directive. For example:

.macro .long
.macros_off
.long $0,%0
.macros_on
.endmacro

If you don't specify an argument, the macro substitutes nothing (see “.abs” (page 53)).

PowerPC-Specific Directives

56

The following directives are specific to the PowerPC architecture.

flag_reg

SYNOPSIS
.flag_reg reg_number

This causes the uses of the reg_number general register to get flagged as warnings. This is intended for use
in macros.

.greg

SYNOPSIS

.greg symbol_name, expression...

This directive sets symbo1_nameto 1 when expressionisageneral register or zero otherwise. It is intended
for use in macros.

PowerPC-Specific Directives
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Assembler Directives

.no_ppc601

SYNOPSIS

This causes PowerPC 601 instructions to be flagged as errors. This is the same as if the -no_ppc601 option

is specified.

.noflag_reg

SYNOPSIS

.noflag_reg reg_number

This turns off the flagging of the uses of the reg_number general register so they don’t get flagged as

warnings. This is intended for use in macros.

Additional Processor-Specific Directives

The following processor-specific directives are synonyms for other standard directives described earlier in
this chapter; although they are listed here for completeness, their use isn't recommended. Wherever possible,
you should use the standard directive instead.

The following are i386-specific directives:

i386 Directive | Standard Directive
.ffloat .single

.dfloat .doubTe

.tfloat [expression] " 80-bit IEEE extended precision floating-point
.word .short

.value .short

.ident (ignored)

.def (ignored)

.optim (ignored)
.version (ignored)

.In (ignored)

Additional Processor-Specific Directives
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

57

CHAPTER 4

Assembler Directives

58 Additional Processor-Specific Directives
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler
Instructions

This chapter contains information specific to the PowerPC processor architecture.

PowerPC Registers and Addressing Modes

This section describes the conventions used to specify addressing modes and instruction mnemonics for the
PowerPC series processor architecture. The instructions themselves are detailed in the next section, “PowerPC
Assembler Instructions” (page 66).

Registers

Many instructions accept register names as operands. The available register names are listed in this section.
These are the user registers:

Register | Description

r0-r31 | General Purpose Registers

f0-f31 | Floating-Point Registers

xer Fixed-Point Exception Register

fpscr | Floating-Point Status and Control Register

cr Condition Register
1r Link Register
ctr Count Register

v0-v31 | Vector Registers (AltiVec specific)

For instructions that take either 0 or a general purpose register as an operand, r0 may not be used as either
a zero or a register operand; the literal value 0 must be used instead.

These are the special registers

Registers | Description

sr0-srl15 | Segment Registers

PowerPC Registers and Addressing Modes 59
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

60

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operands and Addressing Modes

The PowerPC processor architecture has only one addressing mode for load and store instructions: register
plus displacement. The general form for address operands is:

displacement(register)

If there is no displacement, the parentheses around the register name must still be used. For example, the
first two of the following statements are legal, but the last isn't:

Twz rlz2,4(rl)
Twz riz,(rl) ; same as displacement of 0O
Twz riz,rl ; INCORRECT

To specify an arbitrary 32-bit address, two instructions must be used, since all instructions are 32 bits long
and can't contain both an opcode and a full address. A pair of instructions used to load or store data at an
address falls into one of a small set of idioms, using the assembler operators 1016(), hi16(),and hal6()
to isolate the required portion of the 32-bit address expression. The idioms themselves are discussed below

= lol6(expression) evaluates to the low (least significant) 16 bits of expression, with a relocation type of
PPC_RELOC_LO16, PPC_RELOC_LO14, PPC_RELOC_LO16_SECTDIFF, or PPC_RELOC_LO14_SECTDIFF
depending on the instruction and the expression it is used with.

= hil6(expression) evaluates to the high (most significant) 16 bits of expression shifted right 16 bits, with
a relocation type of PPC_RELOC_HI16 or PPC_RELOC_HI16_SECTDIFF depending on the expression it is
used with.

= hal6(expression) evaluates to the high (most significant) 16 bits of expression shifted right 16 bits,
increased by one if bit 15 of expression is set (that is, if the value given by 1016 (expression) is negative).
This allows the address to be properly reconstituted when the low 16 bit quantity of expression is
sign-extended by some operators. It has a relocation type of PPC_RELOC_HA16 or
PPC_RELOC_HA16_SECTDIFF depending on the expression it is used with.

In specifying a 32-bit address, the desired result is that the 32-bit quantity be in a register. To do this, the
high and low 16 bits of the address are entered separately with instructions suited to this task. Generally,
the high 16 bits can be entered into a register with the addis (Add Immediate Shifted) instruction and the
hi16() operator. For example, this instruction:

addis r2,0,hil6(expr)

adds the high 16 bits of expr to 0, and enters the result into the high 16 bits of register 2. The instruction that
immediately follows can then combine the low 16 bits with the high 16 bits in the register and perform
whatever other operation it does (if any).

For example, to load the address of the global variable spot into general register 2, the instructions below
would be used. The ori instruction doesn't sign-extend the displacement, so the high 16 bits of the address
needn't be adjusted, and the hi16 () assembler operator is used.

addis r2,0,hilé(spot) ; ori doesn't sign-extend
ori r2,r2,10l6(spot)

In loading the data stored at spot the 1wz operator is used, which does sign-extend the displacement, the
adjusted high 16 bits must be given, with the ha16 () assembler operator:

addis r2,0,halé(spot) ; 1wz sign-extends
Twz r3,1o0l6(spot)(r2)

PowerPC Registers and Addressing Modes
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

1wz treats the sign-extended low 16 bits as a displacement, adding it to the contents of register 2 to get a
32-bit address, and then loads the word at that address into register 3.

Extended Instruction Mnemonics & Operands

Branch Mnhemonics

The PowerPC processor family supports a rich variety of extended mnemonics for its three conditional branch
operators: bc, bc1r,and bcetr. Normally, the condition and the nature of the branch are specified by numeric
operands, but with the extended mnemonics, these numeric operands are determined by the assembler
from the mnemonic used.

Conditional branches can alter the contents of the Count Register (ctr), and can take effect based on the
resulting value in the Count Register, and on whether a specified condition is true or false. The first table
below summarizes the extended mnemonics for branches that affect the Count Register, while the second
summarizes additional mnemonics for branches on true and false conditions that don't affect the Count
Register. The effect of the branch is given on the left. The first four columns of each table are for branches
where the Link Register bit in the instruction is clear (not set); the remaining columns are for branches where
the Link Register bit in the instruction is set. Each set of four columns gives mnemonics for relative and
absolute branches, and for branches to the Link Register or the Count Register.

Branch Type LR not set LR set
bc bca bclr bectr | bcl bcla bclrl bcctrl
Rel. Abs. toLR |toCTR | Rel. Abs. toLR to CTR
unconditional b ba blr bctr bl bla blrl bctrl
if condition true bt bta btlr btctr btl btla btlrl btctrl
if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl
decrement CTR, branch if CTR | bdnz bdnza | bdnzlr | - bdnzl | bdnzla | bdnzlrl | -
non-zero
Decrement CTR, branch if CTR | bdnzt bdnzta | bdnztlr | — bdnztl | bdnztla | bdnztlrl | -
non-zero and condition true
Decrement CTR, branch if CTR | bdnzf bdnzfa | bdnzflr | - bdnzfl | bdnzfla | bdnzflrl | -
non-zero and condition false
Decrement CTR, branch if CTR | bdz bdza bdzlr - bdzl bdzla bdzlrl -
zero
Decrement CTR, branch if CTR | bdzt bdzta | bdztlr | - bdztl | bdztla | bdztlrl | -

zero and condition true

Decrement CTR, branch if CTR | bdzf bdzfa | bdzflr | - bdzfl | bdzfla | bdzflrl |-
zero and condition false

Extended Instruction Mnemonics & Operands 61
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

62

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

The mnemonics in the table above encode specific values for the BO field of the non-extended operators.
The BO field controls the effect on the Count Register and on what type of condition the branch is to be
taken. The Bl field, which controls the specific condition to consider, must still be given, as the first operand.
The value of this operand indicates which field of the Condition Register to use, and which bit within that
field to consider.

The Condition Register has 8 fields, numbered 0 to 7, each of which contains a bit for conditions less than,
greater than, equal, and summary overflow or unordered. The numeric value for field n of the Condition Register
is 4*n, and the numeric values for the conditions are 0, 1, 2, and 3, respectively. The following symbols may
be used instead of numbers:

Symbol | Value | Meaning

It 0 Less than

gt 1 Greater than

eq 2 Equal

so 3 Summary overflow

un 3 Unordered (after floating-point comparison)
cr0 0 Condition Register field 0
crl 4 Condition Register field 1
cr2 8 Condition Register field 2
cr3 12 Condition Register field 3
créd 16 Condition Register field 4
crs5 20 Condition Register field 5
cré6 24 Condition Register field 6
cr7 28 Condition Register field 7

For example, a branch if condition true for the condition greater than in Condition Register field 3 could be
written in any of these ways:

bt cr3+gt,target
bt 12+1,target
bt 13,target

Omitting the symbol for either the Condition Register field or the condition is permitted, as long as the result
of the expression is a number from 0-31:

bt gt,target ; uses field O
bt cr3,target ; branches on less than in field 3
bt 13,target ; branches on less than in field 3

Another way to specify these conditions is to use the extended mnemonics in the second table, below. These
mnemonics encode the actual condition on which to take a branch. The second and third letters of the
mnemonic indicate that condition:

Extended Instruction Mnemonics & Operands
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Code | Meaning

It Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

uo Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

Some condition codes, such as 1e, are actually more compact codes for a false result on the opposite condition
in the set of conditions given previously (for example, 1e is equivalent to if condition false on condition greater

than).

By default, the extended mnemonics in the table below used Condition Register field 0. An optional first

operand can be given to specify another field, in either numeric form or as a symbol of the form crn. For

example:
bgt target ; branch if cr0 shows "greater than"
bgt cr3,target ; branch if cr3 shows "greater than"
Branch Type LR not set LR set
bc bca | bclr | bectr | bel bcla | bclrl | bectrl
Rel. Abs. [toLR | to CTR | Rel. | Abs. |toLR |to CTR
less than blt blta | bltlr | bltctr | bl bltla | bltlrl | bltctrl
less than or equal ble blea | blelr | blectr | blel blela | blelrl | blectrl
equal beq beqa | beqlr | beqctr | beql | beqla | beqlrl | beqctrl
greater than or equal | bge bgea | bgelr | bgectr | bgel | bgela | bgerl | bgectrl
greater than bgt bgta | bgtlr | bgtctr | bgttl | bgla | bgtlrl | bgtctrl
not less than bnl bnla | bnllr | bnlctr | bnll bnlla | bnllrl | bnlctrl

Extended Instruction Mnemonics & Operands
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

63

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Branch Type LR not set LR set

bc bca | bclr | beetr | bel bcla | bclrl | bectrl

Rel. Abs. [toLR |to CTR | Rel. | Abs. |toLR |to CTR
not equal bne bnea | bnelr | bnectr | bnel | bnela | bnelrl | bnectrl
not greater than bng bnga | bnglr | bngctr | bngl | bngla | bnglrl | bngctrl
summary overflow bso bsoa | bsolr | bsoctr | bsol | bsola | bsolrl | bsoctrl
not summary overflow | bns bnsa | bnslr | bnsctr | bnsl | bnsla | bnslrl | bnsctrl
unordered bun buna | bunlr | bunctr | bunl | bunla | bunlrl | bunctrl
not unordered bnu bnua | bnulr | bnuctr | bnul | bnula | bnulrl | bnuctrl

Branch Prediction

64

PowerPC processors attempt to determine whether a conditional branch is likely to be taken or not. By
default, they assume the following about conditional branches:

= A conditional branch with a negative displacement (that is, a branch to a lower address) is predicted to
be taken. This type of branch may, for example, lead to the beginning of a loop that's repeated many
times.

= A conditional branch with a non-negative displacement is predicted not to be taken (that is, it falls
through).

= A conditional branch to an address in the Link or Count Registers is predicted not to be taken (that is, it
falls through).

If the assembly language programmer knows the likely outcome of a conditional branch, a suffix can be
added to the mnemonic that indicates which way the branch should be predicted to go:a ‘+’ instructs the
processor to predict that the branch will be taken, while a * - * instructs it to predict that the branch will not
be taken. The branch prediction in for the 64-bit PowerPC AS architecture uses a different encoding for static
branch prediction than the classic PowerPC architecture. This is encoded in the AT bits instead of the Y-bit
of the conditional branch. The assembler takes ‘++’ and * - -’ suffixes to encode branch prediction using
the AT bits. The “+” and * -’ suffixes encode the branch prediction using the Y-bit by default. The flag
-static_branch_prediction_AT_bits changes this so that the ‘+’ and ‘-’ suffixes encode the AT
bits. Where an operator allows a prediction suffix, a ‘+’ symbol appears after it in the table in “PowerPC
Assembler Instructions” (page 66).

Use the jbsr pseudo instruction when you may not be able to reach the target of a branch and link instruction
with a b1 instruction. The jbsr instruction uses a sequence of code called a long branch stub which will
always be able to reach the target.

jbsr _foo,L1

L1: Tis rl2,hil6(_foo) ; long branch stub
ori rl12,rl12,1016(_foo)

Branch Prediction
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

mtctr rl2
bctr

The jbsr pseudo instruction assembles to a bl instruction targeted at L1. It also generates a PPC_RELOC_JBSR
relocation entry for the symbol _foo. Then when the linker creates a non-relocatable output file it will change
the target of the bl instruction to _foo if the bl instruction's displacement will reach. Else it will leave the bl
instruction targeted at L1.

Trap Mnemonics

Like the branch-on-condition mnemonics above, the trap operator also has extended mnemonics which
encode the numeric TO field as follows:

Code | Meaning TO encoding
It Less than 16
le Less than or equal 20
eq Equal 4
ge Greater than or equal 12
gt Greater than 8
nl Not less than 12
ne Not equal 24
ng Not greater than 20
It Logically less than 2
lle Logically less than or equal 6
Ige Logically greater than or equal | 5
Igt Logically greater than 1
Inl Logically not less than 5
Ing Logically not greater than 6
(none) | Unconditional 31

The condition is indicated from the third letter of the extended mnemonics in the table below:

Trap Mnemonics 65
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Trap Type 64-bit comparison 32-bit-comparison
tdi td twi tw
Immediate | Register | Inmediate | Register

unconditional - - - trap

if less than tdlti tdlt twlti twlit

if less than or equal tdlei tdle twlei twle

if equal tdeqi tdeq tweqi tweq

if greater than or equal tdgei tdge twgei twge

if greater than tdgti tdgt twgti twgt

if not less than tdnli tdnl twnli twnl

if not equal tdnei tdne twnei twne

if not greater than tdngi tdng twngi twng

if logically less than tdllti tdllt twllti twllt

if logically less than or equal tdllei tdlle twllei twlle

if logically greater than or equal | tdlgei tdlge twlgei twlge

if logically greater than tdigti tdigt twigti twligt

if logically not less than tdinli tdinl twinli twinl

if logically not greater than tdIngi tding twingi twing

PowerPC Assembler Instructions

Note the following points about the information contained in this section:

= Operation Name is the name that appears in the PowerPC manuals, or the effect of the operator for
an extended mnemonic.

m The form of operands is that used in PowerPC Microprocessor Family: The Programming Environments.

m The order of operands is destination <- source.

66 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

A

Operator | Operands | Operation Name
abs RT,RA Absolute (601 specific)
abs. RT,RA

abso RT,RA

abso. RT,RA

add | RT,RA,RB | Add

add. | RT,RA,RB

addo | RT,RA,RB

addo. | RT,RA,RB

addc | RT,RARB | Add Carrying

addc. | RT,RA,RB

addco | RT,RA,RB

addco. | RT,RA,RB

adde | RT,RA,RB | Add Extended

adde. | RT,RA,RB

addeo | RT,RA,RB

addeo. | RT,RA,RB

addi | RT,RA,SI | Add Immediate

addic | RT,RA,SI | Add Immediate Carrying
addic. | RT,RASI | Add Immediate Carrying and Record

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

67

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

addis | RT,RA,Ul | Add Immediate Shifted

addme | RT,RA | Add To Minus One Extended

addme. | RT,RA

addmeo | RT,RA

addmeo. | RT,RA

addze | RT,RA | Add To Zero Extended

addze. | RT,RA

addzeo | RT,RA

addzeo. | RT,RA

and | RA,RT,RB | AND

and. | RA,RT,RB

andc | RART,RB | AND with Complement

andc. | RA,RT,RB

andi. | RA,RT,Ul | AND Immediate

andis. | RA,RT,Ul | AND Immediate Shifted

attn | Ul | Support Processor Attention

B

Operator | Operands | Operation Name

b target_addr | Branch
ba target_addr
68 PowerPC Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator | Operands | Operation Name

bl target_addr

bla target_addr

bct | BO,BD,target_addr | Branch Conditional

bcat | BO,BD,target_addr

bcl+ | BO,BD,target_addr

bclat | BO,BD,target_addr

bclr+ | BO,BD Branch Conditional to Link Register
bclr BO,BD, BH

bclr+ | BO,BD, BH

bclrl+ | BO,BD

bclrl+ | BO,BD,BH

bcctr+ | BO,BD Branch Conditional to Count Register
bcctr+ | BO,BD, BH

bcctrl+ | BO,BD

bectrl+ | BO,BD,BH

bctr Branch unconditionally to CTR

bctrl

bctrl | BH

bctr+ | BOBD | Equiv.to bcctr+ BO,BD

bctrl+ | BOBD | Equiv. to bcctr1+ B0O,BD

bdnz+ | target_addr | Decrement CTR, branch if CTR non-zero
bdnza+ | target_addr

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

69

70

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bdnzl+

target_addr

bdnzla+

target_addr

bdnzlr+

.to LR

bdnzlr+

BH

bdnzlrl+

bdnzirl+

BH

bdnzf+

CRF+COND;target_addr

Decrement CTR, branch if CTR non-zero and condition false

bdnzfa+

CRF+COND;target_addr

bdnzfl+

CRF+COND,target_addr

bdnzfla+

CRF+COND;target_addr

bdnzflr+

CRF+COND

.to LR

bdnzflr+

CRF+COND, BH

bdnzflrl+

CRF+COND

bdnzflrl+

CRF+COND, BH

bdnzt+

CRF+COND,target_addr

Decrement CTR, branch if CTR non-zero and condition true

bdnzta+

CRF+COND,target_addr

bdnztl+

CRF+COND,target_addr

bdnztla+

CRF+COND;target_addr

bdnztlr+

CRF+COND

.to LR

bdnztlr+

CRF+COND,BH

bdnztlrl+

CRF+COND

bdnztlrl+

CRF+COND,BH

bdz+ | target_addr

Decrement CTR, branch if CTR zero

bdzat | target_addr

bdzl+ | target_addr

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bdzlat

target_addr

bdzf+

CRF+COND,target_addr

Decrement CTR, branch if CTR zero and condition false

bdzfa+

CRF+COND,target_addr

bdzfl+

CRF+COND,target_addr

bdzfla+

CRF+COND;target_addr

bdzflr+

CRF+COND

.to LR

bdzflr+

CRF+COND,BH

bdzflrl+

CRF+COND

bdzflrl+

CRF+COND,BH

bdzlr+

bdzlr+

BH

bdzlrl+

bdzlrl+

BH

bdzt+

CRF+COND;target_addr

Decrement CTR, branch if CTR zero and condition false

bdzta+

CRF+COND,target_addr

bdztl+

CRF+COND,target_addr

bdztla+

CRF+COND;target_addr

bdztlr+

CRF+COND

.to LR

bdztlr+

CRF+COND,BH

bdztlrl+

CRF+COND

bdztlrl+

CRF+COND,BH

beq+

CRFtarget_addr | Branch if equal

beq+

target_addr

begat

CRFtarget_addr

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

71

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

beqgat target_addr
beql+ CRFtarget_addr
beql+ target_addr
beglat | CRFtarget_addr
beqglax | target_addr
beqctr+ | CRF ..to CTR
beqctr+ | CRF,BH
beqctrt
beqctrl+ | CRF
beqctrl+ | CRFBH
beqctrlt
beqlr+ | CRF ..to LR
beqglr+ | CRF,BH
beqlr+
beqlrl= | CRF
beqlrl+ | CRF,BH
beqlrl+
bf+ CRF+COND,target_addr | Branch if condition false
bfa+ CRF+COND,target_addr
bfl+ CRF+COND;target_addr
bflat | CRF+COND,target_addr
bfctr+ | CRF+COND ..to CTR
bfctr+ | CRF+COND,BH
bfctrl+ | CRF+COND
bfctrl+ | CRF+COND,BH
bflr+ | CRF+COND ..toLR
bflr+ | CRF+COND,BH
72 PowerPC Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bflrl+ | CRF+COND

bflri+ | CRF+COND,BH

bget CRFtarget_addr | Branch if greater than or equal
bge+ target_addr

bgea+ CRF target_addr

bgeat | target_addr

bgel+ CRFtarget_addr

bgel+ target_addr

bgelax | CRFtarget_addr

bgelat | target_addr

bgectr+ | CRF ..to CTR
bgectr+ | CRF,BH

bgectr+

bgectrl+ | CRF

bgectrl+ | CRF,BH

bgectrlt

bgelr+ | CRF ..toLR
bgelr+ | CRFBH

bgelrt

bgelrl+ | CRF

bgelrl+ | CRF,BH

bgelrl+

bgt+ CRFtarget_addr | Branch if greater than
bgt+ target_addr

bgtat | CRFtarget_addr

bgtat | target_addr

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

73

74

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bgtl+ CRFtarget_addr

bgtl+ target_addr

bgtlat | CRFtarget_addr

bgtlat | target_addr

bgtctr+ | CRF ..to CTR
bgtctr+ | CRF,BH

bgtctr+

bgtctrl+ | CRF

bgtctrl+ | CRF,BH

bgtctrl+

bgtlr+ | CRF ..toLR
bgtlr+ | CRFBH

bgtlr+

bgtlrl+ | CRF

bgtlrl+ | CRF,BH

bgtlrl+

ble+ CRFtarget_addr | Branch if less than or equal
ble+ target_addr

blea+ CRFtarget_addr

blea+ target_addr

blel+ CRFtarget_addr

blel+ target_addr

blela+* | CRFtarget_addr

blelat | target_addr

blectr+ | CRF ..to CTR
blectr+ | CRF,BH

blectrt

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

blectrl+ | CRF

blectrl+ | CRF,BH

blectrl+

blelr+ | CRF .to LR
blelr+ | CRF,BH

blelr+

blelrl+ | CRF

blelrl+ | CRF,BH

blelrl+

blr Branch unconditionally to LR
blr | BH

blrl

birl | BH

blt+ CRFtarget_addr | Branch if less than

blt+ target_addr
blta+ CRFtarget_addr
blta+ target_addr
bltl+ CRFtarget_addr
bltl+ target_addr
bltlax | CRFtarget_addr
bltlat | target_addr
bltctr+ | CRF ..to CTR
bltctr+ | CRF,BH

bltctr+

bltctrl+ | CRF

bltctrl+ | CRF,BH

PowerPC Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

75

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bltctrl+

bltlr+ | CRF ..to LR
bltlr+ | CRF,BH

bltlr+

bltlrl+ | CRF

bltlrl+ | CRF,BH

bltlrl+

bne+ CRFtarget_addr | Branch if not equal

bnex+ target_addr

bnea+ CRFtarget_addr

bneat | target_addr

bnel+ CRFtarget_addr

bnel+ target_addr

bnelax | CRFtarget_addr

bnelat+ | target_addr

bnectr+ | CRF ..to CTR

bnectr+ | CRF,BH

bnectr+

bnectrl+ | CRF

bnectrl+ | CRF,BH

bnectrl+

bnelr+ | CRF ..to LR

bnelr+ | CRFBH

bnelr+

bnelrl+ | CRF

bnelrl= | CRF,BH

bnelrl+

76 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bng+ CRFtarget_addr | Branch if not greater than
bng+ target_addr

bnga+ | CRFtarget_addr

bngat | target_addr

bnglt CRFtarget_addr

bngl+ target_addr

bnglax | CRFtarget_addr

bnglat | target_addr

bngctr+ | CRF ..to CTR
bngctr+ | CRFBH

bngctr+

bngctrl+ | CRF

bngctrl+ | CRF,BH

bngctrl+

bnglr+ | CRF ..toLR
bnglr+ | CRFBH

bnglr+

bnglrl+ | CRF

bnglrl+ | CRFBH

bnglrl+

bnl+ CRFtarget_addr | Branch if not less than
bnl+ target_addr

bnlat | CRFtarget_addr

bnlat | target_addr

bnll+ CRFtarget_addr

bnll+ target_addr

bnllax | CRFtarget_addr

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

77

78

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bnllat | target_addr

bnictr+ | CRF ..to CTR
bnlctr+ | CRFBH

bnlctr+

bnlctrl+ | CRF

bnlctrl+ | CRF,BH

bnlctrl+

bnllr+ | CRF .toLR
bnllr+ | CRFBH

bnllr+

bnlirl+ | CRF

bnllrl= | CRF,BH

bnllrl+

bns+ CRFtarget_addr | Branch if not summary overflow
bns+ target_addr

bnsat | CRFtarget_addr

bnsat | target_addr

bnsl+ | CRFtarget_addr

bnsl+ target_addr

bnslat | CRFtarget_addr

bnslat | target_addr

bnsctr+ | CRF ..to CTR
bnsctr+ | CRFBH

bnsctr+

bnsctrl+ | CRF

bnsctrl+ | CRFBH

bnsctrl+

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bnslr+ | CRF .to LR
bnslr+= | CRFBH

bnslr+

bnslrl+ | CRF

bnslrl+= | CRFBH

bnslrl+

bnu+ CRFtarget_addr | Branch if not unordered
bnu+ target_addr

bnuaz+ CRFtarget_addr

bnuaz+ target_addr

bnul+ CRFtarget_addr

bnul+ target_addr

bnulat | CRFtarget_addr

bnulat | target_addr

bnuctr+ | CRF ..to CTR
bnuctr+ | CRF,BH

bnuctr+

bnuctrl+ | CRF

bnuctrl+ | CRF,BH

bnuctrlt

bnulr+ | CRF .toLR
bnulr+ | CRF,BH

bnulrt

bnulrl+ | CRF

bnulrl+x | CRFBH

bnulrl+

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

79

80

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

bso+ CRFtarget_addr | Branch if summary overflow
bso+ target_addr

bsoa+ CRFtarget_addr

bsoaz+ target_addr

bsol+ CRFtarget_addr

bsol+ target_addr

bsolat | CRFtarget_addr

bsolat | target_addr

bsoctr+ | CRF ..to CTR
bsoctr+ | CRFBH

bsoctr+

bsoctrl+ | CRF

bsoctrl+ | CRFEBH

bsoctrl+

bsolr+ | CRF .toLR

bsolr+= | CRF,BH

bsolr+

bsolrl+ | CRF

bsolrl+ | CRFBH

bsolrl+

bt+ CRF+COND,target_addr | Branch if condition true
bta+ CRF+COND,target_addr

btl+ CRF+COND;target_addr

btlax | CRF+COND,target_addr

btctr+ | CRF+COND ..to CTR
btctr+ | CRF+COND,BH

btctrl+ | CRF+COND

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

btlr+ | CRF+COND .toLR
btlr+ | CRF+COND,BH

btlrl+ | CRF+COND

btlrl+ | CRF+COND,BH

bun+ CRFtarget_addr | Branch if unordered
bun+ target_addr

bunaz+ CRFtarget_addr

buna=+ target_addr

bunl+ CRFtarget_addr

bunl+ target_addr

bunlat | CRFtarget_addr

bunlat | target_addr

bunctr+ | CRF ..to CTR
bunctr+ | CRFBH

bunctr+

bunctrl+ | CRF

bunctrl+ | CRFBH

bunctrl+

bunirt | CRF ..to LR
bunlr+ | CRF,BH

bunlr+

bunlrl+ | CRF

bunlrl+= | CRF,BH

bunlrl+

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

81

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

C

Operator | Operands | Operation Name

clcs RD,RA Cache Line Compute Size (601 specific)
clrldi | ra,rs,n | Macro: rldicl ra,rs,0,n

clrldi. ra,rs,n Macro: rldicl. ra,rs,0,n
clrisidi | ra,rs,b,n | Macro: rl1dic ra,rs,n,b-n
clrlsldi. | ra,rs,b,n | Macro: r1dic. ra,rs,n,b-n
clrlslwi | ra,rs,b,n | Macro: rlwinm ra,rs,n,b-n,31-n
clrislwi. | ra,rs,b,n | Macro: rlwinm. ra,rs,n,b-n,31-n
clrlwi ra,rs,n Macro: rlwinm ra,rs,0,n,31
crlwi. | rarsn | Macro: rlwinm. ra,rs,0,n,31
clrrdi ra,rs,n Macro: rldicr ra,rs,0,63-n
clrrdi. | ra,rs,n Macro: rldicr. ra,rs,0,63-n
clrrwi ra,rs,n Macro: r1winm ra,rs,0,0,31-n
clrrwi. | ra,rs,n Macro: riwinm. ra,rs,0,0,31-n
cmp BF.L,RA,RB | Compare

cmp | CRFL,RARB

cmp | BERA,RB Equivto cmp BF,0,RA,RB

cmp | CRELRARB | Equiv.to cmp CRF,0,RA,RB
cmpd | RARB Equiv.to cmp 0,1,RA,RB

cmpd | BF,RARB Equiv.to cmp BF,1,RA,RB

cmpd | CRFRARB | Equiv.to cmp BF,1,RA,RB
cmpw | RARB Equiv.to cmp 0,0,RA,RB

cmpw | BFRA,RB Equiv. to cmp BF,0,RA,RB

cmpw | CRFRA,RB Equiv.to cmp CRF,0,RA,RB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

82

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

cmpi | BELRASI | Compare Immediate

cmpi | CREL,RASI

cmpi | BERA,SI Equiv. to cmpi BF,0,RA,SI

cmpi | CRERASI | Equiv.to cmpi CRF,0,RA,SI

cmpdi | RA,SI Equiv.to cmpi 0,1,RA,SI

cmpdi | BFRA,SI Equiv.to cmp BF,1,RA,SI

cmpdi | CRFRA,SI | Equiv. to cmpi CRF,1,RA,SI

cmpwi | RASI Equiv. to cmpi 0,0,RA,SI

cmpwi | BERASI | Equiv. to cmpi BF,0,RA,SI

cmpwi | CRFERASI | Equiv. to cmpi CRF,0,RA,SI

cmpl | BEL,RA,RB | Compare Logical

cmpl | CRFL,RARB

cmpl | BERA,RB Equiv.to cmp1 BF,0,RA,RB

cmpl | CRFRA,RB | Equiv.to cmp1 CRF,0,RA,RB

cmpld | RA,RB Equiv. to cmp1 0,1,RA,RB

cmpld | BFRA,RB Equiv. to cmp1 BF,1,RA,RB

cmpld | CRFRA,RB | Equiv.to cmpl CRF,1,RA,RB

cmplw | RA,RB Equiv. to cmp1 0,0,RA,RB

cmplw | BFRA,RB Equiv. to cmp1 BF,0,RA,RB

cmplw | CRFRA,RB | Equiv.to cmp1 CRF,0,RA,RB

cmpli | BELLRA,UI | Compare Logical Immediate

cmpli | CREL,RAUI

cmpli | BF,RAUI Equiv.to cmp1i BF,0,RA,UI

cmpli | CRERAUI | Equiv.to cmpli CRF,0,RA,UI

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

84

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

cmpldi | RAUI Equiv.to cmpi 0,1,RA,UI
cmpldi | BF,RA,UI Equiv. to cmpi BF,1,RA,UI
cmpldi | CRFRA,UI | Equiv.to cmpi CRF,1,RA,UI

cmplwi | BFRA,UI Equiv. to cmpi BF,0,RA,UI

cmplwi | CRFRAUI | Equiv. to cmpi CRF,0,RA,UI

cmplwi | RA,UI Equiv. to cmpi CRF,0,RA,UI

cntlzd | RA,RT | Count Leading Zeros Doubleword

cntlzd. | RART

cntlzw | RA,RT | Count Leading Zeros Word

cntlzw. | RART

crand | BT,BA,BB | Condition Register AND

crandc | BT,BA,BB | Condition Register AND with Complement
creqv | BT,BA,BB | Condition Register Equivalent

crmove | BT,BA | Condition Register Move (Equiv. to cror BT,BA,BA)

crnand

BT,BA,BB | Condition Register NAND

crnor

BT,BA,BB | Condition Register NOR

crnot

BT,BA | Condition Register NOT (Equiv. to crnor BT,BA,BA)

PowerPC Assembler Instructions

2009-01-0

7 | ©2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

cror | BT,BA,BB | Condition Register OR

crorc | BT,BA,BB | Condition Register OR with Complement

crxor | BT,BA,BB | Condition Register XOR

D

Operator | Operands | Operation Name

dcba RA,RB

Data Cache Block Allocate

dcbf | RA,RB | Data Cache Block Flush

dcbi | RA,RB | Data Cache Block Invalidate

dcbst | RA,RB | Data Cache Block Store

dcbt RA,RB

Data Cache Block Touch

dcbt RA,RB,TH

Data Cache Block Touch X-form

dcbt128 | RA,RB,TH

(same as above)

dcbtl RA,RB

Data Cache Block Touch Line

dcbtl RA,RB,TH

Data Cache Block Touch Line X-form

dcbtl128 | RARB,TH

(same as above)

dcbtst | RA,RB | Data Cache Block Touch for Store

dcbz | RA,RB | Data Cache Block Set to Zero

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

85

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

dcbzl RA,RB | Data Cache Block Set to Zero Line

dcbzl128 | RA,RB | (same as above)

div | RT,RARB | Divide (601 specific)

div. | RT,RA,RB

divo | RT,RA,RB

divo. | RT,RA,RB

divd RT,RA,RB | Divide Doubleword

divd. | RT,RA,RB

divdo | RT,RA,RB

divdo. | RT,RA,RB

divdu RT,RA,RB | Divide Doubleword Unsigned

divdu. | RT,RA,RB

divduo | RT,RA,RB

divduo. | RT,RA,RB

divs | RT,RA,RB | Divide Short (601 specific)

divs. | RT,RA,RB

divso | RT,RA,RB

divso. | RT,RA,RB

divw | RT,RA,RB | Divide Word

divw. | RT,RA,RB

divwo | RT,RA,RB

divwo. | RT,RA,RB

86 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

divwu RT,RA,RB | Divide Word Unsigned
divwu. | RT,RARB
divwuo | RT,RA,RB
divwuo. | RT,RA,RB

doz | RT,RARB

Difference or Zero (601 specific)

doz. | RT,RARB

dozo | RT,RA,RB

dozo. | RT,RA,RB

dozi | RT,RA,SI Difference or Zero Immediate (601 specific)
dss tag Data Stream Stop (AltiVec specific)
dssall Data Stream Stop All (AltiVec specific)

dst RA,RB,tag

Data Stream Touch (AltiVec specific)

dstst | RA,RB,tag

Data Stream Touch for Store (AltiVec specific)

dststt | RA,RB,tag

Data Stream Touch for Store Transient (AltiVec specific)

dstt | RARBtag

Data Stream Touch Transient (AltiVec specific)

Operator

Operands | Operation Name

eciwx

RT,RA,RB | External Control In Word Indexed

ecowx | RT,RA,RB

External Control Out Word Indexed

eieio Enforce In-order Execution of /0

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

87

88

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

eqv | RART,RB | Equivalent

eqv. | RART,RB

extldi | rars,nb | Macro: ridicr ra,rs,b,n-1
extldi. | ra,rs,n,b | Macro: r1dicr. ra,rs,b,n-1
extlwi | ra,rs,n,b | Macro: rlwinm ra,rs,b,0,n-1
extlwi. | ra,rs,n,b | Macro: riwinm. ra,rs,b,0,n-1
extrdi | ra,rs,n,b | Macro: rldicl ra,rs,b+n,64-n
extrdi. | ra,rs,n,b | Macro: rl1dicl. ra,rs,b+n,64-n
extrwi | ra,rs,n,b | Macro: riwinm ra,rs,b+n,32-n,31
extrwi. | ra,rs,n,b | Macro: rlwinm. ra,rs,b+n,32-n,31
extsb | RART | Extend Sign Byte

extsb. | RART

extsh | RART | Extend Sign Halfword

extsh. | RART

extsw | RARRT | Extend Sign Word

extsw. | RART

Operator | Operands

Operation Name

fabs FRT, FRB

Floating Absolute Value

fabs. FRT, FRB

fadd | FRT,FRA,FRB

Floating Add

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

fadd.

FRT,FRA,FRB

fadds

FRT,FRA,FRB

fadds.

FRT,FRA,FRB

fcfid

FRT,FRB

Floating Convert From Integer Doubleword

fcfid.

FRT,FRB

fcmpo

BF,FRA,FRB | Floating Compare Ordered

fcmpo

CBF,FRA,FRB

fcmpu

BF,FRA,FRB | Floating Compare Unordered

fcmpu

CBFFRA,FRB

fctid

FRT,FRB

Floating Convert to Integer Doubleword

fctid.

FRT,FRB

fctidz

FRT,FRB

Floating Convert to Integer Doubleword with Round toward Zero

fctidz.

FRT,FRB

fctiw

FRT,FRB

Floating Convert to Integer Word

fctiw.

FRT,FRB

fctiwz

FRT,FRB

Floating Convert to Integer Word with Round toward Zero

fctiwz.

FRT,FRB

fdiv

FRT,FRA,FRB | Floating Divide

fdiv.

FRT,FRA,FRB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

89

920

CHAPTER

5

PowerPC Addressing Modes and Assembler Instructions

fdivs | FRT,FRA,FRB

fdivs. | FRT,FRA,FRB

fmadd

FRT,FRA,FRC,FRB

Floating Multiply-Add [Single]

fmadd.

FRT,FRA,FRC,FRB

fmadds

FRT,FRA,FRC,FRB

fmadds.

FRT,FRA,FRC,FRB

fmr | FRT,FRB

Floating Move Register

fmr. | FRT,FRB

fmsub

FRT,FRA,FRC,FRB

Floating Multiply-Subtract

fmsub.

FRT,FRA,FRC,FRB

[Single]

fmsubs

FRT,FRA,FRC,FRB

fmsubs.

FRT,FRA,FRC,FRB

fmul

FRT,FRA,FRC | Floating Multiply

fmul.

FRT,FRA,FRC

fmuls

FRT,FRA,FRC

fmuls.

FRT,FRA,FRC

fnabs

FRT,FRB | Floating Negative Absolute Value

fnabs.

FRT,FRB

fneg | FRT,FRB

Floating Negate

fneg. | FRT,FRB

fnmadd

FRT,FRA,FRC,FRB

Floating Negative Multiply-Add [Single]

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

fnmadd.

FRT,FRA,FRC,FRB

fnmadds

FRT,FRA,FRC,FRB

fnmadds.

FRT,FRA,FRC,FRB

fnmsub

FRT,FRA,FRC,FRB | Floating Negative Multiply-Subtract [Single]

fnmsub.

FRT,FRA,FRC,FRB

fnmsubs

FRT,FRA,FRC,FRB

fnmsubs.

FRT,FRA,FRC,FRB

fres | FRT,FRB

Floating Reciprocal Estimate Single

fres. | FRT,FRB

frsp | FRT,FRB

Floating Round to Single-Precision

frsp. | FRT,FRB

frsqrte

FRT,FRB

Floating Reciprocal Square Root Estimate

frsqrte.

FRT,FRB

fsel | FRT,FRA,FRC,FRB | Floating Select

fsel. | FRT,FRA,FRC,FRB

fsqrt | FRT,FRB

Floating Square Root (Double-Precision)

fsqrt. | FRT,FRB

fsqrts | FRT,FRB

Floating Square Root Single

fsqrts. | FRT,FRB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

91

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

fsub | FRT,FRA,FRB | Floating Subtract

fsub. | FRT,FRA,FRB

fsubs | FRT,FRA,FRB

fsubs. | FRT,FRA,FRB

Operator | Operands | Operation Name

icbi RA,RB Instruction Cache Block Invalidate

inslwi | ra,rs,n,b | Macro: riwimi ra,rs,32-b,b, (b+n)-1

inslwi. | ra,rs,n,b | Macro: rTwimi. ra,rs,32-b,b, (b+n)-1

insrdi | ra,rs,n,b | Macro: r1dimi ra,rs,64-(b+n),b

insrdi. | ra,rs,n,b | Macro: rl1dimi. ra,rs,64-(b+n),b

insrwi | ra,rs,n,b | Macro: rTwimi ra,rs,32-(b+n),b, (b+n)-1

insrwi. | ra,rs,n,b | Macro: riwimi. ra,rs,32-(b+n),b, (b+n)-1

isync | | Instruction Synchronize

Operator | Operands Operation Name

jbsr Lstub, Lbranch_island | Branch and Link (pseudo-instruction, see “Branch Prediction” (page 64)
for more)

jmp Lstub, Lbranch_island | Branch (pseudo-instruction, see “Branch Prediction” (page 64) for more)

Operator | Operands | Operation Name

la RT,D(RA) | Load Address (Equiv to addi RT,RA,D)

92 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Ibz | RT,D(RA)

Load Byte and Zero

Ibzu | RT,D(RA)

Load Byte and Zero with Update

Ibzux | RT,RA,RB | Load Byte and Zero with Update Indexed

Ibzx | RT,RA,RB

Load Byte and Zero Indexed

Id | RT,DS(RA)

Load Doubleword

Idarx | RT,RA,RB

Load Doubleword and Reserve Indexed

Idu | RT,DS(RA)

Load Doubleword with Update

Idux | RT,RA,RB

Load Doubleword with Update Indexed

ldx | RT,RA,RB

Load Doubleword Indexed

Ifd | FRT,D(RA)

Load Floating-Point Double

Ifdu | FRT,D(RA)

Load Floating-Point Double with Update

Ifdux | FRT,RA,R

B | Load Floating-Point Double with Update Indexed

Ifdx | FRT,RA,RB

Load Floating-Point Double Indexed

Ifs | FRT,D(RA)

Load Floating-Point Single

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

93

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Ifsu | FRT,D(RA) | Load Floating-Point Single with Update

Ifsux | FRT,RA,RB | Load Floating-Point Single with Update Indexed

Ifsx | FRT,RA,RB | Load Floating-Point Single Indexed

Iha | RT,D(RA) | Load Halfword Algebraic

Ihau | RT,D(RA) | Load Halfword Algebraic with Update

Ihaux | RT,RA,RB | Load Halfword Algebraic with Update Indexed

Ihax | RT,RA,RB | Load Halfword Algebraic Indexed

Ihbrx | RT,RA,RB | Load Halfword Byte-Reverse Indexed

lhz | RT,D(RA) | Load Halfword and Zero

Ihzu | RT,D(RA) | Load Halfword and Zero with Update

Ilhzux | RT,RA,RB | Load Halfword and Zero with Update Indexed

lhzx | RT,RA,RB | Load Halfword and Zero Indexed

li | Rx,value | Load Immediate

lis | Rx,value

94 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Imw | RT,D(RA) | Load Multiple Word

Iscbx | RT,RA,RB | Load String and Compare Byte Indexed (601 specific)
Iscbx. | RT,RA,RB

Iswi | RT,RANB | Load String Word Immediate

Iswx | RT,RA,RB | Load String Word Indexed

Ivebx | VT,RA,RB | Load Vector Element Byte Indexed (AltiVec specific)
Ivehx | VT,RARB | Load Vector Element Halfword Indexed (AltiVec specific)
Ivewx | VT,RA,RB | Load Vector Element Word Indexed (AltiVec specific)
Ivsl VT,RA,RB | Load Vector for Shift Left (AltiVec specific)

Ivsr VT,RA,RB | Load Vector for Shift Right (AltiVec specific)

lvx VT,RA,RB | Load Vector Indexed (AltiVec specific)

Ivxl VT,RA,RB | Load Vector Indexed LRU (AltiVec specific)

Iwa | RT,DS(RA)

Load Word Algebraic

lwarx

RT,RA,RB

Load Word and Reserve Indexed

lwaux

RT,RA,RB

Load Word Algebraic with Update Indexed

lwax

RT,RA,RB

Load Word Algebraic Indexed

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

95

96

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Iwbrx | RT,RA,RB | Load Word Byte-Reverse Indexed

Iwsync

Light-Weight Sync Operation

lwz | RT,D(RA) | Load Word and Zero

Iwzu | RT,D(RA) | Load Word and Zero with Update

Iwzux | RT,RA,RB | Load Word and Zero with Update Indexed

lwzx | RT,RA,RB | Load Word and Zero Indexed

M

Operator | Operands | Operation Name

maskg RA,RS,RB | Mask Generate (601 specific)
maskg. RA,RS,RB

maskir | RA,RS,RB | Mask Insert From Register (601 specific)

maskir. | RA,RS,RB

mcrf | CRF,CRF | Move Condition Register Field

mcrf | BEBFA

mcrfs | BEBFA | Move to Condition Register from FPSCR

mcrfs | CRF,BFA

mcrxr | BF

Move to Condition Register from XER

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

mcrxr | CRF

mfcr | RT Move From Condition Register

mfcr | RT,FXM

mfctr | RT | Move From Count Register

mffs | FRT | Move From FPSCR

mffs. | FRT

mfmsr | RT | Move From Machine State Register

mfspr RT,SPR

Move From Special Purpose Register

mfxer Rx

Fixed-Point Exception Register (equiv. to mfspr 1,Rx)

mflr Rx

Link Register (equiv. to mfspr 8,Rx)

mfctr Rx

Count Register (equiv. to mfspr 8,Rx)

mfdsisr | Rx

Data Storage Interrupt Status Register (macro)

mfdar Rx

Data Address Register (macro)

mfdec Rx

Decrementer (macro)

mfear Rx

Move from External Address (Equiv.to mfspr 282, Rx)

mfsdr1 Rx

Storage Description Register 1 (macro)

mfsrrO Rx

Save/Restore Register 0 (macro)

mfsrri Rx

Save/Restore Register 1 (macro)

mfsprg | n,Rx

Special Purpose Register n (macro)

mfasr Rx

Address Space Register (macro)

mfmq Rx

Move from MQ Register (601 Only) (Equiv to mfspr 0, Rx)

mfrtcd Rx

Real Time Clock Divisor (macro)

mfrtcl Rx

Move from Real Time Clock Lower (601 Only) (Equiv. to mfspr 5, Rx)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

97

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

mfrtcu Rx Move from Real Time Clock Upper (601 Only) (Equiv. to mfspr 4, Rx)

mfrtci Rx Real Time Clock Increment (macro)

mfpvr Rx Processor Version Register (macro)

mfibatu | n,Rx IBAT Register n, Upper (macro)

mfibatl | n,Rx IBAT Register n, Lower (macro)

mfdbatu | n,Rx DBAT Register n, Upper (macro)

mfdbatl | n,Rx DBAT Register n, Lower (macro)

mfsr | RT,SR | Move From Segment Register

mfsrin | RT,RB | Move From Segment Register Indirect

mftb | RT Move from Time Base

mftb | RT,TBR

mftbu | RT | Move from Time Base Upper

mfvscr | VT | Move From Vector Status and Control Register (AltiVec specific)

mr | Rx,Ry | Move Register

mr. | Rx,Ry

mtcrf | FXM,RT | Move to Condition Register Fields

mtfsb0 | BT | Move to FPSCR Bit 0

mtfsb0. | BT

mtfsb1 | BT | Move to FPSCR Bit 1

98 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

mtfsb1. | BT

mtfsf | FLM,FRB

Move to FPSCR Fields

mtfsf. | FLM,FRB

mtfsfi | BEU | Move to FPSCR Field Immediate

mtfsfi. | BF,U

mtfs | Rx | Equiv.tomtfsf OxFF,Rx

mtfs. | Rx | Equiv.tomtfsf. OxFF, Rx

mtmsr | RT | Move to Machine State Register

mtmsrd | RA

mtmsrd | RA,L

mtspr SPRRT

Move To Special Purpose Register

mtxer Rx

Fixed-Point Exception Register (equiv. to mtspr 1,Rx)

mtlr Rx

Link Register (equiv. tomtspr 8,Rx)

mtctr Rx

Count Register (equiv. tomtspr 8, Rx)

mtdsisr | Rx

Data Storage Interrupt Status Register (macro)

mtdar Rx

Data Address Register (macro)

mtdec Rx

Decrementer (macro)

mtear Rx

Move to External Address Register (Equiv.to mtspr 282,Rx)

mtsdr1 Rx

Storage Description Register 1 (macro)

mtsrrO Rx

Save/Restore Register 0 (macro)

mtsrr1 Rx

Save/Restore Register 1 (macro)

mtsprg | n,Rx

Special Purpose Register n (macro)

mtasr Rx

Address Space Register (macro)

mtmq Rx

Move to MQ Register (601 Only) (Equiv. to mtspr 0, Rx)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

929

100

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

mtrtcd Rx

Real Time Clock Divisor (macro)

mtrtcl Rx

Move to Real Time Clock Lower (601 Only) (Equiv. to mtspr 21,Rx)

mtrtcu Rx

Move to Real Time Clock Upper (601 Only) (Equiv. to mtspr 20, Rx)

mtrtci Rx

Real Time Clock Increment (macro)

mtibatu | n,Rx IBAT Register n, Upper (macro)

mtibatl | n,Rx IBAT Register n, Lower (macro)

mtdbatu | n,Rx DBAT Register n, Upper (macro)

mtdbatl | n,Rx DBAT Register n, Lower (macro)

mtsr | SR,RT | Move to Segment Register

mtsrin | RT,RB | Move to Segment Register Indirect

mttbu | RB | Move to Time Base Upper (Equiv. to mtspr 285, RB)

mttrbl | RB | Move to Time Base Lower (Equiv. to mtspr 284, RB)

mtvscr | VB | Move To Vector Status and Control Register (AltiVec specific)
mul | RT,RA,RB | Multiply (601 specific)

mul. | RT,RA,RB

mulo | RT,RA,RB

mulo. | RT,RA,RB

mulhd | RT,RA,RB | Multiply High Doubleword

mulhd. | RT,RA,RB

mulhdu | RT,RA,RB | Multiply High Doubleword Unsigned

mulhdu. | RT,RA,RB

PowerPC Assembler Instructions

2009-01-07 | ©

2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

mulhw | RT,RA,RB | Multiply High Word
mulhw. | RT,RA,RB

mulhwu | RT,RA,RB | Multiply High Word Unsigned
mulhwu. | RT,RA,RB

mulld | RT,RA,RB | Multiply Low Doubleword
mulld. | RT,RA,RB

mulldo | RT,RA,RB

mulldo. | RT,RA,RB

mullw RT,RA,RB | Multiply Low

mullw. | RT,RA,RB

mullwo | RT,RA,RB

mullwo. | RT,RA,RB

mulli | RT,RA,SI | Multiply Low Immediate
N

Operator | Operands | Operation Name

nabs RT,RA Negative Absolute (601 specific)
nabs. RT,RA

nabso RT,RA

nabso. RT,RA

nand | RA,RT,RB | NAND

nand. | RA,RT,RB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

101

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

neg | RTRA | Negate

neg. | RT,RA

nego | RT,RA

nego. | RT,RA

nop No-op

nor | RA,RT,RB | Nor

nor. | RA,RT,RB

not | RART | Not

not. | RART

O

Operator | Operands | Operation Name

or RA,RT,RB | OR

or. RA,RT,RB

orc | RART,RB | OR with Complement

orc. | RA,RT,RB

ori | RA,RT,Ul | OR Immediate

oris | RA,RT,Ul | OR Immediate Shifted

102 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

P

Operator

Operands | Operation Name

ptesync

Page Table Entry Synchronize

R

Operator | Operands | Operation Name

rfi Return From Interrupt

rfid Return From Interrupt Doubleword

rldcl | RA,RS,RB,mb | Rotate Left Doubleword then Clear Left

rldcl. | RA,RS,RB,mb

rldcr | RA,RS,RB,mb | Rotate Left Doubleword then Clear Right
rldcr. | RA,RS,RB,mb

rldic | RA,RS,sh,mb | Rotate Left Doubleword Immediate then Clear
rldic. | RA,RS,sh,mb

rldicl | RA,RS,sh,mb | Rotate Left Doubleword Immediate then Clear Left
rldicl. | RA,RS,sh,mb

rldicr | RA,RS,sh,mb | Rotate Left Doubleword Immediate then Clear
rldicr. | RA,RS,sh,mb | Right

rldimi | RA,RS,sh,mb | Rotate Left Doubleword then Mask Insert
rldimi. | RA,RS,sh,mb

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

103

104

CHAPTE

R5

PowerPC Addressing Modes and Assembler Instructions

rimi | RA,RS,RB,MB,ME | Rotate Left then Mask Insert (601 specific)

rlmi. | RA,RS,RB,MB,ME

rlmi | RA,RS,RB,BM | Rotate Left then Mask Insert (601 specific)

rimi. | RA,RS,RB,BM

rlwimi | RA,RS,SH,MB,ME | Rotate Left Word Immediate then Mask Insert
rlwimi. | RA,RS,SH,MB,ME

rlwimi | RA,RS,SH,BM | Rotate Left Word Immediate then Mask Insert

rlwimi. | RA,RS,SH,BM

rlwinm | RA,RS,SH,MB,ME | Rotate Left Word Immediate then AND with Mask
rlwinm. | RA,RS,SH,MB,ME

rlwinm | RA,RS,SH,BM

Rotate Left Word Immediate then AND with Mask

rlwinm. | RA,RS,SH,BM

rlwnm

RA,RS,RB,MB,ME | Rotate Left Word then AND with Mask

rlwnm.

RA,RS,RB,MB,ME

rlwnm

RA,RS,SH,BM

Rotate Left Word then AND with Mask

rlwnm.

RA,RS,SH,BM

rotld

ra,rs,rtb | Macro: r1dicl ra,rs,rb,0

rotld.

ra,rs,rb | Macro: r1dicl. ra,rs,rb,0

rotldi

ra,rs,n | Macro: rl1dicl ra,rs,n,0

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

rotldi. | ra,rs,n | Macro: r1dicl. ra,rs,n,0

rotlw |ra,rs,rb | Macro: rlwnm ra,rs,rb,0,31
rotlw. |ra,rs,rb | Macro: rTwnm. ra,rs,rb,0,31
rotlwi | ra,rs,n | Macro: r1winm ra,rs,n,0,31
rotlwi. | ra,rs,n | Macro: r1winm. ra,rs,n,0,31
rotrdi | ra,rs,n | Macro: r1dicl ra,rs,64-n,0
rotrdi. | ra,rs,n | Macro: r1dicl. ra,rs,64-n,0
rotrwi | ra,rs,n | Macro: r1winm ra,rs,32-n,0,31
rotrwi. | ra,rs,n | Macro: r1winm. ra,rs,32-n,0,31
rrib | RA,RS,RB | Rotate Right and Insert Bit (601 specific)
rrib. | RA,RS,RB

Operator | Operands | Operation Name

e System Call

slbia Segment Lookaside Buffer Invalidate All

slbie | RB | Segment Lookaside Buffer Invalidate Entry

slbmfee | RS,RB

SLB Move From Entry ESID

slbmfev | RS,RB

SLB Move From Entry VSID

slbmte | RS,RB

SLB Move To Entry

sld | RA,RS,RB

Shift Left Doubleword

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

105

106

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

sld. | RA,RS,RB

sldi | ra,rs,n | Macro: r1dicr ra,rs,n,63-n

sldi. | ra,rs,n | Macro: r1dicr. ra,rs,n,63-n

slwi | ra,rs,n | Macro: r1winm ra,rs,n,0,31-n

slwi. | ra,rs,n | Macro: rlwinm. ra,rs,n,0,31-n

sle | RA,RS,RB | Shift Left Extended (601 specific)

sle. | RA,RS,RB

sleq | RA,RS,RB | Shift Left Extended with MQ (601 specific)
sleq. | RA,RS,RB

slig | RA,RS,SH | Shift Left Immediate with MQ (601 specific)
slig. | RA,RS,SH

sllig | RA,RS,SH | Shift Left Long Immediate with MQ (601 specific)
sllig. | RA,RS,SH

sllg | RA,RS,RB | Shift Left Long with MQ (601 specific)

sllg. | RA,RS,RB

slg | RA,RS,RB | Shift Left with MQ (601 specific)

slg. | RA,RS,RB

slw | RA,RS,RB | Shift Left Word

slw. | RA,RS,RB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

srad

RA,RS,RB

Shift Right Algebraic Doubleword

srad.

RA,RS,RB

sradi

RARS,sh

Shift Right Algebraic Doubleword Immediate

sradi.

RA,RS,sh

sraiq

RA,RS,SH

Shift Right Algebraic Immediate with MQ (601 specific)

sraiq.

RA,RS,SH

sraq

RA,RS,RB

Shift Right Algebraic with MQ (601 specific)

srag.

RA,RS,RB

Sraw

RA,RS,RB

Shift Right Algebraic Word

sraw.

RA,RS,RB

srawi

RA,RS,SH

Shift Right Algebraic Word Immediate

srawi.

RA,RS,SH

srd

RA,RS,RB

Shift Right Doubleword

srd.

RA,RS,RB

srdi

ra,rs,n

Macro: r1dicl ra,rs,64-n,n

srdi.

ra,rs,n

Macro: r1dicl. ra,rs,64-n,n

SrWi

ra,rs,n

Macro: r1winm ra,rs,32-n,n,31

Srwi.

ra,rs,n

Macro: r1winm. ra,rs,32-n,n,31

sre

RA,RS,RB | Shift Right Extended (601 specific)

sre.

RA,RS,RB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

107

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

srea | RA,RS,RB | Shift Right Extended Algebraic (601 specific)

srea. | RA,RS,RB

sreq | RA,RS,RB | Shift Right Extended with MQ (601 specific)

sreq. | RA,RS,RB

srig | RA,RS,SH | Shift Right Immediate with MQ (601 specific)

srig. | RA,RS,SH

srlig | RA,RS,SH | Shift Right Long Immediate with MQ (601 specific)

srlig. | RA,RS,SH

srlg | RA,RS,RB | Shift Right Long with MQ (601 specific)

srlg. | RA,RS,RB

srq | RA,RS,RB | Shift Right with MQ (601 specific)

srg. | RA,RS,RB

srw | RA,RS,RB | Shift Right Word

srw. | RA,RS,RB

stb | RT,D(RA) | Store Byte

stbu | RT,D(RA) | Store Byte with Update

stbux | RT,RA,RB | Store Byte with Update Indexed

108 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

stbx | RT,RA,RB | Store Byte Indexed

std | RT,DS(RA) | Store Doubleword

stdex. | RT,RA,RB | Store Doubleword Conditional Indexed

stdu | RT,DS(RA) | Store Doubleword with Update

stdux | RT,RA,RB | Store Doubleword with Update Indexed

stdx | RT,RA,RB | Store Doubleword Indexed

stfd | FRT,D(RA) | Store Floating-Point Double

stfdu | FRT,D(RA) | Store Floating-Point Double with Update

stfdux | FRT,RA,RB | Store Floating-Point Double with Update Indexed

stfdx | FRT,RA,RB | Store Floating-Point Double Indexed

stfiwx | FRT,RA,RB | Store Floating-Point as Integer Word Indexed

stfs | FRT,D(RA) | Store Floating-Point Single

stfsu | FRT,D(RA) | Store Floating-Point Single with Update

stfsux | FRT,RA,RB | Store Floating-Point Single with Update Indexed

PowerPC Assembler Instructions 109
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

stfsx | FRT,RA,RB | Store Floating-Point Single Indexed

sth | RT,D(RA) | Store Halfword

sthbrx | RT,RA,RB | Store Halfword Byte-Reverse Indexed

sthu | RT,D(RA) | Store Halfword with Update

sthux | RT,RA,RB | Store Halfword with Update Indexed

sthx | RT,RA,RB | Store Halfword Indexed

stvebx | VS,RA,RB | Store Vector Element Byte Indexed (AltiVec specific)

stvehx | VS,RA,RB | Store Vector Element Halfword Indexed (AltiVec specific)

stvewx | VS,RA,RB | Store Vector Element Word Indexed (AltiVec specific)

stvx VS,RARB | Store Vector Indexed (AltiVec specific)

stvx| VS,RARB | Store Vector Indexed LRU (AltiVec specific)

stmw | RT,D(RA) | Store Multiple Word

stswi | RT,RANB | Store String Word Immediate

stswx | RT,RA,RB | Store String Word Indexed

stw | RT,D(RA) | Store Word

110 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

stwbrx

RT,RA,RB

Store Word Byte-Reverse Indexed

stwcx.

RT,RA,RB

Store Word Conditional Indexed

stwu

RT,D(RA) | Store Word with Update

stwux

RT,RA,RB

Store Word with Update Indexed

stwx | RT,RA,RB

Store Word Indexed

sub | RT,RB,RA | Equiv.to subf RT,RA,RB
sub. | RT,RB,RA | Equiv.to subf. RT,RA,RB
subo | RT,RB,RA | Equiv.to subfo RT,RA,RB
subo. | RT,RB,RA | Equiv. to subfo. RT,RA,RB
subc | RT,RB,RA | Equiv. to subfc RT,RA,RB
subc. | RT,RB,RA | Equiv.to subfc. RT,RA,RB
subco | RT,RB,RA | Equiv.to subfco RT,RA,RB
subco. | RT,RB,RA | Equiv. to subfco. RT,RA,RB
subf | RT,RA,RB | Subtract From

subf. | RT,RA,RB

subfo | RT,RA,RB

subfo. | RT,RA,RB

subfc | RT,RA,RB | Subtract From Carrying
subfc. | RT,RA,RB

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

m

CHAPTER

5

PowerPC Addressing Modes and Assembler Instructions

subfco | RT,RA,RB

subfco. | RT,RA,RB

subfe | RT,RA,RB | Subtract From Extended

subfe. | RT,RA,RB

subfeo | RT,RA,RB

subfeo. | RT,RA,RB

subfic | RT,RA,SI | Subtract From Immediate Carrying
subfme | RT,RA | Subtract From Minus One Extended

subfme. | RT,RA

subfmeo | RT,RA

subfmeo. | RT,RA

subfze | RT,RA | Subtract From Zero Extended
subfze. | RT,RA

subfzeo | RT,RA

subfzeo. | RT,RA

subi | Rx,Ry,value | Equiv.to addi Rx,Ry,-value

subic

Rx,Ry,value | Equiv.to addic Rx,Ry,-value

subic.

Rx,Ry,value | Equiv.to addic. Rx,Ry,-value

subis

Rx,Ry,value | Equiv.to addis Rx,Ry,-value

sync

Synchronize

sync | L

112 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

T
Operator | Operands | Operation Name
td TO,RA,RB | Trap Doubleword
tdeq RA,RB if equal
tdne RA,RB if not equal
tdgt RA,RB if greater than
tdge RA,RB if greater than or equal
tdng RA,RB if not greater than
tdit RA,RB if less than
tdle RA,RB if less than or equal
tdnl RA,RB if not less than
tdigt RA,RB if logically greater than
tdige RA,RB if logically greater than or equal
tding RA,RB if logically not greater than
tdllt RA,RB if logically less than
tdlle RA,RB if logically less than or equal
tdinl RA,RB if logically not less than
tdi TO,RA,SI | Trap Doubleword Immediate
tdeqi | RASI if equal
tdnei | RASI if not equal
tdgti | RA,SI if greater than
tdgei | RASI if greater than or equal
tdngi | RA,SI if not greater than
tdlti RA,SI if less than
tdlei | RA,SI if less than or equal
tdnli | RA,SI if not less than
tdigti | RA,SI if logically greater than

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

13

14

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

tdlgei | RA,SI if logically greater than or equal
tdingi | RA,SI if logically not greater than

tdllti | RA,SI if logically less than

tdllei | RA,SI if logically less than or equal
tdinli | RA,SI if logically not less than

tlbia | | Translation Lookaside Buffer Invalidate All
tlbie | RB | Translation Lookaside Buffer Invalidate Entry
tlbie | RB.L

tlbiel | RB | Translation Lookaside Buffer Invalidate Entry Local
tibld | RB | Load Data TLB Entry (603 specific)

tibli | RB | Load Instruction TLB Entry (603 specific)
tlbsync | | TLB Synchronize

trap | | Trap Unconditionally

tw TO,RA,RB | Trap Word

tweq | RARB if equal

twne | RA,RB if not equal

twgt | RARB if greater than

twge | RARB if greater than or equal

twng | RARB if not greater than

twlt | RA,RB if less than

twle | RARB if less than or equal

twnl | RA,RB if not less than

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

twigt | RA,RB if logically greater than
twlge | RARB if logically greater than or equal
twing | RA,RB if logically not greater than
twllt | RARB if logically less than
twlle | RARB if logically less than or equal
twinl | RARB if logically not less than
twi TO,RA,SI | Trap Word Immediate
tweqi | RA,RB if equal
twnei | RA,RB if not equal
twgti | RARB if greater than
twgei | RARB if greater than or equal
twngi | RA,RB if not greater than
twlti | RARB if less than
twlei | RA,RB if less than or equal
twnli | RA,RB if not less than
twlgti | RA,RB if logically greater than
twlgei | RA,RB if logically greater than or equal
twingi | RA,RB if logically not greater than
twllti | RA,RB if logically less than
twllei | RA,RB if logically less than or equal
twinli | RA,RB if logically not less than

Vv
Operator Operands | Operation Name
vaddcuw VT,VA,VB Vector Add Carry-out Unsigned Word (AltiVec specific)
vaddfp VT,VA VB Vector Add Float (AltiVec specific)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

115

116

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vaddsbs VT,VA,VB Vector Add Signed Byte Saturate (AltiVec specific)
vaddshs VT,VA,VB Vector Add Signed Halfword Saturate (AltiVec specific)
vaddsws VTVA,VB Vector Add Signed Word Saturate (AltiVec specific)
vaddubm VT,VA,VB Vector Add Unsigned Byte Modulo (AltiVec specific)
vaddubs VT,VA,VB Vector Add Unsigned Byte Saturate (AltiVec specific)
vadduhm VT,VA,VB Vector Add Unsigned Halfword Modulo (AltiVec specific)
vadduhs VT,VA,VB Vector Add Unsigned Halfword Saturate (AltiVec specific)
vadduwm VT,VA,VB Vector Add Unsigned Word Modulo (AltiVec specific)
vadduws VT,VA,VB Vector Add Unsigned Word Saturate (AltiVec specific)
vand VT,VA,VB Vector Logical AND (AltiVec specific)

vandc VT,VA,VB Vector Logical AND with Complement (AltiVec specific)
vmaddfp VT,VAVCVB | Vector Multiply-Add Float (AltiVec specific)

vavgsb VT,VA,VB Vector Average Signed Byte (AltiVec specific)

vavgsh VT,VA,VB Vector Average Signed Halfword (AltiVec specific)
vavgsw VT,VA,VB Vector Average Signed Word (AltiVec specific)

vavgub VT,VA,VB Vector Average Unsigned Byte (AltiVec specific)

vavguh VT,VA,VB Vector Average Unsigned Halfword (AltiVec specific)
vavguw VT,VA,VB Vector Average Unsigned Word (AltiVec specific)

vcfsx VT,VB,UIM Vector Convert From Signed fiXed-point word (AltiVec specific)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vcfux VTVB,UIM Vector Convert From Unsigned fiXed-point word (AltiVec specific)
vempbfp VT,VA,VB Vector Compare Bounds Float [Record] (AltiVec specific)

vempbfp. VT,VA,VB

vcmpeqfp VTVA VB Vector Compare Equal-To Float [Record] (AltiVec specific)

vcmpeqfp. | VT,VA,VB

vcmpequb | VT,VA,VB Vector Compare Equal-To Unsigned Byte [Record] (AltiVec specific)
vcmpequb. | VT,VA,VB

vcmpequh | VT,VA,VB Vector Compare Equal-To Unsigned Halfword [Record] (AltiVec specific)
vcmpequh. | VT,VA,VB

vcmpequw | VT,VA,VB Vector Compare Equal-To Unsigned Word [Record] (AltiVec specific)
vcmpequw. | VT,VA,VB

vcmpgefp VT,VA,VB Vector Compare Greater-Than-or-Equal-To Float [Record] (AltiVec specific)
vcmpgefp. | VT,VA,VB

vempgtfp VT,VA,VB Vector Compare Greater-Than Float [Record] (AltiVec specific)

vempgtfp. VTVA,VB

vcmpgtsb VT,VA,VB Vector Compare Greater-Than Signed Byte [Record] (AltiVec specific)
vcmpgtshb. VT,VA,VB

vcmpgtsh VT,VA,VB Vector Compare Greater-Than Signed Halfword [Record] (AltiVec specific)
vcmpgtsh. VT,VA,VB

vempgtsw | VI,VA,VB Vector Compare Greater-Than Signed Word [Record] (AltiVec specific)
vcmpgtsw. VT,VA,VB

vcmpgtub VT,VA,VB Vector Compare Greater-Than Unsigned Byte [Record] (AltiVec specific)
PowerPC Assembler Instructions n7z

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

118

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vcmpgtub. | VT,VA,VB

vcmpgtuh VT,VA,VB Vector Compare Greater-Than Unsigned Halfword [Record] (AltiVec specific)

vcmpgtuh. | VT,VA,VB

vcmpgtuw | VT,VA,VB Vector Compare Greater-Than Unsigned Word [Record] (AltiVec specific)

vcmpgtuw. | VT,VA,VB

vctsxs VT,VB,UIM | Vector Convert To Signed fiXed-point word Saturate (AltiVec specific)

vctuxs VT,VB,UM Vector Convert To Unsigned fiXed-point word Saturate (AltiVec specific)

vexptefp VT,VB Vector 2 Raised to the Exponent Estimate Float (AltiVec specific)

vlogefp VT,VB Vector Log 2 Estimate Float (AltiVec specific)

vmaxfp VT,VA,VB Vector Maximum Float (AltiVec specific)

vmaxsb VT,VA,VB Vector Maximum Signed Byte (AltiVec specific)

vmaxsh VT,VA,VB Vector Maximum Signed Halfword (AltiVec specific)

vmaxsw VT,VA,VB Vector Maximum Signed Word (AltiVec specific)

vmaxub VT,VA,VB Vector Maximum Unsigned Byte (AltiVec specific)

vmaxuh VT,VA,VB Vector Maximum Unsigned Halfword (AltiVec specific)

vmaxuw VT,VA,VB Vector Maximum Unsigned Word (AltiVec specific)

vmhaddshs | VT,VA,VBVC | Vector Multiply-High and Add Signed Halfword Saturate (AltiVec specific)

vmhraddshs | VT,VA,VBVC | Vector Multiply-High Round and Add Signed Halfword Saturate (AltiVec
specific)

vminfp VT,VA,VB Vector Minimum Float (AltiVec specific)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vminsb VT,VA,VB Vector Minimum Signed Byte (AltiVec specific)

vminsh VT,VA,VB Vector Minimum Signed Halfword (AltiVec specific)

vminsw VT,VA,VB Vector Minimum Signed Word (AltiVec specific)

vminub VT,VA,VB Vector Minimum Unsigned Byte (AltiVec specific)

vminuh VT,VA,VB Vector Minimum Unsigned Halfword (AltiVec specific)

vminuw VT,VA,VB Vector Minimum Unsigned Word (AltiVec specific)

vmladduhm | VT,VA,VB,VC | Vector Multiply-Low and Add Unsigned Halfword Modulo (AltiVec specific)
vmr VT,VS Vector Move Register (AltiVec specific)

vmrghb VT,VA,VB Vector Merge High Byte (AltiVec specific)

vmrghh VT,VA,VB Vector Merge High Halfword (AltiVec specific)

vmrghw VT,VA,VB Vector Merge High Word (AltiVec specific)

vmrglb VT,VA VB Vector Merge Low Byte (AltiVec specific)

vmrglh VT\VA,VB Vector Merge Low Halfword (AltiVec specific)

vmrglw VT,VA,VB Vector Merge Low Word (AltiVec specific)

vrsqrtefp VT,VB Vector Reciprocal Square Root Estimate Float (AltiVec specific)
vmsummbm | VT,VA,VB,VC | Vector Multiply-Sum Mixed-sign Byte Modulo (AltiVec specific)
vmsumshm | VT,VA,VBVC | Vector Multiply-Sum Signed Halfword Modulo (AltiVec specific)
vmsumshs VTVAVBVC | Vector Multiply-Sum Signed Halfword Saturate (AltiVec specific)
vmsumubm | VT,VA,VB,VC | Vector Multiply-Sum Unsigned Byte Modulo (AltiVec specific)

PowerPC Assembler Instructions

19

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

120

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vmsumuhm | VT,VA,VB,VC | Vector Multiply-Sum Unsigned Halfword Modulo (AltiVec specific)
vmsumuhs | VT,VA,VBVC | Vector Multiply-Sum Unsigned Halfword Saturate (AltiVec specific)
vmulesb VT,VA,VB Vector Multiply Even Signed Byte (AltiVec specific)

vmuleub VT,VA,VB Vector Multiply Even Unsigned Byte (AltiVec specific)

vmulesh VT,VA,VB Vector Multiply Even Signed Halfword (AltiVec specific)

vmuleuh VT,VA,VB Vector Multiply Even Unsigned Halfword (AltiVec specific)
vmulosb VT,VA,VB Vector Multiply Odd Signed Byte (AltiVec specific)

vmuloub VT,VA,VB Vector Multiply Odd Unsigned Byte (AltiVec specific)

vmulosh VT,VA,VB Vector Multiply Odd Signed Halfword (AltiVec specific)

vmulouh VT,VA,VB Vector Multiply Odd Unsigned Halfword (AltiVec specific)
vnmsubfp VTVAVCVB | Vector Negative Multiply-Subtract Float (AltiVec specific)

vnor VT,VA VB Vector Logical NOR (AltiVec specific)

vnot VT,VS Vector Logical Complement (AltiVec specific)

vor VT,VA,VB Vector Logical OR (AltiVec specific)

vperm VT,VA,VB,VC | Vector Permute (AltiVec specific)

vpkpx VT,VA,VB Vector Pack Pixel32 (AltiVec specific)

vpkshss VT,VA VB Vector Pack Signed Halfword Signed Saturate (AltiVec specific)
vpkshus VT,VA,VB Vector Pack Signed Halfword Unsigned Saturate (AltiVec specific)
vpkswss VT,VA,VB Vector Pack Signed Word Signed Saturate (AltiVec specific)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name
vpkswus VT,VA,VB Vector Pack Signed Word Unsigned Saturate (AltiVec specific)
vpkuhum VT,VA,VB Vector Pack Unsigned Halfword Unsigned Modulo (AltiVec specific)
vpkuhus VT,VA,VB Vector Pack Unsigned Halfword Unsigned Saturate (AltiVec specific)
vpkuwum VT,VA,VB Vector Pack Unsigned Word Unsigned Modulo (AltiVec specific)
vpkuwus VT,VA,VB Vector Pack Unsigned Word Unsigned Saturate (AltiVec specific)
vrefp VT,VB Vector Reciprocal Estimate Float (AltiVec specific)
vrfim VT,VB Vector Round to Floating-Point Integer toward Minus infinity (AltiVec specific)
vrfin VT,VB Vector Round to Floating-Point Integer Nearest (AltiVec specific)
vrfip VT,VB Vector Round to Floating-Point Integer toward Positive infinity (AltiVec specific)
vrfiz VT,VB Vector Round to Floating-Point Integer toward Zero (AltiVec specific)
vrlb VT,VA,VB Vector Rotate Left Integer Byte (AltiVec specific)
vrih VT,VA VB Vector Rotate Left Integer Halfword (AltiVec specific)
vriw VT,VA,VB Vector Rotate Left Integer Word (AltiVec specific)
vsel VT,VA,VB,VC | Vector Conditional Select (AltiVec specific)
vsl VT,VA,VB Vector Shift Left (AltiVec specific)
vslb VT,VA,VB Vector Shift Left Integer Byte (AltiVec specific)
vsldoi VT,VAVB,SH | Vector Shift Left Double by Octet Immediate (AltiVec specific)
vslh VT,VA,VB Vector Shift Left Integer Halfword (AltiVec specific)
vslo VT,VA,VB Vector Shift Left by Octet (AltiVec specific)
PowerPC Assembler Instructions 121

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

122

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vslw VT\VA,VB Vector Shift Left Integer Word (AltiVec specific)

vspltb VT,VB,UIM Vector Splat Byte (AltiVec specific)

vsplth VTVB,UIM | Vector Splat Halfword (AltiVec specific)

vspltisb VT,SIM Vector Splat Immediate Signed Byte (AltiVec specific)
vspltish VT,SIM Vector Splat Immediate Signed Halfword (AltiVec specific)
vspltisw VT,SIM Vector Splat Immediate Signed Word (AltiVec specific)
vspltw VT,VB,UIM Vector Splat Word (AltiVec specific)

vsr VT\VA,VB Vector Shift Right (AltiVec specific)

vsrab VT,VA,VB Vector Shift Right Algebraic Byte (AltiVec specific)

vsrah VT,VA,VB Vector Shift Right Algebraic Halfword (AltiVec specific)
vsraw VT,VA,VB Vector Shift Right Algebraic Word (AltiVec specific)

vsrb VT,VA,VB Vector Shift Right Byte (AltiVec specific)

vsrh VT\VA,VB Vector Shift Right Halfword (AltiVec specific)

VSro VT,VA,VB Vector Shift Right by Octet (AltiVec specific)

VSrw VT,VA,VB Vector Shift Right Word (AltiVec specific)

vsubcuw VT,VA,VB Vector Subtract & write Carry-out Unsigned Word (AltiVec specific)
vsubfp VT,VA,VB Vector Subtract Float (AltiVec specific)

vsubsbs VT,VA,VB Vector Subtract Signed Byte Saturate (AltiVec specific)
vsubshs VT,VA,VB Vector Subtract Signed Halfword Saturate (AltiVec specific)

PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

Operator Operands | Operation Name

vsubsws VT,VA,VB Vector Subtract Signed Word Saturate (AltiVec specific)

vsububm VT,VA,VB Vector Subtract Unsigned Byte Modulo (AltiVec specific)

vsububs VT,VA,VB Vector Subtract Unsigned Byte Saturate (AltiVec specific)

vsubuhm VT,VA,VB Vector Subtract Unsigned Halfword Modulo (AltiVec specific)

vsubuhs VT,VA,VB Vector Subtract Unsigned Halfword Saturate (AltiVec specific)

vsubuwm VT,VA,VB Vector Subtract Unsigned Word Modulo (AltiVec specific)

vsubuws VT,VA,VB Vector Subtract Unsigned Word Saturate (AltiVec specific)

VSUMSWS VT,VA,VB Vector Sum Across Signed Word Saturate (AltiVec specific)

VSUM2SWS VT,VA,VB Vector Sum Across Partial (1/2) Signed Word Saturate (AltiVec specific)

vsum4sbs VT,VA,VB Vector Sum Across Partial (1/4) Signed Byte Saturate (AltiVec specific)

vsum4shs VT,VA VB Vector Sum Across Partial (1/4) Signed Halfword Saturate (AltiVec specific)

vsum4ubs VT,VA,VB Vector Sum Across Partial (1/4) Unsigned Byte Saturate (AltiVec specific)

vupkhpx VT,VB Vector Unpack High Pixel16 (AltiVec specific)
vupkhsb VT,VB Vector Unpack High Signed Byte (AltiVec specific)
vupkhsh VT,VB Vector Unpack High Signed Halfword (AltiVec specific)
vupklsb VT,VB Vector Unpack Low Signed Byte (AltiVec specific)
vupklpx VTVB Vector Unpack Low Pixel16 (AltiVec specific)
vupklsh VT,VB Vector Unpack Low Signed Halfword (AltiVec specific)
vXor VT,VA,VB Vector Logical XOR (AltiVec specific)
PowerPC Assembler Instructions 123

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

PowerPC Addressing Modes and Assembler Instructions

X

Operator | Operands | Operation Name

xor RA,RT,RB | XOR

XOr. RA,RT,RB

xori | RA,RT,Ul | XOR Immediate

xoris | RA,RT,Ul | XOR Immediate Shifted

124 PowerPC Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

1386 Addressing Modes and Assembler
Instructions

Important: This is a preliminary section. It has not been updated with the latest revisions to the i386
addressing modes and instructions. While most of the information is technically accurate, the document is
incomplete and is subject to change.You can check http://developer.apple.com/ for information about
updates to this and other developer documents. To receive notification of documentation updates, you can
sign up for a free Apple Developer Connection Online membership and receive the biweekly ADC News
e-mail newsletter. (See http://developer.apple.com/membership/ for more details about ADC membership.)

This chapter contains information specific to the Intel i386 processor architecture, which includes the i386,
i486, and Pentium processors. The first section, “i386 Registers and Addressing Modes” (page 125), lists the
registers available and describes the addressing modes used by assembler instructions. The second section,
"i386 Assembler Instructions” (page 129), lists each assembler instruction with Mac OS X assembler syntax.

Note: Don't confuse the i386 architecture with the i386 processor. Darwin makes use of instructions specific
to the i486 and Pentium processors, and will not run on an i386 processor.

i386 Registers and Addressing Modes

This section describes the conventions used to specify addressing modes and instruction mnemonics for the
Intel i386 processor architecture. The instructions themselves are detailed in the next section, “i386 Assembler
Instructions” (page 129).

Instruction Mnemonics

The instruction mnemonics that the assembler uses are based on the mnemonics described in the relevant
Intel processor manuals.

Note: The Mac OS X assembler for Intel i386 processors always produces branch instructions that are long
(32 bits) for non-local labels. This allows the link editor to do procedure ordering (seethe description of the
-sectorder option in the 1d(1) man page).

Registers

Many instructions accept registers as operands. The available registers are listed in this section. The Mac OS
X assembiler for Intel i386 processors always uses names beginning with a percent sign (‘%) for registers, so
naming conflicts with identifiers aren’t possible; further, all register names are in lowercase letters.

i386 Registers and Addressing Modes 125
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

http://developer.apple.com/
http://developer.apple.com/membership

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

General Registers

Each of the 32-bit general registers of the i386 architecture are accessible by different names, which specify
parts of that register to be used. For example, the AX register can be accessed as a single byte (%ah or %eal),
a 16-bit value (%ax), or a 32-bit value (%eax). The figure below shows the names of these registers and their
relation to the full 32-bit storage for each register:

Figure 6-1 Register Names in the 32-bit i386 architecture

high-byte low-byte 16-bit 32-bit default use
Y%ah Y%al YoaX Yoeax accumulator
%dh %dl Yodx Yoedx data
Y%ch Yocl %6oCX YoeCX count
Y%bh Yobl Yobx Yebx base
Yobp Y%ebp frame base pointer
%Si %oesi source index
Yodi Yoedi destination index
%sp Y%oesp stack pointer
31 16/15 8|7 0
Floating-Point Registers
Register
st
5st(0)=%st(7)
Segment Registers
Register | Description
%Cs code segment register
%Ss stack segment register
%ds data segment register
%es data segment register (string operation destination segment)
s data segment register
%9s data segment register
126 i386 Registers and Addressing Modes

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Other Registers

Register Description

%scr0-%cr3 control registers

%db0-%db7 debug registers

htr3-%tr7 test registers

»mmO0-%mm?7 MMX registers

sxmm0-%xmm7 | XMM registers

Operands and Addressing Modes

The 1386 architecture uses four kinds of instruction operands:

m Register
= Immediate
m Direct Memory

= Indirect Memory

Each type of operand corresponds to an addressing mode. Register operands specify that the value stored
in the named register is to be used by the operator. Immediate operands are constant values specified in
assembler code. Direct memory operands are the memory location of labels, or the value of a named register
treated as an address. Indirect memory operands are calculated at run time from the contents of registers
and optional constant values.

Register Operands

A register operand is given simply as the name of a register. It can be any of the identifiers beginning with
‘%’ listed above; for example, %eax. When an operator calls for a register operand of a particular size, the
operand is listed as r8, r16, or r32.

Immediate Operands

Immediate operands are specified as numeric values preceded by a dollar sign (‘$’). They are decimal by
default, but can be marked as hexadecimal by beginning the number itself with ‘0x’ Simple calculations are
allowed if grouped in parentheses. Finally, an immediate operand can be given as a label, in which case its
value is the address of that label. Here are some examples:

$100

$0x5fec4

$(10*6) # calculated by the assembler

$begloop

Operands and Addressing Modes 127

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

128

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

A reference to an undefined label is allowed, but that reference must be resolved at link time.

Direct Memory Operands

Direct memory operands are references to labels in assembler source. They act as static references to a single
location in memory relative to a specific section, and are resolved at link time. Here's an example:

.data
var: .byte 0 J# declare a byte-size variable Tabelled "var
.text

movb %al,var 4 move the low byte of the AX register into the
memory location specified by "var"

By default, direct memory operands use the %ds segment register. This can be overridden by prefixing the
operands with the segment register desired and a colon:

movb %es:%al,var 4 move the low byte of the AX register into the
memory location in the segment given by %es
and "var"

Note that the segment override applies only to the memory operands in an instruction; “var” is affected, but
not %a1l. The string instructions, which take two memory operands, use the segment override for both. A
less common way of indicating a segment is to prefix the operator itself:

es/movb %al,%var 4 same as above

Indirect Memory Operands

Indirect memory operands are calculated from the contents of registers at run time. An indirect memory
operand can contain a base register, and index register, a scale, and a displacement. The most general form
is:

displacement (base_register,index_register,scale)

displacement is an immediate value. The base and index registers may be any 32-bit general register names,
except that %esp can’t be used as an index register. scale must be 1, 2, 4, or 8; no other values are allowed.
The displacement and scale can be omitted, but at least one register must be specified. Also, if items from
the end are omitted, the preceding commas can also be omitted, but the comma following an omitted item
must remain:

10(%eax,%edx)
(%eax)
12(,%ecx,2)
12(,%ecx)

The value of an indirect memory operand is the memory location given by the contents of the register,
relative to a segment’s base address. The segment register used is %ss when the base register is %ebp or
%esp, and %ds for all other base registers. For example:

movl (%eax),%edx # default segment register here is %ds

Operands and Addressing Modes
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

The above assembler instruction moves 32 bits from the address given by %eax into the %edx register. The
address %eax is relative to the %ds segment register. A different segment register from the default can be

specified by prefixing the operand with the segment register name and a colon (*'):

movl %es:(%eax),%edx

A segment override can also be specified as an operator prefix:

es/mov]

(%heax),%edx

i386 Assembler Instructions

Note the following points about the information contained in this section:

= Name is the name that appears in the upper left corner of a page in the Intel manuals.

= Operation Name isthe name that appears after the operator name in the Intel manuals. Processor-specific
instructions are marked as they occur.

m The form of operands is that used in Intel's 486 Microprocessor Programmer’s Reference Manual.

m The order of operands is source -> destination, the opposite of the order in Intel’s manuals.

Name | Operator

Operand | Operation Name

aaa aaa ASCII Adjust after Addition
aad | aad | | ASCIl Adjust AX before Division

aam | aam | | ASCIl Adjust AX after Division

aas | aas | | ASCII Adjust AL after Subtraction

adc | adc

$imm8,r/m8

Add with Carry

adc

Simm16,r/m16

adc

$imm32,r/m32

adc

Simm8,r/m16

i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

129

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

adc | Simm8,r/m32

adc | r8,r/m8

adc | r16,r/m16

adc | r32,r/m32

adc | r/m8,r8

adc | r/mi6,ri6

adc | /m32,r32

add | add | $imm8,r/m8 Add

add | $imm16,r/m16

add | $imm32,r/m32

add | $imm8,r/m16

add | $imm8,r/m32

add | r8,r/m8

add | r16,r/mi16

add | r32,r/m32

add | r/m8,r8

add | r/m16,ri6

add | /m32,r32

and | and | $imm8,r/m8 Logical AND

and | $imm16,r/m16

and | $imm32,r/m32

and | $imm8,r/m16

and | Simm8,r/m32

and | r8,r/m8

and | r16,r/m16

and | r32,r/m32

130 i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

and | r/m8,r8

and | r/m16,r16

and | /m32,r32

arpl | arpl | r16,//m16 | Adjust RPL Field of Selector

Name | Operator | Operand Operation Name

bound | bound m16&16,r16 | Check Array Index Against Bounds

bound m32&32,r32

bsf | bsf | /m16,r16 | Bit Scan Forward

bsf | r/m32,ri6

bsr | bsr | r/m16,r16 | Bit Scan Reverse

bsr | r/m32,ri6

bswap | bswap | r32 | Byte Swap (i486-specific)

bt | bt | ri6,r/mi6 Bit Test

bt | r32,r/m32

bt | $imm8,r/m16

bt | $imm8,r/m32

btc | btc | r16,r/m16 Bit Test and Complement

btc | r32,/m32

btc | $imm8,r/m16

i386 Assembler Instructions 131
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

132

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

btc

$imm8,r/m32

btr | btr

ri6,r/mi6

Bit Test and Reset

btr

r32,r/m32

btr

Simm8,r/m16

btr

$imm8,r/m32

bts | bts

r16,r/m16

Bit Test and Set

bts

r32,r/m32

bts

Simm8,r/m16

bts

$Simm8,r/m32

Name | Operator | Operand Operation Name
call call rel16 Call Procedure

call r/milé6

call ptr16:16

call m16:16

call rel32

call r/m32

Icall $imm16,5imm32

Icall mi6

Icall m32
cbw cwde | cbw Convert Byte to Word

cwde | | Convert Word to Doubleword

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

clc| clc | | Clear Carry Flag

cld | cld | | Clear Direction Flag

cli| cli| | Clear Interrupt Flag

clts | clts | | Clear Task-Switched Flag inCRO

cmc | cmc | | Complement Carry Flag

cmp | cmp | Simm8,1/m8 Compare Two Operands

cmp | Simm16,r/m16

cmp | $imm32,r/m32

cmp | Simm8,r/m16

cmp | $imm8,r/m32

cmp | r8,r/m8

cmp | r16,1/m16

cmp | r32,r/m32

cmp | r/m8,r8

cmp | r/mi16,r16

cmp | r/m32,r32

cmps cmpsb cmpsw cmpsd

Compare String Operands

cmps m8,m8
cmps mil6,m16
cmps m32,m32
cmpsb

cmpsw

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

133

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

cmpsd

(optional forms with segment override)

cmpsb %seg:0(%esi),%es:0(%edi)
cmpsw %seqg:0(%esi),kes:0(%edi)
cmpsd %seg:0(%esi),%es:0(%edi)

cmpxchg | cmpxchg | r8,/m8 | Compare and Exchange (i486-specific)

cmpxchg | r16,r/mi16

cmpxchg | r32,r/m32

cmpxchg8b | cmpxchg8b | m32 | Compare and Exchange 8 Bytes (Pentium-specific)

cpuid | cpuid | | CPU Identification (Pentium-specific)

cwd cdqg | cwd | | Convert Word to Doubleword/

cdq Convert Doubleword to Quadword

Name | Operator | Operand | Operation Name

daa daa Decimal Adjust AL after Addition

das | das | | Decimal Adjust AL after Subtraction

dec | dec | /m8 | Decrement by 1
dec | r/m16
dec | r/m32
dec | ri6
134 i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

dec | r32

div | div | ¥/m8,%al

Unsigned Divide

div

r/m16,%ax

div

r/m32,%eax

Name

Operator

Operand

Operation Name

enter

enter

Simm16,5imm8 | Make Stack Frame for Procedure Parameters

Name

Operator

Operand

Operation Name

f2xm1

f2xm1

Computer 2x-1

fabs

fabs | | Absolute Value

fadd faddp fiadd

Add

fadd | m32real

fadd | mé64real

fadd | ST(i),ST

fadd | ST,ST(i)

faddp | ST,ST(i)

fadd

fiadd | m32int

fiadd | mieint

fbld

fbld | m80dec

Load Binary Coded Decimal

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

135

136

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

fbstp

fbstp | m80dec | Store Binary Coded Decimal and Pop

fchs

fchs | | Change Sign

fclex fnclex | fclex

Clear Exceptions

fnclex

fcom

fcomp fcompp

Compare Real

fcom m32real

fcom mé64real

fcom ST(i)

fcom

fcomp | m32real

fcomp | m64real

fcomp | ST(i)

fcomp

fcompp

fcos

fcos Cosine

fdecstp | fdecstp

Decrement Stack-Top Pointer

fdiv fdivp fidiv

Divide

fdiv | m32real

fdiv | mé4real

fdiv | ST(i),ST

fdiv | ST,ST(i)

fdivp | ST,ST()

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

fdiv
fidiv | m32int
fidiv | mi6int
fdivr fdivpr fidivr Reverse Divide

fdivr | m32real

fdivr | mé64real

fdivr | ST(i),ST

fdivr | ST,ST(i)

fdivrp | ST,ST(i)

fdivr

fidivr | m32int

fidivr | mieint

ffree | ffree | ST(i) | Free Floating-Point Register

ficom ficomp Compare Integer

ficom | miéreal

ficom | m32real

ficomp | mi6int

ficomp | m32int

fild | filds | mi6int | Load Integer

fildl | m32int

fildg | mé64int

fincstp | fincstp | | Increment Stack-Top Pointer

i386 Assembler Instructions 137
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

finit fninit | finit Initialize Floating-Point Unit

fninit

fist fistp | fists | m16int | Store Integer

fistl m32int

fistps | mi6int

fistpl | m32int

fistpq | mé4int

fild | flds | m32real | Load Real

fldl | mé64real

fldt | m80real

fid | ST()

fld1 fldi2t fld12e fldpi fldlg2 gldIn2 fldz | Load Constant

fld1

fld2t

fld2e

fidpi

fldlg2

fldin2

fldz

fldcw | fldew | m2byte | Load Control Word

fldenv | fldenv | m14/28byte | Load FPU Environment

fmul fmulp fimul Multiply

138 i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

fmul | m32real

fmul | mé64real

fmul | ST(i),ST

fmul | ST(i),ST

fmulp | ST,ST(i)

fmul

fimul | m32int

fimul | mi6int
fnop | fnop | | No Operation
fpatan | fpatan | | Partial Arctangent
fprem | fprem | | Partial Remainder
fprem1 | fprem1 Partial Remainder
fptan | fptan | | Partial Tangent
frndint | frndint | | Round to Integer
frstor | frstor | m94/108byte | Restore FPU State

fsave fnsave

Store FPU State

fsave

m94/108byte

fnsave

m94/108byte

i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

139

140

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

fscale | fscale

Scale

fsin | fsin Sine

fsincos | fsincos Sin

e and Cosine

fsqrt | fsqrt

Square

Root

fst fstp | fst

m32real

Store Real

fst

mé64real

fst

ST(i)

fstp

m32real

fstp

mé64real

fstp

m80real

fstp

ST(i)

fstcw fnstcw

Store Control Word

fstcw | m2byte

fnstcw | m2byte

fstenv fnstenv

Store FPU Environment

fstenv

m14/28byte

fnstenv

m14/28byte

fstsw fnstsw

Store Status Word

fstsw | m2byte

fstsw | %ax

fnstsw | m2byte

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

fnstsw | %ax

fsub fsubp fisub

Subtract

fsub

m32real

fsub

mé64real

fsub

ST(),ST

fsub

ST,ST(i)

fsubp

ST,ST(i)

fsub

fisub

m32int

fisub

m1léint

fsubr fsubpr fisubr

Reverse Subtract

fsubr

m32real

fsubr

mé64real

fsubr

ST(i),ST

fsubr

ST,ST(i)

fsubpr

ST,ST(i)

fsubr

fisubr

m32int

fisubr

m1l6int

ftst

ftst

Test

fucom fucomp fucompp

Unordered Compare Real

fucom ST(i)
fucom
fucomp | ST(i)

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

111

142

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

fucomp
fucompp
fwait | fwait | | Wait
fxam | fxam | | Examine
fxch | fxch | ST(i) | Exchange Register Contents
fxch
fxtract | fxtract | | Extract Exponent and Significand
fyl2x | fyl2x | | Compute y ¥ log2x
fyl2xp1 | fyl2xp1 Compute y ¥ log2(x+1)
H
Name | Operator | Operand | Operation Name
hit hit Halt
I
Name | Operator | Operand Operation Name
idiv idiv r/m8 Signed Divide
idiv r/m16,%ax
idiv r/m32,%eax
imul | imul | /m8 Signed Multiply

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

imul | /m16

imul | Y/m32

imul | /m16,ri6

imul | r/m32,r32

imul | $imm8,r/m16,r16

imul | $imm8,r/m32,r32

imul | $imm8,ri6

imul | $imm8,r32

imul | $imm16,r/m16,r16

imul | $imm32,r/m32,r32

imul | $imm16,r16

imul | $imm32,r32

in|in | $imm8,%al Input from Port

in | Simm8,%ax

in | $imm8,%eax

in| %2dx,%al

in| %2dx,%ax

in | Zdx,%eax

inc | inc | /m8 | Increment by 1

inc | r/mi6

inc | /m32

inc| rié

inc | r32

ins insb insw insd | Input from Port to String

ins

i386 Assembler Instructions 143
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

insb

insw

insd

nt |3

int into

Call to Interrupt Procedure

int | Simm8

into

invd | invd Invalidate Cache (i486-specific)

invlpg | invlpg | m

Invalidate TLB Entry (i486-specific)

iretiretd | iret

Interrupt Return

iretd

Name | Operator | Operand | Operation Name

jcc Jump if Condition is Met
ja rel8 short if above
jae rel8 short if above or equal
jb rel8 short if below
jbe rel8 short if below or equal
jc rel8 short if carry
joxz rel8 short if %cx registeris 0
jecxz rel8 short if ecx register is 0
je rel8 short if equal
jz rel8 short if 0

144 i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Name | Operator | Operand | Operation Name
jg rel8 short if greater
jge rel8 short if greater or equal
jl rel8 short if less
jle rel8 short if less or equal
jna rel8 short if not above
jnae rel8 short if not above or equal
jnb rel8 short if not below
jnbe rel8 short if not below or equal
jnc rel8 short if not carry
jne rel8 short if not equal
jng rel8 short if not greater
jnge rel8 short if not greater or equal
jnl rel8 short if not less
jnle rel8 short if not less or equal
jno rel8 short if not overflow
jnp rel8 short if not parity
jns rel8 short if not sign
jnz rel8 short if not 0
jo rel8 short if overflow
jp rel8 short if parity
jpe rel8 short if parity even
jpo rel8 short if parity odd
js rel8 short if sign
jz rel8 short if zero
ja rel16/32 | near if above
jae rel16/32 | near if above or equal
jb rel16/32 | near if below

i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

145

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Name | Operator | Operand | Operation Name
jbe rel16/32 | near if below or equal
jc rel16/32 | near if carry
je rel16/32 | near if equal
jz rel16/32 | nearif 0
jg rel16/32 | near if greater
jge rel16/32 | near if greater or equal
jl rel16/32 | near if less
jle rel16/32 | near if less or equal
jna rel16/32 | near if not above
jnae rel16/32 | near if not above or equal
jnb rel16/32 | near if not below
jnbe rel16/32 | near if not below or equal
jnc rel16/32 | near if not carry
jne rel16/32 | near if not equal
jng rel16/32 | near if not greater
jnge rel16/32 | near if not greater or less
jnl rel16/32 | near if not less
jnle rel16/32 | near if not less or equal
jno rel16/32 | near if not overflow
jnp rel16/32 | near if not parity
jns rel16/32 | near if not sign
jnz rel16/32 | near if not 0
jo rel16/32 | near if overflow
jp rel16/32 | near if parity
jpe rel16/32 | near if parity even
jpo rel16/32 | near if parity odd
js rel16/32 | near if sign

146 i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Name | Operator | Operand | Operation Name

jz rel16/32 | nearif 0
jmp | jmp | rel8 Jump
jmp | rel16
jmp | /m16
jmp | rel32
jmp | /m32

ljmp | $imm16,5imm32

limp | m16

ljmp | m32

Name | Operator | Operand | Operation Name

lahf | lahf Load Flags into AH Register

lar | lar | r/m16,r16 | Load Access Rights Byte

lar | /m32,r32

lea | lea | m,r16 | Load Effective Address

lea | m,r32

leave | leave | | High Level Procedure Exit

lgdt lidt | Ilgdt | m16&32 | Load Global/Interrupt

lidt | m16&32 | Descriptor Table Register

i386 Assembler Instructions 147
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

148

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Igs Iss Ids les Ifs Load Full Pointer

Igs | m16:16,r16

Igs | m16:32,r32

Iss | mi6:16,r16

Iss | m16:32,r32

Ids | m16:16,r16

Ids | m16:32,r32

les | mi6:16,r16

les | mi16:32,r32

Ifs | m16:16,r16

Ifs | mi16:32,r32
lldt | lldt | r/m16 | Load Local Descriptor Table Register
Imsw | Imsw | r/m16 | Load Machine Status Word
lock | lock | | Assert LOCK# Signal Prefix

lods lodsb lodsw lodsd Load String Operand
lods m8
lods mi6
lods m32
lodsb
lodsw
lodsd

(optional forms with segment override)

lodsb

%seg:0(%esi),%al

lodsw

%seg:0(%esi),%al

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

lodsd

%seg:0(%esi),%al

loop loopcond

Loop Control with CX Counter

loop rel8

loope |rel8

loopz |rel8

loopne | rel8

loopnz | rel8

Isl | Isl

r/m16,ri6

Load Segment Limit

Isl

r/m32,r32

Itr | Itr

r/m16 | Load Task Register

Name | Operator | Operand Operation Name
mov | mov r8,r/m8 Move Data

mov ri6,r/mi6

mov r32,r/m32

mov r/m8,r8

mov r/m16,ri6

mov r/m16,ri6

mov Sreg,r/m16

mov r/m16,Sreg

mov moffs8,%a

mov moffs8,%ax

mov moffs8,%eax

mov %a1,moffs8

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

149

150

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Name

Operator | Operand

Operation Name

mov

%ax,moffs16

mov

%eax,moffs32

mov

$imm8,reg8

mov

$imm16,reg16

mov

$imm32,reg32

mov

$Simm8,r/m8

mov

Simm16,r/m16

mov

$imm32,r/m32

mov

mov

r32,%cr0

Move to/from Special Registers

mov

%cr0/%cr2/%cr3,r32

mov

%cr2/%cr3,r32

mov

%dr0-3,r32

mov

%dr6/%dr7,r32

mov

r32,%dr0-3

mov

r32,%dr6/%dr7

mov

%tra/%tr5/%tro/%tr,r32

mov

r32,%trd/%tr5/%tro/%tr7

mov

%tr3,r32

mov

r32,%tr3

movs movsb movsw movsd

Move Data from String to String

movs m8,m8

movs mil6,mi16

movs m32,m32

movsb

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

movsw

movsd

(optional forms with segment override)

movsb %seg:0(%esi),%es:0(%edi)
Movsw %seg:0(%esi),%es:0(%edi)
movsd %seg:0(%esi),%es:0(%edi)

movsx | movsx | /m8,ri6 | Move with Sign-Extend

movsx | r/m8,r32

movsx | r/m16,r32

movzx | movzx | /m8,r16 | Move with Zero-Extend

movzx | /m8,r32

movzx | /m16,r32

mul | mul | /m8,%al Unsigned Multiplication of AL or AX
mul | /m16,%ax
mul | r/m32,%eax

Name | Operator | Operand | Operation Name

neg neg r/m8 Two's Complement Negation
neg r/m16
neg r/m32

nop | nop | | No Operation

i386 Assembler Instructions 151
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

152

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

not | not

r/m8 | One’s Complement Negation

not

r/m16

not

r/m32

Name | Operator | Operand Operation Name
or or Simm8,r/m8 Logical Inclusive OR
or Simm16,r/m16
or $imm32,r/m32
or Simm8,r/m16
or $imm8,r/m32
or r8,r/m8
or ri6,r/mi6
or r32,r/m32
or r/m8,r8
or r/mi6,ri6
or r/m32,r32
out | out | %a1,5imm8 | Output to Port
out | %ax,5imm8
out | Zeax,Simm8
out | Zal,%dx
out | %ax,%dx
out | %eax,%dx

outs outsb outsw outsd

Output String to Port

outs

r/m8,%dx

outs

r/m16,%dx

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

outs r/m32,%dx

outsb

outsw

outsd

Name | Operator | Operand | Operation Name
pop | pop m16 Pop a Word from the Stack
pop m32
pop rié6
pop r32
pop %ds
pop %es
pop %S
pop %fs
pop %gs
popa popad Pop all General Registers
popa
popad

popf popfd | popf Pop Stack into FLAGS or

popfd | | EFLAGS Register

push | push | m16 Push Operand onto the Stack
push | m32
push | r16
push | r32
i386 Assembler Instructions 153

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

push | $imm8
push | $imm16
push | $imm32
push | Sreg
pusha pushad Push all General Registers
pusha
pushad
pushf pushfd Push Flags Register onto the Stack
pushf
pushfd
R
Name | Operator | Operand Operation Name
rcl rcr rol ror Rotate
rcl 1,r/m8
rcl %c1,r/m8
rcl $imm8,r/m8
rcl 1,r/m16
rcl %cl,r/mi6
rcl $imm8,r/m16
rcl 1,r/m32
rcl %c1,r/m32
rcl $imm8,r/m32
rcr 1,r/m8
rer %c1,//m8
rcr $imm8,r/m8
154 i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

Name | Operator | Operand Operation Name
rcr 1,r/mi16
rcr %cl,r/ml16
rcr Simm8,r/m16
rcr 1,/m32
rcr %cl1,r/m32
rcr Simm8,r/m32
rol 1,1/m8
rol %c1,r/m8
rol $imm8,r/m8
rol 1,r/m16
rol %cl,r/milé
rol $imm8,r/m16
rol 1,r/m32
rol %cl,r/m32
rol $imm8,r/m32
ror 1,r/m8
ror %c1,r/m8
ror $imm8,r/m8
ror 1,r/mi16
ror %c1,r/m16
ror Simm8,r/m16
ror 1,/m32
ror %cl1,r/m32
ror Simm8,r/m32
rdmsr | rdmsr | | Read from Model-Specific Register (Pentium-specific)

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

155

156

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

rdstc | rdstc

Read from Time Stamp Counter (Pentium-specific)

rep repe repz repne repnz

Repeat Following String

rep/ins %dx,rm8 | Operation
rep/ins %dx,rm16
rep/ins %dx,rm32
rep/movs m8m8
rep/movs mi16,mi16
rep/movs m32,m32
rep/outs rm8,%dx
rep/outs rm16,%dx
rep/outs rm32,%dx
rep/lods m8
rep/lods mi6
rep/lods m32
rep/stos mé8
rep/stos mi6
rep/stos m32
repe/cmps | m8&m8
repe/cmps | m16,m16
repe/cmps | m32,m32
repe/scas mé8
repe/scas mi6
repe/scas m32
repne/cmps | m8,m8
repne/cmps | m16,m16
repne/cmps | m32,m32
repne/scas | m8

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

repne/scas

m16

repne/scas

m32

ret | ret Return from Procedure
ret | Simm16
rsm | rsm | | Resume from System-Management Mode (Pentium-specific)

Name | Operator

Operand

Operation Name

sahf | sahf Store AH into Flags
sal sar shl shr Shift
Instructions

sal | 1,r/m8

sal | %c1,r/m8

sal | $imm8,r/m8

sal | 1,r/m16

sal | %c1,r/mi6

sal | Simm8,r/m16

sal | 1,/m32

sal | %c1,r/m32

sal | $imm8,r/m32

sar | 1,r/m8

sar | 5¢c1,r/m8

sar | $imm8,r/m8

sar | 1,r/mi16

sar | 4c1,r/ml6

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

157

158

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

sar

Simm8,r/m16

sar

1,r/m32

sar

%c1,r/m32

sar

$imm8,r/m32

shl

1,r/m8

shl

%c1,r/m8

shl

$imm8,r/m8

shl

1,r/m16

shl

%cl,r/mi6

shl

Simm8,r/m16

shl

1,r/m32

shl

%c1,r/m32

shl

Simm8,r/m32

shr

1,/m8

shr

%cl,r/m8

shr

Simm8,r/m8

shr

1,r/mi6

shr

%cl,r/mi6

shr

Simm8,r/m16

shr

1,r/m32

shr

%c1,r/m32

shr

$imm8,r/m32

sbb | sbb

$imm8,r/m8

Integer Subtraction with Borrow

sbb

Simm16,r/m16

sbb

Simm32,r/m32

sbb

Simm8,r/m16

sbb

Simm8,r/m32

i386 Assembler Instructions

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

sbb | r8,r/m8

sbb | ri6,r/m16

sbb | r32,r/m32

sbb | r/m8,r8

sbb | r/m1i6,r16

sbb | /m32,r32

scas scasb scasw scasd

Compare String Data

scas m8
scas ml6
scas m32
scasb

scasw

scasd

(optional forms with segment override)

scasb %al,%seg:0(%edi)
scasw %hax,%seg:0(%edi)
scasd heax,%seg:0(%edi)
setcc Byte Set on Condition

seta 1/m8 | above

setae | r/m8 | above or equal

setb 1/m8 | below

setbe | r/m8 | below or equal

setc r/m8 | carry

sete r/m8 | equal

setg 1/m8 | greater

setge | r/m8 | greater or equal

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

159

160

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

setl 1/m8 | less
setle | r/m8 | less or equal
setna | r/m8 | not above
setnae | r/m8 | not abover or equal
setnb | r/m8 | not below
setnbe | /m8 | not below or equal
setnc | r/m8 | not carry
setne | r/m8 | not equal
setng | r/m8 | not greater
setnge | r/m8 | not greater or equal
setnl | r/m8 | not less
setnle | r/m8 | not less or equal
setno | r/m8 | not overflow
setnp | r/m8 | not parity
setns | r/m8 | not sign
setnz | r/m8 | not zero
seto r/m8 | overflow
setp r/m8 | parity
setpe | r/m8 | parity even
setpo | r/m8 | parity odd
sets r/m8 | sign
setz r/m8 | zero
sgdt sidt | sgdt | m | Store Global/Interrupt

sidt | m | Descriptor Table Register

shid

shid

$imm8,ri6,r/m16

Double Precision Shift Left

shid

Simm8,r32,r/m32

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

shid

%c1,ri6,r/m1i6

shid

%c1,r32,r/m32

shrd | shrd

Simm8,ri16,r/m16

Double Precision Shift Right

shrd

$imm8,r32,r/m32

shrd

%c1,r16,r/mié

shrd

%c1,r32,r/m32

sldt | sldt

r/ml6

Store Local Descriptor Table Register

smsw | smsw | r/m16 | Store Machine Status Word

stc | stc

Set Carry Flag

std | std

Set Direction Flag

sti | sti | | Set Interrupt Flag

stos stosb stosw stosd

Store String Data

stos mé8
stos ml6
stos m32
stosb

stosw

stosd

(optional forms with segment override)

stosb

%al,%seg:0(%edi)

stosw

%ax,%seg:0(%edi)

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

161

162

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

stosd

%eax,%seg:0(%edi)

str | str | r/m1i16

Store Task Register

sub | sub

Simm8,r/m8

Integer Subtraction

sub

$Simm16,r/m16

sub

$imm32,r/m32

sub

Simm8,r/m16

sub

Simm8,r/m32

sub

r8,r/m8

sub

ri6,r/mi6

sub

r32,r/m32

sub

r/m8,r8

sub

r/m16,ri6

sub

r/m32,r32

Name | Operator | Operand

Operation Name

test test $imm8,r/m8 Logical Compare
test $Simm16,r/m16
test $imm32,r/m32
test r8,r/m8
test ri6,r/mié
test r32,r/m32

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

v

Name Operator | Operand | Operation Name
verr verw | verr r/mi16 Verify a Segment for Reading or Writing
verw r/m16

Name | Operator

Operand

Operation Name

wait | wait

Wait

wbinvd

wbinvd | | Write-Back and Invalidate Cache (i486-specific)

wrmsr | wrmsr

Write to Model-Specific Register (Pentium-specific)

Name | Operator | Op

erand | Operation Name

xadd | xadd r8,r/m8 Exchange and Add (i486-specific)
xadd ri6,r/mié
xadd r32,r/m32

xchg | xchg | r16,%ax

Exchange Register/Memory

xchg | %ax,ri6

with Register

xchg | %eax,r32

xchg | r32,%eax

xchg | r8,r/m8

xchg | /m8,r8

xchg | r16,//m16

xchg | /m16,r16

i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

163

CHAPTER 6

i386 Addressing Modes and Assembler Instructions

xchg | r32,r/m32

xchg | r/m32,r32

xlat xlatb | xlat | m8 | Table Look-up Translation

xlatb

xor | xor | $imm8&,r/m8 Logical Exclusive OR

xor | $imm16,r/m16

xor | $imm32,r/m32

xor | $imm8,r/m16

xor | $imm8,r/m32

xor | r8,r/m8

Xor | r16,r/m16

xor | r32,r/m32

xor | r/m8,r8

Xor | r/m16,r16

xor | r/m32,r32

164 i386 Assembler Instructions
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Mode-Independent Macros

If you want to write assembly code that runs both in 32-bit PowerPC and 64-bit PowerPC environments, you
must make sure that 32-bit—specific code runs in 32-bit environments and 64-bit-specific code runs in 64-bit
environments. This appendix introduces the macros included in the Mac OS X v10.4 SDK to facilitate the
development of assembly code that runs in both environments.

The mode_independent_asm.hfilein /usr/include/architecture/ppc defines a set of macros that
make it easy to write code that runs in 32-bit PowerPC and 64-bit PowerPC environments. These macros
include both manifest constants and pseudo mnemonics. For instance, the GPR_BYTES constant is either 4
or 8 (the size of the general-purpose registers). And 1g pseudo mnemonic expands to 1wz in a 32-bit
environment or 1d in a 64-bit environment. The header file documents all the macros in detail.

For example, the 32-bit code to get a pointer at offset 16 from GPR15 into GPR14 is:
Twz r14,16(r15)

The 64-bit code is:
1d r14,16(rl5)

One way to support both environments is by using conditional inclusion statements. For example, the
following code uses __ppc64___ to determine whether the program is running in 64-bit mode and executes
the appropriate statement:

#ifdef __ppcbd__

1d r14,16(rl15)
ffelse

Twz rl14,16(rl15)
ffendif

However, a simpler way is to use the 1g pseudo mnemonic, as shown here:
#include <architecture/ppc/mode_independent_asm.h>
1g r14,16(rl15)

If you write code that invokes functions that may be relocated, you may need to create a lazy symbol pointer
in 32-bit code similar to this:

.lazy_symbol_pointer
L_foo$lazy_ptr:

.indirect_symbol _foo

.long dyld_stub_binding_helper

The assembly sequence for is as for 64-bit code is similar to the 32-bit code, but you need to ensure you
allocate an 8-byte space for the symbol, using . quad instead of . 1ong, as shown here:

.lazy_symbol_pointer
L_foo$lazy_ptr:
.indirect_symbol _foo

165
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Mode-Independent Macros

.quad dyld_stub_binding_helper

Using the g_10ong mode-independent macro instead of . Tong or . quad, you can write a streamlined
dual-environment sequence without adding an #1i fde f statement. The mode-independent sequence would
look like this:

ffinclude <architecture/ppc/mode_independent_asm.h>

.lazy_symbol_pointer
L_foo$lazy_ptr:

.indirect_symbol _foo

.g_long dyld_stub_binding_helper

166
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to Mac OS X Assembler Reference.

Date Notes

2009-01-07 Made minor content changes.

Documented Titerall6 section type in “Built-in Directives” (page 37).

Corrected code example in “IA-32 .symbol_stub” (page 40).

2006-07-24 Changed the title from "Mac OS X Assembler Guide."
2006-06-28 Corrected syntax listings for the rep, repe, and repne i386 instructions.
2006-05-23 Updated for Xcode 2.3. Added information on |1A-32 symbol stubs.

Updated “Directives for Designating the Current Section” (page $@) in “Assembler
Directives” (page $@) to include changes to I1A-32 symbol-stub implementation
and correct information for PowerPC symbol stubs.

Specified that all expressions are evaluated as 64-bit values in “Operators” (page
S@).

2005-04-29 Updated content to reflect additions made to the assembler and the Mac OS X
SDK.

Added dcbt1 and dcbt1128 operators to “PowerPC Assembler
Instructions” (page 66).

Added four-argument form of rimi, riwimi, rlwinm, and r1wnm operators.

Added “Mode-Independent Macros” (page 165) to introduce the
mode-independent macros in the Mac OS X v10.4 SDK.

2004-07-27 Added information on dead-code stripping and the .machine and .quad
assembler directives.

Added “Directives for Dead-Code Stripping” (page 51), which documents
.subsections_via_symbolsand .no_dead_strip.

Added information on no_dead_stripand 1ive_support section attributes
to “Attribute Identifiers” (page 36).

Added “.machine” (page 55), which provides details on the .machine directive.

Added information on . quad directive to “.byte, .short, .long, and .quad” (page
45) in "Directives for Generating Data” (page 45).

167
2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

168

REVISION HISTORY

Document Revision History

Date Notes
Removed all 68000-related content.
Performed minor formatting and layout changes.
2004-03-09 Clarified applicability of .private_extern directive.
2003-11-02 Added jbsr and jmp instructions to the PPC Assembler Instructions section.
2003-09-11 Added introduction and fixed minor organization bugs.
2003-06-16 Updated with relevant information for hardware updates at WWDC.

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

Index

Symbols

__DATA segment 41
__OBJC segment 42
__TEXT segment 37

A

assembler directives 31

C

.const assembler directive 37
.constructor assembler directive 37
.cstring assembler directive 37

D

.data assembler directive 41
data
generating 45
.destructor assembler directive 37

F

fvmlib_init0 assembler directive 37
fvmlib_init1 assembler directive 38

L

literal16 assembler directive 37
literal4 assembler directive 37
literal8 assembler directive 37

2009-01-07 | © 2003, 2009 Apple Inc. All Rights Reserved.

location counter 31
advancing 43

M

.mod_init_func assembler directive 41

P

.picsymbol_stub assembler directive 38
pseudo-ops <Italic> See assembler directives 31

S

.static_data assembler directive 41
symbols 48
.symbol_stub assembler directive 38

T

text assembler directive 37

169

	Mac OS X Assembler Reference
	Contents
	Figures
	Introduction
	Using the Assembler
	Command Syntax
	Assembler Options
	-o
	--
	-f
	-g
	-v
	-n
	-I
	-L
	-V
	-W
	-dynamic
	-static

	Architecture Options
	-arch
	-force_cpusubtype_ALL
	-arch_multiple

	PowerPC-Specific Options
	-no_ppc601
	-static_branch_prediction_Y_bit
	-static_branch_prediction_AT_bits

	Assembly Language Syntax
	Elements of Assembly Language
	Characters
	Identifiers
	Labels
	Numeric Labels
	The Scope of a Label

	Constants
	Numeric Constants
	Character Constants
	String Constants
	Floating-Point Constants

	Assembly Location Counter

	Expression Syntax
	Operators
	Terms
	Expressions
	Absolute Expressions
	Relocatable Expressions
	External Expressions

	Assembly Language Statements
	Label Field
	Operation Code Field
	Intel i386 Architecture–Specific Caveats

	Operand Field
	Intel 386 Architecture–Specific Caveats

	Comment Field
	Direct Assignment Statements

	Assembler Directives
	Directives for Designating the Current Section
	.section
	.zerofill
	Section Types and Attributes
	Type Identifiers
	regular (S_REGULAR)
	cstring_literals (S_CSTRING_LITERALS)
	4byte_literals (S_4BYTE_LITERALS)
	8byte_literals (S_8BYTE_LITERALS)
	literal_pointers (S_LITERAL_POINTERS)
	symbol_stubs (S_SYMBOL_STUBS)
	lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS)
	non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS)
	mod_init_funcs (S_MOD_INIT_FUNC_POINTERS)
	mod_term_funcs (S_MOD_TERM_FUNC_POINTERS)
	coalesced (S_COALESCED)

	Attribute Identifiers
	none (0)
	S_ATTR_SOME_INSTRUCTIONS
	no_dead_strip (S_ATTR_NO_DEAD_STRIP)
	no_toc (S_ATTR_NO_TOC)
	live_support (S_ATTR_LIVE_SUPPORT)
	pure_instructions (S_ATTR_PURE_INSTRUCTIONS)
	strip_static_syms (S_ATTR_STRIP_STATIC_SYMS)
	self_modifying_code (S_ATTR_SELF_MODIFYING_CODE)

	Built-in Directives
	Designating Sections in the __TEXT Segment
	.text
	.const
	.static_const
	.cstring
	.literal4
	.literal8
	.literal16
	.constructor
	.destructor
	.fvmlib_init0
	.fvmlib_init1
	.symbol_stub
	.picsymbol_stub

	Designating Sections in the __DATA Segment
	.data
	.static_data
	.const_data
	.lazy_symbol_ptr
	.non_lazy_symbol_ptr
	.mod_init_func
	.mod_term_func
	.dyld

	Designating Sections in the __OBJC Segment

	Directives for Moving the Location Counter
	.align
	.org

	Directives for Generating Data
	.ascii and .asciz
	.byte, .short, .long, and .quad
	.comm
	.fill
	.lcomm
	.single and .double
	.space

	Directives for Dealing With Symbols
	.globl
	.indirect_symbol
	.reference
	.weak_reference
	.lazy_reference
	.weak_definition
	.private_extern
	.stabs, .stabn, and .stabd
	.desc
	.set
	.lsym

	Directives for Dead-Code Stripping
	.subsections_via_symbols
	.no_dead_strip

	Miscellaneous Directives
	.abort
	.abs
	.dump and .load
	.file and .line
	.if, .elseif, .else, and .endif
	.include
	.machine
	.macro, .endmacro, .macros_on, and .macros_off

	PowerPC-Specific Directives
	.flag_reg
	.greg
	.no_ppc601
	.noflag_reg

	Additional Processor-Specific Directives

	PowerPC Addressing Modes and Assembler Instructions
	PowerPC Registers and Addressing Modes
	Registers
	Operands and Addressing Modes

	Extended Instruction Mnemonics & Operands
	Branch Mnemonics

	Branch Prediction
	Trap Mnemonics
	PowerPC Assembler Instructions
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	X

	i386 Addressing Modes and Assembler Instructions
	i386 Registers and Addressing Modes
	Instruction Mnemonics
	Registers
	General Registers
	Floating-Point Registers
	Segment Registers
	Other Registers

	Operands and Addressing Modes
	Register Operands
	Immediate Operands
	Direct Memory Operands
	Indirect Memory Operands

	i386 Assembler Instructions
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X

	Appendix A: Mode-Independent Macros
	Revision History
	Index
	Symbols
	A
	C
	D
	F
	L
	M
	P
	S
	T

