
IBInspector Class Reference
Tools > Interface Builder

2007-07-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

IBInspector Class Reference 5

Overview 5
Subclassing Notes 5

Tasks 6
Getting the Shared Inspector Object 6
Getting the Inspector Attributes 6
Getting the Inspected Objects 6
Updating the Inspector View 6

Class Methods 7
sharedInstance 7
supportsMultipleObjectInspection 7

Instance Methods 7
document 7
inspectedObjects 8
inspectedObjectsController 8
label 8
refresh 8
view 9
viewNibName 9

Document Revision History 11

Index 13

3
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

4
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/InterfaceBuilderKit.framework

Declared in InterfaceBuilderKit/IBInspector.h

Companion guide Interface Builder Plug-In Programming Guide

Overview

The IBInspector class manages the display and synchronization of custom attributes for a particular class
in the inspector window. If you are implementing a custom view, control, or object whose class has
user-editable attributes, you should provide a custom subclass of IBInspector.

Subclassing Notes

An IBInspector object is a controller that manages a custom user interface you define. The main job of
your inspector object is to synchronize the changes made in its user interface with the data values in the
underlying objects and vice versa. Each inspector object you create manages the interface for a single slice
in the attributes pane of the inspector window. If your custom objects derive from multiple custom parent
classes, you would typically implement a separate inspector object for each class.

To manage the custom user interface for an inspector, you can use bindings or outlets and actions. When
using bindings, the synchronization is automatic. When using outlets and actions, the inspector object should
push changes from inspector controls to the current objects being inspected. Conversely, when the selection
itself changes, Interface Builder sends your inspector a refresh message, which your inspector object can
use to update its interface.

For more information on creating a custom inspector object, see Interface Builder Plug-In ProgrammingGuide.

Methods to Override

To implement an inspector, you typically override the following methods:

 ■ viewNibName (page 9)

 ■ refresh (page 8)

Overview 5
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

IBInspector Class Reference

Overriding the refreshmethod is necessary if you are using actions and outlets to synchronize your inspector
interface or if you need to perform some additional actions in your inspector whenever the selection changes.
If you use Cocoa bindings exclusively to synchronize your inspector user interface with the current selection,
you do not need to override the refresh method.

You may also want to override the label method to provide a custom label for your inspector slice. If you
do not override this method, Interface Builder provides a reasonable default.

Tasks

Getting the Shared Inspector Object

+ sharedInstance (page 7)
Returns the shared instance of your custom inspector object.

Getting the Inspector Attributes

+ supportsMultipleObjectInspection (page 7)
Returns a Boolean value indicating whether the receiver supports the selection of multiple objects.

– document (page 7)
Returns the document object that contains the currently inspected objects.

– label (page 8)
Returns the user-readable string to display in your inspector slice.

– view (page 9)
Returns the content view of the receiver.

– viewNibName (page 9)
Returns the name of the nib file containing the receiver’s content view.

Getting the Inspected Objects

– inspectedObjects (page 8)
Returns the currently selected objects that should be inspected.

– inspectedObjectsController (page 8)
Returns an array controller you can use to bind to the inspected objects.

Updating the Inspector View

– refresh (page 8)
Notifies the receiver that some aspect of the selection changed.

6 Tasks
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

IBInspector Class Reference

Class Methods

sharedInstance
Returns the shared instance of your custom inspector object.

+ (id)sharedInstance

Return Value
Your shared inspector object.

Discussion
You do not need to override this method. The first time this method is called, Interface Builder creates an
instance of your inspector object and caches it for future access.

supportsMultipleObjectInspection
Returns a Boolean value indicating whether the receiver supports the selection of multiple objects.

+ (BOOL)supportsMultipleObjectInspection

Return Value
YES if the receiver supports multiple selections; otherwise, NO. The default implementation of this method
returns YES.

Discussion
Multiple selection applies only when the selected objects share a common class. Whenever possible, you
should design your inspector’s user interface to display appropriate information when multiple objects are
selected. If for some reason, your inspector cannot support multiple selection, you should override this
method and return NO.

Instance Methods

document
Returns the document object that contains the currently inspected objects.

- (IBDocument *)document

Return Value
The active document.

Discussion
The current document maintains information that might be useful to your inspector, such as the objects
currently in the nib file and the relationships between those objects.

You should not override this method.

Class Methods 7
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

IBInspector Class Reference

inspectedObjects
Returns the currently selected objects that should be inspected.

- (NSArray *)inspectedObjects

Return Value
The currently selected objects, or an empty set if no objects are selected.

Discussion
This method returns always returns the current selection, regardless of whether that selection contains zero,
one, or multiple objects.

See Also
– inspectedObjectsController (page 8)

inspectedObjectsController
Returns an array controller you can use to bind to the inspected objects.

- (NSArrayController *)inspectedObjectsController

Return Value
The array controller for the selected objects.

See Also
– inspectedObjects (page 8)

label
Returns the user-readable string to display in your inspector slice.

- (NSString *)label

Return Value
A string describing the receiver. By default, this method returns a formatted version of the receiver’s class
name.

Discussion
You can override this method to return a custom label for your inspector.

refresh
Notifies the receiver that some aspect of the selection changed.

- (void)refresh

Discussion
You should override this method in your inspector classes if you want to synchronize your inspector’s content
view manually with the values in the currently selected objects. In your implementation of this method, you
should get the currently selected objects and use their current values to update the controls in the receiver’s
content view. You do not need to implement this method if you synchronize your inspector contents
exclusively using Cocoa bindings.

8 Instance Methods
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

IBInspector Class Reference

If you override this method, you must call super at some point in your implementation.

view
Returns the content view of the receiver.

- (NSView *)view

Return Value
The content view containing the inspector’s visible content. This view typically contains controls used to
display the attributes of the currently inspected object.

Discussion
You do not need to override this method if your view is connected to the inspectorView outlet of your
inspector class. (This outlet is exposed by the IBInspector class.) If your view is connected to that outlet,
this method returns your view automatically. If you do not connect your view to that outlet, you must override
this method and return your view object.

See Also
– viewNibName (page 9)

viewNibName
Returns the name of the nib file containing the receiver’s content view.

- (NSString *)viewNibName

Return Value
A string identifying the receiver’s nib file. This string should not include the .nib extension or any pathname
information. Interface Builder looks for the specified nib file in the Resources directory of the plug-in bundle.

Discussion
You should override this method to return the name of the nib file containing your inspector’s content view.
If your inspector uses a single content view, you should set the File’s Owner of the nib file to your custom
IBInspector subclass and connect the inspectorView outlet of that class to your view. If your inspector
supports multiple views, you should use a single master view and swap out its contents as needed when the
inspector is refreshed.

If you prefer not to use a nib file to load your view, you can return nil from this method. If you do so, however,
you must override the view method to return your view.

See Also
– refresh (page 8)
– view (page 9)

Instance Methods 9
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

IBInspector Class Reference

10 Instance Methods
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

IBInspector Class Reference

This table describes the changes to IBInspector Class Reference.

NotesDate

New document describing the methods for managing an inspector view.2007-07-11

11
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

12
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

D

document instance method 7

I

inspectedObjects instance method 8
inspectedObjectsController instance method 8

L

label instance method 8

R

refresh instance method 8

S

sharedInstance class method 7
supportsMultipleObjectInspection class method

7

V

view instance method 9
viewNibName instance method 9

13
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Index

	IBInspector Class Reference
	Contents
	IBInspector Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Getting the Shared Inspector Object
	Getting the Inspector Attributes
	Getting the Inspected Objects
	Updating the Inspector View

	Class Methods
	sharedInstance
	supportsMultipleObjectInspection

	Instance Methods
	document
	inspectedObjects
	inspectedObjectsController
	label
	refresh
	view
	viewNibName

	Revision History
	Index
	D
	I
	L
	R
	S
	V

