
Mac OS X ABI Dynamic Loader Reference
Tools > Compiling & Debugging

2005-11-09

Apple Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Mac OS X ABI Dynamic Loader Reference 7

Overview 7
Functions by Task 7

Dynamic Loader Compatibility Functions 7
Object File Image Functions 8
Library Functions 9
Section and Segment Accessors 9
Low-Level Functions 10
Glue Functions for Indirect Addressing 11

Functions 11
dladdr 11
dlclose 12
dlerror 12
dlopen 13
dlsym 14
dyld_stub_binding_helper 15
getsectbyname 16
getsectbynamefromheader 16
getsectbynamefromheader_64 16
getsectdata 17
getsectdatafromFramework 17
getsectdatafromheader 18
getsectdatafromheader_64 18
getsegbyname 19
NSAddImage 19
NSAddLibrary 20
NSAddLibraryWithSearching 21
NSAddressOfSymbol 21
NSCreateObjectFileImageFromFile 21
NSCreateObjectFileImageFromMemory 22
NSDestroyObjectFileImage 23
NSIsSymbolNameDefined 23
NSIsSymbolNameDefinedInImage 23
NSIsSymbolNameDefinedWithHint 24
NSLibraryNameForModule 24
NSLinkModule 25
NSLookupAndBindSymbol 26
NSLookupAndBindSymbolWithHint 26
NSLookupSymbolInImage 27
NSLookupSymbolInModule 28
NSModuleForSymbol 28

3
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

NSNameOfModule 28
NSNameOfSymbol 29
NSUnLinkModule 29
_dyld_bind_fully_image_containing_address 30
_dyld_bind_objc_module 30
_dyld_func_lookup 30
_dyld_get_image_header 31
_dyld_get_image_name 31
_dyld_get_image_vmaddr_slide 31
_dyld_get_objc_module_sect_for_module 32
_dyld_image_containing_address 32
_dyld_image_count 33
_dyld_launched_prebound 33
_dyld_lookup_and_bind 33
_dyld_lookup_and_bind_fully 34
_dyld_lookup_and_bind_objc 34
_dyld_lookup_and_bind_with_hint 35
_dyld_moninit 35
_dyld_present 36
_dyld_register_func_for_add_image 36
_dyld_register_func_for_link_module 36
_dyld_register_func_for_remove_image 37

Constants 37
Mach-O Image Creation Return Codes 37

Document Revision History 39

Index 41

4
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tables

Mac OS X ABI Dynamic Loader Reference 7

Table 1 Values for the handle parameter 15

5
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

TABLES

Overview

Most Mac OS X applications need to load and use dynamic shared libraries or bundles at runtime. The dynamic
loader, dyld, is a shared library that programs use to gain access to other shared libraries. The dynamic loader
locates Mach-O files on disk and maps them into the memory space of the current program.

Well-written programs don’t load shared libraries until they are needed. This minimizes the launch time and
memory footprint of the application. It may also improve the general performance of the system through
reduced paging.

This document describes the low-level functions of the Mac OS X application binary interface (ABI) that you
can use to load, link, and unload Mach-O files at runtime.

You should read this document if you develop applications that use dynamic shared libraries or libraries that
use other libraries.

These documents provide information about the runtime loading of code:

 ■ “Mach-O Programming Topics” describes runtime code-loading concepts and ways to correctly package
shared libraries into versioned frameworks.

 ■ “Dynamically Loading Code” describes higher level techniques to load code at runtime.

Functions by Task

The dynamic linker provides several types of functionality that allow your application to manipulate Mach-O
files at runtime.

Dynamic Loader Compatibility Functions
These are the recommended functions to use to interact with the dynamic loader. These functions work in
Mac OS X v10.3 and v10.4. However, in Mac OS X v10.4 they are more efficient than other image-loading
functions. These functions are declared in /usr/include/dlfcn.h.

dladdr (page 11)
Finds the image and nearest symbol corresponding to an address. Available only in dynamically linked
programs.

dlclose (page 12)
Closes a dynamic library or bundle.

Overview 7
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

dlerror (page 12)
Provides diagnostic information corresponding to problems with calls to dlopen (page 13),
dlsym (page 14), and dlclose (page 12) in the same thread.

dlopen (page 13)
Loads and links a dynamic library or bundle.

dlsym (page 14)
Returns the address of a symbol.

Object File Image Functions
These functions are for loading Mach-O bundle files. They are declared in /usr/include/mach-o/dyld.h.
The use of these functions is discouraged. You should use the more efficient functions described in "Dynamic
Loader Compatibility Functions" (page 7).

NSCreateObjectFileImageFromFile (page 21)
Creates an image reference for a given Mach-O file.

NSCreateObjectFileImageFromMemory (page 22)
Creates an image reference for a Mach-O file currently in memory.

NSDestroyObjectFileImage (page 23)
Releases the given object file image.

NSLinkModule (page 25)
Links the given object file image as a module into the current program.

NSLookupAndBindSymbol (page 26)
Given a symbol name, returns the corresponding symbol from the global symbol table.

NSLookupAndBindSymbolWithHint (page 26)
Given a symbol name, returns the corresponding symbol from the global symbol table.

NSLookupSymbolInModule (page 28)
Given a module reference, returns a reference to the symbol with the given name.

NSNameOfModule (page 28)
Returns the name of the given module.

NSIsSymbolNameDefined (page 23)
Returns TRUE if the given symbol is defined in the current program.

NSIsSymbolNameDefinedInImage (page 23)
Returns TRUE if the given image contains the named symbol.

NSIsSymbolNameDefinedWithHint (page 24)
Returns TRUE if the given symbol is defined in the current program, with a hint specifying the name
of the shared library likely to contain the symbol.

NSModuleForSymbol (page 28)
Returns a reference to the module containing the given symbol.

NSUnLinkModule (page 29)
Unlinks the given module from the current program.

8 Functions by Task
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Library Functions
The functions described in this section are declared in /usr/include/mach-o/dyld.h. The use of these
functions is discouraged. You should use the more efficient functions described in "Dynamic Loader
Compatibility Functions" (page 7).

NSAddImage (page 19)
Adds the specified Mach-O image to the currently running process.

NSAddLibrary (page 20)
Adds a dynamic shared library to the search list.

NSAddLibraryWithSearching (page 21)
Adds a dynamic shared library to the search list—using the various dyld environment variables—as
if the library were linked into the program.

NSAddressOfSymbol (page 21)
Returns the address in the program’s address space of the data represented by the given symbol. The
data may be a variable, a constant, or the first instruction of a function.

NSLibraryNameForModule (page 24)
Returns the name of the library that contains the given module.

NSLookupSymbolInImage (page 27)
Returns a reference to the specified symbol from the specified image.

NSNameOfSymbol (page 29)
Returns the name of the given symbol.

Section and Segment Accessors
The functions described in this section are declared in /usr/include/mach-o/getsect.h.

getsectbyname (page 16)
Returns a data structure representing a section of the Mach-O file that contains the main executable
program of the current process.

getsectbynamefromheader (page 16)
Returns the data structure representing a section of a specified 32-bit Mach-O file.

getsectbynamefromheader_64 (page 16)
Returns the data structure representing a section of a specified 64-bit Mach-O file.

getsectdata (page 17)
Returns the data for a section from the Mach-O file of the main executable program of the current
process.

getsectdatafromFramework (page 17)
Returns the data for a section of the Mach-O file containing a specified framework.

getsectdatafromheader (page 18)
Returns the data for a section of a specified 32-bit Mach-O file.

getsectdatafromheader_64 (page 18)
Returns the data for a section of a specified 64-bit Mach-O file.

getsegbyname (page 19)
Returns a data structure representing a segment of the Mach-O file containing the main executable
program of the current process.

Functions by Task 9
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Low-Level Functions

_dyld_bind_fully_image_containing_address (page 30)
Finds the image containing the specified address and fully binds all the modules within it.

_dyld_bind_objc_module (page 30)
Binds the module that contains a given Objective-C address.

_dyld_func_lookup (page 30)
Obtains the address of the implementation of a dyld library function.

_dyld_get_image_header (page 31)
Returns the data structure for the header of a specified image. The image is specified by index into
the list of images maintained by dyld for the current process.

_dyld_get_image_name (page 31)
Retrieves the name of an image.

_dyld_get_image_vmaddr_slide (page 31)
Returns the virtual memory address slide amount of an image.

_dyld_get_objc_module_sect_for_module (page 32)
Obtains the size and starting location of an Objective-C module.

_dyld_image_count (page 33)
Returns the number of images that dyld has mapped into the address space of the current process.

_dyld_image_containing_address (page 32)
Returns whether or not a specified address is within any loaded image.

_dyld_launched_prebound (page 33)
Returns whether or not the dynamic linker was able to launch the program with the prebinding
optimization enabled.

_dyld_lookup_and_bind (page 33)
Finds the given symbol name and binds it into the program.

_dyld_lookup_and_bind_fully (page 34)
Finds the module containing the specified symbol and fully binds all the symbol references within it.

_dyld_lookup_and_bind_objc (page 34)
Obtains and binds the Objective-C module that contains the specified symbol.

_dyld_lookup_and_bind_with_hint (page 35)
Finds the given symbol name and binds it into the program, with a hint to allow dyld to speed up
the symbol search for a prebound program.

_dyld_moninit (page 35)
This function is used by the profiling routine moninit to allow images other than the main executable
to be profiled.

_dyld_present (page 36)
Indicates whether or not the dynamic linker is loaded into the current program

_dyld_register_func_for_add_image (page 36)
Registers a function to be called by the dynamic linker runtime when an image is added to the
program.

_dyld_register_func_for_link_module (page 36)
Registers a function to be called by the dynamic linker runtime when a module is linked into the
program.

10 Functions by Task
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

_dyld_register_func_for_remove_image (page 37)
Registers a function to be called by the dynamic linker runtime when an image is removed from the
program.

Glue Functions for Indirect Addressing

dyld_stub_binding_helper (page 15)
Assembly-language glue code that performs binding for a lazy function symbol.

Functions

dladdr
Finds the image and nearest symbol corresponding to an address. Available only in dynamically linked
programs.

int dladdr(
 const void* addr,
 Dl_info* info);

Parameters
addr

On input, an address within the address space of the program.

info
Storage for a Dl_info object. On return, the symbolic information found.

Return Value
When an image containing the address specified in addr cannot be found, this function returns 0. Otherwise,
the result is a value other than 0.

Discussion
This is the declaration for the Dl_info structure:

typedef struct dl_info {
 const char* dli_fname;
 void* dli_fbase;
 const char* dli_sname;
 void* dli_saddr;
} Dl_info;

The descriptions for the fields in Dl_info are:

 ■ dli_fname: The pathname of the image containing the address in addr.

 ■ dli_fbase: The base address (mach_header) at which the image is mapped into the address space of
the program.

 ■ dli_sname: The name of the nearest runtime symbol.

 ■ dli_saddr: The value of the symbol specified by dli_sname.

Functions 11
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

If the image containing addr is found, but no near symbol is found, the dli_sname and dli_saddr fields
in the Dl_info object are set to NULL. A near symbol is a symbol within the image whose address is equal
to or lower than addr.

See also dlopen (page 13), dlsym (page 14).

Availability
Available in Mac OS X v10.3 and later.

dlclose
Closes a dynamic library or bundle.

int dlclose(
 void* handle);

Parameters
handle

Handle obtained through a call to dlopen (page 13).

Return Value
This function returns 0 when successful and a value other than 0 when unsuccessful.

Discussion
This function decreases the reference count of the image referenced by handle. When the reference count
for handle becomes 0, the termination routines in the image are called, and the image is removed from the
address space of the current process. After that point, handle is rendered invalid.

If this function is unsuccessful, it sets an error condition that can be queried with dlerror (page 12).

See also dlopen (page 13), dlerror (page 12).

Availability
Available in Mac OS X 10.3 and later.

dlerror
Provides diagnostic information corresponding to problems with calls to dlopen (page 13), dlsym (page
14), and dlclose (page 12) in the same thread.

const char* dlerror(
 void);

Return Value
When there’s a problem to report, this function returns a pointer to a null-terminated string describing the
problem. Otherwise, this function returns NULL.

Discussion
Each call to dlerror resets its diagnostic buffer. If a program needs to keep a record of past error messages,
it must store them itself. Subsequent calls to dlerror in the same thread with no calls to dlopen (page 13),
dlsym (page 14), or dlclose (page 12), return NULL.

See also dlopen (page 13), dlsym (page 14), dlclose (page 12).

12 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Availability
Available in Mac OS X 10.3 and later.

dlopen
Loads and links a dynamic library or bundle.

void* dlopen(
 const char* path,
 int mode);

Parameters
path

Path to the image to open.

mode
Specifies when the loaded image’s external symbols are bound to their definitions in dependent
libraries (lazy or at load time) and the visibility of the image’s exported symbols (global or local). The
value of this parameter is made up by ORing one binding behavior value with one visibility specification
value.

The following values specify the binding behavior:

 ■ RTLD_LAZY (default): Each external symbol reference is bound the first time it’s used.

 ■ RTLD_NOW: All external symbol references are bound immediately.

The following values specify external symbol visibility:

 ■ RTLD_GLOBAL (default): The loaded image’s exported symbols are available to any images that
use a flat namespace or to calls to dlsym when using a special handle (see dlsym (page 14) for
details).

 ■ RTLD_LOCAL: The loaded image’s exported symbols are generally hidden. They are available only
to dlsym (page 14) invocations that use the handle returned by this function.

Return Value
A handle that can be used with calls to dlsym (page 14) and dlclose (page 12).

Discussion
This function examines the Mach-O file specified by path. If the image is compatible with the current process
and has not already been loaded into the process, the image is loaded and linked. If the image contains
initializer functions, they are executed before this function returns.

Subsequent calls to dlopen to load the same image return the same handle, but the internal reference count
for the handle is incremented. Therefore, all dlopen calls must be balanced with dlclose (page 12) calls.

For efficiency, the RTLD_LAZY binding mode is preferred over RTLD_NOW. However, using RTLD_NOW ensures
that any undefined symbols are discovered during the call to dlopen.

The dynamic loader looks in the paths specified by a set of environment variables, and in the process’s current
directory, when it searches for a library. These paths are called dynamic loader search paths. The environment
variables are LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, and DYLD_FALLBACK_LIBRARY_PATH. The default
value of DYLD_FALLBACK_LIBRARY_PATH (used when this variable is not set), is
$HOME/lib;/usr/local/lib;/usr/lib.

Functions 13
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

The order in which the search paths are searched depends on whether path is a filename (it does not contain
a slash) or a pathname (it contains at least one slash).

When path is a filename, the dynamic loader searches for the library in the search paths in the following
order:

1. $LD_LIBRARY_PATH

2. $DYLD_LIBRARY_PATH

3. The process’s working directory

4. $DYLD_FALLBACK_LIBRARY_PATH

When path is a pathname, the dynamic loader searches for the library in the search paths in the following
order:

1. $DYLD_LIBRARY_PATH

2. The given pathname

3. $DYLD_FALLBACK_LIBRARY_PATH using the filename

If this function cannot open an image, it sets an error condition that can be accessed with dlerror (page
12).

Important: In Mac OS X, libraries can combine object code for both 32-bit and 64-bit PowerPC processors.
Therefore, there are no separate 32-bit and 64-bit search paths.

See also dlsym (page 14), dlclose (page 12), dlerror (page 12).

Availability
Available in Mac OS X 10.3 and later.

dlsym
Returns the address of a symbol.

void* dlsym(
 void* handle,
 const char* symbol);

Parameters
handle

Handle obtained by a call to dlopen (page 13), or a special handle. If the handle was obtained by a
call to dlopen (page 13), it must not have been closed with a call to dlclose (page 12). These are
the possible special-handle values: RTLD_DEFAULT, and RTLD_NEXT.

symbol
Null-terminated character string containing the C name of the symbol being sought.

Return Value
When successful, this function returns the address of symbol. Otherwise, it returns a null pointer.

14 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Discussion
The value of handle specifies what images this function searches for to locate the symbol specified by the
symbol parameter. Table 1 describes the possible values for the handle parameter.

Table 1 Values for the handle parameter

Search scopeHandle value

Image associated with the dlopen (page 13) handle.dlopen handle

Every dependent library or RTLD_GLOBAL–opened library in the current process, in the
order they were loaded.

RTLD_DEFAULT

Dependent libraries that were loaded after the one calling this function. Libraries opened
with dlopen (page 13) are not searched.

RTLD_NEXT

Unlike in the NS... functions, the symbol parameter doesn’t require a leading underscore to be part of the
symbol name.

If this function is unsuccessful, it sets an error condition that can be queried with dlerror (page 12).

See also dlopen (page 13), dlerror (page 12).

Availability
Available in Mac OS X 10.3 and later.

dyld_stub_binding_helper
Assembly-language glue code that performs binding for a lazy function symbol.

.private_extern dyld_stub_binding_helper

Parameters
PowerPC: r11 x86: stack-based parameter

A pointer to the lazy symbol pointer for the function to be bound.

Discussion
The dyld stub binding helper is a glue function that assists the dynamic linker in lazily binding an external
function. When the compiler sees a call to an external function, it generates a symbol stub and a lazy pointer
for the function. At the call site, the compiler generates a call to the symbol stub. The symbol stub is a
sequence of code that loads the lazy pointer and jumps to it. Initially, the sequence of code and the contents
of the lazy pointer call this function, which calls the dynamic linker to bind the symbol. After the symbol is
bound, the lazy pointer is set to the address of the symbol, and the symbol is reached directly by jumping
to the lazy pointer.

Thereafter, because the address has been changed to the actual address of the function, all calls to the
external function call the external function.

On entry, this function accepts the address of the lazy symbol pointer. On exit, the value of the lazy symbol
pointer is set to the address of the external function. The dyld stub binding helper is assembly-language
based and does not use standard calling conventions, and as such, the location of the parameters are specific
to each CPU architecture. On PowerPC, the address of the lazy symbol pointer is expected to be in GPR11.
On x86, the address of the lazy symbol pointer should be the pushed on the stack.

Functions 15
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

This function is located in the runtime startup files that are statically linked into the image. For executables,
the file is /lib/crt1.o. For bundles, it is /lib/bundle1.o, and for shared libraries, it is /lib/dylib1.o.

getsectbyname
Returns a data structure representing a section of the Mach-O file that contains the main executable program
of the current process.

const struct section* getsectbyname(
 const char* segname,
 const char* sectname);

Parameters
segname

A pointer to a C string. Pass the name of the segment in which the section resides.

sectname
A pointer to a C string. Pass the name of the section.

Return Value
A pointer to a section (“Mach-O File Format Reference”) data structure.

getsectbynamefromheader
Returns the data structure representing a section of a specified 32-bit Mach-O file.

const struct section* getsectbynamefromheader(
 const struct mach_header* mhp,
 const char* segname,
 const char* sectname);

Parameters
mhp

A pointer to a mach_header data structure. Pass the mach_header of the file containing the section
data you wish to retrieve.

segname
A pointer to a C string. Pass the name of the segment in which the section resides.

sectname
A pointer to a C string. Pass the name of the section.

Return Value
A pointer to a section data structure.

getsectbynamefromheader_64
Returns the data structure representing a section of a specified 64-bit Mach-O file.

16 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

const struct section_64* getsectbynamefromheader(
 const struct mach_header_64* mhp,
 const char* segname,
 const char* sectname);

Parameters
mhp

A pointer to a mach_header_64 data structure. Pass the mach_header of the file containing the
section data you wish to retrieve.

segname
A pointer to a C string. Pass the name of the segment in which the section resides.

sectname
A pointer to a C string. Pass the name of the section.

Return Value
A pointer to a section_64 data structure.

getsectdata
Returns the data for a section from the Mach-O file of the main executable program of the current process.

char* getsectdata(
 const char* segname,
 const char* sectname,
 unsigned long* size);

Parameters
segname

A pointer to a C string. Pass the name of the segment in which the section resides.

sectname
A pointer to a C string. Pass the name of the section.

size
A pointer to a long integer. On output, contains the length (in bytes) of the section.

Return Value
A pointer to the data of the section.

getsectdatafromFramework
Returns the data for a section of the Mach-O file containing a specified framework.

char* getsectdatafromFramework(
 const char* FrameworkName,
 const char* segname,
 const char* sectname,
 unsigned long* size);

Parameters
FrameworkName

A pointer to a C string. Pass the name of the framework in which the section resides.

segname
A pointer to a C string. Pass the name of the segment in which the section resides.

Functions 17
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

sectname
A pointer to a C string. Pass the name of the section.

size
A pointer to a long integer. On output, contains the length (in bytes) of the section.

Return Value
A pointer to the data of the section. If the Mach-O file is a dynamic shared library (MH_DYLIB), you need to
add the virtual memory slide amount to this address to get the true address of the data. See
_dyld_get_image_vmaddr_slide (page 31) for more information.

getsectdatafromheader
Returns the data for a section of a specified 32-bit Mach-O file.

char* getsectdatafromheader(
 const struct mach_header* mhp,
 const char* segname,
 const char* sectname,
 uint32_t* size);

Parameters
mhp

A pointer to a mach_header data structure. Pass the mach_header of the file containing the section
data you wish to retrieve.

segname
A pointer to a C string. Pass the name of the segment in which the section resides.

sectname
A pointer to a C string. Pass the name of the section.

size
A pointer to a long integer. On output, contains the length (in bytes) of the section.

Return Value
A pointer to the data of the section. If the Mach-O file is a dynamic shared library (MH_DYLIB), you need to
add the virtual memory slide amount to this address to get the true address of the data. See
_dyld_get_image_vmaddr_slide (page 31) for more information.

getsectdatafromheader_64
Returns the data for a section of a specified 64-bit Mach-O file.

char* getsectdatafromheader(
 const struct mach_header_64* mhp,
 const char* segname,
 const char* sectname,
 uint64_t* size);

Parameters
mhp

A pointer to a mach_header_64 data structure. Pass the mach_header of the file containing the
section data you wish to retrieve.

18 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

segname
A pointer to a C string. Pass the name of the segment in which the section resides.

sectname
A pointer to a C string. Pass the name of the section.

size
A pointer to a long integer. On output, contains the length (in bytes) of the section.

Return Value
A pointer to the data of the section. If the Mach-O file is a dynamic shared library (MH_DYLIB), you need to
add the virtual memory slide amount to this address to get the true address of the data. See
_dyld_get_image_vmaddr_slide (page 31) for more information.

getsegbyname
Returns a data structure representing a segment of the Mach-O file containing the main executable program
of the current process.

const struct segment_command* getsegbyname(
 const char* segname);

Parameters
segname

A pointer to a C string. Pass the name of the segment.

Return Value
A pointer to a segment_command (“Mach-O File Format Reference”) data structure.

NSAddImage
Adds the specified Mach-O image to the currently running process.

const struct mach_header* NSAddImage(
 const char* image_name,
 uint32_t options);

Parameters
image_name

A pointer to a C string. Pass the pathname to a shared library on disk. For best performance, specify
the full pathname of the shared library—not a symlink.

Functions 19
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

options
A bit mask. Pass one or more of the following options or NSADDIMAGE_OPTION_NONE to specify no
options:

NSADDIMAGE_OPTION_RETURN_ON_ERROR

If an error occurs and you have specified this option, this function returns NULL. You can then
use the function NSLinkEditError to retrieve information about the error.

If an error occurs, and you have not specified this option, this function calls the linkEdit
error handler you have installed using the NSInstallLinkEditErrorHandlers function.
If you have not installed a link edit error handler, this function prints an error to stderr and
causes a breakpoint trap to end the program.

NSADDIMAGE_OPTION_WITH_SEARCHING

With this option, the image_name passed for the library and all its dependents is affected by
the various dyld environment variables as if this library were linked into the program.

NSADDIMAGE_OPTION_RETURN_ONLY_IF_LOADED

With this option, this function returns NULL if the shared library was not loaded prior to the
call to this function.

Return Value
A pointer to a mach_header (“Mac OS X ABI Mach-O File Format Reference”) data structure. This is a pointer
to the start of the loaded image.

Discussion
This function loads the shared library specified by image_name into the current process, returning a pointer
to the mach_header data structure of the loaded image. Any libraries that the specified library depends on
are also loaded.

The linkEdit error handler is documented in the NSModule(3) man page.

For portability and efficiency, consider using dlopen (page 13).

Availability
Available in Mac OS X v10.1 and later.

NSAddLibrary
Adds a dynamic shared library to the search list.

extern bool NSAddLibrary(
 const char* pathName);

Parameters
pathName

A C string. Pass the name of a dynamic shared library.

Return Value
TRUE if the library was successfully added to the search list, FALSE otherwise.

Discussion
Deprecated in Mac OS X v10.4. Use NSAddImage (page 19) instead.

20 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Special Considerations

Instead of using this function, you should use NSAddImage (page 19) with the NSADDIMAGE_OPTION_NONE
option.

NSAddLibraryWithSearching
Adds a dynamic shared library to the search list—using the various dyld environment variables—as if the
library were linked into the program.

extern bool NSAddLibraryWithSearching(
 const char* pathName);

Parameters
pathName

A C string. Pass the name of a dynamic shared library.

Return Value
TRUE if the library was successfully added to the search list, FALSE otherwise.

Discussion
Deprecated in Mac OS X v10.4. Use NSAddImage (page 19) instead.

Special Considerations

Instead of using this function, you should use NSAddImage (page 19) with the
NSADDIMAGE_OPTION_WITH_SEARCHING option.

NSAddressOfSymbol
Returns the address in the program’s address space of the data represented by the given symbol. The data
may be a variable, a constant, or the first instruction of a function.

void* NSAddressOfSymbol(
 NSSymbol symbol);

Parameters
symbol

A symbol reference. Pass the symbol whose address you wish to obtain.

Return Value
A pointer to the data represented by the given symbol.

Discussion
For portability and efficiency, consider using dlsym (page 14).

NSCreateObjectFileImageFromFile
Creates an image reference for a given Mach-O file.

Functions 21
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

NSObjectFileImageReturnCode NSCreateObjectFileImageFromFile(
 const char* pathName,
 NSObjectFileImage* objectFileImage);

Parameters
pathName

A C string. Pass the pathname to a Mach-O executable file. You must have previously built this file
with the -bundle linker option; otherwise, this function returns an error.

objectFileImage
On output, a pointer to an NSObjectFileImage opaque data structure.

Return Value
See Mach-O Image Creation Return Codes (page 37).

Discussion
Given a pathname to a Mach-O executable, this function creates and returns a NSObjectFileImage reference.
The current implementation works only with bundles, so you must build the Mach-O executable file using
the -bundle linker option.

For portability and efficiency, consider using dlopen (page 13).

NSCreateObjectFileImageFromMemory
Creates an image reference for a Mach-O file currently in memory.

NSObjectFileImageReturnCode NSCreateObjectFileImageFromMemory(
 const void* address,
 size_t size,
 NSObjectFileImage* objectFileImage);

Parameters
address

A pointer to the memory block containing the Mach-O file contents.

size
The size of the memory block, in bytes.

objectFileImage
On output, a pointer to an NSObjectFileImage opaque data structure.

Return Value
See Mach-O Image Creation Return Codes (page 37).

Discussion
Given a pointer to a Mach-O file in memory, this function creates and returns an NSObjectFileImage
reference. The current implementation works only with bundles, so you must build the Mach-O executable
file using the -bundle linker option.

The memory block that address points to, must be allocated with vm_allocate
(/usr/include/mach/vm_map.h).

See also NSDestroyObjectFileImage (page 23).

Availability
Available in Mac OS X v10.3 and later.

22 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

NSDestroyObjectFileImage
Releases the given object file image.

bool NSDestroyObjectFileImage(
 NSObjectFileImage objectFileImage);

Parameters
objectFileImage

A reference to the object file image to destroy.

Return Value
TRUE if the image was successfully destroyed, FALSE if not.

Discussion
When this function is called, the dynamic loader calls vm_deallocate (/usr/include/mach/vm_map.h)
on the memory pointed to by the objectFileImage parameter.

For portability and efficiency, consider using dlopen (page 13) in conjunction with dlclose (page 12).

See also NSCreateObjectFileImageFromMemory (page 22).

NSIsSymbolNameDefined
Returns TRUE if the given symbol is defined in the current program.

enum bool NSIsSymbolNameDefined(
 const char* symbolName);

Parameters
symbolName

A C string. Pass the name of the symbol whose definition status you wish to discover.

Return Value
TRUE when the symbol is defined by any image loaded in the current process; FALSE when the symbol
cannot be found.

Discussion
Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

If you know the name of the library in which the symbol is likely to be located, you can use the
NSIsSymbolNameDefinedWithHint (page 24) function, which may be faster than this function. You should
use the NSIsSymbolNameDefinedInImage (page 23) function to perform a two-level namespace lookup.

NSIsSymbolNameDefinedInImage
Returns TRUE if the given image contains the named symbol.

enum bool NSIsSymbolNameDefinedInImage(
 const struct mach_header* image,
 const char* symbolName);

Parameters
image

A pointer to a mach_header (Mach-O Runtime Architecture) data structure.

Functions 23
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

symbolName
A C string. Pass the name of the symbol.

Return Value
TRUE if the image contains a symbol with the given name, false otherwise.

Discussion
Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

NSIsSymbolNameDefinedWithHint
Returns TRUE if the given symbol is defined in the current program, with a hint specifying the name of the
shared library likely to contain the symbol.

enum bool NSIsSymbolNameDefinedWithHint(
 const char* symbolName,
 const char* libraryNameHint);

Parameters
symbolName

A C string. Pass the name of the symbol whose definition status you wish to discover.

libraryNameHint
A C string. Pass any part of the name of the shared library that is likely to contain the symbol. It
searches only the first shared library that matches.

Return Value
TRUE when the symbol is defined by any image loaded in the current process; FALSE when the symbol
cannot be found.

Discussion
Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

The library name you pass to this function allows it to determine a position in the list of loaded symbols from
which to start the search. This can result in a considerably faster lookup search time than is possible using
NSIsSymbolNameDefined (page 23).

Note that this function performs a flat lookup even if the symbol namespace of the current program has two
levels. You should use the NSIsSymbolNameDefinedInImage (page 23) function to perform a two-level
namespace lookup.

NSLibraryNameForModule
Returns the name of the library that contains the given module.

const char* NSLibraryNameOfModule(
 NSModule module);

Parameters
module

A module reference. Pass the module whose library name you wish to retrieve.

Return Value
A C string containing the name of the library that contains the module. The string is owned by the dynamic
linker and you should not free it.

24 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Discussion
See Building Mach-O Files in Mach-O Programming Topics for more information about modules.

NSLinkModule
Links the given object file image as a module into the current program.

NSModule NSLinkModule(
 NSObjectFileImage objectFileImage,
 const char* moduleName,
 uint32_t options);

Parameters
objectFileImage

An object file image reference. Pass a reference created using the
NSCreateObjectFileImageFromFile (page 21) function.

moduleName
A C string. Pass the absolute path to the object file image. GDB uses this path to retrieve debug symbol
information from the library.

options
An unsigned long value. Pass one or more of the following bit masks or
NSLINKMODULE_OPTION_NONE to specify no options:

NSLINKMODULE_OPTION_BINDNOW

The dynamic linker binds all undefined references immediately, rather than waiting until the
references are actually used. All dependent libraries are also bound.

NSLINKMODULE_OPTION_PRIVATE

Do not add the global symbols from the module to the global symbol list. Instead, you must
use the NSLookupSymbolInModule (page 28) function to obtain symbols from this module.

NSLINKMODULE_OPTION_RETURN_ON_ERROR

If an error occurs while binding the module, return NULL. You can then use the function
NSLinkEditError to retrieve information about the error.

Without this option, this function calls the linkEdit error handler you have installed using
the NSInstallLinkEditErrorHandlers function. If you have not installed a link edit error
handler, this function prints a message to the standard error stream and causes a breakpoint
trap to end the program.

Return Value
A reference to the linked module.

Discussion
When you call this function, all libraries referenced by the given module are added to the library search list.
Unless you pass the NSLINKMODULE_OPTION_PRIVATE, NSLinkModule adds all global symbols in the
module to the global symbol list.

For portability and efficiency, consider using dlopen (page 13).

See “Building Mach-O Files” in “Mach-O Programming Topics” for more information about modules.

Functions 25
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

NSLookupAndBindSymbol
Given a symbol name, returns the corresponding symbol from the global symbol table.

NSSymbol NSLookupAndBindSymbol(
 const char* symbolName);

Parameters
symbolName

A pointer to a C string. Pass the name of the symbol you wish to find.

Return Value
The symbol reference for the requested symbol.

Discussion
Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

On error, if you have installed a link edit error handler, it is called; otherwise, this function writes an error
message to file descriptor 2 (usually the standard error stream, stderr) and causes a breakpoint trap to end
the program.

If you know the name of the library in which the symbol is likely to be located, you can use the
NSLookupAndBindSymbolWithHint (page 26) function, which may be faster than this function. You should
use the NSLookupSymbolInImage (page 27) function to perform a two-level namespace lookup.

NSLookupAndBindSymbolWithHint
Given a symbol name, returns the corresponding symbol from the global symbol table.

NSSymbol NSLookupAndBindSymbolWithHint(
 const char* symbolName,
 const char* libraryNameHint);

Parameters
symbolName

A pointer to a C string. Pass the name of the symbol you wish to find.

libraryNameHint
A pointer to a C string. Pass any part of the name of the library that the symbol is likely to be found
in.

Return Value
The symbol reference for the requested symbol.

Discussion
On error, if you have installed a link edit error handler, it is called; otherwise, this function writes an error
message to file descriptor 2 (usually the standard error stream, stderr), and causes a breakpoint trap to end
the program.

Note that this function performs a flat lookup even if the symbol namespace of the current program has two
levels. You should use the NSLookupSymbolInImage (page 27) function to perform a two-level namespace
lookup.

Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

26 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

NSLookupSymbolInImage
Returns a reference to the specified symbol from the specified image.

NSSymbol NSLookupSymbolInImage(
 const struct mach_header* image,
 const char* symbolName
 uint32_t options);

Parameters
image

A pointer to a mach_header data structure. Pass a pointer to the start of the image that contains the
symbol. You can get this pointer from a shared library name using NSAddImage (page 19).

If the process does not have a two-level namespace, NSLookupSymbolInImage ignores this argument
and searches for the symbol in the global symbol table.

symbolName
A pointer to a C string. Pass the name of the symbol you wish to find.

options
A bit mask. Pass any of the following options:

NSLOOKUPSYMBOLINIMAGE_OPTION_BIND

Bind the nonlazy symbols of the module in the image that defines symbolName and let all
lazy symbols in the module be bound on first call. You should pass this option when you
expect the module to bind without errors (for example, a library supplied with the system). If,
later, you call a lazy symbol, and the lazy symbol fails to bind, the runtime calls the link edit
error handler you have installed using the NSInstallLinkEditErrorHandlers function.

If there is no link edit error handler installed, the runtime prints a message to the standard
error stream and causes a breakpoint trap to end the program.

NSLOOKUPSYMBOLINIMAGE_OPTION_BIND_NOW

Bind all the nonlazy and lazy symbols of the module in the image that defines the symbol
name, and bind symbols in the dependent libraries as needed.

Pass this option for a library that might not be expected to bind without errors but that links
against only system-supplied libraries that are themselves expected to bind without any errors.

NSLOOKUPSYMBOLINIMAGE_OPTION_BIND_FULLY

Bind all the symbols of the module that defines symbolName and all the dependent symbols
of all needed libraries.

Because it may take a long time to fully bind the image, you should pass this option only for
libraries that cannot bind other symbols once executed, such as code that implements signal
handlers.

NSLOOKUPSYMBOLINIMAGE_OPTION_RETURN_ON_ERROR

Return NULL if the symbol cannot be bound.

Return Value
The symbol reference for the requested symbol, or NULL if the symbol cannot be found and you passed the
option NSLOOKUPSYMBOLINIMAGE_OPTION_RETURN_ON_ERROR.

Discussion
On error, if you have installed a link edit error handler, it is called; otherwise, this function writes an error
message to file descriptor 2 (usually the standard error stream, stderr) and causes a breakpoint trap to end
the program.

Functions 27
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

For portability and efficiency, consider using dlsym (page 14).

Availability
Available in Mac OS X v10.1 and later.

NSLookupSymbolInModule
Given a module reference, returns a reference to the symbol with the given name.

NSSymbol NSLookupSymbolInModule(
 NSModule module,
 const char* symbolName);

Parameters
module

A module reference. Pass the module that contains the symbol.

symbolname
A pointer to a C string. Pass the name of the symbol to look up.

Return Value
The symbol reference or NULL if the symbol cannot be found.

Discussion
For portability and efficiency, consider using dlsym (page 14).

NSModuleForSymbol
Returns a reference to the module containing the given symbol.

NSModule NSModuleForSymbol(
 NSSymbol symbol);

Parameters
symbol

A symbol reference. Pass the symbol whose module you wish to obtain.

Return Value
A reference to the module that contains the given symbol.

NSNameOfModule
Returns the name of the given module.

const char* NSNameOfModule(
 NSModule module);

Parameters
module

A module reference. Pass the module whose name you wish to retrieve.

Return Value
A C string containing the name of the module. The string is owned by the dynamic linker and you should
not free it.

28 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Discussion
See “Building Mach-O Files” in Mac OS X ABI File Format Reference.for more information about modules.

NSNameOfSymbol
Returns the name of the given symbol.

const char* NSNameOfSymbol(
 NSSymbol symbol);

Parameters
symbol

A symbol reference. Pass the symbol whose name you wish to obtain.

Return Value
A pointer to a C string containing the name of the reference. The dynamic linker owns this string and you
should not free it.

NSUnLinkModule
Unlinks the given module from the current program.

bool NSUnLinkModule(
 NSModule module,
 uint32_t options);

Parameters
module

A module reference. Pass a reference to a module that you have previously linked using the
NSLinkModule (page 25) function.

options
An unsigned long value. You can specify one or more of the following bit masks:

NSUNLINKMODULE_OPTION_NONE

Unlink the module and deallocate the memory it occupies.

NSUNLINKMODULE_OPTION_KEEP_MEMORY_MAPPED

Unlink the module, but do not deallocate the memory it occupies. Addresses that reside within
the module remain valid. You cannot unmap this memory later; it’s released when the process
exits or is terminated.

NSUNLINKMODULE_OPTION_RESET_LAZY_REFERENCES

Unlink the module and reset lazy references from other modules that are bound to the module.
You can then link a new module that implements the same symbols, and the function call
references are bound to the new module when accessed.

Discussion
For portability and efficiency, consider using dlopen (page 13) in conduction with dlclose (page 12).

See “Building Mach-O Files” in “Mach-O Programming Topics” for more information about modules.

Functions 29
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Special Considerations

In Mac OS X v10.2 and later, NSUNLINKMODULE_OPTION_RESET_LAZY_REFERENCES can be used only with
PowerPC CPU executables.

_dyld_bind_fully_image_containing_address
Finds the image containing the specified address and fully binds all the modules within it.

bool _dyld_bind_fully_image_containing_address(
 const void* address);

Parameters
address

A pointer to an address located somewhere within a loaded image.

Return Value
A Boolean value. If true, the address resides somewhere within a loaded image, and so
_dyld_bind_fully_image_containing_address attempted to bind that image. If false, the address
does not reside within a loaded image, and so _dyld_bind_fully_image_containing_address did
nothing.

Discussion
You can use this function to bind error handing code like signal handlers when you have the address of a
function, but not the symbol name. This may bind more symbols than are actually needed.

If the image containing the address is a flat namespace image, multiple-defined errors can occur even if the
symbols are not really used. Errors in binding are reported through the normal error reporting mechanisms.

_dyld_bind_objc_module
Binds the module that contains a given Objective-C address.

void _dyld_bind_objc_module(
 const void* objc_module);

Parameters
objc_module

A pointer. Pass any address residing within the __OBJC,__module section of a loaded Mach-O file.

Discussion
This function is used by the Objective-C runtime library.

_dyld_func_lookup
Obtains the address of the implementation of a dyld library function.

int _dyld_func_lookup(
 const char* dyld_func_name,
 void** address);

Parameters
dyld_func_name

A pointer to a C string. Pass the name of a dyld library function.

30 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

address
A pointer to a pointer. On output, points to the address of the function if the function is found,
otherwise the value is undefined.

Return Value
An integer value. Nonzero if the function was found. Zero if the function was not found.

Discussion
This function is used by the library code that implements the dyld functions.

_dyld_get_image_header
Returns the data structure for the header of a specified image. The image is specified by index into the list
of images maintained by dyld for the current process.

const struct mach_header* _dyld_get_image_header(
 uint32_t image_index);

Parameters
image_index

A long integer. Pass a zero-based index indicating the position of the image in the list of images
loaded into the address space of the current process.

Return Value
A pointer to the mach_header data structure of the specified image. If image_index is greater than the
number of loaded images, this pointer is null.

_dyld_get_image_name
Retrieves the name of an image.

const char* _dyld_get_image_name(
 uint32_t image_index);

Parameters
image_index

A long integer. Pass a zero-based index indicating the position of the image in the list of images
loaded into the address space of the current process.

Return Value
A pointer to a C string. If image_index is greater than the number of loaded images, the string pointer is
null.

Discussion
Returns the name of the image located at the given index into the global image list.

_dyld_get_image_vmaddr_slide
Returns the virtual memory address slide amount of an image.

Functions 31
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

intptr_t _dyld_get_image_vmaddr_slide(
 uint32_t image_index);

Parameters
image_index

A long integer. Pass a zero-based index indicating the position of the image in the list of images
loaded into the address space of the current process.

Return Value
If image_index is greater than or equal to the value returned by _dyld_image_count (page 33), zero.
Otherwise, the vmaddr_slide value for the specified image.

Discussion
When the dynamic linker loads an image, the image must be mapped into the virtual address space of the
process at an unoccupied address. The dynamic linker accomplishes this by adding a value—the virtual
memory slide amount—to the base address of the image.

_dyld_get_objc_module_sect_for_module
Obtains the size and starting location of an Objective-C module.

void _dyld_get_objc_module_sect_for_module(
 NSModule module,
 void** objc_module,
 size_t* size);

Parameters
module

A module reference from an image.

objc_modulet
A pointer to a pointer. On output, contains a pointer to the start of the __OBJC,__module section
for the specified module.

size
A pointer to a long integer. On output, the long integer contains the a value indicating the size of
the output module.

Discussion
This function is used by the Objective-C runtime library.

_dyld_image_containing_address
Returns whether or not a specified address is within any loaded image.

bool _dyld_image_containing_address(
 const void* address);

Parameters
address

An unsigned long integer. Pass the address that you wish to obtain status about.

Return Value
TRUE if the address is located within an image loaded by the dynamic linker, FALSE otherwise.

32 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

_dyld_image_count
Returns the number of images that dyld has mapped into the address space of the current process.

uint32_t _dyld_image_count(void);

Return Value
A long integer containing the number of images that dyld has mapped into the address space of the current
process.

Discussion
This function provides you with a count of the number of the images in the image list. You can use this
number to iterate the images loaded into the address space of the current process, using functions such as
_dyld_get_image_header (page 31) and _dyld_get_image_name (page 31).

_dyld_launched_prebound
Returns whether or not the dynamic linker was able to launch the program with the prebinding optimization
enabled.

bool _dyld_launched_prebound(void);

Return Value
A Boolean value. TRUE if the program was launched successfully using the prebound state; FALSE if the
either the program was not prebound or the prebinding couldn’t be used for some reason.

Discussion
If the program was not successfully launched with the prebinding optimization, the linker did not prebind
the program, the addresses of some images overlapped and so the linker could not use the prebound
addresses, or some other problem occurred. In any case, the program continues to launch, but it runs slower
than with prebinding enabled.

_dyld_lookup_and_bind
Finds the given symbol name and binds it into the program.

void _dyld_lookup_and_bind(
 const char* symbol_name,
 void ** address
 NSModule* module);

Parameters
symbol_name

A pointer to a C string. Specify the name of the symbol to bind.

address
A pointer to a pointer. On output, points to the address of the symbol specified by symbol_name.
This parameter is optional; pass NULL for this pointer on input if you do not want to retrieve this data.

module
A pointer to a module pointer. On output, the module pointer contains the module of the symbol
specified by symbol_name. This parameter is optional; specify NULL for this pointer on input if you
do not want to retrieve this data.

Functions 33
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Discussion
Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

You can use _dyld_lookup_and_bind to find a given symbol name in the global search list and bind it
(and all other defined symbols in the same module) into the program.

If the program is prebound and you know the name of the library that contains the symbol, consider using
_dyld_lookup_and_bind_with_hint (page 35) instead.

_dyld_lookup_and_bind_fully
Finds the module containing the specified symbol and fully binds all the symbol references within it.

void _dyld_lookup_and_bind_fully(
 const char* symbol_name,
 void** address,
 NSModule* module);

Parameters
symbol_name

A pointer to a C string. Specify the name of the symbol to bind.

address
A pointer to a pointer. On output, points to the address of the specified symbol.

module
A pointer to a pointer. On output, the pointer is set to the address of the module in which the specified
symbol resides.

Discussion
You can use this function to bind modules containing signal handlers or other error handling code that
cannot be initialized lazily.

Errors in binding are reported through the normal mechanisms.

_dyld_lookup_and_bind_objc
Obtains and binds the Objective-C module that contains the specified symbol.

void _dyld_lookup_and_bind_objc(
 const char* symbol_name,
 void** address,
 NSModule* module);

Parameters
symbol_name

A pointer to a C string. Specify the name of the symbol to bind, such as .objc_class_name_Foo.

address
A pointer to a pointer. On output, points to the address of the symbol specified by symbol_name.
This parameter is optional; pass NULL for this pointer on input if you do not want to retrieve this data.

module
A pointer to a module pointer. On output, the module pointer contains the module of the symbol
specified by symbol_name. This parameter is optional; specify NULL for this pointer on input if you
do not want to retrieve this data.

34 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Discussion
This routine is used by the Objective-C runtime library. It performs the same function as
_dyld_lookup_and_bind (page 33) but, for performance reasons, does not update the symbol pointers
if the symbol is in a bound module. An Objective-C symbol such as .objc_class_name_Object is never
used by a symbol pointer, and updating the symbol pointers is a relatively expensive operation; so this
provides a way for the Objective-C runtime to avoid that overhead.

_dyld_lookup_and_bind_with_hint
Finds the given symbol name and binds it into the program, with a hint to allow dyld to speed up the symbol
search for a prebound program.

void _dyld_lookup_and_bind_with_hint(
 const char* symbol_name,
 const char* library_name_hint,
 void** address,
 NSModule* module);

Parameters
symbol_name

A pointer to a C string. Specify the name of the symbol to bind.

library_name_hint
A pointer to a C string. Specify the name of the library in which the symbol is probably located. The
dynamic linker compares this name with the actual library install names using the standard C library
function strstr.

address
A pointer to a pointer. On output, points to the address of the symbol specified by symbol_name.
This parameter is optional; pass NULL for this pointer on input if you do not want to retrieve this data.

module
A pointer to a module pointer. On output, the module pointer contains the module of the symbol
specified by symbol_name. This parameter is optional; specify NULL for this pointer on input if you
do not want to retrieve this data.

Discussion
Deprecated in Mac OS X v10.4. Use NSLookupSymbolInImage (page 27) instead.

You can use _dyld_lookup_and_bind_with_hint to quickly find a given symbol name in the global
search list of a prebound program and bind the symbol (and all other defined symbols in the same module)
into the program.

_dyld_moninit
This function is used by the profiling routine moninit to allow images other than the main executable to
be profiled.

void _dyld_moninit(void (*monaddition)(
 char* lowpc,
 char* highpc);

Parameters
monaddition

A pointer to a callback function. The callback is called when an image is first mapped in.

Functions 35
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

Discussion
This function is usually called by the profiling runtime (specifically, from the moninit function). It is
documented here for completeness. See the man page for moninit and monaddtion for further information.

_dyld_present
Indicates whether or not the dynamic linker is loaded into the current program

bool _dyld_present (void);

Return Value
A Boolean value indicating the presence of dyld. This value is FALSE if dyld is not loaded in the current
process, and TRUE if dyld is loaded in the current process.

_dyld_register_func_for_add_image
Registers a function to be called by the dynamic linker runtime when an image is added to the program.

void _dyld_register_func_for_add_image(
 void (*func)(struct mach_header* mh, intptr_t vmaddr_slide));

Parameters
func

A pointer to a callback function that accepts a pointer to a mach_header data structure and a virtual
memory slide amount. The virtual memory slide amount specifies the difference between the address
at which the image was linked and the address at which the image is loaded.

Discussion
When you call _dyld_register_func_for_add_image, the dynamic linker runtime calls the specified
callback (func) once for each of the images that are currently loaded into the program. When a new image
is added to the program, your callback is called again with the mach_header for the new image, and the
virtual memory slide amount of the new image.

You might use this, for example, in implementing a runtime system, such as the Objective-C runtime, to
discover when new images are added to the program.

_dyld_register_func_for_link_module
Registers a function to be called by the dynamic linker runtime when a module is linked into the program.

void _dyld_register_func_for_link_module(
 void (*func)(NSModule module));

Parameters
func

A pointer to a callback that accepts a module reference.

Discussion
When you call _dyld_register_func_for_link_module, the dynamic linker runtime calls the specified
callback (func) once for each module that is currently linked into the program. When a new module is linked
into the program, the func callback is called again for that module.

36 Functions
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

_dyld_register_func_for_remove_image
Registers a function to be called by the dynamic linker runtime when an image is removed from the program.

void _dyld_register_func_for_remove_image(
 void (*func) (struct mach_header* mh),
 intptr_t vmaddr_slide));

Parameters
func

A pointer to a callback function that accepts a pointer to a mach_header data structure and a virtual
memory slide amount. The virtual memory slide amount specifies the difference between the address
at which the image was linked and the address at which the image is loaded.

Constants

Mach-O Image Creation Return Codes
Potential return values when creating a Mach-O image.

typedef enum {
 NSObjectFileImageFailure,
 NSObjectFileImageSuccess,
 NSObjectFileImageInappropriateFile,
 NSObjectFileImageArch,
 NSObjectFileImageFormat,
 NSObjectFileImageAccess
} NSObjectFileImageReturnCode;

Constants
NSObjectFileImageSuccess

The image creation operation was completed successfully.

NSObjectFileImageFailure
The image creation operation was not successfully completed.

When this value is returned, an error message is printed to the standard error stream.

NSObjectFileImageInappropriateFile
The Mach-O file is not of a type the called function can operate upon.

NSObjectFileImageArch
The specified Mach-O file is for a different CPU architecture.

NSObjectFileImageFormat
The specified file or memory block does not appear to point to a Mach-O file.

NSObjectFileImageAccess
The access permissions for the specified file do not permit the creation of the image.

Discussion
These return values are returned from NSCreateObjectFileImageFromFile (page 21) and
NSCreateObjectFileImageFromMemory (page 22).

Declared In
mach-o/dyld.h

Constants 37
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

38 Constants
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Mac OS X ABI Dynamic Loader Reference

This table describes the changes to Mac OS X ABI Dynamic Loader Reference.

NotesDate

Made minor corrections to the "Dynamic Loader Functions" section.2005-11-09

Changed DL_info to Dl_info in dladdr (page 11) prototype.

Added paragraph explaining difference in symbol-name specification between
NS... functions and dlsym (page 14).

Changed title to "Mac OS X ABI Dynamic Loader Reference."

Added the phrase “Mac OS X application binary interface (ABI)” to the
introduction to raise this document’s visibility in searches.

Clarified terminology for binaries that contain 32-bit and 64-bit object code.2005-08-11

Corrected descriptions of dlopen and dlsym.2005-06-04

Added information on new dynamic loader functions. Updated for 64-bit support
in Mac OS X v10.4. Changed title from "Mach-O Runtime Reference."

2005-04-29

Added "Dynamic Loader Compatibility Functions" (page 7) section with
information on dlopen, dlsym, dlclose, dladdr, and dlerror.

Updated function declarations to reflect Mac OS X v10.4 64-bit support. Also
updated availability information for deprecated functions.

Moved non–Mach-O bundle functions NSAddImage, NSAddressOfSymbol,
NSLibraryNameForModule, NSLookupSymbolInImage, NSNameOfSymbol
from "Object File Image Functions" (page 8) to "Library Functions" (page 9).

New document that describes the functions to access Mach-O files at runtime.2004-08-31

This document replaces Mach-O reference information that was published
previously in Mach-O Runtime Architecture.

Added "Library Functions" (page 9) describing NSAddLibrary and
NSAddLibraryWithSearching functions.

39
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

_dyld_bind_fully_image_containing_address
function 30

_dyld_bind_objc_module function 30
_dyld_func_lookup function 30
_dyld_get_image_header function 31
_dyld_get_image_name function 31
_dyld_get_image_vmaddr_slide function 31
_dyld_get_objc_module_sect_for_module function

32
_dyld_image_containing_address function 32
_dyld_image_count function 33
_dyld_launched_prebound function 33
_dyld_lookup_and_bind function 33
_dyld_lookup_and_bind_fully function 34
_dyld_lookup_and_bind_objc function 34
_dyld_lookup_and_bind_with_hint function 35
_dyld_moninit function 35
_dyld_present function 36
_dyld_register_func_for_add_image function 36
_dyld_register_func_for_link_module function

36
_dyld_register_func_for_remove_image function

37

D

dladdr function 11
dlclose function 12
dlerror function 12
dlopen function 13
dlsym function 14
dyld_stub_binding_helper function 15

G

getsectbyname function 16

getsectbynamefromheader function 16
getsectbynamefromheader_64 function 16
getsectdata function 17
getsectdatafromFramework function 17
getsectdatafromheader function 18
getsectdatafromheader_64 function 18
getsegbyname function 19

M

Mach-O Image Creation Return Codes 37

N

NSAddImage function 19
NSAddLibrary function 20
NSAddLibraryWithSearching function 21
NSAddressOfSymbol function 21
NSCreateObjectFileImageFromFile function 21
NSCreateObjectFileImageFromMemory function 22
NSDestroyObjectFileImage function 23
NSIsSymbolNameDefined function 23
NSIsSymbolNameDefinedInImage function 23
NSIsSymbolNameDefinedWithHint function 24
NSLibraryNameForModule function 24
NSLinkModule function 25
NSLookupAndBindSymbol function 26
NSLookupAndBindSymbolWithHint function 26
NSLookupSymbolInImage function 27
NSLookupSymbolInModule function 28
NSModuleForSymbol function 28
NSNameOfModule function 28
NSNameOfSymbol function 29
NSObjectFileImageAccess constant 37
NSObjectFileImageArch constant 37
NSObjectFileImageFailure constant 37
NSObjectFileImageFormat constant 37
NSObjectFileImageInappropriateFile constant 37
NSObjectFileImageSuccess constant 37

41
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Index

NSUnLinkModule function 29

42
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

	Mac OS X ABI Dynamic Loader Reference
	Contents
	Tables
	Mac OS X ABI Dynamic Loader Reference
	Overview
	Functions by Task
	Dynamic Loader Compatibility Functions
	Object File Image Functions
	Library Functions
	Section and Segment Accessors
	Low-Level Functions
	Glue Functions for Indirect Addressing

	Functions
	dladdr
	dlclose
	dlerror
	dlopen
	dlsym
	dyld_stub_binding_helper
	getsectbyname
	getsectbynamefromheader
	getsectbynamefromheader_64
	getsectdata
	getsectdatafromFramework
	getsectdatafromheader
	getsectdatafromheader_64
	getsegbyname
	NSAddImage
	NSAddLibrary
	NSAddLibraryWithSearching
	NSAddressOfSymbol
	NSCreateObjectFileImageFromFile
	NSCreateObjectFileImageFromMemory
	NSDestroyObjectFileImage
	NSIsSymbolNameDefined
	NSIsSymbolNameDefinedInImage
	NSIsSymbolNameDefinedWithHint
	NSLibraryNameForModule
	NSLinkModule
	NSLookupAndBindSymbol
	NSLookupAndBindSymbolWithHint
	NSLookupSymbolInImage
	NSLookupSymbolInModule
	NSModuleForSymbol
	NSNameOfModule
	NSNameOfSymbol
	NSUnLinkModule
	_dyld_bind_fully_image_containing_address
	_dyld_bind_objc_module
	_dyld_func_lookup
	_dyld_get_image_header
	_dyld_get_image_name
	_dyld_get_image_vmaddr_slide
	_dyld_get_objc_module_sect_for_module
	_dyld_image_containing_address
	_dyld_image_count
	_dyld_launched_prebound
	_dyld_lookup_and_bind
	_dyld_lookup_and_bind_fully
	_dyld_lookup_and_bind_objc
	_dyld_lookup_and_bind_with_hint
	_dyld_moninit
	_dyld_present
	_dyld_register_func_for_add_image
	_dyld_register_func_for_link_module
	_dyld_register_func_for_remove_image

	Constants
	Mach-O Image Creation Return Codes

	Revision History
	Index
	Symbols
	D
	G
	M
	N

