[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This describes conventions for writing the Makefiles for GNU programs. Using Automake will help you write a Makefile that follows these conventions.
14.1 General Conventions for Makefiles | ||
14.2 Utilities in Makefiles | ||
14.3 Variables for Specifying Commands | ||
14.4 Variables for Installation Directories | ||
14.5 Standard Targets for Users | ||
14.6 Install Command Categories | Three categories of commands in the `install' rule: normal, pre-install and post-install. |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Every Makefile should contain this line:
SHELL = /bin/sh |
to avoid trouble on systems where the SHELL
variable might be
inherited from the environment. (This is never a problem with GNU
make
.)
Different make
programs have incompatible suffix lists and
implicit rules, and this sometimes creates confusion or misbehavior. So
it is a good idea to set the suffix list explicitly using only the
suffixes you need in the particular Makefile, like this:
.SUFFIXES: .SUFFIXES: .c .o |
The first line clears out the suffix list, the second introduces all suffixes which may be subject to implicit rules in this Makefile.
Don't assume that `.' is in the path for command execution. When you need to run programs that are a part of your package during the make, please make sure that it uses `./' if the program is built as part of the make or `$(srcdir)/' if the file is an unchanging part of the source code. Without one of these prefixes, the current search path is used.
The distinction between `./' (the build directory) and `$(srcdir)/' (the source directory) is important because users can build in a separate directory using the `--srcdir' option to `configure'. A rule of the form:
foo.1 : foo.man sedscript sed -e sedscript foo.man > foo.1 |
will fail when the build directory is not the source directory, because `foo.man' and `sedscript' are in the source directory.
When using GNU make
, relying on `VPATH' to find the source
file will work in the case where there is a single dependency file,
since the make
automatic variable `$<' will represent the
source file wherever it is. (Many versions of make
set `$<'
only in implicit rules.) A Makefile target like
foo.o : bar.c $(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o |
should instead be written as
foo.o : bar.c $(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@ |
in order to allow `VPATH' to work correctly. When the target has multiple dependencies, using an explicit `$(srcdir)' is the easiest way to make the rule work well. For example, the target above for `foo.1' is best written as:
foo.1 : foo.man sedscript sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@ |
GNU distributions usually contain some files which are not source files--for example, Info files, and the output from Autoconf, Automake, Bison or Flex. Since these files normally appear in the source directory, they should always appear in the source directory, not in the build directory. So Makefile rules to update them should put the updated files in the source directory.
However, if a file does not appear in the distribution, then the Makefile should not put it in the source directory, because building a program in ordinary circumstances should not modify the source directory in any way.
Try to make the build and installation targets, at least (and all their
subtargets) work correctly with a parallel make
.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Write the Makefile commands (and any shell scripts, such as
configure
) to run in sh
, not in csh
. Don't use any
special features of ksh
or bash
.
The configure
script and the Makefile rules for building and
installation should not use any utilities directly except these:
cat cmp cp diff echo egrep expr false grep install-info ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch true |
The compression program gzip
can be used in the dist
rule.
Stick to the generally supported options for these programs. For example, don't use `mkdir -p', convenient as it may be, because most systems don't support it.
It is a good idea to avoid creating symbolic links in makefiles, since a few systems don't support them.
The Makefile rules for building and installation can also use compilers
and related programs, but should do so via make
variables so that the
user can substitute alternatives. Here are some of the programs we
mean:
ar bison cc flex install ld ldconfig lex make makeinfo ranlib texi2dvi yacc |
Use the following make
variables to run those programs:
$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX) $(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC) |
When you use ranlib
or ldconfig
, you should make sure
nothing bad happens if the system does not have the program in question.
Arrange to ignore an error from that command, and print a message before
the command to tell the user that failure of this command does not mean
a problem. (The Autoconf `AC_PROG_RANLIB' macro can help with
this.)
If you use symbolic links, you should implement a fallback for systems that don't have symbolic links.
Additional utilities that can be used via Make variables are:
chgrp chmod chown mknod |
It is ok to use other utilities in Makefile portions (or scripts) intended only for particular systems where you know those utilities exist.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Makefiles should provide variables for overriding certain commands, options, and so on.
In particular, you should run most utility programs via variables.
Thus, if you use Bison, have a variable named BISON
whose default
value is set with `BISON = bison', and refer to it with
$(BISON)
whenever you need to use Bison.
File management utilities such as ln
, rm
, mv
, and
so on, need not be referred to through variables in this way, since users
don't need to replace them with other programs.
Each program-name variable should come with an options variable that is
used to supply options to the program. Append `FLAGS' to the
program-name variable name to get the options variable name--for
example, BISONFLAGS
. (The names CFLAGS
for the C
compiler, YFLAGS
for yacc, and LFLAGS
for lex, are
exceptions to this rule, but we keep them because they are standard.)
Use CPPFLAGS
in any compilation command that runs the
preprocessor, and use LDFLAGS
in any compilation command that
does linking as well as in any direct use of ld
.
If there are C compiler options that must be used for proper
compilation of certain files, do not include them in CFLAGS
.
Users expect to be able to specify CFLAGS
freely themselves.
Instead, arrange to pass the necessary options to the C compiler
independently of CFLAGS
, by writing them explicitly in the
compilation commands or by defining an implicit rule, like this:
CFLAGS = -g ALL_CFLAGS = -I. $(CFLAGS) .c.o: $(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $< |
Do include the `-g' option in CFLAGS
, because that is not
required for proper compilation. You can consider it a default
that is only recommended. If the package is set up so that it is
compiled with GCC by default, then you might as well include `-O'
in the default value of CFLAGS
as well.
Put CFLAGS
last in the compilation command, after other variables
containing compiler options, so the user can use CFLAGS
to
override the others.
CFLAGS
should be used in every invocation of the C compiler,
both those which do compilation and those which do linking.
Every Makefile should define the variable INSTALL
, which is the
basic command for installing a file into the system.
Every Makefile should also define the variables INSTALL_PROGRAM
and INSTALL_DATA
. (The default for INSTALL_PROGRAM
should
be $(INSTALL)
; the default for INSTALL_DATA
should be
${INSTALL} -m 644
.) Then it should use those variables as the
commands for actual installation, for executables and nonexecutables
respectively. Use these variables as follows:
$(INSTALL_PROGRAM) foo $(bindir)/foo $(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a |
Optionally, you may prepend the value of DESTDIR
to the target
filename. Doing this allows the installer to create a snapshot of the
installation to be copied onto the real target filesystem later. Do not
set the value of DESTDIR
in your Makefile, and do not include it
in any installed files. With support for DESTDIR
, the above
examples become:
$(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo $(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a |
Always use a file name, not a directory name, as the second argument of the installation commands. Use a separate command for each file to be installed.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Installation directories should always be named by variables, so it is easy to install in a nonstandard place. The standard names for these variables and the values they should have in GNU packages are described below. They are based on a standard filesystem layout; variants of it are used in GNU/Linux and other modern operating systems.
Installers are expected to override these values when calling
make
(e.g., make prefix=/usr install or
configure
(e.g., configure --prefix=/usr). GNU
packages should not try to guess which value should be appropriate for
these variables on the system they are being installed onto: use the
default settings specified here so that all GNU packages behave
identically, allowing the installer to achieve any desired layout.
These two variables set the root for the installation. All the other installation directories should be subdirectories of one of these two, and nothing should be directly installed into these two directories.
prefix
A prefix used in constructing the default values of the variables listed
below. The default value of prefix
should be `/usr/local'.
When building the complete GNU system, the prefix will be empty and
`/usr' will be a symbolic link to `/'.
(If you are using Autoconf, write it as `@prefix@'.)
Running `make install' with a different value of prefix
from
the one used to build the program should not recompile the
program.
exec_prefix
A prefix used in constructing the default values of some of the
variables listed below. The default value of exec_prefix
should
be $(prefix)
.
(If you are using Autoconf, write it as `@exec_prefix@'.)
Generally, $(exec_prefix)
is used for directories that contain
machine-specific files (such as executables and subroutine libraries),
while $(prefix)
is used directly for other directories.
Running `make install' with a different value of exec_prefix
from the one used to build the program should not recompile the
program.
Executable programs are installed in one of the following directories.
bindir
The directory for installing executable programs that users can run. This should normally be `/usr/local/bin', but write it as `$(exec_prefix)/bin'. (If you are using Autoconf, write it as `@bindir@'.)
sbindir
The directory for installing executable programs that can be run from the shell, but are only generally useful to system administrators. This should normally be `/usr/local/sbin', but write it as `$(exec_prefix)/sbin'. (If you are using Autoconf, write it as `@sbindir@'.)
libexecdir
The directory for installing executable programs to be run by other programs rather than by users. This directory should normally be `/usr/local/libexec', but write it as `$(exec_prefix)/libexec'. (If you are using Autoconf, write it as `@libexecdir@'.)
The definition of `libexecdir' is the same for all packages, so you should install your data in a subdirectory thereof. Most packages install their data under `$(libexecdir)/package-name/', possibly within additional subdirectories thereof, such as `$(libexecdir)/package-name/machine/version'.
Data files used by the program during its execution are divided into categories in two ways.
Some files are normally modified by programs; others are never normally modified (though users may edit some of these).
Some files are architecture-independent and can be shared by all machines at a site; some are architecture-dependent and can be shared only by machines of the same kind and operating system; others may never be shared between two machines.
This makes for six different possibilities. However, we want to discourage the use of architecture-dependent files, aside from object files and libraries. It is much cleaner to make other data files architecture-independent, and it is generally not hard.
Here are the variables Makefiles should use to specify directories to put these various kinds of files in:
The root of the directory tree for read-only architecture-independent data files. This should normally be `/usr/local/share', but write it as `$(prefix)/share'. (If you are using Autoconf, write it as `@datarootdir@'.) `datadir''s default value is based on this variable; so are `infodir', `mandir', and others.
The directory for installing idiosyncratic read-only architecture-independent data files for this program. This is usually the same place as `datarootdir', but we use the two separate variables so that you can move these program-specific files without altering the location for Info files, man pages, etc.
This should normally be `/usr/local/share', but write it as `$(datarootdir)'. (If you are using Autoconf, write it as `@datadir@'.)
The definition of `datadir' is the same for all packages, so you should install your data in a subdirectory thereof. Most packages install their data under `$(datadir)/package-name/'.
The directory for installing read-only data files that pertain to a single machine-that is to say, files for configuring a host. Mailer and network configuration files, `/etc/passwd', and so forth belong here. All the files in this directory should be ordinary ASCII text files. This directory should normally be `/usr/local/etc', but write it as `$(prefix)/etc'. (If you are using Autoconf, write it as `@sysconfdir@'.)
Do not install executables here in this directory (they probably belong in `$(libexecdir)' or `$(sbindir)'). Also do not install files that are modified in the normal course of their use (programs whose purpose is to change the configuration of the system excluded). Those probably belong in `$(localstatedir)'.
The directory for installing architecture-independent data files which the programs modify while they run. This should normally be `/usr/local/com', but write it as `$(prefix)/com'. (If you are using Autoconf, write it as `@sharedstatedir@'.)
The directory for installing data files which the programs modify while they run, and that pertain to one specific machine. Users should never need to modify files in this directory to configure the package's operation; put such configuration information in separate files that go in `$(datadir)' or `$(sysconfdir)'. `$(localstatedir)' should normally be `/usr/local/var', but write it as `$(prefix)/var'. (If you are using Autoconf, write it as `@localstatedir@'.)
These variables specify the directory for installing certain specific types of files, if your program has them. Every GNU package should have Info files, so every program needs `infodir', but not all need `libdir' or `lispdir'.
The directory for installing header files to be included by user programs with the C `#include' preprocessor directive. This should normally be `/usr/local/include', but write it as `$(prefix)/include'. (If you are using Autoconf, write it as `@includedir@'.)
Most compilers other than GCC do not look for header files in directory
`/usr/local/include'. So installing the header files this way is
only useful with GCC. Sometimes this is not a problem because some
libraries are only really intended to work with GCC. But some libraries
are intended to work with other compilers. They should install their
header files in two places, one specified by includedir
and one
specified by oldincludedir
.
The directory for installing `#include' header files for use with compilers other than GCC. This should normally be `/usr/include'. (If you are using Autoconf, you can write it as `@oldincludedir@'.)
The Makefile commands should check whether the value of
oldincludedir
is empty. If it is, they should not try to use
it; they should cancel the second installation of the header files.
A package should not replace an existing header in this directory unless
the header came from the same package. Thus, if your Foo package
provides a header file `foo.h', then it should install the header
file in the oldincludedir
directory if either (1) there is no
`foo.h' there or (2) the `foo.h' that exists came from the Foo
package.
To tell whether `foo.h' came from the Foo package, put a magic
string in the file--part of a comment--and grep
for that string.
The directory for installing documentation files (other than Info) for this package. By default, it should be `/usr/local/share/doc/yourpkg', but it should be written as `$(datarootdir)/doc/yourpkg'. (If you are using Autoconf, write it as `@docdir@'.) The yourpkg subdirectory, which may include a version number, prevents collisions among files with common names, such as `README'.
The directory for installing the Info files for this package. By
default, it should be `/usr/local/share/info', but it should be
written as `$(datarootdir)/info'. (If you are using Autoconf,
write it as `@infodir@'.) infodir
is separate from
docdir
for compatibility with existing practice.
Directories for installing documentation files in the particular
format. (It is not required to support documentation in all these
formats.) They should all be set to $(docdir)
by default. (If
you are using Autoconf, write them as `@htmldir@',
`@dvidir@', etc.) Packages which supply several translations
of their documentation should install them in
`$(htmldir)/'ll, `$(pdfdir)/'ll, etc. where
ll is a locale abbreviation such as `en' or `pt_BR'.
The directory for object files and libraries of object code. Do not
install executables here, they probably ought to go in `$(libexecdir)'
instead. The value of libdir
should normally be
`/usr/local/lib', but write it as `$(exec_prefix)/lib'.
(If you are using Autoconf, write it as `@libdir@'.)
The directory for installing any Emacs Lisp files in this package. By default, it should be `/usr/local/share/emacs/site-lisp', but it should be written as `$(datarootdir)/emacs/site-lisp'.
If you are using Autoconf, write the default as `@lispdir@'. In order to make `@lispdir@' work, you need the following lines in your `configure.in' file:
lispdir='${datarootdir}/emacs/site-lisp' AC_SUBST(lispdir) |
The directory for installing locale-specific message catalogs for this package. By default, it should be `/usr/local/share/locale', but it should be written as `$(datarootdir)/locale'. (If you are using Autoconf, write it as `@localedir@'.) This directory usually has a subdirectory per locale.
Unix-style man pages are installed in one of the following:
The top-level directory for installing the man pages (if any) for this package. It will normally be `/usr/local/share/man', but you should write it as `$(datarootdir)/man'. (If you are using Autoconf, write it as `@mandir@'.)
The directory for installing section 1 man pages. Write it as `$(mandir)/man1'.
The directory for installing section 2 man pages. Write it as `$(mandir)/man2'
Don't make the primary documentation for any GNU software be a man page. Write a manual in Texinfo instead. Man pages are just for the sake of people running GNU software on Unix, which is a secondary application only.
The file name extension for the installed man page. This should contain a period followed by the appropriate digit; it should normally be `.1'.
The file name extension for installed section 1 man pages.
The file name extension for installed section 2 man pages.
Use these names instead of `manext' if the package needs to install man pages in more than one section of the manual.
And finally, you should set the following variable:
The directory for the sources being compiled. The value of this
variable is normally inserted by the configure
shell script.
(If you are using Autconf, use `srcdir = @srcdir@'.)
For example:
# Common prefix for installation directories. # NOTE: This directory must exist when you start the install. prefix = /usr/local datarootdir = $(prefix)/share datadir = $(datarootdir) exec_prefix = $(prefix) # Where to put the executable for the command `gcc'. bindir = $(exec_prefix)/bin # Where to put the directories used by the compiler. libexecdir = $(exec_prefix)/libexec # Where to put the Info files. infodir = $(datarootdir)/info |
If your program installs a large number of files into one of the
standard user-specified directories, it might be useful to group them
into a subdirectory particular to that program. If you do this, you
should write the install
rule to create these subdirectories.
Do not expect the user to include the subdirectory name in the value of any of the variables listed above. The idea of having a uniform set of variable names for installation directories is to enable the user to specify the exact same values for several different GNU packages. In order for this to be useful, all the packages must be designed so that they will work sensibly when the user does so.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
All GNU programs should have the following targets in their Makefiles:
Compile the entire program. This should be the default target. This target need not rebuild any documentation files; Info files should normally be included in the distribution, and DVI files should be made only when explicitly asked for.
By default, the Make rules should compile and link with `-g', so that executable programs have debugging symbols. Users who don't mind being helpless can strip the executables later if they wish.
Compile the program and copy the executables, libraries, and so on to the file names where they should reside for actual use. If there is a simple test to verify that a program is properly installed, this target should run that test.
Do not strip executables when installing them. Devil-may-care users can
use the install-strip
target to do that.
If possible, write the install
target rule so that it does not
modify anything in the directory where the program was built, provided
`make all' has just been done. This is convenient for building the
program under one user name and installing it under another.
The commands should create all the directories in which files are to be
installed, if they don't already exist. This includes the directories
specified as the values of the variables prefix
and
exec_prefix
, as well as all subdirectories that are needed.
One way to do this is by means of an installdirs
target
as described below.
Use `-' before any command for installing a man page, so that
make
will ignore any errors. This is in case there are systems
that don't have the Unix man page documentation system installed.
The way to install Info files is to copy them into `$(infodir)'
with $(INSTALL_DATA)
(see section Variables for Specifying Commands), and then run
the install-info
program if it is present. install-info
is a program that edits the Info `dir' file to add or update the
menu entry for the given Info file; it is part of the Texinfo package.
Here is a sample rule to install an Info file:
$(DESTDIR)$(infodir)/foo.info: foo.info $(POST_INSTALL) # There may be a newer info file in . than in srcdir. -if test -f foo.info; then d=.; \ else d=$(srcdir); fi; \ $(INSTALL_DATA) $$d/foo.info $(DESTDIR)$@; \ # Run install-info only if it exists. # Use `if' instead of just prepending `-' to the # line so we notice real errors from install-info. # We use `$(SHELL) -c' because some shells do not # fail gracefully when there is an unknown command. if $(SHELL) -c 'install-info --version' \ >/dev/null 2>&1; then \ install-info --dir-file=$(DESTDIR)$(infodir)/dir \ $(DESTDIR)$(infodir)/foo.info; \ else true; fi |
When writing the install
target, you must classify all the
commands into three categories: normal ones, pre-installation
commands and post-installation commands. See section Install Command Categories.
These targets install documentation in formats other than Info;
they're intended to be called explicitly by the person installing the
package, if that format is desired. GNU prefers Info files, so these
must be installed by the install
target.
When you have many documentation files to install, we recommend that
you avoid collisions and clutter by arranging for these targets to
install in subdirectories of the appropriate installation directory,
such as htmldir
. As one example, if your package has multiple
manuals, and you wish to install HTML documentation with many files
(such as the "split" mode output by makeinfo --html
), you'll
certainly want to use subdirectories, or two nodes with the same name
in different manuals will overwrite each other.
Delete all the installed files--the copies that the `install' and `install-*' targets create.
This rule should not modify the directories where compilation is done, only the directories where files are installed.
The uninstallation commands are divided into three categories, just like the installation commands. See section Install Command Categories.
Like install
, but strip the executable files while installing
them. In simple cases, this target can use the install
target in
a simple way:
install-strip: $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' \ install |
But if the package installs scripts as well as real executables, the
install-strip
target can't just refer to the install
target; it has to strip the executables but not the scripts.
install-strip
should not strip the executables in the build
directory which are being copied for installation. It should only strip
the copies that are installed.
Normally we do not recommend stripping an executable unless you are sure the program has no bugs. However, it can be reasonable to install a stripped executable for actual execution while saving the unstripped executable elsewhere in case there is a bug.
Delete all files in the current directory that are normally created by building the program. Also delete files in other directories if they are created by this makefile. However, don't delete the files that record the configuration. Also preserve files that could be made by building, but normally aren't because the distribution comes with them. There is no need to delete parent directories that were created with `mkdir -p', since they could have existed anyway.
Delete `.dvi' files here if they are not part of the distribution.
Delete all files in the current directory (or created by this makefile) that are created by configuring or building the program. If you have unpacked the source and built the program without creating any other files, `make distclean' should leave only the files that were in the distribution. However, there is no need to delete parent directories that were created with `mkdir -p', since they could have existed anyway.
Like `clean', but may refrain from deleting a few files that people normally don't want to recompile. For example, the `mostlyclean' target for GCC does not delete `libgcc.a', because recompiling it is rarely necessary and takes a lot of time.
Delete almost everything that can be reconstructed with this Makefile.
This typically includes everything deleted by distclean
, plus
more: C source files produced by Bison, tags tables, Info files, and
so on.
The reason we say "almost everything" is that running the command
`make maintainer-clean' should not delete `configure' even
if `configure' can be remade using a rule in the Makefile. More
generally, `make maintainer-clean' should not delete anything
that needs to exist in order to run `configure' and then begin to
build the program. Also, there is no need to delete parent
directories that were created with `mkdir -p', since they could
have existed anyway. These are the only exceptions;
maintainer-clean
should delete everything else that can be
rebuilt.
The `maintainer-clean' target is intended to be used by a maintainer of the package, not by ordinary users. You may need special tools to reconstruct some of the files that `make maintainer-clean' deletes. Since these files are normally included in the distribution, we don't take care to make them easy to reconstruct. If you find you need to unpack the full distribution again, don't blame us.
To help make users aware of this, the commands for the special
maintainer-clean
target should start with these two:
@echo 'This command is intended for maintainers to use; it' @echo 'deletes files that may need special tools to rebuild.' |
Update a tags table for this program.
Generate any Info files needed. The best way to write the rules is as follows:
info: foo.info foo.info: foo.texi chap1.texi chap2.texi $(MAKEINFO) $(srcdir)/foo.texi |
You must define the variable MAKEINFO
in the Makefile. It should
run the makeinfo
program, which is part of the Texinfo
distribution.
Normally a GNU distribution comes with Info files, and that means the Info files are present in the source directory. Therefore, the Make rule for an info file should update it in the source directory. When users build the package, ordinarily Make will not update the Info files because they will already be up to date.
Generate documentation files in the given format, if possible. Here's an example rule for generating DVI files from Texinfo:
dvi: foo.dvi foo.dvi: foo.texi chap1.texi chap2.texi $(TEXI2DVI) $(srcdir)/foo.texi |
You must define the variable TEXI2DVI
in the Makefile. It should
run the program texi2dvi
, which is part of the Texinfo
distribution.(3) Alternatively,
write just the dependencies, and allow GNU make
to provide the command.
Here's another example, this one for generating HTML from Texinfo:
html: foo.html foo.html: foo.texi chap1.texi chap2.texi $(TEXI2HTML) $(srcdir)/foo.texi |
Again, you would define the variable TEXI2HTML
in the Makefile;
for example, it might run makeinfo --no-split --html
(makeinfo
is part of the Texinfo distribution).
Create a distribution tar file for this program. The tar file should be set up so that the file names in the tar file start with a subdirectory name which is the name of the package it is a distribution for. This name can include the version number.
For example, the distribution tar file of GCC version 1.40 unpacks into a subdirectory named `gcc-1.40'.
The easiest way to do this is to create a subdirectory appropriately
named, use ln
or cp
to install the proper files in it, and
then tar
that subdirectory.
Compress the tar file with gzip
. For example, the actual
distribution file for GCC version 1.40 is called `gcc-1.40.tar.gz'.
The dist
target should explicitly depend on all non-source files
that are in the distribution, to make sure they are up to date in the
distribution.
See (standards)Releases section `Making Releases' in GNU Coding Standards.
Perform self-tests (if any). The user must build the program before running the tests, but need not install the program; you should write the self-tests so that they work when the program is built but not installed.
The following targets are suggested as conventional names, for programs in which they are useful.
installcheck
Perform installation tests (if any). The user must build and install the program before running the tests. You should not assume that `$(bindir)' is in the search path.
installdirs
It's useful to add a target named `installdirs' to create the directories where files are installed, and their parent directories. There is a script called `mkinstalldirs' which is convenient for this; you can find it in the Texinfo package. You can use a rule like this:
# Make sure all installation directories (e.g. $(bindir)) # actually exist by making them if necessary. installdirs: mkinstalldirs $(srcdir)/mkinstalldirs $(bindir) $(datadir) \ $(libdir) $(infodir) \ $(mandir) |
or, if you wish to support DESTDIR
,
# Make sure all installation directories (e.g. $(bindir)) # actually exist by making them if necessary. installdirs: mkinstalldirs $(srcdir)/mkinstalldirs \ $(DESTDIR)$(bindir) $(DESTDIR)$(datadir) \ $(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \ $(DESTDIR)$(mandir) |
This rule should not modify the directories where compilation is done. It should do nothing but create installation directories.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When writing the install
target, you must classify all the
commands into three categories: normal ones, pre-installation
commands and post-installation commands.
Normal commands move files into their proper places, and set their modes. They may not alter any files except the ones that come entirely from the package they belong to.
Pre-installation and post-installation commands may alter other files; in particular, they can edit global configuration files or data bases.
Pre-installation commands are typically executed before the normal commands, and post-installation commands are typically run after the normal commands.
The most common use for a post-installation command is to run
install-info
. This cannot be done with a normal command, since
it alters a file (the Info directory) which does not come entirely and
solely from the package being installed. It is a post-installation
command because it needs to be done after the normal command which
installs the package's Info files.
Most programs don't need any pre-installation commands, but we have the feature just in case it is needed.
To classify the commands in the install
rule into these three
categories, insert category lines among them. A category line
specifies the category for the commands that follow.
A category line consists of a tab and a reference to a special Make variable, plus an optional comment at the end. There are three variables you can use, one for each category; the variable name specifies the category. Category lines are no-ops in ordinary execution because these three Make variables are normally undefined (and you should not define them in the makefile).
Here are the three possible category lines, each with a comment that explains what it means:
$(PRE_INSTALL) # Pre-install commands follow. $(POST_INSTALL) # Post-install commands follow. $(NORMAL_INSTALL) # Normal commands follow. |
If you don't use a category line at the beginning of the install
rule, all the commands are classified as normal until the first category
line. If you don't use any category lines, all the commands are
classified as normal.
These are the category lines for uninstall
:
$(PRE_UNINSTALL) # Pre-uninstall commands follow. $(POST_UNINSTALL) # Post-uninstall commands follow. $(NORMAL_UNINSTALL) # Normal commands follow. |
Typically, a pre-uninstall command would be used for deleting entries from the Info directory.
If the install
or uninstall
target has any dependencies
which act as subroutines of installation, then you should start
each dependency's commands with a category line, and start the
main target's commands with a category line also. This way, you can
ensure that each command is placed in the right category regardless of
which of the dependencies actually run.
Pre-installation and post-installation commands should not run any programs except for these:
[ basename bash cat chgrp chmod chown cmp cp dd diff echo egrep expand expr false fgrep find getopt grep gunzip gzip hostname install install-info kill ldconfig ln ls md5sum mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee test touch true uname xargs yes |
The reason for distinguishing the commands in this way is for the sake of making binary packages. Typically a binary package contains all the executables and other files that need to be installed, and has its own method of installing them--so it does not need to run the normal installation commands. But installing the binary package does need to execute the pre-installation and post-installation commands.
Programs to build binary packages work by extracting the
pre-installation and post-installation commands. Here is one way of
extracting the pre-installation commands (the `-s' option to
make
is needed to silence messages about entering
subdirectories):
make -s -n install -o all \ PRE_INSTALL=pre-install \ POST_INSTALL=post-install \ NORMAL_INSTALL=normal-install \ | gawk -f pre-install.awk |
where the file `pre-install.awk' could contain this:
$0 ~ /^(normal-install|post-install)[ \t]*$/ {on = 0} on {print $0} $0 ~ /^pre-install[ \t]*$/ {on = 1} |
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by System Administrator on February, 19 2008 using texi2html 1.70.