
Accessing Hardware From Applications
Hardware & Drivers

2007-02-08

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, eMac,
FireWire, Mac, Mac OS, Objective-C, Pages,
Quartz, QuickDraw, QuickTime, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

CDB is a trademark of Third Eye Software, Inc.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Accessing Hardware From Applications 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

Chapter 1 Hardware-Access Options 9

Other APIs That Provide Access to Hardware 9
Where to Go From Here 11

Chapter 2 Device Access and the I/O Kit 13

I/O Kit Summary 13
I/O Kit Definitions 13
I/O Kit Driver-Stack Building 16

Device Interfaces and Device Files 19
Inside the Device-Interface Mechanism 19
Inside the Device-File Mechanism 21
Communicating With the I/O Kit 23

Chapter 3 Finding and Accessing Devices 25

Finding Devices in the I/O Registry 25
Device Matching 26
Getting the I/O Kit Master Port 26
Getting Keys and Values for a Device-Matching Dictionary 27
Setting Up a Matching Dictionary to Find Devices 31
Setting Up a Matching Dictionary to Find Device Files 33
Looking Up Devices in the I/O Registry 34
Getting Notifications of Device Arrival and Departure 35

Examining Matching Objects 36
Putting It All Together: Accessing a Device 36

Getting a Device Interface 37
Getting a Device-File Path 38

Chapter 4 The IOKitLib API 41

Object Reference-Counting and Introspection 41
Reference Counting 42
Introspection 43

Device Discovery and Notification 43

3
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

Creating Matching Dictionaries 44
Looking Up Devices 45
Setting Up and Receiving Notifications 45
Iterating Over Matching Devices 46

I/O Registry Access 47
Traversing the I/O Registry 47
Getting Information About I/O Registry Objects 48
Viewing Properties of I/O Registry Objects 49
Setting Properties of I/O Registry Objects 50
Determining Busy States 51

Device-Interface Development 52
Creating a User Space–Kernel Connection 52
Managing the User Space–Kernel Connection 55

Chapter 5 Handling Errors 57

Interpreting I/O Kit Error Return Values 57
Handling Exclusive-Access Errors 59

Appendix A I/O Kit Family Device-Access Support 61

Document Revision History 65

Glossary 67

Index 69

4
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 2 Device Access and the I/O Kit 13

Figure 2-1 The I/O Kit framework 15
Figure 2-2 I/O Kit objects supporting a FireWire device 16
Figure 2-3 I/O Kit objects supporting a FireWire device in I/O Registry Explorer 17
Figure 2-4 Adding a device interface to the FireWire driver stack 18
Figure 2-5 I/O Kit objects supporting a serial device 18
Figure 2-6 I/O Kit objects supporting a serial device in I/O Registry Explorer 19
Figure 2-7 The IOCFPlugInInterface functions 20
Figure 2-8 Some of the IOUSBDeviceInterface functions 21
Figure 2-9 An IOSerialBSDClient object in I/O Registry Explorer 22

Chapter 3 Finding and Accessing Devices 25

Figure 3-1 The I/O Registry Explorer application, showing various keys and values for the
AppleUSBComposite driver 28

Figure 3-2 Some keys and values for a HID class device, shown in I/O Registry Explorer 29
Listing 3-1 Matching keys from IOKitKeys.h 28
Listing 3-2 HID class device matching keys from IOHIDKeys.h 28
Listing 3-3 A partial listing of the personality dictionary for the AppleFWAudio driver 30
Listing 3-4 Modifying a matching dictionary 32
Listing 3-5 Device interface definitions from IOUSBLib.h 37
Listing 3-6 Getting an intermediate IOCFPlugInInterface object 38
Listing 3-7 Getting a specific device interface object 38
Listing 3-8 Getting the device name of a storage device 39

Chapter 4 The IOKitLib API 41

Table 4-1 Dictionary-creation functions and the keys they use 44
Table 4-2 IOConnectMethod functions 53
Listing 4-1 Object definitions in IOTypes.h 41
Listing 4-2 Releasing the underlying kernel object of an io_iterator_t object 42
Listing 4-3 Getting the retain count of an io_object_t object 43
Listing 4-4 Using the IORegistryEntryGet functions 49
Listing 4-5 Creating a user client 52
Listing 4-6 Requesting I/O with the IOConnectMethodScalarIStructureI function 54

Chapter 5 Handling Errors 57

Figure 5-1 Bit layout for kernel and I/O Kit error return values 57
Listing 5-1 Error.h system error values 58
Listing 5-2 Error.h macros for working with error return values 58

5
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

Listing 5-3 IOReturn.h error return values 58

6
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

There are many reasons your application might need to access hardware: Receiving mouse and keyboard
events, accessing devices, such as a FireWire DV camcorder, and driving a device from an application are just
a few. Although only code that resides in the kernel can access hardware directly, Mac OS X provides many
services that allow you to communicate with hardware from plug-ins, applications, shared libraries, and other
code running outside the kernel.

Who Should Read This Document?

This document describes how software running in Mac OS X can access hardware by communicating with
the kernel, focusing on services the I/O Kit provides to develop an application-based driver. You should read
this document if you need to access a device from an application. Note that many applications will be able
to handle all their hardware-access needs using high-level APIs, such as Open Transport and QuickTime, that
are available through Carbon and Cocoa. To help you determine which approach is right for you, and for a
summary of other services Mac OS X provides for hardware access from applications, see “Hardware-Access
Options” (page 9).

This document includes many code fragments illustrating the various tasks involved in developing an
application that accesses hardware, but it is not intended to be a step-by-step cookbook for accessing a
particular type of device. To determine how to access a particular device, see “I/O Kit Family Device-Access
Support” (page 61); For each device family it specifies how to access a device in that family and where to
find more detailed documentation.

This document does not describe how to write kernel-resident code to access hardware. Kernel programmers
should refer to Kernel Programming Guide and in-kernel device-driver developers should read I/O Kit Device
Driver DesignGuidelines. In particular, if you are developing your own device interface and user client to create
a custom solution to access your device, you should read the “Making Hardware Accessible to Applications”
chapter in that document. For other documents that cover how to access particular devices, visit Reference
Library > Hardware & Drivers.

Organization of This Document

Accessing Hardware From Applications includes the following chapters:

 ■ “Hardware-Access Options” (page 9)

Describes many other methods you can use to access hardware from an application, such as Core Audio,
QuickTime, and the Carbon Event Manager. Read this chapter to determine if such high-level APIs can
meet your needs.

 ■ “Device Access and the I/O Kit” (page 13)

Who Should Read This Document? 7
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Accessing Hardware From
Applications

Summarizes I/O Kit architecture, providing a list of terms used throughout this document and describing
how the I/O Kit models I/O connections. It then describes the two fundamental hardware-access methods
the I/O Kit supports: device interfaces and device files.

 ■ “Finding and Accessing Devices” (page 25)

Describes the steps you take to access a device using an I/O Kit device interface and, for appropriate
devices, using a device file.

 ■ “The IOKitLib API” (page 41)

Categorizes and describes the functions of the main API that supports user-space device access through
the I/O Kit.

 ■ “Handling Errors” (page 57)

Describes how to interpret I/O Kit return values and provides information on the exclusive-access error.

 ■ “I/O Kit Family Device-Access Support” (page 61)

Lists the current I/O Kit families and describes what support they provide for hardware access from
applications.

 ■ “Document Revision History” (page 65)

Lists changes to this document.

 ■ “Glossary” (page 67)

Defines key terms used in this document.

See Also

Although this document includes a summary of basic I/O Kit information (in “I/O Kit Summary” (page 13)),
you should read I/O Kit Fundamentals for a thorough understanding of this subsystem.

Familiarity with the CFPlugIn architecture is useful in reading this document. This architecture is described
in the developer documentation available in Reference Library > Core Foundation.

Knowledge of the Mac OS X kernel and device drivers may be useful but is not required. To get more
information about these topics, visit Reference Library > Darwin.

When you install the Developer package, you get developer documentation as well as tools and example
code. You can find all the I/O Kit and kernel documents mentioned in this document listed in /Developer/ADC
Reference Library/documentation/Darwin and /Developer/ADC Reference
Library/documentation/HardwareDrivers. Sample projects are available in /Developer/Examples.
Most of the sample projects that are relevant to device access from applications reside in
/Developer/Examples/IOKit.

There you can view the documentation for BSD and POSIX functions and tools by typing man function_name
in a Terminal window (for example, man gdb) or in HTML at Mac OS X Man Pages.

You can access reference documentation on I/O Kit families from Xcode, Help Viewer, and Reference Library
> Hardware & Drivers. Of course, you can also browse the header files for various I/O Kit families and other
I/O Kit services accessible from user space in/System/Library/Frameworks/IOKit.framework/Headers.

8 See Also
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Accessing Hardware From Applications

Many applications can handle all their hardware-access needs using high-level APIs, such as QuickTime,
CFNetwork, and Core Audio. Before you embark upon the development of an application-based device driver,
you should read this chapter to determine if there is a more suitable (and probably easier) solution.

If you find that you must use I/O Kit or BSD APIs to access a device, note that Apple does not provide
Objective-C interfaces for these APIs. However, because these are pure C APIs, you can call them from your
Cocoa application.

Other APIs That Provide Access to Hardware

The high-level Mac OS X APIs listed here provide some access to hardware and do not require the use of I/O
Kit services. This list is not exhaustive. A pointer to documentation for these APIs is provided, where available;
otherwise, look for the for the latest documentation in the Reference Library.

 ■ BSD networking

You can access networking services from user space using the BSD socket API. The socket structure is
used to keep track of network information on a per file-descriptor basis: Applications can reference the
socket structure using file descriptors.

For more information on the BSD socket API, refer to the man pages. In a Terminal window, type man
socket. To view the man pages in HTML, see Mac OS X Man Pages.

 ■ BSD file systems

You can use POSIX file I/O functions to access disks represented as device files. These functions use a
file descriptor, an integer index into a list of files a process has open, to access files. You can manipulate
file descriptors using the standard file descriptor functions, such as open, close, read, and write. In
addition, you can use the fcntl and ioctl functions to control files and devices.

For more information on these functions, refer to the man pages. For example, in a Terminal window,
type man open or man ioctl. To view the man pages in HTML, see Mac OS X Man Pages. See Device
File Access Guide for Serial Devices and Device File Access Guide for Storage Devices for examples of how to
use file-descriptor functions to access these devices.

 ■ Carbon Event Manager

The Carbon Event Manager provides routines that communicate user actions and give notice of changes
in processing status. You can use the Carbon Event Manager, for example, to obtain information about
mouse and keyboard events.

For more information about the Carbon Event manager, see the Carbon Events and Other Input Reference
Library.

 ■ Carbon Printing Manager

The Carbon Printing Manager defines an API that allows applications to print in both Mac OS 8 and 9
with existing printer drivers and in Mac OS X with new printer drivers.

Other APIs That Provide Access to Hardware 9
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Hardware-Access Options

For more information on how any application (even non-Carbon ones) can use the functions of the
Carbon Printing Manager, see the Carbon Printing Reference Library.

 ■ CFNetwork

The CFNetwork API provides abstractions that allow you to easily work with BSD sockets, manage
information about remote hosts, and work with HTTP and FTP servers.

For more information about the CFNetwork API, see CFNetwork Programming Guide.

 ■ Core Audio

The Audio HAL (Hardware Abstraction Layer) is at the heart of the Core Audio system and provides the
interface between applications and hardware. The Audio HAL allows applications to manipulate devices
through both an input/output procedure for streaming and a property mechanism for control.

For more information about the Audio HAL in particular and Core Audio in general, see the Music &
Audio Reference Library.

 ■ Quartz 2D and Quartz Compositor

Quartz Compositor (sometimes referred to as “Core Graphics Services” in older documentation) consists
of the Mac OS X window server and the private system programming interfaces (SPIs) it implements. It
creates the Mac OS X graphical user interface by compositing content from client graphics-rendering
libraries, such as Quartz 2D and QuickDraw.

For more information about Quartz Compositor and about using Quartz 2D, see the Graphics & Imaging
Reference Library.

 ■ File Manager

The File Manager allows your application to access files and folders on physical storage devices such as
disk drives. It supports several volume formats, including HFS and HFS Plus.

For more information on how to use the File Manager, see the Carbon File Management Reference
Library.

 ■ NSEvent (Cocoa object class)

An NSEvent object, or simply an event, contains information about an input action such as a mouse click
or a key down. The Cocoa Application Kit associates each such user action with a window, reporting the
event to the application that created the window.

In Mac OS X version 10.4, applications can receive tablet events, such as tablet-pointing and
tablet-proximity events, as NSEvent objects.

For more information about Cocoa and the Application Kit, see the Cocoa Reference Library.

 ■ Open Transport

Open Transport is the Mac OS 8 and 9 API for accessing TCP/IP networks at the transport level. Apple
provides Open Transport as a compatibility library to support migration of legacy applications to Mac
OS X. New Mac OS X applications should instead use BSD sockets or higher-level Core Services and Core
Foundation APIs, such as CFNetwork.

For more information on Open Transport, see the Carbon Networking Reference Library.

 ■ Power-source information

You can get information about power sources and UPS (uninterruptible power supply) devices using
the I/O Kit’s power-source API located in
/System/Library/Frameworks/IOKit.framework/Headers/ps. The header files in this folder,

10 Other APIs That Provide Access to Hardware
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Hardware-Access Options

IOPowerSources.h and IOPSKeys.h, contain methods and keys to extract information about both
external and internal power sources. For example, an application can get a list of attached power sources,
request notifications for changes in its power sources, and determine how much power is left in a battery.

 ■ QuickTime

QuickTime is a package of system-level code that higher-level software can use to control time-based
data. QuickTime can handle video data, still images, animated images (sprites), vector graphics, multiple
sound channels, MIDI music, 3D objects, virtual reality panoramas and objects, and even text. For example,
you can use the QuickTime video digitizer and video output components to access FireWire DV devices
such as DV camcorders.

For more information on QuickTime, see the QuickTime Reference Library.

(For further information on Apple’s FireWire support, including access to development kits with
device-interface support, see http://developer.apple.com/hardwaredrivers/firewire/.)

 ■ SCSI Manager 4.3

Beginning with Mac OS X version 10.2, the SCSI Manager 4.3 SCSIAction function is deprecated,
although it will continue to function on previous versions of Mac OS X until users install SCSI HBA (host
bus adapter) drivers developed with the new SCSI Parallel family API (shipped with Mac OS X version
10.2).

If your application must access a SCSI Parallel device that was not previously accessible with the SCSI
Architecture Model family’s device interfaces and your application requires compatibility with versions
of Mac OS X earlier than 10.2, your application should look up SCSI devices using both the new
IOSCSITaskDeviceInterface and the old IOSCSIDeviceInterface APIs. If a user has installed the new HBA
drivers, the new IOSCSITaskDeviceInterface API will find the device and your code can use that interface
to communicate with the device. If a function of the old API succeeds in finding the device, it’s because
the user hasn’t yet installed the new HBA drivers and your code should use the old API to communicate
with the device.

For more information on how to access SCSI devices, see SCSI Architecture Model Device Interface Guide.

Where to Go From Here

If you’ve determined that the hardware access options listed in “Other APIs That Provide Access to
Hardware” (page 9) do not meet your application’s needs, you can use the device interface mechanism
that many I/O Kit device families provide to access your device.

If you’re unfamiliar with the device interface mechanism, be sure to read the next chapter, “Device Access
and the I/O Kit” (page 13), for more information. If you’re wondering if an I/O Kit family provides a device
interface for your device, see “I/O Kit Family Device-Access Support” (page 61).

Where to Go From Here 11
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Hardware-Access Options

http://developer.apple.com/hardwaredrivers/firewire/

12 Where to Go From Here
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Hardware-Access Options

In Mac OS X, kernel space is the protected memory partition in which the kernel resides, while user space is
memory outside the kernel’s partition. Most device drivers reside in kernel space, typically because they take
primary interrupts (which requires them to live in the kernel) or because their primary client resides in the
kernel (such as a device driver for an Ethernet card that resides in the kernel because the network stacks
reside there).

Because only code running in the kernel can directly access hardware devices, Mac OS X provides two
mechanisms that allow your application or other user-space code to make use of kernel-resident drivers and
other kernel services. These mechanisms are I/O Kit device interfaces and POSIX support, using device files.

This chapter summarizes fundamental I/O Kit concepts and terms and describes some of the actions the I/O
Kit takes to support devices attached to a Mac OS X computer. Then, it introduces device interfaces and
device files, describing how they work and where they fit into the I/O Kit’s layered, runtime architecture.

I/O Kit Summary

As the object-oriented framework for device-driver development for Mac OS X, the I/O Kit defines objects
that represent the various hardware and software entities that form I/O connections in a running Mac OS X
system. Using these objects, the I/O Kit models the layered, provider-client relationships between devices,
drivers, and driver families.

The I/O Kit also provides services, accessible through a procedural interface, for obtaining device information
and accessing devices from non-kernel code. By using this interface, you can obtain the hardware support
your application needs without taking on the complexity of writing kernel-resident code.

This section first defines I/O Kit terms that describe the objects you find in a running Mac OS X system and
some of the processes that act on them. Then, it summarizes the device-discovery process and how the use
of device interfaces affects the layered architecture of the running system. For more in-depth coverage of
the I/O Kit, see I/O Kit Fundamentals.

I/O Kit Definitions

The I/O Kit defines objects that represent both devices and the software that supports them. To work with
device interfaces or device files, you should be familiar with the I/O Kit’s object-oriented view of the devices
and software that make up a running Mac OS X system. The following list describes the I/O Kit elements,
processes, and data structures you’ll encounter in the rest of this document.

 ■ A family (or device family) is a collection of software abstractions that are common to all devices of a
particular category. Families provide functionality and services to drivers (defined next). The I/O Kit
defines families for bus protocols (such as USB and FireWire), storage devices, human interface devices,
and many others. For a full list of families and what types of application-based access they support, see
“I/O Kit Family Device-Access Support” (page 61).

I/O Kit Summary 13
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

 ■ A driver is an I/O Kit object that manages a specific piece of hardware. When the I/O Kit loads a driver,
it may need to load one or more families, too. Drivers are written as kernel extensions (or KEXTs) and
are usually installed in the directory /System/Library/Extensions.

Many of a driver’s characteristics are found in its property list, a text file in XML (Extensible Markup
Language) format that describes the contents, settings, and requirements of the driver. A driver usually
stores its property list (or Info.plist file) in its Contents directory, where you can view it using the
Property List Editor.

 ■ A nub is an I/O Kit object that represents a detected, controllable entity, such as a device or logical
service. A nub may represent a bus, a disk, a graphics adapter, or any number of similar entities. When
it supports a specific piece of hardware, a nub can also be a driver.

A nub supports dynamic configuration by providing a connection match point between two drivers
(and, by extension, between two families). A nub can also provide services to code running in user space
through a device interface (defined below).

 ■ A service is an I/O Kit entity, based on a subclass of IOService, that provides certain capabilities to other
I/O Kit objects. All driver and nub classes inherit from the IOService class. In the I/O Kit’s layered
architecture, each layer is a client of the layer below it and a provider of services to the layer above it. A
family, nub, or driver can be a service provider to other I/O Kit objects.

 ■ A device interface is a user-space library or plug-in that provides an interface that an application can
use to communicate with or control a device. A device interface communicates with its in-kernel
counterpart, called a user client (defined next), to transmit commands from an application or user-space
process to the in-kernel object that represents a device. A family that provides a device interface also
provides a user client to handle the kernel-side communication with the device. For information on
which I/O Kit families provide the device interface–user client mechanism, see “I/O Kit Family Device-Access
Support” (page 61).

 ■ A user client is an in-kernel object that inherits from IOService and provides a connection between an
in-kernel device driver or device nub and an application or process in user space. Some documentation
uses the term “user client” to refer to the combination of the user-space device interface and the in-kernel
user client object, but for this discussion, “user client” refers to the in-kernel object alone.

 ■ The I/O Registry is a dynamic database that describes a collection of ”live” objects, each of which
represents an I/O Kit entity (such as a driver, family, or nub). You can think of the I/O Registry as a tree
with a nub representing the computer’s main logic board at the root, and various device drivers and
nubs as the leaves. In response to the addition or removal of hardware or other changes in the system,
the I/O Registry automatically updates to reflect the current hardware configuration. (For an in-depth
look at this structure, see “The I/O Registry” in I/O Kit Fundamentals.)

The developer version of Mac OS X includes I/O Registry Explorer (located in
/Developer/Applications), an application that allows you to examine the I/O Registry of your
currently running system. There is also a command-line tool called ioreg that you can run in a Terminal
window to display current I/O Registry information (the Terminal application is located in
/Applications/Utilities). For more information about how to use ioreg, type man ioreg in a
Terminal window.

 ■ A driver personality is a dictionary of key-value pairs that specify device property values, such as family
type, vendor name, or product name. A driver is suitable for any device whose properties match one of
the driver’s personalities. In its Info.plist file, a driver stores its personalities as values of the
IOKitPersonalities key.

14 I/O Kit Summary
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

 ■ Driver matching is the process the I/O Kit performs at boot time (and whenever the system’s hardware
configuration changes) to find in-kernel device drivers for all devices currently attached to the system.
When it finds the driver personality that is most suitable for a particular device, the I/O Kit instantiates
that personality, places a copy of its personality dictionary in the I/O Registry, and (in most cases) starts
the driver.

 ■ A matching dictionary is a dictionary of key-value pairs that describe the properties of a device or other
service. You create a matching dictionary to specify the types of devices your application needs to access.
The I/O Kit provides several general keys you can use in your matching dictionary and many device
families define specific keys and matching protocols. During device matching (described next) the values
in a matching dictionary are compared against nub properties in the I/O Registry.

 ■ Device matching is the process of searching the I/O Registry for objects representing a specific device
or device type in the current system. For example, an application or other code running in Mac OS X can
initiate a search for all USB storage devices. In device matching, the I/O Kit compares the keys and values
in the matching dictionary an application supplies with a device nub’s properties stored in the I/O
Registry.

 ■ A device file is a special file the I/O Kit creates in the /dev folder for each serial and storage device it
discovers. If your application needs to access such a device, you use I/O Kit functions to get the path to
the device and use the POSIX API to communicate with it.

The I/O Kit framework (stored on disk as IOKit.framework in /System/Library/Frameworks) contains
a wide range of APIs that allow your application to work with devices. In addition to many folders that contain
device-interface libraries and other user-space APIs for I/O Kit families, such as FireWire and Storage, the I/O
Kit framework contains several files that define general I/O Kit APIs. These files, such as IOCFPlugIn.h
(introduced in “Inside the Device-Interface Mechanism” (page 19)) and IOKitLib.h (covered in “The IOKitLib
API” (page 41)), provide the foundation for kernel–user space communication. Figure 2-1 (page 15) shows
the location of the I/O Kit APIs as they appear on the desktop.

Figure 2-1 The I/O Kit framework

To use any of the I/O Kit APIs, your application must link with IOKit.framework.

I/O Kit Summary 15
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

I/O Kit Driver-Stack Building

At boot time and whenever a system’s hardware configuration changes, the I/O Kit discovers new devices
and instantiates and loads nub and driver objects to support them. The nubs and drivers form a stack of
objects that model the dynamic client-provider relationships among the various I/O Kit entities representing
the hardware and software components in an I/O connection. As an example, consider the objects the I/O
Kit instantiates when it discovers a FireWire device (shown in Figure 2-2 (page 16)).

Figure 2-2 I/O Kit objects supporting a FireWire device

User-kernel
boundary

IOFireWireUnit

IOFireWireDevice

IOFireWireController

In this example, the IOFireWire family and the I/O Kit take the following steps:

1. The I/O Kit instantiates an IOFireWireController object for each FireWire hardware interface, such as
FireWire OHCI (Open Host Controller Interface), on a Mac OS X system.

2. The IOFireWire family queries each device on the bus and publishes an IOFireWireDevice object for each
device that responds with its bus information.

3. In its turn, the IOFireWireDevice object queries the device and publishes an IOFireWireUnit object for
each unit directory it finds on the device.

Although this is not shown in Figure 2-2 (page 16), the I/O Kit matches drivers to particular unit types, such
as SBP-2 or AV/C, which then publish nubs representing logical units.

You can also think of the driver stack as a branch in the I/O Registry tree. You can view the entities in any
branch (driver stack) with I/O Registry Explorer. For example, Figure 2-3 (page 17) shows the I/O Registry
Explorer view of part of the driver stack shown in Figure 2-2 (page 16), beginning with the IOFireWireDevice
object. Note that Figure 2-3 (page 17) also shows the IOFireWireAVCUnit object representing the logical
AV/C unit.

16 I/O Kit Summary
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

Figure 2-3 I/O Kit objects supporting a FireWire device in I/O Registry Explorer

Notice the driver personality information (or, for a nub, the property table information) that the I/O Registry
Explorer displays for the currently selected element. This information can help you choose key-value pairs
to use for driver matching (for more information on the driver-matching process, see “Finding and Accessing
Devices” (page 25)). For example, you might choose to look up devices with a specific vendor ID or GUID
(globally unique ID), both of which are properties of a FireWire unit, as shown in Figure 2-3 (page 17).

When you use a device interface to communicate with a device, a user client object joins the driver stack. A
family that provides a device interface also provides the user client object that transmits an application’s
commands from the device interface to the device. When your application requests a device interface for a
particular device, the device’s family instantiates the appropriate user client object, typically attaching it in
the I/O Registry as a client of the device nub.

Revisiting the example of the FireWire device shown in Figure 2-2 (page 16), the acquisition of the
IOFireWireDeviceInterface that the IOFireWire family provides results in the stack shown in Figure 2-4 (page
18).

I/O Kit Summary 17
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

Figure 2-4 Adding a device interface to the FireWire driver stack

Application

User-kernel
boundary

IOFireWireDeviceInterface

IOFireWireUserClient

IOFireWireUnit

IOFireWireDevice

IOFireWireController

When the I/O Kit discovers a serial or storage device, it builds a stack of drivers and nubs similar to those
shown in Figure 2-2 (page 16) for the FireWire device. In addition, however, the I/O Kit automatically creates
a device file in the /dev directory, even if there is no current request for user-space access to the device.
Figure 2-5 (page 18) shows the driver stack for a serial device.

Figure 2-5 I/O Kit objects supporting a serial device

/dev/tty.modem_name
or

/dev/cu.modem_name

User-kernel
boundary

IOSerialBSDClient

AppleSCCModem

IOSerialStreamSync

IOSerialDriverSync

As with the FireWire device objects shown in Figure 2-3 (page 17), you can use the I/O Registry Explorer
application to view the objects supporting a serial device, as Figure 2-6 (page 19) shows.

18 I/O Kit Summary
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

Figure 2-6 I/O Kit objects supporting a serial device in I/O Registry Explorer

Device Interfaces and Device Files

This section takes a closer look at the two main gateways to user-space device access, device interfaces and
device files. The information in this section provides a conceptual overview of these mechanisms and does
not constitute a step-by-step guide for using them. If you’re more interested in finding out how to use device
interfaces or device files in your application, you can skip ahead to “Finding and Accessing Devices” (page
25).

This section concludes with a brief description of how the I/O Kit uses Mach ports to allow user-space processes
to communicate with the kernel.

Inside the Device-Interface Mechanism

Accessing hardware in Mac OS X with a device interface is similar in concept to using the Device Manager
in previous versions of the Mac OS. Instead of calling Device Manager functions such as OpenDriver,
CloseDriver, and Control, however, you call functions from the I/O Kit to obtain a device interface, then
call functions the device interface defines, such as open, close, and getInquiryData.

A device interface is a plug-in interface that conforms to the Core Foundation plug-in model (described in
Core Foundation developer documentation, available in the Core Foundation Reference Library). As such, it
is compatible with the basics of Microsoft’s COM (Component Object Model) architecture. In practice, the
only elements a device interface shares with COM are the layout of the interface itself (which conforms to
the COM guidelines) and its inheritance from the COM-compatible IUnknown interface.

Device Interfaces and Device Files 19
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

Following the Core Foundation plug-in model, an I/O Kit family that provides a device interface first defines
a type that represents the collection of interfaces it supports. Then, it defines each interface, declaring the
functions the interface implements. The type and the interfaces each receive a UUID (universal unique
identifier, or ID), a 128-bit value that uniquely and permanently identifies it. The family makes these UUIDs
available as a predefined name your application uses when it requests a device interface. For example, the
IOFireWire family defines its version 5 FireWire device interface UUID as
kIOFireWireDeviceInterfaceID_v5, which is much easier to use than the UUID string itself,
127A12F6-C69F-11D6-9D11-0003938BEB0A.

Before an application can get a specific, family-defined device interface, it first gets an instance of an
intermediate plug-in of type IOCFPlugInInterface. Defined in IOCFPlugIn.h (in the I/O Kit framework), the
IOCFPlugInInterface structure begins with the IUNKNOWN_C_GUTS macro, defined in CFPlugInCOM.h (in
the Core Foundation framework). This macro expands into the structure definition of the COM IUnknown
interface. This means that an instance of the IOCFPlugInInterface begins with the IUnknown interface functions,
required for all interfaces based on the Core Foundation plug-in model, shown in Figure 2-7 (page 20).

Figure 2-7 The IOCFPlugInInterface functions

IOCFPlugInInterface

IUnknown interface (from CFPlugin)
 AddRef
 Release
 QueryInterface

The AddRef and Release functions operate on the reference counts of the IOCFPlugInInterface object and
the QueryInterface function creates new instances of the passed-in interface type, such as a device interface
an I/O Kit family defines.

The IOCFPlugIn.h file also defines the function IOCreatePlugInInterfaceForService, which creates
a new IOCFPlugInInterface object, and IODestroyPlugInInterface, which destroys the specified
IOCFPlugInInterface object.

After your application gets the IOCFPlugInInterface object, it then calls its QueryInterface function,
supplying it with (among other arguments) the family-defined UUID name of the particular device interface
the application needs. The QueryInterface function returns an instance of the requested device interface
and the application then has access to all the functions the device interface provides. For example, the USB
family’s device interface for USB devices provides the functions shown in Figure 2-8 (page 21).

20 Device Interfaces and Device Files
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

Figure 2-8 Some of the IOUSBDeviceInterface functions

IOUSBDeviceInterface

IUnknown interface (from CFPlugin)
 AddRef
 Rel ea s e
 Quer y I nt er f a c e

US BDev i c eOpen
US BDev i c eCl os e
Get Dev i c ePr ot oc ol
Get Dev i c eVendor
Get Number Of Conf i gur a t i ons
Get L oc a t i onI D...

As shown in Figure 2-8 (page 21), the family-defined device interface also begins with the AddRef, Release,
and QueryInterface functions. This is because the family’s device interface, like the IOCFPlugInInterface,
fulfills the COM requirement that all interfaces must inherit from the IUnknown interface. Your application
will probably never need to use these three functions from within the device interface, however, because
most family-defined device interfaces provide their own accessor and reference-counting functions.

An application that has acquired a device interface for a device can act as a user-space driver for that device.
For example, an application can drive a scanner that complies with the SCSI Architecture Model specifications
because Apple does not supply an in-kernel driver for such a device. See the documentation for the family
of the device you want to access for more information.

Inside the Device-File Mechanism

Darwin, the Mac OS X kernel, implements a version of 4.4BSD, a UNIX-based operating system that serves as
the basis for the file systems and networking facilities of Mac OS X. In addition, Darwin’s implementation of
BSD includes much of the POSIX API. Darwin exports programmatic interfaces consistent with the POSIX API
to application space that allow applications to communicate with serial, storage, and network devices through
device files.

In a UNIX file system, an I/O device file is a special file that represents a block or character device such as a
terminal, disk drive, printer, scanner, or tape drive. In essence, the device file acts as a buffer or stream of
data for the device. Historically, device files reside in the /dev directory and have standard names, such as
mt0 for the first magnetic tape device, tty0 for the first terminal, and so on. Because a UNIX system treats
a device file like any other disk file, you can use UNIX commands with device files to perform input and output
operations on devices. When you send data to a device file, the kernel intercepts it and redirects it to the
device. Similarly, when a process reads from a device file, the kernel gets the data from the device and passes
it to the application.

As it does with other devices, when the I/O Kit discovers a serial or storage device, it builds up a driver stack
to support it. In addition, it instantiates a BSD user-client object that creates a device file node in the /dev
directory. The BSD user-client object acts as a conduit between a client accessing a device through a device
file and the in-kernel objects representing the device. For a serial device, the I/O Kit instantiates an
IOSerialBSDClient object and for a storage device, the I/O Kit instantiates an IOMediaBSDClient object.

Device Interfaces and Device Files 21
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

When an application needs to access a serial or storage device for which it does not already have the device-file
path, it can use I/O Kit functions to find a matching device in the I/O Registry. The application can then
examine the object’s properties to get its device-file path name. The properties you use to create the pathname
string vary somewhat depending on whether you’re accessing a serial or storage device; for more details,
see “Finding and Accessing Devices” (page 25).

In Figure 2-9 (page 22), the I/O Registry Explorer application displays the properties of the IOSerialBSDClient
for a modem.

Figure 2-9 An IOSerialBSDClient object in I/O Registry Explorer

Because of the dynamic and parallel nature of a Mac OS X system, a device may receive a different device-file
name every time the I/O Kit discovers it. For this reason, you must search the I/O Registry for the device you’re
interested in to get the current device-file path before you attempt to access the device instead of hard-coding
a device-file name, such as /dev/cu.modem or /dev/rdisk0, in your application. When you have the correct
path to the device (including the device-file name), you then use either POSIX functions, such asopen
andclose, to communicate with a storage device or the POSIX termios API for traditional UNIX serial port
access to a serial device. For serial devices, data is also routed through PPP via the device file.

For information on the POSIX standard, see http://standards.ieee.org. For a POSIX programming reference,
see POSIX Programmer’s Guide: Writing Portable Unix Programs with the POSIX by Donald A. Lewine.

If your application needs to access a network connection, it does so using a particular IP address and standard
socket functions. The I/O Kit builds up stacks of objects to support networking devices that are similar to the
driver stacks for other devices. Because your application is concerned with accessing a connection instead
of a device object, however, finding these objects in the I/O Registry is unnecessary.

22 Device Interfaces and Device Files
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

http://standards.ieee.org

Mac OS X provides networking APIs in Carbon and Cocoa that should handle most standard networking
requirements for applications. You can also use the BSD sockets API to obtain network services. A
recommended network programming book is Unix Network Programming, Volume 1, Second Edition, by W.
Richard Stevens, Prentice-Hall PTR, 1998.

Communicating With the I/O Kit

Whether your application uses device interfaces or device files to access devices, it must communicate with
the I/O Kit. The I/O Kit API (in the I/O Kit framework) includes functions to search the I/O Registry for specific
devices or groups of devices, to access I/O Kit objects, and to access device and driver personality properties
published in the I/O Registry. When an application uses these functions, it communicates with the I/O Kit
through a Mach port, a unidirectional communication channel between a client that requests a service and
a server (in this case, the I/O Kit) that provides the service.

Darwin’s fundamental services and primitives are based on an Apple-enhanced version of Mach 3.0. Apple’s
improvements allow Mach to provide object-based APIs with communication channels (such as ports), a
complete set of IPC (interprocess communication) primitives, and improved portability, among other features.
When an application or other user-space process communicates with the I/O Kit, it does so by using RPC
(remote procedure calls) on the I/O Kit’s master port.

Specifically, your application requests the I/O Kit master port, using the I/O Kit function IOMasterPort,
before it attempts to access any in-kernel objects, such as I/O Registry objects that represent devices.
(Alternatively, it can use the convenience constant kIOMasterPortDefault to access the I/O Kit master
port—for more information on how to do this, see “Getting the I/O Kit Master Port” (page 26).)

The IOMasterPort function calls the host_get_io_master function of mach_host.c, which returns a
send right to the application. This means that the application has the right to use the port to access an object
on the other side of the port, in this case, an I/O Kit object.

Don’t worry if you’re not knowledgeable about Mach. Except for the acquisition of the I/O Kit master port
and some reference-counting issues (discussed in “Object Reference-Counting and Introspection” (page 41)),
Darwin’s Mach-based infrastructure is seldom exposed when using the I/O Kit to access hardware. If you’re
interested in learning more about how Darwin uses Mach, however, see Kernel ProgrammingGuide for a good
introduction.

Device Interfaces and Device Files 23
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

24 Device Interfaces and Device Files
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Device Access and the I/O Kit

This chapter assumes you have an application or other user-space code that needs to access one or more
specific types of device and that you:

 ■ Have determined that your application can’t satisfy its hardware needs with the higher-level APIs described
in "Hardware-Access Options" (page 9)

 ■ Are familiar with the I/O Kit summary information in "Device Access and the I/O Kit" (page 13)

 ■ Want to know how to access hardware with an I/O Kit device interface or using the POSIX API

This chapter provides a generic blueprint for accessing devices with I/O Kit device interfaces and device files.
It describes several ways to find devices in the I/O Registry and how to examine each device you find. It then
describes how to access a device through a device interface or a device file.

Your code will implement many of the functions discussed in this chapter because some actions, such as
getting a Mach port to communicate with the I/O Kit and looking up your devices in the I/O Registry, are
common to all applications that use the I/O Kit API to access hardware.

Important: Bear in mind that individual I/O Kit families are free to define access to their devices as they
choose. Although your application will follow the steps this chapter outlines, some of the particulars, such
as determining matching keys and values, vary by family. Be sure to consult the documentation for the device
family you’ll be working with.

This chapter describes how to use several I/O Kit and Core Foundation functions. You can view the header
file describing the I/O Kit functions in
/System/Library/Frameworks/IOKit.framework/Headers/IOKitLib.h and the Core Foundation
functions in various files in /System/Library/Frameworks/CoreFoundation.framework/Headers.
You can also view header documentation for these files on disk in /Developer/Documentation or on the
web in the Device Drivers Reference Library. Complete sample projects are available in Sample Code >
Hardware & Drivers and, when you install the Developer package, in /Developer/Examples/IOKit.

Finding Devices in the I/O Registry

Before you can communicate with your device through a device interface or using POSIX functions, you must
first find it. If your device is plugged in, it’s represented in the I/O Registry, the dynamically updated database
of all I/O Kit objects that make up a running Mac OS X system.

The I/O Kit provides functions you can use to find devices matching your criteria in the I/O Registry. This
section describes the device-matching process in detail, showing how to use I/O Kit functions to create
matching dictionaries and look up matching devices in the I/O Registry.

Finding Devices in the I/O Registry 25
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

Important: Be aware that device matching is a family-specific task: Some I/O Kit families define special
matching protocols or particular keys and values you must use with the I/O Kit functions this section describes.
Family documentation (in header files in the I/O Kit framework) or device-access documents (available in the
Device Drivers Reference Library) can help you determine how to implement device matching for your
particular device.

Device Matching

Applications that use the I/O Kit to access hardware are typically looking for a particular device, such as an
ATA, USB, FireWire, or other device. In the general case, if the desired device is plugged in to a Mac OS X
system, there is an object that represents it attached in the I/O Registry. The process of finding this object is
called device matching.

Recall that at boot time (and whenever devices are attached or removed), the I/O Kit:

 ■ Instantiates a nub object that represents the device

 ■ Attaches the nub to the I/O Registry

 ■ Registers the nub

The device family publishes device properties in the nub object, which the I/O Kit uses to find a suitable
driver for the device. You can view these properties with the I/O Registry Explorer application (available at
/Developer/Applications) or on the command line with ioreg.

To find devices in the I/O Registry, you perform the following steps:

1. Get the I/O Kit master port to communicate with the I/O Kit.

2. Find the appropriate keys and values that sufficiently define the target device or set of devices.

3. Use the key-value pairs to create a matching dictionary.

4. Use the matching dictionary to look up matching devices in the I/O Registry.

To perform these steps, you use a combination of I/O Kit and Core Foundation functions. The following
sections describe each of these steps in detail.

Getting the I/O Kit Master Port

When your application uses functions that communicate directly with objects in the kernel, such as objects
that represent devices, it does so through a Mach port, namely, the I/O Kit master port. Several I/O Kit functions
require you to pass in an argument identifying the port you’re using. Starting with Mac OS X version 10.2,
you can fulfill this requirement in either of two ways:

 ■ You can get the I/O Kit master port from the function IOMasterPort and pass that port to the I/O Kit
functions that require a port argument.

 ■ You can pass the constant kIOMasterPortDefault to all I/O Kit functions that require a port argument.

26 Finding Devices in the I/O Registry
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

In versions of Mac OS X prior to Mac OS X version 10.2, an application was required to use the first option
and explicitly request the I/O Kit master port (you will encounter this procedure in older documentation and
sample code). If you choose this method, you add code like the following to your application:

mach_port_t myMasterPort;
kern_return_t result;

result = IOMasterPort(MACH_PORT_NULL, &myMasterPort);

Then, in calls to I/O Kit functions that require a port argument, such as IOServiceGetMatchingServices,
you pass in myMasterPort, as in this example:

IOServiceGetMatchingServices(myMasterPort, myMatchingDictionary,
 &myIterator);

When you’re completely finished with the port you received from IOMasterPort, you should release it,
using mach_port_deallocate. Although multiple calls to IOMasterPort will not result in leaking ports
(each call to IOMasterPort adds another send right to the port), it’s good programming practice to deallocate
the port when you’re finished with it.

Starting with Mac OS X version 10.2, you can bypass this procedure entirely and use instead the convenience
constant kIOMasterPortDefault (defined in IOKitLib.h in the I/O Kit framework). This means that when
you call a function that requires the I/O Kit master port, such as IOServiceGetMatchingServices, you
can pass in kIOMasterPortDefault instead of the mach_port_t object you get from IOMasterPort, as
in this example:

IOServiceGetMatchingServices(kIOMasterPortDefault, myMatchingDictionary,
 &myIterator);

Getting Keys and Values for a Device-Matching Dictionary

An application begins device matching by creating a matching dictionary that defines which device (or set
of devices) the application needs to access. A matching dictionary is a Core Foundation
CFMutableDictionaryRef object, containing a set of key-value pairs that describe particular device
properties.

You have a few options for obtaining keys and values for device matching:

 ■ You can obtain matching keys from header files in Kernel.framework or IOKit.framework and you
can define constants for property values.

 ■ You can examine driver personality information that is stored in on-disk drivers.

 ■ You can examine objects in the I/O Registry to obtain property information for the devices they represent.

Each of these options is described in the following sections.

Personality Property Keys and Values

The file IOKitKeys.h (located in the I/O Kit framework) defines many general matching keys, some of which
are shown in Listing 3-1 (page 28).

Finding Devices in the I/O Registry 27
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

Listing 3-1 Matching keys from IOKitKeys.h

// Keys for matching IOService properties by name
#define kIOProviderClassKey "IOProviderClass"
#define kIONameMatchKey "IONameMatch"
#define kIOPropertyMatchKey "IOPropertyMatch"
#define kIOPathMatchKey "IOPathMatch"
#define kIOLocationMatchKey "IOLocationMatch"
#define kIOResourceMatchKey "IOResourceMatch"

Figure 3-1 (page 28) shows the AppleUSBComposite driver personality as it appears in I/O Registry Explorer
(the AppleUSBComposite driver matches on composite-class USB devices for which there are no vendor-specific
drivers). Notice that several of the keys in the AppleUSBComposite personality are defined in IOKitKeys.h.

Figure 3-1 The I/O Registry Explorer application, showing various keys and values for the
AppleUSBComposite driver

One key of particular importance is the IOProviderClass key, which is included in all driver personalities.
This key specifies the name of the nub class or nub superclass the driver attaches to. Although all
device-matching dictionaries contain this key, few contain only this key because the resulting set of matching
devices would be very large.

In most cases, you need to add more key-value pairs to make your matching dictionary more specific. By
convention, keys for specific device properties are defined in device header files, such as IOSerialKeys.h,
which defines property keys for serial devices, and IOHIDKeys.h, which defines property keys for HID (Human
Interface Device) class devices. You can find these header files among the headers in the I/O Kit or Kernel
frameworks. A partial listing of IOHIDKeys.h is shown in Listing 3-2 (page 28).

Listing 3-2 HID class device matching keys from IOHIDKeys.h

#define kIOHIDDeviceKey "IOHIDDevice"
#define kIOHIDTransportKey "Transport"
#define kIOHIDVendorIDKey "VendorID"
#define kIOHIDProductIDKey "ProductID"

28 Finding Devices in the I/O Registry
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

#define kIOHIDVersionNumberKey "VersionNumber"
#define kIOHIDManufacturerKey "Manufacturer"
#define kIOHIDProductKey "Product"
#define kIOHIDSerialNumberKey "SerialNumber"
#define kIOHIDLocationIDKey "LocationID"
#define kIOHIDPrimaryUsageKey "PrimaryUsage"
#define kIOHIDPrimaryUsagePageKey "PrimaryUsagePage"

Your application must supply a value for each device-property key it uses in a matching dictionary. You may
have access to header files that define values for these keys—for example, you may be working on an
application to access a device driver supplied by your own company. If you don’t have predefined header
files, you can define your own constants. For example, you can define property value constants for a device
whose driver properties you have found with the I/O Registry Explorer application, as described in "Examining
the I/O Registry" (page 30).

As a further example, suppose you have examined the keys and values for the driver of type IOUSBHIDDriver,
in this case a driver for a joystick, shown in Figure 3-2 (page 29).

Figure 3-2 Some keys and values for a HID class device, shown in I/O Registry Explorer

To find the device this driver supports, you set up a matching dictionary to look up all HID class devices,
using the kIOHIDDeviceKey (shown in Listing 3-2 (page 28)). Then, you can narrow the search to HID class
devices on the USB bus by setting the transport key (identified by the constant kIOHIDTransportKey
from IOHIDKeys.h) to the value “USB” as defined by the following constant in your code:

#define kMyDeviceTransportValue "USB"

Finding Devices in the I/O Registry 29
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

For more detail on how to modify a matching dictionary, see "Setting Up a Matching Dictionary to Find
Devices" (page 31).

Examining Driver Personality Information

Another way to get the keys and values you need to describe a device is to examine the driver personality
information in a device’s on-disk driver.

Before a device driver is loaded, it is stored on disk or in ROM as a kernel extension, or KEXT. KEXTs are usually
located in /System/Library/Extensions. A KEXT file on disk is a bundle that contains other files and
folders. Each driver KEXT includes an information property list, in XML format, typically in a file named
Info.plist. The property list includes one or more driver personalities—dictionaries whose properties
specify which devices the driver is suitable to manage.

A KEXT usually stores its Info.plist file in its Contents directory. You can examine its property list with
the Property List Editor application (which is located in /Developer/Applications), by displaying it in
the Terminal application (using more or another text-display command), or by opening the property list with
an application such as Xcode. Listing 3-3 (page 30) shows a partial dictionary listing for the AppleFWAudio
driver. It contains keys such as the class key and the provider class key, as well as values for these keys (the
strings “AppleFWAudioDevice” and “IOFireWireAVCUnit,” respectively).

Listing 3-3 A partial listing of the personality dictionary for the AppleFWAudio driver

 <key>IOKitPersonalities</key>
 <dict>
 <key>AppleFWAudioDevice (AVC)</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.apple.driver.AppleFWAudio</string>
 <key>IOClass</key>
 <string>AppleFWAudioDevice</string>
 <key>IOProviderClass</key>
 <string>IOFireWireAVCUnit</string>
 ...
 </dict> ...

By examining a driver’s personality dictionary, your application can determine the keys and values to put in
a matching dictionary to specify that driver’s device.

Examining the I/O Registry

You can examine the I/O Registry to obtain driver personality keys and values to use in a matching dictionary.
When the I/O Kit loads a driver for a device, it stores a copy of the matching personality information for that
device in the I/O Registry. The developer version of Mac OS X includes the I/O Registry Explorer application,
which displays the I/O Registry for your currently running system. You can see examples of I/O Registry
Explorer’s display in Figure 3-1 (page 28) and Figure 3-2 (page 29).

The developer version of Mac OS X also includes ioreg, a tool you can use to examine the I/O Registry. You
run the tool in a Terminal window to display I/O Registry information for your current system. Using the
application or the tool, you can examine the personality information of loaded drivers and the property
information in device nubs.

30 Finding Devices in the I/O Registry
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

If you find driver personality keys and values you want to use in your application, you may be able to obtain
constants for them in Apple or third-party headers, or you may need to define your own constants. For more
information, see "Personality Property Keys and Values" (page 27).

Setting Up a Matching Dictionary to Find Devices

When you’ve determined the keys and values that define your device, you can use that information to set
up a matching dictionary to find the device in the I/O Registry. The I/O Kit provides functions that create a
CFMutableDictionary object containing a specific key and the value you pass to it. Bear in mind, however,
that you are not limited by the dictionaries these functions create. If you require a different or more focused
search, you can modify these dictionaries or even create your own, as described later in this section.

You can use any of the following I/O Kit functions to create a matching dictionary:

 ■ IOServiceMatching creates a dictionary you can use to match on an object’s class or superclass. The
dictionary that IOServiceMatching creates consists of the IOProviderClass key and the value you
pass to IOServiceMatching.

You can initiate a very broad search of the I/O Registry by using IOServiceMatching to create a
dictionary that matches on a specific object class (and its subclasses). For example, you can create a
dictionary to match on all objects of class IOUSBDevice by using code like the following:

CFMutableDictionaryRef myUSBMatchDictionary = NULL;
myUSBMatchDictionary = IOServiceMatching(kIOUSBDeviceName);

 ■ IOServiceNameMatching creates a dictionary that consists of the key IONameMatch and the value
you pass to the function.

You might use IOServiceNameMatching to create a dictionary that matches on a device’s name, rather
that its class, perhaps if your company’s device has a unique name. For example:

CFMutableDictionaryRef myCompanyDeviceMatchDictionary = NULL;
myCompanyDeviceMatchDictionary = IOServiceNameMatching("MyCompany");

 ■ IOBSDNameMatching creates a dictionary you can use to find devices that have device-file representations
in the BSD layer, such as storage devices. The dictionary the IOBSDNameMatching function creates
consists of the kIOBSDNameMatching key (defined in IOKitServer.h) and the name of the device file
you pass to the function.

If you’ve determined the device-file name of your device (by, for example, looking in the /dev directory
using the Terminal application), you can create a dictionary to match on it using the IOBSDNameMatching
function, using code like the following:

CFMutableDictionaryRef myBSDMatchDictionary = NULL;
myBSDMatchDictionary = IOBSDNameMatching(kIOMasterPortDefault, 0,
 "disk1s8");

Note that IOBSDNameMatching expects only the device-file name in the last parameter, not the complete
path.

It’s possible for a storage device to receive a different device-file name each time the I/O Kit discovers
it, however, so your code should not rely on a device-file name remaining unchanged.

Finding Devices in the I/O Registry 31
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

You use the dictionaries these I/O Kit functions create to pass to one of the I/O Kit look-up functions (described
in "Looking Up Devices in the I/O Registry" (page 34)). The I/O Kit look-up functions each consume one
reference to the dictionary. If you use the dictionary in some other way, however, you must use CFRelease
to release it when you’re finished.

The I/O Kit dictionary-creation functions each create a dictionary with a single key-value pair. Unless you’re
looking for a device that is sufficiently described by such a key-value pair, you probably want to either modify
one of these dictionaries or create your own.

Important: Because CFMutableDictionary is a standard Core Foundation data type, you can use Core
Foundation functions to modify a matching dictionary or to create your own from scratch. For more information
on Core Foundation collection objects, such as dictionaries, see the Core Foundation Reference Library.

Many I/O Kit families define matching rules that help you narrow down your search. The USB family, for
example, bases its matching rules on the USB Common Class specification. Before you modify an existing
dictionary or create one of your own, you should become thoroughly familiar with your device family’s
matching rules. This is especially important when you use your matching dictionary to search the I/O Registry.
The I/O Kit look-up functions apply family-defined matching rules so it is essential for your matching dictionary
to contain the correct combination of properties.

To modify an existing dictionary, you get a generic dictionary, such as one created by IOServiceMatching,
and use the Core Foundation function CFDictionaryAddValue to add other key-value pairs. For example,
to find a FireWire unit, you can call IOServiceMatching to create a dictionary containing the key
IOProviderClass and the value IOFireWireUnit. Then, a call to CFDictionaryAddValue modifies the
dictionary by adding the IOFireWire family–defined key Unit_SW_Version and the application-defined
value myFireWireUnitSWVersionID. Listing 3-4 (page 32) shows how to do this.

Listing 3-4 Modifying a matching dictionary

CFMutableDictionaryRef matchingDictionary =
 IOServiceMatching("IOFireWireUnit");
UInt32 value;
CFNumberRef cfValue;
value = myFireWireUnitSwVersionID;
cfValue = CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &value);
CFDictionaryAddValue(matchingDictionary, CFSTR("Unit_SW_Version"),
 cfValue);
CFRelease(cfValue);

Occasionally, you may find that you must perform a look-up on a handful of properties that don’t follow any
device family’s matching rules. Perhaps there are no family-defined matching rules for the device you’re
interested in or you’re creating a tool to test device matching. Although you should always follow your device
family’s matching rules (when they exist), you can use the special IOPropertyMatch key (defined in
IOKitKeys.h in the I/O Kit framework) to create a dictionary containing a set of arbitrary matching properties.

To do this, you create two dictionaries: one that contains the set of key-value pairs that describe your device
and one that contains the IOPropertyMatch key and your first dictionary as its value. You use the Core
Foundation function CFDictionaryCreateMutable to create both dictionaries. The following code fragment
shows how to create the subdictionary (the dictionary containing your key-value pairs that you’ll place in
your matching dictionary):

CFMutableDictionaryRef mySubDictionary;

mySubDictionary = CFDictionaryCreateMutable(kCFAllocatorDefault, 0,

32 Finding Devices in the I/O Registry
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

 &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);
CFDictionarySetValue(mySubDictionary, CFSTR(kMyDevicePropertyKey),
 CFSTR(kMyDevicePropertyValue));

Now you use CFDictionaryCreateMutable again, this time to create your matching dictionary. The
matching dictionary should contain only the key IOPropertyMatch and your subdictionary as its value. The
IOPropertyMatch key signals the I/O Kit to match on the set of properties in the subdictionary without
regard to any family-defined matching rules. The following code fragment shows how to create your matching
dictionary:

CFMutableDictionaryRef myMatchingDictionary;

myMatchingDictionary = CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
 &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);
CFDictionarySetValue(myMatchingDictionary, CFSTR(kIOPropertyMatchKey),
 mySubDictionary);

The callback constants kCFTypeDictionaryKeyCallBacks and kCFTypeDictionaryValueCallBacks
define Core Foundation callback structures you can use when the keys and values in your dictionary are all
CFType-derived objects. You can find documentation about these structures in the Core Foundation Reference
Library.

Setting Up a Matching Dictionary to Find Device Files

You set up a matching dictionary to find serial or storage devices using the same I/O Kit dictionary-creation
functions you use for other types of matching dictionaries. As with other devices, the provider-class name
you use to create a matching dictionary depends on the type of device you’re looking for:

 ■ All serial devices can be identified by the provider class IOSerialBSDClient. The IOProviderClass key
you send to IOServiceMatching to create a matching dictionary is kIOSerialBSDServiceValue,
defined in IOSerialKeys.h in the I/O Kit framework.

Because each serial device object in the I/O Registry has a property with the key kIOSerialBSDTypeKey,
you can refine your dictionary to match on specific types of serial devices. Currently, the possible values
for this key (also defined inIOSerialKeys.h) arekIOSerialBSDAllTypes,kIOSerialBSDModemType,
or kIOSerialBSDRS232Type.

 ■ Storage device objects are members of the Storage family and their provider class is usually IOMedia,
but can also depend on the device type. CD devices, for example, are subclasses of IOCDMedia. Check
the Storage family header files (available in the I/O Kit framework) for the appropriate provider-class key
to pass to IOServiceMatching.

Also check the header files for additional keys and values you can use to refine your matching dictionary,
such as the kIOMediaEjectableKey, which identifies whether the media is ejectable.

After you’ve created a matching dictionary, you pass it to one of the I/O Kit look-up functions. If devices
matching your criteria exist in the I/O Registry, the look-up function returns an iterator you can use to access
each matching object.

Finding Devices in the I/O Registry 33
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

Looking Up Devices in the I/O Registry

Device look-up is at the heart of the device-matching process: It consists of searching the I/O Registry for
device objects that match the criteria specified in a matching dictionary. The I/O Kit contains a few functions
that perform device look-up and provide access to objects that match your matching dictionary:

 ■ IOServiceGetMatchingServices follows the family-defined matching rules (if any) to find registered
objects that match the passed-in matching dictionary. It supplies an IOIterator object that you can use
to access the set of matching objects.

 ■ IOServiceGetMatchingService is similar to IOServiceGetMatchingServices except that it
returns only the first IOService object that matches the passed-in matching dictionary. Because it returns
the first matching IOService object itself, IOServiceGetMatchingService does not give you an iterator
that allows you to access other objects that may meet the matching criteria. You might choose to use
this function if you’re reasonably certain you can create a matching dictionary that will match only on
your device and you want to bypass the code that iterates over a list of matching devices.

IOServiceGetMatchingService also strictly follows the matching rules defined by the value of the
passed-in IOProviderClass key.

 ■ IOServiceAddMatchingNotification follows the family-defined matching rules (if any) to find
objects matching the passed-in matching dictionary whose state changes in the way you identify. When
a matching object’s state change matches the state change you’re interested in (such as being registered
or terminated), IOServiceAddMatchingNotification notifies the caller and provides an iterator
with which to access the set of matching objects.

Your application can use IOServiceAddMatchingNotification to receive notification of when
matching devices come or go. This is particularly useful for applications that need to access hot-pluggable
devices, such as FireWire or USB devices. For an outline of how to receive notifications about matching
devices, see "Getting Notifications of Device Arrival and Departure" (page 35).

The I/O Kit look-up functions each consume one reference to the matching dictionary you pass to them. If
you need to use the dictionary again, be sure to increase its reference count by callingCFRetain on it before
you send it to a look-up function.

If you use a look-up function that returns an iterator (IOServiceGetMatchingServices or
IOServiceAddMatchingNotification), your application must release this iterator when it is finished
with it. In the case of IOServiceAddMatchingNotification, make sure you release the iterator only if
you’re also ready to stop receiving notifications: When you release the iterator you receive from
IOServiceAddMatchingNotification, you also disable the notification. If you use
IOServiceGetMatchingService, your application is responsible for releasing the object reference it
receives.

Applications typically use these look-up functions to find device nubs whose property information matches
the criteria defined in the application’s matching dictionary. Occasionally, however, an application looks for
a driver in the I/O Registry, instead of a nub. Your application would look for a driver, for example, if you’re
writing both the application and the in-kernel driver and intend for them to work together. A key point is
the distinction between drivers and nubs: Nubs are always registered in the I/O Registry (it’s the act of
registration that triggers driver matching), but drivers can be attached in the I/O Registry without being
registered. This is important, because the I/O Kit look-up functions find only registered objects. To find an
unregistered object, you start by finding its registered provider or client and use an I/O Registry traversal
function to step to the object you’re looking for.

34 Finding Devices in the I/O Registry
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

If, for example, your application needs to access an unregistered object, you must first identify the object’s
immediate parent or child, whichever is easiest to find. Let’s say you can find the registered child of the object
you want: You create a matching dictionary that describes the child object and pass it to
IOServiceGetMatchingServices. You useIOIteratorNext (discussed in "Examining Matching
Objects" (page 36)) to get access to the child object and then use the I/O Kit function
IORegistryEntryGetParentEntry to get access to its unregistered parent object. For more information
on the I/O Registry traversal functions the I/O Kit provides, see "The IOKitLib API" (page 41).

Getting Notifications of Device Arrival and Departure

If you’re working with hot-pluggable devices, such as FireWire or USB devices, you can use I/O Kit and Core
Foundation functions to set up a mechanism that notifies you when the devices you’re interested in come
or go. To set up such a mechanism, follow these steps:

1. Use the IONotificationPortCreate function to create a notification object that can listen for I/O Kit
notifications, either on a run loop or a Mach port (these steps show only the recommended run-loop
approach—for a brief description of the functions you use to set up a notification mechanism with a
Mach port, see "The IOKitLib API" (page 41)):

IONotificationPortRef notificationObject;
mach_port_t masterPort; //This is the port you received from IOMasterPort.
 //Alternatively, you can pass kIOMasterPortDefault to the
 //IONotificationPortCreate function.

notificationObject = IONotificationPortCreate(masterPort);

2. Create a run-loop source for the notification object, using the IONotificationPortGetRunLoopSource
function:

CFRunLoopSourceRef notificationRunLoopSource;

//Use the notification object received from IONotificationPortCreate
notificationRunLoopSource =
 IONotificationPortGetRunLoopSource(notificationObject);

3. Add the run-loop source to your run loop (usually, your application’s current run loop), using the Core
Foundation CFRunLoopAddSource function:

CFRunLoopAddSource(CFRunLoopGetCurrent(), notificationRunLoopSource,
 kCFRunLoopDefaultMode);

4. Call the IOServiceAddMatchingNotification function, passing it the following arguments:

 ■ The notification object you received from IONotificationPortCreate

 ■ A constant defining the type of event you want notification of, such as device registration or
termination (these constants are defined in IOKitKeys.h in the I/O Kit framework)

 ■ The Core Foundation matching dictionary you’ve created to define the types of devices you’re
interested in

 ■ The function you want called when a matching device’s state changes in the way you’ve identified

 ■ An optional reference constant for your callback function’s use

 ■ An io_iterator_t object to access the list of matching devices

Finding Devices in the I/O Registry 35
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

5. Call IOIteratorNext (discussed in "Examining Matching Objects" (page 36)) to access the matching
devices that are already present in the I/O Registry and to arm the notification mechanism so you will
receive notifications of future matching devices as your run loop runs.

6. Call the Core Foundation CFRunLoopRun function to start the run loop and receive notifications when
new matching devices arrive.

Examining Matching Objects

After you’ve successfully created a matching dictionary and passed it to one of the I/O Kit look-up functions,
you receive an iterator you can use to access the list of matching objects. (Of course, if you used
IOServiceGetMatchingService, you instead receive a reference to the first matching object itself, not
an iterator.) The iterator is an object of class IOIterator and this section describes how you use it to examine
a set of matching objects.

When you get an iterator from IOServiceGetMatchingServices, you pass it to the I/O Kit
functionIOIteratorNext, which returns a matching object from the list. With the matching object in hand,
you can directly examine the properties it publishes in the I/O Registry. You might do this to determine if an
object does, in fact, represent the device you want to access or if you want to display information about the
matching device to a user.

The IOIteratorNext function returns an object of typeio_object_t, which the caller should release when
it is finished. Each call to IOIteratorNext returns the next object in the list of matching objects or zero if
there are no more objects or if the iterator is no longer valid. If you receive zero when you think there may
still be more matching objects in the list, you can call the IOIteratorIsValid function to make sure the
iterator is still valid. In the unlikely case that the iterator is invalid, it’s usually because the I/O Registry has
changed in some way. If your iterator has become invalid, the best thing to do is to call the I/O Kit
functionIOIteratorReset and begin iterating again.

Now that you have an io_object_t object representing one of the matching objects in the list, you can
use other I/O Kit functions to examine it more closely. For example, you can call IOObjectGetClass to see
the class name of the passed-in object. To look at a specific property, you can pass the corresponding property
key to IORegistryEntryCreateCFProperty, which returns a Core Foundation representation of that
property’s value. See "The IOKitLib API" (page 41) for more object-examination functions.

Putting It All Together: Accessing a Device

Previous sections described how to:

 ■ Find keys and values that identify a device’s properties

 ■ Use the keys and values to create a matching dictionary

 ■ Use the matching dictionary to look up matching devices in the I/O Registry

This section builds on that information to show how to get a device interface (or the pathname for a device
file) and begin communicating with a device.

36 Examining Matching Objects
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

Let’s assume you used the IOServiceGetMatchingServices look-up function to find matching devices.
This means that you received an iterator handle you can pass to the IOIteratorNext function to access
each device object in turn. Whether you iterate over the entire list, examining each device, or just grab the
first device in the list, the next step is communication with the device—a step that differs depending on
whether you access the device through a device interface or a device file.

Getting a Device Interface

As described in "Device Access and the I/O Kit" (page 13), many I/O Kit families supply device interfaces that
provide user-space access to the devices they support. This section presents information that is appropriate
for many types of device families but may vary from the specifics of any particular family.

As always, be sure to check the documentation for your device’s family before implementing the steps
outlined in this section.

When you’ve determined that the io_object_t object you received from IOIteratorNext represents a
device you want to access, you first create an intermediate Core Foundation plug-in interface for it, using
the IOCreatePlugInInterfaceForService function (defined in IOCFPlugIn.h in the I/O Kit framework).

Before you get the intermediate plug-in, however, you must know which device interface type you need to
get. I/O Kit families that support device interfaces define both an interface type that represents the collection
of interfaces they provide and each individual interface in the type. You can get this information from your
device family’s header files. For example, Listing 3-5 (page 37) shows the USB family’s definition of the
kIOUSBDeviceUserClientTypeID (its library of device interface types) and thekIOUSBDeviceInterfaceID
(one of the individual device interfaces it provides).

Listing 3-5 Device interface definitions from IOUSBLib.h

#define kIOUSBDeviceUserClientTypeID CFUUIDGetConstantUUIDWithBytes(NULL, \
 0x9d, 0xc7, 0xb7, 0x80, 0x9e, 0xc0, 0x11, 0xD4, \
 0xa5, 0x4f, 0x00, 0x0a, 0x27, 0x05, 0x28, 0x61)
...
#define kIOUSBDeviceInterfaceID CFUUIDGetConstantUUIDWithBytes(NULL, \
 0x5c, 0x81, 0x87, 0xd0, 0x9e, 0xf3, 0x11, 0xD4, \
 0x8b, 0x45, 0x00, 0x0a, 0x27, 0x05, 0x28, 0x61)

To get an intermediate interface, you pass the following information to
IOCreatePlugInInterfaceForService:

 ■ The device reference (the io_object_t you received from IOIteratorNext)

 ■ The family’s library type ID (from the family’s header files)

 ■ The intermediate plug-in type (always kIOCFPlugInInterfaceID, defined in IOCFPlugIn.h)

 ■ The address of an IOCFPlugInInterface object (to contain the intermediate plug-in)

 ■ The address of an integer variable (currently unused)

Listing 3-6 (page 38) shows an application using IOCreatePlugInInterfaceForService to get an
intermediate plug-in interface for the FireWire family’s IOFireWireLib (one of the FireWire family’s device
interface libraries).

Putting It All Together: Accessing a Device 37
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

Listing 3-6 Getting an intermediate IOCFPlugInInterface object

IOCFPlugInInterface** cfPlugInInterface = 0;
IOReturn result;
SInt32 theScore;

// aDevice is the io_object_t from IOIteratorNext.
result = IOCreatePlugInInterfaceForService(aDevice, kIOFireWireLibTypeID,
 kIOCFPlugInInterfaceID, &cfPlugInInterface, &theScore);

Now that you have an intermediate interface, you use it to get the specific type of device interface you need.
Again, see your device family’s header files for the definitions of specific device interface names. To get a
particular device interface, you use the QueryInterface function of the IOCFPlugInInterface, passing it the
following arguments:

 ■ A reference to the IOCFPlugInInterface (received from the call to
IOCreatePlugInInterfaceForService)

 ■ The UUID of the device interface (you use the Core Foundation function CFUUIDGetUUIDBytes to get
the actual UUID from the family’s device interface constant)

 ■ The address of the device interface (to contain the new device interface)

Listing 3-7 (page 38) shows an application using an intermediate IOCFPlugInInterface object to get the SCSI
Architecture Model family’s MMC (Multimedia Commands) device interface (defined in SCSITaskLib.h in
the I/O Kit framework).

Listing 3-7 Getting a specific device interface object

HRESULT herr;
MMCDeviceInterface **mmcInterface = NULL;

// plugInInterface is the IOCFPlugInInterface object from
// IOCFCreatePlugInInterfaceForService.
herr = (*plugInInterface)->QueryInterface (plugInInterface,
 CFUUIDGetUUIDBytes (
 kIOMMCDeviceInterfaceID),
 (LPVOID *) &mmcInterface);

The device interface provides you with a wide range of functions you can use to access your device. With an
IOFireWireDeviceInterface object, for example, you can perform a FireWire bus reset or create FireWire
command object interfaces to perform asynchronous read, write, and lock operations. When you’re finished
with the device interface you acquired, you should call the IOCFPlugIn Release function to release it.

After you are completely finished with the specific device interface object, you should get rid of the
intermediate IOCFPlugInInterface object by calling the IODestroyPlugInInterface function, defined in
IOCFPlugIn.h.

Getting a Device-File Path

Before you can access a serial or storage device, you use I/O Kit functions to extract specific properties from
the I/O Registry object that represents it and use them to create the device-file path. As described in "Inside
the Device-File Mechanism" (page 21), device-file paths are usually of the form /dev/device_name, where
device_name is defined by the type of device.

38 Putting It All Together: Accessing a Device
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

Important: The process of getting the pathname of a serial or storage device differs slightly depending on
the type of device you’re accessing, however, so be sure to read the documentation for your device type to
get specific information on where the device name and path components are defined.

In general, you create the device-file path either by getting a C-string representation of a particular property
or by concatenating strings defined in various properties or constants. To get the C-string representation for
a property, you first use the I/O Kit function IORegistryEntryCreateCFProperty to get the property
value as a Core Foundation string object. Then, you use the Core Foundation function CFStringGetCString
to transform the CFString object into a C string.

For example, Listing 3-8 (page 39) shows how to get the device name of a storage device from the value of
the kIOBSDNameKey (defined in IOBSD.h) and use this string, along with a constant string defined in
paths.h, to create the full device-file path.

Listing 3-8 Getting the device name of a storage device

io_object_t device; //This is the object IOIteratorNext returns
char deviceFilePath[MAXPATHLEN]; //MAXPATHLEN is defined in sys/param.h
size_t devPathLength;
CFTypeRef deviceNameAsCFString;
Boolean gotString = false;

deviceNameAsCFString = IORegistryEntryCreateCFProperty (
 device,
 CFSTR(kIOBSDNameKey),
 kCFAllocatorDefault,0);
if (deviceNameAsCFString) {
 deviceFilePath = '\0';
 devPathLength = strlen(_PATH_DEV); //_PATH_DEV is defined in paths.h
 strcpy(deviceFilePath, _PATH_DEV);
 //Add "r" before the BSD node name from the I/O Registry
 //to specify the raw disk node. The raw disk node receives
 //I/O requests directly and does not go through the
 //buffer cache.
 strcat(deviceFilePath, "r");
 gotString = CFStringGetCString(deviceNameAsCFString,
 deviceFilePath + strlen(deviceFilePath),
 MAXPATHLEN - strlen(deviceFilePath),
 kCFStringEncodingASCII);

 if (gotString)
 printf("Device file path: %s\n", deviceFilePath);
 //deviceFilePath will look something like /dev/rdisk1
}

Now that you have the device file pathname as a C string, you can use it with standard POSIX functions, such
as open, read, and close, to access the device.

Putting It All Together: Accessing a Device 39
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

40 Putting It All Together: Accessing a Device
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Finding and Accessing Devices

When you access a device from user space, whether you use a device interface or the POSIX API, you use a
combination of I/O Kit functions and specific device-family functions to work with the I/O Kit objects that
represent the device. The IOKitLib, located in the I/O Kit framework, contains the generic I/O Kit functions
you use to implement user-space task access to in-kernel device objects.

This chapter surveys the IOKitLib functions, describing how to use them to get access to and manipulate
in-kernel objects and providing insight into how the IOKitLib implements these functions.

Some of the functions in the IOKitLib are intended for developers of custom device interfaces rather than
for developers of applications that use existing device interfaces. Although this chapter covers these functions
at a high level, you should read “Making Hardware Accessible to Applications” in I/O Kit Device Driver Design
Guidelines if you need to develop your own device interface–user client solution.

The IOKitLib functions can be divided into several categories, based on the type of service they provide. This
chapter mirrors these groupings and is divided into the following sections, each of which covers a functional
category:

 ■ “Object Reference-Counting and Introspection” (page 41) introduces the types of objects you use to
communicate with in-kernel entities and describes how to get information about them and keep track
of their reference counts.

 ■ “Device Discovery and Notification” (page 43) describes the functions you use to create matching
dictionaries, look up and access matching devices in the I/O Registry, and receive notifications about a
device’s state change.

 ■ “I/O Registry Access” (page 47) describes other IOKitLib functions you can use to get access to objects
in the I/O Registry.

 ■ “Device-Interface Development” (page 52) gives a brief overview of the IOKitLib functions you use when
no I/O Kit device-family or third-party device interface exists and you need to develop your own device
interface.

Object Reference-Counting and Introspection

Functions in the IOKitLib communicate with in-kernel objects using the Mach port transport mechanism to
cross the user-kernel boundary. The file IOTypes.h, located in the I/O Kit framework, defines the objects
you use with IOKitLib functions to communicate with such in-kernel entities as I/O Registry entries (objects
of class IORegistryEntry) or iterators (objects of class IOIterator). Notice in Listing 4-1 (page 41), however,
that IOTypes.h seems to define all these objects in the same way, specifically, as mach_port_t objects
(mach_port_t is defined in mach/port.h in the Kernel framework).

Listing 4-1 Object definitions in IOTypes.h

typedef mach_port_t io_object_t;

Object Reference-Counting and Introspection 41
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

typedef io_object_t io_connect_t;
typedef io_object_t io_iterator_t;
typedef io_object_t io_registry_entry_t;
typedef io_object_t io_service_t;
typedef io_object_t io_enumerator_t;

To understand why this is so, recall that a Mach port is the communication transport mechanism an application
uses to communicate with the I/O Kit. As far as the kernel is concerned, every time your application
communicates with any in-kernel object using one of the object types defined in IOTypes.h, it’s using the
same generic mechanism (namely, a Mach port) to cross the user-kernel boundary.

From the application’s point of view, however, the transport mechanism is unimportant and what matters
is the type of object on the other side of the port. The fact that an io_iterator_t object, for example,
encapsulates the association of a Mach port with an in-kernel IOIterator object is not as important to the
application as the fact that an io_iterator_t object refers to an in-kernel object that knows how to iterate
over the I/O Registry.

The io_object_t objects in user space not only refer to the in-kernel objects, they also reflect the in-kernel
C++ class hierarchy. Because IOService is a subclass of IORegistryEntry, for example, you can use an
io_service_t object with any IOKitLib function that expects an io_registry_entry_t object, such as
IORegistryEntryGetPath.

With few exceptions (such as getting the I/O Kit master port to initiate communication with the I/O Kit and
reference-counting of the io_object_t objects themselves) you should not concern yourself with the
cross-boundary communication mechanism. Rather, you should focus on the specific in-kernel object you
are working with, making sure you use each object type appropriately.

Reference Counting

The IOKitLib contains three reference-counting functions:

 ■ IOObjectGetRetainCount

 ■ IOObjectRetain

 ■ IOObjectRelease

Each of these functions operates on the retain count of the underlying kernel object (the object on the other
side of the Mach port) and not on the io_object_t object itself. In other words, if you want to retain, release,
or get the retain count of the in-kernel IORegistryEntry object an io_registry_entry_t object represents,
you use one of the IOKitLib reference-counting functions. For example, Listing 4-2 (page 42) shows a code
fragment that releases the in-kernel IOIterator object underlying an io_iterator_t object after it’s been
used to find a serial port modem.

Listing 4-2 Releasing the underlying kernel object of an io_iterator_t object

io_iterator_t serialPortIterator = NULL;
char deviceFilePath[MAXPATHLEN];

kernResult = MyFindSerialPortModems(&serialPortIterator, &masterPort);
if (kernResult == kIOReturnSuccess) {
 kernResult = MyGetPathOfFirstModem (serialPortIterator, deviceFilePath,
 sizeof(deviceFilePath));

42 Object Reference-Counting and Introspection
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

 //Release the iterator since we want only the first modem.
 IOObjectRelease(serialPortIterator);
 //If MyGetPathOfFirstModem found a modem, communicate with it.
...
}

As a matter of good programming practice, you should use IOObjectRelease to release all io_object_t
objects you create in your code when they’re no longer needed.

If you suspect that you are leaking io_object_t objects, however, IOObjectGetRetainCount won’t help
you because this function informs you of the underlying kernel object’s retain count (which is often much
higher). Instead, because the retain count of an io_object_t object is essentially the retain count of the
send rights on the Mach port, you use a Mach function to get this information. Listing 4-3 (page 43) shows
how to use the Mach functionmach_port_get_refs (defined inmach/mach_port.h in the Kernel framework)
to get the retain count of an io_object_t object.

Listing 4-3 Getting the retain count of an io_object_t object

#include <mach/mach_port.h>

kern_return_t kr;
unsigned int count;
io_object_t theObject;

kr = mach_port_get_refs (mach_task_self(), theObject, MACH_PORT_RIGHT_SEND,
 &count);
printf ("Retain count for object ID %#X is %d\n", theObject, count);

Introspection

The IOKitLib provides three object-introspection functions that operate on the in-kernel object the passed-in
io_object_t object represents (not the io_object_t object itself):

 ■ IOObjectConformsTo

 ■ IOObjectGetClass

 ■ IOObjectIsEqualTo

The first function, IOObjectConformsTo, simply performs the in-kernel object’s metaCast method and
returns the Boolean result. The IOObjectGetClass function calls the in-kernel object’s getMetaClass
method and then calls that class’s getClassName method to return the class name as a C string. IOKitLib
implements the IOObjectIsEqualTo function as a shallow pointer comparison of the two passed-in objects,
returning the result as a Boolean value.

Device Discovery and Notification

Even if you use few other IOKitLib functions in your device-access application, you will certainly use the
device-discovery functions. If you’re working with hot-pluggable devices, such as USB or FireWire devices,
you may also use the notification functions.

Device Discovery and Notification 43
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

The following sections cover the IOKitLib device-discovery and notification functions, describing how the
IOKitLib implements:

 ■ Matching dictionary–creation

 ■ Device look-up

 ■ Notification set-up

 ■ Device iteration

Creating Matching Dictionaries

When you use IOKitLib functions to create a matching dictionary, you receive a reference to a Core Foundation
dictionary object. The IOKitLib uses Core Foundation classes, such as CFMutableDictionary and CFString,
because they closely corrrespond to the in-kernel collection and container classes, such as OSDictionary and
OSString (defined in libkern/c++ in the Kernel framework).

The I/O Kit automatically translates a CFDictionary object into its in-kernel counterpart when it crosses the
user-kernel boundary, allowing you to create an object in user-space that is later used in the kernel. For more
information on using Core Foundation objects to represent in-kernel objects, see “Viewing Properties of I/O
Registry Objects” (page 49).

The IOKitLib defines the following functions to create matching dictionaries:

 ■ IOServiceMatching

 ■ IOServiceNameMatching

 ■ IOBSDNameMatching

These functions create a mutable Core Foundation dictionary object containing the appropriate key and
your passed-in value. Table 4-1 (page 44) shows the keys each of the dictionary-creation functions use, along
with the I/O Kit framework files in which the keys are defined.

Table 4-1 Dictionary-creation functions and the keys they use

Key-definition fileKey nameFunction name

IOKitKeys.hkIOProviderClassKeyIOServiceMatching

IOKitKeys.hkIONameMatchKeyIOServiceNameMatching

IOBSD.hkIOBSDNameKeyIOBSDNameMatching

If, for example, you call IOServiceNameMatching with the argument i2c-modem, the resulting dictionary
looks like this:

{
 IONameMatch = i2c-modem;
}

44 Device Discovery and Notification
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

All dictionary-creation functions return a reference to a CFMutableDictionary object. Usually, you pass the
dictionary to one of the look-up functions (discussed next in “Looking Up Devices” (page 45)), each of which
consumes one reference to it. If you use the dictionary in some other way, you should adjust its retain count
accordingly, using CFRetain or CFRelease (defined in the Core Foundation framework).

Looking Up Devices

IOKitLib provides three look-up functions that look up registered objects in the I/O Registry that match a
passed-in matching dictionary:

 ■ IOServiceGetMatchingServices

 ■ IOServiceGetMatchingService

 ■ IOServiceAddMatchingNotification

IOKitLib implements its most general look-up function, IOServiceGetMatchingServices, by transforming
your matching dictionary into an OSDictionary object and invoking the IOService method
getMatchingServices. This method returns an IOIterator object that contains a list of matching IOService
objects. IOServiceGetMatchingServices then releases the matching dictionary you passed in and returns
to you an io_iterator_t object representing the in-kernel IOIterator object.

The IOServiceGetMatchingService function is simply a special case of
IOServiceGetMatchingServices: It returns the first matching object in the list instead of an iterator that
provides access to the entire list.

If you receive an io_iterator_t object from IOServiceGetMatchingServices, you should release it
with IOObjectReleasewhen you’re finished with it; similarly, you should use IOObjectRelease to release
the io_object_t object you receive from IOServiceGetMatchingService.

The IOServiceAddMatchingNotification function not only looks up matching objects in the I/O Registry,
it also installs a request for notification of matching objects that meet your passed-in criterion. The IOKitLib
implements this function by invoking the IOService addNotification method, which creates a persistent
notification handler that can be notified of IOService events.

To use IOServiceAddMatchingNotification, however, you must first use some other functions in the
IOKitLib to set up the notification mechanism. For more information on these functions, see the next section,
“Setting Up and Receiving Notifications” (page 45). For an outline of the steps your application takes to set
up a notification mechanism using a run loop, see “Getting Notifications of Device Arrival and Departure” (page
35).

Setting Up and Receiving Notifications

The IOKitLib provides several functions you use to set up and manage notification objects:

 ■ IONotificationPortCreate

 ■ IONotificationPortGetRunLoopSource

 ■ IONotificationPortGetMachPort

 ■ IODispatchCalloutFromMessage

Device Discovery and Notification 45
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

 ■ IONotificationPortDestroy

Whether you choose to receive notifications on a run loop or a Mach port (using a run loop is the
recommended approach), you must first create an object that can listen for I/O Kit notifications. To do this,
you use the IONotificationPortCreate function, which returns an object of type IONotificationPortRef.
IOKitLib implements this function by allocating a receive right on the current Mach port, giving it the name
of the IONotificationPort object you pass in.

To receive notifications on a run loop, you first use the IONotificationPortGetRunLoopSource function
to get a run-loop source you can install on your application’s current run loop. In Mac OS X, a run loop registers
input sources, such as Mach ports, and enables the delivery of events, such as IOService object status changes,
through those sources. The run-loop source object you receive from
IONotificationPortGetRunLoopSource function is of type CFRunLoopSourceRef. (For more information
about how to install the run-loop source on your application’s run loop, see “Getting Notifications of Device
Arrival and Departure” (page 35).)

The IOKitLib provides two functions that allow you use a Mach port you create on which to listen for
notifications, rather than a run loop. Although this method is available to you, it’s recommended that you
use the easier-to-implement and more automatic run-loop solution instead. The
IONotificationPortGetMachPort function returns a Mach port on which the IONotificationPortRef object
can listen for notifications. When the notification object receives a message, you pass the message to the
IODispatchCalloutFromMessage function to generate the callback function associated with the notification.

The IONotificationPortDestroy function cleans up and destroys all rights named by the passed-in port
name (the IONotificationPortRef object you received from IONotficationPortCreate). You should call
this function when you no longer want to receive notifications.

Iterating Over Matching Devices

To access the matching objects a look-up function returns, you use the IOIteratorNext function. IOKitLib
contains three functions that operate on io_iterator_t objects:

 ■ IOIteratorNext

 ■ IOIteratorIsValid

 ■ IOIteratorReset

As a subclass of OSIterator, the in-kernel IOIterator object defines the methods getNextObject, isValid,
and reset. IOKitLib invokes these methods in its implementation of IOIteratorNext, IOIteratorIsValid,
and IOIteratorReset, respectively.

IOIteratorNext simply returns a reference to the current object in the list (an io_object_t object) and
advances the iterator to the next object.

IOIteratorIsValid returns a Boolean value indicating whether the iterator is still valid. Sometimes, if the
I/O Registry changes while you’re using an iterator, the iterator becomes invalid. When this is the case,
IOIteratorIsValid returns zero and you can reset the invalid iterator to the beginning of the list, using
IOIteratorReset. Of course, you can use IOIteratorReset to start over at the beginning of the list for
any reason, not only because the iterator is invalid.

46 Device Discovery and Notification
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

I/O Registry Access

The IOKitLib provides a range of functions that find and provide information about objects in the I/O Registry.
Unlike the device-discovery functions, which focus on finding and accessing registered device objects that
match your matching dictionary, the I/O Registry–access functions allow you to view objects more broadly
as entries in the I/O Registry, providing ways to freely navigate the I/O Registry and get information about
any object in it. If you’re unfamiliar with the structure of the I/O Registry, you can read more about it in “The
I/O Registry” in I/O Kit Fundamentals. The following paragraphs provide a summary.

The I/O Registry is a dynamic database that captures the connections of all driver and nub objects currently
active in a running Mac OS X system. You can think of the I/O Registry as a tree-like structure rooted in the
Platform Expert, the driver of the main logic board that knows the type of platform your Mac OS X system is
running on.

The I/O Registry uses the concept of a plane to describe the different provider-client relationships between
objects. The Service plane displays the instantiation hierarchy of the I/O Registry: Every object in the I/O
Registry is a client of the services provided by its parent, so every object’s connection to its ancestor in the
I/O Registry tree is visible on the Service plane. Other planes express the provider-client relationships between
objects that participate in a specific hierarchy, such as the flow of power from power provider to power client.

Many of the I/O Registry–access functions require you to pass in an argument designating a specific plane.
In most cases, you will probably specify the all-inclusive Service plane, but there may be times when you
want to narrow the focus a bit. The file IOKitKeys.h (in the I/O Kit framework) contains the plane name
definitions you use in your code.

The IOKitLib provides I/O Registry–access functions that:

 ■ Traverse the I/O Registry in some way

 ■ Provide information about a particular object in the I/O Registry

 ■ Allow you to view an I/O Registry object’s properties

 ■ Allow you to set properties in an I/O Registy object’s property table

IOKitLib implements most of these functions by invoking similarly named IORegistryEntry methods (see
IORegistryEntry.h in the IOKit directory of the Kernel framework for more). The following sections
describe how you use the I/O Registry functions.

Traversing the I/O Registry

When you use the IOServiceGetMatchingServices look-up function, you get an iterator you can use to
access each object in a list of matching I/O Registry objects. But what if you want to search the I/O Registry
using some criteria other than a matching dictionary? Say, for example, you want to find all the children
(clients) of a particular object, regardless of whether they are currently registered in the I/O Registry. The
following functions give you access to the parents and children of an io_registry_entry_t object:

 ■ IORegistryEntryGetChildEntry

 ■ IORegistryEntryGetChildIterator

 ■ IORegistryEntryGetParentEntry

 ■ IORegistryEntryGetParentIterator

I/O Registry Access 47
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

Not surprisingly, the functions with the word “iterator” in their names supply you with an io_iterator_t
object you can pass to IOIteratorNext to access each io_registry_entry_t object in the list.
IORegistryEntryGetParentIterator, for example, looks in the specified plane to find all ancestors of
the passed-in object and returns an iterator you can use to access them. As you do with the
IOServiceGetMatchingService and IOServiceAddMatchingNotification functions, be sure to
release the returned io_iterator_t object when you’re finished with it (recall that releasing the iterator
you receive from IOServiceAddMatchingNotification also disables that notification). The other two
functions, IORegistryEntryGetChildEntry and IORegistryEntryGetParentEntry, return the first
child or ancestor of the passed-in object in the specified plane.

For even broader searches, you can use the following functions to search the entire I/O Registry, from any
point and to any depth:

 ■ IORegistryCreateIterator

 ■ IORegistryEntryCreateIterator

 ■ IORegistryIteratorEnterEntry

 ■ IORegistryIteratorExitEntry

 ■ IORegistryGetRootEntry

The IORegistryCreateIterator function returns an io_iterator_t object that begins at the root of
the I/O Registry and iterates over all its children in the specified plane. Similarly,
IORegistryEntryCreateIterator returns an io_iterator_t object that begins at the passed-in
io_registry_entry_t object and iterates over either all its ancestors or all its children in the passed-in
plane.

Both these functions allow you to specify an option that tells the iterator to automatically recurse into objects
as they are returned, or only when you call IORegistryIteratorEnterEntry to recurse into the current
object. The IORegistryIteratorExitEntry function undoes the effect of
IORegistryIteratorEnterEntry by resetting the iterator to the current object, allowing the iterator to
continue from where it left off. As its name implies, IORegistryGetRootEntry returns an
io_registry_entry_t object representing the root of the I/O Registry.

Getting Information About I/O Registry Objects

The IOKitLib provides a handful of functions, listed below, that return information about a particular I/O
Registry object, such as its name or path.

 ■ IORegistryEntryGetName

 ■ IORegistryEntryGetNameInPlane

 ■ IORegistryEntryGetPath

 ■ IORegistryEntryGetLocationInPlane

 ■ IORegistryEntryInPlane

IOKitLib implements these functions by invoking IORegistryEntry methods such asgetName andgetLocation.
Each function returns a C string that contains the object’s name or location. For example, Listing 4-4 (page
49) shows how to use some of these functions on the object representing an Apple USB keyboard.

48 I/O Registry Access
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

Listing 4-4 Using the IORegistryEntryGet functions

io_service_t device;
io_name_t devName;
io_string_t pathName;

IORegistryEntryGetName(device, devName);
printf("Device's name = %s\n", devName);
IORegistryEntryGetPath(device, kIOServicePlane, pathName);
printf("Device's path in IOService plane = %s\n", pathName);
IORegistryEntryGetPath(device, kIOUSBPlane, pathName);
printf("Device's path in IOUSB plane = %s\n", pathName);

The code in Listing 4-4 (page 49) displays information like the following:

Device's name = Apple Extended USB Keyboard
Device's path in IOService plane = IOService:/MacRISC2PE/pci@f2000000/
 AppleMacRiscPCI/usb@18/AppleUSBOHCI/Apple Extended USB Keyboard@1211000
Device's path in IOUSB plane = IOUSB:/IOUSBHubDevice@1200000/Hub in Apple
 Extended USB Keyboard@1210000/Apple Extended USB Keyboard@1211000

If you’re more interested in whether an object exists in a particular plane than in its path or name, you can
use the IORegistryEntryInPlane function, which returns TRUE if the object has a parent in the plane
and FALSE otherwise.

Viewing Properties of I/O Registry Objects

Each object in the I/O Registry has two dictionaries associated with it:

 ■ The property table for the object—if the object is a driver, this is the matching dictionary that defines
one of the driver’s personalities (if the object is a nub, the device family publishes device properties in
the nub’s property table).

 ■ The plane dictionary—this dictionary describes how the object is connected to other objects in the I/O
Registry.

These dictionaries are instances of OSDictionary. The libkern C++ library defines container classes, which
hold primitive values, such as numbers and strings, and collection classes, which hold groups of both container
objects and other collection objects. To view the contents of these objects in an application, you must use
IOKitLib functions to convert the in-kernel collection or container object (such as OSDictionary or OSString)
to the equivalent Core Foundation object. Currently, only the following libkern classes are available as Core
Foundation analogues:

 ■ OSDictionary

 ■ OSArray

 ■ OSSet

 ■ OSSymbol

 ■ OSString

 ■ OSData

 ■ OSNumber

 ■ OSBoolean

I/O Registry Access 49
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

The following IOKitLib functions allow you to access an object’s properties as Core Foundation types:

 ■ IORegistryEntryCreateCFProperty

 ■ IORegistryEntryCreateCFProperties

 ■ IORegistryEntrySearchCFProperty

The IORegistryEntryCreateCFProperty function creates a Core Foundation container representing the
value associated with the passed-in property key. For example, you can get a CFTypeRef to a storage device’s
device-file name by passing a handle to the device (an io_object_t object) and the key kIOBSDNameKey
(defined in IOBSD.h) to IORegistryEntryCreateCFProperty:

CFTypeRef deviceFileName;
deviceFileName = IORegistryEntryCreateCFProperty(deviceHandle,
 CFSTR(kIOBSDNameKey), kCFAllocatorDefault, 0);

TheIORegistryEntryCreateCFProperties function creates a Core Foundation dictionary object containing
the passed-in object’s property table. After your application gets the CFDictionary representation of an
object’s property table, it can call Core Foundation functions (such as CFDictionaryGetValue and
CFNumberGetValue) to access the dictionary’s values.

The IORegistryEntrySearchCFProperty function searches for the passed-in property, beginning with
a specified io_registry_entry_t object’s property table, and continuing with either its parents or its
children in the specified plane. When it finds the property you passed in, it returns a Core Foundation container
object representing the property.

When you’re finished with the Core Foundation container object you receive from these functions, you should
call CFRelease on it.

Because the I/O Registry is a dynamic database that is constantly being updated, the properties a function
such as IORegistryEntryCreateCFProperties returns represent a snapshot of the I/O Registry’s state
at a single instant. For this reason, you should not assume that the properties you receive are static—if you
call these functions multiple times in your application, you may get different results each time.

Setting Properties of I/O Registry Objects

In addition to viewing an object’s properties in an application, you can also use IOKitLib functions to place
new properties into an object’s property table.

Important: This is not an action most applications need to take. Because these functions rely on the
implementation of the setProperties method in the corresponding in-kernel driver, you should not use
them unless your device family specifically recommends it or unless you control both the user and kernel
side of a connection.

Setting properties from user space is suitable for some types of device control, in particular, single downloads
of data, such as the loading of firmware. This type of user space–kernel communication works because both
the application and the in-kernel object have access to the device object’s property table in the I/O Registry.
Of course, when you use IOKitLib functions to set properties in an object’s property table, it’s important to
realize that you’re only manipulating the OSDictionary representation of an object’s information property
list, not the property list itself.

50 I/O Registry Access
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

Before you consider setting an object’s properties in your application, make sure your situation meets the
following conditions:

 ■ Your device family implements the setProperties method or you control the in-kernel driver, and in
it, you implement the setProperties method.

 ■ The driver does not have to allocate permanent resources to complete the transaction.

 ■ The data sent either causes no change in the driver’s state, or causes a single, permanent change.

 ■ If the application transfers data by copy, it sends only a limited amount, such as a page or less. (If the
application sends data by reference, it can send an arbitrary amount of data.)

The IOKitLib provides four functions that allow you to set properties in an object’s I/O Registry property table:

 ■ IORegistryEntrySetCFProperty

 ■ IORegistryEntrySetCFProperties

 ■ IOConnectSetCFProperty

 ■ IOConnectSetCFProperties

The first two functions, IORegistryEntrySetCFProperty and IORegistryEntrySetCFProperties,
are generic functions that set either a single property value or a collection of property values (typically, in a
CFDictionary object) in the specified io_registry_entry_t object. The in-kernel object interprets the Core
Foundation container or collection object as it chooses.

If you’re developing your own device interface–user client solution, you’re more likely to use the
IOConnectSetCFProperty and IOConnectSetCFProperties functions to set properties. This is because
you are working with the io_connect_t object that represents the connection you opened to the in-kernel
driver object with IOServiceOpen and these functions provide more access control than
IORegistryEntrySetProperty and IORegistryEntrySetProperties. For a brief overview of how to
create a connection to a user client, see “Device-Interface Development” (page 52).

Determining Busy States

The IOKitLib includes a handful of functions that give you information about the busy state of various IOService
objects and allow you to wait until these objects are no longer busy:

 ■ IOServiceGetBusyState

 ■ IOKitGetBusyState

 ■ IOServiceWaitQuiet

 ■ IOKitWaitQuiet

Because activities such as registration, matching, and termination are asynchronous, an IOService object in
the process of one of these activities is considered busy and its busyState value is increased by one. When
any of these activities concludes, the IOService’s busyState value is decreased by one. Additionally, any
time an IOService object’s busyState value changes, its provider’s busyState value changes to match,
which means that an IOService object is considered to be busy when any of its clients is busy.

To get the busy state of an individual io_service_t object, you use the IOServiceGetBusyState function,
which IOKitLib implements by invoking the object’s getBusyState method.

I/O Registry Access 51
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

You can get the busy state of all IOService objects by calling the IOKitGetBusyState function. As the
provider of all IOService objects in the I/O Registry, the root of the Service plane is busy when any of its clients
(in other words, any IOService object) is busy. The IOKitGetBusyState function returns the busy state of
the Service plane root, effectively informing you of the busy state of the I/O Registry as a whole.

You can wait until objects cease to be busy by calling either the IOServiceWaitQuiet or IOKitWaitQuiet
functions. Both functions allow you to specify a maximum time to wait and block the calling process until
either the time runs out or the object becomes nonbusy.

Device-Interface Development

If you need to implement both an in-kernel user client and a device-interface library, you should read “Making
Hardware Accessible” in I/O Kit Device Driver Design Guidelines for in-depth information on how to do this.
This section covers only the user-space side of this process, briefly describing the IOKitLib functions involved.

Important: The IOKitLib contains several functions that are intended for developers of custom user clients
and device interfaces. If you are using an I/O Kit family (or third-party) device interface to access a device,
you will not need to use these functions; in fact, using these functions may circumvent the family’s (or third
party’s) device-interface functions and produce undesired results.

Although you may not directly use the IOKitLib functions this sections describes, knowing how they work
will give you some insight into how device interfaces and user clients cooperate.

Creating a User Space–Kernel Connection

The IOKitLib provides several functions that allow you to create and manipulate connections to in-kernel
objects, typically user clients. As with the other functions described in this section, you should use them only
when your device family does not provide a device-interface solution and you’ve decided to implement both
the in-kernel user client and the user-space device interface.

For an application to communicate with a device, the first thing it must do is create a connection between
itself and the in-kernel object representing the device. To do this, it creates a user client object.

After it gets the io_service_t object representing the device driver (by calling
IOServiceGetMatchingServices, for example), the application calls the IOKitLib IOServiceOpen function
to create the connection. The IOServiceOpen function invokes the io_service_t object’s newUserClient
method, which instantiates, initializes, and attaches the user client. As a result of calling IOServiceOpen,
the application receives an io_connect_t object (representing the user-client object) that it can use with
the IOKitLib IOConnect functions.

For example, in the SimpleUserClient example project, the application portion of the project creates a user
client with code like that shown in Listing 4-5 (page 52).

Listing 4-5 Creating a user client

//Code to get the I/O Kit master port, create a matching dictionary, and get
//an io_service_t object representing the in-kernel driver is not shown here.
io_service_t serviceObject;
io_connect_t dataPort;

52 Device-Interface Development
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

kern_return_t kernResult;

kernResult = IOServiceOpen(serviceObject, mach_task_self(), 0, &dataPort);

An application destroys a connection to a user client with a call to the IOServiceClose function, which
invokes the clientClose method in the user client. If, for some reason, the application terminates before
it’s able to call IOServiceClose, the user client invokes the clientDied method. Typically, the user client
responds to both methods by invoking close on its provider (usually the device nub).

If you’re developing your own user client and device-interface library, the IOKitLib functions you’re most
likely to use are the four IOConnectMethod functions (which call the user client’s external methods) and, if
your user client can map hardware registers into your application’s address space, IOConnectMapMemory
and IOConnectUnmapMemory.

IOConnectMethod Functions

The IOConnectMethod functions use arrays of structures containing pointers to methods to invoke in a
user-client object. The user client defines the list of methods it implements in an IOExternalMethod array.
Typically, these methods include the user client’s open and close methods and methods that pass data
between the in-kernel driver and the application. To use an IOConnectMethod function, an application
passes in the io_connect_t object, the index into the IOExternalMethod array, and, if the application is
passing or receiving data, arguments that describe the general data type (scalar or structure), number of
scalar parameters, size of data structures, and direction (input or output).

To open the user client, the application calls any of the IOConnectMethod functions, passing in just the
io_connect_t object representing the user client and the IOExternalMethod array index corresponding
to the user client’s open method. Because the application is not passing or receiving any data at this point,
the remaining two arguments passed to the IOConnectMethod function are zero. For example, the code
below shows how the application in the SimpleUserClient project uses the io_connect_t object it received
in Listing 4-5 (page 52) to open its user client:

//kMyUserClientOpen is one of the enum constants the SimpleUserClient
//project uses as indexes into the IOExternalMethod array.
kernResult = IOConnectMethodScalarIScalarO(dataPort, kMyUserClientOpen,
 0, 0);

To pass untyped data back and forth across the user-kernel boundary, an application uses one of the
IOConnectMethod functions in Table 4-2 (page 53), depending on the type of data and the direction of
data flow.

Table 4-2 IOConnectMethod functions

DescriptionFunction

One or more scalar input parameters, one or more scalar
output parameters

IOConnectMethodScalarIScalarO

One or more scalar input parameters, one structure output
parameter

IOConnectMethodScalarIStructureO

One or more scalar input parameters, one structure input
parameter

IOConnectMethodScalarIStructureI

Device-Interface Development 53
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

DescriptionFunction

One structure input parameter, one structure output
parameter

IOConnectMethodStructureIStructureO

The IOConnectMethod functions are designed to accept variable argument lists, depending on the data
type and direction you choose. Following the first two arguments—the io_connect_t object and the
method array index—is some combination of arguments that identify:

 ■ The number of scalar input or output values

 ■ The size of the input or output structure

 ■ Scalar input or output values

 ■ A pointer to an input or output structure

The application in the SimpleUserClient, for example, uses the IOConnectMethodScalarIStructureI
function as shown in Listing 4-6 (page 54).

Listing 4-6 Requesting I/O with the IOConnectMethodScalarIStructureI function

//MySampleStruct is defined in the header file both the user client
//and the application include and consists of two integer variable
//declarations.
MySampleStruct sampleStruct = {586, 8756}; //Random numbers.
int sampleNumber = 15; //Random number.
IOByteCount structSize = sizeof(MySampleStruct);
kern_return_t kernResult;

kernResult = IOConnectMethodScalarIStructureI(dataPort, // from IOServiceOpen
 kMyScalarIStructImethod, // method index
 1, // number of scalar input values
 structSize, // size of input structure
 sampleNumber, // scalar input value
 &sampleStruct // pointer to input structure
);

Memory-Mapping Functions

If your device driver has full PIO (Programmed Input/Output) memory management and your device does
not require the use of interrupts, you can write a dedicated application that moves large amounts of data to
and from the device, using the IOConnectMapMemory and IOConnectUnmapMemory functions. For example,
a frame-buffer application can use these functions to handle the large amounts of on-board memory that
needs to be accessible from user space. The IOConnectMapMemory function allows a user process to share
memory with an in-kernel driver by mapping the same memory into both processes.

When a user process calls IOConnectMapMemory, it passes in, among other arguments, a pointer to an area
in its own address space that will contain the mapped memory. The call to IOConnectMapMemory causes
the invocation of the user client’s clientMemoryForType method. The user client implements this method
by creating an IOMemoryDescriptor object that backs the mapping to the hardware registers. The user process

54 Device-Interface Development
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

receives a virtual memory vm_address_t object containing the address of the mapped memory and a
vm_size_t object that contains the size of the mapping. At this point, the user process can freely write to
and read from the hardware registers.

When the user process or device interface is finished performing I/O with the mapped memory, it should
call IOConnectUnmapMemory to remove the mapping.

Managing the User Space–Kernel Connection

The remaining IOConnect functions in IOKitLib are primarily intended to help you manage your custom
user space–kernel connection. As with the other IOConnect functions, you should not use them with I/O
Kit family-supplied or third-party device interfaces because they operate directly on the io_connect_t
object representing the connection, circumventing the existing device interface.

The IOKitLib contains the following functions to manipulate the io_connect_t object:

 ■ IOConnectAddClient

 ■ IOConnectAddRef

 ■ IOConnectRelease

 ■ IOConnectGetService

 ■ IOConnectSetNotificationPort

The IOConnectAddClient function creates a connection between two user-client objects in the kernel by
invoking the first user client’s connectClient method. You can use this function in the unlikely event that
you have two user clients that need to be able to communicate.

As their names suggest, IOConnectAddRef and IOConnectRelease adjust the reference count on the
passed-in io_connect_t object.

The IOConnectGetService function returns an io_service_t object representing the IOService object
on which the passed-in io_connect_t object was opened. IOKitLib implements this function by invoking
the user client’s getService method.

To identify a Mach port on which to receive family-specific notifications (notification types not interpreted
by the I/O Kit), you use the IOConnectSetNotificationPort function. You pass in, among other arguments,
the io_connect_t object representing the user client connection and a mach_port_t object representing
the Mach port on which you want to receive notifications. The IOKitLib implements this function by invoking
the user client’s registerNotificationPort method.

Device-Interface Development 55
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

56 Device-Interface Development
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

The IOKitLib API

All programming tasks carry the potential for error. Aside from standard errors of syntax or logic, however,
applications that access hardware may encounter specific types of errors that are outside the experience of
many application developers.

This chapter covers some of the errors you might see while developing an application that uses the I/O Kit
to access hardware on a Mac OS X system. It describes how to “read” the I/O Kit’s error codes and then
provides some information on the exclusive-access error.

Interpreting I/O Kit Error Return Values

Because you’ll be using I/O Kit functions extensively while looking up devices in the I/O Registry and examining
the objects that represent them, you should be familiar with the structure of the I/O Kit’s error return values.
This section describes how your application can interpret error values returned by I/O Kit functions.

The I/O Kit uses an error return mechanism, defined by the kernel framework, in which a 32-bit, unsigned
return value supplies information in three separate bit fields, as shown in Figure 5-1 (page 57). That is:

 ■ The high 6 bits specify the system in which the error occurred.

 ■ The next 12 bits specify the subsystem.

 ■ The final 14 bits specify the error code itself.

To work with these error return values, the header file IOReturn.h defines the following type:

typedef kern_return_t IOReturn; //kern_return_t is an int

You can use kern_return_t and IOReturn to obtain return values from I/O Kit functions that use either
type.

Figure 5-1 Bit layout for kernel and I/O Kit error return values

31 2625 01413

System Subsystem Error code

Listing 5-1 (page 58) shows some common system error values that are defined in the header
Kernel.framework/Headers/mach/error.h.

Interpreting I/O Kit Error Return Values 57
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Errors

Listing 5-1 Error.h system error values

#define err_kern err_system(0x0) /* kernel */
#define err_us err_system(0x1) /* user space library */
#define err_server err_system(0x2) /* user space servers */
#define err_ipc err_system(0x3) /* old ipc errors */
#define err_mach_ipc err_system(0x4) /* mach-ipc errors */
#define err_dipc err_system(0x7) /* distributed ipc */
#define err_local err_system(0x3e) /* user defined errors */
#define err_ipc_compat err_system(0x3f) /* (compatibility) mach-ipc errors
 */
#define err_max_system 0x3f

This header also defines macros for defining system and subsystem error values and for extracting system,
subsystem, and code values from an error return value, as shown in Listing 5-2 (page 58).

Listing 5-2 Error.h macros for working with error return values

#define err_system(x) (((x)&0x3f)<<26)
#define err_sub(x) (((x)&0xfff)<<14)

#define err_get_system(err) (((err)>>26)&0x3f)
#define err_get_sub(err) (((err)>>14)&0xfff)
#define err_get_code(err) ((err)&0x3fff)

Additional system values, as well as subsystem and code values, are defined in header files for particular
systems. For example, the header file Kernel.framework/Headers/IOKit/IOReturn.h defines the values
shown in Listing 5-3 (page 58) for the I/O Kit.

Listing 5-3 IOReturn.h error return values

#ifndef sys_iokit
#define sys_iokit err_system(0x38)
#endif /* sys_iokit */
#define sub_iokit_common err_sub(0)
#define sub_iokit_usb err_sub(1)
#define sub_iokit_firewire err_sub(2)
#define sub_iokit_reserved err_sub(-1)
#define iokit_common_err(return) (sys_iokit|sub_iokit_common|return)

#define kIOReturnSuccess KERN_SUCCESS // OK
#define kIOReturnError iokit_common_err(0x2bc) // general error
#define kIOReturnNoMemory iokit_common_err(0x2bd) // can't allocate memory
#define kIOReturnNoResources iokit_common_err(0x2be) // resource shortage
#define kIOReturnIPCError iokit_common_err(0x2bf) // error during IPC
#define kIOReturnNoDevice iokit_common_err(0x2c0) // no such device
// ... (many more individual error codes)

Your application may be able to use these error values directly, without having to extract system, subsystem,
or code values. For example, you could use code like the following to check for a no device error:

IOReturn returnVal;

returnVal = IOKitSomeFunction(...);

if (returnVal == kIOReturnNoDevice)
{
 // "No device returned" error in I/O Kit system, common subsystem.

58 Interpreting I/O Kit Error Return Values
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Errors

}

However, in some cases you may want to isolate an error code value or determine which system or subsystem
an error value came from. From the definitions shown in Listing 5-3 (page 58), and a little bit of calculation,
you can see that the error return value for a no device error (kIOReturnNoDevice) in the I/O Kit system and
the I/O Kit common subsystem would have the following bit-field values:

 ■ The high 6 bits (31–26) have the value 11 1000, or 0x38.

 ■ The next 12 bits (25–14) have the value 00 0000 0000 00, or 0x0.

 ■ The final 14 bits (13–0) have the value 00 0010 1010 0000, or 0x2c0.

The fully assembled bit representation is 1110 0000 0000 0000 0000 0010 1011 1100, resulting in a
hex value of 0xe00002c0. To extract the system, subsystem, or code value from such an error return value,
you use the macros shown in Listing 5-2 (page 58) along with the constants defined in Listing 5-3 (page
58). For example:

IOReturn returnVal;

returnVal = IOKitSomeFunction(...);

if (err_get_system(returnVal) == err_get_system(sys_iokit))
{
 // The error was in the I/O Kit system
 UInt32 codeValue = err_get_code(returnVal);
 // Can now perform test on error code, display it to user, or whatever.
}

Handling Exclusive-Access Errors

Many types of devices are designed to allow only one process at a time to access the device. A scanner, for
example, supports access by only one application at a time. Accordingly, I/O Kit families enforce the access
policy for their devices, whether exclusive or shared. In addition, Classic (the Mac OS 9 environment that you
can run in Mac OS X) may expect its drivers to have exclusive access to some devices, such as USB devices.
In the course of developing an application that accesses hardware, you may receive an exclusive-access error,
even when you believe yours is the only process trying to open the device. When this happens, if there is no
higher-level arbitration you can employ, you may need to present a dialog to the user and either try accessing
another device of the same class or try to access the same device later or under different circumstances.

Defined in IOReturn.h (in the I/O Kit framework), the kIOReturnExclusiveAccess error tells your
application that the device it is attempting to access has already been opened by another entity. In most
cases, the user client enforces exclusive access in its open method. When an application uses a device
interface’s open function, the device interface issues an open command to the user client. The user client
responds by trying to open its provider (the device nub) and, if it fails, it returns the
kIOReturnExclusiveAccess error. (If the user client finds that the provider is terminated, it will probably
return the kIOReturnNotAttached error.)

Different I/O Kit device families handle the exclusive-access issue in different ways. The FireWire family, for
example, enforces exclusive access to its devices, but also allows multiple device interfaces to open different
objects in the FireWire driver stack. It does this by employing the concept of a session reference to refer to
existing user space–kernel connections. Consider an application that uses a FireWire family device interface

Handling Exclusive-Access Errors 59
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Errors

to open an AV/C unit on a FireWire device. If that application also wants to access the FireWire unit object
that supports the AV/C unit, it can get a session reference from the AV/C device interface and use it to get
the FireWire unit device interface. For more information on this process, see FireWire Device Interface Guide.

The SCSI Architecture Model family, on the other hand, does not allow multiple device interfaces to
simultaneously open different objects in the driver stack, but it does allow applications to get information
about devices that in-kernel drivers currently have open. It also allows an application to gain exclusive access
to an authoring or media-mastering device by tearing down the upper layers of the stack and requiring the
in-kernel logical unit driver to yield control to the application. For more information about this process, see
SCSI Architecture Model Device Interface Guide.

For serial and storage devices you can access through device files, your application may fail to open the
device for the following reasons:

 ■ Another process has already opened the device.

 ■ The file system itself has opened a storage device.

 ■ Your application does not have the correct file-system permissions to access the device.

60 Handling Exclusive-Access Errors
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Errors

This appendix lists the current I/O Kit device families, identifies which families support device interfaces and
which can be accessed through device files and POSIX functions, and points to documentation for working
with specific devices.

For more information on I/O Kit families, see I/O Kit Fundamentals. For reference documentation of I/O Kit
family support of user-space device access, see the Device Drivers Reference Library.

Documentation for working with additional device families will be provided as it becomes available.

 ■ ADB family. This family provides an interface (defined in IOADBLib.h) for reading and writing registers
on ADB devices. The interface permits only polled mode operations. Interrupt operations are only
supported for kernel-resident clients.

 ■ ATA and ATAPI family. This family does not supply any device interfaces. Access to ATA/ATAPI devices
is provided by clients of this family, most commonly the Storage family.

The SCSI Architecture Model family provides device interfaces for ATAPI devices that comply with the
SCSI Architecture Model SCSI Primary Commands specification. SeeSCSI ArchitectureModelDevice Interface
Guide for more information.

 ■ Audio family. The Audio family does not export device interfaces for applications to access audio
hardware directly. However, it does provide a device interface that the Audio Hardware Abstraction
Layer (Audio HAL) uses to access drivers derived from the Audio family.

 ■ FireWire family. The FireWire family provides a general-purpose device interface that is suitable for any
FireWire device except those that require an in-kernel driver, such as disk drivers that mount file systems.
However, the device interfaces provided by the FireWire DV and FireWire SBP-2 families (described next)
provide mechanisms that may be more convenient for working with some devices.

For the latest information on Apple’s FireWire support, including access to development kits with device
interface support, see http://developer.apple.com/hardwaredrivers/firewire/.

For more information about accessing FireWire devices (including AV/C and SBP-2 units) from an
application, see FireWire Device Interface Guide.

 ■ FireWire DV family. The FireWire DV (digital video) family provides complete driver support so that you
can use standard QuickTime functions to access DV devices such as cameras and camcorders. No specific
knowledge of FireWire is required and you can use the same functions for Mac OS X and MacOS8and9.
Additional documentation for DV support of lower-level device control may be provided at a later date.

 ■ FireWire SBP-2 family. This family provides a device interface to communicate with devices that support
SBP-2 (Serial Bus Protocol 2).

The SCSI Architecture Model family provides device interfaces for FireWire SBP-2 devices that comply
with the SCSI Architecture Model SCSI Primary Commands specification. SeeSCSI ArchitectureModelDevice
Interface Guide for more information.

 ■ Graphics family. The Graphics family includes Quartz 2D and other graphics libraries that provide
high-level graphics-rendering services.

For information on Quartz 2D and Quartz Compositor (the Mac OS X window server), see “Hardware-Access
Options” (page 9).

61
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Device-Access Support

http://developer.apple.com/hardwaredrivers/firewire/

 ■ HID family. Through the HID Manager, the HID family provides a device interface for accessing a variety
of devices, including joysticks and other game devices, audio devices, non-Apple displays, and UPS
(uninterruptible power supply) devices. Note that you can use the Carbon Event Manager and NSEvent
interfaces described in “Hardware-Access Options” (page 9) to monitor mouse and keyboard actions.

For more information on using the HID Manager to access HID class devices, seeHIDClassDevice Interface
Guide. You can also find sample code for using the Mac OS X HID Manager in the Games Human Interface
Device & Force Feedback Sample Code Library.

 ■ Network family. Mac OS X provides networking functions in Carbon and Cocoa that should handle most
standard networking requirements for applications. You can also use the BSD sockets API to obtain
network services. A recommended network programming book is Unix Network Programming, Volume
1, Second Edition, by W. Richard Stevens, Prentice-Hall PTR, 1998.

 ■ PC Card family. There are no direct device interfaces for either CardBus or 16-bit PC Card devices. Direct
access to PC Card bus hardware by applications or other code running outside the kernel is not permitted
for security reasons. Applications that must communicate with a PC Card must do so through an in-kernel
driver.

 ■ PCI and AGP family. There are no device interfaces for PCI and AGP devices. Direct access to PCI bus
hardware by applications or other code running outside the kernel is not permitted for security reasons.
Applications that must communicate with a PCI or AGP card must do so through an in-kernel driver.

In most cases, applications should interact with higher-level services, such as those provided by the USB
storage family or other client families. Applications can access graphics devices through the Quartz
Compositor, which is described briefly in “Hardware-Access Options” (page 9), or other high-level APIs.

 ■ SCSI family. In versions of Mac OS X prior to 10.2, the SCSI family supported user-space access to parallel
SCSI devices through the device-interface functions in the IOSCSILib.h (in the cdb directory of the
I/O Kit framework). Your application may still be able to use these functions to find and communicate
with parallel SCSI devices. However, if you’re looking up a parallel SCSI device that is not accessible with
the SCSI Architecture Model family’s device interfaces and if your application requires compatibility with
versions of Mac OS X prior to 10.2, you should employ the device look-up functions of both the new
SCSI Parallel family and the old SCSI family. This is because after a user has installed new HBA (host bus
adaptor) drivers developed with the new SCSI Parallel family, the device-interface functions of the SCSI
family will no longer be supported. By using the functions of both families to look for the device, however,
your application has the widest compatibility.

See SCSI Architecture Model Device Interface Guide for more information.

 ■ SCSI Architecture Model family. Devices that support the SCSI Architecture Model SCSI Primary
Commands specification can be controlled by SCSI tasks, which are a means of executing command
descriptor block (CDB) commands. The SCSI Architecture Model family provides device interfaces for
accessing compliant ATAPI, USB mass storage, FireWire SBP-2, and, in some cases, parallel SCSI devices.

See SCSI Architecture Model Device Interface Guide for more information.

 ■ SCSI Parallel family. The SCSI Parallel family is new in Mac OS X version 10.2 and is designed to support
SCSI controllers. If a user has installed new HBA (host bus adapter) drivers developed with the SCSI
Parallel family, your application can access all SCSI devices that do not declare a peripheral device type
of $00, $05, $07, or $0E using the device-interface functions of the SCSI Architecture Model family.

See SCSI Architecture Model Device Interface Guide for more information.

 ■ Serial family. Applications can access devices in this family through the device-file mechanism. You use
the I/O Kit to obtain a path to the device files in the /dev directory. The filenames start with cu or tty
, such as cu.modem, tty.modem, ttyp1, ttyp2, and so on, so that a full device-file name would look

62
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Device-Access Support

like /dev/cu.modem. You then perform traditional UNIX serial port access using POSIX termios functions.
Your application can read and write data using these device files. Data is also routed through to PPP via
these device files. For related information, see “Inside the Device-File Mechanism” (page 21).

For information on how to use the device-file mechanism to access a serial device from an application,
see Device File Access Guide for Serial Devices.

 ■ Storage family. Mac OS X provides file-management APIs in Carbon and Cocoa that allow applications
to access files and folders on physical storage devices. Applications can also get raw access to media
objects in this family through the device file system. You use the I/O Kit to obtain a path to device files
in the /dev directory, then use traditional UNIX file-system access through POSIX functions. For related
information, see “Inside the Device-File Mechanism” (page 21).

For information on how to use the device-file mechanism to access storage media from an application,
see Device File Access Guide for Storage Devices.

 ■ USB family. This family provides device interface support for generic Universal Serial Bus (USB) serial
devices. Support for USB input devices is provided by the HID family. For more information on accessing
USB devices from user space, see USB Device Interface Guide.

The SCSI Architecture Model family provides device interface support for USB mass storage class devices
that comply with the SCSI Architecture Model SCSI Primary Commands specification. See SCSI Architecture
Model Device Interface Guide for more information.

63
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Device-Access Support

64
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Device-Access Support

This table describes the changes to Accessing Hardware From Applications.

NotesDate

Made minor corrections.2007-02-08

Fixed minor errors.2006-11-07

Made minor corrections and added information about the use of the NVRAM
variable pmuflags while debugging.

2006-05-23

Fixed minor typos.2005-11-09

Made minor bug fixes.2005-09-08

Made minor bug fixes.2005-07-07

Added CFNetwork API and NSEvent support for tablet events to list of APIs for
hardware access.

2005-06-04

Fixed typos. Added note that Objective-C does not supply I/O Kit interfaces.
Added link to man page documentation.

2005-04-08

Reworded bullet point in Appendix A.2005-01-11

Updated documentation references.2004-04-22

Added information about getting power-source information in an application.2003-10-10

Updated for WWDC 2003. Changed emphasis from API “cookbook” to developer
guide.

2003-05-15

Removed “Working With Parallel SCSI Devices” chapter. This information can be
found inSCSI Architecture Model Device Interface Guide.

Removed “Working With SCSI Architecture Model Devices” chapter. This
information can be found in SCSI Architecture Model Device Interface Guide.

Removed “Working With Serial I/O” chapter. This information can be found in
Device File Access Guide for Serial Devices.

Removed “Working With Device Files for Storage Devices” chapter. This
information can be found in Device File Access Guide for Storage Devices.

65
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

66
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

device Computer hardware, typically excluding the
CPU and system memory, that can be controlled and
can send or receive data. Examples of devices include
monitors, drives, bus controllers, and keyboards.

device file A special file the I/O Kit creates in the
/dev directory for each serial and storage device it
discovers.

device interface A plug-in interface, provided by an
I/O Kit family, that conforms to the CFPlugIn
architecture. Code running on Mac OS X can call the
functions in a device interface to access the in-kernel
object representing a device. A device interface
transmits an application’s commands to the device
object via a user client. See also user client (page 68).

device matching The I/O Kit process of searching
the I/O Registry for objects representing one or more
specific kinds of device.

driver A unit of software that manages a specific
piece of hardware. A driver written with the I/O Kit is
an object that implements the appropriate I/O Kit
abstractions for controlling that hardware.A driver
can serve as a nub, but this is rare. See also nub (page
67).

driver matching The I/O Kit process of locating a
suitable driver for a device.

driver personality A dictionary of key/value pairs
that specify device property values, such as family
type, vendor name, or product name. A driver is
suitable for any device whose properties match one
of the driver’s personalities.

family A collection of software abstractions that are
common to all devices of a particular category.
Families provide functionality and services to drivers.

The I/O Kit defines families for bus protocols (such as
SCSI, USB, and FireWire), storage devices, human
interface devices, and many others.

framework A type of bundle that packages a
dynamic shared library with the resources the library
requires, including header files and reference
documentation.

I/O Kit An object-oriented framework for developing
device drivers on Mac OS X. The I/O Kit provides many
features, from a set of object classes that model
system software and streamline the task of writing
device drivers, to a dynamic model for identifying,
loading, and unloading drivers and other services in
a running system.

I/O Kit framework The framework that includes
IOKitLib.h and makes the I/O Registry, user client
plug-ins, and other I/O Kit services available to
applications and other code. Stored on disk as
IOKit.framework.

I/O Registry A dynamic database that describes a
collection of ”live” objects, each of which represents
an I/O Kit entity, such as a family, driver, or nub. As
hardware is added to or removed from the system,
the I/O Registry is modified to reflect the changes.

kernel space The protected memory partition in
which the kernel resides. See also user space (page
68).

matching dictionary A dictionary of key/value pairs
that describe the properties of a device or other
service. The values in a matching dictionary are
compared against those in a driver personality during
device matching.

nub An I/O Kit object that represents a detected,
controllable entity, such as a device or logical service.
A nub may represent a bus controller, a disk, a

67
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

Glossary

graphics adaptor, or any number of similar entities.
When it supports a specific piece of hardware, a nub
is also a driver (although this is rare).A nub supports
dynamic configuration by providing a connection
match point between two drivers (and, by extension,
between two families). A nub can also provide services
to code running in user space through a device
interface. See also driver (page 67).

plug-in An object module that can be dynamically
added to a running system or application.Core
Foundation Plug-in Services uses the basic
code-loading facility of Core Foundation Bundle
Services to provide a standard plug-in architecture,
known as the Core Foundation plug-in model, for Mac
OS X applications.

SCSI See Small Computer System Interface
(SCSI) (page 68).

SCSI Architecture Model A specification, approved
as ANSI standard X3.270-1996, that defines a common
interface standard between computers and devices
such as disk drives, printers, and scanners.

Small Computer System Interface (SCSI) An industry
standard parallel data bus that provides a consistent
method of connecting computers and peripheral
devices.

service A service is an I/O Kit entity, based on a
subclass of IOService, that has been published with
the registerServicemethod and provides certain
capabilities to other I/O Kit objects. In the I/O Kit’s
layered architecture, each layer is a client of the layer
below it and a provider of services to the layer above
it.

user client An in-kernel object that inherits from the
IOService class and provides a connection between
an in-kernel device driver or device nub and an
application or process in user space. See also device
interface (page 67).

user space Memory outside the protected partition
in which the kernel resides. Applications, plug-ins,
and other types of modules typically run in user space.
See also kernel space (page 67).

68
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

A

ADB family 61
ATA/ATAPI families 61
Audio family 61
Audio HAL (Hardware Abstraction Layer) 10

B

BSD
and device files 21–23
and networking API 22
file systems 9
networking 9

busyState values 51–52

C

Carbon Event Manager 9
Carbon Printing Manager 9
CFDictionaryAddValue function 32
CFDictionaryCreateMutable function 32
CFNetwork 10
CFRelease function 32
CFRunLoopAddSource function 35
CFRunLoopRun function 36
CFStringGetCString function 39
Component Object Model (COM) 19
Core Audio 10
Core Foundation plug-in model 19
Core Graphics Services. See Quartz Compositor
custom device interfaces. See developing custom

device-access solutions
custom user clients. See developing custom device-access

solutions

D

developing custom device-access solutions 52–55
device families. See I/O Kit, family device-access support
device files

and device interfaces 21–22
defined 15
getting a device-file path for 38–39
in driver stack 18
overview 21–23

device interfaces
creating custom. See developing custom device-access

solutions
and device files 21–22
overview 19–21
steps for getting 37–38

device interfaces
defined 14
in driver stack 17

device look-up functions 34–35
device matching

and communicating with the I/O Kit 26–27
and device files 33
and notifications 35–36
creating matching dictionaries for 31–33
defined 15
device look-up functions for 34–35
examining matching objects in 36
getting keys and values for 27–31
steps to implement 26

driver 14
driver matching 15
driver personalities

defined 14
examining for matching keys and values 30–31
keys in 27–30

E

error return values
interpreting 57–59

69
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

Index

macros for handling 58
exclusive-access errors 59–60

F

family 13
File Manager 10
file systems, BSD 9
finding devices. See device matching
FireWire DV family 61
FireWire family 61
FireWire SBP-2 family 61
functions
CFDictionaryAddValue 32
CFDictionaryCreateMutable 32
CFRelease 32
CFRetain 34
CFRunLoopAddSource 35
CFRunLoopRun 36
CFStringGetCString 39
close 22
host_get_io_master 23
IOBSDNameMatching 31, 44
IOConnectAddClient 55
IOConnectAddRef 55
IOConnectGetService 55
IOConnectMapMemory 54
IOConnectMethodScalarIScalarO 53
IOConnectMethodScalarIStructureI 53
IOConnectMethodScalarIStructureO 53
IOConnectMethodStructureIStructureO 54
IOConnectRelease 55
IOConnectSetCFProperties 51
IOConnectSetCFProperty 51
IOConnectSetNotificationPort 55
IOConnectUnmapMemory 54
IOCreatePlugInInterfaceForService 20, 37
IODestroyPlugInInterface 20, 38
IODispatchCalloutFromMessage 46
IOIterator 35
IOIteratorIsValid 36, 46
IOIteratorNext 36, 46
IOIteratorReset 36, 46
IOKitGetBusyState 51
IOKitWaitQuiet 51
IOMasterPort 23, 26, 27
IONotificationPortCreate 35, 46
IONotificationPortDestroy 46
IONotificationPortGetMachPort 46
IONotificationPortGetRunLoopSource 35, 46
IOObjectConformsTo 43
IOObjectGetClass 36, 43

IOObjectGetRetainCount 42
IOObjectIsEqualTo 43
IOObjectRelease 42
IOObjectRetain 42
IORegistryEntryCreateCFProperties 50
IORegistryEntryCreateCFProperty 36, 39, 50
IORegistryEntryGetLocationInPlane 48
IORegistryEntryGetName 48
IORegistryEntryGetNameInPlane 48
IORegistryEntryGetParentEntry 35
IORegistryEntryGetPath 48
IORegistryEntryInPlane 48
IORegistryEntrySearchCFProperty 50
IORegistryEntrySetCFProperties 51
IORegistryEntrySetCFProperty 51
IOServiceAddMatchingNotification 34–35, 45
IOServiceClose 53
IOServiceGetBusyState 51
IOServiceGetMatchingService 34–35, 45
IOServiceGetMatchingServices 27, 34–35, 45
IOServiceMatching 31, 33, 44
IOServiceNameMatching 31, 44
IOServiceOpen 52
IOServiceWaitQuiet 51
mach_port_deallocate 27
mach_port_get_refs 43
open 22
QueryInterface 20, 38
SCSIAction 11

H

HID family 62
host_get_io_master function 23

I

I/O Kit
and driver-stack building 16–19
communicating with 23
family device-access support 61–63
framework 15
terms and definitions 13–15

I/O Registry Explorer application 14, 30
I/O Registry

defined 14
object property-setting functions 50–51
object property-viewing functions 49–50
object-introspection functions 48–49
planes in 47

70
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

traversal functions 47–48
Info.plist file 14, 30
IOBSDNameMatching function 31, 44
IOCFPlugInInterface plug-in 20
IOConnectAddClient function 55
IOConnectAddRef function 55
IOConnectGetService function 55
IOConnectMapMemory function 54
IOConnectMethodScalarIScalarO function 53
IOConnectMethodScalarIStructureI function 53
IOConnectMethodScalarIStructureO function 53
IOConnectMethodStructureIStructureO function

54
IOConnectRelease function 55
IOConnectSetCFProperties function 51
IOConnectSetCFProperty function 51
IOConnectSetNotificationPort function 55
IOConnectUnmapMemory function 54
IOCreatePlugInInterfaceForService function 20,

37
IODestroyPlugInInterface function 20, 38
IODispatchCalloutFromMessage function 46
IOIterator objects

and the IOIteratorNext function 36
from device look-up functions 34
reference counting of 34
using to examine matching objects 36

IOIteratorIsValid function 36, 46
IOIteratorNext function 36, 46
IOIteratorReset function 36, 46
IOKitGetBusyState function 51
IOKitLib API

and in-kernel objects 41–42
busy-state functions in 51–52
custom device interface development functions in 52–

55
device look-up functions in 45
device-notification functions in 45
I/O Registry object information functions in 48–49
I/O Registry-traversal functions in 47–48
iteration functions in 46
matching dictionary-creation functions in 44
object-introspection functions in 43
property-setting functions in 50–51
property-viewing functions in 49–50
reference-counting functions in 42–43

IOKitWaitQuiet function 51
IOMasterPort function 23, 26
IONotificationPortCreate function 35, 46
IONotificationPortDestroy function 46
IONotificationPortGetMachPort function 46
IONotificationPortGetRunLoopSource function 35,

46

IOObjectConformsTo function 43
IOObjectGetClass function 36, 43
IOObjectGetRetainCount function 42
IOObjectIsEqualTo function 43
IOObjectRelease function 42
IOObjectRetain function 42
IOProviderClass key 28
ioreg tool 14, 30
IORegistryEntryCreateCFProperties function 50
IORegistryEntryCreateCFProperty function 36, 39,

50
IORegistryEntryGetLocationInPlane function 48
IORegistryEntryGetName function 48
IORegistryEntryGetNameInPlane function 48
IORegistryEntryGetParentEntry function 35
IORegistryEntryGetPath function 48
IORegistryEntryInPlane function 48
IORegistryEntrySearchCFProperty function 50
IORegistryEntrySetCFProperties function 51
IORegistryEntrySetCFProperty function 51
IOServiceAddMatchingNotification function 34–

35, 45
IOServiceClose function 53
IOServiceGetBusyState function 51
IOServiceGetMatchingService function 34–35, 45
IOServiceGetMatchingServices function 27, 34–35,

45
IOServiceMatching function 31, 33, 44
IOServiceNameMatching function 31, 44
IOServiceOpen function 52
IOServiceWaitQuiet function 51
io_iterator_t object 42
io_object_t type 36, 41–42
io_registry_entry object 42
io_service_t object 42
iterators. See IOIterator objects

K

kernel space 13
kIOMasterPortDefault constant 23
kIOReturnExclusiveAccess error 59
kIOReturnNotAttached error 59

L

looking up devices. See device look-up functions

71
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

M

Mach ports, using for I/O Kit communication 23, 41–42
mach_port_get_refs function 43
matching dictionaries

creating and modifying 31–33
defined 15
for device files 33
getting property keys for 27–31
reference counting of 34
using Core Foundation functions to modify 32–33
using I/O Kit functions to create 31–32

N

Network family 62
networking services in user space 9
notifications of device arrival and departure. See device

matching, getting notifications
NSEvent object 10
nub 14

O

Open Transport 10

P

PC Card family 62
PCI and AGP families 62
personality dictionaries, examining for keys and values

30–31
POSIX (Portable Operating System Interface) API 15, 21,

22, 39
power-source information, getting from user space 10
property keys

finding with I/O Registry Explorer 30
in header files 28–30
in information property lists 30
IOProviderClass key 28

Q

Quartz 2D 10
Quartz Compositor 10
QueryInterface function 20, 38
QuickDraw 10

QuickTime 11

R

reference counting
functions in IOKitLib 42–43
of io_object_t objects 43
of IOCFPlugInInterface objects 20
of IOIterator objects 34
of matching dictionaries 32, 34

S

SCSI Architecture Model family 62
SCSI family 62
SCSI Manager 4.3 11
SCSI Parallel family 11, 62
SCSIAction function 11
serial devices, setting up a matching dictionary for 33
Serial family 62
service 14
storage devices, setting up a matching dictionary for 33
Storage family 63

U

UPS (uninterruptible power supply) devices 10
USB family 63
user clients

creating custom. See developing custom device-access
solutions

defined 14
in driver stack 17

user space 13
UUID (universal unique identifier) 20

X

XML (Extensible Markup Language) 14

72
2007-02-08 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

	Accessing Hardware From Applications
	Contents
	Figures, Tables, and Listings
	Introduction
	Hardware-Access Options
	Other APIs That Provide Access to Hardware
	Where to Go From Here

	Device Access and the I/O Kit
	I/O Kit Summary
	I/O Kit Definitions
	I/O Kit Driver-Stack Building

	Device Interfaces and Device Files
	Inside the Device-Interface Mechanism
	Inside the Device-File Mechanism
	Communicating With the I/O Kit

	Finding and Accessing Devices
	Finding Devices in the I/O Registry
	Device Matching
	Getting the I/O Kit Master Port
	Getting Keys and Values for a Device-Matching Dictionary
	Personality Property Keys and Values
	Examining Driver Personality Information
	Examining the I/O Registry

	Setting Up a Matching Dictionary to Find Devices
	Setting Up a Matching Dictionary to Find Device Files
	Looking Up Devices in the I/O Registry
	Getting Notifications of Device Arrival and Departure

	Examining Matching Objects
	Putting It All Together: Accessing a Device
	Getting a Device Interface
	Getting a Device-File Path

	The IOKitLib API
	Object Reference-Counting and Introspection
	Reference Counting
	Introspection

	Device Discovery and Notification
	Creating Matching Dictionaries
	Looking Up Devices
	Setting Up and Receiving Notifications
	Iterating Over Matching Devices

	I/O Registry Access
	Traversing the I/O Registry
	Getting Information About I/O Registry Objects
	Viewing Properties of I/O Registry Objects
	Setting Properties of I/O Registry Objects
	Determining Busy States

	Device-Interface Development
	Creating a User Space–Kernel Connection
	IOConnectMethod Functions
	Memory-Mapping Functions

	Managing the User Space–Kernel Connection

	Handling Errors
	Interpreting I/O Kit Error Return Values
	Handling Exclusive-Access Errors

	Appendix A: I/O Kit Family Device-Access Support
	Revision History
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	X

