
Network Device Driver Programming Guide
Hardware & Drivers > Networking

2008-03-11

Apple Inc.
© 2000, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
Macintosh are trademarks of Apple Inc.,
registered in the United States and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Network Device Driver Programming Guide 7

Who Should Read This Document? 7
Information on the Web 7

Chapter 1 I/O Networking Family API 9

Network Family Architecture 9

Chapter 2 Tips on Bringing Up a UNIX Network Driver 13

Activating the Network Link 13
Testing I/O 14
Testing Statistics-Gathering 15
Unloading the Driver 15

Chapter 3 Writing a Driver for an Ethernet Controller 17

Driver Overview 17
Startup and Shutdown 17

Opening the Provider Nub 18
Setting up Output Queuing 18
Setting up a Network Interface 19

Defining Capabilities, Restrictions, and Modes 20
Enabling and Disabling the Driver 20

Opening and Closing the Provider Nub 20
Creating and Destroying Resources 21
Starting and Stopping I/O 21

Performing I/O 21
Transmitting Packets 21
Receiving Packets 22
Gathering Network Statistics 22

Advertising and Changing Filter Modes 23
Advertising and Changing Media 23

Document Revision History 25

3
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

4
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 I/O Networking Family API 9

Figure 1-1 Network family inheritance hierarchy 9
Figure 1-2 Network family objects in the IORegistry 10
Figure 1-3 Network family objects used by a driver 11

Chapter 2 Tips on Bringing Up a UNIX Network Driver 13

Figure 2-1 Two-machine target-debug setup 13

5
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

6
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

FIGURES

Important: This document is in a preliminary stage of completion. Although it has received some techincal
review, there may be changes and/or additions to some of the information provided here.

Network Device Driver Programming Guide is an introduction to developing network device drivers, and a
companion to the source code available in the Darwin Projects Directory, http://www.opensource.ap-
ple.com/darwinsource/Current. You will find this document most useful if you examine a sample network
driver as you read it. This document will refer to the AppleUSBCDCDriver. Code for this driver can be found
at http://www.opensource.apple.com/darwinsource/tarballs/apsl/AppleUSBCDCDriver-314.4.1.tar.gz.

This book assumes some familiarity with programming the Mac OS X kernel and the I/O Kit. For a broad
overview of the Mac OS X kernel see Kernel Programming Guide. If you need more information about the I/O
kit, please read I/O Kit Device Driver Design Guidelines and I/O Kit Fundamentals.

Who Should Read This Document?

Network Device Driver Programming Guide is intended for anyone who wants to develop network drivers for
Mac OS X.

Information on the Web

Apple maintains several websites where developers can go for general and technical information on Mac OS
X.

 ■ Darwin Projects Directory—Open source drivers for use with Darwin (http://www.opensource.ap-
ple.com/darwinsource/Current/)

 ■ Apple Developer Connection—Developer Documentation (http://developer.apple.com/documentation).
Features the same documentation that is installed on Mac OS X, except that often the documentation
is more up-to-date. Also includes legacy documentation.

 ■ AppleCare Knowledge Base (http://www.apple.com/support). Contains technical articles, tutorials, FAQs,
technical notes, and other information.

 ■ Apple Developer Connection—Mac OS X (http://developer.apple.com/macosx). Offers SDKs, release
notes, product notes and reviews, and other resources and information related to Mac OS X.

Who Should Read This Document? 7
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Network Device Driver
Programming Guide

http://www.opensource.apple.com/darwinsource/Current/
http://www.opensource.apple.com/darwinsource/Current/
http://www.opensource.apple.com/darwinsource/tarballs/apsl/AppleUSBCDCDriver-314.4.1.tar.gz
http://www.opensource.apple.com/darwinsource/Current/
http://www.opensource.apple.com/darwinsource/Current/
http://developer.apple.com/documentation
http://www.apple.com/support/
http://developer.apple.com/macosx

8 Information on the Web
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Network Device Driver Programming Guide

The network family defines a framework for building drivers of network controllers. It includes the superclasses
for network drivers, which transfer network packets to and from the controller hardware, and for network
interfaces, which serve as nubs connecting the BSD networking stack to the driver. Writing a driver involves
creating a subclass of the appropriate superclass for a controller driver. The network family currently supports
ethernet controllers, with an abstract superclass for controller drivers and a concrete interface class. It’s also
possible to add support for new controller types, such as token ring or FDDI, by creating new classes for
drivers and interfaces.

A network driver is a provider within the network family, but it is also a client of whatever bus the physical
device connects to. The CDC Ethernet driver, for example, uses an IOUSBDevice nub to connect to the USB
bus. For information on client setup, see the document appropriate for that device.

Network Family Architecture

The network family comprises a small group of core driver and nub classes, along with a host of utility and
helper classes. Figure 2-1 (page 9) shows the inheritance hierarchy for the network family. The principal
driver classes are IONetworkController, which is the superclass for any kind of network driver, and
IOEthernetController, which is the superclass for an ethernet controller driver. A network controller object
publishes a nub that forms an interface between the driver and the BSD Data Link Interface Layer, or DLIL.
The superclass for a network interface is, IONetworkInterface; the IOEthernetInterface class defines the
interface for ethernet controllers. You create a new interface class if you are extending the network family
to add support for a new networking hardware protocol, such as FDDI.

Figure 1-1 Network family inheritance hierarchy

OSData

OSObject

IOMemoryCursor

IONetworkMedium

IOPacketQueue

IORegistryEntry

IOOutputQueue

IONetworkData

IOMBufMemoryCursor

IOService

IOBasicOutputQueue

IOMBufBigMemoryCursor

IOMBufDBDMAMemoryCursor

IOMBufLittleMemoryCursor

IOMBufNaturalMemoryCursor

IOKernelDebugger

IONetworkStack

IOGatedOutputQueue

IOUserClient

IONetworkInterface

IONetworkController

IONetworkUserClient

IOEthernetInterface

IOEthernetController

Network Family Architecture 9
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

I/O Networking Family API

The remaining classes are mostly helpers or managers of data for the network controller and interface objects.
An IONetworkStack object connects a network interface object to the BSD networking stack. The various
IOMBufMemoryCursor classes work like the IOMemoryCursor classes used in the rest of the I/O Kit, but on
BSD mbuf_t structures rather than on IOMemoryDescriptor objects. An IONetworkMedium describes a
physical link medium of the hardware. IOOutputQueue and its subclasses, along with IOPacketQueue, perform
packet queuing for network controller objects. IONetworkData is used to hold standard C structures used by
the BSD networking layer so that I/O Kit driver can access them.

A few other classes are less relevant to most network drivers. An IOKernelDebugger object is used in place
of a network interface object when a computer is being debugged through the Kernel Debugger Protocol
(KDP). The drivers for the built-in network controllers on Macintosh computers include support for KDP;
third-party drivers rarely need to support it. An IONetworkUserClient object gives user-space programs direct
access to networking services. Since networking services are typically made available to the whole system,
this class is also of less relevant for third-party network drivers.

A driver in the network family is a subclass of the abstract IONetworkController class, typically through an
intermediate protocol-specific class such as IOEthernetController. Figure 2-2 (page 10) shows a simplified
view of the IORegistry stack for an ethernet driver. In this figure the driver is a client of the family representing
the bus that the controller card uses, and a provider to a network interface object. In the same manner as
IONetworkController, IONetworkInterface is the abstract superclass for interfaces, with subclasses for specific
network protocols.

Figure 1-2 Network family objects in the IORegistry

IOEthernetInterface

Driver, a subclass of IOEthernetController

IOPCIDevice

IOPCIBridge

Network nub

Network driver

PCI bus nub

PCI bus driver

Network family

PCI family

BSD DLIL

10 Network Family Architecture
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

I/O Networking Family API

The network interface object represents the generic interface to a given networking protocol. In its provider
role, it offers a device-independent networking interface to the operating system, and in its client role it relies
on the driver to implement its services. The network family currently includes an interface object class for
the ethernet protocol. It is possible to add support for other protocols by creating new subclasses of the
abstract controller and interface classes.

Above the network interface is the BSD data link interface layer (DLIL). The interface object presents itself to
the DLIL as a standard BSD netif-style interface, providing the appropriate callbacks and invoking DLIL routines
for handling network traffic. Drivers don’t interact with the DLIL, but interfaces do. If you’re extending the
network family to add support for a new hardware protocol, you’ll need to interface with the DLIL. SeeNetwork
Kernel Extensions Programming Guidefor more information.

Figure 1-3 Network family objects used by a driver

Bus nub (PCI, USB, ...)

Registation and deregistration
of interfaces, name
assignment (en0, en1, ...)

Nub (client of driver)

Driver (network provider)

netif bookkeeping

* Visible in the I/O Kit registry (as in IORegistryExplorer)

netif function table entries
and static callbacks

Driver subclass of IOEthernetController

IONetworkMedium*

IOWorkLoop

IONetworkStack

IOEthernetInterface

BSD DLIL

IONetworkStats*

IOEthernetStats*

IOOutputQueue

IOMBufMemoryCursor

Network Family Architecture 11
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

I/O Networking Family API

The driver itself makes use of several other classes and structures defined by the network family and by the
I/O Kit in general. These are shown in Figure 2-3 (page 11), which presents a more complete picture of how
a network driver interacts with these objects. The IOOutputQueue class defines an abstract interface for
queuing packets to be transmitted; subclasses provide different locking and synchronization mechanisms.
IOMBufMemoryCursor objects help the driver manage BSD mbuf_t structures, building scatter/gather lists
and coalescing buffers as necessary. IONetworkMedium objects describe the physical link media of the
hardware. The driver can collect statistics using two structures maintained by the network interface,
IONetworkStats and a protocol-specific structure, in this case IOEthernetStats. As a driver that handles
interrupts, a network driver typically creates its own IOWorkLoop object. An IONetworkStack object moderates
the registration and deregistration of interfaces, assigning unique names as expected by BSD (such as en0)
and performing other netif bookkeeping.

“Writing a Driver for an Ethernet Controller” (page 17) describes how to set up these structures for your
network driver.

12 Network Family Architecture
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

I/O Networking Family API

If you’ve never brought up a network driver on a UNIX operating system before, you’ll want to learn about
the tools you can use to set up interfaces, test packet transmission and reception, and gather information.
Detailed documentation of these tools is outside the scope of this manual, but you can always use the UNIX
man command to display the standard system manual pages in a Terminal window.

This chapter assumes you’re using two machines to bring up your driver, one that has your driver, and the
other to act as a source or destination for network traffic. Figure 3-1 (page 13) shows a typical setup, with
the ethernet and IP addresses that will be used. The machine that contains your driver will be referred to as
the target. The second machine is typically the machine you use to debug your driver, and will be referred
to here as the debug host.

Figure 2-1 Two-machine target-debug setup

target debug

en1: 00:90:27:94:8f:21
IP: 192.168.1.1

en2: 00:90:27:23:12:f3
IP: 192.168.1.2

The IP addresses shown are merely examples. If you are debugging on the wider network (which is not
recommended), you should use legal IP addresses for that network. If you are debugging over a private link
between the two machines, you can choose any IP addresses, as long as you set up static address binding
as shown below.

Activating the Network Link

After you load your network driver using kextload, you have to find out which network interface name it
was assigned, and then bring up a network link for that interface. You use the ifconfig program to do this.
If you are using a dedicated link between two machines to avoid flooding the wider network, you may also
have to bring up the dedicated link on the debug host.

Note: You must be logged in as root, or preface your command with sudo, to set up a network interface.

To get a list of network interfaces, run ifconfig with the -a flag. The interface for your driver should be
listed without an “inet” field, and with the ethernet address of the controller. Here’s an example for the target
machine shown in Figure 3-1 (page 13):

Activating the Network Link 13
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Tips on Bringing Up a UNIX Network Driver

ifconfig -a
lo0: flags=8009<UP,LOOPBACK,MULTICAST> mtu 16384
 inet 127.0.0.1 netmask 0xff000000
en0: flags=8863<UP,BROADCAST,b6,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 17.202.40.235 netmask 0xfffffc00 broadcast 17.202.43.255
 ether 00:05:02:3b:45:cb
en1: flags=822<BROADCAST,b6,SIMPLEX> mtu 1500
 ether 00:90:27:94:8f:21

In this case, the existing interface en0 represents the built-in ethernet port on the computer. The interface
en1 represents the new driver being brought up. To bring up the link on the added interface, run ifconfig
on it with an IP address and a netmask, and specify up, as shown here:

ifconfig en1 inet 192.168.1.1 netmask 255.255.255.0 up

When you run ifconfig with the up argument, you are directly calling the device driver’s enable function.
This function will be described in depth in “Writing a Driver for an Ethernet Controller” (page 17).

If you are using a private link, and have not configured the debug machine to set up its link at startup, you
can use ifconfig on it as well. With the example setup, the command would look like this:

ifconfig en2 inet 192.168.1.2 netmask 255.255.255.0 up

To make some aspects of testing easier, you may want to set up static IP address binding for the two machines.
Normally this task is performed automatically by your computer, but if your network driver is not transmitting
and receiving packets, the binding will never complete. You do this by running the arp command on each
machine, giving the IP address and the hardware address for the other machine. Based on the examples
above, on the target host you would enter this command:

arp -s 192.168.1.2 00:90:27:23:12:f3

And on the debug host you would enter this command:

arp -s 192.168.1.1 00:90:27:94:8f:21

With that, you have a network connection between the two systems, which you can use to test your driver.

Testing I/O

While developing your driver, you will want to test that either receiving or transmitting is working before
both are. Since your driver is not yet capable of handling round-trip network traffic, you have to use different
tools to check these two cases. You will likely be using plenty of logging in your driver as well to make sure
things are working as you expect.

To verify that your driver is receiving packets, you can use the ping utility from the debug host to send
packets to the target machine, and use logging in the driver’s packet-reception code to verify that packets
are being received. Running ping normally performs an ARP request to get the hardware address for the
target. If your driver can’t transmit yet, ping will fail if you did not set up a static IP address binding with the
arp command. If you do not want to set up a static IP address binding, you can run ping on the broadcast
address for the private network, bypassing address resolution.

14 Testing I/O
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Tips on Bringing Up a UNIX Network Driver

To verify that your driver is sending packets, you can use ping on the target machine to send packets to the
debug host. If your driver does not yet support receiving, you can use the tcpdump utility on the debug host
to verify that packets are coming from the target machine. To do this, specify the -v flag for verbose output,
and the -i flag to name the interface to examine.

Note: You must be logged in as root, or preface your command with sudo, to set up a network interface

If the debug machine is connected to the target on the interface en2, for example, you would enter this
command:

tcpdump -v -i en2

With tcpdump running, you can start ping on the target machine and examine the output of tcpdump on
the debug host. If there is no output, your driver is not transmitting. If there is output, verify that the IP
address for your driver’s network interface on the target system appears in the output. If it does, your driver
is successfully transmitting packets.

Once your driver can both receive and transmit, you can just use ping without setting up static IP address
binding, and perform tests to verify data integrity.

Testing Statistics-Gathering

If you implement general statistics-gathering in your network driver, you can verify that it is working with
the netstat program. Run this program with the -I flag, followed by the name of your driver’s network
interface. Here is an example:

% netstat -I en1
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en1 1500 <Link> 00.90.27.94.8f.21 17 0 19 0 0
en1 1500 192.168.1 192.168.1.1 17 0 19 0 0

The output shows that the driver has received 17 packets (Ipkts, or incoming packets) and transmitted 19
(Opkts, or outgoing packets). See the UNIX man page for netstat for more information.

Unloading the Driver

Once you have enabled IP communication on a device using ifconfig, the IP protocol is attached to your
driver inside the kernel’s networking stack. (See Network Kernel Extensions Programming Guide for more
information about the networking stack.) Once a protocol is attached, your driver cannot be unloaded until
you detach the protocol.

To detach the IP protocol from your network device, you can issue the following command from the command
line:

ipconfig set en1 NONE

Substitute the appropriate interface name instead of en1, of course. This will disable IP networking for the
interface. You can then unload the driver KEXT using kextunload.

Testing Statistics-Gathering 15
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Tips on Bringing Up a UNIX Network Driver

For more information, see the manual pages for ipconfig(8) and kextunload(8).

16 Unloading the Driver
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Tips on Bringing Up a UNIX Network Driver

This chapter describes what a network driver does to set up its interface object, to handle I/O, and to perform
its other tasks. Follow the CDC Ethernet driver provided at http://www.opensource.apple.com/darwinsource/tar-
balls/apsl/AppleUSBCDCDriver-314.4.1.tar.gz for specific examples of how to implement the functionality
required of a network driver. In particular this document will refer to the functions in
AppleUSBCDCEMData.cpp.

Driver Overview

Before diving into the specifics of what you need to be do to write a network driver, it may be helpful to see
the basic functions which you need to override. These descriptions are meant to give you an idea of what is
entailed in creating a very simple network driver.

start
The start function should initialize the device to a working state. It also needs to create a network
object and make it visible to the networking stack as an interface.

stop
The stop function must free anything allocated in start and also release the network object created
in start.

enable
As mentioned in “Tips on Bringing Up a UNIX Network Driver” (page 13), the enable function is run
when the system sets the driver’s status to up. This function is also responsible for starting the
hardware’s transmit and receive capabilities. It should inform the system about the link status of the
hardware.

disable
The disable function releases anything allocated, and stops any functions started in enable.

getHardwareAddress
The getHardwareAddress function returns the MAC address of the network device.

outputPacket
The outputPacket function sends the packet to the hardware for transmission. It will be called from
multiple threads, so it needs to be thread-safe.

Each of these functions are described in more depth further in this chapter.

Startup and Shutdown

A network driver’s start function is responsible for setting up the resources the driver needs all the time,
whether the driver is enabled or disabled. These include the network interface object, a work loop, and an
output queue, along with whatever specific resources the driver needs. In addition, the driver should retain

Driver Overview 17
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

http://www.opensource.apple.com/darwinsource/tarballs/apsl/AppleUSBCDCDriver-314.4.1.tar.gz
http://www.opensource.apple.com/darwinsource/tarballs/apsl/AppleUSBCDCDriver-314.4.1.tar.gz

its provider nub (that is, the nub for the bus it is attached to, such as an IOUSBDevice nub). The stop function
reverses all this, releasing the nub and disposing of any resources created in start. See the example driver
for samples of these two functions.

The start function is typically not the place for a driver to allocate its transmit and receive buffers and other
such runtime resources that are needed only while the driver is enabled and handling network traffic. Creation
and disposal of these resources is managed by the enable and disable functions, described in “Enabling
and Disabling the Driver” (page 20).

Opening the Provider Nub

You invoke the start function with a single argument, the nub of the hardware device that your ethernet
controller is connected to. The driver should do three things with the nub: verify that it is of the appropriate
class, retain a reference to it, and open it in order to access its services.

Your driver has two options before returning from the start function. If you close the nub at the end of the
start function, then you must reopen it in the enable function. However, you also have the option to leave
the nub open, so that it will be ready to use in the enable function. It is recommended that the former
technique be used, but because a network driver is rarely “downed,” either technique is acceptable. The
sample code uses the latter method.

Setting up Output Queuing

IONetworkController, the superclass of all network drivers, defines the outputPacket function for packet
transmission. This function is typically called indirectly by the network interface through the network family’s
standard queuing mechanism, defined by IOOutputQueue and its subclasses. A driver can choose to have it
invoked directly by the network interface, however, and implement its own internal queuing mechanism.

A driver’s output queue is created by the createOutputQueue function. The network driver superclass,
IONetworkController, invokes this function automatically on startup. The driver should override this function
to create an instance of an IOOutputQueue subclass suitable for the driver, or not override it at all if the driver
performs its own queuing—in which case the network interface will pass outgoing packets directly to the
driver.

The simplest IOOuputQueue subclass to use is IOGatedOutputQueue. This class queues packets using a lock
and dequeues them one at a time using a command gate on the driver’s work loop. It invokes outputPacket
once for each packet, breaking up mbuf_t packet chains so that the driver doesn’t have to handle them.
Using the work loop means that transmit and receive operations are mutually exclusive. If your network
hardware has completely distinct transmit and receive engines, using an IOGatedOutputQueue object may
not be the most efficient option. Even so, it makes bringing up a driver quite simple, as you do not have to
worry about locking while you establish control of the hardware itself.

If your network hardware supports multithreaded access, as it does when the transmit and receive engines
are distinct, you may want to use an IOBasicOutputQueue instead. This class is the actually the superclass of
IOGatedOutputQueue, and it defines the locking mechanism that IOGatedOutputQueue uses. For dequeuing,
however, it negotiates multiple queuing threads so that only a single thread at a time dequeues packets and
invokes the driver’s outputPacket function. This queue subclass also breaks up mbuf_t packet chains for
the driver. Because dequeuing isn’t synchronized with the work loop, however, both transmission and
reception can occur at the same time.

18 Startup and Shutdown
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

If a driver performs queuing internally, it doesn’t override createOutputQueue, and it implements its own
queuing mechanism. If you are porting a driver that already performs its own output locking, for example,
you will probably choose this option. In this case, when the network interface needs to transmit packets, it
invokes the driver’s outputPacket function directly. The driver is then responsible for all locking of its
internal queue and related data, for handling stall conditions, and further for handling mbuf_t packet chains.
The output queue classes guarantee that a single packet at a time is passed to outputPacket; this is not
the case when the driver forgoes using an output queue object.

Another option a driver has is to create its own subclass of IOOutputQueue. See the class reference
documentation and the source code for more information.

Note: While this document refers to the new mbuf_t structure, introduced in Mac OS v10.4, the sample
code still uses an mbuf structure. The mbuf structure is supported in order to preserve binary compatibility
of drivers on pre-Mac OS v10.4 systems. However, if you are writing a driver for a Mac OS v10.4 system, it is
highly recommended that your driver use the mbuf_t structure.

Setting up a Network Interface

As with any driver, a network driver is responsible for creating its nub. A network nub is an instance of a
subclass of IONetworkInterface. Each type of network controller has a corresponding subclass of
IONetworkInterface; an IOEthernetController, for example, uses an IOEthernetInterface. Creating the network
interface is implemented by the driver’s superclass; all the driver need do is call the attachInterface
function and implement a few auxiliary functions. If the driver includes a custom subclass of the network
interface class, it can override createInterface to create an instance of the custom subclass rather than
the default class.

The attachInterface function takes two parameters: a pointer to the network interface object, which is
filled by the function, and an optional “register with the network stacks” flag. This flag is true by default,
meaning that the interface object will be registered with the DLIL, that the driver’s enable function may be
invoked during startup and that the driver may receive requests to transmit packets before attachInterface
returns (and before start completes). If your driver needs to perform additional initialization, you can pass
false to delay registering with the network stacks. If you do this, your driver must invoke the interface’s
registerService function when it becomes ready to handle network traffic.

Because a network interface can’t be reconfigured after it registers itself with the BSD network stack, it invokes
a callback on the driver from the attachInterface function. The callback is configureInterface, and
the driver can implement it to set up maximum transfer sizes, filter tap modes, and other such settings as
described in the IONetworkInterface reference documentation. Network drivers typically use this function
to get their references to the statistics structures maintained by the network interface before any network
traffic comes by. (See “Gathering Network Statistics” (page 22) below for information on how to do this.)

For ethernet drivers, another function related to setting up the interface is getHardwareAddress, which
the interface object invokes in order to register the ethernet address with the BSD network stack. Before
invoking attachInterface, the driver should determine in the start function what the hardware address
is, and implement getHardwareAddress to provide this address on request. Other networking protocols
may require a similar function.

Startup and Shutdown 19
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

Defining Capabilities, Restrictions, and Modes

This section presents some useful functions that will be explained more fully in later versions of this book.

A network driver overrides a number of IONetworkController functions in order to advertise its capabilities
and restrictions. Some of these functions, and their uses, are:

 ■ setMaxTransferUnit, which allows clients to set the largest single packet size to transfer.

 ■ getPacketBufferConstraints, which informs the driver’s superclass of alignment constraints for
packet buffers.

 ■ getVendorString, which provides the vendor name for the hardware controller that the driver is
operating.

 ■ getModelString, which provides the model name for the hardware controller that the driver is operating.

Enabling and Disabling the Driver

When a network interface is brought up—for example, using the ifconfig command—the driver’s enable
function is invoked. This function is responsible for preparing the driver to transmit and receive packets. Here
are a few of the operations typically performed in enable:

 ■ Opening the driver’s provider nub (if the nub was closed in the start function).

 ■ Creating any resources needed by the driver for operation, such as hardware-specific transmit and receive
buffers, memory cursors for managing scatter/gather lists, and event sources for the work loop.

 ■ Resetting the hardware so that it’s ready to transmit and receive packets.

 ■ Starting I/O by enabling hardware interrupts as well as interrupt event sources and setting timer event
sources, restarting the output queue (if the driver uses one), and then starting the transmit and receive
engines on the hardware.

The disable function must reverse this process, disabling what was enabled, shutting down what was
started, disposing of resources that were created, and, if necessary, closing the provider nub. The driver
should also reset the hardware when disabling, to leave it in a known state.

You invoke the enable and disable functions within a synchronized context through the driver’s superclass,
using an IOCommandGate on the driver’s work loop. These functions are intended to be overridden, and not
directly invoked.

Opening and Closing the Provider Nub

Both enable and disable are invoked with the provider nub the driver was originally started with. The
enable function is responsible for invoking open on the nub, returning a failure result if it can’t open the
nub. Similarly, disable must invoke close on the nub. Because network driver code can be running in
multiple threads, however, the driver should implement a mutex. The lock should ensure that the enable
function is allowed to run only once at a time, and that the disable function can run only after the enable
function. The sample driver uses a Boolean variable, fNetifEnabled, as the lock.

20 Defining Capabilities, Restrictions, and Modes
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

Creating and Destroying Resources

In order to preserve kernel resources, a driver should never consume more system memory than necessary.
This means that the driver should delay creating resources until they’re actually needed, as when the driver
becomes active, and should dispose of those resources when it becomes inactive. Such resources typically
include any hardware-specific transmit and receive buffers, the BSD mbuf_t structures used to pass packets
up and down, memory cursor objects used to manage scatter/gather lists based on the mbuf_t structures,
and any event sources needed for operation.

Hardware-specific resources are necessarily outside the scope of this document. Whatever the hardware-specific
resources are, however, they will typically include a receive buffer that contains mbuf_t structures. Your
driver can use its network interface object to allocate and free these structures through the allocatePacket
and freePacket functions defined by IONetworkController.

Memory cursors, represented by the IOMBufMemoryCursor group of classes, manage the translation between
mbuf_t structures and scatter/gather lists used by the hardware. Specific classes are available to handle data
in big-endian, little-endian, or CPU-native byte order, and to handle data used with DBDMA engines. Your
driver will typically create one or more memory cursors, depending on whether it’s single- or multithreaded
and whether the transmit and receive buffers used by hardware are similar or different.

Starting and Stopping I/O

To start I/O, the enable function should enable the interrupt and timer event sources and then enable any
hardware-specific interrupts. Following this, it should start up the output queue (if it has one) using
IOOutputQueue’s setCapacity and start functions. Finally, it should start any I/O engines on the hardware.

The disable function stops I/O by roughly reversing this process. It should disable hardware-specific
interrupts, disable the interrupt event source and cancel any pending timeout. It should then stop the I/O
engines and reset the hardware if necessary. Then, it must stop and flush the output queue by invoking its
stop function, setting its capacity to zero with setCapacity, and invoking flush.

Performing I/O

Everything that has been covered up to now is essentially support for the real purpose of a network driver:
to send and receive packets through the network controller. The network family specifies the means for a
driver to get an output request from the network interface object, and to hand received packets up to it, as
well as defining data structures for gathering statistics. Additional functions defined by the network interface
and controller superclasses provide support for managing packet buffers, and the mbuf_t memory cursor
classes aid in the use of scatter/gather lists based on those buffers.

Transmitting Packets

A network driver’s entry point for transmission is the outputPacket function. This function is invoked either
by an IOOutputQueue or by the network interface directly. Depending on the type of queue used (see “Setting
up Output Queuing” (page 18) above), this function may or may not be invoked within the protected context
of the driver’s work loop.

Performing I/O 21
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

The sole argument to outputPacket is an mbuf_t for the packet or packets to be transmitted. A driver that
uses an output queue object is guaranteed to be passed a single-packet mbuf_t. A driver that does its own
queuing must be able to process a chain of packets in a single mbuf_t pointer. The mbuf_t passed in becomes
the property of the driver.

To actually output the packet or packets, the driver must check its hardware-specific resources and prepare
a buffer. Depending on the state of the resources, the driver may need to return a packet status of stalled
(kIOReturnStall), as when the hardware transmit buffers are all full, or dropped (kIOReturnDropped),
as when an error occurs in processing the packet. If the driver returns kIOReturnDropped, it should also
put the mbuf_t back into the network stack’s common pool by invoking the superclass’s freePacket
function.

In order to generate a scatter/gather list for the packet, the driver uses an IOMBufMemoryCursor, invoking
its getPhysicalSegmentsWithCoalesce function to create a list of physical location/length pairs for the
memory segments of the mbuf_t. Once it has this information the driver can insert it into the hardware
buffers and issue the go-ahead to the hardware controller.

After the packet has been transmitted by the hardware, the driver should reclaim its transmit buffer and put
the mbuf_t back into the network stack’s common pool by invoking the superclass’s freePacket function.

Receiving Packets

Receiving packets is typically done through an interrupt handler, or possibly a timer for a device that requires
polling. In either case, reception is always handled within the protected context of the driver’s work loop

To process incoming packets, the driver must extract the mbuf_t structure for each from its hardware receive
buffers and pass it up to the network interface object by invoking that object’s inputPacket function. For
efficient replacement of an mbuf_t structure containing a received packet, IONetworkController defines the
functions copyPacket, replacePacket, and replaceOrCopyPacket, which performs the most efficient
operation based on the size of the received packet. While it is recommended that you use these functions,
the example driver does not take advantage of them.

The inputPacket function has an optional argument to allow for queueing of multiple packets. If the driver
uses input queueing, it must invoke the network interface’s flushInputQueue function to ensure that the
packets find their way up the network stack.

Gathering Network Statistics

The network family defines several structures for recording network statistics. If you want your driver to do
this, it must get the addresses of these structures from the network interface object and then update the
relevant fields during operation.

The structures are available from the network interface object through its getNetworkData function. This
function takes the name of the relevant network data structure, for which constants are defined by the
network interface classes. The constant kIONetworkStatsKey, for example, indicates the generic network
statistics structure, which contains fields for number of input and output packets, among others.

The getNetworkData function returns an IONetworkData object, from which you can retrieve the data
buffer address using its getBuffer function. Casting the returned pointer to the appropriate type gives your
driver direct access to the network data structure.

22 Performing I/O
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

Advertising and Changing Filter Modes

To indicate what kinds of packet filtering (addressing) a driver supports, it overrides getPacketFilters.
This function is invoked with a pointer to a bitfield indicating which addressing modes are supported, such
as unicast, broadcast, and multicast. The driver’s implementation of this function should set the bits for the
modes it supports and return a success code.

In order to support promiscuous and multicast modes, a network driver overrides the setPromiscuousMode,
setMulticastMode, and setMulticastList functions defined by IONetworkController. The set-mode
functions can be implemented to just set a flag in the driver; actually supporting the modes requires
hardware-specific code in the I/O handling functions, of course. setMulticastList is invoked with a list
of hardware addresses, which the driver should pass down to the hardware.

Advertising and Changing Media

When a network controller driver starts up, it typically examines its hardware for the media supported and
currently active, for example10Base-T and 100Base-T for ethernet. A driver can advertise these media by
creating an instance of IONetworkMedium for each one, collecting them in an OSDictionary that it makes
available to the network family by invoking the setMediumDictionary function defined by
IONetworkController.

The driver should also invoke setCurrentMedium to establish the current selected medium. Similarly, when
the driver notes that the network link has come up or gone down, it should invoke the setLinkStatus
function to report the status to the network interface object.

Advertising and Changing Filter Modes 23
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

24 Advertising and Changing Media
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing a Driver for an Ethernet Controller

This table describes the changes to Network Device Driver Programming Guide.

NotesDate

Added note about how to remove the IP protocol from an interface to permit
KEXT unloading.

2008-03-11

Major content update for Mac OS X v10.4.2005-06-22

First version of this document, which describes how to create a network device
driver.

2000-10-01

25
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

26
2008-03-11 | © 2000, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Network Device Driver Programming Guide
	Contents
	Figures
	Introduction
	I/O Networking Family API
	Network Family Architecture

	Tips on Bringing Up a UNIX Network Driver
	Activating the Network Link
	Testing I/O
	Testing Statistics-Gathering
	Unloading the Driver

	Writing a Driver for an Ethernet Controller
	Driver Overview
	Startup and Shutdown
	Opening the Provider Nub
	Setting up Output Queuing
	Setting up a Network Interface

	Defining Capabilities, Restrictions, and Modes
	Enabling and Disabling the Driver
	Opening and Closing the Provider Nub
	Creating and Destroying Resources
	Starting and Stopping I/O

	Performing I/O
	Transmitting Packets
	Receiving Packets
	Gathering Network Statistics

	Advertising and Changing Filter Modes
	Advertising and Changing Media

	Revision History

