
Device File Access Guide for Storage Devices
Hardware & Drivers > Storage

2007-03-06

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, Objective-C, Pages, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Device File Access Guide for Storage Devices 7

Organization of This Document 7
See Also 7

Chapter 1 Working With Device Files for Storage Devices 9

Storage Device Access in an Intel-Based Macintosh 9
Accessing a CD-ROM Storage Device 10

Including Header Files and Setting Up a Main Function 11
Finding All Ejectable CD Media 12
Getting the Path to the Device File for the CD-ROM Device 13
Opening the Device 15
Reading a Sector From the Device 15
Closing the Device 16

Document Revision History 17

3
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

4
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 1 Working With Device Files for Storage Devices 9

Listing 1-1 Header files to include for the storage device sample code 11
Listing 1-2 Finding a CD-ROM device and reading a sector 11
Listing 1-3 Finding all ejectable CD media 13
Listing 1-4 Getting the device file path for the first ejectable CD media in a passed iterator

14
Listing 1-5 Opening a device specified by its device file path 15
Listing 1-6 Reading a sector of the media, given the file descriptor 15
Listing 1-7 Closing a device, given its file descriptor 16

5
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

6
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

LISTINGS

This document describes how to communicate with a storage device from an application running in Mac OS
X. Before you read this document, you should be familiar with the I/O Kit's device interface mechanism and
device matching in particular. To learn about these things, read Accessing Hardware From Applications.

Organization of This Document

This document contains the following chapters:

 ■ "Working With Device Files for Storage Devices" (page 9) guides you through a sample application that
uses I/O Kit functions to find a storage device and POSIX functions to communicate with it.

 ■ "Document Revision History" (page 17) lists the changes to this document.

See Also

The ADC Reference Library contains documents that describe various types and aspects of device access, as
well as numerous sample applications.

 ■ I/O Kit Fundamentals describes the I/O Kit (the object-oriented driver-development framework of Mac
OS X) and provides an overview of device-access options for applications.

 ■ AccessingHardware FromApplications describes many ways applications can access devices and provides
in-depth information on the device interface mechanism of the I/O Kit.

 ■ I/O Kit Framework Reference contains API reference for I/O Kit methods and functions and for specific
device families, such as USB.

 ■ Mac OS X Man Pages provides access to existing reference documentation for BSD and POSIX functions
and tools in a convenient, HTML format.

If you're ready to create a universal binary version of your storage device-access application to run in an
Intel-based Macintosh, see Universal Binary ProgrammingGuidelines, Second Edition. That document describes
the differences between the Intel and PowerPC architectures and provides tips for developing a universal
binary.

A detailed description of the UNIX file system is beyond the scope of this document, but there are many
books and websites you can refer to. In particular, you can get information on the POSIX standard at
http://standards.ieee.org.

Organization of This Document 7
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Device File Access Guide for
Storage Devices

http://standards.ieee.org

8 See Also
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Device File Access Guide for Storage Devices

This chapter describes how to develop an application that uses I/O Kit and POSIX functions to locate a CD-ROM
storage device on Mac OS X and open it for reading.

The code snippets in this chapter are based on the sample application CDROMSample, available in its entirety
at Sample Code > Hardware & Drivers > Storage.

Note: If you choose to develop a Cocoa application that accesses a storage device, be aware that Objective-C
does not provide interfaces for I/O Kit or POSIX functions. However, because the I/O Kit and POSIX APIs are
C APIs, you can call them from a Cocoa application.

Although the sample code in this chapter has been compiled and tested to some degree, Apple does not
recommend that you directly incorporate this code into a commercial application. For example, only limited
error handling is shown—you should develop your own techniques for detecting and handling errors.

Important: The sample code in this chapter requires Mac OS X v10.1 or later to build, but the resulting
application will run in Mac OS X v10.0 or later.

Storage Device Access in an Intel-Based Macintosh

This section briefly outlines some of the issues related to developing a universal binary version of a Mac OS
X application that uses device files to access a storage device. Before you read this section, be sure to read
Universal Binary Programming Guidelines, Second Edition. That document covers architectural differences and
byte-ordering formats and provides comprehensive guidelines for code modification and building universal
binaries. The guidelines in that document apply to all types of applications, including those that access
hardware.

Before you build your application as a universal binary, make sure that:

 ■ You port your project to GCC 4 (Xcode uses GCC 4 to target Intel-based Macintosh computers)

 ■ You install the Mac OS X v10.4 universal SDK

 ■ You develop your project in Xcode 2.1 or later

An application that reads from and writes to storage media frequently handles data structures that contain
multibyte integer data. It's vital that these data structures remain in the correct endian format on the disk
so the disk can be used with both PowerPC-based and Intel-based Macintosh computers. Depending on the
native endian format of the computer in which the application is running, therefore, the application may
need to byte swap the data structures it handles.

If you've determined that byte-swapping is required in your application, you can implement it in one of two
ways:

Storage Device Access in an Intel-Based Macintosh 9
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

 ■ Perform the appropriate byte swap on the data after it's read into a buffer and perform the opposite
byte swap on the data that's ready to be written out to disk. This scheme allows your application to
access the buffers without having to worry about the endian format of the data in them.

 ■ Do not byte swap the data in the buffers, but perform the appropriate byte swap each time your
application accesses the buffers. This preserves the data's correct endian format while it resides in the
buffers, which means your application does not have to byte swap the data while reading it in or writing
it out.

To avoid confusion, it's best to choose only one of these two schemes and be consistent in its implementation
throughout your application. Whichever you choose, however, be sure to use the conditional byte-swapping
macros defined in libkern/OSByteOrder.h (even though this header file is in the Kernel framework, its
macros are available to applications). When you use these macros, the compiler optimizes your code so the
routines are executed only if they are necessary for the architecture in which your application is running.

Accessing a CD-ROM Storage Device

To communicate with a storage device (such as a CD-ROM device) from your Mac OS X application, you use
I/O Kit functions to find the device and obtain a path to its device file. You can then use POSIX functions to
perform such operations as opening and closing the device and reading from it.

The sample code in this chapter demonstrates how to find all ejectable CD media, obtain the path to the
device file for a CD-ROM drive, and use POSIX functions to open the device, read a sector of the media and
close the device. Your application can read data using POSIX functions because, depending on the permissions,
the file system may allow multiple users to open a file for reading. However, you should not assume you can
use this mechanism to write data, because the file system itself may have opened all writable mounted
storage devices with restrictive write access.

The sample code shown in this chapter is from an Xcode “CoreFoundation Tool” project. The project builds
a tool that has no user interface and sends its output to the console. You can view the output either by
running the tool within Xcode or by running the Console utility, which you can find at
/Applications/Utilities/Console, before launching the tool.

Note: By convention, application functions in this chapter, such as MyOpenDrive in Listing 1-5 (page 15),
start with My to distinguish them from I/O Kit functions and other Mac OS X functions.

If you are using a version of Mac OS X prior to v10.1, this tool must be run with root privileges, because the
/dev/rdisk* nodes are owned by root in those versions. In Mac OS X v10.1 and later, the /dev/*disk*
nodes for removable media are owned by the currently logged-in user (nodes for nonremovable media are
still owned by root). If necessary, you can use the sudo(8) command to launch the tool with root privileges,
as shown below (you will be asked to supply your admin password):

sudo open /YourDirectoryPath/CDROMSample.app

10 Accessing a CD-ROM Storage Device
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

Including Header Files and Setting Up a Main Function

Listing 1-1 shows the header files you’ll need to include in your main file for the sample code in this chapter.
(Some of these headers include others; a shorter list is possible.) Except for CoreFoundation.h, these
headers are generally part of IOKit.framework or System.framework.

Listing 1-1 Header files to include for the storage device sample code

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <paths.h>
#include <sys/param.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/IOBSD.h>
#include <IOKit/storage/IOCDMedia.h>
#include <IOKit/storage/IOMedia.h>
#include <IOKit/storage/IOCDTypes.h>
#include <IOKit/storage/IOMediaBSDClient.h>
#include <CoreFoundation/CoreFoundation.h>

Listing 1-2 shows a main function for finding a CD-ROM device with the I/O Kit and accessing it with POSIX
functions. The main function accomplishes its work by calling the following functions, which are shown in
other sections:

 ■ MyFindEjectableCDMedia ("Finding All Ejectable CD Media" (page 12))

 ■ MyGetDeviceFilePath ("Getting the Path to the Device File for the CD-ROM Device" (page 13))

 ■ MyOpenDrive ("Opening the Device" (page 15))

 ■ MyReadSector ("Reading a Sector From the Device" (page 15))

 ■ MyCloseDrive ("Closing the Device" (page 16))

The type kern_return_t is defined in std_types.h.

The constant KERN_SUCCESS is defined in kern_return.h.

Listing 1-2 Finding a CD-ROM device and reading a sector

int main(void)
{
 kern_return_t kernResult;
 io_iterator_t mediaIterator;
 char deviceFilePath[MAXPATHLEN];

 kernResult = MyFindEjectableCDMedia(&mediaIterator);
 if (kernResult != KERN_SUCCESS)
 return 0;

 kernResult = MyGetDeviceFilePath(mediaIterator, deviceFilePath,
 sizeof(deviceFilePath));
 if (kernResult != KERN_SUCCESS)

Accessing a CD-ROM Storage Device 11
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

 return 0;

 // Now open the device we found, read a sector, and close the device.
 if (deviceFilePath[0] != '\0')
 {
 int fileDescriptor;

 fileDescriptor = MyOpenDrive(deviceFilePath);
 if (fileDescriptor != -1)
 {
 if (MyReadSector(fileDescriptor))
 printf("Sector read successfully.\n");
 else
 printf("Could not read sector.\n");

 MyCloseDrive(fileDescriptor);
 printf("Device closed.\n");
 }
 }
 else
 printf("No ejectable CD media found.\n");

 // Release the iterator.
 IOObjectRelease(mediaIterator);

 return 0;
}

The main function releases the iterator returned by the MyFindEjectableCDMedia function, which also
releases the iterator’s objects.

Finding All Ejectable CD Media

The MyFindEjectableCDMedia function, shown in Listing 1-3 (page 13), establishes a connection to the
I/O Kit by calling the IOMasterPort function, which returns a Mach port. It then creates a matching dictionary
by calling IOServiceMatching, passing the constant kIOCDMediaClass (defined in IOCDMedia.h). This
sets up a dictionary that matches all devices with a provider class of IOCDMediaClass; all CD media devices
in the I/O Registry are instances of this class or a subclass.

A matching dictionary is a dictionary of key-value pairs that describe the properties of an I/O Kit device or
other service. Each IOMedia object in the I/O Registry has a property with key kIOMediaEjectableKey and
a value that is true if the media is indeed ejectable. In this sample, we are interested only in ejectable media,
so the MyFindEjectableCDMedia function refines the matching dictionary by calling
CFDictionarySetValue to add the key kIOMediaEjectableKey and value kCFBooleanTrue.

The constants kIOMediaEjectableKey and kIOCDMediaClass are defined in IOMedia.h in
Kernel.framework. The constant kCFBooleanTrue is a Core Foundation constant. If you need more
information on the process of using matching dictionaries to find devices in the I/O Registry, see Accessing
Hardware From Applications.

Next, MyFindEjectableCDMedia passes the dictionary to the I/O Kit function
IOServiceGetMatchingServices to obtain an iterator object that identifies all CD-ROM devices with
ejectable media in the I/O Registry. If successful, MyFindEjectableCDMedia uses its pointer parameter to
return the iterator object. The calling function is responsible for releasing this object.

12 Accessing a CD-ROM Storage Device
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

Finally, MyFindEjectableCDMedia returns a result value that indicates whether it found any ejectable CD
media. The constant KERN_SUCCESS is defined in kern_return.h.

Listing 1-3 Finding all ejectable CD media

kern_return_t MyFindEjectableCDMedia(io_iterator_t *mediaIterator)
{
 mach_port_t masterPort;
 kern_return_t kernResult;
 CFMutableDictionaryRef classesToMatch;

 kernResult = IOMasterPort(MACH_PORT_NULL, &masterPort);
 if (kernResult != KERN_SUCCESS)
 {
 printf("IOMasterPort returned %d\n", kernResult);
 return kernResult;
 }
 // CD media are instances of class kIOCDMediaClass.
 classesToMatch = IOServiceMatching(kIOCDMediaClass);
 if (classesToMatch == NULL)
 printf("IOServiceMatching returned a NULL dictionary.\n");
 else
 {
 // Each IOMedia object has a property with key kIOMediaEjectableKey
 // which is true if the media is indeed ejectable. So add this
 // property to the CFDictionary for matching.
 CFDictionarySetValue(classesToMatch,
 CFSTR(kIOMediaEjectableKey), kCFBooleanTrue);
 }
 kernResult = IOServiceGetMatchingServices(masterPort,
 classesToMatch, mediaIterator);
 if ((kernResult != KERN_SUCCESS) || (*mediaIterator == NULL))
 printf("No ejectable CD media found.\n kernResult = %d\n",
 kernResult);
 return kernResult;
}

Getting the Path to the Device File for the CD-ROM Device

Listing 1-4 (page 14) shows the MyGetDeviceFilePath function. The parameters to this function specify
an iterator over ejectable CD media devices, a pointer to storage for the device file path, and the maximum
size of the path. The function returns, in the deviceFilePath parameter, the path to the device file, including
filename, for the first such device it finds in the iterator.

The MyGetDeviceFilePath function examines the first object in the passed iterator. Although many
computers have just one CD-ROM device, the iterator could actually contain objects for multiple devices;
however, this function looks at only the first.

The MyGetDeviceFilePath function performs the following steps:

1. It calls the I/O Kit function IORegistryEntryCreateCFProperty, passing the key kIOBSDNameKey
(defined in IOBSD.h), to obtain a CFTypeRef to the device file name.

2. If the call to IORegistryEntryCreateCFProperty is successful, MyGetDeviceFilePath constructs
a device path to the device. To do this, the function:

Accessing a CD-ROM Storage Device 13
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

 ■ Copies the string ‘/dev/’ (defined by the constant _PATH_DEV in the header paths.h) to the storage
location specified by the deviceFilePath parameter

 ■ Concatenates the string ‘r’ to the end of the device path to ensure that the code accesses the raw
device

 ■ Calls the CFStringGetCString function to encode the Core Foundation representation of the
device name as a C string

3. If MyGetDeviceFilePath is able to create the device-file name successfully, it prints the string and
releases the CFTypeRef. The full device file name will be something like /dev/rdisk0.

The IOIteratorNext function retains each media object it returns, so the MyGetDeviceFilePath function
releases the iterator objects it examines. The calling function is responsible for releasing the iterator itself,
which also releases the iterator’s objects.

Finally, MyGetDeviceFilePath returns a result value that indicates whether the function successfully
obtained a device path for a CD-ROM device.

Listing 1-4 Getting the device file path for the first ejectable CD media in a passed iterator

kern_return_t MyGetDeviceFilePath(io_iterator_t mediaIterator,
 char *deviceFilePath, CFIndex maxPathSize)
{
 io_object_t nextMedia;
 kern_return_t kernResult = KERN_FAILURE;

 *deviceFilePath = '\0';
 nextMedia = IOIteratorNext(mediaIterator);
 if (nextMedia)
 {
 CFTypeRef deviceFilePathAsCFString;
 deviceFilePathAsCFString = IORegistryEntryCreateCFProperty(
 nextMedia, CFSTR(kIOBSDNameKey),
 kCFAllocatorDefault, 0);
 *deviceFilePath = '\0';
 if (deviceFilePathAsCFString)
 {
 size_t devPathLength;
 strcpy(deviceFilePath, _PATH_DEV);
 // Add "r" before the BSD node name from the I/O Registry
 // to specify the raw disk node. The raw disk node receives
 // I/O requests directly and does not go through the
 // buffer cache.
 strcat(deviceFilePath, "r");
 devPathLength = strlen(deviceFilePath);
 if (CFStringGetCString(deviceFilePathAsCFString,
 deviceFilePath + devPathLength,
 maxPathSize - devPathLength,
 kCFStringEncodingASCII))
 {
 printf("BSD path: %s\n", deviceFilePath);
 kernResult = KERN_SUCCESS;
 }
 CFRelease(deviceFilePathAsCFString);
 }

14 Accessing a CD-ROM Storage Device
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

 }
 IOObjectRelease(nextMedia);

 return kernResult;
}

Opening the Device

To open a CD media device, the MyOpenDrive function, shown in Listing 1-5, calls the open function, passing
a device-file path and the constant O_RDONLY, which indicates the device should be opened for reading
only. The open function and O_RDONLY are both defined in fcntl.h, which is part of System.framework.
You can get more information about the open function by typing man 2 open in a Terminal window.

The MyOpenDrive function returns the value it gets from the open function; on error, it also prints an error
message.

Listing 1-5 Opening a device specified by its device file path

int MyOpenDrive(const char *deviceFilePath)
{
 int fileDescriptor;

 fileDescriptor = open(deviceFilePath, O_RDONLY);
 if (fileDescriptor == -1)
 {
 printf("Error opening device %s: \n", deviceFilePath);
 perror(NULL);
 }
 return fileDescriptor;
}

Reading a Sector From the Device

Listing 1-6 shows a function, MyReadSector, that reads a sector of the media. The caller of this function
passes the file descriptor for a device file. The device is assumed to be open. MyReadSector first uses the
DKIOCGETBLOCKSIZE ioctl to get the preferred block size for the media. Then, it allocates a buffer of the
preferred block size and attempts to read a sector, using the read function defined in the unistd.h.

Listing 1-6 Reading a sector of the media, given the file descriptor

Boolean MyReadSector(int fileDescriptor)
{
 char *buffer;
 size_t numBytes;
 u_int32_t blockSize;

 if (ioctl(fileDescriptor, DKIOCGETBLOCKSIZE, &blockSize) == -1)
 {
 perror("Error getting preferred block size.");
 // Set a reasonable block size instead.
 // kCDSectorSizeCDDA is defined in IOCDTypes.h as 2352.
 blockSize = kCDSectorSizeCDDA;
 }

Accessing a CD-ROM Storage Device 15
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

 buffer = malloc(blockSize);
 numBytes = read(fileDescriptor, buffer, blockSize);
 free(buffer);
 return numBytes == blockSize ? true : false;
}

Closing the Device

Listing 1-7 shows the MyCloseDrive function. To close the CD-ROM device, MyCloseDrive calls the close
function (defined in unistd.h), passing the file descriptor for the device file. The file descriptor was obtained
by the MyOpenDrive function.

Listing 1-7 Closing a device, given its file descriptor

void MyCloseDrive(int fileDescriptor)
{
 close(fileDescriptor);
}

16 Accessing a CD-ROM Storage Device
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Working With Device Files for Storage Devices

This table describes the changes to Device File Access Guide for Storage Devices.

NotesDate

Made minor corrections.2007-03-06

Made minor corrections.2005-12-06

Added information about endian issues. Changed title from "Working With
Device Files for Storage Devices."

2005-09-08

First version of Working With Device Files for Storage Devices. This document
comprises one chapter from an earlier version of Inside Mac OS X: Accessing
Hardware From Applications .

2003-05-01

17
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

18
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Device File Access Guide for Storage Devices
	Contents
	Listings
	Introduction
	Working With Device Files for Storage Devices
	Storage Device Access in an Intel-Based Macintosh
	Accessing a CD-ROM Storage Device
	Including Header Files and Setting Up a Main Function
	Finding All Ejectable CD Media
	Getting the Path to the Device File for the CD-ROM Device
	Opening the Device
	Reading a Sector From the Device
	Closing the Device

	Revision History

