
Core Image Programming Guide
Graphics & Imaging > Quartz

2008-06-09

Apple Inc.
© 2004, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, Mac, Mac OS, Objective-C, Quartz,
QuickTime, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Core Image Programming Guide 7

Organization of This Document 7
See Also 7

Chapter 1 Core Image Concepts 9

Core Image and the GPU 10
Filter Clients and Filter Creators 10
The Processing Path 13
Coordinate Spaces 16
The Region of Interest 16
Executable and Nonexecutable Filters 17
Color Components and Premultiplied Alpha 18
See Also 18

Chapter 2 Using Core Image Filters 19

Adding the Quartz Core Framework 19
Loading Image Units 20
Getting a List of Filters and Attributes 20
Processing an Image 24

Create a Core Image Context 25
Get the Image to Process 26
Create, Set Up, and Apply Filters 26
Draw the Result 29

Using Transition Effects 30
Imaging Dynamical Systems 34

Create and Initialize an Image Accumulator Object 35
Set Up and Apply a Filter to the Image Accumulator 36
Create a CIContext Object and Draw the Image 37

Applying a Filter to Video 38

Chapter 3 Creating Custom Filters 41

Expressing Image Processing Operations in Core Image 41
Creating a Custom Filter 41

Write the Kernel Code 43
Use Quartz Composer to Test the Kernel Routine 44
Declare an Interface for the Filter 45
Write an Init Method for the CIKernel Object 45
Write a Custom Attributes Method 46

3
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

Write an Output Image Method 47
Register the Filter 48
Write a Method to Create Instances of the Filter 49

Using Your Own Custom Filter 49
Supplying an ROI Function 50

A Simple ROI Function 51
An ROI Function for a Glass Distortion Filter 51
An ROI Function for an Environment Map 52
Specifying Sampler Order 52

Writing Nonexecutable Filters 53
Kernel Routine Examples 55

Computing a Brightening Effect 55
Computing a Multiply Effect 56
Computing a Hole Distortion 56

Chapter 4 Packaging Filters as Image Units 59

Before You Get Started 59
Create an Image Unit Project in Xcode 60
Customize the Load Method 62
Add Your Filter Files to the Project 62
Modify the Description Property List 62
Build and Test the Image Unit 64
See Also 64

Document Revision History 67

4
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Core Image Concepts 9

Figure 1-1 Core Image in relation to other graphics technologies 9
Figure 1-2 The components of a typical filter 11
Figure 1-3 A work flow that can benefit from lazy evaluation 12
Figure 1-4 An image unit contains packaging information along with one or more filter

definitions 13
Figure 1-5 The pixel processing path 14
Figure 1-6 The Core Image calculation path 15
Figure 1-7 Core Image performs image operations in a device-independent working space

16

Chapter 2 Using Core Image Filters 19

Figure 2-1 The original image 24
Figure 2-2 The image after applying the color controls filter 27
Figure 2-3 The image after applying the hue adjustment and gloom filters 28
Figure 2-4 The image after applying the hue adjustment, gloom, and bump distortion filters

29
Figure 2-5 A copy machine transition from ski boots to a skier 30
Figure 2-6 Output from MicroPaint 34
Table 2-1 Methods used to load image units 20
Table 2-2 Filter category constants for effect types 21
Table 2-3 Filter category constants for filter usage 21
Table 2-4 Filter category constants for filter origin 21
Table 2-5 Methods used to create an image 26
Listing 2-1 Code that builds a dictionary of filters by functional categories 22
Listing 2-2 Building a dictionary of filters by functional name 22
Listing 2-3 Creating a Core Image context from a Quartz 2D graphics context 25
Listing 2-4 Creating a Core Image context from an OpenGL graphics context 25
Listing 2-5 Creating, setting up, and applying a hue filter 27
Listing 2-6 Creating, setting up, and applying a gloom filter 28
Listing 2-7 Creating, setting up, and applying the bump distortion filter 28
Listing 2-8 Getting images and setting up a timer 31
Listing 2-9 Setting up the transition filter 31
Listing 2-10 The drawRect: method for the copy machine transition effect 32
Listing 2-11 Applying the transition filter 33
Listing 2-12 Using the timer to update the display 33
Listing 2-13 Setting source and target images 33
Listing 2-14 The interface for the MicroPaintView 35
Listing 2-15 Creating and initializing an image accumulator 35
Listing 2-16 Setting up and applying the dab filter to the accumulated image 36

5
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

Listing 2-17 The drawRect routine for the Mouse Paint application 37

Chapter 3 Creating Custom Filters 41

Figure 3-1 An image before and after processing with the haze removal filter 42
Figure 3-2 The haze removal kernel routine pasted into the Settings pane 44
Figure 3-3 A Quartz Composer composition that tests a kernel routine 45
Listing 3-1 A kernel routine for the haze removal filter 43
Listing 3-2 Code that declares the interface for a haze removal filter 45
Listing 3-3 An init method that initializes the kernel 45
Listing 3-4 The customAttributes method for the Haze filter 47
Listing 3-5 A method that returns the image output from a haze removal filter 47
Listing 3-6 Registering a filter that is not part of an image unit 48
Listing 3-7 A method that creates instance of a filter 49
Listing 3-8 Using your own custom filter 49
Listing 3-9 A simple ROI function 51
Listing 3-10 An ROI function for a glass distortion filter 51
Listing 3-11 Supplying a routine the calculates the region of interest 52
Listing 3-12 An output image routine for a filter that uses an environment map 52
Listing 3-13 The property list for the MyKernelFilter nonexecutable filter 54
Listing 3-14 A kernel routine that computes a brightening effect 55
Listing 3-15 A kernel routine that computes a multiply effect 56
Listing 3-16 A kernel routine that computes a hole distortion 56

Chapter 4 Packaging Filters as Image Units 59

Figure 4-1 The files in CIDemoImageUnit 60
Figure 4-2 The image unit template in the New Project window 61
Figure 4-3 The project window for a new image unit project 61
Figure 4-4 A description property list for a sample filter 64
Table 4-1 Keys in the filter description property list 63
Table 4-2 Input parameter classes and expected values 63
Listing 4-1 The load method provided by the image unit template 62

6
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Core Image is an image processing technology built into Mac OS X v10.4 that leverages programmable
graphics hardware whenever possible to provide near real-time processing. The Core Image application
programming interface (API) provides access to built-in image filters for both video and still images and
provides support for creating custom filters.

Developers who are designing an application that supports video or still image processing, or who want to
write an image processing filter that can be used by other applications, will find this document useful.

Organization of This Document

This document is organized into the following chapters:

 ■ “Core Image Concepts” (page 9) describes the Core Image model, the organization of the API, and
defines the key concepts you need to use the Core Image API.

 ■ “Using Core Image Filters” (page 19) shows how to set up and use Core Image to obtain a list of available
filters and their attributes, process an image, apply transition effects, image dynamical systems, and
apply filters to video.

 ■ “Creating Custom Filters” (page 41) describes how to write your own filter and use it in your application.
It also discusses issues related to executable and nonexecutable filters.

 ■ “Packaging Filters as Image Units” (page 59) explains how to package a filter as an image unit so that
other applications can load and use the filters that you write.

See Also

Apple offers the following additional resources for graphics and imaging:

 ■ Core Image Reference Collection provides a detailed description of the objects and methods available in
the Core Image API.

 ■ Core Image Filter Reference describes the image processing filters that Apple provides with Mac OS X and
shows how images appear before and after processing with a filter.

 ■ Core Image Kernel Language Reference describes the language for creating kernel routines for custom
filters.

 ■ Image Kit ProgrammingGuide contains information on how to use the Core Image additions to the Image
Kit framework (introduced in Mac OS X v10.5) to provide a user interface for browsing Core Image filters
and setting their input parameters.

 ■ NSCIImageRep has Application Kit additions that allow Core Image to operate with the NSImage model.

Organization of This Document 7
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Image Programming
Guide

 ■ Quartz 2D Reference Collection is a complete reference for the Quartz 2D data types that are also used in
the Core Image framework.

 ■ Quartz 2DProgrammingGuide contains information on how to create Quartz 2D images and color spaces,
and how to perform 2D drawing with Quartz.

 ■ The OpenGL website (www.opengl.org) provides information on the OpenGL Shading Language (glslang).
You can go there to obtain information on the glslang syntax, a subset of which is used to specify the
kernel routines used for custom filters.

 ■ Quartz Composer User Guide, describes how to use the Quartz Composer development tool, provided
with Mac OS X v10.4 and later, for processing and rendering graphical data. You can use Quartz Composer
to experiment with built-in Core Image filters, without the need to write any code. You can also use
Quartz Composer to test kernel routines (see “Use Quartz Composer to Test the Kernel Routine” (page
44)).

 ■ Core Video Reference contains a detailed description of the Core Video API.

 ■ Core Video Programming Guide describes the Mac OS X digital video model and shows how to use the
Core Video API.

8 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Image Programming Guide

http://www.opengl.org/

Core Image is an extensible architecture available starting in Mac OS X v10.4 for near real-time, pixel-accurate
image processing of graphics as well as video. You can perform the following types of operations by using
filters that are bundled in Core Image or that you or another developer create:

 ■ Crop images.

 ■ Correct color, such as perform white point adjustment.

 ■ Apply color effects, such as sepia tone.

 ■ Blur or sharpen images.

 ■ Composite images.

 ■ Warp or transform the geometry of an image.

 ■ Generate color, checkerboard patterns, Gaussian gradients, and other pattern images.

 ■ Add transition effects to images or video.

 ■ Provide real-time color adjustment on video.

Figure 1-1 gives a general idea of where Core Image fits with other graphics technologies in Mac OS X. Core
Image is integrated with these technologies, allowing you to use them together to achieve a wide range of
results. For example, you can use Core Image to process images created in Quartz 2D (Core Graphics) and
textures created in OpenGL. You can also apply Core Image filters to video played using Core Video.

Figure 1-1 Core Image in relation to other graphics technologies

QuickTime

Open GL

Graphics Hardware

Core Graphics Core Image Core Video

This chapter provides an overview of the Core Image technology and describes how you can use the
programming interface in your application. It also discusses how Core Image works behind the scenes to
achieve fast, stunning, near real-time image processing.

9
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Core Image and the GPU

Up until now OpenGL, the industry standard for high performance 2D and 3D graphics, has been the primary
gateway to the graphics processing unit (GPU). If you wanted to use the GPU for image processing, you
needed to know OpenGL Shading Language. Core Image changes all that. With Core Image, you don’t need
to know the details of OpenGL to harness the power of the GPU for image processing. Core Image handles
OpenGL buffers and state management for you automatically. If for some reason a GPU is not available, Core
Image uses a CPU fallback to ensure that your application runs. Core Image operations are opaque to you;
your software just works.

Core Image hides the details of low-level graphics processing by providing an easy-to-use application
programming interface (API) implemented in the Objective-C language. The Core Image API is part of the
Quartz Core framework (QuartzCore.framework). You can use Core Image from the Cocoa and Carbon
frameworks by linking to this framework.

Filter Clients and Filter Creators

Core Image is designed for two types of developers—filter clients and filter creators. If you plan only to use
Core Image filters, you are a filter client. If you plan to write your own filter, you are a filter creator. This
section describes Core Image filters from the perspective of each type of developer, and provides an overview
of what each needs to know to use Core Image.

Core Image comes with over 100 built-in filters ready to use by filter clients who want to support image
processing in their application. Core Image Filter Reference describes these filters. The list of built-in filters can
change, so for that reason, Core Image provides methods that let you query the system for the available
filters. You can also load filters that third-party developers package as image units. You’ll read more about
image units later in this chapter.

You can get a list of all filters or narrow your query to get filters that fit a particular category, such as distortion
filters or filters that work with video. A filter category specifies the type of effect—blur, distortion, generator,
and so forth—or its intended use—still images, video, nonsquare pixels, and so on. A filter can be a member
of more than one category. A filter also has a display name, which is the name that should be shown in the
user interface and a filter name, which is the name you use to access the filter programmatically. You’ll see
how to perform queries in “Using Core Image Filters” (page 19).

Most filters have one or more input parameters that let you control how processing is done. Each input
parameter has an attribute class that specifies its data type, such as NSNumber. An input parameter can
optionally have other attributes, such as its default value, the allowable minimum and maximum values, the
display name for the parameter, and any other attributes that are described in CIFilter.

For example, the color monochrome filter has three input parameters—the image to process, a monochrome
color, and the color intensity. You supply the image and have the option to set a color and color intensity.
Most filters, including the color monochrome filter, have default values for each nonimage input parameter.
Core Image uses the default values to process your image if you choose not to supply your own values for
the input parameters.

Filter attributes are stored as key-value pairs. The key is a constant that identifies the attribute and the value
is the setting associated with the key. Core Image attribute values are typically one of the following data
types:

10 Core Image and the GPU
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

 ■ Strings (NSString objects), which are used for such things as display names.

 ■ Floating-point numbers (NSNumber data type), which are used to specify scalar values such as intensity
levels and radii.

 ■ Vectors (CIVector objects), which can have 2, 3, or 4 elements, each of which is a floating-point number.
These are used to specify positions, areas, and color values.

 ■ Colors (CIColor objects), which specify color values and a color space to interpret the values in.

 ■ Images (CIImage objects), which are lightweight objects that specify image “recipes.”

 ■ Transforms (NSAffineTransform objects), which specify an affine transformation to apply to an image.

Core Image uses key-value coding, which means you can get and set values for the attributes of a filter by
using the methods provided by the NSKeyValueCoding protocol.

Note: Key-value coding is a mechanism for accessing the properties of objects in Objective-C. To use Core
Image effectively, you need to be familiar with the NSKeyValueCoding protocol. For more information, see
Key-Value Coding Programming Guide.

Let’s take a closer look at the components of a typical filter, as shown in Figure 1-2. The shaded area of the
figure indicates parts that are “under the hood”—the parts that a filter client does not need to know anything
about but which a filter creator must understand. The portion that’s not shaded shows two
methods—attributes and outputImage—that the filter client calls. The filter’s attributes method is
what you call to obtain a list of the filter attributes discussed previously, including the filter’s input parameters
and the string that you can use to display the filter name in the user interface. The outputImage method
assembles and stores the calculations necessary to produce an image but does not actually cause Core Image
to process the image. That’s because Core Image uses lazy evaluation. In other words, Core Image doesn’t
process any image until it comes time to actually paint the processed pixels to a destination. All the
outputImage method does is to assemble the calculations that Core Image needs when the time comes,
and store the calculations (or, image “recipe”) in a CIImage object. The actual image is only rendered (and
hence, the calculations performed) if there is an explicit call to an image-drawing method, such as
drawImage:atPoint:fromRect: or drawImage:inRect:fromRect:.

Figure 1-2 The components of a typical filter

Filter Clients and Filter Creators 11
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Core Image stores the calculations until your application issues a command to draw the image. At that time,
Core Image calculates the results. Lazy evaluation is one of the practices that makes Core Image fast and
efficient. At rendering time, Core Image can see if more than one filter needs to be applied to an image. If
so, it can concatenate multiple “recipes” into one operation, which means each pixel is processed once rather
than many times. Figure 1-3 illustrates how lazy evaluation can make image processing more efficient for
multiple operations. The final image is a scaled-down version of the original. For the case of a large image,
applying color adjustment before scaling down the image requires more processing power than scaling
down the image and then applying color adjustment. Because Core Image waits until the last possible moment
to apply filters, it can perform these operations in reverse order, which is more efficient.

Figure 1-3 A work flow that can benefit from lazy evaluation

Image 1 Image 2

Image I/O system

Thumbnail renderer

Color
adjust

Scale
down

Thumbnail
image

Target
context

For the filter creator, the most exciting component of a filter is the kernel, which is at the heart of every filter.
The kernel specifies the calculations that are performed on each source image pixel. Kernel calculations can
be very simple or complex. A very simple kernel for a “do nothing” filter could simply return the source pixel:

destination pixel = source pixel

Filter creators use a variant of OpenGL Shading Language (glslang) to specify per-pixel calculations. (See Core
Image Kernel Language Reference.) The kernel is opaque to a filter client. A filter can actually use several kernel
routines, passing the output of one to the input of another. For instructions on how to write a custom filter,
see “Creating a Custom Filter” (page 41).

Note: A kernel is the actual routine, written using the Core Image variant of glslang, that a filter uses to
process pixels. A CIKernel object is a Core Image object that contains a kernel routine. When you create a
filter, you’ll see that the kernel routine exists in its own file—one that has a .cikernel extension. You create
a CIKernel object programmatically by passing a string that contains the kernel routine.

Filter creators can make their custom filters available to any application by packaging them as a plug-in, or
image unit, using the architecture specified by the NSBundle class. An image unit can contain more than
one filter, as shown in Figure 1-4. For example, you could write a set of filters that perform different kinds of
edge detection and package them as a single image unit. Filter clients can use the Core Image API to load
the image unit and to obtain a list of the filters contained in that image unit. See “Loading Image Units” (page
20) for basic information. See Image Unit Tutorial for in-depth examples and detailed information on writing
filters and packaging them as standalone image units.

12 Filter Clients and Filter Creators
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Figure 1-4 An image unit contains packaging information along with one or more filter definitions

Image unit

MyFogFilterDescription
property list

Load method

MyWarpingFilter

MyTornadoVortexFilter

The Processing Path

Figure 1-5 shows the pixel processing path for a filter that operates on two sources images. Source images
are always specified as CIImage objects. Core Image provides a variety of ways to get image data. You can
supply a URL to an image, read raw image data (using the NSData class), or convert a Quartz 2D image
(CGContextRef), an OpenGL texture, or a Core Video image buffer (CVImageBufferRef) to a CIImage
object.

Note that the actual number of input images, and whether or not the filter requires an input image, depends
on the filter. Filters are very flexible—a filter can:

 ■ Work without an input image. Some filters generate an image based on input parameters that aren’t
images. (For example, see the CICheckerboardGenerator and CIConstantColorGenerator filters
in Core Image Filter Reference.)

 ■ Require one image. (For example, see the CIColorPosterize and CICMYKHalftone filters in Core
Image Filter Reference.)

 ■ Require two or more images. Filters that composite images or use the values in one image to control
how the pixels in another image are processed typically require two or more images. One input image
can act as a shading image, an image mask, a background image, or provide a source of lookup values
that control some aspect of how the other image is processed. (For example, see the CIShadedMaterial
filter in Core Image Filter Reference.)

When you process an image, it is your responsibility to create a CIImage object that contains the appropriate
input data.

The Processing Path 13
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Note: Although a CIImage object has image data associated with it, it is not an image. You can think of a
CIImage object as an image “recipe.” A CIImage object has all the information necessary to produce an
image, but Core Image doesn’t actually render an image until it is told to do so. This “lazy evaluation” method
(see “Filter Clients and Filter Creators” (page 10)) allows Core Image to operate as efficiently as possible.

Figure 1-5 The pixel processing path

CIFilter

CIImage

CIImage

CIImage

CISampler

CISampler

CIKernel

Pixels from each source image are fetched by a CISampler object, or simply a sampler. As its name suggests,
a sampler retrieves samples of an image and provides them to a kernel. A filter creator provides a sampler
for each source image. Filter clients don’t need to know anything about samplers.

A sampler defines:

 ■ A coordinate transform, which can be the identity transform if no transformation is needed.

 ■ An interpolation mode, which can be nearest neighbor sampling or bilinear interpolation (which is the
default).

 ■ A wrapping mode that specifies how to produce pixels when the sampled area is outside of the source
image—either to use transparent black or clamp to the extent.

The filter creator defines the per-pixel image processing calculations in the kernel, but Core Image handles
the actual implementation of those calculations. Core Image determines whether the calculations are
performed using the GPU or the CPU. Core Image implements hardware rasterization through OpenGL. It
implements software rasterization through an emulation environment specifically tuned for evaluating
fragment programs with nonprojective texture lookups over large quadrilaterals (quads).

Although the pixel processing path is from source image to destination, the calculation path that Core Image
uses begins at the destination and works its way back to the source pixels, as shown in Figure 1-6. This
backward calculation might seem unwieldy, but it actually minimizes the number of pixels used in any
calculation. The alternative, which Core Image does not use, is the brute force method of processing all source
pixels, then later deciding what’s needed for the destination. Let’s take a closer look at Figure 1-6.

14 The Processing Path
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Figure 1-6 The Core Image calculation path

CIFilter

Destination image

CISampler

CISampler

kernel

Domain of definition
(CIFilterShape) Area rendered by filter

Source image 1

Source image 2

Assume that the filter in Figure 1-6 performs some kind of compositing operation, such as source-over
compositing. The filter client wants to overlap the two images, so that only a small portion of each image is
composited to achieve the result shown at the left side of the figure. By looking ahead to what the destination
ought to be, Core Image can determine which data from the source images effect the final image and then
restrict calculations only to those source pixels. As a result, the samplers fetch samples only from shaded
areas in the source images shown in Figure 1-6.

Note the box in the figure that’s labeled domain of definition. The domain of definition is simply a way to
further restrict calculations. It is an area outside of which all pixels are transparent (that is, the alpha component
is equal to 0). In this example, the domain of definition coincides exactly with the destination image. Core
Image lets you supply a CIFilterShape object to define this area. The CIFilterShape class provides a
number of methods that can define rectangular shapes, transform shapes, and perform inset, union, and
intersection operations on shapes. For example, if you define a filter shape using a rectangle that is smaller
than the shaded area shown in Figure 1-6, then Core Image uses that information to further restrict the source
pixels used in the calculation.

Core Image promotes efficient processing in other ways. It performs intelligent caching and compiler
optimizations that make it well suited for such tasks as real-time video control. It caches intermediate results
for any data set that is evaluated repeatedly. Core Image evicts data in least-recently-used order whenever
adding a new image would cause the cache to grow too large, which means objects that are reused frequently
remain in the cache, while those used once in a while might be moved in and out of the cache as needed.
Your application benefits from Core Image caching without needing to know the details of how caching is
implemented. However, you get the best performance by reusing objects (images, contexts, and so forth)
whenever you can.

Core Image also gets great performance by using traditional compilation techniques at the kernel and pass
levels. The method Core Image uses to allocate registers minimizes the number of temporary registers (per
kernel) and temporary pixel buffers (per filter graph). The compiler performs CSE and peephole optimization
and automatically distinguishes between reading data-dependent textures, which are based on previous

The Processing Path 15
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

calculations, and those that are not data-dependent. Again, you don’t need to concern yourself with the
details of the compilation techniques. The important point is that Core Image is hardware savvy; it uses the
power of the GPU whenever it can, and it does so in smart ways.

Coordinate Spaces

Core Image performs operations in a device-independent working space, similar in concept to what’s shown
in Figure 1-7. The Core Image working space is, in theory, infinite in extent. A point in working space is
represented by a coordinate pair (x, y), where x represents the location along the horizontal axis and y
represents the location along the vertical axis. Coordinates are floating-point values. By default, the origin is
point (0,0).

When Core Image reads images, it translates the pixel locations into device-independent working space
coordinates. When it is time to display a processed image, Core Image translates the working space coordinates
to the appropriate coordinates for the destination, such as a display.

Figure 1-7 Core Image performs image operations in a device-independent working space

Image 3

Image 2

Image 1

When you write your own filters, you need to be familiar with two coordinate spaces—the destination
coordinate space and the sampler space. The destination coordinate space represents the image you are
rendering to. The sampler space represents what you are texturing from (another image, a lookup table, and
so on). You obtain the current location in destination space using the destCoord function whereas the
samplerCoord function provides the current location in sample space. (See Core Image Kernel Language
Reference.)

Keep in mind that if your source data is tiled, the sampler coordinates have an offset (dx/dy). If your sample
coordinates have an offset, it may be necessary for you to convert the destination location to the sampler
location using the function samplerTransform.

The Region of Interest

Although not explicitly labeled in Figure 1-6 (page 15), the shaded area in each of the source images is the
region of interest for samplers depicted in the figure. The region of interest, or ROI, defines the area in the
source from which a sampler takes pixel information to provide to the kernel for processing. If you are a filter
client, you don’t need to concern yourself with the ROI. But if you are a filter creator, you’ll want to understand
the relationship between the region of interest and the domain of definition.

16 Coordinate Spaces
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Recall that the domain of definition describes the bounding shape of a filter. In theory, this shape can be
without bounds. Consider, for example, a filter that creates a repeating pattern that could extend to infinity.

The ROI and the domain of definition can relate to each other in the following ways:

 ■ They coincide exactly—there is a 1:1 mapping between source and destination. For example, a hue filter
processes a pixel from the working space coordinate (r,s) in the ROI to produce a pixel at the working
space coordinate (r,s) in the domain of definition.

 ■ They are dependent on each other, but modulated in some way. Some of the most interesting filters—blur
and distortion, for example—use many source pixels in the calculation of one destination pixel. For
example, a distortion filter might use a pixel (r,s) and its neighbors from the working coordinate space
in the ROI to produce a single pixel (r,s) in the domain of definition.

 ■ The domain of definition is calculated from values in a lookup table that are provided by the sampler.
The location of values in the map or table are unrelated to the working space coordinates in the source
image and the destination. A value located at (r,s) in a shading image does not need to be the value that
produces a pixel at the working space coordinate (r,s) in the domain of definition. Many filters use values
provided in a shading image or lookup table in combination with an image source. For example, a color
ramp or a table that approximates a function, such as the arcsin function, provides values that are
unrelated to the notion of working coordinates.

Unless otherwise instructed, Core Image assumes that the ROI and the domain of definition coincide. If you
write a filter for which this assumption doesn’t hold, you need to provide Core Image with a routine that
calculates the ROI for a particular sampler.

See “Supplying an ROI Function” (page 50) for more information.

Executable and Nonexecutable Filters

You can categorize custom Core Image filters on the basis of whether or not they require an auxiliary binary
executable to be loaded into the address space of the client application. As you use the Core Image API,
you’ll notice that these are simply referred to as executable and nonexecutable. Filter creators can choose
to write either kind of filter. Filter clients can choose to use only nonexecutable or to use both kinds of filters.

Security is the primary motivation for distinguishing CPU executable and CPU nonexecutable filters.
Nonexecutable filters consist only of a Core Image kernel program to describe the filter operation. In contrast,
an executable filter also contains machine code that runs on the CPU. Core Image kernel programs run within
a restricted environment and cannot pose as a virus, Trojan horse, or other security threat, whereas arbitrary
code that runs on the CPU can.

Nonexecutable filters have special requirements, one of which is that nonexecutable filters must be packaged
as part of an image unit. Filter creators can read “Writing Nonexecutable Filters” (page 53) for more
information. Filter clients can find information on loading each kind of filter in “Loading Image Units” (page
20).

Executable and Nonexecutable Filters 17
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

Color Components and Premultiplied Alpha

Premultiplied alpha is a term used to describe a source color, the components of which have already been
multiplied by an alpha value. Premultiplying speeds up the rendering of an image by eliminating the need
to perform a multiplication operation for each color component. For example, in an RGB color space, rendering
an image with premultiplied alpha eliminates three multiplication operations (red times alpha, green times
alpha, and blue times alpha) for each pixel in the image.

Filter creators must supply Core Image with color components that are premultiplied by the alpha value.
Otherwise, the filter behaves as if the alpha value for a color component is 1.0. Making sure color components
are premultiplied is important for filters that manipulate color.

By default, Core Image assumes that processing nodes are 128 bits-per-pixel, linear light, premultiplied RGBA
floating-point values that use the GenericRGB color space. You can specify a different working color space
by providing a Quartz 2D CGColorSpace object. Note that the working color space must be RGB-based. If
you have YUV data as input (or other data that is not RGB-based), you can use ColorSync functions to convert
to the working color space. (See Quartz 2D Programming Guide for information on creating and using
CGColorspace objects.)

With 8-bit YUV 4:2:2 sources, Core Image can process 240 HD layers per gigabyte. Eight-bit YUV is the native
color format for video source such as DV, MPEG, uncompressed D1, and JPEG. You need to convert YUV color
spaces to an RGB color space for Core Image.

See Also

Shantzis, Michael A., “A Model for Efficient and Flexible Image Computing,” (1994), Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques.

Smith, Alvy Ray, “Image Compositing Fundamentals,” Memo 4, Microsoft, July 1995. Available from
ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf

18 Color Components and Premultiplied Alpha
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Image Concepts

ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf

Apple provides more than 100 image processing filters with Core Image. It’s easy for any developer who
wants to support image processing in an application to use these built-in filters. It’s just as easy to use
third-party image processing filters, as long as these filters are packaged as an image unit and installed in
an appropriate location.

This chapter shows how to perform a variety of tasks related to applying filters to images:

 ■ “Adding the Quartz Core Framework” (page 19) describes how to include Core Image in your Xcode
project.

 ■ “Loading Image Units” (page 20) tells how to load third-party image units. (If you want to create an
image unit, see “Packaging Filters as Image Units” (page 59) and Image Unit Tutorial.)

 ■ “Getting a List of Filters and Attributes” (page 20) describes how to programmatically find out which
filters are available and what the attributes of each filter are.

 ■ “Processing an Image” (page 24) shows the basics of applying a filter to a single image.

 ■ “Using Transition Effects” (page 30) discusses how to use filters that are applied over time to create such
effects as fades and dissolves.

 ■ “Imaging Dynamical Systems” (page 34) describes how to accumulate the effect of a filter.

 ■ “Applying a Filter to Video” (page 38) discusses what’s needed to apply a Core Image filter to a video
stream.

Adding the Quartz Core Framework

To use Core Image in Xcode, you need to import the Quartz Core framework. To import this frameworks in
Xcode:

1. Open Xcode and create a Cocoa application.

2. Choose Project > Add to Project.

3. Navigate to System/Library/Frameworks, choose the QuartzCore.framework and click Add.

4. In the sheet that appears, click Add.

Adding the Quartz Core Framework 19
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Loading Image Units

The built-in filters supplied by Apple are loaded automatically. The only filters you need to load are third-party
filters packaged as image units. An image unit, which is simply a bundle, can contain one or more image
processing filters. If the image unit is installed in one of the locations shown in Table 2-1, then it can be used
by any application that calls one of the load methods provided by the CIPlugin class and shown in Table
2-1. You need to load image units only once. For example, to load all globally installed image units, you could
add the following line of code to an initialization routine in your application.

 [CIPlugIn loadAllPlugIns];

After calling the load method, you proceed the same as you would for using any of the image processing
filters provided by Apple. Follow the instructions in the rest of this chapter.

Table 2-1 Methods used to load image units

CommentMethod

Scans image unit directories (/Library/Graphics/Image Units and
~/Library/Graphics/Image Units) for files that have the .plugin
extension and then loads the image unit.

loadAllPlugIns

Scans image unit directories (/Library/Graphics/Image Units and
~/Library/Graphics/Image Units) for files that have the .plugin
extension and then loads only the kernels of the image unit. That is, it loads
only those files that have the .cikernel extension. This call does not execute
any of the image unit code.

loadNonExecutable-
PlugIns

Loads the image unit at the location specified by the url argument. Pass true
for the allowNonExecutable argument if you want to load only the kernels
of the image unit without executing any of the image unit code.

loadPlugIn:
allowNonExecutable:

Getting a List of Filters and Attributes

Core Image has two methods you can use to discover exactly which filters are
available—filterNamesInCategory: andfilterNamesInCategories:. Filters are categorized to make
the list more manageable. If you know a filter category, you can find out the filters available for that category
by calling the method filterNamesInCategory: and supplying one of the category constants listed in
Table 2-2, Table 2-3 (page 21), or Table 2-4 (page 21).

If you want to find all available filters for a list of categories, you can call the method
filterNamesInCategories:, supplying an array of category constants from those listed in the tables. The
method returns an NSArray object populated with the filter names for each category. You can obtain a list
of all filters for all categories by supplying nil instead of an array of category constants.

A filter can be a member of more than one category. A category can specify:

 ■ The type of effect produced by the filter (color adjustment, distortion, and so forth). See Table 2-2.

 ■ The usage of the filter (still image, video, high dynamic range, and so forth). See Table 2-3 (page 21).

20 Loading Image Units
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

 ■ Whether the filter is provided by Core Image (built-in). See Table 2-4 (page 21).

Table 2-2 Filter category constants for effect types

IndicatesEffect type

Distortion effects, such as bump, twirl, holekCICategoryDistortionEffect

Geometry adjustment, such as affine transform, crop, perspective
transform

kCICategoryGeometryAdjustment

Compositing, such as source over, minimum, source atop, color
dodge blend mode

kCICategoryCompositeOperation

Halftone effects, such as screen, line screen, hatchedkCICategoryHalftoneEffect

Color adjustment, such as gamma adjust, white point adjust,
exposure

kCICategoryColorAdjustment

Color effect, such as hue adjust, posterizekCICategoryColorEffect

Transitions between images, such as dissolve, disintegrate with
mask, swipe

kCICategoryTransition

Tile effect, such as parallelogram, triangle, opkCICategoryTileEffect

Image generator, such as stripes, constant color, checkerboardkCICategoryGenerator

Gradient, such as axial, radial, GaussiankCICategoryGradient

Stylize, such as pixellate, crystallizekCICategoryStylize

Sharpen, luminancekCICategorySharpen

Blur, such as Gaussian, zoom, motionkCICategoryBlur

Table 2-3 Filter category constants for filter usage

IndicatesUse

Can be used for still imageskCICategoryStillImage

Can be used for interlaced imageskCICategoryInterlaced

Can be used for nonsquare pixelskCICategoryNonSquarePixels

Can be used for high-dynamic range pixelskCICategoryHighDynamicRange

Table 2-4 Filter category constants for filter origin

IndicatesFilter origin

A filter provided by Core ImagekCICategoryBuiltIn

Getting a List of Filters and Attributes 21
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

After you obtain a list of filter names, you can retrieve the attributes for a filter by creating a CIFilter object
and calling the method attributes as follows:

CIFilter *myFilter;
NSDictionary *myFilterAttributes;
myFilter = [CIFilter filterWithName:@"CIExposureFilter"];
myFilterAttributes = [myFilter attributes];

You replace the string “CIExposureFilter” with the name of the filter you are interested in. Attributes include
such things as name, categories, class, minimum, and maximum. See CIFilter Class Reference for the complete
list of attributes that can be returned.

Filter names and attributes provide all the information you need to build a user interface that allows users
to choose a filter and control its input parameters. The attributes for a filter tell you how many input parameters
the filter has, the parameter names, the data type, and the minimum, maximum, and default values.

Listing 2-1 shows code that gets filter names and builds a dictionary of filters by functional categories. The
code retrieves filters in these categories—kCICategoryGeometryAdjustment,
kCICategoryDistortionEffect, kCICategorySharpen, and kCICategoryBlur—but builds the
dictionary based on application-defined functional categories—Distortion and Focus. Functional categories
are useful for organizing filter names in a menu that makes sense for the user. The code does not iterate
through all possible Core Image filter categories, but you can easily extend this code by following the same
process.

Listing 2-1 Code that builds a dictionary of filters by functional categories

categories = [[NSMutableDictionary alloc] init];
NSMutableArray *array;

array = [NSMutableArray arrayWithArray:
 [CIFilter filterNamesInCategory:
 kCICategoryGeometryAdjustment]];
[array addObjectsFromArray:
 [CIFilter filterNamesInCategory:
 kCICategoryDistortionEffect]];
[categories setObject: [self buildFilterDictionary: array]
 forKey: @"Distortion"];

array = [NSMutableArray arrayWithArray:
 [CIFilter filterNamesInCategory: kCICategorySharpen]];
[array addObjectsFromArray:
 [CIFilter filterNamesInCategory: kCICategoryBlur]];
[categories setObject: [self buildFilterDictionary: array]
 forKey:@"Focus"];

Listing 2-2 shows the buildFilterDictionary routine called in Listing 2-1. This routine builds a dictionary
of attributes for each of the filters in a functional category. A detailed explanation for each numbered line
of code follows the listing.

Listing 2-2 Building a dictionary of filters by functional name

// 1- (NSMutableDictionary *)buildFilterDictionary: (NSArray *)names
{
 NSMutableDictionary *td, *catfilters;
 NSDictionary *attr;
 NSString *classname;

22 Getting a List of Filters and Attributes
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

 CIFilter *filter;
 int i;

 catfilters = [NSMutableDictionary dictionary];

// 2 for(i=0 ; i<[names count] ; i++)
 {

// 3 classname = [names objectAtIndex: i];
// 4 filter = [CIFilter filterWithName: classname];

 if(filter)
 {

// 5 attr = [filter attributes];

 td = [NSMutableDictionary dictionary];
// 6 [td setObject: classname forKey: @"class"];

 [catfilters setObject: td
// 7 forKey:[attr objectForKey:@"name"]];

 }

 else
 NSLog(@" could not create '%@' filter", classname);
 }

 return catfilters;
}

Here’s what the code does:

1. Takes an array of filter names as an input parameter. Recall from Listing 2-1 (page 22) that this array can
be a concatenation of filter names from more than one Core Image filter category. In this example, the
array is based upon functional categories set up by the application (Distortion or Focus).

2. Iterates through the array for each filter name in the array.

3. Retrieves the filter name from the names array.

4. Retrieves the filter object for the filter name.

5. Retrieves the attributes dictionary for a filter.

6. Sets the name of the filter attributes dictionary.

7. Adds the filter attribute dictionary for that filter to the category filter dictionary.

If your application provides a user interface, it can consult a filter dictionary to create and update the user
interface. For example, filter attributes that are Boolean would require a checkbox or similar user interface
element, and attributes that vary continuously over a range could use a slider. You can use the maximum
and minimum values as the basis for text labels. The default attribute setting would dictate the initial setting
in the user interface.

Getting a List of Filters and Attributes 23
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Note: Applications that run in Mac OS X v10.5 and later can use the CIFilter Image Kit additions to provide
a filter browser and a view for setting filter input parameters. See CIFilter Image Kit Additions and Image Kit
Programming Guide.

A client that hosts an image unit should not display user interface elements for a filter that has unknown
data types or classes. This ensures that image unit host applications will work in the future if new data types
and classes are added to the API.

Processing an Image

You can apply Core Image filters to images in any format supported by Mac OS X which, in Mac OS X v10.5
and later, includes RAW image data (see “RAW Image Options” in CIFilter Class Reference).

The steps to process an image with a Core Image filter are:

1. Create a CIContext object.

2. Get the image to process.

3. Create a CIFilter object for the filter to apply to the image.

4. Set the default values for the filter.

5. Set the filter parameters.

6. Apply one or more filters.

7. Draw the processed image.

The details for performing each step are in the sections that follow. You’ll see how to apply three filters to
the image shown in Figure 2-1.

Figure 2-1 The original image

24 Processing an Image
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Create a Core Image Context

In Core Image, images are evaluated to a Core Image context which represents a drawing destination. You
can create a Core Image context:

 ■ By calling the CIContext method of the NSGraphicsContext class

 ■ From a Quartz 2D graphics context

 ■ From an OpenGL graphics context

You create one Core Image context per window rather than one per view.

The CIContext method of the NSGraphicsContext class returns a CIContext object that you can use to
render into the NSGraphicsContext object. The CIContext object is created on demand and remains in
existence for the lifetime of its owning NSGraphicsContext object. You create the Core Image context
using a line of code similar to the following:

[[NSGraphicsContext currentContext] CIContext]

For more information on this method, see NSGraphicsContext Class Reference.

You can create a Core Image context from a Quartz 2D graphics context using code similar to that shown in
Listing 2-3, which is an excerpt from the drawRect: method in a Cocoa application. You get the current
NSGraphicsContext, convert that to a Quartz 2D graphics context (CGContextRef), and then provide the
Quartz 2D graphics context as an argument to the contextWithCGContext:options: method of the
CIContext class. For information on Quartz 2D graphics contexts, see Quartz 2D Programming Guide.

Listing 2-3 Creating a Core Image context from a Quartz 2D graphics context

if(context == nil)
{
 context = [CIContext contextWithCGContext:
 [[NSGraphicsContext currentContext] graphicsPort]
 options: nil]
 [context retain];}

The code in Listing 2-4 shows how to set up a Core Image context from the current OpenGL graphics context.
It’s important that the pixel format for the context includes the NSOpenGLPFANoRecovery constant as an
attribute. Otherwise Core Image may not be able to create another context that share textures with this one.
You must also make sure that you pass a pixel format whose data type is CGLPixelFormatObj, as shown
in the listing. For more information on pixel formats and OpenGL, see OpenGL Programming Guide for Mac
OS X.

Listing 2-4 Creating a Core Image context from an OpenGL graphics context

CIContext *myCIContext;
const NSOpenGLPixelFormatAttribute attr[] = {
 NSOpenGLPFAAccelerated,
 NSOpenGLPFANoRecovery,
 NSOpenGLPFAColorSize, 32,
 0
 };
pf = [[NSOpenGLPixelFormat alloc] initWithAttributes:(void *)&attr];
myCIContext = [CIContext contextWithCGLContext: CGLGetCurrentContext()
 pixelFormat: [pf CGLPixelFormatObj]

Processing an Image 25
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

 options: nil];

Get the Image to Process

Core Image filters process Core Image images (CIImage objects). Table 2-5 lists the methods that create a
CIImage object. The method you use depends on the source of the image. Keep in mind that a CIImage
object is really an image recipe; Core Image doesn’t actually produce any pixels until it’s called on to render
results to a destination.

Table 2-5 Methods used to create an image

MethodsImage source

imageWithContentsOfURL:

imageWithContentsOfURL: options:

URL

imageWithCGImage:

imageWithCGImage: options:

Quartz 2D image (CGImageRef)

imageWithCGLayer:

imageWithCGLayer: options:

Quartz 2D layer (CGLayerRef)

imageWithTexture: size:flipped: colorSpace:OpenGL texture

imageWithBitmapData: bytesPerRow:size:
format:colorSpace:

imageWithImageProvider: size:width:format:
colorSpace:options:

Bitmap data

initWithBitmapImageRep: See NSCIImageRep for more
information on this Application Kit addition.

NSCIImageRep

imageWithData:

imageWithData: options:

Encoded data (an image in memory)

imageWithCVImageBuffer:

imageWithCVImageBuffer: options:

CVImageBuffer

Create, Set Up, and Apply Filters

Listing 2-5 shows how to create, set up, and apply a hue filter. You use the filterWithName: method to
create a filter whose type is specified by the name argument. The hue adjust filter is named CIHueAdjust. You
can obtain a list of filter names by following the instructions in “Getting a List of Filters and Attributes” (page
20) or you can look up a filter name in Core Image Filter Reference. The input values for a filter are undefined
when you first create it, which is why you either need to call the setDefaults method to set the default
values or supply values for all input parameters at the time you create the filter by calling the method
filterWithName:keysAndValues:.

26 Processing an Image
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

If you don’t know the input parameters for a filter, you can get an array of them using the method inputKeys.
(Or, you can look up the input parameters for most of the built-in filters in Core Image Filter Reference.) Set a
value for each input parameter whose default value you want to change by calling the method
setValue:forKey:.

Listing 2-5 sets two input parameters—the input image and the input angle. Filters, except for generator
filters, require an input image. Some require two or more images or textures. The input angle for the hue
adjustment filter refers to the location of the hue in the HSV and HLS color spaces. This is an angular
measurement that can vary from 0.0 to 2 pi. A value of 0 indicates the color red; the color green corresponds
to 2/3 pi radians, and the color blue is 4/3 pi radians.

The last line in Listing 2-5 requests the value that corresponds to the outputImage key. When you request
the output image, Core Image evaluates the input parameters and stores the calculations necessary to produce
the resulting image. The image is not actually rendered. You can apply another filter and continue the process
of applying filters until you want to render the result.

Listing 2-5 Creating, setting up, and applying a hue filter

hueAdjust = [CIFilter filterWithName:@"CIHueAdjust"];
[hueAdjust setDefaults];
[hueAdjust setValue: myCIImage forKey: @"inputImage"];
[hueAdjust setValue: [NSNumber numberWithFloat: 2.094]
 forKey: @"inputAngle"];
result = [hueAdjust valueForKey: @"outputImage"];

If you use one of the Core Image draw methods to render the output image from Listing 2-5, you’ll see what’s
shown in Figure 2-2. Next you’ll see how to apply two more filters to the image—gloom (CIGloom) and bump
distortion (CIBumpDistortion).

The gloom filter does just that—makes an image gloomy by dulling its highlights. Notice that the code in
Listing 2-6 is very similar to that shown in Listing 2-5 (page 27). It creates a filter and sets default values for
the gloom filter. This time, the input image is the output image from the hue adjustment filter. It’s that easy
to chain filters together!

Figure 2-2 The image after applying the color controls filter

Processing an Image 27
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

The gloom filter has two input parameters. Rather than use the default values, which you could do, the code
sets the input radius to 25 and the input intensity to 0.75. The input radius specifies the extent of the effect,
and can vary from 0 to 100 with a default value of 10. Recall that you can find the minimum, maximum, and
default values for a filter programmatically by retrieving the attribute dictionary for the filter.

The input intensity is a scalar value that specifies a linear blend between the filter output and the original
image. The minimum is 0.0, the maximum is 1.0, and the default value is 1.0.

Listing 2-6 Creating, setting up, and applying a gloom filter

gloom = [CIFilter filterWithName:@"CIGloom"];
[gloom setDefaults];
[gloom setValue: result forKey: @"inputImage"];
[gloom setValue: [NSNumber numberWithFloat: 25]
 forKey: @"inputRadius"];
[gloom setValue: [NSNumber numberWithFloat: 0.75]
 forKey: @"inputIntensity"];
result = [gloom valueForKey: @"outputImage"];

The code requests the output image but does not draw the image. You’ll see how to draw the image in the
next section. Figure 2-2 shows what the image would look like if you drew it at this point after processing it
with both the hue adjustment and gloom filters.

Figure 2-3 The image after applying the hue adjustment and gloom filters

The bump distortion filter (CIBumpDistortion) creates a bulge in an image that originates at a specified point.
Listing 2-7 shows how to create, set up, and apply this filter to the output image from the previous filter, the
gloom filter. By now you should be an expert. First, create the filter by providing its name. Then, set the
defaults and set the input image to the previous result. The bump distortion takes three parameters: a location
that specifies the center of the effect, the radius of the effect, and the input scale. The input scale specifies
the direction and the amount of the effect. The default value is –0.5. The range is –10.0 through 10.0. A value
of 0 specifies no effect. A negative value creates an outward bump; a positive value creates an inward bump.

Listing 2-7 Creating, setting up, and applying the bump distortion filter

bumpDistortion = [CIFilter filterWithName:@"CIBumpDistortion"];
[bumpDistortion setDefaults];

28 Processing an Image
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

[bumpDistortion setValue: result forKey: @"inputImage"];
[bumpDistortion setValue: [CIVector vectorWithX:200 Y:150]
 forKey: @"inputCenter"];
[bumpDistortion setValue: [NSNumber numberWithFloat: 100]
 forKey: @"inputRadius"];
[bumpDistortion setValue: [NSNumber numberWithFloat: 3.0]
 forKey: @"inputScale"];
result = [bumpDistortion valueForKey: @"outputImage"];

Draw the Result

Drawing the result triggers the processor-intensive operations (GPU or CPU). Core Image provides two
methods for drawing:

 ■ drawImage:atPoint:fromRect:, which renders a region of an image to a point in the context
destination.

 ■ drawImage:inRect:fromRect:, which renders a region of an image to a rectangle in the context
destination.

The following code renders the hue-adjusted, gloom-filtered, bump-distorted image from the previous
section:

[myCIContext drawImage: result
 atPoint: CGPointZero
 fromRect: contextRect];

Figure 2-4 shows the rendered image. In this case, Core Image draws the image at (0,0), which is
CGPointZero, and draws into the entire context destination.

Figure 2-4 The image after applying the hue adjustment, gloom, and bump distortion filters

Processing an Image 29
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Using Transition Effects

Transitions are typically used between images in a slide show or to switch from one scene to another in
video. These effects are rendered over time and require that you set up a timer. This section shows how to
set up and apply the copy machine transition filter—CICopyMachine—to two still images. The copy machine
transition creates a light bar similar to what you see in a copy machine. The light bar sweeps across the initial
image to reveal the target image. Figure 2-5 shows what this filter looks like before, partway through, and
after the transition from an image of ski boots to an image of a skier.

Figure 2-5 A copy machine transition from ski boots to a skier

Transition filters require the following tasks:

1. Create Core Image images (CIImage objects) to use for the transition.

2. Set up and schedule a timer.

3. Create a CIContext object.

4. Create a CIFilter object for the filter to apply to the image.

5. Set the default values for the filter.

6. Set the filter parameters.

7. Set the source and the target images to process.

8. Calculate the time.

9. Apply the filter.

10. Draw the result.

11. Repeat steps 8–10 until the transition is complete.

You’ll notice that many of these tasks are the same as those required to process an image using a filter other
than a transition filter. What’s different is the need to set up a timer and to repeatedly draw the effect at
various time intervals throughout the transition.

30 Using Transition Effects
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

The awakeFromNib method, shown in Listing 2-8, gets two images (boots.jpg and skier.jpg) and sets
them as the source and target images. Using the NSTimer class, a timer is set to repeat every 1/30 second.
Note the variables thumbnailWidth and thumbnailHeight. These are used to constrain the rendered
images to the view set up in Interface Builder.

Note: The NSAnimation class, introduced in Mac OS X v10.4, implements timing for animation in Cocoa.
If you use NSAnimation instead of NSTimer, you can set up more than one slide show to play transitions
at the same time, using only one timing device. For more information see the documents NSAnimation Class
Reference and Animation Programming Guide for Cocoa. See also the CIAnnotationCIAnnotation sample
application.

Listing 2-8 Getting images and setting up a timer

- (void)awakeFromNib
{
 NSTimer *timer;
 NSURL *url;

 thumbnailWidth = 340.0;
 thumbnailHeight = 240.0;

 url = [NSURL fileURLWithPath: [[NSBundle mainBundle]
 pathForResource: @"boots" ofType: @"jpg"]];
 [self setSourceImage: [CIImage imageWithContentsOfURL: url]];

 url = [NSURL fileURLWithPath: [[NSBundle mainBundle]
 pathForResource: @"skier" ofType: @"jpg"]];
 [self setTargetImage: [CIImage imageWithContentsOfURL: url]];

 timer = [NSTimer scheduledTimerWithTimeInterval: 1.0/30.0
 target: self
 selector: @selector(timerFired:)
 userInfo: nil
 repeats: YES];

 base = [NSDate timeIntervalSinceReferenceDate];
 [[NSRunLoop currentRunLoop] addTimer: timer
 forMode: NSDefaultRunLoopMode];
 [[NSRunLoop currentRunLoop] addTimer: timer
 forMode: NSEventTrackingRunLoopMode];
}

You set up a transition filter just as you’d set up any other filter. Listing 2-9 uses the method filterWithName:
to create the filter. It then calls setDefaults to initialize all input parameters. The code sets the extent to
correspond with the thumbnail width and height that is declared in the awakeFromNib: method shown in
Listing 2-8 (page 31).

The routine uses the thumbnail variables to specify the center of the effect. For this example, the center of
the effect is the center of the image, but it doesn’t have to be.

Listing 2-9 Setting up the transition filter

- (void)setupTransition
{
 CIVector *extent;

Using Transition Effects 31
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

 float w,h;

 w = thumbnailWidth;
 h = thumbnailHeight;

 extent = [CIVector vectorWithX: 0 Y: 0 Z: w W: h];

 transition = [CIFilter filterWithName: @"CICopyMachineTransition"];
 [transition setDefaults];
 [transition setValue: extent
 forKey: @"inputExtent"];
 [transition retain];

}

The drawRect: routine for the copy machine transition effect is shown in Listing 2-10. This routine sets up
a rectangle that’s the same size as the view and then sets up a floating-point value for the rendering time.
If the CIContext object hasn’t already been created, the routine creates one. If the transition is not yet set
up, the routine calls the setupTransition method (see Listing 2-9 (page 31)). Finally, the routine calls the
drawImage:atPoint:fromRect:method, passing the image that should be shown for the rendering time.
The imageForTransition: method, shown in Listing 2-11 (page 33), applies the filter and returns the
appropriate image for the rendering time.

Listing 2-10 The drawRect: method for the copy machine transition effect

- (void)drawRect: (NSRect)rectangle
{
 float t;
 CGRect cg = CGRectMake(NSMinX(rectangle), NSMinY(rectangle),
 NSWidth(rectangle), NSHeight(rectangle));

 t = 0.4*([NSDate timeIntervalSinceReferenceDate] - base);
 if(context == nil)
 {
 context = [CIContext contextWithCGContext:
 [[NSGraphicsContext currentContext] graphicsPort]
 options: nil];
 [context retain];
 }
 if(transition == nil)
 [self setupTransition];
 [context drawImage: [self imageForTransition: t + 0.1]
 atPoint: cg.origin
 fromRect: cg];
}

The imageForTransition: method figures out, based on the rendering time, which image is the source
image and which one is the target image. It’s set up to allow a transition to repeatedly loop. If your application
applies a transition that doesn’t loop, it would not need the if-else construction shown in Listing 2-11.

The routine sets the inputTime value based on the rendering time passed to the imageForTransition:
method. It applies the transition, passing the output image from the transition to the crop filter (CICrop).
Cropping ensures the output image fits in the view rectangle. The routine returns the cropped transition
image to the drawRect: method, which then draws the image.

32 Using Transition Effects
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Listing 2-11 Applying the transition filter

- (CIImage *)imageForTransition: (float)t
{
 CIFilter *crop;

 if(fmodf(t, 2.0) < 1.0f)
 {
 [transition setValue: sourceImage forKey: @"inputImage"];
 [transition setValue: targetImage forKey: @"inputTargetImage"];
 }
 else
 {
 [transition setValue: targetImage forKey: @"inputImage"];
 [transition setValue: sourceImage forKey: @"inputTargetImage"];
 }

 [transition setValue: [NSNumber numberWithFloat:
 0.5*(1-cos(fmodf(t, 1.0f) * M_PI))]
 forKey: @"inputTime"];

 crop = [CIFilter filterWithName: @"CICrop"
 keysAndValues: @"inputImage",
 [transition valueForKey: @"outputImage"],
 @"inputRectangle", [CIVector vectorWithX: 0 Y: 0
 Z: thumbnailWidth
 W: thumbnailHeight],
 nil];
 return [crop valueForKey: @"outputImage"];
}

Each time the timer that you set up fires, the display must be updated. Listing 2-12 shows a timerFired:
routine that does just that.

Listing 2-12 Using the timer to update the display

- (void)timerFired: (id)sender
{
 [self setNeedsDisplay: YES];
}

Finally, Listing 2-13 shows the housekeeping that needs to be performed if your application switches the
source and target images, as the example does.

Listing 2-13 Setting source and target images

- (void)setSourceImage: (CIImage *)source
{
 [source retain];
 [sourceImage release];
 sourceImage = source;
}

- (void)setTargetImage: (CIImage *)target
{
 [target retain];
 [targetImage release];
 targetImage = target;

Using Transition Effects 33
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

}

Imaging Dynamical Systems

A dynamical system is one whose state changes over time using a calculation that is based on the current
state of the system. Complex phenomena—fluid dynamics, stellar formation, saxophone multiphonics,
self-organizing systems, and so forth—are typically modeled using iterative functions whose output is
presented in graphical format. Imaging dynamical systems requires a way to feed the output of the system
back to the input. Imaging these types of systems is not quite as simple as chaining a lot of filters together,
as shown in “Processing an Image” (page 24). Rather, there needs to be a way to accumulate image output
so that it can affect the next iteration. Core Image provides the CIImageAccumulator class for just this
purpose. An image accumulator object enables feedback-based image processing for such things as the
iterative painting operations required by fluid dynamics simulations.

The code in this section shows how to use a CIImageAccumulator object, but not for anything as complex
as modeling dynamical systems. Instead, you’ll see how to use an image accumulator to implement a simple
painting application called MicroPaint. A user drags the mouse on a canvas to apply paint. A simple button
press sprays a dab of paint. A color well lets the user change color. The user can create output similar to that
shown in Figure 2-6.

Figure 2-6 Output from MicroPaint

The “image” starts as a blank canvas. MicroPaint uses an image accumulator to collect the paint applied by
the user. When the user clicks Clear, MicroPaint resets the image accumulator to a white canvas. The three
essential tasks for using an image accumulator for the MicroPaint application are:

1. “Create and Initialize an Image Accumulator Object” (page 35)

34 Imaging Dynamical Systems
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

2. “Set Up and Apply a Filter to the Image Accumulator” (page 36)

3. “Create a CIContext Object and Draw the Image” (page 37)

The interface file for the MicroPaint application is shown in Listing 2-14. The routines for obtaining mouse
location and updating the user interface aren’t discussed here. The tasks necessary to set up and use an
image accumulator are discussed in the sections that follow. (The CIMicroPaint sample application is somewhat
similar to the MicroPaint application discussed here. You might also want to look at that application, which
is available after you install the developer tools on your hard disk, in Developer > Examples > Quartz > Core
Image.)

Listing 2-14 The interface for the MicroPaintView

@interface MicroPaintView : NSView
{
 BOOL initialized;
 NSBundle *bundle;
 CIImageAccumulator *_canvas;
 // User interface
 NSColor *color;
 IBOutlet NSColorWell *colorWell;
 IBOutlet NSButton *clearButton;
 // For tracking the brush and making an evenly-spaced set of paint dabs
 NSPoint lastPt;
 float lastPressure;
 float distance;
}
- (void)awakeFromNib;
- (void)drawRect:(NSRect)r;
- (void)deposit:(NSPoint)pt pressure:(float)pressure;
- (IBAction)colorWellAction:(id)sender;
- (IBAction)clearButtonAction:(id)sender;

@end

Create and Initialize an Image Accumulator Object

The canvas routine shown in Listing 2-15 creates and initializes an image accumulator object. The bounds
of the image accumulator object are set to the bounds of the view, using a 32 bit-per-pixel, fixed-point pixel
format (kCIFormatARGB8). The routine also sets up and initializes a constant color generator filter
(CIConstantColorGenerator) with the color white. Then it uses the output of the constant color filter to initialize
the image accumulator image. The canvas routine sets a blank (white) canvas the first time the application
launches and anytime the user clicks the clear button. Otherwise, the routine returns the current image
accumulator.

Listing 2-15 Creating and initializing an image accumulator

- (CIImageAccumulator *)canvas
{
 CGRect r;
 CIFilter *f;
 NSRect bounds;

 if (_canvas == nil)

Imaging Dynamical Systems 35
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

 {
 bounds = [self bounds];
 r = CGRectMake(bounds.origin.x, bounds.origin.y,
 bounds.size.width, bounds.size.height);
 _canvas = [[CIImageAccumulator alloc] initWithExtent:r
 format:kCIFormatARGB8];
 f = [CIFilter filterWithName:@"CIConstantColorGenerator"
 keysAndValues:@"inputColor",
 [CIColor colorWithRed:1.0 green:1.0 blue:1.0 alpha:1.0],
 nil];
 [_canvas setImage:[f valueForKey:@"outputImage"]];
 }
 return _canvas;
}

Set Up and Apply a Filter to the Image Accumulator

MicroPaint provides its own filter—a dab filter—that applies paint to the canvas. The filter calculates where
and how much paint to apply based upon the location of the mouse (or pen), the brush size and brush
spacing (constants defined by the application), and the pressure, which can vary if the user paints with a
pressure-sensitive device.

The dab filter is part of the MicroPaint application bundle. Its implementation isn’t discussed here. If you
want to create and use your own filters, see “Creating Custom Filters” (page 41).

The deposit:pressure: method shown in Listing 2-16 is called whenever there is a mouse-down or
mouse-dragged event. A detailed explanation for each numbered line of code appears following the listing.

Listing 2-16 Setting up and applying the dab filter to the accumulated image

- (void)deposit:(NSPoint)pt pressure:(float)pressure
{
 CIFilter *myFilter;
 CGRect r;

// 1 myFilter = [CIFilter filterWithName:@"DabFilter"];
// 2 [myFilter setValue:[CIVector vectorWithX:pt.x Y:pt.y]

 forKey:@"inputCenter"];
 [myFilter setValue:[CIColor colorWithRed:[color redComponent]
 green:[color greenComponent]
 blue:[color blueComponent] alpha:1.0]
 forKey:@"inputColor"];
 [myFilter setValue:[NSNumber numberWithFloat:brushsize * 0.5]
 forKey:@"inputRadius"];
 [myFilter setValue:[NSNumber numberWithFloat:pressure]
 forKey:@"inputOpacity"];

// 3 [myFilter setValue:[[self canvas] image]
 forKey:@"inputImage"];
 r.origin = CGPointMake(pt.x - brushsize * 0.5,

// 4 pt.y - brushsize * 0.5);
 r.size = CGSizeMake(brushsize, brushsize);

// 5 [[self canvas] setImage:[myFilter valueForKey:@"outputImage"] dirtyRect:r];
// 6 [self setNeedsDisplay:YES];

}

36 Imaging Dynamical Systems
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Here’s what the code does:

1. Creates a filter for the dab filter.

Note: The dab filter is a custom filter created by the application. The process for using custom filters is
the same as for using Core Image filters. You create a CIFilter object using the name assigned to the
filter, set the input values, and obtain the output image. If you package your filter as an image unit, you
must first load it. See “Loading Image Units” (page 20) for details.

2. Sets the input values for the dab filter.

3. Sets the image accumulator image as the input image to the dab filter.

4. Calculates the dirty rectangle, which is based on the location of the mouse and the brush size set by the
application.

5. Sets the image accumulator image to the output of the dab filter, but only in the area specified by the
dirty rectangle.

6. Sets the display to be updated, which calls the drawRect: routine for the view.

Create a CIContext Object and Draw the Image

The drawRect: method shown in Listing 2-17 is called when the deposit:pressure: method sets the
display for updating. A detailed explanation for each numbered line of code appears following the listing.

Listing 2-17 The drawRect routine for the Mouse Paint application

- (void)drawRect:(NSRect)rect
{
 CGRect cg;

// 1 CIContext *context = [[NSGraphicsContext currentContext] CIContext];
 cg = CGRectMake(NSMinX(rect), NSMinY(rect),
 NSWidth(rect), NSHeight(rect));

// 2 [context drawImage:[[self canvas] image]
 atPoint:cg.origin
 fromRect:cg];
}

Here’s what the code does:

1. Creates a Core Image context by calling the NSGraphicsContext method CIContext. You need to
create the context only once; always reuse the CIContext object when you can.

2. Draws the image returned by the CIImageAccumulator object at the origin (0,0), using the full size
of the view.

Imaging Dynamical Systems 37
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

Tip: If you repeatedly call Core Image without returning to your application run loop, it’s best to surround
each batch of Core Image invocations with their own autorelease pool. This practice prevents your application
from using more memory than necessary—which is important when you manipulate images.

Applying a Filter to Video

Core Image and Core Video can work together to achieve a variety of effects. For example, you can use a
color correction filter on a video shot under water to correct for the fact that water absorbs red light faster
than green and blue light. There are many more ways you can use these technologies together.

Follow these steps to apply a Core Image filter to a video displayed using Core Video:

1. When you subclass NSView to create a view for the video, declare a CIFilter object in the interface,
similar to what’s shown in this code:

@interface MyVideoView : NSView
{
 NSRecursiveLock *lock;
 QTMovie *qtMovie;
 QTVisualContextRef qtVisualContext;
 CVDisplayLinkRef displayLink;
 CVImageBufferRef currentFrame;
 CIFilter *effectFilter;
 id delegate;
}

2. When you initialize the view with a frame, you create a CIFilter object for the filter and set the default
values using code similar to the following:

effectFilter = [[CIFilter filterWithName:@"CILineScreen"] retain];
[effectFilter setDefaults];

This example uses the Core Image filter CILineScreen, but you’d use whatever is appropriate for your
application.

3. Set the filter input parameters, except for the input image.

4. Each time you render a frame, you need to set the input image and draw the output image. Your
renderCurrentFrame routine would look similar to the following. Note that this example, to avoid
interpolation, uses integer coordinates when it draws the output.

- (void)renderCurrentFrame
{
 NSRect frame = [self frame];

 if(currentFrame)
 {
 CGRect imageRect;
 CIImage *inputImage, *outputImage;

 inputImage = [CIImage imageWithCVImageBuffer:currentFrame];
 imageRect = [inputImage extent];
 [effectFilter setValue:inputImage forKey:@"inputImage"];

38 Applying a Filter to Video
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

 [[[NSGraphicsContext currentContext] CIContext]
 drawImage:[effectFilter valueForKey:@"outputImage"]
 atPoint:CGPointMake(
 (int)((frame.size.width - imageRect.size.width) * 0.5),
 (int)((frame.size.height - imageRect.size.height) * 0.5))
 fromRect:imageRect];
 }
}

5. In your dealloc method, make sure you release the filter.

The following sample applications apply Core Image filters to video:

 ■ CIVideoDemoGL demonstrates using Core Image with QuickTime through Core Video.

 ■ QTCoreImage101 is a Cocoa application that demonstrates how to render a QuickTime Movie using Core
Image filters, Core Video, and Visual Contexts.

You can download these and other sample applications from the ADC Reference Library (Sample Code >
Graphics & Imaging > Quartz).

Applying a Filter to Video 39
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

http://developer.apple.com/samplecode/GraphicsImaging/idxQuartz-date.html#doclist

40 Applying a Filter to Video
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Core Image Filters

If the filters provided by Core Image don’t provide the functionality you need, you can write your own filter.
You can include a filter as part of an application project, or you can package one or more filters as a standalone
image unit. Image units use the NSBundle class and represent the plug-in architecture for filters.

The following sections provide detailed information on how to create and use custom filters and image units:

 ■ “Expressing Image Processing Operations in Core Image” (page 41)

 ■ “Creating a Custom Filter” (page 41) describes the methods that you need to implement and other filter
requirements.

 ■ “Using Your Own Custom Filter” (page 49) tells what’s need for you to use the filter in your own
application. (If you want to package it as a standalone image unit, see “Packaging Filters as Image
Units” (page 59).)

 ■ “Supplying an ROI Function” (page 50) provides information about the region of interest and when you
must supply a method to calculate this region. (It’s not always needed.)

 ■ “Writing Nonexecutable Filters” (page 53) is a must-read section for anyone who plans to write a filter
that is CPU nonexecutable, as it lists the requirements for such filters. An image unit can contain both
kinds of filters. CPU nonexecutable filters are secure because they cannot harbor viruses and trojan
horses. Filter clients who are security conscious may want to use only those filters that are CPU
nonexecutable.

 ■ “Kernel Routine Examples” (page 55) provides kernel routines for three sample filters: brightening,
multiply, and hole distortion.

Expressing Image Processing Operations in Core Image

Core Image works such that a kernel (that is, a per-pixel processing routine) is written as a computation where
an output pixel is expressed using an inverse mapping back to the corresponding pixels of the kernel’s input
images. Although you can express most pixel computations this way—some more naturally than others—there
are some image processing operations for which this is difficult, if not impossible. Before you write a filter,
you may want to consider whether the image processing operation can be expressed in Core Image. For
example, computing a histogram is difficult to describe as an inverse mapping to the source image.

Creating a Custom Filter

This section shows how to create a Core Image filter that has an Objective-C portion and a kernel portion.
By following the steps in this section, you’ll create a filter that is CPU executable. You can package this filter,
along with other filters if you’d like, as an image unit by following the instructions in “Creating Custom
Filters” (page 41). Or, you can simply use the filter from within your own application. See “Using Your Own
Custom Filter” (page 49) for details.

Expressing Image Processing Operations in Core Image 41
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

The filter in this section assumes that the region of interest (ROI) and the domain of definition coincide. If
you want to write a filter for which this assumption isn’t true, make sure you also read “Supplying an ROI
Function” (page 50). Before you create your own custom filter, make sure you understand Core Image
coordinate spaces. See “Coordinate Spaces ” (page 16).

To create a custom CPU executable filter, perform the following steps:

1. “Write the Kernel Code” (page 43)

2. “Use Quartz Composer to Test the Kernel Routine” (page 44)

3. “Declare an Interface for the Filter” (page 45)

4. “Write an Init Method for the CIKernel Object” (page 45)

5. “Write a Custom Attributes Method” (page 46)

6. “Write an Output Image Method” (page 47)

7. “Register the Filter” (page 48)

8. “Write a Method to Create Instances of the Filter” (page 49)

Each step is described in detail in the sections that follow using a haze removal filter as an example. The
effect of the haze removal filter is to adjust the brightness and contrast of an image, and to apply sharpening
to it. This filter is useful for correcting images taken through light fog or haze, which is typically the case
when taking an image from an airplane. Figure 3-1 shows an image before and after processing with the
haze removal filter. The application using the filter provides sliders that allow the user to adjust the input
parameters to the filter.

Figure 3-1 An image before and after processing with the haze removal filter

42 Creating a Custom Filter
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

Write the Kernel Code

The code that performs per-pixel processing resides in a file with the .cikernel extension. You can include
more than one kernel routine in this file. You can also include other routines if you want to make your code
modular. You specify a kernel using a subset of OpenGL Shading Language and the Core Image extensions
to it. See Core Image Kernel Language Reference for information on allowable elements of the language.

A kernel routine signature must return a vector (vec4) that contains the result of mapping the source to the
destination. Core Image invokes a kernel routine once for each pixel. Keep in mind that your code can’t
accumulate knowledge from pixel to pixel. A good strategy when you write your code is to move as much
invariant calculation as possible from the actual kernel and place it in the Objective-C portion of the filter.

Listing 3-1 shows the kernel routine for a haze removal filter. A detailed explanation for each numbered line
of code follows the listing. (There are examples of other pixel-processing routines in “Kernel Routine
Examples” (page 55) and in Image Unit Tutorial.)

Listing 3-1 A kernel routine for the haze removal filter

// 1kernel vec4 myHazeRemovalKernel(sampler src,
 __color color,
 float distance,
 float slope)
{
 vec4 t;
 float d;

// 2 d = destCoord().y * slope + distance;
// 3 t = unpremultiply(sample(src, samplerCoord(src)));
// 4 t = (t - d*color) / (1.0-d);

// 5 return premultiply(t);
}

Here’s what the code does:

1. Takes four input parameters and returns a vector. When you declare the interface for the filter, you must
make sure to declare the same number of input parameters as you specify in the kernel. The kernel must
return a vec4 data type.

2. Calculates a value based on the y-value of the destination coordinate and the slope and distance input
parameters. The destCoord routine (provided by Core Image) returns the position, in working space
coordinates, of the pixel currently being computed.

3. Gets the pixel value, in sampler space, of the sampler src that is associated with the current output pixel
after any transformation matrix associated with the src is applied. Recall that Core Image uses color
components with premultiplied alpha values. Before processing, you need to unpremultiply the color
values you receive from the sampler.

4. Calculates the output vector by applying the haze removal formula, which incorporates the slope and
distance calculations and adjusts for color.

5. Returns a vec4 vector, as required. The kernel performs a premultiplication operation before returning
the result because Core Image uses color components with premultiplied alpha values.

Creating a Custom Filter 43
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

A few words about samplers and sample coordinate space: The samplers you set up to provide samples
to kernels that you write can contain any values necessary for the filter calculation, not just color values. For
example, a sampler can provide values from numerical tables, vector fields in which the x and y values are
represented by the red and green components respectively, height fields, and so forth. This means that you
can store any vector-value field with up to four components in a sampler. To avoid confusion on the part of
the filter client, it’s best to provide documentation that states when a vector is not used for color. When you
use a sampler that doesn’t provide color, you can bypass the color correction that Core Image usually performs
by providing a nil colorspace.

Use Quartz Composer to Test the Kernel Routine

Quartz Composer is an easy-to-use development tool (provided starting in Mac OS X v10.4) that you can use
to test kernel routines. The Quartz Composer application is located in this directory:

/Developer/Applications/

Quartz Composer User Guide describes the Quartz Composer user interface and provides details on how to
create compositions. You’ll want to read that document before you use Quartz Composer to test your kernel
routine.

Quartz Composer provides a patch into which you can place your kernel routine. (In Mac OS X v10.4 this
patch is named Core Image Kernel patch; it’s called Core Image Filter patch in Mac OS X v10.5 and later.) You
simply open the Inspector for the Core Image patch, and either paste or type your code into the text field,
as shown in Figure 3-2.

Figure 3-2 The haze removal kernel routine pasted into the Settings pane

After you enter the code, the patch inputs ports are automatically created according to the prototype of the
kernel function, as you can see in Figure 3-3. The patch always has a single output port, which represents
the resulting image produced by the kernel.

44 Creating a Custom Filter
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

The simple composition shown in the figure imports an image file using the Image Importer patch, processes
it through the kernel, then renders the result on screen using the Billboard patch. (See Quartz Composer User
Guide for information on the Image Importer and Billboard patches). Your kernel can use more than one
image or, if it generates output, it might not require any input images.

The composition you build to test your kernel can be more complex than that shown in Figure 3-3. For
example, you might want to chain your kernel routine with other built-in Core Image filters or with other
kernel routines. Quartz Composer provides many, many other patches that you can use in the course of
testing your kernel routine.

Figure 3-3 A Quartz Composer composition that tests a kernel routine

Declare an Interface for the Filter

The .h file for the filter contains the interface that specifies the filter inputs, as shown in Listing 3-2. The haze
removal kernel has four input parameters: a source, color, distance, and slope. The interface for the filter
must also contain these input parameters. The input parameters must be in the same order as specified for
the filter, and the data types must be compatible between the two.

Listing 3-2 Code that declares the interface for a haze removal filter

@interface MyHazeFilter: CIFilter
{
 CIImage *inputImage;
 CIColor *inputColor;
 NSNumber *inputDistance;
 NSNumber *inputSlope;
}

@end

Write an Init Method for the CIKernel Object

The implementation file for the filter contains a method that initializes a Core Image kernel object (CIKernel)
with the kernel routine specified in the .cikernel file. A .cikernel file can contain more than one kernel
routine. A detailed explanation for each numbered line of code appears following the listing.

Listing 3-3 An init method that initializes the kernel

static CIKernel *hazeRemovalKernel = nil;

- (id)init
{

Creating a Custom Filter 45
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

// 1 if(hazeRemovalKernel == nil)
 {

// 2 NSBundle *bundle = [NSBundle bundleForClass: [self class]];
// 3 NSString *code = [NSString stringWithContentsOfFile: [bundle

 pathForResource: @"MyHazeRemoval"
 ofType: @"cikernel"]];

// 4 NSArray *kernels = [CIKernel kernelsWithString: code];

// 5 hazeRemovalKernel = [[kernels objectAtIndex:0] retain];
 }

 return [super init];
}

Here’s what the code does:

1. Checks whether the CIKernel object is already initialized.

2. Returns the bundle that dynamically loads the CIFilter class.

3. Returns a string created from the file name at the specified path, which in this case is the
MyHazeRemoval.cikernel file.

4. Creates a CIKernel object from the string specified by the code argument. Each routine in the
.cikernel file that is marked as a kernel is returned in the kernels array. This example has only one
kernel in the .cikernel file, so the array contains only one item.

5. Sets hazeRemovalKernel to the first kernel in the kernels array. If the .cikernel file contains more
than one kernel, you would also initialize those kernels in this routine.

Write a Custom Attributes Method

A customAttributes method allows clients of the filter to obtain the filter attributes such as the input
parameters, default values, and minimum and maximum values. (See CIFilter Class Reference for a complete
list of attributes.) A filter is not required to provide any information about an attribute other than its class,
but a filter must behave in a reasonable manner if attributes are not present.

Typically, these are the attributes that your customAttributes method would return:

 ■ Input and output parameters

 ■ Attribute class for each parameter (mandatory)

 ■ Minimum, maximum, and default values for each parameter (optional)

 ■ Other information as appropriate, such as slider minimum and maximum values (optional)

Listing 3-4 shows the customAttributesmethod for the Haze filter. The input parameters inputDistance
and inputSlope each have minimum, maximum, slider minimum, slider maximum, default and identity
values set. The slider minimum and maximum values are used to set up the sliders shown in Figure 3-1 (page
42). The inputColor parameter has a default value set.

46 Creating a Custom Filter
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

Listing 3-4 The customAttributes method for the Haze filter

- (NSDictionary *)customAttributes
{
 return [NSDictionary dictionaryWithObjectsAndKeys:

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 0.0], kCIAttributeMin,
 [NSNumber numberWithDouble: 1.0], kCIAttributeMax,
 [NSNumber numberWithDouble: 0.0], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 0.7], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 0.2], kCIAttributeDefault,
 [NSNumber numberWithDouble: 0.0], kCIAttributeIdentity,
 kCIAttributeTypeScalar, kCIAttributeType,
 nil], @"inputDistance",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: -0.01], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 0.01], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 0.00], kCIAttributeDefault,
 [NSNumber numberWithDouble: 0.00], kCIAttributeIdentity,
 kCIAttributeTypeScalar, kCIAttributeType,
 nil], @"inputSlope",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [CIColor colorWithRed:1.0 green:1.0 blue:1.0 alpha:1.0],
 kCIAttributeDefault,
 nil], @"inputColor",

 nil];
}

Write an Output Image Method

An outputImage method creates a CISampler object for each input image (or image mask), creates a
CIFilterShape object (if appropriate), and applies the kernel method. Listing 3-5 shows an outputImage
method for the haze removal filter. The first thing the codes does is to set up a sampler to fetch pixels from
the input image. Because this filter uses only one input image, the code sets up only one sampler.

The code calls the apply:arguments:options: method of CIFilter to produce a CIImage object. The
first parameter to the apply method is the CIKernel object that contains the haze removal kernel function.
(See “Write the Kernel Code” (page 43).) Recall that the haze removal kernel function takes four arguments:
a sampler, a color, a distance, and the slope. These arguments are passed as the next four parameters to the
apply:arguments:options:method in the listing. The remaining arguments to the apply method specify
options (key-value pairs) that control how Core Image should evaluate the function. You can pass one of
three keys: kCIApplyOptionExtent, kCIApplyOptionDefinition, or kCIApplyOptionUserInfo. This
example uses the kCIApplyOptionDefinition key to specify the domain of definition (DOD) of the output
image. See CIFilter Class Reference for a description of these keys and for more information on using the
apply:arguments:options: method.

The final argument nil, specifies the end of the options list.

Listing 3-5 A method that returns the image output from a haze removal filter

- (CIImage *)outputImage

Creating a Custom Filter 47
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

{
 CISampler *src = [CISampler samplerWithImage: inputImage];

 return [self apply: hazeRemovalKernel, src, inputColor, inputDistance,
 inputSlope, kCIApplyOptionDefinition, [src definition], nil];
}

Listing 3-5 is a simple example. The implementation for your outputImage method needs to be tailored to
your filter. If your filter requires loop-invariant calculations, you would include them in the outputImage
method rather than in the kernel.

Register the Filter

Ideally, you’ll package the filter as an image unit, regardless of whether you plan to distribute the filter to
others or use it only in your own application. If you plan to package this filter as an image unit, you’ll register
your filter using the CIPlugInRegistration protocol described in “Packaging Filters as Image Units” (page
59). You can skip the rest of this section.

Note: Packaging your custom filter as an image unit promotes modular programming and code
maintainability.

If for some reason you do not want to package the filter as an image unit (which is not recommended), you’ll
need to register your filter using the registration method of the CIFilter class described shown in Listing
3-6. The initialize method calls registerFilterName:constructor:classAttributes:. You should
register only the display name (kCIAttributeFilterDisplayName) and the filter categories
(kCIAttributeFilterCategories). All other filters attributes should be specified in thecustomAttributes
method. (See “Write a Custom Attributes Method” (page 46)).

The filter name is the string for creating the haze removal filter when you want to use it. The constructor
object specified implements the filterWithName: method (see “Write a Method to Create Instances of
the Filter” (page 49)). The filter class attributes are specified as an NSDictionary object. The display
name—what you’d show in the user interface—for this filter is Haze Remover.

Listing 3-6 Registering a filter that is not part of an image unit

+ (void)initialize
{
 [CIFilter registerFilterName: @"MyHazeRemover"
 constructor: self
 classAttributes: [NSDictionary dictionaryWithObjectsAndKeys:
 @"Haze Remover", kCIAttributeFilterDisplayName,
 [NSArray arrayWithObjects:
 kCICategoryColorAdjustment, kCICategoryVideo,
 kCICategoryStillImage,kCICategoryInterlaced,
 kCICategoryNonSquarePixels,nil], kCIAttributeFilterCategories,
 nil]
];
}

48 Creating a Custom Filter
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

Write a Method to Create Instances of the Filter

If you plan to use this filter only in your own application, then you’ll need to implement a filterWithName:
method as described in this section. If you plan to package this filter as an image unit for use by third-party
developers, then you can skip this section because your packaged filters can use the filterWithName:
method provided by the CIFilter class.

The filterWithName: method shown in Listing 3-7 creates instances of the filter when they are requested.

Listing 3-7 A method that creates instance of a filter

+ (CIFilter *)filterWithName: (NSString *)name
{
 CIFilter *filter;

 filter = [[self alloc] init];
 return [filter autorelease];
}

After you follow these steps to create a filter, you can use the filter in your own application. See “Using Your
Own Custom Filter” (page 49) for details. If you want to make a filter or set of filters available as a plug-in
for other applications, see “Creating Custom Filters” (page 41).

Using Your Own Custom Filter

The procedure for using your own custom filter is the same as the procedure for using any filter provided by
Core Image except that you must initialize the filter class. You initialize the haze removal filter class created
in the last section with this line of code:

[MyHazeFilter class];

Listing 3-8 shows how to use the haze removal filter. Note the similarity between this code and the code
discussed in “Processing an Image” (page 24).

Note: If you’ve packaged your filter as an image unit, you need to load it. See “Using Core Image Filters” (page
19) for details.

Listing 3-8 Using your own custom filter

- (void)drawRect: (NSRect)rect
{
 CGRect cg = CGRectMake(NSMinX(rect), NSMinY(rect),
 NSWidth(rect), NSHeight(rect));
 CIContext *context = [[NSGraphicsContext currentContext] CIContext];

 if(filter == nil)
 {
 NSURL *url;

 [MyHazeFilter class];

 url = [NSURL fileURLWithPath: [[NSBundle mainBundle]

Using Your Own Custom Filter 49
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

 pathForResource: @"CraterLake" ofType: @"jpg"]];
 filter = [CIFilter filterWithName: @"MyHazeRemover"
 keysAndValues: @"inputImage",
 [CIImage imageWithContentsOfURL: url],
 @"inputColor",
 [CIColor colorWithRed:0.7 green:0.9 blue:1],
 nil];
 [filter retain];
 }

 [filter setValue: [NSNumber numberWithFloat: distance]
 forKey: @"inputDistance"];
 [filter setValue: [NSNumber numberWithFloat: slope]
 forKey: @"inputSlope"];

 [context drawImage: [filter valueForKey: @"outputImage"]
 atPoint: cg.origin fromRect: cg];
}

Supplying an ROI Function

The region of interest, or ROI, defines the area in the source from which a sampler takes pixel information to
provide to the kernel for processing. Recall from the “The Region of Interest” (page 16) discussion in “Core
Image Concepts” (page 9) that the working space coordinates of the ROI and the domain of definition
either coincide exactly, are dependent on one another, or not related. Core Image always assumes that the
ROI and the domain of definition coincide. If that’s the case for the filter you write, then you don’t need to
supply an ROI function. But if this assumption is not true for the filter you write, then you must supply an
ROI function. Further, you can supply an ROI function only for CPU executable filters.

Note: The ROI and domain of definition for a CPU nonexecutable filter must coincide. You can’t supply an
ROI function for this type of filter. See “Writing Nonexecutable Filters” (page 53).

The ROI function you supply calculates the region of interest for each sampler that is used by the kernel. Core
Image invokes your ROI function, passing to it the sampler index, the extent of the region being rendered,
and any data that is needed by your routine. The method signature must follow this form:

- (CGRect) regionOf:(int)samplerIndex
 destRect:(CGRect)r
 userInfo:obj;

where

 ■ samplerIndex specifies the sampler for which the method calculates the ROI

 ■ r specifies the extent of the region

 ■ obj specifies any data that’s needed by the routine. You can use the obj parameter to ensure that your
ROI function gets the data that it needs, and that the data is correct (the filter’s instance variables might
have changed).

Core Image calls your routine for each pass through the filter. Your method calculates the ROI based on the
rectangle and user information passed to it, and returns the ROI specified as a CGRect data type.

50 Supplying an ROI Function
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

You register the ROI function by calling the CIKernelmethod setROISelector:, supplying the ROI function
as the aMethod argument. For example:

[kernel setROISelector:@selector(regionOf:destRect:userInfo:)]

The next sections provide examples of ROI functions.

A Simple ROI Function

If your ROI function does not require data to be passed to it in the userInfo parameter, then you don’t
need to include that argument, as shown in Listing 3-9. The code in the listing outsets the sampler by one
pixel, which is a calculation used by an edge-finding filter or any 3X3 convolution.

Listing 3-9 A simple ROI function

- (CGRect)regionOf:(int)samplerIndex destRect:(CGRect)r
{
 return CGRectInset(r, -1.0, -1.0);
}

Note that this function ignores the samplerIndex value. If your kernel uses only one sampler, then you can
ignore the index. If your kernel uses more than one sampler, you must make sure that you return the ROI
that’s appropriate for the specified sampler. You’ll see how to do that in the sections that follow.

An ROI Function for a Glass Distortion Filter

Listing 3-10 show an ROI function for a glass distortion filter. This function returns an ROI for two samplers.
Sampler 0 represents the image to distort and sampler 1 represents the texture used for the glass.

The function uses the userInfo parameter to supply the input scale that’s needed by sampler 0. Notice that
the distortion is outset by half of the supplied scale on all sides.

All of the glass texture (sampler 1) needs to be referenced because the filter uses the texture as a rectangular
pattern. As a result, the function returns an infinite rectangle as the ROI. An infinite rectangle is a convention
that specifies to use all of a sampler. (The constant CGRectInfinite is defined in the Quartz 2D API.)

Note: If you use an infinite ROI make sure that the sampler’s domain of definition is not also infinite otherwise
Core Image will not be able to render the image.

Listing 3-10 An ROI function for a glass distortion filter

- (CGRect)regionOf:(int)samplerIndex destRect:(CGRect)r userInfo:obj
{
 float s;

 s = [obj floatValue] * 0.5f;
 if (samplerIndex == 0)
 return CGRectInset(r, -s,-s);

 return CGRectInfinite;
}

Supplying an ROI Function 51
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

An ROI Function for an Environment Map

Listing 3-11 shows an ROI function that returns the ROI for a kernel that uses three samplers, one of which
is an environment map. The ROI for sampler 0 and sampler 1 coincide with the domain of definition. For that
reason, the code returns the destination rectangle passed to it for samplers other than sampler 2.

Sampler 2 uses values passed in the userInfoparameter that specify the height and width of the environment
map to create the rectangle that specifies the region of interest.

Listing 3-11 Supplying a routine the calculates the region of interest

- (CGRect)regionOf:(int)samplerIndex
 forRect:(CGRect)destination
 userInfo:(NSArray *)myArray
{
 if (samplerIndex == 2)
 return CGRectMake (0, 0,
 [[myArray objectAtIndex:0] floatValue],
 [[myArray objectAtIndex:1] floatValue]);
 return destination;
}

Specifying Sampler Order

As you saw from the previous examples, a sampler has an index associated with it. When you supply an ROI
function, Core Image passes a sampler index to you. A sampler index is assigned on the basis of its order
when passed to the applymethod for the filter. You call apply from within the filter’s outputImage routine,
as shown in Listing 3-12.

In this listing, notice especially the numbered lines of code that set up the samplers and show how to provide
them to the kernel. A detailed explanation for each of these lines appears following the listing.

Listing 3-12 An output image routine for a filter that uses an environment map

- (CIImage *)outputImage
{
 int i;

// 1 CISampler *src, *blur, *env;
 CIVector *envscale;
 CGSize size;
 CIKernel *kernel;

// 2 src = [CISampler samplerWithImage:inputImage];
// 3 blur = [CISampler samplerWithImage:inputHeightImage];
// 4 env = [CISampler samplerWithImage:inputEnvironmentMap];

 size = [env extent].size;
 envscale = [CIVector vectorWithX:[inputEMapWidth floatValue]
 Y:[inputEMapHeight floatValue]];
 i = [inputKind intValue];
 if ([inputHeightInAlpha boolValue])
 i += 8;
 kernel = [roundLayerKernels objectAtIndex:i];

// 5 [kernel setROISelector:@selector(regionOf:forRect:userInfo:)];
 NSArray *array = [NSArray arrayWithObjects: inputEMapWidth,

52 Supplying an ROI Function
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

 inputEMapHeight, nil];
// 6 return [self apply: kernel,src, blur, env,

 [NSNumber numberWithFloat:pow(10.0, [inputSurfaceScale
 floatValue])],
 envscale,
 inputEMapOpacity,
 kCIApplyOptionDefinition,
 [src definition],
 kCIApplyOptionUserInfo,
 array,
 nil];
 }

1. Declares variables for each of the three samplers that are needed for the kernel.

2. Sets up a sampler for the input image. The ROI for this sampler coincides with the domain of definition.

3. Sets up a sampler for an image used for input height. The ROI for this sampler coincides with the domain
of definition.

4. Sets up a sampler for an environment map. The ROI for this sampler does not coincide with the domain
of definition, which means you must supply an ROI function.

5. Registers the ROI function with the kernel that needs to use it.

6. Applies arguments to a kernel to produce a Core Image image (CIImage object). The supplied arguments
must be type compatible with the function signature of the kernel function (which is not shown here,
but assume they are type compatible). The list of arguments is terminated by nil, as required.

The order of the sampler arguments determine its index. The first sampler supplied to the kernel is index
0. In this case, that’s the src sampler. The second sampler supplied to the kernel—blur— is assigned
index 1. The third sampler—env—is assigned index 2. It’s important to check your ROI function to make
sure that you provide the appropriate ROI for each sampler.

Writing Nonexecutable Filters

A filter that is CPU nonexecutable is guaranteed to be secure. Because this type of filter runs only on the
GPU, it cannot engage in virus or trojan horse activity or other malicious behavior. To guarantee security,
CPU nonexecutable filters have these restrictions:

 ■ This type of filter is a pure kernel, meaning that it is fully contained in a .cikernel file. As such, it doesn’t
have a filter class and is restricted in the types of processing it can provide. Sampling instructions of the
following form are the only types of sampling instructions that are valid for a nonexecutable filter:

color = sample (someSrc, samplerCoord(someSrc));

 ■ CPU nonexecutable filters must be packaged as part of an image unit.

 ■ Core Image assumes that the ROI coincides with the domain of definition. This means that nonexecutable
filters are not suited for such effects as blur or distortion.

Writing Nonexecutable Filters 53
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

The CIDemoImageUnit sample installed with the developer tools in Developer > Examples > Quartz > Core
Image contains a nonexecutable filter in the MyKernelFilter.cikernel file. When the image unit is
loaded, the MyKernelFilter filter will get loaded along with the FunHouseMirror filter that’s also in the image
unit. FunHouseMirror, however, is an executable filter. It has an Objective-C portion as well as a kernel portion.

When you write a nonexecutable filter, you need to provide all filter attributes in the Descriptions.plist
file for the image unit bundle. Listing 3-13 shows the attributes for the MyKernelFilter in the CIDemoImageUnit
sample.

Listing 3-13 The property list for the MyKernelFilter nonexecutable filter

<key>MyKernelFilter</key>
 <dict>
 <key>CIFilterAttributes</key>
 <dict>
 <key>CIAttributeFilterCategories</key>
 <array>
 <string>CICategoryStylize</string>
 <string>CICategoryVideo</string>
 <string>CICategoryStillImage</string>
 </array>
 <key>CIAttributeFilterDisplayName</key>
 <string>MyKernelFilter</string>
 <key>CIInputs</key>
 <array>
 <dict>
 <key>CIAttributeClass</key>
 <string>CIImage</string>
 <key>CIAttributeDisplayName</key>
 <string>inputImage</string>
 <key>CIAttributeName</key>
 <string>inputImage</string>
 </dict>
 <dict>
 <key>CIAttributeClass</key>
 <string>NSNumber</string>
 <key>CIAttributeDefault</key>
 <real>8</real>
 <key>CIAttributeDisplayName</key>
 <string>inputScale</string>
 <key>CIAttributeIdentity</key>
 <real>8</real>
 <key>CIAttributeMin</key>
 <real>1</real>
 <key>CIAttributeName</key>
 <string>inputScale</string>
 <key>CIAttributeSliderMax</key>
 <real>16</real>
 <key>CIAttributeSliderMin</key>
 <real>1</real>
 </dict>
 <dict>
 <key>CIAttributeClass</key>
 <string>NSNumber</string>
 <key>CIAttributeDefault</key>
 <real>1.2</real>
 <key>CIAttributeDisplayName</key>

54 Writing Nonexecutable Filters
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

 <string> inputGreenWeight </string>
 <key>CIAttributeIdentity</key>
 <real>1.2</real>
 <key>CIAttributeMin</key>
 <real>1</real>
 <key>CIAttributeName</key>
 <string>inputGreenWeight</string>
 <key>CIAttributeSliderMax</key>
 <real>3.0</real>
 <key>CIAttributeSliderMin</key>
 <real>1</real>
 </dict>
 </array>
 </dict>
 <key>CIFilterClass</key>
 <string>MyKernelFilter</string>
 <key>CIHasCustomInterface</key>
 <false/>
 <key>CIKernelFile</key>
 <string>MyKernelFilter</string>

Kernel Routine Examples

The essence of any image processing filter is the kernel that performs the pixel calculations. The code listings
in this section show some typical kernel routines for these filters: brighten, multiply, and hole distortion. By
looking at these you can get an idea of how to write your own kernel routine. Note, however, that these
routines are examples. Don’t assume that the code shown here is what Core Image uses for the filters it
supplies.

Before you write your own kernel routine, you may want to read “Expressing Image Processing Operations
in Core Image” (page 41) to see which operations pose a challenge in Core Image. You’ll also want to take
a look at Core Image Kernel Language Reference.

You can find in-depth information on writing kernels as well as more examples in Image Unit Tutorial.

Computing a Brightening Effect

Listing 3-14 computes a brightening effect. A detailed explanation for each numbered line of code appears
following the listing.

Listing 3-14 A kernel routine that computes a brightening effect

kernel vec4 brightenEffect (sampler src, float k)
{
 vec4 currentSource;

// 1 currentSource = sample (src, samplerCoord (src));
// 2 currentSource.rgb = currentSource.rgb + k * currentSource.a;
// 3 return currentSource;

}

Here what the code does:

Kernel Routine Examples 55
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

1. Looks up the source pixel in the sampler that is associated with the current output position.

2. Adds a bias to the pixel value. The bias is k scaled by the alpha value of the pixel to make sure the pixel
value is premultiplied.

3. Returns the changed pixel.

Computing a Multiply Effect

Listing 3-15 shows a kernel routine that computes a multiply effect. The code looks up the source pixel in
the sampler and then multiplies it by the value passed to the routine.

Listing 3-15 A kernel routine that computes a multiply effect

kernel vec4 multiplyEffect (sampler src, __color mul)
{
 return sample (src, samplerCoord (src)) * mul;
}

Computing a Hole Distortion

Listing 3-16 shows a kernel routine that computes a hole distortion. Note that there are many ways to compute
a hole distortion. A detailed explanation for each numbered line of code appears following the listing.

Listing 3-16 A kernel routine that computes a hole distortion

// 1kernel vec4 holeDistortion (sampler src, vec2 center, vec2 params)
{
 vec2 t1;
 float distance0, distance1;

// 2 t1 = destCoord () - center;
// 3 distance0 = dot (t1, t1);
// 4 t1 = t1 * inversesqrt (distance0);
// 5 distance0 = distance0 * inversesqrt (distance0) * params.x;
// 6 distance1 = distance0 - (1.0 / distance0);
// 7 distance0 = (distance0 < 1.0 ? 0.0 : distance1) * params.y;
// 8 t1 = t1 * distance0 + center;

// 9 return sample (src, samplerTransform (src, t1));
}

Here what the code does:

1. Take three parameters—a sampler, a vector that specifies the center of the hole distortion, and the
params vector, which contains (1/radius, radius).

2. Creates the vector t1 from the center to the current working coordinates.

3. Squares the distance from the center and assigns the value to the distance0 variable.

56 Kernel Routine Examples
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

4. Normalizes t1. (Makes t1 a unit vector.)

5. Computes the parametric distance from the center(distance squared * 1/distance) * 1/radius.
This value is 0 at the center and 1 where the distance is equal to the radius.

6. Creates a hole with the appropriate distortion around it. (x – 1/sqrt (x))

7. Makes sure that all pixels within the hole map from the pixel at the center, then scales up the distorted
distance function by the radius.

8. Scales the vector to create the distortion and then adds the center back in.

9. Returns the distorted sample from the source texture.

Kernel Routine Examples 57
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

58 Kernel Routine Examples
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating Custom Filters

An image unit represents the plug-in architecture for Core Image filters. Image units use the NSBundle class
as the packaging mechanism to allow you to make the filters that you create available to other applications.
An image unit can contain filters that are executable or nonexecutable. (See “Executable and Nonexecutable
Filters” (page 17) for details.)

To create an image unit from a custom filter, you must perform the following tasks:

1. Write the filter by following the instructions in “Creating a Custom Filter” (page 41).

2. “Create an Image Unit Project in Xcode” (page 60).

3. “Add Your Filter Files to the Project” (page 62).

4. “Customize the Load Method” (page 62).

5. “Modify the Description Property List” (page 62).

6. “Build and Test the Image Unit” (page 64)

After reading this chapter, you may also want to read Image Unit Tutorial for in-depth information on writing
kernels and creating image units.

Before You Get Started

Go to the image unit sample provided with the developer tools. See Developer > Examples > Quartz > Core
Image > CIDemoImageUnit. The directory should have the files shown in Figure 4-1. When you create an
image unit, you should have similar files. This image unit contains one filter, FunHouseMirror. Each filter in
an image unit typically has three files: an interface file for the filter class, the associated implementation file,
and a kernel file. As you can see in the figure, this is true for the FunHouseMirror filter:
FunHouseMirrorFilter.h, FunHouseMirrorFilter.m, and funHouseMirror.cikernel.

Each image unit should also have interface and implementation files for the CIPlugInRegistration
protocol. In the figure, see MyPlugInLoader.h and MyPlugInLoader.m. The other important file that you’ll
need to modify is the Description.plist file.

Now that you know a bit about the files in an image unit project, you’re ready to create one.

Before You Get Started 59
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

Figure 4-1 The files in CIDemoImageUnit

Create an Image Unit Project in Xcode

Xcode provides a template for creating image units. After you create an image unit project, you’ll have most
of the files you need to get started and the project will be linked to the appropriate frameworks.

Follow these steps to create an image unit project in Xcode:

1. Launch Xcode and choose File > New Project.

60 Create an Image Unit Project in Xcode
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

2. In the New Project window, choose Image Unit Plug-in for Objective C, located under Standard Apple
Plug-ins, as shown in Figure 4-2. Then click Next.

Figure 4-2 The image unit template in the New Project window

3. Name the image unit project and click Finish.

The project window opens and looks similar to what’s shown in Figure 4-3.

Figure 4-3 The project window for a new image unit project

Create an Image Unit Project in Xcode 61
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

Notice that Xcode automatically creates a kernel file called MyKernelFilter.cikernel and interface and
implementation files for the CIPlugInRegistration protocol. You might want to rename the
CIPlugInRegistration protocol files so they are MyPlugInLoader just so that’s it’s easy to remember
what’s in the file. The MyKernelFilter.cikernel file is a sample kernel file. But if you’ve already created
a filter you won’t need this file, so you can delete it. You’ll add your own to the project in just a moment.

Customize the Load Method

Open the file that implements the CIPlugInRegistration protocol. In it you’ll find a load method, as
shown in Listing 4-1. You have the option to add code to this method to perform any initialization that’s
needed, such as a registration check. The method returns true if the filter is loaded successfully. If you don’t
need any custom initialization, you can leave the load method as it is.

Listing 4-1 The load method provided by the image unit template

-(BOOL)load:(void*)host
{
 // custom image unit initialization code goes here
 return YES;
}

If you want, you can write an unload method to perform any cleanup tasks that might be required by your
filter.

Add Your Filter Files to the Project

Add the filter files you created previously to the image unit project. Recall that you’ll need the interface and
implementation files for each filter and the associated kernel file. If you haven’t written the filter yet, see
“Creating Custom Filters” (page 41).

Keep in mind that you can package more than one filter in an image unit, and you can have as many kernel
files as are appropriate for your filters. Just make sure that you include all the filter and kernel files that you
want to package.

Modify the Description Property List

For executable filters, only the version number, filter class, and filter name are read from the
Description.plist file. You provide a list of attributes for the filter in your code (see “Write a Custom
Attributes Method” (page 46)). You need to check the Description.plist file provided in the image unit
template to make sure the filter name is correct and to enter the version number.

For CPU–nonexecutable filters, the image unit host reads the Description.plist file to obtain information
about the filter attributes listed inTable 4-1. You need to modify the Description.plist file so that it
contains the appropriate information. (For information about filter keys, see also Core Image Reference
Collection.)

62 Customize the Load Method
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

Table 4-1 Keys in the filter description property list

Associated valuesKey

A dictionary of filter dictionaries. If this key is present, it indicates that there is
at least one Core Image filter defined in the image unit.

CIPlugInFilterList

The localized filter name available in the Description.strings file.CIFilterDisplayName

The class name in the binary that contains the filter implementation, if available.CIFilterClass

The filename of the filter kernel in the bundle, if available. Use this key to define
a nonexecutable filter.

CIKernelFile

A dictionary of attributes that describe the filter. This is the same as the
attributes dictionary that you provided when you wrote the filter.

CIFilterAttributes

An array of input keys and associated attributes. The input keys must be in
the same order as the parameters of the kernel function. Each attribute must
contain its parameter class (see Table 4-2 (page 63)) and name.

CIInputs

Reserved for future use.CIOutputs

None. Use this key to specify that the filter has a custom user interface. The
host provides a view for the user interface.

CIHasCustomInterface

The version of the CIPlugIn architecture, which is 1.0.CIPlugInVersion

Table 4-2 lists the input parameter classes and the value associated with each class. For a nonexecutable
filter, you provide the parameter class for each input and output parameter.

Table 4-2 Input parameter classes and expected values

Associated valueInput parameter class

A string that specifies a color.CIColor

A string that specifies a vector. See vectorWithString:.CIVector

An NSString object that describes either the relative path of the image to the
bundle or the absolute path of the image.

CIImage

An NSNumber value.All scalar types

Figure 4-4 shows the contents of a description.plist file for a color generator filter. You may want to
use the Property List Editor to modify a description.plist file. The Property List Editor application is
located in Developer/Applications/Utilities/.

Modify the Description Property List 63
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

Figure 4-4 A description property list for a sample filter

Build and Test the Image Unit

Even before you started creating the image unit, you should have tested the kernel code to make sure that
it works properly. (See “Use Quartz Composer to Test the Kernel Routine” (page 44).) After you successfully
build the image unit, you’ll want to copy it to the following directory:

 ■ /Library/Graphics/Image Units and ~/Library/Graphics/Image Units

Then, you should try loading the image unit from an application and using the filter (or filters) that are
packaged in the unit. See “Loading Image Units” (page 20), “Getting a List of Filters and Attributes” (page
20), and “Processing an Image” (page 24).

See Also

 ■ ImageUnit Tutorialwhich provides step-by-step instructions for writing a variety of kernels and packaging
them as image units.

64 Build and Test the Image Unit
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

 ■ CIDemoImageUnit is a sample image unit Xcode project which is available after you install the developer
tools on your hard disk, in Developer > Examples > Quartz > Core Image.

 ■ CIAnnotation is a compositing and painting sample application that contains two custom image units.
It is available from the ADC Reference Library (Sample Code > Graphics & Imaging > Quartz.

See Also 65
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

http://developer.apple.com/samplecode/GraphicsImaging/idxQuartz-date.html#doclist

66 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Packaging Filters as Image Units

This table describes the changes to Core Image Programming Guide.

NotesDate

Added details on coordinate spaces.2008-06-09

Added information to “Coordinate Spaces ” (page 16).

Updated for Mac OS X v10.5.2007-10-31

Added a note to “Coordinate Spaces ” (page 16).

Added “Adding the Quartz Core Framework” (page 19).

Updated “Introduction to Core Image Programming Guide” (page 7) to include
information on Image Kit.

Add information about CIFilter Image Kit Additions to “Getting a List of Filters
and Attributes” (page 20).

Added information about support for RAW images in “Processing an
Image” (page 24).

Updated links to references and added links in several places to Image Unit
Tutorial.

Revised “Executable and Nonexecutable Filters” (page 17).

Revised “Write an Output Image Method” (page 47).

Added link to Cocoa memory management.2007-05-29

Removed section on memory management. Instead, see Memory Management
Programming Guide for Cocoa.

Added a note to “Coordinate Spaces ” (page 16).

Added “Adding the Quartz Core Framework” (page 19).

Fixed a typographical error.

Fixed minor technical and typographical errors.2007-01-08

Fixed minor technical problem.2006-09-05

Corrected the angular values for colors in “Create, Set Up, and Apply Filters” (page
26).

67
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Reorganized content and added task information.2006-06-28

Removed the appendix “Core Image Filters” and created a new document named
Core Image Filter Reference.

Removed the appendix “Core Image Kernel Language” and created a new
document named Core Image Kernel Language Reference.

Added “Kernel Routine Examples” (page 55) to “Creating Custom Filters” (page
41) and changed some of the short variable names to long ones in the code
listings. Added information to “Computing a Hole Distortion” (page 56) to clarify
the purpose of the example.

Moved information about packaging filters as image units into its own chapter.
Added additional information about the files needed in the project and where
to install the image unit. See “Before You Get Started” (page 59), “Build and
Test the Image Unit” (page 64), and “See Also” (page 64).

Updated the book introduction and some of the chapter introductions to reflect
the chapter and appendix changes.

Revised “Creating a Custom Filter” (page 41). In particular, see “Write a Custom
Attributes Method” (page 46) and “Register the Filter” (page 48).

Added additional information on how to create nonexecutable filters. See
“Writing Nonexecutable Filters” (page 53).

Revised information on creating a CIContext object from an OpenGL graphics
context. See “Create a Core Image Context” (page 25).

Fixed formatting and, in online versions of this document, provided hyperlinks
to the image creation functions in Table 2-5 (page 26).

Added hyperlinks to most symbols and to sample code available in the ADC
Reference Library.

Numerous small formatting and grammatical changes throughout.

Made minor corrections to a few filter parameters. Added information on the
CIFilterBrowser widget.

2005-12-06

Fixed several typographical errors and a broken hyperlink.2005-11-09

Updated a figure in the PDF version of this document.2005-08-11

Corrected typographical errors.2005-07-07

Updated for public release of Mac OS X v10.4. First public version.2005-04-29

Changed the title from Image Processing With Core Image to make it more
consistent with the titles of similar documentation.

68
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Completely revised “Core Image Concepts” (page 9) to provide more in-depth
information about how Core Image works.

Split the chapter titled Core Image Tasks into two chapters: “Using Core Image
Filters” (page 19) and “Creating Custom Filters” (page 41). Completely updated
the content in each to reflect additions to the API and to provide more in-depth
information.

Added “Using Transition Effects” (page 30).

Added “Imaging Dynamical Systems” (page 34).

Added “Applying a Filter to Video” (page 38).

Added “Expressing Image Processing Operations in Core Image” (page 41).

Added “Use Quartz Composer to Test the Kernel Routine” (page 44).

Provided more information on the region of interest and ROI functions. See “The
Region of Interest” (page 16) and “Supplying an ROI Function” (page 50).

Provided more information on executable and nonexecutable filters. See
“Executable and Nonexecutable Filters” (page 17) and “Writing Nonexecutable
Filters” (page 53).

Updated the appendix “Core Image Filters to include recently-added built-in
Core Image filters. Also replaced many of the figures to provide a better idea of
the result produced by a filter.

Updated the appendix “Core Image Kernel Language” to reflect changes in the
kernel language. Added explanations for the kernel routine examples.

New seed draft that describes an image processing technology, built into Mac
OS X v10.4, that provides access to built-in image filters for both video and still
images and support for custom filters and real-time processing.

2004-06-29

69
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

70
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Image Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Core Image Concepts
	Core Image and the GPU
	Filter Clients and Filter Creators
	The Processing Path
	Coordinate Spaces
	The Region of Interest
	Executable and Nonexecutable Filters
	Color Components and Premultiplied Alpha
	See Also

	Using Core Image Filters
	Adding the Quartz Core Framework
	Loading Image Units
	Getting a List of Filters and Attributes
	Processing an Image
	Create a Core Image Context
	Get the Image to Process
	Create, Set Up, and Apply Filters
	Draw the Result

	Using Transition Effects
	Imaging Dynamical Systems
	Create and Initialize an Image Accumulator Object
	Set Up and Apply a Filter to the Image Accumulator
	Create a CIContext Object and Draw the Image

	Applying a Filter to Video

	Creating Custom Filters
	Expressing Image Processing Operations in Core Image
	Creating a Custom Filter
	Write the Kernel Code
	Use Quartz Composer to Test the Kernel Routine
	Declare an Interface for the Filter
	Write an Init Method for the CIKernel Object
	Write a Custom Attributes Method
	Write an Output Image Method
	Register the Filter
	Write a Method to Create Instances of the Filter

	Using Your Own Custom Filter
	Supplying an ROI Function
	A Simple ROI Function
	An ROI Function for a Glass Distortion Filter
	An ROI Function for an Environment Map
	Specifying Sampler Order

	Writing Nonexecutable Filters
	Kernel Routine Examples
	Computing a Brightening Effect
	Computing a Multiply Effect
	Computing a Hole Distortion

	Packaging Filters as Image Units
	Before You Get Started
	Create an Image Unit Project in Xcode
	Customize the Load Method
	Add Your Filter Files to the Project
	Modify the Description Property List
	Build and Test the Image Unit
	See Also

	Revision History

