
Core Video Programming Guide
Graphics & Imaging > Video

2007-04-03



Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, Quartz, and QuickTime
are trademarks of Apple Inc., registered in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction to Core Video Programming Guide 7

Who Should Read This Document? 7
Organization of This Document 8
See Also 8

Chapter 1 Core Video Concepts 9

The Core Video Pipeline 9
The Display Link 10
Buffer Management 10
What’s in a Frame? 12

Chapter 2 Core Video Tasks 13

Obtaining Frames Using the Display Link 13
Setting Up the Display Link 14
Initializing Your Video Source 15
Implementing the Display Link Output Callback Function 17

Manipulating Frames 19
Using Core Image Filtering With Core Video 22

Glossary 23

Document Revision History 25

3
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.



4
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS



Figures and Listings

Chapter 1 Core Video Concepts 9

Figure 1-1 The Core Video pipeline 9
Figure 1-2 Processing video frames with the display link 10
Figure 1-3 Decompressing and processing a QuickTime frame 11

Chapter 2 Core Video Tasks 13

Listing 2-1 The MyVideoView interface 13
Listing 2-2 Setting up a display link 14
Listing 2-3 Initializing a QuickTime video source 15
Listing 2-4 Invoking a method from your callback 17
Listing 2-5 Implementing the displayFrame method 18
Listing 2-6 Obtaining frames from QuickTime 18
Listing 2-7 Displaying OpenGL in a rectangle 19
Listing 2-8 Drawing a frame 20
Listing 2-9 Applying a Core Image filter to an image 22

5
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.



6
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS



This document explains Core Video concepts and describes how to obtain and manipulate video frames
using the Core Video programming interface.

What Is Core Video?

Core Video is a new pipeline model for digital video in Mac OS X. Partitioning the processing into discrete
steps makes it simpler for developers to access and manipulate individual frames without having to worry
about translating between data types (QuickTime, OpenGL, and so on) or display synchronization issues.

Core Video is comparable to the Core Image and Core Audio technologies.

Core Video is available in:

 ■ Mac OS X v10.4 and later

 ■ Mac OS X v10.3 when QuickTime 7.0 or later is installed

For best results, you should use Core Video functionality only on computers that support hardware graphics
acceleration (that is, Quartz Extreme).

Who Should Read This Document?

The audience for this document is any Carbon or Cocoa developer who wants a greater degree of control in
manipulating video images. Developers should be familiar with digital video and OpenGL as well as
multithreaded programming.

Core Video is necessary only if you want to manipulate individual video frames. For example, the following
types of video processing would require Core Video:

 ■ Color correction or other filtering, such as provided by Core Image filters

 ■ Physical transforms of the video images (such as warping, or mapping onto a surface)

 ■ Adding video to an OpenGL scene

 ■ Adding additional information to frames, such as a visible timecode

 ■ Compositing multiple video streams

If you don’t need this level of sophistication (for example, if you only want to display video in your applications),
you should use the simplified movie players such as HIMovieView (in Carbon) or QTKit (in Cocoa) to display
video. You can also apply effects to video using Quartz Composer.

What Is Core Video? 7
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Video Programming
Guide



Organization of This Document

This document is organized into the following chapters:

 ■ “Core Video Concepts” (page 9) describes the Core Video pipeline model and explains the key concepts
necessary to use the Core Video API.

 ■ “Core Video Tasks” (page 13) shows how to use Core Video to obtain and manipulate individual video
frames.

See Also

Apple offers the following additional resources in the ADC Reference library that complement the Core Video
Programming Guide:

 ■ Core Video Reference provides a detailed description of the Core Video API.

 ■ OpenGLProgrammingGuide forMacOSX provides information on GL textures and CGL graphics contexts.

 ■ CocoaOpenGL contains information about the OpenGL classes available in Cocoa (such as NSOpenGLView).

 ■ Core Image Programming Guide contains information about how to create Core Image filters, which you
can apply to video frames.

In addition, the OpenGL website (http://www.opengl.org) is the primary source for information about the
OpenGL API.

8 Organization of This Document
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Video Programming Guide

http://www.opengl.org


Core Video is a new model for handling digital video in Mac OS X. It provides two major features to simplify
video processing:

 ■ A standard buffering model that makes it easy to switch between uncompressed video frames (such as
from QuickTime) and OpenGL.

 ■ A display synchronization solution.

This chapter describes the concepts behind these features.

The Core Video Pipeline

Core Video assumes a pipeline of discrete steps when handling video, from the incoming movie data to the
actual video frames displayed onscreen. This pipeline makes it much easier to add custom processing.

Figure 1-1 The Core Video pipeline

Graphics
hardware

OpenGL
rendering

OpenGL
transforms

Core Image
effects

Visual
contextMovie

The movie’s frame data comes from your video source (QuickTime, for example) and is assigned to a visual
context. The visual context simply specifies the drawing destination you want to render your video into. For
example, this context can be a Core Graphics context or an OpenGL context. In most cases, a visual context
is associated with a view in a window, but it is possible to have offscreen contexts as well.

Note:  In QuickTime 7.0 and later, you can specify a visual context when preparing a QuickTime movie for
playback. This context takes the place of the older GWorld or GrafPort rendering space.

After you specify a drawing context, you are free to manipulate the frame as you wish. For example, you can
process your frame using Core Image filters or specify warping effects in OpenGL. After doing so, you hand
off the frame to OpenGL, which then executes your rendering instructions (if any) and sends the completed
frame to the display.

Within the Core Video pipeline, the most important facets for developers are the display link, which handles
display synchronization, and the common buffering model, which simplifies memory management when
moving frames between various buffer types. Most applications manipulating video need to use only the
display link. You need to worry about using Core Video buffers only if you are generating (or compressing)
video frames.

The Core Video Pipeline 9
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Video Concepts



The Display Link

To simplify synchronization of video with a display’s refresh rate, Core Video provides a special timer called
a display link. The display link runs as a separate high priority thread, which is not affected by interactions
within your application process.

In the past, synchronizing your video frames with the display’s refresh rate was often a problem, especially
if you also had audio. You could only make simple guesses for when to output a frame (by using a timer, for
example), which didn’t take into account possible latency from user interactions, CPU loading, window
compositing and so on. The Core Video display link can make intelligent estimates for when a frame needs
to be output, based on display type and latencies.

Figure 1-2 (page 10) shows how the display link interacts with your application when processing video
frames.

Figure 1-2 Processing video frames with the display link

Display

Display
link

OpenGL
processing

Application 
rendering

code

QuickTime OpenGL
texture

 ■ The display link calls your callback periodically, requesting frames.

 ■ Your callback must then obtain the frame for the requested time. You get this frame as an OpenGL
texture. (This example assumes that your frames come from QuickTime, but you can use any video source
that can provide frame buffers.)

 ■ You can now use any OpenGL calls on the texture to manipulate it.

If for some reason the processing takes longer than expected (that is, the display link’s estimate is off ), the
video graphics card can still drop frames or otherwise compensate for the timing error as necessary.

Buffer Management

If your application actually generates frames for display, or compresses incoming raw video, you will need
to store the image data while doing so. Core Video provides different buffer types to simplify this process.

Previously, there was a lot of overhead if you wanted to, for example, manipulate QuickTime frames using
OpenGL. Converting between various buffer types and handling the internal memory housekeeping was a
chore. Now, with Core Video, buffers are Core Foundation-style objects, which are easy to create and destroy,
and easy to convert from one buffer type to another.

10 The Display Link
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Video Concepts



Core Video defines an abstract buffer of type CVBuffer. All the other buffer types are derived from the CVBuffer
type (and are typed as such). A CVBuffer can hold video, audio, or possibly some other type of data. You can
use the CVBuffer APIs on any Core Video buffer.

 ■ An image buffer is an abstract buffer used specifically to store video images (or frames). Pixel buffers
and OpenGL buffers are derived from image buffers.

 ■ A pixel buffer stores an image in main memory.

 ■ A Core Video OpenGL buffer is a wrapper around a standard OpenGL buffer (or pbuffer), which stores
an image in video (graphics card) memory.

 ■ A Core Video OpenGL texture is a wrapper around a standard OpenGL texture, which is an immutable
image stored in graphics card memory. Textures are derived from a pixel buffer or an OpenGL buffer,
which contains the actual frame data. A texture must be wrapped onto a primitive (such as a rectangle,
or a sphere) to be displayed.

When using buffers, it is often useful to manage them in buffer pools. A buffer pool allocates a number of
buffers that can then be reused as needed. The advantage here is that the system doesn’t have to devote
extra time allocating and deallocating memory; when you release a buffer, it goes back into the pool. You
can have pixel buffer pools in main memory and OpenGL buffer pools in video memory.

You can think of a buffer pool as a small fleet of cars bought for corporate use. An employee simply takes a
car from the fleet when needed and returns it when she’s done with it. Doing so requires much less overhead
than buying and selling a car each time. To maximize resources, the number of cars in the fleet can be adjusted
based on demand.

In a similar fashion, you should allocate OpenGL textures using a texture cache, which holds a number of
textures that can be reused.

Figure 1-3 (page 11) shows a possible implementation of the frame processing that occurs under the hood
when processing QuickTime movies, showing the use of a number of buffers and buffer pools to store video
data as it progresses from compressed file data to the actual pixel images that appear onscreen.

Figure 1-3 Decompressing and processing a QuickTime frame

QuickTime
queue

Pixel buffer
pool

OpenGL
texture

OpenGL
texture

Internal
image

processing

OpenGL
buffer

Frame decompression

Video memory

Pixel buffers

The steps in the frame processing are as follows:

 ■ QuickTime supplies the video data stream that will be turned into individual frames.

Buffer Management 11
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Video Concepts



 ■ The frames are decompressed using the specified codec. A pixel buffer pool is used to hold key frames,
B frames, and so on, which are needed to render individual frames.

 ■ Individual frames are stored as OpenGL textures in video memory. Additional image processing for the
frame (such as de-interlacing) can be done here, with the results being stored in an OpenGL buffer.

 ■ When you request a frame from Core Video (in response to the display link callback), the OpenGL buffer
contents are converted to an OpenGL texture that is then handed to you.

What’s in a Frame?

A video frame often has information associated with it that is useful to the system that displays it. In Core
Video, this information is associated with a video frame as an attachment. Attachments are Core Foundation
objects representing various types of data, such as the following common video properties:

 ■ Clean aperture and preferred clean aperture. Video processing (such as filtering) often produces artifacts
at the edges of a frame. To avoid displaying such artifacts, most video images contain more screen
information than is actually displayed and simply crop the edges. The preferred clean aperture is the
suggested cropping that is set when the video is compressed. The clean aperture is the cropping that
is actually used when displaying.

 ■ Color space. A color space is the model used to represent an image, such as RGB or YCbCr. Its is called
a “color space” because most models use several parameters that can be mapped to a point in space.
For example, the RGB color space uses three parameters, red, green, and blue, and every possible
combination of the three maps to a unique point in three-dimensional space.

 ■ Square versus rectangular pixels. Digital video on computers typically use square pixels. However, TV
uses rectangular pixels, so you need to compensate for this discrepancy if you are creating video for
broadcast.

 ■ Gamma level. The gamma is a “fudge factor” used to match the output of display hardware to what our
eyes expect to see. For example, the voltage to color intensity ratio of a display is typically nonlinear;
doubling the “blue” signal voltage doesn’t necessarily produce an image that looks “twice as blue.” The
gamma is the exponent in the curve that best matches the input versus output response.

 ■ Timestamps. Typically represented as hours, minutes, seconds, and fractions, a timestamp represents
when a particular frame appears in a movie. The size of the fractional portion depends on the timebase
your movie is using. Timestamps make it easy to isolate particular movie frames, and simplify
synchronization of multiple video and audio tracks.

You specify attachments as key-value pairs. You can either use predefined keys, as described in the Core
Video Reference, or define your own if you have custom frame information. If you indicate that an attachment
can be propagated, you can easily transfer these attachments to successive buffers, for example, when
creating an OpenGL texture from a pixel buffer.

12 What’s in a Frame?
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Core Video Concepts



This chapter describes some common programming tasks used when processing Core Video. The examples
in this chapter are written in Objective-C and use Cocoa, but Core Video can be used in a Carbon program
as well.

In most cases, you will want to use the display link to access individual video frames. If your application is
involved in generating the actual video frames (for example, if you’re writing a video compressor or creating
animated images), you should consider using Core Video buffers to hold your frame data.

Obtaining Frames Using the Display Link

The most common Core Video task is to use the display link to obtain frames of uncompressed video. Your
application is then free to manipulate them as it likes before sending the frames to the display.

For simplicity, assume that all the method calls in this section act on a MyVideoView object, which is subclassed
from the NSOpenGLView class:

Listing 2-1 The MyVideoView interface

@interface MyVideoView : NSOpenGLView
{

    NSRecursiveLock         *lock;
    QTMovie                 *qtMovie;
    QTTime                  movieDuration;
    QTVisualContextRef      qtVisualContext;
    CVDisplayLinkRef        displayLink;
    CVImageBufferRef        currentFrame;
    CIFilter                *effectFilter;
    CIContext               *ciContext;

    NSDictionary            *fontAttributes;

    int                     frameCount;
    int                     frameRate;
    CVTimeStamp             frameCountTimeStamp;
    double                  timebaseRatio;
    BOOL                    needsReshape;
    id                      delegate;
}
…
@end

Obtaining Frames Using the Display Link 13
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



Important:  OpenGL is not thread-safe. Your application should make sure that it locks the thread when
making OpenGL calls, for example by instantiating an NSRecursiveLock object and invoking its lockmethod.

For more information about using the NSOpenGLView class, see the example project Cocoa OpenGL.

Setting Up the Display Link

Setting up a display link involves the following steps:

 ■ Create a display link thread.

 ■ Bind the link to a specific display.

 ■ Register a display output callback.

 ■ Starting the display link thread.

The method awakeFromNib in Listing 2-2 shows how you might implement the display link.

Listing 2-2 Setting up a display link

- (void)awakeFromNib
{
    CVReturn            error = kCVReturnSuccess;

// 1    CGDirectDisplayID   displayID = CGMainDisplayID();

// 2    error = CVDisplayLinkCreateWithCGDisplay(displayID, &displayLink);
    if(error)
    {
        NSLog(@"DisplayLink created with error:%d", error);
        displayLink = NULL;
        return;
    }

// 3    error = CVDisplayLinkSetOutputCallback(displayLink,
                                 MyDisplayLinkCallback, self);

}

Here is how the code works:

1. Obtains the Core Graphics display ID for the display you want to associate with this display link. The Core
Graphics function CGMainDisplayID simply returns the ID of the user’s main display (that is, the one
containing the menu bar).

2. Creates a display link for the specified display. If desired, you can create a display link that can work with
any of the currently active displays by calling CVDisplayLinkCreateWithActiveCGDisplays instead.
You must then call CVDisplayLinkSetCurrentCGDisplay to designate a specific display for the
display link.

If the user moves the window containing the video to another monitor, you should update the display
link appropriately. In Cocoa you can check the window position when you receive an
NSWindowDidMoveNotification notification from a handler such as the following:

- (void)windowChangedScreen:(NSNotification*)inNotification

14 Obtaining Frames Using the Display Link
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



{
  NSWindow *window = [mainView window];
  CGDirectDisplayID displayID = (CGDirectDisplayID)[[[[window screen]
         deviceDescription] objectForKey:@"NSScreenNumber"] intValue];
  if((displayID != NULL) && (mainViewDisplayID != displayID))
  {
    CVDisplayLinkSetCurrentCGDisplay(displayLink, displayID);
    mainViewDisplayID = displayID;
  }
}

In Carbon, you should call the Window Manager function GetWindowGreatestAreaDevice to obtain
the GDevice structure for the window’s display. You can then store its device ID with the window and
check to see if it has changed whenever your kEventWindowBoundsChanged handler gets called.

3. Sets the output callback for the display link. This is the function that the display link calls whenever it
wants you to output a video frame. This example passes a reference to the instance using this method
(that is, self), as user data. For example, if this method is part of the MyVideoView class, the user data
is a reference to a MyVideoView instance.

When you are ready to start processing video frames, call CVDisplayLinkStart to activate the display link
thread. This thread runs independent of your application process. You should stop the thread by calling
CVDisplayLinkStop when your application quits or otherwise stops displaying video.

Note:  In Mac OS X v10.3, you should also stop your display link if Fast User Switching is invoked. In Mac OS
X v10.4 and later, the display link is automatically stopped when switching users.

Initializing Your Video Source

Before you can begin processing, you must set up your video source to provide frames. The video source
can be anything that can supply uncompressed video data as OpenGL textures. For example, this source
could be QuickTime, OpenGL, or your own proprietary video frame generator.

In each case, you need to create an OpenGL context to display the generated video. You pass this to your
video source to indicate that this is where you want your video to be displayed.

Listing 2-3 shows a method that sets up a QuickTime movie to be your video source.

Listing 2-3 Initializing a QuickTime video source

// 1- (id)initWithFilePath:(NSString*)theFilePath 
{
    self = [super init];

    OSStatus        theError = noErr;
    Boolean         active = TRUE;
    UInt32          trackCount = 0;
    OSType          theTrackType;
    Track           theTrack = NULL;
    Media           theMedia = NULL;

// 2    QTNewMoviePropertyElement newMovieProperties[] = 

Obtaining Frames Using the Display Link 15
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



        {
        {kQTPropertyClass_DataLocation,
            kQTDataLocationPropertyID_CFStringNativePath,
            sizeof(theFilePath), &theFilePath, 0},
        {kQTPropertyClass_NewMovieProperty, kQTNewMoviePropertyID_Active,
            sizeof(active), &active, 0},
        {kQTPropertyClass_Context, kQTContextPropertyID_VisualContext,
            sizeof(qtVisualContext), &qtVisualContext, 0},
        };

// 3    theError = QTOpenGLTextureContextCreate( NULL, NULL, 
        [[NSOpenGLView defaultPixelFormat]
         CGLPixelFormatObj], NULL, &qtVisualContext);

    if(qtVisualContext == NULL)
     {
        NSLog(@"QTVisualContext creation failed with error:%d", theError);
        return NULL;
    }

    theError = NewMovieFromProperties(
// 4        sizeof(newMovieProperties) / sizeof(newMovieProperties[0]),

        newMovieProperties, 0, NULL, &channelMovie);

    if(theError)
    {
        NSLog(@"NewMovieFromProperties failed with %d", theError);
        return NULL;
    }

    // setup the movie
// 5    GoToBeginningOfMovie(channelMovie);

    SetMovieRate(channelMovie, 1 << 16);
    SetTimeBaseFlags(GetMovieTimeBase(channelMovie), loopTimeBase);
    trackCount = GetMovieTrackCount(channelMovie);
    while(trackCount > 0)
    {
        theTrack = GetMovieIndTrack(channelMovie, trackCount);
        if(theTrack != NULL)
        {
            theMedia = GetTrackMedia(theTrack);
            if(theMedia != NULL)
            {
                GetMediaHandlerDescription(theMedia, &theTrackType, 0, 0);
                if(theTrackType != VideoMediaType)
                {
                    SetTrackEnabled(theTrack, false);
                }
            }
        }
        trackCount--;
    }

    return self;
}

Here is how the code works:

16 Obtaining Frames Using the Display Link
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



1. This method takes the file path of the QuickTime movie as its input parameter.

2. Sets up the movie properties array. These properties specify

 ■ the file path to the movie

 ■ whether or not the new movie should be active (yes, in this case)

 ■ the visual context to associate with this movie. The qtVisualContext variable is an instance
variable of this method’s class.

These properties are passed later to the NewMovieFromProperties function.

3. Creates an OpenGL texture context. This is the abstract destination into which OpenGL textures are
drawn. The QuickTime function QTOpenGLTextureContextCreate requires you to pass in a CGLContext
and a CGLPixelFormat object. In Cocoa, you can obtain these from the NSOpenGLContext and
NSOpenGLPixelFormat objects created when you initialize OpenGL. In Carbon, you can obtain the
underlying context and pixel format from the AGLContext and AGLPixelFormat objects using the AGL
functions aglGetCGLContext and aglGetCGLPixelFormat.)

This context, stored in the instance variable qtVisualContext is passed to NewMovieFromProperties
to be the visual context into which QuickTime will draw its movies.

4. Creates the movie. The QuickTime function NewMovieFromProperties, available in Mac OS X v10.4
and later, or QuickTime 7.0 and later, is the preferred way to instantiate movies.

If you are using Cocoa, you can call the QTKit method movieFromFile instead.

If for some reason you want to set or change the visual context after creating the movie, you can call
the QuickTime function SetMovieVisualContext.

5. Performs various initializations on the movie. This section is mostly boilerplate code to start the movie
at the beginning, at the normal frame rate, and in a continuous loop. The code also loops through the
available tracks and turns off any non-video tracks.

Implementing the Display Link Output Callback Function

When the display link is running, it periodically calls back to your application each time you should prepare
a frame. Your callback function should obtain a frame from the designated video source as an OpenGL texture,
and then output it to the screen.

If you are using object-oriented programming, you will probably want your callback to invoke a method, as
shown in Listing 2-4 and Listing 2-5.

Listing 2-4 Invoking a method from your callback

CVReturn MyDisplayLinkCallback (
    CVDisplayLinkRef displayLink,
    const CVTimeStamp *inNow,
    const CVTimeStamp *inOutputTime,
    CVOptionFlags flagsIn,
    CVOptionFlags *flagsOut,
    void *displayLinkContext)
{

Obtaining Frames Using the Display Link 17
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



 CVReturn error =
        [(MyVideoView*) displayLinkContext displayFrame:inOutputTime];
 return error;
}

The callback function simply invokes the displayFrame method implemented in the MyVideoView class.
An instance of this class is passed to your callback in the displayLinkContextparameter. (The MyVideoView
class that displays your frames should be a subclass of NSOpenGLView, as shown in Listing 2-1 (page 13).)

Listing 2-5 Implementing the displayFrame method

- (CVReturn)displayFrame:(const CVTimeStamp *)timeStamp
{
    CVReturn rv = kCVReturnError;
    NSAutoreleasePool *pool;

    pool = [[NSAutoreleasePool alloc] init];
    if([self getFrameForTime:timeStamp])
    {
        [self drawRect:NSZeroRect];
        rv = kCVReturnSuccess;
    }
    else
    {
       rv = kCVReturnError;
    }
    [pool release];
    return rv;
}

You obtain the frame for the specified time as an OpenGL texture. Listing 2-6 shows how you might implement
the getFrameForTime method if you were obtaining your video frames from QuickTime. This example
assumes that the method is part of a custom MyVideoView class.

Listing 2-6 Obtaining frames from QuickTime

- (BOOL)getFrameForTime:(const CVTimeStamp*)syncTimeStamp
{
    CVOpenGLTextureRef      newTextureRef = NULL;

// 1    QTVisualContextTask(qtVisualContext);
// 2    if(QTVisualContextIsNewImageAvailable(qtVisualContext, syncTimeStamp))

    {
// 3        QTVisualContextCopyImageForTime(qtVisualContext, NULL, syncTimeStamp,

                 &newTextureRef);

// 4        CVOpenGLTextureRelease(currentFrame);
        currentFrame = newTextureRef;

// 5        CVOpenGLTextureGetCleanTexCoords (
                    currentFrame, lowerLeft, lowerRight, upperRight, upperLeft);
        return YES; // we got a frame from QT
    }
    else
    {
        //NSLog(@"No Frame ready");

18 Obtaining Frames Using the Display Link
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



    }
    return NO;  // no frame available
}

Here is how the code works:

1. Gives time to the context, allowing it to perform any required housekeeping. You should call this function
before obtaining each frame.

2. Checks to see if a new frame is available for the given time. The requested time, as passed to your callback
by the display link, represents not the current time, but the time in the future when the frame will be
displayed.

3. If a frame is available, obtain it as an OpenGL texture. The QuickTime function
QTVisualContextCopyImageForTime lets you obtain a frame from QuickTime as any Core Video
image buffer type.

4. Releases the current texture (stored in the instance variable currentFrame) and sets the newly acquired
texture to replace it. You should release your OpenGL textures when you are through using them to
minimize the likelihood of filling up video memory.

5. Obtains the coordinates of the clean aperture for the texture. In most cases, these are the texture bounds
needed for rendering.

Manipulating Frames

After you have acquired the frame from your video source, it is up to you to decide what to do with it. The
frame is given to you as an OpenGL texture, so you can manipulate it with any OpenGL calls. Listing 2-7
shows how you could set up OpenGL to draw into the view bounds by overriding the standard NSView
drawRect method.

Listing 2-7 Displaying OpenGL in a rectangle

- (void)drawRect:(NSRect)theRect
{

// 1    [lock lock];    
    NSRect      frame = [self frame];
    NSRect      bounds = [self bounds];

// 2    [[self openGLContext] makeCurrentContext];
// 3    if(needsReshape)

    {
        GLfloat     minX, minY, maxX, maxY;

        minX = NSMinX(bounds);
        minY = NSMinY(bounds);
        maxX = NSMaxX(bounds);
        maxY = NSMaxY(bounds);

        [self update];

// 4        if(NSIsEmptyRect([self visibleRect])) 

Manipulating Frames 19
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



        {
            glViewport(0, 0, 1, 1);
        } else {
            glViewport(0, 0,  frame.size.width ,frame.size.height);
        }
        glMatrixMode(GL_MODELVIEW);
        glLoadIdentity();
        glMatrixMode(GL_PROJECTION);
        glLoadIdentity();
        glOrtho(minX, maxX, minY, maxY, -1.0, 1.0);

        needsReshape = NO;
    }

    glClearColor(0.0, 0.0, 0.0, 0.0);
    glClear(GL_COLOR_BUFFER_BIT);

// 5    if(!currentFrame)
        [self updateCurrentFrame];

// 6    [self renderCurrentFrame];      
// 7    glFlush();
// 8    [lock unlock];

}

Here is how the code works:

1. Locks the current thread. OpenGL is not thread-safe, so you must make sure that only one thread can
make OpenGL calls at any given time.

2. Sets OpenGL to render into this object’s context.

3. If the drawing rectangle has been resized, then take steps to update the size of the OpenGL context.

4. Maps the OpenGL context to the new bounds of the view, if the view is visible. If not, then map the
context to be effectively invisible.

5. Obtains the current frame again if it does not already exist. This situation can occur if the drawRect
method is invoked in response to a view resize.

6. Draws the current frame into the OpenGL context. renderCurrentFrame is the method that holds your
custom frame code.

7. Flushes the drawing to the OpenGL renderer. The frame is then automatically displayed onscreen at the
appropriate time.

8. Unlocks the thread after completing all OpenGL calls.

The renderCurrentFrame method contains the custom processing your application wants to apply to the
frame. Listing 2-8 shows a simple example of how you can implement this method. This example uses Core
Image to draw the frame into the OpenGL context.

Listing 2-8 Drawing a frame

- (void)renderCurrentFrame
{
    NSRect      frame = [self frame];

20 Manipulating Frames
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



    if(currentFrame)
    {
        CGRect      imageRect;
        CIImage     *inputImage;

// 1        inputImage = [CIImage imageWithCVImageBuffer:currentFrame];

// 2        imageRect = [inputImage extent];
// 3        [ciContext drawImage:inputImage 

                atPoint:CGPointMake(
                (int)((frame.size.width - imageRect.size.width) * 0.5),
                (int)((frame.size.height - imageRect.size.height) * 0.5))
                fromRect:imageRect];

    }
// 4    QTVisualContextTask(qtVisualContext);

}

Here is how the code works:

1. Creates a Core Image image from the current frame. The Core Image method ImageWithCVImageBuffer
creates the image from any image buffer type (that is, a pixel buffer, OpenGL buffer, or OpenGL texture).

2. Obtains the bounding rectangle for the image.

3. Draws the image into a Core Image context. The Core Image method drawImage:atPoint:fromRect
draws the frame in the specified visual context at a specified location.

Before drawing, you must have created a Core Image context that references the same drawing space
as the OpenGL context. Doing so allows you to draw into the space using Core Image APIs and then
display it using OpenGL. For example, you could add the following code to Listing 2-3 (page 15) after
creating your OpenGL context :

/* Create CGColorSpaceRef */
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

/* Create CIContext */
ciContext = [[CIContext contextWithCGLContext:
                (CGLContextObj)[[self openGLContext] CGLContextObj]
                pixelFormat:(CGLPixelFormatObj)
                [[self pixelFormat] CGLPixelFormatObj]
                options:[NSDictionary dictionaryWithObjectsAndKeys:
                (id)colorSpace,kCIContextOutputColorSpace,
                (id)colorSpace,kCIContextWorkingColorSpace,nil]] retain];
CGColorSpaceRelease(colorSpace);

See Core Image Programming Guide for more information about creating Core Image contexts.

4. Gives time to the visual context to perform any required housekeeping. You should call
QTVisualContextTask once each time through your drawing method.

Manipulating Frames 21
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



Using Core Image Filtering With Core Video

If you want to apply filtering effects to your video, it is often simpler to apply a Core Image filter to them
rather than try to implement your own image processing. To do so, you need to obtain your frame as a Core
Image image.

You can load a Core Image filter using the Core Image CIFIlter method filterWithName:

effectFilter = [[CIFilter filterWithName:@"CILineScreen"] retain];
[effectFilter setDefaults];

This example loads the standard Core Image line screen filter, but you should use whatever is appropriate
for your application.

After you have loaded the filter, you process your image with it in your drawing method. Listing 2-9 shows
how you could apply a Core Image filter. This listing is identical to Listing 2-8 (page 20) except that it filters
the input image before drawing it into the Core Image context.

Listing 2-9 Applying a Core Image filter to an image

- (void)renderCurrentFrameWithFilter
{
    NSRect      frame = [self frame];

    if(currentFrame)
    {
        CGRect      imageRect;
        CIImage     *inputImage, *outputImage;

        inputImage = [CIImage imageWithCVImageBuffer:currentFrame];

        imageRect = [inputImage extent];
// 1        [effectFilter setValue:inputImage forKey:@"inputImage"];
// 2        [[[NSGraphicsContext currentContext] CIContext]

            drawImage:[effectFilter valueForKey:@"outputImage"]
            atPoint:CGPointMake((int)
                ((frame.size.width - imageRect.size.width) * 0.5),
                (int)((frame.size.height - imageRect.size.height) * 0.5))
            fromRect:imageRect];

    }
    QTVisualContextTask(qtVisualContext);
}

Here is how the code works:

1. Sets the CIImage filter to apply to the frame.

2. Draws the image with the specified filter.

Keep in mind that the Core Image image is immutable; each time you obtain a frame, you must create a new
image.

For more details about creating and using Core Image filters, see Core Image Programming Guide.

22 Using Core Image Filtering With Core Video
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Core Video Tasks



attachment  A Core Foundation object associated
with a video frame. This attachment, specified by a
key-value pair, can hold any sort of information
relevant to the frame, such as timestamp.

buffer pool  A collection of preallocated buffers that
can be used over and over. Keeping a pool of buffers
available requires less overhead than allocating and
deallocating a buffer each time it is needed.

display link  A high-priority thread that, based on a
specified hardware display, makes intelligent guesses
as to how often frames must be output to synchronize
with the display’s refresh rate.

image buffer  An abstract buffer type that holds Core
Video images. Pixel buffers, Core Video OpenGL
buffers, and OpenGL textures derive from the
CVImageBuffer type.

OpenGL buffer  A buffer that holds image information
in graphics card memory. In Core Video, you
manipulate OpenGL buffers using the
CVOpenGLBufferRef type, which is a wrapper
around the standard OpenGL buffer type.

OpenGL texture  An immutable image that OpenGL
uses to wrap onto primitives. In Core Video, you
manipulate OpenGL textures using the
CVOpenGLTextureRef type, which is a wrapper
around the standard OpenGL texture type.

pixel buffer  A buffer that holds image information
in main memory.

pool  See buffer pool.

texture  See OpenGL texture.

texture cache  A pool of OpenGL textures.

visual context  An abstract space that indicates where
drawing should occur. For example, an OpenGL
context specifies where OpenGL drawing should
occur. A visual context is typically associated with an
NSView or HIView object.

23
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

Glossary



24
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

GLOSSARY



This table describes the changes to Core Video Programming Guide.

NotesDate

Fixed errors in the example of a display link output callback.2007-04-03

New document that describes Core Video concepts and how to obtain and
manipulate video frames using the Core Video API.

2005-04-29

25
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



26
2007-04-03   |   © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	Core Video Programming Guide
	Contents
	Figures and Listings
	Introduction
	Core Video Concepts
	The Core Video Pipeline
	The Display Link
	Buffer Management
	What’s in a Frame?

	Core Video Tasks
	Obtaining Frames Using the Display Link
	Setting Up the Display Link
	Initializing Your Video Source
	Implementing the Display Link Output Callback Function

	Manipulating Frames
	Using Core Image Filtering With Core Video

	Glossary
	Revision History


