
Image I/O Programming Guide
Graphics & Imaging > Quartz

2007-07-02

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, Quartz, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 7

Chapter 1 Basics of Using Image I/O 9

Using the Image I/O Framework in Xcode 9
Supported Image Formats 10

Chapter 2 Creating and Using Image Sources 11

Creating an Image From an Image Source 11
Creating a Thumbnail Image From an Image Source 12
Incrementally Loading an Image 13
Displaying Image Properties 14

Chapter 3 Working with Image Destinations 17

Setting the Properties of an Image Destination 17
Writing an Image to an Image Destination 18

Document Revision History 21

3
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

4
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Basics of Using Image I/O 9

Table 1-1 Common uniform type identifiers (UTIs) and image content type constants 10
Listing 1-1 Getting and printing supported UTIs 10

Chapter 2 Creating and Using Image Sources 11

Figure 2-1 An Info panel that displays image properties 14
Listing 2-1 Creating an image from an image source 11
Listing 2-2 Creating a thumbnail image 12
Listing 2-3 A routine that creates an image source and retrieves properties 15

Chapter 3 Working with Image Destinations 17

Listing 3-1 Setting the properties of an image destination 17
Listing 3-2 A method that writes an image to a URL 18

5
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

6
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

The Image I/O programming interface, introduced in Mac OS X 10.4, allows applications to read and write
most image file formats. Originally part of the Core Graphics framework, Image I/O resides in its own framework
to allow developers to use it independently of Core Graphics (Quartz 2D). Image I/O provides the definitive
way to access image data in Mac OS X because it is highly efficient, allows easy access to metadata, and
provides color management.

Who Should Read This Document?

This document is intended for developers who read or write image data in an application. Any developer
currently using image importers or other image handling libraries should read this document to see how to
use the Image I/O framework instead.

Organization of This Document

This document is organized into the following chapters:

 ■ “Basics of Using Image I/O” (page 9) discusses supported image formats and shows how to include
the framework in an Xcode project.

 ■ “Creating and Using Image Sources” (page 11) shows how to create an image source, create an image
from it, and extract properties for display in the user interface.

 ■ “Working with Image Destinations” (page 17) provides information on creating an image destination,
setting up its properties, and adding an image to it.

See Also

These Image I/OReference Collection provides detailed descriptions of the functions, data types, and constants
in the Image I/O framework.

Who Should Read This Document? 7
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8 See Also
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The Image I/O framework, available in Mac OS X v10.4 or later, provides opaque data types for reading image
data from a source (CGImageSourceRef) and writing image data to a destination (CGImageDestinationRef).
It supports a wide range of image formats, including the standard web formats, high dynamic range images,
and raw camera data. Image I/O has many other features such as:

 ■ The fastest image decoders and encoders for the Mac platform.

 ■ The ability to load images incrementally.

 ■ Support for image metadata.

 ■ Effective caching.

You can create image source and image destination objects from:

 ■ URLs. Images whose location can be specified as a URL can act as a supplier or receiver of image data.
In Image I/O, a URL is represented as the Core Foundation data type CFURLRef.

 ■ The Core Foundation objects CFDataRef and CFMutableDataRef.

 ■ Quartz data consumer (CGDataConsumerRef) and data provider (CGDataProviderRef) objects.

The Image I/O framework can be used by Cocoa or Carbon applications. Image I/O resides in the Application
Services framework, so Carbon projects created with Xcode have its functionality available automatically. If
you are creating a Cocoa project, you need to follow the steps in “Using the Image I/O Framework in
Xcode” (page 9).

Using the Image I/O Framework in Xcode

To add the Image I/O framework to an Xcode project:

1. Open Xcode and create an application.

2. Choose Project > Add to Project.

3. Navigate to System/Library/Frameworks/ApplicationServices/. Then click Add.

4. In the sheet that appears, click Add.

5. Save the project.

Then, you’ll also need to import the header file by including this statement:

#import <ImageIO/ImageIO.h>

Using the Image I/O Framework in Xcode 9
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Basics of Using Image I/O

Supported Image Formats

The Image I/O framework understands most of the common image file formats, such as JPEG, JPEG2000,
RAW, TIFF, BMP, and PNG. For the most up-to-date list of what Image I/O supports, you can call the these
functions:

 ■ CGImageSourceCopyTypeIdentifiers returns an array of the uniform type identifiers (UTIs) that
Image I/O supports as image sources.

 ■ CGImageDestinationCopyTypeIdentifiers returns an array of the uniform type identifiers (UTIs)
that Image I/O supports as image destinations.

You can then use the CFShow function to print the array to the debugger console in Xcode, as shown in
Listing 1-1. The strings in the array returned by these functions take the form of com.apple.pict,
public.jpeg, public.tiff, and so on. The Launch Services framework declares constants for many UTIs;
Table 1-1 (page 10) lists some of them. (The full set of constants are declared in the
LaunchServices/UTCoreTypes.h header file.) You can use these constants when you need to specify an
image type, either as a hint for an image source (kCGImageSourceTypeIdentifierHint) or as an image
type for an image destination. See also Uniform Type Identifiers Overview.

Listing 1-1 Getting and printing supported UTIs

CFArrayRef mySourceTypes = CGImageSourceCopyTypeIdentifiers();
CFShow(mySourceTypes);
CFArrayRef myDestinationTypes = CGImageDestinationCopyTypeIdentifiers();
CFShow(myDestinationTypes);

Table 1-1 Common uniform type identifiers (UTIs) and image content type constants

Image content type constantUniform type identifier

kUTTypeImagepublic.image

kUTTypeJPEGpublic.jpeg

kUTTypeJPEG2000public.jpeg-2000

kUTTypeTIFFpublic.tiff

kUTTypePICTcom.apple.pict

kUTTypeGIFcom.compuserve.gif

10 Supported Image Formats
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Basics of Using Image I/O

An image source abstracts the data-access task and eliminates the need for you to manage data through a
raw memory buffer. An image source can contain more than one image, thumbnail images, and properties
for each image and the image file. When you are working with image data and your application runs in Mac
OS X v10.4 or later, image sources are the preferred way to move image data into your application. After
creating a CGImageSource object, you can obtain images, thumbnails, image properties, and other image
information using the functions described in CGImageSource Reference.

Creating an Image From an Image Source

One of the most common tasks you’ll perform with the Image I/O framework is to create an image from an
image source, similar to what’s shown in Listing 1-1. This example shows how to create an image source
from a path name and then extract the image. When you create an image source object, you can provide a
hint as to the format of the image source file.

When you create an image from an image source, you must specify an index and you can provide a dictionary
of properties (key-value pairs) to specify such things as whether to create a thumbnail or allow caching.
CGImageSource Reference and CGImageProperties Reference list keys and the expected data type of the value
for each key.

You need to supply an index value because some image file formats allow multiple images to reside in the
same source file. For an image source file that contains only one image, pass 0. You can find out the number
of images in an image source file by calling the function CGImageSourceGetCount.

Listing 2-1 Creating an image from an image source

CGImageRef MyCreateCGImageFromFile (NSString* path)
{
 // Get the URL for the pathname passed to the function.
 NSURL url = [NSURL fileURLWithPath:path];
 CGImageRef myImage = NULL;
 CGImageSourceRef myImageSource;
 NSDictionary myOptions = NULL;
 CFStringRef myKeys[2];
 CFTypeRef myValues[2];

 // Set up options if you want them. The options here are for caching the
image
 // in a decoded form and for using floating-point values if the image
 // format supports them.
 myKeys[0] = kCGImageSourceShouldCache;
 myValues[0] = (CFTypeRef)kCFBooleanTrue;
 myKeys[1] = kCGImageSourceShouldAllowFloat;
 myValues[1] = (CFTypeRef)kCFBooleanTrue;
 // Create the dictionary
 myOptions = CFDictionaryCreate(NULL, (const void **) myKeys,

Creating an Image From an Image Source 11
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Using Image Sources

 (const void **) myValues, 2,
 &kCFTypeDictionaryKeyCallBacks,
 & kCFTypeDictionaryValueCallBacks);
 // Create an image source from the URL.
 myImageSource = CGImageSourceCreateWithURL((CFURLRef)url, myOptions);
 // Make sure the image source exists before continuing
 if (myImageSource == NULL){
 fprintf(stderr, "Image source is NULL.");
 return NULL;
 }
 // Create an image from the first item in the image source.
 myImage = CGImageSourceCreateImageAtIndex(myImageSource,
 0,
 NULL);

 CFRelease(myImageSource);
 // Make sure the image exists before continuing
 if (myImage == NULL){
 fprintf(stderr, "Image not created from image source.");
 return NULL;
 }

 return myImage;
}

Creating a Thumbnail Image From an Image Source

Some image source files contain thumbnail images that you can retrieve. If thumbnails aren’t already present,
Image I/O gives you the option of creating them. You can also specify a maximum thumbnail size and whether
to apply a transform to the thumbnail image.

Listing 2-2 shows how to create an image source from data, set up an dictionary that contains options related
to the thumbnail, and then create a thumbnail image. You use the
kCGImageSourceCreateThumbnailWithTransform key to specify whether the thumbnail image should
be rotated and scaled to match the orientation and pixel aspect ratio of the full image.

Listing 2-2 Creating a thumbnail image

CGImageRef MyCreateThumbnailImageFromData (NSData * data, int imageSize)
{
 CGImageRef myImage = NULL;
 CGImageSourceRef myImageSource;
 NSDictionary myOptions = NULL;
 CFStringRef myKeys[3];
 CFTypeRef myValues[3];
 CFNumberRef thumbnailSize;

 // Package the integer as a CFNumber object. Using CFTypes allows you
 // to more easily create the options dictionary later.
 thumbnailSize = CFNumberCreate(NULL, kCFNumberIntType, &imageSize);
 // Create an image source from NSData; no options.
 myImageSource = CGImageSourceCreateWithData((CFDataRef)data,
 NULL);
 // Make sure the image source exists before continuing

12 Creating a Thumbnail Image From an Image Source
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Using Image Sources

 if (myImageSource == NULL){
 fprintf(stderr, "Image source is NULL.");
 return NULL;
 }
 // Set up the thumbnail options
 myKeys[0] = kCGImageSourceCreateThumbnailWithTransform;
 myValues[0] = (CFTypeRef)kCFBooleanTrue;
 myKeys[1] = kCGImageSourceCreateThumbnailFromImageIfAbsent;
 myValues[1] = (CFTypeRef)kCFBooleanTrue;
 myKeys[2] = kCGImageSourceThumbnailMaxPixelSize;
 myValues[2] = (CFTypeRef)thumbnailSize;

 myOptions = CFDictionaryCreate(NULL, (const void **) myKeys,
 (const void **) myValues, 2,
 &kCFTypeDictionaryKeyCallBacks,
 & kCFTypeDictionaryValueCallBacks);

 // Create the thumbnail image using the specified options
 myThumbnailImage = CGImageSourceCreateThumbnailAtIndex(myImageSource,
 0,
 myOptions);
 // Release the options dictionary and the image source,
 // when you no longer need them.
 CFRelease(myOptions);
 CFRelease(myImageSource);

 // Make sure the thumbnail image exists before continuing.
 if (myThumbnailImage == NULL){
 fprintf(stderr, "Thumbnail image not created from image source.");
 return NULL;
 }

 return myThumbnailImage;
}

Incrementally Loading an Image

If you have a very large image, or are loading image data over the web, you may want to create an incremental
image source so that you can draw the image data as you accumulate it. You need to perform the following
tasks to load an image incrementally from a CFData object:

1. Create the CFData object for accumulating the image data.

2. Create an incremental image source by calling the function CGImageSourceCreateIncremental.

3. Add image data to the CFData object.

4. Call the function CGImageSourceUpdateData, passing the CFData object and a Boolean value (bool
data type) that specifies whether the data parameter contains the entire image, or just partial image
data. In any case, the data parameter must contain all the image file data accumulated up to that point.

5. If you have accumulated enough image data, create an image by calling
CGImageSourceCreateImageAtIndex, draw the partial image, and then release it.

Incrementally Loading an Image 13
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Using Image Sources

6. Check to see if you have all the data for an image by calling the function
CGImageSourceGetStatusAtIndex. If the image is complete, this function returns
kCGImageStatusComplete. If the image is not complete, repeat steps 3 and 4 until it is.

7. Release the incremental image source.

Displaying Image Properties

Digital photos are tagged with a wealth of information about the image—image dimensions, resolution,
orientation, color profile, aperture, metering mode, focal length, creation date, keywords, caption, and much
more. This information is extremely useful for image handling and editing, but only if the data is exposed in
the user interface. Although the CGImageSourceCopyPropertiesAtIndex function retrieves a dictionary
of all the properties associated with an image in an image source, you’ll need to write code that traverses
that dictionary to retrieve and then display that information.

In this section you’ll take a close look at a routine from the ImageApp sample code, which is an image display
application that you can download and experiment with. One of the features of the ImageApp sample code
is an Image Info panel that displays a thumbnail image and image properties for the currently active image,
as shown in Figure 2-1.

Figure 2-1 An Info panel that displays image properties

You can take a look at the ImageInfoPanel.h and ImageInfoPanel.m files for all the implementation
details of this panel; you’ll also need to look at the nib file for the project to see how the panel and bindings
are set up. To get an idea of how you can use CGImageSource functions to support an image editing
application, take a look at Listing 2-3. A detailed explanation for each numbered line of code appears following
the listing. (Keep in mind that this routine is not a standalone routine—you can’t simply paste it into your
own program. It is an excerpt from the ImageApp sample code.)

14 Displaying Image Properties
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Using Image Sources

Listing 2-3 A routine that creates an image source and retrieves properties

- (void) setURL:(NSURL*)url
{
 if ([url isEqual:mUrl])
 return;

 [mUrl autorelease];
 mUrl = [url retain];

// 1 CGImageSourceRef source = CGImageSourceCreateWithURL((CFURLRef)url, NULL);

 if (source)
 {
 NSDictionary* props =

// 2 (NSDictionary*) CGImageSourceCopyPropertiesAtIndex(source, 0, NULL);

// 3 [mTree setContent:[self propTree:props]];
 [props release];
 NSDictionary* thumbOpts = [NSDictionary dictionaryWithObjectsAndKeys:
 (id)kCFBooleanTrue, (id)kCGImageSourceCreateThumbnailWithTransform,
 (id)kCFBooleanTrue,
(id)kCGImageSourceCreateThumbnailFromImageIfAbsent,
 [NSNumber numberWithInt:128], (id)kCGImageSourceThumbnailMaxPixelSize,

// 4 nil];
 CGImageRef image = CGImageSourceCreateThumbnailAtIndex(source, 0,

// 5 (CFDictionaryRef)thumbOpts);
// 6 [mThumbView setImage:image];
// 7 CGImageRelease(image);
// 8 [mFilePath setStringValue:[mUrl path]];

// 9 NSString* uti = (NSString*)CGImageSourceGetType(source);
 [mFileType setStringValue:[NSString stringWithFormat:@"%@\n%@",

// 10 ImageIOLocalizedString(uti), uti]];

// 11 CFDictionaryRef fileProps = CGImageSourceCopyProperties(source, nil);
 [mFileSize setStringValue:[NSString stringWithFormat:@"%@ bytes",

// 12 (id)CFDictionaryGetValue(fileProps, kCGImagePropertyFileSize)]];
 }

// 13 else
 {
 [mTree setContent:nil];
 [mThumbView setImage:nil];
 [mFilePath setStringValue:@""];
 [mFileType setStringValue:@""];
 [mFileSize setStringValue:@""];
 }
}

Here’s what the code does:

1. Creates an image source object from the URL passed to the routine.

Displaying Image Properties 15
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Using Image Sources

2. Copies the properties for the image located at index location 0. Some image file formats can support
more than one image, but this example assumes a single image (or that the image of interest is always
the first one in the file). TheCGImageSourceCopyPropertiesAtIndex function returns aCFDictionary
object. Here, the code casts the CFDictionary as an NSDictionary object, as these data types are
interchangeable (sometimes referred to as toll-free bridged).

The dictionary that’s returned contains properties that are key-value pairs. However, some of the values
are themselves dictionaries that contain properties. Take a look at Figure 2-1 (page 14) and you’ll see
not only simple key-value pairs (such as Color Model-RGB) but you’ll also see Exif properties, IPTC
Properties, JFIF Properties, and TIFF Properties, each of which is a dictionary. Clicking a disclosure triangle
for one of these displays the properties in that dictionary. You’ll need to get these dictionaries and their
properties so they can be displayed appropriately in the Info panel. That’s what the next step accomplishes.

3. Extracts properties from the dictionary and sets them to a tree controller. If you look at the
ImageInfoPanel.h file, you’ll see that the mTree variable is an NSTreeController object that is an
outlet in Interface Builder. This controller manages a tree of objects. In this case, the objects are properties
of the image.

The propTree: method is provided in the ImageInfoPanel.m file. It’s purpose is to traverse the
property dictionary retrieved in the previous step, extract the image properties, and build the array that’s
bound to the NSTreeController object.

The properties appears in table of keys and values in Figure 2-1 (page 14).

4. Sets up a dictionary of options to use when creating an image from the image source. Recall that options
are passed in a dictionary. The Info panel shown in Figure 2-1 (page 14) displays a thumbnail image.
The code here sets up options that creates a thumbnail that is rotated and scaled to the same orientation
and aspect ratio of the full image. If a thumbnail does not already exist, one is created, and its maximum
pixel size will be 128 by 128 pixels.

5. Creates a thumbnail image from the first image in the image source, using the options set up in the
previous step.

6. Sets the thumbnail image to the view in the Info panel.

7. Releases the image; it is no longer needed.

8. Extracts the path from the URL passed to the method, and sets the string to the text field that’s bound
to the Info panel. This is the Path text field in Figure 2-1 (page 14).

9. Gets the uniform type identifier of the image source. (This can be different from the type of the images
in the source.)

10. Calls a function to retrieve the localized string for the UTI (ImageIOLocalizedString is declared in
ImagePanel.m) and then sets the string to the text field that’s bound to the Info panel. This is the Type
text field in Figure 2-1 (page 14).

11. Retrieves a dictionary of the properties associated with the image source. These properties apply to the
container (such as the file size), not necessarily the individual images in the image source.

12. Retrieves the file size value from the image source dictionary obtained in the previous step, then sets
the associated string to the text field that’s bound to the Info panel. This is the Size text field shown in
Figure 2-1 (page 14).

13. If the source is not created, makes sure that all the fields in the user interface reflect that fact.

16 Displaying Image Properties
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Using Image Sources

An image destination abstracts the data-writing task and eliminates the need for you to manage data through
a raw buffer. An image destination can represent a single image or multiple images. It can contain thumbnail
images as well as properties for each image. After creating a CGImageDestination object for the appropriate
destination (URL, CFData object, or Quartz data consumer), you can add image data and set image properties.
When you are finished adding data, call the function CGImageDestinationFinalize.

Setting the Properties of an Image Destination

The function CGImageDestinationSetProperties adds a dictionary (CFDictionaryRef) of properties
(key-value pairs) to the images in an image destination. Although setting properties is optional, there are
many situations for which you will want to set them. For example, if your application allows users to add
keywords to images or change saturation, exposure, or other values, you’ll want to save that information in
the options dictionary.

Image I/O defines an extensive set of keys to specify such things as compression quality, background
compositing color, EXIF dictionary keys, Color model values, GIF Dictionary keys, Nikon and Canon camera
keys, and many more. See CGImageProperties Reference.

When setting up the dictionary, you have two choices. You can either create a CFDictionary object or you
can create an NSDictionary object, then cast it as a CFDictionaryRefwhen you pass the options dictionary
to the function CGImageDestinationSetProperties. (CFDictionary and NSDictionaryare
interchangeable, or toll-free bridged.) Listing 3-1 shows a code fragment that assigns key-value pairs for
three properties, then creates a dictionary that contains those properties. Because this is a code fragment,
the necessary calls to release the CFNumber and CFDictionary objects created by the code are not shown.
When you write your code, you need to call CFRelease when you no longer need each of these objects.

When you set up a key-value pair for a property, you need to consult the reference documentation (see
CGImageDestination Reference and CGImageProperties Reference) for the expected data type of the value. As
you can see in Listing 3-1, numerical values typically need to be wrapped in a CFNumber object. When you
use Core Foundation types for dictionary values, you can also supply the callback constants when you create
the dictionary—kCFTypeDictionaryKeyCallBacks and kCFTypeDictionaryValueCallBacks. (See
CFDictionary Reference.)

Listing 3-1 Setting the properties of an image destination

float compression = 1.0; // Lossless compression if available.
int orientation = 4; // Origin is at bottom, left
CFStringRef myKeys[3];
CFTypeRef myValues[3];
CFDictionaryRef myOptions = NULL;
myKeys[0] = kCGImagePropertyOrientation;
myValues[0] = CFNumberCreate(NULL, kCFNumberIntType, &orientation);
myKeys[1] = kCGImagePropertyHasAlpha;
myValues[1] = kCFBooleanTrue;

Setting the Properties of an Image Destination 17
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with Image Destinations

myKeys[2] = kCGImageDestinationLossyCompressionQuality;
myValues[2] = CFNumberCreate(NULL, kCFNumberFloatType, &compression);
myOptions = CFDictionaryCreate(NULL, (const void **)myKeys, (const void
**)myValues, 3,
 &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
// Release the CFNumber and CFDictionary objects when you no longer need them.

Writing an Image to an Image Destination

To write an image to a destination, you first need to create an image destination object by calling the
CGImageDestinationCreateWithURL, CGImageDestinationCreateWithData, or
CGImageDestinationCreateWithDataConsumer functions. You need to supply the UTI of the resulting
image file. You can either supply a UTI or the equivalent constant, if one if available. See Table 1-1 (page 10).

After you create an image destination, you can add an image to it by calling the
CGImageDestinationAddImageorCGImageDestinationAddImageFromSource functions. If the format
of the image destination file supports multiple images, you can repeatedly add images. Calling the function
CGImageDestinationFinalize signals Image I/O that you are finished adding images. Once finalized, you
cannot add any more data to the image destination.

Listing 3-2 shows an implementation of the NSPersistentDocument method
writeToURL:ofType:forSaveOperation:originalContentsURL:error: that sets up an image
destination, adds an image along with options, and finalizes the destination. Although this listing shows how
to use an image destination from within an Objective-C method, you can just as easily create and use an
image destination in a procedural C function. In the listing, assume that saveMetadataAndOptions is an
NSDictionary object that stores image metadata (such as camera settings) and options (such as compression
settings and color profile name).

Listing 3-2 A method that writes an image to a URL

- (BOOL) writeToURL:(NSURL *)absURL ofType:(NSString *)typeName
forSaveOperation:(NSSaveOperationType)saveOp originalContentsURL:(NSURL
*)absOrigURL error:(NSError **)outError
{
 BOOL status = NO;

 CGImageRef image = [self currentCGImage];
 // Make sure the image exists before continuing.
 if (image==nil)
 goto bail;

 // Create a URL image destination for the given image type,
 // for one image, with no options.
 CGImageDestinationRef myImageDest =
 CGImageDestinationCreateWithURL((CFURLRef)absURL,
 (CFStringRef)typeName, 1, nil);
 // Make sure the image destination exists before continuing.
 if (myImageDest==nil)
 goto bail;

 // Add the image to the destination using previously saved options.
 CGImageDestinationAddImage(myImageDest, image, myOptions);

18 Writing an Image to an Image Destination
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with Image Destinations

 // Finalize the image destination.
 status = CGImageDestinationFinalize(myImageDest);
 // Release the image as soon as you no longer need it.
 CGImageRelease(image);

bail:

 if (status==NO && outError){
 *outError = [NSError errorWithDomain:NSCocoaErrorDomain
 code:NSFileWriteUnknownError
 userInfo:nil];

 }
 return status;
}

Writing an Image to an Image Destination 19
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with Image Destinations

20 Writing an Image to an Image Destination
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with Image Destinations

This table describes the changes to Image I/O Programming Guide.

NotesDate

New document that explains how to read and write image data using the Image
I/O framework.

2007-07-02

21
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

22
2007-07-02 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Image I/O Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Basics of Using Image I/O
	Using the Image I/O Framework in Xcode
	Supported Image Formats

	Creating and Using Image Sources
	Creating an Image From an Image Source
	Creating a Thumbnail Image From an Image Source
	Incrementally Loading an Image
	Displaying Image Properties

	Working with Image Destinations
	Setting the Properties of an Image Destination
	Writing an Image to an Image Destination

	Revision History

