
Image Unit Tutorial
Graphics & Imaging > Quartz

2009-05-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, Quartz, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
Prerequisite Reading 7
See Also 8

Chapter 1 An Image Unit and Its Parts 9

The Major Parts of an Image Unit 9
Division of Labor 9
Kernel Routine Rules 10
Region-of-Interest Methods 11
Next Steps 12

Chapter 2 Writing Kernels 13

Writing Simple Kernel Routines 13
Color Inversion 14
Color Component Rearrangement 18
Color Multiplication 20
A Kernel Challenge 21

Testing Kernel Routines in Quartz Composer 22
Writing Advanced Kernel Routines 24

Pixellate 25
Edge Enhancement 27
Fun House Mirror Distortion 30

Writing Kernel Routines for a Detective Lens 32
The Problem: Why a Detective Lens? 33
Detective Lens Anatomy 34
The Lens Kernel Routine 36
The Lens Holder Kernel Routine 39

Solution to the Kernel Challenge 43
Next Steps 43

Chapter 3 Writing the Objective-C Portion 45

The Image Unit Template in Xcode 45
Creating a Color Inversion Image Unit 48
Creating a Pixellate Image Unit 51
Creating a Detective Lens Image Unit 53
Next Steps 61

3
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

Chapter 4 Preparing an Image Unit for Distribution 63

Validating an Image Unit 63
Testing an Image Unit 65
Completing the Necessary Licensing and Trademark Agreements 65
Further Reading 65

Document Revision History 67

4
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 An Image Unit and Its Parts 9

Table 1-1 Kernel routine input parameters and their associated objects 11

Chapter 2 Writing Kernels 13

Figure 2-1 A grid of pixels 15
Figure 2-2 A grid of pixels after inverting the color 15
Figure 2-3 An image of a gazelle 17
Figure 2-4 A gazelle image after inverting the colors 18
Figure 2-5 An image of a ladybug 19
Figure 2-6 A ladybug image after rearranging pixel components 19
Figure 2-7 A ladybug image after applying a multiply filter 20
Figure 2-8 A monochrome image of a ladybug 22
Figure 2-9 Colored blocks of pixels 24
Figure 2-10 A gazelle image after pixellation 25
Figure 2-11 Colored blocks of pixels with opacity added 26
Figure 2-12 A checkerboard pattern before edge enhancement 28
Figure 2-13 A checkerboard pattern after edge enhancement 28
Figure 2-14 A gazelle image after edge enhancement 30
Figure 2-15 A gazelle image distorted by a fun house mirror routine 31
Figure 2-16 The ideal detective lens 33
Figure 2-17 A detective lens that enlarges a portion of a high-resolution image 34
Figure 2-18 The parameters of a detective lens 35
Figure 2-19 A side view of a detective lens 35
Figure 2-20 A cross section of the lens holder 35
Figure 2-21 A checkerboard pattern magnified by a lens filter 36
Figure 2-22 An image used to generate lens highlights 37
Figure 2-23 A magnifying lens holder placed over a checkerboard pattern 40
Figure 2-24 A material map image 40
Figure 2-25 A lens holder generated from a checkerboard image 41
Listing 2-1 A kernel routine that inverts color 15
Listing 2-2 A kernel routine that places RGB values in the GBR channels 20
Listing 2-3 A kernel routine that produces a multiply effect 21
Listing 2-4 A kernel routine that pixellates 26
Listing 2-5 A kernel routine that enhances edges 29
Listing 2-6 Code that creates a fun house mirror distortion 31
Listing 2-7 A kernel routine for a lens 37
Listing 2-8 A kernel routine that generates a magnifying lens holder 42
Listing 2-9 A solution to the monochrome filter challenge 43

5
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

Chapter 3 Writing the Objective-C Portion 45

Figure 3-1 The files in an image unit project 46
Figure 3-2 The default property list file 47
Listing 3-1 A region-of-interest method for the pixellate image unit 51
Listing 3-2 The input parameters to the detective lens filter 54

Chapter 4 Preparing an Image Unit for Distribution 63

Figure 4-1 Output produced by ImageUnitAnalyzer for a failing unit 64
Figure 4-2 The Image Units logo 65
Listing 4-1 Output produced by ImageUnitAnalyzer for a passing unit 63

6
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

An image unit is a Core Image filter that is packaged as an NSBundle object. Any image processing filter
that uses Core Image should be packaged as an image unit. Doing so makes it easy to distribute your filter.
An image unit is not only a Core Image filter packaged as a bundle, it is a distribution mechanism for an
image processing filter. This means that when you create an image unit, you also get the benefit of consistent
packaging and an Apple-provided logo that you can license to use.

This tutorial provides the steps you need to write an image processing filter for Mac OS X. More specifically,
it shows you how to create image units that contain an executable filter. An executable filter has one portion
that uses the central processing unit (CPU) to execute and another portion that uses the graphics processing
unit (GPU). This document does not discuss nonexecutable filters, because they consist only of code that
runs on the GPU and therefore have limitations.

Organization of This Document

The document is organized into these chapter:

 ■ “An Image Unit and Its Parts” (page 9) describes the major parts of an image processing unit, what
each does, and how they work together.

 ■ “Writing Kernels” (page 13) provides examples, from simple to complex, of kernel routines.

 ■ “Writing the Objective-C Portion” (page 45) describes the image unit template provided by Xcode,
discusses each of the files provided in the template, and shows how to package some of the kernel
routines from the previous chapter as image units.

 ■ “Preparing an Image Unit for Distribution” (page 63) discusses installing, validating, and testing image
units and tells where to get more information on licensing the image unit logo.

Prerequisite Reading

Before reading this document you should:

 ■ Read Core Image Programming Guide.

 ■ Be familiar with the Core Image API. See Core Image Reference Collection.

 ■ Write code that uses one of the built-in Core Image filters. See Using Core Image Filters in Core Image
Programming Guide.

 ■ Take a look at Core Image Kernel Language Reference, which describes the procedural programming
language used to write the kernel portion of an image unit.

Organization of This Document 7
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

If you are not a Cocoa programmer, don’t panic! The kernel routine portion of an image processing filter
uses a procedural language. If you know C, you’ll catch on fast. The higher-level portion of an image processing
filter uses the Core Image API, which is an Objective-C API, but is not part of the Cocoa framework. Because
Xcode provides a template for writing an image unit, you’ll see that it’s relatively straightforward to use
Objective-C to write an image unit.

If you are not an OpenGL programmer, don’t worry. The Core Image API was designed to hide all the messy
details of dealing with the GPU from you. Although the kernel routine portion of an image processing filter
uses a subset of the OpenGL Shading Language (glslang), you’ll see by looking at the examples that you
don’t need prior knowledge to write kernel routines. You do, however, need to have an understanding of
the mathematics behind the processing that you want to implement.

See Also

The resources in this section are valuable to any developer who is writing an image unit. You’ll find them
most helpful as you work your way through this document and later on, when you are writing your own
image units.

 ■ ImageUnitAnalyzer is a tool that you use to ensure that any image unit you write is valid. After you install
the developer tools, you can find the analyzer in /Developer/Tools/.

 ■ CIFilterBrowser is a widget that lets you inspect all installed image units as well as Core Image built-in
filters. You can view the input parameters and attributes of a filter and see a preview of an output image
produced by the filter.

 ■ Core Image Fun House is an application that lets you explore all installed image units and Core Image
built-in filters. You can choose any image to process and then apply one or more filters to the image by
stacking the filters together. You can also turn off or on any filter in the stack to more closely examine
filter effects. After you install the developer tools, you can find Core Image Fun House in
/Developer/Applications/Graphics Tools/.

 ■ CIAnnotation is a sample application that contains two image unit projects and uses them for compositing
images and painting over them.

 ■ Quartz Composer is an application that you can use to explore motion graphics. Core Image developers
can use this application to test image units and to try out kernel routines. After you install the developer
tools, you can find Quartz Composer in /Developer.

 ■ Quartz Composer User Guide describes how to use the Quartz Composer development tool.

 ■ The Quartz-dev mailing list is a technical discussion forum for developers using Quartz technologies
on Mac OS X, including Core Image. To sign up, see http://lists.apple.com/mailman/listinfo/quartz-dev.

8 See Also
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://lists.apple.com/mailman/listinfo/quartz-dev

This tutorial provides detailed information on how to write the various parts of an image unit so that they
work together as an image unit. It’s important that you have an idea not only of what the parts are, but how
they fit together. This chapter provides such an overview. It describes the parts of an image unit, discusses
what each one does, and provides guidelines for writing some of the components in an image unit.

Before you start this chapter, you should be familiar with the concepts described in Core Image Programming
Guide, have already used some of the built-in image processing filters provided by Core Image, and understand
the classes defined by the Core Image API (see Core Image Reference Collection).

The Major Parts of an Image Unit

An image processing filter, when packaged as an executable image unit, has three major parts:

 ■ A kernel routine file. This file contains one or more kernel routines and any needed subroutines. The
kernel routine must be written using the Core Image Kernel Language (CIKL). A C-like language, CIKL
is a subset of the OpenGL Shading Language (glslang). CIKL restricts some of the glslang keywords that
you can use, but introduces a number of keywords and data types that are not provided by glslang. (See
Core Image Kernel Language Reference.)

 ■ Objective-C filter files. Each filter has an interface and implementation file that performs all the set up
work required prior to applying a kernel routine.

 ■ Plug-in loading files. Each image unit has an interface and implementation file that implements the
plug-in loading protocol.

Division of Labor

Image processing tasks are divided into low-level (kernel) and high-level (Objective-C) tasks. When you first
start writing image units, you might find it challenging to divide the tasks appropriately. If you strive to keep
kernel routines lean, you will likely succeed in dividing the tasks appropriately.

A kernel routine operates on individual pixels and uses the GPU (assuming one is available). For best
performance, a kernel routine should be as focused as possible on pixel processing. Any set up work or
calculations that can be done outside the kernel routine should be done outside the kernel routine, in
the Objective-C filter files. As you’ll see, because Core Image expects certain tasks to be performed outside
the kernel routine, the Xcode image unit plug-in template provides methods set up for just this purpose.
In “Writing the Objective-C Portion” (page 45) you see the specifics, but for now, a general understanding
is all you’ll need.

These are the tasks typically performed in the Objective-C filter files:

The Major Parts of an Image Unit 9
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

An Image Unit and Its Parts

 ■ Retrieve the files needed for the filter. Image I/O is a high-level task that is typically done during the
initialization phase of the image unit filter. Files can include the image (or images) to be processed and
any other image data needed by the kernel routine (such as a texture or an environment map).

 ■ Set up one or more CISampler objects. A sampler (lowercase “s”) is a data source for a kernel routine.
(It is defined in Core Image Kernel Language Reference.) A CISampler object is a Core Image class that
encapsulates a sampler, references a file to fetch samples from, defines a coordinate transform (if any)
to use on the samples, and defines modes to use for interpolation and wrapping. The data source
referenced by a CISampler object can be a texture, an environment map, an image to process, a lookup
table—whatever is needed by the kernel routine.

 ■ Set up one or more CIKernel objects. A kernel (lowercase “k”) refers to a kernel routine. (It is defined
in Core Image Kernel Language Reference.) A CIKernel object is a Core Image class that encapsulates a
kernel file, references each of the kernel routines in the file and defines a region-of-interest method
for each of the kernel routines that requires such a method.

 ■ Set a region-of-interest method and any input parameters required for that method. A region of interest
(ROI) defines the area in the source image from which a sampler takes pixel information to provide to
the kernel for processing. Simple filters—those for which there is a 1:1 mapping between a source and
destination pixel—don’t need a method to calculate the region of interest because Core Image assumes
a 1:1 mapping if you don’t supply an ROI method. See “Region-of-Interest Methods” (page 11) for more
details.

 ■ Set up input parameters for the kernel routine. The Objective-C portion of an image unit is where you
perform all calculations possible so that the values you pass to the kernel routine are ready to use. For
example, you could calculate the radius of an effect in the Objective-C portion rather than pass a diameter
to the kernel and perform the radius calculation in the kernel. This way, the calculation is performed
only once, and not for every pixel that’s processed.

 ■ Apply the kernel routine. You can invoke a kernel routine more than once (as you might for effects
that require iteration, such as a blur effect). You can use more than one kernel routine to process an
image. You can also combine your kernel routine with an effect produced by one of the built-in Core
Image filters.

Kernel Routine Rules

A kernel routine is like a worker on an assembly line—it specializes in a focused task. Each time the routine
is invoked, it produces a vec4 data type from the materials (input parameters) given to it. The routine must
perform as little work as possible to be efficient. Assembly line work goes fastest when workers use
preassembled subcomponents. It’s also true of kernel routines. Anything that can be calculated ahead of
time and passed to the routine should be. As you become more experienced at writing kernel routines,
you’ll devise clever ways to pare down the code in the routine. The examples in “Writing Kernels” (page 13)
should give you some ideas. Core Image also helps in this regard by restricting what sorts of operations can
be done in a kernel routine.

Keep the following in mind as you design and write kernel routines:

 ■ Flow control statements (if, for, while, do while) are supported only when the loop condition can
be inferred at the time the code compiles.

 ■ The input parameters to a kernel routine can be any of these data types: sampler, __table sampler,
__color, float, vec2, vec3, or vec4. However, when you apply a kernel routine in the Objective-C
portion of an image unit, you must supply objects. See Table 1-1 (page 11).

10 Kernel Routine Rules
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

An Image Unit and Its Parts

 ■ A kernel routine does not take images as input parameters. Instead, it takes a sampler object that’s
associated with an image. It is the job of the sampler object to fetch image data and provide it to the
kernel routine. All sampler objects are set up as CISampler objects in the Objective-C portion of an
image unit. See “Division of Labor” (page 9).

 ■ You are restricted to using what’s described in Core Image Kernel Language Reference. The Core Image
Kernel Language (CIKL) is a subset of OpenGL Shading Language (glslang), so not everything that’s
defined by glslang is allowed by CIKL. However, you’ll find that most of the keywords in gslang are
available to you. In addition, CIKL provides a number of data types, keywords, and functions that are not
available in glslang.

 ■ You can’t use arrays.

 ■ A kernel routine computes an output pixel by using an inverse mapping back to the corresponding
pixels of the input images. Although you can express most pixel computations this way—some more
naturally than others—there are some image processing operations for which this is difficult, if not
impossible. For example, computing a histogram is difficult to describe as an inverse mapping to the
source image. You also cannot perform seed fills or any image analysis operations that require complex
conditional statements.

 ■ A routine is faster if you unroll loops.

Table 1-1 lists the valid input parameters for a kernel routine and the associated objects that must be passed
to the kernel routine from the Objective-C portion of an image unit. Core Image extracts the appropriate
base data type from the higher-level Objective-C object that you supply. If you don’t use an object, the filter
may unexpectedly quit. For example, if, in the Objective-C portion of the image unit, you pass a floating-point
value directly instead of packaging it as an NSNumber object, your filter will not work. In fact, when you use
the Image Unit Validator tool on such an image unit, the image unit fails with a cryptic message. (See
“Validating an Image Unit” (page 63).)

Table 1-1 Kernel routine input parameters and their associated objects

ObjectKernel routine input parameter

CISamplersampler

CISampler__table sampler

CIColor__color

NSNumberfloat

CIVectorvec2, vec3, or vec4

Region-of-Interest Methods

The region of interest (ROI) is the area of the sampler source data that your kernel uses for its per-pixel
processing. A kernel routine always returns a vec4 data type—that is, one pixel. However, the routine can
operate on any number of pixels to produce that vec4 data type. If the mapping between the source and
the destination is not one-to-one, then you must define a region-of-interest method in the Objective-C filter
file.

You do not need an ROI method when a kernel routine:

Region-of-Interest Methods 11
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

An Image Unit and Its Parts

 ■ Processes a pixel from the working-space coordinate (r,s) of the sampler to produce a pixel at the
working-space coordinate (r,s) in the destination image.

You must supply an ROI method when a kernel routine:

 ■ Uses many source pixels in the calculation of one destination pixel. For example, a distortion filter might
use a pixel (r,s) and its neighbors from the source image to produce a single pixel (r,s) in the destination
image.

 ■ Uses values provided by a sampler that are unrelated to the working-space coordinates in the source
image and the destination. For example, a texture, a color ramp, or a table that approximates a function
provides values that are unrelated to the notion of working coordinates.

You supply an ROI method for each kernel routine in an image unit that needs you. (An image unit can
contain one or more kernel routines.) Each ROI method that you supply must use a method signature of
the following form:

- (CGRect) regionOf:(int)samplerIndex
 destRect:(CGRect)r
 userInfo:obj;

You can replace regionOf with an appropriate name. For example, and ROI method for a blur filter could
be named blurROI:destRect:userInfo:.

Core Image invokes your ROI method when appropriate, passing to it the sampler index (which you’ll learn
more about later), the rectangle for the region being rendered, and any data that is needed by your routine.
The method must define the ROI for each sampler data source used by the kernel routine. If a sampler
data source used by the kernel routine doesn’t require an ROI method, then you can pass back the destRect
rectangle for that sampler. You simply check the samplerIndex value passed to the method. If an ROI
calculation is need for the sampler, perform the calculation and pass back the appropriate rectangle. If an
ROI calculation is not needed for that particular sampler, then pass back the destRect passed to the method.

For example, if your kernel routine accesses pixels within a radius r around the current target, you need
to offset the destination rectangle in the ROI method by the radius r. You’ll see how all this works in more
detail later.

Note: Whereas the ROI defines the area in a source image from which to fetch pixels, the domain of definition
defines the area of the destination image that accepts processed pixels. The domain of definition is the area
outside of which all pixels in the destination are transparent (that is, the alpha component is equal to 0). For
more details, see Core Image Programming Guide.

Next Steps

Now that you have a general idea of what the major parts of an image unit are and what each does, you are
ready to move on to writing kernel routines. “Writing Kernels” (page 13) starts with a few simple kernel
routines and progresses to more complex ones. Not only will you se how to write kernel routines, but you’ll
see how you can test simple kernel routines without the need to provide Objective-C code.

12 Next Steps
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

An Image Unit and Its Parts

The heart of any image processing filter is the kernel file. A kernel file contains one or more kernel routines
and any required subroutines. A kernel routine gets called once for each pixel for the destination image.
The routine must return a vec4 data type. Although this four-element vector typically contains pixel data,
the vector is not required to represent a pixel. However, the kernel routines in this chapter produce only
pixel data because that’s the most common data returned by a kernel routine.

A kernel routine can:

 ■ Fabricate the data. For example, a routine can produce random pixel values, generate a solid color, or
produce a gradient. It can generate patterns, such as stripes, a checkerboard, a starburst, or color bars.

 ■ Modify a single pixel from a source image. A kernel routine can adjust hue, exposure, white point
values, replace colors, and so on.

 ■ Sample several pixels from a source image to produce the output pixel. Stylize filters such as edge
detection, pixellate, pointillize, gloom, and bloom use this technique.

 ■ Use location information from one or more pixels in a source image to produce the output pixel. Distortion
effects, such as bump, pinch, and hole distortions are created this way.

 ■ Produce the output pixel by using data from a mask, texture, or other source to modify one or more
pixels in a source image. The Core Image stylize filters—height field from mask, shaded material, and
the disintegrate with mask transition—are examples of filters that use this technique.

 ■ Combine the pixels from two images to produce the output pixel. Blend mode, compositing, and transition
filters work this way.

This chapter shows how to write a variety of kernel routines. First you’ll see what the programming
constraints, or rules, are. Then you’ll learn how to write a simple filter that operates on one input pixel to
produce one output pixel. As the chapter progresses, you’ll learn how to write more complex kernel routines,
including those used for a multipass filter.

Although the kernel routine is where the per-pixel processing occurs, it is only one part of an image unit.
You also need to write code that provides input data to the kernel routine and performs a number of other
tasks as described in “Writing the Objective-C Portion” (page 45). Then you’ll need to bundle all the code by
following the instructions in “Preparing an Image Unit for Distribution” (page 63).

Before continuing in this chapter, see Core Image Kernel Language Reference for a description of the language
you use to write kernel routines. Make sure you are familiar with the constraints discussed in “Kernel Routine
Rules” (page 10).

Writing Simple Kernel Routines

A kernel routine that operates on the color of a source pixel at location (x, y) to produce a pixel at the same
location in the destination image is fairly straightforward to write. In general, a kernel routine that operates
on color follows these steps:

Writing Simple Kernel Routines 13
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

1. Gets the pixel from the source image that is at the same location as the pixel you want to produce in
the output image. The Core Image Kernel Language function sample returns the pixel value produced
by the specified sampler at a specified point. To get the specified point, use the function samplerCoord,
which returns the position, in sampler space, that is associated with the current output pixel after any
transformation matrix associated with the sampler is applied. That means if the image is transformed in
some way (for example, rotation or scaling), the sampler ensures that the transformation is reflected
in the sample it fetches.

2. Operates on the color values.

Note: Pixels in Core Image are comprised of red, green, blue, and alpha components whose floating-point
values can range from 0.0 (component absent) to 1.0 (component present at 100%).

3. Returns the modified pixel.

Equations for this sort of filter take the following form:

Depending on the operation, you may need to unpremultiply the color values prior to operating on them
and the premultiply the color values before returning the modified pixel. The Core Image Kernel Language
provides the unpremultiply and premultiply functions for this purpose.

Color Inversion

Color component values for pixels in Core Image are floating-point values that range from 0.0 (color
component absent) to 1.0 (color component present at 100%). Inverting a color is accomplished by reassigning
each color component of value of 1.0 – component_value, such that:

red_value = 1.0 - red_value
blue_value = 1.0 - blue_value
green_value = 1.0 - green_value

Figure 2-1 (page 15) shows a grid of pixels. If you invert the color of each pixel by applying these equations,
you get the resulting grid of pixels shown in Figure 2-2 (page 15).

14 Writing Simple Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-1 A grid of pixels

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

Figure 2-2 A grid of pixels after inverting the color

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

Take a look at the kernel routine in Listing 2-1 to see how to implement color inversion. A detailed
explanation for each numbered line of code appears following the listing. You’ll see how to write the
Objective-C portion that packages this routine as an image unit by reading “Creating a Color Inversion Image
Unit” (page 48).

Listing 2-1 A kernel routine that inverts color

// 1kernel vec4 _invertColor(sampler source_image)
{

// 2 vec4 pixValue;
// 3 pixValue = sample(source_image, samplerCoord(source_image));
// 4 unpremultiply(pixValue);
// 5 pixValue.r = 1.0 - pixValue.r;

 pixValue.g = 1.0 - pixValue.g;
 pixValue.b = 1.0 - pixValue.b;

// 6 return premultiply(pixValue);

Writing Simple Kernel Routines 15
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

}

Here’s what the code does:

1. Takes a sampler object as an input parameter. Recall (see “Kernel Routine Rules” (page 10)) that kernel
routines do not take images as input parameters. Instead, the sampler object is in charge of accessing
image data and providing it to the kernel routine.

A routine that modifies a single pixel value will always have a sampler object as an input parameter.
The sampler object for this category of kernel routine is passed in from a CISampler object created
in the Objective-C portion of an image unit. (See “Division of Labor” (page 9).) The sampler object
simply retrieves pixel values from the a source image. You can think of the sampler object as a data
source.

2. Declares a vec4 data type to hold the red, green, blue, and alpha component values of a pixel. A
four-element vector provides a convenient way to store pixel data.

3. Fetches a pixel value from the source image. Let’s take a closer look at this statement, particularly the
sample and samplerCoord functions provided by the Core Image Kernel Language. The samplerCoord
function returns the position, in sampler space, associated with the current destination pixel after any
transformations associated with the image source or the sampler are applied to the image data. As the
kernel routine has no way of knowing whether any transformations have been applied, it’s best to use
the samplerCoord function to retrieve the the position. When you read “Writing the Objective-C
Portion” (page 45) you’ll see that it is possible, and often necessary, to apply transformations in the
Objective-C portion of an image unit.

The sample function returns the pixel value obtained by the sampler object from the specified position.
This function assumes the position is in sampler space, which is why you need to nest the call to
samplerCoord to retrieve the position.

4. Unpremultiplies the pixel data. If your routine operates on color data that could have an alpha value
other then 1.0 (fully opaque), you need to call the Core Image Kernel Language function unpremultiply
(or take similar steps—see the advanced tip below) prior to operating on the color values

Note: Core Image always works in an RGB colorspace. Data, such as YUV, must first be converted to RGB.
Such conversion is at a much higher level than the kernel routine. However, Core Image performs the
conversion of YUV texture data automatically for you. Keep in mind that the data provided to your
kernel routine by Core Image is always RGB based.

5. Inverts the red color component. The next two lines invert the green and blue color components. Note
that you can access the individual components of a pixel by using .r, .g, .b, and .a instead of a numerical
index. That way, you never need to concern yourself with the order of the components. (You can also
use .x, .y, .z, and .w as field accessors.)

6. Premultiplies the data and returns a vec4 data type that contains inverted values for the color components
of the destination pixel. The function premultiply is defined by the Core Image Kernel Language.

16 Writing Simple Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Advanced Tip: The following is a more efficient way to write Listing 2-1 (page 15), and faster to execute.
The code simply subtracts the red, green, and blue values from the alpha value. For any value of alpha, this
has the same result as Listing 2-1. The pixValue.aaa notation might look a bit odd, but it is valid, and
represents a three-element vector made up of three identical values (the alpha value).

kernel vec4 _invertColor(sampler source_image)
{
 vec4 pixValue; 2
 pixValue = sample(source_image, samplerCoord(source_image));
 pixValue.rgb = pixValue.aaa - pixValue.rgb;
 return pixValue;
}

When you apply a color inversion kernel routine to the image shown in Figure 2-3 you get the result shown
in Figure 2-4 (page 18).

Figure 2-3 An image of a gazelle

Writing Simple Kernel Routines 17
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-4 A gazelle image after inverting the colors

Color Component Rearrangement

Listing 2-2 (page 20) shows another simple kernel routine that modifies the color values of a pixel by
rearranging the color component values. The red channel is assigned the green values. The green channel
is assigned the blue values. The blue channel is assigned the red values. Applying this filter to the image
shown in Figure 2-5 results in the image shown in Figure 2-6 (page 19).

18 Writing Simple Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-5 An image of a ladybug

Figure 2-6 A ladybug image after rearranging pixel components

Writing Simple Kernel Routines 19
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

As you can see, the routine in Listing 2-2 (page 20) is very similar to Listing 2-1 (page 15). This kernel
routine, however, uses two vectors, one for the pixel provided from the source image and the other to hold
the modified values. The alpha value remains unchanged, but the red, green, and blue values are shifted.

Listing 2-2 A kernel routine that places RGB values in the GBR channels

kernel vec4 RGB_to_GBR(sampler source_image)
{
 vec4 originalColor, twistedColor;

 originalColor = sample(image, samplerCoord(source_image));
 twistedColor.r = originalColor.g;
 twistedColor.g = originalColor.b;
 twistedColor.b = originalColor.r ;
 twistedColor.a = originalColor.a;
 return twistedColor;
}

Color Multiplication

Color multiplication is true to its name; it multiplies each pixel in a source image by a specified color. Figure
2-7 shows the effect of applying a color multiply filter to the image shown in Figure 2-5 (page 19).

Figure 2-7 A ladybug image after applying a multiply filter

Listing 2-3 (page 21) shows the kernel routine used to produce this effect. So that you don’t get the idea
that a kernel can take only one input parameter, note that this routine takes two input parameters—one a
sampler object and the other a __color data type. The __color data type is one of two data types defined
by the Core Image kernel language; the other data type is sampler, which you already know about. These

20 Writing Simple Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

two data types are not the only ones that you can use input parameters to a kernel routine. You can also
use these data types which are defined by the Open GL Shading Language (glslang)—float, vec2, vec3,
vec4.

Important: Keep in mind, however, that in the Objective-C portion of the filter, all data types passed to the
kernel routine must be packaged Objective-C objects. See “Kernel Routine Rules” (page 10) for details.

The color supplied to a kernel routine will be matched, by Core Image, to the working color space of the
Core Image context associated with the kernel. There is nothing that you need to do regarding color in the
kernel. Just keep in mind that, to the kernel routine, __color is a vec4 data type in premultiplied RGBA
format, just as the pixel values fetched by the sampler are.

Listing 2-3 points out an important aspect of kernel calculations—the use of vector math. The sample fetched
by the Core Image Kernel Language function sample is a four-element vector. Because it is a vector, you can
multiply it directly by multiplyColor; there is no need to access each component separately.

By now you should be used to seeing the samplerCoord function nested with the sample function!

Listing 2-3 A kernel routine that produces a multiply effect

kernel vec4 multiplyEffect (sampler image_source, __color multiplyColor)
{
 return sample (image_source, samplerCoord (image_source)) * multiplyColor;
}

A Kernel Challenge

Now that you’ve seen how to write kernel routines that operate on a single pixel, it’s time to challenge
yourself. Write a kernel routine that produces a monochrome image similar to what’s shown in Figure 2-8.
The filter should take two input parameters, a sampler and a __color. Use Quartz Composer to test and
debug your routine. You can find a solution in “Solution to the Kernel Challenge” (page 43).

Writing Simple Kernel Routines 21
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-8 A monochrome image of a ladybug

Testing Kernel Routines in Quartz Composer

The kernel routine, as you know, is one part of a Core Image filter. There is still a good deal of code that
you need to write at a level higher than the kernel routine and a bit more work beyond that to package
your image processing code as an image unit. Fortunately, you don’t need to write this additional code to
test simple kernel routines. You can instead use Quartz Composer.

Quartz Composer is a development tool for processing and rendering graphical data. It’s available on any
computer that has the Developer tools installed. You can find it in /Developer/Applications. The following
steps will show you how to use Quartz Composer to test each of the kernel routines you’ve read about so
far.

Note: Before you follow these steps, you’ll need to familiarize yourself with Quartz Composer by reading
Quartz Composer User Guide. The time that you spend learning to use Quartz Composer will save you a lot of
time debugging and testing many of the kernel routines that your write.

1. Launch Quartz Composer by double-clicking its icon in /Developer/Applications.

2. In the sheet that appears, choose Blank Composition.

3. Open the Patch Creator and search for Core Image Filter.

4. Add the Core Image Filter patch to the workspace.

5. Use the search field to locate the Billboard patch, then add that patch to the workspace.

22 Testing Kernel Routines in Quartz Composer
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

6. In a similar manner, locate the Image Importer patch and add it to the workspace.

7. Connect the Image output port on the Image Importer patch to the Image input port on the Core Image
Filter patch.

8. Connect the Image output port on the Core Image Filter patch to the Image input port on the Billboard.

9. Click the Image Importer patch and then click the Inspector button on the toolbar.

10. Choose Settings from the inspector pop-up menu. Then click Import From File and choose an image.

11. Click Viewer in the toolbar to make sure that the Viewer window is visible.

You should see the image that you imported rendered to the Viewer window.

12. Click the Core Image Filter patch and open the inspector to the Settings pane.

Note that there is already a kernel routine entered for a multiply effect. If you want to see how that
works, choose Input Parameters from the inspector pop-up menu and then click the color well to set a
color. You immediately see the results in the Viewer window.

13. Copy the kernel routine shown in Listing 2-1 (page 15) and replace the multiply effect routine that’s
in the Settings pane of the Core Image Kernel patch.

Testing Kernel Routines in Quartz Composer 23
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Notice that not only does the image on the Viewer window change (its color should be inverted), but
the Core Image Kernel patch automatically changes to match the input parameters of the kernel routine.
The invert color kernel has only one input parameter, whereas the multiply effect supplied as a default
had two parameters.

14. Follow the same procedure to test the kernel routine shown in Listing 2-2 (page 20).

Writing Advanced Kernel Routines

Up to now you’ve seen how to write several simple kernel routines that operate on a pixel from a source
image to produce a pixel in a destination image that’s at the same working-space coordinate as the pixel
from the source image. Some of the most interesting and useful filters, however, do not use this one-to-one
mapping. These more advanced kernel routines are what you’ll learn about in this section.

Recall from “An Image Unit and Its Parts” (page 9) that kernel routines that do not use a one-to-one
mapping require a region-of-interest method that defines the area from which a sampler object can fetch
pixels. The kernel routine knows nothing about this method. The routine simply takes the data that is passed
to it, operates on it, and computes the vec4 data type that the kernel routine returns. As a result, this
section doesn’t show you how to set up the ROI method. You’ll see how to accomplish that task in “Writing
the Objective-C Portion” (page 45). For now, assume that each sampler passed to a kernel routine supplies
data from the appropriate region of interest.

An example of an image produced by an advanced kernel routine is shown in Figure 2-9. The figure shows
a grid of pixels produced by a “color block” kernel routine. You’ll notice that the blocks of color are 4 pixels
wide and 4 pixels high. The pixels marked with “S” denote the location of the pixel in a source image from
which the 4 by 4 block inherits its color. As you can see, the kernel routine must perform a one-to-many
mapping. This is just the sort of operation that the the pixellate kernel routine discussed in detail in
“Pixellate” (page 25) performs.

Figure 2-9 Colored blocks of pixels

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

S

S

S

S

S

S

You’ll see how to write two other advanced kernel routines in “Edge Enhancement” (page 27) and “Fun
House Mirror Distortion” (page 30).

24 Writing Advanced Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Pixellate

A pixellate filter uses a limited number of pixels from a source image to produce the destination image, as
described in previously. Compare Figure 2-3 (page 17) with Figure 2-10 (page 25). Notice that the processed
image looks blocky; it is made up of dots of a solid color. The size of the dots are determined by a scaling
factor that’s passed to the kernel routine as an input parameter.

Figure 2-10 A gazelle image after pixellation

The trick to any pixellate routine is to use a modulus operator on the coordinates to divide the coordinates
into discrete steps. This causes your code to read the same source pixel until your output coordinate has
incremented beyond the threshold of the scale, producing an effect similar to that shown in Figure 2-10 (page
25). The code shown in Listing 2-4 (page 26) creates round dots instead of squares by creating an anti-aliased
edge that produces the dot effect shown in Figure 2-11. Notice that each 4-by-4 block represents a single
color, but the alpha component varies from 0.0 to 1.0. Anti-aliasing effects are used in a number of filters, so
it is worthwhile to study the code, shown in Listing 2-4 (page 26), that accomplishes this.

Writing Advanced Kernel Routines 25
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-11 Colored blocks of pixels with opacity added

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

S

S

S

S

S

S

The pixellate kernel routine takes two input parameters: a sampler object for fetching samples from the
source image and a floating-point value that specifies the diameter of the dots. A detailed explanation for
each numbered line of code appears following the listing.

Listing 2-4 A kernel routine that pixellates

// 1kernel vec4 roundPixellate(sampler src, float scale)
{

// 2 vec2 positionOfDestPixel, centerPoint;
 float d, radius;
 vec4 outValue;
 float smooth = 0.5;

 radius = scale / 2.0;
// 3 positionOfDestPixel = destCoord();

 centerPoint = positionOfDestPixel;
// 4 centerPoint.x = centerPoint.x - mod(positionOfDestPixel.x, scale) + radius;

// 5 centerPoint.y = centerPoint.y - mod(positionOfDestPixel.y, scale) + radius;

// 6 d = distance(centerPoint, positionOfDestPixel);

// 7 outValue = sample(src, samplerTransform(src, centerPoint));
// 8 outValue.a = outValue.a * smoothstep((d - smooth), d, radius);

// 9 return premultiply(outValue);

}

Here’s what the code does:

1. Takes a sampler and a scaling value. Note the scaling value is declared as a float data type here, but
when you write the Objective-C portion of the filter, you must pass the float as an NSNumber object.
Otherwise, the filter will not work. See “Kernel Routine Rules” (page 10).

26 Writing Advanced Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

2. Declares two vec2 data types. The centerPoint variable holds the coordinate of the pixel that
determines the color of a block; it is the “S” shown in Figure 2-11 (page 26). The positionOfDestPixel
variable holds the position of the destination pixel.

3. Gets the position, in working-space coordinates, of the pixel currently being computed. The function
destCoord is defined by the Core Image Kernel Language. (See Core Image Kernel Language Reference.)

4. Calculates the x-coordinate for the pixel that determines the color of the destination pixel.

5. Calculates the y-coordinate for the pixel that determines the color of the destination pixel.

6. Calculates how far the destination pixel is from the center point (“S”). This distance determines the value
of the alpha component.

Note: The distance function is defined in the OpenGL Shading Language specification. It returns the
distance between two points.

float distance (genType p0, genType p1);

7. Fetches a pixel value from the source image, at the location specified by the centerPoint vector.

Recall that the sample function returns the pixel value produced by the sampler at the specified position.
This function assumes the position is in sampler space, which is why you need to nest the call to
samplerCoord to retrieve the position.

8. Creates an anti-aliased edge by multiplying the alpha component of the destination pixel by the
smoothstep function defined by glslang. (See the OpenGL Shading Language specification.)

Note: The smoothstep function returns 0.0 if x <= edge0 and if x >= edge1. Otherwise, it interpolates
between 0 and 1.

genType smoothstep (float edge0, float edge1, genType x);

9. Premultiplies the result before returning the value.

You’ll see how to write the Objective-C portion that packages this routine as an image unit by reading
“Creating a Pixellate Image Unit” (page 51).

Edge Enhancement

The edge enhancement kernel routine discussed in this section performs two tasks. It detects the edges in
an image using a Sobel template. It also enhances the edges. Although the kernel routine operates on all
color components, you can get an idea of what is does by comparing Figure 2-12 (page 28) with Figure
2-13 (page 28).

Writing Advanced Kernel Routines 27
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/

Note: There are many ways to computationally detect edges in an image. One approach is to use a template
as a model of the ideal edge. An edge-detection template approximates the gradient at the pixel that
corresponds to the center of the template. A Sobel template is a commonly used template because it provides
a very good edge model while remaining small and thus not too costly from a computational standpoint.
The template used here is implemented as a set of convolution masks whose weights on the diagonal
elements are less than those on the horizontal and vertical elements. For details, see one of the image
processing books suggested in “Further Reading” (page 65).

Figure 2-12 A checkerboard pattern before edge enhancement

Figure 2-13 A checkerboard pattern after edge enhancement

28 Writing Advanced Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

The _EdgyFilter kernel is shown in Listing 2-5. It takes two parameters, a sampler for fetching image data
from a source image and a power parameter that’s used to brighten or darken the image. A detailed
explanation for each numbered line of code appears following the listing.

Listing 2-5 A kernel routine that enhances edges

// 1kernel vec4 _EdgyFilter(sampler image, float power)
{

// 2 const vec2 xy = destCoord();
// 3 vec4 p00,p01,p02, p10,p12, p20,p21,p22;
// 4 vec4 sumX, sumY, computedPixel;

 float edgeValue;

// 5 p00 = sample(image, samplerTransform(image, xy+vec2(-1.0, -1.0)));
 p01 = sample(image, samplerTransform(image, xy+vec2(0.0, -1.0)));
 p02 = sample(image, samplerTransform(image, xy+vec2(+1.0, -1.0)));
 p10 = sample(image, samplerTransform(image, xy+vec2(-1.0, 0.0)));
 p12 = sample(image, samplerTransform(image, xy+vec2(+1.0, 0.0)));
 p20 = sample(image, samplerTransform(image, xy+vec2(-1.0, +1.0)));
 p21 = sample(image, samplerTransform(image, xy+vec2(0.0, +1.0)));
 p22 = sample(image, samplerTransform(image, xy+vec2(+1.0, +1.0)));

// 6 sumX = (p22+p02-p20-p00) + 2.0*(p12-p10);
// 7 sumY = (p20+p22-p00-p02) + 2.0*(p21-p01);

// 8 edgeValue = sqrt(dot(sumX,sumX) + dot(sumY,sumY)) * power;

// 9 computedPixel = sample(image, samplerCoord(image));
// 10 computedPixel.rgb = computedPixel.rgb * edgeValue;
// 11 return computedPixel;

}

Here’s what the code does:

1. Takes a sampler and a power value. Note that the power value is declared as a float data type here,
but when you write the Objective-C portion of the filter, you must pass the float as an NSNumber
object. Otherwise, the filter will not work. See “Kernel Routine Rules” (page 10).

2. Gets the position, in working-space coordinates, of the pixel currently being computed. The function
destCoord is defined by the Core Image Kernel Language. (See Core Image Kernel Language Reference.)

3. Declares 8 four-element vectors. These vectors will hold the values of the 8 pixels that are neighbors to
the destination pixel that the kernel routine is computing.

4. Declares vectors to hold the intermediate results and the final computed pixel.

5. This and the following seven lines of code fetch 8 neighboring pixels.

6. Computes the sum of the x values of the neighboring pixels, weighted by the Sobel template.

7. Computes the sum of the y values of the neighboring pixels, weighted by the Sobel template.

8. Computes the magnitude, then scales by the power parameter. The magnitude provides the edge
detection/enhancement portion of the filter, and the power has a brightening (or darkening) effect.

Writing Advanced Kernel Routines 29
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Note: The dot function provided by OpenGL Shading Language returns the dot product of two vectors.
If x and y are two four-element vectors that represent pixels, the result returned is:

result = x.r * y.r + x.g * y.g + x.b * y.b + x.a * y.a

9. Gets the pixel whose destination value needs to be computed.

10. Modifies the color of the destination pixel by the edge value.

11. Returns the computed pixel.

When you apply the _EdgyFilter kernel to the image shown in Figure 2-3 (page 17), you get the resulting
image shown in Figure 2-14.

Figure 2-14 A gazelle image after edge enhancement

Fun House Mirror Distortion

The fun house mirror distortion kernel routine is provided as the default kernel routine for the image unit
template in Xcode. (You’ll learn how to use the image unit template in “Writing the Objective-C Portion” (page
45).) Similar to a mirror in a carnival fun house, this filter distorts an image by stretching and magnifying a
vertical strip of the image. Compare Figure 2-15 (page 31) with Figure 2-3 (page 17).

30 Writing Advanced Kernel Routines
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-15 A gazelle image distorted by a fun house mirror routine

The fun house kernel routine shown in Listing 2-6 (page 31) takes the following parameters:

 ■ src is the sampler that fetches image data from a source image.

 ■ center_x is the x coordinate that defines the center of the vertical strip in which the warping takes
place.

 ■ inverse_radius is the inverse of the radius. You can avoid a division operation in the kernel routine
by performing this calculation outside the routine, in the Objective-C portion of the filter.

 ■ radius is the extent of the effect.

 ■ scale specifies the amount of warping.

The mySmoothstep routine in Listing 2-6 is a custom smoothing function to ensure that the pixels at the
edge of the effect blend with the rest of the image.

Listing 2-6 Code that creates a fun house mirror distortion

float mySmoothstep(float x)
{
 return (x * -2.0 + 3.0) * x * x;
}

kernel vec4 funHouse(sampler src, float center_x, float inverse_radius,
// 1 float radius, float scale)

{
 float distance;
 vec2 myTransform1, adjRadius;

Writing Advanced Kernel Routines 31
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

// 2 myTransform1 = destCoord();
// 3 adjRadius.x = (myTransform1.x - center_x) * inverse_radius;
// 4 distance = clamp(abs(adjRadius.x), 0.0, 1.0);
// 5 distance = mySmoothstep(1.0 - distance) * (scale - 1.0) + 1.0;
// 6 myTransform1.x = adjRadius.x * distance * radius + center_x;
// 7 return sample(src, samplerTransform(src, myTransform1));

}

Here’s what the code does:

1. Takes a sampler and four float values as parameters. Note that when you write the Objective-C portion
of the filter, you must pass each float value as an NSNumber object. Otherwise, the filter will not work.
See “Kernel Routine Rules” (page 10).

2. Fetches the position, in working-space coordinates, of the pixel currently being computed.

3. Computes an x coordinate that’s adjusted for it’s distance from the center of the effect.

4. Computes a distance value based on the adjusted x coordinate and that varies between 0 and 1.
Essentially, this normalizes the distance.

5. Adjusts the normalized distance value so that is varies along a curve. The scale value determines the
height of the curve. The radius value used previously to calculate the distance determines the width of
the curve.

6. Computes a transformation vector.

7. Returns the pixel located at the position in the coordinate space after the coordinate space is transformed
by the myTransform1 vector.

Take a look at the default image unit in Xcode to see what’s required for the Objective-C portion of the image
unit. (See “The Image Unit Template in Xcode” (page 45).) You’ll see that a region-of-interest method is
required. You’ll also notice that the inverse radius calculation is computed in the outputImage method.

Writing Kernel Routines for a Detective Lens

This section describes a more sophisticated use of kernel routines. You’ll see how to create two kernel
routines that could stand on their own, but later, in “Creating a Detective Lens Image Unit” (page 53), you’ll
see how to combine them to create a filter that, to the user, will look similar to a physical magnification lens,
as shown in Figure 2-16.

32 Writing Kernel Routines for a Detective Lens
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-16 The ideal detective lens

To create this effect, it’s necessary to perform tasks outside the kernel routine. You’ll need Objective-C code
to set up region-of-interest routines, to set up input parameters for each kernel routine, and to pass the
output image produced by each kernel routine to a compositing filter. You’ll see how to accomplish these
tasks later. After a discussion of the problem and the components of a detective lens, you’ll see how to write
each of the kernel routines.

The Problem: Why a Detective Lens?

The resolution of images taken by today’s digital cameras have outpaced the resolution of computer displays.
Images are typically downsampled by image editing applications to allow the user to see the entire image
onscreen. Unfortunately, the downsampling hides the details in the image. One solution is to show the image
using a 1:1 ratio between the screen resolution and the image resolution. This solution is not ideal, because
only a portion of the image is displayed onscreen, causing the user to scroll in order to view other parts of
the image.

This is where the detective lens filter comes in. The filter allows the user to inspect the details of part of a
high resolution image, similar to what’s shown in Figure 2-17 (page 34). The filter does not actually magnify
the original image. Instead, it displays a downsampled image for the pixels that are not underneath the lens
and fetches pixels from the unscaled original image for the pixels that are underneath the lens.

Writing Kernel Routines for a Detective Lens 33
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-17 A detective lens that enlarges a portion of a high-resolution image

Note: Why a detective lens? Although the filter could just as easily be called a loupe filter, “detective” more
readily calls to mind the act of searching for details.

Detective Lens Anatomy

Before writing any kernel routine, it’s helpful to understand the parameters that control the image processing
effect you want to achieve. Figure 2-18 shows a diagram of the top view of the lens. The lens, has a center
and a diameter. The lens holder has a width. The lens also has:

 ■ An opacity. Compare the colors underneath the lens with those outside the lens in Figure 2-17 (page
34).

 ■ Reflectivity, which can cause a shiny spot on the lens if the lens does not have a modern reflection-free
coating.

34 Writing Kernel Routines for a Detective Lens
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-18 The parameters of a detective lens

Center

Ring widthLens diameter

Figure 2-19 shows another characteristic of the lens that influences its effect—roundness. This lens is convex,
but the height shown in the diagram (along with the lens diameter) controls how curved the lens is.

Figure 2-19 A side view of a detective lens

Roundness

Side view of lens and lens holder

The lens holder has additional characteristics as you can see in Figure 2-20. This particular lens holder has a
fillet. A fillet is a strip of material that rounds off an interior angle between two sections. By looking at the
cross section, you’ll see that the lens holder can have three parts to it—an inner sloping section, an outer
sloping section, and a flat top. The fillet radius determines whether there is a flat top, as shown in the figure.
If the fillet radius is half the lens holder width, there is no flat top. If the fillet radius is less than half the lens
holder width, there will be a flattened section as shown in the figure.

Figure 2-20 A cross section of the lens holder

Cross section of lens holder

Fillet radius

Next you’ll take a look at the kernel routines needed to produce the lens and lens holder characteristics.

Writing Kernel Routines for a Detective Lens 35
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

The Lens Kernel Routine

The lens kernel routine must produce an effect similar to a physical lens. Not only should the routine appear
to magnify what’s underneath it, but it should be slightly opaque and reflect some light. Figure 2-21 shows
a lens with those characteristics.

Figure 2-21 A checkerboard pattern magnified by a lens filter

In previous sections, you’ve seen how to write routines that require only one sampler. The kernel routine
that produced the effect shown in Figure 2-21 requires three sampler objects for fetching pixels from:

 ■ The high-resolution image. Recall that the purpose of the lens is to allow the user to inspect details in
an image that’s too large to fit onscreen. This sampler object fetches pixels to show underneath the
lens—the part of the image that will appear magnified. Depending on the amount of magnification
desired by the filter client, the sampler might need to downsample the high resolution image.

 ■ A downsampled version of the high-resolution image. This sampler object fetches pixels to show outside
the lens—the part of the image that will not appear to be magnified.

 ■ The highlight image. These samples are used to generate highlights in the lens to give the appearance
of the lens being reflective. Figure 2-22 shows the highlight image. The highlights are so subtle, that to
reproduce the image for this document, transparent pixels are represented as black. White pixels are
opaque. The highlight shown in the figure is exaggerated so that it can be seen here.

Recall that the setup work for sampler objects is done in the Objective-C portion of an image unit. See
“Division of Labor” (page 9). You’ll see how to set up the CISampler objects in “Creating a Detective Lens
Image Unit” (page 53).

36 Writing Kernel Routines for a Detective Lens
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-22 An image used to generate lens highlights

The lens kernel routine (see Listing 2-7 (page 37)) takes nine input parameters:

 ■ downsampled_src is the sampler associated with the downsampled version of the image.

 ■ hires_src is the sampler associated with the high resolution image.

 ■ highlights is the sampler associated with the highlight image.

 ■ center is a two-element vector that specifies the center of the magnifying lens.

 ■ radius is the radius of the magnifying lens.

 ■ roundness is a value that specifies how convex the lens is.

 ■ opacity specifies how opaque the glass of the magnifying lens is. If the lens has a reflection-free coating,
this value is 0.0. If it is as reflective as possible, the value is 1.0.

 ■ highlight size is a two-element vector that specifies the height and width of the highlight image.

Now that you know a bit about the lens characteristics and the input parameters needed for the kernel
routine, take a look at Listing 2-7. After the necessary declarations, the routine starts out by calculating
normalized distance. The three lines of code that perform this calculation are typical of routines that operate
within a portion of an image. Part of the routine is devoted to calculating and applying a transform that
determines which pixel from the highlight image to fetch, and then modifying the magnified pixel by the
highlight pixel. You’ll find more information in the detailed explanation for each numbered line of code that
follows the listing.

Listing 2-7 A kernel routine for a lens

kernel vec4 lens(sampler downsampled_src, sampler highres_src, sampler highlights,
 vec2 center, float radius, float magnification,

// 1 float roundness, float opacity, vec2 highlightsSize)
{

// 2 float dist, mapdist;
// 3 vec2 v0;
// 4 vec4 pix, pix2, mappix;

// 5 v0 = destCoord() - center;

Writing Kernel Routines for a Detective Lens 37
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

// 6 dist = length(v0);
// 7 v0 = normalize(v0);

// 8 pix = sample(downsampled_src, samplerCoord(downsampled_src));
// 9 mapdist = (dist / radius) * roundness;

 mappix = sample(highlights, samplerTransform(highlights,
// 10 highlightsSize * (v0 * mapdist + 1.0) * 0.5));
// 11 mappix *= opacity;
// 12 pix2 = sample(highres_src, samplerCoord(highres_src));
// 13 pix2 = mappix + (1.0 - mappix.a) * pix2;

// 14 return mix(pix, pix2, clamp(radius - dist, 0.0, 1.0));
}

Here’s what the code does:

1. Takes three sampler objects, four float values, and two vec2 data types as parameters. Note that
when you write the Objective-C portion of the filter, you must pass each float and vec2 values as
NSNumber objects. Otherwise, the filter will not work. See “Kernel Routine Rules” (page 10).

2. Declares two variables: dist provides intermediate storage for calculating a mapdist distance. mapdist
is used to determine which pixel to fetch from the highlight image.

3. Declares a two-element vector for storing normalized distance.

4. Declares three four-element vectors for storing pixel values associated with the three sampler sources.

5. Subtracts the vector that represents the center point of the lens from the vector that represents the
destination coordinate.

6. Calculates the length of the difference vector.

Note: The length function is defined in the OpenGL Shading Language specification:

float length(genType x);

It returns the length of a vector, calculated by this formula:

sqrt (x1*x2 + y1*y2)

7. Normalizes the distance vector.

Note: The normalize function is defined in the OpenGL Shading Language specification:

genType normalize(genType x);

It returns a vector with a length of 1 that lies in the same direction as x.

8. Fetches a pixel from the downsampled image. Recall that this image represents the pixels that appear
outside the lens—the “unmagnified” pixels.

9. Calculates the distance value that is needed to determine which pixel to fetch from the highlight image.
This calculation is needed because the size of the highlight image is independent of the diameter of the
lens. The calculation ensures that the highlight image stretches or shrinks to fit the area of the lens.

38 Writing Kernel Routines for a Detective Lens
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/

10. Fetches a pixel from the highlight image by applying a transform based on the distance function and
the size of the highlight.

11. Modifies the pixel fetched from the highlight image to account for the opacity of the lens.

12. Fetches a pixel from the high resolution image. You’ll see later (“Creating a Detective Lens Image
Unit” (page 53)) that the magnification is applied in the Objective-C portion of the image unit.

13. Modifies the pixel from the high resolution image by the opacity-adjusted highlight pixel.

14. Softens the edge between the magnified (high resolution image) and unmagnified (downsampled image)
pixels.

The mix and clamp functions provided by OpenGL Shading Language have hardware support and, as
a result, are much more efficient for you to use than to implement your own.

The clamp function

genType clamp (genType x, float minValue, float maxValue)

returns:

min(max(x, minValue), maxValue)

If the destination coordinate falls within the area of the lens, the value of x is returned; otherwise clamp
returns 0.0.

The mix function

genType mix (genType x, genType y,float a)

returns the linear blend between the first two arguments (x, y) passed to the function:

x * (1 - a) + y * a

If the destination coordinate falls outside of the area of the lens (a = 0.0), mix returns an unmagnified
pixel. If the destination coordinate falls on the edges of the lens (a = 1.0), mix returns a linear blend
of the magnified and unmagnified pixels. If the destination coordinate inside the area of the lens, mix
returns magnified pixel.

The Lens Holder Kernel Routine

The lens holder kernel routine is generator routine in that is does not operate on any pixels from the source
image. The kernel routine generates an image from a material map, and that image sits on top of the source
image. See Figure 2-23.

Writing Kernel Routines for a Detective Lens 39
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-23 A magnifying lens holder placed over a checkerboard pattern

The material map for the lens holder is shown in Figure 2-24. It is a digital photograph of a highly reflective
ball. You can just as easily use another image of reflective material.

Figure 2-24 A material map image

The kernel routine performs several calculations to determine which pixel to fetch from the material map
for each location on the lens holder. The routine warps the material map to fit the inner part of the lens
holder and warps it in reverse so that it fits the outer part of the lens holder. If the fillet radius is less than
one-half the lens holder radius, the routine colors the flat portion of the lens holder by using pixels from the
center portion of the material map. It may be a bit easier to see the results of the warping by looking at the
lens holder in Figure 2-25, which was created from a checkerboard pattern. The figure also demonstrates
that if you don’t use an image that has reflections in it, the lens holder won’t look realistic.

40 Writing Kernel Routines for a Detective Lens
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Figure 2-25 A lens holder generated from a checkerboard image

The lens holder kernel routine (see Listing 2-8 (page 42)) takes six input parameters:

 ■ material is a sampler object that fetches samples from the material map shown in Figure 2-24 (page
40).

 ■ center is a two-element vector that specifies the center of the lens that the lens holder is designed to
hold.

 ■ innerRadius is the distance from the center of the lens to the inner edge of the lens holder.

 ■ outerRadius is the distance from the center of the lens to the outer edge of the lens holder.

 ■ filletRadius is the distance from the lens holder edge towards the lens holder center. This value
should be less than half the lens holder radius.

 ■ materialSize is a two-element vector that specifies the height and width of the material map.

The routine shown in Listing 2-8 starts with the necessary declarations. Similar to the lens kernel routine,
the lens holder kernel routine calculates normalized distance. Its effect is limited to a ring shape, so the
normalized distance is needed to determine where to apply the effect. The routine also calculated whether
the destination coordinate is on the inner or outer portion of the ring (that is, lens holder). Part of the routine
constructs a transform that is then used to fetch a pixel from the material map. The material map size is
independent of the inner and outer lens holder diameter, so a transform is necessary to perform the warping
required to map the material onto the lens holder. You’ll find more information in the detailed explanation
for each numbered line of code that follows the listing.

Writing Kernel Routines for a Detective Lens 41
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

Listing 2-8 A kernel routine that generates a magnifying lens holder

kernel vec4 ring(sampler material, vec2 center, float innerRadius,
// 1 float outerRadius, float filletRadius, vec2 materialSize)

{
 float dist, f, d0, d1, alpha;
 vec2 t0, v0;
 vec4 pix;

// 2 t0 = destCoord() - center;
// 3 dist = length(t0);
// 4 v0 = normalize(t0);

// 5 d0 = dist - (innerRadius + filletRadius);
// 6 d1 = dist - (outerRadius - filletRadius);
// 7 f = (d1 > 0.0) ? (d1 / filletRadius) : min(d0 / filletRadius, 0.0);
// 8 v0 = v0 * f;

// 9 alpha = clamp(dist - innerRadius, 0.0, 1.0) * clamp(outerRadius - dist, 0.0,
 1.0);

// 10 v0 = materialSize * (v0 + 1.0) * 0.5;
// 11 pix = sample(material, samplerTransform(material, v0));

// 11 return pix * alpha;
}

Here’s what the code does:

1. Takes one sampler object, three float values, and two vec2 data types as parameters. Note that when
you write the Objective-C portion of the filter, you must pass each float and vec2 value as NSNumber
objects. Otherwise, the filter will not work. See “Kernel Routine Rules” (page 10).

2. Subtracts the vector that represents the center point of the lens from the vector that represents the
destination coordinate.

3. Calculates the length of the difference vector.

4. Normalizes the length.

5. Calculates whether the destination coordinate is on the inner portion of the lens holder.

6. Calculates whether the destination coordinate is on the outer portion of the lens holder.

7. Calculates a shaping value that depends on the location of the destination coordinate: [-1...0] in the
inner portion of the lens holder, [0...1] in the outer portion of the lens holder, and 0 otherwise.

Note: The ternary operator?: is used as follows:

expression_1 ? expression_2 : expression_3

If expression 1 is true, then expression 2 is evaluated and expression 3 is ignored.

If expression 1 is false, then expression 3 is evaluated and expression 2 is ignored.

8. Modifies the normalized distance to account for the lens holder fillet. This value will shape the lens
holder.

42 Writing Kernel Routines for a Detective Lens
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

9. Calculates an alpha value for the pixel at the destination coordinate. If the the location falls short of the
inner radius, the alpha value is clamped to 0.0. Similarly, if the location overshoots the outer radius, the
result is clamped to 0.0. Alpha values within the lens holder are clamped to 1.0. Pixels not on the lens
holder are transparent.

10. Modifies the v0 vector by the width and height of the material map. Then scales the vector to account
for the size of the material map.

11. Fetches a pixel from the material map by applying the v0 vector as a transform.

12. Applies alpha to the pixel prior to returning it.

Solution to the Kernel Challenge

The kernel routine for a monochrome filter should look similar to what’s shown in Listing 2-9.

Listing 2-9 A solution to the monochrome filter challenge

kernel vec4 monochrome(sampler image, __color color)
{
 vec4 pixel;
 pixel = sample(image, samplerCoord(image));
 pixel.g = pixel.b = pixel.r;
 return pixel * color;
}

Next Steps

Now that you’ve seen how to write a variety of kernel routines, you are ready to move on to writing the
Objective-C portion of an image unit. The next chapter shows how to create a project from the Xcode image
unit template. You’ll see how to create an image unit for several of the kernel routines described in this
chapter.

Solution to the Kernel Challenge 43
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

44 Next Steps
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Writing Kernels

The kernel, although it is the heart of an image processing filter, becomes an image unit only after it is
properly packaged as a plug-in. Your most important tasks in the packaging process are to copy your kernel
routine (or routines) into the kernel skeletal file provided by Xcode and to modify the code in the in the
implementation and interface files for the filter. There are a few other housekeeping tasks you’ll need to
perform to correctly categorize the filter and to identify your image unit as your product. You’ll also need to
describe its input parameters.

This chapter provides an overview to the image unit template in Xcode and describes the contents of the
filter files. Then, it shows how to create these image units:

 ■ A color inversion image unit that uses the kernel routine discussed in “Color Inversion” (page 14). It
uses one sampler object and does not require a region-of-interest method.

 ■ A pixellate image unit that uses the kernel routine discussed in “Pixellate” (page 25). It uses one
sampler object and requires one region-of-interest method.

 ■ A detective lens image unit, which uses the two kernel routines discussed in “Writing Kernel Routines
for a Detective Lens ” (page 32). It uses requires several sampler objects and two a region-of-interest
methods.

Before you follow the instructions in this chapter for writing the Objective-C portion of an image unit, you
should understand how the kernel routines discussed in “Writing Kernels” (page 13) work.

The Image Unit Template in Xcode

Xcode provides a template that facilitates the packaging process. To help you package an image unit as a
plug-in, Xcode provides the skeletal files and methods that are needed and names the files appropriately.
Figure 3-1 (page 46) shows the files automatically created by Xcode for an image unit project named
DetectiveLens.

The Image Unit Template in Xcode 45
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

Figure 3-1 The files in an image unit project

Xcode automatically names files using the project name that you supply. These are the default files provided
by Xcode:

 ■ <ProjectName>Filter.m is the implementation file for the filter. You will need to modify this file.

 ■ <ProjectName>Filter.h is the interface file for the filter. You will need to modify this file.

 ■ <ProjectName>FilterKernel.cikernel is the file that contains the kernel routine (or routines)
and any subroutines needed by the kernel. The default code is a funHouse kernel routine and a
smoothstep subroutine that’s used by funHouse. (This subroutine is not the same as the one provided
by OpenGl Shading Language.) All you need to do is completely replace this code with the kernel
routine (or routines) that you’ve written (as well as tested and debugged) and any required subroutines.

 ■ <ProjectName>PlugInLoader.m is the file that implements the plug-in protocol needed to load an
image unit. You do not need to make any modifications to this file unless your product requires custom
tasks on loading. This chapter does not provide any information on customizing the loading process. It
assumes that you’ll use the file as is.

 ■ <ProjectName>PlugInLoader.h is the interface file for the plug-in loading protocol.

 ■ <ProjectName>.plugin is the plug-in that you will distribute. When you create the project, this file
name appears in red text to indicate that the file does not yet exist. After you build the project, the file
name changes to black text to indicate that the plug-in exists.

 ■ Description.plist defines several properties of the filter: filter name, filter categories, localized
display name, filter class, and information about the input parameters to the filter. Executable image
units (which are the only image units you’ll see in this tutorial) may have input parameters of any class,
but Core Image does not generate an automatic user interface for custom classes (see CIFilter Image

46 The Image Unit Template in Xcode
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

Kit Additions). Input parameters for non-executable image units must be one of these classes:
CIColor, CIVector, CIImage, or NSNumber. (For more information on executable and nonexecutable
filters, see Core Image Programming Guide.)

The default template file is shown in Figure 3-2 (page 47). Xcode fills in the filter name for you based
on the project name that you provide. You need to make changes to the filter categories and localized
display name. The filter categories should include all the categories defined by the Core Image API that
apply to your filter. For a list of the possible categories, see CIFilter Class Reference.

 ■ Info.plist contains properties of the plug-in, such as development region, bundle identifier, principal
class, and product name. You’ll want to modify the bundle identifier and make sure that you define the
product name variable in Xcode.

The default code is for a filter that mimics the effect of a fun house mirror. You should recognize the kernel
routine as the same one discussed in Listing 2-6 (page 31). The project will build as a valid image unit without
the need for you to change a single line of code.

Figure 3-2 The default property list file

The filter interface and implementation files provided by Xcode are the ones that you need to customize for
your kernel routine (or routines). The interface file declares a subclass of CIFilter. Xcode automatically
names the subclass <ProjectName>Filter. For example, if you supply InvertColor as the project name,

The Image Unit Template in Xcode 47
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

the interface file uses InvertColorFilter as the subclass name. The default interface file declares four
instance variables for the filter: inputImage, inputVector, inputWidth, and inputAmount, which, from
the perspective of a filter client, are the input parameters to the filter. You may need to delete one or more
of these instance variables and add any that are needed by your image unit.

The implementation file contains four methods that you’ll need to modify for your purposes:

 ■ init gets the kernel file from the bundle, and loads the kernel routines. Unless you require customization
at initialization time, you may not need to modify this method.

 ■ regionOf:destRect:userInfo is callback function that defines the region of interest (ROI). If you are
writing a filter that does not require an ROI, you can delete this method. If you are unsure of what an
ROI is, see Core Image Programming Guide and “Region-of-Interest Methods” (page 11). In general, filters
that map one source pixel to one destination pixel do not require an ROI. Just about all other types of
filters will require that you provide an ROI method, except certain generator filters.

 ■ customAttributes is a method that defines the attributes of each input parameter. This is required
so that the filter host can query your filter for the input parameters, their data types, and their default,
minimum, and maximum values. You can also provide such useful information as slider minimum and
maximum values. When a filter host calls the attributes method, Core Image actually invokes your
customAttributes method. If your filter does not require any input parameters other than an input
image, you can delete this method.

 ■ outputImage creates one or more CISampler objects, performs any necessary calculations, calls the
apply: method of the CIFilter class and returns a CIImage object. The exact nature of this method
depends on the complexity of the filter, as you’ll see by reading the rest of this chapter.

Note: A multipass filter is one that either applies two or more kernel routines or applies the same kernel
routine more than once before returning a CIImage object from the outputImage method.

The next sections show how to modify the filter files for three types of image units:

 ■ “Creating a Color Inversion Image Unit” (page 48) uses one kernel routine but does not need an ROI
method.

 ■ “Creating a Pixellate Image Unit” (page 51) uses one kernel routine and an ROI method.

 ■ “Creating a Detective Lens Image Unit” (page 53) is a multipass filter that uses two kernel routines and
an ROI method for each kernel routine.

Creating a Color Inversion Image Unit

A color inversion filter represents one of the simplest image units that you can write. It uses the kernel
routine discussed in “Color Inversion” (page 14). If you take a look at the kernel routine shown in Listing
2-1 (page 15) you’ll see that the routine does not use any input parameters other than an input image. So
there is no need to supply a customAttributes method. The kernel routine maps one source pixel to a
destination pixel that’s at the same coordinates as the source pixel. As a result, there is no need to supply a
method that calculates an ROI. You will need to make modifications to the filter interface file and to the
outputImage method in the filter implementation file. The default init method will work as is, provided
that you do not rename any of the files that Xcode automatically names for you.

48 Creating a Color Inversion Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

To package the color inversion kernel routine as image unit, follow these steps:

1. Launch Xcode and choose File > New Project.

2. In the Assistant window, scroll to to Standard Apple Plug-ins, select Image Unit Plug-in for
Objective C and click Next.

Creating a Color Inversion Image Unit 49
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

3. Enter InvertColor as the project name and click Finish.

4. Open the InvertColorFilterKernel.cikernel file and replace the code with the code from Listing
2-1 (page 15).

5. Open the InvertColor.h file and delete all the instance variables except for inputImage, as this filter
doesn’t have any input parameters other than an input image. Then save and close the file.

6. Open the InvertColor.m file and delete the regionOf:destRect:userInfo: and
customAttributes methods.

7. Modify the outputImage method so that it looks as follows:

- (CIImage *)outputImage
{
 CISampler *src;
 // Create a sampler from the input image because a kernel routine takes
 // a sampler, not an image, as input
 src = [CISampler samplerWithImage:inputImage];
 // Use the apply: method on the CIFilter object
 return [self apply:_InvertColorFilterKernel, src, nil];
}

8. Save and close the InvertColor.m file.

9. Open the Description.plist file.

10. Change CICategoryDistortionEffect to CICategoryColorEffect.

50 Creating a Color Inversion Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

11. Save and close the Description.plist file.

12. Open the Description.strings file.

13. Enter the localized display name for the filter by adding the following:

"InvertColorFilter" = "Invert Color Filter";

You’ll want to provide localized display names for all input parameters and for all languages that represent
your image unit users.

14. Save and close the Description.strings file.

15. Build the project.

It should succeed unless you’ve introduced some typographical errors.

16. Quit Xcode.

17. Find the InvertColor.plugin file in your project. If you want, move it to a convenient location for
validation and testing purposes.

18. Make sure the image unit is valid. (See “Validating an Image Unit” (page 63).)

19. Install the validated image unit in /Library/Graphics/Image Units/.

20. Test the image unit. (See “Testing an Image Unit” (page 65).)

That’s all there is to building an image unit for a simple filter! Read the next sections to create image units
for more complex filters.

Creating a Pixellate Image Unit

Writing an image unit to package the pixellate kernel routine (see “Pixellate” (page 25)) is a bit more
challenging than packaging the color inversion kernel routine because you need to supply a region-of-interest
method. Recall that the pixellate kernel routine uses many pixels from the source image to compute the
value of each destination pixel. The number of pixels is defined by the dot size. For example, if the dot size
is 4, then the kernel routine uses 16 pixels from the source image: a 4-pixel-by-4-pixel grid. The calculation
works well unless the destination pixel is at the edge, in which case there won’t be enough pixels to fetch.
That’s where the region-of-interest method comes to play. If the grid of pixels is always inset by the radius
of the dot size, you’ll avoid the problem of not having enough pixels to fetch.

The code in Listing 3-1 is a region-of-interest method that calls the Quartz function CGRectInset. This
function returns a rectangle that is smaller or larger than the rectangle passed to it. In this case, the ROI
method insets the rectangle passed to it by the dot radius.

Listing 3-1 A region-of-interest method for the pixellate image unit

- (CGRect)regionOf: (int)sampler destRect: (CGRect)rect userInfo: (NSNumber
*)radius
{

Creating a Pixellate Image Unit 51
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

 return CGRectInset(rect, -[radius floatValue], -[radius floatValue]);
}

Now that you’ve seen the required region-of-interest method, you are ready to use Xcode to create the
pixellate image unit.

1. Launch Xcode and choose File > New Project.

2. In the Assistant window, scroll to to Standard Apple Plug-ins, select Image Unit Plug-in for
Objective C and click Next.

3. Enter Pixellate as the project name and click Finish.

4. Open the PixellateFilterKernel.cikernel file and replace the code with the code from Listing
2-4 (page 26).

5. Open the Pixellate.h file and modify the interface so that the filter has two instance variables:
inputImage and inputScale. Then save and close the file.

6. Open the Pixellate.m file and modify the regionOf:destRect:userInfo: so that it is the same
as the method in Listing 3-1 (page 51).

7. Modify the customAttributes methods so that is has only one attribute: inputScale, and set
appropriate values for the minimum, slider minimum, slider maximum, default, identity and type attributes.
The method should look similar to the following:

- (NSDictionary *)customAttributes
{
 return [NSDictionary dictionaryWithObjectsAndKeys:

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 1.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 200.00], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 4.00], kCIAttributeDefault,
 [NSNumber numberWithDouble: 1.00], kCIAttributeIdentity,
 kCIAttributeTypeScalar, kCIAttributeType,
 nil], @"inputScale",

 nil];
}

8. Modify the outputImage method so that it looks as follows:

- (CIImage *)outputImage
{
 float radius;
 CISampler *src;
 // Set up the sampler to use the input image
 src = [CISampler samplerWithImage:inputImage];
 radius = [inputScale floatValue] * 0.5;
 // Set the region-of-interest method for the kernel routine
 [_PixellateFilterKernel
setROISelector:@selector(regionOf:destRect:userInfo:)];
 // Apply the filter to the kernel, passing the sampler and scale
 return [self apply:_PixellateFilterKernel, src,
 inputScale,
 // This option specifies the domain of definition of the destination image

52 Creating a Pixellate Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

 kCIApplyOptionDefinition, [[src definition] insetByX:-radius Y:-radius],
 // This option sets up the ROI method to gets radius value
 kCIApplyOptionUserInfo, [NSNumber numberWithFloat:radius], nil];
}

Note that you need to set up a domain of definition so that the destination image is inset by the radius
of the dot. Otherwise, you’ll get a non-transparent edge around the destination image. (See
“Region-of-Interest Methods” (page 11) and Core Image Programming Guide.)

9. Save and close the Pixellate.m file.

10. Open the Description.plist file.

11. Change CICategoryDistortionEffect to CICategoryStylizeEffect.

12. Save and close the Description.plist file.

13. Build the project.

It should succeed unless you’ve introduced some typographical errors.

14. Quit Xcode.

15. Find the Pixellate.plugin file in your project. If you want, move it to a convenient location for
validation and testing purposes.

16. Make sure the image unit is valid. (See “Validating an Image Unit” (page 63).)

17. Install the validated image unit in /Library/Graphics/Image Units/.

You can optionally install the image unit in "User"/Library/Graphics/Image Units/ although
you may need to create the /Graphics/Image Units/ folder because it is not created by default. .

18. Test the image unit. (See “Testing an Image Unit” (page 65).)

Creating a Detective Lens Image Unit

The detective lens image unit is the most challenging image unit in this chapter because it brings together
two kernel routines and uses them along with a Core Image built-in filter. This image unit requires four
CISampler objects and two region-of-interest methods (one per kernel routine).

This section assumes that you’ve read “Writing Kernel Routines for a Detective Lens ” (page 32). Make sure
that you understand the detective lens definition (see “Detective Lens Anatomy” (page 34)) and the kernel
routines needed for this image unit (see Listing 2-7 (page 37) and Listing 2-8 (page 42)).

Creating a Detective Lens Image Unit 53
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

Note: The detective lens image unit discussed here is the same as the lens image unit provided in the
CIAnnotation sample application. (See /Developer/Examples.) The CIAnnotation application passes a
downsampled image to the lens image unit. Then, it passes a magnification factor to the lens image unit
that allows the downsampled image to be magnified to its full resolution when underneath the lens.

The detective lens filter is a mutlipass filter. You’ll need to first apply the lens kernel routine to the input
image. Then you need to apply the lens holder kernel routine. Finally, you’ll need to composite the output
images from each kernel routine. For this you’ll use the Core Image filter CISourceOverCompositing.

Note: A multipass filter is one that either applies more than one kernel routine or that repeatedly applies
the same kernel routine.

To create the detective lens image unit, follow these steps:

1. Launch Xcode and choose File > New Project.

2. In the Assistant window, scroll to to Standard Apple Plug-ins, select Image Unit Plug-in for
Objective C and click Next.

3. Enter DetectiveLens as the project name and click Finish.

4. Open the DetectiveLensFilterKernel.cikernel file and replace the code with the code from
Listing 2-7 (page 37) and Listing 2-8 (page 42).

5. Open the DetectiveLens.h file and modify the input parameters so they match what’s shown in Listing
3-2. Then save and close the file.

Listing 3-2 The input parameters to the detective lens filter

@interface DetectiveLensFilter : CIFilter
{
 CIImage *inputImage;
 CIVector *inputCenter; // center of the lens
 NSNumber *inputLensDiameter; // diameter of the lens
 NSNumber *inputRingWidth; // width of the lens holder
 NSNumber *inputMagnification; // lens magnification
 NSNumber *inputRingFilletRadius; // lens holder fillet radius
 NSNumber *inputRoundness; // roundness of the lens, range is 0...1
 NSNumber *inputShineOpacity; // opacity of the lens, range is 0...1
}

6. Open the DetectiveLens.m file. There are many modifications that you’ll need to make to this file.

7. Add the following static declarations just after the @implementation statement:

static CIKernel *_lensKernel = nil; // for the lens kernel routine
static CIKernel *_ringKernel = nil; // for the lens holder kernel routine
static CIImage *_ringMaterialImage = nil; // for the material map
static CIImage *_lensShineImage = nil; // for the highlight image

You need one CIKernel object for each kernel routine that the image unit uses.

54 Creating a Detective Lens Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

You need one CIImage object for each image. Recall that the lens kernel routine uses a highlight
image and the lens holder kernel routine uses a material map. The input image is part of the interface
declaration for the filter because it’s provided by the filter client. In contrast, the highlight and material
images need to be included as part of the image unit.

8. Modify the init method so that it fetches both kernel routines, using the static CIKernel objects
that you just declared. Replace this statement:

_DectiveLensFilterKernel = [[kernels objectAtIndex:0] retain];

with these two statements:

// Fetch the lens kernel routine
_lensKernel = [[kernels objectAtIndex:0] retain];
// Fetch the lens holder kernel routine
_ringKernel = [[kernels objectAtIndex:1] retain];

9. Modify the init method so that it opens the files that contain the highlight image needed by the lens
kernel routine and the material map needed for the lens holder kernel routine. Add the following
lines of code to the init method.

You need to modify the file names and extensions if they don’t match what’s shown (myMaterial.tiff
and myHighlight.tiff).

NSString *path = nil;
NSURL *url = nil;
path = [bundle pathForResource:@"myMaterial" ofType:@"tiff"];
url = [NSURL fileURLWithPath:path];
_ringMaterialImage = [[CIImage imageWithContentsOfURL:url] retain];

path = [bundle pathForResource:@"myHighlight" ofType:@"tiff"];
url = [NSURL fileURLWithPath:path];
 _lensShineImage = [[CIImage imageWithContentsOfURL:url] retain];

For each file, the code gets the string that defines the path to the file. Then it creates an NSURL object
from that path name. Finally, the code supplies the NSURL object to the imageWithContentsOfURL:
method of the CIImage class, and retains the image so that it can be used later.

10. Modify the customAttributes method so that the NSDictionary object that it returns contains the
relevant information for each of the input parameters. Then, when a filter host calls the attributes method
for the filter, Core Image invokes your customAttributes method and returns the default, minimum,
maximum, and so on, values for each of the input parameters. After modifying the customAttributes
method, it should appear as follows:

- (NSDictionary *)customAttributes
{
 return [NSDictionary dictionaryWithObjectsAndKeys:

 [NSDictionary dictionaryWithObjectsAndKeys:
 [CIVector vectorWithX:200.0 Y:200.0], kCIAttributeDefault,
 kCIAttributeTypePosition, kCIAttributeType,
 nil], @"inputCenter",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 1.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble:500.00], kCIAttributeSliderMax,

Creating a Detective Lens Image Unit 55
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

 [NSNumber numberWithDouble:250.00], kCIAttributeDefault,
 [NSNumber numberWithDouble:250.00], kCIAttributeIdentity,
 kCIAttributeTypeDistance, kCIAttributeType,
 nil], @"inputLensDiameter",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 1.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble:500.00], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 22.00], kCIAttributeDefault,
 [NSNumber numberWithDouble: 1.00], kCIAttributeIdentity,
 kCIAttributeTypeDistance, kCIAttributeType,
 nil], @"inputRingWidth",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 1.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 30.00], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 9.20], kCIAttributeDefault,
 [NSNumber numberWithDouble: 7.00], kCIAttributeIdentity,
 kCIAttributeTypeDistance, kCIAttributeType,
 nil], @"inputRingFilletRadius",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 1.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 10.00], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 3.00], kCIAttributeDefault,
 [NSNumber numberWithDouble: 1.00], kCIAttributeIdentity,
 kCIAttributeTypeScalar, kCIAttributeType,
 nil], @"inputMagnification",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 0.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 0.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 0.86], kCIAttributeDefault,
 [NSNumber numberWithDouble: 1.00], kCIAttributeIdentity,
 kCIAttributeTypeScalar, kCIAttributeType,
 nil], @"inputRoundness",

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithDouble: 0.00], kCIAttributeMin,
 [NSNumber numberWithDouble: 0.00], kCIAttributeSliderMin,
 [NSNumber numberWithDouble: 1.00], kCIAttributeSliderMax,
 [NSNumber numberWithDouble: 0.50], kCIAttributeDefault,
 [NSNumber numberWithDouble: 1.00], kCIAttributeIdentity,
 kCIAttributeTypeScalar, kCIAttributeType,
 nil], @"inputShineOpacity",

 nil];
}

11. Write a region-of-interest method for the lens holder kernel routine.

Recall that the region-of-interest method returns the rectangle that specifies the region of the sampler
to use for fetching image data for the kernel routine. The region of interest for the lens holder kernel
routine is simply the rectangle that specifies the size of the material map.

56 Creating a Detective Lens Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

The region-of-interest method must have signature compatible with the following:

- (CGRect) regionOf:(int)samplerIndex destRect:(CGRect)r userInfo:obj;

This method is a callback that’s invoked by Core Image whenever your kernel routine needs a sample
for processing. The lens holder kernel routine uses only one sampler, whose sampler index is 0. (Sampler
indexes for an ROI method start at 0 and are sequential.) If the sampler index is 0, then the ROI method
should return the size of the material map. Otherwise, it needs to return the destination rectangle that
Core Image passed to the routine.

The userInfo parameter for any region-of-interest method is what you use to pass any necessary data
to the method. This particular region-of-interest method needs to have the sampler for the material map
passed to it so that the ROI method can determine the size of the map. The extent method of the
CISampler class does just that.

- (CGRect)ringROI:(int)sampler forRect:(CGRect)R userInfo:(CISampler *)material
{
 if (sampler == 0)
 return [material extent];
 return R;
}

12. Write a region-of-interest method for the lens kernel routine. This method is a bit more complex than
the one for the lens holder kernel routine.

This method needs to return the region of interest for three sampler objects:

 ■ Sampler 0 fetches samples from the downsampled image (that is, what appears as unmagnified—the
pixels outside the lens). The region of interest is simply the rectangle passed to the ROI method.

 ■ Sampler 1 fetches samples from the high resolution image. The region of interest depends on the
magnification and width of the lens. The number of pixels needed from the source image is defined
by the width of the lens divided by the magnification. The origin of the rectangle that defines this
area is the center of the lens minus the number of pixels needed.

 ■ Sampler 2 fetches samples from the highlight image. The region of interest is a rectangle (CGRect
data type) that describes the size of the highlight image. You can obtain the size using the extent
method of the CISampler object.

The userInfo needed for this particular region-of-interest method is an array that contains three of the
filter input parameters (center of lens, width of lens, magnification factor) and the CISampler object
for the highlight image.

The lens ROI method should look similar to the following:

- (CGRect)lensROI:(int)sampler forRect:(CGRect)R userInfo:(NSArray *)array
{
 CIVector *oCenter;
 NSNumber *oWidth, *oMagnification;
 CISampler *shine;

 // Fetch the necessary input parameters from the userInfo parameter
 oCenter = [array objectAtIndex:0];
 oWidth = [array objectAtIndex:1];
 oMagnification = [array objectAtIndex:2];
 shine = [array objectAtIndex:3]; // shine is a CISampler object
 if (sampler == 2)

Creating a Detective Lens Image Unit 57
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

 return [shine extent];

 // Determine the area of the original image used with the lens where it is
 // currently we only need R, because the lens is a magnifier
 if (sampler == 1)
 {
 float cx, cy, width, mag;

 cx = [oCenter X];
 cy = [oCenter Y];
 width = [oWidth floatValue];
 mag = [oMagnification floatValue];
 width /= mag; // calculates the actual pixels needed from the source
 R = CGRectMake(cx - width, cy - width, width*2.0, width*2.0);
 }
 return R; // If the sampler is 0, ROI calculation is not needed.
}

13. Write the outputImage method.

For each kernel routine, this method:

 ■ Creates CISampler objects, performing any necessary set up work for them.

 ■ Calculates any values needed by the ROI method or by the kernel routine. This includes calculating
the rectangle that defines the shape of the destination image (otherwise known as the domain of
definition).

 ■ Sets up the userInfo data needed by the ROI method so that is can be passed as an option
(kCIApplyOptionUserInfo) to the apply: method of the CIFilter object.

 ■ Sets the ROI method to use for the kernel routine.

 ■ Calls the apply: method of the CIFilter object.

Then the method composites the resulting images into a final image by using the Core Image
CISourceOverCompositing filter.

The method is rather long and performs many tasks, so you’ll want to read the detailed explanation for
each lettered line (a, b, c, and so on) that appears following the code.

- (CIImage *)outputImage
{
 float radius, cx, cy, ringwidth, mag;
 CGRect R, extent;
 CISampler *src, *shine, *material;
 CIImage *lensedImage, *ringImage;
 CIFilter *compositedImage;
 NSArray *array;
 CISampler *magsrc;
 CGAffineTransform CT;
 CIVector *shineSize, *materialSize;

 // ********* Lens *********
// 1 src = [CISampler samplerWithImage:inputImage];
// 2 shine = [CISampler samplerWithImage:_lensShineImage];

 // Set up work needed for the magnified image sampler
 cx = [inputCenter X];

58 Creating a Detective Lens Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

 cy = [inputCenter Y];
 mag = [inputMagnification floatValue];
 CT = CGAffineTransformTranslate(CGAffineTransformScale(
 CGAffineTransformMakeTranslation(cx, cy), mag, mag), -cx, -cy);

// 3 magsrc = [CISampler samplerWithImage:[inputImage
imageByApplyingTransform:CT]];

// 4 radius = [inputLensDiameter floatValue] * 0.5;
// 5 R.origin.x = cx - radius;

 R.origin.y = cy - radius;
 R.size.width = 2.0 * radius;
 R.size.height = 2.0 * radius;

// 6 extent = [shine extent];
// 7 shineSize = [CIVector vectorWithX:extent.size.width Y:extent.size.height];

 array = [NSArray arrayWithObjects:inputCenter, inputLensDiameter,
// 8 inputMagnification, shine, nil];
// 9 [_lensKernel setROISelector:@selector(lensROI:forRect:userInfo:)];

 lensedImage = [self apply:_lensKernel, src, magsrc, shine, inputCenter,
 [NSNumber numberWithFloat:radius + 2.0],
 inputMagnification, inputRoundness,
 inputShineOpacity, shineSize,
 kCIApplyOptionDefinition, [[src definition] unionWithRect:R],

// 10 kCIApplyOptionUserInfo, array, nil];

 // ********* Lens Holder *********
// 11 material = [CISampler samplerWithImage:_ringMaterialImage];
// 12 ringwidth = [inputRingWidth floatValue];

// 13 R.origin.x = cx - radius - ringwidth;
 R.origin.y = cy - radius - ringwidth;
 R.size.width = 2.0 * (radius + ringwidth);
 R.size.height = 2.0 * (radius + ringwidth);

// 14 extent = [material extent];

// 15 materialSize = [CIVector vectorWithX:extent.size.width Y:extent.size.height];

// 16 [_ringKernel setROISelector:@selector(ringROI:forRect:userInfo:)];

 ringImage = [self apply:_ringKernel, material, inputCenter,
 [NSNumber numberWithFloat:radius],
 [NSNumber numberWithFloat:radius+ringwidth],
 inputRingFilletRadius,
 materialSize,
 kCIApplyOptionDefinition,
 [CIFilterShape shapeWithRect:R],

// 17 kCIApplyOptionUserInfo, material, nil];

 // ********* Lens and Lens Holder Composited *********
 compositedImage = [CIFilter filterWithName:@"CISourceOverCompositing"
 keysAndValues:@"inputImage", ringImage,

// 18 @"inputBackgroundImage", lensedImage, nil];

Creating a Detective Lens Image Unit 59
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

// 19 return [compositedImage valueForKey:@"outputImage"];

}

Here is what the code does:

1. Creates a CISampler object for the source image.
2. Creates a CISampler object for the highlight image.
3. Creates a CISampler object for the magnified source, using the transform calculated in the previous
lines of code.
4. Extracts the diameter of the lens as a float value, then calculates the radius.
5. Computes, along with the next three lines of code, the rectangle that will be used later to compute
the size of the destination image—the domain of definition.
6. Retrieves the size of the highlight image.
7. Creates a CIVector object that contains the size of the highlight image.
8. Sets up the array that’s passed as the userInput parameter to the region-of-interest method.
Recall that the ROI method takes three of the filter input parameters (inputCenter,
inputLensDiameter, andinputMagnification) as well as theCISamplerobject for the highlight
image.
9. Sets the region-of-interest method for the lens CIKernel object. This is the method that Core
Image invokes whenever your lens kernel routine requires a sample.
10. Applies the lens kernel routine to the input image, supplying the necessary input variables,
the domain of definition, and the array that’s needed by the ROI method. Note that the domain of
definition is specified as a CIFilterShape object that is the union of the previously calculated
rectangle (see e) and the domain of definition of the CISampler object for the source image.
11. Creates a CISampler object for the material map needed by the lens holder kernel routine.
12. Extracts the width of the lens holder as a float value.
13. Calculates, along with the next three lines of code, the rectangle that is used for the domain of
definition. Notice that this rectangle encloses the lens holder. Core Image will use this information
to restrict calculations. The lens holder kernel routine won’t be called for any pixel that falls outside
this rectangle.
14. Retrieves the size of the material map.
15. Creates a CIVector object that represents the width and height of the material map.
16. Sets the region-of-interest method for the lens holder CIKernel object. This is the method that
Core Image invokes whenever your lens holder kernel routine requires a sample.
17. Applies the lens holder kernel routine to the material map, supplying the necessary input
variables, the rectangle the defines the domain of definition, and the CISampler object for the
material map (passed as the userInfo parameter).
18. Creates a filter object for the Core Image CISourceOverCompositing filter, supplying the
image produced by the len holder kernel routine as the foreground image and the image produced
by the lens kernel routine as the background image.
19. Returns the value associated with the outputImage key for the filter.

14. Save and close the DetectiveLens.m file.

15. Select Project > Add to Project to add the highlight image file (myHighlight.tiff) to the project.

The name and file type must match what you provide in the init method.

16. Select Project > Add to Project to add the material map file (myMaterialMap.tiff) to the project.

60 Creating a Detective Lens Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

The name and file type must match what you provide in the init method.

17. Open the Description.plist file.

18. Change the display name (look for the key CIAttributeFilterDisplayName) from DetectiveLens
to Detective Lens.

19. Save and close the Description.plist file.

20. Build the project.

It should succeed unless you’ve introduced some typographical errors.

21. Quit Xcode.

22. Find the DetectiveLens.plugin file in your project. If you want, move it to a convenient location for
validation and testing.

23. Make sure the image unit is valid and works properly by following the instructions in “Validating an
Image Unit” (page 63) and “Testing an Image Unit” (page 65).

Next Steps

If you’ve successfully created all the image units in this chapter, you might try modifying the detective lens
image unit by adding a handle that’s typical of a detective lens!

Next Steps 61
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

62 Next Steps
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Writing the Objective-C Portion

Preparation involves three tasks, described in the following sections:

 ■ “Validating an Image Unit” (page 63)

 ■ “Testing an Image Unit” (page 65)

 ■ “Completing the Necessary Licensing and Trademark Agreements ” (page 65).

Validating an Image Unit

You can validate your image unit with the ImageUnitAnalyzer tool by following these steps:

1. After you install the latest developer tools, you can find the ImageUnitAnalyzer tool in
/Developer/Tools/.

You can also download the tool from Software Licensing & Trademark Agreements.

2. Open Terminal and drag the ImageUnitAnalyzer into the Terminal window. Then drag the image unit
you want to validate into the Terminal window and press Return.

Tip: Dragging icons into the Terminal window is a shortcut to typing the tool and image unit names
and their full paths, which can get tedious.

If your image unit is correctly packaged and the Objective-C code and kernel routine are well formed,
ImageUnitAnalyzer provides output similar to what’s shown in Listing 4-1. If your imagine unit has problems,
you’ll see failure statements that, in most cases, describe what elements failed. See Figure 4-1 (page 64).

Listing 4-1 Output produced by ImageUnitAnalyzer for a passing unit

##
########### Image Unit Validation Tool Version 1.0 ###########
########### Copyright 2005, Apple Computer, Inc. ###########
##

VALIDATING IMAGE UNIT: /Users/polly/Development/InvertColorImageUnit.plugin

VALIDATING IMAGE UNIT BUNDLE
- PASS: Image Unit has correct extension plugin
- PASS: Description.plist exists
/Users/polly/Development/InvertColorImageUnit.plugin/Contents/Resources/Description.plist
PASS VALIDATING IMAGE UNIT BUNDLE

VALIDATING IMAGE UNIT PLUGIN STRUCTURE

Validating an Image Unit 63
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Preparing an Image Unit for Distribution

http://developer.apple.com/softwarelicensing/agreements/imageunits.html

- PASS: Description.plist is a valid XML file
- PASS: Image Unit version is valid
- PASS: The Image Unit contains valid filter list. Now analyzing filter list…
- PASS: The entry InvertColorFilter does have a valid filter attributes dictionary
- PASS: The entry InvertColorFilter does have a valid filter categories
description
- PASS: The entry InvertColorFilter does have a valid filter display name:
InvertColorFilter
- PASS: The entry InvertColorFilter does have a valid filter name:
InvertColorFilter
- PASS: The entry InvertColorFilter does have a valid filter dictionary
- PASS: The Image Unit contains valid filters
PASS VALIDATING IMAGE UNIT PLUGIN STRUCTURE

VALIDATING IMAGE UNIT CIFILTERS
- PASS: The filter InvertColorFilter was created successfully
Testing filter invertColor
PASS VALIDATING IMAGE UNIT CIFILTERS

Verification of /Users/polly/Development/InvertColorImageUnit.plugin succeeded
** PASS

If your image unit fails with a –1 error but all the validation statements are marked "PASS", make sure that
you passed only objects from the Objective-C portion of the image unit. See “Kernel Routine Rules” (page
10).

Figure 4-1 Output produced by ImageUnitAnalyzer for a failing unit

64 Validating an Image Unit
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Preparing an Image Unit for Distribution

Testing an Image Unit

After your image unit passes validation, you’ll want to make sure that it works properly by following these
steps:

1. Copy the image unit to /Library/Graphics/Image Units.

You can also install an image unit in a User/Library/Graphics/Image Units/, but you may need
to create the Graphic/Image Units folder.

2. Launch the Quartz Composer development tool.

3. Open the Patch Creator and type the image unit name into the Search field.

4. When you locate the image unit, drag it to the workspace.

5. Create a simple Quartz Composer composition that uses the image, as described in “Writing Simple
Kernel Routines” (page 13).

Try the filter on a variety of images and with a variety of input value and make sure that it works.

Completing the Necessary Licensing and Trademark Agreements

Before you can distribute your image unit or use the Image Units logo provided by Apple, you’ll need to
complete the licensing and trademark agreements and any other tasks described on the Software Licensing
& Trademark Agreements website. See:

http://developer.apple.com/softwarelicensing/agreements/imageunits.html

The Image Units logo (see Figure 4-2) is available through a licensing agreement.

Figure 4-2 The Image Units logo

Further Reading

In addition to Core Image Kernel Language Reference, you might find these resources useful as you design
and write your own image units:

 ■ Algorithms for Image Processing and Computer Vision, J. R. Parker, 1997. John Wiley & Sons.

 ■ OpenGL Shading Language, Second Edition, Randi J. Rost, 2006. Addison-Wesley Professional.

Testing an Image Unit 65
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Preparing an Image Unit for Distribution

http://developer.apple.com/softwarelicensing/agreements/imageunits.html
http://developer.apple.com/softwarelicensing/agreements/imageunits.html
http://developer.apple.com/softwarelicensing/agreements/imageunits.html

 ■ OpenGL Shading Language, available for download from http://www.opengl.org/documentation/glsl/.

 ■ Digital Image Processing, Second Edition, Rafael C. Gonzalez and Richard E. Woods. Addison-Wesley
Publishers.

 ■ Digital Image Processing, Kenneth R. Castleman, Prentice Hall.

 ■ The Renderman Companion: A Programmer’s Guide to Realistic Computer Graphics, Steve Upstill,
Addison-Wesley Professional.

 ■ GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, Randima Fernando,
Addison-Wesley Professional. There are a number of other books in the GPU Gems series that you might
also find useful.

66 Further Reading
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Preparing an Image Unit for Distribution

http://www.opengl.org/documentation/glsl/

This table describes the changes to Image Unit Tutorial.

NotesDate

Updated line 7 of listing 2-7.2009-05-06

Updated the table of input parameters to kernel routines.2008-06-09

Corrected typographical errors in the code.

Corrected several technical errors in the code listings.2008-04-08

Made corrections to the detective lens filter image unit methods outputImage
and init.

Made one change in the outputImage method of the pixellate filter.

Fixed minor technical error.2007-12-11

Added details on the valid classes for filter input parameters that you can declare
in the description.plist file for an image unit. See “The Image Unit Template
in Xcode” (page 45).

New document that shows how to write and package image processing filters.2007-03-20

67
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Image Unit Tutorial
	Contents
	Figures, Tables, and Listings
	Introduction
	An Image Unit and Its Parts
	The Major Parts of an Image Unit
	Division of Labor
	Kernel Routine Rules
	Region-of-Interest Methods
	Next Steps

	Writing Kernels
	Writing Simple Kernel Routines
	Color Inversion
	Color Component Rearrangement
	Color Multiplication
	A Kernel Challenge

	Testing Kernel Routines in Quartz Composer
	Writing Advanced Kernel Routines
	Pixellate
	Edge Enhancement
	Fun House Mirror Distortion

	Writing Kernel Routines for a Detective Lens
	The Problem: Why a Detective Lens?
	Detective Lens Anatomy
	The Lens Kernel Routine
	The Lens Holder Kernel Routine

	Solution to the Kernel Challenge
	Next Steps

	Writing the Objective-C Portion
	The Image Unit Template in Xcode
	Creating a Color Inversion Image Unit
	Creating a Pixellate Image Unit
	Creating a Detective Lens Image Unit
	Next Steps

	Preparing an Image Unit for Distribution
	Validating an Image Unit
	Testing an Image Unit
	Completing the Necessary Licensing and Trademark Agreements
	Further Reading

	Revision History

