
OpenGL Programming Guide for Mac OS X
Graphics & Imaging > OpenGL

2008-06-09

Apple Inc.
© 2004, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, iChat, iPhoto, Logic, Mac, Mac OS,
Macintosh, Objective-C, Pages, Quartz, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Finder is a trademark of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

X Window System is a trademark of the
Massachusetts Institute of Technology.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to OpenGL Programming Guide for Mac OS X 11

Who Should Read This Document? 11
Organization of This Document 12
See Also 13

Chapter 1 OpenGL on the Mac Platform 15

Structure of OpenGL in Mac OS X 15
Programming Interfaces 16

OpenGL APIs Specific to Mac OS X 17
Apple-Implemented OpenGL Libraries 18

Terminology 19
Renderer 19
Renderer and Buffer Attributes 19
Pixel Format Objects 19
Rendering Contexts 20
Drawable Objects 20
Virtual Screens 21

Running an OpenGL Program in Mac OS X 24
See Also 25

Chapter 2 Drawing to a Window or View 27

General Approach 27
Drawing to a Cocoa View 28

Drawing to an NSOpenGLView Class: A Tutorial 29
Drawing OpenGL Content to a Custom View 31

Drawing to a Carbon Window 34
What's Next 36
See Also 36

Chapter 3 Drawing to the Full Screen 37

General Approach 37
Using Cocoa to Create a Full-Screen Context 38
Using AGL to Create a Full-Screen Context 39
Using CGL to Create a Full-Screen Context 41
Adjusting Display Modes 42
What's Next? 44
See Also 44

3
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

Chapter 4 Drawing Offscreen 45

Setting Up an Offscreen Drawable Object 45
Using a Hidden View or Window 47
Rendering to a Pixel Buffer 48

Setting Up a Pixel Buffer for Offscreen Drawing 49
Using a Pixel Buffer as a Texture Source 50
Rendering to a Pixel Buffer on a Remote System 51

Rendering to a Framebuffer Object 51
Drawing a Texture Offscreen 52
Drawing a Renderbuffer Image Offscreen 55

See Also 57

Chapter 5 Determining the OpenGL Capabilities Supported by the Hardware 59

Detecting Functionality 59
Guidelines for Code That Checks for Functionality 62
See Also 63

Chapter 6 Techniques for Working with Rendering Contexts 65

Context Parameters 65
Swap Interval 65
Surface Opacity 66
Surface Drawing Order 66
Vertex and Fragment Processing 67
Back Buffer Size Control 67

Updating a Rendering Context 68
Tracking Renderer Changes 69
Updating a Rendering Context for a Custom Cocoa View 69
Updating a Rendering Context for a Carbon Window 71
Updating Full-screen AGL and CGL Rendering Contexts 74

Sharing Rendering Contexts 75
See Also 77

Chapter 7 Techniques for Choosing Attributes 79

Buffer Size Attribute Selection Tips 79
Attributes that are not Recommended 79
Ensuring that Back Buffer Contents Remain the Same 80
Ensuring a Valid Pixel Format Object 80
Ensuring a Specific Type of Renderer 81
Ensuring a Single Renderer for a Display 82
See Also 83

4
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 8 Techniques for Working with Vertex Data 85

Best Practices for Working with Vertex Data 85
Using Extensions to Improve Performance 87

Vertex Array Range Extension 88
Vertex Buffer Object Extension 90
Fence Extension 92

Double Buffering Vertex Data 93
See Also 94

Chapter 9 Techniques for Working with Texture Data 95

Using Extensions to Optimize 96
Apple Client Storage 97
Apple Texture Range and Rectangle Texture 98
Combining Extensions 99

Optimal Data Formats and Types 101
Working with Non–Power-of-Two Textures 101
Creating Textures from Image Data 103

Creating a Texture from a Cocoa View 103
Creating a Texture from a Quartz Image Source 105
Getting Decompressed Raw Pixel Data from a Source Image 106

Downloading Texture Data 107
Double Buffering Texture Data 108
See Also 109

Chapter 10 Techniques for Scene Anti-Aliasing 111

Guidelines 111
General Approach 112
Hinting for a Specific Anti-Aliasing Technique 113
Setting Up Full Scene Anti-Aliasing 114
See Also 116

Chapter 11 Multithreading and OpenGL 117

Program Design 117
Guidelines for Threading OpenGL Applications 118
When Things Go Wrong 119
Threading APIs 119
See Also 120

Chapter 12 Improving Performance 121

Best Practices 121
Use Flush and Finish Routines Effectively 122

5
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Be Mindful of OpenGL State Variables 123
Draw Only When Necessary 124
Synchronize with the Screen Refresh Rate 125
Use OpenGL Macros 125
Use the CPU and the GPU Asynchronously 126
Use Appropriate Routines for Images and Pixel Data 127
Retrieve Error Information Only When Debugging 127
Use Optimal Data Types and Formats 127

Gathering and Analyzing Baseline Performance Data 128
Identifying Bottlenecks with Shark 133
See Also 133

Appendix A OpenGL Functionality by Version 135

Version 1.1 135
Version 1.2 136
Version 1.3 136
Version 1.4 137
Version 1.5 138
Version 2.0 138

Appendix B Setting Up Function Pointers to OpenGL Routines 139

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point 139
Initializing Entry Points 142

Appendix C Quartz Display Services and Full-Screen Mode 145

Displays and Display Modes 145
Fading the Display 147
Controlling the Pointer 149
See Also 150

Glossary 151

Document Revision History 155

6
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 OpenGL on the Mac Platform 15

Figure 1-1 OpenGL provides the reflections in iChat 15
Figure 1-2 Layers of OpenGL for Mac OS X 16
Figure 1-3 The programing interfaces used for OpenGL content 17
Figure 1-4 Data flow through OpenGL 20
Figure 1-5 A virtual screen displays what the user sees 21
Figure 1-6 Two virtual screens 22
Figure 1-7 A virtual screen can represent more than one physical screen 22
Figure 1-8 Two virtual screens and two graphics cards 23
Figure 1-9 The flow of data through OpenGL 24

Chapter 2 Drawing to a Window or View 27

Figure 2-1 OpenGL content in a Cocoa view (left) and a Carbon window (right) 27
Figure 2-2 The output from the Golden Triangle program 31
Listing 2-1 The interface for MyOpenGLView 29
Listing 2-2 Include OpenGL/gl.h 29
Listing 2-3 The drawRect: method for MyOpenGLView 30
Listing 2-4 Code that draws a triangle using OpenGL commands 30
Listing 2-5 The interface for a custom OpenGL view 32
Listing 2-6 The initWithFrame:pixelFormat: method 32
Listing 2-7 The lockFocus method 33
Listing 2-8 The drawRect method for a custom view 33
Listing 2-9 Detaching the context from a drawable object 33
Listing 2-10 Setting a Carbon window as a drawable object 35

Chapter 3 Drawing to the Full Screen 37

Figure 3-1 Drawing OpenGL content to the full screen 37
Listing 3-1 Using Cocoa to set up full-screen drawing 38
Listing 3-2 A function that sets up a full-screen context using AGL 40
Listing 3-3 Setting up a full-screen context using CGL 41
Listing 3-4 Adjusting the display mode 43
Listing 3-5 Switching the resolution of a display 43

Chapter 4 Drawing Offscreen 45

Figure 4-1 Using the content from a hidden window as a texture source 47
Listing 4-1 Using CGL to draw to an offscreen drawable object 46
Listing 4-2 Setting up a framebuffer for texturing 54

7
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

Listing 4-3 Setting up a renderbuffer for drawing images 56

Chapter 5 Determining the OpenGL Capabilities Supported by the Hardware 59

Listing 5-1 Checking for OpenGL functionality 60
Listing 5-2 Setting up a valid rendering context to get renderer functionality information 61

Chapter 6 Techniques for Working with Rendering Contexts 65

Figure 6-1 A fixed size back buffer and variable size front buffer 68
Figure 6-2 Shared contexts attached to the same drawable object 75
Figure 6-3 Shared contexts and more than one drawable object 76
Listing 6-1 Using CGL to set up synchronization 66
Listing 6-2 Using CGL to set surface opacity 66
Listing 6-3 Using CGL to set surface drawing order 67
Listing 6-4 Using CGL to check whether the GPU is processing vertices and fragments 67
Listing 6-5 Using CGL to set up back buffer size control 67
Listing 6-6 Handling context updates for a custom view 70
Listing 6-7 Handling Carbon events associated with an AGL context 71
Listing 6-8 Updating a context using AGL 72
Listing 6-9 Handling display configuration changes 73
Listing 6-10 Handling full-screen updates using AGL 74
Listing 6-11 Handling full-screen updates using CGL 75
Listing 6-12 Setting up an NSOpenGLContext object for sharing 76
Listing 6-13 Getting the same virtual screen list with different attributes 77
Listing 6-14 Setting up a CGL context for sharing 77

Chapter 7 Techniques for Choosing Attributes 79

Table 7-1 Renderer types and pixel format attributes 81
Listing 7-1 Using the CGL API to create a pixel format object 80
Listing 7-2 Setting an NSOpenGLContext object to use a specific display 82
Listing 7-3 Setting an AGL context to use a specific display 82
Listing 7-4 Setting a CGL context to use a specific display 83

Chapter 8 Techniques for Working with Vertex Data 85

Figure 8-1 Vertex data sets can be quite large 85
Figure 8-2 Vertex data path 86
Figure 8-3 Immediate mode requires a copy of the current vertex data 86
Figure 8-4 Extensions allow dynamic data to use DMA 87
Figure 8-5 Extensions allow static vertex data to use VRAM storage 88
Figure 8-6 Single-buffered vertex array data 93
Figure 8-7 Double-buffered vertex array data 94
Listing 8-1 Using the vertex array range extension with dynamic data 89

8
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 8-2 Using the vertex array range extension with static data 90
Listing 8-3 Using the vertex buffer object extension with dynamic data 91
Listing 8-4 Using the vertex buffer object extension with static data 92

Chapter 9 Techniques for Working with Texture Data 95

Figure 9-1 Textures add realism to a scene 95
Figure 9-2 Texture data path 96
Figure 9-3 Data copies in an OpenGL program 97
Figure 9-4 The client storage extension eliminates a data copy 98
Figure 9-5 The texture range extension eliminates a data copy 99
Figure 9-6 Combining extensions to eliminate data copies 100
Figure 9-7 Normalized and non-normalized coordinates 101
Figure 9-8 An image segmented into power-of-two tiles 102
Figure 9-9 Using an image as a texture for a cube 103
Figure 9-10 Single-buffered data 108
Figure 9-11 Double-buffered data 109
Listing 9-1 Using texture extensions for a rectangular texture 100
Listing 9-2 Using texture extensions for a power-of-two texture 100
Listing 9-3 Building an OpenGL texture from an NSView object 104
Listing 9-4 Using a Quartz image as a texture source 106
Listing 9-5 Getting pixel data from a source image 106
Listing 9-6 Code that downloads texture data 107

Chapter 10 Techniques for Scene Anti-Aliasing 111

Table 10-1 Anti-aliasing hints available starting in Mac OS X v10.4 113
Listing 10-1 Using NSOpenGLPixelFormat to set up full scene anti-aliasing 114
Listing 10-2 Using AGL to set up full scene anti-aliasing with a hint for supersampling 115
Listing 10-3 Using CGL to set up full scene anti-aliasing with a hint for multisampling 115

Chapter 11 Multithreading and OpenGL 117

Figure 11-1 CPU processing and OpenGL on separate threads 118
Figure 11-2 Two contexts on separate threads 118

Chapter 12 Improving Performance 121

Figure 12-1 OpenGL performs complex operations as data flows through a program 121
Figure 12-2 The graph view in OpenGL Driver Monitor 126
Figure 12-3 Output produced by the top application 129
Figure 12-4 The OpenGL Profiler window 130
Figure 12-5 A statistics window 131
Figure 12-6 A Trace window 132
Listing 12-1 Disabling state variables 123

9
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 12-2 Setting up a drawing loop timer 124
Listing 12-3 Setting up synchronization 125
Listing 12-4 Using AGL macros 125
Listing 12-5 Copying pixels 127

Appendix A OpenGL Functionality by Version 135

Table A-1 Functionality added in OpenGL 1.1 135
Table A-2 Functionality added in OpenGL 1.2 136
Table A-3 Functionality added in OpenGL 1.3 136
Table A-4 Functionality added in OpenGL 1.4 137
Table A-5 Functionality added in OpenGL 1.5 138
Table A-6 Functionality added in OpenGL 2.0 138

Appendix B Setting Up Function Pointers to OpenGL Routines 139

Listing B-1 Using NSLookupAndBindSymbol to obtain a symbol for a symbol name 139
Listing B-2 Using AGL to get a function pointer for an entry in the OpenGL framework 140
Listing B-3 Using NSGLGetProcAddress to obtain an OpenGL entry point 142
Listing B-4 Using AGL to obtain an OpenGL entry point 143

Appendix C Quartz Display Services and Full-Screen Mode 145

Listing C-1 Switching modes for a display in a list 146
Listing C-2 Getting display properties 146
Listing C-3 Fading all displays connected to the system 148
Listing C-4 Fading a single display on a system with multiple displays 148
Listing C-5 Controlling the pointer programmatically 150

10
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

OpenGLProgrammingGuide forMacOSX describes the Apple implementation of the OpenGL graphics standard
in Mac OS X and shows how to use this implementation effectively to achieve stunning 3D graphics. OpenGL
is an open, cross-platform, three-dimensional (3D) graphics standard with broad industry support. OpenGL
greatly eases the task of writing real-time 2D or 3D graphics applications by providing a mature,
well-documented graphics processing pipeline that supports the abstraction of current and future hardware
accelerators.

OpenGL was developed by Silicon Graphics, Inc. (SGI). It is based on the SGI IRIS Graphics Library, first released
in 1992. As an open standard, it is now controlled by the OpenGL Architecture Review Board (ARB), a
consortium whose members include many of the major companies in the computer graphics industry, one
of which is Apple.

OpenGL is an excellent choice for 3D graphics development on the Macintosh platform because it offers the
following:

 ■ Reliable implementation. Each implementation of OpenGL, including the Apple one, adheres to the
OpenGL specification and must pass a set of conformance tests.

 ■ Industry acceptance. Besides OpenGL for Mac OS X, there are OpenGL implementations for Windows,
Linux, Irix, Solaris, and many game consoles.

 ■ Performance. OpenGL uses available graphics processing hardware features to improve rendering speeds.

 ■ Controlled evolution. OpenGL extensions enable developers to take advantage of hardware-specific
improvements as they become available. Successful innovations are automatically incorporated into the
Apple implementation.

 ■ Full feature set. OpenGL provides hundreds of graphics routines that you use to define objects and apply
transformations to them. It also provides routines that let you package data so that it uses the least
amount of resources, thereby optimizing performance.

 ■ Platform independence. The Apple implementation of OpenGL is cross-platform, which means that you
can leverage your Mac OS X development efforts onto other systems. The OpenGL core functionality
abstracts hardware details and guarantees consistent presentation on any compliant hardware and
software configuration.

Who Should Read This Document?

Any developer who is familiar with OpenGL code and wants to run OpenGL programs in Mac OS X will want
to read this document. OpenGL provides the API that communicates with the graphics hardware. Apple
provides APIs that communicate with the Mac OS X windowing system. By reading this guide, you'll see how
to use the Apple APIs to draw your OpenGL content onscreen from within a Cocoa or Carbon application.
The book discusses the essential concepts for understanding the Apple OpenGL interfaces used for procedural
C and Objective-C, and provides techniques and tips for getting the best performance possible on the
platform.

Who Should Read This Document? 11
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to OpenGL Programming Guide
for Mac OS X

This guide assumes that you are an experienced OpenGL programmer who wants to create Mac OS X software
that has real-time 2D or 3D graphics. Although this guide provides some advice on optimizing OpenGL code,
it does not provide entry-level information on how to use the OpenGL API maintained by the OpenGL
Architecture Review Board (ARB). If you are unfamiliar with OpenGL, first read the following programming
guide and consult the companion reference as needed:

 ■ OpenGL Programming Guide, by the OpenGL Architecture Review Board; otherwise known as "The
Redbook.”

 ■ OpenGL Reference Pages.

Organization of This Document

This programming guide contains the following chapters:

 ■ “OpenGL on the Mac Platform” (page 15) discusses fundamental concepts for understanding how to
use the Apple implementation of OpenGL, describes the graphics layers and programming interfaces,
introduces essential terminology, and provides an overview of an OpenGL program running in Mac OS
X.

 ■ “Drawing to a Window or View” (page 27) shows the basics of onscreen drawing using the CGL, AGL,
and Cocoa APIs.

 ■ “Drawing to the Full Screen” (page 37) describes how to use the CGL, AGL, and Cocoa APIs for full-screen
drawing, and includes information on adjusting the display mode.

 ■ “Drawing Offscreen” (page 45) shows how to draw to GPU memory, offscreen windows, pixel buffers,
and framebuffer objects.

 ■ “Determining the OpenGL Capabilities Supported by the Hardware” (page 59) provides information on
how to detect which version of OpenGL is available on a system and which features are supported by
the hardware.

 ■ “Techniques for Working with Rendering Contexts” (page 65) shows how to create and update rendering
contexts, set a context to a specific display, and share contexts.

 ■ “Techniques for Choosing Attributes” (page 79) discusses which render and buffer attributes to use and
which to avoid, and which to choose to achieve specific objectives.

 ■ “Techniques for Working with Vertex Data” (page 85) provides guidelines, describes the data path, and
shows how to optimize vertex data throughput.

 ■ “Techniques for Working with Texture Data” (page 95) provides guidelines, describes the data path,
shows how to use images as textures, and discusses how to optimize texture data throughput.

 ■ “Techniques for Scene Anti-Aliasing” (page 111) describes the primary methods provided by anti-aliasing
hardware and shows how to use hints that indicate which method you prefer.

 ■ “Multithreading and OpenGL” (page 117) provides guidelines for multithreading and discusses effective
program designs.

 ■ “Improving Performance” (page 121) discusses best practices and shows how to analyze performance.

This programming guide contains these appendixes:

12 Organization of This Document
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to OpenGL Programming Guide for Mac OS X

http://www.opengl.org/documentation/red_book/
http://www.opengl.org/sdk/docs/man/

 ■ “OpenGL Functionality by Version” (page 135) contains tables that summarize new functionality and, in
the online versions of this document, provides links to the OpenGL specification that describes the
functionality in detail.

 ■ “Setting Up Function Pointers to OpenGL Routines” (page 139) describes how to obtain function pointers
to arbitrary OpenGL entry points.

 ■ “Quartz Display Services and Full-Screen Mode” (page 145) shows how to use the Quartz Display Services
API to accomplish a number of tasks that are useful in full-screen mode.

The “Glossary” (page 151) provides definitions for most of the terminology in the book. You can find definitions
for those terms that are not in the glossary either on the OpenGL Foundation website http://www.opengl.org
or in OpenGL Programming Guide ("The Redbook").

See Also

You'll want to keep these reference documents handy as you develop your OpenGL program for Mac OS X:

 ■ NSOpenGLView Class Reference, NSOpenGLContext Class Reference, NSOpenGLPixelBuffer Class Reference,
and NSOpenGLPixelFormat Class Reference provide a complete description of the classes and methods
needed to draw OpenGL content in a Cocoa application.

 ■ AGL Reference provides a complete description of the functions needed to draw OpenGL content in a
Carbon application.

 ■ CGL Reference describes functions in the Core OpenGL API, which can be used to draw OpenGL content
to the full screen from either a Cocoa or Carbon application.

 ■ OpenGL Extensions Guide provides information about OpenGL extensions supported in Mac OS X.

 ■ Cocoa Drawing Guide explains how to draw 2D content in a Cocoa application and also contains
information on how to set up OpenGL drawing.

You can download sample applications that demonstrate how to use Apple APIs for OpenGL drawing from
the ADC Reference Library.

The OpenGL Foundation website, http://www.opengl.org, provides information on OpenGL commands, the
Architecture Review Board, logo requirements, OpenGL news, and many other topics. It's a site that you'll
want to visit regularly. Among the many resources it provides, the following are important reference documents
for OpenGL developers:

 ■ OpenGL 2.0 Specification provides detailed information for every OpenGL command.

 ■ OpenGL Reference describes GL, the main OpenGL library.

 ■ OpenGL GLU Reference describes the OpenGL Utility Library, which contains graphical extensions based
entirely on GL functions.

 ■ OpenGL GLUT Reference describes the OpenGL Utility Toolkit, a standard API for performing operations
associated with a windowing environment other than the Cocoa and Carbon environments.

 ■ OpenGL API Code and Tutorial Listings provides code examples for fundamental tasks, such as modeling
and texture mapping, as well as for advanced techniques, such as high dynamic range rendering (HDRR).

See Also 13
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to OpenGL Programming Guide for Mac OS X

http://www.opengl.org
http://www.opengl.org/documentation/red_book/
http://developer.apple.com/graphicsimaging/opengl/extensions.html
http://developer.apple.com/referencelibrary/
http://www.opengl.org
http://www.opengl.org/code/

Although you don't need to learn how to use a shading language to write OpenGL programs for Mac OS X,
it's a growing area that you may want to investigate. The Apple implementation of OpenGL supports shading
programs should you want to incorporate them into your code.

 ■ OpenGL Shading Language, by Randi J. Rost, is an excellent guide for those who want to write programs
that compute surface properties (also known as shaders).

 ■ Core Image Programming Guide describes how to use the Core Image API to access built-in image
processing filters and how to write your own filters. The appendix Core Image Kernel Language, describes
the shading language that's supported in Core Image and provides examples of kernel routines.

 ■ The Quartz Composer application, available in /Developer/Applications/Graphics Tools/, has a kernel
patch that you can use to test kernel routines that you write using the Core Image kernel language.

14 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to OpenGL Programming Guide for Mac OS X

You can tell that Apple has an implementation of OpenGL on its platform just by looking at the user interface
for many of the applications that are installed with Mac OS X. The reflections built into iChat (Figure 1-1)
provide one of the more notable examples. The responsiveness of the windows, the instant results of applying
an effect in iPhoto, and many, many other operations in Mac OS X v10.4 are due to the use of OpenGL.
OpenGL isn't restricted to just the operating system and Apple applications. Any Mac developer can use
OpenGL. In fact, Apple's implementation is available to every Macintosh user as part of Mac OS X.

OpenGL for Mac OS X is implemented as a set of frameworks that contain the OpenGL runtime engine and
its drawing software. These frameworks use platform-neutral virtual resources to free your programming as
much as possible from hardware considerations. Mac OS X provides a set of application programming
interfaces (APIs) that Cocoa and Carbon applications can use to support OpenGL drawing.

Figure 1-1 OpenGL provides the reflections in iChat

This chapter describes the OpenGL frameworks and the associated APIs, defines the terminology that is
Apple-specific, describes how data flows through OpenGL, and provides an overview of the tasks necessary
for a Cocoa or Carbon application to tap into that pipeline.

Structure of OpenGL in Mac OS X

Mac OS X supports a display space that can consist of multiple dissimilar displays, each driven by different
graphics cards with different capabilities. In addition, multiple OpenGL renderers can drive each graphics
card. To accommodate this versatility, OpenGL for Mac OS X is segmented into three well-defined layers: a

Structure of OpenGL in Mac OS X 15
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

window system layer, a framework layer, and a driver layer, as shown in Figure 1-2. This segmentation allows
for plug-in interfaces to both the window system layer and the framework layer. Plug-in interfaces offer
flexibility in software and hardware configuration without violating the OpenGL standard.

Figure 1-2 Layers of OpenGL for Mac OS X

AGL CGL

ATI GLD plug-inSoftware GLD plug-in NVIDIA GLD plug-in

ATI hardware rasterizerSoftware rasterizer NVIDIA hardware rasterizer

Intel GLD plug-in

Intel hardware rasterizer

OpenGLNSOpenGL

Application

Hardware

Window system layer

Common OpenGL framework

Driver layer

The window system layer is what allows your OpenGL program to become a reality onscreen. You'll use the
Apple-specific OpenGL APIs provided in this layer—the NSOpenGL classes and the AGL and CGL APIs—to
direct where OpenGL drawing takes place and control a variety of aspects of rendering. These APIs contain
functions and methods specific to the Mac OS X windowing system. (See “OpenGL APIs Specific to Mac OS
X” (page 17) for more information.) This layer also includes the OpenGL libraries—GL, GLU, and GLUT. (See
“Apple-Implemented OpenGL Libraries” (page 18) for details.)

The common OpenGL framework layer is the software interface to the graphics hardware. This layer contains
Apple's implementation of the OpenGL specification.

The driver layer contains the optional GLD plug-in interface and one or more GLD plug-in drivers, which
may have different software and hardware support capabilities. The GLD plug-in interface supports third-party
plug-in drivers, allowing third-party hardware vendors to take advantage of newer driver technology.

Programming Interfaces

The programming interfaces that you'll use fall into two categories—those specific to the Macintosh platform
and those defined by the OpenGL Architecture Review Board. The Apple-specific programming interfaces
are what Cocoa and Carbon applications use to communicate with the Mac OS X windowing system. These
APIs don't create OpenGL content, they simply manage content, direct it to a drawing destination (onscreen
or offscreen), and control various aspects of the rendering operation. The OpenGL APIs actually create content.

16 Programming Interfaces
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

OpenGL routines accept vertex, pixel, and texture data and assemble the data to create content that has the
illusion of being three-dimensional. The final content resides in a framebuffer, where it will languish unseen
by the user unless your application uses a windowing-system specific API to direct the content onscreen.

Figure 1-3 The programing interfaces used for OpenGL content

OpenGL engine and drivers

GLUT
CGL AGL

OpenGL

NSOpenGL
classes

Cocoa applicationGLUT application Carbon application

OpenGL APIs Specific to Mac OS X

Mac OS X offers three easy-to-use application programming interfaces (APIs) that are specific to the Macintosh
platform: the NSOpenGL classes, the AGL API, and the CGL API. Throughout this document, these three APIs
are referred to as the Apple-specific OpenGL APIs.

Cocoa provides four classes specifically for OpenGL—NSOpenGLView, NSOpenGLContext,
NSOpenGLPixelFormat, and NSOpenGLPixelBuffer. The NSOpenGLView class provides easy access to a
basic OpenGL context that can be set up in Interface Builder. NSOpenGLView is a subclass of NSView and
has the expected facilities to display OpenGL content in a view. NSOpenGLContext and
NSOpenGLPixelFormat, along with NSView, are the building blocks for the NSOpenGLView class. Applications
that subclass NSOpenGLViewdo not need to directly subclass NSOpenGLPixelFormat or NSOpenGLContext.
Applications that need customization or flexibility, can subclass NSView. The NSOpenGLPixelBuffer class
provides hardware-accelerated offscreen drawing. Using the NSOpenGL classes, you can also draw to the
full screen.

For detailed information on the NSOpenGL classes, see the following reference documentation:

 ■ NSOpenGLView Class Reference

 ■ NSOpenGLContext Class Reference

 ■ NSOpenGLPixelBuffer Class Reference

 ■ NSOpenGLPixelFormat Class Reference

Apple Graphics Library (AGL) is the Apple interface to OpenGL for Carbon applications. It can be used by
both Mach-O and CFM binaries, although CFM binaries are not recommended in Mac OS X because it's not
possible to generate a universal binary with them. (A universal binary runs natively on both PowerPC and

Programming Interfaces 17
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

Intel-based Macintosh computers.) AGL supports drawing to the full screen as well as to Carbon windows
and offscreen locations. In addition to the standard functionality, AGL provides full support for
hardware-accelerated offscreen drawing, bitmap font rendering, and the ability to render content directly
to a texture (also called render-to-texture functionality). The AGL API resides in the AGL framework.
Applications must include the AGL.h header file (System/Library/Frameworks/AGL.framework/AGL.h)
to access AGL functionality. AGL Reference provides a complete description of this API.

The Core OpenGL API (CGL) is the basis for the NSOpenGL classes and AGL. CGL offers the most direct access
to system functionality and provides the highest level of graphics performance and control for drawing to
the full screen. CGL is windowing-system agnostic but is accessible from both Cocoa and Carbon applications.
The CGL API resides in the OpenGL framework. Applications must include the OpenGL.h header file
(System/Library/Frameworks/OpenGL.framework/OpenGL.h) to access CGL functionality.CGLReference
provides a complete description of this API.

Apple-Implemented OpenGL Libraries

Mac OS X also provides the full suite of graphics libraries that are part of every implementation of OpenGL:
GL, GLU, GLUT, and GLX. Two of these—GL and GLU—provide low-level drawing support. The other two—GLUT
and GLX—support drawing to the screen.

Your application typically interfaces directly with the core OpenGL library (GL), the OpenGL Utility library
(GLU), and the OpenGL Utility Toolkit (GLUT). The GL library provides a low-level modular API that allows
you to define graphical objects. It supports the core functions that are common to all OpenGL implementations,
as mandated by the OpenGL specification. It provides support for two fundamental types of graphics primitives:
objects defined by sets of vertices, such as line segments and simple polygons, and objects that are pixel-based
images, such as filled rectangles and bitmaps. The GL API does not handle complex custom graphical objects;
your application must decompose them into simpler geometries.

The GLU library combines functions from the GL library to support more advanced graphics features. It runs
on all conforming implementations of OpenGL. GLU is capable of creating and handling complex polygons
(including quartic equations), processing nonuniform rational b-spline curves (NURBs), scaling images, and
decomposing a surface to a series of polygons (tessellation).

The GLUT library provides a cross-platform API for performing operations associated with the user windowing
environment—displaying and redrawing content, handling events, and so on. It is implemented on most
UNIX, Linux, and Windows platforms. As such, any code that you write with GLUT can be reused across
multiple platforms. However, such code is constrained by a generic set of user interface elements and
event-handling options. This book does not show how to use GLUT. If you are interested in GLUT, see the
sample code in the ADC Reference Library. GLUT Basics is a simple example that will get you started.

GLX is an OpenGL extension that supports using OpenGL within a window provided by the X Window system.
X11 for Mac OS X is available as an optional installation using the Mac OS X installation DVD. (It's not shown
in Figure 1-3 (page 17).) See OpenGL Programming for the X Window System, published by Addison Wesley
for more information.

This document does not show how to use these libraries. For detailed information, either go to the OpenGL
Foundation website http://www.opengl.org, or see the most recent version of "The Redbook"—OpenGL
Programming Guide, published by Addison Wesley.

18 Programming Interfaces
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

http://developer.apple.com/referencelibrary/
http://www.opengl.org
http://www.opengl.org/documentation/red_book/
http://www.opengl.org/documentation/red_book/

Terminology

There are a number of terms that you’ll want to understand so that you can write code effectively using
OpenGL: renderer, renderer attributes, buffer attributes, pixel format objects, rendering contexts, drawable
objects, and virtual screens. As an OpenGL programmer some of these may seem familiar to you. However,
understanding the Apple-specific nuances of these terms will help you get the most out of OpenGL on the
Macintosh platform.

Renderer

A renderer is the combination of the hardware and software that OpenGL uses to create an image from a
view and a model. (A software renderer is an exception; it does not use graphics hardware and is typically
used as a fallback.) The characteristics of the final image depends on the capabilities of the graphics hardware
associated with the renderer and the device used to display the image. A particular renderer supports specific
capabilities—for example, the ability to produce environmental effects such as fog.

Mac OS X supports graphics accelerator cards with varying capabilities as well as systems without graphics
acceleration hardware. It is possible for multiple renderers, each with different capabilities or features, to
drive a single set of graphics hardware.

Renderer and Buffer Attributes

Renderer and buffer attributes are operating system-dependent extensions that communicate to OpenGL
the renderer and buffer requirements for your application. The Apple implementation of OpenGL dynamically
selects the best renderer for the current rendering task and does so transparently to your application. But,
if your application has very specific rendering requirements and wants to control renderer selection, it can
do so by supplying the appropriate renderer attributes. Buffer attributes describe such things as color and
depth buffer sizes, and whether the data is stereoscopic or monoscopic.

Renderer and buffer attributes are represented by constants defined in the Apple-specific OpenGL APIs.
OpenGL uses the attributes you supply to perform the setup work needed prior to drawing content. “Drawing
to a Window or View” (page 27) provides simple example that show how to use renderer and buffer attributes.
“Techniques for Choosing Attributes” (page 79) provides tips on choosing renderer and buffer attributes to
achieve specific rendering goals.

Pixel Format Objects

A pixel format describes pixel data storage in memory. The description includes the pixel components (that
is, red, blue, green, alpha), the number and order of components, and other relevant information, such as
whether a pixel contains stencil and depth values. A pixel format object is an opaque data type designed
to hold a pixel format along with a list of renderers and display devices that satisfy the requirements specified
by an application.

Each of the Apple-specific OpenGL APIs defines a pixel format data type and accessor routines that you can
use to obtain the information referenced by this object. See “Virtual Screens” (page 21) for more information
on renderer and display devices.

Terminology 19
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

Rendering Contexts

A rendering context, or simply context, contains state information for the rendering target of your application.
The context affects the rendered result much in the same way that the characteristics of a drawing pen (ink
color, point size, type of ink, and so forth) affect what's drawn on a piece of paper. State variables are set per
context. Once set, a value remains as such until you change it. State variables include such things as drawing
color, the viewing and projection transformations, lighting characteristics, and material properties.

Although your application can maintain more than one context, only one context can be the current context
in a thread. The current context is the rendering context that receives OpenGL commands issued by your
application. The system initializes the context to the default OpenGL state. The context then tracks all state
changes made while it is the current context.

Drawable Objects

A drawable object refers to an object allocated outside of OpenGL, but that can serve as an OpenGL
framebuffer. A drawable object can be the target of OpenGL drawing operations. The behavior of drawable
objects is not part of the OpenGL specification. Rather, a drawable object is a platform-specific construct
provided by the Mac OS X windowing system.

A drawable object can be any of the following: a Carbon window, a Cocoa view, offscreen memory, a full-screen
graphics device, or a pixel buffer (available starting in Mac OS X v10.3).

Note: A pixel buffer (pbuffer) is an OpenGL buffer designed for hardware-accelerated offscreen drawing
and as a source for texturing. An application can render an image into a pixel buffer once and then use the
buffer contents multiple times to texture a variety of surfaces without copying the image data.

Before OpenGL can draw to a drawable object, the object must be attached to a rendering context. The
characteristics of the drawable object narrow the selection of hardware and software specified by the rendering
context. OpenGL automatically allocates buffers, creates surfaces, and specifies which renderer is the current
renderer.

The logical flow of data from an application through OpenGL to a drawable object is shown in Figure 1-4.
The application issues OpenGL commands that are sent to the current rendering context. The current context,
which contains state information, constrains how the commands are interpreted by the appropriate renderer.
The renderer converts the OpenGL primitives to an image in the framebuffer. (See also “Running an OpenGL
Program in Mac OS X ” (page 24).)

Figure 1-4 Data flow through OpenGL

Rendered Image

Application

Possible renderers

OpenGL
buffers

Current

Drawable
objects

C
O
N
T
E
X
T

20 Terminology
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

Virtual Screens

The characteristics and quality of the OpenGL content that the user sees depends on both the renderer and
the physical display used to view the content. The combination of renderer and physical display is called a
virtual screen. This important concept has implications for any application that might run on a system that
has more than one renderer or more than one display.

A simple system, with one graphics card and one physical display, typically has two virtual screens. One
virtual screen consists of a hardware-based renderer and the physical display and the other virtual screen
consists of a software-based renderer and the physical display. Mac OS X provides a software-based renderer
as a fallback. It's possible for your application to decline the use of this fallback. You'll see how in “Techniques
for Choosing Attributes” (page 79).

The green rectangle around the OpenGL image in Figure 1-5 surrounds a virtual screen for a system with
one graphics card and one display. Note that a virtual screen is not the physical display, which is why the
green rectangle is drawn around the application window that shows the OpenGL content. In this case, it is
the renderer provided by the graphics card combined with the characteristics of the display.

Figure 1-5 A virtual screen displays what the user sees

Graphics card

Virtual screen

Because a virtual screen is not simply the physical display, a system with one display can use more than one
virtual screen at a time, as shown in Figure 1-6. The green rectangles are drawn to point out each virtual
screen. Imagine that the virtual screen on the right side uses a software-only renderer and that the one on
the left uses a hardware-dependent renderer. Although this is a contrived example, it illustrates the point.

Terminology 21
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

Figure 1-6 Two virtual screens

Graphics card

Virtual screen 2
(Software renderer)

Virtual screen 1
(Hardware renderer)

It's also possible to have a virtual screen that can represent more than one physical display. The green
rectangle in Figure 1-7 is drawn around a virtual screen that spans two physical displays. In this case, the
same graphics hardware drives a pair of identical displays. This is also true when mirroring is enabled.

Figure 1-7 A virtual screen can represent more than one physical screen

Dual-headed
graphics card

Virtual screenIdentical displays

22 Terminology
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

The concept of a virtual screen is particularly important when the user drags an image from one physical
screen to another. When this happens, the virtual screen may change, and with it, a number of attributes of
the imaging process, such as the current renderer, may change. With the dual-headed graphics card shown
in Figure 1-7 (page 22), dragging between displays preserves the same virtual screen. However, Figure 1-8
shows the case for which two displays represent two unique virtual screens. Not only are the two graphics
cards different, but it's possible that the renderer, buffer attributes, and pixel characteristics are different. A
change in any of these three items can result in a change in the virtual screen.

When the user drags an image from one display to another, and the virtual screen is the same for both
displays, the image quality should appear similar. However, for the case shown in Figure 1-8, the image
quality can be quite different.

Figure 1-8 Two virtual screens and two graphics cards

Graphics card 1

Graphics card 2

Virtual screen 1 Virtual screen 2

OpenGL for Mac OS X transparently manages rendering across multiple monitors. A user can drag a window
from one monitor to another, even though their display capabilities may be different or they may be driven
by dissimilar graphics cards with dissimilar resolutions and color depths.

OpenGL dynamically switches renderers when the virtual screen that contains the majority of the pixels in
an OpenGL window changes. When a window is split between multiple virtual screens, the framebuffer is
rasterized entirely by the renderer driving the screen that contains the largest segment of the window. The
regions of the window on the other virtual screens are drawn by copying the rasterized image. When the
entire OpenGL drawable object is displayed on one virtual screen, there is no performance impact from
multiple monitor support.

Applications need to track virtual screen changes and, if appropriate, update the current application state
to reflect changes in renderer capabilities. See “Techniques for Working with Rendering Contexts” (page 65).

Terminology 23
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

Running an OpenGL Program in Mac OS X

Figure 1-9 shows the flow of data in an OpenGL program, regardless of the platform that the program runs
on. Pixel data and vertex data can be sent to OpenGL for processing in two ways. The first is by issuing
OpenGL commands that are executed immediately, either to assemble a model from vertex data or a texture
from pixel data. When an application issues OpenGL commands that are executed immediately, OpenGL is
said to be operating in immediate mode. There are two immediate mode paths in the figure: one from vertex
data to per-vertex operations and the other from pixel data to per-pixel operations.

The "display lists" rectangle in the figure represents the second way that an application can send data to
OpenGL. A display list is a set of OpenGL commands that is assembled and named by an application. The
display list is then stored on the OpenGL server. The application can refer to the list by its assigned name
when the data defined by the list is needed. Display lists are ideal for computing-intensive operations because
at the time you need to use the data, it is already uploaded to the GPU and is usually preprocessed. There
are two display list paths in the figure, one for vertex data and one for pixel data.

Figure 1-9 The flow of data through OpenGL

Display lists Rasterization Per-fragment
operations

Per-pixel
operations

Texture
assembly

Framebuffer

Per-vertex
operations

Pixel data

Vertex data

Per-vertex operations include such things as applying transformation matrices to add perspective or to clip
and applying lighting effects. Per-pixel operations include such things as color conversion and applying blur
and distortion effects. Pixels destined for textures are sent to texture assembly where OpenGL stores textures
until it needs to apply them onto an object.

OpenGL rasterizes the processed vertex and pixel data, meaning that the data are converged to create
fragments. A fragment encapsulates all the values for a pixel, including color, depth, and sometimes texture
values. These values are used during anti-aliasing and any other calculations needed to fill shapes and to
connect vertices.

Per-fragment operations include applying environment effects, depth and stencil testing, and performing
other operations such as blending and dithering. Some operations—such as hidden-surface removal—end
the processing of a fragment. OpenGL draws fully processed fragments into the appropriate location in the
framebuffer.

24 Running an OpenGL Program in Mac OS X
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

The dashed arrows in Figure 1-9 indicate reading pixel data back from the framebuffer. They represent
operations performed by OpenGL functions such asglReadPixels,glCopyPixels, andglCopyTexImage2D.

So far you've seen how OpenGL operates on any platform. But how do Cocoa and Carbon applications provide
data to the OpenGL for processing? Regardless of the application environment (Cocoa or Carbon), a Mac OS
X application must perform these tasks:

 ■ Set up a list of buffer and renderer attributes that define the sort of drawing you want to perform. (See
“Renderer and Buffer Attributes” (page 19).)

 ■ Request the system to create a pixel format object that contains a pixel format that meets the constraints
of the buffer and render attributes and a list of all suitable combinations of displays and renderers. (See
“Pixel Format Objects” (page 19) and “Virtual Screens” (page 21).)

 ■ Create a rendering context to hold state information that controls such things as drawing color, view
and projection matrices, characteristics of light, and conventions used to pack pixels. When you set up
this context, you must provide a pixel format object because the rendering context needs to know the
set of virtual screens that can be used for drawing. (See “Rendering Contexts” (page 20).)

 ■ Bind a drawable object to the rendering context. The drawable object is what captures the OpenGL
drawing sent to that rendering context. (See “Drawable Objects” (page 20).)

 ■ Make the rendering context the current context. OpenGL automatically targets the current context.
Although your application might have several rendering contexts set up, only the current one is the
active one for drawing purposes.

 ■ Issue OpenGL drawing commands. If you've completed the previous tasks, the contents of the framebuffer
shown in Figure 1-9 are drawn to the drawable object that's attached to the current rendering context.

The tasks described in the first five bullet items are platform-specific. “Drawing to a Window or View” (page
27) provides simple examples of how to perform them. As you read other parts of this document, you'll see
there are a number of other tasks that, although not mandatory for drawing, are really quite necessary for
any application that wants to use OpenGL to perform complex 3D drawing efficiently on a wide variety of
Macintosh systems.

See Also

Reference documentation for the Apple-specific OpenGL programming interfaces:

 ■ AGL Reference

 ■ CGL Reference

 ■ NSOpenGLContext Class Reference

 ■ NSOpenGLPixelBuffer Class Reference

 ■ NSOpenGLPixelFormat Class Reference

 ■ NSOpenGLView Class Reference

The Apple Developer Connection OpenGL technology page links to high-level technical articles on OpenGL
and Mac OS X.

See Also 25
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

http://developer.apple.com/graphicsimaging/opengl/

26 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

OpenGL on the Mac Platform

The OpenGL programming interface provides hundreds of drawing commands that drive graphics hardware.
It doesn't provide any commands that interface with the windowing system of an operating system. Without
a windowing system, the 3D graphics of an OpenGL program are trapped inside the GPU. Figure 2-1 shows
a cube drawn to a Cocoa view and a trefoil drawn to a Carbon window. (You can just as easily draw the trefoil
to the Cocoa view and the cube to the Carbon window.)

Figure 2-1 OpenGL content in a Cocoa view (left) and a Carbon window (right)

This chapter shows how to display OpenGL drawing onscreen using the APIs provided by Mac OS X. You'll
see how to draw to Cocoa views and Carbon windows. (This chapter does not show how to use GLUT.) The
first section describes the overall approach to drawing onscreen and provides an overview to the functions
and methods used by each API. You'll want to read this regardless of the application framework that you
use. The remaining sections in the chapter provide information that's specific to Cocoa or Carbon. After you
consult the appropriate section, take a look at “What's Next” (page 36) for pointers to optimization strategies
and other information that will help your OpenGL application to perform at its best.

General Approach

Mac OS X provides three interfaces for drawing OpenGL content onscreen: the NSOpenGL classes, AGL, and
CGL. (See “Programming Interfaces” (page 16) for more information). You use the NSOpenGL classes from
within the Cocoa application framework, while AGL is the interface that supports drawing OpenGL content
to a Carbon application. CGL can be used from either a Cocoa or Carbon application. For drawing to a view
or a window, you'll either use the NSOpenGL classes (for a Cocoa view) or AGL (for a Carbon window), because
CGL supports drawing only to the full screen.

Regardless of the application framework, to draw OpenGL content to a window or view, you need to perform
these tasks:

1. Set up the renderer and buffer attributes that support the OpenGL drawing you want to perform.

General Approach 27
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

Each of the OpenGL APIs in Mac OS X has its own set of constants that represent renderer and buffer
attributes. For example, the all-renderers attribute is represented by the NSOpenGLPFAAllRenderers
constant in Cocoa and the AGL_ALL_RENDERERS constant in the AGL API.

2. Request, from the operating system, a pixel format object that encapsulates pixel storage information
and the renderer and buffer attributes required by your application. The returned pixel format object
contains all possible combinations of renderers and displays available on the system that your program
runs on and that meets the requirements specified by the attributes. The combinations are referred to
as virtual screens. (See “Virtual Screens” (page 21).)

There may be situations for which you want to ensure that your program uses a specific renderer.
“Techniques for Choosing Attributes” (page 79) discusses how to set up an attributes array that will
guarantee the system passes back a pixel format object that uses only that renderer.

You'll need to provide code that handles the case of getting back a NULL pixel format object.

3. Create a rendering context and bind the pixel format object to it. The rendering context keeps track of
state information that controls such things as drawing color, view and projection matrices, characteristics
of light, and conventions used to pack pixels.

Your application needs a pixel format object to create a rendering context.

4. Release the pixel format object. Once the pixel format object is bound to a rendering context, its resources
are no longer needed.

5. Bind a drawable object to the rendering context. You'll either bind a Cocoa view or a Carbon window
to the context.

6. Make the rendering context the current context. The system sends OpenGL drawing to whichever
rendering context is designated as the current one. It's possible for you to set up more than one rendering
context, so you'll need to make sure that the one you want to draw to is the current one.

7. Perform your drawing.

The specific functions or methods that you use to perform each of the steps are discussed in the sections
that follow.

Drawing to a Cocoa View

There are two ways to draw OpenGL content to a Cocoa view. You can either use the NSOpenGLView class
or create a custom NSView class. If your application has modest drawing requirements, then you can use
the NSOpenGLView class. For example, if your application draws to a single view and does not support
dragging the view between monitors, you can use the NSOpenGLView class. See “Drawing to an
NSOpenGLView Class: A Tutorial.”

If your application is more complex and needs to support drawing to multiple rendering contexts, you may
want to consider subclassing the NSView class. For example, if your application supports drawing to multiple
views at the same time, you'll need to set up a custom NSView class. See “Drawing OpenGL Content to a
Custom View” (page 31).

28 Drawing to a Cocoa View
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

Drawing to an NSOpenGLView Class: A Tutorial

The NSOpenGLView class is a lightweight subclass of the NSView class that provides convenience methods
for setting up OpenGL drawing. An NSOpenGLView object maintains an NSOpenGLPixelFormat object and
an NSOpenGLContext object into which OpenGL calls can be rendered. It provides methods for accessing
and managing the pixel format object and the rendering context, and handles notification of visible region
changes.

An NSOpenGLView object does not support subviews. You can, however, divide the view into multiple
rendering areas using the OpenGL function glViewport.

This section provides step-by-step instructions for creating a simple Cocoa application that draws OpenGL
content to a view. The tutorial assumes that you know how to use Xcode and Interface Builder. If you have
never created an application using the Xcode development environment, see Getting Started with Tools.

1. Open Xcode and create a Cocoa application project named Golden Triangle.

2. Open the Frameworks folder in the Groups & File list. Then select the Linked Frameworks folder.

3. Choose Project > Add to Project and navigate to the OpenGL framework, which is located in the
System/Library/Frameworks directory. In the sheet that appears, choose OpenGL.framework and
click Add. Then, in the next sheet that appears, click Add to add the framework to the target.

4. Choose File > New File. Then choose the Objective-C class template.

5. Click Next and name the file MyOpenGLView.m. Make sure the checkbox to create MyOpenGLView.h is
selected. Then click Finish.

6. Open the MyOpenGLView.h file and modify the file so that it looks like the code shown in Listing 2-2 to
declare the interface.

Listing 2-1 The interface for MyOpenGLView

#import <Cocoa/Cocoa.h>

@interface MyOpenGLView : NSOpenGLView
{
}
- (void) drawRect: (NSRect) bounds;
@end

7. Save and close the MyOpenGLView.h file.

8. Open the MyOpenGLView.m file and include the gl.h file, as shown in Listing 2-3.

Listing 2-2 Include OpenGL/gl.h

#import "MyOpenGLView.h"
#include <OpenGL/gl.h>

@implementation MyOpenGLView
@end

Drawing to a Cocoa View 29
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

http://developer.apple.com/referencelibrary/GettingStarted/GS_Tools/index.html

9. Implement the drawRect:method as shown in Listing 2-3, adding the code after the @implementation
statement. The method sets the clear color to black and clears the color buffer in preparation for drawing.
Then, drawRect: calls your drawing routine, which you’ll add next. The OpenGL command glFlush
draws the content provided by your routine to the view.

Listing 2-3 The drawRect: method for MyOpenGLView

-(void) drawRect: (NSRect) bounds
{
 glClearColor(0, 0, 0, 0);
 glClear(GL_COLOR_BUFFER_BIT);
 drawAnObject();
 glFlush();
}

10. Add the code to perform your drawing. In your own application, you'd perform whatever drawing is
appropriate. But for the purpose of learning how to draw OpenGL content to a view, you'll add the code
shown in Listing 2-4. This code draws a 2-dimensional, gold-colored triangle, whose dimensions are not
quite the dimensions of a true golden triangle, but good enough to show how to perform OpenGL
drawing.

Make sure that you insert this routine before the drawRect: method in the MyOpenGLView.m file.

Listing 2-4 Code that draws a triangle using OpenGL commands

static void drawAnObject ()
{
 glColor3f(1.0f, 0.85f, 0.35f);
 glBegin(GL_TRIANGLES);
 {
 glVertex3f(0.0, 0.6, 0.0);
 glVertex3f(-0.2, -0.3, 0.0);
 glVertex3f(0.2, -0.3 ,0.0);
 }
 glEnd();
}

11. In the File Name list, double click the MainMenu.xib file to open Interface Builder. A default menu bar
and window titled "Window" appears when the file opens.

12. Click the window and choose Tools > Inspector.

13. In the Window Attributes pane of the inspector window, change the Title entry to Golden Triangle.

14. Choose Tools > Library and type NSOpenGLView in the Search field.

15. Drag an NSOpenGLView object from the Library to the window. Resize the view to fit the window.

16. In the Identity pane of the inspector for the view, choose MyOpenGLView from the Class pop-up menu.

17. Open the Attributes pane of the inspector for the view, and take a look at the renderer and buffer
attributes that are available to set. These settings save you from setting attributes programmatically.

Only those attributes listed in the Interface Builder inspector are set when the view is instantiated. If you
need additional attributes, you'll need to set them programmatically.

30 Drawing to a Cocoa View
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

18. Choose File > Build & Go in Xcode. You should see content similar to the triangle shown in Figure 2-2.

Figure 2-2 The output from the Golden Triangle program

This example is extremely simple. In a more complex application, you'd want to do the following:

 ■ In the interface for the view, declare a variable that indicates whether the view is ready to accept drawing.
A view is ready for drawing only if it is bound to a rendering context and that context is set to be the
current one.

 ■ Cocoa does not call initialization routines for objects created in Interface Builder. If you need to perform
any initialization tasks, do so in the awakeFromNib method for the view. Note that because you set
attributes in the inspector, there is no need to set them up programmatically unless you need additional
ones. There is also no need to create a pixel format object programmatically; it is created and loaded
when Cocoa loads the nib file.

 ■ Your drawRect: method should test whether the view is ready to draw into. You need to provide code
that handles the case when the view is not ready to draw into.

 ■ OpenGL is at its best when doing real-time and interactive graphics. Your application will need to provide
a timer or support user interaction.

Drawing OpenGL Content to a Custom View

This section provides an overview of the key tasks you need to perform to customize the NSView class for
OpenGL drawing. Before you create a custom view for OpenGL drawing, you should read Creating a Custom
View in View Programming Guide for Cocoa. You will also want to download Custom Cocoa OpenGL (available
on the ADC website from Sample Code > Graphics & Imaging > OpenGL), which is a full-featured OpenGL
sample application that uses a custom subclass of NSView that behaves similarly to the NSOpenGLView class.
The custom class is declared and defined in the CustomOpenGLView.h and CustomOpenGLView.m files.
After you've set up your custom class, you can use it just as you would use the built-in NSOpenGLView class.

Drawing to a Cocoa View 31
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

When you subclass the NSView class to create a custom view for OpenGL drawing, you'll override any Quartz
drawing or other content that is in that view. To set up a custom view for OpenGL drawing, subclass NSView
and create two private variables—one which is an NSOpenGLContext object and the other an
NSOpenGLPixelFormat object, as shown in Listing 2-5.

Listing 2-5 The interface for a custom OpenGL view

@class NSOpenGLContext, NSOpenGLPixelFormat;

@interface CustomOpenGLView : NSView
{
 @private
 NSOpenGLContext* _openGLContext;
 NSOpenGLPixelFormat* _pixelFormat;
}
+ (NSOpenGLPixelFormat*)defaultPixelFormat;
- (id)initWithFrame:(NSRect)frameRect pixelFormat:(NSOpenGLPixelFormat*)format;
- (void)setOpenGLContext:(NSOpenGLContext*)context;
- (NSOpenGLContext*)openGLContext;
- (void)clearGLContext;
- (void)prepareOpenGL;
- (void)update;
- (void)setPixelFormat:(NSOpenGLPixelFormat*)pixelFormat;
- (NSOpenGLPixelFormat*)pixelFormat;
@end

In addition to the usual methods for the private variables (openGLContext, setOpenGLContext:,
pixelFormat, and setPixelFormat:) you'll need to implement the following methods:

 ■ + (NSOpenGLPixelFormat*) defaultPixelFormat

Use this method to allocate and initialize the NSOpenGLPixelFormat object.

 ■ - (void) clearGLContext

Use this method to clear and release the NSOpenGLContext object.

 ■ - (void) prepareOpenGL

Use this method to initialize the OpenGL state after creating the NSOpenGLContext object.

You need to override the update and initWithFrame: methods of the NSView class.

 ■ update calls the update method of the NSOpenGLContext class.

 ■ initWithFrame:pixelFormat retains the pixel format and sets up the notification
NSViewGlobalFrameDidChangeNotification. See Listing 2-6.

If the custom view is not guaranteed to be in a window, you must also override the lockFocus method of
the NSView class. See Listing 2-7. This method makes sure that the view is locked prior to drawing and that
the context is the current one.

Listing 2-6 The initWithFrame:pixelFormat: method

- (id)initWithFrame:(NSRect)frameRect pixelFormat:(NSOpenGLPixelFormat*)format
{
 self = [super initWithFrame:frameRect];
 if (self != nil) {

32 Drawing to a Cocoa View
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

 _pixelFormat = [format retain];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_surfaceNeedsUpdate:)
 name:NSViewGlobalFrameDidChangeNotification
 object:self];
 }
 return self;
}

- (void) _surfaceNeedsUpdate:(NSNotification*)notification
{
 [self update];
}

Listing 2-7 The lockFocus method

- (void)lockFocus
{
 NSOpenGLContext* context = [self openGLContext];

 [super lockFocus];
 if ([context view] != self) {
 [context setView:self];
 }
 [context makeCurrentContext];
}

The reshape method is not supported by the NSView class. You need to update bounds in the drawRect:
method, which should take the form shown in Listing 2-8.

Listing 2-8 The drawRect method for a custom view

-(void) drawRect
{
 [context makeCurrentContext];
 //Perform drawing here
 [context flushBuffer];
}

There may be other methods that you want to add. For example, you might consider detaching the context
from the drawable object when the custom view is moved from the window, as shown in Listing 2-9.

Listing 2-9 Detaching the context from a drawable object

-(void) viewDidMoveToWindow
{
 [super viewDidMoveToWindow];
 if ([self window] == nil)
 [context clearDrawable];
}

Drawing to a Cocoa View 33
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

Drawing to a Carbon Window

This section describes the steps for setting up onscreen drawing to a Carbon window. To get an idea of how
these steps fit into an full application, you should look at the sample application GLCarbonAGLWindow.

Follow these steps to use the AGL API to set up onscreen drawing to a Carbon window:

1. Set up an array of attributes that describes the buffer characteristics and renderer capabilities that you
want. You can supply any of the pixel format attributes or extended attributes defined in AGL Constants
in AGL Reference.

This example in Listing 2-10 (page 35) sets up attributes for RGBA, double buffering, and a pixel depth
of 24 bits. Your code would set up whatever attributes are appropriate. In later chapters in this book,
you'll see how to choose attributes for specific purposes. (See “Techniques for Choosing Attributes” (page
79).)

2. Obtain a pixel format object by passing the attributes array to the function aglChoosePixelFormat.

The pixel format object contains a list of all appropriate renderer-display combinations. In the example
shown here, it's likely that the list will contain at least two items—one that uses a hardware renderer
and another that uses a software renderer.

3. Bind the pixel format object to a rendering context by passing the pixel format object to the function
aglCreateContext.

If the pixel format object has more than one pixel format (renderer-display combination) in it, AGL uses
the first in the list. You can call the function aglNextPixelFormat if you want to use the next pixel
format in the list.

4. Release the pixel format object by calling the function aglDestroyPixelFormat.

5. Get the port associated with the Carbon window that you want to draw into by calling the Window
Manager function GetWindowPort. After you attach a rendering context to the Carbon window, its
viewport is set to the full size of the window.

Note: The AGL API for drawing to a Carbon window was developed prior to Mac OS X. Because of this
heritage, the AGLDrawable data type is a CGrafPtr data type under the hood. That's why you must
call GetWindowPort to obtain the associated graphics port from the WindowRef data type passed to
MySetWindowAsDrawableObject.

6. Bind the window to the rendering context by passing the port to the function aglSetDrawable.

7. Make the rendering context the current context by calling function aglSetCurrentContext.

Listing 2-10 shows how to implement these steps and how to check for errors along the way by calling the
application-defined function MySetWindowAsDrawableObject. It's recommended that your application
provides a similar error-checking function. In the case of an error you'll either want to notify the user and
abort the program or take some sort of fallback action that ensures you application can draw OpenGL content.
(See “Ensuring a Valid Pixel Format Object” (page 80) for an example of backing out of attributes. See “Retrieve
Error Information Only When Debugging” (page 127) for guidelines on error checking and performance.)

34 Drawing to a Carbon Window
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

Note that the example passes the pixel format object returned from the aglChoosePixelFormat function
to the function aglCreateContext. By default, AGL uses the first pixel format in the pixel format object
regardless of how many pixel formats are actually in the object. You can iterate through the pixel format
object using the functionaglNextPixelFormat.

Listing 2-10 Setting a Carbon window as a drawable object

OSStatus MySetWindowAsDrawableObject (WindowRef window)
{
 OSStatus err = noErr;
 Rect rectPort;
 GLint attributes[] = { AGL_RGBA,
 AGL_DOUBLEBUFFER,
 AGL_DEPTH_SIZE, 24,
 AGL_NONE };
 AGLContext myAGLContext = NULL;
 AGLPixelFormat myAGLPixelFormat;

 myAGLPixelFormat = aglChoosePixelFormat (NULL, 0, attributes);
 err = MyAGLReportError ();
 if (myAGLPixelFormat) {
 myAGLContext = aglCreateContext (myAGLPixelFormat, NULL);
 err = MyAGLReportError ();
 }
 if (! aglSetDrawable (myAGLContext, GetWindowPort (window)))
 err = MyAGLReportError ();
 if (!aglSetCurrentContext (myAGLContext))
 err = MyAGLReportError ();
 return err;
}

OSStatus MyAGLReportError (void)
{
 GLenum err = aglGetError();
 if (AGL_NO_ERROR != err) {
 char errStr[256];
 sprintf (errStr, "AGL: %s",(char *) aglErrorString(err));
 reportError (errStr);
 }
 if (err == AGL_NO_ERROR)
 return noErr;
 else
 return (OSStatus) err;
}

Drawing to a Carbon Window 35
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

Note: Although this example shows how to draw OpenGL content to an entire Carbon window, it is possible
for Carbon applications to draw to a part of a window. Carbon developers can find additional information
on using windows by reading Handling Carbon Windows and Controls.

What's Next

After you've successfully drawn OpenGL content onscreen from within a Cocoa or a Carbon application, you'll
want to move on to more complex tasks. Most 3D applications have sophisticated needs, especially with
regard to performance and the need to ensure that the application works with a variety of graphics cards
and displays. Some of the chapters that follow will help you to fine tune your code. Other chapters provide
guidance and code examples for accomplishing common tasks, such as checking for OpenGL functionality
or using images as textures.

See Also

OpenGL sample code projects (ADC Reference Library):

 ■ Cocoa OpenGL sets up a window and handles events for drawing OpenGL content to a Cocoa view.

 ■ Custom Cocoa OpenGL uses a custom view in Cocoa for OpenGL drawing.

 ■ GLCarbonAGLWindow contains code that sets up a Carbon window for OpenGL drawing, handles events,
and has a virtual trackball as well as a number of other features.

36 What's Next
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Drawing to a Window or View

http://developer.apple.com/referencelibrary/

In Mac OS X, you don't have to restrict your OpenGL drawing to views and windows. You also have the option
to draw to the entire screen. The primary difference between drawing to a view or window and drawing to
the full screen is that you must prevent other applications and system services from trying to do the same
thing. You can capture the display by using the Quartz Display Services API. Once captured by your application,
other applications are not notified of display changes, thus preventing them from repositioning their windows
and preventing the Finder from repositioning desktop icons. The screen is all yours for OpenGL drawing.

Figure 3-1 Drawing OpenGL content to the full screen

Each of the Apple-specific OpenGL APIs provides routines for setting up full-screen drawing. The approach
for using each is similar, as you'll see by reading the first section in this chapter, which describes the general
approach. This chapter also provides specific information for using each of the Apple-specific OpenGL APIs
and shows how to use Quartz Display Services to switch the display mode and change screen resolutions,
two tasks that are useful for any application that uses the full screen.

General Approach

Many of the tasks for setting up full-screen drawing are similar to those required to set up drawing OpenGL
content to a Cocoa view or a Carbon window. The tasks that are similar are explained in detail in “Drawing
to a Window or View” (page 27) but only mentioned here. If you haven't read that chapter, you should read
it first.

Drawing OpenGL content to a full screen requires performing the following tasks:

1. Capture the display you want to draw to by calling the Quartz Display Services function
CGDisplayCapture and supplying a display ID that represents a unique ID for an attached display. The
constant kCGDirectMainDisplay represents the main display, the one that’s shown in the menu bar.

General Approach 37
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

If you want to capture all the displays attached to a system, call the function
CGDisplayCaptureAllDisplays.

2. Convert the display ID to an OpenGL display mask by calling the function
CGDisplayIDToOpenGLDisplayMask.

3. Set up the renderer and buffer attributes that support the OpenGL drawing you want to perform, making
sure to include a full-screen attribute and the OpenGL display mask that you obtained in the previous
step.

4. Request a pixel format object that encapsulates the renderer and buffer attributes required by your
application.

Some OpenGL renderers, such as the software renderer, do not support full-screen mode. If the system
returns NULL for the pixel format object, your application needs to take appropriate action.

5. Create a rendering context and bind the pixel format object to it.

6. Release the pixel format object.

7. Make the context the current context.

8. Bind a full-screen drawable object to the rendering context.

9. Perform your drawing.

10. When you are done drawing, perform the necessary cleanup work and make sure that you release the
captured display.

Using Cocoa to Create a Full-Screen Context

When you set up an attributes array, you need to include the attribute NSOpenGLPFAFullScreen to specify
that only renderers that are capable of rendering to the full screen should be considered when the system
creates a pixel format object. You also need to include the attribute NSOpenGLPFAScreenMask along with
the appropriate OpenGL display mask.

Listing 3-1 is a code fragment that shows how to use the NSOpenGLPixelFormat and NSOpenGLContext
classes along with calls from Quartz Display Services to set up full-screen drawing in a Cocoa application. A
detailed explanation for each numbered line of code appears following the listing.

Listing 3-1 Using Cocoa to set up full-screen drawing

CGDisplayErr err;
NSOpenGLContext *fullScreenContext;

// 1NSOpenGLPixelFormatAttribute attrs[] = {
 NSOpenGLPFAFullScreen,
 NSOpenGLPFAScreenMask,
 CGDisplayIDToOpenGLDisplayMask(kCGDirectMainDisplay),

// 2 NSOpenGLPFAColorSize, 24,
 NSOpenGLPFADepthSize, 16,
 NSOpenGLPFADoubleBuffer,
 NSOpenGLPFAAccelerated,

38 Using Cocoa to Create a Full-Screen Context
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

 0
};
NSOpenGLPixelFormat *pixelFormat = [[NSOpenGLPixelFormat alloc]
 initWithAttributes:attrs];
fullScreenContext = [[NSOpenGLContext alloc] initWithFormat:pixelFormat
 shareContext:NULL];
[pixelFormat release];
pixelFormat = nil;
if (fullScreenContext == nil) {
 NSLog(@"Failed to create fullScreenContext");
 return;
}

// 3err = CGCaptureAllDisplays();
if (err != CGDisplayNoErr) {
 [fullScreenContext release];
 fullScreenContext = nil;
 return;
}

// 4[fullScreenContext setFullScreen];
// 5[fullScreenContext makeCurrentContext];

Here's what the code does:

1. Sets up an array of renderer and buffer attributes, including the appropriate attributes to specify full-screen
mode and the display ID for the main display. This example also supplies a number of other attributes.
You would supply the attributes that are appropriate for your application.

2. Supplies a color size that matches the current display depth. Note that this value must match the current
display depth.

3. Calls the Quartz Display Services function that captures all displays. If you want to capture only one
display, you can call the function CGDisplayCapture, passing the ID of the display that you want to
capture.

4. Attaches the full-screen drawable object to the rendering context.

5. Makes the full-screen context the current context that will receive OpenGL commands. If you fail to
perform this step, you won't see any content drawn to the screen.

When you no longer need to draw full-screen OpenGL content, you must release resources and release the
captured display (or displays).

Using AGL to Create a Full-Screen Context

This extended code example is an excerpt from an application that uses an application-defined
structure—pRecContext—to store information about the context, including display IDs for the displays
attached to the system and a rendering context. The MySetupAGL routine in Listing 3-2 takes as parameters
a pRecContext data type, a width and height that specifies the screen resolution, a bit depth, and the refresh
rate of the display.

The MySetupAGL routine sets the display mode and sets up a full-screen context. A detailed explanation for
each numbered line of code appears following the listing.

Using AGL to Create a Full-Screen Context 39
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

Listing 3-2 A function that sets up a full-screen context using AGL

OSStatus MySetupAGL (pRecContext pContextInfo, size_t width, size_t height,
 size_t depth, CGRefreshRate refresh)
{
 OSStatus err = noErr;
 GLint attribs[] = { AGL_RGBA, AGL_NO_RECOVERY,
 AGL_FULLSCREEN, AGL_DOUBLEBUFFER,
 AGL_DEPTH_SIZE, 32,

// 1 0 };
 AGLPixelFormat pixelFormat = NULL;
 long i, index;
 GDHandle gdhDisplay;
 CFDictionaryRef refDisplayMode = 0;

 if (NULL == pContextInfo)
 return paramErr;
 refDisplayMode = CGDisplayBestModeForParametersAndRefreshRate(
 pContextInfo->display,

// 2 depth, width, height, refresh, NULL);
 if (refDisplayMode) {

// 3 gOldDisplayMode = CGDisplayCurrentMode(pContextInfo->display);
 gOldDisplayModeValid = GL_TRUE;

// 4 CGDisplaySwitchToMode (pContextInfo->display, refDisplayMode);
 }

// 5 for (i = 0; i < gNumDisplays; i++) {
 if (pContextInfo->display == gDisplayCaps[i].cgDisplayID) index = i;
 }
 err = DMGetGDeviceByDisplayID ((DisplayIDType)pContextInfo->display,

// 6 &gdhDisplay, false);
 if (noErr == err)
 if (!(pixelFormat = aglChoosePixelFormat (&gdhDisplay, 1, attribs)))
 err = aglReportError ();
 if (pixelFormat) {
 if (!(pContextInfo->aglContext = aglCreateContext(pixelFormat,
 NULL)))
 err = aglReportError ();
 aglDestroyPixelFormat (pixelFormat);
 }
 if (pContextInfo->aglContext) {
 short fNum;
 GLint swap = 1;

// 7 if (!aglSetCurrentContext (pContextInfo->aglContext))
 err = aglReportError ();
 if ((noErr == err) && !aglSetFullScreen(pContextInfo->aglContext,

// 8 0, 0, 0, 0))
 err = aglReportError ();
 if (noErr == err) {
 if (!aglSetInteger (pContextInfo->aglContext,

// 9 AGL_SWAP_INTERVAL, &swap));
 err = aglReportError ();
 /* Your code to perform other initializations here */
 }
 }
 return err;
}

Here's what the code does:

40 Using AGL to Create a Full-Screen Context
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

1. Sets up renderer and buffer attributes. You must supply AGL_FULLSCREEN when you want to set up a
full-screen context using the AGL API. This example also provides a number of other attributes: RGBA
pixel format, double buffering, a depth size of 32 bits, and the no recovery attribute. No recovery indicates
that if a suitable hardware renderer isn't found, the operating system should not substitute a software
renderer.

2. Obtains the best display mode for the screen resolution, bit depth, and refresh rate passed to the
MySetupAGL function.

3. Gets the current display mode and then saves it so that it can be restored later. It's recommended practice
for you to save and restore the display mode.

4. Switches to the display mode.

5. Gets the display capabilities of interest for current display. For more information on determining the
capabilities of a display, see “Determining the OpenGL Capabilities Supported by the Hardware” (page
59).

6. Calls the Display Manager function that obtains a handle for the video device with the specified display
ID. You must pass this handle to aglChoosePixelFormat.

7. Sets the current context to the newly created context. If you fail to perform this task, you won't see any
OpenGL content drawn on the screen.

8. Attaches the full-screen drawable object to the rendering context.

9. Synchronizes to the refresh rate by setting the swap interval to 1. (Recall that the swap variable was
previously assigned a value of 1). For more information, see “Synchronize with the Screen Refresh
Rate” (page 125). The functionaglSetInteger allows you to set a variety of rendering context parameters.
For more information see “Techniques for Working with Rendering Contexts” (page 65).

Using CGL to Create a Full-Screen Context

Because the CGL API is at a lower level in the system architecture than either Cocoa or the AGL API, you can
use it to create a full-screen context in either a Cocoa or a Carbon application. The code in Listing 3-3 shows
how to capture the main display and create a full-screen context. As you can see, the code parallels the
examples shown in “Using Cocoa to Create a Full-Screen Context” (page 38) and “Using AGL to Create a
Full-Screen Context” (page 39). A detailed explanation for each numbered line of code appears following
the listing.

Depending on what you want to accomplish, there are a number of modifications that you can make to the
code, such as adjusting the display mode and synchronizing rendering to the screen refresh rate. See “Adjusting
Display Modes” (page 42) and “Quartz Display Services and Full-Screen Mode” (page 145).

Listing 3-3 Setting up a full-screen context using CGL

// 1CGDisplayCapture (kCGDirectMainDisplay);
CGLPixelFormatAttribute attribs[] = { kCGLPFADoubleBuffer,
 kCGLPFAFullScreen,
 kCGLPFADisplayMask,
 CGDisplayIDToOpenGLDisplayMask(kCGDirectMainDisplay),
 NULL

Using CGL to Create a Full-Screen Context 41
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

// 2 };
CGLPixelFormatObj pixelFormatObj;
long numPixelFormats ;

CGLChoosePixelFormat(attribs, &pixelFormatObj, &numPixelFormats);

CGLContextObj contextObj ;
CGLCreateContext(pixelFormatObj, NULL, &contextObj);

CGLDestroyPixelFormat(pixelFormatObj);

// 3CGLSetCurrentContext(contextObj);
// 4CGLSetFullScreen(contextObj);

//****** Perform your application's main loop

// 5CGLSetCurrentContext(NULL);
CGLClearDrawable(contextObj);
CGLDestroyContext(contextObj);
CGReleaseAllDisplays();

Here's what the code does:

1. Captures the main display.

2. Sets up an array of attributes that includes the full-screen attribute and the display mask associated with
the captured display.

3. Sets the current context to the one it will use for full-screen drawing.

4. Attaches a full-screen drawable object to the current context.

5. After all drawing is completed, sets the current context to NULL, and goes on to perform the other
necessary clean up work: clearing the drawable object, destroying the rendering context, and releasing
the displays.

Adjusting Display Modes

The Quartz Display Services API provides several functions that adjust the display mode:

 ■ CGDisplayBestModeForParameters finds the display mode that is closest to a specified depth and
screen size.

 ■ CGDisplayBestModeForParametersAndRefreshRate finds the display mode that is closest to a
specified depth and resolution, and that also uses a refresh rate equal to or near the specified rate.

 ■ CGDisplayBestModeForParametersAndRefreshRateWithProperty finds the display mode that
is closest to a specified depth, resolution, and refresh rate and that also has a specific property. Properties
include whether the mode is safe for hardware, is interlaced, is stretched, or can provide output suitable
for television.

42 Adjusting Display Modes
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

If you want to adjust the display mode, you first need to capture the display, as shown in Listing 3-4. The
Quartz Display Services function CGDisplaySwitchToMode switches to the display mode returned by the
function CGDisplayBestModeForParameters, which in this case, is the best display mode for the main
display with a bit depth of 32 bits per pixel and a screen resolution of 1024 by 768 pixels. The display mode
that's returned is not always what you asked for. It's the closest mode for the given parameter. The last
parameter passed to this function—exactMatch—specifies whether the returned display mode matches
exactly. If you don't need this information, you can pass NULL. When your application quits, Quartz Display
Services automatically restores the user’s display settings.

Note: Calling CGDisplaySwitchToMode does not guarantee that the display mode switches successfully.
Displays have physical limitations that can prevent them from operating in a particular mode.

Listing 3-4 Adjusting the display mode

CGDisplayCapture (kCGDirectMainDisplay) ;
CGDisplaySwitchToMode (kCGDirectMainDisplay,
 CGDisplayBestModeForParameters (kCGDirectMainDisplay,
 32, 1024, 768, NULL));

Listing 3-5 shows how to switch the main display to a pixel depth of 32 bits per pixel, a resolution of 640 x
480, and a refresh rate of 60 Hz. A detailed explanation for each numbered line of code appears following
the listing.

Listing 3-5 Switching the resolution of a display

CFDictionaryRef displayMode ;
CFNumberRef number ;
boolean_t exactMatch ;

// 1CGDisplayCapture (kCGDirectMainDisplay);
displayMode =
 CGDisplayBestModeForParametersAndRefreshRate (kCGDirectMainDisplay,

// 2 32,640,480,60,&exactMatch);
// 3if (exactMatch){

 CGDisplaySwitchToMode (kCGDirectMainDisplay, displayMode);
}
else {
 // Your code to take appropriate action
}
// Run the event loop.

// 4CGReleaseAllDisplays();

Here's what the code does:

1. Captures the main display.

2. Requests a display mode with a depth of 32 bits per pixel, a resolution 640 x 480, and a refresh rate 60
Hz. The function finds the best match for these parameters.

3. If there is an exact match, then switches to the display mode.

4. Before the application quits, releases all displays.

Adjusting Display Modes 43
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

What's Next?

The Quartz Display Services API performs a number of other tasks that are useful when drawing OpenGL to
the full screen. “Quartz Display Services and Full-Screen Mode” (page 145) describes many of them, including
enumerating displays and display modes, accessing display properties, fading the display, and programmatically
controlling the pointer. You may also want to read “Draw Only When Necessary” (page 124) to see how to
use Quartz Display Services to synchronize drawing with the screen refresh.

See Also

OpenGL sample code projects (ADC Reference Library):

 ■ GLCarbonAGLFullScreen is a full-featured OpenGL application that uses the AGL API to draw to the full
screen.

 ■ GLCarbonCGLFullScreen is a full-featured OpenGL application that uses the CGL API to draw to the full
screen.

 ■ NSOpenGL Fullscreen shows how to create and switch between windowed and full-screen OpenGL
contexts.

44 What's Next?
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Drawing to the Full Screen

http://developer.apple.com/referencelibrary/

OpenGL programs draw offscreen for many reasons. They may need to store intermediate rendering results
as a scene is built or they may need to store data that is used repeatedly, such as a texture. Mac OS X provides
several options for rendering offscreen:

 ■ Offscreen drawable objects. The Apple-specific OpenGL APIs provide routines that support drawing to
CPU memory and are supported only by the software renderer. These objects are available in Mac OS X
v10.0 and later, but are not recommended for performance-critical applications. See “Setting Up an
Offscreen Drawable Object” (page 45).

 ■ Hidden Cocoa views or Carbon windows. Starting in Mac OS X v10.2, the NSOpenGLContext class and
AGL API provide routines that use the GPU to draw to hidden windows or views and then draw that
content to an onscreen rendering context. See “Using a Hidden View or Window” (page 47).

 ■ Pixel buffer drawable objects. Each of the Apple-specific OpenGL APIs provides routines for drawing to
offscreen memory that's located on the GPU. An application can render an image into a pixel buffer once
and then use the buffer contents multiple times to texture a variety of surfaces without copying the
image data. Pixel buffers are available starting in Mac OS X v10.3. See “Rendering to a Pixel Buffer” (page
48).

 ■ Framebuffer objects. A recently added OpenGL extension, these objects allow you to draw to buffers
other than the usual buffers provided by OpenGL or the Mac OS X windowing system. Because these
objects are window-system agnostic, they are easier to set up and more efficient to use than pixel buffers.
Framebuffer objects are available in Mac OS X v10.4.3 and later, but not all hardware supports their use.
See “Rendering to a Framebuffer Object” (page 51).

Setting Up an Offscreen Drawable Object

Offscreen drawable objects reside in CPU memory and are supported only by the software renderer. If you
must support versions of Mac OS X prior to 10.2, you may need to use offscreen drawable objects. Otherwise,
you should consider one of the other options for drawing offscreen.

The general procedure for setting up an offscreen drawable object is similar to setting up other drawable
objects:

1. Specify renderer and buffer attributes, making sure to specify the offscreen attribute.

2. Obtain a pixel format object.

3. Create a context and make it current.

4. Bind the context to an offscreen drawable object.

Each of the Apple-specific OpenGL APIs provides a routine for binding the context to an offscreen drawable
object:

Setting Up an Offscreen Drawable Object 45
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

 ■ The setOffScreen:width:height:rowbytes:method of the NSOpenGLContext class instructs the
receiver to render into an offscreen buffer.

 ■ The AGL function aglSetOffScreen attaches an AGL rendering context to an offscreen buffer.

 ■ The CGL function CGLSetOffScreen attaches a CGL rendering context to an offscreen buffer.

After creating and drawing to an offscreen context, call the OpenGL function glFinish to ensure that all
submitted OpenGL commands have finished rendering into the memory buffer before you access the data.
You can read the buffer contents by calling the OpenGL function glReadPixels, or you can use the buffer
contents as a texture by calling the appropriate copy and surface texture functions.

The code in Listing 4-1 shows how to use the CGL API to create an offscreen drawable object that has a
resolution of 1024 x 768 pixels and a depth of 32 bits per pixel. A detailed explanation for each numbered
line of code appears following the listing.

Listing 4-1 Using CGL to draw to an offscreen drawable object

// 1CGLPixelFormatAttribute attribs[] =
{
 kCGLPFAOffScreen,
 kCGLPFAColorSize, 32,
 NULL
} ;
CGLPixelFormatObj pixelFormatObj;
long numPixelFormats;

// 2CGLChoosePixelFormat (attribs, &pixelFormatObj, &numPixelFormats);

CGLContextObj contextObj;
// 3CGLCreateContext (pixelFormatObj, NULL, &contextObj);

CGLDestroyPixelFormat (pixelFormatObj);
// 4CGLSetCurrentContext (contextObj);
// 5void* memBuffer = (void *) malloc (1024 * 768 * 32 / 8);
// 6CGLSetOffScreen (contextObj, 1024, 768, 1024 * 4, memBuffer);

//***** Perform offscreen drawing
CGLSetCurrentContext (NULL);
CGLClearDrawable (contextObj);
CGLDestroyContext (contextObj);

Here's what the code does:

1. Sets up an array of pixel format attributes—an offscreen drawable object and a color buffer with a size
of 32 bytes. Note that the list must be terminated by NULL.

2. Creates a pixel format object that has the specified renderer and buffer attributes.

3. Creates a CGL context using the newly created pixel format object.

4. Sets the current context to the newly created offscreen CGL context.

5. Allocates memory for the offscreen drawable object.

6. Binds the CGL context to the newly allocated offscreen memory buffer. You need to specify the width
and height of the offscreen buffer (in pixels), the number of bytes per row, and a pointer to the block of
memory you want to render the context into. The number of bytes per row must be at least the width
times the bytes per pixels.

46 Setting Up an Offscreen Drawable Object
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

Using a Hidden View or Window

Starting in Mac OS X v10.2, you can use a hidden Carbon window or Cocoa view as a texture source. Cocoa
supports this kind of offscreen drawing through thecreateTexture:fromView:internalFormat:method
of the NSOpenGLContext class. Carbon provides the function aglSurfaceTexture.

Note: Although these routines provide a flexible way to render to an offscreen texture and then use that
texture as a source, you should consider using pixel buffers and framebuffers instead. If your application
provides support for Mac OS X v10.2, however, you must use hidden views and windows if you want
accelerated offscreen drawing, because the other hardware-accelerated options are not available for Mac
OS X v10.2

The crucial concept behind using hidden views and windows is that there are two rendering contexts involved,
as shown in Figure 4-1: one that's bound to the hidden drawable object and the other that's bound to the
destination window. You must make sure that the current rendering context is set to the appropriate context
prior to drawing.

Figure 4-1 Using the content from a hidden window as a texture source

Rendering context 1

Source content

Rendering context 2

MyTextureTarget

Destination content

aglSurfaceTexture

glClearColor (0.8f, 0.8f, 0.6f, 1.0f);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
glCallList (myDisplayList);

Draw content

Hidden window

Drawing the texture content is just like drawing to an offscreen window. The content is treated as a texture
only when you actually use it for the destination rendering context. You generate a texture name, bind it,
and set the texture environment after you set the current context to the destination context. Once the texture
is set, you call the routine that makes the texture content available to the destination window (either the
createTexture:fromView:internalFormat:method of theNSOpenGLContext class or the AGL function
aglSurfaceTexture). Then you can draw using the texture.

Using a Hidden View or Window 47
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

Figure 4-1 depicts the steps, explained below, that are required to use an offscreen window as a texture
source:

1. Create a window to use as the texture source. The window should specify a hidden attribute.

2. Create a destination window to use the texture in.

3. Set up each window as a drawable object attached to an AGL context. That is, set up buffer and renderer
attributes, get a pixel format object, create an AGL context, and attach the window to the context. For
details, see “Drawing to a Window or View” (page 27). The pixel format object for each context must be
compatible, but the contexts do not need to be shared.

4. Set the current rendering context to the texture source context and draw the texture. OpenGL draws
the contents to the hidden window.

5. Set the current rendering context to the destination window.

6. Enable texturing by calling the function glEnable.

7. Generate a texture name and bind the name to a texture target, using code similar to the following:

glGenTextures (1, &mySurfaceTexName);
glBindTexture (GL_TEXTURE_2D, mySurfaceTexName);
glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

This code sets up a power-of-two texture. You can just as easily use a rectangular texture by providing
the GL_TEXTURE_RECTANGLE_ARB option.

8. Map the contents of the texture source window to the texture target bound in the destination window,
using code similar to the following:

aglSurfaceTexture (myDestinationContext,GL_TEXTURE_2D,
 GL_RGBA8, mySurfaceTextureContext);

9. Draw to the destination window, using the texture just as you would any other texture.

10. When you are done using the texture, unbind it by calling glBindTexture with the texture set to 0.

glBindTexture (GL_TEXTURE_2D, 0);

11. Flush the content to the destination window by calling the function aglSwapBuffers.

Rendering to a Pixel Buffer

The OpenGL extension string GL_APPLE_pixel_buffer provides hardware-accelerated offscreen rendering
to a pixel buffer. A pixel buffer is typically used as a texture source. It can also be used for remote rendering.

When you are using a pixel buffer as a texture source, keep in mind that you must manage two rendering
contexts. One is the rendering context attached to the pixel buffer. That's the context that you must draw
to when you create the texture content. The other is the rendering context attached to the onscreen drawable
object that will use the texture.

48 Rendering to a Pixel Buffer
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

The first step in using a pixel buffer is to create it. The Apple-specific OpenGL APIs each provide a routine for
this purpose:

 ■ The NSOpenGLPixelBuffer method
initWithTextureTarget:textureInternalFormat:textureMaxMipMapLevel:pixelsWide:pixelsHigh:

 ■ The AGL function aglCreatePBuffer

 ■ The CGL function CGLCreatePBuffer

Each of these routines requires that you provide a texture target, an internal format, a maximum mipmap
level, and the width and height of the texture.

The texture target must be one of these OpenGL texture constants: GL_TEXTURE_2D for a 2D texture,
GL_TEXTURE_RECTANGLE_ARB for a rectangular (not power-of-two) texture, or GL_TEXTURE_CUBE_MAP for
a cube map texture.

The internal format specifies how to interpret the data for texturing operations. You can supply any of these
options: GL_RGB (each pixel is a three-component group), GL_RGBA (each pixel is a four-component group),
or GL_DEPTH_COMPONENT (each pixel is a single depth component).

The maximum mipmap level should be 0 for a pixel buffer that does not have a mipmap. The value that you
supply should not exceed the actual maximum number of mipmap levels that can be represented with the
given width and height.

Note that none of the routines that create a pixel buffer allocate the storage needed. The storage is allocated
by the system at the time that you attach the pixel buffer to a rendering context.

Setting Up a Pixel Buffer for Offscreen Drawing

After you create a pixel buffer, the general procedure for using a pixel buffer for drawing is similar to the
way you set up windows and views for drawing:

1. Specify renderer and buffer attributes.

2. Obtain a pixel format object.

3. Create a rendering context and make it current.

4. Attach a pixel buffer to the context using the appropriate Apple OpenGL attachment function:

 ■ The setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: method of the
NSOpenGLContext class instructs the receiver to render into a pixel buffer.

 ■ The AGL function aglSetPBuffer attaches an AGL rendering context to a pixel buffer.

 ■ The CGL function CGLSetPBuffer attaches a CGL rendering context to a pixel buffer.

5. Draw, as you normally would, using OpenGL.

Rendering to a Pixel Buffer 49
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

Using a Pixel Buffer as a Texture Source

Pixel buffers let you perform direct texturing without incurring the cost of extra copies. After drawing to a
pixel buffer, you can create a texture by following these steps:

1. Generate a texture name by calling the OpenGL function glGenTextures.

2. Bind the named texture to a target by calling the OpenGL function glBindTexture.

3. Set the texture parameters by calling OpenGL function glTexEnvParameter.

4. Set up the pixel buffer as the source for the texture by calling one of the following Apple OpenGL
functions:

 ■ The setTextureImageToPixelBuffer:colorBuffer: method of the NSOpenGLContext class
attaches the image data in the pixel buffer to the texture object currently bound by the receiver.

 ■ The AGL function aglTexImagePBuffer binds the contents of an AGL pixel buffer as the data
source for a texture object.

 ■ The CGL function CGLTexImagePBuffer binds the contents of a CGL pixel buffer as the data source
for a texture object.

The context that you attach to the pixel buffer is the target rendering context: the context that uses the
pixel buffer as the source of the texture data. Each of these routines requires a source parameter, which
is an OpenGL constant that specifies the source buffer to texture from. The source parameter must be
a valid OpenGL buffer, such as GL_FRONT, GL_BACK, or GL_AUX0, and should be compatible with the
buffer attributes used to create the OpenGL context associated with the pixel buffer. This means that
the pixel buffer must possess the buffer in question for texturing to succeed. For example, if the buffer
attribute used with the pixel buffer is only single buffered, then texturing from the GL_BACK buffer will
fail.

If you modify content of any pixel buffer that contains mipmap levels, you must call the appropriate
Apple OpenGL function again (setTextureImageToPixelBuffer:colorBuffer:,
aglTexImagePBuffer, or CGLTexImagePBuffer) before drawing with the pixel buffer to ensure that
the content is synchronized with OpenGL. To synchronize the content of pixel buffers without mipmaps,
simply rebind to the texture object using glBind.

5. Draw primitives using the appropriate texture coordinates. (See "The Redbook"—OpenGL Programming
Guide—for details.)

6. Call glFlush to cause all drawing commands to be executed.

7. When you no longer need the texture object, call the OpenGL function glDeleteTextures.

8. Set the current context to NULL using one of the Apple OpenGL routines:

 ■ The makeCurrentContext method of the NSOpenGLContext class

 ■ The AGL function aglSetCurrentContext

 ■ The CGL function CGLSetCurrentContext

9. Destroy the pixel buffer by calling CGLDestroyPBuffer.

10. Destroy the context by calling CGLDestroyContext.

50 Rendering to a Pixel Buffer
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

11. Destroy the pixel format by calling CGLDestroyPixelFormat.

You might find these guidelines useful when using pixel buffers for texturing:

 ■ You cannot make OpenGL texturing calls that modify pixel buffer content (such as glTexSubImage2D
or glCopyTexImage2D) with the pixel buffer as the destination. You can use texturing commands to
read data from a pixel buffer, such as glCopyTexImage2D, with the pixel buffer texture as the source.
You can also use OpenGL functions such as glReadPixels to read the contents of a pixel buffer directly
from the pixel buffer context.

 ■ Texturing can fail to produce the intended results without reporting an error. You must make sure that
you enable the proper texture target, set a compatible filter mode, and adhere to other requirements
described in the OpenGL specification.

 ■ You are not required to set up context sharing when you texture from a pixel buffer. You can have
different pixel format objects and rendering contexts for both the pixel buffer and the target drawable
object, without sharing resources, and still texture using a pixel buffer in the target context.

Rendering to a Pixel Buffer on a Remote System

Follow these steps to render to a pixel buffer on a remote system. The remote system does not need to have
a display attached to it.

1. When you set the renderer and buffer attributes, include the remote pixel buffer attribute
kCGLPFARemotePBuffer.

2. Log in to the remote machine using the ssh command to ensure security.

3. Run the application on the target system.

4. Retrieve the content.

Rendering to a Framebuffer Object

The OpenGL framebuffer extension provides a mechanism for applications to render offscreen to a destination
other than the usual OpenGL buffers or destinations provided by the windowing system. This destination is
called a framebuffer object.

Note: Extensions are available on a per-renderer basis. Before you use the framebuffer extension you must
check each renderer to make sure that it supports the extension.

A framebuffer object (FBO) contains state information for the OpenGL framebuffer and its set of images. A
framebuffer object is similar to a drawable object, except that a drawable object is a window-system-specific
object, whereas a framebuffer object is a window-agnostic object that's defined in the OpenGL standard,
not by Apple. After drawing to a framebuffer object it is straightforward to display the content onscreen. A
single command redirects all subsequent drawing back to the drawable object provided by the window
system, where the FBO content can then be used as a texture.

Rendering to a Framebuffer Object 51
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

Framebuffer objects offer a number of benefits over using pixel buffers.

 ■ They are window-system independent, which makes porting code easier.

 ■ They are easy to set up and save memory. There is no need to set up attributes and obtain a pixel format
object.

 ■ They use a single OpenGL context, whereas each pixel buffer must be bound to a context.

 ■ You can switch between them faster since there is no context switch as with pixel buffers. What this
means is that an application doesn't need to ensure that all rendering commands to the offscreen context
are complete before using the results in the window context. Since there is only one context, commands
are guaranteed to be serialized.

 ■ They can share depth buffers; pixel buffers cannot.

 ■ You can use them for 2D pixel images and for texture images.

Completeness is a key concept to understanding framebuffer objects. Completeness is a state that indicates
whether a framebuffer object meets all the requirements for drawing. You test for this state after performing
all the necessary setup work. If a framebuffer object is not complete, it cannot be used effectively as the
destination for rendering operations and the source for read operations.

Completeness is dependent on many factors that are not possible to condense into one or two statements,
but these factors are thoroughly defined in the OpenGL specification for the framebuffer object extension.
The specification describes the requirements for internal formats of images attached to the framebuffer, how
to determine if a format is color-, depth-, and stencil-renderable, as well as a number of other requirements.

Prior to using framebuffer objects, you should take a look at the OpenGL specification, which not only defines
the framebuffer object API, but provides detailed definitions of all the terms necessary to understand their
use and shows several code examples.

The remainder of this section provides an overview of how to use a framebuffer in the simplest case. You'll
get an idea of how the setup of a framebuffer object compares to the other methods described in this chapter.
To learn how powerful framebuffer objects are and to see examples of how to use them for a variety of
purposes (such as for mipmaps) you'll want to read the OpenGL specification.

Similar to pixel buffers, framebuffer objects are suited for two types of drawing: textures and images. The
functions used to set up textures and images are slightly different. The API for images uses the renderbuffer
terminology defined in the OpenGL specification. A renderbuffer image is simply a 2D pixel image. The API
for textures uses texture terminology, as you might expect. For example, one of the calls for setting up a
framebuffer object for a texture is glFramebufferTexture2DEXT, whereas the call for setting up a
framebuffer object for an image is glFramebufferRenderbufferEXT. You'll see how to set up a simple
framebuffer object for each type of drawing, starting first with textures.

Drawing a Texture Offscreen

These are the basic steps needed to set up a framebuffer object for drawing a texture offscreen:

1. Make sure the framebuffer extension (GL_EXT_framebuffer_object) is supported on the system that
your code runs on. See “Determining the OpenGL Capabilities Supported by the Hardware” (page 59).

2. Check the renderer limits. For example, you might want to call the OpenGL function glGetIntegerv
to check the maximum texture size (GL_MAX_TEXTURE_SIZE) or find out the maximum number of color
buffers (GL_MAX_COLOR_ATTACHMENTS_EXT).

52 Rendering to a Framebuffer Object
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

3. Generate a framebuffer object name by calling the following function:

void glGenFramebuffersEXT (GLsizei n, GLuint *ids);

n is the number of framebuffer object names that you want to create.

On return, *ids points to the generated names.

4. Bind the framebuffer object name to a framebuffer target by calling the following function:

void glBindFramebufferEXT(GLenum target, GLuint framebuffer);

target should be the constant GL_FRAMEBUFFER_EXT.

framebuffer is set to an unused framebuffer object name.

On return, the framebuffer object is initialized to the state values described in the OpenGL specification
for the framebuffer object extension. Each attachment point of the framebuffer is initialized to the
attachment point state values described in the specification. The number of attachment points is equal
to GL_MAX_COLOR_ATTACHMENTS_EXT plus 2 (for depth and stencil attachment points).

5. Generate a texture name.

6. Bind the texture name to a texture target.

7. Set up the texture environment and parameters.

8. Define the texture by calling the appropriate OpenGL function to specify the target, level of detail,
internal format, dimensions, border, pixel data format, and texture data storage.

9. Attach the texture to the framebuffer by calling the following function:

void glFramebufferTexture2DEXT (GLenum target, GLenum attachment,
 GLenum textarget, GLuint texture,
 GLint level);

target must be GL_FRAMEBUFFER_EXT.

attachmentmust be one of the attachment points of the framebuffer: GL_STENCIL_ATTACHMENT_EXT,
GL_DEPTH_ATTACHMENT_EXT, or GL_COLOR_ATTACHMENTn_EXT, where n is a number from 0 to
GL_MAX_COLOR_ATTACHMENTS_EXT-1.

textarget is the texture target.

texture is an existing texture object.

level is the mipmap level of the texture image to attach to the framebuffer.

10. Check to make sure that the framebuffer is complete by calling the following function:

GLenum glCheckFramebufferStatusEXT(GLenum target);

target must be the constant GL_FRAMEBUFFER_EXT.

This function returns a status constant. You must test to make sure that the constant is
GL_FRAMEBUFFER_COMPLETE_EXT. If it isn't, see the OpenGL specification for the framebuffer object
extension for a description of the other constants in the status enumeration.

Rendering to a Framebuffer Object 53
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

11. Render content to the texture. You must make sure to bind a different texture to the framebuffer object
or disable texturing before you render content. That is, if you render to a framebuffer object texture
attachment with that same texture currently bound and enabled, the result is undefined.

12. To view the contents of the texture, make the window the target of all rendering commands by calling
the function glBindFramebufferEXT and passing the constant GL_FRAMEBUFFER_EXT and 0. The
window is always specified as 0.

13. Use the texture attachment as a normal texture by binding it, enabling texturing, and drawing.

14. Delete the texture.

15. Delete the framebuffer object by calling the following function:

void glDeleteFramebuffersEXT (GLsizei n, const GLuint *framebuffers);

n is the number of framebuffer objects to delete.

*framebuffers points to an array that contains the framebuffer object names.

Listing 4-2 shows code that performs these tasks. This example sets up and draws to a single framebuffer
object. Your application can set up more than one framebuffer object if it requires them.

Listing 4-2 Setting up a framebuffer for texturing

GLuint framebuffer, texture;
GLenum status;
glGenFramebuffersEXT(1, &framebuffer);
// Set up the FBO with one texture attachment
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebuffer);
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, TEXWIDE, TEXHIGH, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_TEXTURE_2D, texture, 0);
status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
 // Handle error here
// Your code to draw content to the FBO
// ...
// Make the window the target
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
//Your code to use the contents of the FBO
// ...
//Tear down the FBO and texture attachment
glDeleteTextures(1, &texture);
glDeleteFramebuffersEXT(1, &framebuffer);

54 Rendering to a Framebuffer Object
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

Drawing a Renderbuffer Image Offscreen

There is a lot of similarity between setting up a framebuffer object for drawing images and setting one up
to draw textures. These are the basic steps needed to set up a framebuffer object for drawing a 2D pixel
image (a renderbuffer image) offscreen:

1. Make sure the framebuffer extension (EXT_framebuffer_object) is supported on the renderer that
your code runs on. See “Determining the OpenGL Capabilities Supported by the Hardware” (page 59).

2. Check the renderer limits. For example, you might want to call the OpenGL function glGetIntegerv
to find out the maximum number of color buffers (GL_MAX_COLOR_ATTACHMENTS_EXT).

3. Generate a framebuffer object name by calling the function glGenFramebuffersEXT. (See Step 3 in
“Drawing a Texture Offscreen” (page 52).)

4. Bind the framebuffer object name to a framebuffer target by calling the function
glBindFramebufferEXT. (See Step 4 in “Drawing a Texture Offscreen” (page 52).)

5. Generate a renderbuffer object name by calling the following function:

void glGenRenderbuffersEXT (GLsizei n, GLuint *renderbuffers);

n is the number of renderbuffer object names to create.

*renderbuffers points to storage for the generated names.

6. Bind the renderbuffer object name to a renderbuffer target by calling the following function:

void glBindRenderbufferEXT (GLenum target, GLuint renderbuffer);

target must be the constant GL_RENDERBUFFER_EXT

renderbuffer is the renderbuffer object name generated previously.

7. Create data storage and establish the pixel format and dimensions of the renderbuffer image by calling
the following function:

void glRenderbufferStorageEXT (GLenum target, GLenum internalformat,
 GLsizei width, GLsizei height);

target must be the constant GL_RENDERBUFFER_EXT.

internalformat is the pixel format of the image. The value must be RGB, RGBA, DEPTH_COMPONENT,
STENCIL_INDEX, or one of the other formats listed in the OpenGL specification.

width is the width of the image, in pixels.

height is the height of the image, in pixels.

8. Attach the renderbuffer to a framebuffer target by calling the function
glFramebufferRenderbufferEXT.

void glFramebufferRenderbufferEXT(GLenum target, GLenum attachment,
 GLenum renderbuffertarget, GLuint renderbuffer);

target must be the constant GL_FRAMEBUFFER_EXT.

Rendering to a Framebuffer Object 55
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

attachment should be one of the attachment points of the framebuffer:GL_STENCIL_ATTACHMENT_EXT,
GL_DEPTH_ATTACHMENT_EXT, or GL_COLOR_ATTACHMENTn_EXT, where n is a number from 0 to
GL_MAX_COLOR_ATTACHMENTS_EXT–1.

renderbuffertarget must be the constant GL_RENDERBUFFER_EXT.

renderbuffer should be set to the name of the renderbuffer object that you want to attach to the
framebuffer.

9. Check to make sure that the framebuffer is complete by calling the following function:

enum glCheckFramebufferStatusEXT(GLenum target);

target must be the constant GL_FRAMEBUFFER_EXT.

This function returns a status constant. You must test to make sure that the constant is
GL_FRAMEBUFFER_COMPLETE_EXT. If it isn't, see the OpenGL specification for the framebuffer object
extension for a description of the other constants in the status enumeration.

10. Draw the 2D pixel image to the renderbuffer.

11. To view the contents of the renderbuffer, make the window the target of all rendering commands by
calling the function glBindFramebufferEXT and passing the constant GL_FRAMEBUFFER_EXT and 0.
The window is always specified as 0.

12. To access the contents of the renderbuffer object, use OpenGL functions such as glReadPixels or
glCopyTexImage2D.

13. Delete the framebuffer object with its renderbuffer attachment.

Listing 4-3 shows code that sets up and draws to a single renderbuffer object. Your application can set up
more than one renderbuffer object if it requires them.

Listing 4-3 Setting up a renderbuffer for drawing images

GLuint framebuffer, renderbuffer;
GLenum status;
// Set the width and height appropriately for you image
GLuint texWidth = 1024,
 texHeight = 1024;
//Set up a FBO with one renderbuffer attachment
glGenFramebuffersEXT(1, &framebuffer);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebuffer);
glGenRenderbuffersEXT(1, &renderbuffer);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, renderbuffer);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_RGBA8, texWidth, texHeight);
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_RENDERBUFFER_EXT, renderbuffer);
status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
 // Handle errors
//Your code to draw content to the renderbuffer
// ...
// Make the window the target
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
//Your code to use the contents

56 Rendering to a Framebuffer Object
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

// ...
// Delete the renderbuffer attachment
glDeleteRenderbuffersEXT(1, &renderbuffer);

See Also

This chapter provided an overview of the various ways to perform offscreen OpenGL drawing. It's only a
starting point, especially for those who want to use textures and who are concerned with performance. You'll
also want to read the following:

 ■ “Techniques for Working with Texture Data” (page 95)

 ■ “Improving Performance” (page 121)

 ■ OpenGL specification for the framebuffer object extension describes the framebuffer API in detail and
provides sample code for setting up and using framebuffer objects and renderbuffers.

OpenGL sample code projects (ADC Reference Library):

 ■ AGLSurfaceTexture shows how to render to a texture.

 ■ GLCarbon1ContextPbuffer renders surfaces into a pixel buffer and uses it as a texture to draw on a cube;
uses a single context.

 ■ GLCarbonSharedPbuffer shares a single pixel buffer with multiple other contexts.

 ■ Quartz Composer Offline Rendering shows how to render a Quartz Composer composition as a series of
images using an OpenGL pixel buffer.

See Also 57
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
http://developer.apple.com/referencelibrary/

58 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Drawing Offscreen

One of the benefits of using OpenGL is that it is extensible. An extension is typically introduced by one or
more vendors and then later is accepted by the OpenGL Architecture Review Board (ARB). Some extensions
are promoted from a vendor-specific extension to a common one while others become part of the core
OpenGL API. Extensions allow OpenGL to embrace innovation, but they also have implications for how you
verify that the OpenGL functionality you want to use is available.

Because extensions can be introduced at the vendor level, more than one extension can provide the same
basic functionality. There might also be an ARB extension that has functionality similar to that of a
vendor-specific extension. As particular functionality becomes widely adopted, it can be moved into the core
OpenGL API by the ARB. As a result, functionality that you want to use could be included as an extension, as
part of the core API, or both. For example, the ability to combine texture environments is supported through
the GL_ARB_texture_env_combine and the GL_EXT_texture_env_combine extensions. It's also part
of the core OpenGL version 1.3 API. Although each has similar functionality, they use a different syntax. What
this means is that you may need to check in several places (core OpenGL API and extension strings) to
determine whether a specific renderer supports functionality that you want to use.

Detecting Functionality

OpenGL has two types of commands—those that are part of the core API and those that are part of an
extension to OpenGL. Your application first needs to check for the version of the core OpenGL API and then
check for the available extensions. Keep in mind that OpenGL functionality is available on a per-renderer
basis. Not all renderers support all the available functionality. For example, a software renderer might not
support fog effects even though fog effects are available in an OpenGL extension installed on the current
system. For this reason, it's important that you check for particular functionality on a per-renderer basis.

Regardless of which extension you are checking for, the approach is the same. You need to call the OpenGL
function glGetString twice. The first time pass the GL_VERSION constant. The function returns a string
that specifies the version of OpenGL. The second time, pass the GL_EXTENSIONS constant. The function
returns a pointer to an extension name string. The extension name string is a space-delimited list of the
OpenGL extensions that are supported by the current renderer. This string can be rather long, so make sure
that you don't allocate a fixed-length string for the return value of the glGetString function. That is, do
not use the function strcpy; use a pointer and evaluate the string in place.

Pass the extension name string to the function gluCheckExtension along with the name of the extension
you want to check for. The gluCheckExtension function returns a Boolean value that indicates whether
or not the extension is available for the current renderer.

If an extension becomes part of the core OpenGL API, OpenGL continues to export the name strings of the
promoted extensions. It also continues to support the previous versions of any extension that has been
exported in earlier versions of Mac OS X. The fact that extensions are not typically removed guarantees that
the methodology you use today to check for a feature will work in all future versions of Mac OS X.

Detecting Functionality 59
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Determining the OpenGL Capabilities
Supported by the Hardware

OpenGL has a tremendous amount of functionality, as you can see by looking at the extensions listed in
“OpenGL Functionality by Version” (page 135). You need to call gluCheckExtension for each extension you
want to check, and you need to check each extension for each renderer. Checking for functionality, although
fairly straightforward, involves writing a large chunk of code. The best way to check for OpenGL functionality
is to implement a capability-checking function that you call when your program starts up, and then any time
a display configuration changes. Listing 5-1 shows a code excerpt that checks for a few extensions. (Note
that it is not a standalone function.) A detailed explanation for each line of code appears following the listing.

You can extend this example to make a comprehensive functionality-checking routine for your application.
For more details, see the GLCheck.c file in the Cocoa OpenGL sample application.

Listing 5-1 Checking for OpenGL functionality

GLint maxRectTextureSize;
GLint myMaxTextureUnits;
GLint myMaxTextureSize;
const GLubyte * strVersion;
const GLubyte * strExt;
float myGLVersion;
GLboolean isVAO, isTexLOD, isColorTable, isFence, isShade,
 isTextureRectangle;

// 1strVersion = glGetString (GL_VERSION);
sscanf((char *)strVersion, "%f", &myGLVersion);

// 2strExt = glGetString (GL_EXTENSIONS);
// 3glGetIntegerv(GL_MAX_TEXTURE_UNITS, &myMaxTextureUnits);
// 4glGetIntegerv(GL_MAX_TEXTURE_SIZE, &myMaxTextureSize);

isVAO =
// 5 gluCheckExtension ((const GLubyte*)"GL_APPLE_vertex_array_object",strExt);

// 6isFence = gluCheckExtension ((const GLubyte*)"GL_APPLE_fence", strExt);
isShade =

// 7 gluCheckExtension ((const GLubyte*)"GL_ARB_shading_language_100", strExt);

isColorTable =
 gluCheckExtension ((const GLubyte*)"GL_SGI_color_table", strExt) ||

// 8 gluCheckExtension ((const GLubyte*)"GL_ARB_imaging", strExt);
isTexLOD =
 gluCheckExtension ((const GLubyte*)"GL_SGIS_texture_lod", strExt) ||

// 9 (myGLVersion >= 1.2);
isTextureRectangle = gluCheckExtension ((const GLubyte*)
 "GL_EXT_texture_rectangle", strExt);
if (isTextureRectangle)
 glGetIntegerv (GL_MAX_RECTANGLE_TEXTURE_SIZE_EXT, &maxRectTextureSize);
else

// 10 maxRectTextureSize = 0;

Here what the code does:

1. Gets a string that specifies the version of OpenGL.

2. Gets the extension name string.

3. Calls the OpenGL function glGetIntegerv to get the value of the attribute passed to it which, in this
case, is the maximum number of texture units.

4. Gets the maximum texture size.

60 Detecting Functionality
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Determining the OpenGL Capabilities Supported by the Hardware

5. Checks whether vertex array objects are supported.

6. Checks for the Apple fence extension.

7. Checks for support for version 1.0 of the OpenGL shading language.

8. Checks for RGBA-format color lookup table support. In this case, the code needs to check for the
vendor-specific string and for the ARB string. If either is present, the functionality is supported.

9. Checks for an extension related to the texture level of detail parameter (LOD). In this case, the code
needs to check for the vendor-specific string and for the OpenGL version. If either the vendor string is
present or the OpenGL version is greater than or equal to 1.2, the functionality is supported.

10. Gets the OpenGL limit for rectangle textures. For some extensions, such as the rectangle texture extension,
it may not be enough to check whether the functionality is supported. You may also need to check the
limits. You can use glGetIntegerv and related functions (glGetBooleanv, glGetDoublev,
glGetFloatv) to obtain a variety of parameter values.

Keep in mind that you must check functionality on a per-renderer basis. The code in Listing 5-2 shows one
way to query the current renderer. It uses the CGL API, which can be called from Cocoa or Carbon applications.
In reality, you need to iterate over all displays and all renderers for each display to get a true picture of the
OpenGL functionality available on a particular system. You also need to update the your functionality
"snapshot" each time the list of displays or display configuration changes.

Listing 5-2 Setting up a valid rendering context to get renderer functionality information

#include <OpenGL/OpenGL.h>
#include <ApplicationServices/ApplicationServices.h>

// 1CGDirectDisplayID display = CGMainDisplayID ();
CGOpenGLDisplayMask myDisplayMask =

// 2 CGDisplayIDToOpenGLDisplayMask (display);

{ // Check capabilities of display represented by display mask
 CGLPixelFormatAttribute attribs[] = {kCGLPFADisplayMask,
 myDisplayMask,

// 3 NULL};
 CGLPixelFormatObj pixelFormat = NULL;
 long numPixelFormats = 0;
 CGLContextObj myCGLContext = 0;

// 4 CGLContextObj curr_ctx = CGLGetCurrentContext ();
// 5 CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats);

 if (pixelFormat) {
// 6 CGLCreateContext (pixelFormat, NULL, &myCGLContext);
// 7 CGLDestroyPixelFormat (pixelFormat);
// 8 CGLSetCurrentContext (myCGLContext);

 if (myCGLContext) {
 // Check for capabilities and functionality here
 }
 }

// 9 CGLDestroyContext (myCGLContext);
// 10 CGLSetCurrentContext (curr_ctx);

}

Here's what the code does:

Detecting Functionality 61
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Determining the OpenGL Capabilities Supported by the Hardware

1. Gets the display ID of the main display.

2. Maps a display ID to an OpenGL mask.

3. Fills a pixel format attributes array with the display mask attribute and the mask value.

4. Saves the current context so that it can be restored later.

5. Gets the pixel format object for the display. The numPixelFormats parameter specifies how many pixel
formats are listed in the pixel format object.

6. Creates a context based on the first pixel format in the list supplied by the pixel format object. Only one
renderer will be associated with this context.

In your application, you would need to iterate through all pixel formats for this display.

7. Destroys the pixel format object when it is no longer needed.

8. Sets the current context to the newly created, single-renderer context. Now you are ready to check for
the functionality supported by the current renderer. See Listing 5-1 (page 60) for an example of
functionality checking code.

9. Destroys the context because it is no longer needed.

10. Restores the previously saved context as the current context, thus ensuring no intrusion upon the user.

Guidelines for Code That Checks for Functionality

The guidelines in this section will ensure that your functionality checking code is thorough yet efficient. See
“Detecting Functionality” (page 59) for specific details on implementing these guidelines.

 ■ Don't rely on what's in a header file. A command declaration in a header file does not ensure that a
feature is supported by the current renderer. Neither does linking against a stub library that exports a
function.

 ■ Make sure that a renderer is attached to a valid rendering context before you check the functionality of
that renderer.

 ■ Check the API version or the extension name string for the current renderer before you issue OpenGL
commands.

 ■ Check only once per renderer. After you've determined that the current renderer supports an OpenGL
command, you don't need to check for that functionality again for that renderer.

 ■ Ensure that your code supports a feature, whether the feature is part of the core OpenGL API or is an
extension. Keep in mind that different constants and command names are often used for functionality
that is both part of the core API and an extension.

 ■ Enable only those OpenGL features that are tested. Enabling untested features can lead to application
failures.

62 Guidelines for Code That Checks for Functionality
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Determining the OpenGL Capabilities Supported by the Hardware

See Also

OpenGL extension information:

 ■ The OpenGL Extensions Registry at http://www.opengl.org/registry/.

 ■ OpenGL Extensions Guide provides a list of extensions and availability according to OpenGL version, Mac
OS X version, and renderer.

Many OpenGL sample code projects (ADC Reference Library) contain code to check for OpenGL functionality.
For example, see the glCheck.c and glCheck.h files in the Cocoa OpenGL sample application or in the
GLCarbonCGLFullScreen sample application.

See Also 63
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Determining the OpenGL Capabilities Supported by the Hardware

http://www.opengl.org/registry/
http://developer.apple.com/graphicsimaging/opengl/extensions.html
http://developer.apple.com/referencelibrary/

64 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Determining the OpenGL Capabilities Supported by the Hardware

A rendering context is a container for state information. When you designate a rendering context as the
current rendering context, subsequent OpenGL commands modify the drawable object associated with that
context. The actual drawing surfaces are never really owned by the rendering context but are created, as
needed, only when the rendering context is actually attached to a drawable object. You can attach multiple
rendering contexts to a set of drawing surfaces. Each context draws with its own unique “pen” represented
by its current state.

“Drawing to a Window or View” (page 27), “Drawing to the Full Screen” (page 37), and “Drawing
Offscreen” (page 45) show how to create a rendering context and attach it to a drawable object. As you'll
recall, each of the Apple-specific OpenGL APIs provides a routine that's fairly easy to use for creating a
rendering context. This chapter goes beyond creating rendering contexts; it shows how to set context
parameters, update rendering contexts, and set up a shared context.

Context Parameters

A rendering context has a variety of parameters that you can set to suit the needs of your OpenGL drawing.
Some of the most useful, and often overlooked, context parameters are discussed in this section: swap interval,
surface opacity, surface drawing order, and back-buffer size control.

Each of the Apple-specific OpenGL APIs provides a routine for setting and getting rendering context
parameters:

 ■ The setValues:forParameter: method of the NSOpenGLContext class takes as arguments a list of
values and a list of parameters.

 ■ The aglSetInteger function takes as parameters a rendering context, a constant that specifies an
option, and a value for that option.

 ■ The CGLSetParameter function takes as parameters a rendering context, a constant that specifies an
option, and a value for that option.

Some parameters need to be enabled for their values to take effect. The reference documentation for a
parameter indicates whether a parameter needs to be enabled. See NSOpenGLContext Class Reference, AGL
Reference, and CGL Reference.

Swap Interval

The swap interval parameter synchronizes the vertical retrace. If the swap interval is set to 0 (the default),
buffers are swapped as soon as possible, without regard to the vertical refresh rate of the monitor. If the
swap interval is set to any other value, the buffers are swapped only during the vertical retrace of the monitor.
For more information, see “Draw Only When Necessary” (page 124).

You can use the following constants to specify that you are setting the swap interval value:

Context Parameters 65
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering
Contexts

 ■ For Cocoa, use NSOpenGLCPSwapInterval.

 ■ For Carbon, use AGL_SWAP_INTERVAL.

 ■ If you are using the CGL API, use kCGLCPSwapInterval. See Listing 6-1.

Listing 6-1 Using CGL to set up synchronization

long sync = 1;
// ctx must be a valid context
CGLSetParameter (ctx, kCGLCPSwapInterval, &sync);

Surface Opacity

OpenGL surfaces are typically rendered as opaque. Thus the background color for pixels with alpha values
of 0.0 is the surface background color. If you set the value of the surface opacity parameter to 0, then the
contents of the surface are blended with the contents of surfaces behind the OpenGL surface. This operation
is equivalent to OpenGL blending with a source contribution proportional to the source alpha and a
background contribution proportional to 1minus the source alpha. A value of 1means the surface is opaque
(the default); 0 means completely transparent.

You can use the following constants to specify that you are setting the surface opacity value:

 ■ For Cocoa, use NSOpenGLCPSurfaceOpacity.

 ■ For Carbon, use AGL_SURFACE_OPACITY.

 ■ If you are using the CGL API, use kCGLCPSurfaceOpacity. See Listing 6-2.

Listing 6-2 Using CGL to set surface opacity

long opaque = 0;
// ctx must be a valid context
CGLSetParameter (ctx, kCGLCPSurfaceOpacity, &opaque);

Surface Drawing Order

The surface drawing order parameter specifies the position of the OpenGL surface relative to the window.
A value of 1 means that the position is above the window; a value of –1 specifies a position that is below
the window. When you have overlapping views, setting the order to -1 causes OpenGL to draw underneath,
1 causes OpGL to draw on top. This parameter is useful for drawing user interface controls on top of an
OpenGL view.

You can use the following constants to specify that you are setting the surface drawing order value:

 ■ For Cocoa, use NSOpenGLCPSurfaceOrder.

 ■ For Carbon, use AGL_SURFACE_ORDER.

 ■ If you are using the CGL API, use kCGLCPSurfaceOrder. See Listing 6-3.

66 Context Parameters
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

Listing 6-3 Using CGL to set surface drawing order

long order = –1; // below window
// ctx must be a valid context
CGLSetParameter (ctx, kCGLCPSurfaceOrder, &order);

Vertex and Fragment Processing

CGL provides two parameters for checking whether the system is using the GPU for processing:
kCGLCPGPUVertexProcessing and kCGLCPGPUFragmentProcessing. To check vertex processing, pass
the vertex constant to the CGLGetParameter function. To check fragment processing, pass the fragment
constant to CGLGetParameter.

Important: Although you can perform these queries at any time, keep in mind that such queries force an
internal state validation, which can impact performance. For best performance, do not use these queries
inside your drawing loop. Instead, perform the queries once at initialization or context setup time to determine
whether OpenGL is using the CPU or the GPU for processing, and then act appropriately in your drawing
loop.

Listing 6-4 Using CGL to check whether the GPU is processing vertices and fragments

BOOL gpuProcessing;
GLint fragmentGPUProcessing, vertexGPUProcessing;
CGLGetParameter (CGLGetCurrentContext(), kCGLCPGPUFragmentProcessing,
 &fragmentGPUProcessing);
CGLGetParameter(CGLGetCurrentContext(), kCGLCPGPUVertexProcessing,
 &vertexGPUProcessing);
gpuProcessing = (fragmentGPUProcessing && vertexGPUProcessing) ? YES : NO;

Back Buffer Size Control

Normally, the back buffer is the same size as the window or view that it's drawn into, and it changes size
when the window or view changes size. For a window whose size is 720 by 480 pixels, the OpenGL back
buffer is sized to match. If the window grows to 1024 by 768 pixels, for example, then the back buffer tracks
this growth. If you do not want this behavior, use the back buffer size control parameter.

Using this parameter fixes the size of the back buffer and lets the system scale the image automatically when
it moves the data to a variable size buffer (see Figure 6-1). The size of the back buffer remains fixed at the
size that you set up regardless of whether the image is resized to display larger onscreen.

You can use the following constants to specify that you are setting the surface drawing order value:

 ■ If you are using the CGL API, use kCGLCPSurfaceBackingSize, as shown in Listing 6-5.

 ■ For Carbon, use AGL_SURFACE_BACKING_SIZE.

Listing 6-5 Using CGL to set up back buffer size control

long dim[2] = {720, 480};
// ctx must be a valid context
CGLSetParameter(ctx, kCGLCPSurfaceBackingSize, dim);

Context Parameters 67
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

CGLEnable (ctx, kCGLCESurfaceBackingSize);

Figure 6-1 A fixed size back buffer and variable size front buffer

Updating a Rendering Context

A rendering context must be updated whenever the renderer or geometry changes. A renderer change can
occur when the user drags a window from one display to another. Geometry changes occur when the display
mode changes or when a a window is resized or moved. If the system does not update the context
automatically, then your application must perform the update. You need to track the appropriate events and
call the update function provided by the Apple-specific OpenGL API that you're using.

Updating a rendering context is not the same as flushing graphics buffers. An update notifies the rendering
context of geometry changes; it doesn't flush content. Calling an update function allows the OpenGL engine
to ensure that the surface size is set and that the renderer is properly updated for any virtual screen changes.
If you don't update the rendering context you either do not see any OpenGL rendering or you see rendering
artifacts.

The routine that you call for updating determines how events related to renderer and geometry changes are
handled. For applications that subclass NSOpenGLView, Cocoa calls the update method automatically.
Applications that use the NSOpenGLContext class without subclassing its view must call the updatemethod
of NSOpenGLContext directly. For a full-screen Cocoa application, calling the setFullScreen method of
NSOpenGLContext ensures that depth, size, or display changes take affect.

Carbon applications drawing OpenGL content to a window should call the function aglUpdateContext.
For full-screen CGL and AGL applications, you need to call CGLSetFullScreen and aglSetFullScreen
respectively to ensure that depth, size, or display changes take affect rather than calling an update function.

68 Updating a Rendering Context
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

Your application must update the rendering context after the system event but before drawing to the context.
If the drawable object is resized, you may want to issue a glViewport command to ensure that the content
scales properly.

Note: Some system-level events (such as display mode changes) that require a context update could reallocate
the buffers of the context, thus you need to redraw the entire scene after all context updates.

It's important that you don't update rendering contexts more than necessary. Your application should respond
to system-level events and notifications rather than updating every frame. For example, you'll want to respond
to window move and resize operations and to display configuration changes such as a color depth change.

The sections that follow describe in more detail how to use Cocoa, AGL, and CGL to update a rendering
context, but you'll want to read “Tracking Renderer Changes” before going on to the sections specific to the
three APIs.

Tracking Renderer Changes

It's fairly straightforward to track geometry changes, but how are renderer changes tracked? This is where
the concept of a virtual screen becomes important (see “Virtual Screens” (page 21)). A change in the virtual
screen indicates a renderer change, a change in renderer capability, or both. When your application detects
a window resize event, window move event, or display change, it can then check for a virtual screen change
and respond to the change appropriately. This ensures that the current application state reflects any changes
in renderer capabilities.

Each of the Apple-specific OpenGL APIs has a function that returns the current virtual screen number:

 ■ The currentVirtualScreen method of the NSOpenGLContext class

 ■ The aglGetVirtualScreen function

 ■ The CGLGetVirtualScreen function

The virtual screen number represents an index in the list of virtual screens that were set up specifically for
the pixel format object used for the rendering context. The number is unique to the list but is meaningless
otherwise.

Updating a Rendering Context for a Custom Cocoa View

If you subclass NSView instead of using the NSOpenGLView class, your application must update the rendering
context. That's due to a slight difference between the events normally handled by the NSView class and
those handled by the NSOpenGLView class. Cocoa does not call a reshape method for the NSView class
when the size changes because that class does not export a reshape method to override. Instead, you need
to perform reshape operations directly in your drawRect:method, looking for changes in view bounds prior
to actually drawing content. Using this approach provides results that are equivalent to using the reshape
method of the NSOpenGLView class.

Updating a Rendering Context 69
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

Listing 6-6 is a partial implementation of a custom view that shows how to handle context updates. The
updatemethod is called after move, resize, and display change events and when the surface needs updating.
The class adds an observer to the notification NSViewGlobalFrameDidChangeNotification, giving a
callback upon which to base context updates. This notification is posted whenever an NSView object that
has attached surfaces (that is, NSOpenGLContext objects) resizes, moves, or changes coordinate offsets.

It's slightly more complicated to handle changes in the display configuration. For that, you need to register
for the notification NSApplicationDidChangeScreenParametersNotification through the
NSApplication class. This notification is posted whenever the configuration of any of the displays attached
to the computer is changed (either programmatically or when the user changes the settings in the interface).

Listing 6-6 Handling context updates for a custom view

#import <Cocoa/Cocoa.h>
#import <OpenGL/OpenGL.h>
#import <OpenGL/gl.h>

@class NSOpenGLContext, NSOpenGLPixelFormat;

@interface CustomOpenGLView : NSView
{
 @private
 NSOpenGLContext* _openGLContext;
 NSOpenGLPixelFormat* _pixelFormat;
}

- (id)initWithFrame:(NSRect)frameRect
 pixelFormat:(NSOpenGLPixelFormat*)format;

- (void)update;
@end

@implementation CustomOpenGLView

- (id)initWithFrame:(NSRect)frameRect
 pixelFormat:(NSOpenGLPixelFormat*)format
{
 self = [super initWithFrame:frameRect];
 if (self != nil) {
 _pixelFormat = [format retain];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(_surfaceNeedsUpdate:)
 name:NSViewGlobalFrameDidChangeNotification
 object:self];
 }
 return self;
}

- (void)dealloc
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:NSViewGlobalFrameDidChangeNotification
 object:self];
 [self clearGLContext];
 [_pixelFormat release];
 [super dealloc];
}

70 Updating a Rendering Context
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

- (void)update
{
 if ([_openGLContext view] == self) {
 [_openGLContext update];
 }
}

- (void) _surfaceNeedsUpdate:(NSNotification*)notification
{
 [self update];
}

@end

Updating a Rendering Context for a Carbon Window

The simplest way to handle resize and move events is by using Carbon events. To cover window resize and
move operations, your application can handle the events kEventWindowBoundsChanged and
kEventWindowZoomed. The system generates the event kEventWindowBoundsChanged for window resize
and window drag operations, which takes care of most cases other than a window zoom operation. For that,
track the event kEventWindowZoomed. For more information on these and other Carbon events see Carbon
Event Manager Programming Guide and Carbon Event Manager Reference.

Listing 6-7 demonstrates a simple window event handler. Note that the supporting routines needed by the
window event handler—MyHandleWindowUpdate, MyDisposeGL, and MyBuildGL—are not shown in the
listing. These are routines that you need to write. A detailed explanation for each numbered line of code
appears following the listing.

Listing 6-7 Handling Carbon events associated with an AGL context

#include <Carbon/Carbon.h>

static pascal OSStatus windowEvtHndlr (EventHandlerCallRef myHandler,
 EventRef event,
 void* userData)
{
 WindowRef window;

// 1 AGLContext aglContext = (AGLContext) userData;
 Rect rectPort = {0,0,0,0};
 OSStatus result = eventNotHandledErr;
 UInt32 class = GetEventClass (event);
 UInt32 kind = GetEventKind (event);

 GetEventParameter(event, kEventParamDirectObject, typeWindowRef,
 NULL, sizeof(WindowRef), NULL, &window);
 if (window) {
 GetWindowPortBounds (window, &rectPort);
 }
 switch (class) {
 case kEventClassWindow:
 switch (kind) {

// 2 case kEventWindowActivated:
// 3 case kEventWindowDrawContent:

 MyHandleWindowUpdate(window);
 break;

Updating a Rendering Context 71
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

// 4 case kEventWindowClose:
 HideWindow (window);
 MyDisposeGL (window);
 break;

// 5 case kEventWindowShown:
 MyBuildGL (window);
 if (window == FrontWindow ())
 SetUserFocusWindow (window);
 InvalWindowRect (window, &rectPort);
 break;
 case kEventWindowBoundsChanged: //6)
 MyResizeGL (window, aglContext);
 MyHandleWindowUpdate(window);
 break;

// 7 case kEventWindowZoomed:
 MyResizeGL (window, aglContext);
 break;
 }
 break;
 }
 return result;
}

Here's what the code does:

1. Stores the rendering context, which is passed to the event handler through the userData parameter.

2. Passes the activation event through, which prevents an initial flash of the screen.

3. Handles a draw content event by calling your window update function.

4. Handles a window close event by calling your dispose function to perform the necessary cleanup work.

5. Handles a window shown event by calling your function that performs the necessary work to render
OpenGL to the window and to make the window frontmost with user focus.

6. Handles a window bounds changed event by resizing the window appropriately and then updating the
content.

7. Handles a zoom event by resizing the window.

The code to handle the context update is shown in Listing 6-8. In its simplest form this code ensures the
context of interest is current and then updates the context. Your application can also call the function
glViewport to update the size of the drawable object to the current window size or to some other meaningful
value. You might also want to update the projection matrix because the window dimensions have changed,
and thus the relative geometry of the window has changed.

Listing 6-8 Updating a context using AGL

#include <Carbon/Carbon.h>
#include <AGL/agl.h>
#include <OpenGL/OpenGL.h>

void MyUpdateContextAGL (WindowRef window, AGLContext aglContext)
{
 Rect rectPort;

72 Updating a Rendering Context
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

 aglSetCurrentContext (aglContext);
 aglUpdateContext (aglContext);
 GetWindowPortBounds (window, &rectPort);
 glViewport (0, 0, rectPort.right - rectPort.left,
 rectPort.bottom - rectPort.top);
 /* Your code to update the projection matrix if needed */
}

It's slightly more complicated to handle changes in display configuration. You can detect these using Display
Manager callback functions. (See Display Manager Reference and Optimizing Display Modes and Window
Arrangement With the Display Manager.) You need to provide a callback function that conforms to the
DMExtendedNotificationProcPtr callback. Then, after creating a universal procedure pointer to this
function by calling the function NewDMExtendedNotificationUPP, register this UPP by calling the function
DMRegisterExtendedNotifyProc.

Listing 6-9 shows the callback, the UPP creation and registration tasks, and other tasks you need for perform
when handling display configuration changes. The callback function handleWindowDMEvent is simple. It
calls the context update routine and invalidates the full window graphics port bounds to force an update
event. Make sure to check for the kDMNotifyEvent message type; otherwise, the event is probably not one
for which you need to update the context. If you use multiple rendering contexts or windows, it may be
helpful to add the window or context to the user data.

Listing 6-9 Handling display configuration changes

#include <Carbon/Carbon.h>
#include <AGL/agl.h>

void handleWindowDMEvent (void *userData,
 short msg, void *notifyData)
{
 AGLContext aglContext = (AGLContext) userData;
 if (kDMNotifyEvent == msg) {
 MyUpdateContextAGL (window, aglContext);
 GetWindowPortBounds (window, &rectPort);
 InvalWindowRect (window, &rectPort);
 }
}

void setupDMNotify (WindowRef window)
{
 gWindowEDMUPP = NewDMExtendedNotificationUPP(handleWindowDMEvent);
 DMRegisterExtendedNotifyProc (gWindowEDMUPP,
 (void *)window, NULL, &psn);
}

OSStatus disposeDM Notify (WindowRef window)
{
 if (gWindowEDMUPP) {
 DisposeDMExtendedNotificationUPP (gWindowEDMUPP);
 gWindowEDMUPP = NULL;
 }
}

Updating a Rendering Context 73
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

Updating Full-screen AGL and CGL Rendering Contexts

It's easier to update full-screen drawable objects than it is windowed ones since the drawable object position
is fixed. Its size is directly linked to the display configuration, so full-screen applications need to perform
updates only when they actually change the configuration. Instead of calling a context update routine, a
full-screen application issues a set-full-screen call. Listing 6-10 and Listing 6-11 (page 75) show examples of
AGL and CGL routines, respectively, to reset the full-screen context.

For AGL, the aglSetFullScreen function handles screen capture and display resizing; thus you just need
to ensure that a valid full-screen pixel format object and rendering context are created prior to resizing. For
CGL, you can use the Quartz Display Services functions CGCaptureAllDisplays,
CGDisplayBestModeForParametersAndRefreshRate (or similar function), andCGDisplaySwitchToMode
to set the requested display configuration. Then set the pixel format for the display and call the resize function.

Note: When you capture all displays, using either the function aglSetFullScreen (but without setting
AGL_FS_CAPTURE_SINGLE) or the function CGCaptureAllDisplays, your application does not see any
Display Manager notifications, because the display configuration is fixed and does not change until released.
If you do not capture all displays, the application still receives display configuration changes for the
noncaptured displays. Normally full-screen applications do not need to handle these display notifications,
because they are for the displays not currently in use or of interest.

Listing 6-10 Handling full-screen updates using AGL

#include <Carbon/Carbon.h>
#include <AGL/agl.h>
#include <OpenGL/gl.h>

void MyResizeAGLFullScreen (AGLContext aglContext, GLSizei width,
 GLSizei height)
{
 GLint displayCaps [3];

// 1 if (!aglContext)
 return;

// 2 aglSetCurrentContext (aglContext);
// 3 aglSetFullScreen (aglContext, width, height, 0, 0);
// 4 aglGetInteger (aglContext, AGL_FULLSCREEN, displayCaps);
// 5 glViewport (0, 0, displayCaps[0], displayCaps[1]);

 // Your code to update the projection matrix here if needed
}

Here's what the code does:

1. Checks for a valid context and returns if the context is not valid. Note that the MyResizeAGLFullScreen
function assumes that the pixel format object associated with the context was created with the full-screen
attribute.

2. Sets the context to the current context.

3. Attaches a full-screen drawable object to the context to ensure the context is updated.

4. Gets the display capabilities of the display, which are the width, height, and screen resolution.

74 Updating a Rendering Context
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

5. Sets the viewport, specifying (0,0) as the left corner of the viewport rectangle, and the width and
height of the screen (which were obtained with the previous call to aglGetInteger).

Listing 6-11 assumes that the pixel format object associated with the context was created with the full-screen,
single display, and pixel depth attributes. Additionally, this code assumes that the screen is captured and set
to the requested dimensions. The viewport is not set here since the calling routine actually sets the display
size.

Listing 6-11 Handling full-screen updates using CGL

#include <Carbon/Carbon.h>
#include <OpenGL/OpenGL.h>
#include <OpenGL/gl.h>

void MyResizeCGL (CGLContextObj cglContext)
{
 if (!cglContext)
 return;
 CGLSetCurrentContext (cglContext);
 CGLSetFullScreen (cglContext);
}

Sharing Rendering Contexts

A rendering context does not own the drawing objects attached to it, which leaves open the option for
sharing. Rendering contexts can share resources and can be attached to the same drawable object (see Figure
6-2) or to different drawable objects (see Figure 6-3). You set up context sharing—either with more than one
drawable object or with another context—at the time you create a rendering context.

Contexts can share object resources and their associated object state by indicating a shared context at context
creation time. Shared contexts share all texture objects, display lists, vertex programs, fragment programs,
and buffer objects created before and after sharing is initiated. The state of the objects are also shared but
not other context state, such as current color, texture coordinate settings, matrix and lighting settings,
rasterization state, and texture environment settings. You need to duplicate context state changes as required,
but you need to set up individual objects only once.

Figure 6-2 Shared contexts attached to the same drawable object

Context Context

Drawable
object

Shared
object state

When you create an OpenGL context you can designate a second context to share object resources. All
sharing is peer to peer. Shared resources are reference-counted and thus are maintained until explicitly
released or when the last context sharing resource is released.

Sharing Rendering Contexts 75
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

Not every context can be shared with every other context. Much depends on ensuring that the same set of
renderers supports both contexts. You can meet this requirement by ensuring each context uses the same
virtual screen list, using either of the following techniques:

 ■ Use the same pixel format object to create all the rendering contexts that you want to share.

 ■ Create pixel format objects using attributes that narrow down the choice to a single display. This practice
ensures that the virtual screen is identical for each pixel format object.

Figure 6-3 Shared contexts and more than one drawable object

Context Context Context Context

Drawable
object

Drawable
object

Shared
object state

Setting up shared rendering contexts is very straightforward. Each Apple-specific OpenGL API provides
functions with an option to specify a context to share in its context creation routine.

 ■ Use the share argument for the initWithFormat:shareContext:method of the NSOpenGLContext
class. See Listing 6-12 (page 76).

 ■ Use the share parameter for the function aglCreateContext. See Listing 6-13 (page 77).

 ■ Use the share parameter for the function CGLCreateContext. See Listing 6-14 (page 77).

Listing 6-12 ensures the same virtual screen list by using the same pixel format object for each of the shared
contexts.

Listing 6-12 Setting up an NSOpenGLContext object for sharing

#import <Cocoa/Cocoa.h>
+ (NSOpenGLPixelFormat*)defaultPixelFormat
{
 NSOpenGLPixelFormatAttribute attributes [] = {
 NSOpenGLPFADoubleBuffer,
 (NSOpenGLPixelFormatAttribute)nil };
return [[(NSOpenGLPixelFormat *)[NSOpenGLPixelFormat alloc]
 initWithAttributes:attribs] autorelease];
}

- (NSOpenGLContext*)openGLContextWithShareContext:(NSOpenGLContext*)context
{
 if (_openGLContext == NULL) {
 _openGLContext = [[NSOpenGLContext alloc]
 initWithFormat:[[self class] defaultPixelFormat]
 shareContext:context];
 [_openGLContext makeCurrentContext];
 [self prepareOpenGL];
 }
 return _openGLContext;

76 Sharing Rendering Contexts
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

}

- (void)prepareOpenGL
{
 // Your code here to initialize the OpenGL state
}

Listing 6-13 sets up two pixel formats objects—aglPixFmt and aglPixFmt2—that share the same display.

Listing 6-13 Getting the same virtual screen list with different attributes

GLint attrib[] = {AGL_RGBA, AGL_DOUBLEBUFFER, AGL_FULL_SCREEN, AGL_NONE};
GLint attrib2[] = {AGL_RGBA, AGL_DOUBLEBUFFER, AGL_NONE};
disp = GetMainDevice();
aglPixFmt = aglChoosePixelFormat(&disp, 1, attrib);
aglContext = aglCreateContext(aglPixFmt, NULL);
//Use same display
aglPixFmt2 = aglChoosePixelFormat (&disp, 1, attrib2);
aglContext2 = aglCreateContext(aglPixFmt2, aglContext);

Listing 6-14 ensures the same virtual screen list by using the same pixel format object for each of the shared
contexts.

Listing 6-14 Setting up a CGL context for sharing

#include <OpenGL/OpenGL.h>

CGLPixelFormatAttribute attrib[] = {kCGLPFADoubleBuffer, 0};
CGLPixelFormatObj pixelFormat = NULL;
long numPixelFormats = 0;
CGLContextObj cglContext1 = NULL;
CGLContextObj cglContext2 = NULL;
CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats);
CGLCreateContext(pixelFormat, NULL, &cglContext1);
CGLCreateContext(pixelFormat, cglContext1, &cglContext2);

See Also

OpenGL sample code projects (Sample Code > Graphics & Imaging > OpenGL):

 ■ GLCarbon1ContextPbuffer demonstrates using a single shared rendering context with OpenGL pixel buffer
objects.

See Also 77
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

78 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Techniques for Working with Rendering Contexts

Renderer and buffer attributes determine the renderers that the system chooses for your application. Each
of the Apple-specific OpenGL APIs provides constants that specify a variety of renderer and buffer attributes.
You supply a list of attribute constants to one of the Apple OpenGL functions for choosing a pixel format
object. The pixel format object maintains a list of appropriate renderers. In previous chapters, you saw how
to set up an attributes array that contains a small set of attributes.

In a real-world application, selecting attributes is an art because you don't know the exact combination of
hardware and software that your application will run on. An attribute list that is too restrictive could miss
out on future capabilities or not be able to run on many systems. For example, if you specify a buffer of a
specific depth, your application won't be able to take advantage of a larger buffer when more memory is
available in the future. In this case, you might specify a required minimum and direct OpenGL to use the
maximum available.

Although you might want to specify attributes that make your OpenGL content look and run its best, you
also need to consider whether you'll allow your application to run on a less-capable system at the expense
of speed or detail. If tradeoffs are acceptable, you'll need to set the attributes accordingly.

Buffer Size Attribute Selection Tips

Follow these guidelines to choose buffer attributes that specify buffer size:

 ■ To choose color, depth, and accumulation buffers that are greater than or equal to a size you specify,
use the minimum policy attribute (NSOpenGLPFAMinimumPolicy, AGL_MINIMUM_POLICY, and
kCGLPFAMinimumPolicy).

 ■ To choose color, depth, and accumulation buffers that are closest in size to a size you specify, use the
closest policy attribute (NSOpenGLPFAClosestPolicy, AGL_CLOSEST_POLICY, and
kCGLPFAClosestPolicy).

 ■ To choose the largest color, depth, and accumulation buffers available, use the maximum policy attribute
(NSOpenGLPFAMaximumPolicy, AGL_MAXIMUM_POLICY, and kCGLPFAMaximumPolicy). As long as
you pass a value that is greater than 0, this attribute specifies the use of color, depth, and accumulation
buffers that are the largest size possible.

Attributes that are not Recommended

There are several renderer and buffer attributes that are no longer recommended either because they are
too narrowly focused or no longer useful:

 ■ The robust attribute (NSOpenGLPFARobust, AGL_ROBUST, and kCGLPFARobust) specifies only those
renderers that do not have any failure modes associated with a lack of video card resources.

Buffer Size Attribute Selection Tips 79
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Techniques for Choosing Attributes

 ■ The multiple-screen attribute (NSOpenGLPFAMultiScreen, AGL_MULTISCREEN, and
kCGLPFAMultiScreen) specifies only those renderers that can drive more than one screen at a time.

 ■ The multiprocessing-safe attribute (AGL_MP_SAFE and kCGLPFAMPSafe) specifies only those renderers
that are thread safe. This attribute is deprecated in Mac OS X because all renderers can accept commands
for threads running on a second processor. However, this does not mean that all renderers are thread
safe or reentrant. See “Multithreading and OpenGL” (page 117).

 ■ The compliant attribute (NSOpenGLPFACompliant, AGL_COMPLIANT, and kCGLPFACompliant) specifies
only OpenGL-compliant renderers. All Mac OS X renderers are OpenGL-compliant, so this attribute is no
longer useful.

Ensuring that Back Buffer Contents Remain the Same

A backing store attribute (NSOpenGLPFABackingStore, AGL_BACKING_STORE, or kCGLPFABackingStore)
is required whenever an application depends on the back buffer contents remaining the same after a swap
buffer call.

Ensuring a Valid Pixel Format Object

The pixel format routines (the initWithAttributes method of the NSOpenGLPixelFormat class,
aglChoosePixelFormat, and CGLChoosePixelFormat) return a pixel format object to your application
that you use to create a rendering context. The buffer and renderer attributes that you supply to the pixel
format routine determine the characteristics of the OpenGL drawing sent to the rendering context. If the
system can't find at least one pixel format that satisfies the constraints specified by the attribute array, it
returns NULL for the pixel format object. In this case, your application should have an alternative that ensures
it can obtain a valid object.

One alternative is to set up your attribute array with the least restrictive attribute first and the most restrictive
attribute last. Then, it is fairly easy to adjust the attribute list and make another request for a pixel format
object. The code in Listing 7-1 illustrates this technique using the CGL API, but you can just as easily use
Cocoa or the AGL API. Notice that the initial attributes list is set up with the supersample attribute last in the
list. If the function CGLChoosePixelFormat returns NULL the first time it's called, the code sets the
supersample attribute to NULL and once again requests a pixel format object.

Listing 7-1 Using the CGL API to create a pixel format object

int last_attribute = 6;
CGLPixelFormatAttribute attribs[] =
{
 kCGLPFAAccelerated,
 kCGLPFAColorSize, 24
 kCGLPFADepthSize, 16,
 kCGLPFADoubleBuffer,
 kCGLPFASupersample,
 0
};

CGLPixelFormatObj pixelFormatObj;
long numPixelFormats;

80 Ensuring that Back Buffer Contents Remain the Same
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Techniques for Choosing Attributes

long value;

CGLChoosePixelFormat (attribs, &pixelFormatObj, &numPixelFormats);

if(pixelFormatObj == NULL) {
 attribs[last_attribute] = NULL;
 CGLChoosePixelFormat (attribs, &pixelFormatObj, &numPixelFormats);
}

if(pixelFormatObj == NULL) {
 // Your code to notify the user and take action.
}

Ensuring a Specific Type of Renderer

There are times when you'll want to ensure that you obtain a pixel format that supports a specific renderer
type, such as a hardware-accelerated renderer. Table 7-1 lists attributes that support specific types of renderers.
The table reflects the following tips for setting up pixel formats:

 ■ To select only hardware-accelerated renderers, use both the accelerated and no recovery attributes.

 ■ To use only the floating point software renderer, use the appropriate generic floating-point constant.

 ■ To render to system memory, use the offscreen pixel attribute. Note that this rendering option does not
use hardware acceleration.

 ■ To render offscreen with hardware acceleration, specify a pixel buffer attribute. (See “Rendering to a
Pixel Buffer” (page 48).)

Table 7-1 Renderer types and pixel format attributes

CocoaAGLCGLRenderer type

NSOpen-
GLPFAAccelerated

NSOpenGLPFANoRecovery

AGL_ACCELERATED

AGL_NO_RECOVERY

kCGLPFAAccelerated

kCGLPFANoRecovery

Hardware-accelerated
onscreen

NSOpenGLPFARendererID

kCGLRendererGeneric-
FloatID

AGL_RENDERER_ID

AGL_RENDERER_-
GENERIC_FLOAT_ID

kCGLPFARendererID

kCGLRendererGeneric-
FloatID

Software (floating-point)

NSOpenGLPFARendererID

kCGLRendererGenericID

AGL_RENDERER_ID

AGL_RENDERER_-
GENERIC_ID

kCGLPFARendererID

kCGLRenderer-
GenericID

Software (deprecated on
Intel-based Macs)

NSOpenGLPFAOffScreenAGL_OFFSCREENkCGLPFAOffScreenSystem memory (not
accelerated)

NSOpenGLPFAPixel-
Buffer

AGL_PBUFFERkCGLPFAPBufferHardware-accelerated
offscreen

Ensuring a Specific Type of Renderer 81
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Techniques for Choosing Attributes

Ensuring a Single Renderer for a Display

In some cases you may want to use a specific hardware renderer and nothing else. Since the OpenGL framework
normally provides a software renderer as a fallback in addition to whatever hardware renderer it chooses,
you need to prevent OpenGL from choosing the software renderer as an option. You either need to specify
the no recovery attribute for a windowed drawable object or use a full-screen drawable object. (The full-screen
attribute always implies not to use the software renderer as an option.)

Limiting a context to use a specific display, and thus a single renderer, has its risks. If your application runs
on a system that uses more than one display, then dragging a windowed drawable object from one display
to the other will likely yield a less than satisfactory result. Either the rendering will fail, or OpenGL uses the
specified renderer to copy the drawing to the second display. The same unsatisfactory result happens when
attaching a full-screen context to another display. If you choose to use the hardware renderer associated
with a specific display, you need to add code that detects and handles display changes.

The three code examples that follow show how to use each of the Apple-specific OpenGL APIs to set up a
context that uses a single renderer. Listing 7-2 shows how to set up an NSOpenGLPixelFormat object that
supports a single renderer. The attribute NSOpenGLPFANoRecovery specifies to OpenGL not to provide the
fallback option of the software renderer.

Listing 7-2 Setting an NSOpenGLContext object to use a specific display

#import <Cocoa/Cocoa.h>
+ (NSOpenGLPixelFormat*)defaultPixelFormat
{
 NSOpenGLPixelFormatAttribute attributes [] = {
 NSOpenGLPFAScreenMask, 0,
 NSOpenGLPFANoRecovery,
 NSOpenGLPFADoubleBuffer,
 (NSOpenGLPixelFormatAttribute)nil };
CGDirectDisplayID display = CGMainDisplayID ();
// Adds the display mask attrib for selected display
attributes[1] = (NSOpenGLPixelFormatAttribute)
 CGDisplayIDToOpenGLDisplayMask (display);
return [[(NSOpenGLPixelFormat *)[NSOpenGLPixelFormat alloc]
initWithAttributes:attributes]
 autorelease];
}

Listing 7-3 shows how to use AGL to set up a context that uses a single renderer. The attribute
AGL_NO_RECOVERY specifies to OpenGL not to provide the fallback option of the software renderer.

Listing 7-3 Setting an AGL context to use a specific display

#include <AGL/agl.h>
GLint attrib[] = {AGL_RGBA, AGL_DOUBLEBUFFER, AGL_NO_RECOVERY, AGL_NONE};
GDHandle display = GetMainDevice ();
AGLPixelFormat aglPixFmt = aglChoosePixelFormat (&display, 1, attrib);

Listing 7-4 shows how to use CGL to set up a context that uses a single renderer. The attribute
kCGLPFAFullScreen ensures that OpenGL does not provide the fallback option of the software renderer.

82 Ensuring a Single Renderer for a Display
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Techniques for Choosing Attributes

Listing 7-4 Setting a CGL context to use a specific display

#include <OpenGL/OpenGL.h>
CGLPixelFormatAttribute attribs[] = { kCGLPFADisplayMask, 0,
 kCGLPFAFullScreen,
 kCGLPFADoubleBuffer,
 0 };
CGLPixelFormatObj pixelFormat = NULL;
long numPixelFormats = 0;
CGLContextObj cglContext = NULL;
CGDirectDisplayID display = CGMainDisplayID ();
// Adds the display mask attrib for selected display
attribs[1] = CGDisplayIDToOpenGLDisplayMask (display);
CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats);

See Also

Reference documentation for buffer and renderer attributes in the Constants sections of:

 ■ AGL Reference

 ■ CGL Reference

 ■ NSOpenGLPixelFormat Class Reference

See Also 83
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Techniques for Choosing Attributes

84 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Techniques for Choosing Attributes

Complex shapes and detailed 3D models require large amounts of vertex data to describe them in OpenGL.
Moving vertex data from your application to the graphics hardware incurs a performance cost that can be
quite large depending on the size of the data set. Applications that use large vertex data sets can adopt one
or more strategies to optimize how the data flows to OpenGL.

Figure 8-1 Vertex data sets can be quite large

This chapter provides best practices for working with vertex data, describes how to use extensions to optimize
performance, shows how to use a fence command to test for completion of OpenGL commands, and discusses
how to set up double buffers.

Best Practices for Working with Vertex Data

Understanding how vertex data flows through an OpenGL program is important to choosing strategies for
handling the data. Vertex data can travel through OpenGL in two ways, as shown in Figure 8-2. The first way,
from vertex data to per-vertex operations, is as part of an OpenGL command sequence that is issued by the
application and executed immediately (immediate mode). The second is packaged as a named display list
that can be preprocessed ahead of time and used later in the program.

Best Practices for Working with Vertex Data 85
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

Figure 8-2 Vertex data path

Display lists Rasterization Per-fragment
operations

Per-pixel
operations

Texture
assembly

Framebuffer

Per-vertex
operations

Vertex data

Pixel data

Figure 8-3 provides a closer look at the vertex data path when using immediate mode. Without any
optimizations, your vertex data can be copied at various points in the data path. OpenGL is required to
capture the current vertex state when you use immediate mode. If your code uses functions that operate on
vertex arrays, you can eliminate the command buffer copy shown in Figure 8-3. The OpenGL commands
glDrawRangeElements, glDrawElements, and glDrawArrays render multiple geometric primitives from
array data, using very few subroutine calls. It's best to use glDrawRangeElements, with glDrawElements
the second choice, and glDrawArrays the third.

Figure 8-3 Immediate mode requires a copy of the current vertex data

GPU

VRAM

Copy

Copy

Original

Command buffer

Current vertex

Application

In addition to using functions that operate on vertex arrays, there are a number of other strategies that you
can adopt to optimize the flow of vertex data in your application:

 ■ Minimize data type conversions by supplying OpenGL data types for vertex data. Use GLfloat, GLshort,
or GLubyte data types because most graphics processors handle these types natively. If you use some
other type, then OpenGL may need to perform a costly data conversion.

86 Best Practices for Working with Vertex Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

 ■ The most desirable way to handle vertex data is to use the GL_APPLE_vertex_array_range or
GL_ARB_vertex_buffer_object extensions. (See “Using Extensions to Improve Performance” (page
87).) If you can't use these extensions, then make sure you use vertex arrays and display lists. Avoid
using immediate mode. But if your code must use immediate mode, maximize the number of vertices
per draw command or within a begin-end code block.

 ■ Use vertex programs to perform computations on vertex data instead of using the CPU to perform the
computations.

 ■ If your code must use immediate mode, use CGL macros (for Cocoa or Carbon) or AGL macros (Carbon
only). Macros use the function call dispatch table directly, which can dramatically reduce function call
overhead. See “Use OpenGL Macros” (page 125).

Using Extensions to Improve Performance

The vertex array range (GL_APPLE_vertex_array_range) and vertex buffer object
(GL_ARB_vertex_buffer_object) extensions were created to help streamline the vertex data path.
Although both can improve application performance, the vertex buffer object extension should be your first
choice and the vertex array range extension your second. The vertex array range extension provides the GPU
with direct access to your data. When your data is dynamic, the burden is on your application to synchronize
access to that data. Vertex buffer objects, on the other hand, don't require your application to synchronize
data access, which is the primary reason why they are preferred. You'll read more about each extension in
the sections that follow.

For dynamic vertex array data, these extensions set up DMA from the application to the GPU, as shown in
Figure 8-4. Notice that copies of the vertex data are not maintained in VRAM. This means that each time the
data is drawn, it gets moved from the application to the GPU. It's important to ensure that this happens
asynchronously.

Figure 8-4 Extensions allow dynamic data to use DMA

GPU

VRAM

Command buffer

Current vertex

Application Original

For static vertex data, you can use these extensions to cache the data in VRAM, which allows the data to
utilize the full bandwidth of the graphics processor bus, as shown in Figure 8-5. Data needs to be copied to
VRAM only once.

Using Extensions to Improve Performance 87
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

Figure 8-5 Extensions allow static vertex data to use VRAM storage

GPU

VRAM

Command buffer

Current vertex

Application

Copy

Original

The next sections describe these extensions in more detail as well as the Apple fence extension
(GL_APPLE_fence), which is used to synchronize drawing commands.

Vertex Array Range Extension

The vertex array range extension (APPLE_vertex_array_range) lets you define a region of memory for
your vertex data. This allows the OpenGL driver to optimize memory usage by creating a single memory
mapping for your vertex data. You can also provide a hint as to how the data should be stored: cached or
shared. The cached option specifies to cache vertex data in video memory. The shared option indicates that
data should be mapped into a region of memory that allows the GPU to access the vertex data directly using
DMA transfer. This option is best for dynamic data. If you use shared memory, you'll need to double buffer
your data. See “Double Buffering Vertex Data” (page 93).

You can set up and use the vertex array range extension by following these steps:

1. Enable the extension by calling glEnableClientState and supplying the
GL_VERTEX_ARRAY_RANGE_APPLE constant.

2. Allocate storage for the vertex data. You are responsible for maintaining storage for the data.

3. Define an array of vertex data by calling a function such as glVertexPointer. You need to supply a
pointer to your data.

4. Optionally set up a hint about handling the storage of the array data by calling the function
glVertexArrayParameteriAPPLE.

GLvoid glVertexArrayParameteriAPPLE(GLenum pname, GLint param);

pname must be VERTEX_ARRAY_STORAGE_HINT_APPLE.

param is a hint that specifies how your application expects to use the data. OpenGL uses this hint to
optimize performance. You can supply either STORAGE_SHARED_APPLE or STORAGE_CACHED_APPLE.
The default value is STORAGE_SHARED_APPLE, which indicates that the vertex data is dynamic and that
OpenGL should use optimization and flushing techniques suitable for this kind of data. If you expect the
data to be static supply, STORAGE_CACHED_APPLE so that OpenGL uses VRAM caching and other
techniques to optimize memory bandwidth.

88 Using Extensions to Improve Performance
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

5. Call the OpenGL function glVertexArrayRangeAPPLE to establish the data set.

void glVertexArrayRangeAPPLE(GLsizei length, GLvoid *pointer);

length specifies the length of the vertex array range. The length is typically the number of unsigned
bytes.

*pointer points to the base of the vertex array range.

6. Draw with the vertex data using standard OpenGL vertex array commands.

7. Call glFlushVertexArrayRangeAPPLE.

void glFlushVertexArrayRangeAPPLE(GLsizei length, GLvoid *pointer);

length specifies the length of the vertex array range, in bytes.

*pointer points to the base of the vertex array range.

For dynamic data, each time you change the data, you need to maintain synchronicity by calling
glFlushVertexArrayRangeAPPLE. You supply as parameters an array size and a pointer to an array,
which can be a subset of the data, as long as it includes all of the data that changed. Contrary to the
name of the function, glFlushVertexArrayRangeAPPLE doesn't actually flush data like the OpenGL
function glFlush does. It simply makes OpenGL aware that the data has changed.

To make sure that your data is fully coherent, in addition to calling glFlushVertexArrayRangeAPPLE
after drawing and prior to modifying the data, you need either to call glFinish or to set up a fence.
The APPLE_fence extension lets you set up selective synchronization. See “Fence Extension” (page 92)
and “Double Buffering Vertex Data” (page 93).

Listing 8-1 shows code that sets up and uses the vertex array range extension with dynamic data. It overwrites
all of the vertex data during each iteration through the drawing loop. The call to the glFinishFenceAPPLE
command guarantees that the CPU and the GPU don't access the data at the same time. Although this
example calls the glFinishFenceAPPLE function almost immediately after setting the fence, in reality you
need to separate these calls to allow parallel operation of the GPU and CPU. To see how that's done, read
“Double Buffering Vertex Data” (page 93).

Listing 8-1 Using the vertex array range extension with dynamic data

// To set up the vertex array range extension
glVertexArrayParameteriAPPLE(GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
GL_STORAGE_SHARED_APPLE);
glVertexArrayRangeAPPLE(buffer_size, my_vertex_pointer);
glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, my_vertex_pointer);
glSetFenceAPPLE(my_fence);

// When you want to draw using the vertex data
draw_loop {
 glFinishFenceAPPLE(my_fence);
 GenerateMyDynamicVertexData(my_vertex_pointer);
 glFlushVertexArrayRangeAPPLE(buffer_size, my_vertex_pointer);
 PerformDrawing();
 glSetFenceAPPLE(my_fence);

Using Extensions to Improve Performance 89
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

}

Listing 8-2 shows code that uses the vertex array range extension with static data. Unlike the setup for
dynamic data, the setup for static data includes using the hint for cached data. Because the data is static, it's
unnecessary to set a fence.

Listing 8-2 Using the vertex array range extension with static data

// To set up the vertex array range extension
GenerateMyStaticVertexData(my_vertex_pointer);
glVertexArrayParameteriAPPLE(GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
GL_STORAGE_CACHED_APPLE);
glVertexArrayRangeAPPLE(array_size, my_vertex_pointer);
glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, my_vertex_pointer);

// When you want to draw using the vertex data
draw_loop {
 PerformDrawing();
}

For detailed information on this extension, see the OpenGL specification for the vertex array range extension.

Vertex Buffer Object Extension

The vertex buffer object extension (GL_ARB_vertex_buffer_object) can be used along with vertex arrays
to improve the throughput of static or dynamic vertex data in your application. A buffer object is a chunk of
memory. You can read and write directly to this memory using OpenGL calls such as glBufferData,
glBufferSubData, and glGetBufferSubData or you can access memory through a pointer, an operation
referred to as mapping a buffer.

You can set up and use the vertex buffer object extension by following these steps:

1. Call the function glBindBufferARB to bind an unused name to a buffer object. After this call, the newly
created buffer object is initialized with a memory buffer of size zero and a default state. (For the default
setting, see the OpenGL specification for ARB_vertex_buffer_object.)

void glBindBufferARB(GLenum target, GLuint buffer);

target must be set to GL_ARRAY_BUFFER_ARB.

buffer specifies the unique name for the buffer object.

2. So that you can use vertex arrays with the vertex buffer object, enable the vertex array by calling
glEnableClientState and supplying the GL_VERTEX_ARRAY constant.

3. Define an array of vertex data by calling a function such as glVertexPointer. You need to supply an
offset into your data buffer.

4. Create and initialize the data store of the buffer object by calling the function glBufferDataARB.
Essentially, this call uploads your data to the GPU.

void glBufferDataARB(GLenum target, sizeiptrARB size,

90 Using Extensions to Improve Performance
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

http://oss.sgi.com/projects/ogl-sample/registry/APPLE/vertex_array_range.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt

 const GLvoid *data, GLenum usage);

target must be set to GL_ARRAY_BUFFER_ARB.

size specifies the size of the data store.

*data points to the source data. If this is not NULL, the source data is copied to the data store of the
buffer object. If NULL, the contents of the data store are undefined.

usage is a constant that provides a hint as to how your application plans to use the data store. You can
supply any of nine constants defined by the OpenGL specification. OpenGL uses the hint to optimize
performance, not to constrain your use of the data. You'll see two of these constants in the examples
that follow: GL_STREAM_DRAW_ARB, which indicates that the application plans to draw with the data
repeatedly and to modify the data, and GL_STATIC_DRAW_ARB, which indicates that the application
will define the data once but use it to draw many times.

5. Map the data store of the buffer object to your application address space by calling the function
glMapBufferARB.

void *glMapBufferARB(GLenum target, GLenum access);

target must be set to GL_ARRAY_BUFFER_ARB.

access indicates the operations you plan to perform on the data. You can supply READ_ONLY_ARB,
WRITE_ONLY_ARB, or READ_WRITE_ARB.

6. Write the vertex data to its destination.

7. When you no longer need the vertex data, call the function glUnmapBufferARB. You must supply
GL_ARRAY_BUFFER_ARB as the parameter to this function.

Listing 8-3 shows code that uses the vertex buffer object extension for dynamic data. This example overwrites
all of the vertex data during every draw operation.

Listing 8-3 Using the vertex buffer object extension with dynamic data

// To set up the vertex buffer object extension
#define BUFFER_OFFSET(i) ((char*)NULL + (i))
glBindBufferARB(GL_ARRAY_BUFFER_ARB, myBufferName);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, BUFFER_OFFSET(0));

// When you want to draw using the vertex data
draw_loop {
 glBufferDataARB(GL_ARRAY_BUFFER_ARB, bufferSize, NULL, GL_STREAM_DRAW_ARB);
 my_vertex_pointer = glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
 GenerateMyDynamicVertexData(my_vertex_pointer);
 glUnmapBufferARB(GL_ARRAY_BUFFER_ARB);
 PerformDrawing();
}

Listing 8-4 shows codes that uses the vertex buffer object extension with static data.

Using Extensions to Improve Performance 91
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

Listing 8-4 Using the vertex buffer object extension with static data

// To set up the vertex buffer object extension
#define BUFFER_OFFSET(i) ((char*)NULL + (i))
glBindBufferARB(GL_ARRAY_BUFFER_ARB, myBufferName);
glBufferDataARB(GL_ARRAY_BUFFER_ARB, bufferSize, NULL, GL_STATIC_DRAW_ARB);
GLvoid* my_vertex_pointer = glMapBufferARB(GL_ARRAY_BUFFER_ARB,
GL_WRITE_ONLY_ARB);
GenerateMyStaticVertexData(my_vertex_pointer);
glUnmapBufferARB(GL_ARRAY_BUFFER_ARB);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, BUFFER_OFFSET(0));

// When you want to draw using the vertex data
draw_loop {
 PerformDrawing();
}

For detailed information on this extension, see the OpenGL specification for the vertex buffer object extension.

Fence Extension

The fence extension (APPLE_fence) is designed to synchronize drawing commands with modifications that
you make to vertex data. A fence is a token used to mark the current point in the command stream. When
used correctly, it allows you to ensure that drawing with a range of vertex array data (whether it's the entire
set or a subset) is complete before you modify the data. When you use the fence you must synchronize the
data.

This extension was created because the OpenGL commands glFlush and glFinish don't offer the level
of granularity that is often needed to synchronize drawing and data modifications. A fence can help you
coordinate activity between the CPU and the GPU when they are using the same resources. You'll want to
use a fence when you are using the vertex array range extension for dynamic data. You do not need to use
a fence for vertex buffer objects, but you do need to use a fence when you use the vertex array range extension
and the shared memory hint.

Follow these steps to set up and use a fence:

1. Set up the fence by calling the function glSetFenceApple. This function inserts a token into the
command stream and sets the fence state to false.

void glSetFenceAPPLE(GLuint fence);

fence specifies the token to insert. For example:

GLint myFence = 1;
glSetFenceAPPLE(myFence);

2. Wait for all OpenGL commands issued prior to the fence to complete by calling the function
glFinishFenceApple.

void glFinishFenceAPPLE(GLuint fence);

fence specifies the token that was inserted previously. For example:

92 Using Extensions to Improve Performance
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt

glFinishFenceAPPLE(myFence);

There is an art to determining where to insert a fence in the command stream. If you insert a fence for too
few drawing commands, you risk having your application stall while it waits for drawing to complete. You'll
want to set a fence so your application operates as asynchronously as possible without stalling.

The fence extension also lets you synchronize buffer updates for objects such as vertex arrays and textures.
For that you call the function glFinishObjectAPPLE, supplying an object name along with the token.

For detailed information on this extension, see the OpenGL specification for the Apple fence extension.

Double Buffering Vertex Data

When you use the vertex array range extension and the shared memory hint, the GPU reads data directly
from memory managed by your application. To avoid having the GPU and your application access the data
at the same time, you'll need to synchronize access. A simple approach is for your application to operate on
the vertex array data, flush it to the GPU, and wait until the GPU is finished before working on the data again.
This is what Figure 8-6 shows.

To ensure that the GPU is finished executing commands before the CPU sends more data, you can insert a
token into the command stream and use that to determine when the CPU can touch the data again, as
described in “Fence Extension” (page 92). Figure 8-6 uses the fence extension command glFinishObject
to synchronize buffer updates. Notice that when the CPU is processing data, the GPU is waiting. Similarly,
when the GPU is processing data, the CPU is waiting. In other words, the application executes synchronously.
A more efficient way is for the application to double buffer your data so that you can use the waiting time
to process more data.

Figure 8-6 Single-buffered vertex array data

CPU

GPU

Vertex array 1 Vertex array 1

Vertex array 1 Vertex array 1

glFlush glFlush

glFinishObject(..., 1) glFinishObject(..., 1)

TIME Frame 1 Frame 2

To double buffer your data, you must supply two sets of data to work on. Notice in Figure 8-7 that while the
GPU is operating on one set of vertex array data, the CPU is processing the next. After the initial startup,
neither processing unit is idle. Using the glFinishObject function provided by the fence extension, as
shown, ensures that buffer updates are synchronized

Double Buffering Vertex Data 93
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

http://oss.sgi.com/projects/ogl-sample/registry/APPLE/fence.txt

Figure 8-7 Double-buffered vertex array data

CPU Vertex array 1 Vertex array 1

GPU Vertex array 1 Vertex array 1

Vertex array 2 Vertex array 2

Vertex array 2 Vertex array 2

glFlush glFlush glFlush glFlush

glFinishObject(..., 1) glFinishObject(..., 1)

glFinishObject(..., 2) glFinishObject(..., 2)

TIME Frame 2Frame 1 Frame 3 Frame 4

See Also

OpenGL extension specifications:

 ■ APPLE_vertex_array_range

 ■ ARB_vertex_buffer_object

 ■ APPLE_fence

OpenGL sample code projects (Sample Code > Graphics & Imaging > OpenGL):

 ■ Vertex Optimization demonstrates different ways to optimize vertex programs.

 ■ VertexPerformanceTest shows slow and fast vertex data paths.

 ■ VertexPerformanceDemo measures triangle throughput and compares different coding methods.

94 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Techniques for Working with Vertex Data

http://oss.sgi.com/projects/ogl-sample/registry/APPLE/vertex_array_range.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/APPLE/fence.txt

Textures add realism to OpenGL objects. They are what makes the objects defined by vertex data take on
the material properties of real-world objects, such as wood, brick, metal, and fur. Texture data can originate
from many sources, including images. As with vertex data, there are a variety of techniques you can use to
minimize the number of times texture data is copied and converted as it's moved throughout the system.

Figure 9-1 Textures add realism to a scene

Textures start as pixel data that flows through an OpenGL program, as shown in Figure 9-2. As with vertex
data you can supply pixel data in two ways. The first way, from pixel data to per-pixel operations, is as part
of an OpenGL command sequence that is issued by the application and executed immediately (immediate
mode). The second is packaged as a named display list that can be preprocessed ahead of time and used
later in the program.

95
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Figure 9-2 Texture data path

Rasterization Per-fragment
operations

Per-pixel
operations

Framebuffer

Per-vertex
operations

Vertex data

Display lists

Per-pixel
operations

Pixel data

Texture
assembly

The precise route that texture data takes from your application to its final destination can impact the
performance of your application. The purpose of this chapter is to provide techniques you can use to ensure
optimal processing of texture data in your application. This chapter

 ■ shows how to use OpenGL extensions to optimize performance

 ■ lists optimal data formats and types

 ■ provides information on working with textures whose dimensions are not a power of two

 ■ describes creating textures from image data

 ■ shows how to download textures

 ■ discusses using double buffers for texture data

Using Extensions to Optimize

Without any optimizations, texture data flows through an OpenGL program as shown in Figure 9-3. Data
from your application first goes to the OpenGL framework, which may make a copy of the data before handing
it to the driver. If your data is not in a native format for the hardware (see “Optimal Data Formats and
Types” (page 101)), the driver may also make a copy of the data to convert it to a hardware-specific format
for uploading to video memory. Video memory, in turn, can keep a copy of the data. Theoretically, there
could be four copies of your texture data throughout the system.

96 Using Extensions to Optimize
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Figure 9-3 Data copies in an OpenGL program

GPU

VRAM

OpenGL driver

OpenGL framework

Application

Data flows at different rates through the system, as shown by the size of the arrows in Figure 9-3. The fastest
data transfer happens between VRAM and the GPU. The slowest transfer occurs between the OpenGL driver
and VRAM. Data moves between the application and the OpenGL framework, and between the framework
and the driver at the same "medium" rate. Eliminating any of the data transfers, but the slowest one in
particular, will improve application performance.

There are several extensions you can use to eliminate one or more data copies and control how texture data
travels from your application to the GPU:

 ■ GL_APPLE_client_storage

 ■ GL_APPLE_texture_range along with a storage hint, either GL_STORAGE_CACHED_APPLE or
GL_STORAGE_SHARED_APPLE

 ■ GL_ARB_texture_rectangle

The sections that follow describe the extensions and show how to use them.

Apple Client Storage

The Apple client storage extension (APPLE_client_storage) lets you provide OpenGL with a pointer to
memory that your application allocates and maintains. OpenGL retains a pointer to your data but does not
copy the data. Because OpenGL references your data, this extension requires that you retain a copy of your
texture data until it is no longer needed. By using this extension you can eliminate the OpenGL framework
copy as shown in Figure 9-4. Note that a texture width must be a multiple of 32 bytes for OpenGL to bypass
the copy operation from the application to the OpenGL framework.

Using Extensions to Optimize 97
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Figure 9-4 The client storage extension eliminates a data copy

GPU

VRAM

OpenGL driver

OpenGL framework

Application

The Apple client storage extension defines a pixel storage parameter, GL_UNPACK_CLIENT_STORAGE_APPLE,
that you pass to the OpenGL function glPixelStorei to specify that your application retains storage for
textures. The following code sets up client storage:

glPixelStorei(GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);

For detailed information, see the OpenGL specification for the Apple client storage extension.

Apple Texture Range and Rectangle Texture

The Apple texture range extension (APPLE_texture_range) lets you define a region of memory used for
texture data. Typically you specify an address range that encompasses the storage for a set of textures. This
allows the OpenGL driver to optimize memory usage by creating a single memory mapping for all of the
textures. You can also provide a hint as to how the data should be stored: cached or shared. The cached hint
specifies to cache texture data in video memory. This hint is recommended when you have textures that you
plan to use multiple times or that use linear filtering. The shared hint indicates that data should be mapped
into a region of memory that enables the GPU to access the texture data directly (via DMA) without the need
to copy it. This hint is best when you are using large images only once, perform nearest-neighbor filtering,
or need to scale down the size of an image.

The texture range extension defines the following routine for making a single memory mapping for all of
the textures used by your application:

void glTextureRangeAPPLE(GLenum target, GLsizei length, GLvoid *pointer);

target is a valid texture target, such as GL_TEXTURE_2D.

length specifies the number of bytes in the address space referred to by the pointer parameter.

*pointer points to the address space that your application provides for texture storage.

You provide the hint parameter and a parameter value to to the OpenGL function glTexParameteri. The
possible values for the storage hint parameter (GL_TEXTURE_STORAGE_HINT_APPLE) are
GL_STORAGE_CACHED_APPLE or GL_STORAGE_SHARED_APPLE.

98 Using Extensions to Optimize
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

http://oss.sgi.com/projects/ogl-sample/registry/APPLE/client_storage.txt

Some hardware requires texture dimensions to be a power-of-two before the hardware can upload the data
using DMA. The rectangle texture extension (ARB_texture_rectangle) was introduced to allow texture
targets for textures of any dimensions—that is, rectangle textures (GL_TEXTURE_RECTANGLE_ARB). You
need to use the rectangle texture extension together with the Apple texture range extension to ensure
OpenGL uses DMA to access your texture data. These extensions allow you to bypass the OpenGL driver, as
shown in Figure 9-5.

Note that OpenGL does not use DMA for a power-of-two texture target (GL_TEXTURE_2D). So, unlike the
rectangular texture, the power-of-two texture will incur one additional copy and performance won't be quite
as fast. The performance typically isn't an issue because games, which are the applications most likely to use
power-of-two textures, load textures at the start of a game or level and don't upload textures in real time as
often as applications that use rectangular textures, which usually play video or display images.

The next section has code examples that use the texture range and rectangle textures together with the
Apple client storage extension.

Figure 9-5 The texture range extension eliminates a data copy

GPU

VRAM

OpenGL driver

OpenGL framework

Application

For detailed information on these extensions, see the OpenGL specification for the Apple texture range ex-
tension and the OpenGL specification for the ARB texture rectangle extension.

Combining Extensions

You can use the Apple client storage extension along with the Apple texture range extension to streamline
the texture data path in your application. When used together, OpenGL moves texture data directly into
video memory, as shown in Figure 9-6. The GPU directly accesses your data (via DMA). The set up is slightly
different for rectangular and power-of-two textures. The code examples in this section upload textures to
the GPU. You can also use these extensions to download textures, see “Downloading Texture Data” (page
107).

Using Extensions to Optimize 99
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

http://developer.apple.com/graphicsimaging/opengl/extensions/apple_texture_range.html
http://developer.apple.com/graphicsimaging/opengl/extensions/apple_texture_range.html
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_rectangle.txt

Figure 9-6 Combining extensions to eliminate data copies

GPU

VRAM

OpenGL driver

OpenGL framework

Application

Listing 9-1 shows how to use the extensions for a rectangular texture. After enabling the texture rectangle
extension you need to bind the rectangular texture to a target. Next, set up the storage hint. Call
glPixelStorei to set up the Apple client storage extension. Finally, call the function glTexImage2D with
a with a rectangular texture target and a pointer to your texture data.

Note: The texture rectangle extension limits what can be done with rectangular textures. To understand
the limitations in detail, read the OpenGL extension for texture rectangles. See “Working with
Non–Power-of-Two Textures” (page 101) for an overview of the limitations and an alternative to using this
extension.

Listing 9-1 Using texture extensions for a rectangular texture

glEnable (GL_TEXTURE_RECTANGLE_ARB);
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, id);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,
 GL_TEXTURE_STORAGE_HINT_APPLE,
 GL_STORAGE_CACHED_APPLE);
glPixelStorei(GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB,
 0, GL_RGBA, sizex, sizey, GL_BGRA,
 GL_UNSIGNED_INT_8_8_8_8_REV,
 myImagePtr);

Setting up a power-of-two texture to use these extensions is similar to what's needed to set up a rectangular
texture, as you can see by looking at Listing 9-2. The difference is that the GL_TEXTURE_2D texture target
replaces the GL_TEXTURE_RECTANGLE_ARB texture target.

Listing 9-2 Using texture extensions for a power-of-two texture

glBindTexture(GL_TEXTURE_2D, myTextureName);

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_STORAGE_HINT_APPLE,
 GL_STORAGE_CACHED_APPLE);

glPixelStorei(GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);

100 Using Extensions to Optimize
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_rectangle.txt

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
 sizex, sizey, GL_BGRA,
 GL_UNSIGNED_INT_8_8_8_8_REV, myImagePtr);

Optimal Data Formats and Types

The best format and data type combinations to use for texture data are:

GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV
GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV)
GL_YCBCR_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE

The combination GL_RGBA and GL_UNSIGNED_BYTE needs to be swizzled by many cards when the data is
loaded, so it's not recommended.

Working with Non–Power-of-Two Textures

With more and more frequency, OpenGL is being used to process video and images, which typically have
dimensions that are not a power-of-two. Until OpenGL 2.0, the texture rectangle extension
(ARB_texture_rectangle) provided the only option for a rectangular texture target. This extension,
however, imposes the following restrictions on rectangular textures:

 ■ You can't use mipmap filtering with them.

 ■ You can use only these wrap modes: GL_CLAMP, GL_CLAMP_TO_EDGE, and GL_CLAMP_TO_BORDER.

 ■ The texture cannot have a border.

 ■ The texture uses non-normalized texture coordinates. (See Figure 9-7.)

OpenGL 2.0 adds another option for a rectangular texture target through the
ARB_texture_non_power_of_two extension, which supports these textures without the limitations of the
ARB_texture_rectangle extension. Before using it, you must check to make sure the functionality is
available. You'll also want to consult the OpenGL specification for the non—power-of-two extension.

Figure 9-7 Normalized and non-normalized coordinates

Normalized Non-normalized

0 1

1

0 Width

Height

Optimal Data Formats and Types 101
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_non_power_of_two.txt

If your code runs on a system that does not support either the ARB_texture_rectangle or
ARB_texture_non_power_of_two extensions you have these options for working with with rectangular
images:

 ■ Use the OpenGL function gluScaleImage to scale the image so that it fits in a rectangle whose
dimensions are a power of two. The image undoes the scaling effect when you draw the image from
the properly sized rectangle back into a polygon that has the correct aspect ratio for the image.

Note: This option can result in the loss of some data. But if your application runs on hardware that
doesn't support the ARB_texture_rectangle extension, you may need to use this option.

 ■ Segment the image into power-of-two rectangles, as shown in Figure 9-8 by using one image buffer
and different texture pointers. Notice how the sides and corners of the image shown in Figure 9-8 are
segmented into increasingly smaller rectangles to ensure that every rectangle has dimensions that are
a power of two. Special care may be needed at the borders between each segment to avoid filtering
artifacts if the texture is scaled or rotated.

TheOpenGL Image sample application available on Sample Code > Graphics & Imaging > OpenGL contains
segmentation code and demonstrates other OpenGL features that support high-performance image
display.

Figure 9-8 An image segmented into power-of-two tiles

102 Working with Non–Power-of-Two Textures
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Creating Textures from Image Data

OpenGL on the Macintosh provides several options for creating high-quality textures from image data. Mac
OS X supports floating-point pixel values, multiple image file formats, and a variety of color spaces. You can
import a floating-point image into a floating-point texture. Figure 9-9 shows an image used to texture a
cube.

Figure 9-9 Using an image as a texture for a cube

For Cocoa, you need to provide a bitmap representation. You can create an NSBitmapImageRep object from
the contents of an NSView object. For either Cocoa or Carbon, you can use the Image I/O framework (see
CGImageSource Reference). This framework has support for many different file formats, floating-point data,
and a variety of color spaces. Furthermore, it is easy to use. You can import image data as a texture simply
by supplying a CFURL object that specifies the location of the texture. There is no need for you to convert
the image to an intermediate integer RGB format.

Creating a Texture from a Cocoa View

You can use the NSView class or a subclass of it for texturing in OpenGL. The process is to first store the
image data from an NSView object in an NSBitmapImageRep object so that the image data is in a format
that can be readily used as texture data by OpenGL. Then, after setting up the texture target, you supply the
bitmap data to the OpenGL function glTexImage2D. Note that you must have a valid, current OpenGL
context set up.

Creating Textures from Image Data 103
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Note: You can't create an OpenGL texture from image data that's provided by a view created from the
following classes: NSProgressIndicator, NSMovieView, and NSOpenGLView. This is because these views
do not use the window backing store, which is what the method initWithFocusedViewRect: reads from.

Listing 9-3 shows a routine that uses this process to create a texture from the contents of an NSView object.
A detailed explanation for each numbered line of code appears following the listing.

Listing 9-3 Building an OpenGL texture from an NSView object

-(void)myTextureFromView:(NSView*)theView
 textureName:(GLuint*)texName
{

// 1 NSBitmapImageRep * bitmap = [NSBitmapImageRep alloc];
 int samplesPerPixel = 0;

// 2 [theView lockFocus];
// 3 [bitmap initWithFocusedViewRect:[theView bounds]];

 [theView unlockFocus];
// 4 glPixelStorei(GL_UNPACK_ROW_LENGTH, [bitmap pixelsWide]);
// 5 glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
// 6 if (*texName == 0)

 glGenTextures (1, texName);
// 7 glBindTexture (GL_TEXTURE_RECTANGLE_ARB, *texName);

 glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,
// 8 GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// 9 samplesPerPixel = [bitmap samplesPerPixel];

 if(![bitmap isPlanar] &&
// 10 (samplesPerPixel == 3 || samplesPerPixel == 4)) {

 glTexImage2D(GL_TEXTURE_RECTANGLE_ARB,
 0,
 samplesPerPixel == 4 ? GL_RGBA8 : GL_RGB8,
 [bitmap pixelsWide],
 [bitmap pixelsHigh],
 0,
 samplesPerPixel == 4 ? GL_RGBA : GL_RGB,
 GL_UNSIGNED_BYTE,
 [bitmap bitmapData]);
 } else {
 // Your code to report unsupported bitmap data
 }

// 11 [bitmap release];
}

Here's what the code does:

1. Allocates an NSBitmapImageRep object.

2. Locks the focus on the the NSView object so that subsequent commands take effect in coordinate system
of the NSView object. You must invoke lockFocus before invoking methods that send commands to
the window server, which is the case with the next line of code. Later, you must balance a lockFocus
message with an unlockFocus message.

3. Initializes the NSBitmapImageRep object with bitmap data from the current view using the bounds
returned by the NSView object passed to the myTextureFromView:textureName routine.

104 Creating Textures from Image Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

4. Sets the appropriate unpacking row length for the bitmap.

5. Sets the byte-aligned unpacking that's needed for bitmaps that are 3 bytes per pixel.

6. If a texture object is not passed in, generates a new texture object.

7. Binds the texture name to the texture target.

8. Sets filtering so that it does not use a mipmap, which would be redundant for the texture rectangle
extension.

9. Gets the number of samples per pixel.

10. Checks to see if the bitmap is nonplanar and is either a 24-bit RGB bitmap or a 32-bit RGBA bitmap. If
so, retrieves the pixel data using the bitmapData method, passing it along with other appropriate
parameters to the OpenGL function for specifying a 2D texture image.

11. Releases the NSBitmapImageRep object when it is no longer needed.

Creating a Texture from a Quartz Image Source

Quartz images (CGImageRef data type) are defined in the Core Graphics framework
(ApplicationServices/CoreGraphics.framework/CGImage.h) while the image source data type for
reading image data and creating Quartz images from an image source is declared in the Image I/O framework
(ApplicationServices/ImageIO.framework/CGImageSource.h). Quartz provides routines that read
a wide variety of image data.

To use a Quartz image as a texture source, follow these steps:

1. Create a Quartz image source by supplying a CFURL object to the function
CGImageSourceCreateWithURL.

2. Create a Quartz image by extracting an image from the image source, using the function
CGImageSourceCreateImageAtIndex.

3. Extract the image dimensions using the function CGImageGetWidth and CGImageGetHeight. You'll
need these to calculate the storage required for the texture.

4. Allocate storage for the texture.

5. Create a color space for the image data.

6. Create a Quartz bitmap graphics context for drawing. Make sure to set up the context for pre-multiplied
alpha.

7. Draw the image to the bitmap context.

8. Release the bitmap context.

9. Set the pixel storage mode by calling the function glPixelStorei.

10. Create and bind the texture.

11. Set up the appropriate texture parameters.

Creating Textures from Image Data 105
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

12. Call glTexImage2D, supplying the image data.

13. Free the image data.

Listing 9-4 shows a code fragment that performs these steps. Note that you must have a valid, current OpenGL
context.

Listing 9-4 Using a Quartz image as a texture source

CGImageSourceRef myImageSourceRef = CGImageSourceCreateWithURL(url, NULL);
CGImageRef myImageRef = CGImageSourceCreateImageAtIndex (myImageSourceRef, 0,
NULL);
GLint myTextureName;
size_t width = CGImageGetWidth(myImageRef);
size_t height = CGImageGetHeight(myImageRef);
CGRect rect = {{0, 0}, {width, height}};
void * myData = calloc(width * 4, height);
CGColorSpaceRef space = CGColorSpaceCreateDeviceRGB();
CGContextRef myBitmapContext = CGBitmapContextCreate (myData,
 width, height, 8,
 width*4, space,
 kCGBitmapByteOrder32Host |
 kCGImageAlphaPremultipliedFirst);
CGContextDrawImage(myBitmapContext, rect, myImageRef);
CGContextRelease(myBitmapContext);
glPixelStorei(GL_UNPACK_ROW_LENGTH, width);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glGenTextures(1, &myTextureName);
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, myTextureName);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB,
 GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA8, width, height,
 0, GL_BGRA_EXT, GL_UNSIGNED_INT_8_8_8_8_REV, myData);
free(myData);

For more information on using Quartz, see Quartz 2D Programming Guide, CGImage Reference, and
CGImageSource Reference.

Getting Decompressed Raw Pixel Data from a Source Image

You can use the Image I/O framework together with a Quartz data provider to obtain decompressed raw
pixel data from a source image, as shown in Listing 9-5. You can then use the pixel data for your OpenGL
texture. The data has the same format as the source image, so you need to make sure that you use a source
image that has the layout you need.

Alpha is not premultiplied for the pixel data obtained in Listing 9-5, but alpha is premultiplied for the pixel
data you get when using the code described in “Creating a Texture from a Cocoa View” (page 103) and
“Creating a Texture from a Quartz Image Source” (page 105).

Listing 9-5 Getting pixel data from a source image

CGImageSourceRef myImageSourceRef = CGImageSourceCreateWithURL(url, NULL);
CGImageRef myImageRef = CGImageSourceCreateImageAtIndex (myImageSourceRef, 0,
NULL);

106 Creating Textures from Image Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

CFDataRef data = CGDataProviderCopyData(CGImageGetDataProvider(myImageRef));
void *pixelData = CFDataGetBytePtr(data);

Downloading Texture Data

A texture download operation uses the same data path as an upload operation except that the data path is
reversed. Downloading transfers texture data, using direct memory access (DMA), from VRAM into a texture
that can then be accessed directly by your application. You can use the Apple client range, texture range,
and texture rectangle extensions for downloading, just as you would for uploading.

To download texture data using the Apple client storage, texture range, and texture rectangle extensions:

 ■ Bind a texture name to a texture target.

 ■ Set up the extensions

 ■ Call the function glCopyTexSubImage2D to copy a texture subimage from the specified window
coordinates. This call initiates an asynchronous DMA transfer to system memory the next time you call
a flush routine. The CPU doesn't wait for this call to complete.

 ■ Call the function glGetTexImage to transfer the texture into system memory. Note that the parameters
must match the ones that you used to set up the texture when you called the function glTexImage2D.
This call is the synchronization point; it waits until the transfer is finished.

Listing 9-6 shows a code fragment that downloads a rectangular texture that uses cached memory. Your
application processes data between the glCopyTexSubImage2D and glGetTexImage calls. How much
processing? Enough so that your application does not need to wait for the GPU.

Listing 9-6 Code that downloads texture data

glBindTexture(GL_TEXTURE_RECTANGLE_ARB, myTextureName);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_STORAGE_HINT_APPLE,
 GL_STORAGE_SHARED_APPLE);
glPixelStorei(GL_UNPACK_CLIENT_STORAGE_APPLE, GL_TRUE);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA,
 sizex, sizey, GL_BGRA,
 GL_UNSIGNED_INT_8_8_8_8_REV, myImagePtr);

glCopyTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB,
 0, 0, 0, 0, 0, image_width, image_height);
glFlush();
// Do other work processing here, using a double or triple buffer

glGetTexImage(GL_TEXTURE_RECTANGLE_ARB, 0, GL_BGRA,
 GL_UNSIGNED_INT_8_8_8_8_REV, pixels);

Downloading Texture Data 107
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Double Buffering Texture Data

When you use any technique that allows the GPU to access your texture data directly, such as the texture
range extension, it's possible for the GPU and CPU to access the data at the same time. To avoid such a
collision, you must synchronize the GPU and the CPU. The simplest way is shown in Figure 9-10. Your
application works on the data, flushes it to the GPU and waits until the GPU is finished before working on
the data again.

One technique for ensuring that the GPU is finished executing commands before your application sends
more data is to insert a token into the command stream and use that to determine when the CPU can touch
the data again, as described in “Fence Extension” (page 92). Figure 9-10 uses the fence extension command
glFinishObject to synchronize buffer updates for a stream of single-buffered texture data. Notice that
when the CPU is processing texture data, the GPU is idle. Similarly, when the GPU is processing texture data,
the CPU is idle. It's much more efficient for the GPU and CPU to work asynchronously than to work
synchronously. Double buffering data is a technique that allows you to process data asynchronously, as
shown in Figure 9-11 (page 109).

Figure 9-10 Single-buffered data

CPU

GPU

glFinishObject(..., 1) glFinishObject(..., 1)

TIME Frame 1 Frame 2

glFlush glFlush

To double buffer data, you must supply two sets of data to work on. Note in Figure 9-11 that while the GPU
is rendering one frame of data, the CPU processes the next. After the initial startup, neither processing unit
is idle. Using the glFinishObject function provided by the fence extension ensures that buffer updating
is synchronized.

108 Double Buffering Texture Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Figure 9-11 Double-buffered data

CPU

GPU

glFinishObject(..., 1) glFinishObject(..., 1)

glFinishObject(..., 2) glFinishObject(..., 2)

TIME Frame 2Frame 1 Frame 3 Frame 4

glFlush glFlush glFlush glFlush

See Also

OpenGL extension specifications:

 ■ APPLE_client_storage

 ■ APPLE_texture_range

 ■ ARB_texture_rectangle

 ■ ARB_texture_non_power_of_two

OpenGL sample code projects (Sample Code > Graphics & Imaging > OpenGL):

 ■ OpenGL Image segments a rectangular image into several power-of-two textures and shows how to use
OpenGL for high performance image display.

 ■ Quartz Composer Texture shows how to use the QCRenderer class to render a Quartz Composer
composition into an OpenGL pixel buffer, create a texture from it, and use the texture in an OpenGL
scene.

 ■ TexturePerformanceDemo provides code that uploads textures using two different ways, one of which is
more optimized than the other.

 ■ TextureRange shows how to use various OpenGL extensions to optimize uploading texture data.

 ■ NSGLImage demonstrates how to use the NSImage and NSBitmapImageRep classes for texturing.

More information on the Quartz API and how to use Quartz:

 ■ CGImageSource Reference describes the CGImageSourceRef data type and the functions that operate
on it.

 ■ CGColorSpace Reference describes the CGColorSpaceRef data type and the functions that operate on
it.

See Also 109
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

http://oss.sgi.com/projects/ogl-sample/registry/APPLE/client_storage.txt
http://developer.apple.com/graphicsimaging/opengl/extensions/apple_texture_range.html
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_rectangle.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_non_power_of_two.txt

 ■ Quartz 2D Programming Guide describes how to write code that uses all the Quartz data types, including
the CGImageSourceRef and CGColorSpaceRef data types.

110 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Techniques for Working with Texture Data

Aliasing is the bane of the digital domain. In the early days of the personal computer, jagged edges and
blocky graphics were accepted by the user simply because not much could be done to correct them. Now
that hardware is faster and displays are higher in resolution, there are several anti-aliasing techniques that
can smooth edges to achieve a more realistic scene.

OpenGL supports anti-aliasing that operates at the level of lines and polygons as well as at the level of the
full scene. This chapter discusses techniques for full scene anti-aliasing (FSAA). The three anti-aliasing
techniques in use today are multisampling, supersampling, and alpha channel blending:

 ■ Multisampling defines a technique for sampling pixel content at multiple locations for each pixel. This
is a good technique to use if you want to smooth polygon edges.

 ■ Supersampling renders at a much higher resolution than what's needed for the display. Prior to drawing
the content to the display, OpenGL scales and filters the content to the appropriate resolution. This is a
good technique to use when you want to smooth texture interiors in addition to polygon edges.

 ■ Alpha channel blending uses the alpha value of a fragment to control how to blend the fragment with
the pixel values that are already in the framebuffer. It's a good technique to use when you want to ensure
that foreground and background images are composited smoothly.

The ARB_multisample extension defines a specification for full scene anti-aliasing. It describes multisampling
and alpha channel sampling. The specification does not specifically mention supersampling but its wording
doesn't preclude supersampling. The anti-aliasing methods that are available depend on the hardware and
the actual implementation depends on the vendor. Some graphics cards support anti-aliasing using a mixture
of multisampling and supersampling. The methodology used to select the samples can vary as well. Your
best approach is to query the renderer to find out exactly what is supported. OpenGL lets you provide a hint
to the renderer as to which anti-aliasing technique you prefer. Hints are available starting in Mac OS X v10.4
as renderer attributes that you supply when you create a pixel format object.

Guidelines

You'll want to keep the following in mind when you set up full scene anti-aliasing:

 ■ Although a system may have enough VRAM to accommodate a multisample buffer, a large buffer can
affect the ability of OpenGL to maintain a properly working texture set. Keep in mind that the buffers
associated with the rendering context—depth and stencil—increase in size by a factor equal to number
of samples per pixel.

 ■ The OpenGL driver allocates the memory needed for the multisample buffer; your application should
not allocate this memory.

 ■ Any anti-aliasing algorithm that operates on the full scene requires a fair amount of computing resources.
In some cases, there is a tradeoff between performance and quality. For that reason, developers sometimes
provide a user interface element that allows the user to enable and disable FSAA, or to choose the level
of quality for anti-aliasing.

Guidelines 111
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Techniques for Scene Anti-Aliasing

 ■ The commands glEnable(GL_MULTISAMPLE) and glDisable(GL_MULTISAMPLE) are ignored on
some hardware because some graphics cards have the feature enabled all the time. That doesn't mean
that you should not call these commands because you'll certainly need them on hardware that doesn't
ignore them.

 ■ A hint as to the variant of sampling you want is a suggestion, not a command. Not all hardware supports
all types of anti-aliasing. Other hardware mixes multisampling with supersampling techniques. The driver
dictates the type of anti-aliasing that's actually used in your application.

 ■ The best way to find out which sample modes are supported is to call the CGL function
CGLDescribeRenderer with the renderer property kCGLRPSampleModes or kCGLRPSampleAlpha.

General Approach

The general approach to setting up full scene anti-aliasing is as follows:

1. Check to see what's supported. Not all hardware is capable of supporting the ARB multisample extension,
so you need to check for this functionality (see “Detecting Functionality” (page 59)).

To find out what type of anti-aliasing a specific renderer supports, call the function
CGLDescribeRenderer. Supply the renderer property kCGLRPSampleModes to find out whether the
renderer supports multisampling and supersampling. Supply kCGLRPSampleAlpha to see whether the
renderer supports alpha sampling.

You can choose to exclude unsupported hardware from the pixel format search by specifying only the
hardware that supports multisample anti-aliasing. Keep in mind that if you exclude unsupported hardware,
the unsupported displays will not render anything. If you instead choose to include unsupported hardware,
OpenGL uses normal aliased rendering to the unsupported displays and multisampled rendering to
supported displays.

2. Include these buffer attributes in the attributes array:

 ■ The appropriate sample buffer attribute constant (NSOpenGLPFASampleBuffers,
AGL_SAMPLE_BUFFERS_ARB, or kCGLPFASampleBuffers) along with the number of multisample
buffers. At this time the specification allows only one multisample buffer.

 ■ The appropriate samples constant (,NSOpenGLPFASamples,AGL_SAMPLES_ARB, orkCGLPFASamples)
along with the number of samples per pixel. You can supply 2, 4, 6, or more depending on what the
renderer supports and the amount of VRAM available. The value that you supply affects the quality,
memory use, and speed of the multisampling operation. For fastest performance, and to use the
least amount of video memory, specify 2 samples. When you need more quality, specify 4 or more.

 ■ The no recovery attribute (NSOpenGLPFANoRecovery,AGL_NO_RECOVERY, orkCGLPFANoRecovery).
Although enabling this attribute is not mandatory, it's recommended to prevent OpenGL from using
software fallback as a renderer. The software renderer does not support multisample antialiasing
prior to Mac OS X v10.4. In versions that the software renderer does support multisampling (4, 9, or
16 samples), antialiasing performance is slow.

3. Optionally provide a hint for the type of anti-aliasing you want—multisampling, supersampling, or alpha
sampling. See “Hinting for a Specific Anti-Aliasing Technique” (page 113).

4. Enable multisampling with the following command:

112 General Approach
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Techniques for Scene Anti-Aliasing

glEnable(GL_MULTISAMPLE);

Regardless of the enabled state, OpenGL always uses the multisample buffer if you supply the appropriate
buffer attributes when you set up the pixel format object. If you haven't supplied the appropriate
attributes, enabling multisampling has no effect.

When multisampling is disabled, all coverage values are set to 1, which gives the appearance of rendering
without multisampling.

Some graphics hardware leaves multisampling enabled all the time. However, don't rely on hardware
to have multisampling enabled; use glEnable to programmatically turn on this feature.

5. Optionally provide hints for the rendering algorithm. You perform this optional step only if you want
OpenGL to compute coverage values by a method other than uniformly weighting samples and averaging
them.

Some hardware supports a multisample filter hint through an OpenGL
extension—GL_NV_multisample_filter_hint. This hint allows an OpenGL implementation to use
an alternative method of resolving the color of multisampled pixels.

You can specify that OpenGL uses faster or nicer rendering by calling the OpenGL function glHint,
passing the constant GL_MULTISAMPLE_FILTER_HINT_NV as the target parameter and GL_FASTEST
or GL_NICEST as the mode parameter. Hints allow the hardware to optimize the output if it can. There
is no performance penalty or returned error for issuing a hint that's not supported.

For more information, see the OpenGL extension registry for NV_multisample_filter_hint.

“Setting Up Full Scene Anti-Aliasing” (page 114) provides specific code examples.

Hinting for a Specific Anti-Aliasing Technique

In Mac OS X v10.4 and later, when you set up your renderer and buffer attributes for full scene antialiasing,
you can specify a hint to prefer one anti-aliasing technique over the others. If the underlying renderer does
not have sufficient resources to support what you request, OpenGL ignores the hint. If you do not supply
the appropriate buffer attributes when you create a pixel format object, then the hint does nothing. Table
10-1 lists the hinting constants available for the NSOpenGLPixelFormat class, AGL, and CGL.

Table 10-1 Anti-aliasing hints available starting in Mac OS X v10.4

Alpha blendingSupersamplingMultisampling

NSOpenGLPFASampleAlphaNSOpenGLPFASupersampleNSOpenGLPFAMultisample

AGL_SAMPLE_ALPHAAGL_SUPERSAMPLEAGL_MULTISAMPLE

kCGLPFASampleAlphakCGLPFASupersamplekCGLPFAMultisample

Hinting for a Specific Anti-Aliasing Technique 113
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Techniques for Scene Anti-Aliasing

http://oss.sgi.com/projects/ogl-sample/registry/NV/multisample_filter_hint.txt

Setting Up Full Scene Anti-Aliasing

The code listings in this section show how to set up full scene anti-aliasing using the NSOpenGLPixelFormat
class, AGL, and CGL. You'll see that the code to set buffer and renderer attributes and to create a context
looks similar to what you'd normally use to set up any rendering context. Regardless of the API that you use,
you need to specify the appropriate attributes. Although you need to specify the context slightly differently
for each of the APIs, the outcome is the same—a pixel format and context that supports full-scene anti-aliased
rendering.

Listing 10-1 sets up full scene anti-aliasing using the NSOpenGLPixelFormat class, but does not provide a
hint, which is optional. A detailed explanation for each numbered line of code appears following the listing.

Listing 10-1 Using NSOpenGLPixelFormat to set up full scene anti-aliasing

#import <Cocoa/Cocoa.h>
@implementation BasicOpenGLView
+ (NSOpenGLPixelFormat*)defaultPixelFormat
{

// 1 NSOpenGLPixelFormatAttribute attributes [] = {
 NSOpenGLPFAWindow,
 NSOpenGLPFADoubleBuffer,
 NSOpenGLPFASampleBuffers, 1,
 NSOpenGLPFASamples, 2,
 NSOpenGLPFANoRecovery,
 (NSOpenGLPixelFormatAttribute)nil
 };
 return [[[NSOpenGLPixelFormat alloc]

// 2 initWithAttributes:attributes] autorelease];
}
-(id) initWithFrame: (NSRect) frameRect
{
 NSOpenGLPixelFormat *pixelFormat = [BasicOpenGLView

// 3 defaultPixelFormat];
 self = [super initWithFrame: frameRect

// 4 pixelFormat: pixelFormat];
 return self;
}
// Define other class methods here.
@end

Here's what the code in Listing 10-1 does:

1. Sets up attributes for OpenGL to use for choosing the pixel format. The attributes include the two required
for multisampling: NSOpenGLPFASampleBuffers and NSOpenGLPFASamples, along with those to
support a Cocoa window, double buffering, and no recovery.

2. Allocates and initializes an NSOpenGLPixelFormat object with the requested multisampling (and other)
attributes.

3. Creates an NSOpenGLPixelFormat object for a custom NSOpenGLView class (BasicOpenGLView) that
was previously created by the application using Interface Builder but is not shown in this example.

4. Initializes the view with the newly created pixel format.

114 Setting Up Full Scene Anti-Aliasing
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Techniques for Scene Anti-Aliasing

Listing 10-2 sets up full scene anti-aliasing in Carbon and provides a hint for supersampling. A detailed
explanation for each numbered line of code appears following the listing.

Listing 10-2 Using AGL to set up full scene anti-aliasing with a hint for supersampling

#include <AGL/agl.h>
// 1GLint attribs[] = { AGL_RGBA,

 AGL_DOUBLEBUFFER,
 AGL_SAMPLE_BUFFERS_ARB, 1,
 AGL_SAMPLES_ARB, 2,
 AGL_SUPERSAMPLE,
 AGL_NO_RECOVERY,
 AGL_NONE };

AGLPixelFormat pixelFormat = NULL;
AGLContext context = NULL;

// 2pixelFormat = aglChoosePixelFormat (NULL, 0, attribs);
if (pixelFormat) {

// 3 context = aglCreateContext (pixelFormat, NULL);
 aglDestroyPixelFormat (pixelFormat);
}

Here's what the code in Listing 10-2 does:

1. Sets up attributes for OpenGL to use for creating an AGL pixel format object. The attributes include the
two required for multisampling (AGL_SAMPLE_BUFFERS_ARB and AGL_SAMPLES_ARB) along with those
to support RGBA pixels, double buffering, and no recovery.

2. Creates a pixel format object. Prior to this call you can optionally provide a list of GDHandle values that
specify the supported displays.

3. Creates a rendering context based on the newly created pixel format object that is set up to support full
scene antialiasing.

Listing 10-3 sets up full scene anti-aliasing using the CGL API and provides a hint for multisampling. A detailed
explanation for each numbered line of code appears following the listing.

Listing 10-3 Using CGL to set up full scene anti-aliasing with a hint for multisampling

#include <OpenGL/OpenGL.h>
// 1CGLPixelFormatAttribute attribs[] = { kCGLPFADisplayMask, 0,

 kCGLPFAFullScreen,
 kCGLPFADoubleBuffer,
 kCGLPFASampleBuffers, 1,
 kCGLPFASamples, 2,
 kCGLPFAMultisample
 kCGLPFANoRecovery,
 0 };

CGLPixelFormatObj pixelFormat = NULL;
CGLContextObj context = NULL;
long numPixelFormats = 0;

// 2attribs[1] = CGDisplayIDToOpenGLDisplayMask (CGMainDisplayID ());
// 3CGLChoosePixelFormat (attribs, &pixelFormat, &numPixelFormats));

if (pixelFormat) {
// 4 CGLCreateContext (pixelFormat, NULL, &context);

Setting Up Full Scene Anti-Aliasing 115
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Techniques for Scene Anti-Aliasing

 CGLDestroyPixelFormat (pixelFormat);
}

Here's what the code in Listing 10-3 does:

1. Sets up attributes for OpenGL to use for creating a CGL pixel format object. The attributes include the
two multisampling attributes: kCGLPFASampleBuffers and kCGLPFASamples, along with those to
support full-screen drawing, double buffering, and no recovery. The associated value for kCGLPFASamples
is the number of samples per multisample buffer, which in this case is 2. The associated value for
kCGLPFASampleBuffers is a nonnegative integer that indicates the number of existing independent
sample buffers, which in this case is 1.

2. Sets the value of the display mask attribute to the main display. (Note that this code example does not
capture the main display. See Listing 3-3 (page 41).)

3. Creates a pixel format object with the requested attributes.

4. Creates a context for the pixel format that isn't shared.

See Also

You can find the complete specification for the GL_ARB_multisample extension in the OpenGL extensions
registry at http://oss.sgi.com/projects/ogl-sample/registry/.

If your application needs point or line anti-aliasing instead of full scene anti-aliasing, use the built in OpenGL
point and line anti-aliasing functions. These are described in Section 3.4.2 in the OpenGL Specification.

116 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Techniques for Scene Anti-Aliasing

http://oss.sgi.com/projects/ogl-sample/registry/

Each process in Mac OS X is made up of one or more threads. A thread is a stream of execution that runs
code for the process. You can improve application performance and enhance the perceived responsiveness
of the user interface when you set up your application to use multiple threads. On computers with one
processor, multithreading can allow a program to execute multiple pieces of code independently. On
computers with more than one processor, multithreading can allow a program to execute multiple pieces
of code simultaneously.

Multithreading, however, is not the solution for all performance issues. When it is a possible solution, it
enhances performance only when it's set up correctly. Getting multithreading to work properly in an OpenGL
application requires advanced programming techniques—the OpenGL API is not inherently thread-safe. If
you want to make your OpenGL program multithreaded, read this chapter to get started, then roll up your
sleeves. Be prepared to undertake a lot of detective work if things go wrong. In threaded applications, the
cause of the problem is often difficult to isolate.

Program Design

You'll have the best chance of success with multithreading if you design your program with threading in
mind. It's difficult, and often risky, to retrofit an existing OpenGL application to use multiple threads. Before
you write any threading code, choose a strategy for dividing work among threads.

Consider using one of the following strategies for your OpenGL application:

 ■ Move OpenGL onto a separate thread.

 ■ Split OpenGL texture and vertex processing onto separate threads. You gain performance advantages
by applying threads on single processor machines but threads are most efficient on computers with
multiple CPUs since each processor can devote itself to a thread, potentially doubling the throughput.

 ■ For contexts on separate threads, share surfaces or OpenGL object state: display lists, textures, vertex
and fragment programs, vertex array objects, and so on.

Applications that move OpenGL onto a separate thread are designed as shown in Figure 11-1. The CPU writes
its data to a shared space, accessible to OpenGL. This design provides a clear division of labor and is fairly
straightforward to implement. You can use this design to load data into your application on one thread, and
then draw with the data on the other thread.

Program Design 117
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Multithreading and OpenGL

Figure 11-1 CPU processing and OpenGL on separate threads

CPU
Processing

Shared
data

Framebuffer

OpenGL
context

Texture data
Vertex data

OpenGL
state

OpenGL
surface

Thread 1 Thread 2

The Apple-specific OpenGL APIs provide the option for sharing data between contexts. You can leverage
this feature in a threaded application by creating a separate thread for each of the contexts that share data,
as shown in Figure 11-2. Shared resources are automatically set up as mutual exclusion (mutex) objects.
Notice that Thread 2 draws to a pixel buffer that is linked to the shared state as a texture. Thread 1 can then
draw using that texture.

Figure 11-2 Two contexts on separate threads

PBuffer
surface

Framebuffer

OpenGL context 1

OpenGL state 1

OpenGL context 2

OpenGL state 2

OpenGL
surface

Thread 1 Thread 2

OpenGL
shared state

OpenGL
shared state

OpenGL
shared state

Guidelines for Threading OpenGL Applications

Follow these guidelines to ensure successful threading in an application that uses OpenGL:

 ■ Use only one thread per context. OpenGL commands for a specific context are not reentrant. You should
never have more than one thread accessing a single context simultaneously.

118 Guidelines for Threading OpenGL Applications
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Multithreading and OpenGL

If for some reason you decide to set more than one thread to target the same context, then you must
synchronize threads by placing a mutex around all OpenGL calls to the context, such as gl* and CGL*.
You can use one of the APIs listed in “Threading APIs” (page 119) to set up a mutex. OpenGL commands
that block—such as fence commands—do not synchronize threads.

 ■ Contexts that are on different threads can share object resources. For example, it is acceptable for one
context in one thread to modify a texture and a second context in a second thread to modify the same
texture. Why? Because the shared object handling provided by the Apple APIs automatically protects
against thread errors. And, your application is following the "one thread per context" guideline.

 ■ When you use an NSOpenGLView object with OpenGL calls that are issued from a thread other than the
main one, you must set up mutex locking. Why? Unless you override the default behavior, the main
thread may need to communicate with the view for such things as resizing.

Applications that use Objective-C with multithreading can lock contexts using the functions
CGLLockContext and CGLUnlockContext, which were introduced in Mac OS X v10.4. If you want to
perform rendering in a thread other than the main one, you can lock the context that you want to access
and safely execute OpenGL commands. The locking calls must be placed around all of your OpenGL calls
in all threads. You can't set up your own mutex in versions of Mac OS X earlier than v10.4.

CGLLockContext blocks the thread it is on until all other threads have unlocked the same context using
the function CGLUnlockContext. You can use CGLLockContext recursively. Context-specific CGL calls
by themselves do not require locking, but you can guarantee serial processing for a group of calls by
surrounding them with CGLLockContext and CGLUnlockContext. Keep in mind that calls from the
OpenGL API (the API provided by the Architecture Review Board) require locking.

 ■ Keep track of the current context. When switching threads it is easy to switch contexts inadvertently,
which causes unforeseen effects on the execution of graphic commands. You must set a current context
when switching to a newly created thread.

Note: The guidelines in this section are specific to OpenGL applications. Any threading code that you write
also needs to comply with general threading practices. You can find general resources for thread programming
in the “See Also” (page 120) section.

When Things Go Wrong

If you don't set up threading correctly, you'll most likely see your application freeze or crash. Things typically
go wrong when your application introduces a command to the graphics processor that violates threading
practices. The bad command will cause the processor to hang. The CPU blocks against that, causing any
drawing onscreen to stop and the spinning wait cursor to appear.

You can use OpenGL Profiler to check thread safety in OpenGL. In the breakpoints window, set the "Break
on thread error" option to check whether a problem is due to a thread error.

Threading APIs

The following APIs are available for creating threaded applications in Mac OS X:

 ■ Foundation provides threading support for Cocoa application through the NSThread class.

When Things Go Wrong 119
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Multithreading and OpenGL

 ■ UNIX provides POSIX threads to support threading for any layer in Mac OS X.

 ■ Carbon provides thread support through the Multiprocessing Services API.

See Also

The OpenGL sample code project Vertex Optimization (available from Sample Code > Graphics & Imaging >
OpenGL) has an option to run as a multithreaded application.

Multithreading programming guides and reference documentation:

 ■ Threading Programming Guide explains how to use threads in Cocoa applications.

 ■ NSThread Class Reference describes the Foundation threading class and its methods.

 ■ Multiprocessing Services Programming Guide explains how to implement preemptive tasks in Carbon
applications.

 ■ Multiprocessing Services Reference describes the C API for creating preemptively scheduled tasks in Carbon
applications.

 ■ "Debugging programs with multiple threads" in the "Running Programs Under GDB" chapter ofDebugging
with GDB provides useful information for any multithreaded application.

120 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Multithreading and OpenGL

OpenGL performs many complex operations—transformations, lighting, clipping, texturing, environmental
effects, and so on—on large data sets. The amount of data and the number of operations can impact
performance, making your stellar 3D graphics shine less brightly than you'd like. Unless, of course, you take
steps to streamline your application.

Figure 12-1 OpenGL performs complex operations as data flows through a program

Geometry

Rasterization

Fragment operations

Application Primitives and image data

Multitexturing

Fog

Alpha, stencil, and depth tests

Framebuffer blending

Transform and lighting

Clipping and viewport

Techniques for improving data throughput and increasing program efficiency are discussed throughout this
book. This chapter provides additional performance guidelines and discusses some of the tools that you can
use to analyze your application.

 ■ “Best Practices” (page 121) summarizes coding tips that can help achieve optimal performance and
provides links to other sections, either in this chapter or elsewhere in the book, where you can read more
details.

 ■ “Gathering and Analyzing Baseline Performance Data” (page 128) shows how to use top and OpenGL
Profiler to obtain and interpret baseline performance data.

 ■ “Identifying Bottlenecks with Shark” (page 133) discusses the patterns of usage that the Shark performance
tool can make apparent and that indicate places in your code that you may want to improve.

Best Practices

Each of the following sections provides information that can help your application perform optimally:

Best Practices 121
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

 ■ “Use Flush and Finish Routines Effectively” (page 122).

 ■ “Be Mindful of OpenGL State Variables” (page 123).

 ■ “Draw Only When Necessary” (page 124).

 ■ “Synchronize with the Screen Refresh Rate” (page 125).

 ■ “Use OpenGL Macros” (page 125).

 ■ “Use the CPU and the GPU Asynchronously” (page 126).

 ■ Adopt “Techniques for Working with Vertex Data” (page 85) and “Techniques for Working with Texture
Data” (page 95) to optimize data throughput and decrease memory footprint.

 ■ “Use Appropriate Routines for Images and Pixel Data” (page 127).

 ■ Use threading appropriately. See “Multithreading and OpenGL” (page 117).

 ■ Use performance tools to assess your application and identify areas that can be optimized. See “Gathering
and Analyzing Baseline Performance Data” (page 128) and “Identifying Bottlenecks with Shark” (page
133).

 ■ “Retrieve Error Information Only When Debugging” (page 127).

 ■ “Use Optimal Data Types and Formats” (page 127)

Use Flush and Finish Routines Effectively

OpenGL commands are not executed immediately. They are queued to a command buffer and then read
and executed by the hardware. The command buffer is used for vertices, normals, texture coordinates, and
so forth, but not for textures themselves, which are stored elsewhere.

These functions force OpenGL to submit the command buffer to the hardware for execution.

 ■ The function glFlush waits until commands are submitted but does not wait for the commands to
finish executing.

 ■ The function glFinish waits for the submitted commands to complete executing.

For double-buffered contexts, the current OpenGL command buffer is not sent to the graphics processor
until glFlush or glFinish is called, a buffer swap is requested, or the command buffer is full. This also
applies to single-buffered contexts, although executing a buffer swap is really just an implicit call to glFlush
to submit the queued commands to the renderer. This means that, for single-buffered contexts, glFlush
and glFinish are equivalent to a swap operation, since all rendering is taking place directly in the front
buffer.

There are only a few cases that require you to call the glFlush function:

 ■ Multithreaded applications. To keep drawing synchronized across the threads and prevent command
buffer corruption, as each thread completes its command submissions, it should call glFlush.

 ■ A drawable object that changes during rendering. Before you can switch from one drawable object to
another, you must call glFlush to ensure that all commands written in the command queue for the
previous drawable object have been submitted.

122 Best Practices
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

 ■ Whenever a drawable surface in modified by one context and then used in another context, you must
call glFlush to ensure the data is serialized to the video card before you attempt to draw with it on the
second context. Conversely, if you have drawn with surface that is about to get modified you should
flush the context that draws the surface before the second context attempts to modify it. This applies
to framebuffer objects as well as to pixel buffer objects.

When used incorrectly, glFlush or glFinish can cause your application to stall or slow down, using a
higher percentage of the CPU than is necessary. You might also see visual anomalies, such as flickering or
tearing. Most of the time you don't need to call glFlush or glFinish to move image data to the screen.

These are situations for which you don't need to, or should not, call glFlush:

 ■ When the scene back buffer is not complete. For best results, keep the back buffer as current as possible
with a complete scene. Since the flushing and finishing routines force OpenGL to process queued
commands, calling either of these when the scene in the back buffer is incomplete causes the incomplete
scene to be rendered.

 ■ When calling a buffer swapping routine (the flushBuffermethod of the NSOpenGLContext class, the
aglSwapBuffers function, or the CGLFlushDrawable function), because such functions implicitly call
the OpenGL command glFlush. Note that when using the NSOpenGLContext class or the CGL API,
the term flush actually refers to a buffer swapping operation.

Be Mindful of OpenGL State Variables

The hardware has one current state, which is compiled and cached. Switching state is expensive, so it's best
to design your application to minimize state switches.

Don't set a state that's already set. Once a feature is enabled, it does not need to be enabled again. Calling
an enable function more than once does nothing except waste time because OpenGL does not check the
state of a feature when you call glEnable or glDisable. For instance, if you call glEnable(GL_LIGHTING)
more than once, OpenGL does not check to see if the lighting state is already enabled. It simply updates the
state value even if that value is identical to the current value.

You can avoid setting a state more than necessary by using dedicated setup or shutdown routines rather
than putting such calls in a drawing loop. Setup and shutdown routines are also useful for turning on and
off features that achieve a specific visual effect—for example, when drawing a wire-frame outline around a
textured polygon.

If you are drawing 2D images, disable all irrelevant state variables, similar to what's shown in Listing 12-1.

Listing 12-1 Disabling state variables

glDisable(GL_DITHER);
glDisable(GL_ALPHA_TEST);
glDisable(GL_BLEND);
glDisable(GL_STENCIL_TEST);
glDisable(GL_FOG);
glDisable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);
glPixelZoom(1.0,1.0);
// Disable other state variables as appropriate.

Best Practices 123
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

Draw Only When Necessary

You can ensure that your application draws only when necessary by following a few simple guidelines:

 ■ Allow the system to regulate drawing. For example, in Cocoa use the setNeedsDisplay: method.

 ■ Use a timer effectively.

 ■ Advance an animation only when necessary. To determine when to draw the next frame of an animation,
calculate the difference between the current time and the start of the last frame. Use the difference to
determine how much to advance the animation. You can use the Core Foundation function
CFAbsoluteTimeGetCurrent to obtain the current time. Don't simply draw each time the system
sends the drawRect: method because the view can be redrawn for reasons other than a timer
firing—such as when the user resizes the window.

Drawing is typically triggered by a timer that fires at a set interval. Timer intervals that are set to very small
values (such as 0.001 to yield 1000 executions per second) degrade application performance because they
consume CPU time at a far higher rate than is necessary. In most cases, drawing 30 to 60 frames per second
is sufficient (.033 to .0167 seconds). You'll get the best performance if you synchronize drawing to the refresh
rate of the screen, which means that you should not set the timer interval to anything faster than the refresh
rate.

The code in Listing 12-2 shows how to set up a timer in the rendering loop of a Cocoa application. When
using a timer in Cocoa, make sure that you do not invoke the drawRect: method from the rendering loop.
Instead, allow the system to send the drawRect: message when it needs to draw. This way, the system also
takes care of locking and unlocking focus on the view.

The timer code shown in Listing 12-2 is in the awakeFromNib method to ensure that the timer starts up
when the application launches. The timer interval is set to 100 milliseconds, which is 10 frames per second.
Note that this is slower than the refresh rate, so that there is no risk of overdriving the animation and degrading
performance. The timerFired: method is called by the system each time the timer fires. When called, this
method signals to the system that the display needs refreshing.

Listing 12-2 Setting up a drawing loop timer

-(void)awakeFromNib
{
renderTimer = [[NSTimer scheduledTimerWithTimeInterval:
 0.1
 target:self
 selector:@selector(timerFired:)
 userInfo:nil
 repeats:YES]
 retain];
}

- (void)timerFired:(id)sender
{
 [self setNeedsDisplay:YES];
}

124 Best Practices
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

Synchronize with the Screen Refresh Rate

Tearing is a visual anomaly caused when part of the current frame overwrites previous frame data in the
framebuffer before the current frame is fully rendered on the screen. Applications synchronize with the screen
refresh rate (sometimes called VBL, vertical blank, or vsynch) to eliminate frame tearing.

Note: During development, it's best to disable synchronization so that you can more accurately benchmark
your application. Enable synchronization when you are ready to deploy your application.

The refresh rate of the display limits how often the screen can be refreshed. The screen can be refreshed at
rates that are divisible by integer values. For example, a CRT display that has a refresh rate of 60 Hz can
support screen refresh rates of 60 Hz, 30 Hz, 20 Hz, and 15 Hz. LCD displays do not have a vertical retrace in
the CRT sense and are typically considered to have a fixed refresh rate of 60 Hz.

OpenGL blocks drawing to the display while waiting for the next vertical retrace. Applications that attempt
to draw to the screen during this waiting period waste time that could be spent performing other drawing
operations or saving battery life and minimizing fan operation.

Listing 12-3 shows how to use the CGL API to synchronize with the screen refresh rate, but you can use a
similar approach if your application uses Cocoa or the AGL API. It assumes that you set up the context for
double buffering. The swap interval can be set only to 0 or 1. If the swap interval is set to 1, the buffers are
swapped only during the vertical retrace. After you set up synchronization, call the function
CGLFlushDrawable to copy the back buffer to the front buffer during the vertical retrace of the display.

Listing 12-3 Setting up synchronization

long swapInterval = 1;
CGLSetParameter (CGLGetCurrentContext(), kCGLCPSwapInterval, &swapInterval);

Use OpenGL Macros

OpenGL performs a global context and renderer lookup for each command it executes to ensure that all
OpenGL commands are issued to the correct rendering context and renderer. There is significant overhead
associated with these lookups; applications that have extremely high call frequencies may find that the
overhead measurably affects performance. Mac OS X allows your application to use macros to provide a local
context variable and cache the current renderer in that variable. You'll get the most out of using macros
when your code makes millions of function calls per second. Then you'll see a noticeable boost in imaging
response.

You can use the CGL macro header (CGL/cglMacro.h) if your application uses CGL from either a Cocoa or
a Carbon application, and the AGL macro header (AGL/aglMacro.h) for Carbon applications. You must
define the local variable cgl_ctx or agl_ctx to be equal to the current context. Listing 12-4 shows what's
needed to set up macro use for the AGL API. You use a similar approach for the CGL API. First, you need to
include the correct macro header. Then, you must set the current context.

Listing 12-4 Using AGL macros

#include <AGL/aglMacro.h> // include the header
AGLContext agl_ctx = myContext; // set the current context
glBegin (GL_QUADS); // This code now uses the macro
 // draw here

Best Practices 125
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

glEnd ();

Use the CPU and the GPU Asynchronously

Whenever it’s feasible to do so, it's best to keep both the CPU and GPU busy and working as asynchronously
as possible. You'll want to avoid pushing data through the bottleneck between the two units unless it is
absolutely necessary.

These tips can help use the CPU and GPU optimally:

 ■ Consider using the GPU to perform intense mathematical computations to take some of the load off the
CPU.

 ■ Use double buffering and asynchronous vertex transfer, as described in “Double Buffering Vertex
Data” (page 93). If you are using the vertex array range extension, consider experimenting with triple
buffers or changing buffer size.

 ■ Use asynchronous texture fetching (see “Downloading Texture Data” (page 107)) rather than calling the
function glReadPixels. This call is an expensive one because it forces synchronization between the
CPU and GPU, which can have the effect of stalling the rendering pipeline. Performance degrades if
either the CPU or GPU is waiting for the other processing unit to catch up.

 ■ Upload textures asynchronously using DMA. See “Apple Texture Range and Rectangle Texture” (page
98).

You can use OpenGL Driver Monitor to analyze how long the CPU waits for the GPU, as shown in Figure 12-2.
OpenGL Driver Monitor is useful for analyzing other parameters as well. You can choose which parameters
to monitor simply by clicking a parameter name from the drawer shown in the figure.

Figure 12-2 The graph view in OpenGL Driver Monitor

126 Best Practices
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

Use Appropriate Routines for Images and Pixel Data

The size of an image should guide the routine you choose to draw it. Most images you'll draw will have
dimensions greater than 128 pixels by 128 pixels. It's best to treat those images as texture data. See the
OpenGL Image sample application on Sample Code > Graphics & Imaging > OpenGL for an example of high
performance image display.

For small images, those whose dimensions are less than or equal to 128 pixels by 128 pixels, use the OpenGL
function glDrawPixels. See the Draw Pixels sample application on Sample Code > Graphics & Imaging >
OpenGL for an example of the correct use of glDrawPixels.

Copying pixel data from one VRAM location to another VRAM location, for example, to an auxiliary buffer,
requires an approach similar to the one used to draw image data. Perform the copy operation using the
OpenGL function glCopyPixels, as shown in Listing 12-5. If you are using Cocoa, you can use the
NSOpenGLPFAAuxBuffers and NSOpenGLPFAAuxDepthStencil pixel format attributes in conjunction
with glReadBuffer andglDrawBuffer to set up auxiliary buffers for temporary pixel storage.

Using OpenGL for drawing images and copying pixel data can incur a performance cost if the OpenGL state
is a complex one. State variables such as dithering, fog, and depth testing don't need to be enabled for 2D
drawing. To ensure efficient drawing, first disable irrelevant state variables as shown in Listing 12-1 (page
123).

Listing 12-5 Copying pixels

void drawRect:(NSRect) aRect
{
 glDrawBuffer(GL_BACK);
 glReadBuffer(GL_AUX0);

 glCopyPixels(x, y, width, height, GL_COLOR);
}

Retrieve Error Information Only When Debugging

When errors occur OpenGL sets an error flag that you can retrieve with the function glGetError. During
development, it's crucial that your code contains error checking routines, not only for the standard OpenGL
calls, but for the Apple-specific functions provided by the AGL and CGL APIs. AGL uses a mechanism for errors
that's similar to OpenGL through the functions aglGetError and aglErrorString. CGL functions return
error codes.

If you are developing a performance-critical application, you'll want to retrieve error information in the
debugging phase. When you deploy your application you'll want to remove the error-retrieval information
for all but the most critical cases. If you retrieve error codes and strings for frequently-called functions, you'll
cause performance to slow down.

Use Optimal Data Types and Formats

If you don't use data types and formats that are native to the graphics processor, you'll incur a costly data
conversion.

Best Practices 127
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

For vertex data, use GLfloat, GLshort, or GLubyte data types. Most graphics processors handle these types
natively.

For texture data, you’ll get the best performance, regardless of architecture, if you use the following format
and data type combination:

GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV

These format and data type combinations also provide acceptable performance:

GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV
GL_YCBCR_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE

The combination GL_RGBA and GL_UNSIGNED_BYTE needs to be swizzled by many cards when the data is
loaded, so it's not recommended.

Gathering and Analyzing Baseline Performance Data

Analyzing performance is a systematic process that starts with gathering baseline data. Mac OS X provides
several applications that you can use to assess baseline performance for an OpenGL application:

 ■ top is a command-line utility that you run in the Terminal window. You can use top to assess how much
CPU time your application consumes.

 ■ OpenGL Profiler is an application that determines how much time an application spends in OpenGL. It
also provides function traces that you can use to look for redundant calls.

 ■ OpenGL Driver Monitor lets you gather real-time data on the operation of the GPU and lets you look at
information (OpenGL extensions supported, buffer modes, sample modes, and so forth) for the available
renderers. For more information, see OpenGL Tools for Serious Graphics Development and “Use the CPU
and the GPU Asynchronously” (page 126).

This section shows how to use top along with OpenGL Profiler to analyze where to spend your optimization
efforts—in your OpenGL code, your other application code, or in both. You'll see how to gather baseline data
and how to determine the relationship of OpenGL performance to overall application performance.

1. Launch your OpenGL application.

2. Open a Terminal window and place it side-by-side with your application window.

3. In the Terminal window, type top and press Return. You'll see output similar to that shown in Figure
12-3.

128 Gathering and Analyzing Baseline Performance Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

http://developer.apple.com/graphicsimaging/opengl/opengl_serious.html

The top program indicates the amount of CPU time that an application uses. The CPU time serves as a
good baseline value for gauging how much tuning your code needs. Figure 12-3 shows the percentage
of CPU time for the OpenGL application GLCarbon1C (highlighted). Note this application utilizes 31.5%
of CPU resources.

Figure 12-3 Output produced by the top application

Gathering and Analyzing Baseline Performance Data 129
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

4. Open the OpenGL Profiler application, located in /Developer/Applications/Graphics Tools/. In
the window that appears, select the options to collect a trace and include backtraces, as shown in Figure
12-4.

Figure 12-4 The OpenGL Profiler window

5. Select Attach to application, then select your application from the Application list.

You may see small pauses or stutters in the application, particularly when OpenGL Profiler is collecting
a function trace. This is normal and does not significantly affect the performance statistics. The "glitches"
are due to the large amount of data that OpenGL Profiler is writing out.

6. Click Suspend to stop data collection.

7. Open the Statistics and Trace windows by choosing them from the Views menu.

Figure 12-5 provides an example of what the Statistics window looks like. Figure 12-6 (page 132) shows
a Trace window.

The estimated percentage of time spent in OpenGL is shown at the bottom of Figure 12-5. Note that for
this example, it is 28.91%. The higher this number, the more time the application is spending in OpenGL
and the more opportunity there may be to improve application performance by optimizing OpenGL
code.

130 Gathering and Analyzing Baseline Performance Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

You can use the amount of time spent in OpenGL along with the CPU time to calculate a ratio of the
application time versus OpenGL time. This ratio indicates where to spend most of your optimization
efforts.

Figure 12-5 A statistics window

8. In the Trace window, look for duplicate function calls and redundant or unnecessary state changes.

Look for back-to-back function calls with the same or similar data. These are areas that can typically be
optimized. Functions that are called more than necessary include glTexParameter, glPixelStore,
glEnable, and glDisable. For most applications, these functions can be called once from a setup or
state modification routine and only called when necessary.

It's generally good practice to keep state changes out of rendering loops (which can be seen in the
function trace as the same sequence of state changes and drawing over and over again) as much as
possible and use separate routines to adjust state as necessary.

Gathering and Analyzing Baseline Performance Data 131
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

Look at the time value to the left of each function call to determine the cost of the call.

Figure 12-6 A Trace window

Use these to determine
the cost of a call

9. Determine what the performance gain would be if it were possible to reduce the time to execute all
OpenGL calls to zero.

For example, take the performance data from the GLCarbon1C application used in this section to
determine the performance attributable to the OpenGL calls.

Total Application Time (from top) = 31.5%

Total Time in OpenGL (from OpenGL Profiler) = 28.91%

At first glance, you might think that optimizing the OpenGL code could improve application performance
by almost 29%, thus reducing the total application time by 29%. This isn't the case. Calculate the
theoretical performance increase by multiplying the total CPU time by the percentage of time spent in
OpenGL. The theoretical performance improvement for this example is:

31.5 X .2891 = 9.11%

If OpenGL took no time at all to execute, the application would see a 9.11% increase in performance.
So, if the application runs at 60 frames per second (FPS), it would perform as follows:

New FPS = previous FPS * (1 +(% performance increase)) = 60 fps *(1.0911) =
65.47 fps

The application gains almost 5.5 frames per second by reducing OpenGL from 28.91% to 0%. This shows
that the relationship of OpenGL performance to application performance is not linear. Simply reducing
the amount of time spent in OpenGL may or may not offer any noticeable benefit in application
performance.

132 Gathering and Analyzing Baseline Performance Data
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

Identifying Bottlenecks with Shark

Shark is an extremely useful tool for identifying places in your code that are slow and could benefit from
optimization. If you are not familiar with Shark, read some of the documents listed in “See Also” (page 133)
that describe Shark in detail and show how to use it. Once you learn the basics, you can use it on your OpenGL
applications to identify bottlenecks.

There are three issues to watch out for in Shark when using it to analyze OpenGL performance:

 ■ Costly data conversions. If you notice the glgProcessPixels call (in the libGLImage.dylib library)
showing up in the analysis, it's an indication that the driver is not handling a texture upload optimally.
The call is used when your application makes a glTexImage or glTexSubImage call using data that is
in a nonnative format for the driver, which means the data must be converted before the driver can
upload it. You can improve performance by changing your data so that it is in a native format for the
driver. See “Use Optimal Data Types and Formats” (page 127).

Note: If your data needs only to be swizzled, glgProcessPixels performs the swizzling reasonably
fast although not as fast if the data didn't need swizzling. But non-native data formats are converted
one byte at a time and will incur a performance cost that is best to avoid.

 ■ Time in the mach_kernel library. If you see time spent waiting for a timestamp or waiting for the driver,
it indicates that your application is waiting for the GPU to finish processing. You'll see this during a
texture upload. See “Double Buffering Texture Data” (page 108) and “Use the CPU and the GPU
Asynchronously” (page 126) for ideas on how you might optimize asynchronous behavior between the
CPU and the GPU.

 ■ Misleading symbols. You may see a symbol, such as glgGetString, that appears to be taking time but
shouldn't be taking time in your application. That sometimes happens because the underlying
optimizations performed by the system don't have any symbols attached to them on the driver side.
Without a symbol to display, Shark shows the last symbol. You need to look for the call that your
application made prior to that symbol and focus your attention there. You don't need to concern yourself
with the calls that were made "underneath" your call.

See Also

If you are unfamiliar with general performance issues on the Macintosh platform, you will want to read Getting
Started with Performance and Performance Overview. Performance Overview contains general performance
tips that are useful to all applications. It also describes most of the performance tools provided with Mac OS
X, including:

 ■ Analysis tools—MallocDebug, ObjectAlloc, OpenGL Profiler, Sampler, Saturn, Shark, heap, leaks, and
vmmap

 ■ Monitoring tools—BigTop, Quartz Debug, Spin Control, Thread Viewer, fs_usage, sc_usage, and top

 ■ Hardware analysis tools—CacheBasher, MONster, PMC Index, Reggie SE, Skidmarks GT, acid, amber,
simg4, and simg5

 ■ Assorted command-line tools—atos, c2ph, gprof, kdump, malloc_history, nm, otool, pagestuff,
pstruct, sample, vm_stat

Identifying Bottlenecks with Shark 133
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

http://developer.apple.com/referencelibrary/GettingStarted/GS_Performance/index.html
http://developer.apple.com/referencelibrary/GettingStarted/GS_Performance/index.html

There are two tools other than OpenGL Profiler that are specific for OpenGL development—OpenGL Driver
Monitor and OpenGL Shader Builder. OpenGL Driver Monitor collects real-time data from the hardware.
OpenGL Shader Builder provides immediate feedback on vertex and fragment programs that you write.

For more information on these tools, see:

 ■ OpenGL Tools for Serious Graphics Development

 ■ Using Shark

 ■ Optimizing with Shark: Big Payoff, Small Effort

 ■ Shark User Guide, available by launching Shark and choosing Help > Shark Help.

 ■ CHUD Tools

 ■ OpenGL Profiler

 ■ OpenGL Driver Monitor

The following books contain many techniques for getting the most performance from the GPU:

 ■ GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, Randima Fernando.

 ■ GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation,
Matt Pharr and Randima Fernando.

134 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Improving Performance

http://developer.apple.com/graphicsimaging/opengl/opengl_serious.html
http://developer.apple.com/tools/shark_optimize.html
http://developer.apple.com/tools/shark_optimize.html
http://developer.apple.com/tools/performance/#CHUD
http://developer.apple.com/graphicsimaging/opengl/profiler_image.html
http://developer.apple.com/graphicsimaging/opengl/drivermon_image.html

The core OpenGL functionality changes with each new version of the OpenGL API. This appendix describes
the functionality that was added with each version. See the official OpenGL specification for detailed
information.

The functionality for each version is guaranteed to be available through the core OpenGL API even if a
particular renderer does not support all of the extensions in a version. For example, a renderer that claims
to support OpenGL 1.3 might not export the GL_ARB_texture_env_combine or
GL_EXT_texture_env_combine extensions. It's important that you query both the renderer version and
extension string to make sure that the renderer supports any functionality that you want to use.

Note: It's possible for vendor and ARB extensions to provide similar functionality. As particular functionality
becomes widely adopted, it can be moved into the core OpenGL API. As a result, functionality that you want
to use could be included as an extension, as part of the core API, or both. You should read the extensions
and the core OpenGL specifications carefully to see the differences. Furthermore, as an extension is promoted,
the API associated with that functionality can change. For more information, see “Determining the OpenGL
Capabilities Supported by the Hardware” (page 59).

In the following tables, the extensions describe the feature that the core functionality is based on. The core
functionality might not be the same as the extension. For example, compare the core texture crossbar
functionality with the extension that it's based on.

Version 1.1

Table A-1 Functionality added in OpenGL 1.1

ExtensionFunctionality

GL_EXT_copy_texture and GL_EXT_subtextureCopy texture and subtexture

GL_EXT_blend_logic_opLogical operation

GL_EXT_polygon_offsetPolygon offset

GL_EXT_textureTexture image formats

GL_EXT_texture_objectTexture objects

GL_EXT_textureTexture proxies

GL_EXT_textureTexture replace environment

GL_EXT_vertex_arrayVertex array

Version 1.1 135
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Functionality by Version

http://www.opengl.org/registry/specs/EXT/copy_texture.txt
http://www.opengl.org/registry/specs/EXT/subtexture.txt
http://www.opengl.org/registry/specs/EXT/blend_logic_op.txt
http://www.opengl.org/registry/specs/EXT/polygon_offset.txt
http://www.opengl.org/registry/specs/EXT/texture.txt
http://www.opengl.org/registry/specs/EXT/texture_object.txt
http://www.opengl.org/registry/specs/EXT/texture.txt
http://www.opengl.org/registry/specs/EXT/texture.txt
http://www.opengl.org/registry/specs/EXT/vertex_array.txt

A number of other minor changes outlined in Appendix C section 9 of the OpenGL specification. See
http://www.opengl.org.

Version 1.2

Table A-2 Functionality added in OpenGL 1.2

ExtensionFunctionality

GL_EXT_bgraBGRA pixel formats

GL_SGI_color_table ,GL_EXT_color_subtable,GL_EXT_convo-
lution,GL_HP_convolution_border_modes,GL_SGI_color_ma-
trix, GL_EXT_histogram, GL_EXT_blend_minmax, and
GL_EXT_blend_subtract

Imaging subset (optional)

GL_EXT_rescale_normalNormal rescaling

GL_EXT_packed_pixelsPacked pixel formats

GL_EXT_separate_specular_colorSeparate specular color

GL_SGIS_texture_edge_clampTexture coordinate edge clamping

GL_SGIS_texture_lodTexture level of detail control

GL_EXT_texture3DThree-dimensional texturing

GL_EXT_draw_range_elementsVertex array draw element range

Note: The imaging subset might not be present on all implementations; you must verify by checking for
the ARB_imaging extension.

OpenGL 1.2.1 introduced ARB extensions with no specific core API changes.

Version 1.3

Table A-3 Functionality added in OpenGL 1.3

ExtensionFunctionality

GL_ARB_texture_compressionCompressed textures

GL_ARB_texture_cube_mapCube map textures

GL_ARB_multisampleMultisample

136 Version 1.2
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Functionality by Version

http://www.opengl.org
http://www.opengl.org/registry/specs/EXT/bgra.txt
http://www.opengl.org/registry/specs/SGI/color_table.txt
http://www.opengl.org/registry/specs/EXT/color_subtable.txt
http://www.opengl.org/registry/specs/EXT/convolution.txt
http://www.opengl.org/registry/specs/EXT/convolution.txt
http://www.opengl.org/registry/specs/HP/convolution_border_modes.txt
http://www.opengl.org/registry/specs/SGI/color_matrix.txt
http://www.opengl.org/registry/specs/SGI/color_matrix.txt
http://www.opengl.org/registry/specs/EXT/histogram.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
http://www.opengl.org/registry/specs/EXT/blend_subtract.txt
http://www.opengl.org/registry/specs/EXT/rescale_normal.txt
http://www.opengl.org/registry/specs/EXT/packed_pixels.txt
http://www.opengl.org/registry/specs/EXT/separate_specular_color.txt
http://www.opengl.org/registry/specs/SGIS/texture_edge_clamp.txt
http://www.opengl.org/registry/specs/SGIS/texture_lod.txt
http://www.opengl.org/registry/specs/EXT/texture3D.txt
http://www.opengl.org/registry/specs/EXT/draw_range_elements.txt
http://www.opengl.org/registry/specs/ARB/texture_compression.txt
http://www.opengl.org/registry/specs/ARB/texture_cube_map.txt
http://www.opengl.org/registry/specs/ARB/multisample.txt

ExtensionFunctionality

GL_ARB_multitextureMultitexture

GL_ARB_texture_env_addTexture add environment mode

GL_ARB_texture_border_clampTexture border clamp

GL_ARB_texture_env_combineTexture combine environment mode

GL_ARB_texture_env_dot3Texture dot3 environment mode

GL_ARB_transpose_matrixTranspose matrix

Version 1.4

Table A-4 Functionality added in OpenGL 1.4

ExtensionFunctionality

GL_SGIS_generate_mipmapAutomatic mipmap generation

GL_ARB_blend_func_separateBlend function separate

GL_NV_blend_squareBlend squaring

GL_ARB_depth_textureDepth textures

GL_EXT_fog_coordFog coordinate

GL_EXT_multi_draw_arraysMultiple draw arrays

GL_ARB_point_parametersPoint parameters

GL_EXT_secondary_colorSecondary color

GL_EXT_blend_func_separate, GL_EXT_blend_colorSeparate blend functions

GL_ARB_shadowShadows

GL_EXT_stencil_wrapStencil wrap

GL_ARB_texture_env_crossbarTexture crossbar environment mode

GL_EXT_texture_lod_biasTexture level of detail bias

GL_ARB_texture_mirrored_repeatTexture mirrored repeat

GL_ARB_window_posWindow raster position

Version 1.4 137
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Functionality by Version

http://www.opengl.org/registry/specs/ARB/multitexture.txt
http://www.opengl.org/registry/specs/ARB/texture_env_add.txt
http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_env_combine.txt
http://www.opengl.org/registry/specs/ARB/texture_env_dot3.txt
http://www.opengl.org/registry/specs/ARB/transpose_matrix.txt
http://www.opengl.org/registry/specs/SGIS/generate_mipmap.txt
http://www.opengl.org/registry/specs/EXT/blend_func_separate.txt
http://www.opengl.org/registry/specs/NV/blend_square.txt
http://www.opengl.org/registry/specs/ARB/depth_texture.txt
http://www.opengl.org/registry/specs/EXT/fog_coord.txt
http://www.opengl.org/registry/specs/EXT/multi_draw_arrays.txt
http://www.opengl.org/registry/specs/ARB/point_parameters.txt
http://www.opengl.org/registry/specs/EXT/secondary_color.txt
http://www.opengl.org/registry/specs/EXT/blend_func_separate.txt
http://www.opengl.org/registry/specs/EXT/blend_color.txt
http://www.opengl.org/registry/specs/ARB/shadow.txt
http://www.opengl.org/registry/specs/EXT/stencil_wrap.txt
http://www.opengl.org/registry/specs/ARB/texture_env_crossbar.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.opengl.org/registry/specs/ARB/texture_mirrored_repeat.txt
http://www.opengl.org/registry/specs/ARB/window_pos.txt

Version 1.5

Table A-5 Functionality added in OpenGL 1.5

ExtensionFunctionality

GL_ARB_vertex_buffer_objectBuffer objects

GL_ARB_occlusion_queryOcclusion queries

GL_EXT_shadow_funcsShadow functions

Version 2.0

Table A-6 Functionality added in OpenGL 2.0

ExtensionFunctionality

GL_ARB_draw_buffersMultiple render targets

GL_ARB_texture_non_power_of_twoNon–power-of-two textures

GL_ARB_point_spritePoint sprites

GL_EXT_blend_equation_separateSeparate blend equation

GL_ATI_separate_stencil

GL_EXT_stencil_two_side

Separate stencil

GL_ARB_shading_language_100Shading language

GL_ARB_shader_objectsShader objects

GL_ARB_fragment_shader

GL_ARB_vertex_shader

Shader programs

138 Version 1.5
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Functionality by Version

http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt
http://www.opengl.org/registry/specs/ARB/occlusion_query.txt
http://www.opengl.org/registry/specs/EXT/shadow_funcs.txt
http://www.opengl.org/registry/specs/ARB/draw_buffers.txt
http://www.opengl.org/registry/specs/ARB/texture_non_power_of_two.txt
http://www.opengl.org/registry/specs/ARB/point_sprite.txt
http://www.opengl.org/registry/specs/EXT/blend_equation_separate.txt
http://www.opengl.org/registry/specs/ATI/separate_stencil.txt
http://www.opengl.org/registry/specs/EXT/stencil_two_side.txt
http://www.opengl.org/registry/specs/ARB/shading_language_100.txt
http://www.opengl.org/registry/specs/ARB/shader_objects.txt
http://www.opengl.org/registry/specs/ARB/fragment_shader.txt
http://www.opengl.org/registry/specs/ARB/vertex_shader.txt

Function pointers to OpenGL routines allow you to deploy your application across multiple versions of Mac
OS X regardless of whether the entry point is supported at link time or runtime. This practice also provides
support for code that needs to run cross-platform—in both Mac OS X and Windows.

Note: If you are deploying your application only in Mac OS X v10.4 or later, you do not need to read this
chapter. Instead, consider the alternative, which is to set the gcc attribute that allows weak linking of symbols.
Keep in mind, however, that weak linking may impact your application's performance. For more information,
see Frameworks and Weak Linking.

This appendix discusses the tasks needed to set up and use function pointers as entry points to OpenGL
routines:

 ■ “Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point” (page 139) shows how to write a
generic routine that you can reuse for any OpenGL application on the Macintosh platform.

 ■ “Initializing Entry Points” (page 142) describes how to declare function pointer type definitions and
initialize them with the appropriate OpenGL command entry points for your application.

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point

Getting a pointer to an OpenGL entry point function is fairly straightforward from either Cocoa or Carbon.
In either framework in Mac OS X, you can use the Dynamic Loader function NSLookupAndBindSymbol to
get the address of an OpenGL entry point. The Dynamic Loader is part of the system framework, not part of
Cocoa, which is why NSLookupAndBindSymbol (declared in /usr/include/mach-o/dyld.h) works in
Mach-O Carbon applications as well as Cocoa ones. Carbon applications also have the option of using the
AGL API, although this approach involves a bit more code. You'll see how to use both approaches in this
section.

Keep in mind that getting a valid function pointer means that the entry point is exported by the OpenGL
framework; it does not guarantee that a particular routine is supported and valid to call from within your
application. You still need to check for OpenGL functionality on a per-renderer basis as described in “Detecting
Functionality” (page 59).

Listing B-1 shows how to use NSLookupAndBindSymbol from within the function MyNSGLGetProcAddress.
When provided a symbol name, this application-defined function returns the appropriate function pointer
from the global symbol table. A detailed explanation for each numbered line of code appears following the
listing.

Listing B-1 Using NSLookupAndBindSymbol to obtain a symbol for a symbol name

#import <mach-o/dyld.h>
#import <stdlib.h
#import <string.h>

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point 139
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Setting Up Function Pointers to OpenGL
Routines

void * MyNSGLGetProcAddress (const char *name)
{
 NSSymbol symbol;
 char *symbolName;

// 1 symbolName = malloc (strlen (name) + 2);
// 2 strcpy(symbolName + 1, name);
// 3 symbolName[0] = '_';

 symbol = NULL;
// 4 if (NSIsSymbolNameDefined (symbolName))

 symbol = NSLookupAndBindSymbol (symbolName);
// 5 free (symbolName);
// 6 return symbol ? NSAddressOfSymbol (symbol) : NULL;

}

Here's what the code does:

1. Allocates storage for the symbol name plus an underscore character ('_'). The underscore character is
part of the UNIX C symbol-mangling convention, so make sure that you provide storage for it.

2. Copies the symbol name into the string variable, starting at the second character, to leave room for
prefixing the underscore character.

3. Copies the underscore character into the first character of the symbol name string.

4. Checks to make sure that the symbol name is defined, and if it is, looks up the symbol.

5. Frees the symbol name string because it is no longer needed.

6. Returns the appropriate pointer if successful, or NULL if not successful. Before using this pointer, you
should make sure that is it valid.

Using the AGL API to obtain a function pointer for an OpenGL entry point requires that you get a Core
Foundation bundle reference. As a result, you need to perform a bit of set up work before you make the
critical call to the Core Foundation function CFBundleGetFunctionPointerForName, as you'll see by
looking at the code in Listing B-2. This code requires Carbon and is designed for use with Mach-O and CFM
Carbon applications. You would use this approach only if you need to support older versions of your
application. If your application runs only in Mac OS X, it should be a Mach-O application. A detailed explanation
for each numbered line of code appears following the listing.

Listing B-2 Using AGL to get a function pointer for an entry in the OpenGL framework

 #include <Carbon/Carbon.h>
CFBundleRef gBundleRefOpenGL = NULL;

OSStatus MyAGLInitEntryPoints (void)
{
 OSStatus err = noErr;

// 1 const Str255 frameworkName = "\pOpenGL.framework";
 FSRefParam fileRefParam;
 FSRef fileRef;
 CFURLRef bundleURLOpenGL;

// 2 memset (&fileRefParam, 0, sizeof(fileRefParam));
 memset (&fileRef, 0, sizeof(fileRef));

// 3 fileRefParam.ioNamePtr = frameworkName;

140 Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Setting Up Function Pointers to OpenGL Routines

 fileRefParam.newRef = &fileRef;
 err = FindFolder (kSystemDomain, kFrameworksFolderType, false,

// 4 &fileRefParam.ioVRefNum, &fileRefParam.ioDirID);
 if (noErr != err) {
 DebugStr ("\pCould not find frameworks folder");
 return err;
 }

// 5 err = PBMakeFSRefSync (&fileRefParam);
 if (noErr != err) {
 DebugStr ("\pCould make FSRef to frameworks folder");
 return err;
 }

// 6 bundleURLOpenGL = CFURLCreateFromFSRef (kCFAllocatorDefault,&fileRef);
 if (!bundleURLOpenGL) {
 DebugStr ("\pCould not create OpenGL Framework bundle URL");
 return paramErr;
 }

// 7 gBundleRefOpenGL = CFBundleCreate(kCFAllocatorDefault, bundleURLOpenGL);
 if (!gBundleRefOpenGL) {
 DebugStr ("\pCould not create OpenGL Framework bundle");
 return paramErr;
 }

// 8 CFRelease (bundleURLOpenGL);
// 9 if (!CFBundleLoadExecutable (gBundleRefOpenGL)) {

 DebugStr ("\pCould not load Mach-O executable");
 return paramErr;
 }
 return err;
}

// 10void MyAGLDeAllocEntryPoints (void)
{
 if (gBundleRefOpenGL != NULL) {
 CFBundleUnloadExecutable (gBundleRefOpenGL);
 CFRelease (gBundleRefOpenGL);
 gBundleRefOpenGL = NULL;
 }
}

// 11void * MyAGLGetProcAddress (char * pszProc)
{
 return CFBundleGetFunctionPointerForName (gBundleRefOpenGL,
 CFStringCreateWithCStringNoCopy (NULL,
 pszProc, CFStringGetSystemEncoding (), NULL));
}

Here's what the code does:

1. Declares a string for the framework name (OpenGL.framework), which is where you need to search for
OpenGL function.

2. Sets up a buffer for the framework name. The next line does the same for the file reference.

3. Assigns the framework and then the file reference.

4. Finds the OpenGL framework directory; handles the error condition if the folder isn't found.

Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point 141
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Setting Up Function Pointers to OpenGL Routines

5. Creates an FSRef data structure for the OpenGL framework directory and handles an error condition
should one occur.

6. Creates a Core Foundation URL from the FSRef data structure and handles an error condition should
one occur.

7. Creates a Core Foundation bundle reference to the OpenGL framework and handles an error condition
should one occur.

8. Releases the Core Foundation URL because it is no longer needed.

9. Loads the bundle.

10. Performs necessary clean up work.

11. Gets a function pointer for an OpenGL entry point.

Initializing Entry Points

Listing B-3 shows how to use the MyNSGLGetProcAddress function from Listing B-1 (page 139) to obtain a
few OpenGL entry points. A detailed explanation for each numbered line of code appears following the
listing.

Listing B-3 Using NSGLGetProcAddress to obtain an OpenGL entry point

// 1#import "MyNSGLGetProcAddress.h"
static void InitEntryPoints (void);
static void DeallocEntryPoints (void);

// Function pointer type definitions
typedef void (*glBlendColorProcPtr)(GLclampf red,GLclampf green,
 GLclampf blue,GLclampf alpha);
typedef void (*glBlendEquationProcPtr)(GLenum mode);
 typedef void (*glDrawRangeElementsProcPtr)(GLenum mode, GLuint start,
 GLuint end,GLsizei count,GLenum type,const GLvoid *indices);

// 2glBlendColorProcPtr pfglBlendColor = NULL;
glBlendEquationProcPtr pfglBlendEquation = NULL;
glDrawRangeElementsProcPtr pfglDrawRangeElements = NULL;

// 3static void InitEntryPoints (void)
{
 pfglBlendColor = (glBlendColorProcPtr) MyNSGLGetProcAddress
 ("glBlendColor");
 pfglBlendEquation = (glBlendEquationProcPtr)MyNSGLGetProcAddress
 ("glBlendEquation");
 pfglDrawRangeElements = (glDrawRangeElementsProcPtr)MyNSGLGetProcAddress
 ("glDrawRangeElements");
}
// -------------------------

// 4static void DeallocEntryPoints (void)
{
 pfglBlendColor = NULL;

142 Initializing Entry Points
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Setting Up Function Pointers to OpenGL Routines

 pfglBlendEquation = NULL;
 pfglDrawRangeElements = NULL;;
}

Here's what the code does:

1. Imports the header file that contains the MyNSGLProcAddress function from Listing B-1 (page 139).

2. Declares function pointers for the functions of interest. Note that each function pointer uses the prefix
pf to distinguish it from the function it points to. Although using this prefix is not a requirement, it's
best to avoid using the exact function names.

3. Initializes the entry points. This function repeatedly calls the MyNSGLProcAddress function to obtain
function pointers for each of the functions of interest—glBlendColor, glBlendEquation, and
glDrawRangeElements.

4. Sets each of the function pointers to NULL when they are no longer needed.

Listing B-4 demonstrates how to use the function aglGetProcAddress to obtain a few OpenGL entry points.
Note that the approach used by this code is similar to that used in Listing B-3 (page 142). A detailed explanation
for each numbered line of code appears following the listing.

Listing B-4 Using AGL to obtain an OpenGL entry point

// 1#include "MyAGLGetProcAddress.h"

static OSStatus InitEntryPoints (void);
static void DeallocEntryPoints (void);

typedef void (*glBlendColorProcPtr)(GLclampf red,GLclampf green,
// 2 GLclampf blue,GLclampf alpha);

typedef void (*glBlendEquationProcPtr)(GLenum mode);
typedef void (*glDrawRangeElementsProcPtr)(GLenum mode,GLuint start,
 GLuint end,GLsizei count,GLenum type,
 const GLvoid *indices);

// 3glBlendColorProcPtr pfglBlendColor = NULL;
glBlendEquationProcPtr pfglBlendEquation = NULL;
glDrawRangeElementsProcPtr pfglDrawRangeElements = NULL;

static OSStatus InitEntryPoints (void)
{

// 4 OSStatus err = MyAGLInitEntryPoints();
// 5 if (noErr == err) {

 pfglBlendColor = (glBlendColorProcPtr)
 MyAGLGetProcAddress ("glBlendColor");
 pfglBlendEquation = (glBlendEquationProcPtr)
 MyAGLGetProcAddress ("glBlendEquation");
 pfglDrawRangeElements = (glDrawRangeElementsProcPtr)
 MyAGLGetProcAddress("glDrawRangeElements");
 }
 return err;
}

static void DeallocEntryPoints (void)
{

Initializing Entry Points 143
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Setting Up Function Pointers to OpenGL Routines

// 6 pfglBlendColor = NULL;
 pfglBlendEquation = NULL;
 pfglDrawRangeElements = NULL;

// 7 MyAGLDellocEntryPoints ();
}

Here's what the code does:

1. Imports the header file that contains the MyAGLGetProcAdress function from Listing B-2 (page 140).

2. Declares function pointers for the functions of interest.

3. Initializes each function pointer to NULL.

4. Calls the initialization function defined in Listing B-2 (page 140).

5. After checking for an error condition, obtains the function pointers for the functions of interest by calling
the MyAGLGetProcAddress function defined in Listing B-2 (page 140).

6. Sets each of the function pointers to NULL when they are no longer needed.

7. Deallocates the function pointers when they are no longer needed by calling the deallocation function
defined in Listing B-2 (page 140).

144 Initializing Entry Points
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Setting Up Function Pointers to OpenGL Routines

The Quartz Display Services API provides functionality that is useful for any Mac OS X application using
full-screen mode. In other parts of this programming guide, you've seen how to use Quartz Display Services
to obtain exclusive access to the display, query the display, and adjust the resolution, depth, and refresh rate
of the display. This appendix shows how to perform some additional tasks that are relevant to full-screen
OpenGL applications:

 ■ “Displays and Display Modes” (page 145) shows how to obtain information about the display and switch
modes.

 ■ “Fading the Display” (page 147) describes how to fade a display to black and then set it to its original
state.

 ■ “Controlling the Pointer” (page 149) discusses how to programmatically manage the cursor and disassociate
mouse movement from the cursor.

For more information, see Quartz Display Services Reference.

Displays and Display Modes

Quartz Display Services functions allow you to enumerate all displays as well as the supported modes for
each display. The Quartz Display Services functions CGDisplaySwitchToMode and
CGDisplayBestModeForParameters use on the Core Foundation CFDictionary data type. Each display
mode has a dictionary whose key-value pairs you can query. You can use accessor functions to query the
properties of the current display mode. You can also use Core Foundation functions to access the dictionary
associated with a display mode. See CFDictionary Reference.

You can enumerate the display modes for a display by using its display ID. You can obtain an array of display
IDs that correspond to all displays in the system by calling the function CGGetActiveDisplayList. The
first display in the list is always the main display. The main display is also represented by the constant
kCGDirectMainDisplay.

These functions also obtain an array of display IDs:

 ■ CGGetDisplaysWithPoint obtains the display IDs for online displays whose bounds include a specified
point.

 ■ CGGetDisplaysWithRect obtains the display IDs for online displays whose bounds include a specified
rectangle.

 ■ CGGetDisplaysWithOpenGLDisplayMask obtains the display IDs for online displays that correspond
to the bits set in an OpenGL display mask.

Displays and Display Modes 145
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Quartz Display Services and Full-Screen Mode

Typically you use the functions CGGetDisplaysWithPoint and CGGetDisplaysWithRect when tracking
user interactions. You choose which display to capture based on where the user places the pointer. After
capturing the display, you can the obtain the supported modes by calling the function
CGDisplayAvailableModes.

Listing C-1 shows how to switch the last display in a display list into its first mode and then print the height
and width of the display. A detailed explanation for each numbered line of code appears following the listing.

Listing C-1 Switching modes for a display in a list

#define MAX_DISPLAYS 32

CGDirectDisplayID lastDisplay, displayArray[MAX_DISPLAYS] ;
CGDisplayCount numDisplays;

CFArrayRef displayModeArray;
CFDictionaryRef displayMode;

CFNumberRef number;
long height, width;

// 1CGGetActiveDisplayList (MAX_DISPLAYS, displayArray, &numDisplays);
// 2lastDisplay = displayArray [numDisplays - 1];
// 3CGDisplayCapture (lastDisplay);
// 4displayModeArray = CGDisplayAvailableModes (lastDisplay);
// 5displayMode = (CFDictionaryRef) CFArrayGetValueAtIndex (displayModeArray, 0);
// 6CGDisplaySwitchToMode (lastDisplay, displayMode);

/* Run the event loop. */
// 7CGReleaseAllDisplays();

Here's what the code does:

1. Gets the array of active displays, which are the ones available for drawing.

2. Gets the display ID of the last display in the array. The array is zero-based.

3. Captures the display associated with the last display in the array.

4. Gets all the display modes for the display.

5. Gets the first display mode for the display. Recall that the display mode is stored as a CFDictionary
object that contains key-value pairs for the attributes of the display mode.

6. Switches the display mode.

7. Before the application quits, releases all displays.

Quartz Display Services provides simple accessor functions for many properties of the current display mode.
For these properties, you don't need to call CFDictionaryGetValue. Listing C-2 shows how to obtain the
properties of the current mode of every display (up to 32) in the system.

Listing C-2 Getting display properties

#define MAX_DISPLAYS 32

146 Displays and Display Modes
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Quartz Display Services and Full-Screen Mode

CGDirectDisplayID displayArray [MAX_DISPLAYS];
CGDisplayCount numDisplays;
CFNumberRef number;
CFBoolean booleanValue;
long height, width, refresh, mode,
 bpp, bps, spp, rowBytes, gui, ioflags;
int i;

// 1CGGetActiveDisplayList (MAX_DISPLAYS, displayArray, &numDisplays);
// 2printf ("Displays installed: %d\n", numDisplays);
// 3for(i = 0; i < numDisplays; i++) {

 width = CGDisplayPixelsWide (displayArray[i]);
 height = CGDisplayPixelsHigh (displayArray[i]);
 bpp = CGDisplayBitsPerPixel (displayArray[i]);
 bps = CGDisplayBitsPerSample (displayArray[i]);
 spp = CGDisplaySamplesPerPixel (displayArray[i]);
 rowBytes = CGDisplayBytesPerRow (displayArray[i]);
 number = CFDictionaryGetValue (CGDisplayCurrentMode (displayArray[i]),
 kCGDisplayMode);
 CFNumberGetValue (number, kCFNumberLongType, &mode);
 number = CFDictionaryGetValue (CGDisplayCurrentMode (displayArray[i]),
 kCGDisplayRefreshRate);
 CFNumberGetValue (number, kCFNumberLongType, &refresh);
 booleanValue = CFDictionaryGetValue (CGDisplayCurrentMode(displayArray[i]),
 kCGDisplayModeUsableForDesktopGUI);
 CFNumberGetValue (number, kCFNumberLongType, &gui);
 number = CFDictionaryGetValue (CGDisplayCurrentMode (displayArray[i]),
 kCGDisplayIOFlags);
 CFNumberGetValue (number, kCFNumberLongType, &ioflags);
}

Here's what the code does:

1. Gets the array of displays.

2. Prints out the number of displays.

3. Gets the properties for the current mode of each display. Note that Quartz Display Services provides
several functions that obtain properties. For information about the current display mode, you must use
the function CFDictionaryGetValue, along with the appropriate key, to retrieve a value from the
display mode dictionary returned by the function CGDisplayCurrentMode.

Fading the Display

Fading a display ensures a smooth transition when entering full-screen mode, especially when switching
display modes. There are two options for fading displays:

 ■ Call the function CGDisplayFade to fade all displays connected to the system. See Listing C-3.

 ■ Adjust the display gamma value to fade a single display on a system that has more than one display
connected. See Listing C-4 (page 148).

Fading the Display 147
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Quartz Display Services and Full-Screen Mode

Listing C-3 Fading all displays connected to the system

CGDisplayFadeReservationToken token;
CGDisplayErr err;

// 1err = CGAcquireDisplayFadeReservation (kCGMaxDisplayReservationInterval, &token);

if (err == kCGErrorSuccess)
{
 err = CGDisplayFade (token, 0.5, kCGDisplayBlendNormal,

// 2 kCGDisplayBlendSolidColor, 0, 0, 0, true);
 // Your code to change the display mode and
 // set the full-screen context.
 err = CGDisplayFade (token, 0.5, kCGDisplayBlendSolidColor,

// 3 kCGDisplayBlendNormal, 0, 0, 0, true);
// 4 err = CGReleaseDisplayFadeReservation (token);

}

Here's what the code does:

1. Reserves the display hardware for the maximum amount of time allowable. Your application must perform
this step before it can fade the displays. During this time, your application has exclusive rights to use
the fade hardware.

2. Fades displays to black over a duration of 0.5 seconds

3. Performs a fade-in for all displays, from black to normal, over a duration of 0.5 seconds

4. Releases the fade reservation and invalidates the fade token.

When you adjust the gamma value to fade a display, you can't assume that the maximum gamma value is
1.0 because the user might have specified a different maximum value in System Preferences. You need to
retrieve the current settings and scale them so that they range from 0 to 1. Listing C-3 shows how to fade
the main display to black and back. Note that the code uses a loop is used to obtain a smooth fade. A more
robust technique is to use a timer to ensure a fixed fade duration on different systems. A detailed explanation
for each numbered line of code appears following the listing.

Listing C-4 Fading a single display on a system with multiple displays

#define kMyFadeTime 1.0
#define kMyFadeSteps 100
#define kMyFadeInterval (kMyFadeTime/(double) kMyFadeSteps)

int step;
double fadeValue ;
CGGammaValue redMin, redMax, redGamma,
 greenMin, greenMax, greenGamma,
 blueMin, blueMax, blueGamma;

CGGetDisplayTransferByFormula (kCGDirectMainDisplay,
 &redMin, &redMax, &redGamma,
 &greenMin, &greenMax, &greenGamma,

// 1 &blueMin, &blueMax, &blueGamma);

for (step = 0; step < kMyFadeSteps; ++step) {
 fadeValue = 1.0 - (step * kMyFadeInterval);

148 Fading the Display
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Quartz Display Services and Full-Screen Mode

 CGSetDisplayTransferByFormula (kCGDirectMainDisplay,
 redMin, fadeValue*redMax, redGamma,
 greenMin, fadeValue*greenMax, greenGamma,

// 2 blueMin, fadeValue*blueMax, blueGamma);
// 3 usleep((useconds_t)(1000000.0 * kMyFadeInterval));

}
// Your code to change the display mode and
// attach the context to a full-screen drawable object.
// Run the event loop.
for (step = 0; step < kMyFadeSteps; ++step) {
 fadeValue = (step * kMyFadeInterval);
 CGSetDisplayTransferByFormula(kCGDirectMainDisplay,
 redMin, fadeValue*redMax, redGamma,
 greenMin, fadeValue*greenMax, greenGamma,

// 4 blueMin, fadeValue*blueMax, blueGamma);
// 5 usleep((useconds_t)(1000000.0 * kMyFadeInterval));

}
// 6CGDisplayRestoreColorSyncSettings()

Here's what the code does:

1. Gets the current coefficients of the gamma transfer formula for a display as the starting gamma values.

2. Fades from the current gamma by setting the color gamma function for the display, specified as the
coefficients of the gamma transfer formula. Starts with the current gamma (multiplying by a factor of
1.0) and ends with black (multiplying by a factor of 0.0).

3. Suspends processing for a short interval. You either need to use a timer or insert a short delay to achieve
a fade effect because the call to change the display gamma returns within 100 microseconds or so, and
the actual gamma is applied asynchronously during the next vertical blanking period. Without the delay,
you'll get what appears as an instantaneous switch to black rather than a fade effect.

4. Fade from black (multiplying by a factor of 0.0) back to original gamma (multiplying by a factor of 1.0).

5. Suspends processing for a short interval to achieve a smooth fade-in effect.

6. Finds and applies all ColorSync settings for all attached displays, restoring the gamma tables to the
values in the user's ColorSync display profile. It's a good idea to call this function because the operation
performed by the function CGSetDisplayTransferByFormula can't reproduce precisely the color
correction data for all displays, particularly LCD panels.

Controlling the Pointer

When you use full-screen mode, you may want to hide the pointer, programatically move the pointer, or
disassociate mouse movement from pointer position. To hide or show the pointer, use the functions
CGDisplayHideCursor and CGDisplayShowCursor. These functions control the pointer visibility on all
displays.

Controlling the Pointer 149
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Quartz Display Services and Full-Screen Mode

Quartz Display Services provides a convenient function for disassociating mouse movement from pointer
position while an application is in the foreground. By passing false to the function
CGAssociateMouseAndMouseCursorPosition, you can prevent mouse movement from changing the
pointer position. Pass true to reverse the effect. You should also hide the menu bar because clicking it can
cause the pointer to become visible again, even after capturing the display.

You can move the pointer programatically by calling the function CGDisplayMoveCursorToPoint. This
function takes two parameters, a display ID and a point. The location of the point is relative to the display
origin (the upper-left corner of the display).

Listing C-5 shows how you would hide and move the cursor on the main display, disassociate the cursor
from mouse movement, and restore the cursor and mouse when you are done.

Listing C-5 Controlling the pointer programmatically

CGDisplayHideCursor (kCGDirectMainDisplay); //Hide cursor
CGDisplayMoveCursorToPoint (kCGDirectMainDisplay,CGPointZero); //Place at display
 origin
CGAssociateMouseAndMouseCursorPosition (FALSE);
// Perform your application's main loop.
//In the mouse movement notification function, get the motion deltas
CGAssociateMouseAndMouseCursorPosition (TRUE);
CGDisplayShowCursor (kCGDirectMainDisplay);

See Also

Quartz Display Services Reference which describes the application programming interface that configures and
controls the display hardware.

150 See Also
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Quartz Display Services and Full-Screen Mode

This glossary contains terms that are used specifically for
the Apple implementation of OpenGL and a few terms
that are common in graphics programming. For definitions
of additional OpenGL terms, see OpenGL Programming
Guide, by the OpenGL Architecture Review Board.

AGL (Apple Graphics Library) framework The Apple
framework for using OpenGL graphics in Mac OS X
applications written in the Carbon environment.

aliased Graphics whose edges appear jagged; can
be remedied by performing anti-aliasing operations.

anti-aliasing In graphics, a technique used to smooth
and soften the jagged (or aliased) edges that are
sometimes apparent when graphical objects such as
text, line art, and images are drawn.

ARB The OpenGL Architecture Review Board, which
is the group that oversees the OpenGL specification
and extensions to it.

attach An operation that establishes a connection
between two existing objects. Compare with bind.

bind An operation that creates a new object and
then establishes a connection between that object
and a rendering context.

bitmap A rectangular array of bits.

bitplane A rectangular array of pixels.

buffer A block of memory dedicated to storing a
specific kind of data, such as depth values, green color
values, stencil index values, color index values, and
so forth.

CGL (Core OpenGL) framework The Apple
framework for using OpenGL graphics in Mac OS X
applications (Cocoa or Carbon) that need low-level
access to OpenGL.

clipping An operation that identifies the area of
drawing. Anything not in the clipping region is not
drawn.

clip coordinates The coordinate system used for
view-volume clipping. Clip coordinates are applied
after applying the projection matrix and prior to
perspective division.

color-lookup table A table of values used to map
color indexes into actual color values.

completeness A state that indicates whether a
framebuffer object meets all the requirements for
drawing.

context A set of OpenGL state variables that affect
how drawing is performed for a drawable object
attached to that context. Also called a rendering
context.

culling Eliminating parts of a scene that can't be seen
by the observer.

current context The rendering context to which
OpenGL routes commands issued by your application.

current matrix A matrix used by OpenGL to
transform coordinates in one system to those of
another system, such as the modelview matrix, the
perspective matrix, and the texture matrix. GL shading
language allows user-defined matrices.

depth In OpenGL, refers to the z coordinate and
specifies how far a pixel lies from the observer.

depth buffer A block of memory used to store a
depth value for each pixel. The depth buffer is used
to determine whether or not a pixel can be seen by
the observer. Those that are hidden are typically
removed.

151
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

Glossary

http://www.opengl.org/documentation/red_book/
http://www.opengl.org/documentation/red_book/

display list A list of OpenGL commands that have
an associated name and that are uploaded to the
GPU, preprocessed, and then executed at a later time.
Display lists are often used for computing-intensive
commands.

double buffering The practice of using a front and
back color buffer to achieve smooth animation. The
back buffer is not displayed, but swapped with the
front buffer.

drawable object In Mac OS X, an object allocated
outside of OpenGL that can serve as an OpenGL
framebuffer. A drawable object can be any of the
following: a window, a view, a pixel buffer, offscreen
memory, or a full-screen graphics device. See also
framebuffer object

extension A feature of OpenGL that's not part of the
OpenGL core API and therefore not guaranteed to be
supported by every implementation of OpenGL. The
naming conventions used for extensions indicate how
widely accepted the extension is. The name of an
extension supported only by a specific company
includes an abbreviation of the company name. If
more then one company adopts the extension, the
extension name is changed to include EXT instead of
a company abbreviation. If the OpenGL Architecture
Review Board approves an extension, the extension
name changes to include ARB instead of EXT or a
company abbreviation.

eye coordinates The coordinate system with the
observer at the origin. Eye coordinates are produced
by the modelview matrix and passed to the projection
matrix.

fence A token used by the GL_APPLE_fence
extension to determine whether a given command
has completed or not.

filtering A process that modifies an image by
combining pixels or texels.

fog An effect achieved by fading colors to a
background color based on the distance from the
observer. Fog provides depth cues to the observer.

fragment The color and depth values for a single
pixel; can also include texture coordinate values. A
fragment is the result of rasterizing primitives.

framebuffer The collection of buffers associated with
a window or a rendering context.

framebuffer attachable image The rendering
destination for a framebuffer object.

framebuffer object An OpenGL extension that allows
rendering to a destination other than the usual
OpenGL buffers or destinations provided by the
windowing system. A framebuffer object (FBO)
contains state information for the OpenGL framebuffer
and its set of images. A framebuffer object is similar
to a drawable object, except that a drawable object
is a window-system specific object whereas a
framebuffer object is a window-agnostic object. The
context that's bound to a framebuffer object can be
bound to a window-system-provided drawable object
for the purpose of displaying the content associated
with the framebuffer object.

frustum Defines the region of space that is seen by
the observer and that is warped by perspective
division.

FSAA (full scene anti-aliasing) A technique that
takes multiple samples at a pixel and combines them
with coverage values to arrive at a final fragment.

gamma correction A function that changes color
intensity values to correct for the nonlinear response
of the eye or of a display.

GLU Graphics library utilities.

GL Graphics library.

GLUT Graphics library utilities toolkit, which is
independent of the window system. In Mac OS X,
GLUT is implemented on top of Cocoa.

GLX An OpenGL extension that supports using
OpenGL within a window provided by the X Window
system.

image A rectangular array of pixels.

immediate mode The practice of OpenGL executing
commands at the time an application issues them. To
prevent commands from being issued immediately,
an application can use a display list.

152
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

GLOSSARY

interleaved data Arrays of dissimilar data that are
grouped together, such as vertex data and texture
coordinates. Interleaving can speed data retrieval.

mipmaps A set of texture maps, provided at various
resolutions, whose purpose is to minimize artifacts
that can occur when a texture is applied to a
geometric primitive whose onscreen resolution
doesn't match the source texture map. Mipmapping
derives from the latin phrase multum in parvo, which
means "many things in a small place."

modelview matrix A 4 X 4 matrix used by OpenGL
to transforms points, lines, polygons, and positions
from object coordinates to eye coordinates.

mutex A mutual exclusion object in a multithreaded
application.

NURBS (non-uniform rational B-spline) A
methodology use to specify parametric curves and
surfaces.

packing Converting pixel color components from a
buffer into the format needed by an application.

pbuffer See pixel buffer.

pixel A picture element; the smallest element that
the graphics hardware can display on the screen. A
pixel is made up of all the bits at the location x, y, in
all the bitplanes in the framebuffer.

pixel buffer A type of drawable object that allows
the use of offscreen buffers as sources for OpenGL
texturing. Pixel buffers, introduced in Mac OS X v10.3,
allow hardware-accelerated rendering to a texture.

pixel depth The number of bits per pixel in a pixel
image.

pixel format A format used to store pixel data in
memory. The format describes the pixel components
(that is, red, blue, green, alpha), the number and order
of components, and other relevant information, such
as whether a pixel contains stencil and depth values.

primitives The simplest elements in OpenGL—points,
lines, polygons, bitmaps, and images.

projection matrix A matrix that OpenGL uses to
transform points, lines, polygons, and positions from
eye coordinates to clip coordinates.

rasterization The process of converting vertex and
pixel data to fragments, each of which corresponds
to a pixel in the framebuffer.

renderbuffer A rendering destination for a 2D pixel
image, used for generalized offscreen rendering, as
defined in the OpenGL specification for the
GL_EXT_framebuffer_object extension.

renderer A combination of hardware and/or software
that OpenGL uses to create an image from a view and
a model. The hardware portion of a renderer is
associated with a particular display device and
supports specific capabilities, such as the ability to
support a certain color depth or buffering mode. A
renderer that uses only software is called a software
renderer and is typically used as a fallback.

rendering context A container for state information.

rendering pipeline The order of operations used by
OpenGL to transform pixel and vertex data to an
image in the framebuffer.

render-to-texture An operation that draws content
directly to a texture target.

RGBA Red, green, blue, and alpha color components.

shader A program that computes surface properties.

shading language A high-level language, accessible
in C, used to produce advanced imaging effects. The
Apple implementation of OpenGL supports
ARB_shading_language_100.

stencil buffer Memory used specifically for stencil
testing. A stencil test is typically used to identify
masking regions, identify solid geometry that needs
to be capped, and to overlap translucent polygons.

surface The internal representation of a single buffer
that OpenGL actually draws to and reads from. For
windowed drawable objects, this surface is what the
Mac OS X window server uses to composite OpenGL
content on the desktop.

tearing A visual anomaly caused when part of the
current frame overwrites previous frame data in the
framebuffer before the current frame is fully rendered
on the screen.

153
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

GLOSSARY

tessellation An operation that reduces a surface to
a mesh of polygons or a curve to a sequence of lines.

texel A texture element used to specify the color to
apply to a fragment.

texture Image data used to modify the color of
rasterized fragments; can be one-, two-, three-
dimensional or be a cube map.

texture mapping The process of applying a texture
to a primitive.

texture matrix A 4 x 4 matrix that OpenGL uses to
transform texture coordinates to the coordinates that
are used for interpolation and texture lookup.

texture object An opaque data structure used to
store all data related to a texture. A texture object can
include such things as an image, a mipmap, and
texture parameters (width, height, internal format,
resolution, wrapping modes, and so forth).

vertex A three-dimensional point. A set of vertices
specify the geometry of a shape. Vertices can have a
number of additional attributes such as colors, and
texture coordinates. See vertex array.

vertex array A data structure that stores a block of
data that specifies such things as vertex coordinates,
texture coordinates, surface normals, RGBA colors,
color indices, and edge flags.

virtual screen A combination of hardware, renderer,
and pixel format that OpenGL selects as suitable for
an imaging task. When the current virtual screen
changes, the current renderer typically changes.

154
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to OpenGL Programming Guide for Mac OS X.

NotesDate

Updated the Cocoa OpenGL tutorial and made numerous other minor changes.2008-06-09

Fixed compilation errors in Listing 5-1 (page 60).

Added “Getting Decompressed Raw Pixel Data from a Source Image” (page 106).

Updated links to OpenGL extensions.

Made several minor edits.

Corrected minor typographical and technical errors.2007-12-04

Added “Ensuring that Back Buffer Contents Remain the Same” (page 80).

Revised “Attributes that are not Recommended” (page 79).

Corrected a typographical error in Listing 3-1 (page 38).

Fixed several technical issues.2007-08-07

Fixed a broken link.2007-05-29

Fixed a few technical inaccuracies in the code listings.2007-05-17

Changed attribs to attributes in Listing 7-2 (page 82).

Fixed drawRect method implementation in “Drawing to a Window or View” (page
27).

Fixed minor errors.2006-12-20

Added information concerning the Apple client storage extension. Fixed a
typographical error.

Added information about performance issues and processor queries.2006-11-07

See “Vertex and Fragment Processing” (page 67).

Added a section on checking for GPU processing.2006-10-03

Added “Vertex and Fragment Processing” (page 67).

Fixed a number of minor typos in the code and in the text.

155
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Fixed minor technical problems.2006-09-05

Made minor technical and typograhical changes throughout.2006-07-24

Added information to “Surface Drawing Order” (page 66).

Changed glCopyTexSubImage to glCopyTexSubImage2D in “Downloading
Texture Data” (page 107).

Made minor improvements to Listing 9-6 (page 107).

Removed information about 1-D textures.

Made several minor technical corrections.2006-06-28

Redirected links to the OpenGL specification for the framebuffer object extension
so that they point to the SGI Open Source website, which hosts the most
up-to-date version of this specification.

Removed the logic operation blending entry from Table A-6 (page 138) because
this functionality is not available in OpenGL 2.0.

First version.2006-05-23

This document replaces Macintosh OpenGL Programming Guide and AGL
Programming Guide.

This document incorporates information from the following Technical Notes:

TN2007 “The CGDirectDisplay API”

TN2014 “Insights on OpenGL”

TN2080 “Understanding and Detecting OpenGL Functionality”

TN2093 “OpenGL Performance Optimization: The Basics”

This document incorporates information from the following Technical Q&As:

Technical Q&A OGL01 “aglChoosePixelFormat, The Inside Scoop”

Technical Q&A OGL02 “Correct Setup of an AGLDrawable”

Technical Q&A QA1158 “glFlush() vs. glFinish()”

Technical Q&A QA1167 “Using Interface Builder's NSOpenGLView or Custom
View objects for an OpenGL application”

Technical Q&A QA1188 “GetProcAdress and OpenGL Entry Points”

Technical Q&A QA1209 “Updating OpenGL Contexts”

Technical Q&A QA1248 “Context Sharing Tips”

156
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

NotesDate

Technical Q&A QA1268 “Sharpening Full Scene Anti-Aliasing Details”

Technical Q&A QA1269 “Mac OS X OpenGL Interfaces”

Technical Q&A QA1325 “Creating an OpenGL texture from an NSView”

157
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

158
2008-06-09 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	OpenGL Programming Guide for Mac OS X
	Contents
	Figures, Tables, and Listings
	Introduction
	OpenGL on the Mac Platform
	Structure of OpenGL in Mac OS X
	Programming Interfaces
	OpenGL APIs Specific to Mac OS X
	Apple-Implemented OpenGL Libraries

	Terminology
	Renderer
	Renderer and Buffer Attributes
	Pixel Format Objects
	Rendering Contexts
	Drawable Objects
	Virtual Screens

	Running an OpenGL Program in Mac OS X
	See Also

	Drawing to a Window or View
	General Approach
	Drawing to a Cocoa View
	Drawing to an NSOpenGLView Class: A Tutorial
	Drawing OpenGL Content to a Custom View

	Drawing to a Carbon Window
	What's Next
	See Also

	Drawing to the Full Screen
	General Approach
	Using Cocoa to Create a Full-Screen Context
	Using AGL to Create a Full-Screen Context
	Using CGL to Create a Full-Screen Context
	Adjusting Display Modes
	What's Next?
	See Also

	Drawing Offscreen
	Setting Up an Offscreen Drawable Object
	Using a Hidden View or Window
	Rendering to a Pixel Buffer
	Setting Up a Pixel Buffer for Offscreen Drawing
	Using a Pixel Buffer as a Texture Source
	Rendering to a Pixel Buffer on a Remote System

	Rendering to a Framebuffer Object
	Drawing a Texture Offscreen
	Drawing a Renderbuffer Image Offscreen

	See Also

	Determining the OpenGL Capabilities Supported by the Hardware
	Detecting Functionality
	Guidelines for Code That Checks for Functionality
	See Also

	Techniques for Working with Rendering Contexts
	Context Parameters
	Swap Interval
	Surface Opacity
	Surface Drawing Order
	Vertex and Fragment Processing
	Back Buffer Size Control

	Updating a Rendering Context
	Tracking Renderer Changes
	Updating a Rendering Context for a Custom Cocoa View
	Updating a Rendering Context for a Carbon Window
	Updating Full-screen AGL and CGL Rendering Contexts

	Sharing Rendering Contexts
	See Also

	Techniques for Choosing Attributes
	Buffer Size Attribute Selection Tips
	Attributes that are not Recommended
	Ensuring that Back Buffer Contents Remain the Same
	Ensuring a Valid Pixel Format Object
	Ensuring a Specific Type of Renderer
	Ensuring a Single Renderer for a Display
	See Also

	Techniques for Working with Vertex Data
	Best Practices for Working with Vertex Data
	Using Extensions to Improve Performance
	Vertex Array Range Extension
	Vertex Buffer Object Extension
	Fence Extension

	Double Buffering Vertex Data
	See Also

	Techniques for Working with Texture Data
	Using Extensions to Optimize
	Apple Client Storage
	Apple Texture Range and Rectangle Texture
	Combining Extensions

	Optimal Data Formats and Types
	Working with Non–Power-of-Two Textures
	Creating Textures from Image Data
	Creating a Texture from a Cocoa View
	Creating a Texture from a Quartz Image Source
	Getting Decompressed Raw Pixel Data from a Source Image

	Downloading Texture Data
	Double Buffering Texture Data
	See Also

	Techniques for Scene Anti-Aliasing
	Guidelines
	General Approach
	Hinting for a Specific Anti-Aliasing Technique
	Setting Up Full Scene Anti-Aliasing
	See Also

	Multithreading and OpenGL
	Program Design
	Guidelines for Threading OpenGL Applications
	When Things Go Wrong
	Threading APIs
	See Also

	Improving Performance
	Best Practices
	Use Flush and Finish Routines Effectively
	Be Mindful of OpenGL State Variables
	Draw Only When Necessary
	Synchronize with the Screen Refresh Rate
	Use OpenGL Macros
	Use the CPU and the GPU Asynchronously
	Use Appropriate Routines for Images and Pixel Data
	Retrieve Error Information Only When Debugging
	Use Optimal Data Types and Formats

	Gathering and Analyzing Baseline Performance Data
	Identifying Bottlenecks with Shark
	See Also

	Appendix A: OpenGL Functionality by Version
	Version 1.1
	Version 1.2
	Version 1.3
	Version 1.4
	Version 1.5
	Version 2.0

	Appendix B: Setting Up Function Pointers to OpenGL Routines
	Obtaining a Function Pointer to an Arbitrary OpenGL Entry Point
	Initializing Entry Points

	Appendix C: Quartz Display Services and Full-Screen Mode
	Displays and Display Modes
	Fading the Display
	Controlling the Pointer
	See Also

	Glossary
	Revision History

