
OpenGL Driver Monitor User Guide
Graphics & Imaging > OpenGL

2008-02-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and Mac OS are
trademarks of Apple Inc., registered in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Using OpenGL Driver Monitor 9

Setting Preferences 9
Collecting and Viewing Data 10

Viewing Graphed Data 11
Viewing Tabular Data 12
Enabling and Disabling Parameters 13

Looking at Renderer Information 14
Monitoring an OpenGL Driver Remotely 15

Chapter 2 Identifying and Solving Performance Issues 17

Checking for Best Practices 17
Checking Data Transfer Rates 17
Checking for Suboptimal Surface and Texture Paging 18

Appendix A OpenGL Driver Monitor Parameters 19

Descriptive Names 19
Symbolic Names 22

Document Revision History 27

3
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

4
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 Using OpenGL Driver Monitor 9

Figure 1-1 The parameters drawer 11
Figure 1-2 The driver monitor graph window 12
Figure 1-3 The driver monitor table window 13
Figure 1-4 The Action pop-up menu 13
Figure 1-5 The renderer information window 14
Figure 1-6 The remote host window 15

5
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

6
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

FIGURES

OpenGL Driver Monitor is a developer tool that has two purposes. It is:

 ■ An application that lets developers see how OpenGL works on a specific system and look at the capabilities
of a driver

 ■ An advanced diagnostic tool that OpenGL driver developers and experts can use to track down thorny
performance issues

Most OpenGL developers should not use the driver monitor application to analyze performance issues; they
should instead use Shark and OpenGL Profiler.

You’ll want to read this document if you:

 ■ Develop applications that use OpenGL on Mac OS X and you are curious as to how the GPU and CPU
interact

 ■ Want to look at the capabilities of a particular OpenGL driver

 ■ Are an OpenGL driver developer who needs to investigate a driver bug

 ■ Are an advanced OpenGL developer or consultant trying to track down a performance issue that you’ve
been unable to analyze using Shark and OpenGL Profiler

Organization of This Document

This document is organized into the following chapters:

 ■ “Using OpenGL Driver Monitor” (page 9) describes how to set preferences, collect real-time parameter
values locally or remotely, and view renderer information.

 ■ “Identifying and Solving Performance Issues” (page 17) provides strategies for using OpenGL Driver
Monitor to analyze performance issues.

 ■ “OpenGL Driver Monitor Parameters” (page 19) describes, by symbolic and descriptive names, the
parameters that you can monitor.

See Also

These documents contain information that can help you analyze and optimize your OpenGL code:

 ■ OpenGL Programming Guide for Mac OS X discusses best practices for getting optimal performance.

Organization of This Document 7
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ OpenGL Profiler User Guide explains how to collect and analyze data that can help you tune your OpenGL
application.

 ■ Shark User Guide describes how to optimize application performance using this tool.

8 See Also
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

OpenGL Driver Monitor is a developer tool that lets you investigate how the graphics processing unit (GPU)
works on a system-wide basis. Using it, you can:

 ■ Inspect the renderers available on a Mac OS X system

 ■ See what OpenGL extensions each renderer supports

 ■ Monitor rendering parameters and resources in real-time

 ■ Track the interaction between the GPU and the CPU

This chapter provides an overview of OpenGL Driver Monitor and shows how you can use it to look at and
track OpenGL parameters.

Setting Preferences

For most cases, the default values that OpenGL Driver Monitor uses are optimal. Before you start using the
driver monitor for the first time, you might want to familiarize yourself with its preferences to see whether
the default values are acceptable for your needs.

To set preferences:

1. Choose OpenGL Driver Monitor > Preferences.

2. Adjust the sampling interval.

OpenGL Driver Monitor measures data throughput in bytes per sampling interval. For example, the
default sampling interval is 1 second, so the data throughput is in bytes per second.

If you change the sampling interval, the OpenGL Driver Monitor measures values for that interval; the
values are not normalized to a 1 second interval. For example, if you set the sampling interval to 2
seconds, and the throughput value is 500 bytes, the reported sampling rate is 500 bytes per interval
which, in this case, is 250 bytes per second.

3. Adjust the maximum data samples.

The value is the maximum number bytes per sampling interval. The default is 2048.

4. Adjust graph colors.

If you don’t like that default colors for the graph background or graph labels, click the color wells and
choose other colors.

5. Select whether or not to use descriptive parameter names.

Setting Preferences 9
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

OpenGL Driver Monitor provides a list of parameters from which you choose the ones you want to track.
You can either view the list as the symbolic names used by driver monitor (such as command2DBytes,
gartMapOutBytes, finishAll2DWaitTime) or as descriptive names (such as 2D Command Data, AGP
Data Unmapped, CPU Wait for Operations to Finish).

6. If you want to monitor this computer remotely, select “Enable remote monitor.“

See “Monitoring an OpenGL Driver Remotely” (page 15) for additional details.

7. Click Apply to commit to the changes you made. Then click OK to close the Preferences window.

Collecting and Viewing Data

OpenGL Driver Monitor lets you collect system-wide data for a specific OpenGL driver. You can collect data
for the system that you are running the driver monitor on or a system that you already set up for remote
monitoring. (See “Monitoring an OpenGL Driver Remotely” (page 15).) The next few sections show how to
collect the data.

After OpenGL Driver Monitor launches, choose a driver to investigate from the Monitors > Driver Monitors
menu. Most systems have only one driver, but if your system has more than one graphics card installed, you’ll
see more than one entry. After choosing a driver, the driver window opens with a view of an empty graph.
You’ll notice that the Driver Monitor Parameters list below the graph is empty.

Click Parameters to open a drawer that lists all the driver parameters that you can monitor. Hover the pointer
over a parameter name to see its description. See also “OpenGL Driver Monitor Parameters” (page 19) for
definitions of the parameter names and for cross-references between the symbolic name and the descriptive
name for a parameter.

Either double-click each of the parameters (shown in Figure 1-1 (page 11)) you want to monitor, or drag
them to the Driver Monitor Parameters list below the graph. As you might expect, not all parameters are
equally useful for every scenario. You’ll need to choose accordingly.

Keep in mind that the parameters shown in Figure 1-1 (page 11) are for a particular driver. Not all drivers
support the same parameters, so it’s possible that the list you see doesn’t match either what’s shown in the
figure or what’s listed in the glossary.

You’ll notice that when you see similarly named parameters, one of them is typically a “super parameter.”
The value of a super parameter includes the values of all its “child parameters.” For example, the super
parameter commandBytes (Total Command Data) includes all quantities represented by the similarly named
parameters command2DBytes (2D Command Data), commandGLBytes (OpenGL Command Data), and
commandDVDBytes (DVD Command Data).

10 Collecting and Viewing Data
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

Figure 1-1 The parameters drawer

Viewing Graphed Data

After you choose a parameter, OpenGL Driver Monitor adds it to the Driver Monitor Parameter list and starts
to display data on the graph and in the columns next to the parameter name. Figure 1-2 (page 12) shows
the driver monitor graph window after displaying two parameters—CPU Wait for CPU and Current Free Video
Memory. If you prefer to use colors other than the default ones for graphing the values, click the color well
for a parameter and choose another from the color panel that appears.

Collecting and Viewing Data 11
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

Figure 1-2 The driver monitor graph window

The y-axis values on the left side of the graph are values that represent different units depending on the
parameter. The y-axis values on the right side represent percentages. Keep the following in mind when
reading the graph:

 ■ Time-based parameters values represent nanoseconds. For example, 1 giga-nanosecond (or 1G, as shown
on the graph) represents about 1 second spent on an operation. If the sampling interval is 1 second,
then the percentage is 100%.

 ■ Parameters that represent counts are absolute numbers, with quantities measured once per sampling
interval. Counts are not affected by the length of the sampling interval, but may vary during the interval.

You can adjust the scale of the x-axis and the base (log or linear) of the y-axis to help you see changes in the
values.

Viewing Tabular Data

You can view the data in tabular format if you prefer. This lets you compare running values among the
parameters you are monitoring, as shown in Figure 1-3 (page 13).

12 Collecting and Viewing Data
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

Figure 1-3 The driver monitor table window

Enabling and Disabling Parameters

You enable and disable the driver monitor parameters that you are monitoring by using the Action pop-up
menu shown in Figure 1-4 (page 13). You can also click the Show column to show or hide data for a particular
parameter.

Figure 1-4 The Action pop-up menu

Collecting and Viewing Data 13
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

Looking at Renderer Information

An OpenGL Driver has at least two renderers associated with it—one hardware renderer and one software
renderer. You can take a look at what each renderer supports by choosing Monitors > Renderer Information.
Then, when the OpenGL Renderer Info window opens, you can click each of the disclosure triangles to view
the settings for a particular renderer.

As Figure 1-5 (page 14) shows, you can view the vender name and version, the OpenGL extensions that the
driver supports, the buffer modes, various processing capabilities, and so on.

Figure 1-5 The renderer information window

If you want to view renderer information for renderers other than those on your system, you can set up
remote monitoring on the computers whose renderers you want to inspect. See “Monitoring an OpenGL
Driver Remotely” (page 15).

14 Looking at Renderer Information
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

Monitoring an OpenGL Driver Remotely

Before you can monitor an OpenGL driver on a remote computer, you need to enable remote monitoring
on that computer by following these steps:

1. Launch OpenGL Driver Monitor on the computer that you want to monitor remotely.

2. Choose OpenGL Driver Monitor > Preferences.

3. Click “Enable remote monitor.“

4. Make a note of the remote monitor name. You’ll need this later.

5. Click Apply.

To monitor a computer after you enable remote monitoring:

1. Launch OpenGL Driver Monitor on the computer that you plan to monitor from.

2. Choose Monitors > Connect To.

3. When the remote host window opens (see Figure 1-6 (page 15)), select the name of the computer you
want to monitor and click Choose.

Figure 1-6 The remote host window

4. Collect, view, and interpret data the same way you would for a local OpenGL driver.

Monitoring an OpenGL Driver Remotely 15
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

16 Monitoring an OpenGL Driver Remotely
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Using OpenGL Driver Monitor

OpenGL Driver Monitor is not the primary tool for analyzing performance issues in an OpenGL application.
It’s the backup tool that experts use when Shark and OpenGL Profiler don’t reveal the cause of a performance
problem. This chapter assumes that you have already used Apple’s other tools to analyze your OpenGL
application.

The strategies described here can help you identify the most common problems that occur in OpenGL
applications. Keep in mind that analyzing difficult performance problems is more of an art than a science.
Although you’ll want to start with these basic strategies, you’ll need to devise additional ones tailored to the
type of problem you see, and to whether you are trying to solve a driver issue or an application one.

Checking for Best Practices

Before you begin to use OpenGL Driver Monitor as an analysis tool, it’s a good idea to check your code to
see if you are following the most recent best practices for using OpenGL. See:

 ■ The “Improving Performance” chapter in OpenGL Programming Guide for Mac OS X for a discussion of
best practices

 ■ OpenGL Profiler User Guide. You’ll find advice on functions that you need to make sure you use correctly,
if you use them at all.

Checking Data Transfer Rates

To check data transfer rates, monitor the following:

 ■ VRAM usage. See whether VRAM usage is at capacity by looking at Current Video Memory in Use
(vramUsedBytes) or Current Free Video Memory (vramFreeBytes). If it is at capacity, investigate
whether the system is low on VRAM or whether VRAM usage is unusually high for an application running
on the system.

 ■ Swap rate. A variety of parameters, such as Buffer Swaps (bufferSwapCount), let you investigate the
cause of unusually high swap rates. Check to see whether the swapped data is dynamic or static. If the
data os static, make sure you are using caches, vertex buffer objects, or some other technique that’s
optimized for static data. Use swaps only for dynamic data, and only when the data changes.

 ■ The time spent by the CPU waiting for the GPU. Look at CPU Wait for GPU (hardwareWaitTime). If the
CPU spends a lot of time simply waiting, check to see whether you are calling glFlush or glFinish
inappropriately. There are only a few cases where you actually need to use these calls, and these cases
are rare. For more information, see the “Improving Performance” chapter in OpenGL Programming Guide
for Mac OS X.

Checking for Best Practices 17
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Identifying and Solving Performance Issues

Checking for Suboptimal Surface and Texture Paging

You need to make sure that your application is not paging texture and surface data unnecessarily. When it
does page, you should use the accelerated graphics port (AGP pathway, which is also known as DMA transfer).
Non-AGP transfers slow performance. You can check for less optimal paging by looking at these parameters:

 ■ Surface Page Off Data (Non-AGP) (surfacePageOffBytes)

 ■ Surface Page On Data (Non-AGP) (surfacePageInBytes)

 ■ Texture Page Off Data (Non-AGP) (texturePageOutBytes)

 ■ Texture Page Off Data (Non-AGP) (texturePageInBytes)

Non-AGP transfer is acceptable only if you must reorder data or align it. If possible, use this type of data
transfer at initialization time and not during a rendering loop.

If your application has a lot of paging activity, whether it’s AGP or non-AGP, consider using framebuffer
objects.

18 Checking for Suboptimal Surface and Texture Paging
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Identifying and Solving Performance Issues

OpenGL Driver Monitor parameters are represented as descriptive names and as symbolic names. The
parameters you can set for a specific driver are often a subset of what’s listed here.

Descriptive Names

Each descriptive name describes what the parameter represents and lists its symbolic name.

2D Command Data
The number of bytes sent using 2D graphics contexts. command2DBytes

2D Context Switches
The total number of context switches to a 2D context on the GPU. context2DSwitchCount

2D Contexts
The total number of 2D contexts in use on the GPU. context2DCount

AGP Data Mapped
The number of bytes that are mapped into the AGP Graphics Address Remapping Table (GART) or
equivalent hardware. gartMapInBytes

AGP Data Unmapped
The number of bytes that are unmapped from the AGP Graphics Address Remapping Table (GART)
(or equivalent hardware). gartMapOutBytes

Buffer Swaps
The total number of buffer swaps (or blits) that the GPU perform. bufferSwapCount

CPU Texture Page-off Wait (non-DMA)
The amount of time, in nanoseconds, that the CPU waits for the GPU to finish activity. This is the that
the CPU could use to modify a texture prior to paging the texture. This metric applies only if the
texture must be paged using the CPU and not using direct memory access (DMA).
texturePageOffWaitTime

CPU Texture Page-on Wait
The amount of time, in nanoseconds, that the CPU waits for a texture upload command to be
completed by the GPU. This is the that the CPU could use for updating and reloading a texture.
Typically, there is very little, if any time, spent waiting here. texturePageInWaitTime

CPU Texture Upload Wait (2D context only)
The amount of time, in nanoseconds, that the CPU waits for a texture upload to complete before the
buffer can be modified. This particular metric tracks usage only by 2D contexts, and is somewhat
obsolete. textureWaitTime

CPU Wait for 2D Operations to Finish
The amount of time, in nanoseconds, that the CPU waits for all 2D commands issued on a single
context to complete. finish2DWaitTime

Descriptive Names 19
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

CPU Wait for 2D Swap to Complete
The amount of time, in nanoseconds, that the CPU waits for a previously issued 2D buffer swap to
complete. swapComplete2DWaitTime

CPU Wait for DVD Operations to Finish
The amount of time, in nanoseconds, that the CPU waits for all DVD commands issued on a single
context to complete. finishDVDWaitTime

CPU Wait for DVD Swap to Complete
The amount of time, in nanoseconds, that the CPU waits for a previously issued DVD buffer swap to
complete. swapCompleteDVDWaitTime

CPU Wait for Free 2D Command Buffer
The amount of time, in nanoseconds, that the CPU waits for a 2D command buffer to become available.
freeCommandBuffer2DWaitTime

CPU Wait for Free OpenGL Command Buffer
The amount of time, in nanoseconds, that the CPU waits for an OpenGL command buffer to become
available. freeCommandBufferGLWaitTime

CPU Wait for Free OpenGL Data Buffer
The amount of time, in nanoseconds, that the CPU waits for an OpenGL data buffer to become
available. freeDataBufferGLWaitTime

CPU Wait for Free 2D Context Switch Buffer
The amount of time, in nanoseconds, that the CPU waits for a 2D context-switching buffer to become
available. freeContextBuffer2DWaitTime

CPU Wait for Free OpenGL Context Switch Buffer
The amount of time, in nanoseconds, that the CPU waits for an OpenGL context-switching buffer to
become available. freeContextBufferGLWaitTime

CPU Wait for Free DVD Context Switch Buffer
The amount of time, in nanoseconds, that the CPU waits for a DVD context-switching buffer to become
available. freeContextBufferDVDWaitTime

CPU Wait for GPU
The amount of time, in nanoseconds, that the CPU stalled while waiting on the GPU for any reason.
hardwareWaitTime

CPU Wait for Mapped AGP Buffer Removal
The amount of time, in nanoseconds, the CPU waits for the GPU to finish an operation on a buffer
that needs to be removed from the Graphics Address Remapping Table (GART).
removeFromGARTWaitTime

CPU Wait for OpenGL Swap to Complete
The amount of time, in nanoseconds, that the CPU waits for a previously issued OpenGL buffer swap
to complete. swapCompleteGLWaitTime

CPU Wait for Operations to Finish
The amount of time, in nanoseconds, that the CPU waits for all GPU operations to complete and then
to be idle. Generally, only the window server waits for this state. finishAll2DWaitTime

CPU Wait for OpenGL Operations to Finish
The amount of time, in nanoseconds, that the CPU waits for all OpenGL commands issued on a single
context to complete. This is essentially the time spent in glFinish. finishGLWaitTime

CPU Wait in User Code
The amount of time, in nanoseconds, that the CPU waits while the client (user-level) OpenGL driver
waits for a hardware time stamp to arrive (usually for making texture modifications or waiting for a
fence to complete). clientGLWaitTime

20 Descriptive Names
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

CPU Wait to perform Surface Read
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
may read from a surface. surfaceReadLockIdleWaitTime

CPU Wait to perform Surface Resize
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
may change the dimensions of a surface. surfaceSetShapeIdleWaitTime

CPU Wait to perform Surface Write
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
may write to a surface. surfaceWriteLockIdleWaitTime

CPU Wait to perform VRAM Surface Page-off
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
can page a surface out of VRAM. surfaceCopyOutWaitTime

CPU Wait to perform VRAM Surface Page-on
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
can page a surface in to VRAM. surfaceCopyInWaitTime

CPU Wait to Submit Commands
The amount of time, in nanoseconds, that the CPU waits before being able to submit a new batch of
commands to the GPU. hardwareSubmitWaitTime

Current AGP Memory
The total size, in bytes, of the AGP Graphics Address Remapping Table (GART). gartSizeBytes

Current Free AGP Memory
The total number of free bytes in the AGP Graphics Address Remapping Table (GART). gartFreeBytes

Current Mapped AGP Memory
The total number of bytes mapped into AGP Graphics Address Remapping Table (GART).
gartUsedBytes

Current Free Video Memory
The total number of bytes of free VRAM. This parameter is vendor specific and not available for all
drivers. vramFreeBytes

Current Largest Free Video Memory Block
The largest free contiguous chunk of VRAM, in bytes. This parameter is vendor specific and not available
for all drivers. vramLargestFree

Current Video Memory in Use
The total number of bytes of VRAM in use. This parameter is vendor specific and not available for all
drivers. vramUsedBytes

DVD Command Data
The number of bytes sent using DVD contexts. commandDVDBytes

DVD Context Switches
The total number of context switches to a DVD context on the GPU. contextDVDSwitchCount

DVD Contexts
The total number of DVD contexts in use on the GPU. contextDVDCount

Extra OpenGL Data
The number of bytes used for extra OpenGL command traffic (usually vertex data). Not used by all
drivers in all modes. dataGLBytes

Last GPU Submission Time
The last submitted time stamp to the GPU, as an absolute time value. submitStamp

Descriptive Names 21
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

Last Read GPU time
The last time stamp read back from the GPU, as an absolute time value. lastReadStamp

OpenGL Command Data
The number of bytes sent using OpenGL contexts. commandGLBytes

OpenGL Contexts
The total number of OpenGL contexts in use on the GPU. contextGLCountcontextGLCount

OpenGL Data Buffers
The total number of extra OpenGL data buffers allocated. dataBufferCount

OpenGL Context Switches
The total number of context switches to an OpenGL context on the GPU. contextGLSwitchCount

Surface Page Off Data (Non-AGP)
The number of bytes transferred due to surface page-off operations. surfacePageOffBytes

Surface Page On Data (Non-AGP)
The number of bytes transferred due to surface page-on operations. surfacePageInBytes

Surfaces
The total number of surfaces allocated by the GPU. surfaceCount

Swap Data
The number of bytes sent by swap commands. swapBytes

Target Minimum Mapped AGP Memory
The minimum amount of data, in bytes, that a driver tries to keep mapped into AGP Graphics Address
Remapping Table (GART). gartCacheBytes

Texture Page Off Data (Non-AGP)
The number of bytes transferred for texture page-off operations. Under most conditions, textures are
not paged off but are simply thrown away since a backup exists in system memory. Texture page-off
traffic usually happens when VRAM pressure forces a page-off of a texture that only has valid data in
VRAM, such as a texture created using the function glCopyTexImage, or modified using the functiona
glCopyTexSubImage or glTexSubImage. texturePageOutBytes

Texture Page On Data (Non-AGP)
The number of bytes transferred for texture page-ins. Textures mapped using AGP will not show up
here. texturePageInBytes

Textures
The total number of kernel textures allocated by the GPU. textureCount

Total Command Data
The number of bytes sent using all graphics contexts (2D, OpenGL, DVD). commandBytes

Symbolic Names

Each symbolic name describes what the parameter represents and lists its descriptive name.

bufferSwapCount
The total number of buffer swaps (or blits) that the GPU perform. (Buffer Swaps)

22 Symbolic Names
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

clientGLWaitTime
The amount of time, in nanoseconds, that the CPU waits while the client (user-level) OpenGL driver
waits for a hardware time stamp to arrive (usually for making texture modifications or waiting for a
fence to complete). (CPU Wait in User Code)

command2DBytes
The number of bytes sent using 2D graphics contexts. (2D Command Data)

commandBytes
The number of bytes sent using all graphics contexts (2D, OpenGL, DVD). (Total Command Data)

commandDVDBytes
The number of bytes sent using DVD contexts. (DVD Command Data)

commandGLBytes
The number of bytes sent using OpenGL contexts. (OpenGL Command Data)

context2DCount
The total number of 2D contexts in use on the GPU. (2D Contexts)

context2DSwitchCount
The total number of context switches to a 2D context on the GPU. (2D Context Switches)

contextDVDCount
The total number of DVD contexts in use on the GPU. (DVD Contexts)

contextDVDSwitchCount
The total number of context switches to a DVD context on the GPU. (DVD Context Switches)

contextGLCount
The total number of OpenGL contexts in use on the GPU. (OpenGL Contexts)

contextGLSwitchCount
The total number of context switches to an OpenGL context on the GPU. (OpenGL Context Switches)

dataBufferCount
The total number of extra OpenGL data buffers allocated. (OpenGL Data Buffers)

dataGLBytes
The number of bytes used for extra OpenGL command traffic (usually vertex data). Not used by all
drivers in all modes. (Extra OpenGL Data)

finish2DWaitTime
The amount of time, in nanoseconds, that the CPU waits for all 2D commands issued on a single
context to complete. (CPU Wait for 2D Operations to Finish)

finishAll2DWaitTime
The amount of time, in nanoseconds, that the CPU waits for all GPU operations to complete and then
to be idle. Generally, only the window server waits for this state. (CPU Wait for Operations to Finish)

finishDVDWaitTime
The amount of time, in nanoseconds, that the CPU waits for all DVD commands issued on a single
context to complete. (CPU Wait for DVD Operations to Finish)

finishGLWaitTime
The amount of time, in nanoseconds, that the CPU waits for all OpenGL commands issued on a single
context to complete. This is essentially the time spent in glFinish. (CPU Wait for OpenGL Operations
to Finish)

freeCommandBuffer2DWaitTime
The amount of time, in nanoseconds, that the CPU waits for a 2D command buffer to become available.
(CPU Wait for Free 2D Command Buffer)

Symbolic Names 23
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

freeCommandBufferGLWaitTime
The amount of time, in nanoseconds, that the CPU waits for an OpenGL command buffer to become
available. (CPU Wait for Free OpenGL Command Buffer)

freeContextBuffer2DWaitTime
The amount of time, in nanoseconds, that the CPU waits for a 2D context-switching buffer to become
available. (CPU Wait for Free 2D Context Switch Buffer)

freeContextBufferDVDWaitTime
The amount of time, in nanoseconds, that the CPU waits for a DVD context-switching buffer to become
available. (CPU Wait for Free DVD Context Switch Buffer)

freeContextBufferGLWaitTime
The amount of time, in nanoseconds, that the CPU waits for an OpenGL context-switching buffer to
become available. (CPU Wait for Free OpenGL Context Switch Buffer)

freeDataBufferGLWaitTime
The amount of time, in nanoseconds, that the CPU waits for an OpenGL data buffer to become
available. (CPU Wait for Free OpenGL Data Buffer)

gartCacheBytes
The minimum amount of data, in bytes, that a driver tries to keep mapped into AGP Graphics Address
Remapping Table (GART). (Target Minimum Mapped AGP Memory)

gartFreeBytes
The total number of free bytes in the AGP Graphics Address Remapping Table (GART). (Current Free
AGP Memory)

gartMapInBytes
The number of bytes that are mapped into the AGP Graphics Address Remapping Table (GART) or
equivalent hardware. (AGP Data Mapped)

gartMapOutBytes
The number of bytes that are unmapped from the AGP Graphics Address Remapping Table (GART)
(or equivalent hardware). (AGP Data Unmapped)

gartSizeBytes
The total size, in bytes, of the AGP Graphics Address Remapping Table (GART). (Current AGP Memory)

gartUsedBytes
The total number of bytes mapped into AGP Graphics Address Remapping Table (GART). (Current
Mapped AGP Memory)

hardwareSubmitWaitTime
The amount of time, in nanoseconds, that the CPU waits before being able to submit a new batch of
commands to the GPU. (CPU Wait to Submit Commands)

hardwareWaitTime
The amount of time, in nanoseconds, that the CPU stalled while waiting on the GPU for any reason.
(CPU Wait for GPU)

lastReadStamp
The last time stamp read back from the GPU, as an absolute time value. (Last Read GPU time)

removeFromGARTWaitTime
The amount of time, in nanoseconds, the CPU waits for the GPU to finish an operation on a buffer
that needs to be removed from the Graphics Address Remapping Table (GART). (CPU Wait for Mapped
AGP Buffer Removal)

submitStamp
The last submitted time stamp to the GPU, as an absolute time value. (Last GPU Submission Time)

24 Symbolic Names
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

surfaceCount
The total number of surfaces allocated by the GPU.(Surfaces)

surfaceCopyInWaitTime
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
can page a surface in to VRAM. (CPU Wait to perform VRAM Surface Page-on)

surfaceCopyOutWaitTime
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
can page a surface out of VRAM. (CPU Wait to perform VRAM Surface Page-off)

surfacePageInBytes
The number of bytes transferred due to surface page-on operations. (Surface Page On Data (Non-AGP))

surfacePageOffBytes
The number of bytes transferred due to surface page-off operations. (Surface Page Off Data (Non-AGP))

surfaceReadLockIdleWaitTime
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
may read from a surface. (CPU Wait to perform Surface Read)

surfaceSetShapeIdleWaitTime
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
may change the dimensions of a surface. (CPU Wait to perform Surface Resize)

surfaceWriteLockIdleWaitTime
The amount of time, in nanoseconds, that the CPU waits for the GPU to become idle so that the CPU
may write to a surface. (CPU Wait to perform Surface Write)

swapBytes
The number of bytes sent by swap commands. (Swap Data)

swapComplete2DWaitTime
The amount of time, in nanoseconds, that the CPU waits for a previously issued 2D buffer swap to
complete. (CPU Wait for 2D Swap to Complete)

swapCompleteDVDWaitTime
The amount of time, in nanoseconds, that the CPU waits for a previously issued DVD buffer swap to
complete. (CPU Wait for DVD Swap to Complete)

swapCompleteGLWaitTime
The amount of time, in nanoseconds, that the CPU waits for a previously issued OpenGL buffer swap
to complete. (CPU Wait for OpenGL Swap to Complete)

textureCount
The total number of kernel textures allocated by the GPU. (Textures)

texturePageInBytes
The number of bytes transferred for texture page-ins. Textures mapped using AGP will not show up
here. (Texture Page On Data (Non-AGP))

texturePageInWaitTime
The amount of time, in nanoseconds, that the CPU waits for a texture upload command to be
completed by the GPU. This is the that the CPU could use for updating and reloading a texture.
Typically, there is very little, if any time, spent waiting here. (CPU Texture Page-on Wait)

texturePageOffWaitTime
The amount of time, in nanoseconds, that the CPU waits for the GPU to finish activity. This is the that
the CPU could use to modify a texture prior to paging the texture. This metric applies only if the
texture must be paged using the CPU and not using direct memory access (DMA). (CPU Texture
Page-off Wait (non-DMA))

Symbolic Names 25
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

texturePageOutBytes
The number of bytes transferred for texture page-off operations. Under most conditions, textures are
not paged off but are simply thrown away since a backup exists in system memory. Texture page-off
traffic usually happens when VRAM pressure forces a page-off of a texture that only has valid data in
VRAM, such as a texture created using the function glCopyTexImage, or modified using the functions
glCopyTexSubImage or glTexSubImage. (Texture Page Off Data (Non-AGP))

textureWaitTime
The amount of time, in nanoseconds, that the CPU waits for a texture upload to complete before the
buffer can be modified. This particular metric tracks usage only by 2D contexts, and is somewhat
obsolete. (CPU Texture Upload Wait (2D context only))

vramFreeBytes
The total number of bytes of free VRAM. This parameter is vendor specific and not available for all
drivers. (Current Free Video Memory)

vramLargestFree
The largest free contiguous chunk of VRAM, in bytes. This parameter is vendor specific and not available
for all drivers. (Current Largest Free Video Memory Block)

vramUsedBytes
The total number of bytes of VRAM in use. This parameter is vendor specific and not available for all
drivers. (Current Video Memory in Use)

26 Symbolic Names
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

OpenGL Driver Monitor Parameters

This table describes the changes to OpenGL Driver Monitor User Guide.

NotesDate

Fixed a link.2008-02-08

New document that explains how to view the properties supported by the
OpenGL drivers available on the system.

2007-12-11

27
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	OpenGL Driver Monitor User Guide
	Contents
	Figures
	Introduction
	Using OpenGL Driver Monitor
	Setting Preferences
	Collecting and Viewing Data
	Viewing Graphed Data
	Viewing Tabular Data
	Enabling and Disabling Parameters

	Looking at Renderer Information
	Monitoring an OpenGL Driver Remotely

	Identifying and Solving Performance Issues
	Checking for Best Practices
	Checking Data Transfer Rates
	Checking for Suboptimal Surface and Texture Paging

	Appendix A: OpenGL Driver Monitor Parameters
	Descriptive Names
	Symbolic Names

	Revision History

