
OpenGL Shader Builder User Guide
Graphics & Imaging > OpenGL

2008-06-23



Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and Mac OS are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Getting Started 9

Program View 9
Source Code Files 11
Controls for Geometry Shaders 12

Render View 13
Textures View 14
Symbols View 16

Chapter 2 Building Shaders 19

Creating and Saving Projects 19
Creating and Saving a Layout 19
Adding Textures 20
Using Alternate Texture Views 21
Modifying Uniform Variables 23
Building Shaders 24
Checking Shader Performance 25
Troubleshooting Errors 26

Document Revision History 27

3
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.



4
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CONTENTS



Figures and Tables

Chapter 1 Getting Started 9

Figure 1-1 The Program view 10
Figure 1-2 The Program view after adding two files 11
Figure 1-3 A source code file opens in a separate document window 12
Figure 1-4 The Program view after adding a geometry shader 13
Figure 1-5 The Render view 14
Figure 1-6 The Textures view 15
Figure 1-7 The Textures alternate view 16
Figure 1-8 The Symbols view 17

Chapter 2 Building Shaders 19

Figure 2-1 Cube face layout for a cube map 20
Figure 2-2 The default view for a cube map 22
Figure 2-3 The alternate view for a cube map 23
Figure 2-4 Controls for a matrix structure 24
Table 2-1 Naming conventions that map texture files to cube faces in a cube map 21

5
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.



6
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

FIGURES AND TABLES



OpenGL Shader Builder is a tool for developing and debugging programs for the graphics processing unit
(GPU). It can help you visualize and preview shader objects without the complexity of surrounding code.
Using it, you can:

 ■ Get immediate feedback as you enter and modify GPU programs

 ■ Explore the effect of changing texture parameters

 ■ Track down link and compile errors

 ■ Observe the effect of making changes to symbol values

Developers who are writing GPU programs will want to read this document to find out how to use OpenGL
Shader Builder. You can use the shader builder with programs written with OpenGL Shading Language or
with older-style ARB vertex and fragment programs. OpenGL Shader Builder also supports geometry shaders,
a recent addition to the OpenGL specification.

Organization of This Document

This document is organized into the following chapters:

 ■ “Getting Started” (page 9) gives an overview of the user interface and the main features of OpenGL
Shader Builder.

 ■ “Building Shaders” (page 19) provides step-by-step instructions for the most common tasks you can
accomplish.

See Also

You may want to consult these documents as you develop shaders for the GPU:

 ■ OpenGL Shading Language (PDF) provides an overview of shaders and a complete reference to the
language.

 ■ OpenGL Shading Language (GLSl) Quick Reference Guide (PDF) is a two-page list of symbols that includes
cross-references to the full specification.

The following OpenGL specifications define the extensions that support GPU programs:

 ■ GL_EXT_geometry_shader4 is for generating primitives.

 ■ GL_ARB_fragment_program is for processing fragments.

Organization of This Document 7
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf
http://www.opengl.org/sdk/libs/OpenSceneGraph/glsl_quickref.pdf
http://developer.download.nvidia.com/opengl/specs/GL_EXT_geometry_shader4.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_program.txt


 ■ GL_ARB_vertex_program is for processing vertices.

8 See Also
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_program.txt


OpenGL Shader Builder is a development environment for writing, testing, and experimenting with OpenGL
shaders. OpenGL Shader Builder not only speeds development for seasoned shader developers, but it can
help those new to writing shaders to explore how shaders work. Using it, you can focus on the shader code;
OpenGL Shader Builder takes care of the rest. You can use it to:

 ■ Parse source code and check the syntax

 ■ Compile and link source code files to create shader objects

 ■ Change and animate the values of uniform variables

 ■ Preview textures before applying them to an object

 ■ Benchmark performance

 ■ Enable and disable a shader so you can see its effect more clearly

After you install the developer tools, you can find OpenGL Shader Builder in this directory:

/Developer/Applications/Graphics Tools/

If you’ve used OpenGL Shader Builder before, you’ll notice that the user interface for version 2.0 is a bit
different from the previous version. Before you start using it, you’ll want to get acquainted with the four
views it provides—Program, Render, Textures, and Symbols.

Program View

When you launch OpenGL Shader Builder, it opens to the Program view shown in Figure 1-1 (page 10). You
use this view to manage source code files and to check linking and validation of the code.

Program View 9
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



Figure 1-1 The Program view

The top part of the view is used for listing source code filenames. You can add files in any of these ways:

 ■ Drag previously created files to the window.

 ■ Use the Add Shaders button to navigate and choose previously created files.

 ■ Choose File > New > to create a new file for a GLSL program (vertex, fragment, geometry) or an ARB
program (vertex, fragment).

Figure 1-2 (page 11) shows the Program view after you’ve adding fragment and vertex source code files.
The link log, link results, and validation log appear below the file list. The link status, which in this case is
“Link succeeded,” appears in the lower-right corner of the window.

10 Program View
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



Figure 1-2 The Program view after adding two files

Source Code Files

You can view and modify the contents of each source code file by double-clicking its name in the file list.
The file opens in a new window, as shown in Figure 1-3 (page 12). When you create a new source code file,
it opens automatically in a new document window. In contrast, new source code files open in a new document
window automatically. These new source code files contain template code that you can modify or replace
to suit your needs.

Program View 11
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



Figure 1-3 A source code file opens in a separate document window

Controls for Geometry Shaders

A geometry shader object is made up of a geometry program and a vertex program. When you add the
geometry source code file to the program list, the user interface changes (see Figure 1-4 (page 13)) to show
controls for the following OpenGL parameters, which the GL_NV_geometry_shader4 extension defines:

 ■ GEOMETRY_VERTICES_OUT_EXT is the maximum number of vertices produced by the geometry shader.

 ■ GEOMETRY_INPUT_TYPE_EXT is the geometry that the shader takes as input: POINTS, LINES,
LINES_ADJACENCY_EXT, TRIANGLES, or TRIANGLES_ADJACENCY_EXT.

 ■ GEOMETRY_OUTPUT_TYPE_EXT is the geometry that the shader produces: POINTS, LINE_STRIP, or
TRIANGLE_STRIP.

12 Program View
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started

http://www.opengl.org/registry/specs/NV/geometry_shader4.txt


Figure 1-4 The Program view after adding a geometry shader

Render View

The Render view, shown in Figure 1-5 (page 14), visualizes what your code does. Although you can click the
Render tab to switch between the Program and Render views, it’s more efficient to double-click the Render
tab to open the view in a separate Render window. That way, you can look at the rendering results side-by-side
with the contents of the Program, Textures, and Symbols views.

For details on customizing the layout of windows, see “Creating and Saving a Layout” (page 19).

Render View 13
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



Figure 1-5 The Render view

The pop-up menu lets you choose from among several geometries—Teapot Wire, Teapot Point, Plane, Teapot,
Squiggle, Sphere, or Torus—to apply your code to. You can interact with any of the 3D geometries by clicking
and dragging the pointer.

Textures View

The Textures view, shown in Figure 1-6 (page 15), lets you add and set up textures to use as input to fragment
programs. To add a texture, you simply drag it to one of the image wells on the right side of the view. When
you select an image well, the texture appears on the left side of the view.

After selecting a texture, you can adjust any of the following by choosing the appropriate OpenGL constant
from the provided pop-up menus:

 ■ Texture types: 1D, 2D, Rectangle, 3D, Cube_MAP, SHADOW_1D, SHADOW_2D, or SHADOW_RECTANGLE

 ■ Methods of filtering: NEAREST, LINEAR, NEAREST_MIPMAP_NEAREST, LINEAR_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, or LINEAR_MIPMAP_LINEAR

 ■ Wrapping modes: REPEAT, CLAMP, CLAMP_TO_EDGE, CLAMP_TO_BORDER, or MIRRORED_REPEAT

14 Textures View
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



When you change the texture type, filter, or wrapping mode, you get immediate feedback on the effect. As
a result, you’ll be able to compare filtering methods and wrapping modes easily.

Figure 1-6 The Textures view

You can get an idea of how OpenGL maps a texture to an object by looking an an alternate view of the
texture. To see an alternate view, double-click the texture that appears in the view on the left. The default
view is a flat representation of the texture without the wrapping mode. The alternate view maps the texture
in the dimension of its type (1D, 2D, 3D, Cube) and applies the filtering and wrapping modes.

Figure 1-7 (page 16) is the alternate view for the texture shown in Figure 1-6 (page 15). This view shows the
repeating pattern caused by choosing the REPEAT wrapping mode.

Textures View 15
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



Figure 1-7 The Textures alternate view

For more details on working with textures, see “Adding Textures” (page 20) and “Using Alternate Texture
Views” (page 21).

Symbols View

After you add shaders to the Program view, you can view its uniform variables in the Symbols view, as shown
in Figure 1-8 (page 17). You can modify and animate GLSL uniform variables and ARB environment and local
parameters.

16 Symbols View
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



Figure 1-8 The Symbols view

For more information, see “Modifying Uniform Variables” (page 23).

Symbols View 17
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



18 Symbols View
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Getting Started



This chapter explains how to use OpenGL Shader Builder to set up projects, add shader code, add resources,
and modify variables. Before reading this chapter, you should already be familiar with OpenGL and know
how to write at least one of the following:

 ■ ARB fragment and vertex programs. See the OpenGL extensions GL_ARB_fragment_program and
GL_ARB_vertex_program.

 ■ GLSL fragment and vertex shaders. See OpenGL Shading Language (PDF).

OpenGL Shader Builder also supports geometry shaders, a recent addition to the OpenGL specification (see
the OpenGL Extension GL_NV_geometry_shader4). Geometry shaders are not supported on all graphics
cards. But because the Apple software renderer steps in as a fallback when necessary, you can use OpenGL
Shader Builder to develop them.

Creating and Saving Projects

A project is the set of resources that make up one program—vertex, fragment, and geometry source files,
and textures. As with any development environment, you can name and save projects. You can also have
more than one project open at a time.

When you launch OpenGL Shader Builder, it opens to an empty, untitled project. To save the project, choose
File > Save Project and enter a project name. A project can contain as many source files and textures as you’d
like. Using the checkboxes in the file list, you can select which source files to make active.

Creating and Saving a Layout

A layout specifies the location and number of windows that you want OpenGL Shader Builder to provide
when you open new and existing projects.

To create and save a layout:

1. Launch OpenGL Shader Builder.

2. Double-click each tab whose view you want to open in a separate window.

3. Arrange the windows to suit your preference.

4. Choose Window > Save Layout.

Whenever you launch OpenGL Shader Builder, it automatically sets up the environment for you using your
preferred layout.

Creating and Saving Projects 19
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders

http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_program.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_program.txt
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf
http://www.opengl.org/registry/specs/NV/geometry_shader4.txt


Adding Textures

To add a texture to the Textures view, drag the texture file to an image well. You can add any of these texture
targets: 1D, 2D, RECTANGLE, SHADOW_1D, SHADOW_2D, and SHADOW_RECTANGLE.

To add a 3D texture, you drag all the necessary files to an image well. The number of images in this texture
target must be a power of 2 (2, 4, 8, 16, 32, and so on). Otherwise, OpenGL Shader Builder inserts a default
image in the z direction.

You can also drag CUBE_MAP textures to an image well, but because this texture targets require more than
one file, you’ll first need to name the files so that OpenGL Shader Builder can place them properly. Figure
2-1 (page 20) shows the layout that OpenGL Shader Builder uses for cube maps.

Figure 2-1 Cube face layout for a cube map

20 Adding Textures
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders



Tip:  When adding cube maps or textures, after you add one image file to the image well, you can then drag
other images to the individual faces that OpenGL Shader Builder automatically generates.

To add a cube map :

1. Name each texture file using a convention that specifies the location within the cube map or 3D texture.

For cube maps, you can use any of the conventions listed in Table 2-1 (page 21). For example, if the
base filename for a cube map is mycube, you could name the texture files: mycube_back, mycube_down,
mycube_forward, mycube_left, mycube_right, and mycube_up.

2. In the Finder, select the texture files and drag them to an image well.

Tip:  If you name the cube map files correctly and place them in the same directory, you need to drag only
one file in that directory to the view on the left side. OpenGL Shader Builder then reads all files in entire
directory and places all the images for you.

Table 2-1 Naming conventions that map texture files to cube faces in a cube map

Z– faceZ+ faceY– faceY+ faceX– faceX+ face

negzposznegyposynegxposx

znegzposynegyposxnegxpos

backfrontdowntopleftright

bkftdnuplfrt

–z+z–y+y–x+x

Using Alternate Texture Views

OpenGL Shader Builder provides two ways for you to view textures. The default view shows the texture data
simply as a flat representation. The alternate view shows how the texture appears when applied to a target,
using the filter and wrap modes that you choose. The alternate view is especially useful if you are unsure of
how a particular filter or wrap mode will affect the outcome. You might also find the alternate view helpful
to visualize 3D and cube maps.

The alternate view is particularly useful for cube maps. The default view in Figure 2-2 (page 22) shows the
“unfolded” cube, while the alternate view in Figure 2-3 (page 23) projects the cube faces in three dimensions.

To see the alternate view, double-click the texture.

Using Alternate Texture Views 21
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders



Figure 2-2 The default view for a cube map

If you have not supplied multiple files for a cube map or 3D texture or if you’ve not used a location-based
naming convention (see “Adding Textures” (page 20)), you’ll notice rectangles with a number or letters in
them when you switch to alternate view.

22 Using Alternate Texture Views
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders



Figure 2-3 The alternate view for a cube map

Modifying Uniform Variables

OpenGL Shader Builder automatically lists uniform variables from your source code in the Symbols view.
How these uniform variable are displayed depend on the type of program. GLSL shaders use a shared symbol
table for a single program object, so you’ll see the uniform variables appear in a single list . In contrast, ARB
fragment and vertex programs have their own symbol table per pipeline state which are separated by local
and environment variables per stage. Therefore ARB local and environment variables appear in separate lists.

The controls for a variable reflect that variable’s data type, no matter how complex the type (see Figure
2-4 (page 24)). You can use the controls to manually change a value, or you can select Animate to automatically
vary a uniform from one value to another. No matter which you choose, you will get immediate feedback
by looking at the Render view as long as the auto compile and auto link options are enabled.

Modifying Uniform Variables 23
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders



Figure 2-4 Controls for a matrix structure

Building Shaders

To build a shader and make sure it runs correctly, follow these steps:

1. Open OpenGL Shader Builder.

2. Add shader source code.

If you’ve already written the shader source files, click Add Shaders. Then, navigate to the files you want
to add to the file list and choose them.

If you want to enter the source code, choose File > New and then choose the type of shader you want
to write. A source code file opens in its own window. You can modify the default code provided in the
template.

Tip:  You can drag existing source files to the program list.

3. Check the Link Log to make sure the programs linked successfully. You might also want to check the
link results.

24 Building Shaders
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders



By default, OpenGL Shader Builder has automatic linking enabled. If you disabled this feature, you’ll need
to enable it or click the Link button.

If the link fails, check to make sure that you added all necessary source files. For example, if you add a
fragment or geometry program without adding the associated vertex program, linking fails.

4. In the Textures view, add any textures that are appropriate for your shader.

You’ll most likely want to replace the default texture.

5. In the Symbol view, animate one or more of the uniform variables.

6. In the Render view, choose a geometry from the pop-up menu.

You can drag the pointer to move the rendered image.

After your shader is running, you may want to benchmark its performance.

Checking Shader Performance

It’s a good idea to check the frame rate of your shader before and after you make adjustments to the code.
You can measure the frame rate by following these steps:

1. In the Render view, click Benchmark.

A benchmark window opens.

2. Enter the number of seconds for the benchmark test. Then, click Run.

Note the elapsed time and the frames per second.

If you find the frame rate is much lower than you’d like, check to see if you are performing:

 ■ Tasks inside a loop, such as setting state, that should really be performed outside the loop

 ■ Complex calculations, such as arcsin. You can improve performance by pre-calculating results and storing
them in a texture. Then, when you need a result, perform a texture look-up operation instead of the
complex calculation.

After you are certain that your shader performs well in isolation, you should add it to your OpenGL application.
Then, use OpenGL Profiler to make sure that your shader and the surrounding OpenGL application run as
optimally as possible.

For information identifying and solving performance issues with OpenGL applications, see OpenGL Profiler
User Guide.

Checking Shader Performance 25
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders



Troubleshooting Errors

Shaders can have validation errors for a number of reasons. You’ll want to be familiar with the OpenGL
extensions that apply to the type of GPU program you are writing, because each extension outlines the
conditions that can cause such errors. This section provides guidelines for a few of the common errors.

 ■ Make sure that your code sets uniform variables for samplers at validation time.

 ■ If your code depends on support for certain features, make sure you add a directive to require the
appropriate extension, otherwise your code won’t parse.

 ■ If a geometry shader fails, check to see whether any of the following apply:

 ❏ The geometry program has no associated vertex program for supplying varying variables.

 ❏ You used the wrong input or output types. Geometry shaders use fixed input and output primitive
types.

 ❏ The value of GEOMETRY_VERTICES_OUT_EXT is 0.

You can sometimes troubleshoot errors by examining well-written code and comparing it to our own. You
may want to look at the following:

 ■ The shaders in /Developer/Examples/OpenGL, which are available after installing the Developer Tools
that come with Mac OS X.

 ■ The GLSLShowpiece and other sample code that’s available through the ADC Reference Library.

 ■ Sample code that’s available on http://www.opengl.org/.

26 Troubleshooting Errors
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Building Shaders

http://developer.apple.com/samplecode/GraphicsImaging/idxOpenGL-date.html
http://www.opengl.org/code/


This table describes the changes to OpenGL Shader Builder User Guide.

NotesDate

New document that explains how to use OpenGL Shader Builder to develop
and test GPU programs.

2008-06-23

27
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



28
2008-06-23   |   © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	OpenGL Shader Builder User Guide
	Contents
	Figures and Tables
	Introduction
	Getting Started
	Program View
	Source Code Files
	Controls for Geometry Shaders

	Render View
	Textures View
	Symbols View

	Building Shaders
	Creating and Saving Projects
	Creating and Saving a Layout
	Adding Textures
	Using Alternate Texture Views
	Modifying Uniform Variables
	Building Shaders
	Checking Shader Performance
	Troubleshooting Errors

	Revision History


