
PDF Kit Programming Guide
Graphics & Imaging > Cocoa

2007-12-11

Apple Inc.
© 2005, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, Pages, and Safari are trademarks
of Apple Inc., registered in the United States
and other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to PDF Kit Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

Chapter 1 PDF Kit Concepts 9

PDF Basics 9
Documents 9
Pages 10
Outlines 10
Annotations 11
Selections 12

PDF Kit Classes 13
The PDFView Class 14
PDF Kit Utility Classes 15

Chapter 2 PDF Kit Tasks 17

Implementing a PDFView 17
PDF Kit in Preview 17
Creating Outlines 18
Searching a PDF Document 22

Document Revision History 27

3
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

4
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 PDF Kit Concepts 9

Figure 1-1 View space versus page space 10
Figure 1-2 An outline for a PDF document 11
Figure 1-3 Some annotations available in PDF Kit 12
Figure 1-4 Arbitrary text selection in a PDF document 13
Figure 1-5 The PDF Kit class hierarchy 14
Figure 1-6 Utility classes as used by PDFView 15

Chapter 2 PDF Kit Tasks 17

Figure 2-1 Assigning column identifiers in Interface Builder 25
Table 2-1 Preview Menu Items versus PDF Kit methods 18
Listing 2-1 Loading PDF outline information 18
Listing 2-2 Delegate method for determining the number of children 19
Listing 2-3 Delegate method for obtaining a child element 19
Listing 2-4 Delegate method for determining if an element has children 20
Listing 2-5 Delegate method for obtaining an element’s contents 20
Listing 2-6 Displaying the page associated with an outline element 20
Listing 2-7 Updating the outline when the page changes 20
Listing 2-8 Beginning an asynchronous search 23
Listing 2-9 Adding search results to a table view 23
Listing 2-10 Determining the number of rows in the table 24
Listing 2-11 Obtaining the value for a column 24
Listing 2-12 Handling a selection in the table 25

5
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

6
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

PDF Kit is a technology that allows you to display and manipulate PDF documents in your applications. By
implementing aspects of Adobe’s PDF specification for you, PDF Kit minimizes development time on your
part. Even Apple’s own applications such as Safari and Preview use PDF Kit to display PDF content.

PDF Kit is available in Mac OS X v10.4 and later.

Who Should Read This Document

The audience for this document is any Cocoa developer who wants to display, edit, or search PDF documents
in applications. This document assumes you have some familiarity with Cocoa and Objective-C programming.

PDF Kit is extremely flexible, allowing you as much or as little control over PDF documents as you like. Whether
you simply want to display a PDF document in a help window or you want to create a full-featured PDF
editor, PDF Kit can simplify your task.

Organization of This Document

This document is organized into the following chapters:

 ■ “PDF Kit Concepts” (page 9) gives a brief overview of PDF features and concepts and outlines the
various PDF Kit classes.

 ■ “PDF Kit Tasks” (page 17) shows how to implement common features using PDF Kit.

See Also

Adobe Corporation’s PDF specification is the main resource for describing PDF documents. You can download
the latest version (in PDF form, naturally) from the following website:

http://partners.adobe.com/public/developer/pdf/index_reference.html

Who Should Read This Document 7
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to PDF Kit Programming Guide

http://partners.adobe.com/public/developer/pdf/index_reference.html

8 See Also
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to PDF Kit Programming Guide

This chapter gives an overview of PDF concepts and PDF Kit classes. If you are already familiar with the
elements of a PDF document, you can skip “PDF Basics” (page 9) and go directly to “PDF Kit Classes” (page
13).

PDF Basics

A PDF is a document stored using Adobe Corporation’s Portable Document Format. The PDF specification,
based on the PostScript drawing language, can describe almost any combination of text and images as well
as interactive elements.

The basic building block of a PDF is the document itself. Within the document, you can have various pages
and an outline. Within a page you can have text, annotations, and so on.

For detailed information about the PDF format, see the PDF specification, which you can download from:

http://partners.adobe.com/public/developer/pdf/index_reference.html

Note that if you simply want to display PDF documents in your application, you generally don’t need the
level of detail that the PDF specification provides.

Documents

The fundamental building block for a PDF is the document itself. The document is typically stored on disk
as a file.

Documents support versioning and can be tagged with metadata such as the author, creation date, and so
on.

A document can be encrypted, requiring a password to view it. Two levels of encryption exist:

 ■ User level encryption: If the user successfully obtains user-level permissions, he or she can view the
document but may be restricted from printing or copying the document.

 ■ Owner-level encryption: A user who obtains owner-level permissions can view the document and has
full usage permissions.

Many encrypted PDF documents have a “dummy” user password which is the empty string. Most PDF
document parsers (including PDF Kit) automatically try the empty string password on encrypted documents,
and if successful, simply display the document. Therefore, a document that is technically encrypted may not
necessarily prompt the user for a password.

PDF Basics 9
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

http://partners.adobe.com/public/developer/pdf/index_reference.html

Pages

A PDF document consists of a number of pages. These are the metaphorical equivalent of pages in a physical
book, and they are what the user sees onscreen. However, unlike a physical page, PDF pages can contain
hyperlinks and annotations. Pages can support cropping as well, which can be useful if you want to hide
extraneous portions (such as registration marks) during display.

Note that most objects on a page are specified in page space, rather than view space. That is, the coordinate
system is in points (72 points per inch), with the origin at the bottom left of the page, not the view. Page
space doesn’t care about zooming, display mode, and so on. An item that has bounds of, say 32 points square,
retains those bounds regardless of display size. Figure 2-1 (page 10) compares the two coordinate systems:

Figure 1-1 View space versus page space

(0,0)
View coordinates

Page coordinates

The PDFView class contains a number of conversion methods to translate coordinates from view space to
page space and vice versa.

Outlines

An outline is like an interactive table of contents, showing the chapter or structure hierarchy of the document.
Outlines make it easy for users to see the structure of a document and to jump to a particular location.

10 PDF Basics
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

Figure 1-2 An outline for a PDF document

Not all PDF documents contain an outline.

Annotations

Annotations are “extra” elements that can appear on a PDF page in addition to the standard text and images.
Some annotations merely add visual features, such as lines, circles, and such, while others can have some
interactive behavior.

Some examples of annotations include:

 ■ “Sticky notes” displaying text.

 ■ Note icons that can display text when clicked upon.

 ■ Editable text fields that can accept user text.

 ■ Buttons, such as checkboxes. Such annotations, along with editable text fields, may be useful in forms
to be filled out by the user.

 ■ Circles, arbitrary lines, and boxes.

 ■ Links to other documents, or to other sections within a document.

 ■ Highlighting, strike-throughs, and other text markups.

Figure 2-3 (page 12) shows some annotation types available in PDF Kit.

PDF Basics 11
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

Figure 1-3 Some annotations available in PDF Kit

Markup annotations

Text annotation

Square annotation

Circle annotation

Ink annotation

Free text annotation

These are the annotations that PDF Kit supports and can display in documents. However, PDF Kit can also
support additional annotation types if they are specified using appearance streams. Appearance streams let
you draw based on a drawing sequence rather than a specification based on a particular annotation type.
For example, rather than specify “a circle annotation with a 20 point radius,” an appearance stream would
simply contain instructions for drawing a circle of that size.

Annotations often have content associated with them that your application can display. For example, text
annotations typically appear as an icon in the PDF; when the user clicks on it, a window can open displaying
its text.

Note that PDF Kit does not supply a mechanism for displaying the annotation content; your application must
create a window to display the content when the user clicks on an annotation.

Note: Currently, with the exception of link annotations, any annotations you create using PDF Kit cannot
be modified after saving the document.

Selections

PDF documents let the user select blocks of text, much like word processing applications. However, they
offer greater flexibility in that text selections do not have to be linearly contiguous. For example, using PDF
Kit, you could select a block of text within a page that doesn’t have to be sequential, as shown in “Arbitrary
text selection in a PDF document” (page 13) Such selections can be useful if the document contains
multicolumn pages, tables, or other unusual formatting.

12 PDF Basics
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

Figure 1-4 Arbitrary text selection in a PDF document

You can experiment with block selection by holding down the Option key while selecting text in Preview (in
Mac OS X v10.4 and later).

Selections are stored as selection objects, which also store additional data such as the page or pages containing
the selection. This information is useful when presenting multiple selections to the user (for example, a list
of search results).

PDF Kit Classes

PDF Kit is divided into a number of different classes. With the exception of PDFView and PDFSelection, these
classes correspond roughly to various objects in the PDF specification.

PDF Kit Classes 13
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

Figure 1-5 The PDF Kit class hierarchy

PDFSelection

PDFDestination

PDFOutline

PDFBorder

PDFPage

PDFAnnotation

PDFAnnotationLine
PDFAnnotationLink
PDFAnnotationMarkup
PDFAnnotationSquare
PDFAnnotationText

PDFAnnotationButtonWidget

PDFAnnotationTextWidget

PDFAnnotationCircle
PDFAnnotationFreeText
PDFAnnotationInk

PDFDocument

NSViewNSResponder
NSObject

PDFView

The PDFView Class

The PDFView class, like the Web Kit WebView class, derives from the Application Kit NSView class. You can
use a PDFView object directly in your application simply by placing it in a window using Interface Builder.
Get the palette from /Developer/Extras/Palettes/PDFKit.palette.

PDFView may be the only PDF Kit class that you need to deal with. It lets you display PDF data in your
application and allows users to select content and navigate through a document, set the zoom level, and
copy textual content to the Pasteboard. Users can also drag-and-drop documents into PDFView.

PDFView calls upon the PDF utility classes to implement much of its functionality. If you want to add special
features, you need to use or subclass from the utility classes.

14 PDF Kit Classes
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

Figure 1-6 Utility classes as used by PDFView

Quartz Core Foundation

PDF Kit

PDFView

PDFSelection PDFDestinationPDFDocument

PDFPage

PDFAnnotation

PDFBorder

PDFOutline

Application

PDF Kit Utility Classes

The PDF Kit utility classes offer a mix of Foundation-like and Application Kit-like behavior. They are analogous
to the NSString class, and its NSString Additions methods, in that many of them support drawing. These
classes are subclasses of NSObject, as shown in Figure 2-5 (page 14).

PDF Document

The primary PDF Kit utility class is PDFDocument, which represents PDF data or a PDF file. The other utility
classes are either instantiated from methods in PDFDocument, as are PDFPage and PDFOutline; or support
it, as do PDFSelection and PDFDestination.

You initialize a PDFDocument object with PDF data or with a URL to a PDF file. You can then ask for the page
count, add or delete pages, perform a find, or parse selected content into an NSString object.

PDFPage

As you might expect, the PDFPage class represents pages in a PDF document. Your application instantiates
a PDFPage object by asking for one from a PDFDocument object. PDF page objects are what the user sees
onscreen, and a view may display more than one page at a time. You can use PDFPage to render PDF content
onscreen, add annotations, count characters, define selections, and get the textual content of a page as an
NSString or NSAttributedString object.

PDF Kit Classes 15
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

PDFOutline

In addition to displaying the actual document content, PDF Kit can also present outline information if that
is included in the PDF. A PDFOutline object represents a parent or child element in an outline hierarchy.

Outlines are composed of a hierarchy of PDFOutline objects. The top level is the root outline object, which
acts only as a container for other outline objects. The root outline is invisible to the user.

PDFSelection

A PDFSelection object encompasses a span of text in a PDF document. You don’t create PDF selections
directly. You get PDFSelection objects as return values from selection methods that you invoke on PDFPage
or PDFDocument objects, and as the return values from successful searches.

Selections on a PDF view may span multiple pages, may be noncontiguous, or both. For example, you can
select the text in a single column of consecutive two-column pages. You can get the text and pages covered
from a selection, combine selections, or extend selections in either direction.

PDFAnnotation

A PDFAnnotation object can represent a variety of content other than the primary textual content in a PDF
file: links, form elements, highlighting circles, and so on. Each annotation is associated with a specific location
on a page, and may offer interactivity with the user.

PDFAnnotation is an abstract superclass of the concrete classes shown in Figure 2-3 (page 12). The various
concrete classes represent annotation types that PDF Kit supports.

PDFBorder

PDFBorder objects encapsulate the drawing behavior for the border of a PDFAnnotation object. A PDF border
lets you specify such attributes as line style (for example, solid, dashed, or beveled), line width, and corner
radius.

16 PDF Kit Classes
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

PDF Kit Concepts

This chapter shows how you can implement common tasks with PDF Kit.

Implementing a PDFView

Most developers will simply want to display PDF information in their views, so PDFView will fit the bill nicely.

A PDFView user interface element is available in Interface Builder, so you should use that wherever you want
your application to display PDF content. Note that you need to install the PDF Kit palette in
/Developer/Extras/Palettes/PDFKit.palette to make PDFViews available.

To add the PDFKit palette in Interface Builder, select the Palettes tab in the Preferences panel. Click the Add…
button, navigate to the /Developer/Extras/Palettes folder, and select the PDFKit palette. Next, select
the Customize Toolbar menu item in the Tools/Palettes menu and drag the PDFKit palette to the toolbar to
make it visible.

After adding the PDFView element in your nib file, you can add PDF content from your application by calling
the PDFDocument method initWithURL. For example, you could use code like the following:

PDFDocument *pdfDoc;

pdfDoc = [[[PDFDocument alloc] initWithURL: [NSURL fileURLWithPath: [self
fileName]]] autorelease];
[_pdfView setDocument: pdfDoc];

Alternatively, if your PDF data is stored in a different form, you can use the PDFDocument method
initWithData:. Users can also drag-and-drop documents into the view.

The resulting PDFView handles the basic functionality required to view and navigate through a PDF document.
Simple scrolling and live links work automatically, and you also get a contextual menu to handle scaling and
navigation. To experiment with the “free” features of a PDFView, you can simply drag a PDF document into
your view while in interface test mode in Interface Builder.

PDF Kit in Preview

Preview in Mac OS X v10.4 uses PDF Kit, so you can use this application as a guide to see what is possible in
your own PDF views. Many method calls in PDF Kit have a comparable menu item in Preview. Table 3-1 (page
18) shows the correspondance between the various menu items and their API equivalents.

Implementing a PDFView 17
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

Table 2-1 Preview Menu Items versus PDF Kit methods

MethodSubmenuMenu

PDFView: - setDisplayMode: and - setDisplayBox:PDF DisplayView

PDFView: - zoomIn:Zoom In

PDFView: - zoomOut:Zoom Out

PDFView: - goToNextPage:NextGo

PDFView: - goToPreviousPage:Previous

PDFView: - goToPage:Go to Page

PDFView: - goToFirstPage:First

PDFView: - goToLastPage:Last

PDFView: - goBack:Back

PDFView: - goForward:Forward

PDFPage: - setRotation: to - rotation -90Rotate LeftTools

PDFPage: - setRotation: to - rotation +90Rotate Right

initWithBounds:for the appropriate annotation subclass (such as
PDFAnnotationCircle)

Annotation

Creating Outlines

Many PDF documents contain outlines, so your application will usually want to display this information as
well.

Note that because some PDF documents do not contain outline information, you should probably make the
outline display an optional element in your user interface. For example, you can display outlines in a drawer,
which can be closed if not needed.

You can use the NSOutlineView class to display your PDF outlines. Instances of this class automatically display
the outline hierarchy with disclosure triangles and live links to the appropriate PDF pages. Listing 3-1 (page
18) shows how you might do so.

Listing 2-1 Loading PDF outline information

// 1_outline = [[[_pdfView document] outlineRoot] retain];
 if (_outline)
 {

// 2 [_noOutlineText removeFromSuperview];
 _noOutlineText = NULL;

// 3 [_outlineView reloadData];

18 Creating Outlines
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

 }
 else
 {

// 4 [[_outlineView enclosingScrollView] removeFromSuperview];
 _outlineView = NULL;
 }

Here is how the code works:

1. Obtains the root (topmost) outline element. _outline is an instance of PDFOutline.

2. If a root outline exists, removes placeholder text indicating “No Outline.”

3. Loads PDF outline information into the outline view. The outline view calls your delegate methods to
determine the elements in the outline hierarchy.

4. If the root outline does not exist, removes the outline view, leaving behind placeholder text.

After you invoke the reloadData method, the outline view calls various data source delegate methods to
populate the outline. These delegate methods are defined in the NSOutlineViewDataSource protocol. Your
application must implement these methods so that the proper PDF data is added to the outline.

Listing 3-2 (page 19) shows the delegate method for obtaining the number of childen, which simply returns
the value obtained by the PDFOutline method numberOfChildren. If the item parameter is NULL, this
method returns the number of children for the root outline.

Listing 2-2 Delegate method for determining the number of children

- (int) outlineView: (NSOutlineView *) outlineView numberOfChildrenOfItem: (id)
 item
{
 if (item == NULL)
 {
 if (_outline)
 return [_outline numberOfChildren];
 else
 return 0;
 }
 else
 return [(PDFOutline *)item numberOfChildren];
}

Listing 3-3 (page 19) shows the delegate method for obtaining a particular child outline by calling the
PDFOutline method childAtIndex. If the item parameter is NULL, this method returns the appropriate child
of the root outline.

Listing 2-3 Delegate method for obtaining a child element

- (id) outlineView: (NSOutlineView *) outlineView child: (int) index ofItem:
(id) item
{
 if (item == NULL)
 {
 if (_outline)
 return [[_outline childAtIndex: index] retain];
 else

Creating Outlines 19
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

 return NULL;
 }
 else
 return [[(PDFOutline *)item childAtIndex: index] retain];

Listing 3-4 (page 20) shows a delegate method for determining if an outline element is expandable (that is,
whether it has child outlines).

Listing 2-4 Delegate method for determining if an element has children

- (BOOL) outlineView: (NSOutlineView *) outlineView isItemExpandable: (id) item
{
 if (item == NULL)
 {
 if (_outline)
 return ([_outline numberOfChildren] > 0);
 else
 return NO;
 }
 else
 return ([(PDFOutline *)item numberOfChildren] > 0);
}

Listing 3-5 (page 20) shows a delegate method for obtaining an outline element’s label, which calls the
PDFOutline method label. The label is simply the string that is displayed in the outline view (for example,
a chapter title).

Listing 2-5 Delegate method for obtaining an element’s contents

- (id) outlineView: (NSOutlineView *) outlineView
 objectValueForTableColumn: (NSTableColumn *) tableColumn
 byItem: (id) item
{
 return [(PDFOutline *)item label];
}

When the user selects an outline element, your application should update the PDF display to show the page
corresponding to that element. The simplest way to do so is to call the PDFView’s goToDestinationmethod,
as shown in Listing 3-6 (page 20).

Listing 2-6 Displaying the page associated with an outline element

- (IBAction) takeDestinationFromOutline: (id) sender
{
 [_pdfView goToDestination: [[sender itemAtRow:
 [sender selectedRow]] destination]];
}

In addition, if the user scrolls or otherwise moves through the document, your application should update
the outline to highlight the outline element that corresponds to the currently displayed page. You can do
so by installing a notification handler to be called each time the page changes (that is, when
PDFViewPageChangedNotification is posted). Listing 3-7 (page 20) hows how you might do so.

Listing 2-7 Updating the outline when the page changes

- (void) pageChanged: (NSNotification *) notification
{

20 Creating Outlines
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

 unsigned int newPageIndex;
 int numRows;
 int i;
 int newlySelectedRow;

// 1 if ([[_pdfView document] outlineRoot] == NULL)
 return;

// 2 newPageIndex = [[_pdfView document] indexForPage:
 [_pdfView currentPage]];

 // Walk outline view looking for best firstpage number match.
 newlySelectedRow = -1;
 numRows = [_outlineView numberOfRows];

// 3 for (i = 0; i < numRows; i++)
 {
 PDFOutline *outlineItem;

 // Get the destination of the given row....
 outlineItem = (PDFOutline *)[_outlineView itemAtRow: i];

 if ([[_pdfView document] indexForPage:
 [[outlineItem destination] page]] == newPageIndex)
 {
 newlySelectedRow = i;
 [_outlineView selectRow: newlySelectedRow
 byExtendingSelection: NO];
 break;
 }
 else if ([[_pdfView document] indexForPage:
 [[outlineItem destination] page]] > newPageIndex)
 {
 newlySelectedRow = i - 1;
 [_outlineView selectRow: newlySelectedRow
 byExtendingSelection: NO];
 break;
 }
 }

// 4 if (newlySelectedRow != -1)
 [_outlineView scrollRowToVisible: newlySelectedRow];
}

Here is how the code works:

1. Checks to see if a root outline exists. If not, then there is no outline to update, so simply return.

2. Obtains the index value for the current page. The PDFView method currentPage returns the PDFPage
object, and the PDFDocument method indexForPage returns the actual index for that page. This index
value is zero-based, so it doesn’t necessarily correspond to a page number.

3. Iterate through each visible element in the outline, checking to see if one of the following occurs:

 ■ The index of an outline element matches the index of the new page. If so, highlight this element
(using the NSTableView method selectRow:byExtendingSelection).

Creating Outlines 21
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

 ■ The index of the outline element is larger than the index of the page. If so, a match was not possible
as the index corresponds to a hidden child of a visible element. In this case, use selectRow to
highlight the parent outline element (the current row -1).

4. Call the NSTableView method scrollRowToVisible to adjust the outline view (if necessary) to make
the highlighted element visible.

Searching a PDF Document

Users often need to search through a PDF document. PDF Kit offers two methods for doing so:

 ■ Searching string-by-string through the document. That is, when the user searches for string, PDF Kit
returns the first occurrence of the string. Additional searches (“Find Again”) return successive instances
of string. This search method is synchronous.

 ■ Obtaining a listing of all occurrences of string in a document. This search method may be synchronous
or asynchronous.

For simple string-by-string searching, your application can simply call the PDFDocument method
findString:fromSelection:withOptions:.

- (PDFSelection *) findString:(NSString *)string
 fromSelection:PDFSelection *selection:withOptions:(int)options

To display the selection returned, you can call the PDFView method setCurrentSelection, which highlights
the selection, followed by scrollSelectionToVisible.

You can specify the following options:

 ■ NSCaseInsensitiveSearch: Ignore case when making a match.

 ■ NSLiteralSearch: Search for contiguous words, separated by spaces.

 ■ NSBackwardsSearch: Search backwards from the current selection.

By passing NULL for the selection, you can begin the search from the beginning (or end) of the document.
By passing the most recent match for the selection, you can implement “Find Again” behavior. If the
findString call returns NULL, that means that either the string was not found, or the search reached the
end (or beginning) of the document.

To obtain all the occurrences of a given string, you can use either of the following PDFDocument methods:

 ■ findString:withOptions: to synchronously obtain an NSArray object holding all the matches

 ■ beginFindString:withOptions: to asynchronously begin a search for all occurrences. PDF Kit calls
your delegate method each time a match is found.

Unless you are sure that the search will be brief, you should choose to use beginFindString:withOptions:

As this is an asynchronous search, PDFDocument includes two other useful find-related methods:

 ■ isFinding to determine if a search in currently in progress

22 Searching a PDF Document
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

 ■ cancelFindString to terminate a current search.

Listing 3-8 (page 23) shows how you might initiate a search:

Listing 2-8 Beginning an asynchronous search

- (void) doFind: (id) sender
{

// 1 if ([[_pdfView document] isFinding])
 [[_pdfView document] cancelFindString];

// 2 if (_searchResults == NULL)
 _searchResults = [[NSMutableArray arrayWithCapacity: 10] retain];

// 3 [[_pdfView document] beginFindString: [sender stringValue]
 withOptions: NSCaseInsensitiveSearch];
}

Here is how the code works:

1. Cancels any current searches.

2. Allocates a mutable array to hold the search results if one does not already exist.

3. Calls the PDFDocument method beginFindString:withOptions: with the desired search string.

During the search, PDF Kit sends out notifications that your application can react to:

 ■ PDFDocumentDidBeginFindNotification

 ■ PDFDocumentDidEndFindNotification

 ■ PDFDocumentDidBeginPageFindNotification

 ■ PDFDocumentDidEndPageFindNotification

 ■ PDFDocumentDidFindMatchNotification

The first two notifications are sent when the search starts, or finishes a search. You can use these notifications
to set up and remove progress bars or any other initializations.

The begin and end page notifications are sent when the search begins or ends searching a page in the
document. You can use these notifications to update a progress bar or page counter.

The find match notification is sent whenever a match is found for the search string. Typically you will want
to obtain the string selection and store it in an array for later display. However, in most cases it may be easier
to use the PDFDocument delegate method didMatchString, which automatically passes you the matching
selection. Listing 3-9 (page 23) shows how you might implement a delegate to take each matching string
and add it to an array of search results in an NSTableView.

Listing 2-9 Adding search results to a table view

- (void) didMatchString: (PDFSelection *) instance
{
 // Add page label to our array.
 [_searchResults addObject: [instance copy]];

Searching a PDF Document 23
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

 // Force a reload.
 [_searchTable reloadData];
}

Here _searchResults is an instance of NSMutableArray, and _searchTable is an instance of NSTableView.

To make sure that the NSTableView displays the search results correctly, you need to implement delegate
data source methods (similar to those required for NSOutlineView). These delegate methods are defined in
the NSTableDataSource protocol.

Listing 3-10 (page 24) shows a delegate method for determining the number of rows in the table view. This
method simply obtains the number of items in the search results by calling the NSMutableArray method
count.

Listing 2-10 Determining the number of rows in the table

- (int) numberOfRowsInTableView: (NSTableView *) aTableView
{
 return ([_searchResults count]);
}

Listing 3-11 (page 24) shows a delegate data source method for obtaining the value of a particular column.

Listing 2-11 Obtaining the value for a column

- (id) tableView: (NSTableView *) aTableView objectValueForTableColumn:
 (NSTableColumn *) theColumn
 row: (int) rowIndex
{
 if ([[theColumn identifier] isEqualToString: @"page"])
 return ([[[[_searchResults objectAtIndex: rowIndex] pages]
 objectAtIndex: 0] label]);
 else if ([[theColumn identifier] isEqualToString: @"section"])
 {
 NSString *label = [[[_pdfView document] outlineItemForSelection:
 [_searchResults objectAtIndex: rowIndex]] label];
 return label;
 }
 else
 return NULL;
}

The table view calls this method whenever it needs to determine the value of a particular table element (such
as when preparing the table for display).

The search results table in this example contains only two columns: the page containing the hit and the
outline section that contains the hit. (In a more sophisticated example, you may want to display a portion of
the text containing the matching string, as Preview does.) You reference these columns using the identifier
tags you specified for them in the NSTableColumn inspector window in Interface Builder (as shown in Figure
3-1 (page 25)).

24 Searching a PDF Document
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

Figure 2-1 Assigning column identifiers in Interface Builder

For this example:

 ■ If the column identifier is “page,” return the page number of the hit by calling the PDFSelection method
pages.

 ■ If the column identifier is “section,” return the outline label for the selection by calling the PDFDocument
method outlineItemForSelection.

When the user selects an item in the search results, your application should display the corresponding page.
Listing 3-12 (page 25) shows how you might do so using an NSTableView notification.

Listing 2-12 Handling a selection in the table

- (void) tableViewSelectionDidChange: (NSNotification *) notification
{
 int rowIndex;

 // What was selected. Skip out if the row has not changed.
// 1 rowIndex = [(NSTableView *)[notification object] selectedRow];

 if (rowIndex >= 0)
 {

// 2 [_pdfView setCurrentSelection:
 [_searchResults objectAtIndex: rowIndex]];

// 3 [_pdfView scrollSelectionToVisible: self];
 }
}

Searching a PDF Document 25
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

A table view sends the NSTableViewSelectionDidChangeNotification when an item is selected, and calls your
delegate method tableViewSelectionDidChange. Here is how the code works:

1. Checks to see if the selection is valid.

2. Sets the current selection to the one that the user clicked.

3. Updates the PDF view to show the page containing the selection.

For more information about implementing these delegate methods, see Table View Programming Guide in
Cocoa User Experience Documentation.

26 Searching a PDF Document
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

PDF Kit Tasks

This table describes the changes to PDF Kit Programming Guide.

NotesDate

Made minor corrections.2007-12-11

Added information about how to add the PDFKit palette in Interface Builder.2005-11-09

First public version.2005-04-29

27
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2007-12-11 | © 2005, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	PDF Kit Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	PDF Kit Concepts
	PDF Basics
	Documents
	Pages
	Outlines
	Annotations
	Selections

	PDF Kit Classes
	The PDFView Class
	PDF Kit Utility Classes
	PDF Document
	PDFPage
	PDFOutline
	PDFSelection
	PDFAnnotation
	PDFBorder

	PDF Kit Tasks
	Implementing a PDFView
	PDF Kit in Preview
	Creating Outlines
	Searching a PDF Document

	Revision History

