Quartz Display Services Programming Topics

Graphics & Imaging > Quartz

¢

2006-06-28

.

[

Apple Inc.

© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, Mac, Mac OS, Quartz, and QuickDraw
are trademarks of Apple Inc,, registered in the
United States and other countries.

Finder is a trademark of Apple Inc.
OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Quartz Display Services Programming Topics 7

Organization of This Document 7
See Also 7

Overview of Quartz Display Services 9

Display States 11
Display IDs 12

Display Modes 12
Display Arrangement 13
Display Mirroring 13

Getting Information About Displays 15

Getting Display State Information 15
Getting Display Mode Information 16

Capturing Displays 17

Changing Display Modes 19

Setting the Mode of the Main Display 19
Finding the Best Mode from the Available Modes 20

Configuring Displays Using a Transaction 23

Using Fade Effects 25

Fading all Displays 25
Fading a Single Display 26

Notification of Configuration Changes 29

Controlling the Mouse Cursor 31

Document Revision History 33

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Figures and Listings

Overview of Quartz Display Services 9

Figure 1 A Display pane 10
Figure 2 An Arrangement pane 11

Getting Information About Displays 15

Listing 1 Getting display mode properties 16

Capturing Displays 17

Listing 1 Capturing the main display 17

Changing Display Modes 19

Listing 1 Setting the mode of the main display 19
Listing 2 Examining the available modes 20

Configuring Displays Using a Transaction 23

Listing 1 A simple configuration transaction 23

Using Fade Effects 25

Listing 1 Fading all displays 25
Listing 2 Fading a single display 26

Controlling the Mouse Cursor 31

Listing 1 Controlling the mouse cursor 31

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Quartz Display Services
Programming Topics

Quartz Display Services is an API that provides direct access to certain low-level features in the Mac OS X
window server. Quartz Display Services addresses two important types of functionality: the configuration
and control of display hardware. (In these functional areas, Quartz Display Services replaces and extends the
capabilites of two older APIs, the Carbon Display Manager and DrawSprocket.)

This document is a collection of short articles that provides an overview of Quartz Display Services and shows
how to use this API to accomplish some basic tasks. These articles are recommended reading for software
developers working on applications such as games and media players that need advanced control of displays.

Organization of This Document

This document contains the following articles:

See Also

“Overview of Quartz Display Services” (page 9) gives a brief introduction and defines some important
terms.

“Getting Information About Displays” (page 15) briefly describes some of the accessor functions and
shows how to retrieve display properties from a display mode dictionary.

“Capturing Displays” (page 17) shows how to get exclusive use of a display for full screen drawing.
“Changing Display Modes” (page 19) shows how to switch a display to a different display mode.

“Configuring Displays Using a Transaction” (page 23) shows how to reconfigure one or more displays
in a single operation.

“Using Fade Effects” (page 25) shows how to fade displays during mode transitions or other configuration
changes.

“Notification of Configuration Changes” (page 29) shows how to use a notification callback to learn
about display configuration changes.

“Controlling the Mouse Cursor” (page 31) shows how to control the visibility and location of the mouse
cursor.

These additional resources are available in the ADC Reference Library:

Quartz Display Services Reference describes the functions, data types, and constants in Quartz Display
Services.

In OpenGL Programming Guide for Mac OS X, the chapter “Drawing to the Full Screen” shows how to use
Quartz Display Services to switch to full-screen display mode and change screen resolutions.

Organization of This Document 7
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Quartz Display Services Programming Topics

= In Quartz Composer Programming Guide, the chapter “Using QCRenderer to Play a Composition” shows
how to use Quartz Display Services and Quartz Composer to render a composition to the full screen.

See Also
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Quartz Display Services

Quartz Display Services is a set of system software functions that support dynamic changes to the arrangement
and display modes of the displays attached to a user’s computer, as well as other display-related operations.
(In this document, the term display refers to a graphics hardware system consisting of a frame buffer, a
gamma correction table or color palette, and possibly an attached monitor.)

For example, Mac OS X applications can use Quartz Display Services to:

m Examine and change display modes

= Configure a set of displays in a single operation

= Capture one or more displays for exclusive use

m Perform fade effects

m Activate display mirroring

= Configure gamma color correction tables and color palettes

= Receive notification of screen update operations

Unlike the Carbon Display Manager, Quartz Display Services is a low-level API. User interface elements such
as windows are not automatically repositioned when monitors are detached or display modes change. Instead,
Quartz provides a notification mechanism for display state changes. High-level application frameworks such
as Carbon and Cocoa can detect these state changes and make their own adjustments to the size, position,
and layout of windows on the affected displays.

Mac OS X System Preferences uses Quartz Display Services to perform some of the actions in the Displays
preferences pane. For example, the Display pane shown in Figure 1 (page 10) contains controls that allow
the user to switch display modes. The user can:

= Choose a different display resolution
= Change the bits per pixel of a display, which determines how many colors can be displayed

m Set the refresh rate of a CRT monitor

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

10

Overview of Quartz Display Services

Figure 1 A Display pane
8060 Apple Studio Display
[« »][Showall | CY '

[LB-i-splﬂv—| Color Options |

Resolutions:

640 x 480 (stretched) ‘& Colors: : Millions)—H
640 x 512 1r
800 x 600 Refresh Rate: n/a
800 x 600 (stretched)
800 x 640

1024 x 768

1024 x 768 (stretched)
1024 x 820

1280 x 960

1280 x 1024 v [_] Show displays in menu bar @

-k

(Detect Displays)

- =

ik
Nt

Brightness

On a system with two or more attached monitors, the Arrangement pane shown in Figure 2 (page 11)
contains controls that allow the user to:

= Rearrange the displays on the extended desktop

= Change the main display by moving the menu bar from one display to another

= Create a display mirroring set

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Quartz Display Services

Figure 2 An Arrangement pane
8060 Apple Studio Display
[« »][Showall Q]

| Display | Arrangement | Color = Options |

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

[~ Mirror Displays ®

The next few sections introduce some basic features of displays, along with some of the more important
functions in the Quartz Display Services API. The other articles in this document contain examples that show
how to use this API to perform some common operations.

Display States

A display is considered to be online when the frame buffer hardware is connected to a monitor. If no monitor
is attached to the frame buffer, a display is characterized as offline.

When a display is online, the display is mapped into the global display (desktop) coordinate system. The
upper-left corner of a display is called the origin. The origin of a display is always specified in global display
(desktop) coordinates.

The display with the origin at (0,0) is called the main or primary display. In a system without display mirroring,
the display with the menu bar is typically the main display. The user can change the main display by dragging
the menu bar to a different display in Displays preferences.

An online display can be active, mirroring, or sleeping. These terms are defined as follows:

m Adisplay is active if it is awake and available for drawing.

= Adisplay is mirroring another display if the same content is drawn to both displays simultaneously. You
cannot draw on the mirroring display.

Display States n
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Quartz Display Services

= Adisplay is sleeping when its frame buffer and the attached monitor are in reduced power mode. A
sleeping display is still considered to be a part of global display space, but you cannot draw on it.

Display IDs

When a monitor is attached and a display is online, Quartz assigns a unique display identifier (ID) of type
CGDirectDisplaylID. Adisplay ID can persist across processes and system reboot, and typically remains
constant as long as certain display parameters do not change. You can obtain an array of display IDs that
correspond to all online displays in the system with the function CGGetOnlineDisplaylist.

Typically you're more interested in active displays because they're available for drawing. You can obtain an
array of display IDs that correspond to all active displays in the system with the function
CGGetActiveDisplayList. The first display in the list is always the main display. The main display is also
represented by the constant kCGDirectMainDisplay, which is defined as a call to the function
CGMainDisplayID.

These functions also obtain an array of display IDs:

m C(CGGetDisplaysWithPoint obtainsthe display IDs for online displays whose bounds include a specified
point.

m (CGGetDisplaysWithRect obtains the display IDs for online displays whose bounds include a specified
rectangle.

m (CGGetDisplaysWithOpenGLDisplayMask obtains the display IDs for online displays that correspond
to the bits set in an OpenGL display mask.

Display Modes

12

Every display has a set of supported modes of operation. A display mode is a set of standard properties such
as resolution (width and height in pixels), bits per pixel, and refresh rate, and optional properties such as
pixel stretching to fill the screen.

Each display mode is represented by a display mode dictionary. To find out what modes a display supports,
you use the function CGDisplayAvailableModes, which returns a list of mode dictionaries. To find out the
current display mode for an online display, you use the function CGDisplayCurrentMode, which returns a
single mode dictionary. A display mode dictionary contains a set of key-value pairs that you can query using
Core Foundation CFDictionary functions.

To find the optimal mode for a selected set of properties, you can use the function
CGDisplayBestModeForParameters. For example, if you request a supported mode for a display with a
resolution of 750 x 550 pixels and 24 bits per pixel, this function may return a supported mode with resolution
of 800 x 600 pixels and 32 bits per pixel.

Mode dictionaries are read-only. If you want to change a specific display property such as resolution, you
need to find the appropriate mode dictionary and use it to change the mode of the display. You can use
CGDisplaySwitchToMode, a convenience function for changing the mode of a single display. For more
information, see “Changing Display Modes” (page 19).

Display IDs
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Quartz Display Services

Display Arrangement

On systems with multiple displays, your application can control the arrangement of the displays in the global
display space. This is done by setting the origin of each display with the function
CGConfigureDisplayOrigin. The new origins are placed as close as possible to the requested locations,
without overlapping or leaving a gap between displays. You can also use this function to designate a display
as the main display by setting its origin to (0,0). For more information about using this function, see
“Configuring Displays Using a Transaction” (page 23).

When your application terminates, the display arrangement returns to the current settings in Displays
preferences.

Display Mirroring

On systems with multiple displays, your application can draw the same content to two or more displays
simultaneously. This is called mirroring, and the displays are said to be in a mirroring set. You can create or
change the configuration of a mirroring set with the function CGConfigureDisplayMirrorOfDisplay.
One display is designated the main or primary display in the mirroring set, and all drawing is directed to this
display. For more information about using this function, see “Configuring Displays Using a Transaction” (page
23).

Display mirroring and display matte generation are implemented either in hardware (preferred) or software,
at the discretion of the device driver. In hardware mirroring, the graphics hardware renders the contents of
a single frame buffer in two or more displays simultaneously. In software mirroring, identical content is drawn
into the frame buffer of each display in the mirroring set. The display with the highest resolution and deepest
pixel depth typically becomes the main display.

Quartz makes sure that all window-based content is placed on all displays in a mirroring set. Applications
that draw in windows need not be concerned about supporting mirroring. Applications drawing directly to
the display may need to implement a traditional device loop to properly support mirroring.

Display Arrangement 13
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Quartz Display Services

14 Display Mirroring
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Getting Information About Displays

Quartz Display Services provides a number of functions to retrieve information about display state and display
modes. This article briefly covers a few of these functions. For a complete list, see Quartz Display Services

Reference.

Getting Display State Information

Quartz Display Services includes several accessor functions that report current properties of the display
hardware, properties that are also found in the current display mode dictionary. Because these functions
query the hardware directly rather than consulting the current display mode, they provide the most accurate
information available about the display (display mode properties are subject to change by the device driver).
These functions, listed next, are straightforward to use:

Function

Description

CGDisplayPixelsWide

Returns the drawable width of a display in pixel units.

CGDisplayPixelsHigh

Returns the drawable height of a display in pixel units.

CGDisplayBitsPerPixel

Returns the number of bits used to represent a pixel in the frame buffer.

CGDisplayBitsPerSample

Returns the number of bits used to represent a pixel component in the
frame buffer.

CGDisplaySamplesPerPixel

Returns the number of components used to represent a pixel in the frame
buffer.

CGDisplayBytesPerRow

Returns the number of bytes per row in the frame buffer.

The APl includes other accessor functions that report additional information about the current configuration
and state of the display. The following table lists a representative sample of these functions:

Function

Description

CGDisplaylsActive

Returns a Boolean value indicating whether a display is active or
drawable).

CGDisplayIsBuiltin

Returns a Boolean value indicating whether a display is built-in, such
as the internal display in portable systems.

CGDisplaylIsMain

Returns a Boolean value indicating whether a display is the main
display.

CGDisplayScreenSize

Returns the width and height of a display in millimeters.

Getting Display State Information

15

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Getting Information About Displays

Function

Description

CGDisplayUsesOpen-
GLAcceleration

Returns a Boolean value indicating whether Quartz is using
OpenGL-based window acceleration (Quartz Extreme) to render in a
display.

Getting Display Mode Information

16

Each online display has a current display mode and a set of available display modes. The device driver uses
information in the current display mode to configure the display.

You can retrieve the values of the properties in a display mode dictionary with the CFDictionaryGetValue
function. Then, you may need to cast the returned value to the appropriate data type. Listing 1 shows how
to retrieve several mode properties and cast them to a base data type.

Listing 1 Getting display mode properties

CFNumberRef number;
CFBoolean booleanValue;
Boolean gui;

long mode, refresh, ioflags;

CFDictionaryRef currentMode =

CGDisplayCurrentMode (kCGDirectMainDisplay);

number = CFDictionaryGetValue (currentMode, kCGDisplayMode);
CFNumberGetValue (number, kCFNumberlLongType, &mode);

number = CFDictionaryGetValue (currentMode, kCGDisplayRefreshRate);
CFNumberGetValue (number, kCFNumberlLongType, &refresh);

booleanValue = CFDictionaryGetValue (currentMode,
kCGDisplayModeUsableForDesktopGUI);
gui = CFBooleanGetValue (booleanValue);

number = CFDictionaryGetValue (currentMode, kCGDisplayIOFlags);
CFNumberGetValue (number, kCFNumberlLongType, &ioflags);

Getting Display Mode Information

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Capturing Displays

If you're writing an immersive application such as a game or a presentation program, you may want to do
full screen drawing.

A common approach is to capture the display you want to use. When you capture a display, you have exclusive
use of the display. Other applications and system services are not allowed to use the display or change its
configuration. In addition, they are not notified of display changes, thus preventing them from repositioning
their windows and the Finder from repositioning desktop icons.

To capture a single display, call the function CGDisplayCapture. To capture all online displays at once, call
CGCaptureAl1Displays. By default, a captured screen is filled with black color; you have the option of
disabling this feature if you capture using the functions CGDisplayCapturelWithOptions or
CGCaptureAl1DisplaysWithOptions.

After capturing a display, there are several drawing options:

= [f you're writing an OpenGL application, you can create an OpenGL full screen drawing context. For more
information, see OpenGL Programming Guide for Mac OS X.

= You can draw directly to the screen using Quartz 2D. Use the function CGDisplayGetDrawingContext
to obtain a full-featured graphics context for the display. The graphics context remains valid until the
display is released or its configuration changes. The context's origin is the lower-left corner of the display.

= You can draw directly to the screen using your own drawing engine. Call CGDisplayBaseAddress or
CGDisplayAddressForPosition to getan address in the frame buffer to which to draw.

Note: None of these drawing options require a window. Attempting to position a window over a captured
display and draw into the window may be unsuccessful—or may present undesirable results such as illegible
or invisible content—because of interactions between full-screen graphics and the graphics hardware.

When you are finished using a captured display, you should release it by calling CGDisplayRelease or
CGReleaseAl1Displays.

Listing 1 shows how to capture the main display and draw a text string using Quartz 2D. A detailed explanation
for each numbered line of code appears following the listing.

Listing 1 Capturing the main display
char *text = "Hello, World!";
CGDirectDisplayID display = kCGDirectMainDisplay; /1
CGError err = CGDisplayCapture (display); /12
if (err == kCGErrorSuccess)
{

CGContextRef ctx = CGDisplayGetDrawingContext (display); //3

if (ctx != NULL)
{
CGContextSelectFont (ctx, "Times-Roman", 48, kCGEncodingMacRoman);

17
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

18

Capturing Displays

CGContextSetTextDrawingMode (ctx, kCGTextFillStroke);
CGContextSetRGBFill1Color (ctx, 1, 1, 1, 0.75);
CGContextSetRGBStrokeColor (ctx, 1, 1, 1, 0.75);
CGContextShowTextAtPoint (ctx, 40, 40, text, strlen(text));
sleep (4);

}

CGDisplayRelease (display);

}

Here's what the code does:

1. Gets the display ID of the main display.

2. Captures the main display and changes the color to black. An error is returned only if the display has

been captured by another application.
3. Gets a Quartz graphics context associated with the captured display.
4. Draws the text string in the lower-left corner of the screen.
5. Suspends processing for a few seconds to allow the user to read the text.

6. Releases the captured display.

Note: It's not necessary to capture a display to do full-screen drawing. Another approach is to create and
draw into a borderless window the size of the display. This approach allows you to use all the features of the
windowing system, it plays well with the rest of the operating system, and it reduces the complexity of display
handling (for example, you don't have to worry about mirrored displays). On systems with modern graphics
hardware, drawing performance in a full-screen window is almost as fast as a full-screen drawing context.

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Changing Display Modes

A typical display configuration task is to change the mode of a single display. You can use the convenience
function CGDisplaySwitchToMode to do this in a single step. This section shows two ways to find and
switch to the best mode for a given display.

Setting the Mode of the Main Display

In the simple case, you want to set the mode of the main display to a mode that most closely matches your
required bit depth and resolution. When you are finished drawing, you restore the previous display mode.
Listing 1 shows how to do this. A detailed explanation for each numbered line of code appears following the
listing.

Listing 1 Setting the mode of the main display

size_t desiredBitDepth = 16;
size_t desiredWidth = 1024;
size_t desiredHeight = 768;
boolean_t exactMatch;

CFDictionaryRef mode = CGDisplayBestModeForParameters(// 1
kCGDirectMainDisplay,
desiredBitDepth, desiredWidth,
desiredHeight, &exactMatch);

if (mode != NULL) {
/* if it is important to have an exact match, check exactMatch here */
MyDrawToDisplayWithMode (kCGDirectMainDisplay, mode);

}

void MyDrawToDisplayWithMode (CGDirectDisplayID display, CFDictionaryRef mode)
{

CFDictionaryRef originalMode = CGDisplayCurrentMode (display); //2
CGDisplayHideCursor (display);

CGDisplaySwitchToMode (display, mode); /13
CGDisplayCapture (display); //4

/* full screen drawing/game loop here */

CGDisplaySwitchToMode (display, originalMode); //5
CGDisplayRelease (display); /16
CGDisplayShowCursor (display);

}

Here's what the code does:

1. Finds the best match among the available modes for the specified display.

Setting the Mode of the Main Display 19
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Changing Display Modes

2. Saves the current display mode.

3. Reconfigures the display to use the new display mode.
4. Captures the display to prepare for full screen drawing.
5. Restores the previous display mode.

6. Releases the captured display.

Finding the Best Mode from the Available Modes

In a more complex case, you need more control over which display you use or want to determine for yourself
what "best mode" means. Listing 2 shows how to get an array of active displays, iterate over that list examining
the modes that each display supports, and choose the most appropriate display and mode combination for
your application.

Listing 2 Examining the available modes

jtdefine MAX_DISPLAYS 32

CGDirectDisplayID displays[MAX_DISPLAYS];
CGDisplayCount numDisplays;
CGDisplayCount 1i;

CGGetActiveDisplayList (MAX_DISPLAYS, displays, &numDisplays); /11

for (i = 0; 1 < numDisplays; i++) /12
{

CFDictionaryRef mode;

CFIndex index, count;

CFArrayRef modelist;

modeList = CGDisplayAvailableModes (displays[il); /13
count = CFArrayGetCount (modelist);

for (index = 0; index < count; index++) /14
{
mode = CFArrayGetValueAtIndex (modelist, index);
if (MyBestMode (mode)) {
MyDrawToDisplayWithMode (displays[il, mode); /15
}

}

boolean_t MyBestMode (CFDictionaryRef mode) // 6
{

CFNumberRef value;

long bitsPerPixel = 0, width = 0;

value = CFDictionaryGetValue (mode, kCGDisplayBitsPerPixel);
CFNumberGetValue (value, kCFNumberlongType, &bitsPerPixel);
value = CFDictionaryGetValue (mode, kCGDisplayWidth);

20 Finding the Best Mode from the Available Modes
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Changing Display Modes

}

CFNumberGetValue (value, kCFNumberlLongType, &width);

if (bitsPerPixel == 32 && width == 1024)
return true;

else
return false;

Here's what the code does:

1. Gets the array of active displays, which are the ones available for drawing.

2. lterates over the array of active displays. Note that the array is zero based.

3. Gets the array of available modes for this display.

4. |terates over the available modes for a display, calling a custom function to determine if a mode has the
desired properties.

5. Calls the drawing function used in the previous example.

6. Checks two properties in the mode dictionary and returns true if the mode has the desired properties.

Finding the Best Mode from the Available Modes 21

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Changing Display Modes

22 Finding the Best Mode from the Available Modes
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Configuring Displays Using a Transaction

Quartz Display Services makes it possible to configure a set of displays in a single transaction. During the
execution of configuration changes, Quartz performs a standard fade effect on all online displays. The displays
fade to a monochromatic color, the configuration takes place, and the displays return to normal. For more
information about fade effects, see “Using Fade Effects” (page 25).

You begin a new transaction by calling CGBeginDisplayConfiguration. The next step is to declare what
changes you want to make. For example, you can use these functions:

m C(CGConfigureDisplayMode sets the display mode of a display.
m C(CGConfigureDisplayMirror0fDisplay adds a display to a mirroring set.
m CGConfigureDisplayOrigin setsa display's origin in global display space.

m (CGConfigureDisplayFadeEffect customizes the fade effect. (Calling this function modifies the fade
behavior for a single display configuration and has no permanent effect.)

After you're finished preparing the transaction, you call CcCompleteDisplayConfiguration to execute
it. In this call you also specify the scope of the configuration change. Typically, you'll specify
kCGConfigureForAppOnly to apply the changes for the lifetime of your application.

Listing 1 shows how to use a configuration transaction with a custom fade effect to change the display mode
of a single display. A detailed explanation for each numbered line of code appears following the listing.

Listing 1 A simple configuration transaction

void MyDisplaySwitchToMode (CGDirectDisplayID display, CFDictionaryRef mode)
{

CGDisplayConfigRef config; /11
CGBeginDisplayConfiguration (&config); /12
CGConfigureDisplayMode (config, display, mode); /13
CGConfigureDisplayFadeEffect (/4

config,

0.6, // fade out interval in seconds

.0, // fade in interval

0.5, // red

0.5, // green

0.5 // blue
)
CGCompleteDisplayConfiguration (config, kCGConfigureForAppOnly); //'5

}
Here's what the code does:

1. Declares a display configuration object, a variable that provides a context for a set of display configuration
changes.

23
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

24

Configuring Displays Using a Transaction

2. Begins a new configuration transaction, and passes back a display configuration object.
3. Declares the display mode change for this configuration.
4. Customizes the default fade effect for this configuration. The new fade color is gray.

5. Applies the new configuration with application scope. On return, the configuration object is no longer
valid.

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using Fade Effects

A display fade effect is a smooth transition to or from a monochromatic color blended with the contents of
the display, often used when entering full screen mode or switching display modes. The transitions to and
from monochromatic color are sometimes called fade-out and fade-in effects.

Quartz automatically fades all online displays for you during configuration changes. The time settings for
the default fade effect are 0.3 seconds to fade out and 0.5 seconds to fade in. The fade color is French Blue
for a normal desktop, and black for a captured display. During a configuration transaction, you can customize
this built-in fade effect—see the example in “Configuring Displays Using a Transaction” (page 23).

You may want to use a custom fade effect to indicate a transition other than a configuration change. For
example, you could fade out to black, capture the display, draw on the screen, and fade in from black. The
next sections show two ways to accomplish this task.

Fading all Displays

Quartz Display Services provides functions that allow you to perform a custom fade effect on all online
displays simultaneously. The first step is to call CGAcquireDisplayFadeReservation to reserve the fade
engine for a specified interval. This function passes back a token that represents a new fade reservation. Your
application uses this token as an argument in subsequent calls to CGDisp1ayFade. During the fade reservation
interval, your application has exclusive rights to use the fade engine. To release the reservation, you call
CGReleaseDisplayFadeReservation.

Listing 1 shows how to reserve the fade engine, perform a fade effect to and from black, and release the
reservation. A detailed explanation for each numbered line of code appears following the listing.

Listing 1 Fading all displays

CGDisplayFadeReservationToken token;
CGDisplayErr err;

err = CGAcquireDisplayFadeReservation (kCGMaxDisplayReservationInterval, &token); /11
if (err == kCGErrorSuccess)
{
err = CGDisplayFade (token, 0.3, kCGDisplayBlendNormal,
kCGDisplayBlendSolidColor, 0, 0, 0, true); /]2
err = CGDisplayCapture (kCGDirectMainDisplay); /13

/* draw something on the captured display */

err = CGDisplayFade (token, 0.5, kCGDisplayBlendSolidColor,
kCGDisplayBlendNormal, 0, 0, 0, true); /14
err = CGReleaseDisplayFadeReservation (token); //'5

Here's what the code does:

Fading all Displays 25
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using Fade Effects

Reserves the fade engine for the maximum permitted interval. Your application must perform this step
before it can fade the displays. During this time, your application has exclusive rights to use the fade
engine.

Fades displays to black with a duration of 0.3 seconds. The function call is synchronous.
Captures the main display. The display is already black, so the user sees no change.
Fades displays from black to normal with a duration of 0.5 seconds. The function call is synchronous.

Releases the fade reservation and invalidates the token.

Fading a Single Display

26

To fade a single display on a system with two or more displays, you can use another approach that involves
incrementally adjusting the display's gamma formula.

When you adjust the gamma values, you can't assume that the maximum gamma value is 1.0; the user might
have specified a different maximum value in System Preferences. You need to retrieve the current settings
and scale them appropriately.

Listing 2 shows how to fade a specified display to black and back. A loop with a fixed delay is used to obtain
a smooth fade (another approach is to use a timer to ensure a fixed fade duration on different systems).

Listing 2 Fading a single display

const double kMyFadeTime = 1.0; /* fade time in seconds */

const int kMyFadeSteps = 100;

const double kMyFadeInterval = (kMyFadeTime / (double) kMyFadeSteps);
const useconds_t kMySTeepTime = (1000000 * kMyFadelInterval); /* delay in
microseconds */

int

step;

double fade;
CGGammaValue redMin, redMax, redGamma,

greenMin, greenMax, greenGamma,
blueMin, blueMax, blueGamma;

CGDisplaykrr err;

err

for

= (CGGetDisplayTransferByFormula (display, //1
&redMin, &redMax, &redGamma,

&greenMin, &greenMax, &greenGamma,

&bTueMin, &blueMax, &blueGamma);

(step = 0; step < kMyFadeSteps; ++step) { /12
fade = 1.0 - (step * kMyFadelnterval);
err = CGSetDisplayTransferByFormula (display,
redMin, fade*redMax, redGamma,
greenMin, fade*greenMax, greenGamma,
blueMin, fade*blueMax, blueGamma);
usleep (kMySleepTime); /13

Fading a Single Display
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using Fade Effects

err

= CGDisplayCapture (display);

/* draw something on the captured display */

for (step = 0; step < kMyFadeSteps; ++step) { /4

}

fade = (step * kMyFadelnterval);
err = CGSetDisplayTransferByFormula (display,
redMin, fade*redMax, redGamma,
greenMin, fade*greenMax, greenGamma,
blueMin, fade*blueMax, blueGamma);
usleep (kMySleepTime); /15

CGDisplayRestoreColorSyncSettings(); // 6

Here's what the code does:

1. Gets the current coefficients of the gamma transfer formula for a display as the starting gamma values.

2. Fades from the current gamma by setting the color gamma function for the display, specified as the
coefficients of the gamma transfer formula. Starts with the current gamma (multiplying by a factor of
1.0) and ends with black (multiplying by a factor of 0.0).

3. Suspends processing for a short interval. To get a smooth fade out effect, you either need to use a timer
or insert a short delay because the call to change the display gamma returns within 100 microseconds
or so, and the actual gamma is applied asynchronously during the next vertical blanking period. Without
the delay, you'll get what appears as an instantaneous switch to black.

4. Fade from black (multiplying by a factor of 0.0) back to original gamma (multiplying by a factor of 1.0).

5. Suspends processing for a short interval to achieve a smooth fade in effect.

6. Restores the gamma tables to the values in the user’s ColorSync display profile.

Fading a Single Display 27

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using Fade Effects

28 Fading a Single Display
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Notification of Configuration Changes

Quartz Display Services provides a general notification mechanism for applications that need to know about
display configuration changes. Any application can register a display reconfiguration callback function. At
several points during reconfiguration, Quartz passes to your callback function the display ID, status flags,
and optional private data. During a display mode change, for example, you could use a callback to print a
log message that describes the new mode.

Quartz invokes your callback function when:

= Your application calls a function to reconfigure a local display

= Your application is listening for events in the event-processing thread, and another application calls a
function to reconfigure a local display

m The user changes the display hardware configuration—for example, by disconnecting a display or
changing a system preferences setting

Before display reconfiguration, Quartz invokes your callback function once for each online display to indicate
a pending configuration change. The kCGDisplayBeginConfigurationFlag flag is always set. After
display reconfiguration, Quartz invokes your callback function once for each added, removed, and online
display. At this time, all display state reported by Quartz Display Services, QuickDraw, and the Carbon Display
Manager will be up to date. The flags indicate how the display configuration has changed.

Carbon and Cocoa already use this notification mechanism to respond to display reconfigurations. As a result,
when a user or application changes a display mode, turns on mirroring, or disconnects a display, Carbon or
Cocoa applications don't need to be concerned with repositioning or resizing their windows. The application
frameworks handle this task automatically.

If you want to receive notifications of configuration changes, here is a brief description of the steps:
1. Register your notification callback function:

CGDisplayRegisterReconfigurationCallback (MyDisplayReconfigurationCallBack,
&userInfo);

2. When your function is called, check the parameters to see if action is required. For example:

void MyDisplayReconfigurationCallBack (
CGDirectDisplayID display,
CGDisplayChangeSummaryFlags flags,
void *userInfo)

if (flags & kCGDisplaySetModeFlag) ({
/* handle mode change for this display */
}
}

3. When you no longer require notification, remove the callback registration:

29
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

30

Notification of Configuration Changes

CGDisplayRemoveReconfigurationCallback (MyDisplayReconfigurationCallBack,
&userInfo);

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Controlling the Mouse Cursor

Quartz Display Services includes functions to control the mouse cursor. For example, when your application
is in full-screen mode you may want to hide the mouse cursor, move the cursor to a different location, or
disassociate mouse movement from the cursor position. This article briefly describes the functions that
provide these services. To use these functions, your application must be in the foreground.

To hide or show the mouse cursor on any display, use the functions CGDisplayHideCursor and
CGDisplayShowCursor. These functions take a display ID as a parameter, but the display ID is not used.
Calls to these functions need to be balanced; Quartz maintains a hide cursor count that must be zero in order
to show the cursor.

Quartz provides a convenient function for disassociating mouse movement from cursor position while an
application is in the foreground. By passing false to the function
CGAssociateMouseAndMouseCursorPosition, you can prevent mouse movement from changing the
cursor position. Pass true to reverse the effect.

You can change the location of the mouse cursor on a specific display by calling the function
CGDisplayMoveCursorToPoint. This function takes two parameters, a display ID and a point. The location
of the point is relative to the origin or upper-left corner of the display. You can also change the location of
the mouse cursor to any display by calling the function CGWarpMouseCursorPosition. This function takes
a single parameter, a point in global display coordinates. Calling either of these functions does not generate
a mouse event.

Listing 1 shows how you would hide the cursor, disassociate mouse movement from the cursor, move it to
the origin of the main display, and then restore the cursor and mouse when you are done.

Listing 1 Controlling the mouse cursor

CGDisplayHideCursor (kCGNullDirectDisplay);
CGAssociateMouseAndMouseCursorPosition (false);
CGDisplayMoveCursorToPoint (kCGDirectMainDisplay, CGPointZero);
/* perform your application's main loop */
CGAssociateMouseAndMouseCursorPosition (true);
CGDisplayShowCursor (kCGNullDirectDisplay);

31
2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

32

Controlling the Mouse Cursor

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Quartz Display Services Programming Topics.

Date

Notes

2006-06-28

New document that shows how to use Quartz Display Services to accomplish
some basic tasks.

33

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

34

Document Revision History

2006-06-28 | © 2006 Apple Computer, Inc. All Rights Reserved.

	Quartz Display Services Programming Topics
	Contents
	Figures and Listings
	Introduction
	Overview of Quartz Display Services
	Display States
	Display IDs
	Display Modes
	Display Arrangement
	Display Mirroring

	Getting Information About Displays
	Getting Display State Information
	Getting Display Mode Information

	Capturing Displays
	Changing Display Modes
	Setting the Mode of the Main Display
	Finding the Best Mode from the Available Modes

	Configuring Displays Using a Transaction
	Using Fade Effects
	Fading all Displays
	Fading a Single Display

	Notification of Configuration Changes
	Controlling the Mouse Cursor
	Revision History

