CGImage Reference

Graphics & Imaging > Quartz

¢

2008-04-08

.

[

Apple Inc.

© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, Quartz,
and QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CGImage Reference 5

Overview 5

Functions by Task 5
Creating Bitmap Images 5
Creating an Image Mask 6
Retaining and Releasing Images 6
Getting the CFType ID 6
Getting Information About an Image 6

Functions 7
CGlmageCreate 7
CGImageCreateCopy 8
CGImageCreateCopyWithColorSpace 9
CGImageCreateWithimagelnRect 9
CGImageCreateWithJPEGDataProvider 10
CGImageCreateWithMask 11
CGImageCreateWithMaskingColors 11
CGImageCreateWithPNGDataProvider 12
CGlmageGetAlphalnfo 13
CGImageGetBitmaplinfo 13
CGImageGetBitsPerComponent 14
CGImageGetBitsPerPixel 14
CGImageGetBytesPerRow 15
CGImageGetColorSpace 15
CGImageGetDataProvider 16
CGImageGetDecode 16
CGImageGetHeight 16
CGImageGetRenderingintent 17
CGImageGetShouldInterpolate 17
CGImageGetTypelD 18
CGImageGetWidth 18
CGImagelsMask 19
CGImageMaskCreate 19
CGImageRelease 20
CGlmageRetain 21

Data Types 21
CGImageRef 21

Constants 22
Alpha Information for Images 22
Image Bitmap Information 23

2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 27

Index 29

2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Derived From: CFType Reference
Framework: ApplicationServices/ApplicationServices.h
Companion guide Quartz 2D Programming Guide
Declared in CGImage.h
Overview

The CGImageRef opaque type represents bitmap images and bitmap image masks, based on sample data
that you supply. A bitmap (or sampled) image is a rectangular array of pixels, with each pixel representing
a single sample or data point in a source image.

Functions by Task

Creating Bitmap Images

CGImageCreate (page?7)

Creates a bitmap image from data supplied by a data provider.
CGImageCreateCopy (page 8)

Creates a copy of a bitmap image.

CGImageCreateCopyWithColorSpace (page9)
Create a copy of a bitmap image, replacing its colorspace.

CGImageCreateWithdPEGDataProvider (page 10)

Creates a bitmap image using JPEG-encoded data supplied by a data provider.
CGImageCreateWithPNGDataProvider (page 12)

Creates a Quartz bitmap image using PNG-encoded data supplied by a data provider.
CGImageCreateWithImageInRect (page 9)

Creates a bitmap image using the data contained within a subregion of an existing bitmap image.
CGImageCreatelWithMask (page 11)

Creates a bitmap image from an existing image and an image mask.

CGImageCreateWithMaskingColors (page 11)
Creates a bitmap image by masking an existing bitmap image with the provided color values.

Overview 5
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Creating an Image Mask

CGImageMaskCreate (page 19)
Creates a bitmap image mask from data supplied by a data provider.

Retaining and Releasing Images

CGImageRetain (page 21)
Increments the retain count of a bitmap image.

CGImageRelease (page 20)
Decrements the retain count of a bitmap image.

Getting the CFType ID

CGImageGetTypelD (page 18)
Returns the type identifier for Quartz bitmap images.

Getting Information About an Image

CGImageGetAlphalnfo (page 13)

Returns the alpha channel information for a bitmap image.
CGImageGetBitmapInfo (page 13)

Returns the bitmap information for a bitmap image.
CGImageGetBitsPerComponent (page 14)

Returns the number of bits allocated for a single color component of a bitmap image.
CGImageGetBitsPerPixel (page 14)

Returns the number of bits allocated for a single pixel in a bitmap image.
CGImageGetBytesPerRow (page 15)

Returns the number of bytes allocated for a single row of a bitmap image.
CGImageGetColorSpace (page 15)

Return the color space for a bitmap image.
CGImageGetDataProvider (page 16)

Returns the data provider for a bitmap image.
CGImageGetDecode (page 16)

Returns the decode array for a bitmap image.
CGImageGetHeight (page 16)

Returns the height of a bitmap image.
CGImageGetShouldInterpolate (page 17)

Returns the interpolation setting for a bitmap image.
CGImageGetRenderingIntent (page 17)

Returns the rendering intent setting for a bitmap image.
CGImageGetWidth (page 18)

Returns the width of a bitmap image.

Functions by Task
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

CGImagelsMask (page 19)
Returns whether a bitmap image is an image mask.

Functions

CGIimageCreate

Creates a bitmap image from data supplied by a data provider.

CGImageRef CGImageCreate (
size_t width,
size_t height,
size_t bitsPerComponent,
size_t bitsPerPixel,
size_t bytesPerRow,
CGColorSpaceRef colorspace,
CGBitmapInfo bitmapInfo,
CGDataProviderRef provider,
const CGFloat decodel],
bool shouldInterpolate,
CGColorRenderingIntent intent
)

Parameters
width
The width, in pixels, of the required image.
height
The height, in pixels, of the required image
bitsPerComponent
The number of bits for each component in a source pixel. For example, if the source image uses the
RGBA-32 format, you would specify 8 bits per component.
bitsPerPixel
The total number of bits in a source pixel. This value must be at least bitsPerComponent times the
number of components per pixel.
bytesPerRow
The number of bytes of memory for each horizontal row of the bitmap.

colorspace
The color space for the image. Quartz retains the color space you pass in; on return, you may safely
release it.
bitmapInfo
A CGBitmapInfo constant that specifies whether the bitmap should contain an alpha channel and
its relative location in a pixel, along with whether the components are floating-point or integer values.
provider

The source of data for the bitmap. For information about supported data formats, see the discussion
below. Quartz retains this object; on return, you may safely release it.

Functions 7
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

decode
The decode array for the image. If you do not want to allow remapping of the image’s color values,
pass NULL for the decode array. For each color component in the image’s color space, a decode array
provides a pair of values denoting the upper and lower limits of a range. For example, the decode
array for a source image in the RGB color space would contain six entries total, consisting of one pair
each for red, green, and blue. When the image is rendered, Quartz uses a linear transform to map the
original component value into a relative number within your designated range that is appropriate
for the destination color space.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image. Without interpolation, the
image may appear jagged or pixelated when drawn on an output device with higher resolution than
the image data.

intent
A rendering intent constant that specifies how Quartz should handle colors that are not located within
the gamut of the destination color space of a graphics context. The rendering intent determines the
exact method used to map colors from one color space to another. For descriptions of the defined
rendering-intent constants, see Color Rendering Intents.

Return Value

A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
20).

Discussion

The data provider should provide raw data that matches the format specified by the other input parameters.
To use encoded data (for example, from a file specified by a URL-based data provider), see
CGImageCreateWithJPEGDataProvider (page 10)and CGImageCreateWithPNGDataProvider (page
12). In Mac OS X version 10.3 and later, you can also use the QuickTime function
GraphicsImportCreateCGImage to decode an image file in any supported format and create a CGlmage,
in a single operation.

For information on supported pixel formats, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageCreateCopy

Creates a copy of a bitmap image.

CGImageRef CGImageCreateCopy (
CGImageRef image
)

Parameters
image
The image to copy.

Return Value
An copy of the image specified by the image parameter.

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateCopyWithColorSpace

Create a copy of a bitmap image, replacing its colorspace.

CGImageRef CGImageCreateCopyWithColorSpace (
CGImageRef image,
CGColorSpaceRef colorspace

)

Parameters
image
The graphics image to copy.
colorspace
The destination color space. The number of components in this color space must be the same as the
number in the specified image.
Return Value
A new Quartz image that is a copy of the image passed as the image parameter but with its color space
replaced by that specified by the colorspace parameter. Returns NULL if image is an image mask, or if the

number of components of colorspace is not the same as the number of components of the colorspace of
image. You are responsible for releasing this object using CGImageRelease (page 20).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGImage.h

CGImageCreateWithimagelnRect

Creates a bitmap image using the data contained within a subregion of an existing bitmap image.

CGImageRef CGImageCreateWithImagelInRect (
CGImageRef image,
CGRect rect

)

Parameters
image
The image to extract the subimage from.
rect
A rectangle whose coordinates specify the area to create an image from.

Return Value
A CGImage object that specifies a subimage of the image. If the rect parameter defines an area that is not
in the image, returns NULL.

Functions 9
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

10

CGImage Reference

Discussion
Quartz performs these tasks to create the subimage:

= Adjusts the area specified by the rect parameter to integral bounds by calling the function
CGRectIntegral.

= Intersects the result with a rectangle whose origin is (0, 0) and size is equal to the size of the image
specified by the image parameter.

m References the pixels within the resulting rectangle, treating the first pixel within the rectangle as the
origin of the subimage.

If W and H are the width and height of image, respectively, then the point (0, 0) corresponds to the first pixel
of the image data. The point (W-1, 0) is the last pixel of the first row of the image data while (0, H-1)is
the first pixel of the last row of the image data and (W-1, H-1)is the last pixel of the last row of the image
data.

The resulting image retains a reference to the original image, which means you may release the original
image after calling this function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithJPEGDataProvider
Creates a bitmap image using JPEG-encoded data supplied by a data provider.

CGImageRef CGImageCreateWithJPEGDataProvider (
CGDataProviderRef source,
const CGFloat decodel],
bool shouldInterpolate,
CGColorRenderinglIntent intent

)

Parameters

source
A data provider supplying JPEG-encoded data.

decode
The decode array for the image. Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image.

intent
A CGColorRenderingIntent constant that specifies how Quartz should handle colors that are not
located within the gamut of the destination color space of a graphics context.

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
20).

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGImage.h

CGImageCreateWithMask

Creates a bitmap image from an existing image and an image mask.

CGImageRef CGImageCreateWithMask (
CGImageRef image,
CGImageRef mask

)

Parameters

image
The image to apply the mask parameter to. This image must not be an image mask and may not have
an image mask or masking color associated with it.

mask
A mask. If the mask is an image, it must be in the DeviceGray color space, must not have an alpha
component, and may not itself be masked by an image mask or a masking color. If the mask is not
the same size as the image specified by the image parameter, then Quartz scales the mask to fit the
image.

Return Value

An image created by masking image with mask. You are responsible for releasing this object by calling

CGImageRelease (page 20).

Discussion

The resulting image depends on whether the mask parameter is an image mask or an image. If the mask
parameter is an image mask, then the source samples of the image mask act as an inverse alpha value. That
is, if the value of a source sample in the image mask is S, then the corresponding region in image is blended
with the destination using an alpha value of (1-S). For example, if S is 1, then the region is not painted, while
if S is 0, the region is fully painted.

If the mask parameter is an image, then it serves as an alpha mask for blending the image onto the destination.
The source samples of mask' act as an alpha value. If the value of the source sample in mask is S, then the
corresponding region in image is blended with the destination with an alpha of S. For example, if S is 0, then
the region is not painted, while if S is 1, the region is fully painted.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithMaskingColors

Creates a bitmap image by masking an existing bitmap image with the provided color values.

Functions n
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

12

CGImage Reference

CGImageRef CGImageCreateWithMaskingColors (
CGImageRef 1image,
const CGFloat components[]

)

Parameters

image
The image to mask. This parameter may not be an image mask, may not already have an image mask
or masking color associated with it, and cannot have an alpha component.

components
An array of color components that specify a color or range of colors to mask the image with. The array
must contain 2N values { min[1], max[1], ... min[N], max[N] } where N is the number of components
in color space of image. Each value in components must be a valid image sample value. If image has
integer pixel components, then each value must be in the range [0 .. 2**bitsPerComponent - 1]
(where bitsPerComponent is the number of bits/component of image). If image has floating-point
pixel components, then each value may be any floating-point number which is a valid color component.

Return Value

An image created by masking image with the colors specified in the components array. You are responsible
for releasing this object by calling CGImageRelease (page 20).

Discussion

Any image sample with color value {c[1], ... c([N]} where min[i] <= c[i] <= max][i] for 1 <=i <= N is masked out
(that is, not painted). This means that anything underneath the unpainted samples, such as the current fill
color, shows through.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithPNGDataProvider
Creates a Quartz bitmap image using PNG-encoded data supplied by a data provider.

CGImageRef CGImageCreateWithPNGDataProvider (
CGDataProviderRef source,
const CGFloat decodel],
bool shouldInterpolate,
CGColorRenderingIntent intent

)

Parameters
source
A data provider supplying PNG-encoded data.
decode
The decode array for the image. Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image.

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

intent
A CGColorRenderingIntent constant that specifies how Quartz should handle colors that are not
located within the gamut of the destination color space of a graphics context.
Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
20).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGImage.h

CGImageGetAlphalnfo

Returns the alpha channel information for a bitmap image.

CGImageAlphalnfo CGImageGetAlphalnfo (
CGImageRef image
)

Parameters
image
The image to examine.

Return Value

A CGImageAlphalnfo constant that specifies (1) whether the bitmap contains an alpha channel, (2) where
the alpha bits are located in the image data, and (3) whether the alpha value is premultiplied. For possible
values, see “Constants” (page 22). The function returns kCGImageAlphaNone if the image parameter refers
to an image mask.

Discussion
The alpha value is what determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBitmapinfo

Returns the bitmap information for a bitmap image.

CGBitmapInfo CGImageGetBitmapInfo (
CGImageRef image
)

Parameters
image
An image.

Return Value
The bitmap information associated with an image.

Functions 13
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

14

CGImage Reference

Discussion
This function returns a constant that specifies:

= Thetype of bitmap data—floating point or integer. You use the constant kCGBitmapFloatComponents
to extract this information.

= Whether an alpha channel is in the data, and if so, how the alpha data is stored. You use the constant
kCGBitmapAlphalInfoMask to extract the alpha information. Alpha information is specified as one of
the constants listed in “Alpha Information for Images” (page 22).

You can extract the alpha information

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageGetBitsPerComponent

Returns the number of bits allocated for a single color component of a bitmap image.

size_t CGImageGetBitsPerComponent (
CGImageRef image
)

Parameters
image
The image to examine.

Return Value

The number of bits used in memory for each color component of the specified bitmap image (or image
mask). Possible values are 1, 2, 4, or 8. For example, for a 16-bit RGB(A) colorspace, the function would return
a value of 4 bits per color component.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBitsPerPixel
Returns the number of bits allocated for a single pixel in a bitmap image.
size_t CGImageGetBitsPerPixel (

CGImageRef image
)

Parameters
image
The image to examine.

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Return Value
The number of bits used in memory for each pixel of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBytesPerRow

Returns the number of bytes allocated for a single row of a bitmap image.

size_t CGImageGetBytesPerRow (
CGImageRef image
)
Parameters
image
The image to examine.

Return Value
The number of bytes used in memory for each row of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetColorSpace

Return the color space for a bitmap image.

CGColorSpaceRef CGImageGetColorSpace (
CGImageRef image
)

Parameters
image
The image to examine.

Return Value
The source color space for the specified bitmap image, or NULL if the image is an image mask. You are
responsible for retaining and releasing the color space as necessary.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

16

CGImage Reference

CGImageGetDataProvider

Returns the data provider for a bitmap image.

CGDataProviderRef CGImageGetDataProvider (
CGImageRef image
)

Parameters
image

The image to examine.
Return Value

The data provider for the specified bitmap image (or image mask). You are responsible for retaining and
releasing the data provider as necessary.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetDecode

Returns the decode array for a bitmap image.

const CGFloat * CGImageGetDecode (
CGImageRef image
)

Parameters
image
The image to examine.

Return Value
The decode array for a bitmap image (or image mask). See the discussion for a description of possible return
values.

Discussion

For a bitmap image or image mask, for each color component in the source color space, the decode array
contains a pair of values denoting the upper and lower limits of a range. When the image is rendered, Quartz
uses a linear transform to map the original component value into a relative number, within the designated
range, that is appropriate for the destination color space. If remapping of the image’s color values is not
allowed, the returned value will be NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetHeight
Returns the height of a bitmap image.

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

size_t CGImageGetHeight (
CGImageRef image
)
Parameters
image
The image to examine.
Return Value

The height in pixels of the bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImage.h

CGImageGetRenderingintent

Returns the rendering intent setting for a bitmap image.

CGColorRenderingIntent CGImageGetRenderinglntent (

CGImageRef image
)
Parameters
image
The image to examine.
Return Value

Returns the CGColorRenderingIntent constant that specifies how Quartz should handle colors that are

not located within the gamut of the destination color space of a graphics context in which the image is
drawn. If the image is an image mask, this function returns kCGRenderingIntentDefault.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetShouldinterpolate
Returns the interpolation setting for a bitmap image.
bool CGImageGetShouldInterpolate (
CGImageRef image
);
Parameters
image
The image to examine.

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

17

CGImage Reference

Return Value
Returns 1 if interpolation is enabled for the specified bitmap image (or image mask), otherwise, returns 0.

Discussion
The interpolation setting specifies whether Quartz should apply an edge-smoothing algorithm to the associated
image.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetTypelD
Returns the type identifier for Quartz bitmap images.
CFTypelID CGImageGetTypelD (

void
)

Return Value
The identifier for the opaque type CGImageRef (page 21).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGImage.h

CGImageGetWidth

Returns the width of a bitmap image.

size_t CGImageGetWidth (
CGImageRef image
)

Parameters
image
The image to examine.

Return Value
The width, in pixels, of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImage.h

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

CGImagelsMask

Returns whether a bitmap image is an image mask.

bool CGImagelsMask (
CGImageRef image
)

Parameters
image

The image to examine.
Return Value

A Boolean value that indicates whether the image passed in the image parameter is an image mask (true
indicates that the image is an image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGIlmageMaskCreate

Creates a bitmap image mask from data supplied by a data provider.

CGImageRef CGImageMaskCreate (
size_t width,
size_t height,
size_t bitsPerComponent,
size_t bitsPerPixel,
size_t bytesPerRow,
CGDataProviderRef provider,
const CGFloat decodel],
bool shouldInterpolate

)

Parameters
width

The width, in pixels, of the required image mask.
height

The height, in pixels, of the required image mask.
bitsPerComponent

The number of significant masking bits in a source pixel. For example, if the source image is an 8-bit
mask, you specify 8 bits per component. Image masks must be 1, 2, 4, or 8 bits per component.

bitsPerPixel
The total number of bits in a source pixel.
bytesPerRow
The number of bytes to use for each horizontal row of the image mask.

provider
The data source for the image mask.

Functions 19
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

20

CGImage Reference

decode
Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply an edge-smoothing algorithm to the image mask.

Return Value
A Quartz bitmap image mask. You are responsible for releasing this object by calling CGImageRelease (page
20).

Discussion

A Quartz bitmap image mask is used the same way an artist uses a silkscreen, or a sign painter uses a stencil.
The bitmap represents a mask through which a color is transferred. The bitmap itself does not have a color.
It gets its color from the fill color currently set in the graphics state.

When you draw into a context with a bitmap image mask, Quartz uses the mask to determine where and
how the current fill color is applied to the image rectangle. Each sample value in the mask specifies how
much of the current fill color is masked out at a specific location. Effectively, the sample value specifies the
opacity of the mask. Larger values represent greater opacity and hence less color applied to the page.

Image masks must be 1, 2, 4, or 8 bits per component. For a 1-bit mask, a sample value of 1 specifies sections
of the mask that are masked out; these sections block the current fill color. A sample value of 0 specifies
sections of the mask that are not masked out; these sections show the current fill color of the graphics state
when the mask is painted. You can think of the sample values as an inverse alpha. That is, a value of 1 is
transparent and 0 is opaque.

For image masks that are 2, 4, or 8 bits per component, each component is mapped to a range of 0 to 1 by
scaling using this formula:

1/(2~bits per component - 1)

For example, a 4-bit mask has values that range from 0 to 15. These values are scaled by 1/15 so that each
component ranges from 0 to 1. Component values that rescale to 0 or 1 behave the same way as they behave
for 1-bit image masks. Values that scale to between 0 and 1 act as an inverse alpha. That is, the fill color is
painted as if it has an alpha value of (1 - MaskSampleValue). For example, if the sample value of an 8-bit
mask scales to 0.8, the current fill color is painted as if it has an alpha value of 0. 2, thatis (1-0.8).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageRelease
Decrements the retain count of a bitmap image.
void CGImageRelease (
CGImageRef image
)
Parameters

image
The image to release.

Functions
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the image parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
WhackedTV

Declared In
CGImage.h

CGImageRetain
Increments the retain count of a bitmap image.
CGImageRef CGImageRetain (

CGImageRef 1image
)

Parameters
image
The image to retain.
Return Value
The same image you passed in as the image parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the image parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

Data Types

CGImageRef

An opaque type that encapsulates bitmap image information.
typedef struct CGImage *CGImageRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGImage.h

Data Types 21
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Constants

Alpha Information for Images

Storage options for alpha component data.

enum CGImageAlphalnfo ({
kCGImageAlphaNone,
kCGImageAlphaPremultipliedlLast,
kCGImageAlphaPremultipliedFirst,
kCGImageAlphalast,
kCGImageAlphaFirst,
kCGImageAlphaNoneSkiplast,
kCGImageAlphaNoneSkipFirst

b

typedef enum CGImageAlphalnfo CGImageAlphalnfo;

Constants

kCGImageAlphaFirst

The alpha component is stored in the most significant bits of each pixel. For example, non-premultiplied
ARGB.

Available in Mac OS X v10.0 and later.
Declared in CGImage.h.

kCGImageAlphalast

The alpha component is stored in the least significant bits of each pixel. For example, non-premultiplied
RGBA.

Available in Mac OS X v10.0 and later.
Declared in CGImage.h.

kCGImageAlphaNone
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the least significant bits are ignored. This value is equivalent
to kCGImageAlphaNoneSkipLast.

Available in Mac OS X v10.0 and later.
Declared in CGImage.h.

kCGImageAlphaNoneSkipFirst
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the most significant bits are ignored.

Available in Mac OS X v10.0 and later.
Declared in CGImage. h.

kCGImageAlphaOnly
There is no color data, only an alpha channel.

Available in Mac OS X v10.3 and later.
Declared in CGImage. h.

22 Constants
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

kCGImageAlphaNoneSkiplast
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the least significant bits are ignored. This value is equivalent
to kCGImageAlphaNone.

Available in Mac OS X v10.0 and later.
Declared in CGImage.h.

kCGImageAlphaPremultipliedFirst
The alpha component is stored in the most significant bits of each pixel and the color components
have already been multiplied by this alpha value. For example, premultiplied ARGB.

Available in Mac OS X v10.0 and later.
Declared in CGImage.h.

kCGImageAlphaPremultipliedlLast
The alpha component is stored in the least significant bits of each pixel and the color components
have already been multiplied by this alpha value. For example, premultiplied RGBA.

Available in Mac OS X v10.0 and later.
Declared in CGImage. h.

Discussion

A CGImageAlphalInfo constant specifies (1) whether a bitmap contains an alpha channel, (2) where the
alpha bits are located in the image data, and (3) whether the alpha value is premultiplied. You can obtain a
CGImageAlphalnfo constant for animage by calling the function CGImageGetAlphalnfo (page 13).(You
provide a CGBitmapInfo constant to the function CGImageCreate (page 7), part of which is a
CGImageAlphalnfo constant.)

Quartz accomplishes alpha blending by combining the color components of the source image with the color
components of the destination image using the linear interpolation formula, where “source” is one color
component of one pixel of the new paint and “destination” is one color component of the background image.

Quartz supports premultiplied alpha only for images. You should not premultiply any other color values
specified in Quartz.

Declared In
CGImage.h

Image Bitmap Information

Component information for a bitmap image.

enum {
kCGBitmapAlphalnfoMask = 0Ox1F,
kCGBitmapFloatComponents = (1 << 8),

kCGBitmapByteOrderMask = 0x7000,
kCGBitmapByteOrderDefault = (0 << 12),
kCGBitmapByteOrderl6Little = (1 << 12),
kCGBitmapByteOrder32Little = (2 << 12),
kCGBitmapByteOrderl6Big = (3 << 12),
kCGBitmapByteOrder32Big = (4 << 12)

Vs

typedef uint32_t CGBitmapInfo;

Constants 23
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

24

CGImage Reference

fHifdef __BIG_ENDIAN__
kCGBitmapByteOrderl6Host kCGBitmapByteOrderl6Big
kCGBitmapByteOrder32Host kCGBitmapByteOrder32Big
ffelse
kCGBitmapByteOrderl6Host kCGBitmapByteOrderl6lLittle
kCGBitmapByteOrder32Host kCGBitmapByteOrder32Little
ffendif

Constants

kCGBitmapAlphalnfoMask
The alpha information mask. Use this to extract alpha information that specifies whether a bitmap
contains an alpha channel and how the alpha channel is generated.

Available in Mac OS X v10.4 and later.
Declared in CGImage.h.

kCGBitmapFloatComponents
The components of a bitmap are floating-point values.

Available in Mac OS X v10.4 and later.
Declared in CGImage.h.

kCGBitmapByteOrderMask
The byte ordering of pixel formats.

Available in Mac OS X v10.4 and later.
Declared in CGImage.h.

kCGBitmapByteOrderDefault
The default byte order.

Available in Mac OS X v10.4 and later.
Declared in CGImage. h.

kCGBitmapByteOrderl6lLittle
16-bit, little endian format.

Available in Mac OS X v10.4 and later.
Declared in CGImage. h.

kCGBitmapByteOrder32Little
32-bit, little endian format.

Available in Mac OS X v10.4 and later.
Declared in CGImage.h.

kCGBitmapByteOrderl6Big
16-bit, big endian format.

Available in Mac OS X v10.4 and later.
Declared in CGImage. h.

kCGBitmapByteOrder32Big
32-bit, big endian format.

Available in Mac OS X v10.4 and later.
Declared in CGImage.h.

kCGBitmapByteOrderl6Host
16-bit, host endian format.

kCGBitmapByteOrder32Host
32-bit, host endian format.

Constants
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

Discussion

Applications that store pixel data in memory using ARGB format must take care in how they read data. If the
code is not written correctly, it’s possible to misread the data which leads to colors or alpha that appear
wrong. The Quartz byte order constants specify the byte ordering of pixel formats. To specify byte ordering
to Quartz use a bitwise OR operator to combine the appropriate constant with the bitmapInfo parameter.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

Constants 25
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

CGImage Reference

26 Constants
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to CGImage Reference.

Date Notes
2008-04-08 Added a cross reference to Quartz 2D Programming Guide.
2007-10-31 Updated for Mac OS X v10.5.

All instances of the f1oat data type were changed to the CGF1oat data type.

Added information to CGImageCreatellithMaskingColors (page 11).

2006-01-10 Changed CGImageBitmaplInfo to CGBitmapInfo and updated the associated
constants.

2005-07-07 Added documentation for Quartz constants that specify byte ordering of pixel
formats.

2005-04-29 Made minor editorial corrections.
Updated for Mac OS X v10.4.

Added the functions CGImageCreateWithImagelnRect (page9),
CGImageCreateWithMask (page 11),
CGImageCreateWithMaskingColors (page 11),
CGImageGetBitmapInfo (page 13),and CGImageCreateCopy (page 8).

Added “Image Bitmap Information” (page 23) constants.

2004-08-31 Added introductory material.

2004-02-26 First version of this document. An earlier version of this information appeared
in Quartz 2D Reference.

27
2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

28

REVISION HISTORY

Document Revision History

2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Index

A

K

Alpha Information for Images 22

C

CGImageCreate function 7

CGImageCreateCopy function 8
CGImageCreateCopyWithColorSpace function 9
CGImageCreateWithImageInRect function 9
CGImageCreateWithJPEGDataProvider function 10
CGImageCreateWithMask function 11
CGImageCreateWithMaskingColors function 11
CGImageCreateWithPNGDataProvider function 12
CGImageGetAlphalInfo function 13
CGImageGetBitmapInfo function 13
CGImageGetBitsPerComponent function 14
CGImageGetBitsPerPixel function 14
CGImageGetBytesPerRow function 15
CGImageGetColorSpace function 15
CGImageGetDataProvider function 16
CGImageGetDecode function 16
CGImageGetHeight function 16
CGImageGetRenderingIntent function 17
CGImageGetShouldInterpolate function 17
CGImageGetTypelD function 18
CGImageGetWidth function 18

CGImageIsMask function 19
CGImageMaskCreate function 19

CGImageRef data type 21

CGImageRelease function 20

CGImageRetain function 21

Image Bitmap Information 23

2008-04-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

kCGBitmapAlphalnfoMask constant 24
kCGBitmapByteOrderl6Big constant 24
kCGBitmapByteOrderl6Host constant 24
kCGBitmapByteOrderl6Little constant 24
kCGBitmapByteOrder32Big constant 24
kCGBitmapByteOrder32Host constant 24
kCGBitmapByteOrder32Little constant 24
kCGBitmapByteOrderDefault constant 24
kCGBitmapByteOrderMask constant 24
kCGBitmapFloatComponents constant 24
kCGImageAlphaFirst constant 22
kCGImageAlphalast constant 22
kCGImageAlphaNone constant 22
kCGImageAlphaNoneSkipFirst constant 22
kCGImageAlphaNoneSkiplLast constant 23
kCGImageAlphaOnly constant 22

kCGImageAlphaPremultipliedFirst constant 23
kCGImageAlphaPremultipliedlLast constant 23

29

	CGImage Reference
	Contents
	CGImage Reference
	Overview
	Functions by Task
	Creating Bitmap Images
	Creating an Image Mask
	Retaining and Releasing Images
	Getting the CFType ID
	Getting Information About an Image

	Functions
	CGImageCreate
	CGImageCreateCopy
	CGImageCreateCopyWithColorSpace
	CGImageCreateWithImageInRect
	CGImageCreateWithJPEGDataProvider
	CGImageCreateWithMask
	CGImageCreateWithMaskingColors
	CGImageCreateWithPNGDataProvider
	CGImageGetAlphaInfo
	CGImageGetBitmapInfo
	CGImageGetBitsPerComponent
	CGImageGetBitsPerPixel
	CGImageGetBytesPerRow
	CGImageGetColorSpace
	CGImageGetDataProvider
	CGImageGetDecode
	CGImageGetHeight
	CGImageGetRenderingIntent
	CGImageGetShouldInterpolate
	CGImageGetTypeID
	CGImageGetWidth
	CGImageIsMask
	CGImageMaskCreate
	CGImageRelease
	CGImageRetain

	Data Types
	CGImageRef

	Constants
	Alpha Information for Images
	Image Bitmap Information

	Revision History
	Index
	A
	C
	I
	K

