
CGL Reference
Graphics & Imaging > OpenGL

2007-06-28

Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Macintosh, and Quartz are trademarks
of Apple Inc., registered in the United States
and other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CGL Reference 5

Overview 5
Functions by Task 5

Managing Pixel Format Objects 5
Managing Contexts 5
Getting and Setting Context Options 6
Locking and Unlocking Contexts 6
Managing Drawable Objects 6
Managing Pixel Buffers 6
Getting Error Information 7
Getting and Setting Global Information 7
Getting Renderer Information 7
Managing Virtual Screens 7

Functions 8
CGLChoosePixelFormat 8
CGLClearDrawable 9
CGLCopyContext 10
CGLCreateContext 11
CGLCreatePBuffer 12
CGLDescribePBuffer 13
CGLDescribePixelFormat 14
CGLDescribeRenderer 15
CGLDestroyContext 16
CGLDestroyPBuffer 16
CGLDestroyPixelFormat 17
CGLDestroyRendererInfo 18
CGLDisable 18
CGLEnable 19
CGLErrorString 19
CGLFlushDrawable 20
CGLGetCurrentContext 21
CGLGetOffScreen 21
CGLGetOption 22
CGLGetParameter 22
CGLGetPBuffer 23
CGLGetVersion 24
CGLGetVirtualScreen 24
CGLIsEnabled 25
CGLLockContext 26
CGLQueryRendererInfo 26
CGLSetCurrentContext 27

3
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGLSetFullScreen 28
CGLSetOffScreen 29
CGLSetOption 30
CGLSetParameter 30
CGLSetPBuffer 31
CGLSetVirtualScreen 32
CGLTexImagePBuffer 33
CGLUnlockContext 34

Data Types 35
CGLContextObj 35
CGLPixelFormatObj 35
CGLRendererInfoObj 35
CGLPBufferObj 36

Constants 36
Buffer Mode Flags 36
Buffer and Renderer Attributes 37
Color and Accumulation Buffer Format Flags 43
Context Options 45
Context Parameters 46
Global Options 48
Renderer IDs 49
Renderer Properties 50
Sampling Modes 54
Stencil and Depth Modes 54

Result Codes 56

Document Revision History 59

Index 61

4
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: OpenGL/OpenGL.h

Companion guide OpenGL Programming Guide for Mac OS X

Declared in CGLCurrent.h
CGLTypes.h
OpenGL.h

Overview

The CGL (Core OpenGL) API is lowest-level programming interface for the Apple implementation of OpenGL.
CGL supports full screen OpenGL drawing and drawing to pixel buffers, which are a hardware-accelerated
offscreen drawing location. Any Cocoa or Carbon application can use CGL to get the most direct access to
system functionality. The Cocoa classes that support OpenGL and the AGL API are each built on top of CGL.

Functions by Task

Managing Pixel Format Objects

CGLChoosePixelFormat (page 8)
Creates a pixel format object that satisfies the constraints of the specified buffer and renderer attributes.

CGLDestroyPixelFormat (page 17)
Frees the memory associated with a pixel format object.

CGLDescribePixelFormat (page 14)
Retrieves the values of an attribute associated with a pixel format object.

Managing Contexts

CGLCreateContext (page 11)
Creates a CGL rendering context.

CGLCopyContext (page 10)
Copies the specified state variables from one rendering context to another.

CGLDestroyContext (page 16)
Frees the resources associated with a rendering context.

Overview 5
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLGetCurrentContext (page 21)
Returns the current rendering context.

CGLSetCurrentContext (page 27)
Sets the specified rendering context as the current rendering context.

Getting and Setting Context Options

CGLEnable (page 19)
Enables an option for a rendering context.

CGLDisable (page 18)
Disables an option for a rendering context.

CGLIsEnabled (page 25)
Reports whether an option is enabled for a rendering context.

CGLSetParameter (page 30)
Sets the value of a rendering context parameter.

CGLGetParameter (page 22)
Retrieves the value of a rendering context parameter.

Locking and Unlocking Contexts

CGLLockContext (page 26)
Locks a CGL rendering context.

CGLUnlockContext (page 34)
Unlocks a CGL rendering context.

Managing Drawable Objects

CGLSetOffScreen (page 29)
Attaches a rendering context to an offscreen buffer.

CGLGetOffScreen (page 21)
Retrieves an offscreen buffer and its parameters for a specified rendering context.

CGLSetFullScreen (page 28)
Attaches a rendering context to its full-screen drawable object.

CGLClearDrawable (page 9)
Disassociates a rendering context from any drawable objects attached to it.

CGLFlushDrawable (page 20)
Copies the back buffer of a double-buffered context to the front buffer.

Managing Pixel Buffers

CGLCreatePBuffer (page 12)
Creates a pixel buffer of the specified size, compatible with the specified texture target.

6 Functions by Task
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLDescribePBuffer (page 13)
Retrieves information that describes the specified pixel buffer object.

CGLDestroyPBuffer (page 16)
Releases the resources associated with a pixel buffer object.

CGLGetPBuffer (page 23)
Retrieves a pixel buffer and its parameters for a specified rendering context.

CGLSetPBuffer (page 31)
Attaches a pixel buffer object to a rendering context.

CGLTexImagePBuffer (page 33)
Binds the contents of a pixel buffer to a data source for a texture object.

Getting Error Information

CGLErrorString (page 19)
Returns a string that describes the specified result code.

Getting and Setting Global Information

CGLSetOption (page 30)
Sets the value of a global option.

CGLGetOption (page 22)
Obtains the value of a global option.

CGLGetVersion (page 24)
Gets the major and minor version numbers of the CGL library.

Getting Renderer Information

CGLDescribeRenderer (page 15)
Obtains the value associated with a renderer property.

CGLDestroyRendererInfo (page 18)
Frees resources associated with a renderer information object.

CGLQueryRendererInfo (page 26)
Creates a renderer information object that contains properties and values for all renderers driving
the specified displays.

Managing Virtual Screens

CGLSetVirtualScreen (page 32)
Forces subsequent OpenGL commands to the specified virtual screen.

CGLGetVirtualScreen (page 24)
Gets the current virtual screen number associated with rendering context.

Functions by Task 7
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Functions

CGLChoosePixelFormat
Creates a pixel format object that satisfies the constraints of the specified buffer and renderer attributes.

CGLError CGLChoosePixelFormat (
 const CGLPixelFormatAttribute *attribs,
 CGLPixelFormatObj *pix,
 GLint *npix
);

Parameters
attribs

A NULL terminated array that contains a list of buffer and renderer attributes. Attributes can be Boolean
or integer. If an attribute is integer, you must supply the desired value immediately following the
attribute. If the attribute is Boolean, do not supply a value because its presence in the attributes array
implies a true value. For information on the attributes that you can supply, see “Buffer and Renderer
Attributes” (page 37) and the Discussion below.

pix
The memory address of a pixel format object. On return, points to a new pixel format object that
contains pixel format information and a list of virtual screens. If there are no pixel formats or virtual
screens that satisfy the constraints of the buffer and renderer attributes, the value of pix is set to
NULL.

npix
On return, points to the number of virtual screens referenced by pix. If pix is NULL, the value of npix
is set to 0.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
After a pixel format object is created successfully, the integer attributes are set to values that are as close to
the desired value as can be provided by the system. Attributes can have different values for each virtual
screen. You can use the kCGLPFAMinimumPolicy (page 39) and kCGLPFAMaximumPolicy (page 39)
attributes to control how the system chooses the setting. For more information on choosing attributes, see
OpenGL Programming Guide for Mac OS X.

The Boolean attribute constants include the following:

kCGLPFAAllRenderers (page 37)
kCGLPFADoubleBuffer (page 38)
kCGLPFAStereo (page 38)
kCGLPFAAuxBuffers (page 38)
kCGLPFAMinimumPolicy (page 39)
kCGLPFAMaximumPolicy (page 39)
kCGLPFAOffScreen (page 39)
kCGLPFAFullScreen (page 39)
kCGLPFAAuxDepthStencil (page 39)
kCGLPFAColorFloat (page 39)

8 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLPFAMultisample (page 39)
kCGLPFASupersample (page 40)
kCGLPFASampleAlpha (page 40)
kCGLPFASingleRenderer (page 40)
kCGLPFANoRecovery (page 40)
kCGLPFAAccelerated (page 41)
kCGLPFAClosestPolicy (page 41)
kCGLPFARobust (page 41)
kCGLPFABackingStore (page 41)
kCGLPFAMPSafe (page 41)
kCGLPFAWindow (page 41)
kCGLPFAMultiScreen (page 42)
kCGLPFACompliant (page 42)
kCGLPFAPBuffer (page 42)
kCGLPFARemotePBuffer (page 42)

The integer attribute constants must be followed by a value:

kCGLPFAColorSize (page 38)
kCGLPFAAlphaSize (page 38)
kCGLPFADepthSize (page 38)
kCGLPFAStencilSize (page 38)
kCGLPFAAccumSize (page 38)
kCGLPFASampleBuffers (page 40)
kCGLPFASamples (page 40)
kCGLPFARendererID (page 40)
kCGLPFADisplayMask (page 42)
kCGLPFAVirtualScreenCount (page 42)

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLDestroyPixelFormat (page 17)
CGLDescribePixelFormat (page 14)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver

Declared In
OpenGL.h

CGLClearDrawable
Disassociates a rendering context from any drawable objects attached to it.

Functions 9
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLError CGLClearDrawable (
 CGLContextObj ctx
);

Parameters
ctx

A rendering context.

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLSetOffScreen (page 29)
CGLSetFullScreen (page 28)

Declared In
OpenGL.h

CGLCopyContext
Copies the specified state variables from one rendering context to another.

CGLError CGLCopyContext (
 CGLContextObj src,
 CGLContextObj dst,
 GLbitfield mask
);

Parameters
src

The source rendering context.

dst
The destination rendering context .

mask
A mask that specifies the state variables to copy. Pass a bit field that contains the bitwise OR of the
state variable names that you want to copy. Use the symbolic mask constants that are passed to the
OpenGL function glPushAttrib. To copy as many state variables as possible, supply the constant
GL_ALL_ATTRIB_BITS. For a description of the symbolic mask constants, see OpenGL Reference
Manual.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Not all OpenGL state values can be copied. For example, pixel pack and unpack state, render mode state,
and select and feedback state are not copied. The state that can be copied is exactly the state that is
manipulated by the OpenGL call glPushAttrib.

Availability
Available in Mac OS X v10.0 and later.

10 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

http://www.opengl.org/documentation/blue_book/
http://www.opengl.org/documentation/blue_book/

Declared In
OpenGL.h

CGLCreateContext
Creates a CGL rendering context.

CGLError CGLCreateContext (
 CGLPixelFormatObj pix,
 CGLContextObj share,
 CGLContextObj *ctx
);

Parameters
pix

A pixel format object created by calling the function CGLChoosePixelFormat (page 8).

share
The rendering context with which to share the OpenGL object state—including texture objects,
programs and shader display lists, vertex array objects, vertex buffer objects, pixel buffer objects, and
frame buffer objects—and the object state associated which each of these object types. Pass NULL
to indicate that no sharing is to take place.

ctx
The memory address of a context object. On return, points to a new context object with the buffers
and attributes specified by the pix parameter. If the context can not be created as specified, the
value of ctx is set to NULL.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
If the pixel format object you supply is able to support multiple graphics devices, then the rendering context
can render transparently across the supported devices. With a multiple device rendering context, sharing is
possible only when the relationship between the renderers and the graphics devices they support is the
same for all rendering contexts that are shared. Normally you achieve the best display by using the same
pixel format object for all shared rendering contexts. For more information, see OpenGL Programming Guide
for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLSetCurrentContext (page 27)
CGLDestroyContext (page 16)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver

Declared In
OpenGL.h

Functions 11
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLCreatePBuffer
Creates a pixel buffer of the specified size, compatible with the specified texture target.

CGLError CGLCreatePBuffer (
 GLsizei width,
 GLsizei height,
 GLenum target,
 GLenum internalFormat,
 GLint max_level,
 CGLPBufferObj *pbuffer
);

Parameters
width

The width, in pixels, of the pixel buffer.

height
The height, in pixels, of the pixel buffer.

target
A constant that specifies the type of the pixel buffer target texture. You can supply any of the following
texture targets:

 ■ GL_TEXTURE_2D, a texture whose dimensions are a power of two.

 ■ GL_TEXTURE_RECTANGLE_EXT, a texture whose dimensions are not a power of two.

 ■ GL_TEXTURE_CUBE_MAP, a mapped cube texture.

internalFormat
A constant that specifies the internal color format of the pixel buffer, which can be either GL_RGB or
GL_RGBA. The format controls whether the alpha channel of the pixel buffer will be used for texturing
operations.

max_level
The maximum level of mipmap detail allowable. Pass 0 for a pixel buffer that is not using mipmaps.
The value passed should never exceed the actual maximum number of mipmap levels that can be
represented with the given width and height.

pbuffer
On return, points to a new pixel buffer object.

Return Value
A result code. See “CGL Result Codes” (page 56). This function returns kCGLBadAlloc if it cannot allocate
storage for the pixel buffer data structure. It returns kCGLBadValue for any of these conditions:

 ■ A negative max_level value provided or a max_level value greater than the maximum possible
mipmap levels for the given width and height provided.

 ■ A max_level value greater than 0 used with a GL_TEXTURE_RECTANGLE_EXT texture target

 ■ The dimensions provided for a GL_TEXTURE_CUBE_MAP texture target aren't equal.

Discussion
This function does not have any knowledge of OpenGL contexts or pixel format objects and does not
specifically allocate the storage needed for the actual pixel buffer. These operations occur when you call the
function CGLSetPBuffer (page 31).

12 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

You can determine the dimensional limits of a pixel buffer by calling the OpenGL function glGetInteger.
You can find the maximum size supported by querying GL_MAX_VIEWPORT_DIMS and the minimum size by
querying GL_MIN_PBUFFER_VIEWPORT_DIMS_APPLE, which returns two integer values (similar to
GL_MAX_VIEWPORT_DIMS). All pixel buffer dimensions that you request with the function aglCreatePBuffer
should fall within these limits (inclusively) and should comply with any limitations imposed by the texture
target you select.

The maximum viewport size supported in Mac OS X is quite large. You should take into consideration the
amount of video or system memory required to support the requested pixel buffer size, including additional
memory needed for multiple buffers and options such as multisampling.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGLDestroyPBuffer (page 16)

Declared In
OpenGL.h

CGLDescribePBuffer
Retrieves information that describes the specified pixel buffer object.

CGLError CGLDescribePBuffer (
 CGLPBufferObj obj,
 GLsizei *width,
 GLsizei *height,
 GLenum *target,
 GLenum *internalFormat,
 GLint *mipmap
);

Parameters
obj

A pointer to pixel buffer object.

width
On return, points to the width, in pixels, of the pixel buffer.

height
On return, points to the height, in pixels, of the pixel buffer.

target
On return, points to a constant that specifies the pixel buffer texture target:

 ■ GL_TEXTURE_2D, a texture whose dimensions are a power of two.

 ■ GL_TEXTURE_RECTANGLE_EXT, a texture whose dimensions are not a power of two.

 ■ GL_TEXTURE_CUBE_MAP, a mapped cube texture.

internalFormat
On return, points to a constant that specifies the internal color format of the pixel buffer—either
GL_RGB or GL_RGBA.

mipmap
On return, points to the mipmap level of the pixel buffer or 0 if it doesn't use mipmaps.

Functions 13
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
The width, height, texture target, and internal texture color format of a pixel buffer object are set at its creation
and cannot be changed without destroying and recreating the object. The level is set when the pixel buffer
object is attached to a rendering context by calling the function CGLSetPBuffer (page 31).

Availability
Available in Mac OS X v10.3 and later.

See Also
CGLCreatePBuffer (page 12)

Declared In
OpenGL.h

CGLDescribePixelFormat
Retrieves the values of an attribute associated with a pixel format object.

CGLError CGLDescribePixelFormat (
 CGLPixelFormatObj pix,
 GLint pix_num,
 CGLPixelFormatAttribute attrib,
 GLint *value
);

Parameters
pix

The pixel format object to query.

pix_num
The virtual screen number whose attribute value you want to retrieve. This value must be between
0 and the number of virtual screens minus one.

attrib
The attribute whose value you want to obtain. For a list of possible attributes, see “Buffer and Renderer
Attributes” (page 37).

value
On return, points to the value of the attribute.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
A pixel format object can contain different values for each virtual screen, which is why you must supply a
virtual screen number in the pix_num parameter.

You can obtain the number of virtual screens associated with the pixel format object by calling the function
CGLDescribePixelFormat (page 14), passing the pixel format object, 0 for the virtual screen number, and
the attribute constant kCGLPFAVirtualScreenCount. For more information about virtual screens, OpenGL
Programming Guide for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

14 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

See Also
CGLChoosePixelFormat (page 8)

Declared In
OpenGL.h

CGLDescribeRenderer
Obtains the value associated with a renderer property.

CGLError CGLDescribeRenderer (
 CGLRendererInfoObj rend,
 GLint rend_num,
 CGLRendererProperty prop,
 GLint *value
);

Parameters
rend

An opaque renderer information object that contains a description of the renderer capabilities you
want to inspect. You can obtain a renderer information object by calling the function
CGLQueryRendererInfo (page 26). You must call CGLDestroyRendererInfo (page 18) when you
no longer need this object.

rend_num
The index of the renderer inside the renderer information object—a value between 0 and the number
of renderers minus one. The number of renderers can be obtained by calling CGLDescribeRenderer,
passing in rend, renderer number 0, and the renderer property kCGLRPRendererCount.

prop
The renderer property whose value you want to obtain. See “Renderer Properties” (page 50) for a list
of the constants you can supply for this parameter.

value
On return, points to the value of the requested property.

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLQueryRendererInfo (page 26)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver

Declared In
OpenGL.h

Functions 15
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLDestroyContext
Frees the resources associated with a rendering context.

CGLError CGLDestroyContext (
 CGLContextObj ctx
);

Parameters
ctx

The rendering context to destroy.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
This function frees all the resources used by the rendering context passed to it. If the rendering context that
you pass is the current rendering context, the current context is set to NULL and there is no current rendering
context after the function executes.

After you call this function, you must make sure that you do not use the destroyed rendering context. This
includes using CGL macros in which the rendering context is explicitly passed to OpenGL.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLCreateContext (page 11)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver
VideoHardwareInfo

Declared In
OpenGL.h

CGLDestroyPBuffer
Releases the resources associated with a pixel buffer object.

CGLError CGLDestroyPBuffer (
 CGLPBufferObj pbuffer
);

Parameters
pbuffer

The pixel buffer object whose resources you want to release.

Return Value
A result code. See “CGL Result Codes” (page 56).

16 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Discussion
Call this function only after you no longer need to use the pixel buffer object. Before calling this function,
you should delete any texture objects associated with the pixel buffer object. You do not need to make sure
that all texturing commands have completed prior to calling this function, because the OpenGL framework
manages texturing synchronization.

The results of issuing commands to a destroyed pixel buffer object are undefined.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGLCreatePBuffer (page 12)

Declared In
OpenGL.h

CGLDestroyPixelFormat
Frees the memory associated with a pixel format object.

CGLError CGLDestroyPixelFormat (
 CGLPixelFormatObj pix
);

Parameters
pix

The pixel format object to destroy.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
The system makes a copy of the pixel format object when you call the function CGLCreateContext (page
11), so you can free a pixel format object immediately after passing it to the context creation function.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLChoosePixelFormat (page 8)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver
VideoHardwareInfo

Declared In
OpenGL.h

Functions 17
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLDestroyRendererInfo
Frees resources associated with a renderer information object.

CGLError CGLDestroyRendererInfo (
 CGLRendererInfoObj rend
);

Parameters
rend

The renderer information object to destroy.

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLQueryRendererInfo (page 26)
CGLDescribeRenderer (page 15)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver

Declared In
OpenGL.h

CGLDisable
Disables an option for a rendering context.

CGLError CGLDisable (
 CGLContextObj ctx,
 CGLContextEnable pname
);

Parameters
ctx

A rendering context.

pname
The option to disable. For a list of possible options, see “Context Options” (page 45).

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLEnable (page 19)
CGLIsEnabled (page 25)

18 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Related Sample Code
Vertex Optimization

Declared In
OpenGL.h

CGLEnable
Enables an option for a rendering context.

CGLError CGLEnable (
 CGLContextObj ctx,
 CGLContextEnable pname
);

Parameters
ctx

A rendering context.

pname
The option to enable. For a list of possible options, see “Context Options” (page 45).

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Some context options have values associated with them. Use CGLSetParameter (page 30) and
CGLGetParameter (page 22) to set and get context parameter values.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLDisable (page 18)
CGLIsEnabled (page 25)

Related Sample Code
QTCoreVideo102
QTCoreVideo103
QTCoreVideo201
QTCoreVideo301
VertexPerformanceDemo

Declared In
OpenGL.h

CGLErrorString
Returns a string that describes the specified result code.

Functions 19
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

const char * CGLErrorString (
 CGLError error
);

Parameters
error

The CGL result code constant returned from a CGL function. For a description of these constants, see
“CGL Result Codes” (page 56).

Return Value
An error string that describes the result code constant passed in the error parameter. If the result code is
invalid, returns the string “No such error code.”

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenGL.h

CGLFlushDrawable
Copies the back buffer of a double-buffered context to the front buffer.

CGLError CGLFlushDrawable (
 CGLContextObj ctx
);

Parameters
ctx

The context object.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
To create a double-buffered context, specify the kCGLPFADoubleBuffer attribute (see “Buffer and Renderer
Attributes” (page 37)) when you create the pixel format object for the rendering context. If the backing store
attribute is set to false the buffers may be exchanged rather than copied. This is often the case in full-screen
mode. If the receiver is not a double-buffered context, this call does nothing.

If you set the swap interval attribute (kCGLCPSwapInterval) appropriately, the copy takes place during the
vertical retrace of the monitor, rather than immediately after CGLFlushDrawable is called. An implicit
glFlush is performed by CGLFlushDrawable before it returns. For optimal performance, an application
should not call glFlush immediately before calling CGLFlushDrawable. Subsequent OpenGL commands
can be issued immediately after calling CGLFlushDrawable, but are not executed until the buffer copy is
completed. For more information about kCGLCPSwapInterval, see “Context Parameters” (page 46).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenGL.h

20 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLGetCurrentContext
Returns the current rendering context.

CGLContextObj CGLGetCurrentContext (
 void
);

Return Value
The current rendering context. If there is none, returns NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLSetCurrentContext (page 27)

Related Sample Code
GLCarbonSharedPbuffer
GLSLShowpiece
NSOpenGL Fullscreen
QTCoreVideo201
SurfaceVertexProgram

Declared In
CGLCurrent.h

CGLGetOffScreen
Retrieves an offscreen buffer and its parameters for a specified rendering context.

CGLError CGLGetOffScreen (
 CGLContextObj ctx,
 GLsizei *width,
 GLsizei *height,
 GLint *rowbytes,
 void **baseaddr
);

Parameters
ctx

A rendering context.

width
On return, points to the width, in pixels, of the offscreen buffer. If the rendering context is not attached
to an offscreen drawable object, the value of width is set to 0.

height
On return, points to the height, in pixels, of the offscreen buffer. If the rendering context is not attached
to an offscreen drawable object, the value of height is set to 0.

rowbytes
On return, points to the number of bytes per row of the offscreen buffer. If the context is not attached
to an offscreen drawable object, the value of rowbytes is set to 0.

Functions 21
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

baseaddr
On return, points to the base address of the offscreen buffer. If the context is not attached to an
offscreen drawable object, the value of baseaddr is set to NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLSetOffScreen (page 29)

Declared In
OpenGL.h

CGLGetOption
Obtains the value of a global option.

CGLError CGLGetOption (
 CGLGlobalOption pname,
 GLint *param
);

Parameters
pname

The name of the option whose value you want to get. See “Global Options” (page 48) for a list of
constants you can pass.

param
On return, a pointer to the value of the option.

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLSetOption (page 30)

Declared In
OpenGL.h

CGLGetParameter
Retrieves the value of a rendering context parameter.

CGLError CGLGetParameter (
 CGLContextObj ctx,
 CGLContextParameter pname,
 GLint *params
);

Parameters
ctx

A rendering context.

22 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

pname
The parameter whose value you want to retrieve. For a list of possible parameters, see “Context
Parameters” (page 46).

params
On return, points to the value of the parameter.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Some parameters may need to have a corresponding context option enabled for their value to take effect.
You can enable, disable, and test whether an option is enabled with CGLEnable (page 19), CGLDisable (page
18), and CGLIsEnabled (page 25).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLSetParameter (page 30)

Related Sample Code
GLSLShowpiece
NSOpenGL Fullscreen

Declared In
OpenGL.h

CGLGetPBuffer
Retrieves a pixel buffer and its parameters for a specified rendering context.

CGLError CGLGetPBuffer (
 CGLContextObj ctx,
 CGLPBufferObj *pbuffer,
 GLenum *face,
 GLint *level,
 GLint *screen
);

Parameters
ctx

A rendering context.

pbuffer
On return, points to the pixel buffer object attached to the rendering context.

face
On return, points to the cube map face that is set if the pixel buffer texture target type is
GL_TEXTURE_CUBE_MAP; otherwise 0 for all other texture target types.

level
On return, points to the current mipmap level for drawing.

screen
On return, points to the current virtual screen number, as set by the last valid call to
CGLSetPBuffer (page 31).

Functions 23
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.3 and later.

See Also
CGLSetPBuffer (page 31)

Declared In
OpenGL.h

CGLGetVersion
Gets the major and minor version numbers of the CGL library.

void CGLGetVersion (
 GLint *majorvers,
 GLint *minorvers
);

Parameters
majorvers

On return, points to he major version number of the CGL library.

minorvers
On return, points to the minor version number of the CGL library.

Discussion
CGL implementations with the same major version number are upwardly compatible, meaning that the
implementation with the highest minor number is a superset of the version with the lowest minor number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenGL.h

CGLGetVirtualScreen
Gets the current virtual screen number associated with rendering context.

CGLError CGLGetVirtualScreen (
 CGLContextObj ctx,
 GLint *screen
);

Parameters
ctx

A rendering context.

screen
On return, points to the virtual screen associated with the context. The value is always 0 on a
single-monitor system and –1 if the function fails for any reason.

24 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
The current virtual screen can change when a drawable object is moved or resized across graphics device
boundaries. A change in the current virtual screen can affect the return values of some OpenGL functions
and in most cases also means that the renderer has changed.

For detailed information on virtual screens, see OpenGL Programming Guide for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLGetVirtualScreen (page 24)

Declared In
OpenGL.h

CGLIsEnabled
Reports whether an option is enabled for a rendering context.

CGLError CGLIsEnabled (
 CGLContextObj ctx,
 CGLContextEnable pname,
 GLint *enable
);

Parameters
ctx

A rendering context.

pname
The option to query. For a list of possible options, see “Context Options” (page 45).

enable
On return, enable is set to true if the option is enabled.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
To set or get parameter values associated with a context option, use CGLSetParameter (page 30) or
CGLGetParameter (page 22).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLEnable (page 19)
CGLDisable (page 18)

Declared In
OpenGL.h

Functions 25
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLLockContext
Locks a CGL rendering context.

CGLError CGLLockContext (
 CGLContextObj ctx
);

Parameters
ctx

The CGL context to lock.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
The function CGLLockContext blocks the thread it is on until all other threads have unlocked the same
context using the function CGLUnlockContext. You can use CGLLockContext recursively. Context-specific
CGL calls by themselves do not require locking, but you can guarantee serial processing for a group of calls
by surrounding them with CGLLockContext and CGLUnlockContext. Keep in mind that calls from the
OpenGL API (the API provided by the Architecture Review Board) require locking.

Applications that use NSOpenGL classes with multithreading can lock contexts using the functions
CGLLockContext and CGLUnlockContext. To perform rendering in a thread other than the main one, you
can lock the context that you want to access and safely execute OpenGL commands. The locking calls must
be placed around all OpenGL calls in all threads.

For more information on multithreading OpenGL applications, see OpenGL Programming Guide for Mac OS X.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGLUnlockContext (page 34)

Related Sample Code
OpenGLCaptureToMovie
VideoViewer

Declared In
OpenGL.h

CGLQueryRendererInfo
Creates a renderer information object that contains properties and values for all renderers driving the specified
displays.

26 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

CGLError CGLQueryRendererInfo (
 GLuint display_mask,
 CGLRendererInfoObj *rend,
 GLint *nrend
);

Parameters
display_mask

A bit field that contains the bitwise OR of OpenGL display masks returned by the
CGDisplayIDToOpenGLDisplayMask function. If you want to obtain information for all renderers
in the system, set every bit in display_mask to true.

rend
The memory address of a renderer information object. On return, points to a renderer information
object that describes all renderers that are able to drive the displays specified by the display_mask
parameter. If display_mask does not specify any displays, the value of rend is set to NULL. You
must call CGLDestroyRendererInfo (page 18) when you no longer need this object.

nrend
On return, points to the number of renderers described in the renderer information object. If
display_mask does not specify any displays, the value of nrend is set to 0.

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLDescribeRenderer (page 15)
CGLDestroyRendererInfo (page 18)

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver

Declared In
OpenGL.h

CGLSetCurrentContext
Sets the specified rendering context as the current rendering context.

CGLError CGLSetCurrentContext (
 CGLContextObj ctx
);

Parameters
ctx

The rendering context to set as the current rendering context. Pass NULL to release the current
rendering context without assigning a new one.

Return Value
A result code. See “CGL Result Codes” (page 56). If the function fails, the current context remains unchanged.

Functions 27
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Discussion
There can be only one current rendering context. Subsequent OpenGL rendering calls operate on the current
rendering context to modify the drawable object associated with it.

You can use AGL macros to bypass the current rendering context mechanism and maintain your own current
rendering context.

A context is current on a per-thread basis. Multiple threads must serialize calls into the same context.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLGetCurrentContext (page 21)

Related Sample Code
CALayerEssentials
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
OpenGL Screensaver
VideoHardwareInfo

Declared In
CGLCurrent.h

CGLSetFullScreen
Attaches a rendering context to its full-screen drawable object.

CGLError CGLSetFullScreen (
 CGLContextObj ctx
);

Parameters
ctx

A rendering context.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Before calling this function, you must set up the rendering context using a pixel format object created with
the kCGLPFAFullScreen attribute (see “Buffer and Renderer Attributes” (page 37)). Some OpenGL renderers,
such as the software renderer, do not support full-screen mode. After you call the function
CGLChoosePixelFormat (page 8) with the full-screen attribute, you need to check whether the pixel format
object is created successfully.

You must capture the display prior to entering full-screen mode and release it after exiting. After calling this
function subsequent OpenGL drawing is rendered into the entire screen. For more information, see OpenGL
Programming Guide for Mac OS X.

To exit full-screen mode, call CGLClearDrawable (page 9).

28 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenGL.h

CGLSetOffScreen
Attaches a rendering context to an offscreen buffer.

CGLError CGLSetOffScreen (
 CGLContextObj ctx,
 GLsizei width,
 GLsizei height,
 GLint rowbytes,
 void *baseaddr
);

Parameters
ctx

A rendering context.

width
The width, in pixels, of the offscreen buffer.

height
The height, in pixels, of the offscreen buffer.

rowbytes
The number of bytes per row of the offscreen buffer, which must be greater than or equal to width
times bytes per pixel.

baseaddr
A pointer to a block of memory to use as the offscreen buffer. The size of the memory must be at
least rowbytes*height bytes.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Before calling this function, you must set up the rendering context using a pixel format object created with
the kCGLPFAOffScreen attribute. For more information about kCGLPFAOffScreen, see “Buffer and Renderer
Attributes” (page 37).

After calling this function subsequent OpenGL drawing is rendered into the offscreen buffer and the viewport
of the rendering context is set to the full size of the offscreen area.

To exit offscreen mode call CGLClearDrawable (page 9).

To obtain functionality similar to offscreen mode on renderers that do not support it, attach the context to
a hidden window and use the OpenGL function glReadPixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLGetOffScreen (page 21)

Functions 29
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Declared In
OpenGL.h

CGLSetOption
Sets the value of a global option.

CGLError CGLSetOption (
 CGLGlobalOption pname,
 GLint param
);

Parameters
pname

The name of the option whose value you want to set. See “Global Options” (page 48) for a list of
constants you can pass.

param
The value to set the option to.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
This function changes the values of options that affect the operation of OpenGL in all rendering contexts in
the application, not just the current rendering context.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLGetOption (page 22)

Declared In
OpenGL.h

CGLSetParameter
Sets the value of a rendering context parameter.

CGLError CGLSetParameter (
 CGLContextObj ctx,
 CGLContextParameter pname,
 const GLint *params
);

Parameters
ctx

A rendering context.

pname
The parameter whose value you want to set. For a list of possible parameters, see “Context
Parameters” (page 46).

30 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

params
A pointer to the value to the parameter to.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Some parameters may need to have a corresponding context option enabled for their value to take effect.
You can enable, disable, and test whether an option is enabled with CGLEnable (page 19), CGLDisable (page
18), and CGLIsEnabled (page 25).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLGetParameter (page 22)

Related Sample Code
NSOpenGL Fullscreen
NURBSSurfaceVertexProg
SurfaceVertexProgram
VBL

Declared In
OpenGL.h

CGLSetPBuffer
Attaches a pixel buffer object to a rendering context.

CGLError CGLSetPBuffer (
 CGLContextObj ctx,
 CGLPBufferObj pbuffer,
 GLenum face,
 GLint level,
 GLint screen
);

Parameters
ctx

A rendering context.

pbuffer
A pixel buffer object.

face
The cube map face to draw if the pixel buffer texture target type is GL_TEXTURE_CUBE_MAP; otherwise
pass 0.

level
The mipmap level to draw. This must not exceed the maximum mipmap level set when the pixel
buffer object was created. Pass 0 for a texture target that does not support mipmaps.

Functions 31
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

screen
A virtual screen value. The virtual screen determines the renderer OpenGL uses to draw to the pixel
buffer object. For best performance, for a pixel buffer used as a texture source, you should supply the
a virtual screen value that results in using the same renderer used by the context that's the texturing
target.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
The first time you call this function for a specific pixel buffer object, the system creates the necessary buffers.
The buffers are created to support the attributes dictated by the pixel format object used to create the
rendering context and by the parameters used to create the pixel buffer object. The storage requirements
for pixel buffer objects, which can be quite large, are very similar to the requirements for windows or views
with OpenGL contexts attached. All drawable objects compete for the same scarce resources. This function
can fail is there is not enough contiguous VRAM for each buffer. It's best to code defensively with a scheme
that reduces resource consumption without causing the application to resort to failure. Unless, of course,
failure is the only viable alternative.

The ability to attach a pbuffer to a context is supported only on renderers that export
GL_APPLE_pixel_buffer in the GL_EXTENSIONS string. Before calling this function, you should
programmatically determine if it’s possible to attach a pbuffer to a context by querying GL_EXTENSIONS in
the context and looking for GL_APPLE_pixel_buffer. If that extension is not present, the renderer won’t
allow setting the pbuffer.

In order of performance, these are the renderers you should consider using when setting up a rendering
context to attach to a pbuffer:

 ■ A hardware renderer.

 ■ The generic render, but only with an offscreen pixel format and glTexSubImage.

 ■ The Apple software renderer, which supports pbuffers in Mac OS X v10.4.8 and later.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGLGetPBuffer (page 23)

Declared In
OpenGL.h

CGLSetVirtualScreen
Forces subsequent OpenGL commands to the specified virtual screen.

CGLError CGLSetVirtualScreen (
 CGLContextObj ctx,
 GLint screen
);

Parameters
ctx

A rendering context.

32 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

screen
A virtual screen number, which must be a value between 0 and the number of virtual screens minus
one. The number of virtual screens available in a context can be obtained by calling the function
CGLDescribePixelFormat (page 14), passing in the pixel format object used to create the rendering
context, 0 for the virtual screen number (pix_num parameter), and the attribute constant
kCGLPFAVirtualScreenCount.

Return Value
A result code. See “CGL Result Codes” (page 56).

Discussion
Setting the virtual screen forces the renderer associated with the virtual screen to process OpenGL commands
issued to the specified context. Changing the virtual screen changes the current renderer. You should use
this function only when it is necessary to override the default behavior. The current virtual screen is normally
set automatically. Because the current virtual screen determines which OpenGL renderer is processing
commands, the return values of all glGetXXX functions can be affected by the current virtual screen.

For detailed information on virtual screens, see OpenGL Programming Guide for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGLGetVirtualScreen (page 24)

Declared In
OpenGL.h

CGLTexImagePBuffer
Binds the contents of a pixel buffer to a data source for a texture object.

CGLError CGLTexImagePBuffer (
 CGLContextObj ctx,
 CGLPBufferObj pbuffer,
 GLenum source
);

Parameters
ctx

A rendering context, which is the target context for the texture operation. This is the context that
you plan to render content to. This is not the context attached to the pixel buffer.

pbuffer
A pixel buffer object.

source
The source buffer to texture from, which should be a valid OpenGL buffer such as GL_FRONT or
GL_BACK and should be compatible with the buffer and renderer attributes that you used to create
the rendering context attached to the pixel buffer. This means that the pixel buffer must possess the
buffer in question for the texturing operation to succeed.

Return Value
A result code. See “CGL Result Codes” (page 56).

Functions 33
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Discussion
You must generate and bind a texture name (using standard OpenGL texturing calls) that is compatible with
the pixel buffer texture target. Don't supply a texture object that was used previously for nonpixel buffer
texturing operations unless you first call glDeleteTextures to regenerate the texture name.

If you modify the content of a pixel buffer that uses mipmap levels, you must call this function again before
drawing with the pixel buffer, to ensure that the content is synchronized with OpenGL. For pixel buffers
without mipmaps, simply rebind to the texture object to synchronize content.

No OpenGL texturing calls that modify a pixel buffer texture content are permitted (such as glTexSubImage2D
or glCopyTexImage2D) with the pixel buffer texture as the destination. It is permitted to use texturing
commands to read data from a pixel buffer texture, such as glCopyTexImage2D, with the pixel buffer texture
as the source. It is also legal to use OpenGL functions such as glReadPixels to read the contents of a pixel
buffer directly through the pixel buffer context.

Note that texturing with the CGLTexImagePBuffer function can fail to produce the intended results without
error in the same way other OpenGL texturing commands can normally fail. The function fails if you set an
incompatible filter mode, do not enable the proper texture target, or other conditions described in the
OpenGL specification.

You don't need to share a context to use a pixel buffer object as a texture source. You can use independent
pixel format objects and OpenGL contexts for both the pixel buffer and the target drawable object without
sharing resources, and still texture using a pixel buffer in the target context.

For details on how to use a pixel buffer object as a texture source, see OpenGL Programming Guide for Mac
OS X.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGLCreatePBuffer (page 12)
CGLSetPBuffer (page 31)

Declared In
OpenGL.h

CGLUnlockContext
Unlocks a CGL rendering context.

CGLError CGLUnlockContext (
 CGLContextObj ctx
);

Parameters
ctx

The CGL context to unlock.

Return Value
A result code. See “CGL Result Codes” (page 56).

Availability
Available in Mac OS X v10.4 and later.

34 Functions
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

See Also
CGLLockContext (page 26)

Related Sample Code
OpenGLCaptureToMovie
VideoViewer

Declared In
OpenGL.h

Data Types

CGLContextObj
Represents a pointer to an opaque CGL context object.

typedef struct _CGLContextObject *CGLContextObj;

Discussion
This data type points to a structure that CGL uses to maintain state and other information associated with
an OpenGL rendering context. Use the functions described in “Managing Contexts” (page 5) and “Getting
and Setting Context Options” (page 6) to create, manage, access, and free a CGL context object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

CGLPixelFormatObj
Represents a pointer to an opaque pixel format object.

typedef struct _CGLPixelFormatObject *CGLPixelFormatObj;

Discussion
This data type points to a structure that CGL uses to maintain pixel format and virtual screen information for
a given set of renderer and buffer options. Use the functions described in “Managing Pixel Format
Objects” (page 5) to create, manage, access, and free a pixel format object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

CGLRendererInfoObj
Represents a pointer to an opaque renderer information object.

Data Types 35
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

typedef struct _CGLRendererInfoObject *CGLRendererInfoObj;

Discussion
This data type points to a structure that CGL uses to maintain information about the renderers associated
with a display. Use the functions described in “Getting Renderer Information” (page 7) to create, access,
and free a renderer information object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

CGLPBufferObj
Represents a pointer to an opaque pixel buffer object.

typedef struct _CGLPBufferObject *CGLPBufferObj;

Discussion
This data type points to a structure that CGL uses for hardware accelerated offscreen drawing. Use the
functions described in “Managing Pixel Format Objects” (page 5) to create, manage, access, and free a pixel
buffer object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Constants

Buffer Mode Flags
Define constants used to set buffer modes.

#define kCGLMonoscopicBit 0x00000001
#define kCGLStereoscopicBit 0x00000002
#define kCGLSingleBufferBit 0x00000004
#define kCGLDoubleBufferBit 0x00000008

Constants
kCGLMonoscopicBit

Specifies to use a left buffer.

kCGLStereoscopicBit
Specifies to a left and right buffer.

kCGLSingleBufferBit
Specifies to use a front buffer.

kCGLDoubleBufferBit
Specifies to use a front and back buffer.

36 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Buffer and Renderer Attributes
Specify attributes used to choose pixel formats and virtual screens.

typedef enum _CGLPixelFormatAttribute {
 kCGLPFAAllRenderers = 1,
 kCGLPFADoubleBuffer = 5,
 kCGLPFAStereo = 6,
 kCGLPFAAuxBuffers = 7,
 kCGLPFAColorSize = 8,
 kCGLPFAAlphaSize = 11,
 kCGLPFADepthSize = 12,
 kCGLPFAStencilSize = 13,
 kCGLPFAAccumSize = 14,
 kCGLPFAMinimumPolicy = 51,
 kCGLPFAMaximumPolicy = 52,
 kCGLPFAOffScreen = 53,
 kCGLPFAFullScreen = 54,
 kCGLPFASampleBuffers = 55,
 kCGLPFASamples = 56,
 kCGLPFAAuxDepthStencil = 57,
 kCGLPFAColorFloat = 58,
 kCGLPFAMultisample = 59,
 kCGLPFASupersample = 60,
 kCGLPFASampleAlpha = 61,
 kCGLPFARendererID = 70,
 kCGLPFASingleRenderer = 71,
 kCGLPFANoRecovery = 72,
 kCGLPFAAccelerated = 73,
 kCGLPFAClosestPolicy = 74,
 kCGLPFARobust = 75,
 kCGLPFABackingStore = 76,
 kCGLPFAMPSafe = 78,
 kCGLPFAWindow = 80,
 kCGLPFAMultiScreen = 81,
 kCGLPFACompliant = 83,
 kCGLPFADisplayMask = 84,
 kCGLPFAPBuffer = 90,
 kCGLPFARemotePBuffer = 91,
 kCGLPFAVirtualScreenCount = 128,
} CGLPixelFormatAttribute;

Constants
kCGLPFAAllRenderers

This constant is a Boolean attribute. If it is present in the attributes array, pixel format selection is
open to all available renderers, including debug and special-purpose renderers that are not OpenGL
compliant. Do not supply a value with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Constants 37
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLPFADoubleBuffer
This constant is a Boolean attribute. If it is present in the attributes array, only double-buffered pixel
formats are considered. Otherwise, only single-buffered pixel formats are considered. Do not supply
a value with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAStereo
This constant is a Boolean attribute. If it is present in the attributes array, only stereo pixel formats
are considered. Otherwise, only monoscopic pixel formats are considered. Do not supply a value with
this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAAuxBuffers
The associated value is a nonnegative integer that indicates the desired number of auxiliary buffers.
Pixel formats with the smallest number of auxiliary buffers that meet or exceeds the specified number
are preferred.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAColorSize
The associated value is a nonnegative buffer size specification. A color buffer that most closely matches
the specified size is preferred. If unspecified, OpenGL chooses a color size that matches the screen.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAAlphaSize
The associated value is a nonnegative buffer size specification. An alpha buffer that most closely
matches the specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFADepthSize
The associated value is a nonnegative depth buffer size specification. A depth buffer that most closely
matches the specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAStencilSize
The associated value is a nonnegative integer that indicates the desired number of stencil bitplanes.
The smallest stencil buffer of at least the specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAAccumSize
The associated value is a nonnegative buffer size specification. An accumulation buffer that most
closely matches the specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

38 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLPFAMinimumPolicy
This constant is a Boolean attribute. If it is present in the attributes array, the pixel format choosing
policy is altered for the color, depth, and accumulation buffers such that only buffers of size greater
than or equal to the desired size are considered. Do not supply a value with this constant because its
presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAMaximumPolicy
This constant is a Boolean attribute. If it is present in the attributes array, the pixel format choosing
policy is altered for the color, depth, and accumulation buffers such that, if a nonzero buffer size is
requested, the largest available buffer is preferred. Do not supply a value with this constant because
its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAOffScreen
This constant is a Boolean attribute. If it is present in the attributes array, only renderers that are
capable of rendering to an off-screen memory area and have buffer depth exactly equal to the desired
buffer depth are considered. The kCGLPFAClosestPolicy attribute is implied. Do not supply a value
with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAFullScreen
This constant is a Boolean attribute. If it is present in the attributes array, only renderers that are
capable of rendering to a full-screen drawable object are considered. The kCGLPFASingleRenderer
attribute is implied. Do not supply a value with this constant because its presence in the array implies
true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAAuxDepthStencil
This constant is a Boolean attribute. If it is present in the attributes array, each auxiliary buffer has its
own depth-stencil buffer. Do not supply a value with this constant because its presence in the array
implies true.

Available in Mac OS X v10.2 and later.

Declared in CGLTypes.h.

kCGLPFAColorFloat
This constant is a Boolean attribute. If it is present in the attributes array, color buffers store
floating-point pixels. Do not supply a value with this constant because its presence in the array implies
true.

Available in Mac OS X v10.2 and later.

Declared in CGLTypes.h.

kCGLPFAMultisample
This constant is a Boolean attribute. If it is present in the attributes array, specifies a hint to the driver
to prefer multisampling. Do not supply a value with this constant because its presence in the array
implies true.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

Constants 39
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLPFASupersample
This constant is a Boolean attribute. If it is present in the attributes array, specifies a hint to the driver
to prefer supersampling. Do not supply a value with this constant because its presence in the array
implies true.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLPFASampleAlpha
This constant is a Boolean attribute. If it is present in the attributes array, request alpha filtering when
multisampling. Do not supply a value with this constant because its presence in the array implies
true.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLPFASampleBuffers
The number of multisample buffers. The associated value is a nonnegative integer that indicates the
number of existing independent sample buffers. Typically, the value is 0 if no multi-sample buffer
exists or 1. This attribute is not useful in the attribute array.

Available in Mac OS X v10.1 and later.

Declared in CGLTypes.h.

kCGLPFASamples
The number of samples per multisample buffer. The associated value is a nonnegative integer that
indicates the desired number of samples that can be taken within a single pixel. The smallest sample
buffer with at least the specified number of samples is preferred.

Available in Mac OS X v10.1 and later.

Declared in CGLTypes.h.

kCGLPFARendererID
The associated value is a nonnegative renderer ID number and can be any of the constants defined
in “Renderer IDs” (page 49). OpenGL renderers that match the specified ID are preferred. Of note is
kCGLRendererGenericID which selects the Apple software renderer. The other constants select
renderers for specific hardware vendors.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFASingleRenderer
This constant is a Boolean attribute. If it is present in the attributes array, a single rendering engine
is chosen. On systems with multiple screens, this disables ability of OpenGL to drive different monitors
through different graphics accelerator cards with a single context. This attribute is not generally useful.
Do not supply a value with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFANoRecovery
This constant is a Boolean attribute. If it is present in the attributes array, the OpenGL failure recovery
mechanisms are disabled. Normally, if an accelerated renderer fails due to lack of resources, OpenGL
automatically switches to another renderer. This attribute disables these features so that rendering
is always performed by the chosen renderer. This attribute is not generally useful. Do not supply a
value with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

40 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLPFAAccelerated
This constant is a Boolean attribute. If it is present in the attributes array, only hardware accelerated
renderers are considered. If false, accelerated renderers are still preferred. Do not supply a value with
this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAClosestPolicy
This constant is a Boolean attribute. If it is present in the attributes array, the pixel format choosing
policy is altered for the color buffer such that the buffer closest to the requested size is preferred,
regardless of the actual color buffer depth of the supported graphics device. Do not supply a value
with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFARobust
This constant is a Boolean attribute. If it is present in the attributes array, only renderers that do not
have any failure modes associated with a lack of video card resources are considered. This attribute
is not generally useful. Do not supply a value with this constant because its presence in the array
implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFABackingStore
This constant is a Boolean attribute. If it is present in the attributes array, OpenGL only considers
renderers that have a back color buffer the full size of the drawable object and that guarantee the
back buffer contents to be valid after a call to CGLFlushDrawable (page 20). Do not supply a value
with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAMPSafe
This constant is a Boolean attribute. If it is present in the attributes array, OpenGL only considers
renderers that are thread-safe. Because all renderers are thread-safe, this attribute is not useful. Do
not supply a value with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAWindow
This constant is a Boolean attribute. If it is present in the attributes array, only renderers that are
capable of rendering to a window are considered. This attribute is implied if neither
kCGLPFAFullScreen nor kCGLPFAOffScreen is specified. Because CGL only supports full-screen
of off-screen drawable objects, this attribute is not useful. Do not supply a value with this constant
because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Constants 41
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLPFAMultiScreen
This constant is a Boolean attribute. If it is present in the attributes array, only renderers capable of
driving multiple screens are considered. This attribute is not generally useful. Do not supply a value
with this constant because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFACompliant
This constant is a Boolean attribute. If it is present in the attributes array, pixel format selection is only
open to OpenGL compliant renderers. This attribute is implied unless kCGLPFAAllRenderers is
specified. This attribute is not useful in the attribute array. Do not supply a value with this constant
because its presence in the array implies true.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFADisplayMask
The associated value is a bit mask of supported physical screens. All screens specified in the bit mask
are guaranteed to be supported by the pixel format. Screens not specified in the bit mask may still
be supported. The bit mask is managed by the Quartz Display Services, available in the
CGDirectDisplay.hheader of the Application Services umbrella framework. ACGDirectDisplayID
must be converted to an OpenGL display mask using the function
CGDisplayIDToOpenGLDisplayMask. This attribute is not generally useful.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLPFAPBuffer
This constant is a Boolean attribute. If it is present in the attributes array, format can be used to render
to a pixel buffer. Do not supply a value with this constant because its presence in the array implies
true.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLPFARemotePBuffer
This constant is a Boolean attribute. If it is present in the attributes array, format can be used to render
offline to a pixel buffer. Do not supply a value with this constant because its presence in the array
implies true.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLPFAVirtualScreenCount
This attribute may be used to obtain the number of virtual screens specified by an existing pixel
format object. To retrieve the value, call the function CGLDescribePixelFormat (page 14), passing
the pixel format object, the virtual screen number 0, and this attribute. This attribute is not useful in
the attribute array that's used to create a pixel format object.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Discussion
These constants are used by CGLChoosePixelFormat (page 8) and CGLDescribePixelFormat (page 14). The
existence of a Boolean attribute in the attribute array of CGLChoosePixelFormat implies a true value.
Other attribute constants must be followed by a value.

42 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Color and Accumulation Buffer Format Flags
Specify formats for the color and accumulation buffers.

#define kCGLRGB444Bit 0x00000040
#define kCGLARGB4444Bit 0x00000080
#define kCGLRGB444A8Bit 0x00000100
#define kCGLRGB555Bit 0x00000200
#define kCGLARGB1555Bit 0x00000400
#define kCGLRGB555A8Bit 0x00000800
#define kCGLRGB565Bit 0x00001000
#define kCGLRGB565A8Bit 0x00002000
#define kCGLRGB888Bit 0x00004000
#define kCGLARGB8888Bit 0x00008000
#define kCGLRGB888A8Bit 0x00010000
#define kCGLRGB101010Bit 0x00020000
#define kCGLARGB2101010Bit 0x00040000
#define kCGLRGB101010_A8Bit 0x00080000
#define kCGLRGB121212Bit 0x00100000
#define kCGLARGB12121212Bit 0x00200000
#define kCGLRGB161616Bit 0x00400000
#define kCGLRGBA16161616Bit 0x00800000
#define kCGLRGBFloat64Bit 0x01000000
#define kCGLRGBAFloat64Bit 0x02000000
#define kCGLRGBFloat128Bit 0x04000000
#define kCGLRGBAFloat128Bit 0x08000000
#define kCGLRGBFloat256Bit 0x10000000
#define kCGLRGBAFloat256Bit 0x20000000

Constants
kCGLRGB444Bit

Specifies a format that has 16 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=11:8, G=7:4, B=3:0.

kCGLARGB4444Bit
Specifies a format that has 16 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=15:12, R=11:8, G=7:4, B=3:0.

kCGLRGB444A8Bit
Specifies a format that has 8-16 bits per pixel with an RGB channel layout, and the channels located
in the following bits: A=7:0, R=11:8, G=7:4, B=3:0.

kCGLRGB555Bit
Specifies a format that has 16 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=14:10, G=9:5, B=4:0.

kCGLARGB1555Bit
Specifies a format that has 16 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=15, R=14:10, G=9:5, B=4:0.

Constants 43
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLRGB555A8Bit
Specifies a format that has 8-16 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=7:0, R=14:10, G=9:5, B=4:0.

kCGLRGB565Bit
Specifies a format that has 16 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=15:11, G=10:5, B=4:0.

kCGLRGB565A8Bit
Specifies a format that has 6-16 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=7:0, R=15:11, G=10:5, B=4:0.

kCGLRGB888Bit
Specifies a format that has 32 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=23:16, G=15:8, B=7:0.

kCGLARGB8888Bit
Specifies a format that has 32 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=31:24, R=23:16, G=15:8, B=7:0.

kCGLRGB888A8Bit
Specifies a format that has 8-32 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=7:0, R=23:16, G=15:8, B=7:0.

kCGLRGB101010Bit
Specifies a format that has 32 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=29:20, G=19:10, B=9:0.

kCGLARGB2101010Bit
Specifies a format that has 32 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=31:30 R=29:20, G=19:10, B=9:0.

kCGLRGB101010_A8Bit
Specifies a format that has 8-32 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=7:0 R=29:20, G=19:10, B=9:0.

kCGLRGB121212Bit
Specifies a format that has 48 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=35:24, G=23:12, B=11:0.

kCGLARGB12121212Bit
Specifies a format that has 48 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: A=47:36, R=35:24, G=23:12, B=11:0.

kCGLRGB161616Bit
Specifies a format that has 64 bits per pixel with an RGB channel layout, and the channels located in
the following bits: R=63:48, G=47:32, B=31:16.

kCGLRGBA16161616Bit
Specifies a format that has 64 bits per pixel with an ARGB channel layout, and the channels located
in the following bits: R=63:48, G=47:32, B=31:16, A=15:0.

kCGLRGBFloat64Bit
Specifies a format that has 64 bits per pixel with an RGB half floating-point channel layout.

kCGLRGBAFloat64Bit
Specifies a format that has 64 bits per pixel with an ARGB half floating-point channel layout.

kCGLRGBFloat128Bit
Specifies a format that has 128 bits per pixel with an RGB IEEE floating-point channel layout.

kCGLRGBAFloat128Bit
Specifies a format that has 128 bits per pixel with an ARGB IEEE floating-point channel layout.

44 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLRGBFloat256Bit
Specifies a format that has 256 bits per pixel with an RGB IEEE double channel layout.

kCGLRGBAFloat256Bit
Specifies a format that has 256 bits per pixel with an ARGB IEEE double channel layout.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Context Options
Specify options that affect a rendering context.

typedef enum _CGLContextEnable {
 kCGLCESwapRectangle = 201,
 kCGLCERasterization = 221,
 kCGLCEStateValidation = 301,
 kCGLCESurfaceBackingSize = 305,
 kCGLCEDisplayListOptimization = 307
} CGLContextEnable;

Constants
kCGLCESwapRectangle

If enabled, the area of the drawable object that is affected by CGLFlushDrawable (page 20) is
restricted to a rectangle specified by the values of kCGLCPSwapRectangle. However, the portion of
the drawable object that lies outside of the swap rectangle may still be flushed to the screen by a
visibility change or other user interface action. To set or get the values of kCGLCPSwapRectangle,
use the functions CGLSetParameter (page 30) or CGLGetParameter (page 22), respectively. For
more information about kCGLCPSwapRectangle, see “Context Parameters” (page 46).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLCERasterization
If disabled, all rasterization of 2D and 3D primitives is disabled. This state is useful for debugging and
to characterize the performance of an OpenGL driver without actually rendering.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLCEStateValidation
If enabled, OpenGL inspects the context state each time that CGLSetVirtualScreen (page 32) is
called to ensure that it is in an appropriate state for switching between renderers. Normally, the state
is inspected only when it is actually necessary to switch renderers. In CGL, a renderer is switched only
if you call CGLSetVirtualScreen (page 32) with a virtual screen number different than the current
one.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLCESurfaceBackingSize
If enabled, overrides the surface backing size.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

Constants 45
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLCEDisplayListOptimization
If disabled, turns off optimization for the display list.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

Discussion
These are used by the functions CGLEnable (page 19), CGLDisable (page 18), and CGLIsEnabled (page 25).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Context Parameters
Specify parameters that apply to a specific rendering context.

typedef enum _CGLContextParameter {
 kCGLCPSwapRectangle = 200,
 kCGLCPSwapInterval = 222,
 kCGLCPDispatchTableSize = 224,
 kCGLCPClientStorage = 226,
 kCGLCPSurfaceTexture = 228,
 kCGLCPSurfaceOrder = 235,
 kCGLCPSurfaceOpacity = 236,
 kCGLCPSurfaceBackingSize = 304,
 kCGLCPSurfaceSurfaceVolatile = 306,
 kCGLCPReclaimResources = 308,
 kCGLCPCurrentRendererID = 309,
 kCGLCPGPUVertexProcessing = 310,
 kCGLCPGPUFragmentProcessing = 311
} CGLContextParameter;

Constants
kCGLCPSwapRectangle

Set or get the swap rectangle. The swap rectangle is represented as an array of four long values: {x,
y, width, height}. For this rectangle to affect the outcome of calling the function
CGLFlushDrawable (page 20), the context option kCGLCESwapRectangle must be enabled. For
more information about kCGLCESwapRectangle, see “Context Options” (page 45).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLCPSwapInterval
Set or get the swap interval. The swap interval is represented as one long value. If the swap interval
is set to 0 (the default), CGLFlushDrawable (page 20) executes as soon as possible, without regard
to the vertical refresh rate of the monitor. If the swap interval is set to 1, the buffers are swapped only
during the vertical retrace of the monitor.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

46 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLCPDispatchTableSize
Set or get the dispatch table size.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLCPClientStorage
Set or get an arbitrary 32-bit value. A typical usage would be to store a pointer to application-specific
data associated with the context.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLCPSurfaceTexture
Set the surface texture. Supply a surface ID, target, and internal format.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLCPSurfaceOrder
Set or get the position of the OpenGL surface relative to the window. A value of 1 means that the
position is above the window; a value of –1 specifies a position that is below the window.

Available in Mac OS X v10.2 and later.

Declared in CGLTypes.h.

kCGLCPSurfaceOpacity
Set or get the surface opacity. A value of 1 means the surface is opaque (the default); 0 means
completely transparent.

Available in Mac OS X v10.2 and later.

Declared in CGLTypes.h.

kCGLCPSurfaceBackingSize
Set or get the height and width of the back buffer. You can use this to let the system scale an image
automatically on swap to a variable size buffer. The back buffer size remains fixed at the size that you
set up regardless of whether the image is resized to display larger onscreen.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLCPSurfaceSurfaceVolatile
Set or get the volatile state of a surface.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLCPReclaimResources
Enable or disable reclaiming resources.

Available in Mac OS X v10.4 and later.

Declared in CGLTypes.h.

kCGLCPCurrentRendererID
The current renderer ID. You can get this setting.

Available in Mac OS X v10.4 and later.

Declared in CGLTypes.h.

Constants 47
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLCPGPUVertexProcessing
The GPU is currently processing vertices with the GPU. You can get this state.

Available in Mac OS X v10.4 and later.

Declared in CGLTypes.h.

kCGLCPGPUFragmentProcessing
The CPU is currently processing fragments with the GPU. You can get this state.

Available in Mac OS X v10.4 and later.

Declared in CGLTypes.h.

Discussion
These constants are used by the functions CGLSetParameter (page 30) and CGLGetParameter (page 22).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Global Options
Specify options that apply globally.

typedef enum _CGLGlobalOption {
 kCGLGOFormatCacheSize = 501,
 kCGLGOClearFormatCache = 502,
 kCGLGORetainRenderers = 503,
 kCGLGOResetLibrary = 504,
 kCGLGOUseErrorHandler = 505,
} CGLGlobalOption;

Constants
kCGLGOFormatCacheSize

Set or get the pixel format cache size, a positive integer. After an application calls
CGLChoosePixelFormat (page 8) for the last time, it may set the cache size to 1 to minimize the
memory used by CGL. If an application intends to use n different attribute lists to choose n different
pixel formats repeatedly, then the application should set the cache size to n to maximize performance.
The cache size is initially set to 5.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLGOClearFormatCache
If set to a true value, the pixel format object cache contents are freed. This does not affect the size
of the cache for future storage of pixel format objects. To minimize the memory consumed by the
cache, the application should also set the cache size to 1 via the kCGLGOFormatCacheSize global
option. CGLGetOption (page 22) always reports a false value for this constant.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

48 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLGORetainRenderers
If true, CGL does not unload any plug-in renderers even if they are no longer in use. This is useful to
improve the performance of applications that repeatedly destroy and recreate their only (or last)
rendering context. Normally, when the last context created by a particular plug-in renderer is destroyed,
that renderer is unloaded from memory. If false, CGL returns to its normal mode of operation and
all renderers that are not in use are unloaded.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLGOResetLibrary
If set to a true value, CGL is reset to its initial state. All contexts created with
CGLCreateContext (page 11) are destroyed, all plug-in renderers are unloaded from memory, and
global options are reset to their initial values. Renderer information objects and pixel format objects
are not destroyed. CGLGetOption (page 22) always reports a false value for this constant.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLGOUseErrorHandler
If true, CGL errors are propagated to Core Graphics.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Discussion
These constants are used by the functions CGLSetOption (page 30) and CGLGetOption (page 22).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Renderer IDs
Define constants that specify hardware and software renderers.

kCGLRendererGenericID 0x00020200
kCGLRendererGenericFloatID 0x00020400
kCGLRendererAppleSWID 0x00020600
kCGLRendererATIRage128ID 0x00021000
kCGLRendererATIRadeonID 0x00021200
kCGLRendererATIRageProID 0x00021400
kCGLRendererATIRadeon8500ID 0x00021600
kCGLRendererATIRadeon9700ID 0x00021800
kCGLRendererATIRadeonX1000ID 0x00021900
kCGLRendererGeForce2MXID 0x00022000
kCGLRendererGeForce3ID 0x00022200
kCGLRendererGeForceFXID 0x00022400
kCGLRendererVTBladeXP2ID 0x00023000
kCGLRendererIntel900ID 0x00024000
kCGLRendererMesa3DFXID 0x00040000

Constants
kCGLRendererGenericID

Specifies the software renderer. Deprecated on Intel-based Macintosh computers.

Constants 49
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLRendererGenericFloatID
Specifies the floating-point software renderer.

kCGLRendererAppleSWID
Specifies the Apple software renderer ID.

kCGLRendererATIRage128ID
Specifies the ATI Rage128 renderer.

kCGLRendererATIRadeonID
Specifies the ATI Radeon renderer.

kCGLRendererATIRageProID
Specifies the ATI RagePro renderer.

kCGLRendererATIRadeon8500ID
Specifies the ATI Radeon 8500 renderer.

kCGLRendererATIRadeon9700ID
Specifies the ATI Radeon 9700 renderer.

kCGLRendererATIRadeonX1000ID
Specifies the ATI Radio X1000 renderer.

kCGLRendererGeForce2MXID
Specifies the NVIDIA GeForce2MX renderer.

kCGLRendererGeForce3ID
Specifies the NVIDIA GeForce3 renderer.

kCGLRendererGeForceFXID
Specifies the NVIDIA GeForceFX renderer.

kCGLRendererVTBladeXP2ID
Specifies the VTBook renderer.

kCGLRendererIntel900ID
Specifies the Intel GMA 900 renderer.

kCGLRendererMesa3DFXID
Specifies the Mesa 3DFX renderer.

Declared In
CGLRenderers.h

Renderer Properties
Specify renderer properties.

50 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

typedef enum _CGLRendererProperty {
 kCGLRPOffScreen = 53,
 kCGLRPFullScreen = 54,
 kCGLRPRendererID = 70,
 kCGLRPAccelerated = 73,
 kCGLRPRobust = 75,
 kCGLRPBackingStore = 76,
 kCGLRPMPSafe = 78,
 kCGLRPWindow = 80,
 kCGLRPMultiScreen = 81,
 kCGLRPCompliant = 83,
 kCGLRPDisplayMask = 84,
 kCGLRPBufferModes = 100,
 kCGLRPColorModes = 103,
 kCGLRPAccumModes = 104,
 kCGLRPDepthModes = 105,
 kCGLRPStencilModes = 106,
 kCGLRPMaxAuxBuffers = 107,
 kCGLRPMaxSampleBuffers = 108,
 kCGLRPMaxSamples = 109,
 kCGLRPSampleModes = 110,
 kCGLRPSampleAlpha = 111,
 kCGLRPVideoMemory = 120,
 kCGLRPTextureMemory = 121,
 kCGLRPRendererCount = 128,
} CGLRendererProperty;

Constants
kCGLRPOffScreen

If true, the renderer supports offscreen drawable objects.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPFullScreen
If true, the renderer supports full screen drawable objects.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPRendererID
The associated value is the renderer ID. Renderer ID constants are associated with specific hardware
vendors. See “Renderer IDs” (page 49).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPAccelerated
If true, the renderer is hardware accelerated.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPRobust
If true, the renderer does not have any failure modes caused by a lack of video card resources.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Constants 51
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLRPBackingStore
If true, the renderer can provide a back color buffer the full size of the drawable object and can
guarantee the back buffer contents to be valid after a call to CGLFlushDrawable (page 20).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPMPSafe
If true, the renderer is thread-safe. All renderers are thread-safe in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPWindow
If true, the renderer supports window drawable objects.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPMultiScreen
If true, the renderer is presently attached to multiple displays.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPCompliant
If true, the renderer is OpenGL compliant. All renderers are OpenGL compliant in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPDisplayMask
The associated value is a bit mask of physical displays that the renderer can drive. The bit mask is
managed by Quartz Display Services. A CGDirectDisplayID data type must be converted to an
OpenGL display mask using the function CGDisplayIDToOpenGLDisplayMask. For more information
on this function, see Quartz Display Services Reference.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPBufferModes
The associated value is the bitwise OR of buffer mode flags supported by the renderer. The value can
be any of the constants defined in “Buffer Mode Flags” (page 36).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPColorModes
The associated value is the bitwise OR of color format flags supported by the renderer. The value can
be any of the constants defined in “Color and Accumulation Buffer Format Flags” (page 43).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPAccumModes
The associated value is the bitwise OR of color/accumulation buffer format flags supported by the
renderer. The value can be any of the constants defined in “Color and Accumulation Buffer Format
Flags” (page 43).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

52 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLRPDepthModes
The associated value is the bitwise OR of depth/stencil buffer depth flags supported by the renderer.
The value can be any of the constants defined in “Stencil and Depth Modes” (page 54).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPStencilModes
The associated value is the bitwise OR of depth/stencil buffer depth flags supported by the renderer.
The value can be any of the constants defined in “Stencil and Depth Modes” (page 54).

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPMaxAuxBuffers
The associated value is the maximum number of auxiliary buffers supported by the renderer.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPMaxSampleBuffers
The associated value is the maximum number of independent sample buffers supported by the
renderer. Typically, the value is 0 if no multisample buffer exists, or 1 if one exists.

Available in Mac OS X v10.1 and later.

Declared in CGLTypes.h.

kCGLRPMaxSamples
The associated value is the maximum number of samples per pixel that the renderer supports.

Available in Mac OS X v10.1 and later.

Declared in CGLTypes.h.

kCGLRPSampleModes
A bit field of supported sample modes.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLRPSampleAlpha
If true, there is support for alpha sampling.

Available in Mac OS X v10.3 and later.

Declared in CGLTypes.h.

kCGLRPVideoMemory
The associated value is the number of bytes of video memory available to the renderer.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

kCGLRPTextureMemory
The associated value is the number of bytes of texture memory available to the renderer.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Constants 53
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGLRPRendererCount
The associated value is the number of renderers in a specific renderer information object. To determine
the number of renderers in a renderer information object, call the function
CGLDescribeRenderer (page 15), passing in the object, renderer number 0, and this renderer
property.

Available in Mac OS X v10.0 and later.

Declared in CGLTypes.h.

Discussion
These constants are used by the function CGLDescribeRenderer (page 15).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Sampling Modes
Define modes used for full scene anti-aliasing.

#define kCGLSupersampleBit 0x00000001
#define kCGLMultisampleBit 0x00000002

Constants
kCGLSupersampleBit

Specifies supersampling.

kCGLMultisampleBit
Specifies multisampling.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Stencil and Depth Modes
Define resolutions for the depth and stencil buffers.

54 Constants
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

#define kCGL0Bit 0x00000001
#define kCGL1Bit 0x00000002
#define kCGL2Bit 0x00000004
#define kCGL3Bit 0x00000008
#define kCGL4Bit 0x00000010
#define kCGL5Bit 0x00000020
#define kCGL6Bit 0x00000040
#define kCGL8Bit 0x00000080
#define kCGL10Bit 0x00000100
#define kCGL12Bit 0x00000200
#define kCGL16Bit 0x00000400
#define kCGL24Bit 0x00000800
#define kCGL32Bit 0x00001000
#define kCGL48Bit 0x00002000
#define kCGL64Bit 0x00004000
#define kCGL96Bit 0x00008000
#define kCGL128Bit 0x00010000

Constants
kCGL0Bit

Specifies a 0-bit resolution.

kCGL1Bit
Specifies a 1-bit resolution.

kCGL2Bit
Specifies a 2-bit resolution.

kCGL3Bit
Specifies a 3-bit resolution.

kCGL4Bit
Specifies a 4-bit resolution.

kCGL5Bit
Specifies a 5-bit resolution.

kCGL6Bit
Specifies a 6-bit resolution.

kCGL8Bit
Specifies a 8-bit resolution.

kCGL10Bit
Specifies a 10-bit resolution.

kCGL12Bit
Specifies a 12-bit resolution.

kCGL16Bit
Specifies a 16-bit resolution.

kCGL24Bit
Specifies a 24-bit resolution.

kCGL32Bit
Specifies a 32-bit resolution.

kCGL48Bit
Specifies a 48-bit resolution.

kCGL64Bit
Specifies a 64-bit resolution.

Constants 55
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

kCGL96Bit
Specifies a 96-bit resolution.

kCGL128Bit
Specifies a 128-bit resolution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGLTypes.h

Result Codes

The following result code constants, declared in the CGLTypes.h header file, can be used as parameters to
the function CGLErrorString (page 19).

DescriptionValueResult Code

No error.0kCGLNoError

Available in Mac OS X v10.3 and later.

Invalid pixel format attribute. Valid attributes can be found in “Buffer
and Renderer Attributes” (page 37).

10000kCGLBadAttribute

Available in Mac OS X v10.0 and later.

Invalid renderer property. Valid renderer properties can be found in
“Renderer Properties” (page 50).

10001kCGLBadProperty

Available in Mac OS X v10.0 and later.

Invalid pixel format object. A valid pixel format object can be obtained
by calling the function CGLChoosePixelFormat (page 8).

10002kCGLBadPixelFormat

Available in Mac OS X v10.0 and later.

Invalid renderer information object. A valid renderer information object
can be obtained by calling the function CGLQueryRendererInfo (page
26).

10003kCGLBadRendererInfo

Available in Mac OS X v10.0 and later.

Invalid context object. A valid context object can be obtained by calling
the function CGLCreateContext (page 11).

10004kCGLBadContext

Available in Mac OS X v10.0 and later.

56 Result Codes
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

DescriptionValueResult Code

Invalid drawable object. This error occurs when you attempt to attach
a second, incompatible, rendering context to a drawable object. For
more information about incompatible contexts, see the discussion
section of the function CGLCreateContext (page 11). This error also
occurs when you attempt to attach a context to a full-screen drawable
object, and the color depth of the drawable object is different than that
specified by the pixel format object used to create the context. The
kCGLPFAColorSize attribute, described in “Buffer and Renderer
Attributes” (page 37), specifies the color depth of a pixel format.

10005kCGLBadDrawable

Available in Mac OS X v10.0 and later.

Invalid display.10006kCGLBadDisplay

Available in Mac OS X v10.0 and later.

Invalid context state. This error occurs when a context state is inspected
for readiness to switch renderers. To be in a valid state, a context be in
render mode and have an attribute stack depth of 0, and a modelview,
projection, and texture stack depth of 1. For more information about
state verification, see the context enable constant
kCGLCEStateValidation, described in “Context Options” (page 45).

10007kCGLBadState

Available in Mac OS X v10.0 and later.

Invalid numerical value.10008kCGLBadValue

Available in Mac OS X v10.0 and later.

Invalid share context. Two contexts are a bad match if their pixel format
objects use different renderers.

10009kCGLBadMatch

Available in Mac OS X v10.0 and later.

Invalid constant.10010kCGLBadEnumeration

Available in Mac OS X v10.0 and later.

Invalid offscreen drawable object.10011kCGLBadOffScreen

Available in Mac OS X v10.0 and later.

Invalid full-screen drawable object.10012kCGLBadFullScreen

Available in Mac OS X v10.0 and later.

Invalid window.10013kCGLBadWindow

Available in Mac OS X v10.0 and later.

Invalid memory address. This error occurs when you pass an invalid
pointer into a function that requires a memory address other than NULL.

10014kCGLBadAddress

Available in Mac OS X v10.0 and later.

Invalid code module.10015kCGLBadCodeModule

Available in Mac OS X v10.0 and later.

Result Codes 57
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

DescriptionValueResult Code

Invalid memory allocation. This error occurs when CGL is unable to
allocate memory.

10016kCGLBadAlloc

Available in Mac OS X v10.0 and later.

Invalid connection to Core Graphics.10017kCGLBadConnection

Available in Mac OS X v10.0 and later.

58 Result Codes
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

CGL Reference

This table describes the changes to CGL Reference.

NotesDate

Added more information about renderer information objects.2007-06-28

Updated CGLChoosePixelFormat (page 8) and “Buffer and Renderer
Attributes” (page 37).

Revised the texture target information in CGLCreatePBuffer (page 12).

Revised the discussion in CGLSetPBuffer (page 31).

Added kCGLCPCurrentRendererID (page 47),
kCGLCPGPUVertexProcessing (page 48), and
kCGLCPGPUFragmentProcessing (page 48).

Updated the renderers listed in “Renderer IDs” (page 49).

Minor noncontent change.2006-07-07

Changed the title from "CGL Framework Reference."2006-07-24

Updated for Mac OS X v10.4.2006-05-23

Added the functions CGLLockContext (page 26) and CGLUnlockContext (page
34).

Added “Sampling Modes” (page 54).

Added documentation for “Buffer Mode Flags” (page 36), “Color and
Accumulation Buffer Format Flags” (page 43), “Renderer IDs” (page 49), and
“Stencil and Depth Modes” (page 54). Most of these constants were previously
embedded in the discussion of other constants. There are several new color
accumulation buffer format flags.

Removed documentation for internal formats because these are part of the
OpenGL specification. They are not part of the CGL API. Instead see the OpenGL
Reference Manual and the OpenGL Programming Guide, which are both
published by Addison-Wesley.

Added constants to “Context Options” (page 45), “Context Parameters” (page
46), and “CGL Result Codes” (page 56).

Revised “Introduction” (page 5).

59
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

http://www.opengl.org/documentation/blue_book/
http://www.opengl.org/documentation/blue_book/
http://www.opengl.org/documentation/red_book/

NotesDate

Edited content to make it more consistent with other Apple OpenGL
documentation.

Fixed formatting.

Added availability information.

Updated header file information.

Added See Also sections.

Fixed links, added header file information, and removed old boilerplate text
from the Introduction.

2005-11-09

60
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

Buffer and Renderer Attributes 37
Buffer Mode Flags 36

C

CGLChoosePixelFormat function 8
CGLClearDrawable function 9
CGLContextObj data type 35
CGLCopyContext function 10
CGLCreateContext function 11
CGLCreatePBuffer function 12
CGLDescribePBuffer function 13
CGLDescribePixelFormat function 14
CGLDescribeRenderer function 15
CGLDestroyContext function 16
CGLDestroyPBuffer function 16
CGLDestroyPixelFormat function 17
CGLDestroyRendererInfo function 18
CGLDisable function 18
CGLEnable function 19
CGLErrorString function 19
CGLFlushDrawable function 20
CGLGetCurrentContext function 21
CGLGetOffScreen function 21
CGLGetOption function 22
CGLGetParameter function 22
CGLGetPBuffer function 23
CGLGetVersion function 24
CGLGetVirtualScreen function 24
CGLIsEnabled function 25
CGLLockContext function 26
CGLPBufferObj data type 36
CGLPixelFormatObj data type 35
CGLQueryRendererInfo function 26
CGLRendererInfoObj data type 35
CGLSetCurrentContext function 27
CGLSetFullScreen function 28
CGLSetOffScreen function 29

CGLSetOption function 30
CGLSetParameter function 30
CGLSetPBuffer function 31
CGLSetVirtualScreen function 32
CGLTexImagePBuffer function 33
CGLUnlockContext function 34
Color and Accumulation Buffer Format Flags 43
Context Options 45
Context Parameters 46

G

Global Options 48

K

kCGL0Bit constant 55
kCGL10Bit constant 55
kCGL128Bit constant 56
kCGL12Bit constant 55
kCGL16Bit constant 55
kCGL1Bit constant 55
kCGL24Bit constant 55
kCGL2Bit constant 55
kCGL32Bit constant 55
kCGL3Bit constant 55
kCGL48Bit constant 55
kCGL4Bit constant 55
kCGL5Bit constant 55
kCGL64Bit constant 55
kCGL6Bit constant 55
kCGL8Bit constant 55
kCGL96Bit constant 56
kCGLARGB12121212Bit constant 44
kCGLARGB1555Bit constant 43
kCGLARGB2101010Bit constant 44
kCGLARGB4444Bit constant 43
kCGLARGB8888Bit constant 44
kCGLBadAddress constant 57

61
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

Index

kCGLBadAlloc constant 58
kCGLBadAttribute constant 56
kCGLBadCodeModule constant 57
kCGLBadConnection constant 58
kCGLBadContext constant 56
kCGLBadDisplay constant 57
kCGLBadDrawable constant 57
kCGLBadEnumeration constant 57
kCGLBadFullScreen constant 57
kCGLBadMatch constant 57
kCGLBadOffScreen constant 57
kCGLBadPixelFormat constant 56
kCGLBadProperty constant 56
kCGLBadRendererInfo constant 56
kCGLBadState constant 57
kCGLBadValue constant 57
kCGLBadWindow constant 57
kCGLCEDisplayListOptimization constant 46
kCGLCERasterization constant 45
kCGLCEStateValidation constant 45
kCGLCESurfaceBackingSize constant 45
kCGLCESwapRectangle constant 45
kCGLCPClientStorage constant 47
kCGLCPCurrentRendererID constant 47
kCGLCPDispatchTableSize constant 47
kCGLCPGPUFragmentProcessing constant 48
kCGLCPGPUVertexProcessing constant 48
kCGLCPReclaimResources constant 47
kCGLCPSurfaceBackingSize constant 47
kCGLCPSurfaceOpacity constant 47
kCGLCPSurfaceOrder constant 47
kCGLCPSurfaceSurfaceVolatile constant 47
kCGLCPSurfaceTexture constant 47
kCGLCPSwapInterval constant 46
kCGLCPSwapRectangle constant 46
kCGLDoubleBufferBit constant 36
kCGLGOClearFormatCache constant 48
kCGLGOFormatCacheSize constant 48
kCGLGOResetLibrary constant 49
kCGLGORetainRenderers constant 49
kCGLGOUseErrorHandler constant 49
kCGLMonoscopicBit constant 36
kCGLMultisampleBit constant 54
kCGLNoError constant 56
kCGLPFAAccelerated constant 41
kCGLPFAAccumSize constant 38
kCGLPFAAllRenderers constant 37
kCGLPFAAlphaSize constant 38
kCGLPFAAuxBuffers constant 38
kCGLPFAAuxDepthStencil constant 39
kCGLPFABackingStore constant 41
kCGLPFAClosestPolicy constant 41
kCGLPFAColorFloat constant 39

kCGLPFAColorSize constant 38
kCGLPFACompliant constant 42
kCGLPFADepthSize constant 38
kCGLPFADisplayMask constant 42
kCGLPFADoubleBuffer constant 38
kCGLPFAFullScreen constant 39
kCGLPFAMaximumPolicy constant 39
kCGLPFAMinimumPolicy constant 39
kCGLPFAMPSafe constant 41
kCGLPFAMultisample constant 39
kCGLPFAMultiScreen constant 42
kCGLPFANoRecovery constant 40
kCGLPFAOffScreen constant 39
kCGLPFAPBuffer constant 42
kCGLPFARemotePBuffer constant 42
kCGLPFARendererID constant 40
kCGLPFARobust constant 41
kCGLPFASampleAlpha constant 40
kCGLPFASampleBuffers constant 40
kCGLPFASamples constant 40
kCGLPFASingleRenderer constant 40
kCGLPFAStencilSize constant 38
kCGLPFAStereo constant 38
kCGLPFASupersample constant 40
kCGLPFAVirtualScreenCount constant 42
kCGLPFAWindow constant 41
kCGLRendererAppleSWID constant 50
kCGLRendererATIRadeon8500ID constant 50
kCGLRendererATIRadeon9700ID constant 50
kCGLRendererATIRadeonID constant 50
kCGLRendererATIRadeonX1000ID constant 50
kCGLRendererATIRage128ID constant 50
kCGLRendererATIRageProID constant 50
kCGLRendererGeForce2MXID constant 50
kCGLRendererGeForce3ID constant 50
kCGLRendererGeForceFXID constant 50
kCGLRendererGenericFloatID constant 50
kCGLRendererGenericID constant 49
kCGLRendererIntel900ID constant 50
kCGLRendererMesa3DFXID constant 50
kCGLRendererVTBladeXP2ID constant 50
kCGLRGB101010Bit constant 44
kCGLRGB101010_A8Bit constant 44
kCGLRGB121212Bit constant 44
kCGLRGB161616Bit constant 44
kCGLRGB444A8Bit constant 43
kCGLRGB444Bit constant 43
kCGLRGB555A8Bit constant 44
kCGLRGB555Bit constant 43
kCGLRGB565A8Bit constant 44
kCGLRGB565Bit constant 44
kCGLRGB888A8Bit constant 44
kCGLRGB888Bit constant 44

62
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

INDEX

kCGLRGBA16161616Bit constant 44
kCGLRGBAFloat128Bit constant 44
kCGLRGBAFloat256Bit constant 45
kCGLRGBAFloat64Bit constant 44
kCGLRGBFloat128Bit constant 44
kCGLRGBFloat256Bit constant 45
kCGLRGBFloat64Bit constant 44
kCGLRPAccelerated constant 51
kCGLRPAccumModes constant 52
kCGLRPBackingStore constant 52
kCGLRPBufferModes constant 52
kCGLRPColorModes constant 52
kCGLRPCompliant constant 52
kCGLRPDepthModes constant 53
kCGLRPDisplayMask constant 52
kCGLRPFullScreen constant 51
kCGLRPMaxAuxBuffers constant 53
kCGLRPMaxSampleBuffers constant 53
kCGLRPMaxSamples constant 53
kCGLRPMPSafe constant 52
kCGLRPMultiScreen constant 52
kCGLRPOffScreen constant 51
kCGLRPRendererCount constant 54
kCGLRPRendererID constant 51
kCGLRPRobust constant 51
kCGLRPSampleAlpha constant 53
kCGLRPSampleModes constant 53
kCGLRPStencilModes constant 53
kCGLRPTextureMemory constant 53
kCGLRPVideoMemory constant 53
kCGLRPWindow constant 52
kCGLSingleBufferBit constant 36
kCGLStereoscopicBit constant 36
kCGLSupersampleBit constant 54

R

Renderer IDs 49
Renderer Properties 50

S

Sampling Modes 54
Stencil and Depth Modes 54

63
2007-06-28 | © 2004, 2007 Apple Inc. All Rights Reserved.

INDEX

	CGL Reference
	Contents
	CGL Reference
	Overview
	Functions by Task
	Managing Pixel Format Objects
	Managing Contexts
	Getting and Setting Context Options
	Locking and Unlocking Contexts
	Managing Drawable Objects
	Managing Pixel Buffers
	Getting Error Information
	Getting and Setting Global Information
	Getting Renderer Information
	Managing Virtual Screens

	Functions
	CGLChoosePixelFormat
	CGLClearDrawable
	CGLCopyContext
	CGLCreateContext
	CGLCreatePBuffer
	CGLDescribePBuffer
	CGLDescribePixelFormat
	CGLDescribeRenderer
	CGLDestroyContext
	CGLDestroyPBuffer
	CGLDestroyPixelFormat
	CGLDestroyRendererInfo
	CGLDisable
	CGLEnable
	CGLErrorString
	CGLFlushDrawable
	CGLGetCurrentContext
	CGLGetOffScreen
	CGLGetOption
	CGLGetParameter
	CGLGetPBuffer
	CGLGetVersion
	CGLGetVirtualScreen
	CGLIsEnabled
	CGLLockContext
	CGLQueryRendererInfo
	CGLSetCurrentContext
	CGLSetFullScreen
	CGLSetOffScreen
	CGLSetOption
	CGLSetParameter
	CGLSetPBuffer
	CGLSetVirtualScreen
	CGLTexImagePBuffer
	CGLUnlockContext

	Data Types
	CGLContextObj
	CGLPixelFormatObj
	CGLRendererInfoObj
	CGLPBufferObj

	Constants
	Buffer Mode Flags
	Buffer and Renderer Attributes
	Color and Accumulation Buffer Format Flags
	Context Options
	Context Parameters
	Global Options
	Renderer IDs
	Renderer Properties
	Sampling Modes
	Stencil and Depth Modes

	Result Codes

	Revision History
	Index
	B
	C
	G
	K
	R
	S

