
Quartz Composer Reference Collection
Graphics & Imaging > Quartz

2007-01-25



Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, Objective-C, and Quartz are
trademarks of Apple Inc., registered in the
United States and other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction The Quartz Composer Reference Collection 9

Part I Classes 11

Chapter 1 QCComposition Class Reference 13

Overview 13
Tasks 14
Class Methods 14
Instance Methods 15
Constants 17

Chapter 2 QCCompositionLayer Class Reference 23

Overview 23
Tasks 24
Class Methods 24
Instance Methods 25

Chapter 3 QCCompositionParameterView Class Reference 27

Overview 27
Tasks 27
Instance Methods 28

Chapter 4 QCCompositionPickerPanel Class Reference 33

Overview 33
Tasks 33
Class Methods 34
Instance Methods 34
Notifications 34

Chapter 5 QCCompositionPickerView Class Reference 35

Overview 35
Tasks 35
Instance Methods 37
Notifications 47

3
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.



Chapter 6 QCCompositionRepository Class Reference 49

Overview 49
Tasks 49
Class Methods 50
Instance Methods 50
Notifications 52

Chapter 7 QCPlugIn Class Reference 53

Overview 53
Tasks 53
Class Methods 55
Instance Methods 60
Constants 68

Chapter 8 QCPlugInViewController Class Reference 75

Overview 75
Tasks 75
Instance Methods 76

Chapter 9 QCRenderer Class Reference 77

Overview 77
Tasks 78
Instance Methods 78
Constants 82

Chapter 10 QCView Class Reference 85

Overview 85
Tasks 85
Instance Methods 87
Notifications 100

Part II Protocols 101

Chapter 11 QCCompositionParameterViewDelegate Protocol Reference 103

Overview 103
Tasks 103
Instance Methods 103

4
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS



Chapter 12 QCCompositionPickerViewDelegate Protocol Reference 105

Overview 105
Tasks 105
Instance Methods 105

Chapter 13 QCCompositionRenderer Protocol Reference 109

Overview 109
Tasks 109
Instance Methods 110

Chapter 14 QCPlugInContext Protocol Reference 117

Overview 117
Tasks 117
Instance Methods 118

Chapter 15 QCPlugInInputImageSource Protocol Reference 123

Overview 123
Tasks 123
Instance Methods 125

Chapter 16 QCPlugInOutputImageProvider Protocol Reference 133

Overview 133
Tasks 133
Instance Methods 134

Document Revision History 141

Index 143

5
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS



6
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS



Tables

Chapter 10 QCView Class Reference 85

Table 10-1 Events that can be forwarded to a composition 97

7
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.



8
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

TABLES



Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Header file directories /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework/Headers

Declared in QCComposition.h
QCCompositionLayer.h
QCCompositionParameterView.h
QCCompositionPickerPanel.h
QCCompositionPickerView.h
QCCompositionRepository.h
QCPlugIn.h
QCPlugInViewController.h
QCRenderer.h
QCView.h

The Quartz Composer Reference Collection defines Objective-C classes that, in one way or another, work
with compositions built using the Quartz Composer development tool. The classes support the following
programming tasks:

 ■ Load, play, and control compositions stored as Quartz Composer files (qtz extension). See the QCView
and QCRenderer classes.

 ■ Access and render compositions that are stored in a system-wide repository. See the QCCompositionXXX
classes.

 ■ Load and play a composition in a Core Animation layer. See the QCCompositionLayer class.

 ■ Create a custom patch that can be used from the Quartz Composer development tool. See the
QCPlugInXXX classes.

9
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Quartz Composer Reference Collection



10
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Quartz Composer Reference Collection



 

11
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

PART I

Classes



12
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

PART I

Classes



Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCComposition.h

Companion guide Quartz Composer Programming Guide

Overview

The QCComposition class represents a Quartz Composer composition that either:

 ■ comes from the system-wide composition repository (/Library/Compositions and
~/Library/Compositions) where it can be accessed by any application through the methods of the
QCCompositionRepository class

 ■ is created from an arbitrary source (typically a file on disk) using one of its methods

This class cannot be subclassed.

A QCComposition object has the following information associated with it and that you can obtain by using
the appropriate method of the QCComposition class:

 ■ Attributes include the name and description of the composition, copyright information, and whether or
not its provided by Mac OS X (built-in).

 ■ The protocols that the composition conforms to. A composition protocol defines a set of required and
optional input parameters and output results.

Many methods of the QCRenderer, QCCompositionLayer, and QCView classes take a QCComposition
object as a parameter.

Overview 13
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Tasks

Creating a Composition

+ compositionWithFile: (page 15)
Returns an autoreleased composition object initialized with a Quartz Composer composition file.

+ compositionWithData: (page 14)
Returns an autoreleased composition object initialized with the contents of a Quartz Composer
composition file.

Getting Information About a Composition

– attributes (page 15)
Returns the attributes of the composition.

– protocols (page 16)
Returns the list of protocols to which the composition conforms.

– identifier (page 15)
Returns the unique and persistent identifier for the composition from the composition repository.

Getting Port Keys

– inputKeys (page 16)
Returns an array listing the keys that identify the input ports of the root patch of the composition.

– outputKeys (page 16)
Returns an array listing the keys that identify the output ports of the root patch of the composition.

Class Methods

compositionWithData:
Returns an autoreleased composition object initialized with the contents of a Quartz Composer composition
file.

+ (QCComposition*) compositionWithData:(NSData*)data;

Parameters
data

The contents of a file created with the Quartz Composer developer tool.

Return Value
A Quartz Composer composition object or nil if there is an error.

Availability
Available in Mac OS X v10.5 and later.

14 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Declared In
QCComposition.h

compositionWithFile:
Returns an autoreleased composition object initialized with a Quartz Composer composition file.

+ (QCComposition*) compositionWithFile:(NSString*)path;

Parameters
path

A path to a file created with the Quartz Composer developer tool (.qtz extension).

Return Value
A Quartz Composer composition object or nil if there is an error.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCComposition.h

Instance Methods

attributes
Returns the attributes of the composition.

- (NSDictionary*) attributes

Return Value
A dictionary of composition attributes. See “Attribute Keys” (page 17) for the attributes that can be
returned.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCComposition.h

identifier
Returns the unique and persistent identifier for the composition from the composition repository.

- (NSString*) identifier

Return Value
The unique identifier for the composition if it comes from the composition repository; nil otherwise.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 15
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Declared In
QCCompositionRepository.h

inputKeys
Returns an array listing the keys that identify the input ports of the root patch of the composition.

- (NSArray*) inputKeys

Return Value
An array of input keys.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCComposition.h

outputKeys
Returns an array listing the keys that identify the output ports of the root patch of the composition.

- (NSArray*) outputKeys

Return Value
An array of output keys.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCComposition.h

protocols
Returns the list of protocols to which the composition conforms.

- (NSArray*) protocols

Return Value
A list of protocols. See “Standard Protocols” (page 21).

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCComposition.h

16 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Constants

Attribute Keys
Attributes of a composition.

extern NSString* const QCCompositionAttributeNameKey;
extern NSString* const QCCompositionAttributeDescriptionKey;
extern NSString* const QCCompositionAttributeCopyrightKey;
extern NSString* const QCCompositionAttributeBuiltInKey;
extern NSString* const QCCompositionAttributeTimeDependentKey;
extern NSString* const QCCompositionAttributeHasConsumersKey;
extern NSString* const QCCompositionAttributeCategoryKey;

Constants
QCCompositionAttributeNameKey

The key for the composition name. The associated value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in QCComposition.h.

QCCompositionAttributeDescriptionKey
The key for the composition description. The associated value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in QCComposition.h.

QCCompositionAttributeCopyrightKey
The key for composition copyright information. The associated value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in QCComposition.h.

QCCompositionAttributeBuiltInKey
The key for the composition origin. The associated value is an NSNumber object that contains a Boolean
value. YES indicates the composition is built-in (provided by Mac OS X).

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionAttributeTimeDependentKey
The key for the composition time dependency. The associated value is an NSNumber object that
contains a Boolean value. YES indicates that the composition is time dependent.

QCCompositionAttributeHasConsumersKey
The key for a composition that has consumer patches. The associated value is an NSNumber object
that contains a Boolean value. YES indicates that the composition has consumers.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionAttributeCategoryKey
The composition category. The associated value is a category constant. See “Composition
Categories” (page 18).

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Constants 17
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Declared In
QCComposition.h

Composition Categories
Categories for compositions.

extern NSString* const QCCompositionCategoryDistortion;
extern NSString* const QCCompositionCategoryStylize;
extern NSString* const QCCompositionCategoryUtility;

Constants
QCCompositionCategoryDistortion

A composition that produces a distortion effect.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionCategoryStylize
A composition that produces a stylize effect.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionCategoryUtility
A utility composition.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Declared In
QCComposition.h

Standard Protocol Input Keys
Input ports of a composition.

extern NSString* const QCCompositionInputImageKey;
extern NSString* const QCCompositionInputSourceImageKey;
extern NSString* const QCCompositionInputDestinationImageKey;
extern NSString* const QCCompositionInputRSSFeedURLKey;
extern NSString* const QCCompositionInputRSSArticleDurationKey;
extern NSString* const QCCompositionInputPreviewModeKey;
extern NSString* const QCCompositionInputXKey;
extern NSString* const QCCompositionInputYKey;
extern NSString* const QCCompositionInputScreenImageKey;
extern NSString* const QCCompositionInputAudioPeakKey;
extern NSString* const QCCompositionInputAudioSpectrumKey;
extern NSString* const QCCompositionInputTrackPositionKey;
extern NSString* const QCCompositionInputTrackInfoKey;
extern NSString* const QCCompositionInputTrackSignalKey;
extern NSString* const QCCompositionInputPrimaryColorKey;
extern NSString* const QCCompositionInputSecondaryColorKey;
extern NSString* const QCCompositionInputPaceKey;

18 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Constants
QCCompositionInputImageKey

An image input port whose key is inputImage.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputSourceImageKey
An image input port whose key is inputSourceImage.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputDestinationImageKey
An image input port whose key is inputDestinationImage.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputRSSFeedURLKey
A string input port whose key is inputRSSFeedURL. This port must be passed an http or feed scheme
URL.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputRSSArticleDurationKey
A number input port whose key is inputRSSArticleDuration. The value must be expressed in
seconds.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputPreviewModeKey
A Boolean input port whose key is inputPreviewMode. When the value of this input port is set to
TRUE, the composition that provides this port must be able to run in a low-quality mode that produces
a preview of the composition.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputXKey
A number input port whose key is inputX. The value must be normalized to the image width with
the origin on the left.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputYKey
A number input port whose key is inputY. The value must be normalized to the image height with
the origin at the bottom.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputScreenImageKey
An image input port whose key is inputScreenImage.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Constants 19
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



QCCompositionInputAudioPeakKey
A number input port whose key is inputAudioPeak. The value must be in the [0,1] range as a
mono signal with no decay applied.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputAudioSpectrumKey
A structure input port whose key is inputAudioSpectrum. The structure must contain 16 values in
the [0,1] range representing 16 spectrum bands of the mono signal from low to high frequencies
with no decay applied.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputTrackPositionKey
A number input port whose key is inputTrackPosition. The value must be expressed in seconds.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputTrackInfoKey
A structure input port whose key is inputTrackInfo. The structure contains optional entries, such
as “name”, “artist”, "album", "duration", "artwork", and so on.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputTrackSignalKey
A Boolean input port whose key is inputTrackSignal.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputPrimaryColorKey
A color input port whose key is inputPrimaryColor.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputSecondaryColorKey
A color input port whose key is inputSecondaryColor.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionInputPaceKey
A number input port whose key is inputPace. The value must be in the [0,1] range.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Declared In
QCComposition.h

Standard Protocol Output Keys
Output ports of a composition.

20 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



extern NSString* const QCCompositionOutputImageKey;
extern NSString* const QCCompositionOutputWebPageURLKey;

Constants
QCCompositionOutputImageKey

An image output port whose key is outputImage.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionOutputWebPageURLKey
A string output port whose key is outputWebPageURL.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Declared In
QCComposition.h

Standard Protocols
Protocols for a composition.

extern NSString* const QCCompositionProtocolGraphicAnimation;
extern NSString* const QCCompositionProtocolGraphicTransition;
extern NSString* const QCCompositionProtocolImageFilter;
extern NSString* const QCCompositionProtocolImageCompositor;
extern NSString* const QCCompositionProtocolImageTransition;
extern NSString* const QCCompositionProtocolScreenSaverRSS;

Constants
QCCompositionProtocolGraphicAnimation

A composition that renders a generic graphical animation. It has the option to use
QCCompositionInputPrimaryColorKey (page 20) for the primary color of the animation,
QCCompositionInputSecondaryColorKey (page 20) for the secondary color of the animation,
QCCompositionInputPaceKey (page 20) for the global pace of the animation, and
QCCompositionInputPreviewModeKey (page 19) to indicate if the animation should run in
lower-quality for preview purposes.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionProtocolGraphicTransition
A composition that performs a transition between two images, using a transition time in range of 0
to 1. A conforming composition must use the input keys
QCCompositionInputSourceImageKey (page 19) for the starting image and
QCCompositionInputDestinationImageKey (page 19) for the image to transition to. The
composition can optionally use QCCompositionInputPreviewModeKey (page 19) to indicate if
the animation should run in lower-quality for preview purposes.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Constants 21
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



QCCompositionProtocolImageFilter
A composition that applies an effect to a source image. A conforming composition must use the input
key QCCompositionInputImageKey (page 19) for the source image and
QCCompositionOutputImageKey (page 21) for the output image. The composition can optionally
use QCCompositionInputXKey (page 19) to specify the X position of the center point of the effect,
QCCompositionInputYKey (page 19) to specify the Y position of the center point of the effect,
andQCCompositionInputPreviewModeKey (page 19) to indicate if the animation should run in
lower-quality for preview purposes.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionProtocolScreenSaver
A composition that can be used as a screen saver. The composition has the option to use
QCCompositionInputScreenImageKey (page 19) for a screenshot image of the screen that the
screen saver runs on, QCCompositionInputPreviewModeKey (page 19) to indicate if the animation
should run in lower-quality for preview purposes, and QCCompositionOutputWebPageURLKey (page
21) for a URL to open in the default web browser when screen saver exits (only allowed if screen
saver password is disabled).

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionProtocolImageTransition
A composition that performs a transition between two images, using a parametric time value to drives
the transition from start (at time 0) to end (at time 1). A conforming composition must use the input
keys QCCompositionInputImageKey (page 19) for the starting image and
QCCompositionInputDestinationImageKey (page 19) for the ending image. The composition
can optionally use QCCompositionInputPreviewModeKey (page 19) to indicate if the animation
should run in lower-quality for preview purposes.

QCCompositionProtocolRSSVisualizer
A composition that acts as a visualizer for an RSS feed. A conforming composition must use the input
key QCCompositionInputRSSFeedURLKey (page 19) for the URL to use for the RSS feed. It can
optionally use QCCompositionInputRSSArticleDurationKey (page 19) to specify the duration
of each feed article.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

QCCompositionProtocolMusicVisualizer
A composition that acts as a visualizer for music. A conforming composition must use the input key
QCCompositionInputAudioPeakKey (page 20) for the instantaneous audio peak and the
QCCompositionInputAudioSpectrumKey (page 20) for the instantaneous audio spectrum. It can
optionally use the QCCompositionInputTrackInfoKey (page 20) to indicate it receives information
about the current track and the QCCompositionInputTrackSignalKey (page 20) to indicate the
start of a new track.

Available in Mac OS X v10.5 and later.

Declared in QCComposition.h.

Declared In
QCComposition.h

22 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

QCComposition Class Reference



Inherits from CAOpenGLLayer : CALayer : NSObject

Conforms to QCCompositionRenderer
NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCCompositionLayer.h

Companion guides Core Animation Programming Guide
Quartz Composer Programming Guide

Related sample code CALayerEssentials

Overview

The QCCompositionLayer class loads, plays, and controls Quartz Composer compositions in a Core Animation
layer hierarchy. The composition tracks the Core Animation layer time and is rendered directly at the current
dimensions of the QCCompositionLayer object.

An archived QCCompositionLayer object saves the composition that’s loaded at the time the layer is
archived. It detects layer usage and pauses or resumes the composition appropriately. AQCCompositionLayer
object starts rendering the composition automatically when the layer is placed in a visible layer hierarchy.
The layer stops rendering when it is hidden or removed from the visible layer hierarchy.

You can pass data to the input ports, or retrieve data from the output ports, of the root patch of a composition
by accessing the patch attribute of the QCCompositionLayer instance using methods provided by the
QCCompositionRenderer protocol.

Overview 23
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

QCCompositionLayer Class Reference



Note:  You must not modify the asynchronous property of the superclass CAOpenGLLayer.

Tasks

Creating the Layer

+ compositionLayerWithFile: (page 25)
Creates and returns an instance of a composition layer using the Quartz Composer composition in
the specified file.

+ compositionLayerWithComposition: (page 24)
Creates and returns an instance of a composition layer using the provided Quartz Composer
composition.

– initWithFile: (page 26)
Initializes and returns a composition layer using the Quartz Composer composition in the specified
file.

– initWithComposition: (page 25)
Initializes and returns a composition layer using the provided Quartz Composer composition.

Getting the Composition

– composition (page 25)
Returns the composition associated with the layer.

Class Methods

compositionLayerWithComposition:
Creates and returns an instance of a composition layer using the provided Quartz Composer composition.

+ (QCCompositionLayer*)compositionLayerWithComposition:(QCComposition*)composition

Parameters
composition

The Quartz Composer composition to use as content.

Return Value
An autoreleased, initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ compositionLayerWithFile: (page 25)

24 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

QCCompositionLayer Class Reference



Declared In
QCCompositionLayer.h

compositionLayerWithFile:
Creates and returns an instance of a composition layer using the Quartz Composer composition in the
specified file.

+ (QCCompositionLayer*)compositionLayerWithFile:(NSString*)path

Parameters
path

A string that specifies the location of a Quartz Composer composition.

Return Value
An autoreleased, initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ compositionLayerWithComposition: (page 24)

Related Sample Code
CALayerEssentials

Declared In
QCCompositionLayer.h

Instance Methods

composition
Returns the composition associated with the layer.

- (QCComposition*) composition

Return Value
The composition object associated with the layer or nil if there is none.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionLayer.h

initWithComposition:
Initializes and returns a composition layer using the provided Quartz Composer composition.

Instance Methods 25
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

QCCompositionLayer Class Reference



- (id)initWithComposition:(QCComposition*)composition

Parameters
composition

The Quartz Composer composition to use as content.

Return Value
The initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithFile: (page 26)

Declared In
QCCompositionLayer.h

initWithFile:
Initializes and returns a composition layer using the Quartz Composer composition in the specified file.

- (id)initWithFile:(NSString*)path

Parameters
path

A string that specifies the location of a Quartz Composer composition.

Return Value
The initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithComposition: (page 25)

Declared In
QCCompositionLayer.h

26 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

QCCompositionLayer Class Reference



Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCCompositionParameterView.h

Companion guide Quartz Composer Programming Guide

Overview

The QCCompositionParameterView class allows allows users to edit, in real time, the input parameters of
a composition. The composition can be rendering in any of the following objects: QCRenderer, QCView, or
QCCompositionLayer.

Tasks

Getting and Setting the Renderer

– setCompositionRenderer: (page 30)
Sets the composition parameter view for editing the input parameters of the provided renderer object.

– compositionRenderer (page 28)
Returns the renderer object associated with the composition parameter view.

Checking for Input Parameters

– hasParameters (page 29)
Checks whether the composition that is currently edited by the composition parameter view has any
input parameters.

Overview 27
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

QCCompositionParameterView Class
Reference



Setting and Retrieving the Delegate

– setDelegate: (page 30)
Sets the composition parameter view delegate.

– delegate (page 29)
Returns the composition parameter view delegate.

Managing Background Drawing

– setDrawsBackground: (page 31)
Sets whether the composition parameter view draws its background.

– drawsBackground (page 29)
Returns whether the composition parameter view draws its background.

Setting and Getting the Background Color

– setBackgroundColor: (page 30)
Sets the background color of the composition parameter view.

– backgroundColor (page 28)
Retrieves the background color of the composition parameter view.

Instance Methods

backgroundColor
Retrieves the background color of the composition parameter view.

- (NSColor*) backgroundColor;

Return Value
The color of the background.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

compositionRenderer
Returns the renderer object associated with the composition parameter view.

- (id<QCCompositionRenderer>) compositionRenderer

28 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

QCCompositionParameterView Class Reference



Return Value
A renderer object or nil, if the composition parameter view is not set to a renderer object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCompositionRenderer: (page 30)

Declared In
QCCompositionParameterView.h

delegate
Returns the composition parameter view delegate.

- (id) delegate;

Return Value
The composition parameter view delegate.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

drawsBackground
Returns whether the composition parameter view draws its background.

- (BOOL) drawsBackground;

Return Value
YES if the view draws its background; otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

hasParameters
Checks whether the composition that is currently edited by the composition parameter view has any input
parameters.

- (BOOL) hasParameters

Return Value
YES if the composition has any input parameters.

Instance Methods 29
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

QCCompositionParameterView Class Reference



Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

setBackgroundColor:
Sets the background color of the composition parameter view.

- (void) setBackgroundColor:(NSColor*)color;

Parameters
color

The color to set.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

setCompositionRenderer:
Sets the composition parameter view for editing the input parameters of the provided renderer object.

- (void) setCompositionRenderer:(id<QCCompositionRenderer>)renderer

Parameters
renderer

A QCCompositionRenderer object, either QCView, QCRenderer, or QCCompositionLayer. Pass
nil to unset this renderer.

Discussion
If the renderer is a QCView object, the view track the composition.

Availability
Available in Mac OS X v10.5 and later.

See Also
– compositionRenderer (page 28)

Declared In
QCCompositionParameterView.h

setDelegate:
Sets the composition parameter view delegate.

- (void) setDelegate:(id)delegate;

30 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

QCCompositionParameterView Class Reference



Parameters
delegate

The delegate for the composition parameter view.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

setDrawsBackground:
Sets whether the composition parameter view draws its background.

- (void) setDrawsBackground:(BOOL)flag;

Parameters
flag

YES for the view to draw its background; otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

Instance Methods 31
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

QCCompositionParameterView Class Reference



32 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

QCCompositionParameterView Class Reference



Inherits from NSPanel : NSWindow : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSWindow)
NSAnimatablePropertyContainer (NSWindow)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCCompositionPickerPanel.h

Companion guide Quartz Composer Programming Guide

Overview

The QCCompositionPickerPanel class represents a utility window that allows users to browse compositions
that are in the Quartz Composer composition repository and, if supported, preview the composition. The
QCCompositionPickerPanel class cannot be subclassed.

Tasks

Creating the Utility Window for Browsing Compositions

+ sharedCompositionPickerPanel (page 34)
Returns the shared instance of the composition picker panel.

Getting the Picker Panel View

– compositionPickerView (page 34)
Returns the composition picker view used by the panel so that it can be configured.

Overview 33
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

QCCompositionPickerPanel Class Reference



Class Methods

sharedCompositionPickerPanel
Returns the shared instance of the composition picker panel.

+ (QCCompositionPickerPanel*) sharedCompositionPickerPanel

Return Value
The shared QCCompositionPickerPanel object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerPanel.h

Instance Methods

compositionPickerView
Returns the composition picker view used by the panel so that it can be configured.

- (QCCompositionPickerView*) compositionPickerView;

Return Value
The QCCompositionPickerView used by the composition picker panel.

Discussion
After you retrieve the view, you can configure it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerPanel.h

Notifications

QCCompositionPickerPanelDidSelectCompositionNotification
Posted when the user chooses a composition.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerPanel.h

34 Class Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

QCCompositionPickerPanel Class Reference



Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCCompositionPickerView.h

Companion guide Quartz Composer Programming Guide

Overview

The QCCompositionPickerView class allows users to browse compositions that are in the Quartz Composer
composition repository, and to preview them. You can set the default input parameters for a composition
preview by using the method setDefaultValue:forInputKey:.

Note that the composition picker view does not automatically refresh its content when the composition
repository is updated. It’s your responsibility to perform any necessary updating.

Tasks

Setting and Getting the Background Color

– setBackgroundColor: (page 42)
Sets the background color for the composition picker view.

– backgroundColor (page 38)
Returns the background color of the composition picker view.

Managing Background Drawing

– setDrawsBackground: (page 44)
Sets whether the composition picker view draws its background.

Overview 35
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



– drawsBackground (page 39)
Returns whether the composition picker view draws its background.

Setting Composition Input Parameters

– setDefaultValue:forInputKey: (page 43)
Sets the default value to use for a composition input parameter.

– resetDefaultInputValues (page 41)
Clears all previously set default values for composition input parameters.

Managing Animation

– startAnimation: (page 46)
Starts animating the composition in the composition picker view.

– stopAnimation: (page 46)
Stops animating the composition that is currently animating in the composition picker view.

– isAnimating (page 39)
Returns whether or not the composition picker view is currently animating its composition.

– setMaxAnimationFrameRate: (page 44)
Sets the maximum frame rate for animating compositions.

– maxAnimationFrameRate (page 40)
Retrieves the maximum frame rate for animating compositions.

Controlling Display of Composition Names

– setShowsCompositionNames: (page 45)
Enables the display of composition names in the composition picker view.

– showsCompositionNames (page 46)
Retrieves whether composition names can be shown in the composition picker view.

Setting and Retrieving the View Delegate

– setDelegate: (page 43)
Sets the composition picker view delegate.

– delegate (page 39)
Retrieves the composition picker view delegate.

Managing the Composition Picker View

– setCompositionsFromRepositoryWithProtocol:andAttributes: (page 42)
Sets the compositions in the composition picker view to those that match the specified criteria.

36 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



– compositions (page 38)
Returns the list of compositions that are currently in the composition picker view.

– setAllowsEmptySelection: (page 41)
Sets whether to allow an empty selection in the composition picker view.

– allowsEmptySelection (page 37)
Retrieves the empty-selection state of the composition picker view.

– setCompositionAspectRatio: (page 42)
Sets the aspect ratio used to display compositions in the composition picker view.

– compositionAspectRatio (page 38)
Retrieves the aspect ratio used to display compositions in the composition picker view.

– setSelectedComposition: (page 45)
Sets a composition as selected in the composition picker view.

– selectedComposition (page 41)
Returns the composition that is currently selected in the composition picker view.

Working with Columns and Rows

– setNumberOfColumns: (page 44)
Sets the number of columns in the composition picker view.

– numberOfColumns (page 40)
Retrieves the number of columns in the composition picker view.

– setNumberOfRows: (page 45)
Sets the number of rows in the composition picker view.

– numberOfRows (page 40)
Retrieves the number of rows in the composition picker view.

Instance Methods

allowsEmptySelection
Retrieves the empty-selection state of the composition picker view.

- (BOOL) allowsEmptySelection

Return Value
YES if an empty selection is allowed NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowsEmptySelection: (page 41)

Declared In
QCCompositionPickerView.h

Instance Methods 37
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



backgroundColor
Returns the background color of the composition picker view.

- (NSColor*) backgroundColor;

Return Value
The background color.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setBackgroundColor: (page 42)

Declared In
QCCompositionPickerView.h

compositionAspectRatio
Retrieves the aspect ratio used to display compositions in the composition picker view.

- (NSSize) compositionAspectRatio

Return Value
The aspect ratio.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCompositionAspectRatio: (page 42)

Declared In
QCCompositionPickerView.h

compositions
Returns the list of compositions that are currently in the composition picker view.

- (NSArray*) compositions

Return Value
An array of QCComposition objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCompositionsFromRepositoryWithProtocol:andAttributes: (page 42)

Declared In
QCCompositionPickerView.h

38 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



delegate
Retrieves the composition picker view delegate.

- (id) delegate

Return Value
The delegate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDelegate: (page 43)

Declared In
QCCompositionPickerView.h

drawsBackground
Returns whether the composition picker view draws its background.

- (BOOL) drawsBackground;

Return Value
YES if the composition picker view draws its background; otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDrawsBackground: (page 44)

Declared In
QCCompositionPickerView.h

isAnimating
Returns whether or not the composition picker view is currently animating its composition.

- (BOOL) isAnimating

Return Value
YES if a composition is animating in the composition picker view; NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– startAnimation: (page 46)
– stopAnimation: (page 46)

Declared In
QCCompositionPickerView.h

Instance Methods 39
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



maxAnimationFrameRate
Retrieves the maximum frame rate for animating compositions.

- (float) maxAnimationFrameRate

Return Value
The maximum frame rate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setMaxAnimationFrameRate: (page 44)

Declared In
QCCompositionPickerView.h

numberOfColumns
Retrieves the number of columns in the composition picker view.

- (NSUInteger) numberOfColumns;

Return Value
The number of columns.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setNumberOfColumns: (page 44)

Declared In
QCCompositionPickerView.h

numberOfRows
Retrieves the number of rows in the composition picker view.

- (NSUInteger) numberOfRows;

Return Value
The number of columns.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setNumberOfRows: (page 45)

Declared In
QCCompositionPickerView.h

40 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



resetDefaultInputValues
Clears all previously set default values for composition input parameters.

- (void) resetDefaultInputValues

Discussion
This method resets the defaults that were set with the method setDefaultValue:forInputKey: (page
43).

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerView.h

selectedComposition
Returns the composition that is currently selected in the composition picker view.

- (QCComposition*) selectedComposition

Return Value
A QCComposition object, or nil if a composition is not selected.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSelectedComposition: (page 45)

Declared In
QCCompositionPickerView.h

setAllowsEmptySelection:
Sets whether to allow an empty selection in the composition picker view.

- (void) setAllowsEmptySelection:(BOOL)flag

Parameters
flag

YES to allow an empty selection. The default value is NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsEmptySelection (page 37)

Declared In
QCCompositionPickerView.h

Instance Methods 41
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



setBackgroundColor:
Sets the background color for the composition picker view.

- (void) setBackgroundColor:(NSColor*)aColor;

Parameters
aColor

The color for the background.

Availability
Available in Mac OS X v10.5 and later.

See Also
– backgroundColor (page 38)

Declared In
QCCompositionPickerView.h

setCompositionAspectRatio:
Sets the aspect ratio used to display compositions in the composition picker view.

- (void) setCompositionAspectRatio:(NSSize)ratio

Parameters
ratio

An aspect ratio.

Availability
Available in Mac OS X v10.5 and later.

See Also
– compositionAspectRatio (page 38)

Declared In
QCCompositionPickerView.h

setCompositionsFromRepositoryWithProtocol:andAttributes:
Sets the compositions in the composition picker view to those that match the specified criteria.

- (void) setCompositionsFromRepositoryWithProtocol:(NSString*)protocol 
andAttributes:(NSDictionary*)attributes

Parameters
protocol

The protocols that you want compositions shown in the picker view to conform to. You can pass any
of these protocols: QCCompositionProtocolAnimation,
QCCompositionProtocolImageProducer, QCCompositionProtocolImageFilter,
QCCompositionProtocolImageCompositor, QCCompositionProtocolImageTransition, and
QCCompositionProtocolScreenSaverRSS.

42 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



attributes
A dictionary that contains the attributes, and their associated values, that you want compositions in
the picker view to match. For example, you can pass: QCCompositionAttributeNameKey,
QCCompositionAttributeDescriptionKey, QCCompositionAttributeCopyrightKey,
QCCompositionAttributeBuiltInKey, and QCCompositionAttributeTimeDependentKey.
Pass nil if you don’t want to filter based on the attributes.

Availability
Available in Mac OS X v10.5 and later.

See Also
– compositions (page 38)

Declared In
QCCompositionPickerView.h

setDefaultValue:forInputKey:
Sets the default value to use for a composition input parameter.

- (void) setDefaultValue:(id)value forInputKey:(NSString*)key

Parameters
value

This default value overrides any initial value existing for composition input parameters with this key.
Pass nil to clear the default value.

key
The input parameter key whose default value you want to set.

Availability
Available in Mac OS X v10.5 and later.

See Also
– resetDefaultInputValues (page 41)

Declared In
QCCompositionPickerView.h

setDelegate:
Sets the composition picker view delegate.

- (void) setDelegate:(id)delegate

Parameters
delegate

The delegate to set.

Availability
Available in Mac OS X v10.5 and later.

See Also
– delegate (page 39)

Instance Methods 43
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



Declared In
QCCompositionPickerView.h

setDrawsBackground:
Sets whether the composition picker view draws its background.

- (void) setDrawsBackground:(BOOL)flag;

Parameters
flag

The background drawing state. Pass YES if the composition picker view draws its background.

Availability
Available in Mac OS X v10.5 and later.

See Also
– drawsBackground (page 39)

Declared In
QCCompositionPickerView.h

setMaxAnimationFrameRate:
Sets the maximum frame rate for animating compositions.

- (void) setMaxAnimationFrameRate:(float)maxFPS

Parameters
maxFPS

A frame rate in frames per second. Pass 0.0 to specify no limit to the maximum value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– maxAnimationFrameRate (page 40)

Declared In
QCCompositionPickerView.h

setNumberOfColumns:
Sets the number of columns in the composition picker view.

- (void) setNumberOfColumns:(NSUInteger)columns;

Parameters
columns

The number of columns.

Availability
Available in Mac OS X v10.5 and later.

44 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



See Also
– numberOfColumns (page 40)

Declared In
QCCompositionPickerView.h

setNumberOfRows:
Sets the number of rows in the composition picker view.

- (void) setNumberOfRows:(NSUInteger)rows;

Parameters
columns

The number of rows.

Availability
Available in Mac OS X v10.5 and later.

See Also
– numberOfRows (page 40)

Declared In
QCCompositionPickerView.h

setSelectedComposition:
Sets a composition as selected in the composition picker view.

- (void) setSelectedComposition:(QCComposition*)composition

Parameters
composition

The composition to select. Pass nil if you don’t want to select a composition. The behavior is undefined
if you pass a composition that is not in the list of compositions that are currently in the composition
picker view.

Availability
Available in Mac OS X v10.5 and later.

See Also
– selectedComposition (page 41)

Declared In
QCCompositionPickerView.h

setShowsCompositionNames:
Enables the display of composition names in the composition picker view.

- (void) setShowsCompositionNames:(BOOL)flag

Instance Methods 45
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



Parameters
flag

YES specifies to show compositions name. The default value is NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerView.h

showsCompositionNames
Retrieves whether composition names can be shown in the composition picker view.

- (BOOL) showsCompositionNames

Return Value
YES if the display of names is enabled; otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerView.h

startAnimation:
Starts animating the composition in the composition picker view.

- (void) startAnimation:(id)sender

Parameters
sender

The object initiating the animation.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stopAnimation: (page 46)
– isAnimating (page 39)

Declared In
QCCompositionPickerView.h

stopAnimation:
Stops animating the composition that is currently animating in the composition picker view.

- (void) stopAnimation:(id)sender

46 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



Parameters
sender

The object stopping the animation.

Availability
Available in Mac OS X v10.5 and later.

See Also
– startAnimation: (page 46)
– isAnimating (page 39)

Declared In
QCCompositionPickerView.h

Notifications

QCCompositionPickerViewDidSelectCompositionNotification
Posted when the user selects a composition in the picker view.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerView.h

Notifications 47
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



48 Notifications
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

QCCompositionPickerView Class Reference



Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCCompositionRepository.h

Companion guide Quartz Composer Programming Guide

Overview

The QCCompositionRepository class represents a system-wide centralized repository of built-in and
installed Quartz Composer compositions (/Library/Compositions and ~/Library/Compositions). The
QCCompositionRepository class cannot be subclassed.

Compositions in the repository are represented by the QCComposition class. You can use the methods of
the QCCompositionRepository class to fetch all compositions or only those that meet specific criteria.

Tasks

Getting the Composition Repository

+ sharedCompositionRepository (page 50)
Returns the shared instance of the composition repository.

Fetching Compositions

– compositionWithIdentifier: (page 51)
Returns the composition that corresponds to the identifier.

– compositionsWithProtocols:andAttributes: (page 50)
Returns an array of compositions that match a set of criteria.

– allCompositions (page 50)
Returns an array that contains all compositions currently in the composition repository.

Overview 49
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

QCCompositionRepository Class Reference



Class Methods

sharedCompositionRepository
Returns the shared instance of the composition repository.

+ (QCCompositionRepository*) sharedCompositionRepository

Return Value
The shared instance of QCCompositionRepository.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionRepository.h

Instance Methods

allCompositions
Returns an array that contains all compositions currently in the composition repository.

- (NSArray*) allCompositions

Return Value
An array of QCComposition objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
– compositionWithIdentifier: (page 51)
– compositionsWithProtocols:andAttributes: (page 50)

Declared In
QCCompositionRepository.h

compositionsWithProtocols:andAttributes:
Returns an array of compositions that match a set of criteria.

- (NSArray*) compositionsWithProtocols:(NSArray*)protocols 
andAttributes:(NSDictionary*)attributes

50 Class Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

QCCompositionRepository Class Reference



Parameters
protocols

The protocols that you want compositions to conform to. Pass nil if you don’t want to filter based
on the protocol. You can pass any of these protocols: QCCompositionProtocolAnimation,
QCCompositionProtocolImageProducer, QCCompositionProtocolImageFilter,
QCCompositionProtocolImageCompositor, QCCompositionProtocolImageTransition, and
QCCompositionProtocolScreenSaverRSS.

attributes
A dictionary that contains the attributes, and their associated values, that you want compositions to
match. Pass nil if you don’t want to filter based on the attributes. For example, you can pass any of
these attributes:QCCompositionAttributeNameKey,QCCompositionAttributeDescriptionKey,
QCCompositionAttributeCopyrightKey, QCCompositionAttributeBuiltInKey, and
QCCompositionAttributeTimeDependentKey.

Return Value
An array of QCComposition objects that meet the supplied criteria.

Availability
Available in Mac OS X v10.5 and later.

See Also
– compositionWithIdentifier: (page 51)
– allCompositions (page 50)

Declared In
QCCompositionRepository.h

compositionWithIdentifier:
Returns the composition that corresponds to the identifier.

- (QCComposition*) compositionWithIdentifier:(NSString*)identifier

Parameters
identifier

A string that uniquely identifies the composition to retrieve.

Return Value
The composition identified by the provided string, or nil if there is no composition with that identifier in
the composition repository.

Availability
Available in Mac OS X v10.5 and later.

See Also
– compositionsWithProtocols:andAttributes: (page 50)
– allCompositions (page 50)

Declared In
QCCompositionRepository.h

Instance Methods 51
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

QCCompositionRepository Class Reference



Notifications

QCCompositionRepositoryDidUpdateNotification
Posted whenever the list of compositions in the composition repository is updated.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionRepository.h

52 Notifications
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

QCCompositionRepository Class Reference



Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCPlugIn.h

Companion guides Quartz Composer Custom Patch Programming Guide
Quartz Composer Programming Guide

Overview

The QCPlugIn class provides the base class to subclass for writing custom Quartz Composer patches. You
implement a custom patch by subclassing QCPlugIn, overriding the appropriate methods, packaging the
code as an NSBundle object, and installing the bundle in the appropriate location. A bundle can contain
more than one subclass of QCPlugIn, allowing you to provide a suite of custom patches in one bundle.
Quartz Composer Custom Patch Programming Guide provides detailed instructions on how to create and
package a custom patch. QCPlugIn Class Reference supplements the information in the programming guide.

The methods related to the executing the custom patch (called when the Quartz Composer engine is rendering)
are passed an opaque object that conforms to the QCPlugInContext Protocol protocol. This object
represents the execution context of the QCPlugIn object. You should not retain the execution context or
use it outside of the scope of the execution method that it is passed to.

Tasks

Defining the Characteristics of a Custom Patch

+ executionMode (page 57)
Returns the execution mode of the custom patch.

+ timeMode (page 59)
Returns the time mode for the custom patch.

Overview 53
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Executing a Custom Patch

– execute:atTime:withArguments: (page 63)
Performs the processing or rendering tasks appropriate for the custom patch.

Performing Custom Tasks During Execution

– startExecution: (page 66)
Allows you to perform custom setup tasks before the Quartz Composer engine starts rendering.

– enableExecution: (page 63)
Allows you to perform custom tasks when the execution of the QCPlugIn object is resumed.

– disableExecution: (page 62)
Allows you to perform custom tasks when the execution of the QCPlugIn object is paused.

– stopExecution: (page 67)
Allows you to perform custom tasks when the QCPlugIn object stops executing.

Defining Patch and Property Port Attributes

+ attributes (page 55)
Returns a dictionary that contains strings for the user interface that describe the custom patch.

+ attributesForPropertyPortWithKey: (page 56)
Returns a dictionary that contains strings for the user interface that describe the optional attributes
for ports created from properties.

Defining Internal Settings

– createViewController (page 61)
Creates and returns a view controller for the Settings pane of a custom patch.

+ plugInKeys (page 58)
Returns the keys for the internal settings of a custom patch.

Supporting Saving and Retrieving Internal Settings

– serializedValueForKey: (page 65)
Provides custom serialization for patch internal settings that do not comply to the NSCoding protocol.

– setSerializedValue:forKey: (page 65)
Provides custom deserialization for patch internal settings that were previously serialized using the
method serializedValueForKey: (page 65).

Adding Ports Dynamically

– addInputPortWithType:forKey:withAttributes: (page 60)
Adds an input port of the specified type and associates a key and attributes with the port.

54 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



– removeInputPortForKey: (page 64)
Removes the input port for a given key.

– addOutputPortWithType:forKey:withAttributes: (page 60)
Adds an output port of the specified type and associates a key and attributes with the port.

– removeOutputPortForKey: (page 64)
Removes the output port for a given key.

Getting and Setting Port Values

– didValueForInputKeyChange: (page 62)
Returns whether the input port value changed since the last execution of the custom patch.

– valueForInputKey: (page 67)
Returns the current value for an input port.

– setValue:forOutputKey: (page 66)
Sets the value of an output port.

Loading Bundle and Custom Patches Manually

+ loadPlugInAtPath: (page 57)
Loads a Quartz Composer plug-in bundle from the specified path.

+ registerPlugInClass: (page 58)
Registers a QCPlugIn subclass.

Ordering Property Ports

+ sortedPropertyPortKeys (page 59)
Returns and array of property port keys in the order you want them to appear in the user interface.

Class Methods

attributes
Returns a dictionary that contains strings for the user interface that describe the custom patch.

+ (NSDictionary*) attributes

Return Value
The dictionary can contain one or more of these keys along with the appropriate string:
QCPlugInAttributeNameKey (page 68), QCPlugInAttributeDescriptionKey (page 68), and
QQCPlugInAttributeCopyrightKey (page 68).

Class Methods 55
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Discussion
It’s recommended that you implement this method to enhance the experience of those who use your custom
patch. The attribute name string that you provide is displayed in the Quartz Composer editor window when
the custom patch name is selected in the Patch Creator (see figure). The attribute description key is displayed
in the Information pane of the inspector for the custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ attributesForPropertyPortWithKey: (page 56)

Declared In
QCPlugIn.h

attributesForPropertyPortWithKey:
Returns a dictionary that contains strings for the user interface that describe the optional attributes for ports
created from properties.

+ (NSDictionary*) attributesForPropertyPortWithKey:(NSString*)key

Parameters
key

The name of the property.

Return Value
A dictionary that contains key-value pairs for the port’s attributes. The keys must be one or more of the
constants defined in “Input and Output Port Attributes” (page 68).

56 Class Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Discussion
It’s recommended that you implement this method to enhance the experience of those who use your custom
patch. The attributes appear in a help tag when the user hovers a pointer over the property port on your
custom patch. At a minimum, you should provide a user-readable name for the port. It might also be helpful
to provide default, minimum, and maximum values for the port.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ attributes (page 55)

Declared In
QCPlugIn.h

executionMode
Returns the execution mode of the custom patch.

+ (QCPlugInExecutionMode) executionMode

Return Value
The execution mode of the custom patch. See “Execution Modes” (page 72) for the constants you can
return.

Discussion
You must implement this method to define whether your custom patch is a provider, a processor, or a
consumer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

loadPlugInAtPath:
Loads a Quartz Composer plug-in bundle from the specified path.

+ (BOOL) loadPlugInAtPath:(NSString*)path

Parameters
path

The location of the bundle.

Return Value
YES if successful.

Discussion
Call this method only if you need to load a plug-in bundle from a nonstandard location. Typically you don’t
need to call this method because Quartz Composer automatically loads bundles that you install in one of
the following locations:

 ■ /Library/Graphics/Quartz Composer Plug-Ins

Class Methods 57
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



 ■ ~/Library/Graphics/Quartz Composer Plug-Ins

This method does nothing if the bundle is already loaded. (This method does not load in all environments.
Web Kit, for example, cannot load custom patches.)

The bundle can contain more than one QCPlugIn subclass. After the bundle is loaded, each QCPlugIn
subclass appears as a patch in the Quartz Composer patch library.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

plugInKeys
Returns the keys for the internal settings of a custom patch.

+ (NSArray*) plugInKeys

Return Value
An array of keys used for key-value coding (KVC) of the internal settings.

Discussion
You must override this method if your patch provides a Settings pane. This keys are used for automatic
serialization of the internal settings and are also used by the QCPlugInViewController instance for the
Settings pane. The implementation is straightforward; the keys are strings that represent the instance variables
used for the Settings pane. For example, the plugInKeys method for these instance variables:

@property(ivar, byref) NSColor * systemColor;
@property(ivar, byref) NSConfiguration * systemConfiguration;

are:

+ (NSArray*) plugInKeys
{
    return [NSArray arrayWithObjects: @"systemColor",
                                      @"systemConfiguration",
                                      nil];
}

Availability
Available in Mac OS X v10.5 and later.

See Also
– createViewController (page 61)

Declared In
QCPlugIn.h

registerPlugInClass:
Registers a QCPlugIn subclass.

58 Class Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



+ (void) registerPlugInClass:(Class)aClass

Parameters
aClass

The QCPlugIn subclass.

Discussion
You call this method only if the code for your custom patch is mixed with your application code, and you
plan only to use the custom patch from within your application.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

sortedPropertyPortKeys
Returns and array of property port keys in the order you want them to appear in the user interface.

+ (NSArray*) sortedPropertyPortKeys;

Return Value
The property port keys in the order you want them to appear in the user interface.

Discussion
Override this method to specify an optional ordering for property based ports in the user interface.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

timeMode
Returns the time mode for the custom patch.

+ (QCPlugInTimeMode) timeMode

Return Value
The time mode of the custom patch. See “Time Modes” (page 73) for the constants you can return.

Discussion
You must implement this method to define whether you custom patch depends on time, doesn’t depend
on time, or needs time to idle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

Class Methods 59
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Instance Methods

addInputPortWithType:forKey:withAttributes:
Adds an input port of the specified type and associates a key and attributes with the port.

- (void) addInputPortWithType:(NSString*)type forKey:(NSString*)key 
withAttributes:(NSDictionary*)attributes

Parameters
type

The port type. See “Port Input and Output Types” (page 69).

key
The key to associate with the port.

attributes
A dictionary of attributes for the port. See “Input and Output Port Attributes” (page 68).
Although the dictionary is optional, it’s recommended that provide attributes to enhance the experience
of those who use your custom patch. The attributes appear in a help tag when the user hovers a
pointer over the property port on your custom patch. (See
attributesForPropertyPortWithKey: (page 56).) Pass nil if you do not want to provide
attributes.

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 63)
method or if there's already an input or output port with that key.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeInputPortForKey: (page 64)

Declared In
QCPlugIn.h

addOutputPortWithType:forKey:withAttributes:
Adds an output port of the specified type and associates a key and attributes with the port.

- (void) addOutputPortWithType:(NSString*)type forKey:(NSString*)key 
withAttributes:(NSDictionary*)attributes

Parameters
type

The port type. See “Port Input and Output Types” (page 69).

key
The key to associate with the port.

60 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



attributes
A dictionary of attributes for the port. See “Input and Output Port Attributes” (page 68).
Although the dictionary is optional, it’s recommended that provide attributes to enhance the experience
of those who use your custom patch. The attributes appear in a help tag when the user hovers a
pointer over the property port on your custom patch. (See
attributesForPropertyPortWithKey: (page 56).) Pass nil if you do not want to provide
attributes.

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 63)
method or if there is already an output port with that key.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeOutputPortForKey: (page 64)

Declared In
QCPlugIn.h

createViewController
Creates and returns a view controller for the Settings pane of a custom patch.

- (QCPlugInViewController*) createViewController

Return Value
A view controller for the custom patch. Quartz Composer releases the controller when it is no longer needed.
If necessary, you can return a subclass of QCPlugInViewController, but this it not typically done.

Discussion
This extension to the QCPlugInViewController class provides user-interface support for the Settings pane
of the inspector for a custom patch. You must override this method if your custom patch provides a Settings
pane. The QCPlugInViewController object acts as a controller for Cocoa bindings between the custom
patch instance (the model) and the NSView that contains the controls. It loads the nib file from the bundle.

The implementation is straightforward. You allocate a QCPlugInViewController object, initialize it, and
provide the name of the nib file that contains the user interface for the Settings pane.

Note that this method follows the Core Foundation “create” rule. See the ownership policy in Memory
Management Programming Guide for Core Foundation.

For example, if the nib file name that contains the settings pane is MySettingsPane.nib, the implementation
is:

- (QCPlugInViewController *) createViewController
{
    return [[QCPlugInViewController alloc] initWithPlugIn:self
                                              viewNibName:@"MySettingsPane"];
}

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 61
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



See Also
+ plugInKeys (page 58)

Declared In
QCPlugInViewController.h

didValueForInputKeyChange:
Returns whether the input port value changed since the last execution of the custom patch.

- (BOOL) didValueForInputKeyChange:(NSString*)key

Parameters
key

The key for the input port whose value you want to check.

Return Value
YES if the value on the input port changed since the last time the execute:atTime:withArguments: (page
63) method was called; always returns NO if called outside of the execute:atTime:withArguments:
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– valueForInputKey: (page 67)

Declared In
QCPlugIn.h

disableExecution:
Allows you to perform custom tasks when the execution of the QCPlugIn object is paused.

- (void) disableExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when results are no longer being pulled from the custom
patch. You can optionally override this execution method to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

See Also
– enableExecution: (page 63)

Declared In
QCPlugIn.h

62 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



enableExecution:
Allows you to perform custom tasks when the execution of the QCPlugIn object is resumed.

- (void) enableExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when results start to be pulled from the custom patch. You
can optionally override this execution method to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

See Also
– disableExecution: (page 62)

Declared In
QCPlugIn.h

execute:atTime:withArguments:
Performs the processing or rendering tasks appropriate for the custom patch.

- (BOOL) execute:(id<QCPlugInContext>)context atTime:(NSTimeInterval)time 
withArguments:(NSDictionary*)arguments

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

time
The execution interval.

arguments
A dictionary of arguments that can be used during execution. See “Execution Arguments” (page
71).

Return Value
NO indicates the custom patch was not able to execute successfully. In this case, the Quartz Composer engine
stops rendering the current frame.

Discussion
The Quartz Composer engine calls this method each time your custom patch needs to execute. You must
implement this method. The method should perform whatever tasks are appropriate for the custom patch,
such as:

 ■ reading values from the input ports

 ■ computing output values

Instance Methods 63
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



 ■ updating the values on the output ports

 ■ rendering to the execution context

For example implementations of this method, see Quartz Composer Custom Patch Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

removeInputPortForKey:
Removes the input port for a given key.

- (void) removeInputPortForKey:(NSString*)key

Parameters
key

The key associated with the port that you want to remove.

Discussion
This method throws an exception if from within the execute:atTime:withArguments: (page 63) method,
if there is not an input port with that key, or if the port is created from a property.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addInputPortWithType:forKey:withAttributes: (page 60)

Declared In
QCPlugIn.h

removeOutputPortForKey:
Removes the output port for a given key.

- (void) removeOutputPortForKey:(NSString*)key

Parameters
key

The key associated with the port that you want to remove.

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 63)
method, if there is not an output port with that key, or if the port is created from a property.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addOutputPortWithType:forKey:withAttributes: (page 60)

64 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Declared In
QCPlugIn.h

serializedValueForKey:
Provides custom serialization for patch internal settings that do not comply to the NSCoding protocol.

- (id) serializedValueForKey:(NSString*)key

Parameters
key

The key for the value to retrieve.

Return Value
Either nil or a value that’s compliant with property lists: NSString, NSNumber, NSDate, NSData, NSArray,
or NSDictionary.

Discussion
If your patch has internal settings that do not conform to the NSCoding protocol, you must implement this
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSerializedValue:forKey: (page 65)

Declared In
QCPlugIn.h

setSerializedValue:forKey:
Provides custom deserialization for patch internal settings that were previously serialized using the method
serializedValueForKey: (page 65).

- (void) setSerializedValue:(id)serializedValue forKey:(NSString*)key

Parameters
serializedValue

The value to deserialize.

key
The key for the value to deserialize.

Discussion
If your patch has internal settings that do not conform to the NSCoding protocol, you must implement this
method. After you deserialize the value, you need to call [self set:value forKey:key] to set the
corresponding internal setting of the custom patch instance to the deserialized value.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

Instance Methods 65
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



setValue:forOutputKey:
Sets the value of an output port.

- (BOOL) setValue:(id)value forOutputKey:(NSString*)key

Parameters
key

The key associated with the output port whose value you want to set.

Return Value
YES if successful; NO if called outside of the execute:atTime:withArguments: (page 63) method.

Discussion
You call this method from within your execute:atTime:withArguments: (page 63) method to set the
output values of your custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
– valueForInputKey: (page 67)
– didValueForInputKeyChange: (page 62)

Declared In
QCPlugIn.h

startExecution:
Allows you to perform custom setup tasks before the Quartz Composer engine starts rendering.

- (BOOL) startExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Return Value
NO indicates a fatal error occurred and prevents the Quartz Composer engine from starting.

Discussion
The Quartz Composer engine calls this method when your custom patch starts to render. You can optionally
override this execution method to perform setup tasks.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stopExecution: (page 67)

Declared In
QCPlugIn.h

66 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



stopExecution:
Allows you to perform custom tasks when the QCPlugIn object stops executing.

- (void) stopExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when it stops executing. You can optionally override this
execution method to perform cleanup tasks.

Availability
Available in Mac OS X v10.5 and later.

See Also
– startExecution: (page 66)

Declared In
QCPlugIn.h

valueForInputKey:
Returns the current value for an input port.

- (id) valueForInputKey:(NSString*)key

Parameters
key

The key for the input port you want to check.

Return Value
The value associated with the key or nil if called outside of the execute:atTime:withArguments: (page
63) method.

Discussion
You call this method from within your execute:atTime:withArguments: (page 63) method to retrieve
the input values of your custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setValue:forOutputKey: (page 66)
– didValueForInputKeyChange: (page 62)

Declared In
QCPlugIn.h

Instance Methods 67
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Constants

Patch Attributes
Attributes for custom patches.

extern NSString* const QCPlugInAttributeNameKey;
extern NSString* const QCPlugInAttributeDescriptionKey;
extern NSString* const QCPlugInAttributeCopyrightKey;

Constants
QCPlugInAttributeNameKey

The key for the custom patch name. The associated value is an NSString object.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInAttributeDescriptionKey
The key for the custom patch description. The associated value is an NSString object.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QQCPlugInAttributeCopyrightKey
The key for the custom patch copyright information. The associated value is an NSString object.

Declared In
QCPlugIn.h

Input and Output Port Attributes
Attributes for input and output ports.

extern NSString* const QCPortAttributeTypeKey;
extern NSString* const QCPortAttributeNameKey;
extern NSString* const QCPortAttributeDefaultValueKey;
extern NSString* const QCPortAttributeMinimumValueKey;
extern NSString* const QCPortAttributeMaximumValueKey;
extern NSString* const QCPortAttributeDefaultValueKey;
extern NSString* const QCPortAttributeMenuItemsKey;

Constants
QCPortAttributeTypeKey

The key for the port type. The associated value can be of any of the following constants:
QCPortTypeBoolean (page 70), QCPortTypeIndex (page 70), QCPortTypeNumber (page 70),
QCPortTypeString (page 70), QCPortTypeColor (page 70), QCPortTypeImage (page 70), or
QCPortTypeStructure (page 70).

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeNameKey
The key for the port name. The associated value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

68 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



QCPortAttributeMinimumValueKey
The key for the port minimum value. The associated value is an NSNumber object that specifies the
minimum numerical value accepted by the port.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeMaximumValueKey
The key for the port maximum value. The associated value is an NSNumber object that specifies the
maximum numerical value accepted by the port.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeDefaultValueKey
The key for the port default value. You can use this key only for value ports (Boolean, Index, Number,
Color and String).

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPortAttributeMenuItemsKey
The key for the menu items. The associated value is an array of strings that are displayed in the user
interface as a pop-up menu when the user double-clicks a port, as shown for the Blending input port

of the Billboard patch. You can use this key only for an index port.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Port Input and Output Types
Data types for input and output ports.

Constants 69
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



extern NSString* const QCPortTypeBoolean;
extern NSString* const QCPortTypeIndex;
extern NSString* const QCPortTypeNumber;
extern NSString* const QCPortTypeString;
extern NSString* const QCPortTypeColor;
extern NSString* const QCPortTypeImage;
extern NSString* const QCPortTypeStructure;

Constants
QCPortTypeBoolean

The port type for a Boolean value. The associated value can be an NSNumber object or any object
that responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeIndex
The port type for an index value. The associated value can be an NSNumber object or any object that
responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeNumber
The port type for a number value. The associated value can be an NSNumber object or any object that
responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeString
The port type for a string. The associated value can be an NSString object or any object that responds
to the -stringValue or -description methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeColor
The port type for a color value. The associated value must be an NSColor object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeImage
The port type for an image. The associated value can be an NSImage object or a CIImage object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeStructure
The port type for an array, dictionary, or other structure, such as an NSArray or NSDictionary object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

70 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Pixel Formats
Supported image pixel formats.

extern NSString* const QCPlugInPixelFormatARGB8;
extern NSString* const QCPlugInPixelFormatBGRA8;
extern NSString* const QCPlugInPixelFormatRGBAf;
extern NSString* const QCPlugInPixelFormatI8;
extern NSString* const QCPlugInPixelFormatIf;

Constants
QCPlugInPixelFormatARGB8

An ARGB8 format. The alpha component is stored in the most significant bits of each pixel. Each pixel
component is 8 bits. For best performance, use this format on PowerPC-based Macintosh computers,
as it represents of the order of the data in memory.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatBGRA8
A BGRA8 format. The alpha component is stored in the least significant bits of each pixel. Each pixel
component is 8 bits. For best performance, use this format on Intel-PC-based Macintosh computers,
as it represents of the order of the data in memory.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatRGBAf
An RGBAf format. Pixel components are represented as floating-point values.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatI8
An I8 format. Intensity information is represented as an 8-bit value.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatIf
An If format. Intensity information is represented as a floating-point value.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Execution Arguments
Arguments to the method execute:atTime:withArguments: (page 63).

Constants 71
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



extern NSString* const QCPlugInExecutionArgumentEventKey;
extern NSString* const QCPlugInExecutionArgumentMouseLocationKey;

Constants
QCPlugInExecutionArgumentEventKey

The current NSEvent if available.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInExecutionArgumentMouseLocationKey
The current location of the mouse (as an NSPoint object stored in an NSValue object) in normalized
coordinates relative to the OpenGL context viewport ([0,1]x[0,1] with the origin (0,0) at the lower-left
corner).

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Execution Modes
Execution modes for custom patches.

typedef enum {
    kQCPlugInExecutionModeProvider = 1,
    kQCPlugInExecutionModeProcessor,
    kQCPlugInExecutionModeConsumer
} QCPlugInExecutionMode;

Constants
kQCPlugInExecutionModeProvider

A provider execution mode. The custom patch executes on demand—that is, whenever data is
requested of it, but at most once per frame.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInExecutionModeProcessor
A processor execution mode. The custom patch executes whenever its inputs change or if the time
change (assuming it's time-dependent).

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInExecutionModeConsumer
A consumer execution mode. The custom patch always executes assuming the value of its Enable
input port is true. (The Enable port is automatically added by the system.)

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

72 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Time Modes
Time modes for custom patches.

typedef enum {
    kQCPlugInTimeModeNone = 0,
    kQCPlugInTimeModeIdle,
    kQCPlugInTimeModeTimeBase
} QCPlugInTimeMode;

Constants
kQCPlugInTimeModeNone

No time dependency. The custom patch does not depend on time at all. (It does not use the time
parameter of the execute:atTime:withArguments: method.)

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInTimeModeIdle
An idle time dependency. The custom patch does not depend on time but needs the system to execute
it periodically. For example if the custom patch connects to a piece of hardware, to ensure that it
pulls data from the hardware, you would set the custom patch time dependency to idle time mode.
This time mode is typically used with providers.]]

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInTimeModeTimeBase
A time base dependency. The custom patch does depend on time explicitly and has a time base
defined by the system. (It uses the time parameter of the execute:atTime:withArguments:
method.)

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Constants 73
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



74 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

QCPlugIn Class Reference



Inherits from NSViewController : NSResponder : NSObject

Conforms to NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCPlugInViewController.h

Companion guides Quartz Composer Custom Patch Programming Guide
Quartz Composer Programming Guide

Overview

The QCPlugInViewController class communicates (through Cocoa bindings) between a custom patch
and the view used for the internal settings of the custom patch. Only custom patches that use internal settings
exposed to the user need to use the QCPlugInViewController class.

You access the internal settings of a custom patch through key-value coding (KVC). All the KVC keys that
represent the internal settings of the custom patch must be listed in its plugInKeys method.

The view controller for a custom patch expects

 ■ the nib file File's Owner class set to the QCPlugInViewController class

 ■ the view outlet connected to the view that contains the editing controls

The controls are bound to the File's Owner as the target and plugIn.XXX as the model key path, where
XXX is the KVC key for a given internal setting of the custom patch instance.

Tasks

Creating a Controller

– initWithPlugIn:viewNibName: (page 76)
Creates and initializes a controller for the specified QCPlugIn object and nib file.

Overview 75
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

QCPlugInViewController Class Reference



Getting the QCPlugIn Object

– plugIn (page 76)
Returns the QCPlugIn object associated with the view controller for the custom patch.

Instance Methods

initWithPlugIn:viewNibName:
Creates and initializes a controller for the specified QCPlugIn object and nib file.

- (id) initWithPlugIn:(QCPlugIn*)plugIn viewNibName:(NSString*)name

Parameters
plugIn

A QCPlugIn object that uses internal settings.

name
The name of the nib file that contains the view for the custom patch.

Return Value
A QCPlugInViewController object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugInViewController.h

plugIn
Returns the QCPlugIn object associated with the view controller for the custom patch.

- (QCPlugIn*) plugIn

Return Value
The QCPlugIn object associated with the view controller for the custom patch.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugInViewController.h

76 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

QCPlugInViewController Class Reference



Inherits from NSObject

Conforms to QCCompositionRenderer
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCRenderer.h

Availability Available in Mac OS X v10.4 and later.

Overview

A QCRenderer class is designed for low-level rendering of Quartz Composer compositions. This is the class
to use if you want to be in charge of rendering a composition to a specific OpenGL context—either using
the NSOpenGLContext class or a CGLContextObj object. QCRenderer also allows you to load, play, and
control a composition.

To render a composition to a specific OpenGL context:

 ■ Create an instance of QCRenderer using one of the initialization methods, such as
initWithOpenGLContext:pixelFormat:file: (page 81).

 ■ Render frames by calling the method renderAtTime:arguments: (page 81)

 ■ If you use double buffering in OpenGL, you must swap the OpenGL buffers.

 ■ Release the renderer with you no longer need it.

This code snippet shows how to implement these tasks:

NSOpenGLContext*     context = [myNSOpenGLView openGLContext];
NSOpenGLPixelFormat*  format = [myNSOpenGLView pixelFormat];
NSString*               path = @”/Users/MyName/MyComposition.qtz”;
QCRenderer* myRenderer;
// Create a Quartz Composer renderer.
myRenderer = [[QCRenderer alloc] initWithOpenGLContext:context
                                           pixelFormat:format
                                                  file:path];
// Render the first 10 seconds of the composition with steps of 1/25s.
for(double t = 0.0; t <= 10.0; t += 1.0/25.0)
{
  [myRenderer renderAtTime:t arguments:nil];
  [context flushBuffer]; //Required on double-buffered contexts
}
// Clean up

Overview 77
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



 [renderer release];

Tasks

Creating and Initializing a Renderer

– initWithComposition:colorSpace: (page 80)
Creates a renderer object with a composition object and a color space.

– initWithOpenGLContext:pixelFormat:file: (page 81)
Creates a renderer object with an NSOpenGLContext object and a composition file.

– initWithCGLContext:pixelFormat:colorSpace:composition: (page 80)
Creates a renderer object with a CGLContextObj object, a pixel format, a color space, and a
composition object.

– initOffScreenWithSize:colorSpace:composition: (page 79)
Creates an offscreen renderer of a given size with the provided color space and composition object.

Rendering a Composition

– renderAtTime:arguments: (page 81)
Renders a frame of a composition at the specified time.

Getting the Composition Object

– composition (page 78)
Returns the composition object associated with the renderer.

Taking Snapshot Images

– snapshotImage (page 82)
Returns an NSImage object of the current image in the OpenGL context associated with the renderer.

– createSnapshotImageOfType: (page 79)
Returns the current image in the OpenGL context associated with the renderer, as an image object
of the provided image type.

Instance Methods

composition
Returns the composition object associated with the renderer.

- (QCComposition*) composition

78 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



Return Value
The composition object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

createSnapshotImageOfType:
Returns the current image in the OpenGL context associated with the renderer, as an image object of the
provided image type.

- (id) createSnapshotImageOfType:(NSString*)type

Parameters
type

A string that specifies any of the following image types: NSBitmapImageRep, NSImage, CIImage,
CGImage, CVOpenGLBuffer, CVPixelBuffer.

Return Value
The snapshot image in the provided image type. You are responsible for releasing this object when you no
longer need it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

initOffScreenWithSize:colorSpace:composition:
Creates an offscreen renderer of a given size with the provided color space and composition object.

- (id) initOffScreenWithSize:(NSSize)size colorSpace:(CGColorSpaceRef)colorSpace 
composition:(QCComposition*)composition

Parameters
size

The size of the offscreen renderer.

colorSpace
A Quartz color space object. This must be an RGB color space. Pass NULL to use the default RGB color
space. For more information on Quartz color spaces, see Quartz 2D Programming Guide.

composition
A QCComposition object.

Return Value
The initialized QCRenderer object or nil if initialization is not successful.

Instance Methods 79
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



Discussion
This method creates an internal OpenGL context and pixel buffer. Because offscreen rendering is performed
on the GPU, the maximum rendering size is limited to the GPU capacity. On typical hardware, the limit is at
least 2048 by 2048, but is often 4096 by 4096. The available VRAM affects performance.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

initWithCGLContext:pixelFormat:colorSpace:composition:
Creates a renderer object with a CGLContextObj object, a pixel format, a color space, and a composition
object.

- (id) initWithCGLContext:(CGLContextObj)context 
pixelFormat:(CGLPixelFormatObj)format colorSpace:(CGColorSpaceRef)colorSpace 
composition:(QCComposition*)composition;

Parameters
context

A CGLContextObj object. The object that you supply must have both a color and a depth buffer.

format
A CGLPixelFormatObj object.

colorSpace
A Quartz color space object. This must be an RGB color space. Pass NULL to use the default RGB color
space. For more information on Quartz color spaces, see Quartz 2D Programming Guide.

composition
A QCComposition object.

Return Value
The initialized QCRenderer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

initWithComposition:colorSpace:
Creates a renderer object with a composition object and a color space.

- (id) initWithComposition:(QCComposition*)composition 
colorSpace:(CGColorSpaceRef)colorSpace;

Parameters
composition

A QCComposition object. The composition must not contain any consumer patches. That is, the
composition can receive data, process it, and produce output values, but it cannot perform any
rendering.

80 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



colorSpace
A Quartz color space object. This must be an RGB color space. Pass NULL to use the default RGB color
space. The color space is used only for the images produced by the output image ports of the
composition. For more information on Quartz color spaces, see Quartz 2D Programming Guide.

Return Value
The initialized QCRenderer object or nil if initialization is not successful.

Discussion
Note that snapshotImage (page 82) and createSnapshotImageOfType: (page 79) always returns nil
on such QCRenderer instances.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

initWithOpenGLContext:pixelFormat:file:
Creates a renderer object with an NSOpenGLContext object and a composition file.

- (id)initWithOpenGLContext:(NSOpenGLContext *)context
pixelFormat:(NSOpenGLPixelFormat *)format file:(NSString *)path

Parameters
context

An NSOpenGLContext object. The object that you supply must have both a color and a depth buffer.

format
An NSOpenGLPixelFormat object.

path
A string that specifies the location of a composition(.qtz) file.

Return Value
An initialized QCRenderer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QCRenderer.h

renderAtTime:arguments:
Renders a frame of a composition at the specified time.

- (BOOL)renderAtTime:(NSTimeInterval)time arguments:(NSDictionary *)arguments

Parameters
time

The time, in seconds, at which to render a composition frame. The time must be a positive value or
zero.

Instance Methods 81
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



arguments
An optional dictionary that can have any of the entries defined in “Rendering Arguments” (page
82).

Return Value
YES if successful.

Discussion
You need to call this method each time you want to render a frame of the composition.

All OpenGL states are preserved except the following:

 ■ States defined by GL_CURRENT_BIT

 ■ Textures on each unit and the environment mode

 ■ Matrix mode

If you are using double buffers, keep in mind that the renderAtTime:arguments: method does not swap
the front and back buffers of the OpenGL context. You must perform the swap yourself by calling the OpenGL
command flushBuffer on the context associated with the renderer.

If you are interleaving OpenGL code with rendering of a composition, make sure that the OpenGL context
is current. If you are using the NSOpenGLContext class, call the makeCurrentContext method prior to
rendering. If you are using the CGL API, call the function CGLSetCurrentContext.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QCRenderer.h

snapshotImage
Returns an NSImage object of the current image in the OpenGL context associated with the renderer.

- (NSImage*) snapshotImage

Return Value
The snapshot image.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

Constants

Rendering Arguments
Arguments that you can pass to the renderAtTime:arguments: (page 81) method.

82 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



extern NSString* const QCRendererEventKey;
extern NSString* const QCRendererMouseLocationKey;

Constants
QCRendererEventKey

A key for a renderer event. The associated value is an NSEvent object.

Available in Mac OS X v10.4 and later.

Declared in QCRenderer.h.

QCRendererMouseLocationKey
A key for the mouse location. The associated value is an NSPoint object stored in an NSValue object.
The mouse location is in normalized coordinates relative to the OpenGL context viewport
([0,1]x[0,1] with the origin (0,0) at the lower-left corner).

Available in Mac OS X v10.4 and later.

Declared in QCRenderer.h.

Declared In
QCRenderer.h

Constants 83
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



84 Constants
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

QCRenderer Class Reference



Inherits from NSView : NSResponder : NSObject

Conforms to QCCompositionRenderer
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCView.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Quartz Composer Programming Guide

Overview

The QCView class is a custom NSView class that loads, plays, and controls Quartz Composer compositions.
It is an autonomous view that is driven by an internal timer running on the main thread.

The view can be set to render a composition automatically when it is placed onscreen. The view stops
rendering when it is placed offscreen. When not rendering, the view is filled with the current erase color. The
rendered composition automatically synchronizes to the vertical retrace of the monitor.

When you archive a QCView object, it saves the composition that’s loaded at the time the view is archived.

If you want to perform custom operations while a composition is rendering such as setting input parameters
or drawing OpenGL content, you need to subclass QCView and implement the
renderAtTime:arguments: (page 93) method.

Tasks

Performing Custom Operations During Rendering

– renderAtTime:arguments: (page 93)
Overrides to perform your custom operations prior to or after rendering a frame of a composition.

Overview 85
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Loading a Composition

– loadCompositionFromFile: (page 90)
Loads the composition file located at the specified path.

– loadComposition: (page 90)
Loads a QCComposition object into the view.

– loadedComposition (page 91)
Returns the composition loaded in the view.

– unloadComposition (page 100)
Unloads the composition from the view.

Managing the Erase Color

– erase (page 88)
Clears the view using the current erase color.

– eraseColor (page 89)
Retrieves the current color used to erase the view.

– setEraseColor: (page 96)
Sets the color used to erase the view.

Setting and Getting Event Masks

– eventForwardingMask (page 89)
Retrieves the mask used to filter which types of events are forwarded from the view to the composition
during rendering.

– setEventForwardingMask: (page 96)
Sets the mask used to filter which types of events are forwarded from the view to the composition
during rendering.

Setting and Getting the Maximum Frame Rate

– maxRenderingFrameRate (page 91)
Returns the maximum frame rate for rendering.

– setMaxRenderingFrameRate: (page 97)
Sets the maximum rendering frame rate.

Managing Rendering

– startRendering (page 99)
Starts rendering the composition that is in the view.

– isRendering (page 90)
Checks whether a composition is rendering in the view.

86 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



– autostartsRendering (page 87)
Checks whether the view is set to start rendering automatically.

– setAutostartsRendering: (page 95)
Sets whether the composition that is in the view starts rendering automatically when the view is put
on the screen.

– stopRendering (page 99)
Stops rendering the composition that is in the view.

– pauseRendering (page 92)
Pauses rendering in the view.

– isPausedRendering (page 89)
Returns whether or not the rendering in the view is paused.

– resumeRendering (page 95)
Resumes rendering a paused composition.

Using Interface Builder

– play: (page 93)
Plays or pauses a composition in a view.

– start: (page 98)
Starts rendering a composition in a view.

– stop: (page 99)
Stops rendering a composition in a view.

Taking Snapshot Images

– snapshotImage (page 98)
Returns an NSImage object of the current image in the view.

– createSnapshotImageOfType: (page 88)
Returns the current image in the view as an image object of the provided image type.

Working With OpenGL

– openGLContext (page 92)
Returns the OpenGL context used by the view.

– openGLPixelFormat (page 92)
Returns the OpenGL pixel format used by the view.

Instance Methods

autostartsRendering
Checks whether the view is set to start rendering automatically.

Instance Methods 87
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



- (BOOL)autostartsRendering

Return Value
Returns YES if the view is set to start rendering automatically when the view is put on screen.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAutostartsRendering: (page 95)

Declared In
QCView.h

createSnapshotImageOfType:
Returns the current image in the view as an image object of the provided image type.

- (id) createSnapshotImageOfType:(NSString*)type

Parameters
type

A string that specifies any of the following image types: NSBitmapImageRep, NSImage, CIImage,
CGImage, CVOpenGLBuffer, CVPixelBuffer.

Return Value
The snapshot image in the provided image type. You are responsible for releasing this object when you no
longer need it.

Availability
Available in Mac OS X v10.5 and later.

See Also
– snapshotImage (page 98)

Declared In
QCView.h

erase
Clears the view using the current erase color.

- (void)erase

Availability
Available in Mac OS X v10.4 and later.

See Also
– eraseColor (page 89)

Declared In
QCView.h

88 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



eraseColor
Retrieves the current color used to erase the view.

- (NSColor *)eraseColor

Return Value
The color object previously set using the setEraseColor: (page 96) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– erase (page 88)

Declared In
QCView.h

eventForwardingMask
Retrieves the mask used to filter which types of events are forwarded from the view to the composition
during rendering.

- (NSUInteger)eventForwardingMask

Return Value
The event filtering mask.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setEventForwardingMask: (page 96)

Declared In
QCView.h

isPausedRendering
Returns whether or not the rendering in the view is paused.

- (BOOL) isPausedRendering;

Return Value
YES if the rendering is paused; otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– pauseRendering (page 92)
– resumeRendering (page 95)

Instance Methods 89
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Declared In
QCView.h

isRendering
Checks whether a composition is rendering in the view.

- (BOOL)isRendering

Return Value
Returns YES if a composition is rendering in the view; NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCView.h

loadComposition:
Loads a QCComposition object into the view.

- (BOOL) loadComposition:(QCComposition*)composition

Parameters
composition

The QCComposition object to load.

Return Value
YES if successful; otherwise NO. If unsuccessful, any composition that’s already loaded in the view remains
loaded.

Availability
Available in Mac OS X v10.5 and later.

See Also
– loadCompositionFromFile: (page 90)
– unloadComposition (page 100)
– loadedComposition (page 91)

Declared In
QCView.h

loadCompositionFromFile:
Loads the composition file located at the specified path.

- (BOOL)loadCompositionFromFile:(NSString *)path

Parameters
path

A string that specifies the location of a Quartz Composer composition file.

90 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Return Value
If unsuccessful, returns NO; any composition that’s already loaded in the view remains loaded.

Availability
Available in Mac OS X v10.4 and later.

See Also
– loadComposition: (page 90)
– unloadComposition (page 100)
– loadedComposition (page 91)

Declared In
QCView.h

loadedComposition
Returns the composition loaded in the view.

- (QCComposition*) loadedComposition

Return Value
The composition loaded in the view; otherwise nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
– loadCompositionFromFile: (page 90)
– loadComposition: (page 90)
– unloadComposition (page 100)

Declared In
QCView.h

maxRenderingFrameRate
Returns the maximum frame rate for rendering.

- (float)maxRenderingFrameRate

Return Value
The maximum frame rate for rendering. A value of 0.0 specifies that there is no limit.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMaxRenderingFrameRate: (page 97)

Declared In
QCView.h

Instance Methods 91
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



openGLContext
Returns the OpenGL context used by the view.

- (NSOpenGLContext*) openGLContext

Return Value
An NSOpenGLContext object.

Discussion
This context as a read-only object . Do not attempt to change any of its settings. If you subclass QCView so
that you can perform custom OpenGL drawing, you’ll need to use this method to retrieve the view’s OpenGL
context.

Availability
Available in Mac OS X v10.5 and later.

See Also
– renderAtTime:arguments: (page 93)

Declared In
QCView.h

openGLPixelFormat
Returns the OpenGL pixel format used by the view.

- (NSOpenGLPixelFormat*) openGLPixelFormat

Return Value
An NSOpenGLPixelFormat object.

Discussion
This pixel format as a read-only object. Do not attempt to change any of its settings.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCView.h

pauseRendering
Pauses rendering in the view.

- (void) pauseRendering

Discussion
You can nest calls to this method.

Availability
Available in Mac OS X v10.5 and later.

92 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



See Also
– resumeRendering (page 95)
– isPausedRendering (page 89)

Declared In
QCView.h

play:
Plays or pauses a composition in a view.

- (IBAction) play:(id)sender

Parameters
sender

The object (such as a button or menu item) sending the message to play the composition. You need
to connect the object in the interface to the action.

Return Value
The message sent to the target.

Discussion
This method starts rendering a composition if it is not already rendering, pauses a composition that is
rendering, or resumes rendering for a composition whose rendering is paused. The method is invoked when
the user clicks a button or issues a command from some other user interface element, such as a menu.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stop: (page 99)

Declared In
QCView.h

renderAtTime:arguments:
Overrides to perform your custom operations prior to or after rendering a frame of a composition.

- (BOOL) renderAtTime:(NSTimeInterval)time arguments:(NSDictionary*)arguments

Parameters
time

The rendering time, in seconds, of the composition frame.

arguments
An optional dictionary that can contain QCRendererEventKey or QCRendererMouseLocationKey
and the associated values. (See QCRenderer Class Reference or more information.)

Return Value
NO if your custom rendering fails, otherwise, YES.

Instance Methods 93
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Discussion
Do not call this method directly. You override this method only for subclasses of the QCView class and only
if you want to perform custom operations or OpenGL rendering before and/or after Quartz Composer renders
a frame of the composition.

The most common reasons to override this method are to:

 ■ synchronize communication with the composition. For example, you might want to set input parameters
of the composition. By overriding this method, you can set parameters only when necessary and only
at a specific time.

 ■ underlay or overlay custom OpenGL rendering.

To synchronize communication between a composition and another part of the application, the
implementation looks similar to the following:

- (BOOL) renderAtTime:(NSTimeInterval)time
            arguments:(NSDictionary*)arguments
{
  // Your code to computer the value of myParameterValue
  [self setValue:myParameterValue forInputKey:@”myInput”];

  BOOL success = [super renderAtTime:time arguments:arguments];

  id result = [self valueForOutputKey:@”myOutput”];
  //Your code to perform some operation on the result

  return success;
}

To perform OpenGL drawing in a QCView object, follow these guidelines:

 ■ Use the OpenGL context of the QCView object to do drawing. You can retrieve the OpenGL context by
calling [self openGLContext]. Note that this context won't necessarily be set as the current OpenGL
context.

 ■ Use CGL macros instead of managing the current OpenGL context yourself.

OpenGL performs a global context and renderer lookup for each command it executes to ensure that
all OpenGL commands are issued to the correct rendering context and renderer. There is significant
overhead associated with these lookups that can measurably affect performance. CGL macros let you
provide a local context variable and cache the current renderer in that variable. They are simple to use,
taking only a few lines of code to set up.

 ■ Save and restore all state changes except the ones that are part of GL_CURRENT_BIT (RGBA color, color
index, normal vector, texture coordinates, and so forth).

 ■ Check for OpenGL errors with glGetError.

Here’s an example implementation of this method using OpenGL to draw an overlay:

#import <OpenGL/CGLMacro.h>  // Set up using macros

- (BOOL) renderAtTime:(NSTimeInterval)time
            arguments:(NSDictionary*)arguments
{

94 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



    BOOL success = [super renderAtTime:time arguments:arguments];

    // Use the OpenGL context of the view for drawing.
    CGLContextObj cgl_ctx = [[self openGLContext] CGLContextObj];

    // Save and set OpenGL states appropriately.
    glGetIntegerv(GL_MATRIX_MODE, &saveMode);
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glRotatef(45.0, 0.0, 0.0, 1.0);

    // The code that performs OpenGL drawing goes here.
    //After drawing, restore original OpenGL states.
    glPopMatrix();
    glMatrixMode(saveMode);

    // Check for errors.
    glGetError();
    return success;
}

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCView.h

resumeRendering
Resumes rendering a paused composition.

- (void) resumeRendering

Discussion
You can nest calls to this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– pauseRendering (page 92)
– isPausedRendering (page 89)

Declared In
QCView.h

setAutostartsRendering:
Sets whether the composition that is in the view starts rendering automatically when the view is put on the
screen.

- (void)setAutostartsRendering:(BOOL)flag

Instance Methods 95
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Parameters
flag

Pass YES to enable autostart mode; NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autostartsRendering (page 87)

Declared In
QCView.h

setEraseColor:
Sets the color used to erase the view.

- (void)setEraseColor:(NSColor *)color

Parameters
color

A color object.

Availability
Available in Mac OS X v10.4 and later.

See Also
– erase (page 88)
– eraseColor (page 89)

Declared In
QCView.h

setEventForwardingMask:
Sets the mask used to filter which types of events are forwarded from the view to the composition during
rendering.

- (void)setEventForwardingMask:(NSUInteger)mask

96 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Parameters
mask

An event filtering mask. The mask can be a combination of any of the mask constants listed in Table
10-1 or the constant NSAnyEventMask.

Table 10-1 Events that can be forwarded to a composition

DescriptionEvent

The user pressed the left button.NSLeftMouseDownMask

The user moved the mouse with the left button down.NSLeftMouseDraggedMask

The user released the left button.NSLeftMouseUpMask

The user pressed the right button.NSRightMouseDownMask

The user moved the mouse with the right button down.NSRightMouseDraggedMask

The user released the right button.NSRightMouseUpMask

The user pressed the middle button, or some button other than the left
or right button.

NSOtherMouseDownMask

The user moved the mouse with the middle button down, or some button
other than the left or right button.

NSOtherMouseDraggedMask

The user released the middle button, or some button other than the left
or right button.

NSOtherMouseUpMask

The user moved the mouse without holding down a mouse button.NSMouseMovedMask

The user moved the mouse scroll wheel.NSScrollWheelMask

The user generated a character or characters by pressing a key.NSKeyDownMask

The user released a key.NSKeyUpMask

The user pressed or released a modifier key, or toggled the Caps Lock key.NSFlagsChangedMask

Availability
Available in Mac OS X v10.4 and later.

See Also
– eventForwardingMask (page 89)

Declared In
QCView.h

setMaxRenderingFrameRate:
Sets the maximum rendering frame rate.

- (void)setMaxRenderingFrameRate:(float)maxFPS

Instance Methods 97
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Parameters
maxFPS

The frame rate to set. Pass 0.0 to specify that there is no limit.

Availability
Available in Mac OS X v10.4 and later.

See Also
– maxRenderingFrameRate (page 91)

Declared In
QCView.h

snapshotImage
Returns an NSImage object of the current image in the view.

- (NSImage*) snapshotImage

Return Value
The snapshot image.

Availability
Available in Mac OS X v10.5 and later.

See Also
– createSnapshotImageOfType: (page 88)

Declared In
QCView.h

start:
Starts rendering a composition in a view.

- (IBAction)start:(id)sender

Parameters
sender

The object (such as a button or menu item) sending the message to start rendering. You need to
connect the object in the interface to the action.

Return Value
The message sent to the target.

Discussion
The method is invoked when the user clicks a button or issues a command from some other user interface
element, such as a menu. It is equivalent to the startRendering (page 99) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– stop: (page 99)

98 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Declared In
QCView.h

startRendering
Starts rendering the composition that is in the view.

- (BOOL)startRendering

Return Value
Returns NO if the composition fails to start rendering; YES otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– stopRendering (page 99)

Declared In
QCView.h

stop:
Stops rendering a composition in a view.

- (IBAction)stop:(id)sender

Parameters
sender

The object (such as a button or menu item) sending the message to stop rendering. You need to
connect the object in the interface to the action.

Return Value
The message sent to the target.

Discussion
The method is invoked when the user clicks a button or issues a command from some other user interface
element, such as a menu. It is equivalent to the stopRendering (page 99) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– start: (page 98)

Declared In
QCView.h

stopRendering
Stops rendering the composition that is in the view.

- (void)stopRendering

Instance Methods 99
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



Availability
Available in Mac OS X v10.4 and later.

See Also
– startRendering (page 99)

Declared In
QCView.h

unloadComposition
Unloads the composition from the view.

- (void) unloadComposition;

Discussion
If necessary, this method calls stopRendering (page 99) prior to unloading the composition.

Availability
Available in Mac OS X v10.5 and later.

See Also
– loadCompositionFromFile: (page 90)
– loadComposition: (page 90)
– loadedComposition (page 91)

Declared In
QCView.h

Notifications

QCViewDidStartRenderingNotification
Posted when the view starts rendering.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QCView.h

QCViewDidStopRenderingNotification
Posted when the view stops rendering.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QCView.h

100 Notifications
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

QCView Class Reference



 

101
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

PART II

Protocols



102
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

PART II

Protocols



Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCCompositionParameterView.h

Companion guide Quartz Composer Programming Guide

Overview

The QCCompositionParameterViewDelegate informal protocol allows your application it define which
parameters should be visible in a QCCompositionParameterView object.

Tasks

Responding to Composition Selections

– compositionParameterView:shouldDisplayParameterWithKey:attributes: (page 103)
Allows you to define which composition parameters are visible in the user interface when the
composition parameter view refreshes.

Instance Methods

compositionParameterView:shouldDisplayParameterWithKey:attributes:
Allows you to define which composition parameters are visible in the user interface when the composition
parameter view refreshes.

- (BOOL) compositionParameterView:(QCCompositionParameterView *)parameterView 
shouldDisplayParameterWithKey:(NSString *)portKey attributes:(NSDictionary 
*)portAttributes;

Parameters
parameterView

The composition parameter view in which the selection changed.

portKey
A key for one of the composition parameters, which is provided to you by the Quartz Composer
engine.

Overview 103
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

QCCompositionParameterViewDelegate
Protocol Reference
(informal protocol)



portAttributes
A dictionary of the attributes that you want to display in the user interface.

Return Value
YES if port attributes should be displayed; NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionParameterView.h

104 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

QCCompositionParameterViewDelegate Protocol Reference



Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCCompositionPickerView.h

Companion guide Quartz Composer Programming Guide

Overview

The QCCompositionPickerViewDelegate informal protocol defines methods that allow your application
to respond to changes in a composition picker view (a QCCompositionPickerView object).

Tasks

Responding to Composition Selections

– compositionPickerView:didSelectComposition: (page 105)
Performs custom tasks when the selected composition in the composition picker view changes.

Responding to Animation State Changes

– compositionPickerViewDidStartAnimating: (page 106)
Performs custom tasks when the composition picker view starts animating a composition.

– compositionPickerViewWillStopAnimating: (page 106)
Performs custom tasks when the composition picker view stops animating a composition.

Instance Methods

compositionPickerView:didSelectComposition:
Performs custom tasks when the selected composition in the composition picker view changes.

- (void) compositionPickerView:(QCCompositionPickerView*)pickerView 
didSelectComposition:(QCComposition*)composition

Overview 105
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

QCCompositionPickerViewDelegate Protocol
Reference
(informal protocol)



Parameters
pickerView

The composition picker view in which the selection changed.

composition
The selected composition or nil if the previously selected composition is no longer selected.

Discussion
Quartz Composer invokes this method when the selected composition in the composition picker view changes.
Implement this method if you want to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerView.h

compositionPickerViewDidStartAnimating:
Performs custom tasks when the composition picker view starts animating a composition.

- (void) compositionPickerViewDidStartAnimating:(QCCompositionPickerView*)pickerView

Parameters
pickerView

The composition picker view in which the composition started animating.

Discussion
Quartz Composer invokes this method when the composition picker view starts animating a composition.
Implement this method if you want to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionPickerView.h

compositionPickerViewWillStopAnimating:
Performs custom tasks when the composition picker view stops animating a composition.

 (void) compositionPickerViewWillStopAnimating:(QCCompositionPickerView*)pickerView

Parameters
pickerView

The composition picker view in which the composition stopped animating.

Discussion
Quartz Composer invokes this method whenever the composition picker view stops animating a composition.
Implement this method if you want to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

106 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

QCCompositionPickerViewDelegate Protocol Reference



Declared In
QCCompositionPickerView.h

Instance Methods 107
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

QCCompositionPickerViewDelegate Protocol Reference



108 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

QCCompositionPickerViewDelegate Protocol Reference



Adopted by QCRenderer
QCView
QCCompositionLayer

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCRenderer.h

Availability Available in Mac OS X v10.5 and later.

Overview

The QCRenderer protocol defines the methods used to pass data to the input ports or retrieve data from
the output ports of the root patch of a Quartz Composer composition. This protocol is adopted by the
QCRenderer, QCView, and QCCompositionLayer classes.

Tasks

Passing and Retrieving Values From a Composition

– setValue:forInputKey: (page 112)
Sets the value for an input port of a composition.

– valueForInputKey: (page 113)
Returns the value for an input port of a composition.

– valueForOutputKey: (page 114)
Returns the value for an output port of a composition.

– valueForOutputKey:ofType: (page 114)
Returns the current value on an output port (identified by its key) of the root patch of the composition.

Getting Input and Output Keys

– inputKeys (page 111)
Returns an array that contains the keys that identify the input ports of the root patch of the
composition.

Overview 109
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



– outputKeys (page 111)
Returns an array that contains the keys that identify the output ports of the root patch of the
composition.

Getting Attributes

– attributes (page 110)
Returns the attributes of the composition associated with the renderer.

Storing Arbitrary Information

– userInfo (page 113)
Returns a mutable dictionary for storing arbitrary information.

Saving and Restoring Input Values

– propertyListFromInputValues (page 111)
Returns a property list object that represents the current values for all the input keys of the composition.

– setInputValuesWithPropertyList: (page 112)
Sets the values for the input keys of the composition from a previously saved property list.

Instance Methods

attributes
Returns the attributes of the composition associated with the renderer.

- (NSDictionary *)attributes

Return Value
A dictionary that contains the attributes that describe the composition, including the input and output ports
of the root patch.

Discussion
The dictionary can define any of the attributes that are specified by the composition attribute keys. See
QCCompositionAttributeNameKey, QCCompositionAttributeDescriptionKey, and
QCCompositionAttributeCopyrightKey.

The dictionary can also contain dictionaries that correspond to the keys that identify the input and output
ports of the root patch of the composition. See QCPortAttributeTypeKey, QCPortAttributeNameKey,
QCPortAttributeMinimumValueKey, QCPortAttributeMaximumValueKey, and
QCPortAttributeMenuItemsKey (page 69).

Availability
Available in Mac OS X v10.4 and later.

110 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



See Also
– inputKeys (page 111)
– outputKeys (page 111)

Declared In
QCRenderer.h

inputKeys
Returns an array that contains the keys that identify the input ports of the root patch of the composition.

- (NSArray *)inputKeys

Return Value
An array of keys associated with input ports.

Availability
Available in Mac OS X v10.4 and later.

See Also
– outputKeys (page 111)

Declared In
QCRenderer.h

outputKeys
Returns an array that contains the keys that identify the output ports of the root patch of the composition.

- (NSArray *)outputKeys

Return Value
An array of keys associated with input ports.

Availability
Available in Mac OS X v10.4 and later.

See Also
– inputKeys (page 111)

Declared In
QCRenderer.h

propertyListFromInputValues
Returns a property list object that represents the current values for all the input keys of the composition.

- (id) propertyListFromInputValues

Return Value
A property list object.

Instance Methods 111
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



Discussion
This is a convenience method that allows you to easily save the set of input values on a composition. Typically,
you store the set of values in application preferences.

Availability
Available in Mac OS X v10.5 and later.

See Also
setInputValuesWithPropertyList:  (page 112)

Declared In
QCRenderer.h

setInputValuesWithPropertyList:
Sets the values for the input keys of the composition from a previously saved property list.

- (void) setInputValuesWithPropertyList:(id)plist

Discussion
This is a convenience method that allows you to restore the set of input values that you obtained previously
by calling the method propertyListFromInputValues (page 111). If the property list object does not
define a value for an input key, or if the value is not of the proper type, Quartz Composer does not set a value
for the corresponding input port.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

setValue:forInputKey:
Sets the value for an input port of a composition.

- (BOOL)setValue:(id)value forInputKey:(NSString *)key

Parameters
value

The value to set for the input port. The input port must be at the root patch of the composition. The
data type of the value argument must match the input port. See QCPortAttributeTypeKey (page
68) for the data types accepted by a particular port type.

key
The key associated with the input port of the composition. This method throws an exception if key
is invalid.

Return Value
Returns NO if it cannot set the value.

Availability
Available in Mac OS X v10.4 and later.

112 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



See Also
– valueForInputKey: (page 113)
– valueForOutputKey: (page 114)

Declared In
QCRenderer.h

userInfo
Returns a mutable dictionary for storing arbitrary information.

- (NSMutableDictionary*) userInfo

Return Value
A mutable dictionary.

Discussion
The userInfo dictionary is shared—there is one per Quartz Composer context. In fact, it is the same dictionary
as the one available for the plug-in execution context for instances of the QCPlugIn class.

When you add information to the dictionary, make sure that you use unique keys, such as
"com.myCompany.foo".

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCRenderer.h

valueForInputKey:
Returns the value for an input port of a composition.

- (id)valueForInputKey:(NSString *)key

Parameters
key

The key associated with an input port for the root patch of a composition. This method throws an
exception if key is invalid.

Return Value
The value. The data type of returned value depends on the type of the input port. See
QCPortAttributeTypeKey (page 68) for more information.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setValue:forInputKey: (page 112)
– valueForOutputKey: (page 114)

Declared In
QCRenderer.h

Instance Methods 113
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



valueForOutputKey:
Returns the value for an output port of a composition.

- (id)valueForOutputKey:(NSString *)key

Parameters
key

The key associated with an output port for the root patch of a composition. This method throws an
exception if key is invalid.

Return Value
The value. The data type of returned value depends on the type of the output port. See
QCPortAttributeTypeKey (page 68) for more information.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setValue:forInputKey: (page 112)
– valueForInputKey: (page 113)

Declared In
QCRenderer.h

valueForOutputKey:ofType:
Returns the current value on an output port (identified by its key) of the root patch of the composition.

- (id) valueForOutputKey:(NSString*)key ofType:(NSString*)type

Parameters
key

The key associated with an output port for the root patch of a composition. This method throws an
exception if key is invalid.

type
A string that specifies the class.

Return Value
The value.

Discussion
The value type depends on the type of the port type, as shown in the following table

Value typePort type

NSNumber or any object that responds to the methods integerValue,
floatValue, or doubleValue

Boolean, Index, or
Number

NSString or any object that responds to the methodsstringValue or
description

String

NSColor, CIColor, or CGColor objectColor

114 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



Value typePort type

NSImage, NSBitmapImageRep, CGImage object, CIImage, CVPixelBuffer
object, CVOpenGLBuffer object, CVOpenGLTexture object, or an opaque
QCImage (that is, an optimized abstract image object only to be used with
setValue: forInputKey: of another <QCCompositionRenderer>)

Image

NSArray or NSDictionaryStructure

Availability
Available in Mac OS X v10.5 and later.

See Also
– setValue:forInputKey: (page 112)
– valueForInputKey: (page 113)

Declared In
QCRenderer.h

Instance Methods 115
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



116 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

QCCompositionRenderer Protocol Reference



Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCPlugIn.h

Availability Available in Mac OS X v10.5 and later.

Overview

The QCPlugInContext protocol defines methods that you use only from within the execution method
(execute:atTime:withArguments: (page 63)) of a QCPlugIn object.

Tasks

Getting the OpenGL Context

– CGLContextObj (page 118)
Returns the destination CGL context to use for OpenGL rendering from within the execution method.

Logging Messages

– logMessage: (page 119)
Writes a message to the Quartz Composer log.

Getting Execution Context Information

– userInfo (page 122)
Returns a mutable dictionary that contains information that can be shared between all instances of
the QCPlugIn subclass, running in the same Quartz Composer context.

– bounds (page 118)
Returns the bounds of the rendering context.

– colorSpace (page 119)
Returns the color space used by the rendering context.

Overview 117
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

QCPlugInContext Protocol Reference



Getting an Image Provider

– outputImageProviderFromBufferWithPixelFormat:pixelsWide:pixelsHigh:baseAddress:bytesPerRow:releaseCallback:releaseContext:colorSpace:shouldColorMatch: (page
120)

Returns an image provider from a single memory buffer.

– outputImageProviderFromTextureWithPixelFormat:pixelsWide:pixelsHigh:name:flipped:releaseCallback:releaseContext:colorSpace:shouldColorMatch: (page
121)

Returns an image provider from an OpenGL texture.

Instance Methods

bounds
Returns the bounds of the rendering context.

- (NSRect) bounds

Return Value
The bounds of the rendering context expressed in Quartz Composer units.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

CGLContextObj
Returns the destination CGL context to use for OpenGL rendering from within the execution method.

- (CGLContextObj) CGLContextObj

Return Value
The destination CGL context.

Discussion
To send commands to the OpenGL context:

 ■ Use CGL macros instead of changing the current OpenGL context.

 ■ Save and restore all OpenGL states except those defines by GL_CURRENT_BIT (vertex position, color,
texture, and so on)

The following code shows how you’d use the method CGLContextObj:

// Set up using CGL macros.
#import <OpenGL/CGLMacro.h>

- (BOOL) execute:(id<QCPlugInContext>)context
              atTime:(NSTimeInterval)time
             withArguments:(NSDictionary *)arguments

118 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

QCPlugInContext Protocol Reference



{
    // Set the CGL context to a local variable.
    CGLContextObj cgl_ctx = [context CGLContextObj];
    if(cgl_ctx == NULL)
    return NO;

    // Save and set OpenGL states.
    // Put your OpenGL code here.
    // Restore the OpenGL states.
    return YES;
}

You can retrieve the corresponding OpenGL pixel format by calling the function CGLGetPixelFormat.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

colorSpace
Returns the color space used by the rendering context.

- (CGColorSpaceRef) colorSpace

Return Value
An RGB color space; NULL if the custom patch execution mode is not consumer.

Discussion
If the method returns a color space, it must be an RGB color space.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

logMessage:
Writes a message to the Quartz Composer log.

- (void) logMessage:(NSString*)format, ...

Parameters
format

The string to write to the log. The default location for the log is the standard output.

Discussion
This method is an alternative to using the functions NSLog or printf.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 119
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

QCPlugInContext Protocol Reference



Declared In
QCPlugIn.h

outputImageProviderFromBufferWithPixelFormat:pixelsWide:pixelsHigh:baseAddress:
bytesPerRow:releaseCallback:releaseContext:colorSpace:shouldColorMatch:
Returns an image provider from a single memory buffer.

- (id) outputImageProviderFromBufferWithPixelFormat:(NSString*)format 
pixelsWide:(NSUInteger)width pixelsHigh:(NSUInteger)height baseAddress:(const
 void*)baseAddress bytesPerRow:(NSUInteger)rowBytes 
releaseCallback:(QCPlugInBufferReleaseCallback)callback 
releaseContext:(void*)context colorSpace:(CGColorSpaceRef)colorSpace 
shouldColorMatch:(BOOL)colorMatch

Parameters
format

The pixel format of the memory buffer. This must be compatible with the color space.

width
The width, in bytes, of the memory buffer.

height
The height, in bytes, of the memory buffer.

baseAddress
The base address of the memory buffer, which must be multiple of 16.

rowBytes
The number of bytes per row of the memory buffer, which must be multiple of 16.

callback
The release callback. Your callback must use this type definition:

typedef void (*QCPlugInBufferReleaseCallback)(const void* address, void* context);

If you name your callback function MyQCPlugInBufferReleaseCallback, you would declare it like
this:

void MyQCPlugInBufferReleaseCallback (const void address,
              void * context);

Quartz Composer invokes your callback when the memory buffer is no longer needed. The callback
can be called from any thread at any time

context
The context to pass to the release callback.

colorSpace
The color space of the memory buffer. This must be compatible with the pixel format.

colorMatch
A Boolean that specifies whether Quartz Composer should color match the image. Pass NO if the
image is a mask or gradient or should not be color matched for some other reason. Otherwise, pass
YES.

Return Value
An image provider.

120 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

QCPlugInContext Protocol Reference



Discussion
You must not modify the image until the release callback is invoked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

outputImageProviderFromTextureWithPixelFormat:pixelsWide:pixelsHigh:name:
flipped:releaseCallback:releaseContext:colorSpace:shouldColorMatch:
Returns an image provider from an OpenGL texture.

- (id) outputImageProviderFromTextureWithPixelFormat:(NSString*)format 
pixelsWide:(NSUInteger)width pixelsHigh:(NSUInteger)height name:(GLuint)name 
flipped:(BOOL)flipped releaseCallback:(QCPlugInTextureReleaseCallback)callback
 releaseContext:(void*)context colorSpace:(CGColorSpaceRef)colorSpace 
shouldColorMatch:(BOOL)colorMatch;

Parameters
format

The pixel format of the texture. This must be compatible with the color space.

width
The width, in bytes, of the texture.

height
The height, in bytes, of the texture.

name
An OpenGL texture of type GL_TEXTURE_RECTANGLE_EXT that is valid on the Quartz Composer
OpenGL context. Note that textures do not have a retain and release mechanism. This means that
your application must make sure that the texture exists for the life cycle of the image provider.

flipped
YES to have Quartz Composer flip the contents of the texture vertically.

callback
The release callback. Your callback must use this type definition:

typedef void (*QCPlugInTextureReleaseCallback)(CGLContextObj cgl_ctx, GLuint 
name, void* context);

If you name your callback function MyQCPlugInTextureReleaseCallback, you would declare it
like this:

void MyQCPlugInTextureReleaseCallback (CGLContextObj cgl_ctx,
              GLuint name,
              void* context);

Quartz Composer invokes your callback when the memory buffer is no longer needed. The callback
can be called from any thread at any time

context
The context to pass to the release callback.

colorSpace
The color space of the texture. This must be compatible with the pixel format.

Instance Methods 121
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

QCPlugInContext Protocol Reference



colorMatch
A Boolean that specifies whether Quartz Composer should color match the texture. Pass NO if the
texture is a mask or gradient or should not be color matched for some other reason. Otherwise, pass
YES.

Return Value
An image provider.

Discussion
You must not modify the texture until the release callback is invoked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

userInfo
Returns a mutable dictionary that contains information that can be shared between all instances of the
QCPlugIn subclass, running in the same Quartz Composer context.

- (NSMutableDictionary*) userInfo

Return Value
A mutable dictionary.

Discussion
When you add information to the dictionary, make sure that you use unique keys, such as
com.myCompany.foo. You can use this dictionary to cache data that you want to share.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

122 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

QCPlugInContext Protocol Reference



Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCPlugIn.h

Availability Available in Mac OS X v10.5 and later.

Overview

The QCPlugInInputImageSource protocol eliminates the need to use explicit image types for the image
input ports on your custom patch. Not only does using the protocol avoid restrictions of a specific image
type, but it avoids impedance mismatches, and provides better performance by deferring pixel computation
until it is needed. When you need to access the pixels in an image, you simply convert the image to a
representation (texture or buffer) using one of the methods defined by the QCPlugInInputImageSource
protocol. Use a texture representation when you want to use input images on the GPU. Use a buffer
representation when you want to use input images on the CPU.

Input images are opaque source objects that comply to this protocol. To create an image input port as an
Objective-C 2.0 property, declare it as follows:

@property(dynamic) id<QCPlugInInputImageSource> inputImage;

To create an image input port dynamically. use the type QCPortTypeImage:

[self addInputPortWithType:QCPortTypeImage
                    forKey:@”inputImage”
            withAttributes:nil];

Tasks

Converting an Image to a Representation

– lockTextureRepresentationWithColorSpace:forBounds: (page 128)
Creates an OpenGL texture representation from a subregion of the image source using the provided
color space.

– unlockTextureRepresentation (page 132)
Releases the OpenGL texture representation of the image source.

– lockBufferRepresentationWithPixelFormat:colorSpace:forBounds: (page 128)
Creates a memory buffer representation from a subregion of the image source using the provided
pixel format and color space.

Overview 123
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol
Reference



– bindTextureRepresentationToCGLContext:textureUnit:normalizeCoordinates: (page 125)
Binds the texture to a given texture unit and optionally scales or flips the texture.

– unbindTextureRepresentationFromCGLContext:textureUnit: (page 132)
Unbinds the texture from a texture unit.

– unlockBufferRepresentation (page 132)
Releases the memory buffer representation of the image source.

Getting Color Space Information

– imageColorSpace (page 127)
Returns the color space of the image source.

– shouldColorMatch (page 129)
Returns whether or not the image source should be color matched.

Getting Texture Information

– texturePixelsWide (page 131)
Returns the width of the texture representation.

– texturePixelsHigh (page 131)
Returns the height of the texture representation.

– textureTarget (page 131)
Returns the texture target.

– textureName (page 130)
Returns the texture name.

– textureColorSpace (page 129)
Returns the color space of the texture representation.

– textureFlipped (page 129)
Returns whether or not the contents of the texture are flipped vertically.

– textureMatrix (page 130)
Returns a texture matrix.

Getting Image Buffer Information

– imageBounds (page 127)
Returns the actual bounds of the image source expressed in pixels and aligned to integer boundaries.

– bufferPixelsWide (page 127)
Returns the width of the image buffer representation.

– bufferPixelsHigh (page 126)
Returns the height of the image buffer representation.

– bufferPixelFormat (page 126)
Returns the pixel format of the image buffer representation.

– bufferColorSpace (page 126)
Returns the color space of the image buffer representation.

124 Tasks
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



– bufferBaseAddress (page 125)
Returns the base address of the image buffer.

– bufferBytesPerRow (page 126)
Returns the bytes per row of the buffer representation.

Instance Methods

bindTextureRepresentationToCGLContext:textureUnit:normalizeCoordinates:
Binds the texture to a given texture unit and optionally scales or flips the texture.

- (void) bindTextureRepresentationToCGLContext:(CGLContextObj)cgl_ctx 
textureUnit:(GLenum)unit normalizeCoordinates:(BOOL)flag

Parameters
cgl_ctx

The CGL context to render to.)

unit
The texture unit to bind to (such as, GL_TEXTURE0)

flag
To apply a texture matrix to scale coordinates (from [0, pixels] to [0,1]) and flip them vertically
(if necessary), pass YES.

Discussion
When you no longer need the texture, call
unbindTextureRepresentationFromCGLContext:textureUnit: (page 132).

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

bufferBaseAddress
Returns the base address of the image buffer.

- (const void*) bufferBaseAddress

Return Value
The base address of the buffer.

Discussion
The base address is guaranteed to be aligned on a 16-byte boundary.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

Instance Methods 125
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



bufferBytesPerRow
Returns the bytes per row of the buffer representation.

- (NSUInteger) bufferBytesPerRow

Return Value
The number of bytes per row of the buffer.

Discussion
The number of bytes per row is guaranteed to be a multiple of 16.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

bufferColorSpace
Returns the color space of the image buffer representation.

- (CGColorSpaceRef) bufferColorSpace

Return Value
The color space of the image buffer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

bufferPixelFormat
Returns the pixel format of the image buffer representation.

- (NSString*) bufferPixelFormat

Return Value
A string that specifies the pixel format. The supported formats are ARGB8 (8-bit alpha, red, green, blue),
BGRA8 (8-bit blue, green, red, and alpha), RGBAf (floating-point, red, green, blue, alpha), I8 (8-bit intensity),
and If (floating-point intensity).

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

bufferPixelsHigh
Returns the height of the image buffer representation.

126 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



- (NSUInteger) bufferPixelsHigh

Return Value
The height, expressed in pixels.

Availability
Available in Mac OS X v10.5 and later.

See Also
– bufferPixelsHigh (page 126)

Declared In
QCPlugIn.h

bufferPixelsWide
Returns the width of the image buffer representation.

- (NSUInteger) bufferPixelsWide

Return Value
The width, expressed in pixels.

Availability
Available in Mac OS X v10.5 and later.

See Also
– bufferPixelsHigh (page 126)

Declared In
QCPlugIn.h

imageBounds
Returns the actual bounds of the image source expressed in pixels and aligned to integer boundaries.

- (NSRect) imageBounds;

Return Value
The bounds of the image source.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

imageColorSpace
Returns the color space of the image source.

- (CGColorSpaceRef) imageColorSpace

Instance Methods 127
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



Return Value
The color space of the image source, typically RGB or Gray type.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

lockBufferRepresentationWithPixelFormat:colorSpace:forBounds:
Creates a memory buffer representation from a subregion of the image source using the provided pixel
format and color space.

- (BOOL) lockBufferRepresentationWithPixelFormat:(NSString*)format 
colorSpace:(CGColorSpaceRef)colorSpace forBounds:(NSRect)bounds

Parameters
format

A pixel format that is compatible with the color space.

colorSpace
A Quartz color space that is compatible with the pixel format.

bounds
The bounds of the subregion, expressed as pixels, and aligned to integer boundaries.

Return Value
YES if successful; otherwise NO.

Discussion
The content of the buffer is read-only. You should not attempt to modify it.

Availability
Available in Mac OS X v10.5 and later.

See Also
– unlockBufferRepresentation (page 132)

Declared In
QCPlugIn.h

lockTextureRepresentationWithColorSpace:forBounds:
Creates an OpenGL texture representation from a subregion of the image source using the provided color
space.

- (BOOL) lockTextureRepresentationWithColorSpace:(CGColorSpaceRef)colorSpace 
forBounds:(NSRect)bounds

Parameters
colorSpace

A Quartz color space.

128 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



bounds
The bounds of the subregion, expressed in pixels. They must be aligned to integer boundaries.

Return Value
YES is successful; NO if texture can’t be created.

Discussion
Neither the content of the texture nor its states (for example, the wrap mode) must be modified; you can
only draw with it. The texture is valid only in the plug-in context.

Availability
Available in Mac OS X v10.5 and later.

See Also
– unlockTextureRepresentation (page 132)

Declared In
QCPlugIn.h

shouldColorMatch
Returns whether or not the image source should be color matched.

- (BOOL) shouldColorMatch

Return Value
NO if the source is a mask or gradient; YES otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

textureColorSpace
Returns the color space of the texture representation.

- (CGColorSpaceRef) textureColorSpace

Return Value
The color space of the texture.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

textureFlipped
Returns whether or not the contents of the texture are flipped vertically.

Instance Methods 129
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



- (BOOL) textureFlipped

Return Value
YES if the contents of the texture are flipped (upside-down); NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

textureMatrix
Returns a texture matrix.

- (const GLfloat*) textureMatrix

Return Value
A 4x4 texture matrix created by scaling (from [0, pixels] to [0,1]) and vertically flipping the texture coordinates;
NULL if coordinate transformation is not required.

Discussion
This method is provided as a convenience for 2D textures to take care of two issues:

 ■ Coordinates for rectangular textures are expressed in pixels rather than the normalized units used for
power-of-two textures. The coordinates need to be normalized before you can process the texture.

 ■ Texture coordinates are typically flipped by OpenGL for processing on the GPU and need to be flipped
to the original coordinates.

You can take care of these two issues simply by loading a the matrix returned by this method onto the
OpenGL stack. If you are not sure that your texture needs either of these operations, you can load the matrix
on the OpenGL stack anyway, as it acts as an identity matrix if it’s not needed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

textureName
Returns the texture name.

- (GLuint) textureName

Return Value
The texture name.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

130 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



texturePixelsHigh
Returns the height of the texture representation.

- (NSUInteger) texturePixelsHigh

Return Value
The height of the texture, expressed in pixels.

Availability
Available in Mac OS X v10.5 and later.

See Also
– texturePixelsWide (page 131)

Declared In
QCPlugIn.h

texturePixelsWide
Returns the width of the texture representation.

- (NSUInteger) texturePixelsWide

Return Value
The width of the texture, expressed in pixels.

Availability
Available in Mac OS X v10.5 and later.

See Also
– texturePixelsHigh (page 131)

Declared In
QCPlugIn.h

textureTarget
Returns the texture target.

- (GLenum) textureTarget

Return Value
The texture target, either GL_TEXTURE_2D or GL_TEXTURE_RECTANGLE_EXT.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

Instance Methods 131
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



unbindTextureRepresentationFromCGLContext:textureUnit:
Unbinds the texture from a texture unit.

- (void) unbindTextureRepresentationFromCGLContext:(CGLContextObj)cgl_ctx 
textureUnit:(GLenum)unit

Parameters
cgl_ctx

A CGL context.)

unit
The texture unit to unbind from (such as, GL_TEXTURE0)

Availability
Available in Mac OS X v10.5 and later.

See Also
– bindTextureRepresentationToTextureUnit:normalizeCoordinates: (page 125)

Declared In
QCPlugIn.h

unlockBufferRepresentation
Releases the memory buffer representation of the image source.

- (void) unlockBufferRepresentation

Availability
Available in Mac OS X v10.5 and later.

See Also
– lockBufferRepresentationWithPixelFormat:colorSpace: (page 128)

Declared In
QCPlugIn.h

unlockTextureRepresentation
Releases the OpenGL texture representation of the image source.

- (void) unlockTextureRepresentation

Availability
Available in Mac OS X v10.5 and later.

See Also
– lockTextureRepresentationWithTarget:colorSpace:forBounds: (page 128)

Declared In
QCPlugIn.h

132 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

QCPlugInInputImageSource Protocol Reference



Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Declared in QuartzComposer/QCPlugIn.h

Availability Available in Mac OS X v10.5 and later.

Overview

The QCPlugInOuputImageProvider protocol eliminates the need to use explicit image types for the image
output ports on a custom patch. The methods in this protocol are called by the Quartz Composer engine
when the output image is needed. If your custom patch has an image output port, you need to implement
the appropriate methods for rendering image data and to supply information about the rendering destination
and the image bounds.

Output images are opaque provider objects that comply to this protocol. To create an image output port as
an Objective-C 2.0 property, declare it as follows:

@property(dynamic) id<QCPlugInOutputImageProvider> outputImage;

To create an image input port dynamically use the type QCPortTypeImage:

[self addOutputPortWithType:QCPortTypeImage
                    forKey:@”outputImage”
            withAttributes:nil];

To write images to that port, you need to implement the methods in this protocol and create an internal
class that represents the images produced by the custom patch. For example, a simple interface for an image
provider is:

@interface MyOutputImage : NSObject <QCPlugInOutputImageProvider>
{
    NSUInteger _width;
    NSUInteger _height;
}

Tasks

Rendering an Image to a Destination

– renderToBuffer:withBytesPerRow:pixelFormat:forBounds: (page 136)
Renders a subregion of the image into the supplied memory buffer using the specified pixel format.

Overview 133
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol
Reference



– copyRenderedTextureForCGLContext:pixelFormat:bounds:isFlipped: (page 135)
Returns the name of an OpenGL texture of type GL_TEXTURE_RECTANGLE_EXT that contains a
subregion of the image in a given pixel format.

– renderWithCGLContext:forBounds: (page 137)
Renders a subregion of the image to the provided CGL context.

– releaseRenderedTexture:forCGLContext: (page 136)
Releases the previously copied texture.

Providing Information About the Image

– imageBounds (page 135)
Returns the bounds of the image expressed in pixels and aligned to integer boundaries.

– imageColorSpace (page 136)
Returns the color space of the image or NULL if the image should not be color matched.

– shouldColorMatch (page 138)
Returns whether the image should be color matched.

Providing Information About the Rendering Destination

– supportedBufferPixelFormats (page 138)
Returns a list of pixel formats that are supported for rendering to a memory buffer.

– supportedRenderedTexturePixelFormats (page 138)
Returns a list of pixel formats that are supported for rendering to an onscreen OpenGL context.

– canRenderWithCGLContext: (page 134)
Returns whether the image data can be rendered into the provided CGL context.

Instance Methods

canRenderWithCGLContext:
Returns whether the image data can be rendered into the provided CGL context.

- (BOOL) canRenderWithCGLContext:(CGLContextObj)cgl_ctx

Parameters
ctx

The CGL context that your image will be rendered to.

Return Value
YES if the image can be rendered into this CGL context; otherwise NO, in which case
renderToBuffer:withBytesPerRow:pixelFormat:forBounds: (page 136) is called.

134 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



Discussion
If your image can render using any OpenGL context, simply return YES. If your code requires special extensions,
you’ll need to check for them and then provide the appropriate return value. For more information on
checking for OpenGL capabilities supported by the hardware, see OpenGL Programming Guide for Mac OS X.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

copyRenderedTextureForCGLContext:pixelFormat:bounds:isFlipped:
Returns the name of an OpenGL texture of type GL_TEXTURE_RECTANGLE_EXT that contains a subregion
of the image in a given pixel format.

- (GLuint) copyRenderedTextureForCGLContext:(CGLContextObj)cgl_ctx 
pixelFormat:(NSString*)format bounds:(NSRect)bounds isFlipped:(BOOL*)flipped

Parameters
cgl_ctx

The CGL context to render to.

format
A string that represents the pixel format of the texture.

bounds
The bounds of the subregion of the image.

isFlipped
Set to YES on output if the contents of the returned texture are vertically flipped.

Return Value
The name of an OpenGL texture of type GL_TEXTURE_RECTANGLE_EXT that contains a subregion of the
image in a given pixel format or 0 if the texture can’t be provided.

Discussion
Implement this method if you want to create the texture yourself or use framebuffer objects (FBO). Use
<OpenGL/CGLMacro.h> to send commands to the OpenGL context. Make sure to preserve all the OpenGL
states except the ones defined by GL_CURRENT_BIT.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

imageBounds
Returns the bounds of the image expressed in pixels and aligned to integer boundaries.

- (NSRect) imageBounds;

Return Value
The bounds of the image. Note that the QCPlugIn class does not support images that have infinite bounds.

Instance Methods 135
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

imageColorSpace
Returns the color space of the image or NULL if the image should not be color matched.

- (CGColorSpaceRef) imageColorSpace

Return Value
The color space of the image or NULL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

releaseRenderedTexture:forCGLContext:
Releases the previously copied texture.

- (void) releaseRenderedTexture:(GLuint)name forCGLContext:(CGLContextObj)cgl_ctx;

Parameters
name

The name of the previously bound texture.

cgl_ctx
The CGL context.

Discussion
Your OpenGL code should save and restore all states except for those that are part of GL_CURRENT_BIT
(vertex position, color, texture, and so on). Also use CGL macros instead of changing the current context, by
including this statement:

#import <OpenGL/CGLMacro.h>

For more details, see Quartz Composer Custom Patch Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

renderToBuffer:withBytesPerRow:pixelFormat:forBounds:
Renders a subregion of the image into the supplied memory buffer using the specified pixel format.

136 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



- (BOOL) renderToBuffer:(void*)baseAddress withBytesPerRow:(NSUInteger)rowBytes 
pixelFormat:(NSString*)format forBounds:(NSRect)bounds

Parameters
baseAddress

The base address of the memory buffer. The Quartz Composer engine passes you an address that is
aligned on a 16-byte boundary.

rowBytes
The number of bytes per row of the image data. The Quartz Composer engine guarantees this value
is a multiple of 16.

format
The pixel format of the image data.

bounds
The bounds of the subregion.

Return Value
YES if the image is rendered successfully into the buffer; NO on failure or if the image provider doesn’t support
CPU rendering.

Discussion
The Quartz Composer engine calls this method when it needs pixels. It gives you the base address, the number
of row bytes, and the format. Then, you write pixels to the buffer.

Availability
Available in Mac OS X v10.5 and later.

See Also
– renderWithCGLContext:forBounds: (page 137)

Declared In
QCPlugIn.h

renderWithCGLContext:forBounds:
Renders a subregion of the image to the provided CGL context.

- (BOOL) renderWithCGLContext:(CGLContextObj)cgl_ctx forBounds:(NSRect)bounds

Parameters
cgl_ctx

The CGL context to render to.

bounds
The bounds of the subregion.

Return Value
YES if successful; NO on failure or if the image provider doesn’t support GPU rendering.

Discussion
The view port is set for you. The model view and projection matrixes are set to the identity.

Your OpenGL code should save and restore all states except for those that are part of GL_CURRENT_BIT
(vertex position, color, texture, and so on). Also use CGL macros instead of changing the current context, by
including this statement:

Instance Methods 137
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



#import <OpenGL/CGLMacro.h>

For more details, see Quartz Composer Custom Patch Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– renderToBuffer:withBytesPerRow:pixelFormat:forBounds: (page 136)

Declared In
QCPlugIn.h

shouldColorMatch
Returns whether the image should be color matched.

- (BOOL) shouldColorMatch

Return Value
NO if the image is a mask or gradient; otherwise YES, which is the default.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

supportedBufferPixelFormats
Returns a list of pixel formats that are supported for rendering to a memory buffer.

- (NSArray*) supportedBufferPixelFormats

Return Value
A list of pixel formats, in order of preference, that the image can be rendered to in memory, or nil if the
image provider does not support rendering to the CPU.

Availability
Available in Mac OS X v10.5 and later.

See Also
– supportedRenderedTexturePixelFormats (page 138)

Declared In
QCPlugIn.h

supportedRenderedTexturePixelFormats
Returns a list of pixel formats that are supported for rendering to an onscreen OpenGL context.

- (NSArray*) supportedRenderedTexturePixelFormats

138 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



Return Value
Returns the list of texture pixel formats supported by
copyRenderedTextureForCGLContext:pixelFormat:bounds:isFlipped: (page 135) or nil if not
supported.

Discussion
If this method returns nil, then Quartz Composer calls canRenderWithCGLContext: (page 134)
/renderWithCGLContext:forBounds: (page 137).

Availability
Available in Mac OS X v10.5 and later.

See Also
– supportedBufferPixelFormats (page 138)

Declared In
QCPlugIn.h

Instance Methods 139
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



140 Instance Methods
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

QCPlugInOutputImageProvider Protocol Reference



This table describes the changes to Quartz Composer Reference Collection.

NotesDate

Updated for Mac OS X v10.5.2007-01-25

First publication of this content as a collection of separate documents.2006-05-23

141
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



142
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



A

addInputPortWithType:forKey:withAttributes:
instance method 60

addOutputPortWithType:forKey:withAttributes:
instance method 60

allCompositions instance method 50
allowsEmptySelection instance method 37
Attribute Keys 17
attributes class method 55
attributes instance method 15
attributes protocol instance method 110
attributesForPropertyPortWithKey: class method

56
autostartsRendering instance method 87

B

backgroundColor instance method 28, 38
bindTextureRepresentationToCGLContext:textureUnit:

normalizeCoordinates:protocol instance method
125

bounds protocol instance method 118
bufferBaseAddress protocol instance method 125
bufferBytesPerRow protocol instance method 126
bufferColorSpace protocol instance method 126
bufferPixelFormat protocol instance method 126
bufferPixelsHigh protocol instance method 126
bufferPixelsWide protocol instance method 127

C

canRenderWithCGLContext:protocol instance method
134

CGLContextObj protocol instance method 118
colorSpace protocol instance method 119
Composition Categories 18
composition instance method 25, 78

compositionAspectRatio instance method 38
compositionLayerWithComposition: class method

24
compositionLayerWithFile: class method 25
compositionParameterView:

shouldDisplayParameterWithKey:attributes:
protocol instance method 103

compositionPickerView instance method 34
compositionPickerView:didSelectComposition:

protocol instance method 105
compositionPickerViewDidStartAnimating:

protocol instance method 106
compositionPickerViewWillStopAnimating:

protocol instance method 106
compositionRenderer instance method 28
compositions instance method 38
compositionsWithProtocols:andAttributes:

instance method 50
compositionWithData: class method 14
compositionWithFile: class method 15
compositionWithIdentifier: instance method 51
copyRenderedTextureForCGLContext:pixelFormat:

bounds:isFlipped: protocol instance method 135
createSnapshotImageOfType: instance method 79,

88
createViewController instance method 61

D

delegate instance method 29, 39
didValueForInputKeyChange: instance method 62
disableExecution: instance method 62
drawsBackground instance method 29, 39

E

enableExecution: instance method 63
erase instance method 88
eraseColor instance method 89

143
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

Index



eventForwardingMask instance method 89
execute:atTime:withArguments: instance method

63
Execution Arguments 71
Execution Modes 72
executionMode class method 57

H

hasParameters instance method 29

I

identifier instance method 15
imageBounds protocol instance method 127, 135
imageColorSpace protocol instance method 127, 136
initOffScreenWithSize:colorSpace:composition:

instance method 79
initWithCGLContext:pixelFormat:colorSpace:

composition: instance method 80
initWithComposition: instance method 25
initWithComposition:colorSpace: instance method

80
initWithFile: instance method 26
initWithOpenGLContext:pixelFormat:file:

instance method 81
initWithPlugIn:viewNibName: instance method 76
Input and Output Port Attributes 68
inputKeys instance method 16
inputKeys protocol instance method 111
isAnimating instance method 39
isPausedRendering instance method 89
isRendering instance method 90

K

kQCPlugInExecutionModeConsumer constant 72
kQCPlugInExecutionModeProcessor constant 72
kQCPlugInExecutionModeProvider constant 72
kQCPlugInTimeModeIdle constant 73
kQCPlugInTimeModeNone constant 73
kQCPlugInTimeModeTimeBase constant 73

L

loadComposition: instance method 90
loadCompositionFromFile: instance method 90

loadedComposition instance method 91
loadPlugInAtPath: class method 57
lockBufferRepresentationWithPixelFormat:

colorSpace:forBounds:protocol instance method
128

lockTextureRepresentationWithColorSpace:forBounds:
protocol instance method 128

logMessage: protocol instance method 119

M

maxAnimationFrameRate instance method 40
maxRenderingFrameRate instance method 91

N

numberOfColumns instance method 40
numberOfRows instance method 40

O

openGLContext instance method 92
openGLPixelFormat instance method 92
outputImageProviderFromBufferWithPixelFormat:

pixelsWide:pixelsHigh:baseAddress:bytesPerRow:
releaseCallback:releaseContext:colorSpace:
shouldColorMatch: protocol instance method 120

outputImageProviderFromTextureWithPixelFormat:
pixelsWide:pixelsHigh:name:flipped:
releaseCallback:releaseContext:colorSpace:
shouldColorMatch: protocol instance method 121

outputKeys instance method 16
outputKeys protocol instance method 111

P

Patch Attributes 68
pauseRendering instance method 92
Pixel Formats 71
play: instance method 93
plugIn instance method 76
plugInKeys class method 58
Port Input and Output Types 69
propertyListFromInputValues protocol instance

method 111
protocols instance method 16

144
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INDEX



Q

QCCompositionAttributeBuiltInKey constant 17
QCCompositionAttributeCategoryKey constant 17
QCCompositionAttributeCopyrightKey constant 17
QCCompositionAttributeDescriptionKey constant

17
QCCompositionAttributeHasConsumersKey constant

17
QCCompositionAttributeNameKey constant 17
QCCompositionAttributeTimeDependentKey

constant 17
QCCompositionCategoryDistortion constant 18
QCCompositionCategoryStylize constant 18
QCCompositionCategoryUtility constant 18
QCCompositionInputAudioPeakKey constant 20
QCCompositionInputAudioSpectrumKey constant 20
QCCompositionInputDestinationImageKey constant

19
QCCompositionInputImageKey constant 19
QCCompositionInputPaceKey constant 20
QCCompositionInputPreviewModeKey constant 19
QCCompositionInputPrimaryColorKey constant 20
QCCompositionInputRSSArticleDurationKey

constant 19
QCCompositionInputRSSFeedURLKey constant 19
QCCompositionInputScreenImageKey constant 19
QCCompositionInputSecondaryColorKey constant

20
QCCompositionInputSourceImageKey constant 19
QCCompositionInputTrackInfoKey constant 20
QCCompositionInputTrackPositionKey constant 20
QCCompositionInputTrackSignalKey constant 20
QCCompositionInputXKey constant 19
QCCompositionInputYKey constant 19
QCCompositionOutputImageKey constant 21
QCCompositionOutputWebPageURLKey constant 21
QCCompositionPickerPanelDidSelectComposition-

Notification notification 34
QCCompositionPickerViewDidSelectComposition-

Notification notification 47
QCCompositionProtocolGraphicAnimation constant

21
QCCompositionProtocolGraphicTransition

constant 21
QCCompositionProtocolImageFilter constant 22
QCCompositionProtocolImageTransition constant

22
QCCompositionProtocolMusicVisualizer constant

22
QCCompositionProtocolRSSVisualizer constant 22
QCCompositionProtocolScreenSaver constant 22

QCCompositionRepositoryDidUpdateNotification
notification 52

QCPlugInAttributeDescriptionKey constant 68
QCPlugInAttributeNameKey constant 68
QCPlugInExecutionArgumentEventKey constant 72
QCPlugInExecutionArgumentMouseLocationKey

constant 72
QCPlugInPixelFormatARGB8 constant 71
QCPlugInPixelFormatBGRA8 constant 71
QCPlugInPixelFormatI8 constant 71
QCPlugInPixelFormatIf constant 71
QCPlugInPixelFormatRGBAf constant 71
QCPortAttributeDefaultValueKey constant 69
QCPortAttributeMaximumValueKey constant 69
QCPortAttributeMenuItemsKey constant 69
QCPortAttributeMinimumValueKey constant 69
QCPortAttributeNameKey constant 68
QCPortAttributeTypeKey constant 68
QCPortTypeBoolean constant 70
QCPortTypeColor constant 70
QCPortTypeImage constant 70
QCPortTypeIndex constant 70
QCPortTypeNumber constant 70
QCPortTypeString constant 70
QCPortTypeStructure constant 70
QCRendererEventKey constant 83
QCRendererMouseLocationKey constant 83
QCViewDidStartRenderingNotificationnotification

100
QCViewDidStopRenderingNotification notification

100
QQCPlugInAttributeCopyrightKey constant 68

R

registerPlugInClass: class method 58
releaseRenderedTexture:forCGLContext:protocol

instance method 136
removeInputPortForKey: instance method 64
removeOutputPortForKey: instance method 64
renderAtTime:arguments: instance method 81, 93
Rendering Arguments 82
renderToBuffer:withBytesPerRow:pixelFormat:

forBounds: protocol instance method 136
renderWithCGLContext:forBounds:protocol instance

method 137
resetDefaultInputValues instance method 41
resumeRendering instance method 95

145
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INDEX



S

selectedComposition instance method 41
serializedValueForKey: instance method 65
setAllowsEmptySelection: instance method 41
setAutostartsRendering: instance method 95
setBackgroundColor: instance method 30, 42
setCompositionAspectRatio: instance method 42
setCompositionRenderer: instance method 30
setCompositionsFromRepositoryWithProtocol:

andAttributes: instance method 42
setDefaultValue:forInputKey: instance method 43
setDelegate: instance method 30, 43
setDrawsBackground: instance method 31, 44
setEraseColor: instance method 96
setEventForwardingMask: instance method 96
setInputValuesWithPropertyList:protocol instance

method 112
setMaxAnimationFrameRate: instance method 44
setMaxRenderingFrameRate: instance method 97
setNumberOfColumns: instance method 44
setNumberOfRows: instance method 45
setSelectedComposition: instance method 45
setSerializedValue:forKey: instance method 65
setShowsCompositionNames: instance method 45
setValue:forInputKey: protocol instance method

112
setValue:forOutputKey: instance method 66
sharedCompositionPickerPanel class method 34
sharedCompositionRepository class method 50
shouldColorMatch protocol instance method 129, 138
showsCompositionNames instance method 46
snapshotImage instance method 82, 98
sortedPropertyPortKeys class method 59
Standard Protocol Input Keys 18
Standard Protocol Output Keys 20
Standard Protocols 21
startAnimation: instance method 46
start: instance method 98
startExecution: instance method 66
startRendering instance method 99
stopAnimation: instance method 46
stop: instance method 99
stopExecution: instance method 67
stopRendering instance method 99
supportedBufferPixelFormats protocol instance

method 138
supportedRenderedTexturePixelFormats protocol

instance method 138

T

textureColorSpace protocol instance method 129
textureFlipped protocol instance method 129
textureMatrix protocol instance method 130
textureName protocol instance method 130
texturePixelsHigh protocol instance method 131
texturePixelsWide protocol instance method 131
textureTarget protocol instance method 131
Time Modes 73
timeMode class method 59

U

unbindTextureRepresentationFromCGLContext:
textureUnit: protocol instance method 132

unloadComposition instance method 100
unlockBufferRepresentation protocol instance

method 132
unlockTextureRepresentation protocol instance

method 132
userInfo protocol instance method 113, 122

V

valueForInputKey: instance method 67
valueForInputKey: protocol instance method 113
valueForOutputKey: protocol instance method 114
valueForOutputKey:ofType: protocol instance

method 114

146
2007-01-25   |   © 2004, 2007 Apple Inc. All Rights Reserved.

INDEX


	Quartz Composer Reference Collection
	Contents
	Tables
	Introduction
	Part I: Classes
	QCComposition Class Reference
	Overview
	Tasks
	Creating a Composition
	Getting Information About a Composition
	Getting Port Keys

	Class Methods
	compositionWithData:
	compositionWithFile:

	Instance Methods
	attributes
	identifier
	inputKeys
	outputKeys
	protocols

	Constants
	Attribute Keys
	Composition Categories
	Standard Protocol Input Keys
	Standard Protocol Output Keys
	Standard Protocols


	QCCompositionLayer Class Reference
	Overview
	Tasks
	Creating the Layer
	Getting the Composition

	Class Methods
	compositionLayerWithComposition:
	compositionLayerWithFile:

	Instance Methods
	composition
	initWithComposition:
	initWithFile:


	QCCompositionParameterView Class Reference
	Overview
	Tasks
	Getting and Setting the Renderer
	Checking for Input Parameters
	Setting and Retrieving the Delegate
	Managing Background Drawing
	Setting and Getting the Background Color

	Instance Methods
	backgroundColor
	compositionRenderer
	delegate
	drawsBackground
	hasParameters
	setBackgroundColor:
	setCompositionRenderer:
	setDelegate:
	setDrawsBackground:


	QCCompositionPickerPanel Class Reference
	Overview
	Tasks
	Creating the Utility Window for Browsing Compositions
	Getting the Picker Panel View

	Class Methods
	sharedCompositionPickerPanel

	Instance Methods
	compositionPickerView

	Notifications
	QCCompositionPickerPanelDidSelectCompositionNotification


	QCCompositionPickerView Class Reference
	Overview
	Tasks
	Setting and Getting the Background Color
	Managing Background Drawing
	Setting Composition Input Parameters
	Managing Animation
	Controlling Display of Composition Names
	Setting and Retrieving the View Delegate
	Managing the Composition Picker View
	Working with Columns and Rows

	Instance Methods
	allowsEmptySelection
	backgroundColor
	compositionAspectRatio
	compositions
	delegate
	drawsBackground
	isAnimating
	maxAnimationFrameRate
	numberOfColumns
	numberOfRows
	resetDefaultInputValues
	selectedComposition
	setAllowsEmptySelection:
	setBackgroundColor:
	setCompositionAspectRatio:
	setCompositionsFromRepositoryWithProtocol:andAttributes:
	setDefaultValue:forInputKey:
	setDelegate:
	setDrawsBackground:
	setMaxAnimationFrameRate:
	setNumberOfColumns:
	setNumberOfRows:
	setSelectedComposition:
	setShowsCompositionNames:
	showsCompositionNames
	startAnimation:
	stopAnimation:

	Notifications
	QCCompositionPickerViewDidSelectCompositionNotification


	QCCompositionRepository Class Reference
	Overview
	Tasks
	Getting the Composition Repository
	Fetching Compositions

	Class Methods
	sharedCompositionRepository

	Instance Methods
	allCompositions
	compositionsWithProtocols:andAttributes:
	compositionWithIdentifier:

	Notifications
	QCCompositionRepositoryDidUpdateNotification


	QCPlugIn Class Reference
	Overview
	Tasks
	Defining the Characteristics of a Custom Patch
	Executing a Custom Patch
	Performing Custom Tasks During Execution
	Defining Patch and Property Port Attributes
	Defining Internal Settings
	Supporting Saving and Retrieving Internal Settings
	Adding Ports Dynamically
	Getting and Setting Port Values
	Loading Bundle and Custom Patches Manually
	Ordering Property Ports

	Class Methods
	attributes
	attributesForPropertyPortWithKey:
	executionMode
	loadPlugInAtPath:
	plugInKeys
	registerPlugInClass:
	sortedPropertyPortKeys
	timeMode

	Instance Methods
	addInputPortWithType:forKey:withAttributes:
	addOutputPortWithType:forKey:withAttributes:
	createViewController
	didValueForInputKeyChange:
	disableExecution:
	enableExecution:
	execute:atTime:withArguments:
	removeInputPortForKey:
	removeOutputPortForKey:
	serializedValueForKey:
	setSerializedValue:forKey:
	setValue:forOutputKey:
	startExecution:
	stopExecution:
	valueForInputKey:

	Constants
	Patch Attributes
	Input and Output Port Attributes
	Port Input and Output Types
	Pixel Formats
	Execution Arguments
	Execution Modes
	Time Modes


	QCPlugInViewController Class Reference
	Overview
	Tasks
	Creating a Controller
	Getting the QCPlugIn Object

	Instance Methods
	initWithPlugIn:viewNibName:
	plugIn


	QCRenderer Class Reference
	Overview
	Tasks
	Creating and Initializing a Renderer
	Rendering a Composition
	Getting the Composition Object
	Taking Snapshot Images

	Instance Methods
	composition
	createSnapshotImageOfType:
	initOffScreenWithSize:colorSpace:composition:
	initWithCGLContext:pixelFormat:colorSpace:composition:
	initWithComposition:colorSpace:
	initWithOpenGLContext:pixelFormat:file:
	renderAtTime:arguments:
	snapshotImage

	Constants
	Rendering Arguments


	QCView Class Reference
	Overview
	Tasks
	Performing Custom Operations During Rendering
	Loading a Composition
	Managing the Erase Color
	Setting and Getting Event Masks
	Setting and Getting the Maximum Frame Rate
	Managing Rendering
	Using Interface Builder
	Taking Snapshot Images
	Working With OpenGL

	Instance Methods
	autostartsRendering
	createSnapshotImageOfType:
	erase
	eraseColor
	eventForwardingMask
	isPausedRendering
	isRendering
	loadComposition:
	loadCompositionFromFile:
	loadedComposition
	maxRenderingFrameRate
	openGLContext
	openGLPixelFormat
	pauseRendering
	play:
	renderAtTime:arguments:
	resumeRendering
	setAutostartsRendering:
	setEraseColor:
	setEventForwardingMask:
	setMaxRenderingFrameRate:
	snapshotImage
	start:
	startRendering
	stop:
	stopRendering
	unloadComposition

	Notifications
	QCViewDidStartRenderingNotification
	QCViewDidStopRenderingNotification



	Part II: Protocols
	QCCompositionParameterViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Composition Selections

	Instance Methods
	compositionParameterView:shouldDisplayParameterWithKey:attributes:


	QCCompositionPickerViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Composition Selections
	Responding to Animation State Changes

	Instance Methods
	compositionPickerView:didSelectComposition:
	compositionPickerViewDidStartAnimating:
	compositionPickerViewWillStopAnimating:


	QCCompositionRenderer Protocol Reference
	Overview
	Tasks
	Passing and Retrieving Values From a Composition
	Getting Input and Output Keys
	Getting Attributes
	Storing Arbitrary Information
	Saving and Restoring Input Values

	Instance Methods
	attributes
	inputKeys
	outputKeys
	propertyListFromInputValues
	setInputValuesWithPropertyList:
	setValue:forInputKey:
	userInfo
	valueForInputKey:
	valueForOutputKey:
	valueForOutputKey:ofType:


	QCPlugInContext Protocol Reference
	Overview
	Tasks
	Getting the OpenGL Context
	Logging Messages
	Getting Execution Context Information
	Getting an Image Provider

	Instance Methods
	bounds
	CGLContextObj
	colorSpace
	logMessage:
	outputImageProviderFromBufferWithPixelFormat:pixelsWide:pixelsHigh:baseAddress: bytesPerRow:releaseCallback:releaseContext:colorSpace:shouldColorMatch:
	outputImageProviderFromTextureWithPixelFormat:pixelsWide:pixelsHigh:name: flipped:releaseCallback:releaseContext:colorSpace:shouldColorMatch:
	userInfo


	QCPlugInInputImageSource Protocol Reference
	Overview
	Tasks
	Converting an Image to a Representation
	Getting Color Space Information
	Getting Texture Information
	Getting Image Buffer Information

	Instance Methods
	bindTextureRepresentationToCGLContext:textureUnit:normalizeCoordinates:
	bufferBaseAddress
	bufferBytesPerRow
	bufferColorSpace
	bufferPixelFormat
	bufferPixelsHigh
	bufferPixelsWide
	imageBounds
	imageColorSpace
	lockBufferRepresentationWithPixelFormat:colorSpace:forBounds:
	lockTextureRepresentationWithColorSpace:forBounds:
	shouldColorMatch
	textureColorSpace
	textureFlipped
	textureMatrix
	textureName
	texturePixelsHigh
	texturePixelsWide
	textureTarget
	unbindTextureRepresentationFromCGLContext:textureUnit:
	unlockBufferRepresentation
	unlockTextureRepresentation


	QCPlugInOutputImageProvider Protocol Reference
	Overview
	Tasks
	Rendering an Image to a Destination
	Providing Information About the Image
	Providing Information About the Rendering Destination

	Instance Methods
	canRenderWithCGLContext:
	copyRenderedTextureForCGLContext:pixelFormat:bounds:isFlipped:
	imageBounds
	imageColorSpace
	releaseRenderedTexture:forCGLContext:
	renderToBuffer:withBytesPerRow:pixelFormat:forBounds:
	renderWithCGLContext:forBounds:
	shouldColorMatch
	supportedBufferPixelFormats
	supportedRenderedTexturePixelFormats



	Revision History
	Index
	A
	B
	C
	D
	E
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V



