
CIFilter Class Reference
Cocoa > Graphics & Imaging

2007-12-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, Mac, Mac OS, Quartz, and QuickTime
are trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CIFilter Class Reference 5

Overview 5
Tasks 5

Creating a Filter 5
Creating a Filter from a RAW Image 6
Accessing Registered Filters 6
Registering a Filter 6
Getting Filter Parameters and Attributes 6
Setting Default Values 6
Applying a Filter 6
Getting Localized Information for Registered Filters 7

Class Methods 7
filterNamesInCategories: 7
filterNamesInCategory: 8
filterWithImageData:options: 8
filterWithImageURL:options: 9
filterWithName: 9
filterWithName:keysAndValues: 10
localizedDescriptionForFilterName: 10
localizedNameForCategory: 11
localizedNameForFilterName: 11
localizedReferenceDocumentationForFilterName: 12
registerFilterName:constructor:classAttributes: 12

Instance Methods 13
apply: 13
apply:arguments:options: 13
attributes 14
inputKeys 15
outputKeys 16
setDefaults 16

Constants 16
Filter Attribute Keys 16
Data Type Attributes 19
Vector Quantity Attributes 20
Color Attribute Keys 20
Filter Category Keys 21
Options for Applying a Filter 24
User Interface Control Options 25
Filter Parameter Keys 25
RAW Image Options 29

3
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History 33

Index 35

4
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Availability Mac OS X v10.4 and later

Declared in CIFilter.h
CIRAWFilter.h

Companion guides Core Image Programming Guide
Image Unit Tutorial
Core Image Filter Reference

Related sample code CarbonCocoaCoreImageTab
CIAnnotation
CIVideoDemoGL
QTCoreImage101
Reducer

Overview

The CIFilter class produces a CIImage object as output. Typically, a filter takes one or more images as
input. Some filters, however, generate an image based on other types of input parameters. The parameters
of a CIFilter object are set and retrieved through the use of key-value pairs.

You use the CIFilter object in conjunction with other Core Image classes, such as CIImage, CIContext,
CIImageAccumulator, and CIColor, to take advantage of the built-in Core Image filters when processing
images, creating filter generators, or writing custom filters.

Tasks

Creating a Filter

+ filterWithName: (page 9)
Creates a CIFilter object for a specific kind of filter.

Overview 5
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

+ filterWithName:keysAndValues: (page 10)
Creates a CIFilter object for a specific kind of filter and initializes the input values.

Creating a Filter from a RAW Image

+ filterWithImageData:options: (page 8)
Returns a CIFilter object initialized with RAW image data supplied to the method.

+ filterWithImageURL:options: (page 9)
Returns a CIFilter object initialized with data from a RAW image file.

Accessing Registered Filters

+ filterNamesInCategories: (page 7)
Returns an array of all published filter names that match all the specified categories.

+ filterNamesInCategory: (page 8)
Returns an array of all published filter names in the specified category.

Registering a Filter

+ registerFilterName:constructor:classAttributes: (page 12)
Publishes a custom filter that is not packaged as an image unit.

Getting Filter Parameters and Attributes

– attributes (page 14)
Returns a dictionary of key-value pairs that describe the filter.

– inputKeys (page 15)
Returns an array that contains the names of the input parameters to the filter.

– outputKeys (page 16)
Returns an array that contains the names of the output parameters for the filter.

Setting Default Values

– setDefaults (page 16)
Sets all input values for a filter to default values.

Applying a Filter

– apply:arguments:options: (page 13)
Produces a CIImage object by applying arguments to a kernel function and using options to control
how the kernel function is evaluated.

6 Tasks
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

– apply: (page 13)
Produces a CIImage object by applying a kernel function.

Getting Localized Information for Registered Filters

+ localizedNameForFilterName: (page 11)
Returns the localized name for the specified filter name.

+ localizedNameForCategory: (page 11)
Returns the localized name for the specified filter category.

+ localizedDescriptionForFilterName: (page 10)
Returns the localized description of a filter for display in the user interface.

+ localizedReferenceDocumentationForFilterName: (page 12)
Returns the location of the localized reference documentation that describes the filter.

Class Methods

filterNamesInCategories:
Returns an array of all published filter names that match all the specified categories.

+ (NSArray *)filterNamesInCategories:(NSArray *)categories

Parameters
categories

One or more filter categories. Pass nil to get all filters in all categories.

Return Value
An array that contains all published filter names that match all the categories specified by the categories
argument.

Discussion
When you pass more than one filter category, this method returns the intersection of the filters in the
categories. For example, if you pass the categories kCICategoryBuiltIn (page 24) and
kCICategoryFilterGenerator (page 24), you obtain all the filters that are members of both the built-in
and generator categories. But if you pass in kCICategoryGenerator and kCICategoryStylize (page
23), you will not get any filters returned to you because there are no filters that are members of both the
generator and stylize categories. If you want to obtain all stylize and generator filters, you must call the
filterNamesInCategories: method for each category separately and then merge the results.

Availability
Mac OS X v10.4 and later.

See Also
+ filterNamesInCategory: (page 8)

Related Sample Code
CIAnnotation
CITransitionSelectorSample2

Class Methods 7
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

Declared In
CIFilter.h

filterNamesInCategory:
Returns an array of all published filter names in the specified category.

+ (NSArray *)filterNamesInCategory:(NSString *)category

Parameters
category

A string object that specifies a filter category.

Return Value
An array that contains all published names of the filter in a category.

Availability
Mac OS X v10.4 and later.

See Also
+ filterNamesInCategories: (page 7)

Declared In
CIFilter.h

filterWithImageData:options:
Returns a CIFilter object initialized with RAW image data supplied to the method.

+ (CIFilter *)filterWithImageData:(NSData *)data options:(NSDictionary *)options;

Parameters
data

The RAW image data to initialize the object with.

options
A options dictionary. You can pass any of the keys defined in “RAW Image Options” (page 29)
along with the appropriate value. You should provide a source type identifier hint key
(kCGImageSourceTypeIdentifierHint) and the appropriate source type value to help the decoder
determine the file type. Otherwise it’s possible to obtain incorrect results. See the Discussion for an
example

Return Value
A CIFilter object.

Discussion
After calling this method, the CIFilter object returns a CIImage object that is properly processed similar
to images retrieved using the outputImage key.

Here is an example of adding a source type identifier key-value pair to the options dictionary:

[opts setObject:(id)CGImageSourceGetTypeWithExtension ((CFStringRef)[[url path]
 pathExtension])
 forKey:(id)kCGImageSourceTypeIdentifierHint];

8 Class Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
+ filterWithImageURL:options: (page 9)

Declared In
CIRAWFilter.h

filterWithImageURL:options:
Returns a CIFilter object initialized with data from a RAW image file.

+ (CIFilter *)filterWithImageURL:(NSURL *)url options:(NSDictionary *)options;

Parameters
url

The location of a RAW image file.

options
An options dictionary. You can pass any of the keys defined in “RAW Image Options” (page 29).

Return Value
A CIFilter object.

Discussion
After calling this method, the CIFilter object returns a CIImage object that is properly processed similar
to images retrieved using the outputImage key.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ filterWithImageData:options: (page 8)

Declared In
CIRAWFilter.h

filterWithName:
Creates a CIFilter object for a specific kind of filter.

+ (CIFilter *)filterWithName:(NSString *)name

Parameters
name

The name of the filter.

Return Value
A CIFilter object whose input values are undefined.

Discussion
You should call setDefaults (page 16) after you call this method or set values individually by calling
setValue:forKey.

Class Methods 9
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

Availability
Mac OS X v10.4 and later.

See Also
+ filterWithName:keysAndValues: (page 10)

Related Sample Code
CarbonCocoaCoreImageTab
CIAnnotation
CIVideoDemoGL
QTCoreImage101
Reducer

Declared In
CIFilter.h

filterWithName:keysAndValues:
Creates a CIFilter object for a specific kind of filter and initializes the input values.

+ (CIFilter *)filterWithName:(NSString *)namekeysAndValues:key0, ...

Parameters
name

The name of the filter.

key0
A list of key-value pairs to set as input values to the filter. Each key is a constant that specifies the
name of the input value to set, and must be followed by a value. You signal the end of the list by
passing a nil value.

Return Value
A CIFilter object whose input values are initialized.

Availability
Mac OS X v10.4 and later.

See Also
+ filterWithName: (page 9)

Related Sample Code
CIAnnotation
CITransitionSelectorSample2

Declared In
CIFilter.h

localizedDescriptionForFilterName:
Returns the localized description of a filter for display in the user interface.

+ (NSString *)localizedDescriptionForFilterName:(NSString *)filterName

10 Class Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

Parameters
filterName

The filter name.

Return Value
The localized description of the filter.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilter.h

localizedNameForCategory:
Returns the localized name for the specified filter category.

+ (NSString *)localizedNameForCategory:(NSString *)category

Parameters
category

A filter category.

Return Value
The localized name for the filter category.

Availability
Mac OS X v10.4 and later.

Declared In
CIFilter.h

localizedNameForFilterName:
Returns the localized name for the specified filter name.

+ (NSString *)localizedNameForFilterName:(NSString *)filterName

Parameters
filterName

A filter name.

Return Value
The localized name for the filter.

Availability
Mac OS X v10.4 and later.

Related Sample Code
QTRecorder

Declared In
CIFilter.h

Class Methods 11
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

localizedReferenceDocumentationForFilterName:
Returns the location of the localized reference documentation that describes the filter.

+ (NSURL *)localizedReferenceDocumentationForFilterName:(NSString *)filterName

Parameters
filterName

The filter name.

Return Value
A URL that specifies the location of the localized documentation, or nil if the filter does not provide localized
reference documentation.

Discussion
The URL can be a local file or a remote document on a web server. Because filters created prior to Mac OS X
v10.5 could return nil, you should be make sure that your code handles this case gracefully.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilter.h

registerFilterName:constructor:classAttributes:
Publishes a custom filter that is not packaged as an image unit.

+ (void)registerFilterName:(NSString *)name constructor:(id)anObject
classAttributes:(NSDictionary *)attributes

Parameters
name

A string object that specifies the name of the filter you want to publish.

anObject
A constructor object that implements the filterWithName method.

attributes
A dictionary that contains the class display name and filter categories attributes along with the
appropriate value for each attributes. That is, the kCIAttributeFilterDisplayName (page 17)
attribute and a string that specifies the display name, and the
kCIAttributeFilterCategories (page 17) and an array that specifies the categories to which
the filter belongs (such as kCICategoryStillImage (page 23) and
kCICategoryDistortionEffect (page 21)). All other attributes for the filter should be returned
by the custom attributes method implement by the filter.

Discussion
In most cases you don’t need to use this method because the preferred way to register a custom filter that
you write is to package it as an image unit. You do not need to use this method for a filter packaged as an
image unit because you register your filter using the CIPlugInRegistration protocol. (See Core Image
Programming Guide for additional details.)

Availability
Mac OS X v10.4 and later.

12 Class Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

Declared In
CIFilter.h

Instance Methods

apply:
Produces a CIImage object by applying a kernel function.

- (CIImage *)apply:(CIKernel *)k, ...

Parameters
k

A CIKernel object that contains a kernel function.

A list of arguments to supply to the kernel function. The supplied arguments must be type-compatible
with the function signature of the kernel function. The list of arguments must be terminated by the
nil object.

Discussion
For example, if the kernel function has this signature:

kernel vec4 brightenEffect (sampler src, float k)

You would supply two arguments after the k argument to the apply:k, .. method. In this case, the first
argument must be a sampler and the second a floating-point value. For more information on kernels, see
Core Image Kernel Language Reference.

Availability
Mac OS X v10.4 and later.

See Also
– apply:arguments:options: (page 13)

Declared In
CIFilter.h

apply:arguments:options:
Produces a CIImage object by applying arguments to a kernel function and using options to control how
the kernel function is evaluated.

- (CIImage *)apply:(CIKernel *)k arguments:(NSArray *)args options:(NSDictionary
*)dict

Parameters
k

A CIKernel object that contains a kernel function.

args
The arguments that are type compatible with the function signature of the kernel function.

Instance Methods 13
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

dict
A dictionary that contains options (key-value pairs) to control how the kernel function is evaluated.

Return Value
The CIImage object produced by a filter.

Discussion
You can pass any of the following keys in the dictionary:

 ■ kCIApplyOptionExtent specifies the size of the produced image. The associated value is a four-element
array (NSArray) that specifies the x-value of the rectangle origin, the y-value of the rectangle origin,
and the width, and height.

 ■ kCIApplyOptionDefinition specifies the domain of definition (DOD) of the produces image. The
associated value is either a Core Image filter shape or a four-element array (NSArray) that specifies a
rectangle.

 ■ kCIApplyOptionUserInfo specifies to retain the associated object and pass it to any callbacks invoked
for that filter.

Availability
Mac OS X v10.4 and later.

See Also
– apply: (page 13)

Declared In
CIFilter.h

attributes
Returns a dictionary of key-value pairs that describe the filter.

- (NSDictionary *)attributes

Return Value
A dictionary that contains a key for each input and output parameter for the filter. Each key is a dictionary
that contains all the attributes of an input or output parameter.

Discussion
For example, the attributes dictionary for the CIColorControls filter contains the following information:

CIColorControls:
{
 CIAttributeFilterCategories = (
 CICategoryColorAdjustment,
 CICategoryVideo,
 CICategoryStillImage,
 CICategoryInterlaced,
 CICategoryNonSquarePixels,
 CICategoryBuiltIn
);
 CIAttributeFilterDisplayName = "Color Controls";
 CIAttributeFilterName = CIColorControls;
 inputBrightness = {
 CIAttributeClass = NSNumber;

14 Instance Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

 CIAttributeDefault = 0;
 CIAttributeIdentity = 0;
 CIAttributeMin = -1;
 CIAttributeSliderMax = 1;
 CIAttributeSliderMin = -1;
 CIAttributeType = CIAttributeTypeScalar;
 };
 inputContrast = {
 CIAttributeClass = NSNumber;
 CIAttributeDefault = 1;
 CIAttributeIdentity = 1;
 CIAttributeMin = 0.25;
 CIAttributeSliderMax = 4;
 CIAttributeSliderMin = 0.25;
 CIAttributeType = CIAttributeTypeScalar;
 };
 inputImage = {CIAttributeClass = CIImage; };
 inputSaturation = {
 CIAttributeClass = NSNumber;
 CIAttributeDefault = 1;
 CIAttributeIdentity = 1;
 CIAttributeMin = 0;
 CIAttributeSliderMax = 3;
 CIAttributeSliderMin = 0;
 CIAttributeType = CIAttributeTypeScalar;
 };
 outputImage = {CIAttributeClass = CIImage; };
}

Availability
Mac OS X v10.4 and later.

Related Sample Code
CITransitionSelectorSample2

Declared In
CIFilter.h

inputKeys
Returns an array that contains the names of the input parameters to the filter.

- (NSArray *)inputKeys

Return Value
An array that contains the names of all input parameters to the filter.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CITransitionSelectorSample2

Declared In
CIFilter.h

Instance Methods 15
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

outputKeys
Returns an array that contains the names of the output parameters for the filter.

- (NSArray *)outputKeys

Return Value
An array that contains the names of all output parameters from the filter.

Availability
Mac OS X v10.4 and later.

Declared In
CIFilter.h

setDefaults
Sets all input values for a filter to default values.

- (void)setDefaults

Discussion
Input values whose default values are not defined are left unchanged.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCoreImageTab
Core Animation QuickTime Layer
QTCarbonCoreImage101
QTRecorder
UnsharpMask

Declared In
CIFilter.h

Constants

Filter Attribute Keys
Attributes for a filter and its parameters.

16 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

extern NSString *kCIAttributeFilterName;
extern NSString *kCIAttributeFilterDisplayName;
extern NSString *kCIAttributeDescription;
extern NSString *kCIAttributeReferenceDocumentation;
extern NSString *kCIAttributeFilterCategories;
extern NSString *kCIAttributeClass;
extern NSString *kCIAttributeType;
extern NSString *kCIAttributeMin;
extern NSString *kCIAttributeMax;
extern NSString *kCIAttributeSliderMin;
extern NSString *kCIAttributeSliderMax;
extern NSString *kCIAttributeDefault;
extern NSString *kCIAttributeIdentity;
extern NSString *kCIAttributeName;
extern NSString *kCIAttributeDisplayName;

Constants
kCIAttributeFilterName

The filter name, specified as an NSString object.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeFilterDisplayName
The localized version of the filter name that is displayed in the user interface.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeDescription
The localized description of the filter. This description should inform the end user what the filter does
and be short enough to display in the user interface for the filter. It is not intended to be technically
detailed.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIAttributeReferenceDocumentation
The localized reference documentation for the filter. The reference should provide developers with
technical details.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIAttributeFilterCategories
An array of filter category keys that specifies all the categories in which the filter is a member.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeClass
The class of the input parameter for a filter. If you are writing an image unit (see Image Unit Tutorial),
Core Image supports only these classes for nonexecutable image units: CIColor, CIVector, CIImage,
and NSNumber only. Executable image units may have input parameters of any class, but Core Image
does not generate an automatic user interface for custom classes (see
CIFilter(IKFilterUIAddition)).

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Constants 17
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCIAttributeType
The attribute type.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeMin
The minimum value for a filter parameter, specified as a floating-point value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeMax
The maximum value for a filter parameter, specified as a floating-point value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeSliderMin
The minimum value, specified as a floating-point value, to use for a slider that controls input values
for a filter parameter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeSliderMax
The maximum value, specified as a floating-point value, to use for a slider that controls input values
for a filter parameter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeDefault
The default value, specified as a floating-point value, for a filter parameter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeIdentity
If supplied as a value for a parameter, the parameter has no effect on the input image.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeName
The name of the attribute.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeDisplayName
The localized display name of the attribute.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Discussion
Attribute keys are used for the attribute dictionary of a filter. Most entries in the attribute dictionary are
optional. The attribute CIAttributeFilterName is mandatory. For a parameter, the attribute
kCIAttributeClass is mandatory.

18 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

A parameter of type NSNumber does not necessarily need the attributes kCIAttributeMin and
kCIAttributeMax. These attributes are not present when the parameter has no upper or lower bounds.
For example, the Gaussian blur filter has a radius parameter with a minimum of 0 but no maximum value to
indicate that all nonnegative values are valid.

Declared In
CIFilter.h

Data Type Attributes
Numeric data types.

extern NSString *kCIAttributeTypeTime;
extern NSString *kCIAttributeTypeScalar;
extern NSString *kCIAttributeTypeDistance;
extern NSString *kCIAttributeTypeAngle;
extern NSString *kCIAttributeTypeBoolean;
extern NSString *kCIAttributeTypeInteger;
extern NSString *kCIAttributeTypeCount;

Constants
kCIAttributeTypeTime

A parametric time for transitions, specified as a floating-point value in the range of 0.0 to 1.0.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeScalar
A scalar value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeDistance
A distance.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeAngle
An angle.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeBoolean
A Boolean value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeInteger
An integer value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Constants 19
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCIAttributeTypeCount
A positive integer value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Vector Quantity Attributes
Vector data types.

extern NSString *kCIAttributeTypePosition;
extern NSString *kCIAttributeTypeOffset;
extern NSString *kCIAttributeTypePosition3;
extern NSString *kCIAttributeTypeRectangle

Constants
kCIAttributeTypePosition

A two-dimensional location in the working coordinate space. (A 2-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeOffset
An offset. (A 2-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypePosition3
A three-dimensional location in the working coordinate space. (A 3-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeRectangle
A Core Image vector that specifies the x and y values of the rectangle origin, and the width (w) and
height (h) of the rectangle. The vector takes the form [x, y, w, h]. (A 4-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Color Attribute Keys
Color types.

20 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

extern NSString *kCIAttributeTypeOpaqueColor;
extern NSString *kCIAttributeTypeGradient;

Constants
kCIAttributeTypeOpaqueColor

A Core Image color (CIColor object) that specifies red, green, and blue component values. Use this
key for colors with no alpha component. If the key is not present, Core Image assumes color with
alpha.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeGradient
An n-by-1 gradient image used to describe a color ramp.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Filter Category Keys
Categories of filters.

extern NSString *kCICategoryDistortionEffect;
extern NSString *kCICategoryGeometryAdjustment;
extern NSString *kCICategoryCompositeOperation;
extern NSString *kCICategoryHalftoneEffect;
extern NSString *kCICategoryColorAdjustment;
extern NSString *kCICategoryColorEffect;
extern NSString *kCICategoryTransition;
extern NSString *kCICategoryTileEffect;
extern NSString *kCICategoryGenerator;
extern NSString *kCICategoryReduction;
extern NSString *kCICategoryGradient;
extern NSString *kCICategoryStylize;
extern NSString *kCICategorySharpen;
extern NSString *kCICategoryBlur;
extern NSString *kCICategoryVideo;
extern NSString *kCICategoryStillImage;
extern NSString *kCICategoryInterlaced;
extern NSString *kCICategoryNonSquarePixels;
extern NSString *kCICategoryHighDynamicRange ;
extern NSString *kCICategoryBuiltIn;
extern NSString *kCICategoryFilterGenerator;

Constants
kCICategoryDistortionEffect

A filter that reshapes an image by altering its geometry to create a 3D effect. Using distortion filters,
you can displace portions of an image, apply lens effects, make a bulge in an image, and perform
other operation to achieve an artistic effect.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Constants 21
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCICategoryGeometryAdjustment
A filter that changes the geometry of an image. Some of these filters are used to warp an image to
achieve an artistic effects, but these filters can also be used to correct problems in the source image.
For example, you can apply an affine transform to straighten an image that is rotated with respect
to the horizon.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryCompositeOperation
A filter operates on two image sources, using the color values of one image to operate on the other.
Composite filters perform computations such as computing maximum values, minimum values, and
multiplying values between input images. You can use compositing filters to add effects to an image,
crop an image, and achieve a variety of other effects.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryHalftoneEffect
A filter that simulates a variety of halftone screens, to mimic the halftone process used in print media.
The output of these filters has the familiar “newspaper” look of the various dot patterns. Filters are
typically named after the pattern created by the virtual halftone screen, such as circular screen or
hatched screen.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryColorAdjustment
A filter that changes color values. Color adjustment filters are used to eliminate color casts, adjust
hue, and correct brightness and contrast. Color adjustment filters do not perform color management;
ColorSync performs color management. You can use Quartz 2D to specify the color space associated
with an image. For more information, see Color Management Overview and Quartz 2D Programming
Guide.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryColorEffect
A filter that modifies the color of an image to achieve an artistic effect. Examples of color effect filters
include filters that change a color image to a sepia image or a monochrome image or that produces
such effects as posterizing.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryTransition
A filter that provides a bridge between two or more images by applying a motion effect that defines
how the pixels of a source image yield to that of the destination image.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryTileEffect
A filter that typically applies an effect to an image and then create smaller versions of the image (tiles),
which are then laid out to create a pattern that’s infinite in extent.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

22 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCICategoryGenerator
A filter that generates a pattern, such as a solid color, a checkerboard, or a star shine. The generated
output is typically used as input to another filter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryReduction
A filter that reduces image data. These filters are used to solve image analysis problems.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCICategoryGradient
A filter that generates a fill whose color varies smoothly. Exactly how color varies depends on the
type of gradient—linear, radial, or Gaussian.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryStylize
A filter that makes a photographic image look as if it was painted or sketched. These filters are typically
used alone or in combination with other filters to achieve artistic effects.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategorySharpen
A filter that sharpens images, increasing the contrast between the edges in an image. Examples of
sharpen filters are unsharp mask and sharpen luminance.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryBlur
A filter that softens images, decreasing the contrast between the edges in an image. Examples of blur
filters are Gaussian blur and zoom blur.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryVideo
A filter that works on video images.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryStillImage
A filter that works on still images.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryInterlaced
A filter that works on interlaced images.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Constants 23
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCICategoryNonSquarePixels
A filter that works on non-square pixels.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryHighDynamicRange
A filter that works on high dynamic range pixels.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryBuiltIn
A filter provided by Core Image. This distinguishes built-in filters from plug-in filters.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryFilterGenerator
A filter created by chaining several filters together and then packaged as a CIFilterGenerator
object.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Options for Applying a Filter
Options that control the application of a Core Image filter.

extern NSString *kCIApplyOptionExtent;
extern NSString *kCIApplyOptionDefinition;
extern NSString *kCIApplyOptionUserInfo;

Constants
kCIApplyOptionExtent

The size of the produced image. The associated value is a four-element array (NSArray) that specifies
the x-value of the rectangle origin, the y-value of the rectangle origin, and the width and height.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIApplyOptionDefinition
The domain of definition (DOD) of the produced image. The associated value is either a Core Image
filter shape or a four-element array (NSArray) that specifies a rectangle.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIApplyOptionUserInfo
Information needed by a callback. The associated value is an object that Core Image will pass to any
callbacks invoked for that filter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

24 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

User Interface Control Options
Sets of controls for various user scenarios.

extern NSString *kCIUIParameterSet;
extern NSString *kCIUISetBasic;
extern NSString *kCIUISetIntermediate;
extern NSString *kCIUISetAdvanced;
extern NSString *kCIUISetDevelopment;

Constants
kCIUIParameterSet

The set of input parameters to use. The associated value can be kCIUISetBasic (page 25),
kCIUISetIntermediate (page 25),kCIUISetAdvanced (page 25), orkCIUISetDevelopment (page
25).

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetBasic
Controls that are appropriate for a basic user scenario, that is, the minimum of settings to control the
filter.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetIntermediate
Controls that are appropriate for an intermediate user scenario.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetAdvanced
Controls that are appropriate for an advanced user scenario.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetDevelopment
Controls that should be visible only for development purposes.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Discussion
You can use these constants to specify the controls that you want associated with each user scenario. For
example, for a filter that has many input parameters you can choose a small set of input parameters that the
typical consumer can control and set the other input parameters to default values. For the same filter, however,
you can choose to allow professional customers to control all the input parameters.

Declared In
CIFIlter.h

Filter Parameter Keys
Keys for input parameters to filters.

Constants 25
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

extern NSString *kCIOutputImageKey;
extern NSString *kCIInputBackgroundImageKey;
extern NSString *kCIInputImageKey;
extern NSString *kCIInputTimeKey;
extern NSString *kCIInputTransformKey;
extern NSString *kCIInputScaleKey;
extern NSString *kCIInputAspectRatioKey;
extern NSString *kCIInputCenterKey;
extern NSString *kCIInputRadiusKey;
extern NSString *kCIInputAngleKey;
extern NSString *kCIInputRefractionKey;
extern NSString *kCIInputWidthKey;
extern NSString *kCIInputSharpnessKey;
extern NSString *kCIInputIntensityKey;
extern NSString *kCIInputEVKey;
extern NSString *kCIInputSaturationKey;
extern NSString *kCIInputColorKey;
extern NSString *kCIInputBrightnessKey;
extern NSString *kCIInputContrastKey;
extern NSString *kCIInputGradientImageKey;
extern NSString *kCIInputMaskImageKey;
extern NSString *kCIInputShadingImageKey;
extern NSString *kCIInputTargetImageKey;
extern NSString *kCIInputExtentKey;

Constants
kCIOutputImageKey

A key for the CIImage object produced by a filter.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputBackgroundImageKey
A key for the CIImage object to use as a background image.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputImageKey
A key for the CIImage object to use as an input image. For filters that also use a background image,
this key refers to the foreground image.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputTimeKey
A key for z scalar value (NSNumber) that specifies a time.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputTransformKey
A key for an NSAffineTransform object that specifies a transformation to apply.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

26 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCIInputScaleKey
A key for a scalar value (NSNumber) that specifies the amount of the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputAspectRatioKey
A key for a scalar value (NSNumber) that specifies a ratio.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputCenterKey
A key for a CIVector object that specifies the center of the area, as x and y- coordinates, to be filtered.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputRadiusKey
A key for a scalar value (NSNumber) that specifies that specifies the distance from the center of an
effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputAngleKey
A key for a scalar value (NSNumber) that specifies an angle.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputRefractionKey
A key for a scalar value (NSNumber) that specifies the index of refraction of the material (such as glass)
used in the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputWidthKey
A key for a scalar value (NSNumber) that specifies the width of the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputSharpnessKey
A key for a scalar value (NSNumber) that specifies the amount of sharpening to apply.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputIntensityKey
A key for a scalar value (NSNumber) that specifies an intensity value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputEVKey
A key for a scalar value (NSNumber) that specifies how many F-stops brighter or darker the image
should be.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Constants 27
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCIInputSaturationKey
A key for a scalar value (NSNumber) that specifies the amount to adjust the saturation.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputColorKey
A key for a CIColor object that specifies a color value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputBrightnessKey
A key for a scalar value (NSNumber) that specifies a brightness level.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputContrastKey
A key for a scalar value (NSNumber) that specifies a contrast level.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputGradientImageKey
A key for a CIImage object that specifies an environment map with alpha. Typically, this image
contains highlight and shadow.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputMaskImageKey
A key for a CIImage object to use as a mask.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputShadingImageKey
A key for a CIImage object that specifies an environment map with alpha values. Typically this image
contains highlight and shadow.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputTargetImageKey
A key for a CIImage object that is the target image for a transition.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputExtentKey
A key for a CIVector object that specifies a rectangle that defines the extent of the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Discussion
These keys represent some of the most commonly used input parameters. A filter can use other kinds of
input parameters.

Declared In
CIFIlter.h

28 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

RAW Image Options
Options for creating a CIFilter object from RAW image data.

extern NSString * const kCIInputDecoderVersionKey;
extern NSString * const kCISupportedDecoderVersionsKey;
extern NSString * const kCIInputBoostKey;
extern NSString * const kCIInputNeutralChromaticityXKey;
extern NSString * const kCIInputNeutralChromaticityYKey;
extern NSString * const kCIInputNeutralTemperatureKey;
extern NSString * const kCIInputNeutralTintKey;
extern NSString * const kCIInputNeutralLocation;
extern NSString * const kCIInputScaleFactorKey;
extern NSString * const kCIInputAllowDraftModeKey;
extern NSString * const kCIInputIgnoreImageOrientationKey;
extern NSString * const kCIInputImageOrientationKey;
extern NSString * const kCIInputEnableSharpeningKey;
extern NSString * const kCIInputEnableChromaticNoiseTrackingKey;
extern NSString * const kCIInputBoostShadowAmountKey;
extern NSString * const kCIInputBiasKey;

Constants
kCIInputDecoderVersionKey

A key for the version number of the method to be used for decoding. A newly initialized object defaults
to the newest available decoder version for the given image type. You can request an alternative,
older version to maintain compatibility with older releases. Must be one of
kCISupportedDecoderVersions, otherwise a nil output image is generated. The associated value
must be an NSNumber object that specifies an integer value in range of 0 to the current decoder
version. When you request a specific version of the decoder, Core Image produces an image that is
visually the same across different versions of the operating system. Core Image, however, does not
guarantee that the same bits are produced across different versions of the operating system. That’s
because the rounding behavior of floating-point arithmetic can vary due to differences in compilers
or hardware. Note that this option has no effect if the image used for initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCISupportedDecoderVersionsKey
A key for the supported decoder versions. The associated value is an NSArray object that contains
all supported decoder versions for the given image type, sorted in increasingly newer order. Each
entry is an NSDictionary object that contains key-value pairs. All entries represent a valid version
identifier that can be passed as the kCIDecoderVersion value for the key kCIDecoderMethodKey.
Version values are read-only; attempting to set this value raises an exception. Currently, the only
defined key is @"version" which has as its value an NSString that uniquely describing a given
decoder version. This string might not be suitable for user interface display..

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputBoostKey
A key for the the amount of boost to apply to an image. The associated value is a floating-point value
packaged as an NSNumber object. The value must be in the range of 0...1. A value of 0 indicates
no boost, that is, a linear response. The default value is 1, which indicates full boost.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

Constants 29
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCIInputNeutralChromaticityXKey
The x value of the chromaticity. The associated value is a floating-point value packaged as an NSNumber
object. You can query this value to get the current x value for neutral x, y.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralChromaticityYKey
The y value of the chromaticity. The associated value is a floating-point value packaged as an NSNumber
object. You can query this value to get the current y value for neutral x, y.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralTemperatureKey
A key for neutral temperature. The associated value is a floating-point value packaged as an NSNumber
object. You can query this value to get the current temperature value.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralTintKey
A key for the neutral tint. The associated value is a floating-point value packaged as an NSNumber
object. Use this key to set or fetch the temperature and tint values. You can query this value to get
the current tint value.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralLocationKey
A key for the neutral position. Use this key to set the location in geometric coordinates of the unrotated
output image that should be used as neutral. You cannot query this value; it is undefined for reading.
The associated value is a two-element CIVector object that specifies the location (x, y).

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputScaleFactorKey
A key for the scale factor. The associated value is a floating-point value packaged as an NSNumber
object that specifies the desired scale factor at which the image will be drawn. Setting this value can
greatly improve the drawing performance. A value of 1 is the identity. In some cases, if you change
the scale factor and enable draft mode, performance can decrease. See kCIAllowDraftModeKey.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputAllowDraftModeKey
A key for allowing draft mode. The associated value is a Boolean value packaged as an NSNumber
object. It’s best not to use draft mode if the image needs to be drawn without draft mode at a later
time, because changing the value from YES to NO is an expensive operation. If the optional scale
factor is smaller than a certain value, additionally setting draft mode can improve image decoding
speed without any perceivable loss of quality. However, turning on draft mode does not have any
effect if the scale factor is not below this threshold.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

30 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

kCIInputIgnoreImageOrientationKey
A key for specifying whether to ignore the image orientation. The associated value is a Boolean value
packaged as an NSNumber object. The default value is NO. An image is usually loaded in its proper
orientation, as long as the associated metadata records its orientation. For special purposes you might
want to load the image in its physical orientation. The exact meaning of "physical orientation” is
dependent on the specific image.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputImageOrientationKey
A key for the image orientation. The associated value is an integer value packaged as an NSNumber
object. Valid values are in range 1...8 and follow the EXIF specification. The value is disregarded
when the kCIIgnoreImageOrientationKey flag is set. You can change the orientation of the image
by overriding this value. By changing this value you can easily rotate an image in 90-degree increments.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputEnableSharpeningKey
A key for the sharpening state. The associated value must be an NSNumber object that specifies a
BOOL value (YES or NO). The default is YES. This option has no effect if the image used for initialization
is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputEnableChromaticNoiseTrackingKey
A key for progressive chromatic noise tracking (based on ISO and exposure time). The associated
value must be an NSNumber object that specifies a BOOL value (YES or NO). The default is YES. This
option has no effect if the image used for initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputBoostShadowAmountKey
A key for the amount to boost the shadow areas of the image. The associated value must be an
NSNumber object that specifies floating-point value. The value has no effect if the image used for
initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputBiasKey
A key for the simple bias value to use along with the exposure adjustment (kCIInputEVKey). The
associated value must be an NSNumber object that specifies floating-point value. The value has no
effect if the image used for initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

Discussion
You can also use the key kCIInputEVKey for RAW images.

Declared In
CIRAWFilter.h

Constants 31
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

32 Constants
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CIFilter Class Reference

This table describes the changes to CIFilter Class Reference.

NotesDate

Added a filter category and updated filter attribute constants.2007-12-11

See kCIAttributeClass (page 17) and “Filter Category Keys” (page
21).

Updated for Mac OS X v10.5.2007-06-26

Added additions to support using RAW images. See “Creating a Filter from a
RAW Image” (page 6) and “RAW Image Options” (page 29).

Added the methods localizedDescriptionForFilterName: (page 10)
and localizedReferenceDocumentationForFilterName: (page 12).

Add the constant groups: “User Interface Control Options” (page 25)
and “Filter Parameter Keys” (page 25).

Added two filter attributes: kCIAttributeDescription (page 17) and
kCIAttributeReferenceDocumentation (page 17).

Added two attribute types: kCIAttributeTypeInteger (page 19) and
kCIAttributeTypeCount (page 20).

Changed formatting for constants.

Clarified a few technical points.2006-06-28

Added a discussion to
registerFilterName:constructor:classAttributes: (page 12).

First publication of this content as a separate document.2006-05-23

Added parameter descriptions and updated Class Description.

33
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

apply: instance method 13
apply:arguments:options: instance method 13
attributes instance method 14

C

Color Attribute Keys 20

D

Data Type Attributes 19

F

Filter Attribute Keys 16
Filter Category Keys 21
Filter Parameter Keys 25
filterNamesInCategories: class method 7
filterNamesInCategory: class method 8
filterWithImageData:options: class method 8
filterWithImageURL:options: class method 9
filterWithName: class method 9
filterWithName:keysAndValues: class method 10

I

inputKeys instance method 15

K

kCIApplyOptionDefinition constant 24

kCIApplyOptionExtent constant 24
kCIApplyOptionUserInfo constant 24
kCIAttributeClass constant 17
kCIAttributeDefault constant 18
kCIAttributeDescription constant 17
kCIAttributeDisplayName constant 18
kCIAttributeFilterCategories constant 17
kCIAttributeFilterDisplayName constant 17
kCIAttributeFilterName constant 17
kCIAttributeIdentity constant 18
kCIAttributeMax constant 18
kCIAttributeMin constant 18
kCIAttributeName constant 18
kCIAttributeReferenceDocumentation constant 17
kCIAttributeSliderMax constant 18
kCIAttributeSliderMin constant 18
kCIAttributeType constant 18
kCIAttributeTypeAngle constant 19
kCIAttributeTypeBoolean constant 19
kCIAttributeTypeCount constant 20
kCIAttributeTypeDistance constant 19
kCIAttributeTypeGradient constant 21
kCIAttributeTypeInteger constant 19
kCIAttributeTypeOffset constant 20
kCIAttributeTypeOpaqueColor constant 21
kCIAttributeTypePosition constant 20
kCIAttributeTypePosition3 constant 20
kCIAttributeTypeRectangle constant 20
kCIAttributeTypeScalar constant 19
kCIAttributeTypeTime constant 19
kCICategoryBlur constant 23
kCICategoryBuiltIn constant 24
kCICategoryColorAdjustment constant 22
kCICategoryColorEffect constant 22
kCICategoryCompositeOperation constant 22
kCICategoryDistortionEffect constant 21
kCICategoryFilterGenerator constant 24
kCICategoryGenerator constant 23
kCICategoryGeometryAdjustment constant 22
kCICategoryGradient constant 23
kCICategoryHalftoneEffect constant 22
kCICategoryHighDynamicRange constant 24

35
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

Index

kCICategoryInterlaced constant 23
kCICategoryNonSquarePixels constant 24
kCICategoryReduction constant 23
kCICategorySharpen constant 23
kCICategoryStillImage constant 23
kCICategoryStylize constant 23
kCICategoryTileEffect constant 22
kCICategoryTransition constant 22
kCICategoryVideo constant 23
kCIInputAllowDraftModeKey constant 30
kCIInputAngleKey constant 27
kCIInputAspectRatioKey constant 27
kCIInputBackgroundImageKey constant 26
kCIInputBiasKey constant 31
kCIInputBoostKey constant 29
kCIInputBoostShadowAmountKey constant 31
kCIInputBrightnessKey constant 28
kCIInputCenterKey constant 27
kCIInputColorKey constant 28
kCIInputContrastKey constant 28
kCIInputDecoderVersionKey constant 29
kCIInputEnableChromaticNoiseTrackingKey

constant 31
kCIInputEnableSharpeningKey constant 31
kCIInputEVKey constant 27
kCIInputExtentKey constant 28
kCIInputGradientImageKey constant 28
kCIInputIgnoreImageOrientationKey constant 31
kCIInputImageKey constant 26
kCIInputImageOrientationKey constant 31
kCIInputIntensityKey constant 27
kCIInputMaskImageKey constant 28
kCIInputNeutralChromaticityXKey constant 30
kCIInputNeutralChromaticityYKey constant 30
kCIInputNeutralLocationKey constant 30
kCIInputNeutralTemperatureKey constant 30
kCIInputNeutralTintKey constant 30
kCIInputRadiusKey constant 27
kCIInputRefractionKey constant 27
kCIInputSaturationKey constant 28
kCIInputScaleFactorKey constant 30
kCIInputScaleKey constant 27
kCIInputShadingImageKey constant 28
kCIInputSharpnessKey constant 27
kCIInputTargetImageKey constant 28
kCIInputTimeKey constant 26
kCIInputTransformKey constant 26
kCIInputWidthKey constant 27
kCIOutputImageKey constant 26
kCISupportedDecoderVersionsKey constant 29
kCIUIParameterSet constant 25
kCIUISetAdvanced constant 25
kCIUISetBasic constant 25

kCIUISetDevelopment constant 25
kCIUISetIntermediate constant 25

L

localizedDescriptionForFilterName: class method
10

localizedNameForCategory: class method 11
localizedNameForFilterName: class method 11
localizedReferenceDocumentationForFilterName:

class method 12

O

Options for Applying a Filter 24
outputKeys instance method 16

R

RAW Image Options 29
registerFilterName:constructor:classAttributes:

class method 12

S

setDefaults instance method 16

U

User Interface Control Options 25

V

Vector Quantity Attributes 20

36
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	CIFilter Class Reference
	Contents
	CIFilter Class Reference
	Overview
	Tasks
	Creating a Filter
	Creating a Filter from a RAW Image
	Accessing Registered Filters
	Registering a Filter
	Getting Filter Parameters and Attributes
	Setting Default Values
	Applying a Filter
	Getting Localized Information for Registered Filters

	Class Methods
	filterNamesInCategories:
	filterNamesInCategory:
	filterWithImageData:options:
	filterWithImageURL:options:
	filterWithName:
	filterWithName:keysAndValues:
	localizedDescriptionForFilterName:
	localizedNameForCategory:
	localizedNameForFilterName:
	localizedReferenceDocumentationForFilterName:
	registerFilterName:constructor:classAttributes:

	Instance Methods
	apply:
	apply:arguments:options:
	attributes
	inputKeys
	outputKeys
	setDefaults

	Constants
	Filter Attribute Keys
	Data Type Attributes
	Vector Quantity Attributes
	Color Attribute Keys
	Filter Category Keys
	Options for Applying a Filter
	User Interface Control Options
	Filter Parameter Keys
	RAW Image Options

	Revision History
	Index
	A
	C
	D
	F
	I
	K
	L
	O
	R
	S
	U
	V

