
Quartz Core Framework Reference
Graphics & Imaging > Quartz

2008-03-12

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, iChat, Mac, Mac OS, Objective-C,
Quartz, QuickDraw, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

Aperture and iPhone are trademarks of Apple
Inc.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 11

Part I Classes 13

Chapter 1 CAAnimation Class Reference 15

Overview 15
Tasks 15
Properties 16
Class Methods 17
Instance Methods 18
Delegate Methods 19

Chapter 2 CAAnimationGroup Class Reference 21

Overview 21
Tasks 22
Properties 22

Chapter 3 CABasicAnimation Class Reference 23

Overview 23
Tasks 24
Properties 24

Chapter 4 CAConstraint Class Reference 27

Overview 27
Tasks 28
Class Methods 28
Instance Methods 30
Constants 31

Chapter 5 CAConstraintLayoutManager Class Reference 33

Overview 33
Tasks 34
Class Methods 34

3
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

Chapter 6 CAKeyframeAnimation Class Reference 35

Overview 35
Tasks 35
Properties 36
Constants 38

Chapter 7 CALayer Class Reference 41

Overview 41
Tasks 41
Properties 47
Class Methods 61
Instance Methods 63
Delegate Methods 79
Constants 81

Chapter 8 CAMediaTimingFunction Class Reference 89

Overview 89
Tasks 89
Class Methods 90
Instance Methods 91
Constants 92

Chapter 9 CAOpenGLLayer Class Reference 95

Overview 95
Tasks 95
Properties 96
Instance Methods 97

Chapter 10 CAPropertyAnimation Class Reference 101

Overview 101
Tasks 101
Properties 102
Class Methods 103
Instance Methods 103

Chapter 11 CARenderer Class Reference 105

Overview 105
Tasks 105
Properties 106
Class Methods 107

4
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 107

Chapter 12 CAScrollLayer Class Reference 111

Overview 111
Tasks 111
Properties 112
Instance Methods 112
Constants 113

Chapter 13 CATextLayer Class Reference 115

Overview 115
Tasks 115
Properties 116
Instance Methods 119
Constants 119

Chapter 14 CATiledLayer Class Reference 121

Overview 121
Tasks 121
Properties 122
Class Methods 123

Chapter 15 CATransaction Class Reference 125

Overview 125
Tasks 125
Class Methods 126
Constants 128

Chapter 16 CATransition Class Reference 129

Overview 129
Tasks 129
Properties 130
Constants 132

Chapter 17 CIColor Class Reference 135

Overview 135
Tasks 136
Class Methods 137
Instance Methods 139

5
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 18 CIContext Class Reference 143

Overview 143
Tasks 143
Class Methods 144
Instance Methods 146
Constants 151

Chapter 19 CIFilter Class Reference 153

Overview 153
Tasks 153
Class Methods 155
Instance Methods 161
Constants 164

Chapter 20 CIFilter Core Animation Additions 181

Overview 181
Tasks 181
Properties 182
Instance Methods 182

Chapter 21 CIFilterGenerator Class Reference 183

Overview 183
Tasks 183
Class Methods 185
Instance Methods 186
Constants 191

Chapter 22 CIFilterShape Class Reference 193

Overview 193
Tasks 193
Class Methods 194
Instance Methods 195

Chapter 23 CIImage Class Reference 199

Overview 199
Tasks 200
Class Methods 202
Instance Methods 210
Constants 219

6
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 24 CIImageAccumulator Class Reference 221

Overview 221
Tasks 221
Class Methods 222
Instance Methods 223

Chapter 25 CIKernel Class Reference 227

Overview 227
Tasks 227
Class Methods 228
Instance Methods 228

Chapter 26 CIPlugIn Class Reference 231

Overview 231
Tasks 231
Class Methods 232

Chapter 27 CISampler Class Reference 235

Overview 235
Tasks 235
Class Methods 236
Instance Methods 238
Constants 240

Chapter 28 CIVector Class Reference 243

Overview 243
Tasks 243
Class Methods 245
Instance Methods 248

Chapter 29 NSValue Core Animation Additions 253

Overview 253
Tasks 253
Class Methods 253
Instance Methods 254

7
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Part II Protocols 255

Chapter 30 CAAction Protocol Reference 257

Overview 257
Tasks 257
Instance Methods 257

Chapter 31 CALayoutManager Protocol Reference 259

Overview 259
Tasks 259
Instance Methods 259

Chapter 32 CAMediaTiming Protocol Reference 263

Overview 263
Tasks 263
Properties 264
Constants 267

Chapter 33 CIImageProvider Protocol Reference 269

Overview 269
Tasks 269
Instance Methods 269
Constants 270

Chapter 34 CIPlugInRegistration Protocol Reference 273

Overview 273
Tasks 273
Instance Methods 273

Part III Other References 275

Chapter 35 Core Video Reference 277

Overview 277
Functions by Task 277
Functions 283
Callbacks 333
Data Types 337
Constants 343
Result Codes 358

8
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 36 Core Animation Function Reference 361

Overview 361
Functions by Task 361
Functions 362

Document Revision History 367

Index 369

9
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

10
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/QuartzCore.framework

Header file directories /System/Library/Frameworks/QuartzCore.framework/Headers

Declared in CAAnimation.h
CABase.h
CACIFilterAdditions.h
CAConstraintLayoutManager.h
CALayer.h
CAMediaTiming.h
CAMediaTimingFunction.h
CAOpenGLLayer.h
CARenderer.h
CAScrollLayer.h
CATextLayer.h
CATiledLayer.h
CATransaction.h
CATransform3D.h
CIColor.h
CIContext.h
CIFilter.h
CIFilterGenerator.h
CIFilterShape.h
CIImage.h
CIImageAccumulator.h
CIImageProvider.h
CIKernel.h
CIPlugIn.h
CIPlugInInterface.h
CIRAWFilter.h
CISampler.h
CIVector.h
CVBase.h
CVBuffer.h
CVDisplayLink.h
CVHostTime.h
CVImageBuffer.h
CVOpenGLBuffer.h
CVOpenGLBufferPool.h
CVOpenGLTexture.h
CVOpenGLTextureCache.h
CVPixelBuffer.h
CVPixelBufferPool.h
CVPixelFormatDescription.h
CVReturn.h

Companion guides Core Image Programming Guide

11
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Image Unit Tutorial
Core Image Kernel Language Reference
Core Image Filter Reference
Core Video Programming Guide

This collection of documents provides the API reference for the Quartz Core framework, which supports
image processing and video image manipulation.

12
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

13
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART I

Classes

14
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSCopying
CAAction
CAMediaTiming
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAAnimation is an abstract animation class. It provides the basic support for the CAMediaTiming and
CAAction protocols.

Tasks

Archiving Properties

– shouldArchiveValueForKey: (page 19)
Specifies whether the value of the property for a given key is archived.

Providing Default Values for Properties

+ defaultValueForKey: (page 18)
Specifies the default value of the property with the specified key.

Overview 15
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Creating an Animation

+ animation (page 17)
Creates and returns a new CAAnimation instance.

Animation Attributes

 removedOnCompletion (page 17) property
Determines if the animation is removed from the target layer’s animations upon completion.

– isRemovedOnCompletion (page 18)
A synthesized accessor for the removedOnCompletion (page 17) property.

 timingFunction (page 17) property
An optional timing function defining the pacing of the animation.

Getting and Setting the Delegate

 delegate (page 16) property
Specifies the receiver’s delegate object.

Animation Progress

– animationDidStart: (page 19) delegate method
Called when the animation begins its active duration.

– animationDidStop:finished: (page 19) delegate method
Called when the animation completes its active duration or is removed from the object it is attached
to.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

delegate
Specifies the receiver’s delegate object.

@property(retain) id delegate

Discussion
Defaults to nil.

16 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Important: The delegate object is retained by the receiver. This is a rare exception to the memory
management rules described in Memory Management Programming Guide for Cocoa.

An instance of CAAnimation should not be set as a delegate of itself. Doing so (outside of a garbage-collected
environment) will cause retain cycles.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

removedOnCompletion
Determines if the animation is removed from the target layer’s animations upon completion.

@property BOOL removedOnCompletion

Discussion
When YES, the animation is removed from the target layer’s animations once its active duration has passed.
Defaults to YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

timingFunction
An optional timing function defining the pacing of the animation.

@property(retain) CAMediaTimingFunction *timingFunction

Discussion
Defaults to nil, indicating linear pacing.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Class Methods

animation
Creates and returns a new CAAnimation instance.

Class Methods 17
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

+ (id)animation

Return Value
An CAAnimation object whose input values are initialized.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

defaultValueForKey:
Specifies the default value of the property with the specified key.

+ (id)defaultValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
The default value for the named property. Returns nil if no default value has been set.

Discussion
If this method returns nil a suitable “zero” default value for the property is provided, based on the declared
type of the key. For example, if key is a CGSize object, a size of (0.0,0.0) is returned. For a CGRect an empty
rectangle is returned. For CGAffineTransform and CATransform3D, the appropriate identity matrix is
returned.

Special Considerations

If key is not a known for property of the class, the result of the method is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Instance Methods

isRemovedOnCompletion
A synthesized accessor for the removedOnCompletion (page 17) property.

- (BOOL)isRemovedOnCompletion

See Also
 @property removedOnCompletion (page 17)

18 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

shouldArchiveValueForKey:
Specifies whether the value of the property for a given key is archived.

- (BOOL)shouldArchiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
YES if the specified property should be archived, otherwise NO.

Discussion
Called by the object's implementation of encodeWithCoder:. The object must implement keyed archiving.

The default implementation returns YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Delegate Methods

animationDidStart:
Called when the animation begins its active duration.

- (void)animationDidStart:(CAAnimation *)theAnimation

Parameters
theAnimation

The CAAnimation instance that started animating.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

animationDidStop:finished:
Called when the animation completes its active duration or is removed from the object it is attached to.

- (void)animationDidStop:(CAAnimation *)theAnimation
finished:(BOOL)flag

Parameters
theAnimation

The CAAnimation instance that stopped animating.

Delegate Methods 19
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

flag
If YES, the animation reached the end of its active duration without being removed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

20 Delegate Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAAnimationGroup allows multiple animations to be grouped and run concurrently. The grouped animations
run in the time space specified by the CAAnimationGroup instance.

The duration of the grouped animations are not scaled to the duration of their CAAnimationGroup. Instead,
the animations are clipped to the duration of the animation group. For example, a 10 second animation
grouped within an animation group with a duration of 5 seconds will only display the first 5 seconds of the
animation.

Overview 21
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CAAnimationGroup Class Reference

Important: The delegate and removedOnCompletion properties of animations in the animations (page
22) array are currently ignored. The CAAnimationGroup delegate does receive these messages.

Note: The delegate and removedOnCompletion properties of animations in the animations (page 22)
property are currently ignored.

Tasks

Grouped Animations

 animations (page 22) property
An array of CAAnimation objects to be evaluated in the time space of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

animations
An array of CAAnimation objects to be evaluated in the time space of the receiver.

@property(copy) NSArray *animations

Discussion
The animations run concurrently in the receiver’s time space.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

22 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CAAnimationGroup Class Reference

Inherits from CAPropertyAnimation : CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CABasicAnimation provides basic, single-keyframe animation capabilities for a layer property. You create
an instance of CABasicAnimation using the inherited animationWithKeyPath: (page 103) method,
specifying the key path of the property to be animated in the render tree.

Setting Interpolation Values

The fromValue (page 24), byValue (page 24) and toValue (page 25) properties define the values being
interpolated between. All are optional, and no more than two should be non-nil. The object type should
match the type of the property being animated.

The interpolation values are used as follows:

 ■ Both fromValue (page 24) and toValue (page 25) are non-nil. Interpolates between fromValue (page
24) and toValue (page 25).

 ■ fromValue (page 24) and byValue (page 24) are non-nil. Interpolates between fromValue (page
24) and (fromValue (page 24) + byValue (page 24)).

 ■ byValue (page 24) and toValue (page 25) are non-nil. Interpolates between (toValue (page 25) -
byValue (page 24)) and toValue (page 25).

 ■ fromValue (page 24) is non-nil. Interpolates between fromValue (page 24) and the current
presentation value of the property.

Overview 23
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

 ■ toValue (page 25) is non-nil. Interpolates between the current value of keyPath in the target layer’s
presentation layer and toValue (page 25).

 ■ byValue (page 24) is non-nil. Interpolates between the current value of keyPath in the target layer’s
presentation layer and that value plus byValue (page 24).

 ■ All properties are nil. Interpolates between the previous value of keyPath in the target layer’s
presentation layer and the current value of keyPath in the target layer’s presentation layer.

Tasks

Interpolation Values

 fromValue (page 24) property
Defines the value the receiver uses to start interpolation.

 toValue (page 25) property
Defines the value the receiver uses to end interpolation.

 byValue (page 24) property
Defines the value the receiver uses to perform relative interpolation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

byValue
Defines the value the receiver uses to perform relative interpolation.

@property(retain) id byValue

Discussion
See “Setting Interpolation Values” (page 23) for details on how byValue interacts with the other interpolation
values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

fromValue
Defines the value the receiver uses to start interpolation.

24 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

@property(retain) id fromValue

Discussion
See “Setting Interpolation Values” (page 23) for details on how fromValue interacts with the other
interpolation values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

toValue
Defines the value the receiver uses to end interpolation.

@property(retain) id toValue

Discussion
See “Setting Interpolation Values” (page 23) for details on how toValue interacts with the other interpolation
values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Properties 25
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

26 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAConstraint represents a single layout constraint between two layers. Each CAConstraint instance
encapsulates one geometry relationship between two layers on the same axis.

Sibling layers are referenced by name, using the name property of each layer. The special name superlayer
is used to refer to the layer's superlayer.

For example, to specify that a layer should be horizontally centered in its superview you would use the
following:

theConstraint=[CAConstraint constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidX];

A maximum of two relationships must be specified per axis. If you specify constraints for the left and right
edges of a layer, the width will vary. If you specify constraints for the left edge and the width, the right edge
of the layer will move relative to the superlayer’s frame. Often you’ll specify only a single edge constraint,
the layer’s size in the same axis will be used as the second relationship.

Overview 27
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Important: It is possible to create constraints that result in circular references to the same attributes. In cases
where the layout is unable to be computed the behavior is undefined.

Tasks

Create a New Constraint

+ constraintWithAttribute:relativeTo:attribute:scale:offset: (page 29)
Creates and returns an CAConstraint object with the specified parameters.

+ constraintWithAttribute:relativeTo:attribute:offset: (page 29)
Creates and returns an CAConstraint object with the specified parameters.

+ constraintWithAttribute:relativeTo:attribute: (page 28)
Creates and returns an CAConstraint object with the specified parameters.

– initWithAttribute:relativeTo:attribute:scale:offset: (page 30)
Returns an CAConstraint object with the specified parameters. Designated initializer.

Class Methods

constraintWithAttribute:relativeTo:attribute:
Creates and returns an CAConstraint object with the specified parameters.

+ (id)constraintWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

Return Value
A new CAConstraint object with the specified parameters. The scale of the constraint is set to 1.0. The
offset of the constraint is set to 0.0.

Discussion
The value for the constraint is calculated is srcAttr.

Availability
Available in Mac OS X v10.5 and later.

28 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Declared In
CAConstraintLayoutManager.h

constraintWithAttribute:relativeTo:attribute:offset:
Creates and returns an CAConstraint object with the specified parameters.

+ (id)constraintWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr
offset:(CGFloat)offset

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

offset
The offset added to the value of srcAttr.

Return Value
A new CAConstraint object with the specified parameters. The scale of the constraint is set to 1.0.

Discussion
The value for the constraint is calculated as (srcAttr + offset).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

constraintWithAttribute:relativeTo:attribute:scale:offset:
Creates and returns an CAConstraint object with the specified parameters.

+ (id)constraintWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr
scale:(CGFloat)scale
offset:(CGFloat)offset

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

Class Methods 29
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

scale
The amount to scale the value of srcAttr.

offset
The offset from the srcAttr.

Return Value
A new CAConstraint object with the specified parameters.

Discussion
The value for the constraint is calculated as (srcAttr * scale) + offset).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

Instance Methods

initWithAttribute:relativeTo:attribute:scale:offset:
Returns an CAConstraint object with the specified parameters. Designated initializer.

- (id)initWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr
scale:(CGFloat)scale
offset:(CGFloat)offset

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

scale
The amount to scale the value of srcAttr.

offset
The offset added to the value of srcAttr.

Return Value
An initialized constraint object using the specified parameters.

Discussion
The value for the constraint is calculated as (srcAttr * scale) + offset).

Availability
Available in Mac OS X v10.5 and later.

30 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Declared In
CAConstraintLayoutManager.h

Constants

CAConstraintAttribute
These constants represent the geometric edge or axis of a constraint.

enum _CAConstraintAttribute
{
 kCAConstraintMinX,
 kCAConstraintMidX,
 kCAConstraintMaxX,
 kCAConstraintWidth,
 kCAConstraintMinY,
 kCAConstraintMidY,
 kCAConstraintMaxY,
 kCAConstraintHeight,
};

Constants
kCAConstraintMinX

The left edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMidX
The horizontal location of the center of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMaxX
The right edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintWidth
The width of a layer.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMinY
The bottom edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMidY
The vertical location of the center of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

Constants 31
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

kCAConstraintMaxY
The top edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintHeight
The height of a layer.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

Declared In
CAConstraint.h

Constraint Attribute Type
The constraint attribute type.

typedef int CAConstraintAttribute;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

32 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code Core Animation QuickTime Layer

Overview

CAConstraintLayoutManager provides a constraint-based layout manager.

Constraint-based layout allows you to describe the position and size of a layer by specifying relationships
between a layer and its sibling layers or its superlayer. The relationships are represented by instances of the
CAConstraint class that are stored in an array in the layer’s constraints property. You add constraints
for a layer using its addConstraint: (page 64) method. Each CAConstraint instance encapsulates one
geometry relationship between two layers. Layout is then performed by fetching the constraints of each
sublayer and solving the resulting system of constraints for the frame of each sublayer starting from the
bounds of the containing layer.

Sibling layers are referenced by name, using the name property of each layer. The special name superlayer
is used to refer to the layer's superlayer.

Overview 33
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CAConstraintLayoutManager Class Reference

Important: It is possible to specify a set of constraints for a layer (for example, circular attribute dependencies)
that will cause layout to fail. In that case the behavior is undefined.

Tasks

Creating the Layout Manager

+ layoutManager (page 34)
Creates and returns a new CAConstraintLayoutManager instance.

Class Methods

layoutManager
Creates and returns a new CAConstraintLayoutManager instance.

+ (id)layoutManager

Return Value
A new CAConstraintLayoutManager instance.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Core Animation QuickTime Layer

Declared In
CAConstraintLayoutManager.h

34 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CAConstraintLayoutManager Class Reference

Inherits from CAPropertyAnimation : CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAKeyframeAnimation provides generic keyframe animation capabilities for a layer property in the render
tree. You create an CAKeyframeAnimation instance using the inherited animationWithKeyPath: (page
103) method, specifying the key path of the property updated in the render tree during the animation. The
animation provides a series of keyframe values, either as an array or a series of points in a CGPathRef. While
animating, it updates the value of the property in the render tree with values calculated using the specified
interpolation calculation mode.

Tasks

Providing Keyframe Values

 path (page 37) property
An optional CGPathRef that provides the keyframe values for the receiver.

 values (page 38) property
An array of objects that provide the keyframe values for the receiver.

Overview 35
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Keyframe Timing

 keyTimes (page 36) property
An optional array of NSNumber objects that define the duration of each keyframe segment.

 timingFunctions (page 38) property
An optional array of CAMediaTimingFunction instances that defines the pacing of the each keyframe
segment.

 calculationMode (page 36) property
Specifies how intermediate keyframe values are calculated by the receiver.

Rotation Mode

 rotationMode (page 37) property
Determines whether objects animating along the path rotate to match the path tangent.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

calculationMode
Specifies how intermediate keyframe values are calculated by the receiver.

@property(copy) NSString *calculationMode

Discussion
The possible values are described in “Value calculation modes” (page 39). The default is
kCAAnimationLinear (page 39).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

keyTimes
An optional array of NSNumber objects that define the duration of each keyframe segment.

@property(copy) NSArray *keyTimes

Discussion
Each value in the array is a floating point number between 0.0 and 1.0 and corresponds to one element in
the values array. Each element in the keyTimes array defines the duration of the corresponding keyframe
value as a fraction of the total duration of the animation. Each element value must be greater than, or equal
to, the previous value.

36 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

The appropriate values in the keyTimes array are dependent on the calculationMode (page 36) property.

 ■ If the calculationMode is set to kCAAnimationLinear, the first value in the array must be 0.0 and the
last value must be 1.0. Values are interpolated between the specified keytimes.

 ■ If the calculationMode is set to kCAAnimationDiscrete, the first value in the array must be 0.0.

 ■ If the calculationMode is set to kCAAnimationPaced, the keyTimes array is ignored.

If the values in the keyTimes array are invalid or inappropriate for the calculationMode, the keyTimes
array is ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

path
An optional CGPathRef that provides the keyframe values for the receiver.

@property CGPathRef path;

Discussion
Defaults to nil. Specifying a path overrides the values (page 38) property. Each point in the path, except
for moveto points, defines a single keyframe segment for the purpose of timing and interpolation. For constant
velocity animation along the path, calculationMode (page 36) should be set to kCAAnimationPaced (page
39).

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property rotationMode (page 37)

Declared In
CAAnimation.h

rotationMode
Determines whether objects animating along the path rotate to match the path tangent.

@property(copy) NSString *rotationMode

Discussion
Possible values are described in “Rotation Mode Values” (page 38). The default is nil, which indicates
that objects should not rotate to follow the path.

The effect of setting this property to a non-nil value when no path object is supplied is undefined.

Availability
Available in Mac OS X v10.5 and later.

Properties 37
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

See Also
 @property path (page 37)

Declared In
CAAnimation.h

timingFunctions
An optional array of CAMediaTimingFunction instances that defines the pacing of the each keyframe
segment.

@property(copy) NSArray *timingFunctions

Discussion
If the receiver defines n keyframes, there must be n-1 objects in the timingFunctions array. Each timing
function describes the pacing of one keyframe to keyframe segment.

Special Considerations

The inherited timingFunction value is always ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

values
An array of objects that provide the keyframe values for the receiver.

@property(copy) NSArray *values

Discussion
The values property is ignored when the path (page 37) property is used.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Constants

Rotation Mode Values
These constants are used by the rotationMode (page 37) property.

38 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

NSString * const kCAAnimationRotateAuto
NSString * const kCAAnimationRotateAutoReverse

Constants
kCAAnimationRotateAuto

The objects travel on a tangent to the path.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCAAnimationRotateAutoReverse
The objects travel at a 180 degree tangent to the path.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CAAnimation.h

Value calculation modes
These constants are used by the calculationMode (page 36) property.

NSString * const kCAAnimationLinear;
NSString * const kCAAnimationDiscrete;
NSString * const kCAAnimationPaced;

Constants
kCAAnimationLinear

Simple linear calculation between keyframe values.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCAAnimationDiscrete
Each keyframe value is used in turn, no interpolated values are calculated.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCAAnimationPaced
Keyframe values are interpolated to produce an even pace throughout the animation. This mode is
not currently implemented

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CAAnimation.h

Constants 39
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

40 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Inherits from NSObject

Conforms to NSCoding
CAMediaTiming
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h
CALayer.h
CAScrollLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials
Core Animation QuickTime Layer

Overview

CALayer is the model class for layer-tree objects. It encapsulates the position, size, and transform of a layer,
which defines its coordinate system. It also encapsulates the duration and pacing of a layer and its animations
by adopting the CAMediaTiming protocol, which defines a layer’s time space.

Tasks

Creating a Layer

+ layer (page 63)
Creates and returns an instance of CALayer.

– init (page 70)
Returns an initialized CALayer object.

– initWithLayer: (page 70)
Override to copy or initialize custom fields of the specified layer.

Overview 41
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Accessing the Presentation Layer

– presentationLayer (page 74)
Returns a copy of the layer containing all properties as they were at the start of the current transaction,
with any active animations applied.

– modelLayer (page 73)
Returns the model layer of the receiver, if it represents a current presentation layer.

Modifying the Layer Geometry

 frame (page 54) property
Specifies receiver’s frame rectangle in the super-layer’s coordinate space.

 bounds (page 50) property
Specifies the bounds rectangle of the receiver. Animatable.

 position (page 57) property
Specifies the receiver’s position in the superlayer’s coordinate system. Animatable.

 zPosition (page 61) property
Specifies the receiver’s position on the z axis. Animatable.

 anchorPoint (page 47) property
Defines the anchor point of the layer's bounds rectangle. Animatable.

– affineTransform (page 65)
Convenience method for getting the transform (page 61) property as an affine transform.

– setAffineTransform: (page 78)
Convenience method for setting the transform (page 61) property as an affine transform.

 transform (page 61) property
Specifies the transform applied to the receiver, relative to the center of its bounds. Animatable.

 sublayerTransform (page 60) property
Specifies a transform applied to each sublayer when rendering. Animatable.

Providing Layer Content

 contents (page 51) property
An object that provides the contents of the layer. Animatable.

 contentsRect (page 52) property
A rectangle, in the unit coordinate space, defining the subrectangle of contents (page 51) that
the receiver should draw. Animatable.

– display (page 69)
Reload the content of this layer.

– displayLayer: (page 80) delegate method
Allows the delegate to override the display (page 69) implementation.

– drawInContext: (page 69)
Draws the receiver’s content in the specified graphics context.

– drawLayer:inContext: (page 80) delegate method
Allows the delegate to override the layer’s drawInContext: implementation.

42 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

 opaque (page 57) property
Specifies a hint marking that the pixel data provided by the contents (page 51) property is
completely opaque.

– isOpaque (page 73)
A synthesized accessor for the opaque (page 57) property.

 edgeAntialiasingMask (page 53) property
A bitmask defining how the edges of the receiver are rasterized.

 minificationFilter (page 56) property
The filter used when reducing the size of the content.

 magnificationFilter (page 55) property
The filter used when increasing the size of the content.

Style Attributes

 contentsGravity (page 51) property
Determines how the receiver's contents are positioned within its bounds.

 opacity (page 57) property
Determines the opacity of the receiver. Animatable.

 hidden (page 54) property
Determines whether the receiver is displayed. Animatable.

– isHidden (page 72)
A synthesized accessor for the hidden (page 54) property.

 masksToBounds (page 56) property
Determines if the sublayers are clipped to the receiver’s bounds. Animatable.

 doubleSided (page 53) property
Determines whether the receiver is displayed when facing away from the viewer. Animatable.

– isDoubleSided (page 72)
A synthesized accessor for the doubleSided (page 53) property.

 mask (page 55) property
An optional layer whose alpha channel is used as a mask to select between the layer's background
and the result of compositing the layer's contents with its filtered background.

 cornerRadius (page 52) property
Specifies a radius used to draw the rounded corners of the receiver’s background. Animatable.

 borderWidth (page 49) property
Specifies the width of the receiver’s border. Animatable.

 borderColor (page 49) property
The color of the receiver’s border. Animatable.

 backgroundColor (page 48) property
Specifies the background color of the receiver. Animatable.

 backgroundFilters (page 48) property
An optional array of CoreImage filters that are applied to the receiver’s background. Animatable.

 shadowOpacity (page 58) property
Specifies the opacity of the receiver’s shadow. Animatable.

Tasks 43
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

 shadowRadius (page 59) property
Specifies the blur radius used to render the receiver’s shadow. Animatable.

 shadowOffset (page 58) property
Specifies the offset of the receiver’s shadow. Animatable.

 shadowColor (page 58) property
Specifies the color of the receiver’s shadow. Animatable.

 filters (page 53) property
An array of CoreImage filters that are applied to the contents of the receiver and its sublayers.
Animatable.

 compositingFilter (page 50) property
A CoreImage filter used to composite the receiver’s contents with the background. Animatable.

 style (page 59) property
An optional dictionary referenced to find property values that aren't explicitly defined by the receiver.

Managing the Layer Hierarchy

 sublayers (page 60) property
An array containing the receiver's sublayers.

 superlayer (page 60) property
Specifies receiver's superlayer. (read-only)

– addSublayer: (page 65)
Appends the layer to the receiver’s sublayers (page 60) array.

– removeFromSuperlayer (page 75)
Removes the layer from the sublayers (page 60) array or mask (page 55) property of the
receiver’s superlayer (page 60).

– insertSublayer:atIndex: (page 71)
Inserts the layer as a sublayer of the receiver at the specified index.

– insertSublayer:below: (page 72)
Inserts the layer into the receiver’s sublayers array, below the specified sublayer.

– insertSublayer:above: (page 71)
Inserts the layer into the receiver’s sublayers array, above the specified sublayer.

– replaceSublayer:with: (page 76)
Replaces the layer in the receiver’s sublayers array with the specified new layer.

Updating Layer Display

– setNeedsDisplay (page 78)
Marks the receiver as needing display before the content is next committed.

 needsDisplayOnBoundsChange (page 56) property
Returns whether the receiver must be redisplayed when the bounds rectangle is updated.

– setNeedsDisplayInRect: (page 78)
Marks the region of the receiver within the specified rectangle as needing display.

44 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Layer Animations

– addAnimation:forKey: (page 64)
Add an animation object to the receiver’s render tree for the specified key.

– animationForKey: (page 65)
Returns the animation added to the receiver with the specified identifier.

– removeAllAnimations (page 74)
Remove all animations attached to the receiver.

– removeAnimationForKey: (page 75)
Remove the animation attached to the receiver with the specified key.

Managing Layer Resizing and Layout

 layoutManager (page 55) property
Specifies the layout manager responsible for laying out the receiver’s sublayers.

– setNeedsLayout (page 79)
Called when the preferred size of the receiver may have changed.

 constraints (page 51) property
Specifies the constraints used to layout the receiver’s sublayers when using an CAConstraintManager
instance as the layout manager.

– addConstraint: (page 64)
Adds the constraint to the receiver's array of constraint objects.

 name (page 56) property
The name of the receiver.

 autoresizingMask (page 48) property
A bitmask defining how the layer is resized when the bounds of its superlayer changes.

– resizeWithOldSuperlayerSize: (page 77)
Informs the receiver that the bounds size of its superview has changed.

– resizeSublayersWithOldSize: (page 76)
Informs the receiver’s sublayers that the receiver’s bounds rectangle size has changed.

– preferredFrameSize (page 74)
Returns the preferred frame size of the layer in the coordinate space of the superlayer.

– layoutIfNeeded (page 73)
Recalculate the receiver’s layout, if required.

– layoutSublayers (page 73)
Called when the layer requires layout.

Actions

 actions (page 47) property
A dictionary mapping keys to objects that implement the CAAction protocol.

+ defaultActionForKey: (page 61)
Returns an object that implements the default action for the specified identifier.

Tasks 45
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

– actionForKey: (page 63)
Returns an object that implements the action for the specified identifier.

– actionForLayer:forKey: (page 79) delegate method
Allows the delegate to customize the action for a layer.

Mapping Between Coordinate and Time Spaces

– convertPoint:fromLayer: (page 66)
Converts the point from the specified layer’s coordinate system to the receiver’s coordinate system.

– convertPoint:toLayer: (page 67)
Converts the point from the receiver’s coordinate system to the specified layer’s coordinate system.

– convertRect:fromLayer: (page 67)
Converts the rectangle from the specified layer’s coordinate system to the receiver’s coordinate system.

– convertRect:toLayer: (page 67)
Converts the rectangle from the receiver’s coordinate system to the specified layer’s coordinate system.

– convertTime:fromLayer: (page 68)
Converts the time interval from the specified layer’s time space to the receiver’s time space.

– convertTime:toLayer: (page 68)
Converts the time interval from the receiver’s time space to the specified layer’s time space

Hit Testing

– hitTest: (page 70)
Returns the farthest descendant of the receiver in the layer hierarchy (including itself) that contains
a specified point.

– containsPoint: (page 66)
Returns whether the receiver contains a specified point.

Rendering

– renderInContext: (page 75)
Renders the receiver and its sublayers into the specified context.

Scrolling

 visibleRect (page 61) property
Returns the visible region of the receiver, in its own coordinate space. (read-only)

– scrollPoint: (page 77)
Scrolls the receiver’s closest ancestor CAScrollLayer so that the specified point lies at the origin of
the layer.

– scrollRectToVisible: (page 77)
Scrolls the receiver’s closest ancestor CAScrollLayer the minimum distance needed so that the
specified rectangle becomes visible.

46 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Modifying the Delegate

 delegate (page 52) property
Specifies the receiver’s delegate object.

Key-Value Coding Extensions

– shouldArchiveValueForKey: (page 79)
Specifies whether the value of the property for a given key is archived.

+ defaultValueForKey: (page 62)
Specifies the default value of the property with the specified key.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

actions
A dictionary mapping keys to objects that implement the CAAction protocol.

@property(copy) NSDictionary *actions

Discussion
The default value is nil. See actionForKey: (page 63) for a description of the action search pattern.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForKey: (page 63)
– actionForLayer:forKey: (page 79)
+ defaultActionForKey: (page 61)
 @property style (page 59)

Declared In
CALayer.h

anchorPoint
Defines the anchor point of the layer's bounds rectangle. Animatable.

@property CGPoint anchorPoint

Discussion
Described in the unit coordinate space. Defaults to (0.5, 0.5), the center of the bounds rectangle.

Properties 47
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

See Layer Geometry and Transforms in Core Animation Programming Guide for more information on the
relationship between the bounds (page 50), anchorPoint (page 47) and position (page 57) properties.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property position (page 57)

Declared In
CALayer.h

autoresizingMask
A bitmask defining how the layer is resized when the bounds of its superlayer changes.

@property unsigned int autoresizingMask

Discussion
See “Autoresizing Mask” (page 81) for possible values. Default value is kCALayerNotSizable (page
81).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

backgroundColor
Specifies the background color of the receiver. Animatable.

@property CGColorRef backgroundColor

Discussion
The default is nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

backgroundFilters
An optional array of CoreImage filters that are applied to the receiver’s background. Animatable.

@property(copy) NSArray *backgroundFilters

Discussion
Once an array of filters is set properties should be modified by invoking setValue:forKeyPath: using the
appropriate key path. This requires that you set the name of the background filter to be modified. For example:

48 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

CIFilter *filter = ...;
CALayer *layer = ...;

filter.name = @"myFilter";
layer.filters = [NSArray arrayWithObject:filter];
[layer setValue:[NSNumber numberWithInt:1]
forKeyPath:@"filters.myFilter.inputScale"];

If the inputs of a background filter are directly modified after the filter is attached to a layer, the behavior is
undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iPhone OS. Currently the filters
available for this property are undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

borderColor
The color of the receiver’s border. Animatable.

@property CGColorRef borderColor

Discussion
Defaults to opaque black.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

borderWidth
Specifies the width of the receiver’s border. Animatable.

@property CGFloat borderWidth

Discussion
The border is drawn inset from the receiver’s bounds by borderWidth. It is composited above the receiver’s
contents (page 51) and sublayers (page 60) and includes the effects of the cornerRadius (page 52)
property. The default is 0.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Properties 49
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

bounds
Specifies the bounds rectangle of the receiver. Animatable.

@property CGRect bounds

Discussion
The default is an empty rectangle.

See Layer Geometry and Transforms in Core Animation Programming Guide for more information on the
relationship between the bounds (page 50), anchorPoint (page 47) and position (page 57) properties.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

compositingFilter
A CoreImage filter used to composite the receiver’s contents with the background. Animatable.

@property(retain) CIFilter *compositingFilter

Discussion
If nil, the contents are composited using source-over. The default value is nil.

Once a filter is set its properties should be modified by invoking setValue:forKeyPath: using the
appropriate key path. For example:

CIFilter *filter = ...;
CALayer *layer = ...;

layer.compositingFilter = filter;
[layer setValue:[NSNumber numberWithInt:1]
forKeyPath:@"compositingFilter.inputScale"];

If the inputs of the filter are modified directly after the filter is attached to a layer, the behavior is undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iPhone OS. Currently the filters
available for this property are undefined.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property backgroundFilters (page 48)

Declared In
CALayer.h

50 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

constraints
Specifies the constraints used to layout the receiver’s sublayers when using an CAConstraintManager
instance as the layout manager.

@property NSArray *constraints

Discussion
See CAConstraintLayoutManager Class Reference (page 33) for more information.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

contents
An object that provides the contents of the layer. Animatable.

@property(retain) id contents

Discussion
A layer can set this property to a CGImageRef to display the image as its contents. The default value is nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property contentsRect (page 52)

Declared In
CALayer.h

contentsGravity
Determines how the receiver's contents are positioned within its bounds.

@property(copy) NSString *contentsGravity

Discussion
The possible values for contentsGravity are shown in “Contents Gravity Values” (page 83). The
default value is kCAGravityResize (page 85).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Properties 51
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

contentsRect
A rectangle, in the unit coordinate space, defining the subrectangle of contents (page 51) that the receiver
should draw. Animatable.

@property CGRect contentsRect

Discussion
Defaults to the unit rectangle (0.0,0.0,1.0,1.0).

If pixels outside the unit rectangles are requested, the edge pixels of the contents image will be extended
outwards.

If an empty rectangle is provided, the results are undefined.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property contents (page 51)

Declared In
CALayer.h

cornerRadius
Specifies a radius used to draw the rounded corners of the receiver’s background. Animatable.

@property CGFloat cornerRadius

Discussion
If the radius is greater than 0 the background is drawn with rounded corners. The default value is 0.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

delegate
Specifies the receiver’s delegate object.

@property(assign) id delegate

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

52 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

doubleSided
Determines whether the receiver is displayed when facing away from the viewer. Animatable.

@property BOOL doubleSided

Discussion
If NO, the layer is hidden when facing away from the viewer. Defaults to YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isDoubleSided (page 72)

Declared In
CALayer.h

edgeAntialiasingMask
A bitmask defining how the edges of the receiver are rasterized.

@property unsigned int edgeAntialiasingMask

Discussion
For each of the four edges (left, right, bottom, top) if the corresponding bit is set the edge will be antialiased.

Typically, this property is used to disable antialiasing for edges that abut edges of other layers, to eliminate
the seams that would otherwise occur.

The mask values are defined in “Edge Antialiasing Mask” (page 83).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

filters
An array of CoreImage filters that are applied to the contents of the receiver and its sublayers. Animatable.

@property(copy) NSArray *filters

Discussion
Defaults to nil. Filter properties should be modified by calling setValue:forKeyPath: on each layer that
the filter is attached to. If the inputs of the filter are modified directly after the filter is attached to a layer,
the behavior is undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iPhone OS. Currently the filters
available for this property are undefined.

Properties 53
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

frame
Specifies receiver’s frame rectangle in the super-layer’s coordinate space.

@property CGRect frame

Discussion
The value of frame is derived from the bounds (page 50), anchorPoint (page 47) and position (page
57) properties. When the frame is set, the receiver’s position (page 57) and the size of the receiver’s
bounds (page 50) are changed to match the new frame rectangle.

See Layer Geometry and Transforms in Core Animation Programming Guide for more information on the
relationship between the bounds (page 50), anchorPoint (page 47) and position (page 57) properties.

Note: The frame property is not directly animatable. Instead you should animate the appropriate combination
of the bounds (page 50), anchorPoint (page 47) and position (page 57) properties to achieve the
desired result.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

hidden
Determines whether the receiver is displayed. Animatable.

@property BOOL hidden

Discussion
The default is NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isHidden (page 72)

Declared In
CALayer.h

54 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

layoutManager
Specifies the layout manager responsible for laying out the receiver’s sublayers.

@property(retain) id layoutManager

Discussion
The layoutManager must implement the CALayoutManager informal protocol. The default value is nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

magnificationFilter
The filter used when increasing the size of the content.

@property(copy) NSString *magnificationFilter

Discussion
The possible values for magnificationFilter are shown in “Scaling Filters” (page 85). The default
value is kCAFilterLinear (page 86).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

mask
An optional layer whose alpha channel is used as a mask to select between the layer's background and the
result of compositing the layer's contents with its filtered background.

@property(retain) CALayer *mask

Discussion
Defaults to nil.

Special Considerations

When setting the mask to a new layer, the new layer’s superlayer must first be set to nil, otherwise the
behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Properties 55
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

masksToBounds
Determines if the sublayers are clipped to the receiver’s bounds. Animatable.

@property BOOL masksToBounds

Discussion
If YES, an implicit mask matching the layer bounds is applied to the layer, including the effects of the
cornerRadius (page 52) property. If YES and a mask (page 55) property is specified, the two masks are
multiplied to get the actual mask values. Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

minificationFilter
The filter used when reducing the size of the content.

@property(copy) NSString *minificationFilter

Discussion
The possible values for minifcationFilter are shown in “Scaling Filters” (page 85). The default
value is kCAFilterLinear (page 86).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

name
The name of the receiver.

@property(copy) NSString *name

Discussion
The layer name is used by some layout managers to identify a layer. Defaults to nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

needsDisplayOnBoundsChange
Returns whether the receiver must be redisplayed when the bounds rectangle is updated.

56 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property BOOL needsDisplayOnBoundsChange

Discussion
When YES, setNeedsDisplay (page 78) is automatically invoked when the receiver’s bounds (page 50) is
changed. Default value is NO.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

opacity
Determines the opacity of the receiver. Animatable.

@property float opacity

Discussion
Possible values are between 0.0 (transparent) and 1.0 (opaque). The default is 1.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

opaque
Specifies a hint marking that the pixel data provided by the contents (page 51) property is completely
opaque.

@property BOOL opaque

Discussion
Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isOpaque (page 73)

Declared In
CALayer.h

position
Specifies the receiver’s position in the superlayer’s coordinate system. Animatable.

Properties 57
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property CGPoint position

Discussion
The position is relative to anchorPoint (page 47). The default is (0.0,0.0).

See Layer Geometry and Transforms in Core Animation Programming Guide for more information on the
relationship between the bounds (page 50), anchorPoint (page 47) and position (page 57) properties.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property anchorPoint (page 47)

Declared In
CALayer.h

shadowColor
Specifies the color of the receiver’s shadow. Animatable.

@property CGColorRef shadowColor

Discussion
The default is opaque black.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shadowOffset
Specifies the offset of the receiver’s shadow. Animatable.

@property CGSize shadowOffset

Discussion
The default is (0.0,-3.0).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shadowOpacity
Specifies the opacity of the receiver’s shadow. Animatable.

58 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property float shadowOpacity

Discussion
The default is 0.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shadowRadius
Specifies the blur radius used to render the receiver’s shadow. Animatable.

@property CGFloat shadowRadius

Discussion
The default value is 3.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

style
An optional dictionary referenced to find property values that aren't explicitly defined by the receiver.

@property(copy) NSDictionary *style

Discussion
This dictionary may in turn have a style key, forming a hierarchy of default values. In the case of hierarchical
style dictionaries the shallowest value for a property is used. For example, the value for “style.someValue”
takes precedence over “style.style.someValue”.

If the style dictionary doesn't define a value for an attribute, the receiver’s defaultValueForKey: method
is called. Defaults to nil.

The style dictionary is not consulted for the following keys: bounds, frame.

Warning: If the style dictionary or any of its ancestors are modified, the values of the layer's properties
are undefined until the style property is reset.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Properties 59
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

sublayers
An array containing the receiver's sublayers.

@property(copy) NSArray *sublayers

Discussion
The layers are listed in back to front order. Defaults to nil.

Special Considerations

When setting the sublayers property to an array populated with layer objects you must ensure that the
layers have had their superlayer (page 60) set to nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

sublayerTransform
Specifies a transform applied to each sublayer when rendering. Animatable.

@property CATransform3D sublayerTransform

Discussion
This property is typically used as the projection matrix to add perspective and other viewing effects to the
receiver. Defaults to the identity transform.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

superlayer
Specifies receiver's superlayer. (read-only)

@property(readonly) CALayer *superlayer

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

60 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

transform
Specifies the transform applied to the receiver, relative to the center of its bounds. Animatable.

@property CATransform3D transform

Discussion
Defaults to the identity transform.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

visibleRect
Returns the visible region of the receiver, in its own coordinate space. (read-only)

@property(readonly) CGRect visibleRect

Discussion
The visible region is the area not clipped by the containing scroll layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

zPosition
Specifies the receiver’s position on the z axis. Animatable.

@property CGFloat zPosition

Discussion
Defaults to 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Class Methods

defaultActionForKey:
Returns an object that implements the default action for the specified identifier.

Class Methods 61
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

+ (id<CAAction>)defaultActionForKey:(NSString *)aKey

Parameters
aKey

The identifier of the action.

Return Value
Returns the object that provides the action for aKey. The object must implement the CAAction protocol.

Discussion
See actionForKey: (page 63) for a description of the action search pattern.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForKey: (page 63)
– actionForLayer:forKey: (page 79)
 @property actions (page 47)
 @property style (page 59)

Declared In
CALayer.h

defaultValueForKey:
Specifies the default value of the property with the specified key.

+ (id)defaultValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
The default value for the named property. Returns nil if no default value has been set.

Discussion
If this method returns nil a suitable “zero” default value for the property is provided, based on the declared
type of the key. For example, if key is a CGSize object, a size of (0.0,0.0) is returned. For a CGRect an empty
rectangle is returned. For CGAffineTransform and CATransform3D, the appropriate identity matrix is
returned.

Special Considerations

If key is not a known for property of the class, the result of the method is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

62 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

layer
Creates and returns an instance of CALayer.

+ (id)layer

Return Value
The initialized CALayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials
Core Animation QuickTime Layer

Declared In
CALayer.h

Instance Methods

actionForKey:
Returns an object that implements the action for the specified identifier.

- (id<CAAction>)actionForKey:(NSString *)aKey

Parameters
aKey

The identifier of the action.

Return Value
Returns the object that provides the action for aKey. The object must implement the CAAction protocol.

Discussion
There are three types of actions: property changes, externally-defined events, and layer-defined events.
Whenever a layer property is modified, the event with the same name as the property is triggered. External
events are defined by the owner of the layer calling actionForKey: to lookup the action associated with
the identifier and directly messaging the returned object (if non-nil.)

The default implementation searches for an action object as follows:

 ■ If defined, return the object provided by the receiver’s delegate method
actionForLayer:forKey: (page 79).

 ■ Return the object that corresponds to the identifier in the receiver’s actions (page 47) dictionary
property.

 ■ Search the style (page 59) dictionary recursively for an actions dictionary that contains the identifier.

 ■ Call the receiver’s defaultActionForKey: (page 61) method and return the result.

If any of these steps results in a non-nil action object, the remaining steps are ignored and the action is
returned. If a step returns an NSNull object, the remaining steps are ignored and nil is returned.

Instance Methods 63
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

When an action object is invoked it receives three parameters: the name of the event, the object on which
the event happened (the layer), and a dictionary of named arguments specific to each event kind.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForLayer:forKey: (page 79)
 @property actions (page 47)
+ defaultActionForKey: (page 61)
 @property style (page 59)

Declared In
CALayer.h

addAnimation:forKey:
Add an animation object to the receiver’s render tree for the specified key.

- (void)addAnimation:(CAAnimation *)anim
forKey:(NSString *)key

Parameters
anim

The animation to be added to the render tree. Note that the object is copied by the render tree, not
referenced. Any subsequent modifications to the object will not be propagated into the render tree.

key
A string that specifies an identifier for the animation. Only one animation per unique key is added to
the layer. The special key kCATransition (page 82) is automatically used for transition animations.
The nil pointer is also a valid key.

Discussion
Typically this is implicitly invoked through an action that is an CAAnimation object. If the duration property
of the animation is zero or negative it is given the default duration, either the current value of the
kCATransactionAnimationDuration transaction property, otherwise .25 seconds

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

addConstraint:
Adds the constraint to the receiver's array of constraint objects.

- (void)addConstraint:(CAConstraint *)aConstraint

Parameters
aConstraint

The constraint object to add to the receiver’s array of constraint objects.

64 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
See CAConstraintLayoutManager Class Reference (page 33) for more information.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

addSublayer:
Appends the layer to the receiver’s sublayers (page 60) array.

- (void)addSublayer:(CALayer *)aLayer

Parameters
aLayer

The layer to be added to the receiver’s sublayers (page 60) array.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

affineTransform
Convenience method for getting the transform (page 61) property as an affine transform.

- (CGAffineTransform)affineTransform

Return Value
A CGAffineTransform instance that best represents the receiver’s transform (page 61) property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

animationForKey:
Returns the animation added to the receiver with the specified identifier.

- (CAAnimation *)animationForKey:(NSString *)key

Parameters
key

A string that specifies the identifier of the animation.

Instance Methods 65
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
The animation object matching the identifier, or nil if no such animation exists.

Discussion
Attempting to modify any properties of the returned object will result in undefined behavior.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

containsPoint:
Returns whether the receiver contains a specified point.

- (BOOL)containsPoint:(CGPoint)thePoint

Parameters
thePoint

A point in the receiver’s coordinate system.

Return Value
YES if the bounds of the layer contains the point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertPoint:fromLayer:
Converts the point from the specified layer’s coordinate system to the receiver’s coordinate system.

- (CGPoint)convertPoint:(CGPoint)aPoint
fromLayer:(CALayer *)layer

Parameters
aPoint

A point specifying a location in the coordinate system of layer.

layer
The layer with aPoint in its coordinate system. The receiver and layer and must share a common
parent layer.

Return Value
The point converted to the receiver’s coordinate system.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

66 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

convertPoint:toLayer:
Converts the point from the receiver’s coordinate system to the specified layer’s coordinate system.

- (CGPoint)convertPoint:(CGPoint)aPoint
toLayer:(CALayer *)layer

Parameters
aPoint

A point specifying a location in the coordinate system of layer.

layer
The layer into whose coordinate system aPoint is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The point converted to the coordinate system of layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertRect:fromLayer:
Converts the rectangle from the specified layer’s coordinate system to the receiver’s coordinate system.

- (CGRect)convertRect:(CGRect)aRect
fromLayer:(CALayer *)layer

Parameters
aRect

A point specifying a location in the coordinate system of layer.

layer
The layer with arect in its coordinate system. The receiver and layer and must share a common
parent layer.

Return Value
The rectangle converted to the receiver’s coordinate system.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertRect:toLayer:
Converts the rectangle from the receiver’s coordinate system to the specified layer’s coordinate system.

- (CGRect)convertRect:(CGRect)aRect
toLayer:(CALayer *)layer

Instance Methods 67
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
aRect

A point specifying a location in the coordinate system of layer.

layer
The layer into whose coordinate system aRect is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The rectangle converted to the coordinate system of layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertTime:fromLayer:
Converts the time interval from the specified layer’s time space to the receiver’s time space.

- (CFTimeInterval)convertTime:(CFTimeInterval)timeInterval
fromLayer:(CALayer *)layer

Parameters
timeInterval

A point specifying a location in the coordinate system of layer.

layer
The layer with timeInterval in its time space. The receiver and layer and must share a common
parent layer.

Return Value
The time interval converted to the receiver’s time space.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertTime:toLayer:
Converts the time interval from the receiver’s time space to the specified layer’s time space

- (CFTimeInterval)convertTime:(CFTimeInterval)timeInterval
toLayer:(CALayer *)layer

Parameters
timeInterval

A point specifying a location in the coordinate system of layer.

layer
The layer into whose time space timeInterval is to be converted. The receiver and layer and must
share a common parent layer.

68 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
The time interval converted to the time space of layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

display
Reload the content of this layer.

- (void)display

Discussion
Calls the drawInContext: (page 69) method, then updates the receiver’s contents (page 51) property.
You should not call this method directly.

Subclasses can override this method to set the contents (page 51) property to an appropriate CGImageRef.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

drawInContext:
Draws the receiver’s content in the specified graphics context.

- (void)drawInContext:(CGContextRef)ctx

Parameters
ctx

The graphics context in which to draw the content.

Discussion
Default implementation does nothing. The context may be clipped to protect valid layer content. Subclasses
that wish to find the actual region to draw can call CGContextGetClipBoundingBox. Called by the
display (page 69) method when the contents (page 51) property is being updated.

Subclasses can override this method to draw the receiver’s content.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Instance Methods 69
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

hitTest:
Returns the farthest descendant of the receiver in the layer hierarchy (including itself) that contains a specified
point.

- (CALayer *)hitTest:(CGPoint)thePoint

Parameters
thePoint

A point in the coordinate system of the receiver's superlayer.

Return Value
The layer that contains thePoint, or nil if the point lies outside the receiver’s bounds rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

init
Returns an initialized CALayer object.

- (id)init

Return Value
An initialized CALayer object.

Discussion
This is the designated initializer for CALayer.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ layer (page 63)

Declared In
CALayer.h

initWithLayer:
Override to copy or initialize custom fields of the specified layer.

- (id)initWithLayer:(id)layer

Parameters
layer

The layer from which custom fields should be copied.

Return Value
A layer instance with any custom instance variables copied from layer.

70 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
This initializer is used to create shadow copies of layers, for example, for the presentationLayer method.

Subclasses can optionally copy their instance variables into the new object.

Subclasses should always invoke the superclass implementation

Note: Invoking this method in any other situation will produce undefined behavior. Do not use this method
to initialize a new layer with an existing layer’s content.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

insertSublayer:above:
Inserts the layer into the receiver’s sublayers array, above the specified sublayer.

- (void)insertSublayer:(CALayer *)aLayer
above:(CALayer *)siblingLayer

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

sublayer
An existing sublayer in the receiver to insert aLayer above.

Special Considerations

If sublayer is not in the receiver’s sublayers (page 60) array, an exception is raised.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

insertSublayer:atIndex:
Inserts the layer as a sublayer of the receiver at the specified index.

- (void)insertSublayer:(CALayer *)aLayer
atIndex:(unsigned)index

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

index
The index in the receiver at which to insert aLayer. This value must not be greater than the count
of elements in the sublayer array.

Instance Methods 71
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Core Animation QuickTime Layer

Declared In
CALayer.h

insertSublayer:below:
Inserts the layer into the receiver’s sublayers array, below the specified sublayer.

- (void)insertSublayer:(CALayer *)aLayer
below:(CALayer *)sublayer

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

sublayer
An existing sublayer in the receiver to insert aLayer after.

Discussion
If sublayer is not in the receiver’s sublayers (page 60) array, an exception is raised.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

isDoubleSided
A synthesized accessor for the doubleSided (page 53) property.

- (BOOL)isDoubleSided

See Also
 @property doubleSided (page 53)

isHidden
A synthesized accessor for the hidden (page 54) property.

- (BOOL)isHidden

See Also
 @property hidden (page 54)

72 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

isOpaque
A synthesized accessor for the opaque (page 57) property.

- (BOOL)isOpaque

See Also
 @property opaque (page 57)

layoutIfNeeded
Recalculate the receiver’s layout, if required.

- (void)layoutIfNeeded

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

layoutSublayers
Called when the layer requires layout.

- (void)layoutSublayers

Discussion
The default implementation invokes the layout manager method layoutSublayersOfLayer: (page 260),
if a layout manager is specied and it implements that method. Subclasses can override this method to provide
their own layout algorithm, which must set the frame of each sublayer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

modelLayer
Returns the model layer of the receiver, if it represents a current presentation layer.

- (id)presentationLayer

Return Value
A layer instance representing the underlying model layer.

Discussion
The result of calling this method after the transaction that produced the presentation layer has completed
is undefined.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 73
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

preferredFrameSize
Returns the preferred frame size of the layer in the coordinate space of the superlayer.

- (CGSize)preferredFrameSize

Return Value
Returns the receiver’s preferred frame size.

Discussion
The default implementation calls the layout manager, if one exists and it implements the
preferredSizeOfLayer:method. Otherwise, it returns the size of the receiver’s bounds (page 50) rectangle
mapped into coordinate space of the receiver’s superlayer (page 60).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

presentationLayer
Returns a copy of the layer containing all properties as they were at the start of the current transaction, with
any active animations applied.

- (id)presentationLayer

Return Value
A layer instance representing the current presentation layer.

Discussion
This method provides a close approximation to the version of the layer that is currently being displayed. The
sublayers (page 60), mask (page 55), and superlayer (page 60) properties of the returned layer return
the presentation versions of these properties. This pattern carries through to the read-only layer methods.
For example, sending a hitTest: (page 70) message to the presentationLayerwill query the presentation
values of the layer tree.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

removeAllAnimations
Remove all animations attached to the receiver.

- (void)removeAllAnimations

74 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

removeAnimationForKey:
Remove the animation attached to the receiver with the specified key.

- (void)removeAnimationForKey:(NSString *)key

Parameters
key

The identifier of the animation to remove.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

removeFromSuperlayer
Removes the layer from the sublayers (page 60) array or mask (page 55) property of the receiver’s
superlayer (page 60).

- (void)removeFromSuperlayer

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

renderInContext:
Renders the receiver and its sublayers into the specified context.

- (void)renderInContext:(CGContextRef)ctx

Parameters
ctx

The graphics context that the content is rendered in to.

Discussion
This method renders directly from the layer tree, ignoring any animations added to the render tree. Renders
in the coordinate space of the layer.

Instance Methods 75
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Important: The Mac OS X v10.5 implementation of this method does not support the entire Core Animation
composition model. QCCompositionLayer, CAOpenGLLayer, and QTMovieLayer layers are not rendered.
Additionally, layers that use 3D transforms are not rendered, nor are layers that specify
backgroundFilters (page 48), filters (page 53), compositingFilter (page 50), or a mask (page
55) values. Future versions of Mac OS X may add support for rendering these layers and properties.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

replaceSublayer:with:
Replaces the layer in the receiver’s sublayers array with the specified new layer.

- (void)replaceSublayer:(CALayer *)oldLayer
with:(CALayer *)newLayer

Parameters
oldLayer

The layer to be replaced to the receiver’s sublayer array.

newLayer
The layer with which to replace oldLayer in the receiver’s sublayer array.

Discussion
If the receiver is not the superlayer of oldLayer the behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

resizeSublayersWithOldSize:
Informs the receiver’s sublayers that the receiver’s bounds rectangle size has changed.

- (void)resizeSublayersWithOldSize:(CGSize)size

Parameters
size

The previous size of the receiver's bounds rectangle.

Discussion
This method is used when the autoresizingmask property is used for resizing. It is called when the receiver’s
bounds property is altered. It calls resizeSublayersWithOldSize: on each sublayer to resize the sublayer's
frame to match the new superlayer bounds based on the sublayer's autoresizing mask.

Availability
Available in Mac OS X v10.5 and later.

76 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

resizeWithOldSuperlayerSize:
Informs the receiver that the bounds size of its superview has changed.

- (void)resizeWithOldSuperlayerSize:(CGSize)size

Parameters
size

The previous size of the superlayer’s bounds rectangle

Discussion
This method is used when the autoresizingmask property is used for resizing. It is called when the receiver’s
bounds property is altered. It calls resizeWithOldSuperlayerSize: on each sublayer to resize the
sublayer's frame to match the new superlayer bounds based on the sublayer's autoresizing mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

scrollPoint:
Scrolls the receiver’s closest ancestor CAScrollLayer so that the specified point lies at the origin of the
layer.

- (void)scrollPoint:(CGPoint)thePoint

Parameters
thePoint

The point in the receiver to scroll to.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

scrollRectToVisible:
Scrolls the receiver’s closest ancestor CAScrollLayer the minimum distance needed so that the specified
rectangle becomes visible.

- (void)scrollRectToVisible:(CGRect)theRect

Parameters
theRect

The rectangle to be made visible.

Instance Methods 77
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

setAffineTransform:
Convenience method for setting the transform (page 61) property as an affine transform.

- (void)setAffineTransform:(CGAffineTransform)m

Parameters
m

The affine transform to set as the transform (page 61) property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

setNeedsDisplay
Marks the receiver as needing display before the content is next committed.

- (void)setNeedsDisplay

Discussion
Calling this method will cause the receiver to recache its content. This will result in the layer receiving a
drawInContext: (page 69) which may result in the delegate receiving either a displayLayer: (page 80)
or drawLayer:inContext: (page 80) message.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display.

- (void)setNeedsDisplayInRect:(CGRect)theRect

Parameters
theRect

The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

78 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

setNeedsLayout
Called when the preferred size of the receiver may have changed.

- (void)setNeedsLayout

Discussion
This method is typically called when the receiver’s sublayers have changed. It marks that the receiver sublayers
must update their layout (by invoking layoutSublayers (page 73) on the receiver and all its superlayers).
If the receiver's layout manager implements the invalidateLayoutOfLayer: (page 259) method it is called.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shouldArchiveValueForKey:
Specifies whether the value of the property for a given key is archived.

- (BOOL)shouldArchiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
YES if the specified property should be archived, otherwise NO.

Discussion
The default implementation returns YES. Called by the object's implementation of encodeWithCoder:.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Delegate Methods

actionForLayer:forKey:
Allows the delegate to customize the action for a layer.

Delegate Methods 79
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (id<CAAction>)actionForLayer:(CALayer *)layer
 forKey
:(NSString *)key

Parameters
layer

The layer that is the target of the action.

key
The identifier of the action.

Return Value
Returns an object implementing the CAAction protocol. May return nil if the delegate doesn't specify a
behavior for key.

Discussion
See actionForKey: (page 63) for a description of the action search pattern.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForLayer:forKey: (page 79)
 @property actions (page 47)
+ defaultActionForKey: (page 61)
 @property style (page 59)

Declared In
CALayer.h

displayLayer:
Allows the delegate to override the display (page 69) implementation.

- (void)displayLayer:(CALayer *)layer

Parameters
layer

The layer to display.

Discussion
If defined, called by the default implementation of display, in which case it should set the layer’s contents
property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

drawLayer:inContext:
Allows the delegate to override the layer’s drawInContext: implementation.

80 Delegate Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (void)drawLayer:(CALayer *)layer
inContext:(CGContextRef)ctx

Parameters
layer

The layer to draw the content of.

ctx
The graphics context to draw in to.

Discussion
If defined, called by the default implementation of drawInContext: (page 69).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Constants

Autoresizing Mask
These constants are used by the autoresizingMask (page 48) property.

enum CAAutoresizingMask
{
 kCALayerNotSizable = 0,
 kCALayerMinXMargin = 1U << 0,
 kCALayerWidthSizable = 1U << 1,
 kCALayerMaxXMargin = 1U << 2,
 kCALayerMinYMargin = 1U << 3,
 kCALayerHeightSizable = 1U << 4,
 kCALayerMaxYMargin = 1U << 5
};

Constants
kCALayerNotSizable

The receiver cannot be resized.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMinXMargin
The left margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerWidthSizable
The receiver’s width is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Constants 81
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

kCALayerMaxXMargin
The right margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMinYMargin
The bottom margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerHeightSizable
The receiver’s height is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMaxYMargin
The top margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Action Identifiers
These constants are the predefined action identifiers used by actionForKey: (page 63),
addAnimation:forKey: (page 64),defaultActionForKey: (page 61),removeAnimationForKey: (page
75), actionForLayer:forKey: (page 79), and the CAAction protocol method
runActionForKey:object:arguments: (page 257).

NSString * const kCAOnOrderIn;
NSString * const kCAOnOrderOut;
NSString * const kCATransition;

Constants
kCAOnOrderIn

The identifier that represents the action taken when a layer becomes visible, either as a result being
inserted into the visible layer hierarchy or the layer is no longer set as hidden.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAOnOrderOut
The identifier that represents the action taken when the layer is removed from the layer hierarchy or
is hidden.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCATransition
The identifier that represents a transition animation.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

82 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

Edge Antialiasing Mask
This mask is used by the edgeAntialiasingMask (page 53) property.

enum CAEdgeAntialiasingMask
{
 kCALayerLeftEdge = 1U << 0,
 kCALayerRightEdge = 1U << 1,
 kCALayerBottomEdge = 1U << 2,
 kCALayerTopEdge = 1U << 3,
};

Constants
kCALayerLeftEdge

Specifies that the left edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerRightEdge
Specifies that the right edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerBottomEdge
Specifies that the bottom edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerTopEdge
Specifies that the top edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Contents Gravity Values
The contents gravity constants specify the position of the content object when the layer bounds is larger
than the bounds of the content object. The are used by the contentsGravity (page 51) property.

Constants 83
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

NSString * const kCAGravityCenter;
NSString * const kCAGravityTop;
NSString * const kCAGravityBottom;
NSString * const kCAGravityLeft;
NSString * const kCAGravityRight;
NSString * const kCAGravityTopLeft;
NSString * const kCAGravityTopRight;
NSString * const kCAGravityBottomLeft;
NSString * const kCAGravityBottomRight;
NSString * const kCAGravityResize;
NSString * const kCAGravityResizeAspect;
NSString * const kCAGravityResizeAspectFill;

Constants
kCAGravityCenter

The content is horizontally and verticallycentered in the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityTop
The content is horizontally centered at the top-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityBottom
The content is horizontally centered at the bottom-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityLeft
The content is vertically centered at the left-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityRight
The content is vertically centered at the right-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityTopLeft
The content is positioned in the top-left corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityTopRight
The content is positioned in the top-right corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityBottomLeft
The content is positioned in the bottom-left corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

84 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

kCAGravityBottomRight
The content is positioned in the bottom-right corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityResize
The content is resized to fit the entire bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityResizeAspect
The content is resized to fit the bounds rectangle, preserving the aspect of the content. If the content
does not completely fill the bounds rectangle, the content is centered in the partial axis.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityResizeAspectFill
The content is resized to completely fill the bounds rectangle, while still preserving the aspect of the
content. The content is centered in the axis it exceeds.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Identity Transform
Defines the identity transform matrix used by Core Animation.

const CATransform3D CATransform3DIdentity

Constants
CATransform3DIdentity

The identity transform: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1].

Available in Mac OS X v10.5 and later.

Declared in CATransform3D.h.

Declared In
CATransform3D.h

Scaling Filters
These constants specify the scaling filters used by magnificationFilter (page 55) and
minificationFilter (page 56).

Constants 85
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

NSString * const kCAFilterLinear;
NSString * const kCAFilterNearest;

Constants
kCAFilterLinear

Linear interpolation filter.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAFilterNearest
Nearest neighbor interpolation filter.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Transform
Defines the standard transform matrix used throughout Core Animation.

struct CATransform3D
{
 CGFloat m11, m12, m13, m14;
 CGFloat m21, m22, m23, m24;
 CGFloat m31, m32, m33, m34;
 CGFloat m41, m42, m43, m44;
};
typedef struct CATransform3D CATransform3D;

Fields
m11

The entry at position 1,1 in the matrix.

m12
The entry at position 1,2 in the matrix.

m13
The entry at position 1,3 in the matrix.

m14
The entry at position 1,4 in the matrix.

m21
The entry at position 2,1 in the matrix.

m22
The entry at position 2,2 in the matrix.

m23
The entry at position 2,3 in the matrix.

m24
The entry at position 2,4 in the matrix.

m31
The entry at position 3,1 in the matrix.

86 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

m32
The entry at position 3,2 in the matrix.

m33
The entry at position 3,3 in the matrix.

m34
The entry at position 3,4 in the matrix.

m41
The entry at position 4,1 in the matrix.

m42
The entry at position 4,2 in the matrix.

m43
The entry at position 4,3 in the matrix.

m44
The entry at position 4,4 in the matrix.

Discussion
The transform matrix is used to rotate, scale, translate, skew, and project the layer content. Functions are
provided for creating, concatenating, and modifying CATransform3D data.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

Constants 87
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

88 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAMediaTimingFunction represents one segment of a function that defines the pacing of an animation
as a timing curve. The function maps an input time normalized to the range [0,1] to an output time also in
the range [0,1].

Tasks

Creating Timing Functions

+ functionWithName: (page 90)
Creates and returns a new instance of CAMediaTimingFunction configured with the predefined
timing function specified by name.

+ functionWithControlPoints:::: (page 90)
Creates and returns a new instance of CAMediaTimingFunction timing function modeled as a cubic
bezier curve using the specified control points.

– initWithControlPoints:::: (page 91)
Returns an initialized timing function modeled as a cubic bezier curve using the specified control
points.

Overview 89
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Accessing the Control Points

– getControlPointAtIndex:values: (page 91)
Returns the control point for the specified index.

Class Methods

functionWithControlPoints::::
Creates and returns a new instance of CAMediaTimingFunction timing function modeled as a cubic bezier
curve using the specified control points.

+ (id)functionWithControlPoints:(float)c1x
:(float)c1y
:(float)c2x
:(float)c2y

Parameters
c1x

A floating point number representing the x position of the c1 control point.

c1y
A floating point number representing the y position of the c1 control point.

c2x
A floating point number representing the x position of the c2 control point.

c2y
A floating point number representing the y position of the c2 control point.

Return Value
A new instance of CAMediaTimingFunction with the timing function specified by the provided control
points.

Discussion
The end points of the bezier curve are automatically set to (0.0,0.0) and (1.0,1.0). The control points defining
the bezier curve are: [(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

functionWithName:
Creates and returns a new instance of CAMediaTimingFunction configured with the predefined timing
function specified by name.

+ (id)functionWithName:(NSString *)name

90 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Parameters
name

The timing function to use as specified in “Predefined timing functions” (page 92).

Return Value
A new instance of CAMediaTimingFunction with the timing function specified by name.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

Instance Methods

getControlPointAtIndex:values:
Returns the control point for the specified index.

- (void)getControlPointAtIndex:(size_t)index
values:(float[2])ptr

Parameters
index

An integer specifying the index of the control point to return.

ptr
A pointer to an array that, upon return, will contain the x and y values of the specified point.

Discussion
The value of index must between 0 and 3.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

initWithControlPoints::::
Returns an initialized timing function modeled as a cubic bezier curve using the specified control points.

- (id)initWithControlPoints:(float)c1x
:(float)c1y
:(float)c2x
:(float)c2y

Parameters
c1x

A floating point number representing the x position of the c1 control point.

c1y
A floating point number representing the y position of the c1 control point.

Instance Methods 91
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

c2x
A floating point number representing the x position of the c2 control point.

c2y
A floating point number representing the y position of the c2 control point.

Return Value
An instance of CAMediaTimingFunctionwith the timing function specified by the provided control points.

Discussion
The end points of the bezier curve are automatically set to (0.0,0.0) and (1.0,1.0). The control points defining
the bezier curve are: [(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

Constants

Predefined timing functions
These constants are used to specify one of the predefined timing functions used by
functionWithName: (page 90).

NSString * const kCAMediaTimingFunctionLinear;
NSString * const kCAMediaTimingFunctionEaseIn;
NSString * const kCAMediaTimingFunctionEaseOut;
NSString * const kCAMediaTimingFunctionEaseInEaseOut;

Constants
kCAMediaTimingFunctionLinear

Specifies linear pacing. A linear pacing causes an animation to occur evenly over its duration.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionEaseIn
Specifies ease-in pacing. Ease-in pacing causes the animation to begin slowly, and then speed up as
it progresses.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionEaseOut
Specifies ease-out pacing. An ease-out pacing causes the animation to begin quickly, and then slow
as it completes.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

92 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

kCAMediaTimingFunctionEaseInEaseOut
Specifies ease-in ease-out pacing. An ease-in ease-out animation begins slowly, accelerates through
the middle of its duration, and then slows again before completing.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

Declared In
CAMediaTimingFunction.h

Constants 93
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

94 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAOpenGLLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

CAOpenGLLayer provides a layer suitable for rendering OpenGL content.

To provide OpenGL content you subclass CAOpenGLLayer and override
drawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 98). You can specify that the
OpenGL content is static by setting the asynchronous (page 96) property to NO.

Tasks

Drawing the Content

 asynchronous (page 96) property
Determines when the contents of the layer are updated.

– isAsynchronous (page 99)
A synthesized accessor for the asynchronous (page 96) property.

– canDrawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 97)
Returns whether the receiver should draw OpenGL content for the specified time.

– drawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 98)
Draws the OpenGL content for the specified time.

Overview 95
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Managing the Pixel Format

– copyCGLPixelFormatForDisplayMask: (page 98)
Returns the OpenGL pixel format suitable for rendering to the set of displays specified by the display
mask.

– releaseCGLPixelFormat: (page 99)
Releases the specified OpenGL pixel format object.

Managing the Rendering Context

– copyCGLContextForPixelFormat: (page 97)
Returns the rendering context the receiver requires for the specified pixel format.

– releaseCGLContext: (page 99)
Releases the specified rendering context.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

asynchronous
Determines when the contents of the layer are updated.

@property BOOL asynchronous

Discussion
If NO, the contents of the layer are updated only in response to receiving a setNeedsDisplay (page 78)
message. When YES, the receiver’s
canDrawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 97) is called periodically
to determine if the OpenGL content should be updated.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isAsynchronous (page 99)

Related Sample Code
CALayerEssentials

Declared In
CAOpenGLLayer.h

96 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Instance Methods

canDrawInCGLContext:pixelFormat:forLayerTime:displayTime:
Returns whether the receiver should draw OpenGL content for the specified time.

- (BOOL)canDrawInCGLContext:(CGLContextObj)glContext
pixelFormat:(CGLPixelFormatObj)pixelFormat
forLayerTime:(CFTimeInterval)timeInterval
displayTime:(const CVTimeStamp *)timeStamp

Parameters
glContext

The CGLContextObj in to which the OpenGL content would be drawn.

pixelFormat
The pixel format used when the glContext was created.

timeInterval
The current layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Return Value
YES if the receiver should render OpenGL content, NO otherwise.

Discussion
This method is called before attempting to render the frame for the layer time specified by timeInterval.
If the method returns NO, the frame is skipped. The default implementation always returns YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

copyCGLContextForPixelFormat:
Returns the rendering context the receiver requires for the specified pixel format.

- (CGLContextObj)copyCGLContextForPixelFormat:(CGLPixelFormatObj)pixelFormat

Parameters
pixelFormat

The pixel format for the rendering context.

Return Value
A new CGLContext with renderers for pixelFormat.

Discussion
This method is called when a rendering context is needed by the receiver. The default implementation
allocates a new context with a null share context.

You should not call this method directly, it is intended to be overridden by subclasses.

Instance Methods 97
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

copyCGLPixelFormatForDisplayMask:
Returns the OpenGL pixel format suitable for rendering to the set of displays specified by the display mask.

- (CGLPixelFormatObj)copyCGLPixelFormatForDisplayMask:(uint32_t)mask

Parameters
mask

The display mask the OpenGL content will be rendered on.

Discussion
This method is called when a pixel format object is needed for the receiver. The default implementation
returns a 32bpp fixed point pixelf format, with the NoRecovery and Accelerated flags set.

You should not call this method directly, it is intended to be overridden by subclasses.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

drawInCGLContext:pixelFormat:forLayerTime:displayTime:
Draws the OpenGL content for the specified time.

- (void)drawInCGLContext:(CGLContextObj)glContext
pixelFormat:(CGLPixelFormatObj)pixelFormat
forLayerTime:(CFTimeInterval)timeInterval
displayTime:(const CVTimeStamp *)timeStamp

Parameters
glContext

The rendering context in to which the OpenGL content should be rendered.

pixelFormat
The pixel format used when the glContext was created.

timeInterval
The current layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Discussion
This method is called when a new frame needs to be generated for the layer time specified by timeInterval.
The viewport of glContext is set correctly for the size of the layer. No other state is defined. If the method
enables OpenGL features, it should disable them before returning.

98 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

The default implementation of the method flushes the context.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

isAsynchronous
A synthesized accessor for the asynchronous (page 96) property.

- (BOOL)isAsynchronous

See Also
 @property asynchronous (page 96)

releaseCGLContext:
Releases the specified rendering context.

- (void)releaseCGLContext:(CGLContextObj)glContext

Parameters
glContext

The rendering context to release.

Discussion
This method is called when the OpenGL context that was previously returned by
copyCGLContextForPixelFormat: (page 97) is no longer needed.

You should not call this method directly, it is intended to be overridden by subclasses.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

releaseCGLPixelFormat:
Releases the specified OpenGL pixel format object.

- (void)releaseCGLPixelFormat:(CGLPixelFormatObj)pixelFormat

Parameters
pixelFormat

The pixel format object to release.

Discussion
This method is called when the OpenGL pixel format that was previously returned by
copyCGLContextForPixelFormat: (page 97).

Instance Methods 99
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

You should not call this method directly, it is intended to be overridden by subclasses.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

100 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAPropertyAnimation is an abstract subclass of CAAnimation for creating animations that manipulate
the value of layer properties. The property is specified using a key path that is relative to the layer using the
animation.

Tasks

Animated Key Path

 keyPath (page 103) property
Specifies the key path the receiver animates.

Property Value Calculation Behavior

 cumulative (page 102) property
Determines if the value of the property is the value at the end of the previous repeat cycle, plus the
value of the current repeat cycle.

– isCumulative (page 104)
A synthesized accessor for the cumulative (page 102) property.

Overview 101
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

 additive (page 102) property
Determines if the value specified by the animation is added to the current render tree value to produce
the new render tree value.

– isAdditive (page 103)
A synthesized accessor for the additive (page 102) property.

Creating an Animation

+ animationWithKeyPath: (page 103)
Creates and returns an CAPropertyAnimation instance for the specified key path.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

additive
Determines if the value specified by the animation is added to the current render tree value to produce the
new render tree value.

@property BOOL additive

Discussion
If YES, the value specified by the animation will be added to the current render tree value of the property
to produce the new render tree value. The addition function is type-dependent, e.g. for affine transforms the
two matrices are concatenated. The default is NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

cumulative
Determines if the value of the property is the value at the end of the previous repeat cycle, plus the value of
the current repeat cycle.

@property BOOL cumulative

Discussion
If YES, then the value of the property is the value at the end of the previous repeat cycle, plus the value of
the current repeat cycle. If NO, the value of the property is simply the value calculated for the current repeat
cycle. The default is NO.

Availability
Available in Mac OS X v10.5 and later.

102 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

Declared In
CAAnimation.h

keyPath
Specifies the key path the receiver animates.

@property(copy) NSString *keyPath

Discussion
The key path is relative to the layer the receiver is attached to.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Class Methods

animationWithKeyPath:
Creates and returns an CAPropertyAnimation instance for the specified key path.

+ (id)animationWithKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path of the property to be animated.

Return Value
A new instance of CAPropertyAnimation with the key path set to keyPath.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Instance Methods

isAdditive
A synthesized accessor for the additive (page 102) property.

- (BOOL)isAdditive

Class Methods 103
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

See Also
 @property additive (page 102)

isCumulative
A synthesized accessor for the cumulative (page 102) property.

- (BOOL)isCumulative

See Also
 @property cumulative (page 102)

104 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CARenderer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CARenderer allows an application to render a layer tree into a CGL context. For real-time output you should
use an instance of NSView to host the layer-tree.

Tasks

Rendered Layer

 layer (page 106) property
The root layer of the layer-tree the receiver should render.

Renderer Geometry

 bounds (page 106) property
The bounds of the receiver.

Create a New Renderer

+ rendererWithCGLContext:options: (page 107)
Creates and returns a CARenderer instance with the render target specified by the Core OpenGL
context.

Overview 105
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Render a Frame

– beginFrameAtTime:timeStamp: (page 107)
Begin rendering a frame at the specified time.

– updateBounds (page 109)
Returns the bounds of the update region that contains all pixels that will be rendered by the current
frame.

– addUpdateRect: (page 107)
Adds the rectangle to the update region of the current frame.

– render (page 108)
Render the update region of the current frame to the target context.

– nextFrameTime (page 108)
Returns the time at which the next update should happen.

– endFrame (page 108)
Release any data associated with the current frame.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

bounds
The bounds of the receiver.

@property CGRect bounds

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

layer
The root layer of the layer-tree the receiver should render.

@property(retain) CALayer *layer

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

106 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Class Methods

rendererWithCGLContext:options:
Creates and returns a CARenderer instance with the render target specified by the Core OpenGL context.

+ (CARenderer *)rendererWithCGLContext:(void *)ctx
options:(NSDictionary *)dict

Parameters
ctx

A Core OpenGL render context that is used as the render target.

dict
A dictionary of optional parameters.

Return Value
A new instance of CARenderer that will use ctx as the render target.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

Instance Methods

addUpdateRect:
Adds the rectangle to the update region of the current frame.

- (void)addUpdateRect:(CGRect)aRect

Parameters
aRect

A rectangle defining the region to be added to the update region.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

beginFrameAtTime:timeStamp:
Begin rendering a frame at the specified time.

- (void)beginFrameAtTime:(CFTimeInterval)timeInterval
timeStamp:(CVTimeStamp *)timeStamp

Class Methods 107
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Parameters
timeInterval

The layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

endFrame
Release any data associated with the current frame.

- (void)endFrame

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

nextFrameTime
Returns the time at which the next update should happen.

- (CFTimeInterval)nextFrameTime

Return Value
The time at which the next update should happen.

Discussion
If infinite, no update needs to be scheduled yet. If nextFrameTime is the current frame time, a continuous
animation is running and an update should be scheduled after an appropriate delay.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

render
Render the update region of the current frame to the target context.

- (void)render

Availability
Available in Mac OS X v10.5 and later.

108 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Declared In
CARenderer.h

updateBounds
Returns the bounds of the update region that contains all pixels that will be rendered by the current frame.

- (CGRect)updateBounds

Return Value
The bounds of the update region..

Discussion
Initially updateBounds will include all differences between the current frame and the previously rendered
frame.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

Instance Methods 109
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

110 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

The CAScrollLayer class is a subclass of CALayer that simplifies displaying a portion of a layer. The extent
of the scrollable area of the CAScrollLayer is defined by the layout of its sublayers. The visible portion of
the layer content is set by specifying the origin as a point or a rectangular area of the contents to be displayed.
CAScrollLayer does not provide keyboard or mouse event-handling, nor does it provide visible scrollers.

Tasks

Scrolling Constraints

 scrollMode (page 112) property
Defines the axes in which the layer may be scrolled.

Scrolling the Layer

– scrollToPoint: (page 112)
Changes the origin of the receiver to the specified point.

– scrollToRect: (page 112)
Scroll the contents of the receiver to ensure that the rectangle is visible.

Overview 111
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

scrollMode
Defines the axes in which the layer may be scrolled.

@property(copy) NSString *scrollMode

Discussion
The possible values are described in “Scroll Modes” (page 113). The default is kCAScrollBoth.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

Instance Methods

scrollToPoint:
Changes the origin of the receiver to the specified point.

- (void)scrollToPoint:(CGPoint)thePoint

Parameters
thePoint

The new origin.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

scrollToRect:
Scroll the contents of the receiver to ensure that the rectangle is visible.

- (void)scrollToRect:(CGRect)theRect

Parameters
theRect

The rectangle that should be visible.

Availability
Available in Mac OS X v10.5 and later.

112 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

Related Sample Code
CALayerEssentials

Declared In
CAScrollLayer.h

Constants

Scroll Modes
These constants describe the supported scroll modes used by the scrollMode (page 112) property.

NSString * const kCAScrollNone;
NSString * const kCAScrollVertically;
NSString * const kCAScrollHorizontally;
NSString * const kCAScrollBoth;

Constants
kCAScrollNone

The receiver is unable to scroll.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

kCAScrollVertically
The receiver is able to scroll vertically.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

kCAScrollHorizontally
The receiver is able to scroll horizontally.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

kCAScrollBoth
The receiver is able to scroll both horizontally and vertically.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

Declared In
CAScrollLayer.h

Constants 113
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

114 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

The CATextLayer provides simple text layout and rendering of plain or attributed strings. The first line is
aligned to the top of the layer.

Note: CATextLayer disabled sub-pixel antialiasing when rendering text. Text can only be drawn using sub-pixel
antialiasing when it is composited into an existing opaque background at the same time that it's rasterized.
There is no way to draw subpixel-antialiased text by itself, whether into an image or a layer, separately in
advance of having the background pixels to weave the text pixels into. Setting the opacity property of the
layer to YES does not change the rendering mode.

Note: When a CATextLayer instance is positioned using the CAConstraintLayoutManager Class Reference
the bounds of the layer is resized to fit the text content.

Tasks

Getting and Setting the Text

 string (page 118) property
The text to be rendered by the receiver.

Overview 115
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Text Visual Properties

 font (page 116) property
The font used to render the receiver’s text.

 fontSize (page 117) property
The font size used to render the receiver’s text.

 foregroundColor (page 117) property
The color used to render the receiver’s text.

Text Alignment and Truncation

 wrapped (page 118) property
Determines whether the text is wrapped to fit within the receiver’s bounds.

– isWrapped (page 119)
A synthesized accessor for the wrapped (page 118) property.

 alignmentMode (page 116) property
Determines how individual lines of text are horizontally aligned within the receiver’s bounds.

 truncationMode (page 118) property
Determines how the text is truncated to fit within the receiver’s bounds.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

alignmentMode
Determines how individual lines of text are horizontally aligned within the receiver’s bounds.

@property(copy) NSString *alignmentMode

Discussion
The possible values are described in “Horizontal alignment modes” (page 120). Defaults to
kCAAlignmentNatural (page 120).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

font
The font used to render the receiver’s text.

116 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

@property CFTypeRef font

Discussion
May be either a CTFontRef, a CGFontRef, an instance of NSFont, or a string naming the font. Defaults to
Helvetica.

The font property is only used when the string (page 118) property is not an NSAttributedString.

Note: If the font property specifies a font size (if it is a CTFontRef, a CGFontRef, an instance of NSFont)
the font size is ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

fontSize
The font size used to render the receiver’s text.

@property CGFloat fontSize

Discussion
Defaults to 36.0.

The font property is only used when the string (page 118) property is not an NSAttributedString.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

foregroundColor
The color used to render the receiver’s text.

@property CGColorRef foregroundColor

Discussion
Defaults to opaque white.

The font property is only used when the string (page 118) property is not an NSAttributedString.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CATextLayer.h

Properties 117
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

string
The text to be rendered by the receiver.

@property(copy) id string

Discussion
The text must be an instance of NSString or NSAttributedString. Defaults to nil.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CATextLayer.h

truncationMode
Determines how the text is truncated to fit within the receiver’s bounds.

@property(copy) NSString *truncationMode

Discussion
The possible values are described in“Truncation modes” (page 119). Defaults tokCATruncationNone (page
119).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

wrapped
Determines whether the text is wrapped to fit within the receiver’s bounds.

@property BOOL wrapped

Discussion
Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isWrapped (page 119)

Declared In
CATextLayer.h

118 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Instance Methods

isWrapped
A synthesized accessor for the wrapped (page 118) property.

- (BOOL)isWrapped

See Also
 @property wrapped (page 118)

Constants

Truncation modes
These constants are used by the truncationMode (page 118) property.

NSString * const kCATruncationNone;
NSString * const kCATruncationStart;
NSString * const kCATruncationEnd;
NSString * const kCATruncationMiddle;

Constants
kCATruncationNone

If the wrapped (page 118) property is YES, the text is wrapped to the receiver’s bounds, otherwise
the text is clipped to the receiver’s bounds.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCATruncationStart
Each line is displayed so that the end fits in the container and the missing text is indicated by some
kind of ellipsis glyph.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCATruncationEnd
Each line is displayed so that the beginning fits in the container and the missing text is indicated by
some kind of ellipsis glyph.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCATruncationMiddle
Each line is displayed so that the beginning and end fit in the container and the missing text is
indicated by some kind of ellipsis glyph in the middle.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

Declared In
CATextLayer.h

Instance Methods 119
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Horizontal alignment modes
These constants are used by the alignmentMode (page 116) property.

NSString * const kCAAlignmentNatural;
NSString * const kCAAlignmentLeft;
NSString * const kCAAlignmentRight;
NSString * const kCAAlignmentCenter;
NSString * const kCAAlignmentJustified;

Constants
kCAAlignmentNatural

Use the natural alignment of the text’s script.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentLeft
Text is visually left aligned.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentRight
Text is visually right aligned.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentCenter
Text is visually center aligned.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentJustified
Text is justified.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

Declared In
CATextLayer.h

120 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CATiledLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

CATiledLayer is a subclass of CALayer providing a way to asynchronously provide tiles of the layer's
content, potentially cached at multiple levels of detail.

As more data is required by the renderer, the layer's drawLayer:inContext: method is called on one or
more background threads to supply the drawing operations to fill in one tile of data. The clip bounds and
CTM of the drawing context can be used to determine the bounds and resolution of the tile being requested.

Regions of the layer may be invalidated using the setNeedsDisplayInRect: (page 78) method however
the update will be asynchronous. While the next display update will most likely not contain the updated
content, a future update will.

Tasks

Visual Fade

+ fadeDuration (page 123)
The time, in seconds, that newly added images take to "fade-in" to the rendered representation of
the tiled layer.

Overview 121
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATiledLayer Class Reference

Levels of Detail

 levelsOfDetail (page 122) property
The number of levels of detail maintained by this layer.

 levelsOfDetailBias (page 122) property
The number of magnified levels of detail for this layer.

Layer Tile Size

 tileSize (page 123) property
The maximum size of each tile used to create the layer's content.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

levelsOfDetail
The number of levels of detail maintained by this layer.

@property size_t levelsOfDetail

Discussion
Defaults to 1. Each level of detail is half the resolution of the previous level. If too many levels are specified
for the current size of the layer, then the number of levels is clamped to the maximum value (the bottom
most level of detail must contain at least a single pixel in each dimension.)

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CATiledLayer.h

levelsOfDetailBias
The number of magnified levels of detail for this layer.

@property size_t levelsOfDetailBias

Discussion
Defaults to 0. Each previous level of detail is twice the resolution of the later. For example, specifying a value
of 2 means that the layer has two extra levels of detail: 2x and 4x.

Availability
Available in Mac OS X v10.5 and later.

122 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATiledLayer Class Reference

Related Sample Code
CALayerEssentials

Declared In
CATiledLayer.h

tileSize
The maximum size of each tile used to create the layer's content.

@property CGSize tileSize

Discussion
Defaults to (256.0, 256.0).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATiledLayer.h

Class Methods

fadeDuration
The time, in seconds, that newly added images take to "fade-in" to the rendered representation of the tiled
layer.

+ (CFTimeInterval)fadeDuration

Discussion
The default implementation returns 0.25 seconds.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATiledLayer.h

Class Methods 123
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATiledLayer Class Reference

124 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATiledLayer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CATransaction.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CATransaction is the Core Animation mechanism for batching multiple layer-tree operations into atomic
updates to the render tree. Every modification to a layer tree must be part of a transaction Nested transactions
are supported.

Core Animation supports two types of transactions: implicit transactions and explicit transactions. Implicit
transactions are created automatically when the layer tree is modified by a thread without an active transaction
and are committed automatically when the thread's run-loop next iterates. Explicit transactions occur when
the the application sends the CATransaction class a begin (page 126) message before modifying the layer
tree, and a commit (page 126) message afterwards.

In some circumstances (for example, if there is no run-loop, or the run-loop is blocked) it may be necessary
to use explicit transactions to get timely render tree updates.

Tasks

Creating and Committing Transactions

+ begin (page 126)
Begin a new transaction for the current thread.

+ commit (page 126)
Commit all changes made during the current transaction.

+ flush (page 126)
Flushes any extant implicit transaction.

Overview 125
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransaction Class Reference

Getting and Setting Transaction Properties

+ valueForKey: (page 127)
Returns the arbitrary keyed-data specified by the given key.

+ setValue:forKey: (page 127)
Sets the arbitrary keyed-data for the specified key.

Class Methods

begin
Begin a new transaction for the current thread.

+ (void)begin

Discussion
The transaction is nested within the thread’s current transaction, if there is one.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

commit
Commit all changes made during the current transaction.

+ (void)commit

Special Considerations

Raises an exception if no current transaction exists.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

flush
Flushes any extant implicit transaction.

+ (void)flush

Discussion
Delays the commit until any nested explicit transactions have completed.

126 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransaction Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

setValue:forKey:
Sets the arbitrary keyed-data for the specified key.

+ (void)setValue:(id)anObject
forKey:(NSString *)key

Parameters
anObject

The value for the key identified by key.

key
The name of one of the receiver's properties.

Discussion
Nested transactions have nested data scope; setting a key always sets it in the innermost scope.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

valueForKey:
Returns the arbitrary keyed-data specified by the given key.

+ (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value for the data specified by the key.

Discussion
Nested transactions have nested data scope. Requesting a value for a key first searches the innermost scope,
then the enclosing transactions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

Class Methods 127
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransaction Class Reference

Constants

Transaction properties
These constants define the property keys used by valueForKey: (page 127) and setValue:forKey: (page
127).

NSString * const kCATransactionAnimationDuration;
NSString * const kCATransactionDisableActions;

Constants
kCATransactionAnimationDuration

Default duration, in seconds, for animations added to layers. The value for this key must be an instance
of NSNumber.

Available in Mac OS X v10.5 and later.

Declared in CATransaction.h.

kCATransactionDisableActions
If YES, implicit actions for property changes are suppressed. The value for this key must be an instance
of NSNumber.

Available in Mac OS X v10.5 and later.

Declared in CATransaction.h.

Declared In
CATransaction.h

128 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransaction Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CATransition class implements transition animations for a layer. You can specify the transition effect
from a set of predefined transitions or by providing a custom CIFilter instance.

Tasks

Transition Start and End Point

 startProgress (page 131) property
Indicates the start point of the receiver as a fraction of the entire transition.

 endProgress (page 130) property
Indicates the end point of the receiver as a fraction of the entire transition.

Transition Properties

 type (page 131) property
Specifies the predefined transition type.

 subtype (page 131) property
Specifies an optional subtype that indicates the direction for the predefined motion-based transitions.

Overview 129
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CATransition Class Reference

Custom Transition Filter

 filter (page 130) property
An optional CoreImage filter object that provides the transition.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

endProgress
Indicates the end point of the receiver as a fraction of the entire transition.

@property float endProgress

Discussion
The value must be greater than or equal to startProgress (page 131), and not greater than 1.0. If
endProgress is less than startProgress (page 131) the behavior is undefined. The default value is 1.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

filter
An optional CoreImage filter object that provides the transition.

@property(retain) CIFilter *filter

Discussion
If specified, the filter must support both kCIInputImageKey and kCIInputTargetImageKey input keys,
and the kCIOutputImageKey output key. The filter may optionally support the kCIInputExtentKey input
key, which is set to a rectangle describing the region in which the transition should run. If filter does not
support the required input and output keys the behavior is undefined.

Defaults to nil. When a transition filter is specified the type (page 131) and subtype (page 131) properties
are ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

130 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CATransition Class Reference

startProgress
Indicates the start point of the receiver as a fraction of the entire transition.

@property float startProgress

Discussion
Legal values are numbers between 0.0 and 1.0. For example, to start the transition half way through its
progress set startProgress to 0.5. The default value is 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

subtype
Specifies an optional subtype that indicates the direction for the predefined motion-based transitions.

@property(copy) NSString *subtype

Discussion
The possible values are shown in “Common Transition Subtypes” (page 132). The default is nil.

This property is ignored if a custom transition is specified in the filter (page 130) property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

type
Specifies the predefined transition type.

@property(copy) NSString *type

Discussion
The possible values are shown in “Common Transition Types” (page 132). This property is ignored if a
custom transition is specified in the filter (page 130) property. The default is kCATransitionFade (page
132).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Properties 131
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CATransition Class Reference

Constants

Common Transition Types
These constants specify the transition types that can be used with the type (page 131) property.

NSString * const kCATransitionFade;
NSString * const kCATransitionMoveIn;
NSString * const kCATransitionPush;
NSString * const kCATransitionReveal;

Constants
kCATransitionFade

The layer’s content fades as it becomes visible or hidden.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionMoveIn
The layer’s content slides into place over any existing content. The “Common Transition
Subtypes” (page 132) are used with this transition.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionPush
The layer’s content pushes any existing content as it slides into place. The “Common Transition
Subtypes” (page 132) are used with this transition.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionReveal
The layer’s content is revealed gradually in the direction specified by the transition subtype. The
“Common Transition Subtypes” (page 132) are used with this transition.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CATransition.h

Common Transition Subtypes
These constants specify the direction of motion-based transitions. They are used with the subtype (page
131) property.

132 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CATransition Class Reference

NSString * const kCATransitionFromRight;
NSString * const kCATransitionFromLeft;
NSString * const kCATransitionFromTop;
NSString * const kCATransitionFromBottom;

Constants
kCATransitionFromRight

The transition begins at the right side of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionFromLeft
The transition begins at the left side of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionFromTop
The transition begins at the top of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionFromBottom
The transition begins at the bottom of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CATransition.h

Constants 133
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CATransition Class Reference

134 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CATransition Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIColor.h

Availability Mac OS X v10.4 and later

Companion guides Core Image Programming Guide
Color Management Overview

Related sample code CIAnnotation

Overview

The CIColor class contains color values and the color space for which the color values are valid. You use
CIColor objects in conjunction with other Core Image classes, such as CIFilter, CIContext,and CIImage,
to take advantage of the built-in Core Image filters when processing images.

A color space defines a one-, two-, three-, or four-dimensional environment whose color components represent
intensity values. A color component is also referred to as a color channel. An RGB color space, for example,
is a three-dimensional color space whose stimuli are the red, green, and blue intensities that make up a given
color. Regardless of the color space, in Core Image, color values range from 0.0 to 1.0, with 0.0 representing
an absence of that component (0 percent) and 1.0 representing 100 percent.

Colors also have an alpha component that represents the opacity of the color, with 0.0 meaning completely
transparent and 1.0 meaning completely opaque. If a color does not have an explicit alpha component,
Core Image paints the color as if the alpha component equals 1.0. You always provide unpremultiplied color
components to Core Image and Core Image provides unpremultiplied color components to you. Core Image
premultiplies each color component with the alpha value in order to optimize calculations. For more
information on premultiplied alpha values see Core Image Programming Guide.

Overview 135
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

Tasks

Initializing Color Objects

– initWithCGColor: (page 141)
Initializes a color object with a Quartz color.

Creating Color Objects

+ colorWithCGColor: (page 137)
Creates a color object from a Quartz color.

+ colorWithRed:green:blue: (page 137)
Creates a color object using the specified RGB color component values

+ colorWithRed:green:blue:alpha: (page 138)
Creates a color object using the specified RGBA color component values.

+ colorWithString: (page 139)
Creates a color object using the RGBA color component values specified by a string.

Getting Color Components

– alpha (page 139)
Returns the alpha value of the color.

– blue (page 140)
Returns the blue component of the color.

– colorSpace (page 140)
Returns the Quartz 2D color space associated with the color.

– components (page 140)
Returns the color components of the color.

– green (page 141)
Returns the green component of the color.

– numberOfComponents (page 141)
Returns the number of color components in the color.

– red (page 142)
Returns the red component of the color.

– stringRepresentation (page 142)
Returns a formatted string that specifies the components of the color.

136 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

Class Methods

colorWithCGColor:
Creates a color object from a Quartz color.

+ (CIColor *)colorWithCGColor:(CGColorRef)c

Parameters
c

A Quartz color (CGColorRef object) created using a Quartz color creation function such as
CGColorCreate.

Return Value
A Core Image color object that represents a Quartz color.

Discussion
A CGColorRef object is the fundamental opaque data type used internally by Quartz to represent colors.
For more information on Quartz 2D color and color spaces, see Quartz 2D Programming Guide.

You can pass a CGColorRef object that represents any color space, including CMYK, but Core Image converts
all color spaces to the Core Image working color space before it passes the color space to the filter kernel.
The Core Image working color space uses three color components plus alpha.

Availability
Mac OS X v10.4 and later.

See Also
+ colorWithRed:green:blue: (page 137)
+ colorWithRed:green:blue:alpha: (page 138)
+ colorWithString: (page 139)

Declared In
CIColor.h

colorWithRed:green:blue:
Creates a color object using the specified RGB color component values

+ (CIColor *)colorWithRed:(CGFloat)r green:(CGFloat)g blue:(CGFloat)b

Parameters
r

The value of the red component.

g
The value of the green component.

b
The value of the blue component.

Class Methods 137
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

Return Value
A Core Image color object that represents an RGB color in the color space specified by the Quartz 2D constant
kCGColorSpaceGenericRGB.

Availability
Mac OS X v10.4 and later.

See Also
+ colorWithCGColor: (page 137)
+ colorWithRed:green:blue:alpha: (page 138)
+ colorWithString: (page 139)

Declared In
CIColor.h

colorWithRed:green:blue:alpha:
Creates a color object using the specified RGBA color component values.

+ (CIColor *)colorWithRed:(CGFloat)r green:(CGFloat)g blue:(CGFloat)b
alpha:(CGFloat)a

Parameters
r

The value of the red component.

g
The value of the green component.

b
The value of the blue component.

a
The value of the alpha component.

Return Value
A Core Image color object that represents an RGB color in the color space specified by the Quartz 2D constant
kCGColorSpaceGenericRGB and an alpha value.

Availability
Mac OS X v10.4 and later.

See Also
+ colorWithCGColor: (page 137)
+ colorWithRed:green:blue: (page 137)
+ colorWithString: (page 139)

Related Sample Code
CIAnnotation

Declared In
CIColor.h

138 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

colorWithString:
Creates a color object using the RGBA color component values specified by a string.

+ (CIColor *)colorWithString:(NSString *)representation

Parameters
representation

A string that is in one of the formats returned by the stringRepresentationmethod. For example,
the string:

@"0.5 0.7 0.3 1.0"

indicates an RGB color whose components are 50% red, 70% green, 30% blue, and 100% opaque
(alpha value of 1.0). The string representation always has four components—red, green, blue, and
alpha. The default value for the alpha component is 1.0.

Return Value
A Core Image color object that represents an RGB color in the color space specified by the Quartz 2D constant
kCGColorSpaceGenericRGB.

Availability
Mac OS X v10.4 and later.

See Also
+ colorWithCGColor: (page 137)
+ colorWithRed:green:blue: (page 137)
+ colorWithRed:green:blue:alpha: (page 138)

Declared In
CIColor.h

Instance Methods

alpha
Returns the alpha value of the color.

- (CGFloat)alpha

Return Value
The alpha value. A color created without an explicit alpha value has an alpha of 1.0 by default.

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

Instance Methods 139
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

blue
Returns the blue component of the color.

- (CGFloat)blue

Return Value
The unpremultiplied blue component of the color.

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

colorSpace
Returns the Quartz 2D color space associated with the color.

- (CGColorSpaceRef)colorSpace

Return Value
The Quartz 2D color space (CGColorSpaceRef object). You are responsible for disposing of this color space
by calling the Quartz 2D function CGColorSpaceRelease.

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

components
Returns the color components of the color.

- (const CGFloat *)components

Return Value
An array of color components, specified as floating-point values in the range of 0.0 through 1.0. This array
includes an alpha component if there is one.

Availability
Mac OS X v10.4 and later.

See Also
– numberOfComponents (page 141)
– stringRepresentation (page 142)

140 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

Declared In
CIColor.h

green
Returns the green component of the color.

- (CGFloat)green

Return Value
The unpremultiplied green component of the color.

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

initWithCGColor:
Initializes a color object with a Quartz color.

- (id)initWithCGColor:(CGColorRef)c

Parameters
c

A Quartz color (CGColorRef) created using a Quartz color creation function such as CGColorCreate.

Discussion
A CGColorRef object is the fundamental opaque data type used internally by Quartz to represent colors.
For more information on Quartz 2D color and color spaces, see Quartz 2D Programming Guide.

You can pass a CGColorRef object that represents any color space, including CMYK, but Core Image converts
all color spaces to the Core Image working color space before it passes the color space to the filter kernel.
The Core Image working color space uses three color components plus alpha.

Availability
Mac OS X v10.4 and later.

Declared In
CIColor.h

numberOfComponents
Returns the number of color components in the color.

- (size_t)numberOfComponents

Return Value
The number of color components, which includes an alpha component if there is one.

Instance Methods 141
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

red
Returns the red component of the color.

- (CGFloat)red

Return Value
The unpremultiplied red component of the color.

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

stringRepresentation
Returns a formatted string that specifies the components of the color.

- (NSString *)stringRepresentation

Return Value
The formatted string.

Discussion
The string representation always has four components—red, green, blue, and alpha. The default value for
the alpha component is 1.0.F or example, this string:

@"0.5 0.7 0.3 1.0"

indicates an RGB color whose components are 50% red, 70% green, 30% blue, and 100% opaque (alpha value
of 1.0).

Availability
Mac OS X v10.4 and later.

See Also
– components (page 140)

Declared In
CIColor.h

142 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

CIColor Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIContext.h

Availability Mac OS X v10.4 and later

Companion guides Core Image Programming Guide
Image Unit Tutorial

Related sample code CIAnnotation
Reducer
UnsharpMask
WebKitCIPlugIn
WhackedTV

Overview

The CIContext class provides an evaluation context for rendering a CIImage object through Quartz 2D or
OpenGL. You use CIContext objects in conjunction with other Core Image classes, such as CIFilter,
CIImage, and CIColor, to take advantage of the built-in Core Image filters when processing images.

Tasks

Creating a Context

+ contextWithCGContext:options: (page 144)
Creates a Core Image context from a Quartz context, using the specified options.

+ contextWithCGLContext:pixelFormat:options: (page 145)
Creates a Core Image context from a CGL context, using the specified options and pixel format object.

Overview 143
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

Rendering Images

– createCGImage:fromRect: (page 146)
Creates a Quartz 2D image from a region of a CIImage object.

– createCGImage:fromRect:format:colorSpace: (page 147)
Creates a Quartz 2D image from a region of a CIImage object.

– createCGLayerWithSize:info: (page 148)
Creates a CGLayer object from the provided parameters.

– drawImage:atPoint:fromRect: (page 149)
Renders a region of an image to a point in the context destination.

– drawImage:inRect:fromRect: (page 149)
Renders a region of an image to a rectangle in the context destination.

– render:toBitmap:rowBytes:bounds:format:colorSpace: (page 150)
Renders to the given bitmap.

Managing Resources

– clearCaches (page 146)
Frees any cached data, such as temporary images, associated with the context and runs the garbage
collector.

– reclaimResources (page 150)
Runs the garbage collector to reclaim any resources that the context no longer requires.

Class Methods

contextWithCGContext:options:
Creates a Core Image context from a Quartz context, using the specified options.

+ (CIContext *)contextWithCGContext:(CGContextRef)ctx options:(NSDictionary *)dict

Parameters
ctx

A Quartz graphics context (CGContextRef object) either obtained from the system or created using
a Quartz function such asCGBitmapContextCreate. See Quartz 2D Programming Guide for information
on creating Quartz graphics contexts.

dict
A dictionary that contains color space information. You can provide the keys
kCIContextOutputColorSpace (page 151) or kCIContextWorkingColorSpace (page 151) along
with a CGColorSpaceRefobject for each color space.

Discussion
After calling this method, Core Image draws content to the specified Quartz graphics context.

When you create a CIContext object using a Quartz graphics context, any transformations that are already
set on the Quartz graphics context affect drawing to that context.

144 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

Availability
Mac OS X v10.4 and later.

See Also
+ contextWithCGLContext:pixelFormat:options: (page 145)

Related Sample Code
CIAnnotation
UnsharpMask

Declared In
CIContext.h

contextWithCGLContext:pixelFormat:options:
Creates a Core Image context from a CGL context, using the specified options and pixel format object.

+ (CIContext *)contextWithCGLContext:(CGLContextObj)ctx
pixelFormat:(CGLPixelFormatObj)pf options:(NSDictionary *)dict

Parameters
ctx

A CGL context (CGLContextObj object) obtain by calling the CGL function CGLCreateContext.

pf
A CGL pixel format object (CGLPixelFormatObj object) created by calling the CGL function
CGLChoosePixelFormat. This argument must be the same pixel format object used to create the
CGL context. The pixel format object must be valid for the lifetime of the Core Image context. Don’t
release the pixel format object until after you release the Core Image context.

options
A dictionary that contains color space information. You can provide the keys
kCIContextOutputColorSpace (page 151) or kCIContextWorkingColorSpace (page 151) along
with a CGColorSpaceRef object for each color space.

Discussion
After calling this method, Core Image draws content into the surface (drawable object) attached to the CGL
context. A CGL context is an Mac OS X OpenGL context. For more information, see OpenGL Programming
Guide for Mac OS X.

When you create a CIContext object using a CGL context, all OpenGL states set for the CGL context affect
rendering to that context. That means that coordinate and viewport transformations set on the CGL context
as well as the vertex color.

For best results, follow these guidelines when you use Core Image to render into an OpenGL context:

 ■ Ensure that the a single unit in the coordinate space of the OpenGL context represents a single pixel in
the output device.

 ■ The Core Image coordinate space has the origin in the bottom left corner of the screen. You should
configure the OpenGL context in the same way.

 ■ The OpenGL context blending state is respected by Core Image. If the image you want to render contains
translucent pixels, it’s best to enable blending using a blend function with the parameters GL_ONE,
GL_ONE_MINUS_SRC_ALPHA, as shown in the following code example.

Class Methods 145
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

Some typical initialization code for a view with width W and height H is:

 glViewport (0, 0, W, H);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glOrtho (0, W, 0, H, -1, 1);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity ();
 glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
 glEnable (GL_BLEND);

Availability
Mac OS X v10.4 and later.

See Also
+ contextWithCGContext:options: (page 144)

Related Sample Code
CIVideoDemoGL
QTCoreImage101
VideoViewer
WebKitCIPlugIn
WhackedTV

Declared In
CIContext.h

Instance Methods

clearCaches
Frees any cached data, such as temporary images, associated with the context and runs the garbage collector.

- (void)clearCaches

Discussion
You can use this method to remove textures from the texture cache that reference deleted images.

Availability
Mac OS X v10.4 and later.

See Also
– reclaimResources (page 150)

Declared In
CIContext.h

createCGImage:fromRect:
Creates a Quartz 2D image from a region of a CIImage object.

146 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

- (CGImageRef)createCGImage:(CIImage *)im fromRect:(CGRect)r

Parameters
im

A CIImage object.

r
The region of the image to render.

Return Value
A Quartz 2D (CGImageRef) image. You are responsible for releasing the returned image when you no longer
need it.

Discussion
Renders a region of an image into a temporary buffer using the context, then creates and returns a Quartz
2D image with the results.

Availability
Mac OS X v10.4 and later.

See Also
– createCGImage:fromRect:format:colorSpace: (page 147)

Related Sample Code
CIAnnotation

Declared In
CIContext.h

createCGImage:fromRect:format:colorSpace:
Creates a Quartz 2D image from a region of a CIImage object.

- (CGImageRef)createCGImage:(CIImage *)im fromRect:(CGRect)r
 format:(CIFormat)f colorSpace:(CGColorSpaceRef)cs

Parameters
im

A CIImage object.

r
The region of the image to render.

f
The format of the image.

cs
The color space of the image.

Return Value
A Quartz 2D (CGImageRef) image. You are responsible for releasing the returned image when you no longer
need it.

Discussion
Renders a region of an image into a temporary buffer using the context, then creates and returns a Quartz
2D image with the results.

Instance Methods 147
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

Availability
Mac OS X v10.5 and later.

See Also
– createCGImage:fromRect: (page 146)

Declared In
CIContext.h

createCGLayerWithSize:info:
Creates a CGLayer object from the provided parameters.

- (CGLayerRef)createCGLayerWithSize:(CGSize)size info:(CFDictionaryRef)d

Parameters
size

The size, in default user space units, of the layer relative to the graphics context.

d
A dictionary, which is passed to CGLayerCreateWithContext as the auxiliaryInfo parameter.
Pass NULL as this parameter is reserved for future use.

Return Value
A CGLayer (CGLayerRef) object.

Discussion
After calling this method, Core Image draws content into the CGLayer object. Core Image creates a CGLayer
object by calling the Quartz 2D function CGLayerCreateWithContext, whose prototype is:

CGLayerRef CGLayerCreateWithContext (
 CGContextRef context,
 CGSize size,
 CFDictionaryRef auxiliaryInfo
);

Core Image passes the CIContext object as the context parameter, the size as the size parameter, and
the dictionary as the auxiliaryInfo parameter. For more information on CGLayer objects, see Quartz 2D
Programming Guide and CGLayer Reference.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCGLayer: (page 204)
+ imageWithCGLayer:options: (page 204)

Related Sample Code
QTCarbonCoreImage101

Declared In
CIContext.h

148 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

drawImage:atPoint:fromRect:
Renders a region of an image to a point in the context destination.

- (void)drawImage:(CIImage *)im atPoint:(CGPoint)p fromRect:(CGRect)src

Parameters
im

A CIImage object.

p
The point in the context destination to draw to.

src
The region of the image to draw.

Discussion
You can call this method to force evaluation of the result after you apply a filter using one of the methods
of the CIFilter class, such as apply: (page 161), apply:arguments:options: (page 161), and apply:k,
. . ..

Availability
Mac OS X v10.4 and later.

See Also
– drawImage:inRect:fromRect: (page 149)

Related Sample Code
QTCarbonCoreImage101
Reducer

Declared In
CIContext.h

drawImage:inRect:fromRect:
Renders a region of an image to a rectangle in the context destination.

- (void)drawImage:(CIImage *)im inRect:(CGRect)dest fromRect:(CGRect)src

Parameters
im

A CIImage object.

dest
The rectangle in the context destination to draw into.

src
The subregion of the image that you want to draw into the context, with the origin and target size
defined by the dest parameter.

Discussion
You can call this method to force evaluation of the result after you you apply a filter using one of the methods
of the CIFilter class, such as apply: (page 161), apply:arguments:options: (page 161), and apply:k,
. . ..

Instance Methods 149
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

Availability
Mac OS X v10.4 and later.

See Also
– drawImage:atPoint:fromRect: (page 149)

Related Sample Code
QTCarbonCoreImage101

Declared In
CIContext.h

reclaimResources
Runs the garbage collector to reclaim any resources that the context no longer requires.

- (void)reclaimResources

Discussion
The system calls this method automatically after every rendering operation. You can use this method to
remove textures from the texture cache that reference deleted images.

Availability
Mac OS X v10.4 and later.

See Also
– clearCaches (page 146)

Declared In
CIContext.h

render:toBitmap:rowBytes:bounds:format:colorSpace:
Renders to the given bitmap.

- (void)render:(CIImage *)im toBitmap:(void *)data rowBytes:(ptrdiff_t)rb
bounds:(CGRect)r format:(CIFormat)f colorSpace:(CGColorSpaceRef)cs

Parameters
im

A CIImage object.

data
Storage for the bitmap data.

rb
The bytes per row.

r
The bounds of the bitmap data.

f
The format of the bitmap data.

150 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

cs
The color space for the data. Pass NULL if you want to use the output color space of the context.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIContext.h

Constants

Context Options
Keys in the options dictionary for a CIContext object.

extern NSString *kCIContextOutputColorSpace;
extern NSString *kCIContextWorkingColorSpace;
extern NSString *kCIContextUseSoftwareRenderer;

Constants
kCIContextOutputColorSpace

A key for the color space to use for images before they are rendered to the context. By default, Core
Image uses the GenericRGB color space, which leaves color matching to the system. You can specify
a different output color space by providing a Quartz 2D CGColorSpace object (CGColorSpaceRef).
(See Quartz 2D Programming Guide for information on creating and using CGColorSpace objects.)

kCIContextWorkingColorSpace
A key for the color space to use for image operations. By default, Core Image assumes that processing
nodes are 128 bits-per-pixel, linear light, premultiplied RGBA floating-point values that use the
GenericRGB color space. You can specify a different working color space by providing a Quartz 2D
CGColorSpace object (CGColorSpaceRef). Note that the working color space must be RGB-based.
If you have YUV data as input (or other data that is not RGB-based), you can use ColorSync functions
to convert to the working color space. (See Quartz 2D Programming Guide for information on creating
and using CGColorSpace objects.)

kCIContextUseSoftwareRenderer
A key for enabling software renderer use. If the associated NSNumber object is YES, then the software
renderer is required.

Declared In
CIContext.h

Constants 151
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

152 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

CIContext Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIFilter.h
QuartzCore/CIRAWFilter.h

Availability Mac OS X v10.4 and later

Companion guides Core Image Programming Guide
Image Unit Tutorial
Core Image Filter Reference

Related sample code CarbonCocoaCoreImageTab
CIAnnotation
CIVideoDemoGL
QTCoreImage101
Reducer

Overview

The CIFilter class produces a CIImage object as output. Typically, a filter takes one or more images as
input. Some filters, however, generate an image based on other types of input parameters. The parameters
of a CIFilter object are set and retrieved through the use of key-value pairs.

You use the CIFilter object in conjunction with other Core Image classes, such as CIImage, CIContext,
CIImageAccumulator, and CIColor, to take advantage of the built-in Core Image filters when processing
images, creating filter generators, or writing custom filters.

Tasks

Creating a Filter

+ filterWithName: (page 157)
Creates a CIFilter object for a specific kind of filter.

Overview 153
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

+ filterWithName:keysAndValues: (page 158)
Creates a CIFilter object for a specific kind of filter and initializes the input values.

Creating a Filter from a RAW Image

+ filterWithImageData:options: (page 156)
Returns a CIFilter object initialized with RAW image data supplied to the method.

+ filterWithImageURL:options: (page 157)
Returns a CIFilter object initialized with data from a RAW image file.

Accessing Registered Filters

+ filterNamesInCategories: (page 155)
Returns an array of all published filter names that match all the specified categories.

+ filterNamesInCategory: (page 156)
Returns an array of all published filter names in the specified category.

Registering a Filter

+ registerFilterName:constructor:classAttributes: (page 160)
Publishes a custom filter that is not packaged as an image unit.

Getting Filter Parameters and Attributes

– attributes (page 162)
Returns a dictionary of key-value pairs that describe the filter.

– inputKeys (page 163)
Returns an array that contains the names of the input parameters to the filter.

– outputKeys (page 164)
Returns an array that contains the names of the output parameters for the filter.

Setting Default Values

– setDefaults (page 164)
Sets all input values for a filter to default values.

Applying a Filter

– apply:arguments:options: (page 161)
Produces a CIImage object by applying arguments to a kernel function and using options to control
how the kernel function is evaluated.

154 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

– apply: (page 161)
Produces a CIImage object by applying a kernel function.

Getting Localized Information for Registered Filters

+ localizedNameForFilterName: (page 159)
Returns the localized name for the specified filter name.

+ localizedNameForCategory: (page 159)
Returns the localized name for the specified filter category.

+ localizedDescriptionForFilterName: (page 158)
Returns the localized description of a filter for display in the user interface.

+ localizedReferenceDocumentationForFilterName: (page 160)
Returns the location of the localized reference documentation that describes the filter.

Class Methods

filterNamesInCategories:
Returns an array of all published filter names that match all the specified categories.

+ (NSArray *)filterNamesInCategories:(NSArray *)categories

Parameters
categories

One or more filter categories. Pass nil to get all filters in all categories.

Return Value
An array that contains all published filter names that match all the categories specified by the categories
argument.

Discussion
When you pass more than one filter category, this method returns the intersection of the filters in the
categories. For example, if you pass the categories kCICategoryBuiltIn (page 172) and
kCICategoryFilterGenerator (page 172), you obtain all the filters that are members of both the built-in
and generator categories. But if you pass in kCICategoryGenerator and kCICategoryStylize (page
171), you will not get any filters returned to you because there are no filters that are members of both the
generator and stylize categories. If you want to obtain all stylize and generator filters, you must call the
filterNamesInCategories: method for each category separately and then merge the results.

Availability
Mac OS X v10.4 and later.

See Also
+ filterNamesInCategory: (page 156)

Related Sample Code
CIAnnotation
CITransitionSelectorSample2

Class Methods 155
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

Declared In
CIFilter.h

filterNamesInCategory:
Returns an array of all published filter names in the specified category.

+ (NSArray *)filterNamesInCategory:(NSString *)category

Parameters
category

A string object that specifies a filter category.

Return Value
An array that contains all published names of the filter in a category.

Availability
Mac OS X v10.4 and later.

See Also
+ filterNamesInCategories: (page 155)

Declared In
CIFilter.h

filterWithImageData:options:
Returns a CIFilter object initialized with RAW image data supplied to the method.

+ (CIFilter *)filterWithImageData:(NSData *)data options:(NSDictionary *)options;

Parameters
data

The RAW image data to initialize the object with.

options
A options dictionary. You can pass any of the keys defined in “RAW Image Options” (page 177)
along with the appropriate value. You should provide a source type identifier hint key
(kCGImageSourceTypeIdentifierHint) and the appropriate source type value to help the decoder
determine the file type. Otherwise it’s possible to obtain incorrect results. See the Discussion for an
example

Return Value
A CIFilter object.

Discussion
After calling this method, the CIFilter object returns a CIImage object that is properly processed similar
to images retrieved using the outputImage key.

Here is an example of adding a source type identifier key-value pair to the options dictionary:

[opts setObject:(id)CGImageSourceGetTypeWithExtension ((CFStringRef)[[url path]
 pathExtension])
 forKey:(id)kCGImageSourceTypeIdentifierHint];

156 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
+ filterWithImageURL:options: (page 157)

Declared In
CIRAWFilter.h

filterWithImageURL:options:
Returns a CIFilter object initialized with data from a RAW image file.

+ (CIFilter *)filterWithImageURL:(NSURL *)url options:(NSDictionary *)options;

Parameters
url

The location of a RAW image file.

options
An options dictionary. You can pass any of the keys defined in “RAW Image Options” (page 177).

Return Value
A CIFilter object.

Discussion
After calling this method, the CIFilter object returns a CIImage object that is properly processed similar
to images retrieved using the outputImage key.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ filterWithImageData:options: (page 156)

Declared In
CIRAWFilter.h

filterWithName:
Creates a CIFilter object for a specific kind of filter.

+ (CIFilter *)filterWithName:(NSString *)name

Parameters
name

The name of the filter.

Return Value
A CIFilter object whose input values are undefined.

Discussion
You should call setDefaults (page 164) after you call this method or set values individually by calling
setValue:forKey.

Class Methods 157
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

Availability
Mac OS X v10.4 and later.

See Also
+ filterWithName:keysAndValues: (page 158)

Related Sample Code
CarbonCocoaCoreImageTab
CIAnnotation
CIVideoDemoGL
QTCoreImage101
Reducer

Declared In
CIFilter.h

filterWithName:keysAndValues:
Creates a CIFilter object for a specific kind of filter and initializes the input values.

+ (CIFilter *)filterWithName:(NSString *)namekeysAndValues:key0, ...

Parameters
name

The name of the filter.

key0
A list of key-value pairs to set as input values to the filter. Each key is a constant that specifies the
name of the input value to set, and must be followed by a value. You signal the end of the list by
passing a nil value.

Return Value
A CIFilter object whose input values are initialized.

Availability
Mac OS X v10.4 and later.

See Also
+ filterWithName: (page 157)

Related Sample Code
CIAnnotation
CITransitionSelectorSample2

Declared In
CIFilter.h

localizedDescriptionForFilterName:
Returns the localized description of a filter for display in the user interface.

+ (NSString *)localizedDescriptionForFilterName:(NSString *)filterName

158 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

Parameters
filterName

The filter name.

Return Value
The localized description of the filter.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilter.h

localizedNameForCategory:
Returns the localized name for the specified filter category.

+ (NSString *)localizedNameForCategory:(NSString *)category

Parameters
category

A filter category.

Return Value
The localized name for the filter category.

Availability
Mac OS X v10.4 and later.

Declared In
CIFilter.h

localizedNameForFilterName:
Returns the localized name for the specified filter name.

+ (NSString *)localizedNameForFilterName:(NSString *)filterName

Parameters
filterName

A filter name.

Return Value
The localized name for the filter.

Availability
Mac OS X v10.4 and later.

Related Sample Code
QTRecorder

Declared In
CIFilter.h

Class Methods 159
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

localizedReferenceDocumentationForFilterName:
Returns the location of the localized reference documentation that describes the filter.

+ (NSURL *)localizedReferenceDocumentationForFilterName:(NSString *)filterName

Parameters
filterName

The filter name.

Return Value
A URL that specifies the location of the localized documentation, or nil if the filter does not provide localized
reference documentation.

Discussion
The URL can be a local file or a remote document on a web server. Because filters created prior to Mac OS X
v10.5 could return nil, you should be make sure that your code handles this case gracefully.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilter.h

registerFilterName:constructor:classAttributes:
Publishes a custom filter that is not packaged as an image unit.

+ (void)registerFilterName:(NSString *)name constructor:(id)anObject
classAttributes:(NSDictionary *)attributes

Parameters
name

A string object that specifies the name of the filter you want to publish.

anObject
A constructor object that implements the filterWithName method.

attributes
A dictionary that contains the class display name and filter categories attributes along with the
appropriate value for each attributes. That is, the kCIAttributeFilterDisplayName (page 165)
attribute and a string that specifies the display name, and the
kCIAttributeFilterCategories (page 165) and an array that specifies the categories to which
the filter belongs (such as kCICategoryStillImage (page 171) and
kCICategoryDistortionEffect (page 169)). All other attributes for the filter should be returned
by the custom attributes method implement by the filter.

Discussion
In most cases you don’t need to use this method because the preferred way to register a custom filter that
you write is to package it as an image unit. You do not need to use this method for a filter packaged as an
image unit because you register your filter using the CIPlugInRegistration protocol. (See Core Image
Programming Guide for additional details.)

Availability
Mac OS X v10.4 and later.

160 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

Declared In
CIFilter.h

Instance Methods

apply:
Produces a CIImage object by applying a kernel function.

- (CIImage *)apply:(CIKernel *)k, ...

Parameters
k

A CIKernel object that contains a kernel function.

A list of arguments to supply to the kernel function. The supplied arguments must be type-compatible
with the function signature of the kernel function. The list of arguments must be terminated by the
nil object.

Discussion
For example, if the kernel function has this signature:

kernel vec4 brightenEffect (sampler src, float k)

You would supply two arguments after the k argument to the apply:k, .. method. In this case, the first
argument must be a sampler and the second a floating-point value. For more information on kernels, see
Core Image Kernel Language Reference.

Availability
Mac OS X v10.4 and later.

See Also
– apply:arguments:options: (page 161)

Declared In
CIFilter.h

apply:arguments:options:
Produces a CIImage object by applying arguments to a kernel function and using options to control how
the kernel function is evaluated.

- (CIImage *)apply:(CIKernel *)k arguments:(NSArray *)args options:(NSDictionary
*)dict

Parameters
k

A CIKernel object that contains a kernel function.

args
The arguments that are type compatible with the function signature of the kernel function.

Instance Methods 161
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

dict
A dictionary that contains options (key-value pairs) to control how the kernel function is evaluated.

Return Value
The CIImage object produced by a filter.

Discussion
You can pass any of the following keys in the dictionary:

 ■ kCIApplyOptionExtent specifies the size of the produced image. The associated value is a four-element
array (NSArray) that specifies the x-value of the rectangle origin, the y-value of the rectangle origin,
and the width, and height.

 ■ kCIApplyOptionDefinition specifies the domain of definition (DOD) of the produces image. The
associated value is either a Core Image filter shape or a four-element array (NSArray) that specifies a
rectangle.

 ■ kCIApplyOptionUserInfo specifies to retain the associated object and pass it to any callbacks invoked
for that filter.

Availability
Mac OS X v10.4 and later.

See Also
– apply: (page 161)

Declared In
CIFilter.h

attributes
Returns a dictionary of key-value pairs that describe the filter.

- (NSDictionary *)attributes

Return Value
A dictionary that contains a key for each input and output parameter for the filter. Each key is a dictionary
that contains all the attributes of an input or output parameter.

Discussion
For example, the attributes dictionary for the CIColorControls filter contains the following information:

CIColorControls:
{
 CIAttributeFilterCategories = (
 CICategoryColorAdjustment,
 CICategoryVideo,
 CICategoryStillImage,
 CICategoryInterlaced,
 CICategoryNonSquarePixels,
 CICategoryBuiltIn
);
 CIAttributeFilterDisplayName = "Color Controls";
 CIAttributeFilterName = CIColorControls;
 inputBrightness = {
 CIAttributeClass = NSNumber;

162 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

 CIAttributeDefault = 0;
 CIAttributeIdentity = 0;
 CIAttributeMin = -1;
 CIAttributeSliderMax = 1;
 CIAttributeSliderMin = -1;
 CIAttributeType = CIAttributeTypeScalar;
 };
 inputContrast = {
 CIAttributeClass = NSNumber;
 CIAttributeDefault = 1;
 CIAttributeIdentity = 1;
 CIAttributeMin = 0.25;
 CIAttributeSliderMax = 4;
 CIAttributeSliderMin = 0.25;
 CIAttributeType = CIAttributeTypeScalar;
 };
 inputImage = {CIAttributeClass = CIImage; };
 inputSaturation = {
 CIAttributeClass = NSNumber;
 CIAttributeDefault = 1;
 CIAttributeIdentity = 1;
 CIAttributeMin = 0;
 CIAttributeSliderMax = 3;
 CIAttributeSliderMin = 0;
 CIAttributeType = CIAttributeTypeScalar;
 };
 outputImage = {CIAttributeClass = CIImage; };
}

Availability
Mac OS X v10.4 and later.

Related Sample Code
CITransitionSelectorSample2

Declared In
CIFilter.h

inputKeys
Returns an array that contains the names of the input parameters to the filter.

- (NSArray *)inputKeys

Return Value
An array that contains the names of all input parameters to the filter.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CITransitionSelectorSample2

Declared In
CIFilter.h

Instance Methods 163
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

outputKeys
Returns an array that contains the names of the output parameters for the filter.

- (NSArray *)outputKeys

Return Value
An array that contains the names of all output parameters from the filter.

Availability
Mac OS X v10.4 and later.

Declared In
CIFilter.h

setDefaults
Sets all input values for a filter to default values.

- (void)setDefaults

Discussion
Input values whose default values are not defined are left unchanged.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCoreImageTab
Core Animation QuickTime Layer
QTCarbonCoreImage101
QTRecorder
UnsharpMask

Declared In
CIFilter.h

Constants

Filter Attribute Keys
Attributes for a filter and its parameters.

164 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

extern NSString *kCIAttributeFilterName;
extern NSString *kCIAttributeFilterDisplayName;
extern NSString *kCIAttributeDescription;
extern NSString *kCIAttributeReferenceDocumentation;
extern NSString *kCIAttributeFilterCategories;
extern NSString *kCIAttributeClass;
extern NSString *kCIAttributeType;
extern NSString *kCIAttributeMin;
extern NSString *kCIAttributeMax;
extern NSString *kCIAttributeSliderMin;
extern NSString *kCIAttributeSliderMax;
extern NSString *kCIAttributeDefault;
extern NSString *kCIAttributeIdentity;
extern NSString *kCIAttributeName;
extern NSString *kCIAttributeDisplayName;

Constants
kCIAttributeFilterName

The filter name, specified as an NSString object.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeFilterDisplayName
The localized version of the filter name that is displayed in the user interface.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeDescription
The localized description of the filter. This description should inform the end user what the filter does
and be short enough to display in the user interface for the filter. It is not intended to be technically
detailed.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIAttributeReferenceDocumentation
The localized reference documentation for the filter. The reference should provide developers with
technical details.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIAttributeFilterCategories
An array of filter category keys that specifies all the categories in which the filter is a member.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeClass
The class of the input parameter for a filter. If you are writing an image unit (see Image Unit Tutorial),
Core Image supports only these classes for nonexecutable image units: CIColor, CIVector, CIImage,
and NSNumber only. Executable image units may have input parameters of any class, but Core Image
does not generate an automatic user interface for custom classes (see
CIFilter(IKFilterUIAddition)).

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Constants 165
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCIAttributeType
The attribute type.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeMin
The minimum value for a filter parameter, specified as a floating-point value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeMax
The maximum value for a filter parameter, specified as a floating-point value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeSliderMin
The minimum value, specified as a floating-point value, to use for a slider that controls input values
for a filter parameter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeSliderMax
The maximum value, specified as a floating-point value, to use for a slider that controls input values
for a filter parameter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeDefault
The default value, specified as a floating-point value, for a filter parameter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeIdentity
If supplied as a value for a parameter, the parameter has no effect on the input image.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeName
The name of the attribute.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeDisplayName
The localized display name of the attribute.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Discussion
Attribute keys are used for the attribute dictionary of a filter. Most entries in the attribute dictionary are
optional. The attribute CIAttributeFilterName is mandatory. For a parameter, the attribute
kCIAttributeClass is mandatory.

166 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

A parameter of type NSNumber does not necessarily need the attributes kCIAttributeMin and
kCIAttributeMax. These attributes are not present when the parameter has no upper or lower bounds.
For example, the Gaussian blur filter has a radius parameter with a minimum of 0 but no maximum value to
indicate that all nonnegative values are valid.

Declared In
CIFilter.h

Data Type Attributes
Numeric data types.

extern NSString *kCIAttributeTypeTime;
extern NSString *kCIAttributeTypeScalar;
extern NSString *kCIAttributeTypeDistance;
extern NSString *kCIAttributeTypeAngle;
extern NSString *kCIAttributeTypeBoolean;
extern NSString *kCIAttributeTypeInteger;
extern NSString *kCIAttributeTypeCount;

Constants
kCIAttributeTypeTime

A parametric time for transitions, specified as a floating-point value in the range of 0.0 to 1.0.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeScalar
A scalar value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeDistance
A distance.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeAngle
An angle.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeBoolean
A Boolean value.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeInteger
An integer value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Constants 167
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCIAttributeTypeCount
A positive integer value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Vector Quantity Attributes
Vector data types.

extern NSString *kCIAttributeTypePosition;
extern NSString *kCIAttributeTypeOffset;
extern NSString *kCIAttributeTypePosition3;
extern NSString *kCIAttributeTypeRectangle

Constants
kCIAttributeTypePosition

A two-dimensional location in the working coordinate space. (A 2-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeOffset
An offset. (A 2-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypePosition3
A three-dimensional location in the working coordinate space. (A 3-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeRectangle
A Core Image vector that specifies the x and y values of the rectangle origin, and the width (w) and
height (h) of the rectangle. The vector takes the form [x, y, w, h]. (A 4-element vector type.)

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Color Attribute Keys
Color types.

168 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

extern NSString *kCIAttributeTypeOpaqueColor;
extern NSString *kCIAttributeTypeGradient;

Constants
kCIAttributeTypeOpaqueColor

A Core Image color (CIColor object) that specifies red, green, and blue component values. Use this
key for colors with no alpha component. If the key is not present, Core Image assumes color with
alpha.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIAttributeTypeGradient
An n-by-1 gradient image used to describe a color ramp.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Filter Category Keys
Categories of filters.

extern NSString *kCICategoryDistortionEffect;
extern NSString *kCICategoryGeometryAdjustment;
extern NSString *kCICategoryCompositeOperation;
extern NSString *kCICategoryHalftoneEffect;
extern NSString *kCICategoryColorAdjustment;
extern NSString *kCICategoryColorEffect;
extern NSString *kCICategoryTransition;
extern NSString *kCICategoryTileEffect;
extern NSString *kCICategoryGenerator;
extern NSString *kCICategoryReduction;
extern NSString *kCICategoryGradient;
extern NSString *kCICategoryStylize;
extern NSString *kCICategorySharpen;
extern NSString *kCICategoryBlur;
extern NSString *kCICategoryVideo;
extern NSString *kCICategoryStillImage;
extern NSString *kCICategoryInterlaced;
extern NSString *kCICategoryNonSquarePixels;
extern NSString *kCICategoryHighDynamicRange ;
extern NSString *kCICategoryBuiltIn;
extern NSString *kCICategoryFilterGenerator;

Constants
kCICategoryDistortionEffect

A filter that reshapes an image by altering its geometry to create a 3D effect. Using distortion filters,
you can displace portions of an image, apply lens effects, make a bulge in an image, and perform
other operation to achieve an artistic effect.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Constants 169
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCICategoryGeometryAdjustment
A filter that changes the geometry of an image. Some of these filters are used to warp an image to
achieve an artistic effects, but these filters can also be used to correct problems in the source image.
For example, you can apply an affine transform to straighten an image that is rotated with respect
to the horizon.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryCompositeOperation
A filter operates on two image sources, using the color values of one image to operate on the other.
Composite filters perform computations such as computing maximum values, minimum values, and
multiplying values between input images. You can use compositing filters to add effects to an image,
crop an image, and achieve a variety of other effects.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryHalftoneEffect
A filter that simulates a variety of halftone screens, to mimic the halftone process used in print media.
The output of these filters has the familiar “newspaper” look of the various dot patterns. Filters are
typically named after the pattern created by the virtual halftone screen, such as circular screen or
hatched screen.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryColorAdjustment
A filter that changes color values. Color adjustment filters are used to eliminate color casts, adjust
hue, and correct brightness and contrast. Color adjustment filters do not perform color management;
ColorSync performs color management. You can use Quartz 2D to specify the color space associated
with an image. For more information, see Color Management Overview and Quartz 2D Programming
Guide.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryColorEffect
A filter that modifies the color of an image to achieve an artistic effect. Examples of color effect filters
include filters that change a color image to a sepia image or a monochrome image or that produces
such effects as posterizing.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryTransition
A filter that provides a bridge between two or more images by applying a motion effect that defines
how the pixels of a source image yield to that of the destination image.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryTileEffect
A filter that typically applies an effect to an image and then create smaller versions of the image (tiles),
which are then laid out to create a pattern that’s infinite in extent.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

170 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCICategoryGenerator
A filter that generates a pattern, such as a solid color, a checkerboard, or a star shine. The generated
output is typically used as input to another filter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryReduction
A filter that reduces image data. These filters are used to solve image analysis problems.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCICategoryGradient
A filter that generates a fill whose color varies smoothly. Exactly how color varies depends on the
type of gradient—linear, radial, or Gaussian.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryStylize
A filter that makes a photographic image look as if it was painted or sketched. These filters are typically
used alone or in combination with other filters to achieve artistic effects.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategorySharpen
A filter that sharpens images, increasing the contrast between the edges in an image. Examples of
sharpen filters are unsharp mask and sharpen luminance.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryBlur
A filter that softens images, decreasing the contrast between the edges in an image. Examples of blur
filters are Gaussian blur and zoom blur.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryVideo
A filter that works on video images.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryStillImage
A filter that works on still images.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryInterlaced
A filter that works on interlaced images.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Constants 171
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCICategoryNonSquarePixels
A filter that works on non-square pixels.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryHighDynamicRange
A filter that works on high dynamic range pixels.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryBuiltIn
A filter provided by Core Image. This distinguishes built-in filters from plug-in filters.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCICategoryFilterGenerator
A filter created by chaining several filters together and then packaged as a CIFilterGenerator
object.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

Options for Applying a Filter
Options that control the application of a Core Image filter.

extern NSString *kCIApplyOptionExtent;
extern NSString *kCIApplyOptionDefinition;
extern NSString *kCIApplyOptionUserInfo;

Constants
kCIApplyOptionExtent

The size of the produced image. The associated value is a four-element array (NSArray) that specifies
the x-value of the rectangle origin, the y-value of the rectangle origin, and the width and height.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIApplyOptionDefinition
The domain of definition (DOD) of the produced image. The associated value is either a Core Image
filter shape or a four-element array (NSArray) that specifies a rectangle.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

kCIApplyOptionUserInfo
Information needed by a callback. The associated value is an object that Core Image will pass to any
callbacks invoked for that filter.

Available in Mac OS X v10.4 and later.

Declared in CIFilter.h.

Declared In
CIFilter.h

172 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

User Interface Control Options
Sets of controls for various user scenarios.

extern NSString *kCIUIParameterSet;
extern NSString *kCIUISetBasic;
extern NSString *kCIUISetIntermediate;
extern NSString *kCIUISetAdvanced;
extern NSString *kCIUISetDevelopment;

Constants
kCIUIParameterSet

The set of input parameters to use. The associated value can be kCIUISetBasic (page 173),
kCIUISetIntermediate (page 173),kCIUISetAdvanced (page 173), orkCIUISetDevelopment (page
173).

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetBasic
Controls that are appropriate for a basic user scenario, that is, the minimum of settings to control the
filter.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetIntermediate
Controls that are appropriate for an intermediate user scenario.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetAdvanced
Controls that are appropriate for an advanced user scenario.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIUISetDevelopment
Controls that should be visible only for development purposes.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Discussion
You can use these constants to specify the controls that you want associated with each user scenario. For
example, for a filter that has many input parameters you can choose a small set of input parameters that the
typical consumer can control and set the other input parameters to default values. For the same filter, however,
you can choose to allow professional customers to control all the input parameters.

Declared In
CIFIlter.h

Filter Parameter Keys
Keys for input parameters to filters.

Constants 173
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

extern NSString *kCIOutputImageKey;
extern NSString *kCIInputBackgroundImageKey;
extern NSString *kCIInputImageKey;
extern NSString *kCIInputTimeKey;
extern NSString *kCIInputTransformKey;
extern NSString *kCIInputScaleKey;
extern NSString *kCIInputAspectRatioKey;
extern NSString *kCIInputCenterKey;
extern NSString *kCIInputRadiusKey;
extern NSString *kCIInputAngleKey;
extern NSString *kCIInputRefractionKey;
extern NSString *kCIInputWidthKey;
extern NSString *kCIInputSharpnessKey;
extern NSString *kCIInputIntensityKey;
extern NSString *kCIInputEVKey;
extern NSString *kCIInputSaturationKey;
extern NSString *kCIInputColorKey;
extern NSString *kCIInputBrightnessKey;
extern NSString *kCIInputContrastKey;
extern NSString *kCIInputGradientImageKey;
extern NSString *kCIInputMaskImageKey;
extern NSString *kCIInputShadingImageKey;
extern NSString *kCIInputTargetImageKey;
extern NSString *kCIInputExtentKey;

Constants
kCIOutputImageKey

A key for the CIImage object produced by a filter.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputBackgroundImageKey
A key for the CIImage object to use as a background image.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputImageKey
A key for the CIImage object to use as an input image. For filters that also use a background image,
this key refers to the foreground image.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputTimeKey
A key for z scalar value (NSNumber) that specifies a time.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputTransformKey
A key for an NSAffineTransform object that specifies a transformation to apply.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

174 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCIInputScaleKey
A key for a scalar value (NSNumber) that specifies the amount of the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputAspectRatioKey
A key for a scalar value (NSNumber) that specifies a ratio.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputCenterKey
A key for a CIVector object that specifies the center of the area, as x and y- coordinates, to be filtered.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputRadiusKey
A key for a scalar value (NSNumber) that specifies that specifies the distance from the center of an
effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputAngleKey
A key for a scalar value (NSNumber) that specifies an angle.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputRefractionKey
A key for a scalar value (NSNumber) that specifies the index of refraction of the material (such as glass)
used in the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputWidthKey
A key for a scalar value (NSNumber) that specifies the width of the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputSharpnessKey
A key for a scalar value (NSNumber) that specifies the amount of sharpening to apply.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputIntensityKey
A key for a scalar value (NSNumber) that specifies an intensity value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputEVKey
A key for a scalar value (NSNumber) that specifies how many F-stops brighter or darker the image
should be.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Constants 175
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCIInputSaturationKey
A key for a scalar value (NSNumber) that specifies the amount to adjust the saturation.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputColorKey
A key for a CIColor object that specifies a color value.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputBrightnessKey
A key for a scalar value (NSNumber) that specifies a brightness level.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputContrastKey
A key for a scalar value (NSNumber) that specifies a contrast level.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputGradientImageKey
A key for a CIImage object that specifies an environment map with alpha. Typically, this image
contains highlight and shadow.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputMaskImageKey
A key for a CIImage object to use as a mask.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputShadingImageKey
A key for a CIImage object that specifies an environment map with alpha values. Typically this image
contains highlight and shadow.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputTargetImageKey
A key for a CIImage object that is the target image for a transition.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

kCIInputExtentKey
A key for a CIVector object that specifies a rectangle that defines the extent of the effect.

Available in Mac OS X v10.5 and later.

Declared in CIFilter.h.

Discussion
These keys represent some of the most commonly used input parameters. A filter can use other kinds of
input parameters.

Declared In
CIFIlter.h

176 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

RAW Image Options
Options for creating a CIFilter object from RAW image data.

extern NSString * const kCIInputDecoderVersionKey;
extern NSString * const kCISupportedDecoderVersionsKey;
extern NSString * const kCIInputBoostKey;
extern NSString * const kCIInputNeutralChromaticityXKey;
extern NSString * const kCIInputNeutralChromaticityYKey;
extern NSString * const kCIInputNeutralTemperatureKey;
extern NSString * const kCIInputNeutralTintKey;
extern NSString * const kCIInputNeutralLocation;
extern NSString * const kCIInputScaleFactorKey;
extern NSString * const kCIInputAllowDraftModeKey;
extern NSString * const kCIInputIgnoreImageOrientationKey;
extern NSString * const kCIInputImageOrientationKey;
extern NSString * const kCIInputEnableSharpeningKey;
extern NSString * const kCIInputEnableChromaticNoiseTrackingKey;
extern NSString * const kCIInputBoostShadowAmountKey;
extern NSString * const kCIInputBiasKey;

Constants
kCIInputDecoderVersionKey

A key for the version number of the method to be used for decoding. A newly initialized object defaults
to the newest available decoder version for the given image type. You can request an alternative,
older version to maintain compatibility with older releases. Must be one of
kCISupportedDecoderVersions, otherwise a nil output image is generated. The associated value
must be an NSNumber object that specifies an integer value in range of 0 to the current decoder
version. When you request a specific version of the decoder, Core Image produces an image that is
visually the same across different versions of the operating system. Core Image, however, does not
guarantee that the same bits are produced across different versions of the operating system. That’s
because the rounding behavior of floating-point arithmetic can vary due to differences in compilers
or hardware. Note that this option has no effect if the image used for initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCISupportedDecoderVersionsKey
A key for the supported decoder versions. The associated value is an NSArray object that contains
all supported decoder versions for the given image type, sorted in increasingly newer order. Each
entry is an NSDictionary object that contains key-value pairs. All entries represent a valid version
identifier that can be passed as the kCIDecoderVersion value for the key kCIDecoderMethodKey.
Version values are read-only; attempting to set this value raises an exception. Currently, the only
defined key is @"version" which has as its value an NSString that uniquely describing a given
decoder version. This string might not be suitable for user interface display..

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputBoostKey
A key for the the amount of boost to apply to an image. The associated value is a floating-point value
packaged as an NSNumber object. The value must be in the range of 0...1. A value of 0 indicates
no boost, that is, a linear response. The default value is 1, which indicates full boost.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

Constants 177
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCIInputNeutralChromaticityXKey
The x value of the chromaticity. The associated value is a floating-point value packaged as an NSNumber
object. You can query this value to get the current x value for neutral x, y.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralChromaticityYKey
The y value of the chromaticity. The associated value is a floating-point value packaged as an NSNumber
object. You can query this value to get the current y value for neutral x, y.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralTemperatureKey
A key for neutral temperature. The associated value is a floating-point value packaged as an NSNumber
object. You can query this value to get the current temperature value.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralTintKey
A key for the neutral tint. The associated value is a floating-point value packaged as an NSNumber
object. Use this key to set or fetch the temperature and tint values. You can query this value to get
the current tint value.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputNeutralLocationKey
A key for the neutral position. Use this key to set the location in geometric coordinates of the unrotated
output image that should be used as neutral. You cannot query this value; it is undefined for reading.
The associated value is a two-element CIVector object that specifies the location (x, y).

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputScaleFactorKey
A key for the scale factor. The associated value is a floating-point value packaged as an NSNumber
object that specifies the desired scale factor at which the image will be drawn. Setting this value can
greatly improve the drawing performance. A value of 1 is the identity. In some cases, if you change
the scale factor and enable draft mode, performance can decrease. See kCIAllowDraftModeKey.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputAllowDraftModeKey
A key for allowing draft mode. The associated value is a Boolean value packaged as an NSNumber
object. It’s best not to use draft mode if the image needs to be drawn without draft mode at a later
time, because changing the value from YES to NO is an expensive operation. If the optional scale
factor is smaller than a certain value, additionally setting draft mode can improve image decoding
speed without any perceivable loss of quality. However, turning on draft mode does not have any
effect if the scale factor is not below this threshold.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

178 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

kCIInputIgnoreImageOrientationKey
A key for specifying whether to ignore the image orientation. The associated value is a Boolean value
packaged as an NSNumber object. The default value is NO. An image is usually loaded in its proper
orientation, as long as the associated metadata records its orientation. For special purposes you might
want to load the image in its physical orientation. The exact meaning of "physical orientation” is
dependent on the specific image.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputImageOrientationKey
A key for the image orientation. The associated value is an integer value packaged as an NSNumber
object. Valid values are in range 1...8 and follow the EXIF specification. The value is disregarded
when the kCIIgnoreImageOrientationKey flag is set. You can change the orientation of the image
by overriding this value. By changing this value you can easily rotate an image in 90-degree increments.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputEnableSharpeningKey
A key for the sharpening state. The associated value must be an NSNumber object that specifies a
BOOL value (YES or NO). The default is YES. This option has no effect if the image used for initialization
is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputEnableChromaticNoiseTrackingKey
A key for progressive chromatic noise tracking (based on ISO and exposure time). The associated
value must be an NSNumber object that specifies a BOOL value (YES or NO). The default is YES. This
option has no effect if the image used for initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputBoostShadowAmountKey
A key for the amount to boost the shadow areas of the image. The associated value must be an
NSNumber object that specifies floating-point value. The value has no effect if the image used for
initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

kCIInputBiasKey
A key for the simple bias value to use along with the exposure adjustment (kCIInputEVKey). The
associated value must be an NSNumber object that specifies floating-point value. The value has no
effect if the image used for initialization is not RAW.

Available in Mac OS X v10.5 and later.

Declared in CIRAWFilter.h.

Discussion
You can also use the key kCIInputEVKey for RAW images.

Declared In
CIRAWFilter.h

Constants 179
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

180 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CIFilter Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in CACIFilterAdditions.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook
Core Image Programming Guide

Overview

Core Animation adds two additional properties to the CIFilter class. These properties are accessible through
key-value coding as well as the properties declared below.

Tasks

Naming Filter Instances

 name (page 182) property
The name of the receiver.

Enabling Filter Instances

 enabled (page 182) property
Determines if the receiver is enabled. Animatable.

– isEnabled (page 182)
A synthesized accessor for the enabled (page 182) property.

Overview 181
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

CIFilter Core Animation Additions

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

enabled
Determines if the receiver is enabled. Animatable.

@property BOOL enabled

Discussion
The receiver is applied to its input when this property is set to YES. Default is YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CACIFilterAdditions.h

name
The name of the receiver.

@property(copy) NSString *name

Discussion
Default is nil. Each CIFilter instance can have an assigned name. The name is used to construct key paths
to the filter’s attributes. For example, if a CIFilter instance has the name “myExposureFilter”, you refer
to attributes of the filter using a key path such as “filters.myExposureFilter.inputEV”. Layer animations
may also access filter attributes via these key paths.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CACIFilterAdditions.h

Instance Methods

isEnabled
A synthesized accessor for the enabled (page 182) property.

- (BOOL)isEnabled

See Also
 @property enabled (page 182)

182 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

CIFilter Core Animation Additions

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIFilterGenerator.h

Availability Mac OS X v10.5 and later

Companion guides Core Image Programming Guide
Core Image Filter Reference

Overview

The CIFilterGenerator class provides methods for creating a CIFilter object by chaining together
existing CIFilter objects to create complex effects. (A filter chain refers to the CIFilter objects that are
connected in the CIFilterGenerator object.) The complex effect can be encapsulated as a
CIFilterGenerator object and saved as a file so that it can be used again. The filter generator file contains
an archived instance of all the CIFilter objects that are chained together.

Any filter generator files that you copy to /Library/Graphics/Image Units/ are loaded when any of
the loading methods provided by the CIPlugIn class are invoked. A CIFilterGenerator object is registered
by its filename or, if present, by a class attribute that you supply in its description.

You can create a CIFilterGenerator object programmatically, using the methods provided by the
CIFilterGenerator class, or by using the editor view provided by Core Image (see CIFilter Image Kit
Additions).

Tasks

Creating Filter Generator Objects

+ filterGenerator (page 185)
Creates and returns an empty filter generator object.

Overview 183
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

+ filterGeneratorWithContentsOfURL: (page 185)
Creates and returns a filter generator object and initializes it with the contents of a filter generator
file.

Initializing a Filter Generator Object

– initWithContentsOfURL: (page 189)
Initializes a filter generator object with the contents of a filter generator file.

Connecting and Disconnecting Objects

– connectObject:withKey:toObject:withKey: (page 186)
Adds an object to the filter chain.

– disconnectObject:withKey:toObject:withKey: (page 187)
Removes the connection between two objects in the filter chain.

Managing Exported Keys

– exportedKeys (page 187)
Returns an array of the exported keys.

– exportKey:fromObject:withName: (page 188)
Exports an input or output key of an object in the filter chain.

– removeExportedKey: (page 190)
Removes a key that was previously exported.

– setAttributes:forExportedKey: (page 190)
Sets a dictionary of attributes for an exported key.

Setting and Getting Class Attributes

– classAttributes (page 186)
Retrieves the class attributes associated with a filter.

– setClassAttributes: (page 190)
Seta the class attributes for a filter.

Archiving a Filter Generator Object

– writeToURL:atomically: (page 191)
Archives a filter generator object to a filter generator file.

184 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

Registering a Filter Chain

– registerFilterName: (page 189)
Registers the name associated with a filter chain.

Creating a Filter from a Filter Chain

– filter (page 188)
Creates a filter object based on the filter chain.

Class Methods

filterGenerator
Creates and returns an empty filter generator object.

+ (CIFilterGenerator *)filterGenerator

Return Value
A CIFilterGenerator object.

Discussion
You use the returned object to connect two or more CIFilter objects and input images. It is also valid to
have only one CIFilter object in a filter generator.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ filterGeneratorWithContentsOfURL: (page 185)

Declared In
CIFilterGenerator.h

filterGeneratorWithContentsOfURL:
Creates and returns a filter generator object and initializes it with the contents of a filter generator file.

+ (CIFilterGenerator *)filterGeneratorWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The location of a filter generator file.

Return Value
A CIFilterGenerator object; returns nil if the file can’t be read.

Availability
Available in Mac OS X v10.5 and later.

Class Methods 185
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

See Also
+ filterGenerator (page 185)

Declared In
CIFilterGenerator.h

Instance Methods

classAttributes
Retrieves the class attributes associated with a filter.

- (NSDictionary *)classAttributes

Return Value
An NSDictionary object that contains the class attributes for a filter, or nil if attributes are not set for the
filter.

Discussion
For more information about class attributes for a filter, see Core Image Programming Guide and the filter
attributes key constants defined in CIFilter Class Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setClassAttributes: (page 190)

Declared In
CIFilterGenerator.h

connectObject:withKey:toObject:withKey:
Adds an object to the filter chain.

- (void)connectObject:(id)sourceObject withKey:(NSString *)sourceKey
toObject:(id)targetObject withKey:(NSString *)targetKey

Parameters
sourceObject

A CIFilter object, a CIImage object, or a the path (an NSString or NSURL object) to an image.

sourceKey
The key that specifies the source object. For example, if the source is the output image of a filter, pass
the outputImage key. Pass nil if the source object is used directly.

targetObject
The object that to link the source object to.

targetKey
The key that specifies the target for the source. For example, if you are connecting the source to the
input image of a CIFilter object, you would pass the inputImage key.

186 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– disconnectObject:withKey:toObject:withKey: (page 187)

Declared In
CIFilterGenerator.h

disconnectObject:withKey:toObject:withKey:
Removes the connection between two objects in the filter chain.

- (void)disconnectObject:(id)sourceObject withKey:(NSString *)key
toObject:(id)targetObject withKey:(NSString *)targetKey

Parameters
sourceObject

A CIFilter object, a CIImage object, or a the path (an NSString or NSURL object) to an image.

sourceKey
The key that specifies the source object. Pass nil if the source object is used directly.

targetObject
The object that you want to disconnect the source object from.

targetKey
The key that specifies the target that the source object is currently connected to.

Availability
Available in Mac OS X v10.5 and later.

See Also
– connectObject:withKey:toObject:withKey: (page 186)

Declared In
CIFilterGenerator.h

exportedKeys
Returns an array of the exported keys.

- (NSDictionary *)exportedKeys

Return Value
An array of dictionaries that describe the exported key and target object. See
kCIFilterGeneratorExportedKey (page 192),kCIFilterGeneratorExportedKeyTargetObject (page
192), and kCIFilterGeneratorExportedKey (page 192) for keys used in the dictionary.

Discussion
This method returns the keys that you exported using the exportKey:fromObject:withName: (page 188)
method or that were exported before being written to the file from which you read the filter chain.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 187
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

See Also
– exportKey:fromObject:withName: (page 188)

Declared In
CIFilterGenerator.h

exportKey:fromObject:withName:
Exports an input or output key of an object in the filter chain.

- (void)exportKey:(NSString *)key fromObject:(id)targetObject withName:(NSString
*)exportedKeyName

Parameters
key

The key to export from the target object (for example, inputImage).

targetObject
The object associated with the key (for example, the filter).

exportedKeyName
A unique name to use for the exported key. Pass nil to use the original key name.

Discussion
When you create a CIFilter object from a CIFilterGenerator object, you might want the filter client
to be able to set some of the parameters associated with the filter chain. You can make a parameter settable
by exporting the key associated with the parameter. If the exported key represents an input parameter of
the filter, the key is exported as an input key. If the key represents an output parameter, it is exported as an
output key.

Availability
Available in Mac OS X v10.5 and later.

See Also
– exportedKeys (page 187)
– setAttributes:forExportedKey: (page 190)
– removeExportedKey: (page 190)

Declared In
CIFilterGenerator.h

filter
Creates a filter object based on the filter chain.

- (CIFilter *)filter

Return Value
A CIFilter object.

Discussion
The topology of the filter chain is immutable, meaning that any changes you make to the filter chain are not
reflected in the filter. The returned filer has the input an output keys that are exported.

188 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilterGenerator.h

initWithContentsOfURL:
Initializes a filter generator object with the contents of a filter generator file.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The location of a filter generator file.

Return Value
The initialized CIFilterGenerator object. Returns nil if the file can’t be read.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ filterGenerator (page 185)
+ filterGeneratorWithContentsOfURL: (page 185)

Declared In
CIFilterGenerator.h

registerFilterName:
Registers the name associated with a filter chain.

- (void)registerFilterName:(NSString *)name

Parameters
name

A unique name for the filter chain you want to register.

Discussion
This method allows you to register the filter chain as a named filter in the Core Image filter repository. You
can then create a CIFilter object from it using the the filterWithName: (page 157) method of the
CIFilter class.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilterGenerator.h

Instance Methods 189
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

removeExportedKey:
Removes a key that was previously exported.

- (void)removeExportedKey:(NSString *)exportedKeyName

Parameters
exportedKeyName

The name of the key you want to remove.

Availability
Available in Mac OS X v10.5 and later.

See Also
– exportKey:fromObject:withName: (page 188)

Declared In
CIFilterGenerator.h

setAttributes:forExportedKey:
Sets a dictionary of attributes for an exported key.

- (void)setAttributes:(NSDictionary *)attributes forExportedKey:(NSString *)key

Parameters
attributes

A dictionary that describes the attributes associated with the specified key.

key
The exported key whose attributes you want to set.

Discussion
By default, the exported key inherits the attributes from its original key and target object. You can use this
method to change one or more of the existing attributes for the key, such as the default value or maximum
value. For more information on attributes, see CIFilter Class Reference and Core Image Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– exportedKeys (page 187)
– exportKey:fromObject:withName: (page 188)

Declared In
CIFilterGenerator.h

setClassAttributes:
Seta the class attributes for a filter.

- (void)setClassAttributes:(NSDictionary *)attributes

190 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

Parameters
attributes

An NSDictionary object that contains the class attributes for a filter For information on the required
attributes, see CIFilter Class Reference and Core Image Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– classAttributes (page 186)

Declared In
CIFilterGenerator.h

writeToURL:atomically:
Archives a filter generator object to a filter generator file.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters
aURL

A location for the file generator file.

flag
Pass true to specify that Core Image should create an interim file to avoid overwriting an existing
file.

Return Value
Returns true if the the object is successfully archived to the file.

Discussion
Use this method to save your filter chain to a file for later use.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIFilterGenerator.h

Constants

Exported Keys
Keys for the exported parameters of a filter generator object.

Constants 191
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

extern NSString *const kCIFilterGeneratorExportedKey;
extern NSString *const kCIFilterGeneratorExportedKeyTargetObject;
extern NSString *const kCIFilterGeneratorExportedKeyName;

Constants
kCIFilterGeneratorExportedKeyName

The key (CIFilterGeneratorExportedKeyName) for the name used to export the
CIFilterGenerator object. The associated value is a string that specifies a unique name for the
filter generator object.

Available in Mac OS X v10.5 and later.

Declared in CIFilterGenerator.h.

kCIFilterGeneratorExportedKey
The key (CIFilterGeneratorExportedKey) for the exported parameter. The associated value is
the key name of the parameter you are exporting, such as inputRadius.

Available in Mac OS X v10.5 and later.

Declared in CIFilterGenerator.h.

kCIFilterGeneratorExportedKeyTargetObject
The target object (CIFilterGeneratorExportedKeyTargetObject) for the exported key. The
associated value is the name of the object, such as CIMotionBlur.

Available in Mac OS X v10.5 and later.

Declared in CIFilterGenerator.h.

Declared In
CIFilterGenerator.h

192 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CIFilterGenerator Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIFilterShape.h

Availability Mac OS X v10.4 and later

Companion guide Core Image Programming Guide

Related sample code CIAnnotation

Overview

The CIFilterShape class describes the bounding shape of a filter and the domain of definition (DOD) of a
filter operation. You use CIFilterShape objects in conjunction with Core Image classes, such as CIFilter,
CIKernel, and CISampler, to create custom filters.

Tasks

Creating a Filter Shape

+ shapeWithRect: (page 194)
Creates a filter shape object and initializes it with a rectangle.

Initializing a Filter Shape

– initWithRect: (page 195)
Initializes a filter shape object with a rectangle.

Overview 193
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

CIFilterShape Class Reference

Modifying a Filter Shape

– insetByX:Y: (page 195)
Modifies a filter shape object so that it is inset by the specified x and y values.

– intersectWith: (page 195)
Creates a filter shape object that represents the intersection of the current filter shape and the specified
filter shape object.

– intersectWithRect: (page 196)
Creates a filter shape that represents the intersection of the current filter shape and a rectangle.

– transformBy:interior: (page 196)
Creates a filter shape that results from applying a transform to the current filter shape.

– unionWith: (page 197)
Creates a filter shape that results from the union of the current filter shape and another filter shape
object.

– unionWithRect: (page 197)
Creates a filter shape that results from the union of the current filter shape and a rectangle.

Class Methods

shapeWithRect:
Creates a filter shape object and initializes it with a rectangle.

+ (id)shapeWithRect:(CGRect)r

Parameters
r

A rectangle. The filter shape object will contain the smallest integral rectangle specified by this
argument.

Availability
Mac OS X v10.4 and later.

See Also
– initWithRect: (page 195)

Related Sample Code
CIAnnotation

Declared In
CIFilterShape.h

194 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

CIFilterShape Class Reference

Instance Methods

initWithRect:
Initializes a filter shape object with a rectangle.

- (id)initWithRect:(CGRect)r

Parameters
r

A rectangle. Core Image uses the rectangle specified by integer parts of the values in the CGRect
data structure.

Return Value
An initialized CIFilterShape object, or nil if the method fails.

Availability
Mac OS X v10.4 and later.

See Also
+ shapeWithRect: (page 194)

Declared In
CIFilterShape.h

insetByX:Y:
Modifies a filter shape object so that it is inset by the specified x and y values.

- (CIFilterShape *)insetByX:(int)dx Y:(int)dy

Parameters
dx

A value that specifies an inset in the x direction.

dy
A value that specifies an inset in the y direction.

Availability
Mac OS X v10.4 and later.

Declared In
CIFilterShape.h

intersectWith:
Creates a filter shape object that represents the intersection of the current filter shape and the specified filter
shape object.

- (CIFilterShape *)intersectWith:(CIFilterShape *)s2

Instance Methods 195
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

CIFilterShape Class Reference

Parameters
s2

A filter shape object.

Return Value
The filter shape object that results from the intersection.

Availability
Mac OS X v10.4 and later.

See Also
– intersectWithRect: (page 196)

Declared In
CIFilterShape.h

intersectWithRect:
Creates a filter shape that represents the intersection of the current filter shape and a rectangle.

- (CIFilterShape *)intersectWithRect:(CGRect)r

Parameters
rect

A rectangle. Core Image uses the rectangle specified by integer parts of the width and height.

Return Value
The filter shape that results from the intersection

Availability
Mac OS X v10.4 and later.

See Also
– intersectWith: (page 195)

Declared In
CIFilterShape.h

transformBy:interior:
Creates a filter shape that results from applying a transform to the current filter shape.

- (CIFilterShape *)transformBy:(CGAffineTransform)m interior:(BOOL)flag

Parameters
m

A transform.

flag
NO specifies that the new filter shape object can contain all the pixels in the transformed shape (and
possibly some that are outside the transformed shape). YES specifies that the new filter shape object
can contain a subset of the pixels in the transformed shape (but none of those outside the transformed
shape).

196 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

CIFilterShape Class Reference

Return Value
The transformed filter shape object.

Availability
Mac OS X v10.4 and later.

Declared In
CIFilterShape.h

unionWith:
Creates a filter shape that results from the union of the current filter shape and another filter shape object.

- (CIFilterShape *)unionWith:(CIFilterShape *)s2

Parameters
s2

A filter shape object.

Return Value
The filter shape object that results from the union.

Availability
Mac OS X v10.4 and later.

See Also
– unionWithRect: (page 197)

Declared In
CIFilterShape.h

unionWithRect:
Creates a filter shape that results from the union of the current filter shape and a rectangle.

- (CIFilterShape *)unionWithRect:(CGRect)r

Parameters
rect

A rectangle. Core Image uses the rectangle specified by integer parts of the width and height.

Availability
Mac OS X v10.4 and later.

See Also
– unionWith: (page 197)

Related Sample Code
CIAnnotation

Declared In
CIFilterShape.h

Instance Methods 197
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

CIFilterShape Class Reference

198 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

CIFilterShape Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIImage.h
QuartzCore/CIImageProvider.h

Availability Mac OS X v10.4 and later

Companion guide Core Image Programming Guide

Related sample code CarbonCocoaCoreImageTab
CIAnnotation
CITransitionSelectorSample2
Reducer
WebKitCIPlugIn

Overview

The CIImage class represents an image. Core Image images are immutable. You use CIImage objects in
conjunction with other Core Image classes, such as CIFilter, CIContext, CIVector, and CIColor, to
take advantage of the built-in Core Image filters when processing images. You can create CIImage objects
with data supplied from a variety of sources, including Quartz 2D images, Core Video image buffers
(CVImageBufferRef (page 338)), URL-based objects, and NSData objects.

Although a CIImage object has image data associated with it, it is not an image. You can think of a CIImage
object as an image “recipe.” A CIImage object has all the information necessary to produce an image, but
Core Image doesn’t actually render an image until it is told to do so. This “lazy evaluation” method allows
Core Image to operate as efficiently as possible.

Core Image defines methods for creating and initializing images. Additional methods that support drawing
and initializing an image with an NSBitmapImageRep object are defined in CIImage Additions Reference.

Overview 199
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Tasks

Creating an Image

+ emptyImage (page 202)
Creates and returns an empty image object.

+ imageWithColor: (page 204)
Creates and returns an image of infinite extent that is initialized the specified color.

+ imageWithBitmapData:bytesPerRow:size:format:colorSpace: (page 202)
Creates and returns an image object from bitmap data.

+ imageWithCGImage: (page 203)
Creates and returns an image object from a Quartz 2D image.

+ imageWithCGImage:options: (page 203)
Creates and returns an image object from a Quartz 2D image using the specified color space.

+ imageWithCGLayer: (page 204)
Creates and returns an image object from the contents supplied by a CGLayer object.

+ imageWithCGLayer:options: (page 204)
Creates and returns an image object from the contents supplied by a CGLayer object, using the
specified options.

+ imageWithContentsOfURL: (page 205)
Creates and returns an image object from the contents of a file.

+ imageWithContentsOfURL:options: (page 205)
Creates and returns an image object from the contents of a file, using the specified options.

+ imageWithCVImageBuffer: (page 206)
Creates and returns an image object from the contents of CVImageBuffer object.

+ imageWithCVImageBuffer:options: (page 207)
Creates and returns an image object from the contents of CVImageBuffer object, using the specified
options.

+ imageWithData: (page 207)
Creates and returns an image object initialized with the supplied image data.

+ imageWithData:options: (page 208)
Creates and returns an image object initialized with the supplied image data, using the specified
options.

+ imageWithImageProvider:size:format:colorSpace:options: (page 208)
Creates and returns an image object initialized with data provided by an image provider.

+ imageWithTexture:size:flipped:colorSpace: (page 209)
Creates and returns an image object initialized with data supplied by an OpenGL texture.

Creating an Image by Modifying an Existing Image

– imageByApplyingTransform: (page 211)
Returns a new image that represents the original image after applying an affine transform.

200 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

– imageByCroppingToRect: (page 211)
Returns a new image that represents the original image after cropping to a rectangle.

Initializing an Image

– initWithColor: (page 214)
Initializes an image with the specified color.

– initWithBitmapData:bytesPerRow:size:format:colorSpace: (page 211)
Initializes an image object with bitmap data.

– initWithCGImage: (page 212)
Initializes an image object with a Quartz 2D image.

– initWithCGImage:options: (page 213)
Initializes an image object with a Quartz 2D image, using the specified options.

– initWithCGLayer: (page 213)
Initializes an image object from the contents supplied by a CGLayer object.

– initWithCGLayer:options: (page 214)
Initializes an image object from the contents supplied by a CGLayer object, using the specified options.

– initWithContentsOfURL: (page 214)
Initializes an image object from the contents of a file.

– initWithContentsOfURL:options: (page 215)
Initializes an image object from the contents of a file, using the specified options.

– initWithCVImageBuffer: (page 215)
Initializes an image object from the contents of CVImageBuffer object.

– initWithCVImageBuffer:options: (page 216)
Initializes an image object from the contents of CVImageBuffer object, using the specified options.

– initWithData: (page 216)
Initializes an image object with the supplied image data.

– initWithData:options: (page 217)
Initializes an image object with the supplied image data, using the specified options.

– initWithImageProvider:size:format:colorSpace:options: (page 217)
Initializes an image object with data provided by an image provider, using the specified options.

– initWithTexture:size:flipped:colorSpace: (page 218)
Initializes an image object with data supplied by an OpenGL texture.

Getting Image Information

– definition (page 210)
Returns a filter shape object that represents the domain of definition of the image.

– extent (page 210)
Returns a rectangle that specifies the extent of the image.

Tasks 201
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Class Methods

emptyImage
Creates and returns an empty image object.

+ (CIImage *)emptyImage

Return Value
An image object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIImage.h

imageWithBitmapData:bytesPerRow:size:format:colorSpace:
Creates and returns an image object from bitmap data.

+ (CIImage *)imageWithBitmapData:(NSData *)d bytesPerRow:(size_t)bpr
size:(CGSize)size format:(CIFormat)f colorSpace:(CGColorSpaceRef)cs

Parameters
d

The bitmap data for the image. This data must be premultiplied.

bpr
The number of bytes per row.

size
The dimensions of the image.

f
The format and size of each pixel. You must supply a pixel format constant. See “Pixel
Formats” (page 219).

cs
The color space that the image is defined in. If this value is nil, the image is not color matched. Pass
nil for images that don’t contain color data (such as elevation maps, normal vector maps, and sampled
function tables).

Return Value
An image object.

Availability
Mac OS X v10.4 and later.

See Also
– initWithBitmapData:bytesPerRow:size:format:colorSpace: (page 211)

Declared In
CIImage.h

202 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

imageWithCGImage:
Creates and returns an image object from a Quartz 2D image.

+ (CIImage *)imageWithCGImage:(CGImageRef)image

Parameters
image

A Quartz 2D image (CGImageRef) object. For more information, see Quartz 2D Programming Guide
and CGImage Reference.

Return Value
An image object initialized with the contents of the Quartz 2D image.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCGImage:options: (page 203)
– initWithCGImage: (page 212)

Related Sample Code
CIVideoDemoGL

Declared In
CIImage.h

imageWithCGImage:options:
Creates and returns an image object from a Quartz 2D image using the specified color space.

+ (CIImage *)imageWithCGImage:(CGImageRef)image options:(NSDictionary *)d

Parameters
image

A Quartz 2D image (CGImageRef) object. For more information, see Quartz 2D Programming Guide
and CGImage Reference.

d
A dictionary that contains a color space key (kCIImageColorSpace (page 220)) whose value is a
CGColorSpaceobject. (See CGColorSpaceRef.)

Return Value
An image object initialized with the contents of the Quartz 2D image and the specified color space.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCGImage: (page 203)
– initWithCGImage:options: (page 213)

Declared In
CIImage.h

Class Methods 203
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

imageWithCGLayer:
Creates and returns an image object from the contents supplied by a CGLayer object.

+ (CIImage *)imageWithCGLayer:(CGLayerRef)layer

Parameters
layer

A CGLayer object. For more information see Quartz 2D Programming Guide and CGLayer Reference.

Return Value
An image object initialized with the contents of the layer object.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCGLayer:options: (page 204)
– initWithCGLayer: (page 213)

Declared In
CIImage.h

imageWithCGLayer:options:
Creates and returns an image object from the contents supplied by a CGLayer object, using the specified
options.

+ (CIImage *)imageWithCGLayer:(CGLayerRef)layer options:(NSDictionary *)d

Parameters
layer

A CGLayer object. For more information see Quartz 2D Programming Guide and CGLayer Reference.

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
An image object initialized with the contents of the layer object and set up with the specified options.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCGLayer: (page 204)
– initWithCGLayer:options: (page 214)

Declared In
CIImage.h

imageWithColor:
Creates and returns an image of infinite extent that is initialized the specified color.

204 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

+ (CIImage *)imageWithColor:(CIColor *)color

Parameters
color

A color object.

Return Value
The image object initialized with the color represented by the CIColor object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithColor: (page 214)

Declared In
CIImage.h

imageWithContentsOfURL:
Creates and returns an image object from the contents of a file.

+ (CIImage *)imageWithContentsOfURL:(NSURL *)url

Parameters
url

The location of the file.

Return Value
An image object initialized with the contents of the file.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithContentsOfURL:options: (page 205)
– initWithContentsOfURL: (page 214)

Related Sample Code
CIAnnotation
CITransitionSelectorSample2

Declared In
CIImage.h

imageWithContentsOfURL:options:
Creates and returns an image object from the contents of a file, using the specified options.

+ (CIImage *)imageWithContentsOfURL:(NSURL *)url options:(NSDictionary *)d

Class Methods 205
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Parameters
url

The location of the file.

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
An image object initialized with the contents of the file and set up with the specified options.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithContentsOfURL: (page 205)
– initWithContentsOfURL:options: (page 215)

Declared In
CIImage.h

imageWithCVImageBuffer:
Creates and returns an image object from the contents of CVImageBuffer object.

+ (CIImage *)imageWithCVImageBuffer:(CVImageBufferRef)imageBuffer

Parameters
imageBuffer

A CVImageBuffer object. For more information, see Core Video Programming Guide and Core Video
Reference.

Return Value
An image object initialized with the contents of the image buffer object.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCVImageBuffer:options: (page 207)
– initWithCVImageBuffer: (page 215)

Related Sample Code
CIVideoDemoGL
QTCarbonCoreImage101
QTCoreImage101
WhackedTV

Declared In
CIImage.h

206 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

imageWithCVImageBuffer:options:
Creates and returns an image object from the contents of CVImageBuffer object, using the specified options.

+ (CIImage *)imageWithCVImageBuffer:(CVImageBufferRef)imageBuffer
options:(NSDictionary *)dict

Parameters
imageBuffer

A CVImageBuffer object. For more information, see Core Video Programming Guide and Core Video
Reference.

dict
A dictionary that contains options for creating an image object. You can supply such options as a
color space. (The pixel format is supplied by the CVImageBuffer object.)

Return Value
An image object initialized with the contents of the image buffer object and set up with the specified options.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithCVImageBuffer: (page 206)
– initWithCVImageBuffer:options: (page 216)

Declared In
CIImage.h

imageWithData:
Creates and returns an image object initialized with the supplied image data.

+ (CIImage *)imageWithData:(NSData *)data

Parameters
data

The data object that holds the contents of an image file (such as TIFF, GIF, JPG, or whatever else the
system supports). The image data must be premultiplied.

Return Value
An image object initialized with the supplied data, or nil if the method cannot create an image representation
from the contents of the supplied data object.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithData:options: (page 208)
– initWithData: (page 216)

Related Sample Code
LayerBackedOpenGLView
WebKitCIPlugIn

Class Methods 207
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Declared In
CIImage.h

imageWithData:options:
Creates and returns an image object initialized with the supplied image data, using the specified options.

+ (CIImage *)imageWithData:(NSData *)data options:(NSDictionary *)d

Parameters
data

A pointer to the image data. The data must be premultiplied

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
An image object initialized with the supplied data and set up with the specified options.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithData: (page 207)
– initWithData:options: (page 217)

Declared In
CIImage.h

imageWithImageProvider:size:format:colorSpace:options:
Creates and returns an image object initialized with data provided by an image provider.

+ (CIImage *)imageWithImageProvider:(id)p size:(size_t)width :(size_t)height
format(CIFormat)f colorSpace:(CGColorSpaceRef)cs options:(NSDictionary *)dict

Parameters
p

A data provider that implements the CIImageProvider informal protocol. Core Image retains this
data until the image is deallocated.

width
The width of the image.

height
The height of the image.

f
A pixel format constant. See “Pixel Formats” (page 219).

cs
The color space that the image is defined in. If the this value is nil, the image is not color matched.
Pass nil for images that don’t contain color data (such as elevation maps, normal vector maps, and
sampled function tables).

208 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

dict
A dictionary that specifies image-creation options, which can be kCIImageProviderTileSize or
kCIImageProviderUserInfo. See CIImageProvider Protocol Reference for more information on these
options.

Return Value
An image object initialized with the data from the data provider. Core Image does not populate the image
object until the object needs the data.

Availability
Mac OS X v10.4 and later.

Declared In
CIImageProvider.h

See Also
– initWithImageProvider:size::format:colorSpace:options: (page 217)

imageWithTexture:size:flipped:colorSpace:
Creates and returns an image object initialized with data supplied by an OpenGL texture.

+ (CIImage *)imageWithTexture:(unsigned int)name size:(CGSize)size flipped:(BOOL)flag
colorSpace:(CGColorSpaceRef)cs

Parameters
name

An OpenGL texture. Because CIImage objects are immutable, the texture must remain unchanged
for the life of the image object. See the discussion for more information.

size
The dimensions of the texture.

flag
YES to have Core Image flip the contents of the texture vertically.

cs
The color space that the image is defined in. If the colorSpace value is nil, the image is not color
matched. Pass nil for images that don’t contain color data (such as elevation maps, normal vector
maps, and sampled function tables).

Return Value
An image object initialized with the texture data.

Discussion
When using a texture to create a CIImage object, the texture must be valid in the Core Image context
(CIContext) that you draw the CIImage object into. This means that one of the following must be true:

 ■ The texture must be created using the CGLContext object that the CIContext is based on.

 ■ The context that the texture was created in must be shared with the CGLContext that the CIContext
is based on.

Note that textures do not have a retain and release mechanism. This means that your application must make
sure that the texture exists for the life cycle of the image. When you no longer need the image, you can
delete the texture.

Class Methods 209
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Core Image ignores the texture filtering and wrap modes (GL_TEXTURE_FILTER and GL_TEXTURE_WRAP)
that you set through OpenGL. The filter and wrap modes are overridden by what the CISampler object
specifies when you apply a filter to the CIImage object.

Availability
Mac OS X v10.4 and later.

See Also
– initWithTexture:size:flipped:colorSpace: (page 218)

Declared In
CIImage.h

Instance Methods

definition
Returns a filter shape object that represents the domain of definition of the image.

- (CIFilterShape *)definition

Return Value
A filter shape object.

Availability
Mac OS X v10.4 and later.

See Also
– extent (page 210)

Declared In
CIImage.h

extent
Returns a rectangle that specifies the extent of the image.

- (CGRect)extent

Return Value
A rectangle that specifies the extent of the image in working space coordinates.

Availability
Mac OS X v10.4 and later.

See Also
– definition (page 210)

Related Sample Code
CIVideoDemoGL
QTCarbonCoreImage101

210 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

QTCoreImage101
Reducer
UnsharpMask

Declared In
CIImage.h

imageByApplyingTransform:
Returns a new image that represents the original image after applying an affine transform.

- (CIImage *)imageByApplyingTransform:(CGAffineTransform)matrix

Parameters
matrix

An affine transform.

Return Value
The transformed image object.

Availability
Mac OS X v10.4 and later.

See Also
– imageByCroppingToRect: (page 211)

Declared In
CIImage.h

imageByCroppingToRect:
Returns a new image that represents the original image after cropping to a rectangle.

- (CIImage *)imageByCroppingToRect:(CGRect)r

Return Value
An image object cropped to the specified rectangle.

Availability
Available in Mac OS X v10.5 and later.

See Also
– imageByApplyingTransform: (page 211)

Declared In
CIImage.h

initWithBitmapData:bytesPerRow:size:format:colorSpace:
Initializes an image object with bitmap data.

Instance Methods 211
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

- (id)initWithBitmapData:(NSData *)d bytesPerRow:(size_t)bpr size:(CGSize)size
format:(CIFormat)f colorSpace:(CGColorSpaceRef)c

Parameters
d

The bitmap data to use for the image. The data you supply must be premultiplied.

bpr
The number of bytes per row.

size
The size of the image data.

f
A pixel format constant. See “Pixel Formats” (page 219).

c
The color space that the image is defined in and must be a Quartz 2D color space (CGColorSpaceRef).
Pass nil for images that don’t contain color data (such as elevation maps, normal vector maps, and
sampled function tables).

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithBitmapData:bytesPerRow:size:format:colorSpace: (page 202)

Declared In
CIImage.h

initWithCGImage:
Initializes an image object with a Quartz 2D image.

- (id)initWithCGImage:(CGImageRef)image

Parameters
image

A Quartz 2D image (CGImageRef) object. For more information, see Quartz 2D Programming Guide
and CGImage Reference.

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithCGImage:options: (page 213)
+ imageWithCGImage: (page 203)

Declared In
CIImage.h

212 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

initWithCGImage:options:
Initializes an image object with a Quartz 2D image, using the specified options.

- (id)initWithCGImage:(CGImageRef)image options:(NSDictionary *)d

Parameters
image

A Quartz 2D image (CGImageRef) object. For more information, see Quartz 2D Programming Guide
and CGImage Reference.

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithCGImage: (page 212)
+ imageWithCGImage:options: (page 203)

Declared In
CIImage.h

initWithCGLayer:
Initializes an image object from the contents supplied by a CGLayer object.

- (id)initWithCGLayer:(CGLayerRef)layer

Parameters
layer

A CGLayer object. For more information see Quartz 2D Programming Guide and CGLayer Reference.

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithCGLayer:options: (page 214)
+ imageWithCGLayer: (page 204)

Related Sample Code
CIAnnotation
QTCarbonCoreImage101

Declared In
CIImage.h

Instance Methods 213
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

initWithCGLayer:options:
Initializes an image object from the contents supplied by a CGLayer object, using the specified options.

- (id)initWithCGLayer:(CGLayerRef)layer options:(NSDictionary *)d

Parameters
layer

A CGLayer object. For more information see Quartz 2D Programming Guide and CGLayer Reference.

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithCGLayer: (page 213)
+ imageWithCGLayer:options: (page 204)

Declared In
CIImage.h

initWithColor:
Initializes an image with the specified color.

- (id)initWithColor:(CIColor *)color

Parameters
color

A color object.

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ imageWithColor: (page 204)

Declared In
CIImage.h

initWithContentsOfURL:
Initializes an image object from the contents of a file.

- (id)initWithContentsOfURL:(NSURL *)url

214 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Parameters
url

The location of the file.

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL:options: (page 215)
+ imageWithContentsOfURL: (page 205)

Declared In
CIImage.h

initWithContentsOfURL:options:
Initializes an image object from the contents of a file, using the specified options.

- (id)initWithContentsOfURL:(NSURL *)url options:(NSDictionary *)d

Parameters
url

The location of the file.

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL: (page 214)
+ imageWithContentsOfURL:options: (page 205)

Declared In
CIImage.h

initWithCVImageBuffer:
Initializes an image object from the contents of CVImageBuffer object.

- (id)initWithCVImageBuffer:(CVImageBufferRef)imageBuffer

Instance Methods 215
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Parameters
imageBuffer

A CVImageBuffer object. For more information, see Core Video Programming Guide and Core Video
Reference.

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithCVImageBuffer:options: (page 216)
+ imageWithCVImageBuffer: (page 206)

Related Sample Code
VideoViewer

Declared In
CIImage.h

initWithCVImageBuffer:options:
Initializes an image object from the contents of CVImageBuffer object, using the specified options.

- (id)initWithCVImageBuffer:(CVImageBufferRef)imageBuffer options:(NSDictionary
*)dict

Parameters
imageBuffer

A CVImageBuffer object. For more information, see Core Video Programming Guide and Core Video
Reference.

dict
A dictionary that contains options for creating an image object. You can supply such options as a
color space. (The pixel format is supplied by the CVImageBuffer object.)

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithCVImageBuffer: (page 215)
+ imageWithCVImageBuffer:options: (page 207)

Declared In
CIImage.h

initWithData:
Initializes an image object with the supplied image data.

216 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

- (id)initWithData:(NSData *)data

Parameters
data

The image data. The data you supply must be premultiplied.

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithData:options: (page 217)
+ imageWithData: (page 207)

Declared In
CIImage.h

initWithData:options:
Initializes an image object with the supplied image data, using the specified options.

- (id)initWithData:(NSData *)data options:(NSDictionary *)d

Parameters
data

The image data. The data you supply must be premultiplied.

d
A dictionary that contains options for creating an image object. You can supply such options as a
pixel format and a color space. See “Pixel Formats” (page 219).

Return Value
The initialized image object or nil if the object could not be initialized.

Availability
Mac OS X v10.4 and later.

See Also
– initWithData: (page 216)
+ imageWithData:options: (page 208)

Declared In
CIImage.h

initWithImageProvider:size:format:colorSpace:options:
Initializes an image object with data provided by an image provider, using the specified options.

- (id)initWithImageProvider:(id)p size:(size_t)width:(size_t)height
format:(CIFormat)f colorSpace:(CGColorSpaceRef)cs options:(NSDictionary *)dict

Instance Methods 217
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Parameters
p

A data provider that implements the CIImageProvider informal protocol. Core Image retains this
data until the image is deallocated.

width
The width of the image data.

height
The height of the image data.

f
A pixel format constant. See “Pixel Formats” (page 219).

cs
The color space of the image. If this value is nil, the image is not color matched. Pass nil for images
that don’t contain color data (such as elevation maps, normal vector maps, and sampled function
tables).

dict
A dictionary that specifies image-creation options, which can be kCIImageProviderTileSize or
kCIImageProviderUserInfo. See CIImageProvider Protocol Reference for more information on these
options.

Return Value
The initialized image object or nil if the object could not be initialized.

Discussion
Core Image does not populate the image until it actually needs the data.

Availability
Mac OS X v10.4 and later.

Declared In
CIImageProvider.h

See Also
+ imageWithImageProvider:size::format:colorSpace:options: (page 208)

initWithTexture:size:flipped:colorSpace:
Initializes an image object with data supplied by an OpenGL texture.

- (id)initWithTexture:(unsigned int)name size:(CGSize)size flipped:(BOOL)flag
colorSpace:(CGColorSpaceRef)cs

Parameters
name

An OpenGL texture. Because CIImage objects are immutable, the texture must remain unchanged
for the life of the image object. See the discussion for more information.

size
The dimensions of the texture.

flag
YES to have Core Image flip the contents of the texture vertically.

218 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

cs
The color space that the image is defined in. This must be a Quartz color space (CGColorSpaceRef).
If the colorSpace value is nil, the image is not color matched. Pass nil for images that don’t
contain color data (such as elevation maps, normal vector maps, and sampled function tables).

Return Value
The initialized image object or nil if the object could not be initialized.

Discussion
When using a texture to create a CIImage object, the texture must be valid in the Core Image context
(CIContext) that you draw the CIImage object into. This means that one of the following must be true:

 ■ The texture must be created using the CGLContext object that the CIContext is based on.

 ■ The context that the texture was created in must be shared with the CGLContext that the CIContextis
based on.

Note that textures do not have a retain and release mechanism. This means that your application must make
sure that the texture exists for the life cycle of the image. When you no longer need the image, you can
delete the texture.

Core Image ignores the texture filtering and wrap modes (GL_TEXTURE_FILTER and GL_TEXTURE_WRAP)
that you set through OpenGL. The filter and wrap modes are overridden by what the CISampler object
specifies when you apply a filter to the CIImage object.

Availability
Mac OS X v10.4 and later.

See Also
+ imageWithTexture:size:flipped:colorSpace: (page 209)

Declared In
CIImage.h

Constants

Pixel Formats
Image data pixel formats.

extern CIFormat kCIFormatARGB8;
extern CIFormat kCIFormatRGBA16;
extern CIFormat kCIFormatRGBAf;

Constants
CIFormat

The data type for a pixel format.

kCIFormatARGB8
A 32 bit-per-pixel, fixed-point pixel format.

kCIFormatRGBA16
A 64 bit-per-pixel, fixed-point pixel format.

Constants 219
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

kCIFormatRGBAf
A 128 bit-per-pixel, floating-point pixel format.

Declared In
CIImage.h

Color Space Key
A key for the color space of an image.

extern NSString *kCIImageColorSpace;

Constants
kCIImageColorSpace

The key for a color space. The value you supply for this dictionary key must be a CGColorSpaceRef
data type. For more information on this data type see CGColorSpace Reference. Typically you use this
option when you need to load an elevation, mask, normal vector, or RAW sensor data directly from
a file without color correcting it. This constant specifies to override Core Image, which, by default,
assumes that data is in GenericRGB.

Declared In
CIImage.h

220 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

CIImage Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIImageAccumulator.h

Availability Mac OS X v10.4 and later

Companion guide Core Image Programming Guide

Related sample code CIAnnotation

Overview

The CIImageAccumulator class enables feedback-based image processing for such things as iterative
painting operations or fluid dynamics simulations. You use CIImageAccumulator objects in conjunction
with other Core Image classes, such as CIFilter, CIImage, CIVector, and CIContext, to take advantage
of the built-in Core Image filters when processing images.

Tasks

Creating an Image Accumulator

+ imageAccumulatorWithExtent:format: (page 222)
Creates an image accumulator with the specified extent and pixel format.

Initializing an Image Accumulator

– initWithExtent:format: (page 224)
Initializes an image accumulator with the specified extent and pixel format.

Overview 221
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

CIImageAccumulator Class Reference

Setting an Image

– setImage: (page 224)
Sets the contents of the image accumulator to the contents of the specified image object.

– setImage:dirtyRect: (page 225)
Updates an image accumulator with a subregion of an image object.

Obtaining Data From an Image Accumulator

– extent (page 223)
Returns the extent of the image associated with the image accumulator.

– format (page 223)
Returns the pixel format of the image accumulator.

– image (page 224)
Returns the current contents of the image accumulator.

Resetting an Accumulator

– clear (page 223)
Resets the accumulator, discarding any pending updates and the current content.

Class Methods

imageAccumulatorWithExtent:format:
Creates an image accumulator with the specified extent and pixel format.

+ (CIImageAccumulator *)imageAccumulatorWithExtent:(CGRect)r format:(CIFormat)f

Parameters
r

A rectangle that specifies the x-value of the rectangle origin, the y-value of the rectangle origin, and
the width and height.

f
The format and size of each pixel. You must supply a pixel format constant, such as kCIFormatARGB8
(32 bit-per-pixel, fixed-point pixel format) or kCIFormatRGBAf (128 bit-per-pixel, floating-point pixel
format). See CIImage Class Reference for more information about pixel format constants.

Return Value
The image accumulator object.

Availability
Mac OS X v10.4 and later.

See Also
– initWithExtent:format: (page 224)

222 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

CIImageAccumulator Class Reference

Declared In
CIImageAccumulator.h

Instance Methods

clear
Resets the accumulator, discarding any pending updates and the current content.

- (void)clear

Availability
Available in Mac OS X v10.5 and later.

Declared In
CIImageAccumulator.h

extent
Returns the extent of the image associated with the image accumulator.

- (CGRect)extent

Return Value
The rectangle that specifies the size of the image associated with the image accumulator. This rectangle is
the size of the complete region of the working coordinate space, and is a fixed area. It specifies the x-value
of the rectangle origin, the y-value of the rectangle origin, and the width and height.

Availability
Mac OS X v10.4 and later.

Declared In
CIImageAccumulator.h

format
Returns the pixel format of the image accumulator.

- (CIFormat)format

Return Value
The pixel format of the image accumulator.

Availability
Mac OS X v10.4 and later.

Declared In
CIImageAccumulator.h

Instance Methods 223
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

CIImageAccumulator Class Reference

image
Returns the current contents of the image accumulator.

- (CIImage *)image

Return Value
The image object that represents the current contents of the image accumulator.

Availability
Mac OS X v10.4 and later.

Declared In
CIImageAccumulator.h

initWithExtent:format:
Initializes an image accumulator with the specified extent and pixel format.

- (id)initWithExtent:(CGRect)r format:(CIFormat)f

Parameters
r

A rectangle that specifies the x-value of the rectangle origin, the y-value of the rectangle origin, and
the width and height.

f
The format and size of each pixel. You must supply a pixel format constant, such askCIFormatARGB8
(32 bit-per-pixel, fixed-point pixel format) or kCIFormatRGBAf (128 bit-per-pixel, floating-point pixel
format). See CIImage Class Reference for more information about pixel format constants.

Return Value
The initialized image accumulator object.

Availability
Mac OS X v10.4 and later.

See Also
+ imageAccumulatorWithExtent:format: (page 222)

Related Sample Code
CIAnnotation

Declared In
CIImageAccumulator.h

setImage:
Sets the contents of the image accumulator to the contents of the specified image object.

- (void)setImage:(CIImage *)im

224 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

CIImageAccumulator Class Reference

Parameters
im

The image object whose contents you want to assign to the image accumulator.

Availability
Mac OS X v10.4 and later.

See Also
– setImage:dirtyRect: (page 225)

Declared In
CIImageAccumulator.h

setImage:dirtyRect:
Updates an image accumulator with a subregion of an image object.

- (void)setImage:(CIImage *)im dirtyRect:(CGRect)r

Parameters
im

The image object whose contents you want to assign to the image accumulator.

r
A rectangle that defines the subregion of the image object that’s changed since the last time you
updated the image accumulator. You must guarantee that the new contents differ from the old only
within the region specified by the this argument.

Discussion
For additional details on using this method, see “Imaging Dynamical Systems” in Core Image Programming
Guide.

Availability
Mac OS X v10.4 and later.

See Also
– setImage: (page 224)

Declared In
CIImageAccumulator.h

Instance Methods 225
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

CIImageAccumulator Class Reference

226 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

CIImageAccumulator Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIKernel.h

Availability Mac OS X v10.4 and later

Companion guides Core Image Programming Guide
Core Image Kernel Language Reference

Related sample code CIAnnotation

Overview

The CIKernel class maintains kernel routines that process individual pixels. The kernel routines in a CIKernel
object use a subset of the OpenGL Shading Language and Core Image extensions to this language. You use
a CIKernel object in conjunction with other Core Image classes, such as CIFilter, CIFilterShape, and
CISampler, to create custom filters.

Tasks

Creating a Kernel

+ kernelsWithString: (page 228)
Creates and returns and array of CIKernel objects.

Getting a Kernel Name

– name (page 228)
Returns the name of a kernel routine.

Overview 227
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

CIKernel Class Reference

Setting a Selector

– setROISelector: (page 229)
Sets the selector used to query the region of interest of the kernel.

Class Methods

kernelsWithString:
Creates and returns and array of CIKernel objects.

+ (NSArray *)kernelsWithString:(NSString *)s

Parameters
s

A program in the Core Image dialect of the OpenGL Shading Language that contains one or more
routines, each of which is marked using the kernel keyword.

Return Value
An array of CIKernel objects. The array contains one CIKernel objects for each kernel routine in the
supplied string.

Discussion
See Core Image Kernel Language Reference for more details.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CIKernel.h

Instance Methods

name
Returns the name of a kernel routine.

- (NSString *)name

Return Value
The name of the kernel routine.

Availability
Mac OS X v10.4 and later.

228 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

CIKernel Class Reference

Declared In
CIKernel.h

setROISelector:
Sets the selector used to query the region of interest of the kernel.

- (void)setROISelector:(SEL)aMethod

Parameters
aMethod

A selector name.

Discussion
The aMethod argument must use the signature that is defined for the regionOf:destRect:userInfo:
method, which is as follows:

- (CGRect) regionOf:(int)samplerIndex destRect:(CGRect)r userInfo:obj;

where:

 ■ samplerIndex defines the sampler to query

 ■ destRect is the extent of the region, in working space coordinates, to render.

 ■ userInfo is the object associated with the kCIApplyOptionUserInfo option when the kernel is
applied to its arguments. The userInfo is important because instance variables can’t be used by the
defining class. Instance variables must be passed through the userInfo argument.

The regionOf:destRect:userInfo:method of the CIFilter object is called by the framework. This method
returns the rectangle that contains the region of the sampler that the kernel needs to render the specified
destination rectangle.

A sample regionOf:destRect:userInfo: method might look as follows:

- (CGRect)regionOf:(int)sampler destRect:(CGRect)r userInfo:params
{
 float scale = fabs ([params X]);
 return CGRectInset (r, scale * -1.3333, scale * -1.3333);
}

In the filter code, you set the selector using the following:

kernel setROISelector:@selector(regionOf:destRect:userInfo:)]

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CIKernel.h

Instance Methods 229
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

CIKernel Class Reference

230 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

CIKernel Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIPlugIn.h

Availability Mac OS X v10.4 and later

Companion guides Image Unit Tutorial
Core Image Programming Guide

Related sample code CIAnnotation
CIVideoDemoGL

Overview

The CIPlugIn class loads image units. An image unit is an image processing bundle that contains one or
more Core Image filters. The .plugin extension indicates one or more filters that are packaged as an image
unit.

Tasks

Loading Plug-ins

+ loadAllPlugIns (page 232)
Scans directories for files that have the .plugin extension and then loads the image units.

+ loadNonExecutablePlugIns (page 232)
Scans directories for files that have the .plugin extension and then loads only those filters that are
marked by the image unit as non-executable filters.

+ loadPlugIn:allowNonExecutable: (page 232)
Loads filters from an image unit that have the appropriate executable status.

Overview 231
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

CIPlugIn Class Reference

Class Methods

loadAllPlugIns
Scans directories for files that have the .plugin extension and then loads the image units.

+ (void)loadAllPlugIns

Discussion
This method scans the following directories:

 ■ /Library/Graphics/Image Units

 ■ ~/Library/Graphics/Image Units

Call this method once. If you call this method more than once, Core Image loads newly added image units,
but image units (and the filters they contain) that are already loaded are not removed.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation
CIVideoDemoGL

Declared In
CIPlugIn.h

loadNonExecutablePlugIns
Scans directories for files that have the .plugin extension and then loads only those filters that are marked
by the image unit as non-executable filters.

+ (void)loadNonExecutablePlugIns

Discussion
This call does not execute any of the code in the image unit, it simply loads the code. You need to call this
method only once to load a specific image unit. The behavior of this method is not defined for multiple calls
for the same image unit.

Availability
Mac OS X v10.4 and later.

Declared In
CIPlugIn.h

loadPlugIn:allowNonExecutable:
Loads filters from an image unit that have the appropriate executable status.

+ (void)loadPlugIn:(NSURL *)url allowNonExecutable:(BOOL)allowNonExecutable

232 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

CIPlugIn Class Reference

Parameters
url

The location of the image unit to load.

allowNonExecutable
TRUE to load only those filters that are marked by the image unit as non-executable filters.

Discussion
You need to call this method only once to load a specific image unit. The behavior of this method is not
defined for multiple calls for the same image unit.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CIPlugIn.h

Class Methods 233
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

CIPlugIn Class Reference

234 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

CIPlugIn Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CISampler.h

Availability Mac OS X v10.4 and later

Companion guide Core Image Programming Guide

Related sample code CIAnnotation

Overview

The CISampler class retrieves samples of images for processing by a CIKernel object. A CISampler object
defines a coordinate transform, and modes for interpolation and wrapping. You use CISampler objects in
conjunction with other Core Image classes, such as CIFilter, CIKernel, and CIFilterShape, to create
custom filters.

Tasks

Creating a Sampler

+ samplerWithImage: (page 236)
Creates and returns a sampler that references an image.

+ samplerWithImage:keysAndValues: (page 236)
Creates and returns a sampler that references an image using options specified as key-value pairs.

+ samplerWithImage:options: (page 237)
Creates and returns a sampler that references an image using options specified in a dictionary.

Overview 235
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

Initializing a Sampler

– initWithImage: (page 238)
Initializes a sampler with an image object.

– initWithImage:keysAndValues: (page 239)
Initializes the sampler with an image object using options specified as key-value pairs.

– initWithImage:options: (page 239)
Initializes the sampler with an image object using options specified in a dictionary.

Getting Information About the Sampler Object

– definition (page 238)
Gets the domain of definition (DOD) of the sampler.

– extent (page 238)
Gets the rectangle that specifies the extent of the sampler.

Class Methods

samplerWithImage:
Creates and returns a sampler that references an image.

+ (CISampler *)samplerWithImage:(CIImage *)im

Parameters
im

The image that you want the sampler to reference.

Return Value
A sampler object that references the image specified by the im argument.

Availability
Mac OS X v10.4 and later.

See Also
+ samplerWithImage:keysAndValues: (page 236)
+ samplerWithImage:options: (page 237)

Related Sample Code
CIAnnotation

Declared In
CISampler.h

samplerWithImage:keysAndValues:
Creates and returns a sampler that references an image using options specified as key-value pairs.

236 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

+ (CISampler *)samplerWithImage:(CIImage *)im keysAndValues:key0, ...

Parameters
im

The image that you want the sampler to reference.

key0
A list of key-value pairs that represent options. Each key needs to be followed by that appropriate
value. You can supply one or more key-value pairs. Use nil to specify the end of the key-value options.
See “Sampler Option Keys” (page 240).

Return Value
A sampler that references the image specified by the im argument and uses the specified options.

Availability
Mac OS X v10.4 and later.

See Also
+ samplerWithImage: (page 236)
+ samplerWithImage:options: (page 237)

Declared In
CISampler.h

samplerWithImage:options:
Creates and returns a sampler that references an image using options specified in a dictionary.

+ (CISampler *)samplerWithImage:(CIImage *)im options:(NSDictionary *)dict

Parameters
im

The image that you want the sampler to reference.

dict
A dictionary that contains options specified as key-value pairs. See “Sampler Option Keys” (page
240).

Return Value
A sampler that references the image specified by the im argument and uses the options specified in the
dictionary.

Availability
Mac OS X v10.4 and later.

See Also
+ samplerWithImage: (page 236)
+ samplerWithImage:keysAndValues: (page 236)

Declared In
CISampler.h

Class Methods 237
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

Instance Methods

definition
Gets the domain of definition (DOD) of the sampler.

- (CIFilterShape *)definition

Return Value
The filter shape object that contains the DOD.

Discussion
The DOD contains all nontransparent pixels produced by referencing the sampler.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CISampler.h

extent
Gets the rectangle that specifies the extent of the sampler.

- (CGRect)extent

Return Value
The rectangle that specifies the area outside which the wrap mode set for the sampler is invoked.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CISampler.h

initWithImage:
Initializes a sampler with an image object.

- (id)initWithImage:(CIImage *)im

Parameters
im

The image object to initialize the sampler with.

238 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

Availability
Mac OS X v10.4 and later.

See Also
– initWithImage:keysAndValues: (page 239)
– initWithImage:options: (page 239)

Declared In
CISampler.h

initWithImage:keysAndValues:
Initializes the sampler with an image object using options specified as key-value pairs.

- (id)initWithImage:(CIImage *)im keysAndValues:key0, ...

Parameters
im

The image object to initialize the sampler with.

key0
A list of key-value pairs that represent options. Each key needs to be followed by that appropriate
value. You can supply one or more key-value pairs. Use nil to specify the end of the key-value options.
See “Sampler Option Keys” (page 240).

Availability
Mac OS X v10.4 and later.

See Also
– initWithImage: (page 238)
– initWithImage:options: (page 239)

Declared In
CISampler.h

initWithImage:options:
Initializes the sampler with an image object using options specified in a dictionary.

- (id)initWithImage:(CIImage *)im options:(NSDictionary *)dict

Parameters
im

The image to initialize the sampler with.

dict
A dictionary that contains options specified as key-value pairs. See “Sampler Option Keys” (page
240).

Availability
Mac OS X v10.4 and later.

See Also
– initWithImage: (page 238)

Instance Methods 239
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

– initWithImage:keysAndValues: (page 239)

Declared In
CISampler.h

Constants

Sampler Option Keys
Keys for creating a sampler.

extern NSString *kCISamplerAffineMatrix;
extern NSString *kCISamplerWrapMode;
extern NSString *kCISamplerFilterMode

Constants
kCISamplerAffineMatrix

The key for an affine matrix. The associated value is an NSArray object ([a b c d tx ty]) that defines
the transformation to apply to the sampler.

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

kCISamplerWrapMode
The key for the sampler wrap mode. The wrap mode specifies how Core Image produces pixels that
are outside the extent of the sample. Possible values are kCISamplerWrapBlack (page 241) and
kCISamplerWrapClamp (page 241).

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

kCISamplerFilterMode
The key for the filtering to use when sampling the image. Possible values are
kCISamplerFilterNearest (page 241) and kCISamplerFilterLinear (page 241).

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

Declared In
CISampler.h

Sampler Option Values
Values for sampler option keys.

240 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

extern NSString *kCISamplerWrapBlack;
extern NSString *kCISamplerWrapClamp;
extern NSString *kCISamplerFilterNearest;
extern NSString *kCISamplerFilterLinear;

Constants
kCISamplerWrapBlack

Pixels are transparent black.

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

kCISamplerWrapClamp
Coordinates are clamped to the extent.

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

kCISamplerFilterNearest
Nearest neighbor sampling.

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

kCISamplerFilterLinear
Bilinear interpolation.

Available in Mac OS X v10.4 and later.

Declared in CISampler.h.

Declared In
CISampler.h

Constants 241
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

242 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

CISampler Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIVector.h

Availability Mac OS X v10.4 and later

Companion guide Core Image Programming Guide

Related sample code CarbonCocoaCoreImageTab
CIAnnotation
CITransitionSelectorSample2
CIVideoDemoGL
Reducer

Overview

The CIVector class is used for coordinate values and direction vectors. You typically use a CIVector object
to pass parameter values to Core Image filters. CIVector objects work in conjunction with other Core Image
classes, such as CIFilter, CIContext, CIImage, and CIColor, to process images using the Core Image
framework.

Tasks

Creating a Vector

+ vectorWithValues:count: (page 245)
Creates and returns a vector that is initialized with the specified values.

+ vectorWithX: (page 246)
Creates and returns a vector that is initialized with one value.

+ vectorWithX:Y: (page 246)
Creates and returns a vector that is initialized with two values.

Overview 243
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

+ vectorWithX:Y:Z: (page 246)
Creates and returns a vector that is initialized with three values.

+ vectorWithX:Y:Z:W: (page 247)
Creates and returns a vector that is initialized with four values.

+ vectorWithString: (page 245)
Creates and returns a vector that is initialized with values provided in a string representation.

Initializing a Vector

– initWithValues:count: (page 248)
Initializes a vector with the provided values.

– initWithX: (page 249)
Initializes the first position of a vector with the provided values.

– initWithX:Y: (page 249)
Initializes the first two positions of a vector with the provided values.

– initWithX:Y:Z: (page 249)
Initializes the first three positions of a vector with the provided values.

– initWithX:Y:Z:W: (page 250)
Initializes four positions of a vector with the provided values.

– initWithString: (page 248)
Initializes a vector with values provided in a string representation.

Getting Values From a Vector

– valueAtIndex: (page 251)
Returns a value from a specific position in a vector.

– count (page 248)
Returns the number of items in a vector.

– X (page 251)
Returns the value located in the first position in a vector.

– Y (page 252)
Returns the value located in the second position in a vector.

– Z (page 252)
Returns the value located in the third position in a vector.

– W (page 251)
Returns the value located in the fourth position in a vector.

– stringRepresentation (page 250)
Returns a string representation for a vector.

244 Tasks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Class Methods

vectorWithString:
Creates and returns a vector that is initialized with values provided in a string representation.

+ (CIVector *)vectorWithString:(NSString *)representation

Parameters
representation

A string that is in one of the formats returned by the stringRepresentation method.

Discussion
Some typical string representations for vectors are:

@"[1.0 0.5 0.3]"

which specifies a vec3 vector whose components are X = 1.0, Y = 0.5, and Z = 0.3

@"[10.0 23.0]

which specifies a vec2 vector show components are X = 10.0 and Y = 23.0

Availability
Mac OS X v10.4 and later.

See Also
– stringRepresentation (page 250)

Declared In
CIVector.h

vectorWithValues:count:
Creates and returns a vector that is initialized with the specified values.

+ (CIVector *)vectorWithValues:(const CGFloat *)values count:(size_t)count

Parameters
values

The values to initialize the vector with.

count
The number of values in the vector.

Return Value
A vector initialized with the provided values.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

Class Methods 245
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

vectorWithX:
Creates and returns a vector that is initialized with one value.

+ (CIVector *)vectorWithX:(CGFloat)x

Parameters
x

The value to initialize the vector with.

Return Value
A vector initialized with the specified value.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

vectorWithX:Y:
Creates and returns a vector that is initialized with two values.

+ (CIVector *)vectorWithX:(CGFloat)x Y:(CGFloat)y

Parameters
x

The value for the first position in the vector.

y
The value for the second position in the vector.

Return Value
A vector initialized with the specified values.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCoreImageTab
CIAnnotation
CIVideoDemoGL
Core Animation QuickTime Layer
Reducer

Declared In
CIVector.h

vectorWithX:Y:Z:
Creates and returns a vector that is initialized with three values.

+ (CIVector *)vectorWithX:(CGFloat)x Y:(CGFloat)y Z:(CGFloat)z

246 Class Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Parameters
x

The value for the first position in the vector.

y
The value for the second position in the vector.

z
The value for the third position in the vector.

Return Value
A vector initialized with the specified values.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

vectorWithX:Y:Z:W:
Creates and returns a vector that is initialized with four values.

+ (CIVector *)vectorWithX:(CGFloat)x Y:(CGFloat)y Z:(CGFloat)z W:(CGFloat)w

Parameters
x

The value for the first position in the vector.

y
The value for the second position in the vector.

z
The value for the third position in the vector.

w
The value for the fourth position in the vector.

Return Value
A vector initialized with the specified values.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCoreImageTab
CIAnnotation
CITransitionSelectorSample2
Reducer

Declared In
CIVector.h

Class Methods 247
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Instance Methods

count
Returns the number of items in a vector.

- (size_t)count

Return Value
The number of items in the vector.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

initWithString:
Initializes a vector with values provided in a string representation.

- (id)initWithString:(NSString *)representation;

Parameters
representation

A string that is in one of the formats returned by the stringRepresentation method.

Availability
Mac OS X v10.4 and later.

See Also
– stringRepresentation (page 250)

Declared In
CIVector.h

initWithValues:count:
Initializes a vector with the provided values.

- (id)initWithValues:(const CGFloat *)values count:(size_t)count

Parameters
values

The values to initialize the vector with.

count
The number of values specified by the values argument.

Availability
Mac OS X v10.4 and later.

248 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Declared In
CIVector.h

initWithX:
Initializes the first position of a vector with the provided values.

- (id)initWithX:(CGFloat)x

Parameters
x

The initialization value.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

initWithX:Y:
Initializes the first two positions of a vector with the provided values.

- (id)initWithX:(CGFloat)x Y:(CGFloat)y

Parameters
x

The initialization value for the first position.

y
The initialization value for the second position.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

initWithX:Y:Z:
Initializes the first three positions of a vector with the provided values.

- (id)initWithX:(CGFloat)x Y:(CGFloat)y Z:(CGFloat)z

Parameters
x

The initialization value for the first position.

y
The initialization value for the second position.

z
The initialization value for the third position.

Instance Methods 249
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CIVector.h

initWithX:Y:Z:W:
Initializes four positions of a vector with the provided values.

- (id)initWithX:(CGFloat)x Y:(CGFloat)y Z:(CGFloat)z W:(CGFloat)w

Parameters
x

The initialization value for the first position.

y
The initialization value for the second position.

z
The initialization value for the third position.

w
The initialization value for the fourth position.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

stringRepresentation
Returns a string representation for a vector.

- (NSString *)stringRepresentation

Return Value
A string object.

Discussion
You convert the string representation returned by this method to a vector by supplying it as a parameter to
the vectorWithString: method.

Some typical string representations for vectors are:

@"[1.0 0.5 0.3]"

which specifies a vec3 vector whose components are X = 1.0, Y = 0.5, and Z = 0.3

@"[10.0 23.0]

which specifies a vec2 vector show components are X = 10.0 and Y = 23.0

Availability
Mac OS X v10.4 and later.

250 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

See Also
+ vectorWithString: (page 245)

Declared In
CIVector.h

valueAtIndex:
Returns a value from a specific position in a vector.

- (CGFloat)valueAtIndex:(size_t)index

Parameters
index

The position in the vector of the value that you want to retrieve.

Return Value
The value retrieved from the vector or 0 if the position is undefined.

Discussion
The numbering of elements in a vector begins with zero.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

W
Returns the value located in the fourth position in a vector.

- (CGFloat)W

Return Value
The value retrieved from the vector.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

X
Returns the value located in the first position in a vector.

- (CGFloat)X

Return Value
The value retrieved from the vector.

Instance Methods 251
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CIVector.h

Y
Returns the value located in the second position in a vector.

- (CGFloat)Y

Return Value
The value retrieved from the vector.

Availability
Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation

Declared In
CIVector.h

Z
Returns the value located in the third position in a vector.

- (CGFloat)Z

Return Value
The value retrieved from the vector.

Availability
Mac OS X v10.4 and later.

Declared In
CIVector.h

252 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

CIVector Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CATransform3D.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

Core Animation adds two methods to the Foundation framework’s NSValue class to support CATransform3D
structure values.

Tasks

Creating an NSValue

+ valueWithCATransform3D: (page 253)
Creates and returns an NSValue object that contains a given CATransform3D structure.

Accessing Data

– CATransform3DValue (page 254)
Returns an CATransform3D structure representation of the receiver.

Class Methods

valueWithCATransform3D:
Creates and returns an NSValue object that contains a given CATransform3D structure.

Overview 253
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSValue Core Animation Additions

+ (NSValue *)valueWithCATransform3D:(CATransform3D)aTransform

Parameters
aTransform

The value for the new object.

Return Value
A new NSValue object that contains the value of aTransform.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

Instance Methods

CATransform3DValue
Returns an CATransform3D structure representation of the receiver.

- (CATransform3D)CATransform3DValue

Return Value
An CATransform3D structure representation of the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

254 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSValue Core Animation Additions

255
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART II

Protocols

256
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART II

Protocols

Adopted by CAAnimation

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CALayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAAction protocol provides an interface that allows an object to respond to an action triggered by an
CALayer. When queried with an action identifier (a key path, an external action name, or a predefined action
identifier) the layer returns the appropriate action object–which must implement the CAAction protocol–and
sends it a runActionForKey:object:arguments: (page 257) message.

Tasks

Responding to an Action

– runActionForKey:object:arguments: (page 257)
Called to trigger the action specified by the identifier.

Instance Methods

runActionForKey:object:arguments:
Called to trigger the action specified by the identifier.

- (void)runActionForKey:(NSString *)key
object:(id)anObject
arguments:(NSDictionary *)dict

Overview 257
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

CAAction Protocol Reference

Parameters
key

The identifier of the action. The identifier may be a key or key path relative to anObject, an arbitrary
external action, or one of the action identifiers defined in CALayer Class Reference.

anObject
The layer on which the action should occur.

dict
A dictionary containing parameters associated with this event. May be nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

258 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

CAAction Protocol Reference

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in CALayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CALayoutManager is an informal protocol implemented by Core Animation layout managers. If a layer’s
sublayers require custom layout you create a class that implements this protocol and set it as the layer’s
layout manager using the CALayer method setLayoutManager:. Your custom layout manager is then
used when the layer invokes setNeedsLayout (page 79) or layoutSublayers (page 73).

Tasks

Layout Layers

– invalidateLayoutOfLayer: (page 259)
Invalidates the layout of the specified layer.

– layoutSublayersOfLayer: (page 260)
Layout each of the sublayers in the specified layer.

Calculate Layer Size

– preferredSizeOfLayer: (page 260)
Returns the preferred size of the specified layer in its coordinate system.

Instance Methods

invalidateLayoutOfLayer:
Invalidates the layout of the specified layer.

Overview 259
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

CALayoutManager Protocol Reference

- (void)invalidateLayoutOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout.

Discussion
This method is called when the preferred size of the specified layer may have changed. The receiver should
invalidate any cached state.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

layoutSublayersOfLayer:
Layout each of the sublayers in the specified layer.

- (void)layoutSublayersOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout of its sublayers.

Discussion
This method is called when the sublayers of the layer may need rearranging, and is typically called when
a sublayer has changed its size. The receiver is responsible for changing the frame of each sublayer that
requires layout.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

preferredSizeOfLayer:
Returns the preferred size of the specified layer in its coordinate system.

- (CGSize)preferredSizeOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout.

Return Value
The preferred size of the layer in the coordinate space of layer.

Discussion
This method is called when the preferred size of the specified layer may have changed. The receiver is
responsible for recomputing the preferred size and returning it. If this method is not implemented the
preferred size is assumed to be the size of the bounds of layer.

260 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

CALayoutManager Protocol Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Instance Methods 261
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

CALayoutManager Protocol Reference

262 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

CALayoutManager Protocol Reference

Adopted by CAAnimation
CALayer

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAMediaTiming protocol models a hierarchical timing system, with each object describing the mapping
of time values from the object's parent to local time.

Absolute time is defined as mach time converted to seconds. The CACurrentMediaTime (page 362) function
is provided as a convenience for getting the current absolute time.

The conversion from parent time to local time has two stages:

1. Conversion to “active local time”. This includes the point at which the object appears in the parent
object's timeline and how fast it plays relative to the parent.

2. Conversion from “active local time” to “basic local time”. The timing model allows for objects to repeat
their basic duration multiple times and, optionally, to play backwards before repeating.

Tasks

Animation Start Time

 beginTime (page 264) property
Specifies the begin time of the receiver in relation to its parent object, if applicable.

 timeOffset (page 266) property
Specifies an additional time offset in active local time.

Overview 263
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

CAMediaTiming Protocol Reference

Repeating Animations

 repeatCount (page 265) property
Determines the number of times the animation will repeat.

 repeatDuration (page 266) property
Determines how many seconds the animation will repeat for.

Duration and Speed

 duration (page 265) property
Specifies the basic duration of the animation, in seconds.

 speed (page 266) property
Specifies how time is mapped to receiver’s time space from the parent time space.

Playback Modes

 autoreverses (page 264) property
Determines if the receiver plays in the reverse upon completion.

 fillMode (page 265) property
Determines if the receiver’s presentation is frozen or removed once its active duration has completed.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

autoreverses
Determines if the receiver plays in the reverse upon completion.

@property BOOL autoreverses

Discussion
When YES, the receiver plays backwards after playing forwards. Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

beginTime
Specifies the begin time of the receiver in relation to its parent object, if applicable.

264 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

CAMediaTiming Protocol Reference

@property CFTimeInterval beginTime

Discussion
Defaults to 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

duration
Specifies the basic duration of the animation, in seconds.

@property CFTimeInterval duration

Discussion
Defaults to 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

fillMode
Determines if the receiver’s presentation is frozen or removed once its active duration has completed.

@property(copy) NSString *fillMode

Discussion
The possible values are described in “Fill Modes” (page 267). The default is kCAFillModeRemoved (page
267).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

repeatCount
Determines the number of times the animation will repeat.

@property float repeatCount

Discussion
May be fractional. If the repeatCount is 0, it is ignored. Defaults to 0. If both repeatDuration (page 266)
and repeatCount (page 265) are specified the behavior is undefined.

Properties 265
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

CAMediaTiming Protocol Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

repeatDuration
Determines how many seconds the animation will repeat for.

@property CFTimeInterval repeatDuration

Discussion
Defaults to 0. If the repeatDuration is 0, it is ignored. If both repeatDuration (page 266) and
repeatCount (page 265) are specified the behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

speed
Specifies how time is mapped to receiver’s time space from the parent time space.

@property float speed

Discussion
For example, if speed is 2.0 local time progresses twice as fast as parent time. Defaults to 1.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

timeOffset
Specifies an additional time offset in active local time.

@property CFTimeInterval timeOffset

Discussion
Defaults to 0. .

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

266 Properties
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

CAMediaTiming Protocol Reference

Constants

Fill Modes
These constants determine how the timed object behaves once its active duration has completed. They are
used with the fillMode (page 265) property.

NSString * const kCAFillModeRemoved;
NSString * const kCAFillModeForwards;
NSString * const kCAFillModeBackwards;
NSString * const kCAFillModeBoth;
NSString * const kCAFillModeFrozen;

Constants
kCAFillModeRemoved

The receiver is removed from the presentation when the animation is completed.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeForwards
The receiver remains visible in its final state when the animation is completed.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeBackwards
The receiver clamps values before zero to zero when the animation is completed.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeBoth
The receiver clamps values at both ends of the object’s time space

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeFrozen
The mode was deprecated before Mac OS X v10.5 shipped.

Deprecated in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

Declared In
CAMediaTiming.h

Constants 267
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

CAMediaTiming Protocol Reference

268 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

CAMediaTiming Protocol Reference

Adopted by NSObject

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIImageProvider.h

Availability Available in Mac OS X v10.4 and later

Companion guide Core Image Programming Guide

Overview

The CIImageProvider informal protocol defines methods for supplying bitmap data to create or initialize
a CIImage object.

Tasks

Providing Image Data

– provideImageData:bytesPerRow:origin:size:userInfo: (page 269)
Supplies data to a CIImage object.

Instance Methods

provideImageData:bytesPerRow:origin:size:userInfo:
Supplies data to a CIImage object.

- (void)provideImageData:(void *)data bytesPerRow:(size_t)rowbytes origin:(size_t)
x:(size_t)y size:(size_t)width:(size_t)height userInfo:(id)info

Parameters
data

A pointer to image data. Note that data[0] refers to the first byte of the requested subimage, not
the larger image buffer.

Overview 269
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

CIImageProvider Protocol Reference
(informal protocol)

rowbytes
The number of bytes per row.

x
The x origin of the image data.

y
The y origin of the image data.

width
The width of the image data.

height
The height of the image data.

info
User supplied data, which is optional.

Discussion
You can supply the image provider to these methods of the CIImage class:

 ■ imageWithImageProvider:size::format:colorSpace:options: to create a CIImage object from
image data

 ■ initWithImageProvider:size::format:colorSpace:options: to initialize an existing CIImage
with data

You initialize the given bitmap with the subregion specified by the arguments x, y, width, and height. The
subregion uses the local coordinate space of the image, with the origin at the upper-left corner of the image.
If you change the virtual memory mapping of the buffer specified by the data argument (such as by using
vm_copy to modify it), the behavior is undefined.

That this callback always requests the full image data regardless of what is actually visible. All of the image
is loaded or none of it is. The exception is when you create a tiled image by specifying the
kCIImageProviderTileSize option. In this case, only the needed tiles are requested.

Availability
Mac OS X v10.4 and later.

Constants

Image Provider Options
Keys for the options dictionary of an image provider.

extern NSString *kCIImageProviderTileSize;
extern NSString *kCIImageProviderUserInfo;

Constants
kCIImageProviderTileSize

A key for the image tiles size. The associated value is an NSArray that containsNSNumber objects for
the dimensions of the image tiles requested from the image provider.

Available in Mac OS X v10.4 and later.

Declared in CIImageProvider.h.

270 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

CIImageProvider Protocol Reference

kCIImageProviderUserInfo
A key for data needed by the image provider. The associated value is an object that contains the
needed data.

Available in Mac OS X v10.4 and later.

Declared in CIImageProvider.h.

Discussion
You can use these options when you create or initialize an image provider with such methods as
imageWithImageProvider:size::format:colorSpace:options: or
initWithImageProvider:size::format:colorSpace:options:.

Declared In
CIImageProvider.h

Constants 271
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

CIImageProvider Protocol Reference

272 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

CIImageProvider Protocol Reference

Adopted by CIPlugIn

Framework Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CIPlugInInterface.h

Availability Mac OS X v10.4 and later

Companion guides Image Unit Tutorial
Core Image Programming Guide

Overview

The CIPlugInRegistration protocol defines a method for loading Core Image image units. The principal
class of an image unit bundle must support this protocol.

Tasks

Initializing Plug-ins

– load: (page 273)
Loads and initializes an image unit, performing custom tasks as needed.

Instance Methods

load:
Loads and initializes an image unit, performing custom tasks as needed.

- (BOOL)load:(void *)host

Parameters
host

Reserved for future use.

Overview 273
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

CIPlugInRegistration Protocol Reference

Return Value
Returns true if the image unit is successfully initialized

Discussion
The load method is called once by the host to initialize the image unit when the first filter in the image unit
is instantiated. The method provides the image unit with an opportunity to perform custom initialization,
such as a registration check.

Availability
Mac OS X v10.4 and later.

Declared In
CIPlugInInterface.h

274 Instance Methods
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

CIPlugInRegistration Protocol Reference

275
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART III

Other References

276
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: QuartzCore/QuartzCore.h

Declared in CVBuffer.h
CVDisplayLink.h
CVImageBuffer.h
CVOpenGLBuffer.h
CVOpenGLBufferPool.h
CVOpenGLTexture.h
CVOpenGLTextureCache.h
CVPixelBuffer.h
CVPixelBufferPool.h
CVPixelFormatDescription.h

Companion guide Core Video Programming Guide

Overview

Core Video is a new pipeline model for digital video in Mac OS X. Partitioning the processing into discrete
steps makes it simpler for developers to access and manipulate individual frames without having to worry
about translating between data types (QuickTime, OpenGL, and so on) or display synchronization issues.

Core Video is available in:

 ■ Mac OS X v10.4 and later

 ■ Mac OS X v10.3 when QuickTime 7.0 or later is installed

Functions by Task

CVBuffer Functions
Core Video buffer functions operate on all Core Video buffer types, including pixel buffers and OpenGL
buffers, as well as OpenGL textures.

CVBufferGetAttachment (page 283)
Returns a specific attachment of a Core Video buffer.

CVBufferGetAttachments (page 284)
Returns all attachments of a Core Video buffer.

Overview 277
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVBufferPropagateAttachments (page 284)
Copies all propagatable attachments from one Core Video buffer to another.

CVBufferRelease (page 285)
Releases a Core Video buffer.

CVBufferRemoveAllAttachments (page 285)
Removes all attachments of a Core Video buffer.

CVBufferRemoveAttachment (page 286)
Removes a specific attachment of a Core Video buffer.

CVBufferRetain (page 286)
Retains a Core Video buffer.

CVBufferSetAttachment (page 287)
Sets or adds an attachment of a Core Video buffer.

CVBufferSetAttachments (page 288)
Sets a set of attachments for a Core Video buffer.

CVDisplayLink Functions
The main purpose of the CoreVideo display link to provide a separate high-priority thread to notify your
application when a given display will need each frame. How often a frame is requested is based on the refresh
rate of the display device currently associated with the display link. A CoreVideo display link is represented
in code by the CVDisplayLinkRef type. The display link API uses the Core Foundation class system internally
to provide reference counting behaviour and other useful properties.

CVDisplayLinkCreateWithCGDisplay (page 289)
Creates a display link for a single display.

CVDisplayLinkCreateWithActiveCGDisplays (page 288)
Creates a display link capable of being used with all active displays.

CVDisplayLinkCreateWithCGDisplays (page 289)
Creates a display link for an array of displays.

CVDisplayLinkCreateWithOpenGLDisplayMask (page 290)
Creates a display link from an OpenGL display mask.

CVDisplayLinkGetActualOutputVideoRefreshPeriod (page 290)
Retrieves the actual output refresh period of a display as measured by the host time base.

CVDisplayLinkGetCurrentCGDisplay (page 291)
Gets the current display associated with a display link.

CVDisplayLinkGetCurrentTime (page 291)
Retrieves the current (“now”) time of a given display link.

CVDisplayLinkGetNominalOutputVideoRefreshPeriod (page 292)
Retrieves the nominal refresh period of a display link.

CVDisplayLinkGetOutputVideoLatency (page 292)
Retrieves the nominal latency of a display link.

CVDisplayLinkGetTypeID (page 293)
Obtains the Core Foundation ID for the display link data type.

CVDisplayLinkIsRunning (page 293)
Indicates whether a given display link is running.

278 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVDisplayLinkRelease (page 294)
Releases a display link.

CVDisplayLinkRetain (page 294)
Retains a display link.

CVDisplayLinkSetCurrentCGDisplay (page 294)
Sets the current display of a display link.

CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext (page 295)
Selects the display link most optimal for the current renderer of an OpenGL context.

CVDisplayLinkSetOutputCallback (page 296)
Set the renderer output callback function.

CVDisplayLinkStart (page 297)
Activates a display link.

CVDisplayLinkStop (page 297)
Stops a display link.

CVDisplayLinkTranslateTime (page 298)
Translates the time in the display link’s time base from one representation to another.

CVHostTime Functions

CVGetCurrentHostTime (page 298)
Retrieves the current value of the host time base.

CVGetHostClockFrequency (page 299)
Retrieve the frequency of the host time base.

CVGetHostClockMinimumTimeDelta (page 299)
Retrieve the smallest possible increment in the host time base.

CVImageBuffer Functions
The functions in this section operate on Core Video buffers derived from the CVImageBuffer abstract type
(CVImageBufferRef); specifically, pixel buffers, OpenGL buffers, and OpenGL textures.

CVImageBufferGetCleanRect (page 299)
Returns the source rectangle of a Core Video image buffer that represents the clean aperture of the
buffer in encoded pixels.

CVImageBufferGetColorSpace (page 300)
Returns the color space of a Core Video image buffer.

CVImageBufferGetDisplaySize (page 300)
Returns the nominal output display size, in square pixels, of a Core Video image buffer.

CVImageBufferGetEncodedSize (page 301)
Returns the full encoded dimensions of a Core Video image buffer.

CVOpenGLBuffer Functions
The Core Video OpenGL buffer (type CVOpenGLBufferRef is a wrapper around the standard OpenGL pbuffer.

Functions by Task 279
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVOpenGLBufferAttach (page 301)
Attaches an OpenGL context to a Core Video OpenGL buffer.

CVOpenGLBufferCreate (page 302)
Create a new Core Video OpenGL buffer that can be used for OpenGL rendering purposes

CVOpenGLBufferGetAttributes (page 303)
Obtains the attributes of a Core Video OpenGL buffer.

CVOpenGLBufferGetTypeID (page 303)
Obtains the Core Foundation type ID for the OpenGL buffer type.

CVOpenGLBufferRelease (page 307)
Releases a Core Video OpenGL buffer.

CVOpenGLBufferRetain (page 307)
Retains a Core Video OpenGL buffer.

CVOpenGLBufferPool Functions
An OpenGL buffer pool is a utility object for managing a set of OpenGL buffer objects for recycling.

CVOpenGLBufferPoolCreate (page 304)
Creates a new OpenGL buffer pool.

CVOpenGLBufferPoolCreateOpenGLBuffer (page 304)
Creates a new OpenGL buffer from an OpenGL buffer pool.

CVOpenGLBufferPoolGetAttributes (page 305)
Returns the pool attributes dictionary for an Open GL buffer pool.

CVOpenGLBufferPoolGetOpenGLBufferAttributes (page 305)
Returns the attributes of OpenGL buffers that will be created from a buffer pool.

CVOpenGLBufferPoolGetTypeID (page 306)
Obtains the Core Foundation ID for the OpenGL buffer pool type.

CVOpenGLBufferPoolRelease (page 306)
Releases an OpenGL buffer pool.

CVOpenGLBufferPoolRetain (page 306)
Retains an OpenGL buffer pool.

CVOpenGLTexture Functions
The Core Video OpenGL texture is a wrapper around the standard OpenGL texture type.

CVOpenGLTextureGetCleanTexCoords (page 311)
Returns the texture coordinates for the part of the image that should be displayed.

CVOpenGLTextureGetName (page 312)
Returns the texture target name of a CoreVideo OpenGL texture.

CVOpenGLTextureGetTarget (page 312)
Returns the texture target (for example, GL_TEXTURE_2D) of an OpenGL texture.

CVOpenGLTextureGetTypeID (page 313)
Obtains the Core Foundation ID for the Core Video OpenGL texture type.

280 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVOpenGLTextureIsFlipped (page 313)
Determines whether or not an OpenGL texture is flipped vertically.

CVOpenGLTextureRelease (page 314)
Releases a Core Video OpenGL texture.

CVOpenGLTextureRetain (page 314)
Retains a Core Video OpenGL texture.

CVOpenGLTextureCache Functions

CVOpenGLTextureCacheCreate (page 308)
Creates an OpenGL texture cache.

CVOpenGLTextureCacheCreateTextureFromImage (page 308)
Creates an OpenGL texture object from an existing image buffer.

CVOpenGLTextureCacheFlush (page 309)
Flushes the OpenGL texture cache.

CVOpenGLTextureCacheGetTypeID (page 310)
Returns the Core Foundation ID of the texture cache type.

CVOpenGLTextureCacheRelease (page 310)
Releases an OpenGL texture cache.

CVOpenGLTextureCacheRetain (page 310)
Retains an OpenGL texture cache.

CVPixelBuffer Functions
A pixel buffer stores an image in main memory

CVPixelBufferCreate (page 315)
Creates a single pixel buffer for a given size and pixel format.

CVPixelBufferCreateResolvedAttributesDictionary (page 316)
Takes an array of CFDictionary objects describing various pixel buffer attributes and tries to resolve
them into a single dictionary.

CVPixelBufferCreateWithBytes (page 316)
Creates a pixel buffer for a given size and pixel format containing data specified by a memory location.

CVPixelBufferCreateWithPlanarBytes (page 317)
Creates a single pixel buffer in planar format for a given size and pixel format containing data specified
by a memory location.

CVPixelBufferFillExtendedPixels (page 319)
Fills the extended pixels of the pixel buffer.

CVPixelBufferGetBaseAddress (page 319)
Returns the base address of the pixel buffer.

CVPixelBufferGetBaseAddressOfPlane (page 320)
Returns the base address of the plane at the specified plane index.

CVPixelBufferGetBytesPerRow (page 320)
Returns the number of bytes per row of the pixel buffer.

Functions by Task 281
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVPixelBufferGetBytesPerRowOfPlane (page 321)
Returns the number of bytes per row for a plane at the specified index in the pixel buffer.

CVPixelBufferGetDataSize (page 321)
Returns the data size for contiguous planes of the pixel buffer.

CVPixelBufferGetExtendedPixels (page 322)
Returns the amount of extended pixel padding in the pixel buffer.

CVPixelBufferGetHeight (page 322)
Returns the height of the pixel buffer.

CVPixelBufferGetHeightOfPlane (page 323)
Returns the height of the plane at planeIndex in the pixel buffer.

CVPixelBufferGetPixelFormatType (page 323)
Returns the pixel format type of the pixel buffer.

CVPixelBufferGetPlaneCount (page 324)
Returns number of planes of the pixel buffer.

CVPixelBufferGetTypeID (page 324)
Returns the Core Foundation ID of the pixel buffer type.

CVPixelBufferGetWidth (page 325)
Returns the width of the pixel buffer.

CVPixelBufferGetWidthOfPlane (page 325)
Returns the width of the plane at a given index in the pixel buffer.

CVPixelBufferIsPlanar (page 326)
Determine if the pixel buffer is planar.

CVPixelBufferLockBaseAddress (page 326)
Locks the base address of the pixel buffer.

CVPixelBufferRelease (page 330)
Releases a pixel buffer.

CVPixelBufferRetain (page 331)
Retains a pixel buffer.

CVPixelBufferUnlockBaseAddress (page 331)
Unlocks the base address of the pixel buffer.

CVPixelBufferPool Functions

CVPixelBufferPoolCreate (page 327)
Creates a pixel buffer pool.

CVPixelBufferPoolCreatePixelBuffer (page 327)
Creates a pixel buffer from a pixel buffer pool.

CVPixelBufferPoolGetAttributes (page 328)
Returns the pool attributes dictionary for a pixel buffer pool.

CVPixelBufferPoolGetPixelBufferAttributes (page 328)
Returns the attributes of pixel buffers that will be created from this pool.

CVPixelBufferPoolGetTypeID (page 329)
Returns the Core Foundation ID of the pixel buffer pool type.

282 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVPixelBufferPoolRelease (page 329)
Releases a pixel buffer pool.

CVPixelBufferPoolRetain (page 330)
Retains a pixel buffer pool.

CVPixelFormatDescription Functions
Used only if you are defining a custom pixel format.

CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType (page 333)
Registers a pixel format description with Core Video.

CVPixelFormatDescriptionCreateWithPixelFormatType (page 332)
Creates a pixel format description from a given OSType identifier.

CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes (page 332)
Returns all the pixel format descriptions known to Core Video.

Functions

CVBufferGetAttachment
Returns a specific attachment of a Core Video buffer.

CFTypeRef CVBufferGetAttachment (
 CVBufferRef buffer,
 CFStringRef key,
 CVAttachmentMode *attachmentMode
);

Parameters
buffer

The Core Video buffer whose attachment you want to obtain.

key
A key in the form of a Core Foundation string identifying the desired attachment.

attachmentMode
On return, attachmentMode points to the mode of the attachment. See “CVBuffer Attachment
Modes” (page 343) for possible values. If the attachment mode is not defined, this parameter returns
NULL.

Return Value
If found, the specified attachment.

Discussion
You can attach any Core Foundation object to a Core Video buffer to store additional information by calling
CVBufferSetAttachment (page 287) or CVBufferSetAttachments (page 288).

You can find predefined attachment keys in “CVBuffer Attachment Keys” (page 343) and “Image Buffer
Attachment Keys” (page 347).

Functions 283
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVBufferGetAttachments
Returns all attachments of a Core Video buffer.

CFDictionaryRef CVBufferGetAttachments (
 CVBufferRef buffer,
 CVAttachmentMode attachmentMode
);

Parameters
buffer

The Core Video buffer whose attachments you want to obtain.

attachmentMode
The mode of the attachments you want to obtain. See “CVBuffer Attachment Modes” (page 343) for
possible values.

Return Value
A Core Foundation dictionary with all buffer attachments identified by keys. If no attachment is present, the
dictionary is empty. Returns NULL for an invalid attachment mode.

Discussion
CVBufferGetAttachments is a convenience call that returns all attachments with their corresponding keys
in a Core Foundation dictionary.

You can find predefined attachment keys in “CVBuffer Attachment Keys” (page 343) and “Image Buffer
Attachment Keys” (page 347).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVBufferPropagateAttachments
Copies all propagatable attachments from one Core Video buffer to another.

void CVBufferPropagateAttachments (
 CVBufferRef sourceBuffer,
 CVBufferRef destinationBuffer
);

Parameters
sourceBuffer

The buffer to copy attachments from.

destinationBuffer
The buffer to copy attachments to.

284 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Discussion
CVBufferPropagateAttachments is a convenience call that copies all attachments with a mode of
kCVAttachmentMode_ShouldPropagate from one buffer to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVBufferRelease
Releases a Core Video buffer.

void CVBufferRelease (
 CVBufferRef buffer
);

Parameters
buffer

The Core Video buffer that you want to release.

Discussion
Like CFRelease CVBufferRelease decrements the retain count of a Core Video buffer. If that count
consequently becomes zero the memory allocated to the object is deallocated and the object is destroyed.
Unlike CFRelease, you can pass NULL to CVBufferRelease without causing a crash.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
VideoViewer

Declared In
CVBuffer.h

CVBufferRemoveAllAttachments
Removes all attachments of a Core Video buffer.

void CVBufferRemoveAllAttachments (
 CVBufferRef buffer
);

Parameters
buffer

The Core Video buffer whose attachments you want to remove.

Discussion
CVBufferRemoveAllAttachments removes all attachments of a buffer and decrements their reference
counts.

Functions 285
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVBufferRemoveAttachment
Removes a specific attachment of a Core Video buffer.

void CVBufferRemoveAttachment (
 CVBufferRef buffer,
 CFStringRef key
);

Parameters
buffer

The Core Video buffer containing the attachment to remove.

key
A key in the form of a Core Foundation string identifying the desired attachment.

Discussion
CVBufferRemoveAttachment removes an attachment identified by a key. If found the attachment is
removed and the retain count decremented.

You can find predefined attachment keys in “CVBuffer Attachment Keys” (page 343) and “Image Buffer
Attachment Keys” (page 347).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVBufferRetain
Retains a Core Video buffer.

CVBufferRef CVBufferRetain (
 CVBufferRef buffer
);

Parameters
buffer

The Core Video buffer that you want to retain.

Return Value
For convenience, the same Core Video buffer you wanted to retain.

Discussion
Like CFRetain, CVBufferRetain increments the retain count of a Core Video buffer. Unlike CFRetain, you
can pass NULL to CVBufferRetain without causing a crash.

286 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart

Declared In
CVBuffer.h

CVBufferSetAttachment
Sets or adds an attachment of a Core Video buffer.

void CVBufferSetAttachment (
 CVBufferRef buffer,
 CFStringRef key,
 CFTypeRef value,
 CVAttachmentMode attachmentMode
);

Parameters
buffer

The Core Video buffer to which to add or set the attachment.

key
The key, in the form of a Core Foundation string, identifying the desired attachment.

value
The attachment in the form of a Core Foundation object. If this parameter is NULL, the function returns
an error.

attachmentMode
Specifies the attachment mode for this attachment. See “CVBuffer Attachment Modes” (page 343) for
possible values. Any given attachment key may exist in only one mode at a time.

Discussion
You can attach any Core Foundation object to a Core Video buffer to store additional information. If the key
doesn't currently exist for the buffer object when you call this function, the new attachment will be added.
If the key does exist, the existing attachment will be replaced. In both cases the retain count of the attachment
will be incremented. The value can be any CFType. You can find predefined attachment keys in “CVBuffer
Attachment Keys” (page 343) and “Image Buffer Attachment Keys” (page 347).

You can also set attachments when creating a buffer by specifying them in the
kCVBufferPropagatedAttachmentsKey or kkCVBufferNonpropagatedAttachmentsKey attributes
when creating the buffer.

To retrieve attachments, use the CVBufferGetAttachment (page 283) or CVBufferGetAttachments (page
284) functions.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

Functions 287
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVBufferSetAttachments
Sets a set of attachments for a Core Video buffer.

void CVBufferSetAttachments (
 CVBufferRef buffer,
 CFDictionaryRef theAttachments,
 CVAttachmentMode attachmentMode
);

Parameters
buffer

The Core Video buffer to which to set the attachments.

theAttachments
The attachments to set, in the form of a Core Foundation dictionary array.

attachmentMode
Specifies which attachment mode is desired for this attachment. A particular attachment key may
only exist in a single mode at a time.

Discussion
CVBufferSetAttachments is a convenience call that in turn calls CVBufferSetAttachment (page 287)
for each key and value in the given dictionary. All key-value pairs must be in the root level of the dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVDisplayLinkCreateWithActiveCGDisplays
Creates a display link capable of being used with all active displays.

CVReturn CVDisplayLinkCreateWithActiveCGDisplays (
 CVDisplayLinkRef *displayLinkOut
);

Parameters
displayLinkOut

On return, displayLinkOut points to the newly created display link.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
CVDisplayLinkCreateWithActiveCGDisplaysdetermines the displays actively used by the host computer
and creates a display link compatible with all of them. For most applications, calling this function is the most
convenient way to create a display link. After creation, you can assign the display link to any active display
by calling CVDisplayLinkSetCurrentCGDisplay (page 294).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTQuartzPlayer

288 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

VideoViewer

Declared In
CVDisplayLink.h

CVDisplayLinkCreateWithCGDisplay
Creates a display link for a single display.

CVReturn CVDisplayLinkCreateWithCGDisplay (
 CGDirectDisplayID displayID,
 CVDisplayLinkRef *displayLinkOut
);

Parameters
displayID

The Core Graphics ID of the target display.

displayLinkOut
On return, displayLinkOut points to the newly created display link.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Use this call to create a display link for a single display.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
QTCoreImage101
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Declared In
CVDisplayLink.h

CVDisplayLinkCreateWithCGDisplays
Creates a display link for an array of displays.

CVReturn CVDisplayLinkCreateWithCGDisplays (
 CGDirectDisplayID *displayArray,
 CFIndex count,
 CVDisplayLinkRef *displayLinkOut
);

Parameters
displayArray

A pointer to an array of Core Graphics display IDs representing all the active monitors you want to
use with this display link.

Functions 289
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

count
The number of displays in the display array.

displayLisk
On return, displayLinkOut points to the newly created display link.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Use this call to create a display link for a set of displays identified by the Core Graphics display IDs.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkCreateWithOpenGLDisplayMask
Creates a display link from an OpenGL display mask.

CVReturn CVDisplayLinkCreateWithOpenGLDisplayMask (
 CGOpenGLDisplayMask mask,
 CVDisplayLinkRef *displayLinkOut
);

Parameters
mask

The OpenGL display mask describing the available displays.

displayLinkOut
On return, displayLinkOut points to the newly created display link.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Using this function avoids having to call the Core Graphics function CGOpenGLDisplayMaskToDisplayID.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
LiveVideoMixer2
LiveVideoMixer3

Declared In
CVDisplayLink.h

CVDisplayLinkGetActualOutputVideoRefreshPeriod
Retrieves the actual output refresh period of a display as measured by the host time base.

290 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

double CVDisplayLinkGetActualOutputVideoRefreshPeriod (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link to get the refresh period from.

Return Value
A double-precision floating-point value representing the actual refresh period. This value may be zero if the
device is not running or is otherwise unavailable.

Discussion
This call returns the actual output refresh period (in seconds) as computed relative to the host time base.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkGetCurrentCGDisplay
Gets the current display associated with a display link.

CGDirectDisplayID CVDisplayLinkGetCurrentCGDisplay (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link whose current display you want obtain.

Return Value
A CGDirectDisplayID representing the current display.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkGetCurrentTime
Retrieves the current (“now”) time of a given display link.

CVReturn CVDisplayLinkGetCurrentTime (
 CVDisplayLinkRef displayLink,
 CVTimeStamp *outTime
);

Parameters
displayLink

The display link whose current time you want to obtain.

Functions 291
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

outTime
A pointer to a CVTimeStamp structure. Note that yout must set the version in the structure (currently
0) before calling to indicate which version of the timestamp structure you want.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
You use this call to obtain the timestamp of the frame that is currently being displayed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkGetNominalOutputVideoRefreshPeriod
Retrieves the nominal refresh period of a display link.

CVTime CVDisplayLinkGetNominalOutputVideoRefreshPeriod (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link whose refresh period you want to obtain.

Return Value
A CVTime structure that holds the nominal refresh period. This value is indefinite if an invalid display link
was specified.

Discussion
This call allows one to retrieve the device's ideal refresh period. For example, an NTSC output device might
report 1001/60000 to represent the exact NTSC vertical refresh rate.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkGetOutputVideoLatency
Retrieves the nominal latency of a display link.

CVTime CVDisplayLinkGetOutputVideoLatency (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link whose latency value you want to obtain.

292 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Return Value
A CVTime structure that holds the latency value. This value may be indefinite.

Discussion
This call allows you to retrieve the device’s built-in output latency. For example, an NTSC device with one
frame of latency might report back 1001/30000 or 2002/60000.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkGetTypeID
Obtains the Core Foundation ID for the display link data type.

CFTypeID CVDisplayLinkGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkIsRunning
Indicates whether a given display link is running.

Boolean CVDisplayLinkIsRunning (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link whose run state you want to determine.

Return Value
Returns true if the display link is running, false otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
QTCoreImage101
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Functions 293
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Declared In
CVDisplayLink.h

CVDisplayLinkRelease
Releases a display link.

void CVDisplayLinkRelease (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link to release. This function is NULL-safe.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer3
QTCoreImage101
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Declared In
CVDisplayLink.h

CVDisplayLinkRetain
Retains a display link.

CVDisplayLinkRef CVDisplayLinkRetain (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link to retain. This function is NULL-safe.

Return Value
For convenience, this function returns the retained display link if successful.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVDisplayLinkSetCurrentCGDisplay
Sets the current display of a display link.

294 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVReturn CVDisplayLinkSetCurrentCGDisplay (
 CVDisplayLinkRef displayLink,
 CGDirectDisplayID displayID
);

Parameters
displayLink

The display link whose display you want to set.

displayID
The ID of the display to be set.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Although it is safe to call this function on a running display link, a discontinuity may appear in the video
timestamp.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer3
QTCoreImage101
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Declared In
CVDisplayLink.h

CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext
Selects the display link most optimal for the current renderer of an OpenGL context.

CVReturn CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext (
 CVDisplayLinkRef displayLink,
 CGLContextObj cglContext,
 CGLPixelFormatObj cglPixelFormat
);

Parameters
displayLink

The display link for which you want to set the current display.

cglContext
The OpenGL context to retrieve the current renderer from.

cglPixelFormat
The OpenGL pixel format used to create the passed-in OpenGL context.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Functions 295
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Discussion
This function chooses the display with the lowest refresh rate.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
VideoViewer

Declared In
CVDisplayLink.h

CVDisplayLinkSetOutputCallback
Set the renderer output callback function.

CVReturn CVDisplayLinkSetOutputCallback (
 CVDisplayLinkRef displayLink,
 CVDisplayLinkOutputCallback callback,
 void *userInfo
);

Parameters
displayLink

The display link whose output callback you want to set.

callback
The callback function to set for this display link. See CVDisplayLinkOutputCallback (page 333)
for more information about implementing this function.

userInfo
A pointer to user data.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
The display link invokes this callback whenever it wants you to output a frame.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer3
QTCoreImage101
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Declared In
CVDisplayLink.h

296 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVDisplayLinkStart
Activates a display link.

CVReturn CVDisplayLinkStart (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link to activate.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Calling this function starts the display link thread, which then periodically calls back to your application to
request that you display frames. If the specified display link is already running, CVDisplayLinkStart returns
an error.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreVideo102
QTCoreVideo103
QTCoreVideo201
QTCoreVideo202
QTCoreVideo301

Declared In
CVDisplayLink.h

CVDisplayLinkStop
Stops a display link.

CVReturn CVDisplayLinkStop (
 CVDisplayLinkRef displayLink
);

Parameters
displayLink

The display link to stop.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
If the specified display link is already stopped, CVDisplayLinkStop returns an error.

In Mac OS X v.10.4 and later, the display link thread is automatically stopped if the user employs Fast User
Switching. The display link is restarted when switching back to the original user.

Availability
Available in Mac OS X v10.3 and later.

Functions 297
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Related Sample Code
QTCoreImage101
QTCoreVideo102
QTCoreVideo201
QTCoreVideo202
QTCoreVideo301

Declared In
CVDisplayLink.h

CVDisplayLinkTranslateTime
Translates the time in the display link’s time base from one representation to another.

CVReturn CVDisplayLinkTranslateTime (
 CVDisplayLinkRef displayLink,
 const CVTimeStamp *inTime,
 CVTimeStamp *outTime
);

Parameters
displayLink

The display link whose time base should be used to do the translation.

inTime
A pointer to a CVTimeStamp structure containing the source time to translate.

outTime
A pointer to a CVTimeStamp structure into which the target time is written. Before calling, you must
set the version field (currently 0) to indicate which version of the structure you want. You should also
set the flags field to specify which representations to translate to.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Note that the display link has to be running for this call to succeed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVGetCurrentHostTime
Retrieves the current value of the host time base.

uint64_t CVGetCurrentHostTime

Return Value
The current host time.

298 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Discussion
In Mac OS X, the host time base for CoreVideo and CoreAudio are identical, so the values returned from either
API can be used interchangeably.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVHostTime.h

CVGetHostClockFrequency
Retrieve the frequency of the host time base.

double CVGetHostClockFrequency

Return Value
The current host frequency.

Discussion
In Mac OS X, the host time base for CoreVideo and CoreAudio are identical, and the values returned from
either API can be used interchangeably.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVHostTime.h

CVGetHostClockMinimumTimeDelta
Retrieve the smallest possible increment in the host time base.

uint32_t CVGetHostClockMinimumTimeDelta

Return Value
The smallest valid increment in the host time base.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVHostTime.h

CVImageBufferGetCleanRect
Returns the source rectangle of a Core Video image buffer that represents the clean aperture of the buffer
in encoded pixels.

Functions 299
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CGRect CVImageBufferGetCleanRect (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the display size from.

Return Value
A CGRect structure returning the nominal display size of the buffer. Returns a rectangle of zero size if called
with either a non-CVImageBufferRef type or NULL.

Discussion
The clean aperture size is smaller than the full size of the image. For example, an NTSC DV frame would return
a CGRect structure with an origin of (8,0) and a size of (704,480). Note that the origin of this rectangle is
always in the lower-left corner. This is the same coordinate system as that used by Quartz and Core Image.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVImageBuffer.h

CVImageBufferGetColorSpace
Returns the color space of a Core Video image buffer.

CGColorSpaceRef CVImageBufferGetColorSpace (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the color space from.

Return Value
The color space of the buffer. Returns NULL if called with either a non-CVImageBufferRef type or NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVImageBuffer.h

CVImageBufferGetDisplaySize
Returns the nominal output display size, in square pixels, of a Core Video image buffer.

300 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CGSize CVImageBufferGetDisplaySize (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the display size from.

Return Value
A CGSize structure defining the nominal display size of the buffer Returns zero size if called with a
non-CVImageBufferRef type or NULL.

Discussion
For example, for an NTSC DV frame this would be 640 x 480.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVImageBuffer.h

CVImageBufferGetEncodedSize
Returns the full encoded dimensions of a Core Video image buffer.

CGSize CVImageBufferGetEncodedSize (
 CVImageBufferRef imageBuffer
);

Parameters
imageBuffer

The image buffer that you want to retrieve the encoded size from.

Return Value
A CGSize structure defining the full encoded size of the buffer. Returns zero size if called with either a
non-CVImageBufferRef type or NULL.

Discussion
For example, for an NTSC DV frame, the encoded size would be 720 x 480. Note: When creating a Core Image
image from a Core Video image buffer, you use this call to retrieve the image size.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVImageBuffer.h

CVOpenGLBufferAttach
Attaches an OpenGL context to a Core Video OpenGL buffer.

Functions 301
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVReturn CVOpenGLBufferAttach (
 CVOpenGLBufferRef openGLBuffer,
 CGLContextObj cglContext,
 GLenum face,
 GLint level,
 GLint screen
);

Parameters
openGLBuffer

The buffer you want to attach an OpenGL context to.

cglContext
The OpenGL context you want to attach.

face
The OpenGL face enumeration (0 for noncube maps.)

level
The mipmap level for drawing in the OpenGL context. This value cannot exceed the maximum mipmap
level for this buffer.

screen
The virtual screen number you want to use for this context.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLBufferCreate
Create a new Core Video OpenGL buffer that can be used for OpenGL rendering purposes

CVReturn CVOpenGLBufferCreate (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 CFDictionaryRef attributes,
 CVOpenGLBufferRef *bufferOut
);

Parameters
allocator

The allocator to use to create the Core Video OpenGL buffer. Pass NULL to specify the default allocator.

width
The width of the buffer in pixels.

height
The height of the buffer in pixels.

302 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

attributes
A Core Foundation dictionary containing other desired attributes of the buffer (texture target, internal
format, max mipmap level, etc.). May be NULL. The following attribute values are assumed if you do
not explicitly define them:

 ■ kCVOpenGLBufferTarget = GL_TEXTURE_RECTANGLE_EXT

 ■ kCVOpenGLBufferInternalFormat = GL_RGBA

 ■ kCVOpenGLBufferMaximumMipmapLevel = 0

bufferOut
On return, bufferOut points to the newly created OpenGL buffer.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLBufferGetAttributes
Obtains the attributes of a Core Video OpenGL buffer.

CFDictionaryRef CVOpenGLBufferGetAttributes (
 CVOpenGLBufferRef openGLBuffer
);

Parameters
openGLBuffer

The OpenGL buffer whose attributes you want to obtain.

Return Value
A Core Foundation dictionary containing the OpenGL buffer attributes, or NULL if no attributes exist.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLBufferGetTypeID
Obtains the Core Foundation type ID for the OpenGL buffer type.

CFTypeID CVOpenGLBufferGetTypeID (
 void
);

Return Value
The Core Foundation ID for this data type.

Functions 303
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLBufferPoolCreate
Creates a new OpenGL buffer pool.

CVReturn CVOpenGLBufferPoolCreate (
 CFAllocatorRef allocator,
 CFDictionaryRef poolAttributes,
 CFDictionaryRef openGLBufferAttributes,
 CVOpenGLBufferPoolRef *poolOut
);

Parameters
allocator

The allocator to use for allocating this buffer pool. Pass NULL to specify the default allocator.

poolAttributes
A Core Foundation dictionary containing the attributes to be used for the pool itself.

openGLBufferAttributes
A Core Foundation dictionary containing the attributes to be used for creating new OpenGL buffers
within the pool.

poolOut
On return, poolOut points to the new OpenGL buffer pool.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferPoolCreateOpenGLBuffer
Creates a new OpenGL buffer from an OpenGL buffer pool.

CVReturn CVOpenGLBufferPoolCreateOpenGLBuffer (
 CFAllocatorRef allocator,
 CVOpenGLBufferPoolRef openGLBufferPool,
 CVOpenGLBufferRef *openGLBufferOut
);

Parameters
allocator

The allocator to use for creating the buffer. May be NULL to specify the default allocator.

openGLBufferPool
The OpenGL buffer pool that should create the new OpenGL buffer.

304 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

openGLBufferOut
On return, OpenGLBufferOut points to the new OpenGL buffer.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
The function creates a new OpenGL buffer using the OpenGL buffer attributes specified in the
CVOpenGLBufferPoolCreate (page 304) call. This buffer has default attachments as specified in the
openGLBufferAttributes parameter of CVOpenGLBufferPoolCreate (page 304) (using either the
kCVBufferPropagatedAttachmentsKey or kCVBufferNonPropagatedAttachmentsKey attributes).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferPoolGetAttributes
Returns the pool attributes dictionary for an Open GL buffer pool.

CFDictionaryRef CVOpenGLBufferPoolGetAttributes (
 CVOpenGLBufferPoolRef pool
);

Parameters
pool

The OpenGL buffer pool to retrieve the attributes from.

Return Value
The buffer-pool attributes Core Foundation dictionary, or NULL on failure.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferPoolGetOpenGLBufferAttributes
Returns the attributes of OpenGL buffers that will be created from a buffer pool.

CFDictionaryRef CVOpenGLBufferPoolGetOpenGLBufferAttributes (
 CVOpenGLBufferPoolRef pool
);

Parameters
pool

The OpenGL buffer pool to retrieve the attributes from.

Return Value
The OpenGL buffer attributes Core Foundation dictionary, or NULL on failure.

Functions 305
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Discussion
You can use this function to obtain information about the OpenGL buffers that will be created from the buffer
pool.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferPoolGetTypeID
Obtains the Core Foundation ID for the OpenGL buffer pool type.

CFTypeID CVOpenGLBufferPoolGetTypeID (
 void
);

Return Value
The Core Foundation ID for this data type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferPoolRelease
Releases an OpenGL buffer pool.

void CVOpenGLBufferPoolRelease (
 CVOpenGLBufferPoolRef openGLBufferPool
);

Parameters
openGLBufferPool

The OpenGL buffer pool that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferPoolRetain
Retains an OpenGL buffer pool.

306 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVOpenGLBufferPoolRef CVOpenGLBufferPoolRetain (
 CVOpenGLBufferPoolRef openGLBufferPool
);

Parameters
openGLBufferPool

The OpenGL buffer pool that you want to retain.

Return Value
For convenience, the same buffer pool object you wanted to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLBufferRelease
Releases a Core Video OpenGL buffer.

void CVOpenGLBufferRelease (
 CVOpenGLBufferRef buffer
);

Parameters
buffer

The OpenGL buffer that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLBufferRetain
Retains a Core Video OpenGL buffer.

CVOpenGLBufferRef CVOpenGLBufferRetain (
 CVOpenGLBufferRef buffer
);

Parameters
buffer

The OpenGL Buffer that you want to retain.

Return Value
For convenience, the OpenGL buffer that was retained.

Functions 307
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLTextureCacheCreate
Creates an OpenGL texture cache.

CVReturn CVOpenGLTextureCacheCreate (
 CFAllocatorRef allocator,
 CFDictionaryRef cacheAttributes,
 CGLContextObj cglContext,
 CGLPixelFormatObj cglPixelFormat,
 CFDictionaryRef textureAttributes,
 CVOpenGLTextureCacheRef *cacheOut
);

Parameters
allocator

The allocator to use for allocating the cache. Pass NULL to specify the default allocator.

cacheAttributes
A Core Foundation dictionary containing the attributes of the cache itself. Pass NULL to specify no
attributes.

cglContext
The OpenGL context into which the texture objects will be created.

cglPixelFormat
The OpenGL pixel format used to create the OpenGL context specified in cglContext.

textureAttributes
A Core Foundation dictionary containing the attributes to be used for creating the OpenGL texture
objects. Pass NULL to specify no attributes.

cacheOut
On return, cacheOut points to the newly created texture cache.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVOpenGLTextureCacheCreateTextureFromImage
Creates an OpenGL texture object from an existing image buffer.

308 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVReturn CVOpenGLTextureCacheCreateTextureFromImage (
 CFAllocatorRef allocator,
 CVOpenGLTextureCacheRef textureCache,
 CVImageBufferRef sourceImage,
 CFDictionaryRef attributes,
 CVOpenGLTextureRef *textureOut
);

Parameters
allocator

The allocator to use for allocating the OpenGL texture object. May be NULL to specify the default
allocator.

textureCache
The OpenGL texture cache to be used to manage the texture.

sourceImage
The image buffer from which you want to create an OpenGL texture.

attributes
The desired buffer attributes for the OpenGL texture.

textureOut
On return, textureOut points to the newly created texture object.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
This function copies all image buffer attachments designated as propagatable to the newly-created texture.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVOpenGLTextureCacheFlush
Flushes the OpenGL texture cache.

void CVOpenGLTextureCacheFlush (
 CVOpenGLTextureCacheRef textureCache,
 CVOptionFlags options
);

Parameters
textureCache

The texture cache to flush.

options
Currently unused; pass 0.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
You must call this function periodically to allow the texture cache to perform housekeeping operations.

Functions 309
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVOpenGLTextureCacheGetTypeID
Returns the Core Foundation ID of the texture cache type.

CFTypeID CVOpenGLTextureCacheGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVOpenGLTextureCacheRelease
Releases an OpenGL texture cache.

void CVOpenGLTextureCacheRelease (
 CVOpenGLTextureCacheRef textureCache
);

Parameters
textureCache

The OpenGL texture cache that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVOpenGLTextureCacheRetain
Retains an OpenGL texture cache.

310 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVOpenGLTextureCacheRef CVOpenGLTextureCacheRetain (
 CVOpenGLTextureCacheRef textureCache
);

Parameters
textureCache

The OpenGL texture cache that you want to retain.

Return Value
For convenience, the return value is the buffer you wanted to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVOpenGLTextureGetCleanTexCoords
Returns the texture coordinates for the part of the image that should be displayed.

void CVOpenGLTextureGetCleanTexCoords (
 CVOpenGLTextureRef image,
 GLfloat lowerLeft[2],
 GLfloat lowerRight[2],
 GLfloat upperRight[2],
 GLfloat upperLeft[2]
);

Parameters
image

The Core Video OpenGL texture whose clean tex coordinates you want to obtain.

lowerLeft
On return, the GLFloat array hold the s and t texture coordinates of the lower-left corner of the
image.

lowerRight
On return, the GLFloat array hold the s and t texture coordinates of the lower-right corner of the
image.

upperRight
On return, the GLFloat array hold the s and t texture coordinates of the upper-right corner of the
image.

upperLeft
On return, the GLFloat array hold the s and t texture coordinates of the upper-left corner of the
image.

Discussion
This function automatically takes into account whether or not the texture is flipped.

Availability
Available in Mac OS X v10.3 and later.

Functions 311
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Related Sample Code
LiveVideoMixer3
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301
QTQuartzPlayer

Declared In
CVOpenGLTexture.h

CVOpenGLTextureGetName
Returns the texture target name of a CoreVideo OpenGL texture.

GLuint CVOpenGLTextureGetName (
 CVOpenGLTextureRef image
);

Parameters
image

The Core Video OpenGL texture whose texture target name you want to obtain.

Return Value
The target name of the texture.

Discussion
See the OpenGL specification for more information about texture targets.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer2
LiveVideoMixer3
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Declared In
CVOpenGLTexture.h

CVOpenGLTextureGetTarget
Returns the texture target (for example, GL_TEXTURE_2D) of an OpenGL texture.

GLenum CVOpenGLTextureGetTarget (
 CVOpenGLTextureRef image
);

Parameters
image

The Core Video OpenGL texture whose target you want to obtain.

312 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://www.opengl.org/documentation/

Return Value
The OpenGL texture target.

Discussion
See the OpenGL specification for more information about texture targets.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer2
LiveVideoMixer3
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301

Declared In
CVOpenGLTexture.h

CVOpenGLTextureGetTypeID
Obtains the Core Foundation ID for the Core Video OpenGL texture type.

CFTypeID CVOpenGLTextureGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTQuartzPlayer

Declared In
CVOpenGLTexture.h

CVOpenGLTextureIsFlipped
Determines whether or not an OpenGL texture is flipped vertically.

Boolean CVOpenGLTextureIsFlipped (
 CVOpenGLTextureRef image
);

Parameters
image

The Core Video OpenGL texture whose orientation you want to determine.

Return Value
Returns true if (0,0) in the texture is in the upper-left corner, false if (0,0) is in the lower left corner.

Functions 313
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://www.opengl.org/documentation/

Discussion
Quartz assumes a lower-left origin.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTexture.h

CVOpenGLTextureRelease
Releases a Core Video OpenGL texture.

void CVOpenGLTextureRelease (
 CVOpenGLTextureRef texture
);

Parameters
texture

The Core Video OpenGL texture that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
LiveVideoMixer3
QTCoreImage101
QTCoreVideo102
QTCoreVideo201

Declared In
CVOpenGLTexture.h

CVOpenGLTextureRetain
Retains a Core Video OpenGL texture.

CVOpenGLTextureRef CVOpenGLTextureRetain (
 CVOpenGLTextureRef texture
);

Parameters
texture

The Core Video OpenGL texture that you want to retain.

Return Value
For convenience, the Core Video OpenGL texture you want to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

314 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTexture.h

CVPixelBufferCreate
Creates a single pixel buffer for a given size and pixel format.

CVReturn CVPixelBufferCreate (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 OSType pixelFormatType,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use to create the pixel buffer. Pass NULL to specify the default allocator.

width
Width of the pixel buffer, in pixels.

height
Height of the pixel buffer, in pixels.

pixelFormatType
The pixel format identified by its respective four-character code (type OSType).

pixelBufferAttributes
A dictionary with additonal attributes for a pixel buffer. This parameter is optional. See “Pixel Buffer
Attribute Keys” (page 351) for more details.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
This function allocates the necessary memory based on the pixel dimensions, format, and extended pixels
described in the pixel buffer’s attributes.

Some of the parameters specified in this call override equivalent pixel buffer attributes. For example, if you
define thekCVPixelBufferWidth andkCVPixelBufferHeight keys in the pixel buffer attributes parameter
(pixelBufferAttributes), these values are overriden by the width and height parameters.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

Functions 315
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVPixelBufferCreateResolvedAttributesDictionary
Takes an array of CFDictionary objects describing various pixel buffer attributes and tries to resolve them
into a single dictionary.

CVReturn CVPixelBufferCreateResolvedAttributesDictionary (
 CFAllocatorRef allocator,
 CFArrayRef attributes,
 CFDictionaryRef *resolvedDictionaryOut
);

Parameters
allocator

The allocator to use to create the pixel buffer. Pass NULL to specify the default allocator.

attributes
An array of Core Foundation dictionaries containing pixel buffer attribute key-value pairs.

resolvedDictionaryOut
On return, resolvedDictionaryOut points to the consolidated dictionary.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
This call is useful when you need to resolve requirements between several potential clients of a buffer.

If two or more dictionaries contain the same key but different values, errors may occur. For example, the
width and height attributes must match, but if the bytes-per-row (rowBytes) attributes differ, the least
common multiple is taken. Mismatches in pixel format allocators or callbacks also cause an error.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferCreateWithBytes
Creates a pixel buffer for a given size and pixel format containing data specified by a memory location.

CVReturn CVPixelBufferCreateWithBytes (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 OSType pixelFormatType,
 void *baseAddress,
 size_t bytesPerRow,
 CVPixelBufferReleaseBytesCallback releaseCallback,
 void *releaseRefCon,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use to create this buffer. Pass NULL to specify the default allocator.

316 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

width
Width of the pixel buffer, in pixels.

height
Height of the pixel buffer, in pixels.

pixelFormatType
Pixel format indentified by its respective four character code (type OSType).

baseAddress
A pointer to the base address of the memory storing the pixels.

bytesPerRow
Row bytes of the pixel storage memory.

releaseCallback
The callback function to be called when the pixel buffer is destroyed. This callback allows the owner
of the pixels to free the memory. See CVPixelBufferReleaseBytesCallback (page 335) for more
information.

releaseRefCon
User data identifying the pixel buffer. This value is passed to your pixel buffer release callback.

pixelBufferAttributes
A Core Foundation dictionary with additonal attributes for a a pixel buffer. This parameter is optional.
See “Pixel Buffer Attribute Keys” (page 351) for more details.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Some of the parameters specified in this call override equivalent pixel buffer attributes. For example, if you
define thekCVPixelBufferWidth andkCVPixelBufferHeight keys in the pixel buffer attributes parameter
(pixelBufferAttributes), these values are overriden by the width and height parameters.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferCreateWithPlanarBytes
Creates a single pixel buffer in planar format for a given size and pixel format containing data specified by
a memory location.

Functions 317
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVReturn CVPixelBufferCreateWithPlanarBytes (
 CFAllocatorRef allocator,
 size_t width,
 size_t height,
 OSType pixelFormatType,
 void *dataPtr,
 size_t dataSize,
 size_t numberOfPlanes,
 void *planeBaseAddress[],
 size_t planeWidth[],
 size_t planeHeight[],
 size_t planeBytesPerRow[],
 CVPixelBufferReleasePlanarBytesCallback releaseCallback,
 void *releaseRefCon,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use to create this buffer. Pass NULL to specify the default allocator.

width
Width of the pixel buffer, in pixels.

height
Height of the pixel buffer, in pixels.

pixelFormatType
Pixel format indentified by its respective four-character code (type OSType).

dataPtr
A pointer to a plane descriptor block if applicable, or NULL if not.

dataSize
The size of the memory if the planes are contiguous, or NULL if not.

numberOfPlanes
The number of planes.

planeBaseAddress
The array of base addresses for the planes.

planeWidth
The array of plane widths.

planeHeight
The array of plane heights.

planeBytesPerRow
Thje array of plane bytes-per-row values.

releaseCallback
The callback function that gets called when the pixel buffer is destroyed. This callback allows the
owner of the pixels to free the memory. See CVPixelBufferReleaseBytesCallback (page 335)
for more information.

releaseRefCon
A pointer to user data identifying the pixel buffer. This value is passed to your pixel buffer release
callback.

318 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

pixelBufferAttributes
A dictionary with additonal attributes for a a pixel buffer. This parameter is optional. See “Pixel Buffer
Attribute Keys” (page 351) for more details.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
Some of the parameters specified in this call override equivalent pixel buffer attributes. For example, if you
define thekCVPixelBufferWidth andkCVPixelBufferHeight keys in the pixel buffer attributes parameter
(pixelBufferAttributes), these values are overriden by the width and height parameters.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferFillExtendedPixels
Fills the extended pixels of the pixel buffer.

CVReturn CVPixelBufferFillExtendedPixels (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose extended pixels you want to fill.

Discussion
This function replicates edge pixels to fill the entire extended region of the image.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetBaseAddress
Returns the base address of the pixel buffer.

void * CVPixelBufferGetBaseAddress (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose base address you want to obtain.

Functions 319
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Return Value
The base address of the pixels. For chunky buffers, this returns a pointer to the pixel at (0,0) in the buffer For
planar buffers this returns a pointer to a PlanarComponentInfo structure (as defined by QuickTime in
ImageCodec.h).

Discussion
Retrieving the base address for a pixel buffer requires that the buffer base address be locked via a successful
call to CVPixelBufferLockBaseAddress (page 326).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
OpenGLCaptureToMovie
QTPixelBufferVCToCGImage
Quartz Composer QCTV

Declared In
CVPixelBuffer.h

CVPixelBufferGetBaseAddressOfPlane
Returns the base address of the plane at the specified plane index.

void * CVPixelBufferGetBaseAddressOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer containing the plane whose base address you want to obtain.

planeIndex
The index of the plane.

Return Value
The base address of the plane, or NULL for nonplanar pixel buffers.

Discussion
Retrieving the base address for a pixel buffer requires that the buffer base address be locked by a successful
call to CVPixelBufferLockBaseAddress (page 326).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetBytesPerRow
Returns the number of bytes per row of the pixel buffer.

320 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

size_t CVPixelBufferGetBytesPerRow (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose bytes-per-row value you want to obtain.

Return Value
The number of bytes per row of the image data. For planar buffers this function returns a rowBytes value
such that bytesPerRow * height covers the entire image including all planes.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
OpenGLCaptureToMovie
QTPixelBufferVCToCGImage
Quartz Composer QCTV

Declared In
CVPixelBuffer.h

CVPixelBufferGetBytesPerRowOfPlane
Returns the number of bytes per row for a plane at the specified index in the pixel buffer.

size_t CVPixelBufferGetBytesPerRowOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer containing the plane.

planeIndex
The index of the plane whose bytes-per-row value you want to obtain.

Return Value
The number of row bytes of the plane, or NULL for nonplanar pixel buffers.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetDataSize
Returns the data size for contiguous planes of the pixel buffer.

Functions 321
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

size_t CVPixelBufferGetDataSize (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose data size you want to obtain.

Return Value
The data size as specified in the call to CVPixelBufferCreateWithPlanarBytes (page 317).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetExtendedPixels
Returns the amount of extended pixel padding in the pixel buffer.

void CVPixelBufferGetExtendedPixels (
 CVPixelBufferRef pixelBuffer,
 size_t *extraColumnsOnLeft,
 size_t *extraColumnsOnRight,
 size_t *extraRowsOnTop,
 size_t *extraRowsOnBottom
);

Parameters
pixelBuffer

The pixel buffer whose extended pixel size you want to obtain.

extraColumnsOnLeft
Returns the pixel row padding to the left. May be NULL.

extraColumnsOnRight
Returns the pixel row padding to the right. May be NULL.

extraRowsOnTop
Returns the pixel row padding to the top. May be NULL.

extraRowsOnBottom
The pixel row padding to the bottom. May be NULL.

Discussion

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetHeight
Returns the height of the pixel buffer.

322 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

size_t CVPixelBufferGetHeight (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose height you want to obtain.

Return Value
The buffer height, in pixels.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
QTPixelBufferVCToCGImage

Declared In
CVPixelBuffer.h

CVPixelBufferGetHeightOfPlane
Returns the height of the plane at planeIndex in the pixel buffer.

size_t CVPixelBufferGetHeightOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer whose plane height you want to obtain.

planeIndex
The index of the plane.

Return Value
The height of the buffer, in pixels, or 0 for nonplanar pixel buffers.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetPixelFormatType
Returns the pixel format type of the pixel buffer.

Functions 323
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

OSType CVPixelBufferGetPixelFormatType (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose format type you want to obtain.

Return Value
A four-character code OSType identifier for the pixel format.

Discussion

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTPixelBufferVCToCGImage

Declared In
CVPixelBuffer.h

CVPixelBufferGetPlaneCount
Returns number of planes of the pixel buffer.

size_t CVPixelBufferGetPlaneCount (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose plane count you want to obtain..

Return Value
The number of planes. Returns 0 for nonplanar pixel buffers.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetTypeID
Returns the Core Foundation ID of the pixel buffer type.

CFTypeID CVPixelBufferGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

324 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferGetWidth
Returns the width of the pixel buffer.

size_t CVPixelBufferGetWidth (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer whose width you want to obtain.

Return Value
The width of the buffer, in pixels.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
QTPixelBufferVCToCGImage

Declared In
CVPixelBuffer.h

CVPixelBufferGetWidthOfPlane
Returns the width of the plane at a given index in the pixel buffer.

size_t CVPixelBufferGetWidthOfPlane (
 CVPixelBufferRef pixelBuffer,
 size_t planeIndex
);

Parameters
pixelBuffer

The pixel buffer whose plane width you want to obtain.

planeIndex
The index of the plane at which to obtain the width.

Return Value
The width of the plane, in pixels, or 0 for nonplanar pixel buffers.

Availability
Available in Mac OS X v10.3 and later.

Functions 325
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Declared In
CVPixelBuffer.h

CVPixelBufferIsPlanar
Determine if the pixel buffer is planar.

Boolean CVPixelBufferIsPlanar (
 CVPixelBufferRef pixelBuffer
);

Parameters
pixelBuffer

The pixel buffer to check.

Return Value
Returns true if the pixel buffer was created using CVPixelBufferCreateWithPlanarBytes (page 317),
false otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferLockBaseAddress
Locks the base address of the pixel buffer.

CVReturn CVPixelBufferLockBaseAddress (
 CVPixelBufferRef pixelBuffer,
 CVOptionFlags lockFlags
);

Parameters
pixelBuffer

The pixel buffer whose base address you want to lock.

lockFlags
No options currently defined; pass 0.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
OpenGLCaptureToMovie
QTPixelBufferVCToCGImage
Quartz Composer QCTV

326 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Declared In
CVPixelBuffer.h

CVPixelBufferPoolCreate
Creates a pixel buffer pool.

CVReturn CVPixelBufferPoolCreate (
 CFAllocatorRef allocator,
 CFDictionaryRef poolAttributes,
 CFDictionaryRef pixelBufferAttributes,
 CVPixelBufferPoolRef *poolOut
);

Parameters
allocator

The allocator to use for allocating this buffer pool. Pass NULL to specify the default allocator.

poolAttributes
A Core Foundation dictionary containing the attributes for this pixel buffer pool.

pixelBufferAttributes
A Core Foundation dictionary containing the attributes to be used for creating new pixel buffers
within the pool.

poolOut
On return, poolOut points to the newly created pixel buffer pool.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolCreatePixelBuffer
Creates a pixel buffer from a pixel buffer pool.

CVReturn CVPixelBufferPoolCreatePixelBuffer (
 CFAllocatorRef allocator,
 CVPixelBufferPoolRef pixelBufferPool,
 CVPixelBufferRef *pixelBufferOut
);

Parameters
allocator

The allocator to use for creating the pixel buffer. Pass NULL to specify the default allocator.

Functions 327
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

pixelBufferPool
The pixel buffer pool for creating the new pixel buffer.

pixelBufferOut
On return, pixelBufferOut points to the newly created pixel buffer.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion
This function creates a new pixel buffer using the pixel buffer attributes specifed during pool creation. This
buffer has default attachments as specified in the pixelBufferAttributes parameter of
CVPixelBufferPoolCreate (page 327) (using either the kCVBufferPropagatedAttachmentsKey or
kCVBufferNonPropagatedAttachmentsKey attributes).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolGetAttributes
Returns the pool attributes dictionary for a pixel buffer pool.

CFDictionaryRef CVPixelBufferPoolGetAttributes (
 CVPixelBufferPoolRef pool
);

Parameters
pool

The pixel buffer pool to retrieve the attributes from.

Return Value
A Core Foundation dictionary containing the pool attributes, or NULL on failure.

Discussion

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolGetPixelBufferAttributes
Returns the attributes of pixel buffers that will be created from this pool.

328 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CFDictionaryRef CVPixelBufferPoolGetPixelBufferAttributes (
 CVPixelBufferPoolRef pool
);

Parameters
pool

The pixel buffer pool to retrieve the attributes from.

Return Value
A Core Foundation dictionary containing the pixel buffer attributes, or NULL on failure.

Discussion
This function is provided for those cases where you may need to know some information about the buffers
that will be created for you .

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolGetTypeID
Returns the Core Foundation ID of the pixel buffer pool type.

CFTypeID CVPixelBufferPoolGetTypeID (
 void
);

Return Value
The Core Foundation ID for this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolRelease
Releases a pixel buffer pool.

void CVPixelBufferPoolRelease (
 CVPixelBufferPoolRef pixelBufferPool
);

Parameters
pixelBufferPool

The pixel buffer pool that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Functions 329
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Related Sample Code
OpenGLCaptureToMovie
Quartz Composer QCTV

Declared In
CVPixelBufferPool.h

CVPixelBufferPoolRetain
Retains a pixel buffer pool.

CVPixelBufferPoolRef CVPixelBufferPoolRetain (
 CVPixelBufferPoolRef pixelBufferPool
);

Parameters
buffer

The pixel buffer pool that you want to retain.

Return Value
For convenience, the same pixel buffer pool that you wanted to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBufferPool.h

CVPixelBufferRelease
Releases a pixel buffer.

void CVPixelBufferRelease (
 CVPixelBufferRef texture
);

Parameters
buffer

The pixel buffer that you want to release.

Discussion
This function is equivalent to CFRelease, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
OpenGLCaptureToMovie
QTCoreVideo103
QTCoreVideo202
QTPixelBufferVCToCGImage

330 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Declared In
CVPixelBuffer.h

CVPixelBufferRetain
Retains a pixel buffer.

CVPixelBufferRef CVPixelBufferRetain (
 CVPixelBufferRef texture
);

Parameters
buffer

The pixel buffer that you want to retain.

Return Value
For convenience, the same pixel buffer you want to retain.

Discussion
This function is equivalent to CFRetain, but NULL safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferUnlockBaseAddress
Unlocks the base address of the pixel buffer.

CVReturn CVPixelBufferUnlockBaseAddress (
 CVPixelBufferRef pixelBuffer,
 CVOptionFlags unlockFlags
);

Parameters
pixelBuffer

The pixel buffer whose base address you want to unlock.

unlockFlags
No options currently defined; pass 0.

Return Value
A Core Video result code. See “Result Codes” (page 358) for possible values.

Discussion

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CaptureAndCompressIPBMovie
MovieVideoChart
QTCoreVideo202

Functions 331
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

QTPixelBufferVCToCGImage
Quartz Composer QCTV

Declared In
CVPixelBuffer.h

CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes
Returns all the pixel format descriptions known to Core Video.

CFArrayRef CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes (
 CFAllocatorRef allocator
);

Parameters
allocator

The allocator to use when creating the description. Pass NULL to specify the default allocator.

Return Value
An array of Core Foundation dictionaries, each containing a pixel format description. See “Pixel Format
Description Keys” (page 353) for a list of keys relevant to the format description.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelFormatDescription.h

CVPixelFormatDescriptionCreateWithPixelFormatType
Creates a pixel format description from a given OSType identifier.

CFDictionaryRef CVPixelFormatDescriptionCreateWithPixelFormatType (
 CFAllocatorRef allocator,
 OSType pixelFormat
);

Parameters
allocator

The allocator to use when creating the description. Pass NULL to specify the default allocator.

pixelFormat
A four-character code that identifies the pixel format you want to obtain.

Return Value
A Core Foundation dictionary containing the pixel format description. See “Pixel Format Description Keys” (page
353) for a list of keys relevant to the format description.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelFormatDescription.h

332 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType
Registers a pixel format description with Core Video.

void CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType (
 CFDictionaryRef description,
 OSType pixelFormat
);

Parameters
description

A Core Foundation dictionary containing the pixel format description. See “Pixel Format Description
Keys” (page 353) for a list of required and optional keys.

pixelFormat
The four-character code (type OSType) identifier for this pixel format.

Discussion
If you are using a custom pixel format, you must register the format with Core Video using this function. See
Technical Q&A 1401: Registering Custom Pixel Formats with QuickTime and Core Video for more details.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelFormatDescription.h

Callbacks

CVDisplayLinkOutputCallback
Defines a pointer to a display link output callback function, which is called whenever the display link wants
the application to output a frame.

typedef CVReturn (*CVDisplayLinkOutputCallback)(
 CVDisplayLinkRef displayLink,
 const CVTimeStamp *inNow,
 const CVTimeStamp *inOutputTime,
 CVOptionFlags flagsIn,
 CVOptionFlags *flagsOut,
 void *displayLinkContext
);

You would declare a display link output callback function named MyDisplayLinkCallback like this:

CVReturn MyDisplayLinkCallback (
 CVDisplayLinkRef displayLink,
 const CVTimeStamp *inNow,
 const CVTimeStamp *inOutputTime,
 CVOptionFlags flagsIn,
 CVOptionFlags *flagsOut,
 void *displayLinkContext
);

Callbacks 333
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://developer.apple.com/qa/qa2005/qa1401.html

Parameters
displayLink

The display link requesting the frame.

inNow
A pointer to the current time.

inOutputTime
A pointer to the time that the frame will be displayed.

flagsIn
Currently unused. Pass 0.

flagsOut
Currently unused. Pass 0.

displayLinkContext
A pointer to application-defined data. This is the pointer you passed into the
CVDisplayLinkSetOutputCallback (page 296) function when registering your callback.

Discussion
For a given display link, you must register a display link output callback using
CVDisplayLinkSetOutputCallback (page 296) so that you can process and output the requested frame.

You callback must retrieve the frame with the timestamp specified by the (inOutputTime parameter,
manipulate it if desired (for example, apply color correction or map into onto a surface), and then output it
to the display.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVFillExtendedPixelsCallBack
Defines a pointer to a custom extended pixel-fill function, which is called whenever the system needs to pad
a buffer holding your custom pixel format.

typedef Boolean (*CVFillExtendedPixelsCallBack)(
 CVPixelBufferRef pixelBuffer,
 void *refCon
);

Here is how you would declare a custom fill function named MyExtendedPixelFillFunc

Boolean MyExtendedPixelFillFunc (
 CVPixelBufferRef pixelBuffer,
 void *refCon
);

Parameters
pixelBuffer

The pixel buffer to be padded.

334 Callbacks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

refCon
A pointer to application-defined data. This is the same value you stored in the
CVFillExtendedPixelsCallbackData (page 337) structure.

Return Value
Return true if the padding was successful, false otherwise.

Discussion
For more information on implementing a custom extended pixel-fill callback, see Technical Q&A 1440: Imple-
menting a CVFillExtendedPixelsCallback.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelFormatDescription.h

CVPixelBufferReleaseBytesCallback
Defines a pointer to a pixel buffer release callback function, which is called when a pixel buffer created by
CVPixelBufferCreateWithBytes (page 316) is released.

typedef void (*CVPixelBufferReleaseBytesCallback)(
 void *releaseRefCon,
 const void *baseAddress
);

You would declare a pixel buffer release callback named MyPixelBufferReleaseCallback like this:

void MyPixelBufferReleaseCallback(
 void *releaseRefCon,
 const void *baseAddress
);

Parameters
releaseRefCon

A pointer to application-defined data. This pointer is the same as that passed in the releaseRefCon
parameter of CVPixelBufferCreateWithBytes (page 316).

baseAddress
A pointer to the base address of the memory holding the pixels. This pointer is the same as that
passed in the baseAddress parameter of CVPixelBufferCreateWithBytes (page 316).

Discussion
You use this callback to release the pixels and perform any other cleanup when a pixel buffer is released.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

Callbacks 335
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://developer.apple.com/qa/qa2005/qa1440.html
http://developer.apple.com/qa/qa2005/qa1440.html

CVPixelBufferReleasePlanarBytesCallback
Defines a pointer to a pixel buffer release callback function, which is called when a pixel buffer created by
CVPixelBufferCreateWithPlanarBytes (page 317) is released.

typedef void (*CVPixelBufferReleasePlanarBytesCallback)(
 void *releaseRefCon,
 const void *dataPtr,
 size_t dataSize,
 size_t numberOfPlanes,
 const void *planeAddresses[]
);

You would declare a callback named MyPixelBufferReleasePlanarBytes like this:

void MyPixelBufferReleasePlanarBytes)(
 void *releaseRefCon,
 const void *dataPtr,
 size_t dataSize,
 size_t numberOfPlanes,
 const void *planeAddresses[]
);

Parameters
releaseRefCon

A pointer to application-defined data. This pointer is the same as that passed in the releaseRefCon
parameter of CVPixelBufferCreateWithPlanarBytes (page 317).

dataPtr
A pointer to a plane descriptor block. This is the same pointer you passed to
CVPixelBufferCreateWithPlanarBytes (page 317) in the dataPtr parameter.

dataSize
The size value you passed to CVPixelBufferCreateWithPlanarBytes (page 317) in the dataSize
parameter.

numberOfPlanes
The number of planes value you passed to CVPixelBufferCreateWithPlanarBytes (page 317)
in the numberOfPlanes parameter.

planeAddresses
A pointer to the base plane address you passed to CVPixelBufferCreateWithPlanarBytes (page
317) in the basePlaneAddress parameter.

Discussion
You use this callback to release the pixels and perform any other cleanup when a pixel buffer is released.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

336 Callbacks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Data Types

CVBufferRef
Defines the base type for all Core Video buffers.

typedef struct __CVBuffer *CVBufferRef;

Discussion
CVBuffers represent an abstract type from which all Core Video buffers derive.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBuffer.h

CVDisplayLinkRef
Defines a display link.

typedef struct __CVDisplayLink *CVDisplayLinkRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVDisplayLink.h

CVFillExtendedPixelsCallbackData
Holds information describing a custom extended pixel fill algorithm.

typedef struct {
 CFIndex version;
 CVFillExtendedPixelsCallBack fillCallBack;
 void *refCon;
} CVFillExtendedPixelsCallBackData;

Fields
version

The version of this fill algorithm.

fillCallback
A pointer to a custom pixel fill function.

refCon
A pointer to application-defined data that is passed to your custom pixel fill function.

Data Types 337
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Discussion
You must fill out this structure and store it as part of your pixel format description Core Foundation dictionary
(key: kCVPixelFormatFillExtendedPixelsCallback, type: CFData). However, if your custom pixel
format never needs the functionality of CVPixelBufferFillExtendedPixels (page 319), you don’t need
to add this key or implement the associated callback.

For more information about defining a custom pixel format, see “Pixel Format Description Keys” (page 353).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelFormatDescription.h

CVImageBufferRef
Defines a Core Video image buffer.

typedef CVBufferRef CVImageBufferRef;

Discussion
An image buffer is an abstract type representing Core Video buffers that hold images. In Core Video, pixel
buffers, OpenGL buffers, and OpenGL textures all derive from the image buffer type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVImageBuffer.h

CVOptionFlags
Define flags to be used for the display link output callback function.

typedef uint64_t CVOptionFlags;

Discussion
No flags are currently defined.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBase.h

CVOpenGLBufferRef
Defines a Core Video OpenGL buffer.

typedef CVImageBufferRef CVOpenGLBufferRef;

Discussion
The Core Video OpenGL buffer (type CVOpenGLBufferRef is a wrapper around the standard OpenGL pbuffer.

338 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBuffer.h

CVOpenGLBufferPoolRef
Defines an OpenGL buffer pool.

typedef struct _CVOpenGLBufferPool *CVOpenGLBufferPoolRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLBufferPool.h

CVOpenGLTextureRef
Defines an OpenGL texture-based image buffer.

typedef CVImageBufferRef CVOpenGLTextureRef;

Discussion
The Core Video OpenGL texture (type CVOpenGLTextureRef is a wrapper around the standard OpenGL
texture.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTexture.h

CVOpenGLTextureCacheRef
Defines a CoreVideo OpenGL texture cache.

typedef struct __CVOpenGLTextureCache *CVOpenGLTextureCacheRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVOpenGLTextureCache.h

CVPixelBufferRef
Defines a Core Video pixel buffer.

Data Types 339
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

typedef CVImageBufferRef CVPixelBufferRef;

Discussion
The pixel buffer stores an image in main memory.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBuffer.h

CVPixelBufferPoolRef
Defines a pixel buffer pool.

typedef struct _CVPixelBufferPool *CVPixelBufferPoolRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVPixelBufferPool.h

CVReturn
Defines the return error code for Core Video functions.

typedef int32_t CVReturn;

Discussion
See “Result Codes” (page 358) for possible values.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVReturn.h

CVSMPTETime
A structure for holding a SMPTE time.

340 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

struct CVSMPTETime {
 SInt16 subframes;
 SInt16 subframeDivisor;
 UInt32 counter;
 UInt32 type;
 UInt32 flags;
 SInt16 hours;
 SInt16 minutes;
 SInt16 seconds;
 SInt16 frames;
 ;}
typedef struct CVSMPTETime CVSMPTETime;

Fields
subframes

The number of subframes in the full message.

subframeDivisor
The number of subframes per frame (typically, 80).

counter
The total number of messages received.

type
The kind of SMPTE time type. See “SMPTE Time Types” (page 357) for a list of possible values.

flags
A set of flags that indicate the SMPTE state. See “SMPTE State Flags” (page 356) for possible values.

hours
The number of hours in the full message.

minutes
The number of minutes in the full message.

seconds
The number of seconds in the full message.

frames
The number of frames in the full message.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBase.h

CVTime
A structure for reporting Core Video time values.

typedef struct {
 int64_t timeValue;
 int64_t timeScale;
 int32_t flags;
} CVTime;

Fields
timeValue

The time value.

Data Types 341
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

timeScale
The time scale for this value.

flags
Flags associated with the CVTime value. See “CVTime Constants” (page 344) for possible values. If
kCVTimeIsIndefinite is set, you should not use any of the other fields in this structure.

Discussion
This structure is equivalent to the QuickTime QTTime structure.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBase.h

CVTimeStamp
A structure for defining a display timestamp.

typedef struct {
 uint32_t version;
 int32_t videoTimeScale;
 int64_t videoTime;
 uint64_t hostTime;
 double rateScalar;
 int64_t videoRefreshPeriod;
 CVSMPTETime smpteTime;
 uint64_t flags;
 uint64_t reserved;
} CVTimeStamp;

Fields
version

The current CVTimeStamp structure is version 0. Some functions require you to specify a version
when passing in a timestamp structure to be filled.

videoTimeScale
The scale (in units per second) of the videoTimeScale and videoRefreshPeriod fields.

videoTime
The start of a frame (or field for interlaced video).

hostTime
The host root time base time.

rateScalar
The current rate of the device as measured by the timestamps, divided by the nominal rate

videoPeriod
The nominal update period of the current output device.

smpteTime
The SMPTE time representation of the timestamp.

flags
A bit field containing additional information about the timestamp. See “CVTimeStamp Flags” (page
345) for a list of possible values. .

342 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

reserved
Reserved. Do not use.

Discussion
This structure is designed to be very similar to the audio time stamp defined in the Core Audio framework.
However, unlike the audio timestamps, floating-point values are not used to represent the video equivalent
of sample times. This was done partly to avoid precision issues, and partly because QuickTime still uses
integers for time values and time scales. In the actual implementation it has turned out to be very convenient
to use integers, and we can represent frame rates like NTSC (30000/1001 fps) exactly. The mHostTime structure
field uses the same Mach absolute time base used in Core Audio, so that clients of the Core Video API can
synchronize between the two subsystems.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CVBase.h

Constants

CVBuffer Attachment Keys
Specify an attachment type for a Core Video buffer.

const CFStringRef kCVBufferMovieTimeKey;
const CFStringRef kCVBufferTimeValueKey;
const CFStringRef kCVBufferTimeScaleKey;

Constants
kCVBufferMovieTimeKey

The movie time associated with the buffer. Generally only available for frames emitted by QuickTime
(type CFDictionary containing the kCVBufferTimeValueKey and kCVBufferTimeScaleKey
keys).

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

kCVBufferTimeValueKey
The actual time value associated with the movie.

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

kCVBufferTimeScaleKey
The time scale associated with the movie.

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

CVBuffer Attachment Modes
Specify the propagation mode of a Core Video buffer attachment.

Constants 343
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

enum {
 kCVAttachmentMode_ShouldNotPropagate = 0,
 kCVAttachmentMode_ShouldPropagate = 1,
};
typedef uint32_t CVAttachmentMode;

Constants
kCVAttachmentMode_ShouldNotPropagate

Do not propagate this attachment.

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

kCVAttachmentMode_ShouldPropagate
Copy this attachment when using the CVBufferPropagateAttachments (page 284) function. For
example, in most cases, you would want to propagate an attachment bearing a timestamp to each
successive buffer.

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

Discussion
You set these attributes when adding attachments to a CVBuffer object.

CVBuffer Attribute Keys
Specify attributes associated with Core Video buffers.

const CFStringRef kCVBufferPropagatedAttachmentsKey;
const CFStringRef kCVBufferNonPropagatedAttachmentsKey;

Constants
kCVBufferPropagatedAttachmentsKey

Attachments that should be copied when using the CVBufferPropagateAttachments (page 284)
function (type CFDictionary, containing a list of attachments as key-value pairs).

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

kCVBufferNonPropagatedAttachmentsKey
Attachments that should not be copied when using the CVBufferPropagateAttachments (page
284) function (type CFDictionary, containing a list of attachments as key-value pairs).

Available in Mac OS X v10.3 and later.

Declared in CVBuffer.h.

Discussion
These attributes let you set multiple attachments at the time of buffer creation, rather than having to call
CVBufferSetAttachment (page 287) for each attachment.

CVTime Constants
Specify flags for the CVTime structure.

344 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

enum {
kCVTimeIsIndefinite = 1 << 0
};

Constants
kCVTimeIsIndefinite

The time value is unknown.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

CVTime Values
Indicate specific CVTime values.

const CVTime kCVZeroTime;
const CVTime kCVIndefiniteTime;

Constants
kCVZeroTime

Zero time or duration. For example, CVDisplayLinkGetOutputVideoLatency (page 292) returns
kCVZeroTime for zero video latency.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVIndefiniteTime
An unknown or indefinite time. For example,
CVDisplayLinkGetNominalOutputVideoRefreshPeriod (page 292) returnskCVIndefiniteTime
if the display link specified is not valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

CVTimeStamp Flags
Specify flags for the CVTimeStamp structure.

Constants 345
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

enum
{
 kCVTimeStampVideoTimeValid = (1L << 0),
 kCVTimeStampHostTimeValid = (1L << 1),
 kCVTimeStampSMPTETimeValid = (1L << 2),
 kCVTimeStampVideoRefreshPeriodValid = (1L << 3),
 kCVTimeStampRateScalarValid = (1L << 4),
 kCVTimeStampTopField = (1L << 16),
 kCVTimeStampBottomField = (1L << 17)
};
enum
{
 kCVTimeStampVideoHostTimeValid =
 (kCVTimeStampVideoTimeValid | kCVTimeStampHostTimeValid),
 kCVTimeStampIsInterlaced =
 (kCVTimeStampTopField | kCVTimeStampBottomField)
};

Constants
kCVTimeStampVideoTimeValid

The value in the video time field is valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampHostTimeValid
The value in the host time field is valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampSMPTETimeValid
The value in the SMPTE time field is valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampVideoRefreshPeriodValid
The value in the video refresh period field is valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampRateScalarValid
The value in the rate scalar field is valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampTopField
The timestamp represents the top lines of an interlaced image.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampBottomField
The timestamp represents the bottom lines of an interlaced image.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

346 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVTimeStampVideoHostTimeValid
A convenience constant indicating that both the video time and host time fields are valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVTimeStampIsInterlaced
A convenience constant indicating that the timestamp is for an interlaced image.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

Discussion
These flags indicate which fields in the CVTimeStamp (page 342) structure contain valid information.

Image Buffer Attachment Keys
Specify attachment types associated with image buffers.

const CFStringRef kCVImageBufferCGColorSpaceKey;
const CFStringRef kCVImageBufferGammaLevelKey;
const CFStringRef kCVImageBufferCleanApertureKey;
const CFStringRef kCVImageBufferPreferredCleanApertureKey;
const CFStringRef kCVImageBufferCleanApertureWidthKey;
const CFStringRef kCVImageBufferCleanApertureHeightKey;
const CFStringRef kCVImageBufferCleanApertureHorizontalOffsetKey;
const CFStringRef kCVImageBufferCleanApertureVerticalOffsetKey;
const CFStringRef kCVImageBufferFieldCountKey;
const CFStringRef kCVImageBufferFieldDetailKey;
const CFStringRef kCVImageBufferFieldDetailTemporalTopFirst;
const CFStringRef kCVImageBufferFieldDetailTemporalBottomFirst;
const CFStringRef kCVImageBufferFieldDetailSpatialFirstLineEarly;
const CFStringRef kCVImageBufferFieldDetailSpatialFirstLineLate;
const CFStringRef kCVImageBufferPixelAspectRatioKey;
const CFStringRef kCVImageBufferPixelAspectRatioHorizontalSpacingKey;
const CFStringRef kCVImageBufferPixelAspectRatioVerticalSpacingKey;
const CFStringRef kCVImageBufferDisplayDimensionsKey;
const CFStringRef kCVImageBufferDisplayWidthKey;
const CFStringRef kCVImageBufferDisplayHeightKey;
const CFStringRef kCVImageBufferYCbCrMatrixKey;
const CFStringRef kCVImageBufferYCbCrMatrix_ITU_R_709_2;
const CFStringRef kCVImageBufferYCbCrMatrix_ITU_R_601_4;
const CFStringRef kCVImageBufferYCbCrMatrix_SMPTE_240M_1995;

Constants
kCVImageBufferCGColorSpaceKey

The color space for the buffer (type CGColorSpaceRef).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferGammaLevelKey
The gamma level for this buffer (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

Constants 347
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVImageBufferCleanApertureKey
The clean aperture for the buffer (type CFDictionary , containing the clean aperture width, height,
and horizontal and vertical offset key-value pairs).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPreferredCleanApertureKey
The preferred clean aperture for the buffer (type CFDictionary , containing the clean aperture
width, height, and horizontal and vertical offset key-value pairs).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureWidthKey
The clean aperture width (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureHeightKey
The clean aperture height (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureHorizontalOffsetKey
The clean aperture horizontal offset (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferCleanApertureVerticalOffsetKey
The clean aperture vertical offset (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldCountKey
The field count for the buffer (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailKey
Specific information about the field of a video frame in the buffer (type CFDictionary, containing
the temporal bottom first and top first and spacial first-line-early and first-line-late keys).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailTemporalTopFirst
(type CFString).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailTemporalBottomFirst
(type CFString).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

348 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVImageBufferFieldDetailSpatialFirstLineEarly
(type CFString).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferFieldDetailSpatialFirstLineLate
(type CFString).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPixelAspectRatioKey
The pixel aspect ratio of the buffer (type CFDictionary, containing the horizontal and vertical spacing
keys).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPixelAspectRatioHorizontalSpacingKey
The horizontal component of the buffer aspect ratio (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferPixelAspectRatioVerticalSpacingKey
The vertical component of the buffer aspect ratio (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferDisplayDimensionsKey
The buffer display dimensions (type CFDictionary containing the buffer display width and height
keys).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferDisplayWidthKey
The buffer display width (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferDisplayHeightKey
The buffer display height (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrixKey
The type of conversion matrix used for this buffer when converting from YCbCr to RGB images (type
CFString). The value for this key should be one of the following constants:
kCVImageBufferYCbCrMatrix_ITU_R_709_2, kCVImageBufferYCbCrMatrix_ITU_R_601_4,
or kCVImageBufferYCbCrMatrix_SMPTE_240M_1995.

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

Constants 349
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVImageBufferYCbCrMatrix_ITU_R_709_2
Specifies the YCbCr to RGB conversion matrix for HDTV digital television (ITU R 709) images.

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrix_ITU_R_601_4
Specifies the YCbCr to RGB conversion matrix for standard digital television (ITU R 601) images.

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

kCVImageBufferYCbCrMatrix_SMPTE_240M_1995
Specifies the YCbCR to RGB conversion matrix for 1920 x 1135 HDTV (SMPTE 240M 1995).

Available in Mac OS X v10.3 and later.

Declared in CVImageBuffer.h.

Discussion
Image buffer attachment keys are stored in a Core Foundation dictionary associated with an image buffer.
Note that some of these keys are stored in subdictionaries keyed by a higher-level attribute. For example,
the kCVImageBufferDisplayWidthKey and kCVImageBufferDisplayHeightKey attributes are stored
in a Core Foundation dictionary keyed to the kCVImageBufferDisplayDimensionsKey attribute.

OpenGL Buffer Attribute Keys
Specify attributes of an OpenGL buffer.

const CFStringRef kCVOpenGLBufferWidth;
const CFStringRef kCVOpenGLBufferHeight;
const CFStringRef kCVOpenGLBufferTarget;
const CFStringRef kCVOpenGLBufferInternalFormat;
const CFStringRef kCVOpenGLBufferMaximumMipmapLevel;

Constants
kCVOpenGLBufferWidth

The width of the buffer.

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBuffer.h.

kCVOpenGLBufferHeight
The height of the buffer.

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBuffer.h.

kCVOpenGLBufferTarget
The OpenGL target for this buffer.

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBuffer.h.

kCVOpenGLBufferInternalFormat
The OpenGL internal format of this buffer.

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBuffer.h.

350 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVOpenGLBufferMaximumMipmapLevel
The maximum mipmap level for this buffer.

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBuffer.h.

OpenGL Buffer Pool Attribute Keys
Specify attributes associated with an OpenGL buffer pool.

const CFStringRef kCVOpenGLBufferPoolMinimumBufferCountKey;
const CFStringRef kCVOpenGLBufferPoolMaximumBufferAgeKey;

Constants
kCVOpenGLBufferPoolMinimumBufferCountKey

Indicates the minimum number of buffers to keep in the pool (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBufferPool.h.

kCVOpenGLBufferPoolMaximumBufferAgeKey
Indicates how long unused buffers should be kept before they are deallocated (type CFAbsoluteTime).

Available in Mac OS X v10.3 and later.

Declared in CVOpenGLBufferPool.h.

Discussion
You specify these keys in a Core Foundation dictionary when calling functions such as
CVOpenGLBufferPoolCreate (page 304).

Pixel Buffer Attribute Keys
Specify attributes associated with a pixel buffer.

const CFStringRef kCVPixelBufferPixelFormatTypeKey;
 const CFStringRef kCVPixelBufferMemoryAllocatorKey;
 const CFStringRef kCVPixelBufferWidthKey;
 const CFStringRef kCVPixelBufferHeightKey;
 const CFStringRef kCVPixelBufferExtendedPixelsLeftKey;
 const CFStringRef kCVPixelBufferExtendedPixelsTopKey;
 const CFStringRef kCVPixelBufferExtendedPixelsRightKey;
 const CFStringRef kCVPixelBufferExtendedPixelsBottomKey;
 const CFStringRef kCVPixelBufferBytesPerRowAlignmentKey;
 const CFStringRef kCVPixelBufferCGBitmapContextCompatibilityKey;
 const CFStringRef kCVPixelBufferCGImageCompatibilityKey;
 const CFStringRef kCVPixelBufferOpenGLCompatibilityKey;

Constants
kCVPixelBufferPixelFormatTypeKey

The pixel format for this buffer (type CFNumber, or type CFArray containing an array of CFNumber
types (actually type OSType)). For a listing of common pixel formats, see the QuickTime Ice Floe Dis-
patch 20.

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

Constants 351
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://developer.apple.com/quicktime/icefloe/dispatch020.html
http://developer.apple.com/quicktime/icefloe/dispatch020.html

kCVPixelBufferMemoryAllocatorKey
The allocator used with this buffer (type CFAllocatorRef).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferWidthKey
The width of the pixel buffer (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferHeightKey
The height of the pixel buffer (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsLeftKey
The number of pixels padding the left of the image (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsTopKey
The number of pixels padding the top of the image (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsRightKey
The number of pixels padding the right of the image (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferExtendedPixelsBottomKey
The number of pixels padding the bottom of the image (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferBytesPerRowAlignmentKey
Indicates the number of bytes per row in the pixel buffer (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferCGBitmapContextCompatibilityKey
Indicates whether the pixel buffer is compatible with Core Graphics bitmap contexts (type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

kCVPixelBufferCGImageCompatibilityKey
Indicates whether the pixel buffer is compatible with CGImage types (type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

352 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVPixelBufferOpenGLCompatibilityKey
Indicates whether the pixel buffer is compatible with OpenGL contexts (type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBuffer.h.

Discussion
You specify these keys in a Core Foundation dictionary when calling functions such as
CVPixelBufferCreate (page 315).

Pixel Buffer Pool Attribute Keys
Specify attributes associated with a pixel buffer pool.

const CFStringRef kCVPixelBufferPoolMinimumBufferCountKey;
const CFStringRef kCVPixelBufferPoolMaximumBufferAgeKey;

Constants
kCVPixelBufferPoolMinimumBufferCountKey

The minimum number of buffers allowed in the pixel buffer pool (type CFNumber).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBufferPool.h.

kCVPixelBufferPoolMaximumBufferAgeKey
The maximum allowable age for a buffer in the pixel buffer pool (type CFAbsoluteTime).

Available in Mac OS X v10.3 and later.

Declared in CVPixelBufferPool.h.

Discussion
You specify these keys in a Core Foundation dictionary when calling functions such as
CVPixelBufferPoolCreate (page 327).

Pixel Format Description Keys
Specify attributes of a pixel format.

const CFStringRef kCVPixelFormatName;
const CFStringRef kCVPixelFormatConstant;
const CFStringRef kCVPixelFormatCodecType;
const CFStringRef kCVPixelFormatFourCC;
const CFStringRef kCVPixelFormatPlanes;
const CFStringRef kCVPixelFormatBlockWidth;
const CFStringRef kCVPixelFormatBlockHeight;
const CFStringRef kCVPixelFormatBitsPerBlock;
const CFStringRef kCVPixelFormatBlockHorizontalAlignment;
const CFStringRef kCVPixelFormatBlockVerticalAlignment;
const CFStringRef kCVPixelFormatHorizontalSubsampling;
const CFStringRef kCVPixelFormatVerticalSubsampling;

const CFStringRef kCVPixelFormatOpenGLFormat;
const CFStringRef kCVPixelFormatOpenGLType;
const CFStringRef kCVPixelFormatOpenGLInternalFormat;

Constants 353
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

const CFStringRef kCVPixelFormatCGBitmapInfo;

const CFStringRef kCVPixelFormatQDCompatibility;
const CFStringRef kCVPixelFormatCGBitmapContextCompatibility;
const CFStringRef kCVPixelFormatCGImageCompatibility;
const CFStringRef kCVPixelFormatOpenGLCompatibility;

const CFStringRef kCVPixelFormatFillExtendedPixelsCallback;

Constants
kCVPixelFormatName

The name of the pixel format (type CFString). This should be the same as the codec name you would
use in QuickTime.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatConstant
The pixel format constant for QuickTime.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCodecType
The codec type (type CFString). For example, '2vuy' or k422YpCbCr8CodecType.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatFourCC
The Microsoft FourCC equivalent code for this pixel format (type CFString).

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatPlanes
The number of image planes associated with this format (type CFNumber. Each plane may contain a
single component or an interleaved set of components. Note that if your pixel format is not planar,
you can put the required format keys at the top-level dictionary.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlockWidth
The width, in pixels, of the smallest byte-addressable group of pixels (type CFNumber. Used to assist
with allocating memory for pixel formats that don't have an integer value for bytes per pixel. Assumed
to be 1 if this key is not present. Here are some examples of block widths for standard pixel formats:

 ■ 8-bit luminance only, block width is 1, the bits per block value is 8.

 ■ 16-bit 1555 RGB, block width is 1, the bits per block value is 16.

 ■ 32-bit 8888 ARGB, block width is 1, the bits per block value is 32.

 ■ 2vuy (CbYCrY), block width is 2, the bits per block value is 32.

 ■ 1-bit bitmap, block width is 8, the bits per block value is 8.

 ■ v210, block width is 6, the bits per block value is 128 .

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

354 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVPixelFormatBlockHeight
The height, in pixels, of the smallest byte-addressable group of pixels (type CFNumber). Assumed to
be one if this key is not present.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBitsPerBlock
The number of bits per block. For simple pixel formats, this value is the same as the traditional
bits-per-pixel value. This key is mandatory in pixel format descriptions. See the description for
kCVPixelFormatBlockWidth for examples of bits-per-block values.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlockHorizontalAlignment
The horizontal alignment requirements of this format (type CFNumber). For example,the alignment
for v210 would be '8' here for the horizontal case to match the standard v210 row alignment value
of 48. Assumed to be 1 if this key is not present.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatBlockVerticalAlignment
The vertical alignment requirements of this format (type CFNumber). Assumed to be 1 if this key is
not present.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatHorizontalSubsampling
Horizontal subsampling information for this plane (type CFNumber). Assumed to be 1 if this key is
not present.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatVerticalSubsampling
Vertical subsampling information for this plane (type CFNumber). Assumed to be 1 if this key is not
present.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatOpenGLFormat
The OpenGL format used to describe this image plane (if applicable). See the OpenGL specification
for possible values.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatOpenGLType
The OpenGL type to describe this image plane (if applicable). See the OpenGL specification for possible
values.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

Constants 355
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://www.opengl.org/documentation/
http://www.opengl.org/documentation/

kCVPixelFormatOpenGLInternalFormat
The OpenGL internal format for this pixel format (if applicable). See the OpenGL specification for
possible values.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCGBitmapInfo
The Core Graphics bitmap information for this pixel format (if applicable).

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatQDCompatibility
Indicates whether this format is compatible with QuickDraw (type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCGBitmapContextCompatibility
Indicates whether this format is compatible with Core Graphics bitmap contexts(type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatCGImageCompatibility
Indicates whether this format is compatible with the CGImage type (type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatOpenGLCompatibility
Indicates whether this format is compatible with OpenGL (type CFBoolean).

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

kCVPixelFormatFillExtendedPixelsCallback
Specifies a custom extended pixel fill algorithm (type CFData). See
CVFillExtendedPixelsCallBack (page 334) and CVFillExtendedPixelsCallbackData (page
337) for more information.

Available in Mac OS X v10.3 and later.

Declared in CVPixelFormatDescription.h.

Discussion
If you need to define a custom pixel format, you must specify these keys in a Core Foundation dictionary.
For information about registering your pixel format, see Technical Q&A 1401: Registering Custom Pixel Formats
with QuickTime and Core Video.

In most cases you do not need to specify your own pixel format.

SMPTE State Flags
Flags that describe the SMPTE time state.

356 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

http://www.opengl.org/documentation/
http://developer.apple.com/qa/qa2005/qa1401.html
http://developer.apple.com/qa/qa2005/qa1401.html

enum{
 kCVSMPTETimeValid = (1L << 0),
 kCVSMPTETimeRunning = (1L << 1)
};

Constants
kCVSMPTETimeValid

The full time is valid.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeRunning
Time is running.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

Discussion
You use these values in the CVSMPTETime (page 340) structure.

SMPTE Time Types
Constants that describe the type of SMPTE time.

enum{
 kCVSMPTETimeType24 = 0,
 kCVSMPTETimeType25 = 1,
 kCVSMPTETimeType30Drop = 2,
 kCVSMPTETimeType30 = 3,
 kCVSMPTETimeType2997 = 4,
 kCVSMPTETimeType2997Drop = 5,
 kCVSMPTETimeType60 = 6,
 kCVSMPTETimeType5994 = 7
};

Constants
kCVSMPTETimeType24

24 frames per second (standard film).

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeType25
25 frames per second (standard PAL).

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeType30Drop
30 drop frame.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

Constants 357
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

kCVSMPTETimeType30
30 frames per second.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeType2997
29.97 frames per second (standard NTSC).

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeType2997Drop
29.97 drop frame.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeType60
60 frames per second.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

kCVSMPTETimeType5994
59.94 frames per second.

Available in Mac OS X v10.3 and later.

Declared in CVBase.h.

Discussion
You use these values in the CVSMPTETime (page 340) structure.

Result Codes

The table below lists the result codes returned for Core Video. Note that these result codes are of type
CVReturn, not type OSErr.

DescriptionValueResult Code

No error0kCVReturnSuccess

Available in Mac OS X v10.3 and later.

Placeholder to mark the beginning of Core
Video result codes (not returned by any
functions).

-6660kCVReturnFirst

Available in Mac OS X v10.3 and later.

An otherwise undefined error occurred.-6660kCVReturnError

Available in Mac OS X v10.3 and later.

Invalid function parameter. For example, out
of range or the wrong type.

-6661kCVReturnInvalidArgument

Available in Mac OS X v10.3 and later.

358 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

DescriptionValueResult Code

Memory allocation for a buffer or buffer pool
failed.

-6662kCVReturnAllocationFailed

Available in Mac OS X v10.3 and later.

The display specified when creating a display
link is invalid.

-6670kCVReturnInvalidDisplay

Available in Mac OS X v10.3 and later.

The specified display link is already running.-6671kCVReturnDisplayLinkAlreadyRunning

Available in Mac OS X v10.3 and later.

The specified display link is not running.-6672kCVReturnDisplayLinkNotRunning

Available in Mac OS X v10.3 and later.

No callback registered for the specified
display link. You must set either the output
callback or both the render and display
callbacks.

-6673kCVReturnDisplayLinkCallbacksNotSet

Available in Mac OS X v10.3 and later.

The buffer does not support the specified
pixel format.

-6680kCVReturnInvalidPixelFormat

Available in Mac OS X v10.3 and later.

The buffer cannot support the requested
buffer size (usually too big).

-6681kCVReturnInvalidSize

Available in Mac OS X v10.3 and later.

A buffer cannot be created with the specified
attributes.

-6682kCVReturnInvalidPixelBufferAttributes

Available in Mac OS X v10.3 and later.

The pixel buffer is not compatible with
OpenGL due to an unsupported buffer size,
pixel format, or attribute.

-6683kCVReturnPixelBufferNotOpenGLCompatible

Available in Mac OS X v10.3 and later.

Allocation for a buffer pool failed, most likely
due to a lack of resources. Check to make sure
your parameters are in range.

-6690kCVReturnPoolAllocationFailed

Available in Mac OS X v10.3 and later.

A buffer pool cannot be created with the
specified attributes.

-6691kCVReturnInvalidPoolAttributes

Available in Mac OS X v10.3 and later.

Result Codes 359
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

DescriptionValueResult Code

Placeholder to mark the end of Core Video
result codes (not returned by any functions).

-6699kCVReturnLast

Available in Mac OS X v10.3 and later.

360 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

Core Video Reference

Framework: QuartzCore/QuartzCore.h

Declared in CABase.h
CATransform3D.h

Overview

Functions by Task

Timing Functions

CACurrentMediaTime (page 362)
Returns the current absolute time, in seconds.

Transform Functions

CATransform3DIsIdentity (page 363)
Returns a Boolean value that indicates whether the transform is the identity transform.

CATransform3DEqualToTransform (page 362)
Returns a Boolean value that indicates whether the two transforms are exactly equal.

CATransform3DMakeTranslation (page 365)
Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3DMakeScale (page 364)
Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3DMakeRotation (page 364)
Returns a transform that rotates by 'angle' radians about the vector '(x, y, z)'. If the vector has length
zero the identity transform is returned.

CATransform3DTranslate (page 365)
Translate 't' by '(tx, ty, tz)' and return the result: * t' = translate(tx, ty, tz) * t.

CATransform3DScale (page 365)
Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy, sz) * t.

CATransform3DRotate (page 365)
Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the result. If the vector has zero length
the behavior is undefined: t' = rotation(angle, x, y, z) * t.

Overview 361
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

Core Animation Function Reference

CATransform3DConcat (page 362)
Concatenate 'b' to 'a' and return the result: t' = a * b.

CATransform3DInvert (page 363)
Invert 't' and return the result. Returns the original matrix if 't' has no inverse.

CATransform3DMakeAffineTransform (page 364)
Return a transform with the same effect as affine transform 'm'.

CATransform3DIsAffine (page 363)
Returns true if 't' can be exactly represented by an affine transform.

CATransform3DGetAffineTransform (page 363)
Returns the affine transform represented by 't'. If 't' can not be exactly represented as an affine
transform the returned value is undefined.

Functions

CACurrentMediaTime
Returns the current absolute time, in seconds.

CFTimeInterval CACurrentMediaTime (void);

Return Value
A CFTimeInterval derived by calling mach_absolute_time() and converting the result to seconds.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CABase.h

CATransform3DConcat
Concatenate 'b' to 'a' and return the result: t' = a * b.

CATransform3D CATransform3DConcat (CATransform3D a, CATransform3D b);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DEqualToTransform
Returns a Boolean value that indicates whether the two transforms are exactly equal.

362 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

Core Animation Function Reference

bool CATransform3DEqualToTransform (CATransform3D a, CATransform3D b);

Return Value
YES if a and b are exactly equal, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DGetAffineTransform
Returns the affine transform represented by 't'. If 't' can not be exactly represented as an affine transform the
returned value is undefined.

CGAffineTransform CATransform3DGetAffineTransform (CATransform3D t);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DInvert
Invert 't' and return the result. Returns the original matrix if 't' has no inverse.

CATransform3D CATransform3DInvert (CATransform3D t);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DIsAffine
Returns true if 't' can be exactly represented by an affine transform.

bool CATransform3DIsAffine (CATransform3D t);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DIsIdentity
Returns a Boolean value that indicates whether the transform is the identity transform.

Functions 363
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

Core Animation Function Reference

bool CATransform3DIsIdentity (CATransform3D t);

Return Value
YES if t is the identity transform, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DMakeAffineTransform
Return a transform with the same effect as affine transform 'm'.

CATransform3D CATransform3DMakeAffineTransform (CGAffineTransform m)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DMakeRotation
Returns a transform that rotates by 'angle' radians about the vector '(x, y, z)'. If the vector has length zero the
identity transform is returned.

CATransform3D CATransform3DMakeRotation (CGFloat angle, CGFloat x, CGFloat y,
CGFloat z);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DMakeScale
Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3D CATransform3DMakeScale (CGFloat sx, CGFloat sy,
 CGFloat sz);

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials
Core Animation QuickTime Layer

Declared In
CATransform3D.h

364 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

Core Animation Function Reference

CATransform3DMakeTranslation
Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3D CATransform3DMakeTranslation (CGFloat tx, CGFloat ty, CGFloat tz)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DRotate
Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the result. If the vector has zero length the
behavior is undefined: t' = rotation(angle, x, y, z) * t.

CATransform3D CATransform3DRotate (CATransform3D t, CGFloat angle, CGFloat x,
CGFloat y, CGFloat z)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DScale
Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy, sz) * t.

CATransform3D CATransform3DScale (CATransform3D t, CGFloat sx, CGFloat sy, CGFloat
 sz)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DTranslate
Translate 't' by '(tx, ty, tz)' and return the result: * t' = translate(tx, ty, tz) * t.

CATransform3D CATransform3DTranslate (CATransform3D t, CGFloat tx, CGFloat ty,
CGFloat tz);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

Functions 365
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

Core Animation Function Reference

366 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

Core Animation Function Reference

This table describes the changes to Quartz Core Framework Reference.

NotesDate

Added links to missing classes.2008-03-12

Added two Core Image documents and the Core Animation classes.2007-02-17

First publication of this content as a collection of separate documents.2006-05-23

367
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

368
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Action Identifiers 82
actionForKey: instance method 63
actionForLayer:forKey: <NSObject> delegate

method 79
actions instance property 47
addAnimation:forKey: instance method 64
addConstraint: instance method 64
additive instance property 102
addSublayer: instance method 65
addUpdateRect: instance method 107
affineTransform instance method 65
alignmentMode instance property 116
alpha instance method 139
anchorPoint instance property 47
animation class method 17
animationDidStart: <NSObject> delegate method

19
animationDidStop:finished: <NSObject> delegate

method 19
animationForKey: instance method 65
animations instance property 22
animationWithKeyPath: class method 103
apply: instance method 161
apply:arguments:options: instance method 161
asynchronous instance property 96
attributes instance method 162
Autoresizing Mask 81
autoresizingMask instance property 48
autoreverses protocol property 264

B

backgroundColor instance property 48
backgroundFilters instance property 48
begin class method 126
beginFrameAtTime:timeStamp: instance method 107
beginTime protocol property 264
blue instance method 140

borderColor instance property 49
borderWidth instance property 49
bounds instance property 50, 106
byValue instance property 24

C

CAConstraintAttribute 31
CACurrentMediaTime function 362
calculationMode instance property 36
canDrawInCGLContext:pixelFormat:forLayerTime:

displayTime: instance method 97
CATransform3DConcat function 362
CATransform3DEqualToTransform function 362
CATransform3DGetAffineTransform function 363
CATransform3DIdentity constant 85
CATransform3DInvert function 363
CATransform3DIsAffine function 363
CATransform3DIsIdentity function 363
CATransform3DMakeAffineTransform function 364
CATransform3DMakeRotation function 364
CATransform3DMakeScale function 364
CATransform3DMakeTranslation function 365
CATransform3DRotate function 365
CATransform3DScale function 365
CATransform3DTranslate function 365
CATransform3DValue instance method 254
CIFormat constant 219
classAttributes instance method 186
clear instance method 223
clearCaches instance method 146
Color Attribute Keys 168
Color Space Key 220
colorSpace instance method 140
colorWithCGColor: class method 137
colorWithRed:green:blue: class method 137
colorWithRed:green:blue:alpha: class method 138
colorWithString: class method 139
commit class method 126
Common Transition Subtypes 132
Common Transition Types 132

369
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

Index

components instance method 140
compositingFilter instance property 50
connectObject:withKey:toObject:withKey:

instance method 186
Constraint Attribute Type data type 32
constraints instance property 51
constraintWithAttribute:relativeTo:attribute:

class method 28
constraintWithAttribute:relativeTo:attribute:

offset: class method 29
constraintWithAttribute:relativeTo:attribute:

scale:offset: class method 29
containsPoint: instance method 66
Contents Gravity Values 83
contents instance property 51
contentsGravity instance property 51
contentsRect instance property 52
Context Options 151
contextWithCGContext:options: class method 144
contextWithCGLContext:pixelFormat:options:

class method 145
convertPoint:fromLayer: instance method 66
convertPoint:toLayer: instance method 67
convertRect:fromLayer: instance method 67
convertRect:toLayer: instance method 67
convertTime:fromLayer: instance method 68
convertTime:toLayer: instance method 68
copyCGLContextForPixelFormat: instance method

97
copyCGLPixelFormatForDisplayMask: instance

method 98
cornerRadius instance property 52
count instance method 248
createCGImage:fromRect: instance method 146
createCGImage:fromRect:format:colorSpace:

instance method 147
createCGLayerWithSize:info: instance method 148
cumulative instance property 102
CVBuffer Attachment Keys 343
CVBuffer Attachment Modes 343
CVBuffer Attribute Keys 344
CVBufferGetAttachment function 283
CVBufferGetAttachments function 284
CVBufferPropagateAttachments function 284
CVBufferRef data type 337
CVBufferRelease function 285
CVBufferRemoveAllAttachments function 285
CVBufferRemoveAttachment function 286
CVBufferRetain function 286
CVBufferSetAttachment function 287
CVBufferSetAttachments function 288
CVDisplayLinkCreateWithActiveCGDisplays

function 288

CVDisplayLinkCreateWithCGDisplay function 289
CVDisplayLinkCreateWithCGDisplays function 289
CVDisplayLinkCreateWithOpenGLDisplayMask

function 290
CVDisplayLinkGetActualOutputVideoRefreshPeriod

function 290
CVDisplayLinkGetCurrentCGDisplay function 291
CVDisplayLinkGetCurrentTime function 291
CVDisplayLinkGetNominalOutputVideoRefreshPeriod

function 292
CVDisplayLinkGetOutputVideoLatency function 292
CVDisplayLinkGetTypeID function 293
CVDisplayLinkIsRunning function 293
CVDisplayLinkOutputCallback callback 333
CVDisplayLinkRef data type 337
CVDisplayLinkRelease function 294
CVDisplayLinkRetain function 294
CVDisplayLinkSetCurrentCGDisplay function 294
CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext

function 295
CVDisplayLinkSetOutputCallback function 296
CVDisplayLinkStart function 297
CVDisplayLinkStop function 297
CVDisplayLinkTranslateTime function 298
CVFillExtendedPixelsCallBack callback 334
CVFillExtendedPixelsCallbackData structure 337
CVGetCurrentHostTime function 298
CVGetHostClockFrequency function 299
CVGetHostClockMinimumTimeDelta function 299
CVImageBufferGetCleanRect function 299
CVImageBufferGetColorSpace function 300
CVImageBufferGetDisplaySize function 300
CVImageBufferGetEncodedSize function 301
CVImageBufferRef data type 338
CVOpenGLBufferAttach function 301
CVOpenGLBufferCreate function 302
CVOpenGLBufferGetAttributes function 303
CVOpenGLBufferGetTypeID function 303
CVOpenGLBufferPoolCreate function 304
CVOpenGLBufferPoolCreateOpenGLBuffer function

304
CVOpenGLBufferPoolGetAttributes function 305
CVOpenGLBufferPoolGetOpenGLBufferAttributes

function 305
CVOpenGLBufferPoolGetTypeID function 306
CVOpenGLBufferPoolRef data type 339
CVOpenGLBufferPoolRelease function 306
CVOpenGLBufferPoolRetain function 306
CVOpenGLBufferRef data type 338
CVOpenGLBufferRelease function 307
CVOpenGLBufferRetain function 307
CVOpenGLTextureCacheCreate function 308

370
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

CVOpenGLTextureCacheCreateTextureFromImage
function 308

CVOpenGLTextureCacheFlush function 309
CVOpenGLTextureCacheGetTypeID function 310
CVOpenGLTextureCacheRef data type 339
CVOpenGLTextureCacheRelease function 310
CVOpenGLTextureCacheRetain function 310
CVOpenGLTextureGetCleanTexCoords function 311
CVOpenGLTextureGetName function 312
CVOpenGLTextureGetTarget function 312
CVOpenGLTextureGetTypeID function 313
CVOpenGLTextureIsFlipped function 313
CVOpenGLTextureRef data type 339
CVOpenGLTextureRelease function 314
CVOpenGLTextureRetain function 314
CVOptionFlags data type 338
CVPixelBufferCreate function 315
CVPixelBufferCreateResolvedAttributesDictionary

function 316
CVPixelBufferCreateWithBytes function 316
CVPixelBufferCreateWithPlanarBytes function 317
CVPixelBufferFillExtendedPixels function 319
CVPixelBufferGetBaseAddress function 319
CVPixelBufferGetBaseAddressOfPlane function 320
CVPixelBufferGetBytesPerRow function 320
CVPixelBufferGetBytesPerRowOfPlane function 321
CVPixelBufferGetDataSize function 321
CVPixelBufferGetExtendedPixels function 322
CVPixelBufferGetHeight function 322
CVPixelBufferGetHeightOfPlane function 323
CVPixelBufferGetPixelFormatType function 323
CVPixelBufferGetPlaneCount function 324
CVPixelBufferGetTypeID function 324
CVPixelBufferGetWidth function 325
CVPixelBufferGetWidthOfPlane function 325
CVPixelBufferIsPlanar function 326
CVPixelBufferLockBaseAddress function 326
CVPixelBufferPoolCreate function 327
CVPixelBufferPoolCreatePixelBuffer function 327
CVPixelBufferPoolGetAttributes function 328
CVPixelBufferPoolGetPixelBufferAttributes

function 328
CVPixelBufferPoolGetTypeID function 329
CVPixelBufferPoolRef data type 340
CVPixelBufferPoolRelease function 329
CVPixelBufferPoolRetain function 330
CVPixelBufferRef data type 339
CVPixelBufferRelease function 330
CVPixelBufferReleaseBytesCallback callback 335
CVPixelBufferReleasePlanarBytesCallback

callback 336
CVPixelBufferRetain function 331
CVPixelBufferUnlockBaseAddress function 331

CVPixelFormatDescriptionArrayCreateWithAllPixel-
FormatTypes function 332

CVPixelFormatDescriptionCreateWithPixelFormatType
function 332

CVPixelFormatDescriptionRegisterDescriptionWith-
PixelFormatType function 333

CVReturn data type 340
CVSMPTETime structure 340
CVTime Constants 344
CVTime structure 341
CVTime Values 345
CVTimeStamp Flags 345
CVTimeStamp structure 342

D

Data Type Attributes 167
defaultActionForKey: class method 61
defaultValueForKey: class method 18, 62
definition instance method 210, 238
delegate instance property 16, 52
disconnectObject:withKey:toObject:withKey:

instance method 187
display instance method 69
displayLayer: <NSObject> delegate method 80
doubleSided instance property 53
drawImage:atPoint:fromRect: instance method 149
drawImage:inRect:fromRect: instance method 149
drawInCGLContext:pixelFormat:forLayerTime:

displayTime: instance method 98
drawInContext: instance method 69
drawLayer:inContext:<NSObject> delegate method

80
duration protocol property 265

E

Edge Antialiasing Mask 83
edgeAntialiasingMask instance property 53
emptyImage class method 202
enabled instance property 182
endFrame instance method 108
endProgress instance property 130
Exported Keys 191
exportedKeys instance method 187
exportKey:fromObject:withName: instance method

188
extent instance method 210, 223, 238

371
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

F

fadeDuration class method 123
Fill Modes 267
fillMode protocol property 265
Filter Attribute Keys 164
Filter Category Keys 169
filter instance method 188
filter instance property 130
Filter Parameter Keys 173
filterGenerator class method 185
filterGeneratorWithContentsOfURL: class method

185
filterNamesInCategories: class method 155
filterNamesInCategory: class method 156
filters instance property 53
filterWithImageData:options: class method 156
filterWithImageURL:options: class method 157
filterWithName: class method 157
filterWithName:keysAndValues: class method 158
flush class method 126
font instance property 116
fontSize instance property 117
foregroundColor instance property 117
format instance method 223
frame instance property 54
fromValue instance property 24
functionWithControlPoints:::: class method 90
functionWithName: class method 90

G

getControlPointAtIndex:values: instance method
91

green instance method 141

H

hidden instance property 54
hitTest: instance method 70
Horizontal alignment modes 120

I

Identity Transform 85
Image Buffer Attachment Keys 347
image instance method 224
Image Provider Options 270

imageAccumulatorWithExtent:format: class method
222

imageByApplyingTransform: instance method 211
imageByCroppingToRect: instance method 211
imageWithBitmapData:bytesPerRow:size:format:

colorSpace: class method 202
imageWithCGImage: class method 203
imageWithCGImage:options: class method 203
imageWithCGLayer: class method 204
imageWithCGLayer:options: class method 204
imageWithColor: class method 204
imageWithContentsOfURL: class method 205
imageWithContentsOfURL:options: class method

205
imageWithCVImageBuffer: class method 206
imageWithCVImageBuffer:options: class method

207
imageWithData: class method 207
imageWithData:options: class method 208
imageWithImageProvider:size:format:colorSpace:

options: class method 208
imageWithTexture:size:flipped:colorSpace:

class method 209
init instance method 70
initWithAttribute:relativeTo:attribute:scale:

offset: instance method 30
initWithBitmapData:bytesPerRow:size:format:

colorSpace: instance method 211
initWithCGColor: instance method 141
initWithCGImage: instance method 212
initWithCGImage:options: instance method 213
initWithCGLayer: instance method 213
initWithCGLayer:options: instance method 214
initWithColor: instance method 214
initWithContentsOfURL: instance method 189, 214
initWithContentsOfURL:options: instance method

215
initWithControlPoints:::: instance method 91
initWithCVImageBuffer: instance method 215
initWithCVImageBuffer:options: instance method

216
initWithData: instance method 216
initWithData:options: instance method 217
initWithExtent:format: instance method 224
initWithImage: instance method 238
initWithImage:keysAndValues: instance method

239
initWithImage:options: instance method 239
initWithImageProvider:size:format:colorSpace:

options: instance method 217
initWithLayer: instance method 70
initWithRect: instance method 195
initWithString: instance method 248

372
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

initWithTexture:size:flipped:colorSpace:
instance method 218

initWithValues:count: instance method 248
initWithX: instance method 249
initWithX:Y: instance method 249
initWithX:Y:Z: instance method 249
initWithX:Y:Z:W: instance method 250
inputKeys instance method 163
insertSublayer:above: instance method 71
insertSublayer:atIndex: instance method 71
insertSublayer:below: instance method 72
insetByX:Y: instance method 195
intersectWith: instance method 195
intersectWithRect: instance method 196
invalidateLayoutOfLayer: <NSObject> instance

method 259
isAdditive instance method 103
isAsynchronous instance method 99
isCumulative instance method 104
isDoubleSided instance method 72
isEnabled instance method 182
isHidden instance method 72
isOpaque instance method 73
isRemovedOnCompletion instance method 18
isWrapped instance method 119

K

kCAAlignmentCenter constant 120
kCAAlignmentJustified constant 120
kCAAlignmentLeft constant 120
kCAAlignmentNatural constant 120
kCAAlignmentRight constant 120
kCAAnimationDiscrete constant 39
kCAAnimationLinear constant 39
kCAAnimationPaced constant 39
kCAAnimationRotateAuto constant 39
kCAAnimationRotateAutoReverse constant 39
kCAConstraintHeight constant 32
kCAConstraintMaxX constant 31
kCAConstraintMaxY constant 32
kCAConstraintMidX constant 31
kCAConstraintMidY constant 31
kCAConstraintMinX constant 31
kCAConstraintMinY constant 31
kCAConstraintWidth constant 31
kCAFillModeBackwards constant 267
kCAFillModeBoth constant 267
kCAFillModeForwards constant 267
kCAFillModeFrozen constant (Deprecated in Mac OS X

v10.5 and later) 267
kCAFillModeRemoved constant 267

kCAFilterLinear constant 86
kCAFilterNearest constant 86
kCAGravityBottom constant 84
kCAGravityBottomLeft constant 84
kCAGravityBottomRight constant 85
kCAGravityCenter constant 84
kCAGravityLeft constant 84
kCAGravityResize constant 85
kCAGravityResizeAspect constant 85
kCAGravityResizeAspectFill constant 85
kCAGravityRight constant 84
kCAGravityTop constant 84
kCAGravityTopLeft constant 84
kCAGravityTopRight constant 84
kCALayerBottomEdge constant 83
kCALayerHeightSizable constant 82
kCALayerLeftEdge constant 83
kCALayerMaxXMargin constant 82
kCALayerMaxYMargin constant 82
kCALayerMinXMargin constant 81
kCALayerMinYMargin constant 82
kCALayerNotSizable constant 81
kCALayerRightEdge constant 83
kCALayerTopEdge constant 83
kCALayerWidthSizable constant 81
kCAMediaTimingFunctionEaseIn constant 92
kCAMediaTimingFunctionEaseInEaseOut constant

93
kCAMediaTimingFunctionEaseOut constant 92
kCAMediaTimingFunctionLinear constant 92
kCAOnOrderIn constant 82
kCAOnOrderOut constant 82
kCAScrollBoth constant 113
kCAScrollHorizontally constant 113
kCAScrollNone constant 113
kCAScrollVertically constant 113
kCATransactionAnimationDuration constant 128
kCATransactionDisableActions constant 128
kCATransition constant 82
kCATransitionFade constant 132
kCATransitionFromBottom constant 133
kCATransitionFromLeft constant 133
kCATransitionFromRight constant 133
kCATransitionFromTop constant 133
kCATransitionMoveIn constant 132
kCATransitionPush constant 132
kCATransitionReveal constant 132
kCATruncationEnd constant 119
kCATruncationMiddle constant 119
kCATruncationNone constant 119
kCATruncationStart constant 119
kCIApplyOptionDefinition constant 172
kCIApplyOptionExtent constant 172

373
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kCIApplyOptionUserInfo constant 172
kCIAttributeClass constant 165
kCIAttributeDefault constant 166
kCIAttributeDescription constant 165
kCIAttributeDisplayName constant 166
kCIAttributeFilterCategories constant 165
kCIAttributeFilterDisplayName constant 165
kCIAttributeFilterName constant 165
kCIAttributeIdentity constant 166
kCIAttributeMax constant 166
kCIAttributeMin constant 166
kCIAttributeName constant 166
kCIAttributeReferenceDocumentation constant

165
kCIAttributeSliderMax constant 166
kCIAttributeSliderMin constant 166
kCIAttributeType constant 166
kCIAttributeTypeAngle constant 167
kCIAttributeTypeBoolean constant 167
kCIAttributeTypeCount constant 168
kCIAttributeTypeDistance constant 167
kCIAttributeTypeGradient constant 169
kCIAttributeTypeInteger constant 167
kCIAttributeTypeOffset constant 168
kCIAttributeTypeOpaqueColor constant 169
kCIAttributeTypePosition constant 168
kCIAttributeTypePosition3 constant 168
kCIAttributeTypeRectangle constant 168
kCIAttributeTypeScalar constant 167
kCIAttributeTypeTime constant 167
kCICategoryBlur constant 171
kCICategoryBuiltIn constant 172
kCICategoryColorAdjustment constant 170
kCICategoryColorEffect constant 170
kCICategoryCompositeOperation constant 170
kCICategoryDistortionEffect constant 169
kCICategoryFilterGenerator constant 172
kCICategoryGenerator constant 171
kCICategoryGeometryAdjustment constant 170
kCICategoryGradient constant 171
kCICategoryHalftoneEffect constant 170
kCICategoryHighDynamicRange constant 172
kCICategoryInterlaced constant 171
kCICategoryNonSquarePixels constant 172
kCICategoryReduction constant 171
kCICategorySharpen constant 171
kCICategoryStillImage constant 171
kCICategoryStylize constant 171
kCICategoryTileEffect constant 170
kCICategoryTransition constant 170
kCICategoryVideo constant 171
kCIContextOutputColorSpace constant 151
kCIContextUseSoftwareRenderer constant 151

kCIContextWorkingColorSpace constant 151
kCIFilterGeneratorExportedKey constant 192
kCIFilterGeneratorExportedKeyName constant 192
kCIFilterGeneratorExportedKeyTargetObject

constant 192
kCIFormatARGB8 constant 219
kCIFormatRGBA16 constant 219
kCIFormatRGBAf constant 220
kCIImageColorSpace constant 220
kCIImageProviderTileSize constant 270
kCIImageProviderUserInfo constant 271
kCIInputAllowDraftModeKey constant 178
kCIInputAngleKey constant 175
kCIInputAspectRatioKey constant 175
kCIInputBackgroundImageKey constant 174
kCIInputBiasKey constant 179
kCIInputBoostKey constant 177
kCIInputBoostShadowAmountKey constant 179
kCIInputBrightnessKey constant 176
kCIInputCenterKey constant 175
kCIInputColorKey constant 176
kCIInputContrastKey constant 176
kCIInputDecoderVersionKey constant 177
kCIInputEnableChromaticNoiseTrackingKey

constant 179
kCIInputEnableSharpeningKey constant 179
kCIInputEVKey constant 175
kCIInputExtentKey constant 176
kCIInputGradientImageKey constant 176
kCIInputIgnoreImageOrientationKey constant 179
kCIInputImageKey constant 174
kCIInputImageOrientationKey constant 179
kCIInputIntensityKey constant 175
kCIInputMaskImageKey constant 176
kCIInputNeutralChromaticityXKey constant 178
kCIInputNeutralChromaticityYKey constant 178
kCIInputNeutralLocationKey constant 178
kCIInputNeutralTemperatureKey constant 178
kCIInputNeutralTintKey constant 178
kCIInputRadiusKey constant 175
kCIInputRefractionKey constant 175
kCIInputSaturationKey constant 176
kCIInputScaleFactorKey constant 178
kCIInputScaleKey constant 175
kCIInputShadingImageKey constant 176
kCIInputSharpnessKey constant 175
kCIInputTargetImageKey constant 176
kCIInputTimeKey constant 174
kCIInputTransformKey constant 174
kCIInputWidthKey constant 175
kCIOutputImageKey constant 174
kCISamplerAffineMatrix constant 240
kCISamplerFilterLinear constant 241

374
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kCISamplerFilterMode constant 240
kCISamplerFilterNearest constant 241
kCISamplerWrapBlack constant 241
kCISamplerWrapClamp constant 241
kCISamplerWrapMode constant 240
kCISupportedDecoderVersionsKey constant 177
kCIUIParameterSet constant 173
kCIUISetAdvanced constant 173
kCIUISetBasic constant 173
kCIUISetDevelopment constant 173
kCIUISetIntermediate constant 173
kCVAttachmentMode_ShouldNotPropagate constant

344
kCVAttachmentMode_ShouldPropagate constant 344
kCVBufferMovieTimeKey constant 343
kCVBufferNonPropagatedAttachmentsKey constant

344
kCVBufferPropagatedAttachmentsKey constant 344
kCVBufferTimeScaleKey constant 343
kCVBufferTimeValueKey constant 343
kCVImageBufferCGColorSpaceKey constant 347
kCVImageBufferCleanApertureHeightKey constant

348
kCVImageBufferCleanApertureHorizontalOffsetKey

constant 348
kCVImageBufferCleanApertureKey constant 348
kCVImageBufferCleanApertureVerticalOffsetKey

constant 348
kCVImageBufferCleanApertureWidthKey constant

348
kCVImageBufferDisplayDimensionsKey constant

349
kCVImageBufferDisplayHeightKey constant 349
kCVImageBufferDisplayWidthKey constant 349
kCVImageBufferFieldCountKey constant 348
kCVImageBufferFieldDetailKey constant 348
kCVImageBufferFieldDetailSpatialFirstLineEarly

constant 349
kCVImageBufferFieldDetailSpatialFirstLineLate

constant 349
kCVImageBufferFieldDetailTemporalBottomFirst

constant 348
kCVImageBufferFieldDetailTemporalTopFirst

constant 348
kCVImageBufferGammaLevelKey constant 347
kCVImageBufferPixelAspectRatioHorizontalSpacingKey

constant 349
kCVImageBufferPixelAspectRatioKey constant 349
kCVImageBufferPixelAspectRatioVerticalSpacingKey

constant 349
kCVImageBufferPreferredCleanApertureKey

constant 348
kCVImageBufferYCbCrMatrixKey constant 349

kCVImageBufferYCbCrMatrix_ITU_R_601_4 constant
350

kCVImageBufferYCbCrMatrix_ITU_R_709_2 constant
350

kCVImageBufferYCbCrMatrix_SMPTE_240M_1995
constant 350

kCVIndefiniteTime constant 345
kCVOpenGLBufferHeight constant 350
kCVOpenGLBufferInternalFormat constant 350
kCVOpenGLBufferMaximumMipmapLevel constant 351
kCVOpenGLBufferPoolMaximumBufferAgeKey

constant 351
kCVOpenGLBufferPoolMinimumBufferCountKey

constant 351
kCVOpenGLBufferTarget constant 350
kCVOpenGLBufferWidth constant 350
kCVPixelBufferBytesPerRowAlignmentKey constant

352
kCVPixelBufferCGBitmapContextCompatibilityKey

constant 352
kCVPixelBufferCGImageCompatibilityKey constant

352
kCVPixelBufferExtendedPixelsBottomKey constant

352
kCVPixelBufferExtendedPixelsLeftKey constant

352
kCVPixelBufferExtendedPixelsRightKey constant

352
kCVPixelBufferExtendedPixelsTopKey constant

352
kCVPixelBufferHeightKey constant 352
kCVPixelBufferMemoryAllocatorKey constant 352
kCVPixelBufferOpenGLCompatibilityKey constant

353
kCVPixelBufferPixelFormatTypeKey constant 351
kCVPixelBufferPoolMaximumBufferAgeKey constant

353
kCVPixelBufferPoolMinimumBufferCountKey

constant 353
kCVPixelBufferWidthKey constant 352
kCVPixelFormatBitsPerBlock constant 355
kCVPixelFormatBlockHeight constant 355
kCVPixelFormatBlockHorizontalAlignment

constant 355
kCVPixelFormatBlockVerticalAlignment constant

355
kCVPixelFormatBlockWidth constant 354
kCVPixelFormatCGBitmapContextCompatibility

constant 356
kCVPixelFormatCGBitmapInfo constant 356
kCVPixelFormatCGImageCompatibility constant

356
kCVPixelFormatCodecType constant 354

375
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kCVPixelFormatConstant constant 354
kCVPixelFormatFillExtendedPixelsCallback

constant 356
kCVPixelFormatFourCC constant 354
kCVPixelFormatHorizontalSubsampling constant

355
kCVPixelFormatName constant 354
kCVPixelFormatOpenGLCompatibility constant 356
kCVPixelFormatOpenGLFormat constant 355
kCVPixelFormatOpenGLInternalFormat constant

356
kCVPixelFormatOpenGLType constant 355
kCVPixelFormatPlanes constant 354
kCVPixelFormatQDCompatibility constant 356
kCVPixelFormatVerticalSubsampling constant 355
kCVReturnAllocationFailed constant 359
kCVReturnDisplayLinkAlreadyRunning constant

359
kCVReturnDisplayLinkCallbacksNotSet constant

359
kCVReturnDisplayLinkNotRunning constant 359
kCVReturnError constant 358
kCVReturnFirst constant 358
kCVReturnInvalidArgument constant 358
kCVReturnInvalidDisplay constant 359
kCVReturnInvalidPixelBufferAttributes constant

359
kCVReturnInvalidPixelFormat constant 359
kCVReturnInvalidPoolAttributes constant 359
kCVReturnInvalidSize constant 359
kCVReturnLast constant 360
kCVReturnPixelBufferNotOpenGLCompatible

constant 359
kCVReturnPoolAllocationFailed constant 359
kCVReturnSuccess constant 358
kCVSMPTETimeRunning constant 357
kCVSMPTETimeType24 constant 357
kCVSMPTETimeType25 constant 357
kCVSMPTETimeType2997 constant 358
kCVSMPTETimeType2997Drop constant 358
kCVSMPTETimeType30 constant 358
kCVSMPTETimeType30Drop constant 357
kCVSMPTETimeType5994 constant 358
kCVSMPTETimeType60 constant 358
kCVSMPTETimeValid constant 357
kCVTimeIsIndefinite constant 345
kCVTimeStampBottomField constant 346
kCVTimeStampHostTimeValid constant 346
kCVTimeStampIsInterlaced constant 347
kCVTimeStampRateScalarValid constant 346
kCVTimeStampSMPTETimeValid constant 346
kCVTimeStampTopField constant 346
kCVTimeStampVideoHostTimeValid constant 347

kCVTimeStampVideoRefreshPeriodValid constant
346

kCVTimeStampVideoTimeValid constant 346
kCVZeroTime constant 345
kernelsWithString: class method 228
keyPath instance property 103
keyTimes instance property 36

L

layer class method 63
layer instance property 106
layoutIfNeeded instance method 73
layoutManager class method 34
layoutManager instance property 55
layoutSublayers instance method 73
layoutSublayersOfLayer: <NSObject> instance

method 260
levelsOfDetail instance property 122
levelsOfDetailBias instance property 122
loadAllPlugIns class method 232
load: protocol instance method 273
loadNonExecutablePlugIns class method 232
loadPlugIn:allowNonExecutable: class method 232
localizedDescriptionForFilterName: class method

158
localizedNameForCategory: class method 159
localizedNameForFilterName: class method 159
localizedReferenceDocumentationForFilterName:

class method 160

M

magnificationFilter instance property 55
mask instance property 55
masksToBounds instance property 56
minificationFilter instance property 56
modelLayer instance method 73

N

name instance method 228
name instance property 56, 182
needsDisplayOnBoundsChange instance property 56
nextFrameTime instance method 108
numberOfComponents instance method 141

376
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

O

opacity instance property 57
opaque instance property 57
OpenGL Buffer Attribute Keys 350
OpenGL Buffer Pool Attribute Keys 351
Options for Applying a Filter 172
outputKeys instance method 164

P

path instance property 37
Pixel Buffer Attribute Keys 351
Pixel Buffer Pool Attribute Keys 353
Pixel Format Description Keys 353
Pixel Formats 219
position instance property 57
Predefined timing functions 92
preferredFrameSize instance method 74
preferredSizeOfLayer:<NSObject> instance method

260
presentationLayer instance method 74
provideImageData:bytesPerRow:origin:size:userInfo:

<NSObject> instance method 269

R

RAW Image Options 177
reclaimResources instance method 150
red instance method 142
registerFilterName: instance method 189
registerFilterName:constructor:classAttributes:

class method 160
releaseCGLContext: instance method 99
releaseCGLPixelFormat: instance method 99
removeAllAnimations instance method 74
removeAnimationForKey: instance method 75
removedOnCompletion instance property 17
removeExportedKey: instance method 190
removeFromSuperlayer instance method 75
render instance method 108
render:toBitmap:rowBytes:bounds:format:colorSpace:

instance method 150
rendererWithCGLContext:options: class method

107
renderInContext: instance method 75
repeatCount protocol property 265
repeatDuration protocol property 266
replaceSublayer:with: instance method 76
resizeSublayersWithOldSize: instance method 76

resizeWithOldSuperlayerSize: instance method 77
Rotation Mode Values 38
rotationMode instance property 37
runActionForKey:object:arguments: protocol

instance method 257

S

Sampler Option Keys 240
Sampler Option Values 240
samplerWithImage: class method 236
samplerWithImage:keysAndValues: class method

236
samplerWithImage:options: class method 237
Scaling Filters 85
Scroll Modes 113
scrollMode instance property 112
scrollPoint: instance method 77
scrollRectToVisible: instance method 77
scrollToPoint: instance method 112
scrollToRect: instance method 112
setAffineTransform: instance method 78
setAttributes:forExportedKey: instance method

190
setClassAttributes: instance method 190
setDefaults instance method 164
setImage: instance method 224
setImage:dirtyRect: instance method 225
setNeedsDisplay instance method 78
setNeedsDisplayInRect: instance method 78
setNeedsLayout instance method 79
setROISelector: instance method 229
setValue:forKey: class method 127
shadowColor instance property 58
shadowOffset instance property 58
shadowOpacity instance property 58
shadowRadius instance property 59
shapeWithRect: class method 194
shouldArchiveValueForKey: instance method 19, 79
SMPTE State Flags 356
SMPTE Time Types 357
speed protocol property 266
startProgress instance property 131
string instance property 118
stringRepresentation instance method 142, 250
style instance property 59
sublayers instance property 60
sublayerTransform instance property 60
subtype instance property 131
superlayer instance property 60

377
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

T

tileSize instance property 123
timeOffset protocol property 266
timingFunction instance property 17
timingFunctions instance property 38
toValue instance property 25
Transaction properties 128
transform instance property 61
Transform structure 86
transformBy:interior: instance method 196
Truncation modes 119
truncationMode instance property 118
type instance property 131

U

unionWith: instance method 197
unionWithRect: instance method 197
updateBounds instance method 109
User Interface Control Options 173

V

Value calculation modes 39
valueAtIndex: instance method 251
valueForKey: class method 127
values instance property 38
valueWithCATransform3D: class method 253
Vector Quantity Attributes 168
vectorWithString: class method 245
vectorWithValues:count: class method 245
vectorWithX: class method 246
vectorWithX:Y: class method 246
vectorWithX:Y:Z: class method 246
vectorWithX:Y:Z:W: class method 247
visibleRect instance property 61

W

W instance method 251
wrapped instance property 118
writeToURL:atomically: instance method 191

X

X instance method 251

Y

Y instance method 252

Z

Z instance method 252
zPosition instance property 61

378
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	Quartz Core Framework Reference
	Contents
	Introduction
	Part I: Classes
	CAAnimation Class Reference
	Overview
	Tasks
	Archiving Properties
	Providing Default Values for Properties
	Creating an Animation
	Animation Attributes
	Getting and Setting the Delegate
	Animation Progress

	Properties
	delegate
	removedOnCompletion
	timingFunction

	Class Methods
	animation
	defaultValueForKey:

	Instance Methods
	isRemovedOnCompletion
	shouldArchiveValueForKey:

	Delegate Methods
	animationDidStart:
	animationDidStop:finished:

	CAAnimationGroup Class Reference
	Overview
	Tasks
	Grouped Animations

	Properties
	animations

	CABasicAnimation Class Reference
	Overview
	Setting Interpolation Values

	Tasks
	Interpolation Values

	Properties
	byValue
	fromValue
	toValue

	CAConstraint Class Reference
	Overview
	Tasks
	Create a New Constraint

	Class Methods
	constraintWithAttribute:relativeTo:attribute:
	constraintWithAttribute:relativeTo:attribute:offset:
	constraintWithAttribute:relativeTo:attribute:scale:offset:

	Instance Methods
	initWithAttribute:relativeTo:attribute:scale:offset:

	Constants
	CAConstraintAttribute
	Constraint Attribute Type

	CAConstraintLayoutManager Class Reference
	Overview
	Tasks
	Creating the Layout Manager

	Class Methods
	layoutManager

	CAKeyframeAnimation Class Reference
	Overview
	Tasks
	Providing Keyframe Values
	Keyframe Timing
	Rotation Mode

	Properties
	calculationMode
	keyTimes
	path
	rotationMode
	timingFunctions
	values

	Constants
	Rotation Mode Values
	Value calculation modes

	CALayer Class Reference
	Overview
	Tasks
	Creating a Layer
	Accessing the Presentation Layer
	Modifying the Layer Geometry
	Providing Layer Content
	Style Attributes
	Managing the Layer Hierarchy
	Updating Layer Display
	Layer Animations
	Managing Layer Resizing and Layout
	Actions
	Mapping Between Coordinate and Time Spaces
	Hit Testing
	Rendering
	Scrolling
	Modifying the Delegate
	Key-Value Coding Extensions

	Properties
	actions
	anchorPoint
	autoresizingMask
	backgroundColor
	backgroundFilters
	borderColor
	borderWidth
	bounds
	compositingFilter
	constraints
	contents
	contentsGravity
	contentsRect
	cornerRadius
	delegate
	doubleSided
	edgeAntialiasingMask
	filters
	frame
	hidden
	layoutManager
	magnificationFilter
	mask
	masksToBounds
	minificationFilter
	name
	needsDisplayOnBoundsChange
	opacity
	opaque
	position
	shadowColor
	shadowOffset
	shadowOpacity
	shadowRadius
	style
	sublayers
	sublayerTransform
	superlayer
	transform
	visibleRect
	zPosition

	Class Methods
	defaultActionForKey:
	defaultValueForKey:
	layer

	Instance Methods
	actionForKey:
	addAnimation:forKey:
	addConstraint:
	addSublayer:
	affineTransform
	animationForKey:
	containsPoint:
	convertPoint:fromLayer:
	convertPoint:toLayer:
	convertRect:fromLayer:
	convertRect:toLayer:
	convertTime:fromLayer:
	convertTime:toLayer:
	display
	drawInContext:
	hitTest:
	init
	initWithLayer:
	insertSublayer:above:
	insertSublayer:atIndex:
	insertSublayer:below:
	isDoubleSided
	isHidden
	isOpaque
	layoutIfNeeded
	layoutSublayers
	modelLayer
	preferredFrameSize
	presentationLayer
	removeAllAnimations
	removeAnimationForKey:
	removeFromSuperlayer
	renderInContext:
	replaceSublayer:with:
	resizeSublayersWithOldSize:
	resizeWithOldSuperlayerSize:
	scrollPoint:
	scrollRectToVisible:
	setAffineTransform:
	setNeedsDisplay
	setNeedsDisplayInRect:
	setNeedsLayout
	shouldArchiveValueForKey:

	Delegate Methods
	actionForLayer:forKey:
	displayLayer:
	drawLayer:inContext:

	Constants
	Autoresizing Mask
	Action Identifiers
	Edge Antialiasing Mask
	Contents Gravity Values
	Identity Transform
	Scaling Filters
	Transform

	CAMediaTimingFunction Class Reference
	Overview
	Tasks
	Creating Timing Functions
	Accessing the Control Points

	Class Methods
	functionWithControlPoints::::
	functionWithName:

	Instance Methods
	getControlPointAtIndex:values:
	initWithControlPoints::::

	Constants
	Predefined timing functions

	CAOpenGLLayer Class Reference
	Overview
	Tasks
	Drawing the Content
	Managing the Pixel Format
	Managing the Rendering Context

	Properties
	asynchronous

	Instance Methods
	canDrawInCGLContext:pixelFormat:forLayerTime:displayTime:
	copyCGLContextForPixelFormat:
	copyCGLPixelFormatForDisplayMask:
	drawInCGLContext:pixelFormat:forLayerTime:displayTime:
	isAsynchronous
	releaseCGLContext:
	releaseCGLPixelFormat:

	CAPropertyAnimation Class Reference
	Overview
	Tasks
	Animated Key Path
	Property Value Calculation Behavior
	Creating an Animation

	Properties
	additive
	cumulative
	keyPath

	Class Methods
	animationWithKeyPath:

	Instance Methods
	isAdditive
	isCumulative

	CARenderer Class Reference
	Overview
	Tasks
	Rendered Layer
	Renderer Geometry
	Create a New Renderer
	Render a Frame

	Properties
	bounds
	layer

	Class Methods
	rendererWithCGLContext:options:

	Instance Methods
	addUpdateRect:
	beginFrameAtTime:timeStamp:
	endFrame
	nextFrameTime
	render
	updateBounds

	CAScrollLayer Class Reference
	Overview
	Tasks
	Scrolling Constraints
	Scrolling the Layer

	Properties
	scrollMode

	Instance Methods
	scrollToPoint:
	scrollToRect:

	Constants
	Scroll Modes

	CATextLayer Class Reference
	Overview
	Tasks
	Getting and Setting the Text
	Text Visual Properties
	Text Alignment and Truncation

	Properties
	alignmentMode
	font
	fontSize
	foregroundColor
	string
	truncationMode
	wrapped

	Instance Methods
	isWrapped

	Constants
	Truncation modes
	Horizontal alignment modes

	CATiledLayer Class Reference
	Overview
	Tasks
	Visual Fade
	Levels of Detail
	Layer Tile Size

	Properties
	levelsOfDetail
	levelsOfDetailBias
	tileSize

	Class Methods
	fadeDuration

	CATransaction Class Reference
	Overview
	Tasks
	Creating and Committing Transactions
	Getting and Setting Transaction Properties

	Class Methods
	begin
	commit
	flush
	setValue:forKey:
	valueForKey:

	Constants
	Transaction properties

	CATransition Class Reference
	Overview
	Tasks
	Transition Start and End Point
	Transition Properties
	Custom Transition Filter

	Properties
	endProgress
	filter
	startProgress
	subtype
	type

	Constants
	Common Transition Types
	Common Transition Subtypes

	CIColor Class Reference
	Overview
	Tasks
	Initializing Color Objects
	Creating Color Objects
	Getting Color Components

	Class Methods
	colorWithCGColor:
	colorWithRed:green:blue:
	colorWithRed:green:blue:alpha:
	colorWithString:

	Instance Methods
	alpha
	blue
	colorSpace
	components
	green
	initWithCGColor:
	numberOfComponents
	red
	stringRepresentation

	CIContext Class Reference
	Overview
	Tasks
	Creating a Context
	Rendering Images
	Managing Resources

	Class Methods
	contextWithCGContext:options:
	contextWithCGLContext:pixelFormat:options:

	Instance Methods
	clearCaches
	createCGImage:fromRect:
	createCGImage:fromRect:format:colorSpace:
	createCGLayerWithSize:info:
	drawImage:atPoint:fromRect:
	drawImage:inRect:fromRect:
	reclaimResources
	render:toBitmap:rowBytes:bounds:format:colorSpace:

	Constants
	Context Options

	CIFilter Class Reference
	Overview
	Tasks
	Creating a Filter
	Creating a Filter from a RAW Image
	Accessing Registered Filters
	Registering a Filter
	Getting Filter Parameters and Attributes
	Setting Default Values
	Applying a Filter
	Getting Localized Information for Registered Filters

	Class Methods
	filterNamesInCategories:
	filterNamesInCategory:
	filterWithImageData:options:
	filterWithImageURL:options:
	filterWithName:
	filterWithName:keysAndValues:
	localizedDescriptionForFilterName:
	localizedNameForCategory:
	localizedNameForFilterName:
	localizedReferenceDocumentationForFilterName:
	registerFilterName:constructor:classAttributes:

	Instance Methods
	apply:
	apply:arguments:options:
	attributes
	inputKeys
	outputKeys
	setDefaults

	Constants
	Filter Attribute Keys
	Data Type Attributes
	Vector Quantity Attributes
	Color Attribute Keys
	Filter Category Keys
	Options for Applying a Filter
	User Interface Control Options
	Filter Parameter Keys
	RAW Image Options

	CIFilter Core Animation Additions
	Overview
	Tasks
	Naming Filter Instances
	Enabling Filter Instances

	Properties
	enabled
	name

	Instance Methods
	isEnabled

	CIFilterGenerator Class Reference
	Overview
	Tasks
	Creating Filter Generator Objects
	Initializing a Filter Generator Object
	Connecting and Disconnecting Objects
	Managing Exported Keys
	Setting and Getting Class Attributes
	Archiving a Filter Generator Object
	Registering a Filter Chain
	Creating a Filter from a Filter Chain

	Class Methods
	filterGenerator
	filterGeneratorWithContentsOfURL:

	Instance Methods
	classAttributes
	connectObject:withKey:toObject:withKey:
	disconnectObject:withKey:toObject:withKey:
	exportedKeys
	exportKey:fromObject:withName:
	filter
	initWithContentsOfURL:
	registerFilterName:
	removeExportedKey:
	setAttributes:forExportedKey:
	setClassAttributes:
	writeToURL:atomically:

	Constants
	Exported Keys

	CIFilterShape Class Reference
	Overview
	Tasks
	Creating a Filter Shape
	Initializing a Filter Shape
	Modifying a Filter Shape

	Class Methods
	shapeWithRect:

	Instance Methods
	initWithRect:
	insetByX:Y:
	intersectWith:
	intersectWithRect:
	transformBy:interior:
	unionWith:
	unionWithRect:

	CIImage Class Reference
	Overview
	Tasks
	Creating an Image
	Creating an Image by Modifying an Existing Image
	Initializing an Image
	Getting Image Information

	Class Methods
	emptyImage
	imageWithBitmapData:bytesPerRow:size:format:colorSpace:
	imageWithCGImage:
	imageWithCGImage:options:
	imageWithCGLayer:
	imageWithCGLayer:options:
	imageWithColor:
	imageWithContentsOfURL:
	imageWithContentsOfURL:options:
	imageWithCVImageBuffer:
	imageWithCVImageBuffer:options:
	imageWithData:
	imageWithData:options:
	imageWithImageProvider:size:format:colorSpace:options:
	imageWithTexture:size:flipped:colorSpace:

	Instance Methods
	definition
	extent
	imageByApplyingTransform:
	imageByCroppingToRect:
	initWithBitmapData:bytesPerRow:size:format:colorSpace:
	initWithCGImage:
	initWithCGImage:options:
	initWithCGLayer:
	initWithCGLayer:options:
	initWithColor:
	initWithContentsOfURL:
	initWithContentsOfURL:options:
	initWithCVImageBuffer:
	initWithCVImageBuffer:options:
	initWithData:
	initWithData:options:
	initWithImageProvider:size:format:colorSpace:options:
	initWithTexture:size:flipped:colorSpace:

	Constants
	Pixel Formats
	Color Space Key

	CIImageAccumulator Class Reference
	Overview
	Tasks
	Creating an Image Accumulator
	Initializing an Image Accumulator
	Setting an Image
	Obtaining Data From an Image Accumulator
	Resetting an Accumulator

	Class Methods
	imageAccumulatorWithExtent:format:

	Instance Methods
	clear
	extent
	format
	image
	initWithExtent:format:
	setImage:
	setImage:dirtyRect:

	CIKernel Class Reference
	Overview
	Tasks
	Creating a Kernel
	Getting a Kernel Name
	Setting a Selector

	Class Methods
	kernelsWithString:

	Instance Methods
	name
	setROISelector:

	CIPlugIn Class Reference
	Overview
	Tasks
	Loading Plug-ins

	Class Methods
	loadAllPlugIns
	loadNonExecutablePlugIns
	loadPlugIn:allowNonExecutable:

	CISampler Class Reference
	Overview
	Tasks
	Creating a Sampler
	Initializing a Sampler
	Getting Information About the Sampler Object

	Class Methods
	samplerWithImage:
	samplerWithImage:keysAndValues:
	samplerWithImage:options:

	Instance Methods
	definition
	extent
	initWithImage:
	initWithImage:keysAndValues:
	initWithImage:options:

	Constants
	Sampler Option Keys
	Sampler Option Values

	CIVector Class Reference
	Overview
	Tasks
	Creating a Vector
	Initializing a Vector
	Getting Values From a Vector

	Class Methods
	vectorWithString:
	vectorWithValues:count:
	vectorWithX:
	vectorWithX:Y:
	vectorWithX:Y:Z:
	vectorWithX:Y:Z:W:

	Instance Methods
	count
	initWithString:
	initWithValues:count:
	initWithX:
	initWithX:Y:
	initWithX:Y:Z:
	initWithX:Y:Z:W:
	stringRepresentation
	valueAtIndex:
	W
	X
	Y
	Z

	NSValue Core Animation Additions
	Overview
	Tasks
	Creating an NSValue
	Accessing Data

	Class Methods
	valueWithCATransform3D:

	Instance Methods
	CATransform3DValue

	Part II: Protocols
	CAAction Protocol Reference
	Overview
	Tasks
	Responding to an Action

	Instance Methods
	runActionForKey:object:arguments:

	CALayoutManager Protocol Reference
	Overview
	Tasks
	Layout Layers
	Calculate Layer Size

	Instance Methods
	invalidateLayoutOfLayer:
	layoutSublayersOfLayer:
	preferredSizeOfLayer:

	CAMediaTiming Protocol Reference
	Overview
	Tasks
	Animation Start Time
	Repeating Animations
	Duration and Speed
	Playback Modes

	Properties
	autoreverses
	beginTime
	duration
	fillMode
	repeatCount
	repeatDuration
	speed
	timeOffset

	Constants
	Fill Modes

	CIImageProvider Protocol Reference
	Overview
	Tasks
	Providing Image Data

	Instance Methods
	provideImageData:bytesPerRow:origin:size:userInfo:

	Constants
	Image Provider Options

	CIPlugInRegistration Protocol Reference
	Overview
	Tasks
	Initializing Plug-ins

	Instance Methods
	load:

	Part III: Other References
	Core Video Reference
	Overview
	Functions by Task
	CVBuffer Functions
	CVDisplayLink Functions
	CVHostTime Functions
	CVImageBuffer Functions
	CVOpenGLBuffer Functions
	CVOpenGLBufferPool Functions
	CVOpenGLTexture Functions
	CVOpenGLTextureCache Functions
	CVPixelBuffer Functions
	CVPixelBufferPool Functions
	CVPixelFormatDescription Functions

	Functions
	CVBufferGetAttachment
	CVBufferGetAttachments
	CVBufferPropagateAttachments
	CVBufferRelease
	CVBufferRemoveAllAttachments
	CVBufferRemoveAttachment
	CVBufferRetain
	CVBufferSetAttachment
	CVBufferSetAttachments
	CVDisplayLinkCreateWithActiveCGDisplays
	CVDisplayLinkCreateWithCGDisplay
	CVDisplayLinkCreateWithCGDisplays
	CVDisplayLinkCreateWithOpenGLDisplayMask
	CVDisplayLinkGetActualOutputVideoRefreshPeriod
	CVDisplayLinkGetCurrentCGDisplay
	CVDisplayLinkGetCurrentTime
	CVDisplayLinkGetNominalOutputVideoRefreshPeriod
	CVDisplayLinkGetOutputVideoLatency
	CVDisplayLinkGetTypeID
	CVDisplayLinkIsRunning
	CVDisplayLinkRelease
	CVDisplayLinkRetain
	CVDisplayLinkSetCurrentCGDisplay
	CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext
	CVDisplayLinkSetOutputCallback
	CVDisplayLinkStart
	CVDisplayLinkStop
	CVDisplayLinkTranslateTime
	CVGetCurrentHostTime
	CVGetHostClockFrequency
	CVGetHostClockMinimumTimeDelta
	CVImageBufferGetCleanRect
	CVImageBufferGetColorSpace
	CVImageBufferGetDisplaySize
	CVImageBufferGetEncodedSize
	CVOpenGLBufferAttach
	CVOpenGLBufferCreate
	CVOpenGLBufferGetAttributes
	CVOpenGLBufferGetTypeID
	CVOpenGLBufferPoolCreate
	CVOpenGLBufferPoolCreateOpenGLBuffer
	CVOpenGLBufferPoolGetAttributes
	CVOpenGLBufferPoolGetOpenGLBufferAttributes
	CVOpenGLBufferPoolGetTypeID
	CVOpenGLBufferPoolRelease
	CVOpenGLBufferPoolRetain
	CVOpenGLBufferRelease
	CVOpenGLBufferRetain
	CVOpenGLTextureCacheCreate
	CVOpenGLTextureCacheCreateTextureFromImage
	CVOpenGLTextureCacheFlush
	CVOpenGLTextureCacheGetTypeID
	CVOpenGLTextureCacheRelease
	CVOpenGLTextureCacheRetain
	CVOpenGLTextureGetCleanTexCoords
	CVOpenGLTextureGetName
	CVOpenGLTextureGetTarget
	CVOpenGLTextureGetTypeID
	CVOpenGLTextureIsFlipped
	CVOpenGLTextureRelease
	CVOpenGLTextureRetain
	CVPixelBufferCreate
	CVPixelBufferCreateResolvedAttributesDictionary
	CVPixelBufferCreateWithBytes
	CVPixelBufferCreateWithPlanarBytes
	CVPixelBufferFillExtendedPixels
	CVPixelBufferGetBaseAddress
	CVPixelBufferGetBaseAddressOfPlane
	CVPixelBufferGetBytesPerRow
	CVPixelBufferGetBytesPerRowOfPlane
	CVPixelBufferGetDataSize
	CVPixelBufferGetExtendedPixels
	CVPixelBufferGetHeight
	CVPixelBufferGetHeightOfPlane
	CVPixelBufferGetPixelFormatType
	CVPixelBufferGetPlaneCount
	CVPixelBufferGetTypeID
	CVPixelBufferGetWidth
	CVPixelBufferGetWidthOfPlane
	CVPixelBufferIsPlanar
	CVPixelBufferLockBaseAddress
	CVPixelBufferPoolCreate
	CVPixelBufferPoolCreatePixelBuffer
	CVPixelBufferPoolGetAttributes
	CVPixelBufferPoolGetPixelBufferAttributes
	CVPixelBufferPoolGetTypeID
	CVPixelBufferPoolRelease
	CVPixelBufferPoolRetain
	CVPixelBufferRelease
	CVPixelBufferRetain
	CVPixelBufferUnlockBaseAddress
	CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes
	CVPixelFormatDescriptionCreateWithPixelFormatType
	CVPixelFormatDescriptionRegisterDescriptionWithPixelFormatType

	Callbacks
	CVDisplayLinkOutputCallback
	CVFillExtendedPixelsCallBack
	CVPixelBufferReleaseBytesCallback
	CVPixelBufferReleasePlanarBytesCallback

	Data Types
	CVBufferRef
	CVDisplayLinkRef
	CVFillExtendedPixelsCallbackData
	CVImageBufferRef
	CVOptionFlags
	CVOpenGLBufferRef
	CVOpenGLBufferPoolRef
	CVOpenGLTextureRef
	CVOpenGLTextureCacheRef
	CVPixelBufferRef
	CVPixelBufferPoolRef
	CVReturn
	CVSMPTETime
	CVTime
	CVTimeStamp

	Constants
	CVBuffer Attachment Keys
	CVBuffer Attachment Modes
	CVBuffer Attribute Keys
	CVTime Constants
	CVTime Values
	CVTimeStamp Flags
	Image Buffer Attachment Keys
	OpenGL Buffer Attribute Keys
	OpenGL Buffer Pool Attribute Keys
	Pixel Buffer Attribute Keys
	Pixel Buffer Pool Attribute Keys
	Pixel Format Description Keys
	SMPTE State Flags
	SMPTE Time Types

	Result Codes

	Core Animation Function Reference
	Overview
	Functions by Task
	Timing Functions
	Transform Functions

	Functions
	CACurrentMediaTime
	CATransform3DConcat
	CATransform3DEqualToTransform
	CATransform3DGetAffineTransform
	CATransform3DInvert
	CATransform3DIsAffine
	CATransform3DIsIdentity
	CATransform3DMakeAffineTransform
	CATransform3DMakeRotation
	CATransform3DMakeScale
	CATransform3DMakeTranslation
	CATransform3DRotate
	CATransform3DScale
	CATransform3DTranslate

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

