
Quartz Core Reference Update
Graphics & Imaging > Quartz

2007-07-18

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publicationmay be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Applemay
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associatedwith the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, ColorSync, Mac, Mac OS,
Objective-C, Quartz, QuickDraw, andQuickTime
are trademarks of Apple Inc., registered in the
United States and other countries.

Aperture is a trademark of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Quartz Core Reference Update 5

Organization of This Document 5
See Also 5

10.5 Symbol Changes 7

Classes 7
CAAnimation (New) 7
CAConstraint (New) 7
CAConstraintLayoutManager (New) 8
CALayer (New) 8
CAMediaTimingFunction (New) 11
CAOpenGLLayer (New) 11
CAPropertyAnimation (New) 12
CARenderer (New) 12
CAScrollLayer (New) 12
CATiledLayer (New) 13
CATransaction (New) 13
CIContext 13
CIFilter 13
CIFilterGenerator (New) 14
CIImage 15
CIImageAccumulator 15
CIVector 15
NSObject 16
NSValue 16

Protocols 16
CAAction (New) 17
CAMediaTiming (New) 17

C Symbols 17
CAAnimation.h 17
CABase.h 18
CAConstraintLayoutManager.h 18
CALayer.h 19
CAMediaTiming.h 21
CAMediaTimingFunction.h 21
CAScrollLayer.h 21
CATextLayer.h 22
CATransaction.h 22
CATransform3D.h 23
CIFilter.h 24

3
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

CIFilterGenerator.h 26
CIRAWFilter.h 27

10.4 Symbol Changes 31

Classes 31
CIColor (New) 31
CIContext (New) 32
CIFilter (New) 32
CIFilterShape (New) 33
CIImage (New) 34
CIImageAccumulator (New) 36
CIKernel (New) 36
CIPlugIn (New) 37
CISampler (New) 37
CIVector (New) 38
NSObject 38

Protocols 39
CIPlugInRegistration (New) 39

C Symbols 39
CIFilter.h 39
CIImageProvider.h 42
CISampler.h 43

10.3 Symbol Changes 45

Classes 45
C Symbols 45

CVBase.h 45
CVBuffer.h 47
CVDisplayLink.h 48
CVHostTime.h 49
CVImageBuffer.h 50
CVOpenGLBuffer.h 52
CVOpenGLBufferPool.h 52
CVOpenGLTexture.h 53
CVOpenGLTextureCache.h 54
CVPixelBuffer.h 54
CVPixelBufferPool.h 57
CVPixelFormatDescription.h 58
CVReturn.h 60

Document Revision History 63

4
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

This document summarizes the symbols that have been added to the Quartz Core framework. The full
reference documentation notes in what version a symbol was introduced, but sometimes it's useful to see
only the new symbols for a given release.

If you are not familiar with this framework you should refer to the complete framework reference
documentation.

Organization of This Document

Symbols are grouped by class or protocol for Objective-C and by header file for C. For each symbol there is
a link to complete documentation, if available, and a brief description, if available.

See Also

For reference documentation on this framework, see Quartz Core Framework Reference.

Organization of This Document 5
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Introduction toQuartz Core Reference Update

6 See Also
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Quartz Core Reference Update

This article lists the symbols added to QuartzCore.framework in Mac OS X v10.5.

Classes

All of the classes with new symbols are listed alphabetically, with their new class, instance, and delegate
methods described.

CAAnimation (New)

Complete reference information is available in the CAAnimation reference.

Class Methods

Creates and returns a new CAAnimation instance.animation

Specifies the default value of the property with the specified key.defaultValueForKey:

Instance Methods

Specifies whether the value of the property for a given key is
archived.

shouldArchiveValueForKey:

Delegate Methods

Called when the animation begins its active duration.animationDidStart:

Called when the animation completes its active duration or is
removed from the object it is attached to.

animationDidStop:finished:

CAConstraint (New)

Complete reference information is available in the CAConstraint reference.

Classes 7
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Class Methods

Creates and returns an CAConstraint object
with the specified parameters.

constraintWithAttribute:relativeTo:attribute:

Creates and returns an CAConstraint object
with the specified parameters.

constraintWithAttribute:relativeTo:
attribute:offset:

Creates and returns an CAConstraint object
with the specified parameters.

constraintWithAttribute:relativeTo:
attribute:scale:offset:

Instance Methods

Returns an CAConstraint object with the specified
parameters. Designated initializer.

initWithAttribute:relativeTo:
attribute:scale:offset:

CAConstraintLayoutManager (New)

Complete reference information is available in the CAConstraintLayoutManager reference.

Class Methods

Creates and returns a new CAConstraintLayoutManager instance.layoutManager

CALayer (New)

Complete reference information is available in the CALayer reference.

Class Methods

Returns an object that implements the default action for the specified
identifier.

defaultActionForKey:

Specifies the default value of the property with the specified key.defaultValueForKey:

Creates and returns an instance of CALayer.layer

Instance Methods

Returns an object that implements the action for the specified
identifier.

actionForKey:

Add an animation object to the receiver’s render tree for the
specified key.

addAnimation:forKey:

8 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Adds the constraint to the receiver's array of constraint objects.addConstraint:

Appends the layer to the receiver’s sublayers array.addSublayer:

Conveniencemethod for getting the transform property as an affine
transform.

affineTransform

Returns the animation added to the receiver with the specified
identifier.

animationForKey:

Returns whether the receiver contains a specified point.containsPoint:

Converts the point from the specified layer’s coordinate system to
the receiver’s coordinate system.

convertPoint:fromLayer:

Converts the point from the receiver’s coordinate system to the
specified layer’s coordinate system.

convertPoint:toLayer:

Converts the rectangle from the specified layer’s coordinate system
to the receiver’s coordinate system.

convertRect:fromLayer:

Converts the rectangle from the receiver’s coordinate system to the
specified layer’s coordinate system.

convertRect:toLayer:

Converts the time interval from the specified layer’s time space to
the receiver’s time space.

convertTime:fromLayer:

Converts the time interval from the receiver’s time space to the
specified layer’s time space

convertTime:toLayer:

Reload the content of this layer.display

Draws the receiver’s content in the specified graphics context.drawInContext:

Returns the farthest descendant of the receiver in the layer hierarchy
(including itself) that contains a specified point.

hitTest:

init

Override to copy or initialize custom fields of the specified layer.initWithLayer:

Inserts the layer into the receiver’s sublayers array, above the
specified sublayer.

insertSublayer:above:

Inserts the layer as a sublayer of the receiver at the specified index.insertSublayer:atIndex:

Inserts the layer into the receiver’s sublayers array, below the
specified sublayer.

insertSublayer:below:

Recalculate the receiver’s layout, if required.layoutIfNeeded

Called when the layer requires layout.layoutSublayers

Returns the model layer of the receiver, if it represents a current
presentation layer.

modelLayer

Classes 9
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Returns the preferred frame size of the layer in the coordinate space
of the superlayer.

preferredFrameSize

Returns a copy of the layer containing all properties as they were
at the start of the current transaction, with any active animations
applied.

presentationLayer

Remove all animations attached to the receiver.removeAllAnimations

Remove the animation attached to the receiver with the specified
key.

removeAnimationForKey:

Removes the layer from the sublayers array or mask property of the
receiver’s superlayer.

removeFromSuperlayer

Renders the receiver and its sublayers into the specified context.renderInContext:

Replaces the layer in the receiver’s sublayers array with the specified
new layer.

replaceSublayer:with:

Informs the receiver’s sublayers that the receiver’s bounds rectangle
size has changed.

resizeSublayersWithOldSize:

Informs the receiver that the bounds size of its superview has
changed.

resizeWithOldSuperlayerSize:

Scrolls the receiver’s closest ancestor CAScrollLayer so that the
specified point lies at the origin of the layer.

scrollPoint:

Scrolls the receiver’s closest ancestor CAScrollLayer the minimum
distance needed so that the specified rectangle becomes visible.

scrollRectToVisible:

Conveniencemethod for setting the transform property as an affine
transform.

setAffineTransform:

Marks the receiver as needing display before the content is next
committed.

setNeedsDisplay

Marks the region of the receiver within the specified rectangle as
needing display.

setNeedsDisplayInRect:

Called when the preferred size of the receiver may have changed.setNeedsLayout

Specifies whether the value of the property for a given key is
archived.

shouldArchiveValueForKey:

Delegate Methods

Allows the delegate to customize the action for a layer.actionForLayer:forKey:

Allows the delegate to override the display implementation.displayLayer:

10 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Allows the delegate to override the layer’s drawInContext:
implementation.

drawLayer:inContext:

Invalidates the layout of the specified layer.invalidateLayoutOfLayer:

Layout each of the sublayers in the specified layer.layoutSublayersOfLayer:

Returns the preferred size of the specified layer in its coordinate
system.

preferredSizeOfLayer:

CAMediaTimingFunction (New)

Complete reference information is available in the CAMediaTimingFunction reference.

Class Methods

Creates and returns a new instance of CAMediaTimingFunction configured
with the predefined timing function specified by name.

functionWithName:

Instance Methods

Returns the control point for the specified index.getControlPointAtIndex:values:

CAOpenGLLayer (New)

Complete reference information is available in the CAOpenGLLayer reference.

Instance Methods

Returnswhether the receiver should drawOpenGL content
for the specified time.

canDrawInCGLContext:pixelFormat:
forLayerTime:displayTime:

Returns the rendering context the receiver requires for the
specified pixel format.

copyCGLContextForPixelFormat:

Returns the OpenGL pixel format suitable for rendering to
the set of displays specified by the display mask.

copyCGLPixelFormatForDisplayMask:

Draws the OpenGL content for the specified time.drawInCGLContext:pixelFormat:
forLayerTime:displayTime:

Releases the specified rendering context.releaseCGLContext:

Releases the specified OpenGL pixel format object.releaseCGLPixelFormat:

Classes 11
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CAPropertyAnimation (New)

Complete reference information is available in the CAPropertyAnimation reference.

Class Methods

Creates and returns an CAPropertyAnimation instance for the
specified key path.

animationWithKeyPath:

CARenderer (New)

Complete reference information is available in the CARenderer reference.

Class Methods

Creates and returns a CARenderer instance with the render
target specified by the Core OpenGL context.

rendererWithCGLContext:options:

Instance Methods

Adds the rectangle to the update region of the current frame.addUpdateRect:

Begin rendering a frame at the specified time.beginFrameAtTime:timeStamp:

Release any data associated with the current frame.endFrame

Returns the time at which the next update should happen.nextFrameTime

Render the update region of the current frame to the target context.render

Returns the bounds of the update region that contains all pixels that
will be rendered by the current frame.

updateBounds

CAScrollLayer (New)

Complete reference information is available in the CAScrollLayer reference.

Instance Methods

Changes the origin of the receiver to the specified point.scrollToPoint:

Scroll the contents of the receiver to ensure that the rectangle is visible.scrollToRect:

12 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CATiledLayer (New)

Complete reference information is available in the CATiledLayer reference.

Class Methods

The time, in seconds, that newly added images take to "fade-in" to the rendered
representation of the tiled layer.

fadeDuration

CATransaction (New)

Complete reference information is available in the CATransaction reference.

Class Methods

Begin a new transaction for the current thread.begin

Commit all changes made during the current transaction.commit

Flushes any extant implicit transaction.flush

Sets the arbitrary keyed-data for the specified key.setValue:forKey:

Returns the arbitrary keyed-data specified by the given key.valueForKey:

CIContext

Complete reference information is available in the CIContext reference.

Instance Methods

Creates a Quartz 2D image from a
region of a CIImage object.

createCGImage:fromRect:format:colorSpace:

Renders to the given bitmap.render:toBitmap:rowBytes:bounds:format:colorSpace:

CIFilter

Complete reference information is available in the CIFilter reference.

Classes 13
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Class Methods

Returns a CIFilter object initialized with RAW
image data supplied to the method.

filterWithImageData:options:

Returns a CIFilter object initialized with data
from a RAW image file.

filterWithImageURL:options:

Returns the localized description of a filter
for display in the user interface.

localizedDescriptionForFilterName:

Returns the location of the localized reference
documentation that describes the filter.

localizedReferenceDocumentationForFilterName:

CIFilterGenerator (New)

Complete reference information is available in the CIFilterGenerator reference.

Class Methods

Creates and returns an empty filter generator object.filterGenerator

Creates and returns a filter generator object and initializes it
with the contents of a filter generator file.

filterGeneratorWithContentsOfURL:

Instance Methods

Retrieves the class attributes associated with a
filter.

classAttributes

Adds an object to the filter chain.connectObject:withKey:toObject:withKey:

Removes the connection between two objects
in the filter chain.

disconnectObject:withKey:toObject:withKey:

Returns an array of the exported keys.exportedKeys

Exports an input or output key of an object in
the filter chain.

exportKey:fromObject:withName:

Creates a filter object based on the filter chain.filter

Initializes a filter generator object with the
contents of a filter generator file.

initWithContentsOfURL:

Registers the name associated with a filter chain.registerFilterName:

Removes a key that was previously exported.removeExportedKey:

14 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Sets a dictionary of attributes for an exported
key.

setAttributes:forExportedKey:

Seta the class attributes for a filter.setClassAttributes:

Archives a filter generator object to a filter
generator file.

writeToURL:atomically:

CIImage

Complete reference information is available in the CIImage reference.

Class Methods

Creates and returns an empty image object.emptyImage

Creates and returns an image of infinite extent that is initialized the
specified color.

imageWithColor:

Instance Methods

Returns a new image that represents the original image after
cropping to a rectangle.

imageByCroppingToRect:

Initializes an image with the specified color.initWithColor:

CIImageAccumulator

Complete reference information is available in the CIImageAccumulator reference.

Instance Methods

Resets the accumulator, discarding any pending updates and the current content.clear

CIVector

Complete reference information is available in the CIVector reference.

Instance Methods

Initializes a vector with values provided in a string representation.initWithString:

Classes 15
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

NSObject

Complete reference information is available in the NSObject reference.

Instance Methods

Allows the delegate to customize the action for a layer.actionForLayer:forKey:

Called when the animation begins its active duration.animationDidStart:

Called when the animation completes its active duration or is
removed from the object it is attached to.

animationDidStop:finished:

Allows the delegate to override the display implementation.displayLayer:

Allows the delegate to override the layer’s drawInContext:
implementation.

drawLayer:inContext:

Invalidates the layout of the specified layer.invalidateLayoutOfLayer:

Layout each of the sublayers in the specified layer.layoutSublayersOfLayer:

Returns the preferred size of the specified layer in its coordinate
system.

preferredSizeOfLayer:

NSValue

Complete reference information is available in the NSValue reference.

Class Methods

Creates and returns an NSValue object that contains a given
CATransform3D structure.

valueWithCATransform3D:

Instance Methods

Returns an CATransform3D structure representation of the receiver.CATransform3DValue

Protocols

All of the protocols with new symbols are listed alphabetically, with their new methods described.

16 Protocols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CAAction (New)

Complete reference information is available in the CAAction reference.

Instance Methods

Called to trigger the action specified by the identifier.runActionForKey:object:arguments:

CAMediaTiming (New)

Complete reference information is available in the CAMediaTiming reference.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CAAnimation.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

calculationMode

endProgress

Each keyframe value is used in turn, no interpolated values are
calculated.

kCAAnimationDiscrete

Simple linear calculation between keyframe values.kCAAnimationLinear

Keyframe values are interpolated to produce an even pace
throughout the animation. This mode is not currently
implemented

kCAAnimationPaced

The objects travel on a tangent to the path.kCAAnimationRotateAuto

The objects travel at a 180 degree tangent to the path.kCAAnimationRotateAutoReverse

The layer’s content fades as it becomes visible or hidden.kCATransitionFade

The transition begins at the bottom of the layer.kCATransitionFromBottom

The transition begins at the left side of the layer.kCATransitionFromLeft

C Symbols 17
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The transition begins at the right side of the layer.kCATransitionFromRight

The transition begins at the top of the layer.kCATransitionFromTop

The layer’s content slides into place over any existing content.
The “Common Transition Subtypes” are usedwith this transition.

kCATransitionMoveIn

The layer’s content pushes any existing content as it slides into
place. The “Common Transition Subtypes” are used with this
transition.

kCATransitionPush

The layer’s content is revealed gradually in the direction specified
by the transition subtype. The “Common Transition Subtypes”
are used with this transition.

kCATransitionReveal

keyTimes

rotationMode

startProgress

subtype

timingFunctions

CABase.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the current absolute time, in seconds.CACurrentMediaTime

CAConstraintLayoutManager.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The constraint attribute type.CAConstraintAttribute

The height of a layer.kCAConstraintHeight

The right edge of a layer’s frame.kCAConstraintMaxX

The top edge of a layer’s frame.kCAConstraintMaxY

18 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The horizontal location of the center of a layer’s frame.kCAConstraintMidX

The vertical location of the center of a layer’s frame.kCAConstraintMidY

The left edge of a layer’s frame.kCAConstraintMinX

The bottom edge of a layer’s frame.kCAConstraintMinY

The width of a layer.kCAConstraintWidth

These constants represent the geometric edge or axis of a
constraint.

_CAConstraintAttribute

CALayer.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

These constants are used by the autoresizingMask property.CAAutoresizingMask

This mask is used by the edgeAntialiasingMask property.CAEdgeAntialiasingMask

Linear interpolation filter.kCAFilterLinear

Nearest neighbor interpolation filter.kCAFilterNearest

The content is horizontally centered at the bottom-edge of the
bounds rectangle.

kCAGravityBottom

The content is positioned in the bottom-left corner of the bounds
rectangle.

kCAGravityBottomLeft

The content is positioned in the bottom-right corner of the bounds
rectangle.

kCAGravityBottomRight

The content is horizontally and verticallycentered in the bounds
rectangle.

kCAGravityCenter

The content is vertically centered at the left-edge of the bounds
rectangle.

kCAGravityLeft

The content is resized to fit the entire bounds rectangle.kCAGravityResize

The content is resized to fit the bounds rectangle, preserving the
aspect of the content. If the content does not completely fill the
bounds rectangle, the content is centered in the partial axis.

kCAGravityResizeAspect

The content is resized to completely fill the bounds rectangle, while
still preserving the aspect of the content. The content is centered in
the axis it exceeds.

kCAGravityResizeAspectFill

C Symbols 19
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The content is vertically centered at the right-edge of the bounds
rectangle.

kCAGravityRight

The content is horizontally centered at the top-edge of the bounds
rectangle.

kCAGravityTop

The content is positioned in the top-left corner of the bounds
rectangle.

kCAGravityTopLeft

The content is positioned in the top-right corner of the bounds
rectangle.

kCAGravityTopRight

Specifies that the bottom edge of the receiver’s content should be
antialiased.

kCALayerBottomEdge

The receiver’s height is flexible.kCALayerHeightSizable

Specifies that the left edge of the receiver’s content should be
antialiased.

kCALayerLeftEdge

The right margin between the receiver and its superview is flexible.kCALayerMaxXMargin

The top margin between the receiver and its superview is flexible.kCALayerMaxYMargin

The left margin between the receiver and its superview is flexible.kCALayerMinXMargin

The bottommargin between the receiver and its superview is flexible.kCALayerMinYMargin

The receiver cannot be resized.kCALayerNotSizable

Specifies that the right edge of the receiver’s content should be
antialiased.

kCALayerRightEdge

Specifies that the top edge of the receiver’s content should be
antialiased.

kCALayerTopEdge

The receiver’s width is flexible.kCALayerWidthSizable

The identifier that represents the action taken when a layer becomes
visible, either as a result being inserted into the visible layer hierarchy
or the layer is no longer set as hidden.

kCAOnOrderIn

The identifier that represents the action taken when the layer is
removed from the layer hierarchy or is hidden.

kCAOnOrderOut

The identifier that represents a transition animation.kCATransition

20 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CAMediaTiming.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The receiver clamps values before zero to zero when the animation
is completed.

kCAFillModeBackwards

The receiver clamps values at both ends of the object’s time spacekCAFillModeBoth

The receiver remains visible in its final state when the animation is
completed.

kCAFillModeForwards

The receiver is removed from the presentation when the animation
is completed.

kCAFillModeRemoved

CAMediaTimingFunction.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies ease-in pacing. Ease-in pacing causes the
animation to begin slowly, and then speed up as it
progresses.

kCAMediaTimingFunctionEaseIn

Specifies ease-in ease-out pacing. An ease-in ease-out
animation begins slowly, accelerates through the middle
of its duration, and then slows again before completing.

kCAMediaTimingFunctionEaseInEaseOut

Specifies ease-out pacing. An ease-out pacing causes the
animation to begin quickly, and then slow as it completes.

kCAMediaTimingFunctionEaseOut

Specifies linear pacing. A linear pacing causes an animation
to occur evenly over its duration.

kCAMediaTimingFunctionLinear

CAScrollLayer.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

C Symbols 21
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The receiver is able to scroll both horizontally and vertically.kCAScrollBoth

The receiver is able to scroll horizontally.kCAScrollHorizontally

The receiver is unable to scroll.kCAScrollNone

The receiver is able to scroll vertically.kCAScrollVertically

CATextLayer.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Text is visually center aligned.kCAAlignmentCenter

Text is justified.kCAAlignmentJustified

Text is visually left aligned.kCAAlignmentLeft

Use the natural alignment of the text’s script.kCAAlignmentNatural

Text is visually right aligned.kCAAlignmentRight

Each line is displayed so that the beginning fits in the container and
the missing text is indicated by some kind of ellipsis glyph.

kCATruncationEnd

Each line is displayed so that the beginning and end fit in the
container and the missing text is indicated by some kind of ellipsis
glyph in the middle.

kCATruncationMiddle

If the wrapped property is YES, the text is wrapped to the receiver’s
bounds, otherwise the text is clipped to the receiver’s bounds.

kCATruncationNone

Each line is displayed so that the end fits in the container and the
missing text is indicated by some kind of ellipsis glyph.

kCATruncationStart

CATransaction.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Default duration, in seconds, for animations added to layers.
The value for this key must be an instance of NSNumber.

kCATransactionAnimationDuration

22 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

If YES, implicit actions for property changes are suppressed. The
value for this key must be an instance of NSNumber.

kCATransactionDisableActions

CATransform3D.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Concatenate 'b' to 'a' and return the result: t' = a * b.CATransform3DConcat

Returns a Boolean value that indicates whether the two
transforms are exactly equal.

CATransform3DEqualToTransform

Returns the affine transform represented by 't'. If 't' can not be
exactly represented as an affine transform the returned value
is undefined.

CATransform3DGetAffineTransform

Invert 't' and return the result. Returns the original matrix if 't'
has no inverse.

CATransform3DInvert

Returns true if 't' can be exactly represented by an affine
transform.

CATransform3DIsAffine

Returns a Boolean value that indicates whether the transform
is the identity transform.

CATransform3DIsIdentity

Return a transform with the same effect as affine transform
'm'.

CATransform3DMakeAffineTransform

Returns a transform that rotates by 'angle' radians about the
vector '(x, y, z)'. If the vector has length zero the identity
transform is returned.

CATransform3DMakeRotation

Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0;
0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3DMakeScale

Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0;
0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3DMakeTranslation

Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return
the result. If the vector has zero length the behavior is
undefined: t' = rotation(angle, x, y, z) * t.

CATransform3DRotate

Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy,
sz) * t.

CATransform3DScale

Translate 't' by '(tx, ty, tz)' and return the result: * t' =
translate(tx, ty, tz) * t.

CATransform3DTranslate

C Symbols 23
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines the standard transform matrix used throughout
Core Animation.

CATransform3D

The identity transform: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1].CATransform3DIdentity

m13

m14

m23

m24

m31

m32

m33

m34

m41

m42

m43

m44

CIFilter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The localized description of the filter. This description should
inform the end user what the filter does and be short
enough to display in the user interface for the filter. It is not
intended to be technically detailed.

kCIAttributeDescription

The localized reference documentation for the filter. The
reference should provide developers with technical details.

kCIAttributeReferenceDocumentation

A positive integer value.kCIAttributeTypeCount

An integer value.kCIAttributeTypeInteger

24 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

A filter created by chaining several filters together and then
packaged as a CIFilterGenerator object.

kCICategoryFilterGenerator

A filter that reduces image data. These filters are used to
solve image analysis problems.

kCICategoryReduction

A key for a scalar value (NSNumber) that specifies an angle.kCIInputAngleKey

A key for a scalar value (NSNumber) that specifies a ratio.kCIInputAspectRatioKey

A key for the CIImage object to use as a background image.kCIInputBackgroundImageKey

A key for a scalar value (NSNumber) that specifies a
brightness level.

kCIInputBrightnessKey

A key for a CIVector object that specifies the center of the
area, as x and y- coordinates, to be filtered.

kCIInputCenterKey

A key for a CIColor object that specifies a color value.kCIInputColorKey

A key for a scalar value (NSNumber) that specifies a contrast
level.

kCIInputContrastKey

A key for a scalar value (NSNumber) that specifies howmany
F-stops brighter or darker the image should be.

kCIInputEVKey

A key for a CIVector object that specifies a rectangle that
defines the extent of the effect.

kCIInputExtentKey

A key for a CIImage object that specifies an environment
mapwith alpha. Typically, this image contains highlight and
shadow.

kCIInputGradientImageKey

A key for the CIImage object to use as an input image. For
filters that also use a background image, this key refers to
the foreground image.

kCIInputImageKey

A key for a scalar value (NSNumber) that specifies an
intensity value.

kCIInputIntensityKey

A key for a CIImage object to use as a mask.kCIInputMaskImageKey

A key for a scalar value (NSNumber) that specifies that
specifies the distance from the center of an effect.

kCIInputRadiusKey

A key for a scalar value (NSNumber) that specifies the index
of refraction of thematerial (such as glass) used in the effect.

kCIInputRefractionKey

A key for a scalar value (NSNumber) that specifies the
amount to adjust the saturation.

kCIInputSaturationKey

A key for a scalar value (NSNumber) that specifies the
amount of the effect.

kCIInputScaleKey

C Symbols 25
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

A key for a CIImage object that specifies an environment
map with alpha values. Typically this image contains
highlight and shadow.

kCIInputShadingImageKey

A key for a scalar value (NSNumber) that specifies the
amount of sharpening to apply.

kCIInputSharpnessKey

A key for a CIImage object that is the target image for a
transition.

kCIInputTargetImageKey

A key for z scalar value (NSNumber) that specifies a time.kCIInputTimeKey

A key for an NSAffineTransform object that specifies a
transformation to apply.

kCIInputTransformKey

A key for a scalar value (NSNumber) that specifies the width
of the effect.

kCIInputWidthKey

A key for the CIImage object produced by a filter.kCIOutputImageKey

The set of input parameters to use. The associated value
can be kCIUISetBasic, kCIUISetIntermediate,
kCIUISetAdvanced, or kCIUISetDevelopment.

kCIUIParameterSet

Controls that are appropriate for an advanced user scenario.kCIUISetAdvanced

Controls that are appropriate for a basic user scenario, that
is, the minimum of settings to control the filter.

kCIUISetBasic

Controls that should be visible only for development
purposes.

kCIUISetDevelopment

Controls that are appropriate for an intermediate user
scenario.

kCIUISetIntermediate

CIFilterGenerator.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The key (CIFilterGeneratorExportedKey) for the
exported parameter. The associated value is the
key name of the parameter you are exporting, such
as inputRadius.

kCIFilterGeneratorExportedKey

26 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The key (CIFilterGeneratorExportedKeyName) for
the name used to export the CIFilterGenerator
object. The associated value is a string that
specifies a unique name for the filter generator
object.

kCIFilterGeneratorExportedKeyName

The target object (CIFilterGeneratorExported-
KeyTargetObject) for the exported key. The
associated value is the name of the object, such
as CIMotionBlur.

kCIFilterGeneratorExportedKeyTargetObject

CIRAWFilter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A key for allowing draft mode. The associated value
is a Boolean value packaged as an NSNumber object.
It’s best not to use draft mode if the image needs to
be drawnwithout draft mode at a later time, because
changing the value from YES to NO is an expensive
operation. If the optional scale factor is smaller than
a certain value, additionally setting draft mode can
improve image decoding speed without any
perceivable loss of quality. However, turning on draft
mode does not have any effect if the scale factor is
not below this threshold.

kCIInputAllowDraftModeKey

A key for the simple bias value to use along with the
exposure adjustment (kCIInputEVKey). The associated
value must be an NSNumber object that specifies
floating-point value. The value has no effect if the
image used for initialization is not RAW.

kCIInputBiasKey

A key for the the amount of boost to apply to an
image. The associated value is a floating-point value
packaged as an NSNumber object. The value must
be in the range of 0...1. A value of 0 indicates no
boost, that is, a linear response. The default value is
1, which indicates full boost.

kCIInputBoostKey

A key for the amount to boost the shadow areas of
the image. The associated value must be an
NSNumber object that specifies floating-point value.
The value has no effect if the image used for
initialization is not RAW.

kCIInputBoostShadowAmountKey

C Symbols 27
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

A key for the version number of the method to be
used for decoding. A newly initialized object defaults
to the newest available decoder version for the given
image type. You can request an alternative, older
version tomaintain compatibility with older releases.
Must be one of kCISupportedDecoderVersions,
otherwise a nil output image is generated. The
associated value must be an NSNumber object that
specifies an integer value in range of 0 to the current
decoder version. When you request a specific version
of the decoder, Core Image produces an image that
is visually the same across different versions of the
operating system. Core Image, however, does not
guarantee that the same bits are produced across
different versions of the operating system. That’s
because the rounding behavior of floating-point
arithmetic can vary due to differences in compilers
or hardware. Note that this option has no effect if the
image used for initialization is not RAW.

kCIInputDecoderVersionKey

A key for progressive chromatic noise tracking (based
on ISO and exposure time). The associated valuemust
be an NSNumber object that specifies a BOOL value
(YES or NO). The default is YES. This option has no
effect if the image used for initialization is not RAW.

kCIInputEnableChromaticNoiseTrackingKey

A key for the sharpening state. The associated value
must be an NSNumber object that specifies a BOOL
value (YES or NO). The default is YES. This option has
no effect if the image used for initialization is not
RAW.

kCIInputEnableSharpeningKey

A key for specifying whether to ignore the image
orientation. The associated value is a Boolean value
packaged as an NSNumber object. The default value
is NO. An image is usually loaded in its proper
orientation, as long as the associated metadata
records its orientation. For special purposes you
might want to load the image in its physical
orientation. The exact meaning of "physical
orientation” is dependent on the specific image.

kCIInputIgnoreImageOrientationKey

A key for the image orientation. The associated value
is an integer value packaged as an NSNumber object.
Valid values are in range 1...8 and follow the EXIF
specification. The value is disregarded when the
kCIIgnoreImageOrientationKey flag is set. You can
change the orientation of the image by overriding
this value. By changing this value you can easily
rotate an image in 90-degree increments.

kCIInputImageOrientationKey

28 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The x value of the chromaticity. The associated value
is a floating-point value packaged as an NSNumber
object. You can query this value to get the current x
value for neutral x, y.

kCIInputNeutralChromaticityXKey

The y value of the chromaticity. The associated value
is a floating-point value packaged as an NSNumber
object. You can query this value to get the current y
value for neutral x, y.

kCIInputNeutralChromaticityYKey

A key for the neutral position. Use this key to set the
location in geometric coordinates of the unrotated
output image that should be used as neutral. You
cannot query this value; it is undefined for reading.
The associated value is a two-element CIVector object
that specifies the location (x, y).

kCIInputNeutralLocationKey

A key for neutral temperature. The associated value
is a floating-point value packaged as an NSNumber
object. You can query this value to get the current
temperature value.

kCIInputNeutralTemperatureKey

A key for the neutral tint. The associated value is a
floating-point value packaged as an NSNumber
object. Use this key to set or fetch the temperature
and tint values. You can query this value to get the
current tint value.

kCIInputNeutralTintKey

A key for the scale factor. The associated value is a
floating-point value packaged as anNSNumber object
that specifies the desired scale factor at which the
image will be drawn. Setting this value can greatly
improve the drawing performance. A value of 1 is the
identity. In some cases, if you change the scale factor
and enable draft mode, performance can decrease.
See kCIAllowDraftModeKey.

kCIInputScaleFactorKey

A key for the supported decoder versions. The
associated value is an NSArray object that contains
all supported decoder versions for the given image
type, sorted in increasingly newer order. Each entry
is an NSDictionary object that contains key-value
pairs. All entries represent a valid version identifier
that can be passed as the kCIDecoderVersion value
for the key kCIDecoderMethodKey. Version values
are read-only; attempting to set this value raises an
exception. Currently, the only defined key is
@"version" which has as its value an NSString that
uniquely describing a given decoder version. This
stringmight not be suitable for user interface display..

kCISupportedDecoderVersionsKey

C Symbols 29
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

30 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

This article lists the symbols added to QuartzCore.framework in Mac OS X v10.4.

Classes

All of the classes with new symbols are listed alphabetically, with their new class, instance, and delegate
methods described.

CIColor (New)

Complete reference information is available in the CIColor reference.

Class Methods

Creates a color object from a Quartz color.colorWithCGColor:

Creates a color object using the specified RGB color component
values

colorWithRed:green:blue:

Creates a color object using the specified RGBA color component
values.

colorWithRed:green:blue:alpha:

Creates a color object using the RGBA color component values
specified by a string.

colorWithString:

Instance Methods

Returns the alpha value of the color.alpha

Returns the blue component of the color.blue

Returns the Quartz 2D color space associated with the color.colorSpace

Returns the color components of the color.components

Returns the green component of the color.green

Initializes a color object with a Quartz color.initWithCGColor:

Returns the number of color components in the color.numberOfComponents

Classes 31
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Returns the red component of the color.red

Returns a formatted string that specifies the components of the color.stringRepresentation

CIContext (New)

Complete reference information is available in the CIContext reference.

Class Methods

Creates a Core Image context from a Quartz
context, using the specified options.

contextWithCGContext:options:

Creates a Core Image context from a CGL context,
using the specified options and pixel format
object.

contextWithCGLContext:pixelFormat:options:

Instance Methods

Frees any cached data, such as temporary images, associated with
the context and runs the garbage collector.

clearCaches

Creates a Quartz 2D image from a region of a CIImage object.createCGImage:fromRect:

Creates a CGLayer object from the provided parameters.createCGLayerWithSize:info:

Renders a region of an image to a point in the context destination.drawImage:atPoint:fromRect:

Renders a region of an image to a rectangle in the context
destination.

drawImage:inRect:fromRect:

Runs the garbage collector to reclaim any resources that the
context no longer requires.

reclaimResources

CIFilter (New)

Complete reference information is available in the CIFilter reference.

Class Methods

Returns an array of all published filter
names that match all the specified
categories.

filterNamesInCategories:

Returns an array of all published filter
names in the specified category.

filterNamesInCategory:

32 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Creates a CIFilter object for a specific kind
of filter.

filterWithName:

Creates a CIFilter object for a specific kind
of filter and initializes the input values.

filterWithName:keysAndValues:

Returns the localized name for the
specified filter category.

localizedNameForCategory:

Returns the localized name for the
specified filter name.

localizedNameForFilterName:

Publishes a custom filter that is not
packaged as an image unit.

registerFilterName:constructor:classAttributes:

Instance Methods

Produces a CIImage object by applying a kernel function.apply:

Produces a CIImage object by applying arguments to a kernel function
and using options to control how the kernel function is evaluated.

apply:arguments:options:

Returns a dictionary of key-value pairs that describe the filter.attributes

Returns an array that contains the names of the input parameters to the
filter.

inputKeys

Returns an array that contains the names of the output parameters for
the filter.

outputKeys

Sets all input values for a filter to default values.setDefaults

CIFilterShape (New)

Complete reference information is available in the CIFilterShape reference.

Class Methods

Creates a filter shape object and initializes it with a rectangle.shapeWithRect:

Instance Methods

Initializes a filter shape object with a rectangle.initWithRect:

Modifies a filter shape object so that it is inset by the specified x and y
values.

insetByX:Y:

Classes 33
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Creates a filter shape object that represents the intersection of the current
filter shape and the specified filter shape object.

intersectWith:

Creates a filter shape that represents the intersection of the current filter
shape and a rectangle.

intersectWithRect:

Creates a filter shape that results from applying a transform to the current
filter shape.

transformBy:interior:

Creates a filter shape that results from the union of the current filter shape
and another filter shape object.

unionWith:

Creates a filter shape that results from the union of the current filter shape
and a rectangle.

unionWithRect:

CIImage (New)

Complete reference information is available in the CIImage reference.

Class Methods

Creates and returns an image object from bitmap
data.

imageWithBitmapData:bytesPerRow:
size:format:colorSpace:

Creates and returns an image object from aQuartz
2D image.

imageWithCGImage:

Creates and returns an image object from aQuartz
2D image using the specified color space.

imageWithCGImage:options:

Creates and returns an image object from the
contents supplied by a CGLayer object.

imageWithCGLayer:

Creates and returns an image object from the
contents supplied by a CGLayer object, using the
specified options.

imageWithCGLayer:options:

Creates and returns an image object from the
contents of a file.

imageWithContentsOfURL:

Creates and returns an image object from the
contents of a file, using the specified options.

imageWithContentsOfURL:options:

Creates and returns an image object from the
contents of CVImageBuffer object.

imageWithCVImageBuffer:

Creates and returns an image object from the
contents of CVImageBuffer object, using the
specified options.

imageWithCVImageBuffer:options:

34 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Creates and returns an image object initialized
with the supplied image data.

imageWithData:

Creates and returns an image object initialized
with the supplied image data, using the specified
options.

imageWithData:options:

imageWithImageProvider:size:width:
format:colorSpace:options:

Creates and returns an image object initialized
with data supplied by an OpenGL texture.

imageWithTexture:size:flipped:colorSpace:

Instance Methods

Returns a filter shape object that represents the
domain of definition of the image.

definition

Returns a rectangle that specifies the extent of the
image.

extent

Returns a new image that represents the original
image after applying an affine transform.

imageByApplyingTransform:

Initializes an image object with bitmap data.initWithBitmapData:bytesPerRow:
size:format:colorSpace:

Initializes an image object with a Quartz 2D image.initWithCGImage:

Initializes an image object with a Quartz 2D image,
using the specified options.

initWithCGImage:options:

Initializes an image object from the contents
supplied by a CGLayer object.

initWithCGLayer:

Initializes an image object from the contents
supplied by a CGLayer object, using the specified
options.

initWithCGLayer:options:

Initializes an image object from the contents of a
file.

initWithContentsOfURL:

Initializes an image object from the contents of a
file, using the specified options.

initWithContentsOfURL:options:

Initializes an image object from the contents of
CVImageBuffer object.

initWithCVImageBuffer:

Initializes an image object from the contents of
CVImageBuffer object, using the specified options.

initWithCVImageBuffer:options:

Initializes an image object with the supplied image
data.

initWithData:

Classes 35
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Initializes an image object with the supplied image
data, using the specified options.

initWithData:options:

initWithImageProvider:size:width:
format:colorSpace:options:

Initializes an image object with data supplied by an
OpenGL texture.

initWithTexture:size:flipped:colorSpace:

CIImageAccumulator (New)

Complete reference information is available in the CIImageAccumulator reference.

Class Methods

Creates an image accumulator with the specified extent and
pixel format.

imageAccumulatorWithExtent:format:

Instance Methods

Returns the extent of the image associated with the image accumulator.extent

Returns the pixel format of the image accumulator.format

Returns the current contents of the image accumulator.image

Initializes an image accumulator with the specified extent and pixel format.initWithExtent:format:

Sets the contents of the image accumulator to the contents of the
specified image object.

setImage:

Updates an image accumulator with a subregion of an image object.setImage:dirtyRect:

CIKernel (New)

Complete reference information is available in the CIKernel reference.

Class Methods

Creates and returns and array of CIKernel objects.kernelsWithString:

Instance Methods

Returns the name of a kernel routine.name

36 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Sets the selector used to query the region of interest of the kernel.setROISelector:

CIPlugIn (New)

Complete reference information is available in the CIPlugIn reference.

Class Methods

Scans directories for files that have the .plugin extension and
then loads the image units.

loadAllPlugIns

Scans directories for files that have the .plugin extension and
then loads only those filters that are marked by the image unit
as non-executable filters.

loadNonExecutablePlugIns

Loads filters from an image unit that have the appropriate
executable status.

loadPlugIn:allowNonExecutable:

CISampler (New)

Complete reference information is available in the CISampler reference.

Class Methods

Creates and returns a sampler that references an image.samplerWithImage:

Creates and returns a sampler that references an image using
options specified as key-value pairs.

samplerWithImage:keysAndValues:

Creates and returns a sampler that references an image using
options specified in a dictionary.

samplerWithImage:options:

Instance Methods

Gets the domain of definition (DOD) of the sampler.definition

Gets the rectangle that specifies the extent of the sampler.extent

Initializes a sampler with an image object.initWithImage:

Initializes the sampler with an image object using options specified
as key-value pairs.

initWithImage:keysAndValues:

Initializes the sampler with an image object using options specified
in a dictionary.

initWithImage:options:

Classes 37
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

CIVector (New)

Complete reference information is available in the CIVector reference.

Class Methods

Creates and returns a vector that is initialized with values provided
in a string representation.

vectorWithString:

Creates and returns a vector that is initialized with the specified
values.

vectorWithValues:count:

Creates and returns a vector that is initialized with one value.vectorWithX:

Creates and returns a vector that is initialized with two values.vectorWithX:Y:

Creates and returns a vector that is initialized with three values.vectorWithX:Y:Z:

Creates and returns a vector that is initialized with four values.vectorWithX:Y:Z:W:

Instance Methods

Returns the number of items in a vector.count

Initializes a vector with the provided values.initWithValues:count:

Initializes the first position of a vector with the provided values.initWithX:

Initializes the first two positions of a vector with the provided values.initWithX:Y:

Initializes the first three positions of a vector with the provided values.initWithX:Y:Z:

Initializes four positions of a vector with the provided values.initWithX:Y:Z:W:

Returns a string representation for a vector.stringRepresentation

Returns a value from a specific position in a vector.valueAtIndex:

Returns the value located in the fourth position in a vector.W

Returns the value located in the first position in a vector.X

Returns the value located in the second position in a vector.Y

Returns the value located in the third position in a vector.Z

NSObject

Complete reference information is available in the NSObject reference.

38 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Instance Methods

provideImageData:bytesPerRow:origin: x:size:width:userInfo:

Protocols

All of the protocols with new symbols are listed alphabetically, with their new methods described.

CIPlugInRegistration (New)

Complete reference information is available in the CIPlugInRegistration reference.

Instance Methods

Loads and initializes an image unit, performing custom tasks as needed.load:

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CIFilter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The domain of definition (DOD) of the produced image. The
associated value is either a Core Image filter shape or a
four-element array (NSArray) that specifies a rectangle.

kCIApplyOptionDefinition

The size of the produced image. The associated value is a
four-element array (NSArray) that specifies the x-value of the
rectangle origin, the y-value of the rectangle origin, and the width
and height.

kCIApplyOptionExtent

Information needed by a callback. The associated value is an object
that Core Image will pass to any callbacks invoked for that filter.

kCIApplyOptionUserInfo

Protocols 39
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

The class of the input parameter for a filter. If you are writing an
image unit (see Image Unit Tutorial), Core Image supports only
these classes for nonexecutable image units: CIColor, CIVector,
CIImage, and NSNumber only. Executable image units may have
input parameters of any class, but Core Image does not generate
an automatic user interface for custom classes (see
CIFilter(IKFilterUIAddition)).

kCIAttributeClass

The default value, specified as a floating-point value, for a filter
parameter.

kCIAttributeDefault

The localized display name of the attribute.kCIAttributeDisplayName

An array of filter category keys that specifies all the categories in
which the filter is a member.

kCIAttributeFilterCategories

The localized version of the filter name that is displayed in the user
interface.

kCIAttributeFilterDisplayName

The filter name, specified as an NSString object.kCIAttributeFilterName

If supplied as a value for a parameter, the parameter has no effect
on the input image.

kCIAttributeIdentity

The maximum value for a filter parameter, specified as a
floating-point value.

kCIAttributeMax

The minimum value for a filter parameter, specified as a
floating-point value.

kCIAttributeMin

The name of the attribute.kCIAttributeName

The maximum value, specified as a floating-point value, to use for
a slider that controls input values for a filter parameter.

kCIAttributeSliderMax

The minimum value, specified as a floating-point value, to use for
a slider that controls input values for a filter parameter.

kCIAttributeSliderMin

The attribute type.kCIAttributeType

An angle.kCIAttributeTypeAngle

A Boolean value.kCIAttributeTypeBoolean

A distance.kCIAttributeTypeDistance

An n-by-1 gradient image used to describe a color ramp.kCIAttributeTypeGradient

An offset. (A 2-element vector type.)kCIAttributeTypeOffset

A Core Image color (CIColor object) that specifies red, green, and
blue component values. Use this key for colors with no alpha
component. If the key is not present, Core Image assumes color
with alpha.

kCIAttributeTypeOpaqueColor

40 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

A two-dimensional location in the working coordinate space. (A
2-element vector type.)

kCIAttributeTypePosition

A three-dimensional location in the working coordinate space. (A
3-element vector type.)

kCIAttributeTypePosition3

A Core Image vector that specifies the x and y values of the
rectangle origin, and thewidth (w) and height (h) of the rectangle.
The vector takes the form [x, y, w, h]. (A 4-element vector type.)

kCIAttributeTypeRectangle

A scalar value.kCIAttributeTypeScalar

A parametric time for transitions, specified as a floating-point value
in the range of 0.0 to 1.0.

kCIAttributeTypeTime

A filter that softens images, decreasing the contrast between the
edges in an image. Examples of blur filters are Gaussian blur and
zoom blur.

kCICategoryBlur

A filter provided by Core Image. This distinguishes built-in filters
from plug-in filters.

kCICategoryBuiltIn

A filter that changes color values. Color adjustment filters are used
to eliminate color casts, adjust hue, and correct brightness and
contrast. Color adjustment filters do not perform color
management; ColorSync performs color management. You can
use Quartz 2D to specify the color space associatedwith an image.
Formore information, see ColorManagementOverview andQuartz
2D Programming Guide.

kCICategoryColorAdjustment

A filter that modifies the color of an image to achieve an artistic
effect. Examples of color effect filters include filters that change a
color image to a sepia image or a monochrome image or that
produces such effects as posterizing.

kCICategoryColorEffect

A filter operates on two image sources, using the color values of
one image to operate on the other. Composite filters perform
computations such as computing maximum values, minimum
values, andmultiplying values between input images. You can use
compositing filters to add effects to an image, crop an image, and
achieve a variety of other effects.

kCICategoryCompositeOperation

A filter that reshapes an image by altering its geometry to create
a 3D effect. Using distortion filters, you can displace portions of
an image, apply lens effects, make a bulge in an image, and
perform other operation to achieve an artistic effect.

kCICategoryDistortionEffect

A filter that generates a pattern, such as a solid color, a
checkerboard, or a star shine. The generated output is typically
used as input to another filter.

kCICategoryGenerator

C Symbols 41
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

A filter that changes the geometry of an image. Some of these
filters are used to warp an image to achieve an artistic effects, but
these filters can also be used to correct problems in the source
image. For example, you can apply an affine transform to straighten
an image that is rotated with respect to the horizon.

kCICategoryGeometryAdjustment

A filter that generates a fill whose color varies smoothly. Exactly
how color varies depends on the type of gradient—linear, radial,
or Gaussian.

kCICategoryGradient

A filter that simulates a variety of halftone screens, to mimic the
halftone process used in print media. The output of these filters
has the familiar “newspaper” look of the various dot patterns.
Filters are typically named after the pattern created by the virtual
halftone screen, such as circular screen or hatched screen.

kCICategoryHalftoneEffect

A filter that works on high dynamic range pixels.kCICategoryHighDynamicRange

A filter that works on interlaced images.kCICategoryInterlaced

A filter that works on non-square pixels.kCICategoryNonSquarePixels

A filter that sharpens images, increasing the contrast between the
edges in an image. Examples of sharpen filters are unsharp mask
and sharpen luminance.

kCICategorySharpen

A filter that works on still images.kCICategoryStillImage

A filter that makes a photographic image look as if it was painted
or sketched. These filters are typically used alone or in combination
with other filters to achieve artistic effects.

kCICategoryStylize

A filter that typically applies an effect to an image and then create
smaller versions of the image (tiles), which are then laid out to
create a pattern that’s infinite in extent.

kCICategoryTileEffect

A filter that provides a bridge between two or more images by
applying a motion effect that defines how the pixels of a source
image yield to that of the destination image.

kCICategoryTransition

A filter that works on video images.kCICategoryVideo

CIImageProvider.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

42 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

A key for the image tiles size. The associated value is an NSArray that
containsNSNumber objects for the dimensions of the image tiles
requested from the image provider.

kCIImageProviderTileSize

A key for data needed by the image provider. The associated value is an
object that contains the needed data.

kCIImageProviderUserInfo

CISampler.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The key for an affinematrix. The associated value is an NSArray object
([a b c d tx ty]) that defines the transformation to apply to the
sampler.

kCISamplerAffineMatrix

Bilinear interpolation.kCISamplerFilterLinear

The key for the filtering to use when sampling the image. Possible
values are kCISamplerFilterNearest and kCISamplerFilterLinear.

kCISamplerFilterMode

Nearest neighbor sampling.kCISamplerFilterNearest

Pixels are transparent black.kCISamplerWrapBlack

Coordinates are clamped to the extent.kCISamplerWrapClamp

The key for the sampler wrap mode. The wrap mode specifies how
Core Image produces pixels that are outside the extent of the sample.
Possible values are kCISamplerWrapBlack and kCISamplerWrapClamp.

kCISamplerWrapMode

C Symbols 43
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

44 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

This article lists the symbols added to QuartzCore.framework in Mac OS X v10.3.

Classes

All of the classes with new symbols are listed alphabetically, with their new class, instance, and delegate
methods described.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CVBase.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Define flags to be used for the display link output callback
function.

CVOptionFlags

A structure for holding a SMPTE time.CVSMPTETime

hostTime

An unknown or indefinite time. For example,
CVDisplayLinkGetNominalOutputVideoRefreshPeriod
returns kCVIndefiniteTime if the display link specified is
not valid.

kCVIndefiniteTime

Time is running.kCVSMPTETimeRunning

24 frames per second (standard film).kCVSMPTETimeType24

25 frames per second (standard PAL).kCVSMPTETimeType25

29.97 frames per second (standard NTSC).kCVSMPTETimeType2997

Classes 45
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

29.97 drop frame.kCVSMPTETimeType2997Drop

30 frames per second.kCVSMPTETimeType30

30 drop frame.kCVSMPTETimeType30Drop

59.94 frames per second.kCVSMPTETimeType5994

60 frames per second.kCVSMPTETimeType60

The full time is valid.kCVSMPTETimeValid

The time value is unknown.kCVTimeIsIndefinite

The timestamp represents the bottom lines of an interlaced
image.

kCVTimeStampBottomField

The value in the host time field is valid.kCVTimeStampHostTimeValid

A convenience constant indicating that the timestamp is
for an interlaced image.

kCVTimeStampIsInterlaced

The value in the rate scalar field is valid.kCVTimeStampRateScalarValid

The value in the SMPTE time field is valid.kCVTimeStampSMPTETimeValid

The timestamp represents the top lines of an interlaced
image.

kCVTimeStampTopField

A convenience constant indicating that both the video
time and host time fields are valid.

kCVTimeStampVideoHostTimeValid

The value in the video refresh period field is valid.kCVTimeStampVideoRefreshPeriodValid

The value in the video time field is valid.kCVTimeStampVideoTimeValid

Zero time or duration. For example,
CVDisplayLinkGetOutputVideoLatency returns
kCVZeroTime for zero video latency.

kCVZeroTime

rateScalar

smpteTime

subframeDivisor

subframes

videoRefreshPeriod

videoTime

videoTimeScale

46 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

CVBuffer.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns a specific attachment of a Core Video buffer.CVBufferGetAttachment

Returns all attachments of a Core Video buffer.CVBufferGetAttachments

Copies all propagatable attachments from one Core Video
buffer to another.

CVBufferPropagateAttachments

Releases a Core Video buffer.CVBufferRelease

Removes all attachments of a Core Video buffer.CVBufferRemoveAllAttachments

Removes a specific attachment of a Core Video buffer.CVBufferRemoveAttachment

Retains a Core Video buffer.CVBufferRetain

Sets or adds an attachment of a Core Video buffer.CVBufferSetAttachment

Sets a set of attachments for a Core Video buffer.CVBufferSetAttachments

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specify the propagation mode of a Core Video buffer
attachment.

CVAttachmentMode

Defines the base type for all Core Video buffers.CVBufferRef

Do not propagate this attachment.kCVAttachmentMode_ShouldNotPropagate

Copy this attachment when using the
CVBufferPropagateAttachments function. For example,
in most cases, you would want to propagate an
attachment bearing a timestamp to each successive
buffer.

kCVAttachmentMode_ShouldPropagate

Themovie time associatedwith the buffer. Generally only
available for frames emitted by QuickTime (type
CFDictionary containing the kCVBufferTimeValueKey and
kCVBufferTimeScaleKey keys).

kCVBufferMovieTimeKey

C Symbols 47
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Attachments that should not be copied when using the
CVBufferPropagateAttachments function (type
CFDictionary, containing a list of attachments as key-value
pairs).

kCVBufferNonPropagatedAttachmentsKey

Attachments that should be copied when using the
CVBufferPropagateAttachments function (type
CFDictionary, containing a list of attachments as key-value
pairs).

kCVBufferPropagatedAttachmentsKey

The time scale associated with the movie.kCVBufferTimeScaleKey

The actual time value associated with the movie.kCVBufferTimeValueKey

CVDisplayLink.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a display link capable of being
used with all active displays.

CVDisplayLinkCreateWithActiveCGDisplays

Creates a display link for a single
display.

CVDisplayLinkCreateWithCGDisplay

Creates a display link for an array of
displays.

CVDisplayLinkCreateWithCGDisplays

Creates a display link from an OpenGL
display mask.

CVDisplayLinkCreateWithOpenGLDisplayMask

Retrieves the actual output refresh
period of a display as measured by the
host time base.

CVDisplayLinkGetActualOutputVideoRefreshPeriod

Gets the current display associatedwith
a display link.

CVDisplayLinkGetCurrentCGDisplay

Retrieves the current (“now”) time of a
given display link.

CVDisplayLinkGetCurrentTime

Retrieves the nominal refresh period of
a display link.

CVDisplayLinkGetNominalOutputVideoRefreshPeriod

Retrieves the nominal latency of a
display link.

CVDisplayLinkGetOutputVideoLatency

Obtains the Core Foundation ID for the
display link data type.

CVDisplayLinkGetTypeID

48 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Indicates whether a given display link
is running.

CVDisplayLinkIsRunning

Releases a display link.CVDisplayLinkRelease

Retains a display link.CVDisplayLinkRetain

Sets the current display of a display link.CVDisplayLinkSetCurrentCGDisplay

Selects the display linkmost optimal for
the current renderer of an OpenGL
context.

CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext

Set the renderer output callback
function.

CVDisplayLinkSetOutputCallback

Activates a display link.CVDisplayLinkStart

Stops a display link.CVDisplayLinkStop

Translates the time in the display link’s
time base from one representation to
another.

CVDisplayLinkTranslateTime

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a pointer to a display link output callback function, which
is called whenever the display link wants the application to output
a frame.

CVDisplayLinkOutputCallback

Defines a display link.CVDisplayLinkRef

CVHostTime.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Retrieves the current value of the host time base.CVGetCurrentHostTime

Retrieve the frequency of the host time base.CVGetHostClockFrequency

Retrieve the smallest possible increment in the host time
base.

CVGetHostClockMinimumTimeDelta

C Symbols 49
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

CVImageBuffer.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the source rectangle of a Core Video image buffer that
represents the clean aperture of the buffer in encoded pixels.

CVImageBufferGetCleanRect

Returns the color space of a Core Video image buffer.CVImageBufferGetColorSpace

Returns the nominal output display size, in square pixels, of a
Core Video image buffer.

CVImageBufferGetDisplaySize

Returns the full encoded dimensions of a Core Video image buffer.CVImageBufferGetEncodedSize

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a Core Video image buffer.CVImageBufferRef

The color space for the buffer (type
CGColorSpaceRef).

kCVImageBufferCGColorSpaceKey

The clean aperture height (type
CFNumber).

kCVImageBufferCleanApertureHeightKey

The clean aperture horizontal offset
(type CFNumber).

kCVImageBufferCleanApertureHorizontalOffsetKey

The clean aperture for the buffer (type
CFDictionary , containing the clean
aperture width, height, and horizontal
and vertical offset key-value pairs).

kCVImageBufferCleanApertureKey

The clean aperture vertical offset (type
CFNumber).

kCVImageBufferCleanApertureVerticalOffsetKey

The clean aperture width (type
CFNumber).

kCVImageBufferCleanApertureWidthKey

The buffer display dimensions (type
CFDictionary containing the buffer
display width and height keys).

kCVImageBufferDisplayDimensionsKey

The buffer display height (type
CFNumber).

kCVImageBufferDisplayHeightKey

50 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

The buffer display width (type
CFNumber).

kCVImageBufferDisplayWidthKey

The field count for the buffer (type
CFNumber).

kCVImageBufferFieldCountKey

Specific information about the field of
a video frame in the buffer (type
CFDictionary, containing the temporal
bottom first and top first and spacial
first-line-early and first-line-late keys).

kCVImageBufferFieldDetailKey

(type CFString).kCVImageBufferFieldDetailSpatialFirstLineEarly

(type CFString).kCVImageBufferFieldDetailSpatialFirstLineLate

(type CFString).kCVImageBufferFieldDetailTemporalBottomFirst

(type CFString).kCVImageBufferFieldDetailTemporalTopFirst

The gamma level for this buffer (type
CFNumber).

kCVImageBufferGammaLevelKey

The horizontal component of the
buffer aspect ratio (type CFNumber).

kCVImageBufferPixelAspectRatioHorizontalSpacingKey

The pixel aspect ratio of the buffer
(type CFDictionary, containing the
horizontal and vertical spacing keys).

kCVImageBufferPixelAspectRatioKey

The vertical component of the buffer
aspect ratio (type CFNumber).

kCVImageBufferPixelAspectRatioVerticalSpacingKey

The preferred clean aperture for the
buffer (type CFDictionary , containing
the clean aperture width, height, and
horizontal and vertical offset key-value
pairs).

kCVImageBufferPreferredCleanApertureKey

The type of conversionmatrix used for
this buffer when converting from
YCbCr to RGB images (type CFString).

kCVImageBufferYCbCrMatrixKey

Specifies the YCbCr to RGB conversion
matrix for standard digital television (
ITU R 601) images.

kCVImageBufferYCbCrMatrix_ITU_R_601_4

Specifies the YCbCr to RGB conversion
matrix for HDTV digital television (ITU
R 709) images.

kCVImageBufferYCbCrMatrix_ITU_R_709_2

Specifies the YCbCR to RGB conversion
matrix for 1920 x 1135 HDTV (SMPTE
240M 1995).

kCVImageBufferYCbCrMatrix_SMPTE_240M_1995

C Symbols 51
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

CVOpenGLBuffer.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Attaches an OpenGL context to a Core Video OpenGL buffer.CVOpenGLBufferAttach

Create a new Core Video OpenGL buffer that can be used for
OpenGL rendering purposes

CVOpenGLBufferCreate

Obtains the attributes of a Core Video OpenGL buffer.CVOpenGLBufferGetAttributes

Obtains the Core Foundation type ID for the OpenGL buffer
type.

CVOpenGLBufferGetTypeID

Releases a Core Video OpenGL buffer.CVOpenGLBufferRelease

Retains a Core Video OpenGL buffer.CVOpenGLBufferRetain

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a Core Video OpenGL buffer.CVOpenGLBufferRef

The height of the buffer.kCVOpenGLBufferHeight

The OpenGL internal format of this buffer.kCVOpenGLBufferInternalFormat

The maximum mipmap level for this buffer.kCVOpenGLBufferMaximumMipmapLevel

The OpenGL target for this buffer.kCVOpenGLBufferTarget

The width of the buffer.kCVOpenGLBufferWidth

CVOpenGLBufferPool.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a new OpenGL buffer pool.CVOpenGLBufferPoolCreate

52 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Creates a new OpenGL buffer from an OpenGL
buffer pool.

CVOpenGLBufferPoolCreateOpenGLBuffer

Returns the pool attributes dictionary for an
Open GL buffer pool.

CVOpenGLBufferPoolGetAttributes

Returns the attributes of OpenGL buffers that
will be created from a buffer pool.

CVOpenGLBufferPoolGetOpenGLBufferAttributes

Obtains the Core Foundation ID for theOpenGL
buffer pool type.

CVOpenGLBufferPoolGetTypeID

Releases an OpenGL buffer pool.CVOpenGLBufferPoolRelease

Retains an OpenGL buffer pool.CVOpenGLBufferPoolRetain

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines an OpenGL buffer pool.CVOpenGLBufferPoolRef

Indicates how long unused buffers should be kept
before they are deallocated (type CFAbsoluteTime).

kCVOpenGLBufferPoolMaximumBufferAgeKey

Indicates the minimum number of buffers to keep
in the pool (type CFNumber).

kCVOpenGLBufferPoolMinimumBufferCountKey

CVOpenGLTexture.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the texture coordinates for the part of the image that
should be displayed.

CVOpenGLTextureGetCleanTexCoords

Returns the texture target name of a CoreVideo OpenGL
texture.

CVOpenGLTextureGetName

Returns the texture target (for example, GL_TEXTURE_2D) of
an OpenGL texture.

CVOpenGLTextureGetTarget

Obtains the Core Foundation ID for the Core Video OpenGL
texture type.

CVOpenGLTextureGetTypeID

Determines whether or not an OpenGL texture is flipped
vertically.

CVOpenGLTextureIsFlipped

C Symbols 53
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Releases a Core Video OpenGL texture.CVOpenGLTextureRelease

Retains a Core Video OpenGL texture.CVOpenGLTextureRetain

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines an OpenGL texture-based image buffer.CVOpenGLTextureRef

CVOpenGLTextureCache.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates an OpenGL texture cache.CVOpenGLTextureCacheCreate

Creates an OpenGL texture object from an
existing image buffer.

CVOpenGLTextureCacheCreateTextureFromImage

Flushes the OpenGL texture cache.CVOpenGLTextureCacheFlush

Returns the Core Foundation ID of the texture
cache type.

CVOpenGLTextureCacheGetTypeID

Releases an OpenGL texture cache.CVOpenGLTextureCacheRelease

Retains an OpenGL texture cache.CVOpenGLTextureCacheRetain

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a CoreVideo OpenGL texture cache.CVOpenGLTextureCacheRef

CVPixelBuffer.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

54 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Creates a single pixel buffer for a given
size and pixel format.

CVPixelBufferCreate

Takes an array of CFDictionary objects
describing various pixel buffer attributes
and tries to resolve them into a single
dictionary.

CVPixelBufferCreateResolvedAttributesDictionary

Creates a pixel buffer for a given size and
pixel format containing data specified by
a memory location.

CVPixelBufferCreateWithBytes

Creates a single pixel buffer in planar
format for a given size and pixel format
containing data specified by a memory
location.

CVPixelBufferCreateWithPlanarBytes

Fills the extended pixels of the pixel buffer.CVPixelBufferFillExtendedPixels

Returns the base address of the pixel
buffer.

CVPixelBufferGetBaseAddress

Returns the base address of the plane at
the specified plane index.

CVPixelBufferGetBaseAddressOfPlane

Returns the number of bytes per row of
the pixel buffer.

CVPixelBufferGetBytesPerRow

Returns the number of bytes per row for
a plane at the specified index in the pixel
buffer.

CVPixelBufferGetBytesPerRowOfPlane

Returns the data size for contiguous planes
of the pixel buffer.

CVPixelBufferGetDataSize

Returns the amount of extended pixel
padding in the pixel buffer.

CVPixelBufferGetExtendedPixels

Returns the height of the pixel buffer.CVPixelBufferGetHeight

Returns the height of the plane at
planeIndex in the pixel buffer.

CVPixelBufferGetHeightOfPlane

Returns the pixel format type of the pixel
buffer.

CVPixelBufferGetPixelFormatType

Returns number of planes of the pixel
buffer.

CVPixelBufferGetPlaneCount

Returns the Core Foundation ID of the
pixel buffer type.

CVPixelBufferGetTypeID

Returns the width of the pixel buffer.CVPixelBufferGetWidth

C Symbols 55
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Returns the width of the plane at a given
index in the pixel buffer.

CVPixelBufferGetWidthOfPlane

Determine if the pixel buffer is planar.CVPixelBufferIsPlanar

Locks the base address of the pixel buffer.CVPixelBufferLockBaseAddress

Releases a pixel buffer.CVPixelBufferRelease

Retains a pixel buffer.CVPixelBufferRetain

Unlocks the base address of the pixel
buffer.

CVPixelBufferUnlockBaseAddress

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a Core Video pixel buffer.CVPixelBufferRef

Defines a pointer to a pixel buffer release
callback function, which is calledwhen a pixel
buffer created by
CVPixelBufferCreateWithBytes is released.

CVPixelBufferReleaseBytesCallback

Defines a pointer to a pixel buffer release
callback function, which is calledwhen a pixel
buffer created by
CVPixelBufferCreateWithPlanarBytes is
released.

CVPixelBufferReleasePlanarBytesCallback

Indicates the number of bytes per row in the
pixel buffer (type CFNumber).

kCVPixelBufferBytesPerRowAlignmentKey

Indicates whether the pixel buffer is
compatible with Core Graphics bitmap
contexts (type CFBoolean).

kCVPixelBufferCGBitmapContextCompatibilityKey

Indicates whether the pixel buffer is
compatible with CGImage types (type
CFBoolean).

kCVPixelBufferCGImageCompatibilityKey

The number of pixels padding the bottom of
the image (type CFNumber).

kCVPixelBufferExtendedPixelsBottomKey

The number of pixels padding the left of the
image (type CFNumber).

kCVPixelBufferExtendedPixelsLeftKey

The number of pixels padding the right of
the image (type CFNumber).

kCVPixelBufferExtendedPixelsRightKey

56 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

The number of pixels padding the top of the
image (type CFNumber).

kCVPixelBufferExtendedPixelsTopKey

The height of the pixel buffer (type
CFNumber).

kCVPixelBufferHeightKey

The allocator used with this buffer (type
CFAllocatorRef).

kCVPixelBufferMemoryAllocatorKey

Indicates whether the pixel buffer is
compatible with OpenGL contexts (type
CFBoolean).

kCVPixelBufferOpenGLCompatibilityKey

The pixel format for this buffer (type
CFNumber, or type CFArray containing an
array of CFNumber types (actually type
OSType)). For a listing of common pixel
formats, see the QuickTime Ice Floe Dispatch
20.

kCVPixelBufferPixelFormatTypeKey

The width of the pixel buffer (type
CFNumber).

kCVPixelBufferWidthKey

CVPixelBufferPool.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a pixel buffer pool.CVPixelBufferPoolCreate

Creates a pixel buffer from a pixel buffer pool.CVPixelBufferPoolCreatePixelBuffer

Returns the pool attributes dictionary for a pixel
buffer pool.

CVPixelBufferPoolGetAttributes

Returns the attributes of pixel buffers that will be
created from this pool.

CVPixelBufferPoolGetPixelBufferAttributes

Returns the Core Foundation ID of the pixel buffer
pool type.

CVPixelBufferPoolGetTypeID

Releases a pixel buffer pool.CVPixelBufferPoolRelease

Retains a pixel buffer pool.CVPixelBufferPoolRetain

C Symbols 57
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a pixel buffer pool.CVPixelBufferPoolRef

The maximum allowable age for a buffer in the pixel
buffer pool (type CFAbsoluteTime).

kCVPixelBufferPoolMaximumBufferAgeKey

Theminimumnumber of buffers allowed in the pixel
buffer pool (type CFNumber).

kCVPixelBufferPoolMinimumBufferCountKey

CVPixelFormatDescription.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns all the pixel format descriptions
known to Core Video.

CVPixelFormatDescriptionArrayCreate-
WithAllPixelFormatTypes

Creates a pixel format description from
a given OSType identifier.

CVPixelFormatDescriptionCreateWithPixelFormatType

Registers a pixel format descriptionwith
Core Video.

CVPixelFormatDescriptionRegister-
DescriptionWithPixelFormatType

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines a pointer to a custom extended pixel-fill
function, which is called whenever the system
needs to pad a buffer holding your custom pixel
format.

CVFillExtendedPixelsCallBack

fillCallBack

The number of bits per block.kCVPixelFormatBitsPerBlock

The height, in pixels, of the smallest
byte-addressable group of pixels (type
CFNumber). Assumed to be one if this key is not
present.

kCVPixelFormatBlockHeight

58 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

The horizontal alignment requirements of this
format (type CFNumber). For example,the
alignment for v210 would be '8' here for the
horizontal case to match the standard v210 row
alignment value of 48. Assumed to be 1 if this
key is not present.

kCVPixelFormatBlockHorizontalAlignment

The vertical alignment requirements of this
format (type CFNumber). Assumed to be 1 if this
key is not present.

kCVPixelFormatBlockVerticalAlignment

The width, in pixels, of the smallest
byte-addressable group of pixels (type
CFNumber.

kCVPixelFormatBlockWidth

Indicates whether this format is compatible with
Core Graphics bitmap contexts(type CFBoolean).

kCVPixelFormatCGBitmapContextCompatibility

The Core Graphics bitmap information for this
pixel format (if applicable).

kCVPixelFormatCGBitmapInfo

Indicates whether this format is compatible with
the CGImage type (type CFBoolean).

kCVPixelFormatCGImageCompatibility

The codec type (type CFString). For example,
'2vuy' or k422YpCbCr8CodecType.

kCVPixelFormatCodecType

The pixel format constant for QuickTime.kCVPixelFormatConstant

Specifies a custom extended pixel fill algorithm
(type CFData). See CVFillExtendedPixelsCallBack
and CVFillExtendedPixelsCallbackData for more
information.

kCVPixelFormatFillExtendedPixelsCallback

The Microsoft FourCC equivalent code for this
pixel format (type CFString).

kCVPixelFormatFourCC

Horizontal subsampling information for this plane
(type CFNumber). Assumed to be 1 if this key is
not present.

kCVPixelFormatHorizontalSubsampling

The name of the pixel format (type CFString). This
should be the same as the codec name you
would use in QuickTime.

kCVPixelFormatName

Indicates whether this format is compatible with
OpenGL (type CFBoolean).

kCVPixelFormatOpenGLCompatibility

The OpenGL format used to describe this image
plane (if applicable). See theOpenGL specification
for possible values.

kCVPixelFormatOpenGLFormat

C Symbols 59
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

The OpenGL internal format for this pixel format
(if applicable). See the OpenGL specification for
possible values.

kCVPixelFormatOpenGLInternalFormat

The OpenGL type to describe this image plane
(if applicable). See the OpenGL specification for
possible values.

kCVPixelFormatOpenGLType

The number of image planes associatedwith this
format (type CFNumber.

kCVPixelFormatPlanes

Indicates whether this format is compatible with
QuickDraw (type CFBoolean).

kCVPixelFormatQDCompatibility

Vertical subsampling information for this plane
(type CFNumber). Assumed to be 1 if this key is
not present.

kCVPixelFormatVerticalSubsampling

CVReturn.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines the return error code for Core Video
functions.

CVReturn

Memory allocation for a buffer or buffer pool failed.kCVReturnAllocationFailed

The specified display link is already running.kCVReturnDisplayLinkAlreadyRunning

No callback registered for the specified display link.
You must set either the output callback or both the
render and display callbacks.

kCVReturnDisplayLinkCallbacksNotSet

The specified display link is not running.kCVReturnDisplayLinkNotRunning

An otherwise undefined error occurred.kCVReturnError

Placeholder to mark the beginning of Core Video
result codes (not returned by any functions).

kCVReturnFirst

Invalid function parameter. For example, out of range
or the wrong type.

kCVReturnInvalidArgument

The display specified when creating a display link is
invalid.

kCVReturnInvalidDisplay

A buffer cannot be created with the specified
attributes.

kCVReturnInvalidPixelBufferAttributes

60 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

The buffer does not support the specified pixel
format.

kCVReturnInvalidPixelFormat

A buffer pool cannot be created with the specified
attributes.

kCVReturnInvalidPoolAttributes

The buffer cannot support the requested buffer size
(usually too big).

kCVReturnInvalidSize

Placeholder to mark the end of Core Video result
codes (not returned by any functions).

kCVReturnLast

The pixel buffer is not compatible with OpenGL due
to an unsupported buffer size, pixel format, or
attribute.

kCVReturnPixelBufferNotOpenGLCompatible

Allocation for a buffer pool failed, most likely due to
a lack of resources. Check to make sure your
parameters are in range.

kCVReturnPoolAllocationFailed

No errorkCVReturnSuccess

C Symbols 61
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

62 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

This table describes the changes to Quartz Core Reference Update.

NotesDate

Updated with the symbols added to the Quartz Core framework in Mac OS X
v10.5.

2007-07-18

Fixed links.2005-07-07

Minor wording changes.2005-04-29

New document that summarizes the symbols added to the Quartz Core
framework in Mac OS X v10.4.

63
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

64
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Quartz Core Reference Update
	Contents
	Introduction
	10.5 Symbol Changes
	Classes
	CAAnimation (New)
	Class Methods
	Instance Methods
	Delegate Methods

	CAConstraint (New)
	Class Methods
	Instance Methods

	CAConstraintLayoutManager (New)
	Class Methods

	CALayer (New)
	Class Methods
	Instance Methods
	Delegate Methods

	CAMediaTimingFunction (New)
	Class Methods
	Instance Methods

	CAOpenGLLayer (New)
	Instance Methods

	CAPropertyAnimation (New)
	Class Methods

	CARenderer (New)
	Class Methods
	Instance Methods

	CAScrollLayer (New)
	Instance Methods

	CATiledLayer (New)
	Class Methods

	CATransaction (New)
	Class Methods

	CIContext
	Instance Methods

	CIFilter
	Class Methods

	CIFilterGenerator (New)
	Class Methods
	Instance Methods

	CIImage
	Class Methods
	Instance Methods

	CIImageAccumulator
	Instance Methods

	CIVector
	Instance Methods

	NSObject
	Instance Methods

	NSValue
	Class Methods
	Instance Methods

	Protocols
	CAAction (New)
	Instance Methods

	CAMediaTiming (New)

	C Symbols
	CAAnimation.h
	Data Types & Constants

	CABase.h
	Functions

	CAConstraintLayoutManager.h
	Data Types & Constants

	CALayer.h
	Data Types & Constants

	CAMediaTiming.h
	Data Types & Constants

	CAMediaTimingFunction.h
	Data Types & Constants

	CAScrollLayer.h
	Data Types & Constants

	CATextLayer.h
	Data Types & Constants

	CATransaction.h
	Data Types & Constants

	CATransform3D.h
	Functions
	Data Types & Constants

	CIFilter.h
	Data Types & Constants

	CIFilterGenerator.h
	Data Types & Constants

	CIRAWFilter.h
	Data Types & Constants

	10.4 Symbol Changes
	Classes
	CIColor (New)
	Class Methods
	Instance Methods

	CIContext (New)
	Class Methods
	Instance Methods

	CIFilter (New)
	Class Methods
	Instance Methods

	CIFilterShape (New)
	Class Methods
	Instance Methods

	CIImage (New)
	Class Methods
	Instance Methods

	CIImageAccumulator (New)
	Class Methods
	Instance Methods

	CIKernel (New)
	Class Methods
	Instance Methods

	CIPlugIn (New)
	Class Methods

	CISampler (New)
	Class Methods
	Instance Methods

	CIVector (New)
	Class Methods
	Instance Methods

	NSObject
	Instance Methods

	Protocols
	CIPlugInRegistration (New)
	Instance Methods

	C Symbols
	CIFilter.h
	Data Types & Constants

	CIImageProvider.h
	Data Types & Constants

	CISampler.h
	Data Types & Constants

	10.3 Symbol Changes
	Classes
	C Symbols
	CVBase.h
	Data Types & Constants

	CVBuffer.h
	Functions
	Data Types & Constants

	CVDisplayLink.h
	Functions
	Data Types & Constants

	CVHostTime.h
	Functions

	CVImageBuffer.h
	Functions
	Data Types & Constants

	CVOpenGLBuffer.h
	Functions
	Data Types & Constants

	CVOpenGLBufferPool.h
	Functions
	Data Types & Constants

	CVOpenGLTexture.h
	Functions
	Data Types & Constants

	CVOpenGLTextureCache.h
	Functions
	Data Types & Constants

	CVPixelBuffer.h
	Functions
	Data Types & Constants

	CVPixelBufferPool.h
	Functions
	Data Types & Constants

	CVPixelFormatDescription.h
	Functions
	Data Types & Constants

	CVReturn.h
	Data Types & Constants

	Revision History

