
vImage Reference Collection
Graphics & Imaging > Performance

2007-07-12

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and Quartz
are trademarks of Apple Inc., registered in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Part I Data Types 9

Chapter 1 vImage Data Types and Constants Reference 11

Overview 11
Data Types 11
Constants 15

Part II Other References 21

Chapter 2 vImage Alpha Compositing Reference 23

Overview 23
Functions by Task 24
Functions 26

Chapter 3 vImage Conversion Reference 55

Overview 55
Functions by Task 55
Functions 59

Chapter 4 vImage Convolution Reference 107

Overview 107
Functions by Task 108
Functions 110

Chapter 5 vImage Decompression Filtering Reference 143

Overview 143
Functions 143
Constants 144

Chapter 6 vImage Geometry Reference 147

Overview 147
Functions by Task 147
Functions 150

3
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

Constants 192

Chapter 7 vImage Histogram Reference 195

Overview 195
Functions by Task 196
Functions 197

Chapter 8 vImage Morphology Reference 221

Overview 221
Functions by Task 222
Functions 223

Chapter 9 vImage Transform Reference 245

Overview 245
Functions by Task 245
Functions 247
Constants 264

Document Revision History 267

Index 269

4
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 3 vImage Conversion Reference 55

Figure 3-1 Permuting the red and blue channels 101

5
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

6
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

FIGURES

Framework /System/Library/Frameworks/Accelerate/

Header file directories /System/Library/Frameworks/Accelerate/vImage.framework

Declared in Alpha.h
BasicImageTypes.h
Conversion.h
Convolution.h
Geometry.h
Histogram.h
Morphology.h
Transform.h
vImage_Types.h

The vImage framework is a high-performance image processing framework. It includes high-level functions
for image manipulation—convolutions, geometric transformations, histogram operations, morphological
transformations, and alpha compositing—as well as utility functions for format conversions and other
operations.

The framework uses vectorized code that makes use of Single Instruction Multiple Data (SIMD) vector units,
when available. It uses the best code for the hardware it is running on, in a manner completely transparent
to the calling application.

7
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

9
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

PART I

Data Types

10
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

PART I

Data Types

Framework: Accelerate/vImage

Declared in vImage_Types.h

Companion guide vImage Programming Guide

Overview

The data types and constants defined in this document are used by vImage functions. The primary vImage
data type is the vImage buffer, which contains a pointer to image data along with other image data
information. The vImage framework also defines data types for planar and interleaved pixel types, a resampling
callback filter, and an affine transform. It provides constants that specify errors that can be returned by vImage
functions and flags that you can pass to a function to specify a variety of processing options.

Data Types

vImagePixelCount
A type for the number of pixels.

typedef unsigned long vImagePixelCount;

Discussion
For LP64 (ppc64) this is a 64-bit quantity.

Availability
Available in Mac OS X v10.4 and later.

Declared In
vImage_Types.h

vImage_Buffer
The basic data structure used by vImage functions for passing image data.

Overview 11
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

typedef struct vImage_Buffer
{
 void *data;
 vImagePixelCount height;
 vImagePixelCount width;
 size_t rowBytes;
}vImage_Buffer;

Fields
data

A pointer to memory for image data. The image data can be in planar (Planar8, PlanarF) or interleaved
(ARGB8888, ARGBFFFF, RGBA8888, or RGBAFFFF) formats. If you are using the vImage buffer to provide
an image, then the pointer should point to the top left pixel of the image. If you are providing the
vImage buffer to a function that fills the memory with image data (that is, as a destination buffer),
the pointer must point to an area of memory that is an appropriate size for the destination buffer.
Specifically, size of the memory, in bytes, must be at least the height of the image data multiplied by
the number of row bytes.

height
The number of pixels in one column of the image.

width
The number of pixels in one row of the image.

rowBytes
The number of bytes in a pixel row. This is the distance, in bytes, between the start of one row of the
image and the start of the next. This quantity must be at least the width times the pixel size, where
pixel size depends on the image format. You can provide a larger value, in which case the extra bytes
will extend beyond the end of each row of pixels.

You may want to provide a larger value for one of two reasons: to improve performance, or to describe
an image within a larger image without copying the data. The extra bytes are not considered part of
the image represented by the vImage buffer.

Discussion
vImage functions will not attempt to read pixel data outside the area described by the height and width
fields of the vImage buffer. The function will also not write data outside that area.

Declared In
vImage_Types.h

vImage_AffineTransform
A structure for values that represent an affine transformation.

typedef struct vImage_AffineTransform
{
 float a, b, c, d;
 float tx, ty;
}vImage_AffineTransform;

Discussion
This structure represents the 3x2 matrix :

12 Data Types
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

a b
c d
tx ty

The vImage affine transform structure is just like the Quartz CGAffineTransform data structure.
CGAffineTransform Reference describes functions for creating and manipulating matrixes of this form.

Declared In
vImage_Types.h

vImage_Error
A type for image errors.

typedef ssize_t vImage_Error;

Discussion
“Error Codes” (page 15) describes the constants that use this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

vImage_Flags
A type for processing options.

typedef uint32_t vImage_Flags;

Discussion
“Processing Flags” (page 17) describes the constants that use this type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Pixel_8
A type for an 8-bit planar pixel value

typedef uint8_t Pixel_8;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Data Types 13
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

Pixel_F
A type for a floating-point planar pixel value

typedef float Pixel_F;

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Pixel_8888
A type for an interleaved, 8 bits per channel pixel value.

typedef uint8_t Pixel_8888[4];

Discussion
For example, uint8_t[4] = { alpha, red, green, blue } for ARGB data.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Pixel_FFFF
A type for an interleaved, floating-point pixel value.

typedef float Pixel_FFFF[4];

Discussion
For example, float[4] = { alpha, red, green, blue } for ARGB data.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

GammaFunction
A type for a gamma function.

typedef void * GammaFunction;

Discussion
You use this data type when you create a gamma function. See vImageCreateGammaFunction (page 247).

Availability
Available in Mac OS X v10.4 and later.

14 Data Types
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

Declared In
vImage_Types.h

ResamplingFilter
A pointer to a resampling filter callback function.

typedef void * ResamplingFilter;

Discussion
You pass a resampling filter callback to a shear function. The resampling filter pointer can point to a structure
that contains a function, rows of precalculated values, flag settings, and so on. The shear function requires
that the structure contains a scale factor.

Availability
Available in Mac OS X v10.3 and later.

Declared In
vImage_Types.h

Constants

Error Codes
Error codes returned by vImage functions.

enum
{
 kvImageNoError = 0,
 kvImageRoiLargerThanInputBuffer = -21766,
 kvImageInvalidKernelSize = -21767,
 kvImageNoEdgeStyleSpecified = -21768,
 kvImageInvalidOffset_X = -21769,
 kvImageInvalidOffset_Y = -21770,
 kvImageMemoryAllocationError = -21771,
 kvImageNullPointerArgument = -21772,
 kvImageInvalidParameter = -21773,
 kvImageBufferSizeMismatch = -21774,
 kvImageUnknownFlagsBit = -21775
};

Constants
kvImageNoError

The vImage function completed without error.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

Constants 15
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

kvImageRoiLargerThanInputBuffer
The region of interest, as specified by the srcOffsetToROI_X and srcOffsetToROI_Y parameters
and the height and width of the destination buffer, extends beyond the bottom edge or right edge
of the source buffer.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageInvalidKernelSize
Either the kernel height, the kernel width, or both, are even.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageNoEdgeStyleSpecified
The function requires you to set at least one edge option flags: kvImageCopyInPlace,
kvImageBackgroundColorFill, or kvImageEdgeExtend, but none is set. See “Processing
Flags” (page 17).

kvImageInvalidOffset_X
The srcOffsetToROI_X parameter that specifies the left edge of the region of interest is greater
than the width of the source image.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageInvalidOffset_Y
The srcOffsetToROI_Y parameter that specifies the top edge of the region of interest is greater
than the height of the source image.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageMemoryAllocationError
An attempt to allocate memory failed.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageNullPointerArgument
A pointer parameter is NULL and it must not be.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageInvalidParameter
Invalid parameter.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageBufferSizeMismatch
The function requires the source and destination buffers to have the same height and the same width,
but they do not.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

16 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

kvImageUnknownFlagsBit
The flag is not recognized.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

Declared In
vImage_Types.h

Processing Flags
Flags that specify options for vImage functions.

enum
{
 kvImageNoFlags = 0,
 kvImageLeaveAlphaUnchanged = 1,
 kvImageCopyInPlace = 2,
 kvImageBackgroundColorFill = 4,
 kvImageEdgeExtend = 8,
 kvImageDoNotTile = 16,
 kvImageHighQualityResampling = 32,
 kvImageTruncateKernel = 64,
 kvImageGetTempBufferSize = 128
};

Constants
kvImageNoFlags

Do not set any flags.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageLeaveAlphaUnchanged
Operate on red, green, and blue channels only. When you set this flag, the alpha value is copied from
source to destination. You can set this flag only for interleaved image formats.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageCopyInPlace
Copy the value of the edge pixel in the source to the destination. When you set this flag, and a
convolution function is processing an image pixel for which some of the kernel extends beyond the
image boundaries, vImage does not computer the convolution. Instead, the value of the particular
pixel unchanged; it’s simply copied to the destination image. This flag is valid only for convolution
operations. The morphology functions do not use this flag because they do not use pixels outside
the image in any of their calculations.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

Constants 17
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

kvImageBackgroundColorFill
A background color fill. The associated value is a background color (that is, a pixel value). When you
set this flag, vImage assigns the pixel value to all pixels outside the image. You can set this flag for
convolution and geometry functions. The morphology functions do not use this flag because they
do not use pixels outside the image in any of their calculations.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageEdgeExtend
Extend the edges of the image infinitely. When you set this flag, vImage replicates the edges of the
image outward. It repeats the top row of the image infinitely above the image, the bottom row
infinitely below the image, the first column infinitely to the left of the image, and the last column
infinitely to the right. For spaces that are diagonal to the image, vImage uses the value of the
corresponding corner pixel. For example, for all pixels that are both above and to the left of the image,
the upper-leftmost pixel of the image (the pixel at row 0, column 0) supplies the value. In this way,
vImage assigns every pixel location outside the image some value. You can set this flag for convolution
and geometry functions. The morphology functions do not use this flag because they do not use
pixels outside the image in any of their calculations.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageDoNotTile
Do not use vImage internal tiling routines. When you set this flag, vImage turns off internal tiling. Set
this flag if you want to perform your own tiling or your own multithreading, or to use the minimum
or maximum filters in place.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

kvImageHighQualityResampling
Use a higher quality, slower resampling filter for for geometry operations—shear, scale, rotate, affine
transform, and so forth.

Available in Mac OS X v10.3 and later.

Declared in vImage_Types.h.

18 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

kvImageTruncateKernel
Use the part of the kernel that overlaps the image. This flag is valid only for convolution operations.
When you set this flag, vImage restricts calculations to the portion of the kernel overlapping the
image. It corrects the calculated pixel by first multiplying by the sum of all the kernel elements, then
dividing by the sum of the kernel elements that are actually used. This preserves image brightness
at the edges.

For integer kernels:

real_divisor = divisor * (sum of used kernel elements) / (sum of kernel
elements)

The morphology functions do not use this flag because they do not use pixels outside the image in
any of their calculations.

Kernel truncation is not robust for certain kernels. It can ail when any rectangular segment of the
kernel that includes the center, and at least one of the corners, sums to zero. You typically see this
with emboss or edge detection filters, or other filters that are designed to find the slope of a signal.
For those kinds of filters, you should use the kvImageEdgeExtend option instead.

Available in Mac OS X v10.4 and later.

Declared in vImage_Types.h.

kvImageGetTempBufferSize
Get the minimum temporary buffer size for the operation, given the parameters provided. When you
set this flag, the function returns the number of bytes required for the temporary buffer. A negative
value specifies an error.

Available in Mac OS X v10.4 and later.

Declared in vImage_Types.h.

Discussion
You can pass multiple flags to a function by adding the flag values together. For example, to leave alpha
unchanged and turn off tiling, you can pass:

kvImageLeaveAlphaUnchanged + kvImageDoNotTile

Three of the flags are mutually exclusive: kvImageCopyInPlace, kvImageBackgroundColorFill, and
kvImageEdgeExtend. Never pass more than one of these flag values in the same flag parameter.

When passing flags to a function, do not set values for flags that are not used by the function. If the function
requires you to set certain flag values, do so. For example, for the convolution function, you must set exactly
one of kvImageCopyInPlace, kvImageBackgroundColorFill, and kvImageEdgeExtend. Otherwise
the function may return an error. If you don’t want to set flag values, pass kvImageNoFlags.

Declared In
vImage_Types.h

Constants 19
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

20 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

vImage Data Types and Constants Reference

21
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

PART II

Other References

22
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

PART II

Other References

Framework: Accelerate/vImage

Declared in Alpha.h

Companion guide vImage Programming Guide

Overview

Alpha compositing (also known as alpha blending) is the process of layering multiple images, with the alpha
value for a pixel in a given layer indicating what fraction of the colors from lower layers are seen through the
color at the given level. The functions described in this reference operate on the alpha values of pixels either
by blending alpha values or clipping them.

Most of the alpha compositing functions blend two input images—a top image and a bottom image—to
create a composite image. The vImage framework computes the alpha values of the composite image from
the alpha values of the input images. Some functions operate on interleaved formats (ARGB8888, ARGBFFFF,
RGBA8888, RGBAFFFF) while others operate on planar formats. Interleaved formats contain an alpha value
for each pixel, but planar formats do not. To perform alpha compositing with planar images, you need to
supply the alpha information separately.

Alpha compositing functions by default perform tiling internally and may multithread internally as well. If
you plan to perform your own tiling or multithreading, you must turn off vImage internal tiling and
multithreading by supplying the kvImageDoNotTile flag as an option to the functions you use.

The vImage framework provides functions for alpha compositing for both the premultiplied alpha case and
the nonpremultiplied alpha case. Mac OS X v10.4 adds some alpha compositing functions for common mixed
cases. Premultiplying pixel color values by the associated alpha value results in greater computational
efficiency than providing nonpremultiplied data, especially when you composite more than two images.
When you use premultiplied alpha, you still need to maintain the original alpha information, so that you can
retrieve the original, nonpremultiplied values of the pixels when you need them. You also need to supply
the original alpha value for the bottom layer in a compositing operation.

For floating-point formats, you can multiply the color value by the alpha value directly. For integer formats
in which both values are in the range of 0 to 255, you multiply the color and alpha values, then you must
scale the result so that it is in the 0 to 255 range. The scaling calculation is:

scaledColor = (alpha * color + 127) / 255

Alpha compositing functions use a vImage buffer structure (vImage_Buffer—see vImage Data Types and
Constants Reference) to receive and supply image data. This buffer contains a pointer to image data, the
height and width (in pixels) of the image data, and the number of row bytes. You actually pass a pointer to

Overview 23
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

a vImage buffer structure. You can provide a pointer to the same vImage buffer structure for one of the
source images and the destination image because alpha compositing functions “work in place”. That is , the
source and destination images can occupy the same memory if the they are strictly aligned pixel for pixel.

Functions by Task

Performing Nonpremultiplied Alpha Compositing

vImageAlphaBlend_ARGBFFFF (page 27)
Performs nonpremultiplied alpha compositing of two ARGBFFFF images, placing the result in a
destination buffer.

vImageAlphaBlend_ARGB8888 (page 26)
Performs nonpremultiplied alpha compositing of two ARGB8888 images, placing the result in a
destination buffer.

vImageAlphaBlend_PlanarF (page 33)
Performs nonpremultiplied alpha compositing of two PlanarF images, placing the result in a destination
buffer.

vImageAlphaBlend_Planar8 (page 32)
Performs nonpremultiplied alpha compositing of two Planar8 images, placing the result in a destination
buffer.

Performing Premultiplied Alpha Compositing

vImagePremultipliedAlphaBlend_ARGBFFFF (page 38)
Performs premultiplied alpha compositing of two ARGBFFFF images, placing the result in a destination
buffer.

vImagePremultipliedAlphaBlend_ARGB8888 (page 38)
Performs premultiplied alpha compositing of two ARGB8888 images, placing the result in a destination
buffer.

vImagePremultipliedAlphaBlend_PlanarF (page 40)
Performs premultiplied alpha compositing of two PlanarF images, placing the result in a destination
buffer.

vImagePremultipliedAlphaBlend_Planar8 (page 39)
Performs premultiplied alpha compositing of two Planar8 images, placing the result in a destination
buffer.

Performing Nonpremultiplied Alpha Compositing With a Single Alpha
Value

vImagePremultipliedConstAlphaBlend_ARGBFFFF (page 41)
Performs premultiplied alpha compositing of two ARGBFFFF images, using a single alpha value for
the whole image and placing the result in a destination buffer.

24 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImagePremultipliedConstAlphaBlend_ARGB8888 (page 41)
Performs premultiplied alpha compositing of two ARGB8888 images, using a single alpha value for
the whole image and placing the result in a destination buffer.

vImagePremultipliedConstAlphaBlend_PlanarF (page 43)
Performs premultiplied alpha compositing of a two PlanarF images, using a single alpha value for the
whole image and placing the result in a destination buffer.

vImagePremultipliedConstAlphaBlend_Planar8 (page 42)
Performs premultiplied alpha compositing of two Planar8 images, using a single alpha value for the
entire image and placing the result in a destination buffer.

Performing Nonpremultiplied to Premultiplied Alpha Compositing

vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGBFFFF (page 29)
Performs mixed alpha compositing of a nonpremultiplied ARGBFFFF image over a premultiplied
ARGBFFFF image, placing the premultiplied result in a destination buffer.

vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGB8888 (page 28)
Performs mixed alpha compositing of a nonpremultiplied ARGB8888 image over a premultiplied
ARGB8888 image, placing the premultiplied result in a destination buffer.

vImageAlphaBlend_NonpremultipliedToPremultiplied_PlanarF (page 31)
Performs mixed alpha compositing of a nonpremultiplied PlanarF image over a premultiplied PlanarF
image, placing the premultiplied result in a destination buffer.

vImageAlphaBlend_NonpremultipliedToPremultiplied_Planar8 (page 30)
Performs mixed alpha compositing of a nonpremultiplied Planar8 image over a premultiplied Planar8
image, placing the premultiplied result in a destination buffer.

Converting from Unpremultiplied to Premultiplied Format

vImagePremultiplyData_ARGBFFFF (page 45)
Takes an ARGBFFFF image in nonpremultiplied alpha format and transforms it into an image in
premultiplied alpha format.

vImagePremultiplyData_RGBAFFFF (page 48)
Takes an RGBAFFFF image in nonpremultiplied alpha format and transforms it into an image in
premultiplied alpha format.

vImagePremultiplyData_ARGB8888 (page 44)
Takes an ARGB8888 image in nonpremultiplied alpha format and transforms it into an image in
premultiplied alpha format.

vImagePremultiplyData_RGBA8888 (page 47)
Takes an RGBA8888 image in nonpremultiplied alpha format and transforms it into an image in
premultiplied alpha format.

vImagePremultiplyData_PlanarF (page 46)
Takes a PlanarF image in nonpremultiplied alpha format, along with alpha information, and transforms
it into an image in premultiplied alpha format.

vImagePremultiplyData_Planar8 (page 46)
Takes a Planar8 image in nonpremultiplied alpha format, along with alpha information, and transforms
it into an image in premultiplied alpha format.

Functions by Task 25
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Converting from Premultiplied to Unpremultiplied Format

vImageUnpremultiplyData_ARGBFFFF (page 49)
Takes an ARGBFFFF image in premultiplied alpha format and transforms it into an image in
nonpremultiplied alpha format.

vImageUnpremultiplyData_RGBAFFFF (page 52)
Takes an RGBAFFFF image in premultiplied alpha format and transforms it into an image in
nonpremultiplied alpha format.

vImageUnpremultiplyData_ARGB8888 (page 48)
Takes an ARGB8888 image in premultiplied alpha format and transforms it into an image in
nonpremultiplied alpha format.

vImageUnpremultiplyData_RGBA8888 (page 51)
Takes an RGBA8888 image in premultiplied alpha format and transforms it into an image in
nonpremultiplied alpha format.

vImageUnpremultiplyData_PlanarF (page 51)
Takes a PlanarF image in premultiplied alpha format, along with alpha information, and transforms
it into an image in nonpremultiplied alpha format.

vImageUnpremultiplyData_Planar8 (page 50)
Takes a Planar8 image in premultiplied alpha format, along with alpha information, and transforms
it into an image in nonpremultiplied alpha format.

Clipping Color Values to Alpha

vImageClipToAlpha_Planar8 (page 36)
Sets the color channel of each pixel in a Planar8 image to the smaller of two values—either the color
channel or the alpha value for that pixel.

vImageClipToAlpha_ARGB8888 (page 34)
Sets the color channel of each pixel in an ARGB8888 image to the smaller of two values—either the
color channel or the alpha value for that pixel.

vImageClipToAlpha_PlanarF (page 37)
Sets the color channel of each pixel in a PlanarF image to the smaller of two values—either the color
channel or the alpha value for that pixel.

vImageClipToAlpha_ARGBFFFF (page 35)
Sets the color channel of each pixel in an ARGBFFFF image to the smaller of two values—either the
color channel or the alpha value for that pixel.

Functions

vImageAlphaBlend_ARGB8888
Performs nonpremultiplied alpha compositing of two ARGB8888 images, placing the result in a destination
buffer.

26 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImage_Error vImageAlphaBlend_ARGB8888 (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

The calculation for each color channel is:

resultAlpha = (topAlpha * 255 + (255 - topAlpha)
 * bottomAlpha + 127) / 255
resultColor = (topAlpha * topColor + (((255 - topAlpha)
 * bottomAlpha + 127) / 255) * bottomColor + 127)
 / resultAlpha

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageAlphaBlend_ARGBFFFF
Performs nonpremultiplied alpha compositing of two ARGBFFFF images, placing the result in a destination
buffer.

Functions 27
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImage_Error vImageAlphaBlend_ARGBFFFF (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

The calculation for each color channel is:

resultAlpha = topAlpha + (1.0f - topAlpha) * bottomAlpha
resultColor = (topAlpha * topColor + (1.0f - topAlpha)
 * bottomAlpha * bottomColor) / resultAlpha

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGB8888
Performs mixed alpha compositing of a nonpremultiplied ARGB8888 image over a premultiplied ARGB8888
image, placing the premultiplied result in a destination buffer.

28 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImage_Error vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGB8888 (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source images must be at least as wide and at least as high as the
destination buffer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGBFFFF
Performs mixed alpha compositing of a nonpremultiplied ARGBFFFF image over a premultiplied ARGBFFFF
image, placing the premultiplied result in a destination buffer.

vImage_Error vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGBFFFF (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

Functions 29
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source images must be at least as wide and at least as high as the
destination buffer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageAlphaBlend_NonpremultipliedToPremultiplied_Planar8
Performs mixed alpha compositing of a nonpremultiplied Planar8 image over a premultiplied Planar8 image,
placing the premultiplied result in a destination buffer.

vImage_Error vImageAlphaBlend_NonpremultipliedToPremultiplied_Planar8 (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

30 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source images must be at least as wide and at least as high as the
destination buffer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageAlphaBlend_NonpremultipliedToPremultiplied_PlanarF
Performs mixed alpha compositing of a nonpremultiplied PlanarF image over a premultiplied PlanarF image,
placing the premultiplied result in a destination buffer.

vImage_Error vImageAlphaBlend_NonpremultipliedToPremultiplied_PlanarF (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source images must be at least as wide and at least as high as the
destination buffer.

Availability
Available in Mac OS X v10.4 and later.

Functions 31
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Declared In
Alpha.h

vImageAlphaBlend_Planar8
Performs nonpremultiplied alpha compositing of two Planar8 images, placing the result in a destination
buffer.

vImage_Error vImageAlphaBlend_Planar8 (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *srcBottomAlpha,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

srcBottomAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the bottom source
image.

alpha
A pointer to a vImage buffer structure that contains data for the precalculated alpha values of the
composite image. You must precalculate these values by calling the function
vPremultipliedAlphaBlend_PlanarF. See the Discussion for details on using this function.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source, alpha values, destination, and composite alpha values must
contain the same height and width.

For performance reasons, this function does not calculate alpha values for the composite image; you must
provide them. You’ll typically call this function three times, once for each color channel (red, green, blue).
Because each call uses the same alpha value, it is much more efficient for you to precalculate the alpha values

32 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

using the function vImagePremultipliedAlphaBlend_Planar8, rather than have the calculation repeated
three times by thevImageAlphaBlend_Planar8 function. Call the function
vPremultipliedAlphaBlend_Planar8 using the parameters shown:

vImagePremultipliedAlphaBlend_Planar8(srcTopAlpha,
 srcTopAlpha, // Yes, use this twice
 srcBottomAlpha,
 alpha, //On return, contains the composite alpha values
 kvImageNoFlags);

After calling the vPremultipliedAlphaBlend_Planar8 function, the resulting values for each color
channel are:

resultAlpha = topAlpha + (1.0f - topAlpha) * bottomAlpha
resultColor = (topAlpha * topColor + (1.0f - topAlpha)
 * bottomAlpha * bottomColor) / resultAlpha

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageAlphaBlend_PlanarF
Performs nonpremultiplied alpha compositing of two PlanarF images, placing the result in a destination
buffer.

vImage_Error vImageAlphaBlend_PlanarF (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *srcBottomAlpha,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

srcBottomAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the bottom source
image.

alpha
A pointer to a vImage buffer structure that contains data for the precalculated alpha values of the
composite image. You must precalculate these values by calling the function
vPremultipliedAlphaBlend_PlanarF. See the Discussion for details on using this function.

Functions 33
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source, alpha values, destination, and composite alpha values must
contain the same height and width.

For performance reasons, this function does not calculate alpha values for the composite image; you must
provide them. You’ll typically call this function three times, once for each color channel (red, green, blue).
Because each call uses the same alpha value, it is much more efficient for you to precalculate the alpha values
using the function vImagePremultipliedAlphaBlend_PlanarF, rather than to have the calculation
repeated three times by thevImageAlphaBlend_PlanarF function. Call the function
vPremultipliedAlphaBlend_PlanarF using the parameters shown:

vImagePremultipliedAlphaBlend_PlanarF(srcTopAlpha,
 srcTopAlpha, // Yes, use this twice
 srcBottomAlpha,
 alpha, //On return, contains the composite alpha values
 kvImageNoFlags);

After calling the vPremultipliedAlphaBlend_PlanarF function, the resulting values for each color
channel are:

resultAlpha = topAlpha + (1.0f - topAlpha) * bottomAlpha
resultColor = (topAlpha * topColor + (1.0f - topAlpha)
 * bottomAlpha * bottomColor) / resultAlpha

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageClipToAlpha_ARGB8888
Sets the color channel of each pixel in an ARGB8888 image to the smaller of two values—either the color
channel or the alpha value for that pixel.

34 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImage_Error vImageClipToAlpha_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
For each pixel:

alpha_result = sourceAlpha;
color_result = MIN(sourceColor, sourceAlpha);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageClipToAlpha_ARGBFFFF
Sets the color channel of each pixel in an ARGBFFFF image to the smaller of two values—either the color
channel or the alpha value for that pixel.

vImage_Error vImageClipToAlpha_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 35
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
For each pixel:

alpha_result = sourceAlpha;
color_result = MIN(sourceColor, sourceAlpha);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageClipToAlpha_Planar8
Sets the color channel of each pixel in a Planar8 image to the smaller of two values—either the color channel
or the alpha value for that pixel.

vImage_Error vImageClipToAlpha_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the top source image.

alpha
A pointer to a vImage buffer structure that contains data for alpha values of the source image. The
planar source image does not contain its own alpha information, so you must supply the alpha
information.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
For each pixel:

alpha_result = sourceAlpha;

36 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

color_result = MIN(sourceColor, sourceAlpha);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageClipToAlpha_PlanarF
Sets the color channel of each pixel in a PlanarF image to the smaller of two values—either the color channel
or the alpha value for that pixel.

vImage_Error vImageClipToAlpha_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

alpha
A pointer to a vImage buffer structure that contains data for alpha values of the source image. The
planar source image does not contain its own alpha information, so you must supply the alpha
information.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
For each pixel:

alpha_result = sourceAlpha;
color_result = MIN(sourceColor, sourceAlpha);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

Functions 37
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImagePremultipliedAlphaBlend_ARGB8888
Performs premultiplied alpha compositing of two ARGB8888 images, placing the result in a destination buffer.

vImage_Error vImagePremultipliedAlphaBlend_ARGB8888 (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImagePremultipliedAlphaBlend_ARGBFFFF
Performs premultiplied alpha compositing of two ARGBFFFF images, placing the result in a destination buffer.

vImage_Error vImagePremultipliedAlphaBlend_ARGBFFFF (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

38 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImagePremultipliedAlphaBlend_Planar8
Performs premultiplied alpha compositing of two Planar8 images, placing the result in a destination buffer.

vImage_Error vImagePremultipliedAlphaBlend_Planar8 (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.
Even though the alpha values are already premultiplied into the pixel values, the function also requires
the original alpha information for the top image to do its calculations. There is no way to extract this
information from the premultiplied planar values, so you must provide it.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Functions 39
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImagePremultipliedAlphaBlend_PlanarF
Performs premultiplied alpha compositing of two PlanarF images, placing the result in a destination buffer.

vImage_Error vImagePremultipliedAlphaBlend_PlanarF (
 const vImage_Buffer *srcTop,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.
Even though the alpha values are already premultiplied into the pixel values, the function also requires
the original alpha information for the top image to do its calculations. There is no way to extract this
information from the premultiplied planar values, so you must provide it.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

40 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImagePremultipliedConstAlphaBlend_ARGB8888
Performs premultiplied alpha compositing of two ARGB8888 images, using a single alpha value for the whole
image and placing the result in a destination buffer.

vImage_Error vImagePremultipliedConstAlphaBlend_ARGB8888 (
 const vImage_Buffer *srcTop,
 Pixel_8 constAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

constAlpha
The alpha value you want to apply to the image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImagePremultipliedConstAlphaBlend_ARGBFFFF
Performs premultiplied alpha compositing of two ARGBFFFF images, using a single alpha value for the whole
image and placing the result in a destination buffer.

Functions 41
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImage_Error vImagePremultipliedConstAlphaBlend_ARGBFFFF (
 const vImage_Buffer *srcTop,
 Pixel_F constAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

constAlpha
The alpha value you want to apply to the image.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImagePremultipliedConstAlphaBlend_Planar8
Performs premultiplied alpha compositing of two Planar8 images, using a single alpha value for the entire
image and placing the result in a destination buffer.

vImage_Error vImagePremultipliedConstAlphaBlend_Planar8 (
 const vImage_Buffer *srcTop,
 Pixel_8 constAlpha,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

42 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

constAlpha
The alpha value you want to apply to the image.

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.
Even though the alpha values are already premultiplied into the pixel values, the function also requires
the original alpha information for the top image to do its calculations. There is no way to extract this
information from the premultiplied planar values, so you must provide it.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImagePremultipliedConstAlphaBlend_PlanarF
Performs premultiplied alpha compositing of a two PlanarF images, using a single alpha value for the whole
image and placing the result in a destination buffer.

vImage_Error vImagePremultipliedConstAlphaBlend_PlanarF (
 const vImage_Buffer *srcTop,
 Pixel_F constAlpha,
 const vImage_Buffer *srcTopAlpha,
 const vImage_Buffer *srcBottom,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcTop

A pointer to a vImage buffer structure that contains data for the top source image.

constAlpha
The alpha value you want to apply to the image.

Functions 43
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

srcTopAlpha
A pointer to a vImage buffer structure that contains data for the alpha values of the top source image.
Even though the alpha values are already premultiplied into the pixel values, the function also requires
the original alpha information for the top image to do its calculations. There is no way to extract this
information from the premultiplied planar values, so you must provide it.

srcBottom
A pointer to a vImage buffer structure that contains data for the bottom source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The vImage buffer structures for the source and destination images must use the same height and width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImagePremultiplyData_ARGB8888
Takes an ARGB8888 image in nonpremultiplied alpha format and transforms it into an image in premultiplied
alpha format.

vImage_Error vImagePremultiplyData_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

44 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImagePremultiplyData_ARGBFFFF
Takes an ARGBFFFF image in nonpremultiplied alpha format and transforms it into an image in premultiplied
alpha format.

vImage_Error vImagePremultiplyData_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

Functions 45
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImagePremultiplyData_Planar8
Takes a Planar8 image in nonpremultiplied alpha format, along with alpha information, and transforms it
into an image in premultiplied alpha format.

vImage_Error vImagePremultiplyData_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

alpha
A pointer to a vImage buffer structure that contains data for alpha values of the source image. The
planar source image does not contain its own alpha information, so you must supply the alpha
information.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImagePremultiplyData_PlanarF
Takes a PlanarF image in nonpremultiplied alpha format, along with alpha information, and transforms it
into an image in premultiplied alpha format.

vImage_Error vImagePremultiplyData_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

46 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

alpha
A pointer to a vImage buffer structure that contains data for alpha values of the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImagePremultiplyData_RGBA8888
Takes an RGBA8888 image in nonpremultiplied alpha format and transforms it into an image in premultiplied
alpha format.

vImage_Error vImagePremultiplyData_RGBA8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.4 and later.

Functions 47
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Declared In
Alpha.h

vImagePremultiplyData_RGBAFFFF
Takes an RGBAFFFF image in nonpremultiplied alpha format and transforms it into an image in premultiplied
alpha format.

vImage_Error vImagePremultiplyData_RGBAFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageUnpremultiplyData_ARGB8888
Takes an ARGB8888 image in premultiplied alpha format and transforms it into an image in nonpremultiplied
alpha format.

48 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImage_Error vImageUnpremultiplyData_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageUnpremultiplyData_ARGBFFFF
Takes an ARGBFFFF image in premultiplied alpha format and transforms it into an image in nonpremultiplied
alpha format.

vImage_Error vImageUnpremultiplyData_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 49
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageUnpremultiplyData_Planar8
Takes a Planar8 image in premultiplied alpha format, along with alpha information, and transforms it into
an image in nonpremultiplied alpha format.

vImage_Error vImageUnpremultiplyData_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the premultiplied data for the source image.]

alpha
A pointer to a vImage buffer structure that contains data for alpha values of the source image. The
planar source image does not contain its own alpha information, so you must supply the alpha
information.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

50 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

vImageUnpremultiplyData_PlanarF
Takes a PlanarF image in premultiplied alpha format, along with alpha information, and transforms it into
an image in nonpremultiplied alpha format.

vImage_Error vImageUnpremultiplyData_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *alpha,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the premultiplied data for the source image.]

alpha
A pointer to a vImage buffer structure that contains data for alpha values of the source image. The
planar source image does not contain its own alpha information, so you must supply the alpha
information.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Alpha.h

vImageUnpremultiplyData_RGBA8888
Takes an RGBA8888 image in premultiplied alpha format and transforms it into an image in nonpremultiplied
alpha format.

vImage_Error vImageUnpremultiplyData_RGBA8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the premultiplied data for the source image.

Functions 51
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

vImageUnpremultiplyData_RGBAFFFF
Takes an RGBAFFFF image in premultiplied alpha format and transforms it into an image in nonpremultiplied
alpha format.

vImage_Error vImageUnpremultiplyData_RGBAFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the nonpremultiplied data for the top source
image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the compositing. Pass kvImageDoNotTile if you plan to perform
your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function gets the required alpha information from the alpha channel of the original image. The alpha
channel is copied over unchanged to the destination image.

52 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
Alpha.h

Functions 53
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

54 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

vImage Alpha Compositing Reference

Framework: Accelerate/vImage

Declared in Conversion.h

Companion guide vImage Programming Guide

Overview

Conversion functions change an image from one image format into another. These functions work with the
formats supported by vImage (Planar8, PlanarF, ARGB8888, ARGBFFFF, RGBA8888, and RGBAFFFF) but they
can also change between a supported format to one that’s not supported by vImage (such as RGB565).
Conversion functions can also fill buffers with a color, overwrite channels, permute channels, flatten data,
and clip data.

Conversion functions use a vImage buffer structure (vImage_Buffer—see vImageData Types and Constants
Reference) to receive and supply image data. This buffer contains a pointer to image data, the height and
width (in pixels) of the image data, and the number of row bytes. You actually pass a pointer to a vImage
buffer structure. For some functions, you can provide a pointer to the same vImage buffer structure for the
source images and the destination image because the function “works in place”. That is , the source and
destination images can occupy the same memory if the they are strictly aligned pixel for pixel.

Functions by Task

Filling Buffers

vImageBufferFill_ARGB8888 (page 59)
Fills an ARGB8888 buffer with a specified color.

vImageBufferFill_ARGBFFFF (page 60)
Fills an ARGBFFFF buffer with a specified color.

Permuting Channels

vImagePermuteChannels_ARGB8888 (page 100)
Reorders the channels in an ARGB8888 image.

vImagePermuteChannels_ARGBFFFF (page 102)
Reorders the channels in an ARGBFFFF image.

Overview 55
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Overwriting Channels

vImageSelectChannels_ARGB8888 (page 102)
Overwrites the specified channels in an ARGB8888 image buffer with the provided channels from an
ARGB8888 image buffer.

vImageSelectChannels_ARGBFFFF (page 103)
Overwrites the specified channels in an ARGBFFFF image buffer with the provided channels in an
ARGBFFFF image buffer.

vImageOverwriteChannels_ARGB8888 (page 98)
Overwrites one or more planes of an ARGB8888 image buffer with the provided planar buffer.

vImageOverwriteChannels_ARGBFFFF (page 99)
Overwrites one or more planes of an ARGBFFFF image buffer with the provided planar buffer.

vImageOverwriteChannelsWithScalar_ARGB8888 (page 95)
Overwrites the pixels of one or more planes of an ARGB8888 image buffer with the provided scalar
value.

vImageOverwriteChannelsWithScalar_ARGBFFFF (page 96)
Overwrites the pixels of one or more planes of an ARGBFFFF image buffer with the provided scalar
value.

vImageOverwriteChannelsWithScalar_Planar8 (page 97)
Overwrites a Planar8 image buffer with the provided value.

vImageOverwriteChannelsWithScalar_PlanarF (page 97)
Overwrites a PlanarF image buffer with the provided value.

vImageOverwriteChannelsWithPixel_ARGB8888 (page 93)
Overwrites an ARGB8888 image buffer with the provided pixel value.

vImageOverwriteChannelsWithPixel_ARGBFFFF (page 94)
Overwrites an ARGBFFFF image buffer with the provided pixel value.

Converting From 16 Bit

vImageConvert_16SToF (page 61)
Converts an image in a special planar format—in which each pixel value is a 16-bit signed integer—
to a PlanarF format.

vImageConvert_16UToF (page 62)
Converts an image in a special planar format—in which each pixel value is a 16-bit unsigned integer—
to a PlanarF format.

vImageConvert_16UToPlanar8 (page 63)
Converts an image in a special planar format—in which each pixel value is a 16-bit unsigned
integer—to a Planar8 image.

Transforming Using Table Lookups

vImageTableLookUp_ARGB8888 (page 104)
Transforms an ARGB8888 image by substituting pixel values with pixel values provided by four lookup
tables.

56 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageTableLookUp_Planar8 (page 106)
Transforms an Planar8 image by substituting pixel values with pixel values provided by four lookup
tables.

Flattening Data

vImageFlatten_ARGB8888ToRGB888 (page 91)
Transforms an ARGB8888 image to an RGB888 image against an opaque background of the provided
color.

vImageFlatten_ARGBFFFFToRGBFFF (page 92)
Transforms an ARGBFFFF image to an RGBFFF image against an opaque background of the provided
color.

Clipping Data

vImageClip_PlanarF (page 60)
Clips the pixel values of an image in PlanarF format, using the provided minimum and maximum
values.

Converting Between Chunky and Planar
These convenience functions allow you to convert between various interleaved (or chunky) formats that
vImage does not explicitly support (and that may have less than or more than four channels) and the formats
that vImage supports explicitly. You can represent some non-interleaved formats as well. The functions are
not fast or vectorized.

vImageConvert_PlanarToChunky8 (page 84)
Combines a collection of planar source images into a single interleaved destination image, with one
8-bit channel for each planar image.

vImageConvert_PlanarToChunkyF (page 85)
Combines a collection of planar source images into a single interleaved destination image, with one
floating-point channel for each planar image.

vImageConvert_ChunkyToPlanar8 (page 70)
Separates a source image into a collection of corresponding planar destination images, one for each
8-bit channel of the original image.

vImageConvert_ChunkyToPlanarF (page 71)
Separates a source image into a collection of corresponding planar destination images, one for each
floating-point channel of the original image.

Converting From Planar Formats

vImageConvert_Planar8To16U (page 75)
Converts a Planar8 image to a 16U image .

vImageConvert_Planar8toARGB1555 (page 76)
Combines four Planar8 images into one ARGB1555 image.

Functions by Task 57
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageConvert_Planar8toARGB8888 (page 77)
Combines four Planar8 images into one ARGB8888 image.

vImageConvert_Planar8toPlanarF (page 78)
Converts a Planar8 image to a PlanarF image.

vImageConvert_Planar8toRGB565 (page 79)
Combines three Planar8 images into one RGB565 image.

vImageConvert_Planar8toRGB888 (page 80)
Combines three Planar8 images into one RGB888 image.

vImageConvert_PlanarFtoRGBFFF (page 83)
Combines three PlanarF images into one RGBFFF image.

vImageConvert_PlanarFtoARGBFFFF (page 80)
Combines four PlanarF images into one ARGBFFFF image.

vImageConvert_PlanarFtoPlanar16F (page 81)
Converts a PlanarF image to a Planar16F image.

vImageConvert_PlanarFtoPlanar8 (page 82)
Converts a PlanarF image to a Planar8 image, clipping values to the provided minimum and maximum
values.

vImageConvert_Planar16FtoPlanarF (page 74)
Converts a Planar16F image to a PlanarF image.

vImageConvert_FTo16S (page 73)
Converts a PlanarF image into a special format in which each pixel is a 16-bit signed integer.

vImageConvert_FTo16U (page 73)
Converts a PlanarF image into a special format in which each pixel is a 16-bit unsigned integer.

Converting From ARGB Formats

vImageConvert_ARGB1555toARGB8888 (page 64)
Converts an ARGB1555 image to an ARGB8888 image.

vImageConvert_ARGB1555toPlanar8 (page 64)
Separates an ARGB1555 image into four Planar8 images.

vImageConvert_ARGB8888toARGB1555 (page 66)
Converts an ARGB8888 image into an ARGB1555 image.

vImageConvert_ARGB8888toPlanar8 (page 66)
Separates an ARGB8888 image into four Planar8 images.

vImageConvert_ARGB8888toRGB565 (page 68)
Converts an ARGB8888 image into an RGB565 image.

vImageConvert_ARGB8888toRGB888 (page 68)
Converts an ARGB8888 image into an RGB888 image.

vImageConvert_ARGBFFFFtoPlanarF (page 69)
Separates an ARGBFFFF image into four PlanarF images.

58 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Converting From RGB Formats

vImageConvert_RGB565toPlanar8 (page 87)
Separates an RGB565 image into three Planar8 images.

vImageConvert_RGB565toARGB8888 (page 86)
Converts an RGB565 image into an ARGB8888 image, using the provided 8-bit alpha value.

vImageConvert_RGB888toARGB8888 (page 88)
Converts an RGB888 image into an ARGB8888 image, using the provided alpha value (either as planar
or pixel data).

vImageConvert_RGB888toPlanar8 (page 89)
Separates an RGB888 image into three Planar8 images.

vImageConvert_RGBFFFtoPlanarF (page 90)
Separates an RGBFFF image into three PlanarF images.

Functions

vImageBufferFill_ARGB8888
Fills an ARGB8888 buffer with a specified color.

vImage_Error vImageBufferFill_ARGB8888 (
 const vImage_Buffer *dest,
 const Pixel_8888 color,
 vImage_Flags flags
);

Parameters
dest

A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data created with
the fill color. When you no longer need the data buffer, you must deallocate the memory.

color
The color to fill the buffer with.

flags
Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageOverwriteChannelsWithScalar_Planar8 (page 97)

Declared In
Conversion.h

Functions 59
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageBufferFill_ARGBFFFF
Fills an ARGBFFFF buffer with a specified color.

vImage_Error vImageBufferFill_ARGBFFFF (
 const vImage_Buffer *dest,
 const Pixel_FFFF color,
 vImage_Flags flags
);

Parameters
dest

A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data created with
the fill color. When you no longer need the data buffer, you must deallocate the memory.

color
The color to fill the buffer with.

flags
Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageOverwriteChannelsWithScalar_PlanarF (page 97)

Declared In
Conversion.h

vImageClip_PlanarF
Clips the pixel values of an image in PlanarF format, using the provided minimum and maximum values.

vImage_Error vImageClip_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 Pixel_F maxFloat,
 Pixel_F minFloat,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to clip.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

60 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

maxFloat
A maximum pixel value. The function clips larger values to this value in the destination image.

minFloat
A maximum pixel value. The function clips smaller values to this value in the destination image.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_16SToF
Converts an image in a special planar format—in which each pixel value is a 16-bit signed integer— to a
PlanarF format.

vImage_Error vImageConvert_16SToF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 float offset,
 float scale,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image (for which each pixel value is
a 16-bit signed integer) whose data you want to overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data in PlanarF
format. When you no longer need the data buffer, you must deallocate the memory.

offset
The offset value to add to each pixel.

scale
The value to multiply each pixel by.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Functions 61
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Discussion
The function changes each pixel value to a floating-point value, scales each value and then adds the offset
value. The calculation is

 resultPixel = (float) sourcePixel * scale + offset

The functions vImageConvert_16SToF and vImageConvert_FTo16S are inverse transformations when
you use the same offset and scale values for each. (The inversion is not precise due to round-off error.) This
requires the two functions to use these values differently (and in a different order).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_16UToF
Converts an image in a special planar format—in which each pixel value is a 16-bit unsigned integer— to a
PlanarF format.

vImage_Error vImageConvert_16UToF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 float offset,
 float scale,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image (for which each pixel value is
a 16-bit unsigned integer) whose data you want to overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data in PlanarF
format. When you no longer need the data buffer, you must deallocate the memory.

offset
The offset value to add to each pixel.

scale
The value to multiply each pixel by.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
Each pixel value is changed to a floating-point value, then scaled and offset by the provided values. The
calculation is

62 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

 resultPixel = SATURATED_CLIP_SHRT_MIN_to_SHRT_MAX((sourcePixel
 - offset) / scale + 0.5f)

The functions vImageConvert_16SToF and vImageConvert_FTo16S are inverse transformations when
you use the same offset and scale values for each. (The inversion is not precise due to round-off error.) This
requires the two functions to use these values differently (and in a different order).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_16UToPlanar8
Converts an image in a special planar format—in which each pixel value is a 16-bit unsigned integer—to a
Planar8 image.

vImage_Error vImageConvert_16UToPlanar8 (
const vImage_Buffer *src,
const vImage_Buffer *dest,
vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The conversion from 16-bit to 8-bit values is:

 uint8_t result = (srcPixel * 255 + 32767) / 65535

You can also use this function to convert a 4-channel interleaved 16U image to an ARGB8888. image. Simply
multiply the width of the destination buffer by four.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

Functions 63
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageConvert_ARGB1555toARGB8888
Converts an ARGB1555 image to an ARGB8888 image.

vImage_Error vImageConvert_ARGB1555toARGB8888 (
const vImage_Buffer *src,
const vImage_Buffer *dest,
vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the converted data. When you no longer
need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The ARGB1555 format has 16-bit pixels with 1 bit for alpha and 5 bits each for red, green, and blue. The
function calculates the 8-bit pixels in the destination image as follows:

 Pixel8 alpha = 1bitAlphaChannel * 255
 Pixel8 red = (5bitRedChannel * 255 + 15) / 31
 Pixel8 green = (5bitGreenChannel * 255 + 15) / 31
 Pixel8 blue = (5bitBlueChannel * 255 + 15) / 31

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_ARGB1555toPlanar8
Separates an ARGB1555 image into four Planar8 images.

64 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_ARGB1555toPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *destA,
 const vImage_Buffer *destR,
 const vImage_Buffer *destG,
 const vImage_Buffer *destB,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to separate.

destA
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the alpha channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destR
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the red channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destG
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the green channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destB
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the blue channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The ARGB1555 format has 16-bit pixels with 1 bit for alpha and 5 bits each for red, green, and blue. The
function calculates the 8-bit pixels in the destination image as follows:

 Pixel8 alpha = 1bitAlphaChannel * 255
 Pixel8 red = (5bitRedChannel * 255 + 15) / 31
 Pixel8 green = (5bitGreenChannel * 255 + 15) / 31
 Pixel8 blue = (5bitBlueChannel * 255 + 15) / 31

This function works in place for one destination buffer; the others must be allocated separately.

Functions 65
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_ARGB8888toARGB1555
Converts an ARGB8888 image into an ARGB1555 image.

vImage_Error vImageConvert_ARGB8888toARGB1555 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the converted image data. When you no longer need the data buffer,
you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The ARGB1555 format has 16-bit pixels with 1 bit for alpha and 5 bits each for red, green, and blue. The
function calculates the 16-bit pixels in the destination image as follows:

 uint32_t alpha = (8bitAlphaChannel + 127) / 255
 uint32_t red = (8bitRedChannel * 31 + 127) / 255
 uint32_t green = (8bitGreenChannel * 31 + 127) / 255
 uint32_t blue = (8bitBlueChannel * 31 + 127) / 255
 uint16_t ARGB1555pixel = (alpha << 15) | (red << 10) | (green << 5) | blue

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_ARGB8888toPlanar8
Separates an ARGB8888 image into four Planar8 images.

66 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_ARGB8888toPlanar8 (
 const vImage_Buffer *srcARGB,
 const vImage_Buffer *destA,
 const vImage_Buffer *destR,
 const vImage_Buffer *destG,
 const vImage_Buffer *destB,
 vImage_Flags flags
);

Parameters
srcARGB

A pointer to a vImage buffer structure that contains the source image whose data you want to separate.

destA
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the alpha channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destR
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the red channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destG
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the green channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destB
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the blue channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source image, and the destA, destR, destG, and destB destination buffers, must have the same height
and the same width. This function works in place for one destination buffer. The others must be allocated
separately.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

Functions 67
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageConvert_ARGB8888toRGB565
Converts an ARGB8888 image into an RGB565 image.

vImage_Error vImageConvert_ARGB8888toRGB565 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the data in RGB565 format. When you no longer need the data buffer,
you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The alpha channel in the ARGB8888 image is ignored. (The RGB565 format has 16-bit pixels with 5 bits for
red, 6 for green, and 5 for blue.) The function calculates the pixels in the destination image as follows:

 uint32_t red = (8bitRedChannel * (31*2) + 255) / (255*2)
 uint32_t green = (8bitGreenChannel * 63 + 127) / 255
 uint32_t blue = (8bitBlueChannel * 31 + 127) / 255
 uint16_t RGB565pixel = (red << 11) | (green << 5) | blue

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_ARGB8888toRGB888
Converts an ARGB8888 image into an RGB888 image.

vImage_Error vImageConvert_ARGB8888toRGB888 (
 const vImage_Buffer *argbSrc,
 const vImage_Buffer *rgbDest,
 vImage_Flags flags
);

Parameters
argbSrc

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

68 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

rgbDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the argbSrc data buffer. On return, the data buffer pointed
to by this structure contains the data in RGB888 format. When you no longer need the data buffer,
you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The red, green, and blue channels are simply copied.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_ARGBFFFFtoPlanarF
Separates an ARGBFFFF image into four PlanarF images.

vImage_Error vImageConvert_ARGBFFFFtoPlanarF (
 const vImage_Buffer *srcARGB,
 const vImage_Buffer *destA,
 const vImage_Buffer *destR,
 const vImage_Buffer *destG,
 const vImage_Buffer *destB,
 vImage_Flags flags
);

Parameters
srcARGB

A pointer to a vImage buffer structure that contains the source image whose data you want to separate.

destA
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the alpha channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destR
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the red channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

Functions 69
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

destG
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the green channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destB
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the blue channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source image, and the destA, destR, destG, and destB destination buffers, must have the same height
and the same width. This function works in place for one destination buffer. The others must be allocated
separately.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_ChunkyToPlanar8
Separates a source image into a collection of corresponding planar destination images, one for each 8-bit
channel of the original image.

vImage_Error vImageConvert_ChunkyToPlanar8 (
 const void *srcChannels[],
 const vImage_Buffer *destPlanarBuffers[],
 unsigned int channelCount,
 size_t srcStrideBytes,
 vImagePixelCount srcWidth,
 vImagePixelCount srcHeight,
 size_t srcRowBytes,
 vImage_Flags flags
);

Parameters
srcChannels

An array of pointers to channels of the source image. Each pointer points to the start of the data for
one source channel.

70 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

destPlanarBuffers
An array of vImage buffer structures, each of which contains image data in Planar8 format. Each
structure must have the same width and height values, but may have different row byte values. On
return, the data buffer in each vImage buffer structure contains a planar image equivalent to the
corresponding channel of the source image.

channelCount
The number of channels in the source image.

srcStrideBytes
The number of bytes from one pixel value in a given channel to the next pixel of that channel (within
a row). This value must be the same for all channels.

srcWidth
The number of pixels in a row. This value must be the same for all channels in the source image, and
for all the destination buffers.

srcHeight
The number of rows. This value must be the same for all channels in the source image, and for all the
destination buffers.

srcRowBytes
The number of bytes from the beginning of a channel row to the beginning of the next row of the
channel. This value must be the same for all channels of the source image. (It does not have the be
the same as the rowBytes values of the destination buffers. Each destination buffer can have its own
rowBytes value.)

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_ChunkyToPlanarF
Separates a source image into a collection of corresponding planar destination images, one for each
floating-point channel of the original image.

Functions 71
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_ChunkyToPlanarF (
 const void *srcChannels[],
 const vImage_Buffer *destPlanarBuffers[],
 unsigned int channelCount,
 size_t srcStrideBytes,
 vImagePixelCount srcWidth,
 vImagePixelCount srcHeight,
 size_t srcRowBytes,
 vImage_Flags flags
);

Parameters
srcChannels

An array of pointers to channels of the source image. Each pointer points to the start of the data for
one source channel.

destPlanarBuffers
An array of vImage buffer structures, each of which contains image data in PlanarF format. Each
structure must have the same width and height values, but may have different row byte values. On
return, the data buffer in each each vImage buffer structure contains a planar image equivalent to
the corresponding channel of the source image.

channelCount
The number of channels in the source image.

srcStrideBytes
The number of bytes from one pixel value in a given channel to the next pixel of that channel (within
a row). This value must be the same for all channels.

srcWidth
The number of pixels in a row. This value must be the same for all channels in the source image, and
for all the destination buffers.

srcHeight
The number of rows. This value must be the same for all channels in the source image, and for all the
destination buffers.

srcRowBytes
The number of bytes from the beginning of a channel row to the beginning of the next row of the
channel. This value must be the same for all channels of the source image. (It does not have the be
the same as the rowBytes values of the destination buffers. Each destination buffer can have its own
rowBytes value.)

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

72 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageConvert_FTo16S
Converts a PlanarF image into a special format in which each pixel is a 16-bit signed integer.

vImage_Error vImageConvert_FTo16S (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 float offset,
 float scale,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image converted to 16-bit signed integer format. When
you no longer need the data buffer, you must deallocate the memory.

offset
The offset value to subtract from every pixel.

scale
The scale value to divide each pixel by.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
Each pixel value is first offset and scaled by the provided values, and then changed to a 16-bit signed integer
(rounded and clipped as necessary). The calculation is as follows:

 resultPixel = SATURATED_CLIP_0_to_USHRT_MAX((srcPixel - offset)
 / scale + 0.5f)

The functions vImageConvert_16SToF and vImageConvert_FTo16S are inverse transformations when
you use the same offset and scale values for each. (The inversion is not precise due to round-off error.) This
requires the two functions to use these values differently (and in a different order).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_FTo16U
Converts a PlanarF image into a special format in which each pixel is a 16-bit unsigned integer.

Functions 73
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_FTo16U (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 float offset,
 float scale,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image converted to 16-bit unsigned integer format. When
you no longer need the data buffer, you must deallocate the memory.

offset
The offset value to subtract from every pixel.

scale
The scale value to divide each pixel by.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
Each pixel value is first offset and scaled by user-supplied values, and then changed to a 16-bit unsigned
integer (rounded and clipped as necessary). The calculation is as follows:

 resultPixel = SATURATED_CLIP_0_to_USHRT_MAX((sourcePixel - offset)
 / scale + 0.5f)

The functions vImageConvert_16UToF and vImageConvert_FTo16U are inverse transformations when
you use the same offset and scale values for each. (The inversion is not precise due to round-off error.) This
requires the two functions to use these values differently (and in a different order).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_Planar16FtoPlanarF
Converts a Planar16F image to a PlanarF image.

74 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_Planar16FtoPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image converted to PlanarF
format. When you no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The Planar16F format is identical to the OpenEXR format; it uses 16-bit floating-point numbers. In conformance
with IEEE-754, the function quiets signaling NaNs during the conversion. (OpenEXR-1.2.1 does not do this.)

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_Planar8To16U
Converts a Planar8 image to a 16U image .

vImage_Error vImageConvert_Planar8To16U (
const vImage_Buffer *src,
const vImage_Buffer *dest,
vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Functions 75
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The function converts from 8-bit to 16-bit values as follows:

 uint16_t result = (srcPixel * 65535 + 127) / 255

You can also use this function to convert an ARGB8888 image to a 4-channel interleaved 16U image. Simply
multiply the width of the destination buffer by four.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_Planar8toARGB1555
Combines four Planar8 images into one ARGB1555 image.

vImage_Error vImageConvert_Planar8toARGB1555 (
 const vImage_Buffer *srcA,
 const vImage_Buffer *srcR,
 const vImage_Buffer *srcG,
 const vImage_Buffer *srcB,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcA

A pointer to vImage buffer structure that contains the Planar8 image to use as the alpha channel of
the destination image.

srcR
A pointer to vImage buffer structure that contains the Planar8 image to use as the red channel of the
destination image.

srcG
A pointer to vImage buffer structure that contains the Planar8 image to use as the green channel of
the destination image.

srcB
A pointer to vImage buffer structure that contains the Planar8 image to use as the blue channel of
the destination image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data in ARGB1555
format (16-bit pixels with 1 bit for alpha and 5 bits each for red, green, and blue). When you no longer
need the data buffer, you must deallocate the memory. The destination buffer can be the same as
the source buffer.

76 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function calculates the 8-bit pixels in the destination image as follows:

 Pixel8 alpha = 1bitAlphaChannel * 255
 Pixel8 red = (5bitRedChannel * 255 + 15) / 31
 Pixel8 green = (5bitGreenChannel * 255 + 15) / 31
 Pixel8 blue = (5bitBlueChannel * 255 + 15) / 31

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_Planar8toARGB8888
Combines four Planar8 images into one ARGB8888 image.

vImage_Error vImageConvert_Planar8toARGB8888 (
 const vImage_Buffer *srcA,
 const vImage_Buffer *srcR,
 const vImage_Buffer *srcG,
 const vImage_Buffer *srcB,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcA

A pointer to vImage buffer structure that contains the Planar8 image to use as the alpha channel of
the destination image.

srcR
A pointer to vImage buffer structure that contains the Planar8 image to use as the red channel of the
destination image.

srcG
A pointer to vImage buffer structure that contains the Planar8 image to use as the green channel of
the destination image.

srcB
A pointer to vImage buffer structure that contains the Planar8 image to use as the blue channel of
the destination image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image in ARGB8888 format.
When you no longer need the data buffer, you must deallocate the memory.

Functions 77
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source and destination buffers must have the same height and width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_Planar8toPlanarF
Converts a Planar8 image to a PlanarF image.

vImage_Error vImageConvert_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 Pixel_F maxFloat,
 Pixel_F minFloat,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image converted to PlanarF
format. When you no longer need the data buffer, you must deallocate the memory.

maxFloat
The maximum pixel value for the destination image.

minFloat
The minimum pixel value for the destination image.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function transforms a Planar8 image to a PlanarF image, using a minFloat value and a maxFloat value
to specify the range of values for the PlanarF image. The function maps each source pixel value(which can
be in the range of 0 to 255 inclusive) linearly into the range minFloat to maxFloat, using the following
mapping (where i is the old pixel value):

new pixel value = i* (maxFloat - minFloat)/255.0f + minFloat

78 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

The two buffers must have the same number of rows and the same number of columns.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_Planar8toRGB565
Combines three Planar8 images into one RGB565 image.

vImage_Error vImageConvert_Planar8toRGB565 (
 const vImage_Buffer *srcR,
 const vImage_Buffer *srcG,
 const vImage_Buffer *srcB,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcR

A pointer to vImage buffer structure that contains the Planar8 image to use as the red channel of the
destination image.

srcG
A pointer to vImage buffer structure that contains the Planar8 image to use as the green channel of
the destination image.

srcB
A pointer to vImage buffer structure that contains the Planar8 image to use as the blue channel of
the destination image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image in RGB565 format
(16-bit pixels with 5 bits for red, 6 for green, and 5 for blue). When you no longer need the data buffer,
you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The function calculates the pixels in the destination image as follows:

 uint32_t red = (8bitRedChannel * (31*2) + 255) / (255*2)
 uint32_t green = (8bitGreenChannel * 63 + 127) / 255
 uint32_t blue = (8bitBlueChannel * 31 + 127) / 255
 uint16_t RGB565pixel = (red << 11) | (green << 5) | blue

Availability
Available in Mac OS X v10.4 and later.

Functions 79
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Declared In
Conversion.h

vImageConvert_Planar8toRGB888
Combines three Planar8 images into one RGB888 image.

vImage_Error vImageConvert_Planar8toRGB888 (
 const vImage_Buffer *planarRed,
 const vImage_Buffer *planarGreen,
 const vImage_Buffer *planarBlue,
 const vImage_Buffer *rgbDest,
 vImage_Flags flags
);

Parameters
planarRed

A pointer to vImage buffer structure that contains the Planar8 image to use as the red channel of the
destination image.

planarGreen
A pointer to vImage buffer structure that contains the Planar8 image to use as the green channel of
the destination image.

planarBlue
A pointer to vImage buffer structure that contains the Planar8 image to use as the blue channel of
the destination image.

rgbDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image in RGB888 format.
When you no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source and destination buffers must have the same height and width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_PlanarFtoARGBFFFF
Combines four PlanarF images into one ARGBFFFF image.

80 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_PlanarFtoARGBFFFF (
 const vImage_Buffer *srcA,
 const vImage_Buffer *srcR,
 const vImage_Buffer *srcG,
 const vImage_Buffer *srcB,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
srcA

A pointer to vImage buffer structure that contains the PlanarF image to use as the alpha channel of
the destination image.

srcR
A pointer to vImage buffer structure that contains the PlanarF image to use as the red channel of the
destination image.

srcG
A pointer to vImage buffer structure that contains the PlanarF image to use as the green channel of
the destination image.

srcB
A pointer to vImage buffer structure that contains the PlanarF image to use as the blue channel of
the destination image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data in ARGBFFFF
format. When you no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source and destination buffers must have the same height and width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_PlanarFtoPlanar16F
Converts a PlanarF image to a Planar16F image.

Functions 81
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageConvert_PlanarFtoPlanar16F (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image converted to Planar16F format. The destination
buffer can be the same as the source buffer. When you no longer need the data buffer, you must
deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
Planar16F pixels are 16-bit floating-point numbers, conforming to the OpenEXR standard. Denormals, NaNs.
and +/– Infinity are supported. In conformance with IEEE-754, all signaling NaNs are quieted during the
conversion (OpenEXR-1.2.1 does not do this.)

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_PlanarFtoPlanar8
Converts a PlanarF image to a Planar8 image, clipping values to the provided minimum and maximum values.

vImage_Error vImageConvert_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 Pixel_F maxFloat,
 Pixel_F minFloat,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

82 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image converted to Planar8 format. When you no longer
need the data buffer, you must deallocate the memory.

maxFloat
A maximum pixel value. The function clips larger values to this value in the destination image.

maxFloat
A minimum pixel value. The function clips smaller values to this value in the destination image.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The minimum and maximum value determine the mapping of intensity values to the destination image. The
mapping is:

 if oldPixel < minFloat
 newPixel = 0

 if minfloat <= oldPixel <= maxFloat
 newPixel = (oldPixel - minFloat) * 255.0f / (maxFloat - minFloat)

 if oldPixel > maxFloat
 newPixel = 255

The source and destination buffers must have the same height and width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_PlanarFtoRGBFFF
Combines three PlanarF images into one RGBFFF image.

vImage_Error vImageConvert_PlanarFtoRGBFFF (
 const vImage_Buffer *planarRed,
 const vImage_Buffer *planarGreen,
 const vImage_Buffer *planarBlue,
 const vImage_Buffer *rgbDest,
 vImage_Flags flags
);

Parameters
planarRed

A pointer to vImage buffer structure that contains the PlanarF image to use as the red channel of the
destination image.

Functions 83
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

planarGreen
A pointer to vImage buffer structure that contains the PlanarF image to use as the green channel of
the destination image.

planarBlue
A pointer to vImage buffer structure that contains the PlanarF image to use as the blue channel of
the destination image.

rgbDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image in RGBFFF format.
When you no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source and destination buffers must have the same height and width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_PlanarToChunky8
Combines a collection of planar source images into a single interleaved destination image, with one 8-bit
channel for each planar image.

vImage_Error vImageConvert_PlanarToChunky8 (
 const vImage_Buffer *srcPlanarBuffers[],
 void *destChannels[],
 unsigned int channelCount,
 size_t destStrideBytes,
 vImagePixelCount destWidth,
 vImagePixelCount destHeight,
 size_t destRowBytes,
 vImage_Flags flags
);

Parameters
srcPlanarBuffers

An array of vImage buffer structures, each of which contains image data in Planar8 format. Each
structure must have the same width and height values, but may have different row byte values.

destChannels
An array of pointers to channels of the destination image. Each pointer points to the start of the data
for one destination channel. The function fills the pixel values of each channel, using the corresponding
source image for each channel.

84 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

channelCount
The number of vImage buffer structures in the srcPlanarBuffers array and the number of channels
in the destination image.

destStrideBytes
The number of bytes from one pixel value in a given channel to the next pixel of that channel (within
a row). This value is used for all channels.

destWidth
The number of pixels in a row. This value is used for all channels. It must be the same as the width of
each of the planar source images.

destHeight
The number of rows. This value will be used for all channels. It must be the same as the height of
each of the planar source images.

destRowBytes
The number of bytes from the beginning of a channel row to the beginning of the next row in that
channel. This value is used for all channels. (It does not have to be the same as the rowBytes values
of the source buffers. Each source buffer can have its own rowBytes value.)

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_PlanarToChunkyF
Combines a collection of planar source images into a single interleaved destination image, with one
floating-point channel for each planar image.

vImage_Error vImageConvert_PlanarToChunkyF (
 const vImage_Buffer *srcPlanarBuffers[],
 void *destChannels[],
 unsigned int channelCount,
 size_t destStrideBytes,
 vImagePixelCount destWidth,
 vImagePixelCount destHeight,
 size_t destRowBytes,
 vImage_Flags flags
);

Parameters
srcPlanarBuffers

An array of vImage buffer structures, each of which contains image data in PlanarF format. Each
structure must have the same width and height values, but may have different row byte values.

Functions 85
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

destChannels
An array of pointers to channels of the destination image. Each pointer points to the start of the data
for one destination channel. The function fills the pixel values of each channel, using the corresponding
source image for each channel.

channelCount
The number of vImage buffer structures in the srcPlanarBuffers array and the number of channels
in the destination image.

destStrideBytes
The number of bytes from one pixel value in a given channel to the next pixel of that channel (within
a row). This value is used for all channels.

destWidth
The number of pixels in a row. This value is used for all channels. It must be the same as the width of
each of the planar source images.

destHeight
The number of rows. This value is used for all channels. It must be the same as the height of each of
the planar source images.

destRowBytes
The number of bytes from the beginning of a channel row to the beginning of the next row in that
channel. This value is used for all channels. (It does not have to be the same as the rowBytes values
of the source buffers. Each source buffer can have its own rowBytes value.)

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

vImageConvert_RGB565toARGB8888
Converts an RGB565 image into an ARGB8888 image, using the provided 8-bit alpha value.

vImage_Error vImageConvert_RGB565toARGB8888 (
 Pixel_8 alpha,
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
alpha

A value of type Pixel_8 to be used as the alpha value for all pixels in the destination image.

src
A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

86 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination data converted to ARGB8888 format.. When you no longer
need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The RGB565 format has 16-bit pixels with 5 bits for red, 6 for green, and 5 for blue. The function calculates
the pixels in the destination image as follows:

 Pixel8 alpha = alpha
 Pixel8 red = (5bitRedChannel * 255 + 15) / 31
 Pixel8 green = (6bitGreenChannel * 255 + 31) / 63
 Pixel8 blue = (5bitBlueChannel * 255 + 15) / 31

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_RGB565toPlanar8
Separates an RGB565 image into three Planar8 images.

vImage_Error vImageConvert_RGB565toPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *destR,
 const vImage_Buffer *destG,
 const vImage_Buffer *destB,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to separate.

destR
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the red channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

Functions 87
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

destG
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the green channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

destB
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the blue channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The RGB565 format has 16-bit pixels with 5 bits for red, 6 for green, and 5 for blue. The function calculates
the pixels in the destination image as follows:

 Pixel8 red = (5bitRedChannel * 255 + 15) / 31
 Pixel8 green = (6bitGreenChannel * 255 + 31) / 63
 Pixel8 blue = (5bitBlueChannel * 255 + 15) / 31

This function works in place for one destination buffer. You must allocate the others separately.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_RGB888toARGB8888
Converts an RGB888 image into an ARGB8888 image, using the provided alpha value (either as planar or
pixel data).

vImage_Error vImageConvert_RGB888toARGB8888 (
 const vImage_Buffer *rgbSrc,
 const vImage_Buffer *aSrc,
 Pixel_8 alpha,
 const vImage_Buffer *argbDest,
 bool premultiply,
 vImage_Flags flags
);

Parameters
rgbSrc

A pointer to a vImage buffer structure that contains the source image whose data you want to convert.

88 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

aSrc
A pointer to a vImage buffer structure that contains a Planar8 alpha plane to use as the alpha values
for in the destination image. If you pass NULL, the function assigns the value of the alpha parameter
for all pixels in the destination image.

alpha
An alpha value for all pixels in the destination image. The function ignores this value if the aSrc
parameter is not NULL.

argbDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the converted image data. When you no
longer need the data buffer, you must deallocate the memory.

premultiply
Pass YES if the data is premultiplied by the alpha value; NO otherwise.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
If you specify premultiplied data, the function calculates each channel in the destination image as follows:

 (alpha * sourceValue + 127) / 255

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_RGB888toPlanar8
Separates an RGB888 image into three Planar8 images.

vImage_Error vImageConvert_RGB888toPlanar8 (
 const vImage_Buffer *rgbSrc,
 const vImage_Buffer *redDest,
 const vImage_Buffer *greenDest,
 const vImage_Buffer *blueDest,
 vImage_Flags flags
);

Parameters
rgbSrc

A pointer to a vImage buffer structure that contains the source image whose data you want to separate.

Functions 89
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

redDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the red channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

greenDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the green channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

blueDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a Planar8 image equivalent to
the blue channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source image and the destination buffers, must all have the same height and the same width. This
function works in place for one destination buffer. You must allocate the others separately.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageConvert_RGBFFFtoPlanarF
Separates an RGBFFF image into three PlanarF images.

vImage_Error vImageConvert_RGBFFFtoPlanarF (
 const vImage_Buffer *rgbSrc,
 const vImage_Buffer *redDest,
 const vImage_Buffer *greenDest,
 const vImage_Buffer *blueDest,
 vImage_Flags flags
);

Parameters
rgbSrc

A pointer to a vImage buffer structure that contains the source image whose data you want to separate.

90 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

redDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the red channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

greenDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the green channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

blueDest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains data for a PlanarF image equivalent to
the blue channel of the source image. When you no longer need the data buffer, you must deallocate
the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The source image and the destination buffers, must all have the same height and the same width. This
function works in place for one destination buffer. You must allocated the others separately.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageFlatten_ARGB8888ToRGB888
Transforms an ARGB8888 image to an RGB888 image against an opaque background of the provided color.

vImage_Error vImageFlatten_ARGB8888ToRGB888 (
const vImage_Buffer *argb8888Src,
const vImage_Buffer *rgb888dest,
Pixel_8888 backgroundColor,
bool isImagePremultiplied,
vImage_Flags flags
);

Parameters
argb8888Src

A pointer to a vImage buffer structure that contains the source image whose data you want to flatten.

Functions 91
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

rgb888dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the argb8888Src data buffer. On return, the data buffer
pointed to by this structure contains the destination image data. When you no longer need the data
buffer, you must deallocate the memory. The destination buffer can be the same as the source buffer.

backgroundColor
An 8-bit interleaved pixel value.

isImagePremultiplied
TRUE if the source image uses premultiplied data , FALSE otherwise.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
If the source image uses premultiplied data, the function calculates each channel value for a pixel in the
destination image as follows (where i is the source value for the channel):

 new value = (i * 255 + (255 - alpha) * backgroundColor + 127) / 255

If the source image does not use premultiplied data, the function calculates each channel value for a pixel
in the destination image as follows (where i is the source value for the channel):

 new value = (i * alpha + (255 - alpha) * backgroundColor + 127) / 255

The source and destinations buffer must have the same height and the same width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageFlatten_ARGBFFFFToRGBFFF
Transforms an ARGBFFFF image to an RGBFFF image against an opaque background of the provided color.

vImage_Error vImageFlatten_ARGBFFFFToRGBFFF (
const vImage_Buffer *argbFFFFSrc,
const vImage_Buffer *rgbFFFdest,
Pixel_FFFF backgroundColor,
bool isImagePremultiplied,
vImage_Flags flags
);

Parameters
argbFFFFSrc

A pointer to a vImage buffer structure that contains the source image whose data you want to flatten.

92 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

rgbFFFdest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the argbFFFFSrc data buffer. On return, the data buffer
pointed to by this structure contains the destination image data. When you no longer need the data
buffer, you must deallocate the memory. The destination buffer can be the same as the source buffer.

backgroundColor
A floating-point interleaved pixel value.

isImagePremultiplied
True if the source image is premultiplied, false otherwise.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
If the source image uses premultiplied data, the function calculates each channel value for a pixel in the
destination image as follows (where i is the source value for the channel):

 newcolor = i + (1.0f - alpha) * backgroundColor

If the source image does not use premultiplied data, the function calculates each channel value for a pixel
in the destination image as follows (where i is the source value for the channel):

 newcolor = i * alpha + (1.0f - alpha) * backgroundColor

The source and destinations buffer must have the same height and the same width.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageOverwriteChannelsWithPixel_ARGB8888
Overwrites an ARGB8888 image buffer with the provided pixel value.

vImage_Error vImageOverwriteChannelsWithPixel_ARGB8888 (
 const Pixel_8888 the_pixel,
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
the_pixel

An ARGB pixel value.

Functions 93
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

src
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGB8888 source buffer that you want
replaced with the pixel value. The value 0x8 selects the alpha channel, 0x4 the red channel, 0x2 the
green channel, and 0x1 the blue channel. You can add these values together to select multiple
channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Conversion.h

vImageOverwriteChannelsWithPixel_ARGBFFFF
Overwrites an ARGBFFFF image buffer with the provided pixel value.

vImage_Error vImageOverwriteChannelsWithPixel_ARGBFFFF (
 const Pixel_FFFF the_pixel,
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
the_pixel

An ARGB pixel value.

src
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

94 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

copyMask
An output value that selects the plane (or planes) from the ARGBFFFF source buffer that you want
replaced with the pixel value. The value 0x8 selects the alpha channel, 0x4 the red channel, 0x2 the
green channel, and 0x1 the blue channel. You can add these values together to select multiple
channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Conversion.h

vImageOverwriteChannelsWithScalar_ARGB8888
Overwrites the pixels of one or more planes of an ARGB8888 image buffer with the provided scalar value.

vImage_Error vImageOverwriteChannelsWithScalar_ARGB8888 (
 Pixel_8 scalar,
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
scalar

An 8-bit pixel value.

src
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGB8888 source buffer that you want
replaced with the scalar value. The value 0x8 selects the alpha channel, 0x4 the red channel, 0x2 the
green channel, and 0x1 the blue channel. You can add these values together to select multiple
channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Functions 95
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageOverwriteChannelsWithScalar_ARGBFFFF
Overwrites the pixels of one or more planes of an ARGBFFFF image buffer with the provided scalar value.

vImage_Error vImageOverwriteChannelsWithScalar_ARGBFFFF (
 Pixel_F scalar,
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
scalar

A floating-point pixel value.

src
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGBFFFF source buffer that you want
replaced with the scalar value. The value 0x8 selects the alpha channel, 0x4 the red channel, 0x2 the
green channel, and 0x1 the blue channel. You can add these values together to select multiple
channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

96 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImageOverwriteChannelsWithScalar_Planar8
Overwrites a Planar8 image buffer with the provided value.

vImage_Error vImageOverwriteChannelsWithScalar_Planar8 (
 Pixel_8 scalar,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
scalar

An 8-bit pixel value.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination data. When you no longer
need the data buffer, you must deallocate the memory.

flags
Set the kvImageDoNotTile field in the flags parameter to prevent vImage from using tiling internally.
(This is appropriate if you are doing tiling yourself.)

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageOverwriteChannelsWithScalar_PlanarF
Overwrites a PlanarF image buffer with the provided value.

vImage_Error vImageOverwriteChannelsWithScalar_PlanarF (
 Pixel_F scalar,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
scalar

A floating-point pixel value.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Functions 97
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageOverwriteChannels_ARGB8888
Overwrites one or more planes of an ARGB8888 image buffer with the provided planar buffer.

vImage_Error vImageOverwriteChannels_ARGB8888 (
 const vImage_Buffer *newSrc,
 const vImage_Buffer *origSrc,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
newSrc

A pointer to a vImage buffer structure that contains the data, in Planar8 format, for overwriting the
origSrc image data.

origSrc
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGB8888 source buffer that you want
replaced with data from the Planar8 source buffer. The value 0x8 selects the alpha channel, 0x4 the
red channel, 0x2 the green channel, and 0x1 the blue channel. You can add these values together
to select multiple channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The function overwrites pixel values in the origSrc image buffer using the corresponding pixel value from
the newSrc image buffer.

Availability
Available in Mac OS X v10.4 and later.

98 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Declared In
Conversion.h

vImageOverwriteChannels_ARGBFFFF
Overwrites one or more planes of an ARGBFFFF image buffer with the provided planar buffer.

vImage_Error vImageOverwriteChannels_ARGBFFFF (
 const vImage_Buffer *newSrc,
 const vImage_Buffer *origSrc,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
newSrc

A pointer to a vImage buffer structure that contains the data, in PlanarF format, for overwriting the
origSrc image data.

origSrc
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGBFFFF source buffer that you want
replaced with data from the Planar8 source buffer. The value 0x8 selects the alpha channel, 0x4 the
red channel, 0x2 the green channel, and 0x1 the blue channel. You can add these values together
to select multiple channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The function overwrites pixel values in the origSrc image buffer using the corresponding pixel value from
the newSrc image buffer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

Functions 99
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImagePermuteChannels_ARGB8888
Reorders the channels in an ARGB8888 image.

vImage_Error vImagePermuteChannels_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const uint8_t permuteMap[4],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to permute.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

100 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

permuteMap
An array of four 8-bit integers with the values 0, 1, 2, and 3, in some order. The ith value specifies the
plane from the source image that you want copied to the ith plane of the destination image. 0 denotes
the alpha channel, 1 the red channel, 2 the green channel, and 3 the blue channel. The following
figure shows the result of using a permute map shows values are (0, 3, 2, 1). The data in the alpha
and green channels remain the same, but the data in the source red channel maps to the destination
blue channel while the data in the source blue channel maps to the destination red channel.

Figure 3-1 Permuting the red and blue channels

Alpha

Source Destination

RGB color profile BGR color profile

Red

Green

Blue

Alpha

Blue

Green

Red

flags
The options to use when performing the permutation operation. Set the kvImageDoNotTile flag if
you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Functions 101
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Declared In
Conversion.h

vImagePermuteChannels_ARGBFFFF
Reorders the channels in an ARGBFFFF image.

vImage_Error vImagePermuteChannels_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const uint8_t permuteMap[4],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to permute.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

permuteMap
An array of four 8-bit integers with the values 0, 1, 2, and 3, in some order. The ith value specifies the
plane from the source image that will be copied to the ith plane of the destination image. 0 denotes
the alpha channel, 1 the red channel, 2 the green channel, and 3 the blue channel. Figure 3-1 (page
101) shows the result of using a permute map shows values are (0, 3, 2, 1). The data in the alpha and
green channels remain the same, but the data in the source red channel maps to the destination blue
channel while the data in the source blue channel maps to the destination red channel.

flags
The options to use when performing the permutation operation. Set the kvImageDoNotTile flag if
you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Conversion.h

vImageSelectChannels_ARGB8888
Overwrites the specified channels in an ARGB8888 image buffer with the provided channels from an ARGB8888
image buffer.

102 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageSelectChannels_ARGB8888 (
 const vImage_Buffer *newSrc,
 const vImage_Buffer *origSrc,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
newSrc

A pointer to a vImage buffer structure that contains the data, in ARGB8888 format, for overwriting
the origSrc image data.

origSrc
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGB8888 source buffer that you want
replaced with the corresponding plane from the newSrc image buffer. The value 0x8 selects the
alpha channel, 0x4 the red channel, 0x2 the green channel, and 0x1 the blue channel. You can add
these values together to select multiple channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
vImageOverwriteChannels_ARGB8888 (page 98)

Declared In
Conversion.h

vImageSelectChannels_ARGBFFFF
Overwrites the specified channels in an ARGBFFFF image buffer with the provided channels in an ARGBFFFF
image buffer.

Functions 103
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageSelectChannels_ARGBFFFF (
 const vImage_Buffer *newSrc,
 const vImage_Buffer *origSrc,
 const vImage_Buffer *dest,
 uint8_t copyMask,
 vImage_Flags flags
);

Parameters
newSrc

A pointer to a vImage buffer structure that contains the data, in ARGBFFFF format, for overwriting
the origSrc image data.

origSrc
A pointer to a vImage buffer structure that contains the source image whose data you want to
overwrite.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the origSrc data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

copyMask
An output value that selects the plane (or planes) from the ARGBFFFF source buffer that you want
replaced with the corresponding plane from the newSrc image buffer. The value 0x8 selects the
alpha channel, 0x4 the red channel, 0x2 the green channel, and 0x1 the blue channel. You can add
these values together to select multiple channels.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Conversion.h

vImageTableLookUp_ARGB8888
Transforms an ARGB8888 image by substituting pixel values with pixel values provided by four lookup tables.

104 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

vImage_Error vImageTableLookUp_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_8 alphaTable[256],
 const Pixel_8 redTable[256],
 const Pixel_8 greenTable[256],
 const Pixel_8 blueTable[256],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to
transform.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

alphaTable
The lookup table to use for the alpha channel of the source image. If you pass NULL for this table, the
function copies the alpha channel unchanged to the destination buffer.

redTable
The lookup table to use for the red channel of the source image. If you pass NULL for this table, the
function copies the red channel unchanged to the destination buffer.

greenTable
The lookup table to use for the green channel of the source image. If you pass NULL for this table,
the function copies the green channel unchanged to the destination buffer.

blueTable
The lookup table to use for the blue channel of the source image. If you pass NULL for this table, the
function copies the blue channel unchanged to the destination buffer.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The function separates each pixel into four channels—alpha, red, green, and blue. It substitutes each channel
separately, using the appropriate table. Then the function recombines each pixel into a single ARGB8888
value, placing the transformed image into the destination buffer.

The source and destinations buffer must have the same height and the same width.

You cannot use this function to perform an arbitrary color mapping. For example, if two different source
colors have the same green component, you must map them to two destination colors whose green
components are equal. You can’t map them to two arbitrary colors.

Availability
Available in Mac OS X v10.3 and later.

Functions 105
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Declared In
Conversion.h

vImageTableLookUp_Planar8
Transforms an Planar8 image by substituting pixel values with pixel values provided by four lookup tables.

vImage_Error vImageTableLookUp_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_8 table[256],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to
transform.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. The
destination data buffer can be the same as the src data buffer. On return, the data buffer pointed
to by this structure contains the destination image data. When you no longer need the data buffer,
you must deallocate the memory.

table
The lookup table to use.

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function transforms a Planar8 image by replacing all pixels of a given intensity value with pixels of a
new intensity value. It maps old values to new values using the provided 256-element lookup table (LUT).

The source and destinations buffer must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Conversion.h

106 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

vImage Conversion Reference

Framework: Accelerate/vImage

Declared in Convolution.h

Companion guide vImage Programming Guide

Overview

Convolution functions implement various techniques for smoothing or sharpening an image by replacing a
pixel with a weighted sum of itself and nearby pixels. Image convolution does not alter the size of an image.

Each convolution function requires that you pass it a convolution kernel, which determines how the values
of neighboring pixels are used to compute the value of a destination pixel. A kernel is a packed array, without
padding at the ends of the rows. The elements of the array must be of type uint8_t (for the Planar8 and
ARGB8888 formats) or of type float (for the PlanarF and ARGBFFFF formats). The height and the width of
the array must both be odd numbers.

For example, a 3 x 3 convolution kernel for a Planar8 image consist of nine 8-bit (1-byte) values, arranged
consecutively. The first three values represent the first row of the kernel, the next three values the second
row, and the last three values the third row.

Typically, you use normalized values for the convolution kernel. For floating-point formats, this means the
sum of the elements of the kernel is 1.0. For integer formats, the sum of the elements of the kernel, divided
by the given divisor, is 1. A non-normalized kernel either lightens or darkens the image.

For integer formats, the sum of any subset of elements of the kernel must be in the range –224 to 224 – 1,
inclusive to prevent integer overflow. If your kernel does not meet this restriction, either use a floating-point
format or scale the kernel to use smaller values.

A convolution function transforms a source image as follows:

1. Places the kernel over the image so that the center element of the kernel lies over the source pixel.

2. For floating-point formats, performs this calculation:

kernel (x, y) * pixel∑ (x, y)

Overview 107
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

For integer formats, performs this calculation:

kernel (x, y) * pixel∑ (x, y)

M * N

3. Assigns the result to the destination pixel.

If the image is in a planar format, the convolution operation uses the single-channel values of the pixels
directly. If the image is in an interleaved format, the convolution operation processes each channel (alpha,
red, green, and blue) separately. In both the planar and interleaved format, the kernel itself is always planar.

When the pixel to be transformed is near the edge of the image—not merely the region of interest, but the
entire image of which it is a part—the kernel may extend beyond the edge of the image, so that there are
no existing pixels beneath some of the kernel elements. In these cases you must pass a flag that specifies a
technique for the convolution function to use: kvImageCopyInPlace, kvImageBackgroundColorFill,
kvImageEdgeExtend, and kvImageTruncateKernel. For a discussion of these options, see vImage Data
Types and Constants Reference.

Functions by Task

Deconvolving

vImageRichardsonLucyDeConvolve_ARGBFFFF (page 133)
Sharpens an ARGBFFFF image by undoing a previous convolution that blurred the image, such as
diffraction effects in a camera lens.

vImageRichardsonLucyDeConvolve_ARGB8888 (page 131)
Sharpens an ARGB8888 image by undoing a previous convolution that blurred the image, such as
diffraction effects in a camera lens.

vImageRichardsonLucyDeConvolve_PlanarF (page 137)
Sharpens a PlanarF image by undoing a previous convolution that blurred the image, such as diffraction
effects in a camera lens.

vImageRichardsonLucyDeConvolve_Planar8 (page 135)
Sharpens a Planar8 image by undoing a previous convolution that blurred the image, such as diffraction
effects in a camera lens.

Convolving Without Bias

vImageConvolve_ARGBFFFF (page 125)
Convolves a region of interest within an ARGBFFFF source image by an M x N kernel.

vImageConvolve_ARGB8888 (page 124)
Convolves a region of interest within a source image by an M x N kernel, then divides the pixel values
by a divisor.

108 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

vImageConvolve_PlanarF (page 129)
Convolves a region of interest within a source image by an M x N kernel.

vImageConvolve_Planar8 (page 127)
Convolves a region of interest within a source image by an M x N kernel, then divides the pixel values
by a divisor.

Convolving With a Bias

vImageConvolveWithBias_ARGB8888 (page 117)
Convolves a region of interest within an ARGB8888 source image by an M x N kernel, then normalizes
the pixel values.

vImageConvolveWithBias_PlanarF (page 122)
Convolves a region of interest within a PlanarF source image by an M x N kernel.

vImageConvolveWithBias_Planar8 (page 120)
Convolves a region of interest within a Planar8 source image by an M x N kernel, then normalizes the
pixel values.

vImageConvolveWithBias_ARGBFFFF (page 118)
Convolves a region of interest within an ARGBFFFF source image by an M x N kernel.

Convolving With Multiple Kernels

vImageConvolveMultiKernel_ARGBFFFF (page 115)
Convolves each channel of a region of interest within an ARGBFFFF source image by one of the four
M x N kernels.

vImageConvolveMultiKernel_ARGB8888 (page 113)
Convolves each channel of a region of interest within an ARGB8888 source image by one of the four
M x N kernels, then divides the pixel values by one of the four divisors.

Convolving With High-Speed Box and Tent Filters

vImageBoxConvolve_Planar8 (page 111)
Convolves a region of interest within a Planar8 source image by an implicit M x N kernel that has the
effect of a box filter.

vImageBoxConvolve_ARGB8888 (page 110)
Convolves a region of interest within an ARGB8888 source image by an implicit M x N kernel that has
the effect of a box filter.

vImageTentConvolve_Planar8 (page 141)
Convolves a region of interest within a Planar8 source image by an implicit M x N kernel that has the
effect of a tent filter.

vImageTentConvolve_ARGB8888 (page 139)
Convolves a region of interest within an ARGB8888 source image by an implicit M x N kernel that has
the effect of a tent filter.

Functions by Task 109
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Getting the Minimum Buffer Size

vImageGetMinimumTempBufferSizeForConvolution (page 130) Deprecated in Mac OS X v10.4
Returns the minimum size, in bytes, for the temporary buffer that the caller supplies to any of the
convolution functions. (Deprecated. Use the kvImageGetTempBufferSize flag with the appropriate
convolution function instead of calling this function.)

Functions

vImageBoxConvolve_ARGB8888
Convolves a region of interest within an ARGB8888 source image by an implicit M x N kernel that has the
effect of a box filter.

vImage_Error vImageBoxConvolve_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 uint32_t kernel_height,
 uint32_t kernel_width,
 Pixel_8888 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

110 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

kernel_width
The width of the kernel in pixels. This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function uses an implicit divisor and an implicit kernel of specified size instead of a kernel provided by
the caller.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_ARGB8888 (page 124)
vImageTentConvolve_ARGB8888 (page 139)

Declared In
Convolution.h

vImageBoxConvolve_Planar8
Convolves a region of interest within a Planar8 source image by an implicit M x N kernel that has the effect
of a box filter.

Functions 111
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

vImage_Error vImageBoxConvolve_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 uint32_t kernel_height,
 uint32_t kernel_width,
 Pixel_8 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

112 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Discussion
This function uses an implicit divisor and an implicit kernel of specified size instead of a kernel provided by
the caller.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_Planar8 (page 127)
vImageTentConvolve_Planar8 (page 141)

Declared In
Convolution.h

vImageConvolveMultiKernel_ARGB8888
Convolves each channel of a region of interest within an ARGB8888 source image by one of the four M x N
kernels, then divides the pixel values by one of the four divisors.

vImage_Error vImageConvolveMultiKernel_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernels[4],
 uint32_t kernel_height,
 uint32_t kernel_width,
 const int32_t divisors[4],
 const int32_t biases[4],
 Pixel_8888 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

Functions 113
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernels
An array of pointers to the data for four kernels. The first kernel is for the alpha channel, the second
for red, the third for green, and the fourth for blue. The data for each kernel is a packed array of integer
values.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

divisors
An array of values, for normalization purposes, to divide into the convolution results. Supply one value
for each channel.

biases
An array of four values to be added to each element of the convolution result for one channel, before
clipping. The first value is for the alpha channel, the second for red, the third for green, and the fourth
for blue

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

114 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolveWithBias_ARGB8888 (page 117)

Declared In
Convolution.h

vImageConvolveMultiKernel_ARGBFFFF
Convolves each channel of a region of interest within an ARGBFFFF source image by one of the four M x N
kernels.

vImage_Error vImageConvolveMultiKernel_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernels[4],
 uint32_t kernel_height,
 uint32_t kernel_width,
 const float biases[4],
 Pixel_FFFF backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

Functions 115
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernels
An array of pointers to the data for four kernels. The first kernel is for the alpha channel, the second
for red, the third for green, and the fourth for blue. The data for each kernel is a packed array of
floating-point values.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

biases
An array of four values to be added to each element of the convolution result for one channel, before
clipping. The first value is for the alpha channel, the second for red, the third for green, and the fourth
for blue

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

116 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolveWithBias_ARGBFFFF (page 118)

Declared In
Convolution.h

vImageConvolveWithBias_ARGB8888
Convolves a region of interest within an ARGB8888 source image by an M x N kernel, then normalizes the
pixel values.

vImage_Error vImageConvolveWithBias_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 int32_t divisor,
 int32_t bias,
 Pixel_8888 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

Functions 117
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

divisor
The value, for normalization purposes, to divide into the convolution results.

bias
The value to add to each element in the convolution result, before applying the divisor or performing
any clipping.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_ARGB8888 (page 124)

Declared In
Convolution.h

vImageConvolveWithBias_ARGBFFFF
Convolves a region of interest within an ARGBFFFF source image by an M x N kernel.

118 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

vImage_Error vImageConvolveWithBias_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 float bias,
 Pixel_FFFF backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

bias
The value to add to each element in the convolution result, before performing any clipping.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

Functions 119
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_ARGBFFFF (page 125)

Declared In
Convolution.h

vImageConvolveWithBias_Planar8
Convolves a region of interest within a Planar8 source image by an M x N kernel, then normalizes the pixel
values.

120 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

vImage_Error vImageConvolveWithBias_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 int32_t divisor,
 int32_t bias,
 Pixel_8 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

divisor
The value, for normalization purposes, to divide into the convolution results.

bias
The value to add to each element in the convolution result, before applying the divisor or performing
any clipping.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

Functions 121
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_Planar8 (page 127)

Declared In
Convolution.h

vImageConvolveWithBias_PlanarF
Convolves a region of interest within a PlanarF source image by an M x N kernel.

vImage_Error vImageConvolveWithBias_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 float bias,
 Pixel_F backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

122 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

bias
The value to add to each element in the convolution result, before performing any clipping.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

Functions 123
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_PlanarF (page 129)

Declared In
Convolution.h

vImageConvolve_ARGB8888
Convolves a region of interest within a source image by an M x N kernel, then divides the pixel values by a
divisor.

vImage_Error vImageConvolve_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 int32_t divisor,
 Pixel_8888 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

124 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

divisor
A value to divide the results of the convolution by. This is commonly used for normalization.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Convolution.h

vImageConvolve_ARGBFFFF
Convolves a region of interest within an ARGBFFFF source image by an M x N kernel.

Functions 125
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

vImage_Error vImageConvolve_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 Pixel_FFFF backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.
offsets to a point within the source image to define the upper left-hand point of the region of interest.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

126 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Convolution.h

vImageConvolve_Planar8
Convolves a region of interest within a source image by an M x N kernel, then divides the pixel values by a
divisor.

vImage_Error vImageConvolve_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 int32_t divisor,
 Pixel_8 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

Functions 127
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

divisor
A value to divide the results of the convolution with. This is commonly used for normalization.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Convolution.h

128 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

vImageConvolve_PlanarF
Convolves a region of interest within a source image by an M x N kernel.

vImage_Error vImageConvolve_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 uint32_t kernel_height,
 uint32_t kernel_width,
 Pixel_F backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the convolution kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

Functions 129
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Convolution.h

vImageGetMinimumTempBufferSizeForConvolution
Returns the minimum size, in bytes, for the temporary buffer that the caller supplies to any of the convolution
functions. (Deprecated in Mac OS X v10.4. Use the kvImageGetTempBufferSize flag with the appropriate
convolution function instead of calling this function.)

size_t vImageGetMinimumTempBufferSizeForConvolution (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint32_t kernel_height,
 uint32_t kernel_width,
 vImage_Flags flags,
 size_t bytesPerPixel
);

Parameters
src

A pointer to the vImage buffer structure that you plan to pass to the convolution function.

dest
A pointer to the vImage buffer structure that you plan to pass to the convolution function.

kernel_height
The height, in pixels, of the kernel that you plan to use in the convolution function.

130 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

kernel_width
The width, in pixels, of the kernel that you plan to use in the convolution function.

flags
The flags that you plan to pass to the convolution function.

bytesPerPixel
The number of bytes in a pixel. Make sure to pass the value appropriate for the format of the pixel.

Return Value
The minimum size, in bytes, of the temporary buffer.

Discussion
This function does not depend on the data or rowBytes fields of the src or dest parameters; it only uses
the height and width fields from those parameters. If the size of the images you are processing stay the
same, then the required size of the buffer also stays the same. More specifically, if, between two calls to
vImageGetMinimumTempBufferSizeForConvolution, the height and width of the src and dest
parameters do not increase, and the other parameters remain the same, then the result of the
vImageGetMinimumTempBufferSizeForConvolution does not increase. This makes it easy to reuse the
same temporary buffer when you are processing a number of images of the same size, as in tiling.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
Convolution.h

vImageRichardsonLucyDeConvolve_ARGB8888
Sharpens an ARGB8888 image by undoing a previous convolution that blurred the image, such as diffraction
effects in a camera lens.

vImage_Error vImageRichardsonLucyDeConvolve_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernel,
 const int16_t *kernel2,
 uint32_t kernel_height,
 uint32_t kernel_width,
 uint32_t kernel_height2,
 uint32_t kernel_width2,
 int32_t divisor,
 int32_t divisor2,
 Pixel_8888 backgroundColor,
 uint32_t iterationCount,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

Functions 131
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the deconvolution kernel data, which must be a packed array without any padding. The
kernel expresses a blurring convolution or point-spread function.

kernel2
A pointer to the data of a second kernel, which must be a packed array without any padding. Supply
this kernel only if the first kernel is asymmetrical; otherwise pass NULL.

kernel_height
The height of the first kernel in pixels. This value must be odd.

kernel_width
The width of the first kernel in pixels. This value must be odd.

kernel_height2
The height of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

kernel_width2
The width of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

divisor
The divisor to be used in convolutions with the first kernel.

divisor2
The divisor to be used in convolutions with the second kernel.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

iterationCount
The number of times to iterate the deconvolution algorithm.

flags
The options to use when performing the deconvolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

132 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function performs a Richardson-Lucy deconvolution of a region of interest within a source image by an
M x N kernel, performing a specified number of iterations and placing the result in a destination buffer.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageRichardsonLucyDeConvolve_Planar8 (page 135)

Declared In
Convolution.h

vImageRichardsonLucyDeConvolve_ARGBFFFF
Sharpens an ARGBFFFF image by undoing a previous convolution that blurred the image, such as diffraction
effects in a camera lens.

vImage_Error vImageRichardsonLucyDeConvolve_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 const float *kernel2,
 uint32_t kernel_height,
 uint32_t kernel_width,
 uint32_t kernel_height2,
 uint32_t kernel_width2,
 Pixel_FFFF backgroundColor,
 uint32_t iterationCount,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

Functions 133
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the deconvolution kernel data, which must be a packed array without any padding. The
kernel expresses a blurring convolution or point-spread function.

kernel2
A pointer to the data of a second kernel, which must be a packed array without any padding. Supply
this kernel only if the first kernel is asymmetrical; otherwise pass NULL.

kernel_height
The height of the first kernel in pixels. This value must be odd.

kernel_width
The width of the first kernel in pixels. This value must be odd.

kernel_height2
The height of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

kernel_width2
The width of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

iterationCount
The number of times to iterate the deconvolution algorithm.

flags
The options to use when performing the deconvolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

134 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Discussion
This function performs a Richardson-Lucy deconvolution of a region of interest within a source image by an
M x N kernel, performing a specified number of iterations and placing the result in a destination buffer.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageRichardsonLucyDeConvolve_PlanarF (page 137)

Declared In
Convolution.h

vImageRichardsonLucyDeConvolve_Planar8
Sharpens a Planar8 image by undoing a previous convolution that blurred the image, such as diffraction
effects in a camera lens.

vImage_Error vImageRichardsonLucyDeConvolve_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const int16_t *kernel,
 const int16_t *kernel2,
 uint32_t kernel_height,
 uint32_t kernel_width,
 uint32_t kernel_height2,
 uint32_t kernel_width2,
 int32_t divisor,
 int32_t divisor2,
 Pixel_8 backgroundColor,
 uint32_t iterationCount,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

Functions 135
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the deconvolution kernel data, which must be a packed array without any padding. The
kernel expresses a blurring convolution or point-spread function.

kernel2
A pointer to the data of a second kernel, which must be a packed array without any padding. Supply
this kernel only if the first kernel is asymmetrical; otherwise pass NULL.

kernel_height
The height of the first kernel in pixels. This value must be odd.

kernel_width
The width of the first kernel in pixels. This value must be odd.

kernel_height2
The height of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

kernel_width2
The width of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

iterationCount
The number of times to iterate the deconvolution algorithm.

flags
The options to use when performing the deconvolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

136 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Discussion
This function performs a Richardson-Lucy deconvolution of a region of interest within a source image by an
M x N kernel, performing a specified number of iterations and placing the result in a destination buffer.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageRichardsonLucyDeConvolve_ARGB8888 (page 131)

Declared In
Convolution.h

vImageRichardsonLucyDeConvolve_PlanarF
Sharpens a PlanarF image by undoing a previous convolution that blurred the image, such as diffraction
effects in a camera lens.

vImage_Error vImageRichardsonLucyDeConvolve_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 const float *kernel2,
 uint32_t kernel_height,
 uint32_t kernel_width,
 uint32_t kernel_height2,
 uint32_t kernel_width2,
 Pixel_F backgroundColor,
 uint32_t iterationCount,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

Functions 137
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the deconvolution kernel data, which must be a packed array without any padding. The
kernel expresses a blurring convolution or point-spread function.

kernel2
A pointer to the data of a second kernel, which must be a packed array without any padding. Supply
this kernel only if the first kernel is asymmetrical; otherwise pass NULL.

kernel_height
The height of the first kernel in pixels. This value must be odd.

kernel_width
The width of the first kernel in pixels. This value must be odd.

kernel_height2
The height of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

kernel_width2
The width of the second kernel in pixels (ignored if kernel2 is NULL). This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

iterationCount
The number of times to iterate the deconvolution algorithm.

flags
The options to use when performing the deconvolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

138 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Discussion
The function performs a Richardson-Lucy deconvolution of a region of interest within a source image by an
M x N kernel, performing a specified number of iterations and placing the result in a destination buffer.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageRichardsonLucyDeConvolve_ARGBFFFF (page 133)

Declared In
Convolution.h

vImageTentConvolve_ARGB8888
Convolves a region of interest within an ARGB8888 source image by an implicit M x N kernel that has the
effect of a tent filter.

vImage_Error vImageTentConvolve_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 uint32_t kernel_height,
 uint32_t kernel_width,
 Pixel_8888 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

Functions 139
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function uses an implicit divisor and an implicit kernel of specified size instead of a kernel provided by
the caller.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_ARGB8888 (page 124)
vImageBoxConvolve_ARGB8888 (page 110)

140 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Declared In
Convolution.h

vImageTentConvolve_Planar8
Convolves a region of interest within a Planar8 source image by an implicit M x N kernel that has the effect
of a tent filter.

vImage_Error vImageTentConvolve_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 uint32_t kernel_height,
 uint32_t kernel_width,
 Pixel_8 backgroundColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory. . The size (number of rows and
number of columns) of the destination buffer also specifies the size of the region of interest in the
source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

backgroundColor
A background color. If you supply a color, you must also set the kvImageBackgroundColorFill
flag, otherwise the function ignores the color.

Functions 141
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

flags
The options to use when performing the convolution operation. You must set exactly one of the
following flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageCopyInPlace, kvImageTruncateKernel, kvImageBackgroundColorFill, or
kvImageEdgeExtend.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function uses an implicit divisor and an implicit kernel of specified size instead of a kernel provided by
the caller.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImageConvolve_Planar8 (page 127)
vImageBoxConvolve_Planar8 (page 111)

Declared In
Convolution.h

142 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

vImage Convolution Reference

Framework: Accelerate/vImage

Declared in vImage_BasicImageTypes.h

Companion guide vImage Programming Guide

Overview

The vImage framework provides one function for filtering data prior to decompression.

Functions

vImagePNGDecompressionFilter
Performs PNG decompression filtering.

vImage_Error vImagePNGDecompressionFilter(const vImage_Buffer *buffer,
 vImagePixelCount startScanline,
 vImagePixelCount scanlineCount,
 uint32_t bitsPerPixel,
 uint32_t filterMethodNumber,
 uint32_t filterType,
 vImage_Flags flags)

Parameters
buffer

On input, the image data to filter. On output, the filtered data. The filtering is always applied in place.

startScanline
The starting scanline.

scanlineCount
The number of scanlines in the buffer.

bitsPerPixel
The bits per pixel.

filterMethodNumber
The filter method number. You must pass 0, because this is the only filtering method offered by this
function.

Overview 143
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

vImage Decompression Filtering Reference

filterType
The filtering algorithm to apply to the image data. For filter method 0, you can pass any of the
constants described in “PNG Filter Types” (page 144).

flags
The options to use when performing this operation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading. See vImage Data Types and Constants Reference for a
complete description of vImage processing flags.

Discussion
This function implements PNG decompression filtering for filter method 0 of the PNG standard, section 9.2,
as described in: http://www.w3.org/TR/PNG-Filters.html. When a pixel that is needed for a filtering calculation
falls outside the source buffer, its value is presumed to be 0.

Availability
Available in Mac OS X v10.4 and later.

Declared In
BasicImageTypes.h

Constants

PNG Filter Types
Filtering algorithms to apply to image data before compressing the data.

enum
{

 kvImage_PNG_FILTER_VALUE_NONE = 0,
 kvImage_PNG_FILTER_VALUE_SUB = 1,
 kvImage_PNG_FILTER_VALUE_UP = 2,
 kvImage_PNG_FILTER_VALUE_AVG = 3,
 kvImage_PNG_FILTER_VALUE_PAETH = 4
};

Constants
kvImage_PNG_FILTER_VALUE_NONE

No filtering.

Available in Mac OS X v10.4 and later.

Declared in BasicImageTypes.h.

kvImage_PNG_FILTER_VALUE_SUB
A filter that computes the difference between each byte of a pixel and the value of the corresponding
byte of the pixel located to the left.

Available in Mac OS X v10.4 and later.

Declared in BasicImageTypes.h.

144 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

vImage Decompression Filtering Reference

http://www.w3.org/TR/PNG-Filters.html

kvImage_PNG_FILTER_VALUE_UP
A filter that computes the difference between each byte of a pixel and the value of the corresponding
byte of the pixel located above.

Available in Mac OS X v10.4 and later.

Declared in BasicImageTypes.h.

kvImage_PNG_FILTER_VALUE_AVG
A filter that predicts a pixel value from the average of the pixels to the left and above the predicted
pixel location.

Available in Mac OS X v10.4 and later.

Declared in BasicImageTypes.h.

kvImage_PNG_FILTER_VALUE_PAETH
A filter that predicts a pixel value by applying a linear function to the pixels located to the left, above,
and to the upper left of the predicted pixel location.

Available in Mac OS X v10.4 and later.

Declared in BasicImageTypes.h.

Declared In
BasicImageTypes.h

Constants 145
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

vImage Decompression Filtering Reference

146 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

vImage Decompression Filtering Reference

Framework: Accelerate/vImage

Declared in Geometry.h

Companion guide vImage Programming Guide

Overview

Geometric functions rotate, resize, and distort the geometry of images. vImage provides both high-level
(rotation, scaling, and warping) and low-level geometric functions (reflection, shearing, and low-level rotation).

Most vImage geometric functions resample image data to avoid creating artifacts, such as interference
patterns, in the destination image. vImage uses resampling kernels, which combine data from a target pixel
and other nearby pixels to calculate a value for the destination pixel, a procedure somewhat similar to that
used for convolution. However, for geometric operations, the resampling kernel itself is resampled during
the process of pairing kernel values against the sampled pixel data. The kernel is evaluated at both fractional
and integral pixel locations. This has implications for the nature of the kernel—which must be supplied as a
function rather than as an M by N matrix. A resampling kernel function is also called a resampling filter, or
simply a filter.

For almost all geometric operations, vImage supplies a default resampling filter unless you set the flag
kvImageHighQualityResampling, in which case vImage uses a higher-quality filter, but that filter may be
slower to use.

The reflection and high-level rotation functions don’t resample. The shear functions can either use a default
resampling filter or, if you require more control, a custom filter that you provide.

Functions by Task

Applying Affine Transforms

vImageAffineWarp_ARGBFFFF (page 151)
Applies an affine transform to an ARGBFFFF source image.

vImageAffineWarp_ARGB8888 (page 150)
Applies an affine transform to an ARGB8888 source image.

vImageAffineWarp_PlanarF (page 154)
Applies an affine transform to a PlanarF source image.

Overview 147
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImageAffineWarp_Planar8 (page 153)
Applies an affine transform to a Planar8 source image.

Reflecting

vImageHorizontalReflect_ARGBFFFF (page 159)
Reflects an ARGBFFFF source image left to right across the center vertical line of the image.

vImageHorizontalReflect_PlanarF (page 160)
Reflects a PlanarF source image left to right across the center vertical line of the image, placing the
result in a destination buffer.

vImageHorizontalReflect_Planar8 (page 160)
Reflects a Planar9 source image left to right across the center vertical line of the image.

vImageHorizontalReflect_ARGB8888 (page 158)
Reflects an ARGB8888 source image left to right across the center vertical line of the image.

vImageVerticalReflect_ARGBFFFF (page 184)
Reflects an ARGBFFFF source image top to bottom across the center vertical line of the image.

vImageVerticalReflect_ARGB8888 (page 184)
Reflects an ARGBFFFF source image top to bottom across the center vertical line of the image.

vImageVerticalReflect_PlanarF (page 186)
Reflects a PlanarF source image top to bottom across the center vertical line of the image.

vImageVerticalReflect_Planar8 (page 185)
Reflects a Planar 8 source image top to bottom across the center vertical line of the image.

Shearing

vImageHorizontalShear_ARGBFFFF (page 162)
Performs a horizontal shear operation on a region of interest of an ARGBFFFF source image.

vImageHorizontalShear_ARGB8888 (page 161)
Performs a horizontal shear operation on a region of interest of an ARGB8888 source image.

vImageHorizontalShear_PlanarF (page 165)
Performs a horizontal shear operation on a region of interest of a PlanarF source image.

vImageHorizontalShear_Planar8 (page 164)
Performs a horizontal shear operation on a region of interest of a Planar8 source image.

vImageVerticalShear_ARGBFFFF (page 188)
Performs a vertical shear operation on a region of interest of an ARGBFFFF source image.

vImageVerticalShear_ARGB8888 (page 187)
Performs a vertical shear operation on a region of interest of an ARGB8888 source image.

vImageVerticalShear_PlanarF (page 191)
Performs a vertical shear operation on a region of interest of a PlanarF source image.

vImageVerticalShear_Planar8 (page 189)
Performs a vertical shear operation on a region of interest of a Planar8 source image.

148 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Rotating

vImageRotate90_ARGBFFFF (page 170)
Rotates an ARGBFFFF source image by the provided factor of 90.

vImageRotate90_ARGB8888 (page 169)
Rotates an ARGB8888 source image by the provided factor of 90.

vImageRotate90_PlanarF (page 172)
Rotates a PlanarF source image by the provided factor of 90.

vImageRotate90_Planar8 (page 171)
Rotates a Planar8 source image by the provided factor of 90.

vImageRotate_ARGBFFFF (page 175)
Rotates an ARGBFFFF source image by the provided angle.

vImageRotate_ARGB8888 (page 173)
Rotates an ARGB8888 source image by the provided angle.

vImageRotate_PlanarF (page 178)
Rotates a PlanarF source image by the provided angle.

vImageRotate_Planar8 (page 176)
Rotates a Planar8 source image by the provided angle.

Scaling

vImageScale_ARGBFFFF (page 180)
Scales an ARGBFFFF source image to fit a destination buffer.

vImageScale_ARGB8888 (page 179)
Scales an ARGB8888 source image to fit a destination buffer.

vImageScale_PlanarF (page 182)
Scales a PlanarF source image to fit a destination buffer.

vImageScale_Planar8 (page 181)
Scales a Planar8 source image to fit a destination buffer.

Resampling

vImageDestroyResamplingFilter (page 156)
Disposes of a resampling filter object.

vImageGetResamplingFilterSize (page 157)
Returns the minimum size, in bytes, for the buffer needed by the function
vImageNewResamplingFilterForFunctionUsingBuffer.

vImageNewResamplingFilter (page 167)
Creates a resampling filter object that corresponds to the default kernel supplied by the vImage
framework.

vImageNewResamplingFilterForFunctionUsingBuffer (page 167)
Creates a resampling filter object that encapsulates a resampling kernel function that you provide.

Functions by Task 149
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Getting the Buffer Size

vImageGetMinimumGeometryTempBufferSize (page 156) Deprecated in Mac OS X v10.4
Returns the minimum size, in bytes, for the temporary buffer needed by a high-level geometry function.
(Deprecated. Use the kvImageGetTempBufferSize flag with the appropriate geometry function
instead of calling this function.)

Functions

vImageAffineWarp_ARGB8888
Applies an affine transform to an ARGB8888 source image.

vImage_Error vImageAffineWarp_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const vImage_AffineTransform *transform,
 Pixel_8888 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to
transform.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

transform
The affine transformation matrix to apply to the source image.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

150 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when applying the transform. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps each pixel in the source image [x, y] to a new position [x’, y’] in the destination
image by the formula:

(x', y') = (x, y) * transform

where transform is the 3x3 affine transformation matrix.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageAffineWarp_ARGBFFFF
Applies an affine transform to an ARGBFFFF source image.

Functions 151
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageAffineWarp_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const vImage_AffineTransform *transform,
 Pixel_FFFF backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to
transform.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

transform
The affine transformation matrix to apply to the source image.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when applying the transform. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps each pixel in the source image [x, y] to a new position [x’, y’] in the destination
image by the formula:

(x', y') = (x, y) * transform

where transform is the 3x3 affine transformation matrix.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

152 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageAffineWarp_Planar8
Applies an affine transform to a Planar8 source image.

vImage_Error vImageAffineWarp_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const vImage_AffineTransform *transform,
 Pixel_8 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to
transform.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

transform
The affine transformation matrix to apply to the source image.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

Functions 153
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when applying the transform. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps each pixel in the source image [x, y] to a new position [x’, y’] in the destination
image by the formula:

(x', y') = (x, y) * transform

where transform is the 3x3 affine transformation matrix.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageAffineWarp_PlanarF
Applies an affine transform to a PlanarF source image.

154 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageAffineWarp_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const vImage_AffineTransform *transform,
 Pixel_F backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to
transform.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

transform
The affine transformation matrix to apply to the source image.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when applying the transform. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps each pixel in the source image [x, y] to a new position [x’, y’] in the destination
image by the formula:

(x', y') = (x, y) * transform

where transform is the 3x3 affine transformation matrix.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

Functions 155
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageDestroyResamplingFilter
Disposes of a resampling filter object.

void vImageDestroyResamplingFilter (
 ResamplingFilter filter
);

Parameters
filter

The resampling filter object to dispose of.

Discussion
This function deallocates the memory associated with a resampling filter object that was created by calling
the function vImageNewResamplingFilter (page 167). Do not directly deallocate this memory yourself.

Do not pass this function a resampling filter object created by the function
vImageNewResamplingFilterForFunctionUsingBuffer (page 167). You are responsible for deallocating
the memory associated with resampling filter objects created by that call yourself.

Availability
Available in Mac OS X v10.3 and later.

See Also
vImageNewResamplingFilterForFunctionUsingBuffer (page 167)

Declared In
Geometry.h

vImageGetMinimumGeometryTempBufferSize
Returns the minimum size, in bytes, for the temporary buffer needed by a high-level geometry function.
(Deprecated in Mac OS X v10.4. Use the kvImageGetTempBufferSize flag with the appropriate geometry
function instead of calling this function.)

156 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

size_t vImageGetMinimumGeometryTempBufferSize (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags,
 size_t bytesPerPixel
);

Parameters
src

A pointer to a vImage buffer structure that you plan to pass to the geometry function.

dest
A pointer to a vImage buffer structure that you plan to pass to the geometry function. You must set
the fields of this structure yourself, and allocate memory for its data. When you are done with the
buffer structure, you must deallocate the memory.

flags
The flags that you plan to pass to the geometry function.

bytesPerPixel
The number of bytes in a pixel. Make sure to pass the value appropriate for the format of the pixel.

Return Value
The minimum size, in bytes, of the temporary buffer.

Discussion
This function does not depend on the data or rowBytes fields of the src or dest parameters; it only uses
the height and width fields from those parameters. If the size of the images you are processing stay the
same, then the required size of the buffer will also stay the same. More specifically, if, between two calls to
vImageGetMinimumGeometryTempBufferSize, the height and width of the src and dest parameters
do not increase, and the and the other parameters remain the same, then the result of the
vImageGetMinimumGeometryTempBufferSize will not increase. This makes it easy to reuse the same
temporary buffer when you are processing a number of images of the same size, as in tiling.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
Geometry.h

vImageGetResamplingFilterSize
Returns the minimum size, in bytes, for the buffer needed by the function
vImageNewResamplingFilterForFunctionUsingBuffer.

Functions 157
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

size_t vImageGetResamplingFilterSize (
 const float *xArray,
 float *yArray,
 unsigned long count,
 void *userData
);

Parameters
scale

The scale factor that you plan to pass to the function
vImageNewResamplingFilterForFunctionUsingBuffer.

kernelFunc
The function pointer that you plan to pass to the function
vImageNewResamplingFilterForFunctionUsingBuffer.

userData
The user data pointer that you plan to pass to the function
vImageNewResamplingFilterForFunctionUsingBuffer.

kernelWidth
The kernel width that you plan to pass to the function
vImageNewResamplingFilterForFunctionUsingBuffer.

flags
The flags that you plan to pass to the function
vImageNewResamplingFilterForFunctionUsingBuffer.

Return Value
The minimum size, in bytes, of the buffer.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalReflect_ARGB8888
Reflects an ARGB8888 source image left to right across the center vertical line of the image.

vImage_Error vImageHorizontalReflect_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

158 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalReflect_ARGBFFFF
Reflects an ARGBFFFF source image left to right across the center vertical line of the image.

vImage_Error vImageHorizontalReflect_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

Functions 159
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImageHorizontalReflect_Planar8
Reflects a Planar9 source image left to right across the center vertical line of the image.

vImage_Error vImageHorizontalReflect_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalReflect_PlanarF
Reflects a PlanarF source image left to right across the center vertical line of the image, placing the result in
a destination buffer.

vImage_Error vImageHorizontalReflect_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

160 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalShear_ARGB8888
Performs a horizontal shear operation on a region of interest of an ARGB8888 source image.

vImage_Error vImageHorizontalShear_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float xTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_8888 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

Functions 161
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

xTranslate
A translation value for the horizontal direction.

shearSlope
The slope of the front edge of the sheared image, measured in a clockwise direction.

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the horizontal direction. The function transforms
as much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalShear_ARGBFFFF
Performs a horizontal shear operation on a region of interest of an ARGBFFFF source image.

162 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageHorizontalShear_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float xTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_FFFF backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

xTranslate
A translation value for the horizontal direction.

shearSlope
The slope of the front edge of the sheared image, measured in a clockwise direction.

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Functions 163
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the horizontal direction. The function transforms
as much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalShear_Planar8
Performs a horizontal shear operation on a region of interest of a Planar8 source image.

vImage_Error vImageHorizontalShear_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float xTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_8 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

xTranslate
A translation value for the horizontal direction.

shearSlope
The slope of the front edge of the sheared image, measured in a clockwise direction.

164 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the horizontal direction. The function transforms
as much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageHorizontalShear_PlanarF
Performs a horizontal shear operation on a region of interest of a PlanarF source image.

vImage_Error vImageHorizontalShear_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float xTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_F backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

Functions 165
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

xTranslate
A translation value for the horizontal direction.

shearSlope
The slope of the front edge of the sheared image, measured in a clockwise direction.

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the horizontal direction. The function transforms
as much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

166 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImageNewResamplingFilter
Creates a resampling filter object that corresponds to the default kernel supplied by the vImage framework.

ResamplingFilter vImageNewResamplingFilter (
 float scale,
 vImage_Flags flags
);

Parameters
scale

A scale factor to associated with the resampling filter object. Shear functions to which you pass the
resampling filter object use this factor when performing a shear operation. The shear function applies
the scale factor to the entire image, in a direction appropriate to the shear function, either horizontal
or vertical.

flags
The options to use when creating the resampling filter object. You must set exactly one of the following
flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
A pointer to a newly created resampling filter object; otherwise NULL.

Discussion
This function creates a reusable resampling filter object that you can pass to a shear function. The resampling
filter encapsulated by the object is the default kernel for vImage This function allocates the memory needed
for the resampling filter object. To deallocate this memory, call the function
vImageDestroyResamplingFilter (page 156). Do not attempt to deallocate the memory yourself.

Availability
Available in Mac OS X v10.3 and later.

See Also
vImageNewResamplingFilterForFunctionUsingBuffer (page 167)

Declared In
Geometry.h

vImageNewResamplingFilterForFunctionUsingBuffer
Creates a resampling filter object that encapsulates a resampling kernel function that you provide.

Functions 167
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageNewResamplingFilterForFunctionUsingBuffer (
 const float *xArray,
 float *yArray,
 unsigned long count,
 void *userData
);

Parameters
filter

A pointer to a buffer. On return, the buffer contains a resampling filter object. You must allocate the
memory for this buffer yourself. Call the function vImageGetResamplingFilterSize (page 157) to
obtain the size of this buffer.

scale
A scale factor to associated with the resampling filter object. Shear functions to which you pass the
resampling filter object use this factor when performing a shear operation. The shear function applies
the scale factor to the entire image, in a direction appropriate to the shear function, either horizontal
or vertical.

kernelFunc
A pointer to your custom resampling kernel function. If this pointer is NULL, vImage creates a
resampling filter object that corresponds to its default kernel. The kernel function must remain valid
for the life of the resampling filter object.

If you need precise control over the memory used for a resampling filter object but want to use the
default, pass NULL as the kernelFunc parameter. This causes vImage to create a resampling filter
object that corresponds to its default kernel. You can then determine where in memory the resampling
filter object is located. You can reuse the buffer to reduce memory allocation, and so on. Note that a
resampling filter object created in this way is not necessarily the same as one created by the function
vImageNewResamplingFilter (page 167). You must still deallocate the object yourself; you can not
pass it to the function vImageDestroyResamplingFilter (page 156).

kernelWidth
A bounding value for the domain of your resampling kernel function. When your function is called,
the x-values it will be passed will lie between –kernelWidth and +kernelWidth, inclusive.

userData
A pointer to custom data that you want to use when calculating your resampling kernel function.
When vImage invokes your resampling kernel function, this pointer is passed to the function. The
data can be anything you want to use in calculating your resampling kernel function—a table, a list
of pointers to related functions, or so on. The data must remain valid for the life of the resampling
kernel object.

If your resampling kernel function does nor require user data, pass NULL.

flags
The options to use when creating the resampling filter object. You must set exactly one of the following
flags to specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

168 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Discussion
This function creates a reusable resampling filter object that you can pass to a shear function. Before calling
this function, you must allocate a buffer to contain the resampling filter object returned by this function. You
can get the necessary size by calling the function vImageGetResamplingFilterSize (page 157). When
you no longer need this object, you are responsible for deallocating its memory. (Do not use the function
vImageDestroyResamplingFilter (page 156) to deallocate custom resampling filter objects; it is not
designed to deallocate them.)

If you need precise control over the memory used for a resampling filter object but want to use the default,
pass NULL as the kernelFunc parameter. This causes vImage to create a resampling filter object that
corresponds to its default kernel. You can then determine where in memory the resampling filter object is
located. You can reuse the buffer to reduce memory allocation, and so on. Note that a resampling filter object
created in this way is not necessarily the same as one created by the function
vImageNewResamplingFilter (page 167). You must still deallocate the object yourself; you can not pass
it to the function vImageDestroyResamplingFilter (page 156).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate90_ARGB8888
Rotates an ARGB8888 source image by the provided factor of 90.

vImage_Error vImageRotate90_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t rotationConstant,
 Pixel_8888 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

rotationConstant
A value specifying the angle of rotation.

backgroundColor
A background color.

flags
The options to use when performing the rotation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Functions 169
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale or resample, instead, the function copies individual pixels unchanged to new locations.

This function places certain restrictions on the pixel height and widths of the source and destination buffers,
so that it can map the center of the source to the center of the destination precisely. The restrictions are:

 ■ If you are rotating the image 90 or 270 degrees, the height of the source image and the width of the
destination image must both be even or both be odd; and the width of the source image and the height
of the destination image must both be even or both be odd.

If your images do not meet these restrictions, you can use the general (high-level) Rotate function instead,
with an angle of 90 or 270 degrees.

Depending on the relative sizes of the source image and the destination buffer, parts of the source image
may be clipped. Areas outside the source image may appear in the destination image the background color
passed to the function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate90_ARGBFFFF
Rotates an ARGBFFFF source image by the provided factor of 90.

vImage_Error vImageRotate90_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t rotationConstant,
 Pixel_FFFF backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

rotationConstant
A value specifying the angle of rotation.

backgroundColor
A background color.

170 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when performing the rotation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale or resample, instead, the function copies individual pixels unchanged to new locations.

This function places certain restrictions on the pixel height and widths of the source and destination buffers,
so that it can map the center of the source to the center of the destination precisely. The restrictions are:

 ■ If you are rotating the image 90 or 270 degrees, the height of the source image and the width of the
destination image must both be even or both be odd; and the width of the source image and the height
of the destination image must both be even or both be odd.

If your images do not meet these restrictions, you can use the general (high-level) Rotate function instead,
with an angle of 90 or 270 degrees.

Depending on the relative sizes of the source image and the destination buffer, parts of the source image
may be clipped. Areas outside the source image may appear in the destination image the background color
passed to the function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate90_Planar8
Rotates a Planar8 source image by the provided factor of 90.

vImage_Error vImageRotate90_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t rotationConstant,
 Pixel_8 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 171
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

rotationConstant
A value specifying the angle of rotation.

backgroundColor
A background color.

flags
The options to use when performing the rotation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale or resample, instead, the function copies individual pixels unchanged to new locations.

This function places certain restrictions on the pixel height and widths of the source and destination buffers,
so that it can map the center of the source to the center of the destination precisely. The restrictions are:

 ■ If you are rotating the image 90 or 270 degrees, the height of the source image and the width of the
destination image must both be even or both be odd; and the width of the source image and the height
of the destination image must both be even or both be odd.

If your images do not meet these restrictions, you can use the general (high-level) Rotate function instead,
with an angle of 90 or 270 degrees.

Depending on the relative sizes of the source image and the destination buffer, parts of the source image
may be clipped. Areas outside the source image may appear in the destination image the background color
passed to the function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate90_PlanarF
Rotates a PlanarF source image by the provided factor of 90.

vImage_Error vImageRotate90_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 uint8_t rotationConstant,
 Pixel_F backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

172 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

rotationConstant
A value specifying the angle of rotation.

backgroundColor
A background color.

flags
The options to use when performing the rotation. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale or resample, instead, the function copies individual pixels unchanged to new locations.

This function places certain restrictions on the pixel height and widths of the source and destination buffers,
so that it can map the center of the source to the center of the destination precisely. The restrictions are:

 ■ If you are rotating the image 90 or 270 degrees, the height of the source image and the width of the
destination image must both be even or both be odd; and the width of the source image and the height
of the destination image must both be even or both be odd.

If your images do not meet these restrictions, you can use the general (high-level) Rotate function instead,
with an angle of 90 or 270 degrees.

Depending on the relative sizes of the source image and the destination buffer, parts of the source image
may be clipped. Areas outside the source image may appear in the destination image the background color
passed to the function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate_ARGB8888
Rotates an ARGB8888 source image by the provided angle.

Functions 173
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageRotate_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 float angleInRadians,
 Pixel_8888 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

angleInRadians
The angle of rotation, in radians.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when applying the rotation. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale, but it resamples. Depending on the relative sizes of the source image and the destination buffer,
parts of the source image may be clipped. Areas outside the source image may appear in the destination
image the background color passed to the function.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

174 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate_ARGBFFFF
Rotates an ARGBFFFF source image by the provided angle.

vImage_Error vImageRotate_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 float angleInRadians,
 Pixel_FFFF backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

angleInRadians
The angle of rotation, in radians.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

Functions 175
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when applying the rotation. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale, but it resamples. Depending on the relative sizes of the source image and the destination buffer,
parts of the source image may be clipped. Areas outside the source image may appear in the destination
image the background color passed to the function.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageRotate_Planar8
Rotates a Planar8 source image by the provided angle.

vImage_Error vImageRotate_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 float angleInRadians,
 Pixel_8 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

176 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

angleInRadians
The angle of rotation, in radians.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when applying the rotation. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale, but it resamples. Depending on the relative sizes of the source image and the destination buffer,
parts of the source image may be clipped. Areas outside the source image may appear in the destination
image the background color passed to the function.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

Functions 177
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImageRotate_PlanarF
Rotates a PlanarF source image by the provided angle.

vImage_Error vImageRotate_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 float angleInRadians,
 Pixel_F backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to rotate.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

angleInRadians
The angle of rotation, in radians.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when applying the rotation. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function maps the center point of the source image to the center point of the destination image. It does
not scale, but it resamples. Depending on the relative sizes of the source image and the destination buffer,
parts of the source image may be clipped. Areas outside the source image may appear in the destination
image the background color passed to the function.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

178 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageScale_ARGB8888
Scales an ARGB8888 source image to fit a destination buffer.

vImage_Error vImageScale_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to scale.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

flags
The options to use when applying the scaling. Set the kvImageHighQualityResampling flag if you
want vImage to use a higher quality, but slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag. The function uses edge extend (see
kvImageEdgeExtend) to assign values to pixels that are outside the source buffer. Edge extend
prevents a background color from impinging on the edges of the scaled image.

Functions 179
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The relative size of the source image and the destination buffer determine the scaling factors, which may be
different in the X and Y directions.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageScale_ARGBFFFF
Scales an ARGBFFFF source image to fit a destination buffer.

vImage_Error vImageScale_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to scale.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

180 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when applying the scaling. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The relative size of the source image and the destination buffer determine the scaling factors, which may be
different in the X and Y directions.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageScale_Planar8
Scales a Planar8 source image to fit a destination buffer.

vImage_Error vImageScale_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to scale.

Functions 181
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

flags
The options to use when applying the scaling. Set the kvImageHighQualityResampling flag if you
want vImage to use a higher quality, but slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag. The function uses edge extend (see
kvImageEdgeExtend) to assign values to pixels that are outside the source buffer. Edge extend
prevents a background color from impinging on the edges of the scaled image.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The relative size of the source image and the destination buffer determine the scaling factors, which may be
different in the X and Y directions.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageScale_PlanarF
Scales a PlanarF source image to fit a destination buffer.

182 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageScale_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to scale.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

flags
The options to use when applying the scaling. Set the kvImageHighQualityResampling flag if you
want vImage to use a higher quality, but slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

This function ignores the kvImageLeaveAlphaUnchanged flag. The function uses edge extend (see
kvImageEdgeExtend) to assign values to pixels that are outside the source buffer. Edge extend
prevents a background color from impinging on the edges of the scaled image.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The relative size of the source image and the destination buffer determine the scaling factors, which may be
different in the X and Y directions.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Functions 183
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Declared In
Geometry.h

vImageVerticalReflect_ARGB8888
Reflects an ARGBFFFF source image top to bottom across the center vertical line of the image.

vImage_Error vImageVerticalReflect_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The resulting image appears upside down, as if seen from the back of the image.

This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreVideo103
QTCoreVideo202

Declared In
Geometry.h

vImageVerticalReflect_ARGBFFFF
Reflects an ARGBFFFF source image top to bottom across the center vertical line of the image.

184 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageVerticalReflect_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The resulting image appears upside down, as if seen from the back of the image.

This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageVerticalReflect_Planar8
Reflects a Planar 8 source image top to bottom across the center vertical line of the image.

vImage_Error vImageVerticalReflect_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to reflect.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 185
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The resulting image appears upside down, as if seen from the back of the image.

This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageVerticalReflect_PlanarF
Reflects a PlanarF source image top to bottom across the center vertical line of the image.

vImage_Error vImageVerticalReflect_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a structure of type vImage_Buffer containing the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use when performing the reflection. Set the kvImageDoNotTile flag if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The resulting image appears upside down, as if seen from the back of the image.

This function does not scale or resample. The source and destination buffers must have the same height and
the same width.

Availability
Available in Mac OS X v10.3 and later.

186 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Declared In
Geometry.h

vImageVerticalShear_ARGB8888
Performs a vertical shear operation on a region of interest of an ARGB8888 source image.

vImage_Error vImageVerticalShear_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float yTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_8888 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

yTranslate
A translation value for the vertical direction.

shearSlope
The slope of the top edge of the sheared image, measured in a clockwise direction.

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

Functions 187
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the vertical direction. The function transforms as
much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageVerticalShear_ARGBFFFF
Performs a vertical shear operation on a region of interest of an ARGBFFFF source image.

vImage_Error vImageVerticalShear_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float yTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_FFFF backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

188 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

yTranslate
A translation value for the vertical direction.

shearSlope
The slope of the top edge of the sheared image, measured in a clockwise direction.

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the vertical direction. The function transforms as
much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageVerticalShear_Planar8
Performs a vertical shear operation on a region of interest of a Planar8 source image.

Functions 189
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

vImage_Error vImageVerticalShear_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float yTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_8 backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

yTranslate
A translation value for the vertical direction.

shearSlope
The slope of the top edge of the sheared image, measured in a clockwise direction.

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

190 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the vertical direction. The function transforms as
much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

vImageVerticalShear_PlanarF
Performs a vertical shear operation on a region of interest of a PlanarF source image.

vImage_Error vImageVerticalShear_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 float yTranslate,
 float shearSlope,
 ResamplingFilter filter,
 Pixel_F backColor,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image whose data you want to shear.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

This parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width as the destination image buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

yTranslate
A translation value for the vertical direction.

shearSlope
The slope of the top edge of the sheared image, measured in a clockwise direction.

Functions 191
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

filter
The resampling filter to be used with this function. You create this object by calling
vImageNewResamplingFilter (to use a default resampling filter supplied by vImage) or
vImageNewResamplingFilterForFunctionUsingBuffer (to use a custom resampling filter that
you supply). When the resampling filter is created, you can also set a scale factor that will be used in
the horizontal shear operation.

backgroundColor
A background color. Pass a pixel value only if you also set the kvImageBackgroundColorFill flag.

flags
The options to use when performing the shear. You must set exactly one of the following flags to
specify how vImage handles pixel locations beyond the edge of the source image:
kvImageBackgroundColorFill or kvImageEdgeExtend.

Set the kvImageHighQualityResampling flag if you want vImage to use a higher quality, but
slower, resampling filter.

Set the kvImageDoNotTile flag if you plan to perform your own tiling or use multithreading.

The kvImageBackgroundColorFill and kvImageEdgeExtend flags are mutually exclusive. You
must set exactly one of these flags.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function also translates and scales the image, both in the vertical direction. The function transforms as
much of the source image as it needs in order to attempt to fill the destination buffer, which means it can
transform pixels outside the region of interest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Geometry.h

Constants

Rotation Constants
The number of degrees in the clockwise direction.

192 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

enum
{
 kRotate0DegreesClockwise = 0,
 kRotate90DegreesClockwise = 3,
 kRotate180DegreesClockwise = 2,
 kRotate270DegreesClockwise = 1
 kRotate0DegreesCounterClockwise = 0,
 kRotate90DegreesCounterClockwise= 1,
 kRotate180DegreesCounterClockwise= 2,
 kRotate270DegreesCounterClockwise= 3
};

Constants
kRotate0DegreesClockwise

Rotate 0 degrees (that is, copy without rotating).

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate90DegreesClockwise
Rotate 90 degrees clockwise.

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate180DegreesClockwise
Rotate 180 degrees clockwise.

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate270DegreesClockwise
Rotate 270 degrees clockwise.

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate0DegreesCounterClockwise
Rotate 0 degrees (that is, copy without rotating).

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate90DegreesCounterClockwise
Rotate 90 degrees counter-clockwise.

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate180DegreesCounterClockwise
Rotate 180 degrees counter-clockwise.

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

kRotate270DegreesCounterClockwise
Rotate 270 degrees counter-clockwise.

Available in Mac OS X v10.3 and later.

Declared in Geometry.h.

Constants 193
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Declared In
Geometry.h

194 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

vImage Geometry Reference

Framework: Accelerate/vImage

Declared in Histogram.h

Companion guide vImage Programming Guide

Overview

Histogram functions calculate image histograms or manipulate a histogram to modify an image. There are
a number of reasons to apply histogram operations to an image. An image may not make full use of the
possible range of intensity values—for example, most of its pixels may be fairly dark, making details difficult
to see. Changing the image so that it has a more uniform histogram can improve contrast. Also, it may be
easier to compare two images (with respect to texture or other aspects) if you change each histogram to
match some standard histogram.

Histogram operations are point operations: that is, the intensity of a destination pixel depends only on the
intensity of the source pixel, modified by values that are the same over the entire image. Two pixels of the
same intensity always map to two pixels of the same (but presumably altered) intensity. If the original image
has N different intensity values, the transformed image will have at most N different intensity levels
represented.

The vImage histogram functions either calculate histograms or perform one of these point operations:

 ■ Contrast stretch transforms an image so that its intensity values stretch out along the full range of
intensity values. It is best used on images in which all the pixels are concentrated in one area of the
intensity spectrum, and intensity values outside that area are not represented.

 ■ Ends-in contrast stretch is a more complex version of the contrast stretch operation. These types of
functions are best used on images that have some pixels at or near the lowest and highest values of the
intensity spectrum, but whose histogram is still mainly concentrated in one area. The ends-in contrast
stretch functions map all intensities less than or equal to a certain level to 0; all intensities greater than
or equal to a certain level to 255; and perform a contrast stretch on all the values in between. The low
and high levels are not defined directly by two given intensity values, but by percentages: the ends-in
contrast stretch operation must find intensity levels such that a certain percent of pixels are below one
of the intensity values, and a certain percent are above the other intensity value

 ■ Equalization transforms an image so that it has a more uniform histogram. A truly uniform histogram is
one in which each intensity level occurs with equal frequency. These functions approximate that histogram.

 ■ Histogram specification transforms an image so that its histogram more closely resembles a given
histogram.

Overview 195
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Functions by Task

Stretching the Contrast

vImageContrastStretch_ARGBFFFF (page 198)
Stretches the contrast of an ARGBFFFF source image.

vImageContrastStretch_ARGB8888 (page 197)
Stretches the contrast of an ARGB8888 source image.

vImageContrastStretch_PlanarF (page 200)
Stretches the contrast of a PlanarF source image.

vImageContrastStretch_Planar8 (page 199)
Stretches the contrast of a Planar8 source image.

vImageEndsInContrastStretch_ARGBFFFF (page 203)
Performs an ends-in contrast stretch operation on an ARGBFFFF source image.

vImageEndsInContrastStretch_ARGB8888 (page 202)
Performs an ends-in contrast stretch operation on an ARGB8888 source image.

vImageEndsInContrastStretch_PlanarF (page 205)
Performs an ends-in contrast stretch operation on a PlanarF source image.

vImageEndsInContrastStretch_Planar8 (page 204)
Performs an ends-in contrast stretch operation on a Planar8 source image.

Equalizing a Histogram

vImageEqualization_ARGBFFFF (page 208)
Equalizes the histogram of an ARGBFFFF source image.

vImageEqualization_ARGB8888 (page 207)
Equalizes the histogram of an ARGB8888 source image.

vImageEqualization_PlanarF (page 210)
Equalizes the histogram of a PlanarF source image.

vImageEqualization_Planar8 (page 209)
Equalizes the histogram of an ARGB8888 source image.

Specifying a Histogram

vImageHistogramSpecification_ARGBFFFF (page 216)
Performs a histogram specification operation on an ARGBFFFF source image.

vImageHistogramSpecification_ARGB8888 (page 215)
Performs a histogram specification operation on an ARGB8888 source image.

vImageHistogramSpecification_PlanarF (page 218)
Performs a histogram specification operation on a PlanarF source image.

vImageHistogramSpecification_Planar8 (page 218)
Performs a histogram specification operation on a Planar8 source image.

196 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Calculating a Histogram

vImageHistogramCalculation_ARGBFFFF (page 213)
Calculates histograms for each channel of an ARGBFFFF image.

vImageHistogramCalculation_ARGB8888 (page 212)
Calculates histograms for each channel of an ARGB8888 image.

vImageHistogramCalculation_PlanarF (page 214)
Calculates the histogram a PlanarF image.

vImageHistogramCalculation_Planar8 (page 214)
Calculates a histogram for a Planar8 image.

Getting the Minimum Buffer Size.

vImageGetMinimumTempBufferSizeForHistogram (page 211) Deprecated in Mac OS X v10.4
Returns the minimum size, in bytes, for the temporary buffer needed by a histogram function.
(Deprecated. Use the kvImageGetTempBufferSize flag with the appropriate histogram function
instead of calling this function.)

Functions

vImageContrastStretch_ARGB8888
Stretches the contrast of an ARGB8888 source image.

vImage_Error vImageContrastStretch_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Functions 197
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Discussion
The contrast stretch operation alters the image histogram so that pixel values can be found at both the
lowest and highest end of the histogram, with values in between “stretched” in a linear fashion. The contrast
stretch operation is done separately for each of the four channels—alpha, red, green, and blue. However,
the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageContrastStretch_ARGBFFFF
Stretches the contrast of an ARGBFFFF source image.

vImage_Error vImageContrastStretch_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

histogram_entries
The number of histogram entries, or bins, to use in histograms for this operation.

minVal
A minimum pixel value, the low end of the histogram. Any pixel value less than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the first histogram entry.
This minimum value is applied to each of the four channels separately.

198 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

maxVal
A maximum pixel value, the high end of the histogram. Any pixel value greater than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the last histogram entry.
This maximum value is applied to each of the four channels separately.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The contrast stretch operation alters the image histogram so that pixel values can be found at both the
lowest and highest end of the histogram, with values in between “stretched” in a linear fashion. The contrast
stretch operation is done separately for each of the four channels—alpha, red, green, and blue. However,
the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageContrastStretch_Planar8
Stretches the contrast of a Planar8 source image.

vImage_Error vImageContrastStretch_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

Functions 199
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The contrast stretch operation alters the image histogram so that pixel values can be found at both the
lowest and highest end of the histogram, with values in between “stretched” in a linear fashion. The contrast
stretch operation is done separately for each of the four channels—alpha, red, green, and blue. However,
the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageContrastStretch_PlanarF
Stretches the contrast of a PlanarF source image.

vImage_Error vImageContrastStretch_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

200 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value, the low end of the histogram. Any pixel value less than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the first histogram entry.

maxVal
A maximum pixel value, the high end of the histogram. Any pixel value greater than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the last histogram entry.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The contrast stretch operation alters the image histogram so that pixel values can be found at both the
lowest and highest end of the histogram, with values in between “stretched” in a linear fashion. The contrast
stretch operation is done separately for each of the four channels—alpha, red, green, and blue. However,
the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

Functions 201
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

vImageEndsInContrastStretch_ARGB8888
Performs an ends-in contrast stretch operation on an ARGB8888 source image.

vImage_Error vImageEndsInContrastStretch_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const unsigned int percent_low[4],
 const unsigned int percent_high[4],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

percent_low
A percentage value. The number of pixels that map to the lowest end of the histogram of the
transformed image should represent this percentage of the total pixels.

percent_high
A percentage value. The number of pixels that map to the highest end of the histogram of the
transformed image should represent this percentage of the total pixels.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The ends-in contrast stretch operation alters the image histogram so that a certain percentage of pixels are
mapped to the lowest end of the histogram, a certain percentage are mapped to the highest end, and the
values in between “stretched” between the lowest and the highest. The ends-in contrast stretch operation
is done separately for each of the four channels—alpha, red, green, and blue. However the size and range
values are the same for each of the four histograms. In general, it is not possible to get exactly the desired
percentage of pixels at the low end and the high end of the histogram of the transformed image. This
operation only approximates the given values.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

202 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

vImageEndsInContrastStretch_ARGBFFFF
Performs an ends-in contrast stretch operation on an ARGBFFFF source image.

vImage_Error vImageEndsInContrastStretch_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const unsigned int percent_low[4],
 const unsigned int percent_high[4],
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

percent_low
A percentage value. The number of pixels that map to the lowest end of the histogram of the
transformed image should represent this percentage of the total pixels.

percent_high
A percentage value. The number of pixels that map to the highest end of the histogram of the
transformed image should represent this percentage of the total pixels.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value, the low end of the histogram. Any pixel value less than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the first histogram entry.
This minimum value is applied to each of the four channels separately.

maxVal
A maximum pixel value, the high end of the histogram. Any pixel value greater than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the last histogram entry.
This maximum value is applied to each of the four channels separately.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Functions 203
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The ends-in contrast stretch operation alters the image histogram so that a certain percentage of pixels are
mapped to the lowest end of the histogram, a certain percentage are mapped to the highest end, and the
values in between “stretched” between the lowest and the highest. The ends-in contrast stretch operation
is done separately for each of the four channels—alpha, red, green, and blue. However the size and range
values are the same for each of the four histograms. In general, it is not possible to get exactly the desired
percentage of pixels at the low end and the high end of the histogram of the transformed image. This
operation only approximates the given values.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageEndsInContrastStretch_Planar8
Performs an ends-in contrast stretch operation on a Planar8 source image.

vImage_Error vImageEndsInContrastStretch_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 unsigned int percent_low,
 unsigned int percent_high,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

204 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

percent_low
A percentage value. The number of pixels that map to the lowest end of the histogram of the
transformed image should represent this percentage of the total pixels.

percent_high
A percentage value. The number of pixels that map to the highest end of the histogram of the
transformed image should represent this percentage of the total pixels.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The ends-in contrast stretch operation alters the image histogram so that a certain percentage of pixels are
mapped to the lowest end of the histogram, a certain percentage are mapped to the highest end, and the
values in between “stretched” between the lowest and the highest. The ends-in contrast stretch operation
is done separately for each of the four channels—alpha, red, green, and blue. However the size and range
values are the same for each of the four histograms. In general, it is not possible to get exactly the desired
percentage of pixels at the low end and the high end of the histogram of the transformed image. This
operation only approximates the given values.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageEndsInContrastStretch_PlanarF
Performs an ends-in contrast stretch operation on a PlanarF source image.

vImage_Error vImageEndsInContrastStretch_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 unsigned int percent_low,
 unsigned int percent_high,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

Functions 205
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

percent_low
A percentage value. The number of pixels that map to the lowest end of the histogram of the
transformed image should represent this percentage of the total pixels.

percent_high
A percentage value. The number of pixels that map to the highest end of the histogram of the
transformed image should represent this percentage of the total pixels.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value, the low end of the histogram. Any pixel value less than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the first histogram entry.

maxVal
A maximum pixel value, the high end of the histogram. Any pixel value greater than this will be clipped
to this value (for the purposes of histogram calculation), and assigned to the last histogram entry.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The ends-in contrast stretch operation alters the image histogram so that a certain percentage of pixels are
mapped to the lowest end of the histogram, a certain percentage are mapped to the highest end, and the
values in between “stretched” between the lowest and the highest. The ends-in contrast stretch operation
is done separately for each of the four channels—alpha, red, green, and blue. However the size and range
values are the same for each of the four histograms. In general, it is not possible to get exactly the desired
percentage of pixels at the low end and the high end of the histogram of the transformed image. This
operation only approximates the given values.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

206 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageEqualization_ARGB8888
Equalizes the histogram of an ARGB8888 source image.

vImage_Error vImageEqualization_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The equalization operation alters the image histogram so that it is closer to a uniform intensity distribution.
The histogram equalization operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Functions 207
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Declared In
Histogram.h

vImageEqualization_ARGBFFFF
Equalizes the histogram of an ARGBFFFF source image.

vImage_Error vImageEqualization_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value. Any pixel value less than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the first histogram entry. This minimum value is applied
to each of the four channels separately.

maxVal
A maximum pixel value. Any pixel value greater than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the last histogram entry. This maximum value is applied
to each of the four channels separately.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

208 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Discussion
The equalization operation alters the image histogram so that it is closer to a uniform intensity distribution.
The histogram equalization operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageEqualization_Planar8
Equalizes the histogram of an ARGB8888 source image.

vImage_Error vImageEqualization_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Functions 209
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Discussion
The equalization operation alters the image histogram so that it is closer to a uniform intensity distribution.
The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageEqualization_PlanarF
Equalizes the histogram of a PlanarF source image.

vImage_Error vImageEqualization_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value. Any pixel value less than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the first histogram entry. This minimum value is applied
to each of the four channels separately.

maxVal
A maximum pixel value. Any pixel value greater than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the last histogram entry. This maximum value is applied
to each of the four channels separately.

210 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The equalization operation alters the image histogram so that it is closer to a uniform intensity distribution.
The histogram equalization operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageGetMinimumTempBufferSizeForHistogram
Returns the minimum size, in bytes, for the temporary buffer needed by a histogram function. (Deprecated
in Mac OS X v10.4. Use the kvImageGetTempBufferSize flag with the appropriate histogram function
instead of calling this function.)

size_t vImageGetMinimumTempBufferSizeForHistogram (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 unsigned int histogram_entries,
 vImage_Flags flags,
 size_t bytesPerPixel
);

Parameters
src

A pointer to the vImage buffer structure that you plan to pass to the histogram function.

Functions 211
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

dest
A pointer to a vImage buffer structure that you plan to pass to the histogram function.

histogram_entries
The number of histogram that you plan to pass to the histogram function.

flags
The flags that you plan to pass to the histogram function.

pixelBytes
The number of bytes in a pixel. Make sure to pass the value appropriate for the format of the pixel.

Return Value
The minimum size, in bytes, of the temporary buffer.

Discussion
This function does not depend on the data or rowBytes fields of the src or dest parameters; it only uses
the height and width fields from those parameters. If the size of the images you are processing stay the
same, then the required size of the buffer will also stay the same. More specifically, if, between two calls to
vImageGetMinimumTempBufferSizeForHistogram, the height and width of the src and dest
parameters do not increase, and the other parameters remain the same, then the result of the
vImageGetMinimumTempBufferSizeForHistogramwill not increase. This makes it easy to reuse the same
temporary buffer when you are processing a number of images of the same size, as in tiling.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
Histogram.h

vImageHistogramCalculation_ARGB8888
Calculates histograms for each channel of an ARGB8888 image.

vImage_Error vImageHistogramCalculation_ARGB8888 (
 const vImage_Buffer *src,
 vImagePixelCount *histogram[4],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

histogram
A pointer to a histograms, one each for alpha, red, green, and blue (in that order). On return, this array
will contain the four histograms for the corresponding channels. Each of the four histograms will be
an array with 256 elements.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

212 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Discussion
The function calculates the histogram for each channel completely separately from the others. However, size
and range values are the same for each of the four histograms.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageHistogramCalculation_ARGBFFFF
Calculates histograms for each channel of an ARGBFFFF image.

vImage_Error vImageHistogramCalculation_ARGBFFFF (
 const vImage_Buffer *src,
 vImagePixelCount *histogram[4],
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

histogram
A pointer to an array of four histograms, one each for alpha, red, green, and blue (in that order). On
return, this array will contain the four histograms for the corresponding channels. Each of the four
histograms will be an array with histogram_entries elements.

histogram_entries
The number of histogram entries, or “bins.” Each of the four calculated histograms will be an array
with histogram_entries elements.

minVal
A minimum pixel value. Any pixel value less than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the first histogram entry. This minimum value is applied
to each of the four channels separately.

maxVal
A maximum pixel value. Any pixel value greater than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the last histogram entry. This maximum value is applied
to each of the four channels separately.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The function calculates the histogram for each channel completely separately from the others. However, size
and range values are the same for each of the four histograms.

Functions 213
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageHistogramCalculation_Planar8
Calculates a histogram for a Planar8 image.

vImage_Error vImageHistogramCalculation_Planar8 (
 const vImage_Buffer *src,
 vImagePixelCount *histogram,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

histogram
A pointer to a histogram. On return, this array will contain the histogram for the source image. The
histogram will be an array with 256 elements.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageHistogramCalculation_PlanarF
Calculates the histogram a PlanarF image.

vImage_Error vImageHistogramCalculation_PlanarF (
 const vImage_Buffer *src,
 vImagePixelCount *histogram,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

214 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

histogram
A pointer to a histogram. On return, this array will contain the histogram for the source image. The
histogram will have histogram_entries elements.

histogram_entries
The number of histogram entries, or “bins.” The histogram will be an array with histogram_entries
elements.

minVal
A minimum pixel value. Any pixel value less than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the first histogram entry.

maxVal
A maximum pixel value. Any pixel value greater than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the last histogram entry.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageHistogramSpecification_ARGB8888
Performs a histogram specification operation on an ARGB8888 source image.

vImage_Error vImageHistogramSpecification_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const vImagePixelCount *desired_histogram[4],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

desiredHistogram
A pointer to an array of four histograms, one each for alpha, red, green, and blue (in that order). These
are the desired histograms for the transformed image. Each histogram should be an array with 256
elements.

Functions 215
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The specification operation alters the image histogram so that it more closely resembles a given histogram.
The histogram specification operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms, and for each of
the four desired histograms.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageHistogramSpecification_ARGBFFFF
Performs a histogram specification operation on an ARGBFFFF source image.

vImage_Error vImageHistogramSpecification_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const vImagePixelCount *desired_histogram[4],
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

216 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

desiredHistogram
A pointer to an array of four histograms, one each for alpha, red, green, and blue (in that order). These
are the desired histograms for the transformed image. Each histogram should be an array with
histogram_entries elements.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value. Any pixel value less than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the first histogram entry. This minimum value is applied
to each of the four channels separately.

maxVal
A maximum pixel value. Any pixel value greater than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the last histogram entry. This maximum value is applied
to each of the four channels separately.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The specification operation alters the image histogram so that it more closely resembles a given histogram.
The histogram specification operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms, and for each of
the four desired histograms.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

Functions 217
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

vImageHistogramSpecification_Planar8
Performs a histogram specification operation on a Planar8 source image.

vImage_Error vImageHistogramSpecification_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const vImagePixelCount *desired_histogram,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

desiredHistogram
A pointer the desired histogram for the transformed image. The histogram should be an array with
256 elements.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
The specification operation alters the image histogram so that it more closely resembles a given histogram.
The histogram specification operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms, and for each of
the four desired histograms.

The source and destination buffers must have the same height and the same width.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

vImageHistogramSpecification_PlanarF
Performs a histogram specification operation on a PlanarF source image.

218 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

vImage_Error vImageHistogramSpecification_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 const vImagePixelCount *desired_histogram,
 unsigned int histogram_entries,
 Pixel_F minVal,
 Pixel_F maxVal,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

desiredHistogram
A pointer the desired histogram for the transformed image. The histogram should be an array with
histogram_entries elements.

histogram_entries
The number of histogram entries, or “bins,” to be used in histograms for this operation.

minVal
A minimum pixel value. Any pixel value less than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the first histogram entry. This minimum value is applied
to each of the four channels separately.

maxVal
A maximum pixel value. Any pixel value greater than this will be clipped to this value (for the purposes
of histogram calculation), and assigned to the last histogram entry. This maximum value is applied
to each of the four channels separately.

flags
The options to use. Set the kvImageDoNotTile flag if you plan to perform your own tiling or use
multithreading.

Set the kvImageLeaveAlphaUnchanged flag to copy the alpha channel to the destination image
unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Functions 219
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Discussion
The specification operation alters the image histogram so that it more closely resembles a given histogram.
The histogram specification operation is done separately for each of the four channels—alpha, red, green,
and blue. However, the size and range values are the same for each of the four histograms, and for each of
the four desired histograms.

The source and destination buffers must have the same height and the same width.

If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Histogram.h

220 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

vImage Histogram Reference

Framework: Accelerate/vImage

Declared in Morphology.h

Companion guide vImage Programming Guide

Overview

Morphological functions change the shape of an object by performing dilatation, erosion, maximum, and
minimum operations. Dilation expands objects. Erosion contracts them. Maximum is a special case of dilation,
while minimum is a special case of erosion. The precise nature of the expanding or shrinking is determined
by a kernel (also known as a structure element) provided by the caller. The number of rows and number of
columns of the image does not change after applying a morphological operation.

You can use morphological functions on grayscale images, where the source image is planar (single-channel)
or on full-color images. The kernel itself is always planar.

vImage applies morphological operations to an object, which is not the same as the entire image. An object
is either comprised of the brightest pixels in an image or the darkest pixels in the image, where brightness
is defined relative to the particular image. When you define bright pixels as the object, dark pixels become
the background. In this case dilation expands objects with erosion contracts them. When you define dark
pixels as the object, bright pixels become the background. In this case, dilation contracts objects and erosion
expands them.

Each morphological function requires that you pass it a convolution kernel that determines how the values
of neighboring pixels are used to compute the value of a destination pixel. A kernel is a packed array, without
padding at the ends of the rows. The elements of the array must be of type uint8_t (for the Planar8 and
ARGB8888 formats) or of type float (for the PlanarF and ARGBFFFF formats). The height and the width of
the array must both be odd numbers.

For example, a 3 x 3 convolution kernel for a Planar8 image consists of nine 8-bit (1-byte) values, arranged
consecutively. The first three values represent the first row of the kernel, the next three values the second
row, and the last three values the third row.

Morphology functions perform clipping to prevent overflow for the Planar8 and ARGB8888 formats. Saturated
clipping maps all intensity levels above 255, to 255, all intensity levels below 0, to 0, and leaves intensity
levels between 0 and 255, inclusive, unchanged.

When the pixel to be transformed is near the edge of the image—not merely the region of interest, but the
entire image of which it is a part—the kernel may extend beyond the edge of the image, so that there are
no existing pixels beneath some of the kernel elements. In this case the morphology functions only make
use of that part of the kernel which overlaps the source buffer. The other kernel elements are ignored.

Overview 221
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

Functions by Task

Dilating an Object

vImageDilate_ARGBFFFF (page 224)
Dilates a region of interest within an ARGBFFFF source image using an M x N kernel.

vImageDilate_ARGB8888 (page 223)
Dilates a region of interest within an ARGB8888 source image using an M x N kernel.

vImageDilate_PlanarF (page 226)
Dilates a region of interest within a PlanarF source image using an M x N kernel.

vImageDilate_Planar8 (page 225)
Dilates a region of interest within a Planar8 source image using an M x N kernel.

Eroding an Object

vImageErode_ARGBFFFF (page 228)
Erodes a region of interest within an ARGBFFFF source image using an M x N kernel.

vImageErode_ARGB8888 (page 227)
Erodes a region of interest within an ARGB8888 source image using an M x N kernel.

vImageErode_PlanarF (page 230)
Erodes a region of interest within a PlanarF source image using an M x N kernel.

vImageErode_Planar8 (page 229)
Erodes a region of interest within a Planar8 source image using an M x N kernel.

Maximizing an Object

vImageMax_ARGBFFFF (page 233)
Maximizes a region of interest within an ARGBFFFF source image using an M x N kernel.

vImageMax_ARGB8888 (page 232)
Maximizes a region of interest within an ARGB8888 source image using an M x N kernel.

vImageMax_PlanarF (page 236)
Maximizes with a region of interest within a PlanarF source image using an M x N kernel.

vImageMax_Planar8 (page 235)
Maximizes a region of interest within a Planar8 source image using an M x N kernel.

Minimizing an Object

vImageMin_ARGBFFFF (page 239)
Minimizes a region of interest within an ARGBFFFF source image using an M x N kernel.

vImageMin_ARGB8888 (page 238)
Minimizes a region of interest within an ARGB8888 source image using an M x N kernel.

222 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

vImageMin_PlanarF (page 242)
Minimizes a region of interest within a PlanarF source image using an M x N kernel.

vImageMin_Planar8 (page 241)
Minimizes a region of interest within a Planar8 source image using an M x N kernel.

Getting the Buffer Size

vImageGetMinimumTempBufferSizeForMinMax (page 231) Deprecated in Mac OS X v10.4
Returns the minimum size, in bytes, for the temporary buffer that the caller supplies to any of the
Min or Max morphological functions. (Deprecated. Use the kvImageGetTempBufferSize flag with
the appropriate morphological function instead of calling this function.)

Functions

vImageDilate_ARGB8888
Dilates a region of interest within an ARGB8888 source image using an M x N kernel.

vImage_Error vImageDilate_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const unsigned char *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding. The function uses
the same kernel for all channels.

Functions 223
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageDilate_ARGBFFFF
Dilates a region of interest within an ARGBFFFF source image using an M x N kernel.

vImage_Error vImageDilate_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding.

224 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
This function uses the same kernel is for all channels. In addition to supplying space for the destination image,
the dest parameter also specifies the size of the region of interest in within the source image. The region
of interest has the same height and width (in pixels) as the destination buffer pointed to by dest.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageDilate_Planar8
Dilates a region of interest within a Planar8 source image using an M x N kernel.

vImage_Error vImageDilate_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const unsigned char *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

Functions 225
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageDilate_PlanarF
Dilates a region of interest within a PlanarF source image using an M x N kernel.

vImage_Error vImageDilate_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

226 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageErode_ARGB8888
Erodes a region of interest within an ARGB8888 source image using an M x N kernel.

vImage_Error vImageErode_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const unsigned char *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

Functions 227
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding. The function uses
the same kernel for all channels.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageErode_ARGBFFFF
Erodes a region of interest within an ARGBFFFF source image using an M x N kernel.

vImage_Error vImageErode_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

228 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding. The function uses
the same kernel for all channels.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageErode_Planar8
Erodes a region of interest within a Planar8 source image using an M x N kernel.

vImage_Error vImageErode_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const unsigned char *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

Functions 229
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageErode_PlanarF
Erodes a region of interest within a PlanarF source image using an M x N kernel.

vImage_Error vImageErode_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 const float *kernel,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

230 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel
A pointer to the kernel data, which must be a packed array without any padding.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageGetMinimumTempBufferSizeForMinMax
Returns the minimum size, in bytes, for the temporary buffer that the caller supplies to any of the Min or Max
morphological functions. (Deprecated in Mac OS X v10.4. Use the kvImageGetTempBufferSize flag with
the appropriate morphological function instead of calling this function.)

size_t vImageGetMinimumTempBufferSizeForMinMax (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags,
 size_t bytesPerPixel
);

Parameters
src

A pointer to the vImage buffer structure that you plan to pass to the Min or Max function.

dest
A pointer to the vImage buffer structure that you plan to pass to the Min or Max function.

kernel_height
The height, in pixels, of the kernel that you plan to pass to the Min or Max function.

kernel_width
The width, in pixels, of the kernel that you plan to pass to the Min or Max function.

flags
The flags that you plan to pass to the Min or Max function.

Functions 231
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

pixelBytes
The number of bytes in a pixel. Make sure to pass the value appropriate for the format of the pixel.

Return Value
The minimum size, in bytes, of the temporary buffer.

Discussion
This function uses the height and width fields from the src or dest parameters; it does not use the data
or rowBytes fields. If the size of the images you are processing remain the same, then the required size of
the buffer also remains the same. More specifically, if, between two calls to
vImageGetMinimumTempBufferSizeForMinMax, the height and width of the src and destparameters
do not increase, and the other parameters remain the same, then the result of the
vImageGetMinimumTempBufferSizeForMinMax does not increase. This makes it easy to reuse the same
temporary buffer when you process a number of images of the same size, as you would when tiling.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
Morphology.h

vImageMax_ARGB8888
Maximizes a region of interest within an ARGB8888 source image using an M x N kernel.

vImage_Error vImageMax_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

232 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged. Set the
kvImageGetTempBufferSize flag if you want to determine the minimum size to allocate for the
tempBuffer parameter.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Max is a special case of the dilation operation. In the Max operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Max function is considerably faster than the Dilate
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMax_ARGBFFFF
Maximizes a region of interest within an ARGBFFFF source image using an M x N kernel.

Functions 233
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

vImage_Error vImageMax_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

234 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Max is a special case of the dilation operation. In the Max operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Max function is considerably faster than the Dilate
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMax_Planar8
Maximizes a region of interest within a Planar8 source image using an M x N kernel.

vImage_Error vImageMax_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

Functions 235
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Max is a special case of the dilation operation. In the Max operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Max function is considerably faster than the Dilate
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMax_PlanarF
Maximizes with a region of interest within a PlanarF source image using an M x N kernel.

236 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

vImage_Error vImageMax_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

Functions 237
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Max is a special case of the dilation operation. In the Max operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Max function is considerably faster than the Dilate
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMin_ARGB8888
Minimizes a region of interest within an ARGB8888 source image using an M x N kernel.

vImage_Error vImageMin_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

238 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Min is a special case of the erosion operation. In the Min operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Min function is considerably faster than the Erode
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMin_ARGBFFFF
Minimizes a region of interest within an ARGBFFFF source image using an M x N kernel.

Functions 239
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

vImage_Error vImageMin_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

240 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Min is a special case of the erosion operation. In the Min operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Min function is considerably faster than the Erode
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMin_Planar8
Minimizes a region of interest within a Planar8 source image using an M x N kernel.

vImage_Error vImageMin_Planar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

Functions 241
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Min is a special case of the erosion operation. In the Min operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Min function is considerably faster than the Erode
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

vImageMin_PlanarF
Minimizes a region of interest within a PlanarF source image using an M x N kernel.

242 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

vImage_Error vImageMin_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 void *tempBuffer,
 vImagePixelCount srcOffsetToROI_X,
 vImagePixelCount srcOffsetToROI_Y,
 vImagePixelCount kernel_height,
 vImagePixelCount kernel_width,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains data for the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

The size (number of rows and number of columns) of the destination buffer also specifies the size of
the region of interest in the source buffer.

tempBuffer
A pointer to a temporary buffer. If you pass NULL, the function allocates the buffer, then deallocates
it before returning. Alternatively, you can allocate the buffer yourself, in which case you are responsible
for deallocating it when you is no longer need it.

If you want to allocate the buffer yourself, see the Discussion for information on how to determine
the minimum size that you must allocate.

srcOffsetToROI_X
The horizontal offset, in pixels, to the upper-left pixel of the region of interest within the source image.

srcOffsetToROI_Y
The vertical offset, in pixels, to the upper-left pixel of the region of interest within the source image.

kernel_height
The height of the kernel in pixels. This value must be odd.

kernel_width
The width of the kernel in pixels. This value must be odd.

flags
The options to use when performing the morphological operation. Set the kvImageDoNotTile flag
if you plan to perform your own tiling or use multithreading. Set the kvImageLeaveAlphaUnchanged
flag to specify that the alpha channel should be copied to the destination image unchanged.

Return Value
kvImageNoError, otherwise it returns one of the error codes described in vImage Data Types and Constants
Reference.

Discussion
If you want to allocate the memory for the tempBuffer parameter yourself, call this function twice, as follows:

Functions 243
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

1. To determine the minimum size for the temporary buffer, the first time you call this function pass the
kvImageGetTempBufferSize flag. Pass the same values for all other parameters that you intend to
use in for the second call. The function returns the required minimum size, which should be a positive
value. (A negative returned value indicates an error.) The kvImageGetTempBufferSize flag prevents
the function from performing any processing other than to determine the minimum buffer size.

2. After you allocate enough space for a buffer of the returned size, call the function a second time, passing
a valid pointer in the tempBuffer parameter. This time, do not pass the kvImageGetTempBufferSize
flag.

The morphological operation Min is a special case of the erosion operation. In the Min operation, all the
elements of the kernel have the same value. The actual value does not matter; only the size of the kernel is
significant. vImage optimizes this special case, so the Min function is considerably faster than the Erode
function called with a uniform kernel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Morphology.h

244 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

vImage Morphology Reference

Framework: Accelerate/vImage

Declared in Transform.h

Companion guide vImage Programming Guide

Overview

Transformation functions alter the values of pixels in the image. Unlike convolutions, transformation functions
do not depend on the values of nearby pixels. The vImage transformation functions fall into four broad
categories:

 ■ Gamma correction functions correct the brightness profile of an image by multiplying each pixel by the
value of the function. Gamma correction prepares an image for display or printing on a particular device.

 ■ Lookup table functions are like the piecewise polynomial functions, but instead of applying a polynomial
they use a lookup table that you supply.

 ■ Matrix multiplication functions have a variety of uses, such as to convert between color spaces (RGB and
YUV, for example), change a color image to a grayscale one, and for “color twisting.”

 ■ Piecewise functions are similar to the gamma correction functions, but instead of applying a predefined
gamma function they apply one or more polynomials that you supply. The number of polynomials must
be an integer power of 2, and they must all be of the same order.

Transformation functions use a vImage buffer structure (vImage_Buffer—see vImage Data Types and
Constants Reference) to receive and supply image data. This buffer contains a pointer to image data, the
height and width (in pixels) of the image data, and the number of row bytes. You actually pass a pointer to
a vImage buffer structure.

Some transformation functions “work in place”. That is, the source and destination images can occupy the
same memory if the they are strictly aligned pixel for pixel. For these, you can can provide a pointer to the
same vImage buffer structure for one of the source images and the destination image.

Functions by Task

Transforming with a Lookup Table

vImageLookupTable_Planar8toPlanarF (page 251)
Uses a lookup table to transform an image in Planar8 format to an image in PlanarF format.

Overview 245
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

vImageLookupTable_PlanarFtoPlanar8 (page 252)
Uses a lookup table to transform an image in PlanarF format to an image in Planar8 format.

vImageInterpolatedLookupTable_PlanarF (page 250)
Uses a lookup table to transform an image in PlanarF format to an image in PlanarF format.

Applying a Polynomial

vImagePiecewisePolynomial_PlanarF (page 259)
Applies a set of piecewise polynomials to an image in PlanarF format.

vImagePiecewisePolynomial_Planar8toPlanarF (page 257)
Applies a set of piecewise polynomials to transform an image in Planar8 format to an image in PlanarF
format.

vImagePiecewisePolynomial_PlanarFtoPlanar8 (page 260)
Applies a set of piecewise polynomials to transform an image in PlanarF format to an image in Planar8
format.

vImagePiecewiseRational_PlanarF (page 261)
Applies a piecewise rational expression to an image in PlanarF format.

Multiplying Pixels by a Matrix

vImageMatrixMultiply_Planar8 (page 255)
Operates on a set of 8-bit source image planes, multiplying each pixel by the provided matrix to
produce a set of 8-bit destination image planes.

vImageMatrixMultiply_PlanarF (page 256)
Operates upon a set of floating-point source image planes, multiplying each pixel by the provided
matrix to produce a set of floating-point destination image planes.

vImageMatrixMultiply_ARGB8888 (page 253)
Operates upon an interleaved 8-bit source image, multiplying each pixel by the provided matrix to
produce an interleaved 8-bit destination image.

vImageMatrixMultiply_ARGBFFFF (page 254)
Operates upon an interleaved floating-point source image, multiplying each pixel by the provided
matrix to produce an interleaved floating-point destination image.

Correcting Gamma

vImageCreateGammaFunction (page 247)
Returns a gamma function object.

vImageDestroyGammaFunction (page 248)
Destroys a gamma function object created.

vImageGamma_Planar8toPlanarF (page 248)
Applies a gamma function to a Planar8 image to produce a PlanarF image.

vImageGamma_PlanarFtoPlanar8 (page 249)
Applies a gamma function to an image in PlanarF format to an image in Planar8 format.

246 Functions by Task
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

vImageGamma_PlanarF (page 249)
Applies a gamma function to a PlanarF image.

Functions

vImageCreateGammaFunction
Returns a gamma function object.

GammaFunction vImageCreateGammaFunction (
 float gamma,
 int gamma_type,
 vImage_Flags flags
);

Parameters
gamma

The exponent of a power function for calculating full-precision gamma correction.

gamma-type
A selector for the type of gamma correction to use. Pass one of the full- or half-precision type constants
defined in “Gamma Function Types” (page 264).

flags
Pass kvImageDoNotTile if you plan to perform your own tiling or use multithreading.

Return Value
A gamma function object that encapsulates a gamma value, a gamma function type, and option flags.

Discussion
You can pass a gamma function object to any of the three gamma correction functions:
vImageGamma_Planar8toPlanarF (page 248), vImageGamma_PlanarFtoPlanar8 (page 249),
vImageGamma_PlanarF (page 249).

The gamma-type parameter determines the type of calculation to be used. The simplest calculation is:

if (value == 0) result = 0;

else {
 if (value < 0)
 sign = -1.0f;
 else
 sign = 1.0f;
 result = pow(fabs(value), gamma) * sign;
}

This calculation results in symmetric gamma curves about 0, and makes sure that only well-behaved values
are used in pow().

You can use an equivalent calculation that uses a more efficient method, depending on the desired precision.

In addition to the full-precision gamma correction, there is a faster half-precision option that provides 12-bit
precision.

Functions 247
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

f your data will ultimately be converted to 8-bit integer data, consider using half-precision. The half-precision
variants work correctly only for floating-point input values in the range 0.0 ... 1.0, though out-of-range values
produce results that clamp appropriately to 0 or 255 on conversion back to 8-bit. In addition, there are
restrictions on the range of the exponent: it must be positive, in the range 0.1 to 10.0.

Finally, there is a set of still faster half-precision options that use predefined gamma values, ignoring the
value set in vImageCreateGammaFunction. These options have the same restrictions on input values as
stated previously.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageDestroyGammaFunction
Destroys a gamma function object created.

void vImageDestroyGammaFunction (
 GammaFunction f
);

Parameters
f

A gamma function object created with the function vImageCreateGammaFunction (page 247).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageGamma_Planar8toPlanarF
Applies a gamma function to a Planar8 image to produce a PlanarF image.

vImage_Error vImageGamma_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const GammaFunction gamma,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

248 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

gamma
A gamma function object, created with by calling the function vImageCreateGammaFunction (page
247).

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageGamma_PlanarF
Applies a gamma function to a PlanarF image.

vImage_Error vImageGamma_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const GammaFunction gamma,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

gamma
A gamma function object, created with by calling the function vImageCreateGammaFunction (page
247).

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageGamma_PlanarFtoPlanar8
Applies a gamma function to an image in PlanarF format to an image in Planar8 format.

Functions 249
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

vImage_Error vImageGamma_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const GammaFunction gamma,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

gamma
A gamma function object, created with by calling the function vImageCreateGammaFunction (page
247).

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageInterpolatedLookupTable_PlanarF
Uses a lookup table to transform an image in PlanarF format to an image in PlanarF format.

vImage_Error vImageInterpolatedLookupTable_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_F *table,
 vImagePixelCount tableEntries,
 float maxFloat,
 float minFloat,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

250 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

table
A lookup table of floating-point values.

tableEntries
A value of type vImagePixelCount, giving the number of values in the array.

maxFloat
A value of type float.

minFloat
A value of type float.

flags
The options to use when performing the transformation. Pass kvImageDoNotTile if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
It will work in place. The table contains an arbitrary number of values; it is entered with an index interpolated
from a value from the source image, to look up a floating-point value for the destination image.

The input pixel is first clipped to the range minFloat ... maxFloat. The result is then calculated as

 float clippedPixel =MAX(MIN(src_pixel, maxFloat), minFloat);
 float fIndex = (float) (tableEntries - 1) * (clippedPixel - minFloat)
 / (maxFloat - minFloat);
 float fract = fIndex - floor(fIndex);
 unsigned long i = fIndex;
 float result = table[i] * (1.0f - fract) + table[i + 1] * fract;

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageLookupTable_Planar8toPlanarF
Uses a lookup table to transform an image in Planar8 format to an image in PlanarF format.

vImage_Error vImageLookupTable_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_F table[256],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 251
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

table
A lookup table that contains 256 values.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
For each pixel, the 8-bit value from the source Planar8 image is used as an index to get a floating-point value
from the table. This value is used as the corresponding pixel in the PlanarF result image.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageLookupTable_PlanarFtoPlanar8
Uses a lookup table to transform an image in PlanarF format to an image in Planar8 format.

vImage_Error vImageLookupTable_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const Pixel_8 table[4096],
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

table
A lookup table that contains 4096 values.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The table contains 4096 values; it is entered with an integer index derived from a pixel value in the source
image, to look up an 8-bit value for the destination image.

For each pixel, the floating-point value from the source PlanarF image is first clipped to the range 0.0 ... 1.0,
and then converted to an integer in the range 0 ... 4095. The conversion calculation is equivalent to

 if (realValue < 0.0f) realValue = 0.0f;
 if (realValue > 1.0f) realValue = 1.0f;

252 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

 intValue = (int)(realValue * 4095.0f + 0.5f);

This integer is used as an index to get an 8-bit value from the table. This value is used as the corresponding
pixel in the Planar8 result image.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_ARGB8888
Operates upon an interleaved 8-bit source image, multiplying each pixel by the provided matrix to produce
an interleaved 8-bit destination image.

vImage_Error vImageMatrixMultiply_ARGB8888 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const int16_t matrix[4 *4],
 int32_t divisor,
 const int16_t *pre_bias,
 const int32_t *post_bias,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

matrix
A 1-dimensional array whose values represent a 4x4 matrix. vImage multiplies each source pixel by
this matrix to produce a destination pixel.

divisor
A divisor for normalization after performing the matrix multiplication.

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Functions 253
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

Discussion
Be aware that 32-bit signed accumulators are used. If the sum over any matrix column is greater than ±223,
overflow may occur. Generally speaking this will not happen because the matrix elements are 16-bit integers,
so it would take more than 256 source planes before trouble could arise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_ARGBFFFF
Operates upon an interleaved floating-point source image, multiplying each pixel by the provided matrix to
produce an interleaved floating-point destination image.

vImage_Error vImageMatrixMultiply_ARGBFFFF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float matrix[4 *4],
 const float *pre_bias,
 const float *post_bias,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

matrix
A 1-dimensional array whose values represent a 4x4 matrix. vImage multiplies each source pixel by
this matrix to produce a destination pixel.

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

254 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

Discussion
The operation is the same as vImageMatrixMultiply_ARGB8888 (page 253) except that floating-point
values are used and there is no divisor.

Be aware that 32-bit signed accumulators are used. If the sum over any matrix column is greater than ±223,
overflow may occur. Generally speaking this will not happen because the matrix elements are 16-bit integers,
so it would take more than 256 source planes before trouble could arise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_Planar8
Operates on a set of 8-bit source image planes, multiplying each pixel by the provided matrix to produce a
set of 8-bit destination image planes.

vImage_Error vImageMatrixMultiply_Planar8 (
 const vImage_Buffer *srcs[],
 const vImage_Buffer *dests[],
 uint32_t src_planes,
 uint32_t dest_planes,
 const int16_t matrix[],
 int32_t divisor,
 const int16_t *pre_bias,
 const int32_t *post_bias,
 vImage_Flags flags
);

Parameters
srcs

A pointer to an array of vImage buffer structures, one buffer for each source plane.

dests
A pointer to an array of pointers to vImage buffer data structures, one buffer structure for each
destination plane. You are responsible for filling out the height, width, and rowBytes fields of these
structures, and for allocating data buffers of the appropriate size. On return, the data buffers in these
structures contains the destination image data for each plane. When you no longer need the data
buffers, you must deallocate the memory.

src_planes
The number of source planes.

dest_planes
The number of destination planes.

matrix
A 1-dimensional array whose values represent a matrix with dimensions dest_planesxsrc_planes.
vImage multiplies each source pixel by this matrix to produce a destination pixel.

divisor
A divisor for normalization after performing the matrix multiplication.

Functions 255
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
The options to use when performing the transformation. Pass kvImageDoNotTile if you plan to
perform your own tiling or use multithreading.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
Be aware that 32-bit signed accumulators are used. If the sum over any matrix column is greater than ±223,
overflow may occur. Generally speaking this will not happen because the matrix elements are 16-bit integers,
so it would take more than 256 source planes before trouble could arise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImageMatrixMultiply_PlanarF
Operates upon a set of floating-point source image planes, multiplying each pixel by the provided matrix to
produce a set of floating-point destination image planes.

vImage_Error vImageMatrixMultiply_PlanarF (
 const vImage_Buffer *srcs[],
 const vImage_Buffer *dests[],
 uint32_t src_planes,
 uint32_t dest_planes,
 const float matrix[],
 const float *pre_bias,
 const float *post_bias,
 vImage_Flags flags
);

Parameters
srcs

A pointer to an array of vImage buffer structures, one buffer for each source plane.

dests
A pointer to an array of pointers to vImage buffer data structures, one buffer structure for each
destination plane. You are responsible for filling out the height, width, and rowBytes fields of these
structures, and for allocating data buffers of the appropriate size. On return, the data buffers in these
structures contains the destination image data for each plane. When you no longer need the data
buffers, you must deallocate the memory.

src_planes
The number of source planes.

256 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

dest_planes
The number of destination planes.

matrix
A 1-dimensional array whose values represent a matrix with dimensions dest_planesxsrc_planes.
vImage multiplies each source pixel by this matrix to produce a destination pixel.

pre_bias
A packed array of bias values, one for each source plane. vImage adds the appropriate bias value to
each source value prior to matrix multiplication. Pass NULL if you do not want to apply a preprocessing
bias value.

post_bias
A packed array of bias values, one for each destination plane. vImage adds the appropriate bias value
to each destination value after matrix multiplication. Pass NULL if you do not want to apply a
preprocessing bias value.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
The operation is the same asvImageMatrixMultiply_Planar8 (page 255) except that floating-point values
are used and there is no divisor.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImagePiecewisePolynomial_Planar8toPlanarF
Applies a set of piecewise polynomials to transform an image in Planar8 format to an image in PlanarF format.

vImage_Error vImagePiecewisePolynomial_Planar8toPlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **coefficients,
 const float *boundaries,
 uint32_t order,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

Functions 257
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

coefficients
A pointer to an array of polynomial coefficient arrays. Each polynomial coefficient array contains the
coefficients for one polynomial. Note that a polynomial of order R has R+1 coefficients. All the
polynomial coefficient arrays must be the same size, R+1, and in each array the coefficients must be
ordered from the 0th-order term to the highest-order term.

boundaries
A pointer to an array of boundary values, in increasing order, for separating adjacent ranges of pixel
values. The first boundary value is the lowest in the range; input values lower than this are clipped
to this value. The last boundary value is the highest in the range; input values higher than this are
clipped to this value. The boundary values between the first and last separate the subranges from
each other.

log2segments
The number of polynomials represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of polynomials (for example, 5), you must round up to the next integer power of 2 (for the
example of 5, that would be 8), and simply repeat the last polynomial the appropriate number of
times.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
You can approximate many different correction functions by carefully choosing the polynomials and the
ranges of input values they operate on. The number of polynomials must be a non-negative integer power
of 2.

Suppose that you want to use N polynomials of order R to process N contiguous ranges of pixel values. For
each pixel in the image, the range of usable values is divided into segments by the values passed in the
boundaries array. Each segment is processed by the corresponding polynomial. Since there are N polynomials,
then there must be N segments, so you must supply N+1 boundaries.

You must order the boundaries by increasing value. The ith segment is the set of pixel values that fall in the
range:

 boundary[i] <= value < boundary{i+1}

where i ranges from 0 to N. Values in this segment are processed by the i-th polynomial.

From a performance standpoint, it costs much more to resolve additional polynomials than to work with
higher-order polynomials. You typically achieve better performance with one 9th-order polynomial that
covers the whole range of values you are interested in than with many lower-order polynomials covering
the range piecewise.

This function uses single-precision floating-point arithmetic. As a result, polynomials with large high-order
coefficients may cause significant rounding error.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImagePiecewisePolynomial_PlanarF (page 259)

258 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

Declared In
Transform.h

vImagePiecewisePolynomial_PlanarF
Applies a set of piecewise polynomials to an image in PlanarF format.

vImage_Error vImagePiecewisePolynomial_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **coefficients,
 const float *boundaries,
 uint32_t order,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

coefficients
A pointer to an array of polynomial coefficient arrays. Each polynomial coefficient array contains the
coefficients for one polynomial. Note that a polynomial of order R has R+1 coefficients. All the
polynomial coefficient arrays must be the same size, R+1, and in each array the coefficients must be
ordered from the 0th-order term to the highest-order term.

boundaries
A pointer to an array of boundary values, in increasing order, for separating adjacent ranges of pixel
values. The first boundary value is the lowest in the range; input values lower than this are clipped
to this value. The last boundary value is the highest in the range; input values higher than this are
clipped to this value. The boundary values between the first and last separate the subranges from
each other.

log2segments
The number of polynomials represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of polynomials (for example, 5), you must round up to the next integer power of 2 (for the
example of 5, that would be 8), and simply repeat the last polynomial the appropriate number of
times.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
You can approximate many different correction functions by carefully choosing the polynomials and the
ranges of input values they operate on. The number of polynomials must be a non-negative integer power
of 2.

Functions 259
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

Suppose that you want to use N polynomials of order R to process N contiguous ranges of pixel values. For
each pixel in the image, the range of usable values is divided into segments by the values passed in the
boundaries array. Each segment is processed by the corresponding polynomial. Since there are N polynomials,
then there must be N segments, so you must supply N+1 boundaries.

You must order the boundaries by increasing value. The ith segment is the set of pixel values that fall in the
range:

 boundary[i] <= value < boundary{i+1}

where i ranges from 0 to N. Values in this segment are processed by the i-th polynomial.

From a performance standpoint, it costs much more to resolve additional polynomials than to work with
higher-order polynomials. You typically achieve better performance with one 9th-order polynomial that
covers the whole range of values you are interested in than with many lower-order polynomials covering
the range piecewise.

This function uses single-precision floating-point arithmetic. As a result, polynomials with large high-order
coefficients may cause significant rounding error.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

vImagePiecewisePolynomial_PlanarFtoPlanar8
Applies a set of piecewise polynomials to transform an image in PlanarF format to an image in Planar8 format.

vImage_Error vImagePiecewisePolynomial_PlanarFtoPlanar8 (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **coefficients,
 const float *boundaries,
 uint32_t order,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

coefficients
A pointer to an array of polynomial coefficient arrays. Each polynomial coefficient array contains the
coefficients for one polynomial. Note that a polynomial of order R has R+1 coefficients. All the
polynomial coefficient arrays must be the same size, R+1, and in each array the coefficients must be
ordered from the 0th-order term to the highest-order term.

260 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

boundaries
A pointer to an array of boundary values, in increasing order, for separating adjacent ranges of pixel
values. The first boundary value is the lowest in the range; input values lower than this are clipped
to this value. The last boundary value is the highest in the range; input values higher than this are
clipped to this value. The boundary values between the first and last separate the subranges from
each other.

log2segments
The number of polynomials represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of polynomials (for example, 5), you must round up to the next integer power of 2 (for the
example of 5, that would be 8), and simply repeat the last polynomial the appropriate number of
times.

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
You can approximate many different correction functions by carefully choosing the polynomials and the
ranges of input values they operate on. The number of polynomials must be a non-negative integer power
of 2.

Suppose that you want to use N polynomials of order R to process N contiguous ranges of pixel values. For
each pixel in the image, the range of usable values is divided into segments by the values passed in the
boundaries array. Each segment is processed by the corresponding polynomial. Since there are N polynomials,
then there must be N segments, so you must supply N+1 boundaries.

You must order the boundaries by increasing value. The ith segment is the set of pixel values that fall in the
range:

 boundary[i] <= value < boundary{i+1}

where i ranges from 0 to N. Values in this segment are processed by the i-th polynomial.

From a performance standpoint, it costs much more to resolve additional polynomials than to work with
higher-order polynomials. You typically achieve better performance with one 9th-order polynomial that
covers the whole range of values you are interested in than with many lower-order polynomials covering
the range piecewise.

This function uses single-precision floating-point arithmetic. As a result, polynomials with large high-order
coefficients may cause significant rounding error.

Availability
Available in Mac OS X v10.4 and later.

See Also
vImagePiecewisePolynomial_PlanarF (page 259)

Declared In
Transform.h

vImagePiecewiseRational_PlanarF
Applies a piecewise rational expression to an image in PlanarF format.

Functions 261
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

vImage_Error vImagePiecewiseRational_PlanarF (
 const vImage_Buffer *src,
 const vImage_Buffer *dest,
 const float **topCoefficients,
 const float **bottomCoefficients,
 const float *boundaries,
 uint32_t topOrder,
 uint32_t bottomOrder,
 uint32_t log2segments,
 vImage_Flags flags
);

Parameters
src

A pointer to a vImage buffer structure that contains the source image.

dest
A pointer to a vImage buffer data structure. You are responsible for filling out the height, width,
and rowBytes fields of this structure, and for allocating a data buffer of the appropriate size. On
return, the data buffer pointed to by this structure contains the destination image data. When you
no longer need the data buffer, you must deallocate the memory.

topCoefficients

An array of pointers to polynomial coefficient arrays The array of pointers has length 2log2segments. Each
array pointed to has length topOrder+1.

Each polynomial coefficient array contains the coefficients for one polynomial. Note that a polynomial
of order R has R+1 coefficients. All the polynomial coefficient arrays must be the same size, R+1, and
in each array the coefficients must be ordered from the 0th-order term to the highest-order term.

bottomCoefficients

An array of pointers to polynomial coefficient arrays The array of pointers has length 2log2segments. Each
array pointed to has length bottomOrder+1.

Each polynomial coefficient array contains the coefficients for one polynomial. Note that a polynomial
of order R has R+1 coefficients. All the polynomial coefficient arrays must be the same size, R+1, and
in each array the coefficients must be ordered from the 0th-order term to the highest-order term.
These do not need to be the same order as the top polynomials.

boundaries

An array of floating-point values with size (2log2segments)+1, in increasing order, for separating adjacent
ranges of pixel values. The first boundary value is the lowest in the range; input values lower than
this are clipped to this value. The last boundary value is the highest in the range; input values higher
than this are clipped to this value. The boundary values between the first and last separate the
subranges from each other. The boundaries must be the same for both the top and bottom
polynomials.

topOrder
The order of the top polynomial. Make sure you pass the order (that is, the highest power of x), not
the number of coefiicients.

bottomOrder
The order of the bottom polynomial. Make sure you pass the order (that is, the highest power of x),
not the number of coefiicients.

log2segments
The number of rationals represented as a base-2 logarithm. If you pass a non-integer power-of-two
number of rational (for example, 5), you must round up to the next integer power of 2 (for the example
of 5, that would be 8), and simply repeat the last rational the appropriate number of times.

262 Functions
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

flags
Reserved for future use; pass 0.

Return Value
kvImageNoError, otherwise one of the error codes described in vImageData Types and Constants Reference.

Discussion
This function is similar tovImagePiecewisePolynomial_PlanarF (page 259) except that it evaluates a
piecewise rational expression in the form of:

result =
c0 + c1* x + c2 * x 2 + c3* x3...

d0 + d1* x + d2 * x 2 + d3* x3...

Each polynomial has its own set of coefficients and its own polynomial order. The two polynomials share the
same set of segment boundaries. If the polynomials are split then all the top polynomials must be of the
same order, and all the bottom polynomials must be of the same order. However, regardless of whether the
polynomial is split or not, the top polynomials do not need to be the same order as the bottom polynomials.

This function does not deliver IEEE-754 correct division. The divide does not round per the IEEE-754 current
rounding mode. It incurs up to 2 ULPs (Units in the Last Place) of error. Edge cases involving denormals,
infinities, NaNs and division by zero return undefined results. (They will not crash, but NaN is a likely result
in such cases.) Denormals can be rescued on AltiVec enabled machines by turning off the Non-Java bit in
the VSCR, at the expense of taking a many-thousand cycle kernel exception every time a denormal number
is encountered. Since you can predict ahead of time whether a given set of bounded polynomials is going
to encounter these conditions, this problem should be avoidable by wise choice of polynomials. Developers
who require IEEE-754 correct results should call the polynomial evaluator above twice and do the division
themselves.

The approximate cost of evaluating a rational (in the same units as polynomial above) is:

time = (base cost to touch all the data) + top polynomial order
 + bottom polynomial order + 4 + 4 * log2segments

With data not in cache, the time may be significantly different. For sufficiently small polynomials, the cost
may be a fixed cost, dependent only on how much data is touched, and not on polynomial order.

This performance behavior is provided to help you evaluate speed tradeoffs. It is not a guaranteed. It is
subject to change in future operating system revisions, and may be different on different hardware within
the same or different operating system revisions.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Transform.h

Functions 263
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

Constants

Gamma Function Types
Types of full- or half-precision gamma functions.

enum
{
 kvImageGamma_UseGammaValue = 0,
 kvImageGamma_UseGammaValue_half_precision = 1,
 kvImageGamma_5_over_9_half_precision = 2,
 kvImageGamma_9_over_5_half_precision = 3,
 kvImageGamma_5_over_11_half_precision = 4,
 kvImageGamma_11_over_5_half_precision = 5,
 kvImageGamma_sRGB_forward_half_precision = 6,
 kvImageGamma_sRGB_reverse_half_precision = 7,
 kvImageGamma_11_over_9_half_precision = 8,
 kvImageGamma_9_over_11_half_precision = 9,
 kvImageGamma_BT709_forward_half_precision = 10,
 kvImageGamma_BT709_reverse_half_precision = 11
};

Constants
kvImageGamma_UseGammaValue

Full-precision calculation using the gamma value set in vImageCreateGammaFunction.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_UseGammaValue_half_precision
Half-precision calculation using the gamma value set in vImageCreateGammaFunction.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_5_over_9_half_precision
Half-precision calculation using a gamma value of 5/9 or 1/1.8.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_9_over_5_half_precision
Half-precision calculation using a gamma value of 9/5 or 1.8.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_5_over_11_half_precision
Half-precision calculation using a gamma value of 5/11 or 1/2.2.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

264 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

kvImageGamma_11_over_5_half_precision
Half-precision calculation using a gamma value of 11/5 or 2.2. On exit, gamma is 5/11.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_sRGB_forward_half_precision
Half-precision calculation using the sRGB standard gamma value of 2.2.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_sRGB_reverse_half_precision
Half-precision calculation using the sRGB standard gamma value of 1/2.2.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_11_over_9_half_precision
Half-precision calculation using a gamma value of 11/9 or (11/5)/(9/5).

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_9_over_11_half_precision
Half-precision calculation using a gamma value of 9/11 or (9/5)/(11/5).

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_BT709_forward_half_precision
ITU-R BT.709 standard. This is like kvImageGamma_sRGB_forward_half_precision above but without
the 1.125 viewing gamma for computer graphics: x<0.081? x/4.5: pow((x+0.099)/1.099,
1/0.45).

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

kvImageGamma_BT709_reverse_half_precision
ITU-R BT.709 standard reverse. This is like kvImageGamma_sRGB_reverse_half_precision above but
without the 1.125 viewing gamma for computer graphics: x<0.018? 4.5*x: 1.099*pow(x,0.45)
- 0.099.

Available in Mac OS X v10.4 and later.

Declared in Transform.h.

Declared In
Transform.h

Constants 265
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

266 Constants
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

vImage Transform Reference

This table describes the changes to vImage Reference Collection.

NotesDate

New collection that describes the C programming interface for high-performance
image processing.

2007-07-12

267
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

268
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

E

Error Codes 15

G

Gamma Function Types 264
GammaFunction data type 14

K

kRotate0DegreesClockwise constant 193
kRotate0DegreesCounterClockwise constant 193
kRotate180DegreesClockwise constant 193
kRotate180DegreesCounterClockwise constant 193
kRotate270DegreesClockwise constant 193
kRotate270DegreesCounterClockwise constant 193
kRotate90DegreesClockwise constant 193
kRotate90DegreesCounterClockwise constant 193
kvImageBackgroundColorFill constant 18
kvImageBufferSizeMismatch constant 16
kvImageCopyInPlace constant 17
kvImageDoNotTile constant 18
kvImageEdgeExtend constant 18
kvImageGamma_11_over_5_half_precision constant

265
kvImageGamma_11_over_9_half_precision constant

265
kvImageGamma_5_over_11_half_precision constant

264
kvImageGamma_5_over_9_half_precision constant

264
kvImageGamma_9_over_11_half_precision constant

265
kvImageGamma_9_over_5_half_precision constant

264
kvImageGamma_BT709_forward_half_precision

constant 265

kvImageGamma_BT709_reverse_half_precision
constant 265

kvImageGamma_sRGB_forward_half_precision
constant 265

kvImageGamma_sRGB_reverse_half_precision
constant 265

kvImageGamma_UseGammaValue constant 264
kvImageGamma_UseGammaValue_half_precision

constant 264
kvImageGetTempBufferSize constant 19
kvImageHighQualityResampling constant 18
kvImageInvalidKernelSize constant 16
kvImageInvalidOffset_X constant 16
kvImageInvalidOffset_Y constant 16
kvImageInvalidParameter constant 16
kvImageLeaveAlphaUnchanged constant 17
kvImageMemoryAllocationError constant 16
kvImageNoEdgeStyleSpecified constant 16
kvImageNoError constant 15
kvImageNoFlags constant 17
kvImageNullPointerArgument constant 16
kvImageRoiLargerThanInputBuffer constant 16
kvImageTruncateKernel constant 19
kvImageUnknownFlagsBit constant 17
kvImage_PNG_FILTER_VALUE_AVG constant 145
kvImage_PNG_FILTER_VALUE_NONE constant 144
kvImage_PNG_FILTER_VALUE_PAETH constant 145
kvImage_PNG_FILTER_VALUE_SUB constant 144
kvImage_PNG_FILTER_VALUE_UP constant 145

P

Pixel_8 data type 13
Pixel_8888 data type 14
Pixel_F data type 14
Pixel_FFFF data type 14
PNG Filter Types 144
Processing Flags 17

269
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

Index

R

ResamplingFilter data type 15
Rotation Constants 192

V

vImageAffineWarp_ARGB8888 function 150
vImageAffineWarp_ARGBFFFF function 151
vImageAffineWarp_Planar8 function 153
vImageAffineWarp_PlanarF function 154
vImageAlphaBlend_ARGB8888 function 26
vImageAlphaBlend_ARGBFFFF function 27
vImageAlphaBlend_NonpremultipliedToPremultiplied_-

ARGB8888 function 28
vImageAlphaBlend_NonpremultipliedToPremultiplied_-

ARGBFFFF function 29
vImageAlphaBlend_NonpremultipliedToPremultiplied_-

Planar8 function 30
vImageAlphaBlend_NonpremultipliedToPremultiplied_-

PlanarF function 31
vImageAlphaBlend_Planar8 function 32
vImageAlphaBlend_PlanarF function 33
vImageBoxConvolve_ARGB8888 function 110
vImageBoxConvolve_Planar8 function 111
vImageBufferFill_ARGB8888 function 59
vImageBufferFill_ARGBFFFF function 60
vImageClipToAlpha_ARGB8888 function 34
vImageClipToAlpha_ARGBFFFF function 35
vImageClipToAlpha_Planar8 function 36
vImageClipToAlpha_PlanarF function 37
vImageClip_PlanarF function 60
vImageContrastStretch_ARGB8888 function 197
vImageContrastStretch_ARGBFFFF function 198
vImageContrastStretch_Planar8 function 199
vImageContrastStretch_PlanarF function 200
vImageConvert_16SToF function 61
vImageConvert_16UToF function 62
vImageConvert_16UToPlanar8 function 63
vImageConvert_ARGB1555toARGB8888 function 64
vImageConvert_ARGB1555toPlanar8 function 64
vImageConvert_ARGB8888toARGB1555 function 66
vImageConvert_ARGB8888toPlanar8 function 66
vImageConvert_ARGB8888toRGB565 function 68
vImageConvert_ARGB8888toRGB888 function 68
vImageConvert_ARGBFFFFtoPlanarF function 69
vImageConvert_ChunkyToPlanar8 function 70
vImageConvert_ChunkyToPlanarF function 71
vImageConvert_FTo16S function 73
vImageConvert_FTo16U function 73
vImageConvert_Planar16FtoPlanarF function 74
vImageConvert_Planar8To16U function 75

vImageConvert_Planar8toARGB1555 function 76
vImageConvert_Planar8toARGB8888 function 77
vImageConvert_Planar8toPlanarF function 78
vImageConvert_Planar8toRGB565 function 79
vImageConvert_Planar8toRGB888 function 80
vImageConvert_PlanarFtoARGBFFFF function 80
vImageConvert_PlanarFtoPlanar16F function 81
vImageConvert_PlanarFtoPlanar8 function 82
vImageConvert_PlanarFtoRGBFFF function 83
vImageConvert_PlanarToChunky8 function 84
vImageConvert_PlanarToChunkyF function 85
vImageConvert_RGB565toARGB8888 function 86
vImageConvert_RGB565toPlanar8 function 87
vImageConvert_RGB888toARGB8888 function 88
vImageConvert_RGB888toPlanar8 function 89
vImageConvert_RGBFFFtoPlanarF function 90
vImageConvolveMultiKernel_ARGB8888 function 113
vImageConvolveMultiKernel_ARGBFFFF function 115
vImageConvolveWithBias_ARGB8888 function 117
vImageConvolveWithBias_ARGBFFFF function 118
vImageConvolveWithBias_Planar8 function 120
vImageConvolveWithBias_PlanarF function 122
vImageConvolve_ARGB8888 function 124
vImageConvolve_ARGBFFFF function 125
vImageConvolve_Planar8 function 127
vImageConvolve_PlanarF function 129
vImageCreateGammaFunction function 247
vImageDestroyGammaFunction function 248
vImageDestroyResamplingFilter function 156
vImageDilate_ARGB8888 function 223
vImageDilate_ARGBFFFF function 224
vImageDilate_Planar8 function 225
vImageDilate_PlanarF function 226
vImageEndsInContrastStretch_ARGB8888 function

202
vImageEndsInContrastStretch_ARGBFFFF function

203
vImageEndsInContrastStretch_Planar8 function

204
vImageEndsInContrastStretch_PlanarF function

205
vImageEqualization_ARGB8888 function 207
vImageEqualization_ARGBFFFF function 208
vImageEqualization_Planar8 function 209
vImageEqualization_PlanarF function 210
vImageErode_ARGB8888 function 227
vImageErode_ARGBFFFF function 228
vImageErode_Planar8 function 229
vImageErode_PlanarF function 230
vImageFlatten_ARGB8888ToRGB888 function 91
vImageFlatten_ARGBFFFFToRGBFFF function 92
vImageGamma_Planar8toPlanarF function 248
vImageGamma_PlanarF function 249

270
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

INDEX

vImageGamma_PlanarFtoPlanar8 function 249
vImageGetMinimumGeometryTempBufferSize function

(Deprecated in Mac OS X v10.4) 156
vImageGetMinimumTempBufferSizeForConvolution

function (Deprecated in Mac OS X v10.4) 130
vImageGetMinimumTempBufferSizeForHistogram

function (Deprecated in Mac OS X v10.4) 211
vImageGetMinimumTempBufferSizeForMinMax

function (Deprecated in Mac OS X v10.4) 231
vImageGetResamplingFilterSize function 157
vImageHistogramCalculation_ARGB8888 function

212
vImageHistogramCalculation_ARGBFFFF function

213
vImageHistogramCalculation_Planar8 function 214
vImageHistogramCalculation_PlanarF function 214
vImageHistogramSpecification_ARGB8888 function

215
vImageHistogramSpecification_ARGBFFFF function

216
vImageHistogramSpecification_Planar8 function

218
vImageHistogramSpecification_PlanarF function

218
vImageHorizontalReflect_ARGB8888 function 158
vImageHorizontalReflect_ARGBFFFF function 159
vImageHorizontalReflect_Planar8 function 160
vImageHorizontalReflect_PlanarF function 160
vImageHorizontalShear_ARGB8888 function 161
vImageHorizontalShear_ARGBFFFF function 162
vImageHorizontalShear_Planar8 function 164
vImageHorizontalShear_PlanarF function 165
vImageInterpolatedLookupTable_PlanarF function

250
vImageLookupTable_Planar8toPlanarF function 251
vImageLookupTable_PlanarFtoPlanar8 function 252
vImageMatrixMultiply_ARGB8888 function 253
vImageMatrixMultiply_ARGBFFFF function 254
vImageMatrixMultiply_Planar8 function 255
vImageMatrixMultiply_PlanarF function 256
vImageMax_ARGB8888 function 232
vImageMax_ARGBFFFF function 233
vImageMax_Planar8 function 235
vImageMax_PlanarF function 236
vImageMin_ARGB8888 function 238
vImageMin_ARGBFFFF function 239
vImageMin_Planar8 function 241
vImageMin_PlanarF function 242
vImageNewResamplingFilter function 167
vImageNewResamplingFilterForFunctionUsingBuffer

function 167
vImageOverwriteChannelsWithPixel_ARGB8888

function 93

vImageOverwriteChannelsWithPixel_ARGBFFFF
function 94

vImageOverwriteChannelsWithScalar_ARGB8888
function 95

vImageOverwriteChannelsWithScalar_ARGBFFFF
function 96

vImageOverwriteChannelsWithScalar_Planar8
function 97

vImageOverwriteChannelsWithScalar_PlanarF
function 97

vImageOverwriteChannels_ARGB8888 function 98
vImageOverwriteChannels_ARGBFFFF function 99
vImagePermuteChannels_ARGB8888 function 100
vImagePermuteChannels_ARGBFFFF function 102
vImagePiecewisePolynomial_Planar8toPlanarF

function 257
vImagePiecewisePolynomial_PlanarF function 259
vImagePiecewisePolynomial_PlanarFtoPlanar8

function 260
vImagePiecewiseRational_PlanarF function 261
vImagePixelCount data type 11
vImagePNGDecompressionFilter function 143
vImagePremultipliedAlphaBlend_ARGB8888 function

38
vImagePremultipliedAlphaBlend_ARGBFFFF function

38
vImagePremultipliedAlphaBlend_Planar8 function

39
vImagePremultipliedAlphaBlend_PlanarF function

40
vImagePremultipliedConstAlphaBlend_ARGB8888

function 41
vImagePremultipliedConstAlphaBlend_ARGBFFFF

function 41
vImagePremultipliedConstAlphaBlend_Planar8

function 42
vImagePremultipliedConstAlphaBlend_PlanarF

function 43
vImagePremultiplyData_ARGB8888 function 44
vImagePremultiplyData_ARGBFFFF function 45
vImagePremultiplyData_Planar8 function 46
vImagePremultiplyData_PlanarF function 46
vImagePremultiplyData_RGBA8888 function 47
vImagePremultiplyData_RGBAFFFF function 48
vImageRichardsonLucyDeConvolve_ARGB8888

function 131
vImageRichardsonLucyDeConvolve_ARGBFFFF

function 133
vImageRichardsonLucyDeConvolve_Planar8 function

135
vImageRichardsonLucyDeConvolve_PlanarF function

137
vImageRotate90_ARGB8888 function 169

271
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

INDEX

vImageRotate90_ARGBFFFF function 170
vImageRotate90_Planar8 function 171
vImageRotate90_PlanarF function 172
vImageRotate_ARGB8888 function 173
vImageRotate_ARGBFFFF function 175
vImageRotate_Planar8 function 176
vImageRotate_PlanarF function 178
vImageScale_ARGB8888 function 179
vImageScale_ARGBFFFF function 180
vImageScale_Planar8 function 181
vImageScale_PlanarF function 182
vImageSelectChannels_ARGB8888 function 102
vImageSelectChannels_ARGBFFFF function 103
vImageTableLookUp_ARGB8888 function 104
vImageTableLookUp_Planar8 function 106
vImageTentConvolve_ARGB8888 function 139
vImageTentConvolve_Planar8 function 141
vImageUnpremultiplyData_ARGB8888 function 48
vImageUnpremultiplyData_ARGBFFFF function 49
vImageUnpremultiplyData_Planar8 function 50
vImageUnpremultiplyData_PlanarF function 51
vImageUnpremultiplyData_RGBA8888 function 51
vImageUnpremultiplyData_RGBAFFFF function 52
vImageVerticalReflect_ARGB8888 function 184
vImageVerticalReflect_ARGBFFFF function 184
vImageVerticalReflect_Planar8 function 185
vImageVerticalReflect_PlanarF function 186
vImageVerticalShear_ARGB8888 function 187
vImageVerticalShear_ARGBFFFF function 188
vImageVerticalShear_Planar8 function 189
vImageVerticalShear_PlanarF function 191
vImage_AffineTransform structure 12
vImage_Buffer structure 11
vImage_Error data type 13
vImage_Flags data type 13

272
2007-07-12 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	vImage Reference Collection
	Contents
	Figures
	Introduction
	Part I: Data Types
	vImage Data Types and Constants Reference
	Overview
	Data Types
	vImagePixelCount
	vImage_Buffer
	vImage_AffineTransform
	vImage_Error
	vImage_Flags
	Pixel_8
	Pixel_F
	Pixel_8888
	Pixel_FFFF
	GammaFunction
	ResamplingFilter

	Constants
	Error Codes
	Processing Flags

	Part II: Other References
	vImage Alpha Compositing Reference
	Overview
	Functions by Task
	Performing Nonpremultiplied Alpha Compositing
	Performing Premultiplied Alpha Compositing
	Performing Nonpremultiplied Alpha Compositing With a Single Alpha Value
	Performing Nonpremultiplied to Premultiplied Alpha Compositing
	Converting from Unpremultiplied to Premultiplied Format
	Converting from Premultiplied to Unpremultiplied Format
	Clipping Color Values to Alpha

	Functions
	vImageAlphaBlend_ARGB8888
	vImageAlphaBlend_ARGBFFFF
	vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGB8888
	vImageAlphaBlend_NonpremultipliedToPremultiplied_ARGBFFFF
	vImageAlphaBlend_NonpremultipliedToPremultiplied_Planar8
	vImageAlphaBlend_NonpremultipliedToPremultiplied_PlanarF
	vImageAlphaBlend_Planar8
	vImageAlphaBlend_PlanarF
	vImageClipToAlpha_ARGB8888
	vImageClipToAlpha_ARGBFFFF
	vImageClipToAlpha_Planar8
	vImageClipToAlpha_PlanarF
	vImagePremultipliedAlphaBlend_ARGB8888
	vImagePremultipliedAlphaBlend_ARGBFFFF
	vImagePremultipliedAlphaBlend_Planar8
	vImagePremultipliedAlphaBlend_PlanarF
	vImagePremultipliedConstAlphaBlend_ARGB8888
	vImagePremultipliedConstAlphaBlend_ARGBFFFF
	vImagePremultipliedConstAlphaBlend_Planar8
	vImagePremultipliedConstAlphaBlend_PlanarF
	vImagePremultiplyData_ARGB8888
	vImagePremultiplyData_ARGBFFFF
	vImagePremultiplyData_Planar8
	vImagePremultiplyData_PlanarF
	vImagePremultiplyData_RGBA8888
	vImagePremultiplyData_RGBAFFFF
	vImageUnpremultiplyData_ARGB8888
	vImageUnpremultiplyData_ARGBFFFF
	vImageUnpremultiplyData_Planar8
	vImageUnpremultiplyData_PlanarF
	vImageUnpremultiplyData_RGBA8888
	vImageUnpremultiplyData_RGBAFFFF

	vImage Conversion Reference
	Overview
	Functions by Task
	Filling Buffers
	Permuting Channels
	Overwriting Channels
	Converting From 16 Bit
	Transforming Using Table Lookups
	Flattening Data
	Clipping Data
	Converting Between Chunky and Planar
	Converting From Planar Formats
	Converting From ARGB Formats
	Converting From RGB Formats

	Functions
	vImageBufferFill_ARGB8888
	vImageBufferFill_ARGBFFFF
	vImageClip_PlanarF
	vImageConvert_16SToF
	vImageConvert_16UToF
	vImageConvert_16UToPlanar8
	vImageConvert_ARGB1555toARGB8888
	vImageConvert_ARGB1555toPlanar8
	vImageConvert_ARGB8888toARGB1555
	vImageConvert_ARGB8888toPlanar8
	vImageConvert_ARGB8888toRGB565
	vImageConvert_ARGB8888toRGB888
	vImageConvert_ARGBFFFFtoPlanarF
	vImageConvert_ChunkyToPlanar8
	vImageConvert_ChunkyToPlanarF
	vImageConvert_FTo16S
	vImageConvert_FTo16U
	vImageConvert_Planar16FtoPlanarF
	vImageConvert_Planar8To16U
	vImageConvert_Planar8toARGB1555
	vImageConvert_Planar8toARGB8888
	vImageConvert_Planar8toPlanarF
	vImageConvert_Planar8toRGB565
	vImageConvert_Planar8toRGB888
	vImageConvert_PlanarFtoARGBFFFF
	vImageConvert_PlanarFtoPlanar16F
	vImageConvert_PlanarFtoPlanar8
	vImageConvert_PlanarFtoRGBFFF
	vImageConvert_PlanarToChunky8
	vImageConvert_PlanarToChunkyF
	vImageConvert_RGB565toARGB8888
	vImageConvert_RGB565toPlanar8
	vImageConvert_RGB888toARGB8888
	vImageConvert_RGB888toPlanar8
	vImageConvert_RGBFFFtoPlanarF
	vImageFlatten_ARGB8888ToRGB888
	vImageFlatten_ARGBFFFFToRGBFFF
	vImageOverwriteChannelsWithPixel_ARGB8888
	vImageOverwriteChannelsWithPixel_ARGBFFFF
	vImageOverwriteChannelsWithScalar_ARGB8888
	vImageOverwriteChannelsWithScalar_ARGBFFFF
	vImageOverwriteChannelsWithScalar_Planar8
	vImageOverwriteChannelsWithScalar_PlanarF
	vImageOverwriteChannels_ARGB8888
	vImageOverwriteChannels_ARGBFFFF
	vImagePermuteChannels_ARGB8888
	vImagePermuteChannels_ARGBFFFF
	vImageSelectChannels_ARGB8888
	vImageSelectChannels_ARGBFFFF
	vImageTableLookUp_ARGB8888
	vImageTableLookUp_Planar8

	vImage Convolution Reference
	Overview
	Functions by Task
	Deconvolving
	Convolving Without Bias
	Convolving With a Bias
	Convolving With Multiple Kernels
	Convolving With High-Speed Box and Tent Filters
	Getting the Minimum Buffer Size

	Functions
	vImageBoxConvolve_ARGB8888
	vImageBoxConvolve_Planar8
	vImageConvolveMultiKernel_ARGB8888
	vImageConvolveMultiKernel_ARGBFFFF
	vImageConvolveWithBias_ARGB8888
	vImageConvolveWithBias_ARGBFFFF
	vImageConvolveWithBias_Planar8
	vImageConvolveWithBias_PlanarF
	vImageConvolve_ARGB8888
	vImageConvolve_ARGBFFFF
	vImageConvolve_Planar8
	vImageConvolve_PlanarF
	vImageGetMinimumTempBufferSizeForConvolution
	vImageRichardsonLucyDeConvolve_ARGB8888
	vImageRichardsonLucyDeConvolve_ARGBFFFF
	vImageRichardsonLucyDeConvolve_Planar8
	vImageRichardsonLucyDeConvolve_PlanarF
	vImageTentConvolve_ARGB8888
	vImageTentConvolve_Planar8

	vImage Decompression Filtering Reference
	Overview
	Functions
	vImagePNGDecompressionFilter

	Constants
	PNG Filter Types

	vImage Geometry Reference
	Overview
	Functions by Task
	Applying Affine Transforms
	Reflecting
	Shearing
	Rotating
	Scaling
	Resampling
	Getting the Buffer Size

	Functions
	vImageAffineWarp_ARGB8888
	vImageAffineWarp_ARGBFFFF
	vImageAffineWarp_Planar8
	vImageAffineWarp_PlanarF
	vImageDestroyResamplingFilter
	vImageGetMinimumGeometryTempBufferSize
	vImageGetResamplingFilterSize
	vImageHorizontalReflect_ARGB8888
	vImageHorizontalReflect_ARGBFFFF
	vImageHorizontalReflect_Planar8
	vImageHorizontalReflect_PlanarF
	vImageHorizontalShear_ARGB8888
	vImageHorizontalShear_ARGBFFFF
	vImageHorizontalShear_Planar8
	vImageHorizontalShear_PlanarF
	vImageNewResamplingFilter
	vImageNewResamplingFilterForFunctionUsingBuffer
	vImageRotate90_ARGB8888
	vImageRotate90_ARGBFFFF
	vImageRotate90_Planar8
	vImageRotate90_PlanarF
	vImageRotate_ARGB8888
	vImageRotate_ARGBFFFF
	vImageRotate_Planar8
	vImageRotate_PlanarF
	vImageScale_ARGB8888
	vImageScale_ARGBFFFF
	vImageScale_Planar8
	vImageScale_PlanarF
	vImageVerticalReflect_ARGB8888
	vImageVerticalReflect_ARGBFFFF
	vImageVerticalReflect_Planar8
	vImageVerticalReflect_PlanarF
	vImageVerticalShear_ARGB8888
	vImageVerticalShear_ARGBFFFF
	vImageVerticalShear_Planar8
	vImageVerticalShear_PlanarF

	Constants
	Rotation Constants

	vImage Histogram Reference
	Overview
	Functions by Task
	Stretching the Contrast
	Equalizing a Histogram
	Specifying a Histogram
	Calculating a Histogram
	Getting the Minimum Buffer Size.

	Functions
	vImageContrastStretch_ARGB8888
	vImageContrastStretch_ARGBFFFF
	vImageContrastStretch_Planar8
	vImageContrastStretch_PlanarF
	vImageEndsInContrastStretch_ARGB8888
	vImageEndsInContrastStretch_ARGBFFFF
	vImageEndsInContrastStretch_Planar8
	vImageEndsInContrastStretch_PlanarF
	vImageEqualization_ARGB8888
	vImageEqualization_ARGBFFFF
	vImageEqualization_Planar8
	vImageEqualization_PlanarF
	vImageGetMinimumTempBufferSizeForHistogram
	vImageHistogramCalculation_ARGB8888
	vImageHistogramCalculation_ARGBFFFF
	vImageHistogramCalculation_Planar8
	vImageHistogramCalculation_PlanarF
	vImageHistogramSpecification_ARGB8888
	vImageHistogramSpecification_ARGBFFFF
	vImageHistogramSpecification_Planar8
	vImageHistogramSpecification_PlanarF

	vImage Morphology Reference
	Overview
	Functions by Task
	Dilating an Object
	Eroding an Object
	Maximizing an Object
	Minimizing an Object
	Getting the Buffer Size

	Functions
	vImageDilate_ARGB8888
	vImageDilate_ARGBFFFF
	vImageDilate_Planar8
	vImageDilate_PlanarF
	vImageErode_ARGB8888
	vImageErode_ARGBFFFF
	vImageErode_Planar8
	vImageErode_PlanarF
	vImageGetMinimumTempBufferSizeForMinMax
	vImageMax_ARGB8888
	vImageMax_ARGBFFFF
	vImageMax_Planar8
	vImageMax_PlanarF
	vImageMin_ARGB8888
	vImageMin_ARGBFFFF
	vImageMin_Planar8
	vImageMin_PlanarF

	vImage Transform Reference
	Overview
	Functions by Task
	Transforming with a Lookup Table
	Applying a Polynomial
	Multiplying Pixels by a Matrix
	Correcting Gamma

	Functions
	vImageCreateGammaFunction
	vImageDestroyGammaFunction
	vImageGamma_Planar8toPlanarF
	vImageGamma_PlanarF
	vImageGamma_PlanarFtoPlanar8
	vImageInterpolatedLookupTable_PlanarF
	vImageLookupTable_Planar8toPlanarF
	vImageLookupTable_PlanarFtoPlanar8
	vImageMatrixMultiply_ARGB8888
	vImageMatrixMultiply_ARGBFFFF
	vImageMatrixMultiply_Planar8
	vImageMatrixMultiply_PlanarF
	vImagePiecewisePolynomial_Planar8toPlanarF
	vImagePiecewisePolynomial_PlanarF
	vImagePiecewisePolynomial_PlanarFtoPlanar8
	vImagePiecewiseRational_PlanarF

	Constants
	Gamma Function Types

	Revision History
	Index
	E
	G
	K
	P
	R
	V

