Power Mac G5 Developer Note

Hardware & Drivers > Apple Hardware

Apple Inc. © 2003, 2004 Apple Computer, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: Any person is hereby authorized to store documentation on a single computer for personal use only and to print copies of documentation for personal use provided that the documentation contains Apple's copyright notice.

The Apple logo is a trademark of Apple Inc.

Use of the "keyboard" Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws

No licenses, express or implied, are granted with respect to any of the technology described in this document. Apple retains all intellectual property rights associated with the technology described in this document. This document is intended to assist application developers to develop applications only for Apple-labeled computers.

Every effort has been made to ensure that the information in this document is accurate. Apple is not responsible for typographical errors.

Apple Inc. 1 Infinite Loop Cupertino, CA 95014 408-996-1010

Apple, the Apple logo, AirPort, AirPort Extreme, Carbon, Final Cut, Final Cut Pro, FireWire, iChat, iPod, iSight, Logic, Mac, Mac OS, Macintosh, Power Mac, QuickTime, SuperDrive, and Velocity Engine are trademarks of Apple Inc., registered in the United States and other countries.

DEC is a trademark of Digital Equipment Corporation.

OpenGL is a registered trademark of Silicon Graphics, Inc.

PowerPC and and the PowerPC logo are trademarks of International Business Machines Corporation, used under license therefrom.

Simultaneously published in the United States and Canada.

Even though Apple has reviewed this document, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED "AS 15," AND YOU, THE READER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Contents

Introduction	Introduction to Power Mac G5 Developer Note 9			
	Organization of This Document 9			
Chapter 1	Overview to the Power Mac G5 11			
	New Hardware Features 11 Hardware Features Summary 11			
	Features of the Enclosure 14			
	System Software 15			
	Computer Identification 15			
	Power Management 16			
	Velocity Engine Acceleration 17			
Chapter 2	Architecture 19			
	Block Diagram and Buses 19			
	Processor Module 22			
	PowerPC G5 Microprocessor 22			
	Bridge and Memory Controller 22			
	Processor Bus 23			
	Main Memory Bus 23			
	Accelerated Graphics Port Bus 23			
	Internal PCI Bus 24			
	PCI or PCI-X Expansion Slots 24			
	HyperTransport Technology 25			
	PCI USB Controller 25			
	K2 I/O Controller 25			
	DMA Support 25			
	Wireless LAN Module 26			
	Modem Slot Support 26			
	Boot ROM 26			
	Ethernet Controller 26			
	FireWire Controllers 27			
	Interrupt Support 27			
	USB Interface 27			
	Serial ATA Interface 27			
	Ultra DMA ATA/100 Interface 28			
	Sound System Overview 28			
	Power Controller 29			
	Graphics Cards 29			
	Fan Controller 29			

Liquid Cooling System 30

Chapter 3 Input and Output Devices 31

```
USB Ports 31
  USB Connectors 31
  Waking Up From Sleep 32
FireWire Ports 32
  FireWire 800 Connector 33
  FireWire 400 Connector 34
  FireWire Device Programming 35
  Booting from a FireWire Device 36
  Target Disk Mode 36
Ethernet Port 36
Disk Drives 38
  Hard Disk Drives 38
  SuperDrive 38
  Combo Drive 39
Internal Modem 39
AirPort Extreme Card 40
  Data Security 40
  AirPort Extreme Hardware 41
  AirPort Extreme Software 41
Bluetooth Technology 41
Keyboard 42
  Keyboard Features 42
  Keyboard Layout 43
  MultiMedia Control Keys 43
  Keyboard and USB 43
  Programmer's Switches 44
Mouse 44
Audio 45
  Optical S/PDIF Audio 45
  Audio Line-in 47
  Audio Line-out 47
  Headphone Jack 48
Video Monitor Ports 49
  Apple Display Connector 49
  DVI Connector 51
  DVI to Video Adapter 52
Dual Display Extended and Mirror Modes 53
```

Chapter 4 Expansion 55

RAM Expansion 55
DIMM Specifications 57

DIMM Configurations 58
RAM Addressing 59
PCI or PCI-X Expansion Slots 59
PCI Only 59
PCI-X Only 60
PCI and PCI-X 60

Appendix A Supplemental Reference Documents 63

Apple Technical Notes 63

PowerPC G5 Microprocessor 63

Velocity Engine 63

3D Graphics 64

Mac OS X 64

Open Firmware 64

RAM Expansion Modules 65

ATA Devices 65

Ethernet 65

Serial ATA 65

USB Interface 66

FireWire Interface 66

Digital Visual Interface 66

Wireless Networks 66

Bluetooth 67

Appendix B Conventions and Abbreviations 69

Typographical Conventions 69 Abbreviations 69

Index 75

Figures and Tables

Chapter 1	Overview to the Power Mac G5 11		
	Figure 1-1	Power Mac G5 front view 14	
	Figure 1-2	Power Mac G5 rear view 15	
	Table 1-1	Feature comparison of configurations 13	
Chapter 2	Architectu	re 19	
	Figure 2-1	block diagram for dual 1.8 GHz configuration 20	
	Figure 2-2	block diagram for dual 2.0 and 2.5 GHz configurations 21	
Chapter 3	Input and	Output Devices 31	
	Figure 3-1	USB connector 32	
	Figure 3-2	9-pin FireWire 800 connector 33	
	Figure 3-3	6-pin FireWire 400 connector 34	
	Figure 3-4	ANSI keyboard layout 43	
	Figure 3-5	Digital optical S/PDIF connector 46	
	Figure 3-6	Apple display connector 49	
	Figure 3-7	DVI to ADC adapter 51	
	Figure 3-8	DVI connector 51	
	Figure 3-9	S-video connector 52	
	Table 3-1	Signals on the USB connector 32	
	Table 3-2	Signals on the 9-pin FireWire 800 connector 33	
	Table 3-3	Signals on the 6-pin FireWire 400 connector 34	
	Table 3-4	Signals for 10Base-T/UTP and 100Base-TX operation 37	
	Table 3-5	Signals for 1000Base-TX Gigabit operation 37	
	Table 3-6	Media read and written by the SuperDrive 38	
	Table 3-7	Media read and written by the Combo drive 39	
	Table 3-8	Digital signals on the Apple display connector 50	
	Table 3-9	Analog signals on the Apple display connector 50	
	Table 3-10	Signals on the DVI connector 51	
	Table 3-11	Pin assignments for the S-video output connector 53	
	Table 3-12	Picture sizes for S-video output 53	
Chapter 4	Expansion	55	
	Figure 4-1	DIMM installation for dual 2.0 and 2.5 GHz processor configurations 56	
	Figure 4-2	DIMM installation for dual 1.8 GHz processor configuration 57	
	Table 4-1	Sizes of DDR SDRAM expansion DIMMS and devices 59	
	Table 4-2	Address multiplexing modes for SDRAM devices 59	

Introduction to Power Mac G5 Developer Note

This developer note describes the 64-bit Power Mac G5. The note provides information about the internal design of the computer, its input-output and expansion capabilities, and issues affecting compatibility.

This developer note is intended to help hardware and software developers design products that are compatible with the Macintosh products described here. If you are not already familiar with Macintosh computers or if you would simply like additional technical information, refer to Appendix A, "Supplemental Reference Documents," (page 63) for additional information.

Organization of This Document

The information is arranged in four chapters and two appendixes:

- Chapter 1, "Overview to the Power Mac G5", (page 11) gives a summary of the features of the Power Mac G5 computer, describes the physical appearance of the enclosure, and lists compatibility issues of interest to developers.
- Chapter 2, "Architecture", (page 19) describes the internal organization of the computer. It includes a functional block diagram and descriptions of the main components on the logic board.
- Chapter 3, "Input and Output Devices", (page 31) describes the built-in I/O devices and the external I/O ports.
- Chapter 4, "Expansion" (page 55) describes the expansion slots on the logic board and provides specifications for the expansion modules.
- Appendix A, "Supplemental Reference Documents," (page 63) provides sources of additional information about the technologies used in the Power Mac G5 computer.
- Appendix B, "Conventions and Abbreviations", (page 69) lists standard units of measure and other abbreviations used in this developer note.

INTRODUCTION

Introduction to Power Mac G5 Developer Note

Overview to the Power Mac G5

The 64-bit desktop Power Mac G5 uses dual PowerPC G5 microprocessors and is intended for use in content creation, desktop publishing, multimedia, scientific and technical applications, and other activities that require high performance.

New Hardware Features

Here is a list of the new hardware features of the Power Mac G5. A list of all hardware features is provided in "Hardware Features Summary" (page 11). A comparison of key feature differences are listed in Table 1-1 (page 13).

- Microprocessors: The Power Mac G5 computer is available in dual 1.8 GHz, 2.0 GHz, and 2.5 GHz configurations. For more information, see "PowerPC G5 Microprocessor" (page 22).
- **Processor system bus**: The processor interface system bus runs at half the speed of the system microprocessor. For more information, see "Processor Bus" (page 23).
- Memory bus: The main memory bus is 128 bit 400 MHz. For more information, see "Main Memory Bus" (page 23).
- DDR SDRAM: Depending on configuration, the Power Mac G5 has four or eight DIMM slots for 184 pin DIMMs (dual inline memory modules) using unbuffered DDR (double data rate) SDRAM 64-bit, 400 MHz (PC3200) devices for a maximum of 4 GB or 8 GB. For more information, see "Main Memory Bus" (page 23).
- **Liquid cooling system**: Some configurations have a new liquid cooling system. For more information, see "Liquid Cooling System" (page 30).
- Graphics card: The Power Mac G5 computer comes standard with one of the following graphics cards: Nvidia GeForce Fx 5200 Ultra with 64 MB RAM or the ATI Radeon 9600 XT with 128 MB RAM. A build-to-order ATI Radeon 9800 XT with 256 MB RAM is also available. All cards have ADC and DVI connectors. For more information, see "Graphics Cards" (page 29).
- Hard disks: An internal 7200 rpm Serial ATA (SATA) hard disk occupies one of two drive bays and functions as the default boot disk. A second SATA drive is available as a build-to-order option. Hard disk capacities are 80 GB and 160 GB with a 250 GB build-to-order option. For more information, see "Serial ATA Interface" (page 27).

Hardware Features Summary

Below is a list of all of the hardware features of the Power Mac G5. The major features are described more fully later in this note. To view the Technology and Performance Overview document, refer to http://www.apple.com/powermac/.

New Hardware Features

11

- Microprocessors: The Power Mac G5 computer is available in dual 1.8 GHz, 2.0 GHz, and 2.5 GHz configurations. For more information, see "PowerPC G5 Microprocessor" (page 22).
- **Processor system bus**: The processor interface system bus runs at half the speed of the system microprocessor. For more information, see "Processor Bus" (page 23).
- Memory caches: The PowerPC G5 microprocessors used in the Power Mac G5 computer have an internal 512 KB level 2 cache.
- Memory bus: The main memory bus is 128 bit 400 MHz. For more information, see "Main Memory Bus" (page 23).
- DDR SDRAM: Depending on configuration, the Power Mac G5 has four or eight DIMM slots for 184 pin DIMMs (dual inline memory modules) using unbuffered DDR (double data rate) SDRAM 64-bit, 400 MHz (PC3200) devices for a maximum of 4 GB or 8 GB. For more information, see "Main Memory Bus" (page 23).
- **Liquid cooling system**: Some configurations have a new liquid cooling system. For more information, see "Liquid Cooling System" (page 30).
- AGP 8x Pro slot: The computer has an AGP 8x Pro slot with an accelerated graphics card installed. For more information, see "Accelerated Graphics Port Bus" (page 23).
- PCI expansion slots: Some configurations support three 64-bit 33 MHz PCI slots. For more information, see "PCI or PCI-X Expansion Slots" (page 24).
- PCI-X expansion slots: Some configurations support three PCI-X expansion slots: one slot supports a maximum of 133 MHz and two slots support a maximum of 100 MHz. For more information, see "PCI or PCI-X Expansion Slots" (page 24).
- **Hyper Transport bus**: The Power Mac G5 supports the high-speed bus architecture between the memory controller and device I/O. For more information, see "HyperTransport Technology" (page 25).
- **Graphics card**: The Power Mac G5 computer comes standard with one of the following graphics cards: Nvidia GeForce Fx 5200 Ultra with 64 MB RAM or the ATI Radeon 9600 XT with 128 MB RAM. A build-to-order ATI Radeon 9800 XT with 256 MB RAM is also available. All cards have ADC and DVI connectors. For more information, see "Graphics Cards" (page 29).
- Hard disks: An internal 7200 rpm Serial ATA (SATA) hard disk occupies one of two drive bays and functions as the default boot disk. A second SATA drive is available as a build-to-order option. Hard disk capacities are 80 GB and 160 GB with a 250 GB build-to-order option. For more information, see "Serial ATA Interface" (page 27).
- **Power supply**: The Power Mac G5 computer comes with a 600 W power supply.
- SuperDrive (DVD-R/CD-RW drive): The Power Mac G5 computer has a SuperDrive drive connected to the Ultra DMA ATA/100 bus. For more information, see "SuperDrive" (page 38).
- Combo (DVD-ROM/CD-RW) drive: Instead of a SuperDrive, the Power Mac G5 computer has an optional build-to-order combination DVD-ROM/CD-RW drive connected to the Ultra DMA ATA/100 bus. For more information, see "Combo Drive" (page 39).
- **High-speed USB 2.0**: The computer has three external USB 2.0 ports: two on the rear of the enclosure and one on the front. All ports support both high-speed and classic USB speeds. For more information, see "USB Ports" (page 31).
- Ethernet: The computer has a built-in Ethernet port for 10Base-T/UTP, 100Base-TX, or 1000Base-TX Gigabit operation. The Ethernet port is auto-sensing and self-configuring to allow use of either a cross-over or straight-through cable. For more information, see "Ethernet Port" (page 36).
- AirPort Extreme Card: Available as a build-to-order option, the 54 Mbps AirPort Extreme Card provides a wireless LAN connection. For more information, see "Wireless LAN Module" (page 26).

- **Bluetooth**: Available as a build-to-order option, the fully-integrated Bluetooth module enables short-range wireless connections between desktop and laptop computers and a host of other peripheral devices. For more information, see "Bluetooth Technology" (page 41).
- **FireWire ports**: The computer has two FireWire 400 ports and one FireWire 800 port. For more information, see "FireWire Controllers" (page 27).
- Modem: The computer has a built-in Apple 56 Kbps modem. The modem supports K56flex and V.90 and V.92 modem standards. For more information, see "Internal Modem" (page 39).
- **Keyboard**: The computer comes with a full-size USB Apple Keyboard. The keyboard is also a bus-powered USB hub with two USB ports. For more information, see "Keyboard" (page 42).
- **Mouse**: The computer comes with a USB Apple Mouse, with optical tracking. For more information, see "Mouse" (page 44).
- **Boot ROM**: The Power Mac G5 computer comes with 1 MB of boot ROM.
- S/PDIF digital audio: The Power Mac G5 implements S/PDIF (Sony/Phillips Digital Interface) digital audio I/O via TOSLink optical input and digital output connectors on the rear panel. For more information, see "Sound System Overview" (page 28).
- Analog audio line-in: Rear panel analog audio line-in port for self-powered microphones or other audio equipment. For more information, see "Audio Line-in" (page 47).
- Analog audio line-out: Rear panel analog audio line-out port for externally-powered speakers or other audio devices with line-level outputs. For more information, see "Audio Line-out" (page 47).
- **Headphone and internal speaker**: The front panel includes a headphone mini-jack and the system includes a front mono speaker. For more information, see "Headphone Jack" (page 48).
- **DVI to video adapter**: The Power Mac G5 supports S-video and composite video from an optional adapter connected to the DVI port. For more information, see "DVI to Video Adapter" (page 52).
- Voltage switching: Auto-ranging voltage switching accepts 100 240V.
- Fan speed control: The speeds of the fans are controlled by thermal/wattage factors and are automatically set as low as possible to minimize noise.
- **Dimensions and weight:** Power Mac G5 dimensions are 20.12" (51.1 cm) high by 8.11" (20.6 cm) wide by 18.70" (47.5 cm) deep and weighs approximately 44.4 pounds (20.2 kg).
- Energy saving: Sleep scheduling can be controlled via the Energy Saver pane in System Preferences.

Note: While in sleep mode, the computer emits no noise and the power light pulses slowly.

Table 1-1 lists the key differences between the features of the dual 1.8 GHz configuration and the dual 2.0 and 2.5 GHz configurations.

 Table 1-1
 Feature comparison of configurations

Feature	dual 1.8 GHz configuration	dual 2.0 and 2.5 GHz configuration
G5 Processor clock speed	1.8 GHz	2.0 or 2.5 GHz
System bus speed	half speed of processor	half speed of processor
System controller	U3	U3H

Feature	dual 1.8 GHz configuration	dual 2.0 and 2.5 GHz configuration
Device/disk controller	K2	K2
SDRAM	4 slot DDR400 SDRAM with max 4 GB	8 slot DDR400 SDRAM with max 8 GB
PCI	3 64-bit 33 MHz PCI slots	3 PCI-X slots
Power supply	600 W	600 W

Features of the Enclosure

The Power Mac G5 computer's enclosure is a tower design. Figure 1-1 (page 14) illustrates the front of the enclosure and Figure 1-2 (page 15) illustrates the rear of the enclosure.

Figure 1-1 Power Mac G5 front view

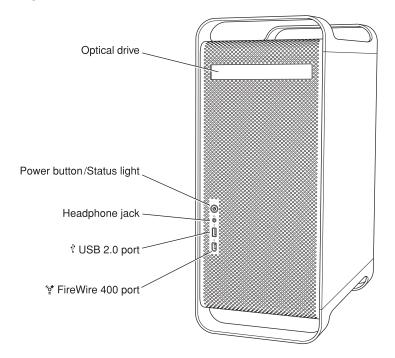
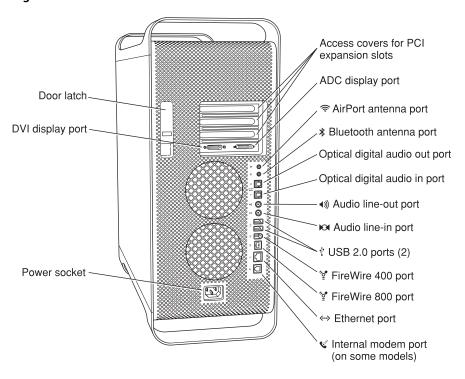



Figure 1-2 Power Mac G5 rear view

The enclosure has space for two hard disk drives and one optical device. See "Hard Disk Drives" (page 38).

To access the main logic board to install PCI or PCI-X cards or additional memory, refer to "Expansion" (page 55). For full details regarding opening and accessing the computer, refer to the *Power Mac G5 User's Guide* that was shipped with your computer.

Warning: Opening the enclosure side panel impacts the thermal performance of the computer. Do not run the enclosure with the side panel open. If the air deflector inside the enclosure is removed, the fans will spin very slowly and the system will take action to prevent over-heating.

System Software

The Power Mac G5 ships with Mac OS X 10.3.4 or later installed as the default operating system. The classic environment can be used to run Mac OS 9 applications. Load the Classic application from the "Extras" CD shipped with your computer.

To retrieve information from the I/O Registry, use the APIs in the header file IOKit/IOKitLib.h.

Computer Identification

Rather than reading the box flag or the model string and then making assumptions about the computer's features, applications that need to find out the features of the computer should use I/O Registry calls to test for the features they require.

Asset management software that reports the kind of computer it is run on can obtain the value of the property at <code>Devices:device-tree:compatible</code> in the <code>IODeviceTree</code> plane of the <code>I/O</code> Registry. The model string is the first program-usable string in the array of C strings in the <code>compatible</code> field. For the Power Mac G5, the value of the model property is <code>PowerMac7</code>, 3.

Power Management

The basics of Power Mac G5's power management techniques are described in the following paragraphs.

Processor and Bus Slewing

To lower power consumption, heat generation, and fan noise, the Power Mac G5 computer incorporates an automatic power management technique called bus slewing. Bus slewing is designed to run at high processor/bus speeds and high voltage when the demand on the processor is high, and to run at low processor/bus speeds and low voltage when the demand on the processor is low.

Note: The memory bus runs at 400 MHz and does not slew.

Switching between different processor/bus speeds and voltages is achieved by a gradual transition that is designed to minimally impact system or application performance and typically operates seamlessly to the user. In slewing, the bus runs at half the speed of the processor.

The ranges of the slewed processor speeds are listed below:

Configuration	Processor range
1.8 GHz	1.3 GHz to 1.8 GHz
2.0 GHz	1.3 GHz to 2.0 GHz
2.5 GHz	2.0 GHz to 2.5 GHz

In addition, the Power Mac G5 computer allows the user to control bus slewing mode. The options for specifying either high, reduced, or automatic processor and bus speeds are located at System Preferences>Energy Saver>Options; then select Automatic, Highest, or Reduced.

Note: For best performance when using professional applications with high demand on the system (such as Final Cut Pro or Logic), you may want to set the processor/bus speed option to highest.

If the Power Mac G5 computer detects a processor temperature that is high, due to high ambient temperatures or other factors, it will automatically enter bus slewing mode regardless of the selected setting.

Processor States

The following processor states are defined:

Run: The system is running at maximum processing capacity with all processors running at full speed.

■ Idle: The system is idling; this is the default state. All clocks are running and the system can return to running code within a few nanoseconds. If the system has no work to do, it will be in idle mode.

System Modes

The Macintosh system has the following power-saving modes. If the system does not support full sleep, it will use the less efficient doze mode.

- Run: The system is fully functional in normal operating mode with all components powered and operating.
- Doze: The power to the disk drive motors and the display is turned off, but the power supply and fans are still on. PCI cards that don't support full system sleep (some SCSI cards, some graphics cards) will cause the machine to doze rather than fully sleep.
- Full sleep: The main power supply is shut down. A trickle supply provides auxiliary power to the PCI slots and keeps the DRAM state preserved for a quick recovery. All processors are powered off with their state preserved in DRAM. All non-essential clocks in the system are suspended. This mode allows the computer to meet Energy Star sleep requirements while providing the ability to start up without rebooting. This system may be awakened by administrative network packets, keyboard or mouse activity, USB device insertion or removal, or PMU scheduled wakeup.
- Off: The Power Mac G5 computer meets FEMP (Federal Energy Management Program) requirements and supports FireWire ports functioning as repeaters when operating on AC power.

Velocity Engine Acceleration

The Velocity Engine is the vector processing unit in the PowerPC G5 microprocessor. System software has been modified to take advantage of the accelerated processing that the Velocity Engine makes possible and to support low-level operations using the Velocity Engine.

For complete information on the Velocity Engine, refer to the following Apple website:

http://developer.apple.com/hardwaredrivers/ve/index.html

CHAPTER 1

Overview to the Power Mac G5

This chapter describes the architecture of the Power Mac G5. It includes information about the major components on the logic boards: the microprocessor, the other main ICs, and the buses that connect them to each other and to the I/O interfaces.

Block Diagram and Buses

The architecture of the Power Mac G5 is based on the PowerPC G5 microprocessor, and two custom ICs: the U3 or U3H memory controller and bus bridge and the K2 I/O controller.

Figure 2-1 (page 20) is a simplified block diagram of the dual processor 1.8 GHz Power Mac G5. The diagram shows the U3 and K2 ICs and the buses that connect them together.

Figure 2-2 (page 21) is a simplified block diagram of the dual processor 2.0 and 2.5 GHz Power Mac G5. The diagram shows the U3H and K2 ICs and the buses that connect them together.

Processor module Processor module 64-bit PowerPC G5 64-bit PowerPC G5 microprocessor microprocessor Processor interface bus Main logic board running at half the 8X AGP-Pro processor speed slot 2.1 GBps DIMM slots USB 2.0 port (rear) U3 400 MHz 480 Mbps memory 33 MHz DDR memory PCI bus controller bus **PCI USB** USB 2.0 port (rear) and PCI controller 480 Mbps bus bridge USB 2.0 port-(front) 480 Mbps AirPort antenna port 8-bit AirPort Extreme 1.6 GBps Card slot Boot Hyper **ROM** PCI slots Transport 64-bit 33 MHz PMU99 PCI power controller Bluetooth ⑩ Bluetooth antenna port 12 Mbps Modem slot USB Audio line-in port 12 Mbps USB 0 Internal speaker Audio line-out port Audio Internal optical K2 \odot Headphone jack circuitry I/O device drive connector ATA/100 bus 0 Optical digital audio in S/PDIF I2S and disk controller Optical digital audio out S/PDIF 10/100/1000 Internal hard drive Ethernet port connectors 1.5 Gbps Serial ATA bus FireWire 400 port (front) FireWire 1.5 Gbps FireWire 400 port (rear) PHY Serial ATA bus ----FireWire 800 port (rear)

Figure 2-1 block diagram for dual 1.8 GHz configuration

Processor module Processor module 64-bit PowerPC G5 64-bit PowerPC G5 microprocessor microprocessor Processor interface bus Main logic board running at half the processor speed 8X AGP-Pro DIMM slots slot 2.1 GBps U3H 400 MHz USB 2.0 port (rear) memory DDR memory 480 Mbps controller 33 MHz bus and PCI PCI bus **PCI USB** USB 2.0 port (rear) bus bridge controller 480 Mbps USB 2.0 port-(front) 12 Mbps 16-bit UŚB 480 Mbps 4.8 GBps Bluetooth Bluetooth antenna port Hyper Transport 100 MHz AirPort antenna port AirPort Extreme PCI-X 100 MHz [Card slot bridge 133 MHz = Boot PCI-X slots ROM 8-bit 1.6 GBps \odot Audio line-in port Hyper Transport 0 Audio line-out port Audio Modem slot \odot Headphone jack I2S I2S circuitry Optical digital audio in S/PDIF Internal optical PMU99 Optical digital audio out S/PDIF Internal specific drive connector K2 power ATA/100 bus controller I/O device speaker and disk 10/100/1000 controller Internal hard drive Ethernet port 1.5 Gbps connectors FireWire 400 port (front) Serial ATA bus ----**FireWire** 1.5 Gbps FireWire 400 port (rear) PHY Serial ATA bus ----FireWire 800 port (rear)

Figure 2-2 block diagram for dual 2.0 and 2.5 GHz configurations

The Power Mac G5 computer has the following data buses, not counting the processor's dedicated interface to the backside cache.

- Dual processor bus: 900/1000/1250 MHz (running at half the speed of the processor), 64-bit data throughput per processor connecting the processor module to the U3 or U3H IC
- Dual processor systems have two independent 64-bit processor buses
- Memory bus: 400 MHz, 128-bit bus connecting the main DDR SDRAM memory to the U3 or U3H IC
- 8x AGP Pro bus: 266/533 MHz, 32-bit bus connecting the AGP graphics card to the U3 or U3H IC
- PCI bus: some configurations support three 64-bit 33 MHz PCI slots
- PCI-X bridge bus: some configurations support three 64-bit PCI-X slots: two 100 MHz and one 133 MHz

- Internal PCI bus: 33 MHz, 64-bit bus supports the K2 I/O controller, the boot ROM, the AirPort Extreme Card slot, the USB controller, and in some configurations the Bluetooth module
- Serial ATA (SATA) buses: support 1.5 Gbps internal hard drive connectors
- Ultra DMA ATA/100 bus: supports internal optical drive
- HyperTransport: high-speed, bidirectional, point-to-point link for integrated circuits supports bidirectional data rates up to 4.8 GBps, on applicable configurations

The remainder of this chapter describes the architecture of the processor module, the U3 or U3H memory controller and bridge IC, the K2 I/O controller IC, and the USB controllers.

Processor Module

The dual processor Power Mac G5 contains two identical PowerPC G5 processor modules. Each processor module is connected to the main logic board by a 300-pin connector. To achieve the required level of performance, the signal lines that connect the processor module and the main logic board are carefully matched in length, loading, and impedance.

PowerPC G5 Microprocessor

The PowerPC G5 used in the Power Mac G5 computer has the following features:

- 64-bit PowerPC implementation with 42-bit physical memory addressing
- core runs at twice the bus speed
- superscalar execution core supporting more than 200 in-flight instructions
- two independent double-precision floating point units
- Velocity Engine: 128-bit-wide vector execution unit
- 64K L1 instruction cache, 32K L1 data cache per processor
- fully symmetric multiprocessing capability
- built-in 512 KB backside L2 cache per processor
- two independent, unidirectional 900 MHz to 1.25 GHz frontside buses each supporting up to 8 GBps data throughput per processor

For more information, see the reference at "PowerPC G5 Microprocessor" (page 63).

Bridge and Memory Controller

The U3 or U3H custom IC is at the heart of the Power Mac G5 computer. It provides the bridging functionality among the processors, the memory system, HyperTransport bus to the PCI-based I/O system, and the AGP slot.

Processor Bus

The processor bus is a 900 MHz, 1 GHz, or 1.25 GHz bus connecting the processor module to the U3 or U3H IC. The bus has 64-bit wide data and 36-bit wide addresses.

The Power Mac G5 system controller is built with 130-nanometer, SOI technology. This super-efficient point-to-point architecture provides each subsystem with dedicated bandwidth to main memory. The Power Mac G5 uses separate processor boards with each PowerPC G5 processor; two processor boards are used for the Power Mac G5's dual processor design. The U3 and U3H I/Os implement two independent processor interfaces. The processor's speed is 1.8 GHz on the U3 and 2.0 GHz and 2.5 GHz on the U3H, and the processors connect to the I/O through the processor interface. The processor clock is derived from a PLL which multiplies the reference clock by preset intervals of 6 or 8 times.

Out-of-order completion allows the memory controller to optimize the data bus efficiency by transferring whichever data is ready, rather than having to pass data across the bus in the order the transactions were posted on the bus. This means that a fast DDR SDRAM read can pass a slow PCI read, potentially enabling the processor to do more before it has to wait on the PCI data.

Intervention is a cache-coherency optimization that improves performance for dual-processor systems. If one processor modifies some data, that data first gets stored only in that processor's cache. If the other processor then wants that data, it needs to get the new modified values.

Main Memory Bus

The Power Mac G5 computer main memory bus connects the main memory to the U3 or U3H IC via the 128-bit data bus. The memory modules are 400 MHz (PC3200) DDR SDRAM DIMMs with a per system maximum of 4 GB or 8 GB, depending on the configuration.

Standard supported DIMM sizes are 128, 256, 512 MB, and 1 GB. The DIMMs must be unbuffered and installed in pairs of the same size.

For more information about memory DIMMs and installation, see "RAM Expansion" (page 55).

Accelerated Graphics Port Bus

The accelerated graphics port (AGP 8x Pro) bus is a 266/533 MHz, 32-bit bus connecting the AGP card to the U3 or U3H IC. DDR data is transmitted at both edges of the clock for peak transfers of 2.1 GBps.

The AGP bus is an enhanced PCI bus with extra functionality to burst texture data and other graphics across the port up to 8 times faster than a 66 MHz PCI port. The Power Mac G5 computer's AGP implementation is compatible with version 3 of the AGP specification and with the Pro version of AGP. AGP 3.0 enables deeply pipelined memory read and write operations and demultiplexing of address and data on the bus.

To further improve the performance of the AGP bus, the U3 or U3H IC supports a graphics address remapping table (GART). Because the virtual memory system organizes main memory as randomly distributed 4 KB pages, DMA transactions for more than 4 KB of data must perform scatter-gather operations. To avoid this necessity for AGP transactions, the GART is used by the AGP bridge in the U3 or U3H to translate a linear address space for AGP transactions into physical addresses in main memory.

The U3 or U3H IC also supports a DMA Address Relocation Table (DART) that provides the same functions for AGP as does the GART, except that the functions are for devices attached to HyperTransport. Most device drivers do not require special knowledge of the DART because IOKit will configure it automatically if the driver uses IOMemoryDescriptors.

For more information on the graphics cards installed in the AGP slot, refer to "Graphics Cards" (page 29).

Note: The AGP bus is 1.5 V only and is not backward compatible. Older AGP cards will not work in the Power Mac G5 computer.

Internal PCI Bus

An internal 33 MHz, 64-bit PCI bus connects the K2 I/O controller to the boot ROM, the AirPort Extreme Card slot, and the USB controller. The U3 or U3H IC used in the Power Mac G5 computer supports the PCI write combining feature. This feature allows sequential write transactions involving the Memory Write or Memory Write and Invalidate commands to be combined into a single PCI transaction. For memory write transactions to be combined, they must be sequential, ascending, and non-overlapping PCI addresses. Placing an eieio or sync command between the write commands prevents any write combining.

For more information on the PCI bus, refer to "PCI or PCI-X Expansion Slots" (page 59).

PCI or PCI-X Expansion Slots

In some configurations, the Power Mac G5 computer provides three 64-bit 33 MHz PCI slots that interface to the K2 I/O and share the bus with the USB controller.

In some configurations, the Power Mac G5 computer provides three PCI-X slots that interface to the HyperTransport bus via the PCI-X bridge. One slot runs at a maximum of 133 MHz and two slots run at a maximum of 100 MHz. The 133 MHz slot can support a maximum burst bandwidth of 1064 MBps, based on 64 bits times 133 MHz. The two 100 MHz slots can support a combined bandwidth of 800 MBps. It is recommended that the highest bandwidth card be inserted in slot 4.

Each slot has room for a full size 12.335-inch or short 6.926-inch card. The slots are numbered from 2 to 4 on back panel, on the PCB, and in the Apple System Profiler. Slot one is the AGP. A total of 90 W is allocated to the three PCI or PCI-X slots and the AGP Pro slot.

Note: The Power Mac G5's build-to-order ATI Radeon 9800 XT graphics card occupies both the AGP slot and the adjacent PCI slot. As a result, you can install PCI expansion cards in the slots labeled 3 and 4 but not in slot 2. To learn more about installing PCI cards, refer to "Chapter 3, Working Inside Your Computer" in the *Power Mac G5 User's Guide* that came with your computer.

The connectors to the PCI or PCI-X slots are 3.3 V keyed and support 32-bit and 64-bit buses. The connectors include a PME signal which allows a PCI card to wake the computer from sleep.

Note: 5 V keyed or signalling cards do not work in the Power Mac G5 computer.

The slots (12.335 inch) have a capture feature which is at the end of the slot. If a card exceeds the short length it is recommended that the long length be used rather than an intermediate length, to assure the card stays secure if and when the system is in shipment.

For more information, refer to "PCI or PCI-X Expansion Slots" (page 59).

HyperTransport Technology

The DDR HyperTransport is an advanced chip-to-chip communications technology that provides a high-speed, high-performance, point-to-point link for integrated circuits. HyperTransport provides a universal connection that reduces the number of buses within a system.

The HyperTransport bus between the U3 and the K2 IC is 8 bits wide, supporting a total of 1.6 GBps bidirectional throughput. The HyperTransport bus between the U3H IC and the PCI-X bridge is 16 bits wide, supporting total of 4.8 GBps bidirectional throughput. Between the PCI-X bridge and the K2 IC, the bus width is 8 bits, supporting total of 1.6 GBps bidirectional throughput.

For more information on the HyperTransport technology, go to the World Wide Web at

http://www.hypertransport.org

PCI USB Controller

The Power Mac G5 CPU uses a PCI USB controller ASIC with one Enhanced Host Controller Interface (EHCI) function and two Open Host Controller Interface (OHCI) functions. The controller has a total of five ports available to support three external USB ports and the internal AGP slot, which goes through the AGP to support the USB hub on the Apple display. In some configurations, the USB controller also supports the Bluetooth interface. If connected to classic-speed USB devices, the two rear panel ports are connected to separate OHCI controllers.

The five USB ports comply with the Universal Serial Bus Specification 2.0. The USB register set complies with the EHCI and OHCI specifications. For more information, see "USB Ports" (page 31).

K2 I/O Controller

The K2 custom IC provides all the I/O functions. These functions are described in the following sections.

DMA Support

The K2 IC provides DB-DMA (descriptor-based direct memory access) support for the following I/O channels:

- Ultra ATA/100
- Ethernet interface
- FireWire interface
- I2S channel to the sound subsystem
- Serial ATA

The DB-DMA system provides a scatter-gather process based on memory-resident data structures that describe the data transfers. The DMA engine is enhanced to allow bursting of data files for improved performance.

Wireless LAN Module

The optional AirPort Extreme wireless LAN module connects via the PCI interface.

The AirPort Extreme Card wireless LAN module contains a media access controller (MAC), a digital signal processor (DSP), and a radio-frequency (RF) section. The module is wired to an antenna port on the rear of the computer.

The AirPort Extreme Card is compliant with the IEEE 802.11g standard. The card transmits and receives data at up to 54 Mbps and is compatible with Apple AirPort systems as well as other 802.11b and 802.11g Wi-Fi certified products. For information about its operation, see "AirPort Extreme Card" (page 40).

The build-to-order Bluetooth connectivity comes off the K2 IC in the 1.8 GHz configuration and off the PCI bus in the 2.0 and 2.5 GHz configurations. See "Bluetooth Technology" (page 41) for more information.

Modem Slot Support

The K2 IC supports the modem and provides DB-DMA (descriptor-based direct memory access) support for the modem slot interface. In some configurations, the modem is connected via an I2S interface. In other configurations, the modem is supported via a USB interface.

The internal hardware modem is a separate module that contains a modem controller IC, a data pump, and the interface to the telephone line (DAA). For more information about the modem, see "Internal Modem" (page 39).

Boot ROM

The boot ROM consists of 1 MB of on-board flash EEPROM. The boot ROM includes the hardware-specific code and tables needed to start up the computer using Open Firmware, to load an operating system, and to provide common hardware access services.

Ethernet Controller

The K2 IC includes an Ethernet media access controller (MAC) and PHY. As a separate I/O channel on the K2 IC, it can operate at its full capacity without degrading the performance of other peripheral devices.

The MAC implements the link layer. It is connected to a PHY that is internal to K2 and provides 10Base-T/UTP, 100Base-TX, or 1000Base-TX operation over a standard twisted-pair interface. The Ethernet port is auto-sensing and self-configuring to allow use of either a cross-over or straight-through cable. The operating speed of the link is automatically negotiated by the PHY and the bridge, router, hub, switch, or other Mac or PC to which the Ethernet port is connected.

For information about the Ethernet port, see "Ethernet Port" (page 36).

FireWire Controllers

The K2 IC includes a FireWire controller that supports both IEEE 1394b (FireWire 800) with a maximum data rate of 800 Mbps (100 MBps) and IEEE 1394a (FireWire 400) with a maximum data rate of 400 Mbps (50 MBps). The IC is backwards-compatible with 1394a (FireWire 400). The K2 IC provides DMA (direct memory access) support for the FireWire interface.

The controller in the K2 IC implements the FireWire link layer. A physical layer IC, called a PHY, implements the electrical signaling protocol of the FireWire interface and provides the electrical signals to the ports.

For more information, see "FireWire Ports" (page 32).

Interrupt Support

The interrupt controller is an MPIC cell in the K2 IC. In addition to accepting internal interrupt sources from the I/O, the MPIC controller accepts internal interrupts from U3 or U3H and dedicated interrupt pins.

USB Interface

The K2 IC has two independent USB OHCI controllers. In some configurations, one is used for the optional modem module and one is used for the build-to-order Bluetooth interface.

The external USB interface is via the PCI USB controller; see "PCI USB Controller" (page 25).

Serial ATA Interface

Based on the Serial ATA 1.0 specification, Serial ATA (SATA) is a disk-interface technology that delivers up to 1.5 Gbps of performance to each independent drive bus on the Power Mac G5 computer. It provides a scalable, point-to-point connection that allows multiple ports to be aggregated into a single controller. Serial ATA uses a thin, point-to-point cable connection that enables easy routing within a system, avoiding master/slave, daisy-chaining, and termination issues and enabling better airflow within a system.

The K2 IC implements two Serial ATA revision one ports, each of which accommodates one independent internal hard drive.

For information about the drive bays, see "Hard Disk Drives" (page 38).

K2 I/O Controller 27

Ultra DMA ATA/100 Interface

The K2 IC provides an Ultra DMA ATA/100 interface to support the optical drive. For information about specific drives, see "Disk Drives" (page 38).

Sound System Overview

The sound circuitry is connected to the K2 IC by a standard I2S (inter-IC sound) bus. The K2 IC provides DB-DMA (descriptor-based direct memory access) support for the I2S port.

The Power Mac G5 circuitry consists of two main components: an analog audio CODEC IC and a digital audio CODEC IC. The analog audio CODEC IC includes an A/D converter, a D/A converter, and digital audio processing functions. The digital audio processing functions include output equalization, dynamic range compression, and volume control. The equalization and dynamic range control functions are set to fixed values to equalize the internal speaker. Those functions are bypassed for signals sent to the audio output jacks.

Stereo signals from the audio input jack are routed to an analog line input buffer that drives the internal A/D converter in the analog CODEC. The output of the A/D converter is routed to the K2 IC over the I2S bus.

Digital audio data from the K2 IC is routed to the D/A converter on the analog audio CODEC over the I2S bus. The analog audio output from the D/A converter is routed to separate amplifiers that drive the line output, headphone output, and internal speaker.

The digital audio CODEC IC includes an S/PDIF (Sony/Phillips Digital Interface) digital audio receiver, a sample rate converter (SRC), a phase-locked loop (PLL), and an S/PDIF digital audio transmitter.

The S/PDIF input can operate in synchronous and asynchronous modes. In synchronous mode, the PLL in the digital audio CODEC locks on to the incoming S/PDIF data rate and drives the audio system clocks in the Power Mac G5, allowing bit-accurate data processing of the S/PDIF input data. In asynchronous mode, the incoming S/PDIF data passes through the SRC, where it is converted to the output sample rate of the Power Mac G5, allowing the Power Mac G5 to play audio at a fixed output sample rate while accepting S/PDIF input data over a wide frequency range. The audio data from the S/PDIF receiver is routed to the K2 IC over the I2S bus.

Digital audio data from the K2 chip is routed to the S/PDIF output transmitter in the digital audio CODEC over the I2S bus. The Power Mac G5 sends and receives S/PDIF audio data over TOSLink optical connectors.

Analog audio I/O is not independent of digital audio I/O on the Power Mac G5. Audio input can come from either the line input or the S/PDIF input, but not both at the same time. Audio output can be played simultaneously on the line out, headphones output, and S/PDIF output. However, these audio streams are not independent.

The speaker output is mutually exclusive from the line out, headphones out and S/PDIF outputs. If the speaker output is selected, the line output, the headphones output and the S/PDIF output are disabled. If any of the line output, the headphones output, or the S/PDIF output are selected, the speaker output is disabled.

When the speaker output is active, the digital audio processing functions in the analog CODEC are used to implement output equalization for the internal speaker, resulting in improved sound quality from the internal speaker.

For more detail on the audio, see "Audio" (page 45).

Power Controller

The power management controller in the Power Mac G5 computer is a microcontroller called the PMU99. It supports new modes of power management that provide significantly lower power consumption than earlier systems. The Power Mac G5 also utilizes a service processor unit and a fan controller unit (refer to "Fan Controller" (page 29)).

For more information on power management strategy, see "Power Management" (page 16).

Graphics Cards

The Power Mac G5 has a high-performance AGP graphics card installed. The supported graphics cards are shown below. All cards support ADC and DVI connectors.

Graphics IC	Video SDRAM
Nvidia GeForce FX 5200 Ultra	64 MB DDR
ATI Radeon 9600 XT	128 MB DDR
ATI Radeon 9800 XT (build-to-order)	256 MB DDR

The build-to-order 256 MB ATI Radeon 9800 XT card is 75 W. This card occupies both the AGP slot and the adjacent PCI slot. For information on PCI expansion, refer to "PCI or PCI-X Expansion Slots" (page 59).

All graphics cards support dual displays in either extended desktop or video mirroring mode, and support digital resolutions up to 1920x1200 pixels and analog resolutions up to 1600x1200 pixels.

The display memory on the AGP card is separate from the main memory. The display memory consists of 64 or 128 MB (or 256 MB CTO) of DDR devices configured to make a 128-bit data bus. The display memory cannot be expanded by the user.

For more information about the features of the graphics cards and the monitors they support, see "Video Monitor Ports" (page 49).

Fan Controller

The Power Mac G5 system employs advanced thermal and wattage management to keep acoustic noise to a minimum. The enclosure is divided into discrete zones, each with independently controlled fans bringing in cool air from the front of the enclosure, directing it over system components and exhausting it out the rear. Temperature and power consumption are monitored by the operating system which communicates with the Fan Control Unit, which in turn controls and monitors fan operation. Note that if Mac OS X is not booted, thermal management must be provided by the alternate development operating system.

29

CHAPTER 2

Architecture

Fan Control Unit (FCU) controls the fans and pumps in the Power Mac G5 and regulates the speeds to run each fan. The FCU derives fan speed from sensors in each thermal zone. Some of these sensors are thermal while others monitor power/wattage used in a particular area. It is important to note that there are fixed limits to fan speed in those areas where power sensors are used. At the upper limits, a fan could be fixed at a particular speed, based on power consumption, even though that zone continues to generate more heat.

If the FCU does not receive an update from the operating system within two minutes, it begins to ramp up the speed of the fans to full speed.

Liquid Cooling System

The 2.5 GHz configuration of the Power Mac G5 uses a liquid cooling system controlled by Mac OS X to manage the temperature of the processors in the computer. The liquid cooling system works in conjunction with the air cooling system and is designed to to optimally cool internal components as quietly as possible. The liquid cooling system is sealed and is not designed to be opened.

Warning: Do not attempt to open or service the liquid cooling system. Opening the liquid cooling system may damage your equipment, and such damage may not be covered by the limited warranty on your computer.

Input and Output Devices

This chapter describes the Power Mac G5 computer's built-in I/O devices and the ports for connecting external I/O devices. Each of the following sections describes an I/O port or device.

USB Ports

The Power Mac G5 computer has two external Universal Serial Bus (USB) 2.0 ports on the back and one on the front of the enclosure and an internal connection to the AGP slot for the Apple display. The external USB ports are off of the USB controller connected to the PCI bus, bridged by K2. In addition, there are two USB 1.1 ports on the keyboard. The USB ports are used for connecting the keyboard and mouse as well as additional I/O devices such as printers, scanners, and storage devices.

All USB ports are fully compliant with the USB 2.0 specification, including support for high-speed (480 Mbps) devices using an Enhanced Host Controller Interface (EHCI). Ports are automatically routed to a companion OHCI controller when a classic-speed (full-speed or low-speed) USB device is attached to a root hub port.

Each USB rear port is connected to a separate USB root hub in classic speeds, allowing the USB ports to support 12 Mbps devices at the same time with no degradation of their performance. The USB root hubs are also connected to the internal USB modem and to the USB port on the ADC monitor connector.

The three external USB ports and the port supporting the Apple display comply with the Universal Serial Bus Specification 2.0. The two ports on the keyboard comply with the Universal Serial Bus Specification 1.1 Final Draft Revision. For low-speed and full-speed devices, the USB register set complies with the Open Host Controller Interface (OHCI) specification. For high-speed devices, the USB register set complies with the Enhanced Host Controller Interface (EHCI) specification.

For more information about USB on Macintosh computers, please refer to Apple Computer's Accessing Hardware from Applications and the other sources listed in "USB Interface" (page 66).

USB Connectors

The USB ports use USB Type A connectors, which have four pins each. Two of the pins are used for power and two for data. Figure 3-1 (page 32) shows the connector and Table 3-1 (page 32) shows the signals and pin assignments.

USB Ports 31

Figure 3-1 USB connector

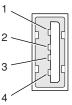


Table 3-1 Signals on the USB connector

Pin	Signal name	Description	
1	VCC	+5 VDC	
2	D-	Data –	
3	D+	Data +	
4	GND	Ground	

The Power Mac G5 computer provides 5 V power for the USB ports and up to 500 mA on each port. The power is provided in both run and sleep mode. The ports share the same power supply; a short circuit on one disables all ports until the short has been removed.

The USB ports support all USB 2.0 speeds: high-speed (480 Mbps) and classic USB speeds of full-speed (12 Mbps) and low-speed (1.5 Mbps). High-speed operation requires the use of shielded cables.

The Macintosh system software supports all four data transfer types defined in the USB specification, as well as split transactions for classic-speed devices attached to high-speed hubs.

Waking Up From Sleep

As defined in the USB-suspend mode of the USB specification, USB devices can provide a remote wakeup function for the computer (resume signalling). The USB root hub in the computer is set to support remote wakeup whenever a device is attached to the bus. The device wakes the computer by sending a RESUME event to the USB root hub. The mouse and keyboard that come with the computer use this method to wake the computer on a key press or mouse click.

FireWire Ports

The Power Mac G5 computer has one FireWire 800 port based on IEEE 1394b and two FireWire 400 IEEE 1394a ports. Each FireWire port

- supports booting the system from a mass storage device
- supports target disk mode
- provides bus repeating capability as long as the computer is connected to AC power

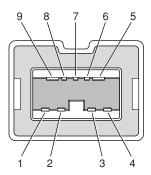
Input and Output Devices

■ provides power for FireWire devices both in run and sleep mode (useful for charging the iPod)

The three FireWire ports share a single power supply that can provide up to 15 watts total. The three ports are all on the same FireWire bus and can connect to up 62 other FireWire devices.

The FireWire hardware and software provided with the Power Mac G5 computer are capable of all asynchronous and isochronous transfers defined by IEEE standards 1394a and 1394b.

Note: FireWire cables are not included with this product and must be purchased independently, if required.


For more information about FireWire on Macintosh computers, please refer to the Apple FireWire website and the other sources listed in "FireWire Interface" (page 66).

FireWire 800 Connector

The FireWire 800 port on the Power Mac G5 computer is based on IEEE 1394b and enables a 800 Mbps transfer rate. FireWire 800 uses a 9-pin connector and is backwards compatible with original 1394a (FireWire 400) devices with 6-pin or 4-pin connectors. With the appropriate cable, the 9-pin port works seamlessly with legacy FireWire devices. Cables are available to go from both 6-pin and 4-pin connectors to a 9-pin, and 9-pin to 9-pin.

The 9-pin FireWire 800 connector is shown in Figure 3-2 (page 33). Its connector signals and pin assignments are shown in Table 3-2 (page 33).

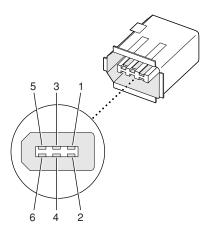
Figure 3-2 9-pin FireWire 800 connector

Table 3-2 Signals on the 9-pin FireWire 800 connector

Pin	Signal name	Description
1	TPB-	Twisted-pair B Minus
2	TPB+	Twisted-pair B Plus
3	TPA-	Twisted-pair A Minus
4	TPA+	Twisted-pair A Plus
5	TPA (R)	Twisted-pair A Ground Reference

Pin	Signal name	Description
6	VG	Power Ground
7	sc	Status Contact (no connection; reserved)
8	VP	Power Voltage (approximately 25 V DC)
9	TPB (R)	Twisted-pair B Ground Reference

VP (pin 8) provides up to 15 W power, shared with the other FireWire connectors. The voltage on the power pin is approximately 25 V.


The 9-pin FireWire port is capable of operating at 100, 200, 400, and 800 Mbps, depending on the device it is connected to. Using a cable with a 9-pin connector at one end and a 4-pin or 6-pin connector at the other, the 9-pin port is capable of directly connecting to all existing FireWire devices. Using a cable with 9-pin connectors at both ends, the 9-pin port is capable of operating at 800 Mbps.

The IEEE 1394b standard defines long-haul media using Cat 5 UTP and several kinds of optical fiber. The Power Mac G5 computer is interoperable with such cables but cannot be directly connected to them. To use long-haul cables, connect the computer to a 1394b hub that has the desired kind of long-haul connectors. If the hub has a bilingual port, that port can be connected to any of the computer's FireWire ports. If the hub has a beta-only port, it can be connected only to the computer's 9-pin port.

FireWire 400 Connector

The FireWire 400 ports 1 and 2 use the six-pin connectors shown in Figure 3-3 (page 34). The connector signals and pin assignments are shown in Table 3-3 (page 34).

Figure 3-3 6-pin FireWire 400 connector

Table 3-3 Signals on the 6-pin FireWire 400 connector

Pin	Signal name	Description
1	Power	Power (approximately 25 V DC)

Pin	Signal name	Description
2	Ground	Ground return for power and inner cable shield
3	TPB-	Twisted-pair B Minus
4	TPB+	Twisted-pair B Plus
5	TPA-	Twisted-pair A Minus
6	TPA+	Twisted-pair A Plus
Shell	_	Outer cable shield

The power pin provides up to 15 W total power, shared with the other FireWire connectors. The voltage on the power pin is approximately 25 V.

Pin 2 of the 6-pin FireWire connector is ground return for both power and the inner cable shield. In a FireWire cable with a 4-pin connector on the other end, the wire from pin 2 is connected to the shell of the 4-pin connector.

The signal pairs are crossed in the cable itself so that pins 5 and 6 at one end of the cable connect with pins 3 and 4 at the other end. When transmitting, pins 3 and 4 carry data and pins 5 and 6 carry clock; when receiving, the reverse is true.

FireWire Device Programming

Mac OS X includes general support for the FireWire bus and specific support for various kinds of FireWire devices and protocols. Developers can use the built-in support or provide additional applications and drivers for use with their products.

The general FireWire services will configure the FireWire bus, scan the bus for new devices, and allow multiple drivers and devices to share a single FireWire interface cooperatively. The general services also publish information about the bus and the devices in the IO Registry, so that IO Kit can match protocols and drivers to each connected FireWire device.

The specific device and protocol support in Mac OS X as provided with the Power Mac G5 includes the following:

- General services for Serial Bus Protocol 2 (SBP-2) and support for most mass storage devices using SBP-2, such as hard disk drives, optical drives, flash card readers, Target Disk Mode (see "Target Disk Mode" (page 36), and the iPod. Mac OS X can boot from most of these devices.
- General services for the Audio Video Control (AV/C) protocol and support for most digital video (DV) cameras and decks using this protocol, including video capture through standard QuickTime APIs.
- A QuickTime device driver for IIDC/DCAM type cameras such as the iSight.
- A network device driver supporting IP (Internet Protocol) over FireWire according to IEEE RFC 2734.
- Additional services for user-space and kernel access to all FireWire resources.

For information on writing FireWire drivers or applications, download the latest FireWire SDK from http://developer.apple.com/sdk/

Booting from a FireWire Device

The Power Mac G5 computer can boot from a FireWire storage device that implements SBP-2 (Serial Bus Protocol) with the RBC (reduced block commands) command set.

For additional information about the FireWire interface and the Apple API for FireWire device control, see the references shown in "FireWire Interface" (page 66).

Target Disk Mode

The user has the option at boot time to put the computer into a mode of operation called Target Disk Mode (TDM). When the Power Mac G5 computer is in Target Disk Mode and connected to another Macintosh computer by a FireWire cable, the Power Mac G5 computer operates like a FireWire mass storage device with the SBP-2 (Serial Bus Protocol) standard. Target Disk Mode has two primary uses:

- high-speed data transfer between computers
- diagnosis and repair of a corrupted internal hard drive

The Power Mac G5 computer can operate in Target Disk Mode as long as the other computer has a 1394a or 1394b FireWire port and either any version of Mac OS X or Mac OS 9 with FireWire software version 2.3.3 or later.

To put the Power Mac G5 computer into Target Disk Mode, restart the computer and hold down the T key until the FireWire icon appears on the display. Then connect a FireWire cable from the Power Mac G5 to the other computer. When the other computer completes the FireWire connection, a hard disk icon appears on its desktop.

If you disconnect the FireWire cable or turn off the Power Mac G5 computer while in Target Disk Mode, an alert appears on the other computer.

To take the Power Mac G5 out of Target Disk Mode, drag the hard disk icon on the other computer to the trash, then press the power button on the Power Mac G5 computer.

Ethernet Port

The Power Mac G5 computer has a built-in Ethernet port that supports 10/100/1000 Mbps transfer rates. In operation, the actual speed of the link is auto-negotiated between the Ethernet PHY device that is internal to the K2 IC and the bridge, router, hub, switch, or other Mac or PC to which it is connected. The Ethernet port is auto-sensing and self-configuring to allow connection via either a cross-over or straight-through cable.

Both CAT 5 unshielded twisted pair (UTP) and shielded twisted pair (STP) cables work with the Ethernet port. An STP cable is recommended for noisy environments or run of greater than 100 meters.

Input and Output Devices

Note: When connecting a Power Mac G5 computer directly to another computer without using an Ethernet hub, a crossover cable is not required; circuits in the PHY detect the type of connection and switch the signal configuration as required.

The connector for the Ethernet port is an RJ-45 connector on the back of the computer. Table 3-4 (page 37) shows the signals and pin assignments for 10Base-T/UTP and 100Base-TX operation. Table 3-5 (page 37) shows the signals and pin assignments for 1000Base-TX operation.

Table 3-4 Signals for 10Base-T/UTP and 100Base-TX operation

Pin	Signal name	Signal definition
1	TXP	Transmit (positive lead)
2	TXN	Transmit (negative lead)
3	RXP	Receive (positive lead)
4	_	Not used
5	_	Not used
6	RXN	Receive (negative lead)
7	-	Not used
8	_	Not used

 Table 3-5
 Signals for 1000Base-TX Gigabit operation

Pin	Signal name	Signal definition	
1	TRD+(0)	Transmit and receive data 0 (positive lead)	
2	TRD-(0)	Transmit and receive data 0 (negative lead)	
3	TRD+(1)	Transmit and receive data 1 (positive lead)	
4	TRD+(2)	Transmit and receive data 2 (positive lead)	
5	TRD-(2)	Transmit and receive data 2 (negative lead)	
6	TRD-(1)	Transmit and receive data 1 (negative lead)	
7	TRD+(3)	Transmit and receive data 3 (positive lead)	
8	TRD-(3)	Transmit and receive data 3 (negative lead)	

To interconnect two computers for 1000Base-TX operation, you must use 4-pair cable (Category 5 or 6).

The Ethernet interface in the Power Mac G5 computer conforms to the ISO/IEC 802.3 specification, where applicable, and complies with IEEE specifications 802.3i (10Base-T/UTP), 802.3u-1995 (100Base-TX), and 802.3ab (1000Base-TX).

Disk Drives

The Power Mac G5 computer has one 5.25 inch bay for optical drive access through the front panel and two 3.5 inch bays for internal hard disk drives. The optical drive is connected to the Ultra ATA/100 bus; the factory installed drive runs at 33 MHz. The standard configuration of the Power Mac G5 provides a SuperDrive; a build-to-order Combo drive is available.

Hard Disk Drives

The enclosure has one drive carrier with two 3.5 inch bays for fixed-media mass storage devices. The drive carrier has data and power connectors for the both drives. The two drives on the independent Serial ATA buses implement revision one ports. Hard disk drive capacities are 80 GB and 160 GB with a 250 GB build-to-order option for some configurations. For references to SATA website information, refer to "Serial ATA" (page 65).

SCSI Drive

SCSI drives and SCSI PCI controller cards are available from third party providers. The Power Mac G5 computer supports external SCSI drives only.

SuperDrive

The Power Mac G5 computer has a tray-loading SuperDrive (combination DVD-R and CD-RW drive). The SuperDrive can read and write DVD media and CD media, as shown in Table 3-6 (page 38). The DVD-R/CD-RW drive also provides DVD-Video playback.

Table 3-6 Media read and written by the SuperDrive

Media type	Reading speed (maximum)	m) Writing speed	
DVD-R	8x (CAV max)	8x ZONE CLV, 4x/2x/1x (CLV) depending on media type	
DVD-RW	8x (CAV max)	4x/2x/1x (CLV) depending on media type	
DVD-ROM	10x (CAV max)	_	
CD-R	32x (CAV max)	24x ZONE CLV	
CD-RW	24x (CAV max)	10x (CLV) high speed CD-RW disc	
CD or CD-ROM	32x (CAV max)	_	

The Apple SuperDrive writes to DVD-R 4.7 gigabyte General Use media. These discs are playable in most standard DVD players and computer DVD-ROM drives.

For compatibility information regarding recordable DVD formats, refer to

http://dvddemystified.com/dvdfaq.html#4.3

Input and Output Devices

Digital audio signals from the SuperDrive can be played through the sound outputs under the control of the Sound Manager.

Combo Drive

As a build-to-order option, the Power Mac G5 computer can have a tray-loading combination DVD-ROM and CD-RW drive.

The Combo drive can read DVD media and read and write CD media, as shown in Table 3-7 (page 39). The DVD-ROM/CD-RW drive also provides DVD-Video playback.

Table 3-7 Media read and written by the Combo drive

Media type	Reading speed	Writing speed
DVD-R	6x (CAV max)	_
DVD-RW	6x (CAV max)	-
DVD-ROM	12x DVD5 (CAV max) 8x DVD9 (CAV max)	-
CD-R	32x (CAV max)	32x (ZCLV)
CD-RW 32x (CAV max)		10x (CLV, for high speed media)
CD or CD-ROM 32x (CAV max)		-

Digital audio signals from the Combo drive can be played through the sound outputs under the control of the Sound Manager.

Internal Modem

The Power Mac G5 computer has an internal modem module. The external I/O connector for the modem is an RJ-11 connector installed on the rear panel of the computer. The modem has the following features:

- modem bit rates up to 56 Kbps, supporting V.90 and V.92 modem standards
- fax modem bit rates up to 14.4 Kbps

Depending on the configuration, the modem appears to the system as a USB device or I2S device that responds to standard AT commands. The modem provides a sound output for monitoring the progress of the modem connection.

Internal Modem

39

AirPort Extreme Card

The Power Mac G5 computer supports the optional AirPort Extreme Card, an internal wireless LAN module. The AirPort Extreme Card is available as a build-to-order option or as a user-installable upgrade through the Apple Store.

By communicating wirelessly with a base station, the AirPort Extreme Card can be used for Internet access, email access, and file exchange. A base station provides the connection to the Internet or the bridge between the wireless signals and a wired LAN or both. The AirPort Extreme Base Station has connectors for a wired LAN, a DSL or cable modem, and a standard telephone line using the built-in 56 Kbps modem that is available on some base stations.

When the AirPort Extreme option is included in the factory order, an external AirPort Extreme antenna is provided in the accessory kit and must be installed on the AirPort Extreme antenna port on the rear of the enclosure.

Complying with the IEEE 802.11g standard, AirPort Extreme transmits and receives data at rates up to 54 Mbps. Airport Extreme is also compatible with other devices that follow the IEEE 802.11b standard, including PC's. For more information about Wi-Fi and compatibility, see the reference at "Wireless Networks" (page 66).

Note: As is the case with the existing IEEE 802.11b standard, actual data throughput will be lower than the indicated maximum connection speeds.

Data Security

AirPort Extreme has several features designed to maintain the security of the user's data:

- The system uses direct-sequence spread-spectrum (DSSS) technology that uses a multibit spreading code that effectively scrambles the data for any receiver that lacks the corresponding code.
- The system can use an Access Control List of authentic network client ID values or MAC addresses (Ethernet or AirPort IDs) to verify each client's identity before granting access to the network.
- When communicating with a base station, AirPort Extreme uses up to 128-bit encryption to encode data while it is in transit.
- The AirPort Extreme Base Station can be configured to use NAT (Network Address Translation), protecting data from would-be Internet hackers.
- The AirPort Extreme Base Station can authenticate users by their unique MAC addresses (AirPort IDs), preventing unauthorized computers from logging into a network. Network administrators can take advantage of RADIUS compatibility, used for authenticating users over a remote server.

As an additional data security measure, VPN can be used in conjunction with the AirPort Extreme data security.

AirPort Extreme Hardware

The AirPort Extreme Card is a wireless LAN module compliant with the IEEE 802.11g standard using both OFDM (orthogonal frequency-division multiplexing) and DSSS technologies. Using DSSS, AirPort Extreme is interoperable with other Wi-Fi certified, PC-compatible wireless LANs that conform to the 802.11b standard at speeds of 11 Mbps, 5.5 Mbps, 2 Mbps, and 1 Mbps. Using OFDM, AirPort Extreme is compatible with all 802.11g standard speeds.

The AirPort Extreme wireless interface is on the PCI bus.

AirPort Extreme Software

Software that is provided with the AirPort Extreme Card includes

- AirPort Setup Assistant (located in the Applications/Utilities folder), is an easy-to-use program that guides the user through the steps necessary to set up the AirPort Extreme Card or set up an AirPort Extreme Base Station.
- Users can switch between wireless networks and can create and join peer-to-peer networks. These functions are accessed via the AirPort - Menu-Extra pulldown, which is enabled by a checkbox in System Preferences.
- AirPort Admin Utility (located in the Applications/Utilities folder), is a utility for advanced users and system administrators. With it the user can edit the administrative and advanced settings needed for some advanced configurations.

Bluetooth Technology

Available as a fully-integrated, build-to-order option, Bluetooth is an open specification that enables short-range wireless connections between desktop and laptop computers and a host of other peripheral devices. Bluetooth support is built into Mac OS X and compliant with Bluetooth specification v1.1. It operates on a globally available 2.4 GHz frequency band (ISM band) for worldwide compatibility and has a maximum throughput of 1Mbps.

The Bluetooth technology supports the following profiles:

- synchronization enables synchronization of devices over Bluetooth
- serial provides a wireless serial connection to other Bluetooth devices
- dial-up networking (DUN) enables a mobile phone to act as a modem
- object push enables the transfer of files between Bluetooth devices
- human interface device (HID) enables the use of Bluetooth input devices (keyboards and mice)
- Bluetooth file transfer profile (FTP) enables browsing of the file system of other Bluetooth devices which support Bluetooth FTP.
- hardcopy cable replacement profile (HCRP) describes how to send rendered data over a Bluetooth link to a device, such as a printer. Although other profiles can be used for printing, the HCRP is specially designed to support hardcopy applications. Note: currently, to use this profile, Apple's Bluetooth Update Version 1.5 must be installed.

- headset profile (HSP) enables the use of Bluetooth-enabled wireless headsets for applications such as iChat. This profile does not enable use of Apple Speech Recognition due to the fact that it is a low-precision audio channel. Note: currently, to use this profile, Apple's Bluetooth Update Version 1.5 as well as Firmware Update Version 1.1 must be installed.
- synchronous, connection-oriented (SCO) enables isochronous and voice communication, including most Bluetooth headsets.

Bluetooth is available as a build-to-order option, which is installed by Apple at the time of purchase as a fully integrated module. Accessing the Bluetooth capabilities without purchasing the integrated module will require a third-party dongle.

When the Bluetooth option is included on the factory order, the Bluetooth antenna is provided in the accessory kit and must be installed on the Bluetooth antenna port on the rear of the enclosure.

For more information on Bluetooth technology, refer to "Bluetooth" (page 67).

Keyboard

The Power Mac G5 computer comes with an Apple Keyboard. It is a full-size keyboard with function keys and separate numeric keypad and editing sections.

The keyboard has an attached 1-meter cable and comes with a 1-meter extender cable for installations where the computer is located on the floor or away from the immediate desktop area.

Keyboard Features

Here is a list of the features of the Apple Keyboard.

- sloped design
- 109 keys (on the ANSI versions)
- 16 function keys
- 6 editing keys (Page Up, Page Down, Home, End, Forward Delete, and Help)
- USB HID Consumer Page Usage multimedia control keys
- full travel, standard pitch keys on alphanumeric, editing, and keypad sections, including function keys and cursor-position keys
- localized worldwide: 33 versions, standard layouts (including: ANSI, JIS, ISO)
- LED indicator on the Num Lock key
- USB hub functionality with two USB 1.1 sockets

Note: There is no power key on this keyboard.

Keyboard Layout

There are localized versions of the Apple Keyboard for use in different parts of the world. The three standards used are ANSI (US and North America), JIS (Japan), and ISO (Europe).

Applications can determine which keyboard is connected by calling the Gestalt Manager and checking for the corresponding value of the gestaltKeyboardType selector.

Figure 3-4 (page 43) shows the keyboard layout for the ANSI keyboard.

Figure 3-4 ANSI keyboard layout

MultiMedia Control Keys

The keyboard has six multimedia keys: Volume Up, Volume Down, Mute, Brightness Up (F15), Brightness Down (F14), and Eject. Theses keys provide direct control of the features on the computer by way of the USB.

Keyboard and USB

The Apple Keyboard is designed to work with the computer by way of the USB ports. The keyboard has a captive cable with a USB Type A connector. The keyboard is a bus-powered USB hub with two USB Type A ports.

Warning: A bus-powered hub as defined in the USB specification does not provide enough power to support a second bus-powered hub. A second bus-powered hub must be connected to a USB port on the computer or other self-powered hub, not to a port on the keyboard.

Apple provides a HID class driver for the Apple Keyboard, which supports the USB boot protocol. Other keyboards intended for use on the Macintosh platform must support the HID boot protocol, as defined in the USB Device Class Definition for Human Interface Devices (HIDs).

Programmer's Switches

Key combinations for programmer's switches that used the Power button on earlier models now use the Eject key. Here are the key combinations for the Power Mac G5 computer.

- Control-Command-Eject: restart immediately (reset)
- Control-Command-Option-Eject: shut down immediately
- Control-Eject: display the dialog for shutdown, restart, and sleep

The key combinations are decoded in software and may not be available under some crashed conditions.

NMI without Programmer's Switch

Current Macintosh computers do not have a programmer's switch, which allowed users to generate a non-maskable interrupt (NMI). The paragraphs below describe how to generate an NMI from a remote session for systems that do not have a physical programmer's switch.

Starting with Mac OS X 10.1.2, the OS will promote and recognize the <code>DB_NMI</code> bit in the "boot-args" property of the "chosen" node from Open Firmware. When the <code>DB_NMI</code> bit is set, the user can generate a non-maskable interrupt (NMI) by pressing the system's power button. This replaces the power button's sleep or wake response. The system reads the state of the bit at boot time from the <code>boot-args</code> configuration variable. For more information about the debug flags, please see <code>Inside Mac OS X: Kernel Programming</code>.

To set the DB_NMI bit, enter the following command at the Terminal to display the current debug flag settings.

```
% nvram boot-args
```

Add the parameter debug=0x4, as follows.

```
% sudo nvram boot-args="<current settings> debug=0x4"
```

After rebooting, press the power button for approximately 3 seconds to generate an NMI.

Note: If the power button is pressed for more than five seconds, the system will immediately power off.

The power button will retain this functionality until Mac OS X is restarted without the DB_NMI bit set. To clear this bit, issue the nvram command omitting debug=0x4 parameter, as follows.

```
% sudo nvram boot-args=""
```

Note: The debug flags bit will be cleared if you use System Preferences to change the startup disk. It may also be cleared if you perform an installation that requires a restart.

Mouse

The Power Mac G5 computer comes with an Apple Mouse. The mouse case is made of polycarbonate plastic.

Input and Output Devices

The Apple Mouse uses optical tracking in place of the traditional rolling ball. It works on almost any surface, though nonreflective, opaque surfaces without repetitive patterns work best.

Audio

The Power Mac G5 computer supports a sound system with both digital and analog audio. The new digital capability features Sony/Phillips Digital Interface (S/PDIF) input and output using optical connectors. S/PDIF technology results in a clean audio signal with no added noise to or from an external audio device.

Under the control of the system software, the sound circuitry digitally creates and records sounds. The Power Mac G5 computer can receive input only from either the analog input or the digital input. However, it can output simultaneously to digital and analog devices: the internal speaker, the headphone jack, the audio output jack, and the S/PDIF output connector.

By default, when components are plugged into the headphone jack or the rear line-out, the sound system mutes the internal speaker.

The headphones, rear line-out jack, and S/PDIF output are only muted when selected in the System Preferences. Muting and sound options are set in System Preferences:Sound:Output.

The analog and digital sound circuitries are not independent. Different audio streams cannot be played to the analog and digital circuitry. The selection of digital or analog output is performed through Sound pane in System Preferences.

The sound circuitry and audio device drivers handle audio data in multiple formats. Both digital and analog sound circuitry handle audio input and output data at sample rates of 32.0 kHz, 44.1 kHz, and 48.0 kHz at sample depths of 16 bits and 24 bits.

If audio data sampled from another computer at a lower rate is played as output on the Power Mac G5, the Core Audio (Mac OS X's OS Level Audio API) transparently up-samples the data to the currently set sampling frequency prior to sending the audio data to the sound circuitry. To maximize audio fidelity, the Core Audio samples are stored as 32-bit floating point. The Sound Manager exists as a Carbon compatibility layer, but developers are encouraged to move their applications to Core Audio for maximum performance and fidelity, because the Sound Manager is capable of representing samples only as 16-bit values.

For more information about audio API's on Mac OS X, visit the Apple audio technologies developer web page at

http://developer.apple.com/audio/

Optical S/PDIF Audio

Digital data is transmitted to and from the digital audio I/O using optical cables. The physical connectors, commonly referred to as TOSLink, are for both input and output and conform to IEC60874-17. The TOSLink friction-lock type F-05 connectors are available from pro-audio, musician's supply, hi-fi and other retailers. The 7.5 mm digital optical TOSLink input and output connectors, shown in Figure 3-5 (page 46), are located on the back of the enclosure.

Figure 3-5 Digital optical S/PDIF connector

The digital I/O circuitry can either perform input clock recovery on an incoming data stream or can sample using the internal clock. If samples are clocked using the internal clock, the data is run through the sample-rate converter on the digital circuitry. To enable bit-accurate copies, the external clock should be enabled in Audio MIDI Setup. Developers of applications that need this capability will need to provide access to the input clock recovery control.

Audio signals from the audio input jack are converted to digital data internally. All audio is handled digitally inside the computer, including audio data from the CD or DVD drive and from devices connected to the USB and FireWire ports. Audio data is converted to analog form for output to the internal speaker, the headphones, line output jacks, or external speakers.

For details on the S/PDIF digital input and output electrical specifications, refer to "Digital Optical Input/Output Specifications" (page 46).

The Power Mac G5 computer also has the ability to lock its internal audio hardware to the incoming audio stream to synchronize the audio subsystem to an external device supplying the audio stream. This function allows audio and video to play in sync with the external audio or video device. The data format for signals transmitted over the optical cable is S/PDIF protocol IEC 60958-3.

The Power Mac G5 computer's audio subsystem has built-in sample-rate conversion (SRC) that allows the incoming audio to have a different rate than the playback audio, enabling the audio to come in the digital-in connector. For the best digital input quality in its purest form, set the audio clocking preference to "External Clock."

External Clocking

When the Power Mac G5 computer is set to "External" clocking, the computer audio circuitry will track and follow the incoming digital sampling rate and lock the internal audio hardware to the sampling rate of the external device. The external clock must be stable enough to be locked onto, otherwise the digital circuit will signal an error and the driver will fall back to using the internal clock.

Internal Clocking

When the Power Mac G5 computer is set for "Internal" clocking, the computer audio circuitry will run using the computer's internal clock. Incoming digital audio is automatically sample-rate converted to the selected output sample rate using the sample rate converter in the audio chip. The sample rate converter is high quality and does not use CPU bandwidth for audio conversion.

Digital Optical Input/Output Specifications

Based on playback of a 1 kHz, -1dBFS 24-bit sine wave playback, 24-bit 44.1 kHz output sample rate (unless otherwise specified below) the digital sound input and output have the following electrical characteristics (nominal specifications):

Input and Output Devices

- Fsi input sample rates (external clock mode): 32 kHz, 44.1 kHz or 48 kHz
- Fsi input sample rate (internal clock mode): 16 kHz 96 kHz
- bits per sample: 16-bit or 24-bit
- SNR (external clock mode): >130 dB
- SNR (internal clock mode, 16 kHz < Fsi < 96 kHz): >110 dB
- THD+N (external clock mode): < -130 dB (0.00003%)
- THD+N (internal clock mode, 16 kHz < Fsi < 96 kHz): < -110 dB (0.0003%)

Audio Line-in

The Power Mac G5 has a stereo audio line-in jack on the back panel. The audio inputs are designed to accept high-level audio signals: 2 Vrms or +8 .2 dbu, which is the standard output level from CD and DVD players. The output level of some consumer audio devices is lower, often 0.316 Vrms or –10 dbV. Sound recordings made on the Power Mac G5 with such low-level devices have more noise than those made with high-level devices. The user may obtain better results by connecting an amplifier between the low-level device and the computer's audio input jack.

The audio input jack is a 3.5 mm miniature phone jack with the signals connected as follows:

Tip	Left-channel audio	
Ring	Right-channel audio	
Sleeve	Audio ground	

Based on a 1 kHz, 2VRMS sine wave input, 24-bit 44.1 kHz input format, 0 db input gain and no weighting, the line input has the following electrical characteristics:

- maximum input voltage: 2 Vrms (+8.2 dBu)
- input impedance: > 47 kilohms
- bits per sample: 16-bit or 24-bit
- channel separation: greater than 75 dB
- frequency response: 20 Hz to 20 kHz, +0.5 dB/-3.0 dB
- THD+N distortion: below –78 dB (no weighting)

Audio Line-out

The Power Mac G5 has a stereo output jack on the back of the enclosure. The audio output jack is suitable for connecting amplified external speakers or other high input impedance (> 1K ohms) audio equipment.

The audio output jack is a 3.5 mm miniature phone jack with the signals connected as follows:

Tip Left-channel audio)
------------------------	---

CHAPTER 3

Input and Output Devices

Ring	Right-channel audio	
Sleeve	Audio ground	

Note: For best results, headphones or other low-impedance devices should not be plugged into the line-out jack. Such devices should be plugged into the front panel headphone jack.

Note: For best results, equipment plugged into the line-out jack should not connect the audio ground to other grounds, such as the chassis or "green wire" ground.

Based on a 1 kHz, -1 dBFS sine wave playback, 24-bit 44.1 kHz output format, -3 db output level and 100 kilohm load no weighting (unless otherwise specified below), the line output has the following electrical characteristics (nominal specifications):

■ output voltage (full-scale output): 1.4 Vrms (+5.1 dBu)

output impedance: <50 ohmsbits per sample: 16-bit or 24-bit

■ channel separation: > 65 dB

■ THD+N (total harmonic distortion plus noise): < -78dB (0.0125%) no weighting

■ frequency response: 20 Hz to 20 kHz, +0.5 dB/-3.0 dB

Headphone Jack

The Power Mac G5 has a stereo headphone jack on the front of the enclosure. The headphone jack is suitable for connecting a standard pair of headphones. When a plug is inserted into the headphone jack, the internal speaker is muted.

The headphone jack is a 3.5 mm miniature phone jack with the signals connected as follows:

Tip	Left-channel audio	
Ring	Right-channel audio	
Sleeve	Audio ground	

Note: For best results, equipment plugged into the headphone jack should not connect the audio ground to other grounds, such as the chassis or "green wire" ground.

Based on a 1 kHz sine wave playback, 24-bit 44.1 kHz output format, -3 dB output level and 100 kilohm load no weighting (unless otherwise specified), the headphone output has the following electrical characteristics (nominal specifications):

■ output voltage (full-scale output): 1.4 Vrms, (+5.1 dBu)

Input and Output Devices

■ output impedance: <50 ohms

■ bits per sample: 16-bit or 24-bit

■ channel separation: > 60 dB

■ frequency response: 20 Hz to 20 kHz, +0.5 dB/-3.0 dB

■ THD+N (total harmonic distortion plus noise): < -75dB (0.017%) no weighting

Video Monitor Ports

Depending on the configuration, the Power Mac G5 computer comes standard with either an ATI or an Nvidia graphics card. The graphics cards have both ADC and DVI connectors. The main features of the graphics cards are as follows:

Graphics IC	Video SDRAM
Nvidia GeForce FX 5200 Ultra	64 MB DDR
ATI Radeon 9600 XT	128 MB DDR

The 75 W ATI Radeon 9800 XT with 256 MB DDR, ADC/DVI graphics card is available as a build-to-order option. This graphics card occupies both the AGP slot and the adjacent PCI slot. For information on PCI expansion, refer to "PCI or PCI-X Expansion Slots" (page 59).

All of the graphics cards support dual displays in either extended desktop or video mirroring mode; for more detail, see "Dual Display Extended and Mirror Modes" (page 53).

The following sections describe the video connectors on the graphics cards.

Apple Display Connector

The graphics cards have an Apple proprietary connector called the ADC (Apple display connector). The connector carries both digital and analog video signals as well as USB and control signals and power for an external monitor. Figure 3-6 (page 49) shows the contact configuration; Table 3-8 (page 50) and Table 3-9 (page 50) list the signals and pin assignments.

The maximum current available from the 25 V supply for the external monitor is 3.6 A.

Figure 3-6 Apple display connector

Video Monitor Ports 49

 Table 3-8
 Digital signals on the Apple display connector

Pin	Signal name	Pin	Signal name
1	25 V Supply	16	TMDS Data1/3 Shield
2	25 V Supply	17	TMDS Data3-
3	LED	18	TMDS Data3+
4	TMDS Data0-	19	DDC CLock
5	TMDS Data0+	20	Clock Return
6	TMDS Data0/5 Shield	21	USB Data+
7	TMDS Data5-	22	USB Data-
8	TMDS Data5+	23	USB Return
9	DDC Data	24	TMDS Data2-
10	Vsync	25	TMDS Data2+
11	25 V Return	26	TMDS Data2/4 Shield
12	25 V Return	27	TMDS Data4–
13	Soft Power	28	TMDS Data4+
14	TMDS Data1-	29	Clock+
15	TMDS Data1+	30	Clock-

 Table 3-9
 Analog signals on the Apple display connector

Pin	Signal name	
C1	Analog Blue Video	
C2	Analog Green Video	
C3	Analog Horizontal Sync	
C4	Analog Red Video	
C 5	Analog RGB Return and DDC Return	

The graphics data sent to the digital monitor use transition minimized differential signaling (TMDS). TMDS uses an encoding algorithm to convert bytes of graphics data into characters that are transition-minimized to reduce EMI with copper cables and DC-balanced for transmission over fiber optic cables. The TMDS algorithm also provides robust clock recovery for greater skew tolerance with longer cables or low-cost short cables. For additional information about TMDS, see the references shown in "Digital Visual Interface" (page 66).

DVI Connector

In addition to the ADC connector, supported graphics cards also have a DVI-I (DVI with analog) connector. With a DVI to ADC adapter, available separately and shown in Figure 3-7 (page 51), the DVI port on the Power Mac G5 computer can also support any Apple flat panel display.

Figure 3-7 DVI to ADC adapter

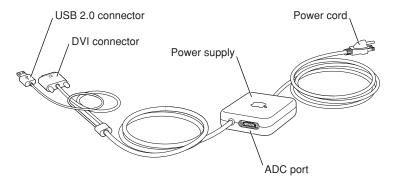


Figure 3-8 (page 51) shows the contact configuration for the DVI connector; Table 3-10 (page 51) lists the signals and pin assignments.

Figure 3-8 DVI connector

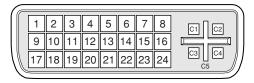


 Table 3-10
 Signals on the DVI connector

Pin	Signal name	Pin	Signal name
1	TMDS Data2-	13	TMDS Data3+
2	TMDS Data2+	14	+5V Power
3	TMDS Data2/4 Shield	15	Ground for +5V Power
4	TMDS Data4-	16	Hot Plug Detect
5	TMDS Data4+	17	TMDS Data0-
6	DDC Clock	18	TMDS Data0+
7	DDC Data	19	TMDS Data0/5 Shield
8	Analog vertical sync	20	TMDS Data5-
9	TMDS Data1-	21	TMDS Data5+

Pin	Signal name	Pin	Signal name
10	TMDS Data1+	22	TMDS Clock Shield
11	TMDS Data1/3 Shield	23	TMDS Clock+
12	TMDS Data3-	24	TMDS Clock-
C1	Analog red	C4	Analog horizontal sync
C2	Analog green	C5	Analog ground (analog R, G, B return)
C3	Analog blue		

The graphics data sent to the digital monitor use transition minimized differential signaling (TMDS). TMDS uses an encoding algorithm to convert bytes of graphics data into characters that are transition-minimized to reduce EMI with copper cables and DC balanced for transmission over fiber optic cables. The TMDS algorithm also provides robust clock recovery for greater skew tolerance with longer cables or low-cost short cables.

For information about TMDS, see the reference listed in "Digital Visual Interface" (page 66).

Note: The Power Mac G5 computer includes a DVI to VGA adapter.

DVI to Video Adapter

The Power Mac G5 computer supports an optional DVI to S-video/composite adapter that provides S-video and composite output to a PAL or NTSC video monitor or VCR. When a display is connected by way of the video adapter, the computer detects the type of adapter and enables the composite and S-video outputs. The settings for the resolutions and standards (NTSC or PAL) are then selectable in the System Preferences Displays pane.

Note: The DVI to video adapter does not come packaged with the Power Mac G5 computer and must be purchased separately.

The video output connector is a 7-pin S-video connector. (page 44) shows the arrangement of the pins and Table 3-11 (page 53) shows the pin assignments on the composite out and S-video connector.

Figure 3-9 S-video connector

Table 3-11 Pin assignments for the S-video output connector

Pin number	S-video output connector
1	Analog GND
2	Analog GND
3	Video Y (luminance)
4	Video C (chroma)
5	composite video
6	Unused
7	Unused

The Power Mac G5 computer provides video output at picture sizes and frame rates compatible with the NTSC and PAL standards; the picture sizes are listed in Table 3-12 (page 53). Those picture sizes produce under-scanned displays on standard monitors.

Table 3-12 Picture sizes for S-video output

Picture size	Pixel depth
800 by 600	24 bpp
832 by 624	24 bpp
1024 by 768	24 bpp

Dual Display Extended and Mirror Modes

The Power Mac G5 is equipped with an ADC port for connecting an Apple display and a DVI port for a second digital display. Through these two ports, the Power Mac G5 supports dual displays in both extended desktop and video mirroring modes. Extended desktop mode lets users distribute work across two displays, increasing the amount of visible desktop space. Video mirroring mode displays the same information on both monitors, enabling the control of a presentation on one display, while allowing an audience to watch the presentation on a second display or projector. The Power Mac G5 can power two Apple Cinema HD Displays at a cumulative pixel resolution of 3840x1200.

To switch between extended desktop and video mirroring modes, enable the "Mirror Displays" option on the Arrangement tab in the Displays pane of System Preferences.

The scaling function is available when both monitors (main via ADC and second via DVI) are operating and the mirror mode is selected. Either monitor could have black borders during mirroring, depending on the supported timings between the two displays and on the monitor's selection algorithm. Both displays show full-sized images only when the resolutions match. Both displays can operate with other resolution settings, but in mirror mode, one of them has a display that is smaller than the full screen and has a black border around it.

CHAPTER 3

Input and Output Devices

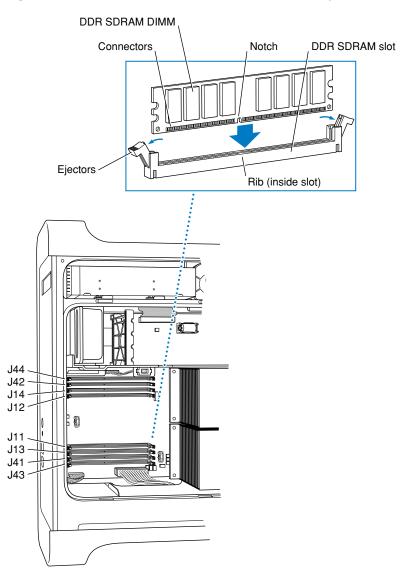
Expansion

This chapter describes the expansion features of the Power Mac G5 computer: the DDR SDRAM expansion slots and the PCI or PCI-X expansion slots.

Note: For detailed instructions on accessing the expansion slots, refer to the *Power Mac G5 Setup Guide* that shipped with the computer.

RAM Expansion

The main logic board of the Power Mac G5 computer has 4 or 8 slots of DDR SDRAM expansion for unbuffered DDR400 (PC3200) dual in-line memory modules (DIMMs) for a maximum memory of 4 GB or 8 GB.


Each DIMM can contain 256 and 512 MB (also is capable of 128 MB, 1 GB, and has future expansion ability of 2 GB) of double data rate synchronous dynamic RAM (DDR SDRAM). At least one pair of the RAM expansion slots contains factory installed DIMMs. The Power Mac G5 supports CAS latencies of 2, 2.5, 3, 4, and 5.

Additional DIMMs must be installed in the slots in *pairs* of the same size. The slot pairs are numbered as indicated in Figure 4-1 (page 56) and Figure 4-2 (page 57). When installing additional memory, populate starting with the lowest slot pair numbers. The combined memory of all of the DIMMs installed is configured as a contiguous array of memory.

RAM Expansion

55

Figure 4-1 DIMM installation for dual 2.0 and 2.5 GHz processor configurations

DDR SDRAM DIMM Connectors Notch DDR SDRAM slot **Ejectors** Rib (inside slot) J14 J12 J13

Figure 4-2 DIMM installation for dual 1.8 GHz processor configuration

DIMM Specifications

The RAM expansion slots accept 184-pin DDR SDRAM DIMMs that are 2.5 volt, unbuffered, 8-byte, nonparity, and DDR400-compliant (PC3200).

Expansion

Important: DDR333 (PC2700) or slower DIMMs do not work in the Power Mac G5 computer.

Important: DIMMs with any of the following features are not supported in the Power Mac G5 computer: registers or buffers, PLLs, ECC, parity, or EDO RAM.

Mechanical Specifications

The mechanical design of the DDR SDRAM DIMM is defined by the JEDEC specification JESD21-C, MODULES4_20_4, Release 11b. To find this specification on the World Wide Web, refer to "RAM Expansion Modules" (page 65).

The maximum height of DIMMs for use in the Power Mac G5 computer is 2 inches.

Electrical Specifications

The electrical design of the SDRAM DIMM is defined by the JEDEC specification JESD21-C, MODULES4_20_4, Release 11b. To find this specification on the World Wide Web, refer to "RAM Expansion Modules" (page 65).

The Serial Presence Detect (SPD) EEPROM specified in the JEDEC standard is required and must be set to properly define the DIMM configuration. The EEPROM is powered on 3.3 V. Details about the required values for each byte on the SPD EEPROM can be found on pages 68–70 of the JEDEC specification.

Important: For a DIMM to be recognized by the startup software, the SPD feature must be programmed properly to indicate the timing modes supported by the DIMM.

DIMM Configurations

The largest DIMM supported is a two-bank DIMM of 1 GB using 512 Mbit DDR SDRAM devices. The maximum number of devices per DIMM is 16.

Important: Power is delivered to the Power Mac G5 during sleep mode, so do not remove DIMMs while in sleep mode. A red light adjacent to the DIMM is illuminated when the duct door is removed and power is present.

Table 4-1 (page 59) shows information about the different sizes of DDR SDRAM devices used in the memory modules. The memory controller supports 64 Mbit, 128 Mbit, 256 Mbit, and 512 Mbit DDR SDRAM devices. The device configurations include three specifications: address range, word size, and number of banks. For example, a 1 M by 16 by 4 device addresses 1 M, stores 16 bits at a time, and has 4 banks.

The first column in Table 4-1 (page 59) shows the memory size of the largest DIMM with that device size that the computer can accommodate. The third column specifies the number of devices needed to make up the 8-byte width of the data bus. The fourth column in the table shows the size of each bank of devices, which is based on the number of internal banks in each device and the number of devices per bank.

 Table 4-1
 Sizes of DDR SDRAM expansion DIMMS and devices

Size of DIMM	SDRAM device size	Device configuration	Devices per bank	Size of each bank
128 MB	128 Mbits	4 M x 8 x 4	8	64 MB
128 MB	256 Mbits	2 M x 16 x 4	4	64 MB
256 MB	128 Mbits	4 M x 8 x 4	8	128 MB
256 MB	256 Mbits	4 M x 16 x 4	4	128 MB
512 MB	256 Mbits	8 M x 8 x 4	8	256 MB
1 GB	512 Mbits	16 M x 8 x 4	8	512 MB

RAM Addressing

Signals A[0–12] on each SDRAM DIMM make up a 13-bit multiplexed address bus that can support several different sizes of SDRAM devices. Table 4-2 (page 59) shows the address multiplexing modes used with the devices.

Table 4-2 Address multiplexing modes for SDRAM devices

Device size	Device configuration	Size of row address	Size of column address
128 Mbits	4 M x 8 x 4	12	10
128 Mbits	2 M x 16 x 4	12	9
256 Mbits	8 M x 8 x 4	13	10
256 Mbits	4 M x 16 x 4	13	9
512 Mbits	8 M x 8 x 4	14	10

PCI or PCI-X Expansion Slots

The following sections define the PCI and PCI expansion requirements.

PCI Only

Some configurations of the Power Mac G5 support three 64-bit 33 MHz PCI slots that interface to the K2 I/O. The PCI configuration conforms to the PCI Specification 2.3.

PCI-X Only

Some configurations of the Power Mac G5 support three PCI-X slots that interface to the HyperTransport bus via the PCI-X bridge. One slot runs at a maximum of 133 MHz and two slots run at a maximum of 100 MHz. The 133 MHz slot can support a maximum burst bandwidth of 1064 MBps, based on 64 bits times 133 MHz. The two 100 MHz slots can support a combined bandwidth of 800 MBps. It is recommended that the highest bandwidth card be inserted in slot 4.

Note: Dual PCI-X card sets work best if installed in slots that are running on the same bus, i.e. the 100 MHz bus.

The PCI-X configuration conforms to the PCI-X Specification 10B.

PCI and PCI-X

To optimize performance of both PCI and main memory transfers, your PCI card should use DMA. The point-to-point G5 architecture is designed to provide optimal performance to each subsystem using DMA. If your card does not support DMA, it should use vector data types for read/write transfers. This approach results in 4 dword burst transfers on the PCI bus.

Important: The Power Mac G5 does not support marking memory space on PCI cards as cacheable. This technique was used in the past to improve read/write performance for cards without an on-board DMA engine. Cards using this technique will not function on the Power Mac G5.

The computer's case has four openings in the back for access to I/O connectors on cards in the three expansion slots and the AGP slot. Each slot has room for a full size 12.335-inch or short 6.926-inch card. The numbering on the casing is 1 through 4 and corresponds to the label on the PCB. Number one is the AGP slot and numbers two through four are the PCI or PCI-X slots.

Note: The Power Mac G5's build-to-order ATI Radeon 9800 XT graphics card occupies both the AGP slot and the adjacent PCI slot. As a result, you can install PCI expansion cards in the slots labeled 3 and 4 but not in slot 2. To learn more about installing PCI cards, refer to "Chapter 3, Working Inside Your Computer" in the *Power Mac G5 User's Guide* that came with your computer.

The expansion slots accept PCI or PCI-X cards with either 32-bit or 64-bit address and data buses. The expansion slots support universal and +3.3 V cards, but not 5 V signalling. The cards are required to use the standard PCI fence described in the specification.

Note: 5 V keyed or signalling cards do not work in the Power Mac G5 computer.

The expansion slots support all the required PCI signals and certain optional PCI signals. The PCI slots support the optional 64-bit bus extension signals and cache support signals.

The PCI slots and the AGP Pro 8x slot carry the 3.3 V_AUX power and PME signals to allow an expansion card to wake the computer from sleep mode.

CHAPTER 4

Expansion

A total of 90 W is allocated to the three PCI or PCI-X slots and the AGP Pro slot. Graphics cards that conform to the AGP 3.0 spec can consume up to 30W. AGP Pro cards may consume more power. AGP Pro cards may also block adjacent PCI or PCI-X slots, in order to provide thermal relief.

Warning: Before removing or installing PCI expansion cards, shut down the computer and unplug the AC power cord. The Power Mac G5 computer does not support PCI hot-plugging functionality. When the computer is powered-on or asleep, a red light on the main logic board is illuminated when the duct door is removed and power is present.

To install or remove a PCI or PCI-X expansion card: turn off power to the computer, unplug the computer, flip out the enclosure latch, open the side panel, remove the clear plastic air deflector, and remove the fan units. Remove the blank PCI fence for the appropriate slot, insert the card in the slot, and screw the card's fence into place to secure the card.

In order to use the new PCI or PCI-X card, a driver must be installed. The driver installation procedure is documented by the manufacturer of the PCI card.

For more information on PCI or PCI-X, visit the worldwide web at

http://www.pci-sig.org

CHAPTER 4

Expansion

Supplemental Reference Documents

For more information about the technologies mentioned in this developer note, you may wish to consult some of the references listed in the following sections.

For information about older models of Macintosh computers, refer to the developer notes archive at

http://developer.apple.com/documentation/Hardware/hardware2.html

Apple Technical Notes

Apple Technical Notes answer many specific questions about the operation of Macintosh computers and the Mac OS. The notes are available on the Technical Note website at

http://developer.apple.com/technotes/

PowerPC G5 Microprocessor

Information about the PowerPC G5 microprocessor is available on the World Wide Web at

http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/AE818B5D1DBB02EC87256DDE00007821

Velocity Engine

Velocity Engine is Apple's vector processor in the PowerPC G5 microprocessor. Apple provides support for developers who are starting to use the Velocity Engine in their applications. Documentation, development tools, and sample code are available on the Apple website, at

http://developer.apple.com/hardwaredrivers/ve/index.html

Motorola's implementation of Apple's Velocity Engine is named AltiVec. The *AltiVec Technology Programming Environments Manual* (AltiVec PEM) is a reference guide for programmers. It contains a description for each instruction and information to help in understanding how the instruction works. You can obtain a copy of the AltiVec PEM through the Motorola documentation site on the World Wide Web, at

http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02VS0I81285Nf2

3D Graphics

Developers of 3D graphics for games should know about OpenGL for Macintosh, a version of SGI's application programming interface (API) and software library for 3D graphics.

Developer support and documentation is available at

http://developer.apple.com/opengl/

Mac OS X

Initially, the Power Mac G5 computer ships with Mac OS X 10.3.4 or later installed as the default operating system. The classic environment can be used to run Mac OS 9 applications, For access to Apple's developer documentation for Mac OS X, see the Apple Developer Connection (ADC) website at

http://developer.apple.com/documentation/MacOSX/MacOSX.html

O'Reilly & Associates publishes a series of books about Mac OS X development. The books in this series have been technically reviewed by Apple engineers and are recommended by the Apple Developer Connection.

Open Firmware

The software architecture implemented on current Macintosh computers follows the standard defined by the Open Firmware IEEE 1274-1994 specification. Three Technotes provide an introduction to Open Firmware on the Macintosh platform. They are

TN 1061: Open Firmware, Part I, available on the Technote web site at

http://developer.apple.com/technotes/tn/tn1061.html

TN 1062: Open Firmware, Part II, at

http://developer.apple.com/technotes/tn/tn1062.html

TN 1044: Open Firmware, Part III, at

http://developer.apple.com/technotes/tn/tn1044.html

Other Technotes provide additional information about Open Firmware on the Macintosh.

TN 2000: PCI Expansion ROMs and You, at

http://developer.apple.com/technotes/tn/tn2000.html

TN 2001: Running Files from a Hard Drive in Open Firmware, at

http://developer.apple.com/technotes/tn/tn2001.html

TN 2004: Debugging Open Firmware Using Telnet, at

Supplemental Reference Documents

http://developer.apple.com/technotes/tn/tn2004.html

RAM Expansion Modules

The Power Mac G5 computer uses DDR400 PC3200-compliant, 184-pin DDR SDRAM DIMMs.

The electrical and mechanical characteristics of the DIMM are given in JEDEC Standard 21-C. The specification can be found by using the search string JESD21-C on the Electronics Industry Association's website at

http://www.jedec.org/DOWNLOAD/default.cfm

ATA Devices

ATA (AT Attachment), also referred to as integrated drive electronics (IDE), is a standard interface used with storage devices such as hard disk drives. For more information on ATA, refer to the following Apple website at

http://developer.apple.com/documentation/Hardware/DeviceManagers/ata/ata.html

ATA Manager 4.0 supports driver software for internal IDE drives and includes DMA support. For the latest information about ATA Manager 4.0, see Technical Note TN1098, ATA Device Software Guide Additions and Corrections, available on the world wide web at

http://developer.apple.com/technotes/tn/tn1098.html

The web page for Technical Note TN1098 includes a link to a downloadable copy of ATA Device Software Guide.

Information about the ATA standards is available at the Technical Committee T13 AT Attachment website, at

http://www.t13.org/

Ethernet

For information on Ethernet specifications and design guides, go to the World Wide Web at

http://standards.ieee.org/

Serial ATA

For information on Serial ATA specifications and design guides, go to the World Wide Web at

http://www.serialata.org

USB Interface

For more information about USB on the Macintosh computer, refer to Apple Computer's Accessing Hardware from Applications at

http://developer.apple.com/hardwaredrivers/usb/index.html

Mac OS X includes support for a wide variety of USB classes. Detailed specifications of these classes are available at

http://www.usb.org/developers/devclass/

For full specifications of the Universal Serial Bus, refer to the USB Implementation Forum on the World Wide Web, at

http://www.usb.org/developers/docs

FireWire Interface

For additional information about the FireWire IEEE 1394a and 1394b interfaces and the Apple API for FireWire software, refer to the resources available on the Apple FireWire website at

http://developer.apple.com/hardwaredrivers/firewire/index.html

The IEEE 1394a and 1394b standards are available from the IEEE; you can order these documents electronically from the IEEE Standards Department website at

http://shop.ieee.org/store

You may also find useful information at the 1394 trade association's website at

http://www.1394ta.org/

Digital Visual Interface

For information about transition minimized differential signaling (TMDS) used with digital video monitors, see the specification, Digital Visual Interface DVI Revision 1.0, available on the website of the Digital Display Working Group (DDWG) at

http://www.ddwg.org/

Wireless Networks

More information about Wi-Fi and wireless networks using the IEEE 802.11 standard is available on the website of the WiFi Alliance, at

APPENDIX A

Supplemental Reference Documents

http://www.wi-fi.org

Bluetooth

For more information regarding Bluetooth technology, refer to the following locations on the World Wide Web.

Bluetooth specification:

http://www.bluetooth.org/spec/

Bluetooth SIG:

http://www.bluetooth.org

Bluetooth developer tools on the Apple web site at:

http://developer.apple.com/hardwaredrivers/bluetooth/

Bluetooth 2004-06-29 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Supplemental Reference Documents

Conventions and Abbreviations

This developer note uses the following typographical conventions and abbreviations.

Typographical Conventions

Note: A note like this contains information that is of interest but is not essential for an understanding of the text.

Important: A note like this contains important information that you should read before proceeding.

Warning: A note like this contains a warning about a situation that could cause a system crash or loss of data.

Abbreviations

When unusual abbreviations appear in this developer note, the corresponding terms are also spelled out. Standard units of measure and other widely used abbreviations are not spelled out.

Here are the standard units of measure used in developer notes:

Α	amperes	mA	milliamperes
dB	decibels	Α	microamperes
Gb	gigabits	Mb	megabits
GB	gigabytes	МВ	megabytes
Hz	hertz	MHz	megahertz
in.	inches	mm	millimeters
k	1000	ms	milliseconds
K	1024	s	microseconds
КВ	kilobytes	ns	nanoseconds

kg	kilograms		ohms
kHz	kilohertz	sec.	seconds
k	kilohms	V	volts
lb.	pounds	W	watts

Other abbreviations used in developer notes include these:

ADC	Apple Display Connector
AGP	accelerated graphics port
ATA	advanced technology attachment
ATAPI	advanced technology attachment, packet interface
AV	audio visual
CAS	column address strobe
CAV	constant angular velocity
CD-ROM	compact disc read-only memory
CLV	constant linear velocity
DART	DMA Address Relocation Table
DB-DMA	descriptor-based direct memory access
DDC	display data channel
DDR	double data rate, a type of SDRAM where data is clocked on rising and falling clock edges
DIMM	dual inline memory module
DIN	Deutsche Industrie Norm
DMA	direct memory access
DRAM	dynamic random-access memory
DVD	12 cm optical storage system with 4 GB capacity
DVD-ROM	DVD read-only memory
DVD-RAM	DVD that is both readable and writable
DVI	Digital Visual Interface
EDO	extended data out DRAM device type
EHCI	Enhanced Host Controller Interface, USB 2.0 specification
	·

EIDE	extended IDE
EMI	electromagnetic interference
FCU	fan controller unit
G5	Generation 5, the fifth generation of PowerPC microprocessors, incorporating Velocity Engine technology
GART	Graphics Address Remapping Table
GBps	data throughput rate — giga bytes per second
Gbps	data throughput rate — giga bits per second
HID	human interface device, a class of USB devices
I2C	same as IIC
I2S	same as IIS
IC	integrated circuit
IDE	integrated device electronics
IEEE	Institute of Electrical and Electronics Engineers
IEEE 1275	the official specification for Open Firmware
IEEE 1394a	the official specification for FireWire 400 (400 Mbps)
IEEE 1394b	the official specification for FireWire 800 (800 Mbps)
IIC	inter-IC (an internal control bus)
IIS	inter-IC sound bus
I/O	input/output
ISO	International Organization for Standardization
JEDEC	Joint Electronics Devices Engineering Council
K2	I/O device and disk controller
L2	level 2 (refers to level of cache)
L3	level 3 (refers to level of cache)
LAN	local area network
MAC	media access controller
Mac OS	Macintosh Operating System
MBps	data throughput rate — mega bytes per second

Mbps	data throughput rate — mega bits per second
OFDM	orthogonal frequency-division multiplexing
OHCI	Open Host Controller Interface, USB 1.1 specification
PCI	Peripheral Component Interconnect
PHY	physical layer
PIO	programmed input/output
PMU	power management unit
RADIUS	Remote Authentication Dial-In User Service
RAM	random-access memory
RAS	row address strobe
RBC	reduced block commands
RGB	a video signal format with separate red, green, and blue components
RISC	reduced instruction set computing
RMS	root mean square
ROM	read-only memory
SATA	serial ATA bus for hard disk drives
SBP	Serial Bus Protocol
SPD	Serial Presence Detect
SPU	service processor unit
SCSI	Small Computer System Interface
SCC	serial communications controller
SDR	single data rate
SDRAM	synchronous dynamic random access memory
SO-DIMM	small outline - dual inline memory module
SRAM	static random access memory
U3	memory controller
U3H	memory controller heavy version
USB	Universal Serial Bus

Conventions and Abbreviations

TMDS	transition minimized differential signaling
VESA	Video Electronics Standards Association
VRAM	video RAM; used for display buffers
Wi-Fi	Wireless Fidelity. Used by the Wireless Ethernet Compatibility Alliance for certification of interoperability of 802.11 products

APPENDIX B

Conventions and Abbreviations

Index

Α	PCI bus 22, 24 PCI-X bus 21, 24 processor bus 21, 23		
abbreviations 69–73 accelerated graphics port bus, See AGP bus ADC 49 AGP bus 11, 12, 21, 23 AGP graphics card 12, 29 AirPort Extreme Admin Utility 41 AirPort Extreme Application 41 AirPort Extreme Base Station 40 AirPort Extreme Card 26, 40–41 hardware components 41 security features 40 software components 41 AirPort Extreme Setup Assistant 41 analog audio 13, 28, 45 analog audio in 47 analog audio out 47 ATA disk interface reference information for 65 ATA/100 interface 28 audio overview 28 audio	C clock speeds 22 Combo drive 39 composite connector 52 computer identification 15 connectors ADC 49 composite/S-video 52 Ethernet 37 FireWire 400 34 FireWire 800 33 headphone jack 48 S-video/composite 52 USB 31 CPU power modes 16 custom ICs K2 I/O controller 25 PMU99 power controller 29		
analog input 47 analog output 47 digital input 46 digital output 46	U3/U3H bridge and memory controller 22 USB controllers 25		
block diagram 19 Bluetooth 67 boot ROM 26 booting from a FireWire device 35, 36 bus slewing 16 buses 19 processor 11, 12 AGP bus 21, 23 HyperTransport 12 memory bus 21, 23	DDR SDRAM 11, 12 digital audio 13, 28, 45 DIMMs. See RAM DIMMs disk drives 38–39 displays mirror mode resolution settings 53 DMA support 25 dual display mode 53 DVD-R/CD-RW 38 DVD-ROM/CD-RW 39		

E	video monitor 49	
EHCI 25, 31 Ethernet controller 26 Ethernet port 12, 36 expansion slots 59	idle state 16 internal modem 39 interrupts 27	
external monitors dual display mode 53 mirror mode 53	K	
	K2 I/O controller IC 25 keyboard 42–43	
F		
features summary 11 FireWire 400 34	<u>L</u>	_
FireWire 800 33 FireWire connectors	LCS. See liquid cooling system liquid cooling system 30	
6-pin connector 34 9-pin connector 33	logic board access 15 long-haul cables 34	
FireWire controller 27 FireWire port		
booting from 35 FireWire ports 32–36	M	_
booting from 36 Target Disk mode 36	memory bus 21, 23 microprocessor 22	
FireWire	microprocessor clock speeds 22	
long-haul cables 34	mirror mode 53	
	resolution settings for 53	
_	model property 15 modem 39	
G	modem slot 26	
G5, See PowerPC G5 microprocessor graphics acceleration 29	mouse 44–45	
	N	
<u>H</u>	NMI 44	
HCRP profile 41 headphone jack 48 HID profile 41	non-maskable interrupt 44 NTSC video monitor 52	
HSP profile 42		
HyperTransport 25	0	
HyperTransport bus 12	OUCL 25, 21	_
	OHCI 25, 31 Open Firmware	
<u>I</u>	Technical Notes for 64 optical audio. <i>See</i> digital audio	
I/O ports Ethernet 36 sound 45 USB 31	Optical drive Combo drive 39	

P	TV display adapter 52
PAL video monitor 52 PCI bus 22, 24 PCI or PCI-X expansion slots 59	U
PCI write combining 24 PCI-X bus 21, 24 PMU99 IC 29 power controller IC 29 power management 16 power supply 12 PowerPC G5 microprocessor 22 presence detect feature of DIMMs 58 processor bus 21, 23 processor module 22 programmer's switch 44	U3 bridge and memory controller IC 22 U3H bridge and memory controller IC 22 Ultra DMA interface 28 Universal Serial Bus. See USB USB connectors 31 USB controller IC 25, 31 USB controllers 25 USB interface 27 USB ports 31–32 data transfer speeds 32 USB with keyboard 43
R	V
RAM DIMMs 55–59 capacities of 58 configurations 58 devices in 59 installation of 55 mechanical specifications of 58 presence detect feature 58	Velocity Engine 17 video monitor ports 49 video port 52
RAM addressing 59 specifications of 57 ROM in RAM boot ROM 26	wireless LAN module 26, 40–41 base station 40 hardware components 41 security features 40 software components 41 write combining 24
S-video connector 52 S/PDIF audio in 46 S/PDIF audio out 46 SCO profile 42 Serial ATA interface 27 slewing, bus 16 sound system 45–48 overview 28 summary of features 11 SuperDrive 38 switches 44	
<u>T</u>	
Target Disk Mode 36	