
CCL Modem Scripting Guide
Hardware & Drivers > Serial

2007-06-28

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, eMac, Mac, Mac
OS, and Macintosh are trademarks of Apple
Inc., registered in the United States and other
countries.

DEC is a trademark of Digital Equipment
Corporation.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to CCL Modem Scripting Guide 7

Organization of This Document 7
What You Need to Get Started 7
Available Modem Scripts 8

Chapter 1 Writing a CCL Script 9

Initiating a Call 10
Answering a Call 12
Terminating a Call 13

Chapter 2 CCL Script Syntax 15

CCL Commands 15
Comments 15
Capitalization 16
Labels 16
String Formats 16
Variable Strings (varStrings) 17
Match Strings 18
Script Size 19

Chapter 3 CCL Bundles and Property Lists 21

About mlts Resource Storage 21
About Property List Storage 21
Property List Structure 22

CCL Personalities Dictionary 22
Miscellaneous Top-Level Property Keys 23

Example Property Lists 24

Appendix A CCL Command Reference 27

Comments 27
Labels and Sections 27

@ANSWER 27
@CCLSCRIPT 27
@HANGUP 28
@LABEL 28
@ORIGINATE 28

CCL Commands 29

3
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

ASK 29
CHRDELAY 29
COMMUNICATINGAT 30
DECTRIES 30
DTRCLEAR 30
DTRSET 30
EXIT 31
FLUSH 31
HSRESET 31
IFANSWER 32
IFORIGINATE 32
IFSTR 33
IFTRIES 33
INCTRIES 34
JSR 34
JUMP 34
LBREAK 35
MATCHCLR 35
MATCHREAD 35
MATCHSTR 35
MONITORLINE 36
NOTE 36
PAUSE 37
RETURN 38
SBREAK 38
SERRESET 38
SETSPEED 38
SETTRIES 39
USERHOOK 39
WRITE 40

Appendix B Result Codes 41

Appendix C Cable Specifications 43

Modem Control Issues 43
Recommended Modem Control 44

Document Revision History 45

4
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 3 CCL Bundles and Property Lists 21

Listing 3-1 A GPRS device property list example 24
Listing 3-2 A dialup modem property list example 25

Appendix C Cable Specifications 43

Table C-1 Computer to Modem Cable Specifications 43

5
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

6
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

Mac OS X supports communication over telephone lines using Hayes-compatible modems and similar
communication channels such as cellular phones. It provides support for these modems using modem scripts.

Mac OS X comes with a number of modem scripts preinstalled. To use Mac OS X with a modem or cellular
phone for which a script is not supplied, the user or the modem vendor must either obtain or write a script
to control the modem.

Modem scripts are written using the Communication Command Language (CCL). You can create these scripts
programmatically using the iSync Plug-in Maker Tool (described in the iSync Plug-in Maker User Guide) or
manually using any text editor.

This guide includes instructions for writing scripts and descriptions of all the CCL commands. It is intended
for experienced programmers with a good understanding of telecommunications and modem operation.

Organization of This Document

The guide is divided into two chapters and two appendixes:

 ■ “Writing a CCL Script” (page 9) describes the basic elements and structure of a CCL file and the basic
tasks a script must perform.

 ■ “CCL Command Reference” (page 27) lists the CCL commands, providing for each a definition, syntax,
and an example, if appropriate.

 ■ “Result Codes” (page 41) lists result codes returned by the CCL, with a description of the error and the
accompanying message, if any.

 ■ “Cable Specifications” (page 43) discusses requirements for a CTS/RTS handshaking cable, desirable
when using Mac OS X with a 9600 bps or faster modem.

What You Need to Get Started

To write a CCL script for Mac OS X, your computer should be running Mac OS X v10.5. For ease of writing
scripts, you should also have the latest version of the Mac OS X Developer Tools installed. These provide the
iSync Plug-in Maker tool, which makes it easier to create and edit scripts.

Important: You will also need the documentation that came with your modem; many commands vary from
one modem to another.

For information about the iSync Plug-in Maker, see the iSync Plug-in Maker User Guide.

Organization of This Document 7
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to CCL Modem Scripting Guide

You may also find it useful to consult a reference manual on telecommunications and modems, such as The
Complete Modem Reference by Gilbert Held, published by John Wiley & Sons, Inc.

Available Modem Scripts

A number of modem scripts have already been written for use with Mac OS X. These can be found in the
Modem Scripts folder within the user, system, and global Library folders (/Library/Modem Scripts, for
example). If you have one of the modems for which a script has been provided, you don't need to write a
script. You can display a list of the provided scripts from within the iSync Plug-in Maker tool, as described in
the iSync Plug-in Maker User Guide.

If you need to write a script, you may be able to use an existing script as a template. Be sure to use the Save
As command to make a copy of the script you're modifying, so that you don't overwrite the original script.

8 Available Modem Scripts
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to CCL Modem Scripting Guide

This chapter describes the basic tasks a CCL scriptmust perform. For detailed descriptions of the modem
scripting commands, see “CCL Command Reference” (page 27).

A modem script executes in one of two possible modes, each with a separate entry point. The modes are as
follows:

originate
used when a call is initiated.

answer
used when call answering is enabled. Mac OS X does not provide a user interface for enabling or using
answer mode.

hangup
used to terminate every connection, whether in originate or answer mode, and whether or not the
connection was successful.

The following figure provides an overview of the tasks your script must perform in each mode. The remainder
of this chapter describes these tasks.

Hangup mode

(to terminate a call)

@HANGUP entry point

Answer mode

(to answer a call)

@ANSWER entry point

Originate mode

(to initiate a call)

@ORIGINATE entry point

Turn off CTS hardware
handshaking.

Configure serial port.Configure serial port.

Issue hangup command.Turn off CTS hardware handshaking.Turn off CTS hardware handshaking.

If unsuccessful, put modem
in command mode and
issue hangup again.

Configure modem.Configure modem.

Recall factory defaults.Enable auto-answering.Dial.

Turn off auto-answering.Detect ring.Wait for response.

Exit.If call fails, exit with error result code.If call fails, exit with error result code.

If call succeeds, display message.If call succeeds, display message.

If modem error correction established,
issue USERHOOK 2 or USERHOOK 4.

If modem error correction established,
issue USERHOOK 2 or USERHOOK 4.

If modem data compression
established, issue USERHOOK 3.

If modem data compression
established, issue USERHOOK 3.

Configure serial port.Configure serial port.

9
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Writing a CCL Script

Hangup mode

(to terminate a call)

@HANGUP entry point

Answer mode

(to answer a call)

@ANSWER entry point

Originate mode

(to initiate a call)

@ORIGINATE entry point

If appropriate, turn on CTS hardware
handshaking.

If appropriate, turn on CTS hardware
handshaking.

Issue USERHOOK 1.Issue USERHOOK 1.

Initiating a Call

When Mac OS X initiates a call, it executes the script starting at the @ORIGINATE entry point. The script must
perform the following tasks to initiate a call:

1. Configure the communication channel.

Use the SERRESET command to reset the communication parameters of the serial port (or emulated
equivalent communication channel). Set the speed of the connection to the maximum speed of the
device. (You may change the serial port speed later in the script.) Set the number of bits to be used for
stop, start, and parity.

Use the HSRESET command to turn off the serial port's flow control options. (You will turn on the
appropriate options later in the script.)

2. Configure the device.

Following is a list of standard steps for configuring a modem-like communication device. Check the
documentation that came with your device to determine whether it requires different steps.

a. Recall the factory default configuration settings.

b. If your device has a speed of 14,400 bps or higher, you need to configure the device for RTS/CTS
handshaking. For modems, an appropriate cable must be used, as described in “Cable
Specifications” (page 43). Do not turn on hardware handshaking until the connection has been
made.

c. Configure the modem for DTR usage.

d. Turn local echo off. When local echo is on, the modem sends commands it receives back to the
computer.

e. Set the modem to return detailed result codes including the speed of the connection and the results
of error correction and data compression negotiation.

f. If the modem can do error correction, set error correction according to varString4.

If varString4 is set to 0, turn error correction off.

If varString4 is set to 1, have the modem negotiate the best available error correction with the
remote modem. If no error correction can be established, have the modems remain connected
without error correction.

10 Initiating a Call
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Writing a CCL Script

If varString4 is set to 2, have the modem try to establish MNP10 error correction with the remote
modem. If MNP10 negotiation fails, have the modems remain connected without error correction.

Note: If the modem uses a proprietary error correction protocol, make sure that it will try to negotiate
standard protocols if it is unable to negotiate the proprietary protocol. If not, disable error correction.
Do not disable the Trellis error protocol; it is part of the V.32 standard.

g. Mac OS X is generally more efficient than a modem or similar device at compressing data. If you
believe you have a special situation in which hardware data compression is preferable, have the
script set up the device to negotiate data compression.

h. Turn the speaker on or off according to the value of varString2.

3. Dial the phone number.

a. Have the script check whether the dial string extends into varString8 (then varString9) by using
the IFSTR command to check for a blank string. If the entire dial string fits in varString7, have
the script issue a single dial command. If the dial string is longer than varString7, have the script
issue multiple dial commands referencing varString7, varString8, and if necessary, varString9.

b. Set tone or pulse dialing in the dial command according to the value of varString3.

c. If varString6 is set to 1, have the device begin dialing without confirmation of dial tone detection.
This is useful when the phone system provides a nonstandard dial tone that can't be recognized by
a modem's tone detection circuitry.

If varString6 is set to 2, the user has already dialed the remote number. Have the script cause the
modem to retrain with the remote system. This is useful when the dialing sequence is too complex
or interactive for the CCL script to navigate.

d. Display the dialed phone number in the Internet Connect status window and the activity log using
the NOTE command. Use varString1 in log messages rather than a concatenation of varString7,
varString8, and varString9.

4. Wait for the device to respond.

5. If the call fails, return an error result code indicating what happened.

For example, use error result code -6022 if the line is busy. (See “Result Codes” (page 41) for a complete
list.)

6. If the call is successful, indicate that a connection has been established.

Display a message such as "Communicating at 9600 bps" in the Internet Connect status window using
the NOTE command. Also display messages indicating the results of error correction and data compression
negotiation, if applicable.

If you were successful in establishing error correction, issue USERHOOK 4 (for MNP10 error correction)
or USERHOOK 2 (for all other error correction) to advise Mac OS X that a reliable link was established.

If you were successful in establishing data compression, issue USERHOOK 3 to advise Mac OS X to turn
off its built-in data compression.

Initiating a Call 11
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Writing a CCL Script

7. Configure the communication channel based on the device speed and the connection rate.

If your device has a speed of 14,400 bps or higher (and, for modems, if you are using a RTS/CTS
handshaking cable as described in “Cable Specifications” (page 43)), use the HSRESET command to set
flow control to outputCTS . Use the COMMUNICATINGAT command to tell Mac OS X the connection
speed so that it can set its timers appropriately.

If your device has a speed of 9600 bps or slower, use the SERRESET command to reset the serial port
speed to the speed of the connection.

8. Exit the script so that Mac OS X can use the connection.

For more details on the commands and variables described in this section, see “CCL Command Reference” (page
27).

Answering a Call

To answer a call, Mac OS X executes the script starting at the @ANSWER entry point. The script must perform
the following tasks to answer a call:

1. Configure the communication channel.

Use the SERRESET command to reset the communication parameters of the serial port (or emulated
equivalent communication channel). Set the speed of the connection to the maximum speed of the
device. (You may change the serial port speed later in the script.) Set the number of bits to be used for
stop, start, and parity.

Use the HSRESET command to turn off the serial port's flow control options. (You will turn on the
appropriate options later in the script.)

2. Configure the device.

It will require several commands to completely configure the device. To prevent calls being answered
before the configuration is complete, disable auto-answering in the first command the script issues. (You
will enable it in step 3.)

For additional details about configuring the device, see step 2 of “Initiating a Call” (page 10) earlier in
this chapter.

a. Recall the factory default configuration settings.

b. If your device has a speed of 14,400 bps or higher, set up the device for RTS/CTS handshaking. For
modems, use an appropriate cable, as described in “Cable Specifications” (page 43).

c. Configure the device for DTR usage.

d. Turn local echo off.

e. Set the device to return detailed result codes including the speed of the connection and the results
of error correction and data compression negotiation.

f. If the device can do error correction, set error correction according to varString4.

12 Answering a Call
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Writing a CCL Script

g. Mac OS X is generally more efficient than a modem at compressing data. If you believe you have a
special situation in which hardware data compression is preferable, have the script set up the modem
to negotiate data compression.

h. Turn the speaker on or off according to the value of varString2.

3. Enable auto-answering and wait for the result.

On an incoming call, the device issues a RING result code.

4. If the call fails, return an error result code indicating what happened.

For example, use error result code -6021 if the device cannot detect a carrier signal on the phone line.
(See “Result Codes” (page 41) for a complete list.)

5. If the call is successful, indicate that a connection has been established.

Display a message such as "Communicating at 9600 bps" in the Internet Connect status window using
the NOTE command. Also display messages indicating the results of error correction and data compression
negotiation, if applicable.

If you were successful in establishing hardware error correction, issue USERHOOK 4 (for MNP10 error
correction) or USERHOOK 2 (for all other error correction) to advise Mac OS X that a reliable link was
established.

If you were successful in establishing data compression, issue USERHOOK 3 to advise Mac OS X to turn
off its built-in data compression.

6. Configure the communication channel based on the device speed and the connection rate.

Issue the USERHOOK 1 command. The USERHOOK 1 command informs Mac OS X that the serial port or
equivalent is busy answering a call, which prevents Mac OS X from giving it up to another application.

If your device has a speed of 14,400 bps or higher (and, for modems, if you are using a RTS/CTS
handshaking cable as described in “Cable Specifications” (page 43)), use the HSRESET command to set
flow control foroutputCTS.

Use the COMMUNICATINGAT command to tell Mac OS X the connection speed so that it can set its timers
appropriately.

If your device has a speed of 9600 bps or slower, use the SERRESET command to reset the serial port
speed to the speed of the connection.

7. Exit the script so that Mac OS X can use the connection.

For more details on the commands and variables described in this section, see “CCL Command Reference” (page
27).

Terminating a Call

To terminate a call, Mac OS X executes the script starting at the @HANGUP entry point.

Terminating a Call 13
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Writing a CCL Script

The hangup part of the script is executed to terminate a connection whenever the @ORIGINATE or @ANSWER
parts of the script have been executed, regardless of the result. The hangup part of the script is also executed
when Mac OS X terminates answer mode.

The script must perform the following tasks to terminate a call:

1. If hardware handshaking is used in the @ORIGINATE or @ANSWER part of the script, turn off hardware
handshaking.

Use the HSRESET command to turn off hardware handshaking.

2. If possible, cause the device to enter command mode.

Before you issue a hangup command, you may need to get the attention of the device by, for example,
issuing a short break, a long break, or the attention sequence "+++", or by toggling DTR. Consult your
device documentation for the appropriate method.

3. Issue a hangup command.

4. Recall the factory default configuration settings.

Since you recalled the default settings at the beginning of the script, this is not necessary if the only
communications application you use is Mac OS X’s built-in modem support; however, recalling the default
settings at the end of your script is recommended in case the next communications application that you
use does not take care of this itself.

5. Turn off auto-answering.

This prevents the device from answering the phone until call answering is enabled.

6. Exit with an appropriate message.

If successful, return a result code of 0. If unsuccessful, return the appropriate error result code as listed
in “Result Codes” (page 41)

For more details on the commands and variables described in this section, see “CCL Command Reference” (page
27).

14 Terminating a Call
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Writing a CCL Script

A modem script is a set of instructions that tells a computer how to interact with a modem so that calls can
be initiated and received. To establish a connection, a script typically configures and then connects the
modem. To terminate a connection, the script disconnects the modem by hanging up and then restores the
modem settings that were in effect before the call.

Each type of modem used with Mac OS X requires a modem script. Many scripts are provided with Mac OS
X. (See “Available Modem Scripts” (page 8) in the Introduction of this document for more information.)

If no script is provided for your modem, you must write one using Communication Command Language
(CCL), a programming language that configures and controls your modem. This section describes the basic
elements and structure of a CCL file.

CCL Commands

Each line of CCL code consists of one instruction that is made up of a command and its parameters, if any.
Modem commands are used as parameters of CCL commands. For example, the command write
"ATDT^1\13" includes the following:

 ■ a CCL command, write

 ■ a modem command, ATDT

 ■ a modem command parameter, ^1\13

This command tells the CCL interpreter to send to the modem the modem command ATDT followed by
variable string #1, and a carriage return (ASCII code 13).

The CCL interpreter reads scripts from left to right and from top to bottom. It reads straight through, from
beginning to end, unless you tell it otherwise (for example, by using the JUMP command).

For a complete list of commands and their usage, see “CCL Command Reference” (page 27).

Comments

You can insert explanatory comments into your script. To enter a comment, start the line with an exclamation
point (!).

You may also want to use a blank comment line to make your script more readable; to do so, type an
exclamation point with no text and press Return.

CCL Commands 15
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CCL Script Syntax

Capitalization

The CCL interpreter is not case sensitive. Therefore, @LABEL 1, @Label 1, @label 1, and @laBel 1 are all
valid (and equivalent) instructions.

Labels

Labels are used to mark locations in the script. Other script commands, such as JUMP, transfer control to
locations in the script marked by the @LABEL command. For instance, JUMP 13 tells the CCL interpreter to
jump to label 13 and start executing the commands after the @LABEL 13 command. A script may use up to
128 labels, numbered 1–128.

String Formats

To delimit a string in CCL code, you can use single quotation marks (') or double quotation marks ("). If you
do not start the string with a single or double quotation mark, any of the following characters determines
the end of the string: space, return, tab, comma, or semicolon.

CCL strings may include references to variable strings. See “Variable Strings (varStrings)” (page 17) later in
this chapter for details.

CCL strings may include nonprinting characters such as null, tab, and return. To support these nonprinting
characters, the CCL interpreter recognizes two special characters: the backslash (\) and the caret (^).

The backslash is a quote character. You can use the backslash to include a nonprinting character by specifying
the decimal representation of the ASCII character (decimal numbers 00 to 99 are valid) or to explicitly include
the backslash or caret character in a string.

The caret is a variable delimiter character. You can use it to insert a variable string or an ASK string into
another string. (For details, see “Variable Strings (varStrings)” (page 17) later in this chapter.)

Here are some examples of how the backslash and caret are used:

ResultString

inserts a carriage return (0x0D) into the string\13

inserts the null character (0x00) into the string\00

inserts the backslash (\) character (0x5C) into the string\\

inserts the caret (^) character (0x5E) into the string\^

inserts variable string 1 into the string^1

inserts the ASK string into the string^*

16 Capitalization
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CCL Script Syntax

Here are some string examples:

Printed OutputString contents

this is a test'this is a test'

thisisatestthisisatest

this is a test"this is a test"

thisthis is a test

this "IS" a test"this \34\73\83\34 a test"

ATDT555-1212(if variable string 1 is 555-1212)"ATDT^1"

Variable Strings (varStrings)

CCL strings may include references to variable strings, which are strings passed to the script as parameters.
Most of these values are provided by Mac OS X based on user-specified parameters.

Mac OS X uses the following variable strings:

ValuesContentsVariable String

The complete dial string (the
telephone number to dial, with
the necessary prefixes and
suffixes).

varString1

0—Speaker off.
1—Speaker on.

The modem speaker flag:varString2

T—Tone dialing.
P—Pulse dialing.

The tone/pulse dialing selector:varString3

0—Script should not try to use
modem error correction.
1—Script should try to use modem
error correction.
2—Script should try to establish
MNP10 error correction.

The modem error correction
flag:

varString4

Reserved for future use.varString5

Variable Strings (varStrings) 17
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CCL Script Syntax

ValuesContentsVariable String

0—Normal dialing.
1—Blind dialing (that is, have the
modem begin dialing without
confirmation of dial tone detection).
2—Manual dialing (that is, have the
script assume that the user has
already picked up the phone and
dialed the remote number).

The dialing mode flag:varString6

The variables varString7, varString8,
and varString9 contain the contents of
varString1 divided into shorter pieces.
Each of these strings is limited to 40
characters in length. Additional characters
that will not fit into varString7 spill
over automatically into varString8, and
so on.

If one or more of these three variables are
unused, the empty variables contain a
blank string (ASCII 20 hex). See “About
mlts Resource Storage” (page 21) for
legacy information about these strings.

Variable strings 7–9 break a
long dial string into shorter
strings for use with modems
that can accept only a limited
command string size. They are
automatically generated by
Mac OS X.

varString7–varString9

Defined in the information
property list in your CCL script
bundle. See “CCL Bundles and
Property Lists” (page 21) for
information.

varString27–varString30

All eight variable strings are passed to the script when it is running in originate mode. The modem speaker
flag (varString2) and the error correction flag (varString4) are passed to the script when it is running in
answer mode.

Match Strings

The CCL interpreter has a buffer that can hold up to 32 strings loaded by the MATCHSTR command. The
MATCHCLR command erases the contents of the buffer. The MATCHREAD command reads input from the
modem or other communication device and compares the input to the strings currently in the buffer. If a
match is found in the specified time, execution continues at the label associated with that match string.

A recommended strategy for sending commands to the modem is as follows:

 ■ Use MATCHCLR to clear all match strings.

 ■ Use MATCHSTR to load match strings with appropriate responses.

 ■ Use WRITE to send commands to the modem.

18 Match Strings
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CCL Script Syntax

 ■ Use MATCHREAD to check for defined modem responses. If an appropriate response is received, branch
as defined by the corresponding MATCHSTR command.

 ■ Use SETTRIES, INCTRIES, and IFTRIES to loop a few times.

 ■ If an appropriate response is not received, branch to exit or to alternate code as defined by the MATCHREAD
command.

Script Size

Scripts may be a maximum of 32000 bytes. This is large enough for relatively complex dial scripts. However,
if your script is too large, you may be able to make it small enough by minimizing the number and length
of comments.

Script Size 19
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CCL Script Syntax

20 Script Size
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CCL Script Syntax

Mac OS X v.10.5 and later supports storage of strings and other data outside of the modem script itself in an
easily modified property list file. Classic Mac OS (System 7 through Mac OS 9) and Mac OS X prior to v.10.5
provided similar support with data stored in the resource fork of each script. This appendix explains both
mechanisms for external storage to allow ease of conversion into the more modern property list format.

About mlts Resource Storage

A modem script from Mac OS 9 and earlier may contain an optional mlts resource that tells the CCL interpreter
the characteristics of the modem. Byte 1 indicated support for at least one type of standard error correction
(1=supported). Byte 2 was reserved. Byte 3 indicated contained the maximum length (in characters) for
variable string 7, byte 4 for variable string 8, and byte 5 for variable string 9.

These legacy mlts options are not supported in Mac OS X. Mac OS X assumes that all modems can support
dial strings of at least 40 characters per dial string and that all modems support built-in error correction.

About Property List Storage

Beginning in Mac OS X v. 10.5, the preferred format for external storage is as a property list. When using this
mechanism, the CCL script must be enclosed in a package. The structure of such a package is shown below:

MyModem.ccl
|
|-Contents
 |
 |- Info.plist <- The property list
 |- Resources
 |-MyModem <- The script itself

For general information about property lists, see Property List Programming Topics for Core Foundation and
Property List Programming Guide. The details of what should you should put in the property list are covered
in the following sections.

About mlts Resource Storage 21
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CCL Bundles and Property Lists

Property List Structure

CCL Personalities Dictionary

CCLParameters Dictionary

This dictionary (dict element) contains parameters that are made available to your CCL script through
variable strings. (See “Variable Strings (varStrings)” (page 17) for more information on how to use these
variables in your script.)

DescriptionVariable
String in CCL
Script

Key in CCLParameters
Dictionary

The serial port speed desired.

You may use -1 if your device has no notion of multiple connection
speeds.

^20Connect Speed

The device initialization string.^21Init String

Preferred access point name. Used mainly for cellular phone
connections.

^22Preferred APN

Preferred connection identifier. Used mainly for cellular phone
connections.

^23Preferred CID

One of four device-specific strings that you can pass in. By using
these variable strings, you can share a single script across multiple
similar modems or for using the same modem-like device with (for
example) multiple cellular services.

^27varString 27

One of four device-specific strings that you can pass in. By using
these variable strings, you can share a single script across multiple
similar modems or for using the same modem-like device with (for
example) multiple cellular services.

^28varString 28

One of four device-specific strings that you can pass in. By using
these variable strings, you can share a single script across multiple
similar modems or for using the same modem-like device with (for
example) multiple cellular services.

^29varString 29

One of four device-specific strings that you can pass in. By using
these variable strings, you can share a single script across multiple
similar modems or for using the same modem-like device with (for
example) multiple cellular services.

^30varString 30

Connect Type Key

This string element describes the connection type. Valid values are Dialup and GPRS

22 Property List Structure
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CCL Bundles and Property Lists

Device Names Dictionary

This dict element should contain the following key/value pairs:

 ■ DeviceModel—A string element representing the device model number or name.

 ■ DeviceVendor—A string element describing the vendor name.

These strings are presented to the user when choosing a device model and manufacturer.

GPRS Capabilities Dictionary

This dict element supports the following keys:

 ■ CID Query—A boolean value that tells whether a device allows Mac OS X to query it for valid connection
IDs. Mac OS X uses this information outside the scope of your script.

Legal values are <true/> and <false/>.

 ■ Data Mode—A boolean value that indicates whether a device supports initiating a connection by
requesting data mode (AT+CGDATA). Your script should respect this value when making a connection
and use data mode only on communication hardware that supports it.

Legal values are <true/> and <false/>.

 ■ Dial Mode—A boolean value that indicates whether a device supports initiating a connection by dialing
a fictitious number (ATD *99). If true, Mac OS X will fill in the phone number automatically.

Legal values are <true/> and <false/>

 ■ Independent CIDs—A boolean value that indicates whether or not a device supports independent
CIDs for computer use versus internal (cellular phone feature) use.

When you issue an AT command that sets the CID (AT+CGDCONT=..., devices with independent CID
support treat the AT command as a temporary change from the default value. Devices that lack this
feature "forget” their previous CID value and must be reconfigured upon disconnect to avoid service
loss, diminished service, or unexpected billing charges.

Legal values are <true/> and <false/>.

 ■ Maximum CID—A value of type integer that represents the maximum allowable connection identifier
(CID) value supported by the device. Mac OS X uses this information outside the scope of your script.

Script Name Key

This string element tells the name of the script within the Resources directory inside your script bundle.

Miscellaneous Top-Level Property Keys

CCL Version Key

This integer key should currently always be 1.

Property List Structure 23
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CCL Bundles and Property Lists

CFBundle Keys

The following CFBundle keys should be provided:

 ■ CFBundleDevelopmentRegion

 ■ CFBundleGetInfoString

 ■ CFBundleIdentifier

 ■ CFBundleInfoDictionaryVersion

 ■ CFBundleName

 ■ CFBundlePackageType

 ■ CFBundleShortVersionString

 ■ CFBundleSignature

 ■ CFBundleVersion

For more information about these keys, see CFBundle Reference.

Example Property Lists

This section shows two example property lists. Listing 3-1 shows an example of a property list for a GPRS
device. Listing 3-2 (page 25) shows a property list for a traditional dialup modem device.

Listing 3-1 A GPRS device property list example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CCL Personalities</key>
 <dict>
 <key>Default Personality</key>
 <dict>
 <key>Device Names</key>
 <array>
 <dict>
 <key>DeviceModel</key>
 <string>GPRS Device</string>
 <key>DeviceVendor</key>
 <string>Example</string>
 </dict>
 </array>
 <key>Connect Type</key>
 <string>GPRS</string>
 <key>Script Name</key>
 <string>GPRS Example</string>
 <key>GPRS Capabilities</key>
 <dict>
 <key>Data Mode</key>

24 Example Property Lists
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CCL Bundles and Property Lists

 <false/>
 <key>Dial Mode</key>
 <true/>
 <key>Independent CIDs</key>
 <false/>
 <key>CID Query</key>
 <false/>
 <key>Maximum CID</key>
 <integer>10</integer>
 </dict>

 <!-- SystemConfiguration values can replace CCLParameters -->
 <key>CCLParameters</key>
 <dict>
 <key>Init String</key>
 <string>E0V1&F&D2&C1&C2S0=0</string>
 <key>Preferred APN</key>
 <string>network</string>
 <key>varString 27</key>
 <string></string>
 <key>varString 28</key>
 <string></string>
 <key>varString 29</key>
 <string></string>
 <key>varString 30</key>
 <string></string>
 </dict>
 </dict>
 </dict>
 <key>CFBundleIdentifier</key>
 <string>com.apple.ccl.GPRS_Example</string>
 <key>CFBundleName</key>
 <string>GPRS Example</string>
 <key>CCL Version</key>
 <integer>1</integer>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundlePackageType</key>
 <string>CCLB</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0</string>
 <key>CFBundleSignature</key>
 <string>iSPM?</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
</dict>
</plist>

Listing 3-2 A dialup modem property list example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CCL Personalities</key>
 <dict>

Example Property Lists 25
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CCL Bundles and Property Lists

 <key>Default Personality</key>
 <dict>
 <key>Device Names</key>
 <array>
 <dict>
 <key>DeviceModel</key>
 <string>Dialup Device</string>
 <key>DeviceVendor</key>
 <string>Example</string>
 </dict>
 </array>
 <key>Connect Type</key>
 <string>Dialup</string>
 <key>Script Name</key>
 <string>Dialup Example</string>
 <key>CCLParameters</key>
 <dict>
 <key>Connect Speed</key>
 <string>115200</string>
 <key>Init String</key>
 <string>&FE0V1</string>
 <key>varString 27</key>
 <string></string>
 <key>varString 28</key>
 <string></string>
 <key>varString 29</key>
 <string></string>
 <key>varString 30</key>
 <string></string>
 </dict>
 </dict>

 </dict>

 <key>CFBundleIdentifier</key>
 <string>com.apple.ccl.Dialup_Example</string>
 <key>CFBundleName</key>
 <string>Dialup Example</string>
 <key>CCL Version</key>
 <integer>1</integer>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundlePackageType</key>
 <string>CCLB</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0</string>
 <key>CFBundleSignature</key>
 <string>iSPM?</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
</dict>
</plist>

26 Example Property Lists
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CCL Bundles and Property Lists

This chapter describes the CCL commands interpreted by Mac OS X. The commands are presented in
alphabetical order. Each command section contains a description of the command; the syntax of the command,
including any parameters; and an example, if appropriate.

Note: While the CCL scripting language supported in Mac OS X v. 10.5 is substantially similar to the CCL
scripting language supported in Macintosh System 7 (using Apple Remote Access) through Mac OS X v.10.4
, there are significant differences in how initialization strings and other external data are stored.

For ARA scripts (prior to Mac OS X), this information was stored in the resource fork of the script itself. In Mac
OS X v.10.4 and earlier, this information must be hard-coded into the script in the appropriate places. In Mac
OS X 10.5 and later, the information may be optionally placed in a property list (plist). These differences are
noted where appropriate.

Comments

To insert a comment or a blank line in the script, start the line with an exclamation point.

Syntax:
! comment

Examples:
! Turn echo off
!

Labels and Sections

@ANSWER

The @ANSWER section label marks the script entry point when the script is executed in answer mode.

Syntax:
@ANSWER

@CCLSCRIPT

Available only in Mac OS X.

Comments 27
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

The @CCLSCRIPT section label marks the start of a CCL script. The label is optional and has no functional
purpose..

Syntax:
@CCLSCRIPT

@HANGUP

The @HANGUP section label marks the script entry point when the script is executed in hangup mode.

Syntax:
@HANGUP

@LABEL

The @LABEL command sets a numeric label in the script that can then be referenced from other script
commands, such as JUMP, JSR, and IFTRIES. A script may include up to 128 labels, numbered 1 through
128. To make debugging easier, assign the labels in ascending sequence. They don't need to be consecutive.

Syntax:
@LABEL labelnum

Parameter:

labelnum

A value from 1–128 that specifies the label number.

Example:
@LABEL 30

@ORIGINATE

The @ORIGINATE section label marks the script entry point when the script plays in originate mode (that is,
when initiating a call).

Syntax
@ORIGINATE

28 Labels and Sections
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

CCL Commands

ASK

The ASK command causes a dialog box to be displayed to obtain information from the user. The dialog box
contains a prompt message, an optional data entry field, a Cancel button, and an OK button. You may need
the ASK command if your telephone system uses special telecommunications equipment. This command is
typically used in originate mode only.

"String Formats" in Chapter 1 shows how to use the ASK string as part of another string. The ASK string is set
if the user presses either the OK button or the Cancel button.

Syntax
ASK maskflag "message" [jumpLabel]

Parameters

maskflag

0

Echo the user's input/

1

Mask the user's input with bullets (••••).

2

Do not allow user input.

message

The string to display in the dialog box as a prompt for the user.

jumpLabel

If supplied, the label to jump to, where execution continues when the Cancel button is pressed;
if not supplied, or if the OK button is pressed, then execution continues at the next CCL line.

Example
ASK 1 "Enter your password to access the network."
ASK 2 "When the remote modem answers, click OK, otherwise click Cancel to stop
 Manual Dialing."

CHRDELAY

The CHRDELAY command allows you to specify a delay time between characters for all subsequent WRITE
commands. This is useful for telecommunications equipment that requires data at a speed slower than the
interface speed.

Syntax

CHRDELAY delay

CCL Commands 29
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Parameter

delay

The delay time, in tenths of a second.

Example
CHRDELAY 8

COMMUNICATINGAT

For V.32bis devices that support RTS/CTS hardware flow control (including modems with an appropriate
cable, as described in “Cable Specifications” (page 43)), use the COMMUNICATINGAT command to indicate
the speed of the modem connection if the modem speed is different from the serial port speed. This is
necessary because Mac OS X’s internal timers are based on the connection speed.

Syntax
COMMUNICATINGAT baud

Parameter

baud

The modem speed, in bits per second.

Example
COMMUNICATINGAT 4800

DECTRIES

The DECTRIES command decreases the variable tryCounter by one. The CCL interpreter maintains
tryCounter, which you may set to a value and increase or decrease by one. See also the commands IFTRIES,
INCTRIES, and SETTRIES.

Syntax
DECTRIES

DTRCLEAR

The DTRCLEAR command clears (that is, deasserts) the Data Terminal Ready (DTR) signal on the RS-232
interface.

Syntax
DTRCLEAR

DTRSET

The DTRSET command sets (that is, asserts) the Data Terminal Ready (DTR) signal on the RS-232 interface.

30 CCL Commands
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Syntax
DTRSET

EXIT

EXIT terminates execution of the script and returns a result code along with an optional string.

 ■ If the script executes successfully, have it return a result code of 0.

 ■ If the script fails for any reason, it should return the appropriate error result code, as listed in “Result
Codes” (page 41)

To give the user a nonstandard error message, use result code -6002 and use the string parameter to pass
the nonstandard error message.

Syntax
EXIT result ["string"]

Parameters

result

One of the CCL result codes listed in Appendix A, "Result Codes".

string

The message displayed to the user when a connection attempt fails; if you include a string for
one of the standard result codes, it overrides the message that Mac OS X would normally
display.

Examples
EXIT -6022
EXIT -6002 "unable to communicate with PBX"

FLUSH

FLUSH empties all characters from the serial driver input buffer.

Syntax
FLUSH

HSRESET

The HSRESET command sets the serial port's flow control options. If you are using a standard modem cable,
you will turn off flow control and leave it off. If you are using a device that supports RTS/CTS handshaking,
you need only the outputCTS parameter. Turn all options off at hangup.

Syntax
HSRESET outputXON/XOFF outputCTS XON XOFF
 inputXON/XOFF inputDTR

CCL Commands 31
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Parameters

outputXON/XOFF

XON/XOFF handshaking for output. For Mac OS X, it must be off.

outputCTS

CTS hardware handshaking for output. For a modem, if you are using a cable that supports
RTS/CTS handshaking, it should be on for originate and answer modes and off for hangup
mode.

XON

Specifies the XON character. (DO NOT USE with Mac OS X.)

XOFF

Specifies the XOFF character. (DO NOT USE for Apple Remote Access.)

inputXON/XOFF

XON/XOFF handshaking for input. For Apple Remote Access, it must be off.

inputDTR

DTR hardware handshaking for input. For Apple Remote Access, it should be off. For more
information, see Inside Macintosh, volume 4 (no longer in print) or Inside Macintosh: Devices,
available through the Apple Developer Catalog.

Example
HSRESET 0 1 0 0 0 0

IFANSWER

If the script is executing in answer mode, the IFANSWER command causes execution to continue at the
specified label.

Syntax
IFANSWER jumpLabel

Parameter

jumpLabel

The label to which execution should conditionally jump.

Example
IFANSWER 30

IFORIGINATE

If the script is executing in originate mode, the IFORIGINATE command causes execution to continue at
the specified label.

Syntax
IFORIGINATE jumpLabel

32 CCL Commands
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Parameter

jumpLabel

The label to which execution should conditionally jump.

Example
IFORIGINATE 7

IFSTR

The IFSTR command compares two strings: one of the variable strings (described in “Variable Strings
(varStrings)” (page 17)) and a literal string that you specify in the script. If the strings are equal, the script
continues execution at the specified label.

Syntax
IFSTR varStringIndex jumpLabel
 "compareString"

Parameters

varStringIndex

The number of the variable string to compare.

jumpLabel

The label to which execution should conditionally jump.

compareString

The string to which the variable string is compared.

In the following example, if the modem speaker flag (varString2) is on (1), execution jumps to label 55.
Otherwise, the next command is executed.

Example
IFSTR 2 55 "1"

IFTRIES

The IFTRIES command compares a parameter with the variable tryCounter. If the value of tryCounter
is greater than or equal to the parameter, the script continues execution at the specified label. See also the
commandsDECTRIES, INCTRIES, and SETTRIES.

Syntax
IFTRIES numTries jumpLabel

Parameters

numTries

The parameter to compare with the variable tryCounter.

jumpLabel

The label to which execution should conditionally jump.

CCL Commands 33
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

The following example checks to see if the value of tryCounter is greater than or equal to 3. If so, execution
jumps to label 62 and continues. If not, the next instruction is executed.

Example
IFTRIES 3 62

INCTRIES

The INCTRIES command increases the variable tryCounter by one. See also the commands DECTRIES,
IFTRIES, and SETTRIES.

Syntax
INCTRIES

JSR

The JSR command causes script execution to jump to the subroutine located at the specific label, saving the
address of the line following the JSR command. When a RETURN command is encountered, execution resumes
at the line following the JSR command. JSR commands can be nested up to 16 deep.

Syntax
JSR jumpLabel

Parameter

jumpLabel

The label where execution should continue after the jump.

Example
JSR 50

JUMP

The JUMP command causes script execution to continue at the specified label.

Syntax
JUMP jumpLabel

Parameter

jumpLabel

The label where execution should continue after the jump.

Example
JUMP 59

34 CCL Commands
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

LBREAK

The LBREAK command generates a long break (3.5 seconds) on the transmission line.

Syntax
LBREAK

MATCHCLR

The CCL interpreter has a buffer that holds up to 32 strings loaded by the MATCHSTR command. The MATCHCLR
command erases all strings in the buffer. Use the MATCHCLR command before loading each new group of
strings. See also the MATCHREAD and MATCHSTR commands.

Syntax
MATCHCLR

MATCHREAD

The CCL interpreter has a buffer that holds up to 32 strings loaded by the MATCHSTR command. The MATCHREAD
command reads input from the serial driver and compares the input to the strings currently in the buffer. If
a match is found within the specified MATCHREAD time, execution continues at the label associated with that
match string (as defined by the MATCHSTR command that loaded the string). See also the MATCHCLR and
MATCHSTR commands.

Syntax
MATCHREAD time

Parameter

time

The time allowed for a match, in tenths of a second.

The following example searches for a match within 3 seconds.

Example
MATCHREAD 30

MATCHSTR

The CCL interpreter has a buffer that holds up to 32 strings. The MATCHSTR command loads a string to the
buffer, so that incoming strings can be matched against it by a MATCHREAD command. If an incoming string
matches the stored string, script execution continues at the label specified in the MATCHSTR command. See
also the commands MATCHCLR and MATCHREAD.

Syntax
MATCHSTR matchNum matchLabel "matchStr"

CCL Commands 35
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Parameters

matchNum

A value from 1–32 specifying which string in the buffer to replace.

matchLabel

The label where execution should continue when a MATCHREAD command detects a matching
string.

matchStr

A string (1–255 characters in length) to compare against.

The following example loads the string "OK\13\10" into the buffer as string 1. If a subsequent MATCHREAD
reads a string that matches this one, then execution jumps to label 8.

Example
MATCHSTR 1 8 "OK\13\10"

MONITORLINE

Available only in Mac OS X.

Enables or disables Data Carrier Detect (DCD).

Syntax
MONITORLINE monitor

Parameters

monitor

0

Disable DCD (soft carrier mode).

1

Enable DCD (hard carrier mode).

The following example enables data carrier detect.

Example
MONITORLINE 1

NOTE

The NOTE command displays status and log information, passing the message string as a parameter. Optionally,
you can set the message level to specify where the message should appear.

36 CCL Commands
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Note: While in answer mode, NOTE does not write to the activity log or to the status window.

Syntax
NOTE msgStr [msgLevel]

Parameters

msgStr

The message to display.

msgLevel

The message level (the default level is 3).

1

Send the message to the activity log only.

2

Send the message to the Internet Connect status window only.

3

Send the message to both the activity log and the Internet Connect status window.

The following examples show important places in which you should use the NOTE command. In the first
example, the script logs outgoing calls by displaying the dialed phone number in the Internet Connect status
window and the activity log. In the second example, the script displays the speed of the connection in the
Internet Connect status window.

Examples
NOTE "DIALING ^1" 3
NOTE "Communicating at 9600 bps." 2

PAUSE

PAUSE causes script execution to halt for a specified period of time.

Syntax
PAUSE time

Parameter

time

The time to pause, in tenths of a second.

The following example causes script execution to pause for 2 seconds.

Example
PAUSE 20

CCL Commands 37
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

RETURN

The RETURN command terminates a subroutine. Script execution continues with the line following the JSR
command.

Syntax
RETURN

SBREAK

The SBREAK command generates a short break (.5 seconds) on the transmission line.

Syntax
SBREAK

SERRESET

The SERRESET command configures the serial port by passing values for baud rate, parity, data bits, and
stop bits to the serial driver. Specifying a value other than the values listed below causes the default value
to be used. The defaults for each parameter are listed below.

Syntax
SERRESET baudRate, parity, dataBits,
 stopBits

Parameters

baudRate

300, 1200, 2400 (the default), 4800, 9600, 14400, 19200, 28800, 38400, 57600, and so on.

parity

1 for odd parity 2 for even parity 0 or 3 for no parity (the default)

dataBits

5, 6, 7, or 8 (the default)

stopBits

1 for 1 stop bit (the default) 2 for 2 stop bits 3 for 1.5 stop bits

Example
SERRESET 9600, 0, 8, 1

Note: Apple Remote Access requires no parity, 8 data bits, and 1 stop bit.

SETSPEED

The SETSPEED command sets the asynchronous serial interface speed to the specified speed. Use SETSPEED
to set speeds other than those allowed in SERRESET.

38 CCL Commands
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Syntax
SETSPEED interfacespeed

Parameter

interfacespeed

The serial interface speed.

Example
SETSPEED 24000

SETTRIES

SETTRIES initializes the tryCounter variable to the specified value. See also the commands DECTRIES,
IFTRIES, and INCTRIES.

Syntax
SETTRIES tries

Parameter

tries

The value to assign to the tryCounter variable.

Example
SETTRIES 0

USERHOOK

USERHOOK conveys information about the state of the modem to Mac OS X.

Syntax
USERHOOK opcode

CCL Commands 39
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

Parameter

opcode

The user hook to execute.

1

Indicates that the script is answering a call and that a ring is indicated by the modem. This
prevents other applications from using the serial port until after the call has terminated.

2

Reports that the modem is doing error correction (other than MNP10, which is indicated by
opcode 4).

3

Requests that Mac OS X turn off its built-in data compression.

4

Reports that the modem is doing MNP10 error correction.

Example
USERHOOK 1

WRITE

WRITE writes the specified string to the serial driver.

Syntax
WRITE message

Parameter

message

The message written to the device.

The following example sends to the serial driver the modem command ATDT followed by variable string #1
and a carriage return. (For more information, see “Variable Strings (varStrings)” (page 17).)

Example
WRITE "ATDT^1\13"

40 CCL Commands
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

CCL Command Reference

This appendix lists the result codes returned by the Communication Command Language (CCL). Each result
code is shown with a description of the error and the message, if any, that is displayed to the user.

If the script executes successfully, have it exit with result code 0. If the script is unsuccessful for any reason,
have it exit with one of the error result codes listed in this appendix. Note that result code -6002 allows you
to pass a custom message to the user.

Message displayedDescriptionResult code

(Supplied by the string parameter in the EXIT command.)Generic CCL error.-6002

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

Subroutine overflow.-6003

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

The target label is undefined.-6004

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

Bad parameter error.-6005

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

Duplicate label error.-6006

(No message is displayed.)Close error.-6007

(No message is displayed.)The script was canceled.-6008

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

The script contains too many
lines.

-6009

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

The script contains too many
characters.

-6010

(No message is displayed.)The CCL has not been
initialized.

-6011

(No message is displayed.)Cancel in progress.-6012

(No message is displayed.)Another script is in progress.-6013

(No message is displayed.)Exit with no error.-6014

41
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

Result Codes

Message displayedDescriptionResult code

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

A label is out of range.-6015

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

Bad command.-6016

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

End of script reached; expected
Exit.

-6017

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

The match string index is out of
bounds.

-6018

Modem not responding. Reset modem, check connections,
or check to see that the proper port and modem type were
specified in the Remote Access Setup control panel.

Modem error; the modem is not
responding.

-6019

The modem cannot acquire a dial tone.No dial tone.-6020

The modems could not connect. Try again.No carrier.-6021

The phone number you are calling is busy.The line is busy.-6022

The phone number you are calling does not answer.No answer.-6023

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

No @ORIGINATE command in
the modem script.

-6024

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

No @ANSWER command in the
modem script.

-6025

The file for the modem you selected does not work properly.
It may be damaged; try replacing the file in the Extensions
folder.

No @HANGUP command in the
modem script.

-6026

42
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

Result Codes

This appendix describes the CTS/RTS handshaking cable that is recommended when using Mac OS X with a
V.32bis or faster modem and discusses implications of this wiring scheme for other communications
applications.

To make the most efficient use of Mac OS X with a V.32bis or faster modem, use a cable with the specifications
shown in Table C-1.

Table C-1 Computer to Modem Cable Specifications

CommentsModem

DB-25

Computer

DIN-8

4,20 (RTS, DTR)1 (DTR)

Normally pin 2 (CTS) is connected to pin 6 (DSR) on other cables.5 (CTS)2 (CTS)

2 (TD)3 (TxD-)

7 (SG)4 (SG)

3 (RD)5 (RxD-)

Not connected6 (TxD+)

8 (DCD)7 (GPi)

7 (SG)8 (RxD+)

Some manufacturers ship their V.32bis and faster modems with a cable that meets these specifications.

Modem Control Issues

A cable constructed as specified in the previous section provides the hardware handshaking that high-speed
modems require. If your cable does not meet these specifications, the modem may not operate or may not
be able to sustain a connection. The cable supports the following handshaking features:

 ■ CTS handshaking allows the modem to signal the computer to stop sending data to the modem.

 ■ RTS handshaking allows the computer to signal the modem to stop sending data to the computer.

 ■ DTR handshaking allows the computer to signal the modem to reset, hangup the call, or go into command
mode.

Modem Control Issues 43
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX C

Cable Specifications

RTS and DTR cannot be used concurrently. If you want to use RTS, you need to force disconnects by other
means than DTR, such as +++, SBREAK, or LBREAK. If you want to use DTR, the computer must be able to
accept data at all times. The computer's serial port must be set to a speed equal to or greater than the
modem's highest connect speed. The actual connect speed is the modem to modem data rate, rather than
the modem's serial port speed. DSR and DCD handshaking are not available with this cable. Therefore other
types of communications software, such as terminal emulation software, cannot use DSR and DCD signals
to detect modem readiness or carrier presence with this cable.

Recommended Modem Control

The following guidelines provide for optimum performance in most instances:

 ■ Set the computer's serial port speed equal to or greater than the modem's highest connect speed.

 ■ Use CTS handshaking to control data flow to the modem.

 ■ Do not use RTS handshaking.

If possible with your modem type, use DTR control for hanging up and resetting.

44 Recommended Modem Control
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX C

Cable Specifications

This table describes the changes to CCL Modem Scripting Guide.

NotesDate

TBD2007-06-28

45
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

46
2007-06-28 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	CCL Modem Scripting Guide
	Contents
	Tables and Listings
	Introduction
	Writing a CCL Script
	Initiating a Call
	Answering a Call
	Terminating a Call

	CCL Script Syntax
	CCL Commands
	Comments
	Capitalization
	Labels
	String Formats
	Variable Strings (varStrings)
	Match Strings
	Script Size

	CCL Bundles and Property Lists
	About mlts Resource Storage
	About Property List Storage
	Property List Structure
	CCL Personalities Dictionary
	CCLParameters Dictionary
	Connect Type Key
	Device Names Dictionary
	GPRS Capabilities Dictionary
	Script Name Key

	Miscellaneous Top-Level Property Keys
	CCL Version Key
	CFBundle Keys

	Example Property Lists

	Appendix A: CCL Command Reference
	Comments
	Labels and Sections
	@ANSWER
	@CCLSCRIPT
	@HANGUP
	@LABEL
	@ORIGINATE

	CCL Commands
	ASK
	CHRDELAY
	COMMUNICATINGAT
	DECTRIES
	DTRCLEAR
	DTRSET
	EXIT
	FLUSH
	HSRESET
	IFANSWER
	IFORIGINATE
	IFSTR
	IFTRIES
	INCTRIES
	JSR
	JUMP
	LBREAK
	MATCHCLR
	MATCHREAD
	MATCHSTR
	MONITORLINE
	NOTE
	PAUSE
	RETURN
	SBREAK
	SERRESET
	SETSPEED
	SETTRIES
	USERHOOK
	WRITE

	Appendix B: Result Codes
	Appendix C: Cable Specifications
	Modem Control Issues
	Recommended Modem Control

	Revision History

