
Publication Subscription Programming Guide
Internet & Web > Web Content

2007-05-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iTunes, Mac, Mac
OS, New York, Objective-C, Safari, and Tiger are
trademarks of Apple Inc., registered in the
United States and other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Understanding Feeds 9

What Is a Feed? 9
How Feeds Are Generated 10
Feed Formats 11
What Is Extension XML? 12

Chapter 2 Publication Subscription Overview 13

Publication Subscription Components 13
Publication Subscription Framework 14

Chapter 3 Subscribing to a Feed 17

Generating a Client 17
Using a Subscribed Feed 17
Using a Feed Without a Subscription 18
Storing a Feed’s Preferences 18

Chapter 4 Viewing and Retrieving Content 21

Where’s My Entry? 21
Downloading Enclosures 22
Extension XML 23

Glossary 25

Document Revision History 27

3
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

4
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 Understanding Feeds 9

Figure 1-1 Feed bookmarks in Safari 9
Figure 1-2 A feed viewed in Safari 10
Figure 1-3 Feed generation workflow 11
Listing 1-1 A feed entry in RSS 2.0 11
Listing 1-2 A feed entry in the Atom Syndication Format 11
Listing 1-3 An Atom extension XML example 12

Chapter 2 Publication Subscription Overview 13

Figure 2-1 Publication Subscription layers 14
Figure 2-2 A feed structure as a set of objects 14
Figure 2-3 An entry viewed with Safari 15
Figure 2-4 Subscription object structure 15

Chapter 3 Subscribing to a Feed 17

Listing 3-1 Subscribing a client to a feed 17
Listing 3-2 Accessing a protected feed 18
Listing 3-3 Initializing a PSFeed object without a subscription 18
Listing 3-4 Modifying the settings of a feed 18

Chapter 4 Viewing and Retrieving Content 21

Listing 4-1 Accessing every entry in a feed 21
Listing 4-2 Downloading enclosures automatically 22
Listing 4-3 Downloading an enclosure 22
Listing 4-4 Receiving download state changes through notifications 23
Listing 4-5 Retrieving extension XML from an entry 24

5
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

6
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Introduced in Mac OS X v10.5, Publication Subscription is a technology that offers developers a way to
subscribe to web feeds from their applications. Web feeds are documents that contains frequently updated
information. You can use Publication Subscription to allow your applications to subscribe to podcasts,
photocasts, and any other feed-based document. Plus, Publication Subscription handles all the feed downloads
and updates automatically. This document explains how feeds work and how to use them in your application.

Before reading this document, you should have some experience with Objective-C and be familiar with XML.

Organization of This Document

This book contains the following chapters:

 ■ “Understanding Feeds” (page 9) describes what feeds are and how they work.

 ■ “Publication Subscription Overview” (page 13) explains the architecture of Publication Subscription.

 ■ “Subscribing to a Feed” (page 17) explains how to use Publication Subscription to subscribe to a feed.

 ■ “Viewing and Retrieving Content” (page 21) describes how to read the data in a feed.

See Also

For an in-depth description of the Publication Subscription framework, read:

 ■ Publication Subscription Framework Reference

For more information about some of the technology areas used by Publication Subscription, refer to:

 ■ Core Foundation Design Concepts to learn more about the Cocoa design patterns

 ■ Tree-Based XML Programming Guide for Cocoa to learn more about XML and how to use it in Cocoa

There are also a number of good websites about the different feed standards supported by Publication
Subscription:

 ■ For more information about the RSS 0.9, RSS 1.0 and RSS 2.0 formats, read http://en.wikipedia.org/wi-
ki/Really_Simple_Syndication.

 ■ For more information about the Atom Syndication Format, read http://en.wikipedia.org/wi-
ki/Atom_%28standard%29.

Organization of This Document 7
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://en.wikipedia.org/wiki/Really_Simple_Syndication
http://en.wikipedia.org/wiki/Really_Simple_Syndication
http://en.wikipedia.org/wiki/Atom_%28standard%29
http://en.wikipedia.org/wiki/Atom_%28standard%29

8 See Also
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Before you use Publication Subscription, it is important to understand what feeds are and how they work.
This chapter explains the data structure of a feed, how a feed is created, the different types of feeds, and
how to use different feed namespaces.

What Is a Feed?

A feed is an XML document that contains frequently updated information. A feed provides information or
data independent of presentation. Thus, an XML document can be parsed by an application to retrieve
information without the additional style of an entire webpage. Additionally, the parsing application can
determine what information is new and mark it as such.

There’s a good chance you’ve already used a feed, even if you didn’t know it. When you run Safari in Mac OS
X v10.4 Tiger, there are a number of preinstalled bookmarks in the bookmarks bar. In the News folder (in
Figure 1-1), many of the bookmarks, such as the Washington Post and CNET News, are feeds, not webpages.
Every 30 minutes, Safari downloads each of these feeds and checks for any new headlines. If there are new
headlines, Safari places a number next to the bookmark corresponding to the number of new entries (Figure
1-1). Safari also shows you the article if you choose the bookmark.

Figure 1-1 Feed bookmarks in Safari

News headlines are usually stored as a feed. When a new headline is available, it is added to the feed as an
entry. Then, an application on the user’s system (such as Safari) downloads the updated feed, parses it, and
checks for the new headline. Figure 1-2 shows how Safari displays a feed of the New York Times entries.

What Is a Feed? 9
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Understanding Feeds

Figure 1-2 A feed viewed in Safari

Feeds are not limited to text; you can make a feed that links to any type of data. For example, a podcast is
simply a feed with audio files in addition to text. Similarly, a photocast is a feed with images.

Feeds can also be used for publishing any binary data. For instance, you could create a feed that contains
software updates for your application. Your application can check the feed and, when a new update is
available, download it from the server.

How Feeds Are Generated

Since feeds are simply XML documents, they can be created using a text editor. Adding new entries by hand,
however, is a tedious and error-prone process. Typically, the life of a feed begins when the user creates an
entry (text, graphics, audio, and the like) and adds it to a database. Then an application takes the entries
from the database and produces a feed. Often the application creates more than just a feed; it also generates
a webpage. The application that generates the feed can be either local to the user’s system or web-based.
See Figure 1-3.

10 How Feeds Are Generated
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Understanding Feeds

Figure 1-3 Feed generation workflow

RSS

.xml

Web Application

Application

.html
Text/
 Images/
 Audio...

Feed Formats

A feed format is a specific set of XML elements used in a feed. Publication Subscription supports four
commonly used feed formats:

 ■ RSS 0.9

 ■ RSS 1.0

 ■ RSS 2.0

 ■ Atom Syndication Format

Even though these standards have similar names, their elements are very different. For example, compare
the XML elements for an entry in RSS 2.0 format (Listing 1-1) with the elements in the Atom Syndication
Format (Listing 1-2). You’ll notice that while the content of both entries is the same, the elements that define
them are different.

Listing 1-1 A feed entry in RSS 2.0

<item>
 <title>Welcome!</title>
 <pubdate>Fri, 27 Oct 2006 18:51:39 GMT</pubdate>
 <author>Matt</author>
 <description>Hello World!</description>
</item>

Listing 1-2 A feed entry in the Atom Syndication Format

<entry>
 <author>
 <name>Matt</name>
 </author>
 <title>Welcome!</title>
 <modified>2006-10-27T18:51:39Z</modified>
 <issued>2006-10-27T18:51:39Z</issued>

Feed Formats 11
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Understanding Feeds

 <content type="text/plain">Hello World!</content>
</entry>

Publication Subscription is designed to interpret each of these four formats. Since the API encapsulates each
of the formats, no matter which format your feed is in, the methods to interpret them are the same.

For more information about each of the XML formats:

 ■ Read http://en.wikipedia.org/wiki/Really_Simple_Syndication to learn more about the RSS 0.9, RSS 1.0
and RSS 2.0 formats

 ■ Read http://en.wikipedia.org/wiki/Atom_%28standard%29 to learn more about the Atom Syndication
Format.

What Is Extension XML?

There may be times when the feed you subscribe to uses elements that are not part of one of the feed formats.
Extension XML extends the specifications to support application-specific data or objects, similar to a plug-in
system for feeds. Extension XML refers to a collection of elements outside of the feed format, also known as
namespace. Each namespace is identified by a unique URL. Namespace URLs are defined at the beginning
of a feed, and are often associated with an easier to remember string. This string is known as a namespace
prefix.

For example, a feed that has bank account information might use a bank namespace identified by the URL
http://www.example.com/bank, and a namespace prefix of bank. This namespace might have elements
such as owner, address, checking and savings. An entry using this namespace would look like the one
in Listing 1-3.

Listing 1-3 An Atom extension XML example

<feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:bank="http://www.example.com/bank">

...

<item>
 <title>Account2004</title>
 <bank:owner>John Doe</bank:owner>
 <bank:address>1 Infinite Loop, Cupertino, CA 95014</bank:address>
 <bank:checking>111829384</bank:checking>
 <bank:savings>949289291</bank:savings>
</item>

There are many additional namespaces already defined. One of the most popular ones if for an iTunes podcast.
A good resource for finding namespaces is The Dublin Core Metadata Initiative, as well as rss-extensions.org.

Understanding the structure and workflow of a feed is important to using the Publication Subscription
framework. Knowing about the components of a feed and the organization of the four major feed standards
will help you understand the organization of the Publication Subscription framework and its components.

12 What Is Extension XML?
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Understanding Feeds

http://en.wikipedia.org/wiki/Really_Simple_Syndication
http://en.wikipedia.org/wiki/Atom_%28standard%29
http://www.apple.com/itunes/store/podcaststechspecs.html
http://dublincore.org/
http://www.rss-extensions.org

When used properly, Publication Subscription allows your application to subscribe to feeds, and update the
feeds transparently. However, the technology requires the cooperation of multiple components. This chapter
describes the major components of Publication Subscription, along with the architecture of the framework.

Publication Subscription Components

The Publication Subscription technology provides an architecture for your application to subscribe feeds.
There are three major components to the technology: the Publication Subscription framework
(PubSub.framework), the PubSub Agent, and the PubSub Database.

The framework is a collection of Objective-C classes that provide an abstraction for each piece of a feed. The
framework uses a background application to perform such tasks as downloading feeds from the Internet,
and updating feeds. This background application, called the PubSub Agent, is also responsible for sending
notifications to clients of the Publication Subscription framework, and receiving interprocess communications
(IPCs) from the clients when necessary.

When feeds are downloaded, the PubSub Agent stores the new information into a database known as the
PubSub Database. For each user account there is a single PubSub Database, so a feed is only stored once
per user account. If two separate applications are subscribing to the same feed, only one copy is stored in
the database.

The Publication Subscription components can be seen in Figure 2-1.

Publication Subscription Components 13
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Publication Subscription Overview

Figure 2-1 Publication Subscription layers

The Internet

PubSub
Database

Notifications

IPC

Publication Subscription Framework

PubSub Agent

Publication Subscription Framework

The Publication Subscription framework is designed to have a similar structure to that of a set of feeds. Each
component of a feed (including the feed itself) is stored as an object, and the object’s hierarchy mimics that
of a feed (see Figure 2-2). At the same time, the Publication Subscription framework follows the observer
design pattern. The observer design pattern defines a one-to-many dependency between objects so that
when the subject object changes state, all its dependents are notified and updated automatically. (For more
information about the observer design pattern, read Cocoa Design Patterns.)

Figure 2-2 A feed structure as a set of objects

entry

author content

<entry>
 <author>
 <name>Matt</name>
 </author>
 <content>Hello World!</content>
</entry>

14 Publication Subscription Framework
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Publication Subscription Overview

For your application to communicate with the PubSub Agent, it needs to register itself with Publication
Subscription by generating a client object (PSClient). Each application that uses Publication Subscription
needs its own client object. If you want to subscribe to a feed, you need to tell the client object. Similarly, if
there is a change in a feed your application subscribes to, the client notifies your application. In terms of the
observer model, the subject object of the Publication Subscription framework is the client object.

The client object maintains a set of feed objects, one for each feed that it is subscribed to. A feed object
(PSFeed) stores information about a feed, such as its title, its URL, the time when it was last updated, and
the entries associated with it. Just as a feed contains a number of entries, feed objects contain a number of
entry objects (PSEntry). An entry object contains the content (PSContent), the author (PSAuthor), and (if
necessary) the enclosure (PSEnclosure) of the entry. Figure 2-3 shows an entry, and each of its components,
viewed using Safari.

Figure 2-3 An entry viewed with Safari

Title Author

Enclosure

Published date

Content

You can adjust the settings for each client and feed object. For example, you can specify how often to check
for feed updates or how long entries should be stored in the PubSub Database. You specify the settings with
a settings object (PSFeedSettings). A settings object can be associated with either a client or a feed.

The structure of the subscription objects can be seen in Figure 2-4.

Figure 2-4 Subscription object structure

PSFeedSettings

PSClient

PSAuthor

PSContent

PSEnclosure

PSFeed

PSFeed

PSFeed

PSFeed

PSEntry

PSEntry

PSEntry

PSEntry

Understanding the components of Publication Subscription and the Publication Subscription framework is
necessary for subscribing to feeds within your application. The next two chapters explain how to use the
Publication Subscription framework in an application.

Publication Subscription Framework 15
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Publication Subscription Overview

16 Publication Subscription Framework
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Publication Subscription Overview

To view a feed, your application needs to either register with the PubSub Agent and subscribe to the feed,
or download the feed and use the Publication Subscription framework to parse it. This chapter describes
how to perform both of these tasks, as well as how to adjust the preferences for retrieving the feed.

Generating a Client

To register your application with Publication Subscription, create a client object. Sending applicationClient
to the PSClient class returns a client object for the current application, as the following code shows.

PSClient *client = [PSClient applicationClient];

You can also create a client object to inspect feeds of another application. To create this client object, you
need the bundle identifier of the other application. The bundle identifier is a string using the reverse-DNS
naming convention that uniquely identifies each application that uses Publication Subscription. Rather than
using the applicationClient method to create the new client object, send
clientForBundleIdentifier: to the PSClient class and pass the bundle identifier.

For example, for your application to view the feeds that Mail subscribes to, you would use:

PSClient *mailClient = [PSClient clientForBundleIdentifier:@"com.apple.mail"];

Using a Subscribed Feed

After your application has its client object, it can subscribe to feeds. First, create an NSURL object containing
the URL to the feed. Then, use the client object method addFeedWithURL: to subscribe the client to the
feed and return a newly initialized PSFeed object. The code should look like Listing 3-1. Keep in mind that
the addFeedWithURL: method does not create duplicate entries in the database. If you add the same feed
twice, you receive the same data from the original database entry.

Listing 3-1 Subscribing a client to a feed

NSURL *url = [NSURL URLWithString:
 @"http://www.apple.com/main/rss/hotnews/hotnews.rss"];
PSFeed *feed = [client addFeedWithURL:url];

Some feeds may require a user name and password for users to access them through HTTP authentication.
Store the authorization information with the feed by setting the login property of the feed object for the
user name, and use the setPassword: method to store the password in the user’s default keychain.
Publication Subscription also uses the same cookie database as Safari, so if the user is logged into the site
of the feed through Safari, Publication Subscription also has access. If you don’t store the authorization

Generating a Client 17
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Subscribing to a Feed

information with the feed and the user is not logged in through Safari, the PubSub Agent requests the
authorization information from the user. Listing 3-2 shows how to store the user name and password in the
feed object.

Listing 3-2 Accessing a protected feed

// Place user name and password in NSString objects
NSString *login = @"username";
NSString *password = @"password";

// Store the authorization information in the feed
feed.login = username;
[feed setPassword: password];

Using a Feed Without a Subscription

You can create a feed object without subscribing to the feed. In this situation, you need to use the feed object
method initWithURL: and pass the URL of the feed. See Listing 3-3.

Listing 3-3 Initializing a PSFeed object without a subscription

NSURL *url = [NSURL URLWithString:
 @"http://www.apple.com/main/rss/hotnews/hotnews.rss"];
PSFeed *feed = [[PSFeed alloc] initWithURL:url];
NSError *error;
[feed refresh:&error];

If you do this, the feed is not automatically updated as a subscribed feed would be. Instead, you are using
the Publication Subscription framework to parse the feed.

Storing a Feed’s Preferences

A client can subscribe to multiple feeds, but not all feeds are updated at the same interval. You may have
one feed that needs to be checked every five minutes, while another feed only needs to be updated every
three hours. Similarly, you may want the time it takes an entry to expire to depend on the feed. The feed
settings objects allow you to customize the preferences for each feed. Each feed object is instantiated with
a group of default settings.

To customize the preferences for a feed, obtain a feed settings object by either using the settings property
of a feed object, or the PSFeedSettings defaultFeedSettings class method. Then adjust the settings
as you see fit with the different properties. Store the updated feed settings in the feed object.

Listing 3-4 retrieves the settings object, sets the entries to expire after 30 days, sets the feed to update every
30 minutes, and then puts the settings object back in the feed.

Listing 3-4 Modifying the settings of a feed

// Retrieve PSFeedSettings object from feed
PSFeedSettings *feedSettings = feed.settings;

18 Using a Feed Without a Subscription
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Subscribing to a Feed

// Set entries to expire after 30 days (60 s/m * 60m/h * 24 h/d * 30 d)
feedSettings.expirationInterval = 2592000;

// Set feed to check for updates every 30 minutes (60 s/m * 30m)
feedSettings.refreshInterval = 1800;

// Store settings back in the feed
feed.settings = feedSettings;

You can also set the feed settings for a client. If you do, a feed that uses the default settings inherits the
client’s settings instead of the default ones. However, any settings unique to a feed overrides the settings of
the client.

You now know how to create a feed object for any web feed and adjust the preferences for them. The next
chapter, “Viewing and Retrieving Content,” explains how to obtain the entries and other information in the
feed.

Storing a Feed’s Preferences 19
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Subscribing to a Feed

20 Storing a Feed’s Preferences
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Subscribing to a Feed

After you obtain a feed object, you need to be able to retrieve the information from within it. Sometimes
this information contains not only text, but also files in enclosures or extension XML. The following chapter
describes what information is available in an entry and how to access it.

Where’s My Entry?

Most feeds contains one or more entries. To retrieve the entries from a feed object, use either the entries
property (for an array of entry objects) or the entryEnumeratorSortedBy: method (for an enumerator of
entry objects).

An entry object contains all the information specific to an entry, such as its title, its URL, its authors, its content,
and, if necessary, its enclosures. Most of this information is a simple string or URL. However, three of
components are a little more complicated.

In some feed standards, the author contains not only a name but also contains an email address and a
homepage (see “Feed Formats” (page 11)). The author information in Publication Subscription is stored in
an author object. An author object represents a name, an email address, a homepage and a link to an
ABPerson object.

The content of an entry is also more complex than a simple string. It often comes in one of two different
forms: either plain text, or HTML formatted text. In Publication Subscription the content and the summary
of an entry are stored as content objects. A content object contains methods for retrieving the content either
as a plain text string or an HTML string. The content is returned in the specified format based on which
accessor method is used.

An enclosure is a way to attach a file to an entry. If an entry contains enclosures, they will be linked to the
entry object. For more information about enclosures, read “Downloading Enclosures” (page 22).

To print out the title and content of every entry in a feed, the code would look like Listing 4-1.

Listing 4-1 Accessing every entry in a feed

// Retrieve the entries as an unsorted enumerator
NSEnumerator *entries = [feed entryEnumeratorSortedBy: nil];
PSEntry *entry;

// Go through each entry and print out the title, authors, and content
while (entry = [entries nextObject]) {
 NSLog(@"Entry Title:%@", entry.title);
 NSLog(@"Entry Authors:%@", entry.authorsForDisplay);
 NSLog(@"Entry Content:%@", entry.content.plainTextString);
}

Where’s My Entry? 21
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Viewing and Retrieving Content

Since it follows an observer design pattern, Publication Subscription can also notify your application when
any changes occur to a feed. Register with the notification center to be alerted when any change occurs
(PSFeedEntriesChangedNotification). When your callback method is invoked, the changed entries are
stored as a key-value pair in the user information dictionary of the notification.

Downloading Enclosures

Some entries may contain links to files as enclosures. Publication Subscription provides features that make
it easy to download the files within the enclosure. Each enclosure is stored as a enclosure object in its
associated entry object. Because there may be more than one enclosure in an entry, the entry object property
enclosures returns an array of enclosure objects. In most cases, this array only contains one object. Each
of these objects contains information about the enclosure’s size, URL and MIME type.

By default, enclosures are not automatically downloaded. You can change this setting on a per-feed basis so
that any enclosure from a subscribed feed is downloaded with the entry. Listing 4-2 shows how to make a
feed download its enclosures automatically.

Listing 4-2 Downloading enclosures automatically

PSFeedSettings *settings = feed.settings;
settings.downloadsEnclosures = YES;
feed.settings = settings;

If you want to download the file in the enclosures individually, send download: to the appropriate enclosure
object. The download: method is asynchronous, so it rarely returns an error. Instead, check on the status of
the download with the downloadState property. There are six possible states:

PSEnclosureDownloadDidFail

PSEnclosureDownloadDidFinish

PSEnclosureDownloadIsIdle

PSEnclosureDownloadIsQueued

PSEnclosureDownloadIsActive

PSEnclosureDownloadWasDeleted

If the download failed, see what caused the failure by using the downloadError method. If the download
is still active, you can check on its progress by using the downloadProgressmethod. Assuming the download
finishes, the location of the downloaded file is available with the downloadedPath property.

Although the download status can be checked in a synchronous manner, it is recommended that you register
for the notification PSEnclosureDownloadStateDidChangeNotification instead. When your callback
method is invoked, you can determine the status of the download. Listing 4-3 shows how to start downloading
the file in the enclosure and register for the appropriate notification. Listing 4-4 shows a callback method
for the notification.

Listing 4-3 Downloading an enclosure

// Get the enclosures from the current entry, and retrieve the first one
NSArray *enclosureArray = entry.enclosures;
enclosure = [enclosureArray objectAtIndex: 0];
NSError *error;

22 Downloading Enclosures
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Viewing and Retrieving Content

// Download the enclosure
if (![enclosure download:&error]) {
 NSLog(@"Enclosure download failed: %@", error)
} else {

 // Register for any changes to the download's state
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(downloadStateChanged:)
 name: PSEnclosureDownloadStateDidChangeNotification
 object: enclosure];
}

Listing 4-4 Receiving download state changes through notifications

- (void) downloadStateChanged: (NSNotification *) sender {

 // See what state change cause the notification to be sent
 switch (enclosure.downloadState) {

 // If the download failed, log why and stop receiving notifications
 case PSEnclosureDownloadStateDidFail:
 NSLog(@"Enclosure download failed: %@", enclosure.downloadError);
 [[NSNotificationCenter defaultCenter]
 removeObserver: self
 name: PSEnclosureDownloadStateDidChangeNotification
 object: enclosure];
 break;

 // If the download succeeded, log the location of the file and stop
 // receiving notifications
 case PSEnclosureDownloadStateDidFinish:
 NSLog(@"Location of downloaded file is: %@",
enclosure.downloadedPath);
 [[NSNotificationCenter defaultCenter]
 removeObserver: self
 name: PSEnclosureDownloadStateDidChangeNotification
 object: enclosure];
 break;

 case default:
 break;
 }
}

Extension XML

Many feeds may also contain extension XML elements. If additional namespaces are used in a feed, use the
extensionXMLElementsUsingNamespace:method to return an array of NSXMLElement objects. Pass the
namespace URL, not the prefix, to the extensionXMLElementsUsingNamespace: method. If your feed
had an entry like that in Listing 1-3 (page 12), extensionXMLElementsUsingNamespace: returns an array
of four NSXMLElement objects.

Extension XML 23
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Viewing and Retrieving Content

Listing 4-5 shows how to find a specific element in a particular namespace in an entry. In this example, the
namespace is the iTunes Podcast.

Listing 4-5 Retrieving extension XML from an entry

// Find each element using the iTunes Podcast namespace
for(NSXMLElement *elem in [entry extensionXMLElementsUsingNamespace:
@"http://www.itunes.com/dtds/podcast-1.0.dtd"]) {

 // Check if the element is called "keywords"
 if (NSOrderedSame == [[elem localName] isEqualToString:@"keywords"]) {

 // If it is, print the data from the element to the log
 NSLog(@"keywords:%@", [elem stringValue]);
 }
}

24 Extension XML
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Viewing and Retrieving Content

access control list (ACL) A list of users or groups.
Each user or group has associated permissions, such
as allow or deny. ACLs are used to control access to
files, folders, and services.

content The text or data in an entry. The content is
placed in a <description> element for RSS, or a
<content> element for Atom.

element An element is the information in an XML
document that begins with a start-tag (<element>)
and ends with an end-tag (</element>). Elements
can contain sub-elements, to create a tree-like
structure.

enclosure An element used for attaching files to an
entry. An enclosure element contains a link to a single
file, along with the file’s MIME type and size.
Enclosures are used to link to audio files in podcasts,
or images for photocasts.

entry An element that can contain the following
sub-elements: author, date , description, and
enclosure.

extension XML The use of additional namespaces in
an XML document.

feed An XML document that conforms to one of the
four major feed formats: RSS 0.9, RSS 1.0, RSS 2.0 or
Atom.

namespace A group of elements, each used for a
specific purpose. Namespaces are used to
distinguishing between elements of the same name.

namespace prefix A shorter name used to refer to
a namespace in an XML document. A namespace
prefix is designated at the beginning of an XML
document using the feed attribute
xmlns:prefix="http://www.example.com/namespace".

25
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

Glossary

26
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Publication Subscription Programming Guide.

NotesDate

New document describing the framework for subscribing to RSS and Atom
feeds.

2007-05-11

27
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2007-05-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Publication Subscription Programming Guide
	Contents
	Figures and Listings
	Introduction
	Understanding Feeds
	What Is a Feed?
	How Feeds Are Generated
	Feed Formats
	What Is Extension XML?

	Publication Subscription Overview
	Publication Subscription Components
	Publication Subscription Framework

	Subscribing to a Feed
	Generating a Client
	Using a Subscribed Feed
	Using a Feed Without a Subscription
	Storing a Feed’s Preferences

	Viewing and Retrieving Content
	Where’s My Entry?
	Downloading Enclosures
	Extension XML

	Glossary
	Revision History

