Java Development Guide for Mac OS X

Java

¢

2008-10-15

.

[

Apple Inc.

© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, Aqua,
Cocoa, eMac, Keychain, Mac, Mac OS,
Macintosh, Objective-C, Quartz, QuickTime,
Safari, WebObjects, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

Finder is a trademark of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

Filing and Tracking Bugs 8

Overview of Java for MacOS X 9

Javaand MacOS X 9
Java, BuiltIn 9
32-Bit and 64-Bit Java 10
The Aqua User Interface 10
Finding Your Way Around 12
The Java Home Directory 12
Java Extensions 12
Output from Java Programs 13
The File System 13

Apple Developer Tools for Java 15

JDK Tools in Mac OS X 15
Java IDEs 15
Xcode Tools 16
Get the Current Tools 16
Xcode 16
Jar Bundler 18
Applet Launcher 18
Other Tools 18
Developer Documentation 19
Providing Documentation Feedback 19

Java Deployment Options for Mac OS X 21

Java Web Start 21
Mac OS X Application Bundles 22
The Contents of an Application Bundle 22
A Java Application’s Information Property List File 23
Making a Java Application Bundle 24
Localizing Java Applications 25
Distributing Application Bundles 26
Making a Mac OS X Java Application Bundle on other Platforms 26

2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Double-Clickable JAR Files 26
The Java Plug-in 27

Mac OS X Integration for Java 29

Making User Interface Decisions 29
Working with Menus 29
Designing for Component Layout, Size, and Color 33
Working with Windows and Dialogs 34

Apple Events and AppleScript 37

System Properties 37

User Interface Toolkits for Java 39

Swing 39
Menu Bars (JMenuBar) 39
Tabbed Panes (JTabbedPane) 40
Component Sizing 40
Buttons 41
Abstract Window Toolkit (AWT) 42
Character Encoding 43
Accessibility 43
Security 43
Sound 44
Input Methods 44
Java2D 44
Resolution Independence 45

Core Java APIs and the Java Runtime on Mac OS X 47

Networking 47
Preferences 47

JNI 47

The Java Runtime 49

Document Revision History 51

2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Overview of Java for MacOS X 9

Figure 1 Apple’s Aqua look and feel and the standard Java cross-platform look and feel in
MacOS X 11

Apple Developer Tools for Java 15

Figure 1 The Xcode Organizer 17

Java Deployment Options for Mac OS X 21

Figure 1 Contents of a Java application bundle 23
Figure 2 Jar Launcher error 26
Listing 1 A Sample JNLP file 21

Mac OS X Integration for Java 29

Figure 1 Application menu for a Java application in Mac OS X 30
Figure 2 A File menu 32

Figure 3 Dialog created with java.awt.FileDialog 35

Figure 4 Dialog created with javax.swing.JFileChooser 36

Listing 1 Explicitly setting accelerators based on the host platform 31
Listing 2 Using getMenuShortcutKeyMask to set modifier keys 31
Listing 3 Setting an accelerator 31

Listing 4 Detecting contextual-menu activation 33

Listing 5 Setting JScrol1Bar policies to be more like those of Aqua 35
Listing 6 Invoking AppleScript with the javax.script APl 37

User Interface Toolkits for Java 39

Figure 1 Tabbed panes with multiple tabs in Mac OS X and Windows 40
Figure 2 An oversize JComboBox component in Windows 41
Figure 3 An oversize JComboBox component in the Aqua LAF 41

Core Java APIs and the Java Runtime on Mac OS X 47

Table 1 JVM properties 49

2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction

The Java Platform, Standard Edition (or Java SE, formerly known as J2SE) for Mac OS X provides a Java
environment that is highly integrated with Mac OS X. This integration brings together the Java platform’s
versatility and Mac OS X's advanced technologies to offer users a wider selection of applications and developers
a first-class development and deployment platform.

Mac OS X version 10.5 includes J2SE 5.0 right out of the box and provides Java SE 6 as a free software update.
Combined, these Java distributions open up the entire Mac user base to Java application and applet developers,
and conversely, the world of Java applications to Mac OS X users.

While Java's promise of “write once, run anywhere” is true on Mac OS X, there are a number of things you
should do to ensure that your application's user experience adheres to conventions and behaviors that Mac
users have come to expect from their applications. This document seeks to highlight these methods so you
can spend your time writing applications instead of troubleshooting.

Who Should Read This Document?

This document is for the Java developer interested in writing Java applications in Mac OS X v10.5 with J2SE
5.0 or Java SE 6. This document is primarily for developers of pure Java applications, but it may also be useful
for WebObjects development.

This is not a tutorial for the Java language. This document assumes you have a basic understanding of Java
development and Java development environments. Many resources exist in print and on the web for learning
the Java programming language. If you are new to programming in Java, you may want to start with one of
Sun’s tutorials available online at http://java.sun.com/learning/new2java/.

Organization of This Document

This guide contains the following articles:

= “Overview of Java for Mac OS X" (page 9) describes the Java platforms available on Mac OS X.

= “Apple Developer Tools for Java” (page 15) introduces you to the Apple suite of developer tools, along
with recommended tools from other manufacturers.

= “Java Deployment Options for Mac OS X” (page 21) discusses how you can distribute your Java application
on Mac OS X.

= “Mac OS X Integration for Java” (page 29) provides you with some handy tips for making your Java
application act and feel more like a native Mac OS X application.

m “User Interface Toolkits for Java” (page 39) shows you the different user interface elements common in
Mac OS X.

Who Should Read This Document? 7
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://java.sun.com/learning/new2java/

Introduction

m “Core Java APIs and the Java Runtime on Mac OS X" (page 47) discusses the how core Java APIs vary on
Mac OS X.

See Also

General information about Mac OS X, including more on many of the topics discussed in this document can
be found in Mac OS X Technology Overview.

Answers to frequently asked questions about Java for Mac OS X are addressed in the Java FAQ.
General information on previous versions of Java for Mac OS X can be found in the Java Release Notes.

This document and other Java documentation for Mac OS X, including the Javadoc API reference, is available
in the Java Reference Library. A subset of this documentation is installed in
/Developer/Documentation/DocSets/ ona Mac OS X system with the Mac OS X Developer Tools. You
can view this documentation through a web browser or through Xcode (from Xcode’s Help menu, choose
Documentation and then click Java).

The main Apple website for Java technology, http://developer.apple.com/java/, contains links to information
about Java development in Mac OS X.

The java-dev mailing list is a great source of information on a wide range of Java development topics in
Mac OS X. You can sign up for this list at http://lists.apple.com/.

Sun’s Java website, http://java.sun.com/ is the essential reference point for Java development in general.

Filing and Tracking Bugs

If you find issues with the implementation of Java that are not covered in this document or you want to
follow the resolution of an issue, you may do so online through Radar, Apple’s bug tracking system. To access
Radar, you need an Apple Developer Connection (ADC) account. You can view the ADC membership options,
including the free online membership, at http://developer.apple.com/membership/. With an ADC membership,
you can file and view bugs at http://bugreport.apple.com/. When filing new bugs for Java in Mac OS X, please
use Java (new bugs) for Component and X as Version.

8 See Also
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/java/faq/
http://developer.apple.com/java/
http://lists.apple.com/
http://java.sun.com/
http://developer.apple.com/membership/
http://bugreport.apple.com/

Overview of Java for Mac OS X

This article provides a broad overview of how Java fits into Mac OS X. It is suggested background information
for anyone new to Java development for Mac OS X.

Java and Mac OS X

The complete Java implementation in Mac OS X includes the components you would normally associate with
the Java SE Runtime Environment (JRE) as well as the Java SE Development Kit (JDK). More details about JDK
in Mac OS X are provided in “Java Deployment Options for Mac OS X” (page 21).

The following sections give a high-level overview of how Java for Mac OS X is different from Java for other
platforms.

Java, Built In

“Write once, run anywhere” is true only if Java is everywhere. With Mac OS X, you know the JRE is there for
your Java applications—the Java runtime is built into the operating system. This means that when developing
Java applications for deployment on Mac OS X, you know that Java is already installed and configured to
work with your customer’s operating system.

Javais the only high-level framework on Mac OS X besides Cocoa that provides a graphical toolkit for building
applications. With just a little work on your part, Java applications can be nearly indistinguishable from native
applications. Information on how to achieve this is provided in “Mac OS X Integration for Java” (page 29).
Users don't need to learn different behaviors for Java applications—in fact, they shouldn’t even know that
applications are Java applications.

Apple provides multiple versions of Java built into Mac OS X to offer your customers the widest range of
compatibility with your applications. You are encouraged to create applications that target the oldest possible
Java version but launch with the newest available version. In this way, you accommodate the largest possible
audience, and at the same time take advantage of the speedups and operating system integration that later
versions afford.

Java and Mac OS X 9
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Overview of Java for Mac OS X

Note: There is no redistribution license for Java in Mac OS X. If your customers need a specific update of the
Java runtime and they do not have it, they should get it directly from Apple via Software Update or the Apple
Support page at http://www.apple.com/support/.

32-Bit and 64-Bit Java

Mac OS X v10.5 includes both a 32-bit and a 64-bit version of J2SE 5.0, along with a 64-bit version of Java SE
6. It is important to note that certain Apple APIs, such as QuickTime for Java (QTJ), are compatible only with
32-bit versions of Java. Similarly, considerations should be made when writing Java Native Interface (JNI)
libraries, because the architecture of the library must correspond to the version of the code you are interfacing
with.

The Aqua User Interface

10

Anyone who has run a GUI-based Java application in Mac OS X is bound to notice one of the most striking
differences between Java on Mac OS X and Java elsewhere. Figure 1 shows this distinction by showing the
cross-platform look and feel in Mac OS X, which is essentially the way the user interface looks on other
platforms, and the Aqua look and feel.

32-Bit and 64-Bit Java
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://www.apple.com/support/

Overview of Java for Mac OS X

Figure 1 Apple's Aqua look and feel and the standard Java cross-platform look and feel in Mac OS X

®00 (i3] JBlogger: Discover Java

[B | 0 | Insert Tag (Q- \

Apple
- Discover Java Today, 11:12 AM
Politics + Text Rendering with Core Text Yesterday, 8:13 PM
Grilling Strange things to eat Yesterday, 2:03 PM
Tech + Animated Cocoa User Interfaces Jun 12th, 6:22 PM
w. Keynote Jun 11th, 11:45 PM
(_Atach..) @ ([Update) [Post)

So there are some new Agua controls in Swing that you can
get just by setting some client prope

JElogger: Discover Java
Apple | Title [Date |
. Discover |awva Today, 11:12 AM Fe
Politics + |Text Rendering with Core Text esterday, 5:13 P
Grilling Strange things to eat esterday, 2:03 Ph
Tech + |Animated Cocoa User Interfaces un 12th, 6:22 PM
Drafts + |Keynote un 11th, 11:45 P
-
Attach... | &7 Update Post | *
S0 there are some new Agua contrals in Swing that wou can get
Jjust by setting some client prope
+ | = -

By default, Swing applications in Mac OS X use the Aqua look and feel (LAF). Although this is the default LAF,
it is not required; the standard Java cross-platform LAF is also available. While the use of the Aqua LAF is
encouraged for Swing applications, different design philosophies inherent in an application might make the
Aqua LAF inappropriate. To use the cross-platform LAF, modify your code to include
UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassname()). Further
details on the Aqua LAF are provided in “User Interface Toolkits for Java” (page 39).

The Aqua User Interface n
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Overview of Java for Mac OS X

Finding Your Way Around

12

One of the first hurdles newcomers to Java development on Mac OS X face is figuring out where everything
is on the platform. This section outlines some basic things to remember and offers some guidelines to follow
when navigating the Mac OS X filesystem.

Since Java is built into the operating system, it is implemented as a Mac OS X framework. For more information
on frameworks, see Framework Programming Guide. The code that makes the Java implementations in Mac
OS Xwork can be foundin /System/Library/Frameworks/JavaVM. framework/.That directory contains
one directory, Versions/, and some symbolic links to directories inside the Versions directory. The layout
of the JavaVM. framework directory is designed to accommodate design decisions from previous versions
of Java, as well as to support future versions of Java. By default, the CurrentJDK symlink pointstothe 1.5.0
directory. This is where the code that actually implements J2SE 5.0 resides.

Although the purposes of the files within the JavaVM. framework directory are interesting from the
perspective of how Java is implemented in Mac OS X, you should consider the contents of the directory
opaque for both you and your customers. Additionally, do not rely on a particular path within the

JavaVM. framework directory in any code that you ship to customers, because the directory’s contents will
change with updates to Java and the operating system.

The Java Home Directory

Some applications look for Java's home directory ($JAVA_HOME) on the user’s system, especially during
installation. If you need to set this explicitly in a shell script or an installer, setitto /Library/Java/Home/.
Setting it to the target of this symbolic link can result in a broken application for your customers down the
road, when Apple ships a software update that changes the default version of Java, or when the user moves
the application to another version of Mac OS X which has a different default version of Java. Programatically
you can use System.getProperty("java.home"), as you would expect.

/Library/Java/Home/ also contains the bin/ subdirectory where command-line tools like java and
javac are found. These tools match the default version of Java for the system as defined by Apple. Additionally,
the Java tools available on the default path in /usr/bin will dynamically target the top preferred version
of Java that the user has chosen for applications in the Java Preferences application.

Java Extensions

Java can be extended by adding custom. jar, .zip,and .class files, as well as native JNI libraries, into an
extensions directory. On some platforms this is designated by the java.ext.dir system property. In Mac
OS X, put your extensionsin /Library/Java/Extensions/.Java automatically looks in that directory as
it is starting up the Java Virtual Machine.

Putting extensionsin /Library/Java/Extensions/ loads those extensions for every user on that particular
computer. If you want to limit which users can use certain extensions, you can put them in the
~/Library/Java/Extensions/ directory inside the appropriate users’ home directories. By default, that
folder does not exist, so you may need to make it.

Finding Your Way Around
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Overview of Java for Mac OS X

Output from Java Programs

When you launch a Java application from the command line, standard output goes to the Terminal window.
When you launch a Java application by double-clicking it, your Java output is displayed in the Console
application in /Applications/Utilities/. Applets that use the Java Plug-in display output in the Java
Console if the console has been turned on in the Java Preferences application (see “Other Tools” (page 18)
for information on Java Preferences.).

The File System

The default file system of Mac OS X, HFS+ (Mac OS Extended format), is case-insensitive but case preserving.
Although it preserves the case of files written to it, it does not recognize the difference between uppercase
and lowercase. You should make sure that no files in the same directory have names that differ only by case.
For example, having a file named mybigimage.pngand MyBigImage.png in the same directory can create
unpredictable results. Note that while most UNIX-based operating systems are case-sensitive, Windows is
case-insensitive so this is a general guideline for any cross-platform Java development.

Note: Mac OS X versions 10.4 and 10.5 allow HFS+ volumes that are fully case-sensitive. Since this is only an
option that is chosen at install time and the traditional behavior described above is the default, do not rely
on case-sensitivity.

Details about how HFS+ relates to character encoding can be found in “Character Encoding” (page 43).

The File System 13
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Overview of Java for Mac OS X

14 The File System
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Apple Developer Tools for Java

This article provides a broad overview of recommended tools for Java development. It covers integrated
development environments (IDEs) from other manufacturers, Apple’s own Xcode IDE, the Jar Bundler

application, and methods for obtaining and viewing documentation.

JDK Tools in Mac OS X

The Java development tools in Mac OS X are similar to the tools you find on other UNIX-based platforms.
The command-line tools that Sun provides as part of the JDK for Linux and Solaris are ported for Mac OS X
and work just as they do on those platforms. There are only a few significant differences between the standard
JDK tools in Mac OS X and those found on other UNIX-based platforms:

Java IDEs

The installed location of the JDK command-line tools is different in Mac OS X. These tools are installed
with the rest of JavaVM. frameworkin /System/Library/Frameworks/. The Java tools provided in
the default path in /usr/bin/ will execute the version of Java the user has selected as their preferred
version for applications in Java Preferences. For more on Java Preferences, see “Other Tools” (page 18).
For more information on overall differences in where Java components are in Mac OS X, see “Finding
Your Way Around” (page 12).

tools. jar does not exist. Classes usually located here are instead included in classes. jar. Scripts
that rely on the existence of tools. jar need to be rewritten accordingly.

Java development on any platform often benefits from the use of an Integrated Development Environment
(IDE), which provides a more fluid workflow between writing, compiling, running, debugging, and packaging
Java code than a simple text editor and the command line. Different IDEs offer unique features and are often
suited for different kinds of Java development. These IDEs are industry leaders and offer substantial support
for Mac OS X:

Eclipse IDE for Java Developers (http://www.eclipse.org) is a free download.
Netbeans IDE (http://www.netbeans.org) is a free download.

Jetbrains IntelliJ IDEA (http://www.jetbrains.com/idea/) requires a license for continued use after a trial
period.

Xcode (http://developer.apple.com/tools/xcode/) is a free download with a free account from the Apple
Developer Connection.

If you are developing a JNI library or intend to have your application communicate with Cocoa, you should
plan to use the Xcode Tools for those portions of your development. For more information on JNI development,
see “JNI” (page 47).

JDK Tools in Mac OS X 15
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://www.eclipse.org
http://www.netbeans.org
http://www.jetbrains.com/idea/
http://developer.apple.com/tools/xcode/

Apple Developer Tools for Java

Xcode Tools

16

Apple provides a full suite of general developer tools with Mac OS X. This suite of tools, the Xcode Tools, is
free but not installed by default. The tools are available for download at the Apple Developer Connection
(ADC) Member Site http://connect.apple.com/. If you do not have an ADC membership, you can enroll for
various levels of membership, including a free online membership that allows you access to the member
site, at http://developer.apple.com/products/.

Get the Current Tools

Apple frequently releases updates to both the Mac OS X Developer Tools and developer documentation.
Even if you already have the Xcode Tools installed, you should check the Member Site for the most up-to-date
versions of both.

The Xcode Tools are available from the Downloads link. There are two components to download that together
give you the full Java development environment for Mac OS X. The Developer Tools section contains the
base Xcode Tools. Download and install the most current released version available. There are Java-specific
updates to developer documentation that are available in the Java section. Download and install these as
well.

With the Xcode Tools and the Java documentation updates, you have a full-featured development environment
including:

= Command-line tools, installed in /Developer/Tools/

m Graphical tools, installed in /Developer/Applications/

= Sample code, installed in /Developer/Examples/

= Documentation, installed in /Developer/Documentation/

To remain current with Apple documentation between updates to the Xcode snapshot, visit the Mac Dev
Center Reference Library at http://developer.apple.com. The Reference Library includes RSS feeds that
announce documentation updates for many technologies, including Java. Subscribe to these feeds at
http://developer.apple.com/rss.

Xcode

The core component of the Mac OS X development environment is Xcode. Xcode is a complete IDE that
allows you to edit, compile, debug, and package Mac OS X applications written in multiple languages. Even
if you do not intend to use it for your primary Java development, it is helpful to become familiar with Xcode.
Downloadable sample code and the sample code installed in /Developer/Examples/Java/ are both
usually provided as Xcode projects. Additionally, there are some elements of documentation viewing that
are available only through Xcode.

For more on using Xcode for Java development, see the Xcode Help menu.

Xcode Tools
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://connect.apple.com/
http://developer.apple.com/products/
http://developer.apple.com
http://developer.apple.com/rss/

Apple Developer Tools for Java

The Xcode Organizer

Xcode helps you manage Java applications with the Organizer. You can open it by choosing Organizer from
the Window menu. Figure 1 shows the Organizer window.

Figure 1 The Xcode Organizer

® O O Organizer —

e ek
N, f1. & 493,
Build Clean Run Action
v ﬁ{lrganizerj avaspplication
& build.xmil
» [Eglib
» []resources
» []resources_macosx
4 D src
|J| AboutBox.java
|11 Java_Application.java
|1 PrefPane.java

+- #- @1 Y

The Organizer shows your project exactly as it is laid out in the file system. This is in contrast to the main
Xcode project windows, which allow you to arrange files arbitrarily without altering their location on disk.
The Organizer’s direct reflection of the file system better serves Java development and is similar to other
Java IDEs.

To create a new Java project in Xcode, choose New From Template from the New menu in the bottom-left
corner of the Organizer.

Xcode Tools 17
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Apple Developer Tools for Java

Xcode and Ant

Xcode uses Apache Ant to compile and run Java applications. You can customize your build settings by
modifying the bui1d. xm1 file that is automatically generated when you create a new Java project. By default,
the source and target compiler flags in build.xm1 are setto 1.3 and 1. 2, respectively. This is to ensure
compatibility with as many Java versions as possible. Raise these default values to take advantage of APIs
and features, such as assertions and generics, that are available only with later versions of Java.

Jar Bundler

Jar Bundler is an application that takes Java applications deployed as standalone Jar files and turns them
into applications that can be launched just like native Mac OS X applications. Although the Terminal application
is a part of every installation of Mac OS X, many Mac OS X users never use it. To prevent your users from
having to use Terminal for your Java applications, you should wrap your application as a Mac OS X application
bundle (see “Mac OS X Application Bundles” (page 22)). Jar Bundler allows you to do this very easily. It also
provides a simple interface for you to set system properties that make your applications perform their best
in Mac OS X.

Jar Bundler is installed in /Developer/Applications/Utilities/. More information on Jar Bundler is
available in Jar Bundler User Guide.

Applet Launcher

Applet Launcher (in /Developer/Applications/Utilities/) provides a graphical interface to Sun’s
Java Plug-in. Applet Launcher loads an applet from an HTML page. For example, entering the following URL
launches the ArcTest applet:

file:///Developer/Examples/Java/Applets/ArcTest/examplel.html

Applet Launcher is useful for testing your applets in Mac OS X. Performance and behavior settings for applets
may be adjusted in the Java Preferences application installed in /Applications/Utilities/Java/.

Other Tools

18

In addition to containing Applet Launcher, /Applications/Utilities/Java/ containsthese Java-related
tools that you might find useful when testing your application:

m Java Preferences for specifying settings for all Java applications, plug-ins, and applets. When you specify
a new preference for a default Java runtime in Java Preferences, the java toolin /usr/bin will
dynamically launch that runtime.

= Java Web Start, to allow you to launch and modify settings for JNLP-aware Java Web Start applications

= Input Method HotKey to set the keyboard combination that invokes the input method dialog in applications
with multiple input methods

In addition to containing Xcode and Jar Bundler, /Developer/Applications/Utilities/ containssome

applications that you can use for Java development though they are not Java-specific:

Other Tools
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Apple Developer Tools for Java

m Package Maker helps you create an installer PKG for your application.
= File Merge provides a graphical interface for comparing and merging source files.

m lcon Composer helps you create an ICNS file for your application bundle.

Additional development tools for Java and other languages can be found in /usr/share/. Of particular use
for Java development are:

= JUnit, a common Java unit-testing framework.
= Apache Ant, a tool for automating builds. The Ant executable can also be found in /usr/bin/.

= Apache Maven, a tool for consolidating multiple elements of development, including dependency
management and release management.

Developer Documentation

Documentation for Java development in Mac OS X is provided both online and locally with the installation
of the Xcode Tools. The most current version of the documentation is available from the Java Reference
Library on the Apple Developer Connection website. A snapshot of this documentation is also installed on
your computer when you install the Mac OS X Developer Tools. This documentation is easily accessible in
Xcode by selecting Documentation from the Help menu. Man pages for the command-line tools are accessible
from the command line man program and through the Xcode Help menu.

Note that Apple does not attempt to provide a full Java documentation suite online or with the Xcode Tools.
Sun supplies very thorough documentation available online at http://java.sun.com/reference/docs/. Apple’s
documentation aims to augment Sun’s documentation for Java development issues specific to Mac OS X
and to document Mac OS X-specific features of Java. Your primary source for general Java documentation
is Sun’s Java documentation website.

Providing Documentation Feedback

If you find errors in the Java documentation or would like to request either feature or content enhancements,
you can file bugs at http://bugreport.apple.com/. When filing documentation bugs on Java documentation
in Mac OS X, please use Java Documentation (developer) for Componentand X as Version.

Developer Documentation 19
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://java.sun.com/reference/docs/
http://bugreport.apple.com/

Apple Developer Tools for Java

20 Developer Documentation
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

When deploying Java applications in Mac OS X, you have access to Java Web Start and the Java applet as
you do on other platforms. You may also deploy Java applications as native Mac OS X application bundles.
This article discusses these deployment technologies. Make sure you know whether you are using a 32-bit
or a 64-bit version of Java to ensure that your application is compatible with the architectures you are writing
for.

Java Web Start

Mac OS X supports deploying your application as a Java Web Start application. Java Web Start is an
implementation of the Java Network Launching Protocol & API (JNLP) specification, which means that if you
make your application JNLP-aware, Mac OS X users can run your application with a single click in their web
browser. Java Web Start also automatically updates your application by checking your website for a new
version before launch. Listing 1 provides a sample JNLP file that you can modify to accommodate your
application.

Listing 1 A Sample JNLP file

<?xml version="1.0" encoding="UTF-8"7?>
<jnlp spec="1.0+"
codebase="http://developer.apple.com/java/javawebstart/apps/welcome"
href="JWS_Demo.jnlp">
<information>
<title>Welcome to Web Start!</title>
<vendor>Apple Computer, Inc.</vendor>
<homepage href="http://developer.apple.com/java/javawebstart" />
<offline-allowed />
</information>
{resources>
{j2se version="1.5+" />
<jar href="WebStartDemo.jar" />
<{/resources>
<application-desc main-class="apple.dts.javawebstart.DemoMain" />
</inlp>

Mac OS X supports desktop integration with Java Web Start, meaning users can create a local application
bundle from any Java Web Start application. The Shortcut Creation setting in Java Preferences controls
whether the user is prompted to create an application bundle when opening a Java Web Start application.
Bundled Java Web Start applications have all of the benefits of native application bundles, which are described
in “Mac OS X Application Bundles.”

You need to be aware of only a few details about how the Mac OS X implementation of Java Web Start differs
from the Windows and Solaris versions:

Java Web Start 21
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

= Java Web Start on the Mac does not support downloading of additional Java Runtime Environments
(JREs). New Java versions are provided by Apple via Software Update to all current Mac OS X customers.
Valid version keys for Mac OS X application bundles are the same as those of Java Web Start. A list of
these keys can be found in Java Dictionary Info.plist Keys.

m [t is not necessary to set up proxy information explicitly in the Web Start application. Java Web Start in
Mac OS X automatically picks up the proxy settings from the Network pane in System Preferences.

m Java Web Start caches its data in the user’s /Library/Caches/Java/ directory.

Mac OS X Application Bundles

22

Native Mac OS X applications are more than just executable files. Although a user sees a single icon in the
Finder, an application is actually an entire directory that can include images, sounds, icons, documentation,
localizable strings, and other resources that the application may use in addition to the executable file itself.
The application bundle simplifies application deployment in many ways for developers. The Finder, which
displays an application bundle as a single item, retains simplicity for users, including the ability to just drag
and drop one item to install an application.

This section discusses Mac OS X application bundles as they relate to deploying Java applications. More
general information on Mac OS X application bundles is available in Bundle Programming Guide.

When deploying Java applications in Mac OS X, consider making your Java application into a Mac OS X
application bundle. It is easy to do and offers many benefits:

= Users can simply double-click the application to launch it. They can also drag it to the Trash to delete it.

= If you add an appropriate icon, it shows the application icon in the Dock, clearly identifying your
application. (Otherwise, a default Java coffee cup icon appears in the Dock.)

= An application bundle lets you easily set Mac OS X-specific system properties that can make your Java
application look more like a native application.

= You can bind specific document types to your application. This lets users launch your application by
double-clicking a document associated with it.

The Contents of an Application Bundle

The application bundle directory structure is hidden from view in the Finder by the . app suffix and a specific
attribute, the bundle bit, that is set for that directory. (See Runtime Configuration Guidelines for more
information on Finder attributes.) The combination of these two things makes the directory a bundle. To get
a glimpse inside an application bundle, you can explore the directory of resources from Terminal or from the
Finder. Although by default the Finder displays applications as a single object, you can see inside by
Control-clicking (or right-clicking if you have a multi-button mouse) an application icon and selecting Show
Package Contents. You should see something similar to the directory structure shown in Figure 1.

Mac OS X Application Bundles
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

Figure 1 Contents of a Java application bundle
a0 =7 SwingSet.app -
! Al &
v [Contents
Info.plist
v [Macos
M JavaApplicationStub
D Pkalnfo

v [Resources
% GenericjavaApp.icns
v [l Java

2 Swingset2.jar 4

Applications bundles for Java applications should have the following components:

An Info.plist file in the Contents folder. This contains important information that Mac OS X uses to
set up the Java runtime environment for your application. More information about these property lists
is in Java Dictionary Info.plist Keys.

A file named PkgInfo should also be in the Contents folder. This is a simple text file that contains the
string APPL optionally concatenated with a four letter creator code. If an application does not have a
registered creator code, the string APPL??7?7? should be used. You may register your application with
Apple’s creator code database on the ADC Creator Code Registration site at http://developer.ap-
ple.com/datatype/.

The application’s icon that is displayed in the Dock and the Finder should be in the Resources folder.
There is a Mac OS X-specific file type designated by the . icns suffix, but most common image types
work. To make an icon (. icns) file from your images, use the lcon Composer application installed in
/Developer/Applications/Utilities/.

The Java code itself, in either . jar or .class files, in the Resources folder.
A native executable stub in the MacOS folder that launches the Java VM.

Optional localized versions of strings may be included in folders designated by the . 1proj suffix. If your
application contains localized strings, you must include corresponding . 1proj folders in your bundle,
even if the strings are in . properties files in a Jar. See “Localizing Java Applications” (page 25) for
more information on localized application bundles.

There are other files in the application bundle, but these are the ones that you should have in a Java application
bundle. You can learn more about the other files in an application bundle, as well as more information about
some of these items, in Framework Programming Guide.

A Java Application’s Information Property List File

Mac OS X makes use of XML files for various system settings. The most common type of XML document used
is the property list. Property lists have a .p11ist extension. The Info.plist filein the Contents folder of
a Mac OS X application is a property list.

Mac OS X Application Bundles 23
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/datatype/
http://developer.apple.com/datatype/

24

Java Deployment Options for Mac OS X

The Info.plist file lets you fine-tune how your application is presented in Mac OS X. With slight tweaking
of some of the information in this file, you can make your application virtually indistinguishable from a native
application in Mac OS X, which is important for making an application that users appreciate and demand.

If you build your Java application in Xcode or Jar Bundler, the Info.p1ist file is automatically generated
for you. If you are building application bundles through a shell or Ant script, you need to generate this file
yourself. Even if it is built for you, you may want to modify it. This is most easily done with the Property List
Editor application in /Developer/Applications/Utilities. Since property lists are simple XML files,
you can also modify them with any text editor.

A property list file is divided into hierarchical sections called dictionaries. These are designated with the dict
key. The top-level dictionary contains the information that the operating system needs to properly launch
the application. The keys in this section are prefixed by CFBund1e and are usually self explanatory. Where
they are not, see the documentation in Runtime Configuration Guidelines.

At the end of the CFBund1e keys, a Java key designates the beginning of a Java dictionary. This dictionary
requiresaMainClass key and should alsoinclude a JVMVersion key if your application requires a particular
minimum version of Java. A listing of all the available keys and Java version values for the Java dictionary is
provided in Java Dictionary Info.plist Keys.

If you examine an older Java application distributed as an application bundle, you might notice that certain
keys are missing from the Properties dictionary. This is because Java application bundles used to include
the Java-specific information distributed between an Info.p1ist file and another file, MRJApp . properties
in Contents/Resources/ in the application bundle. If you are updating an existing application bundle,
you should move the information from the MRJApp.properties file into the appropriate key in the Java
dictionary in the Info.plist file.

Making a Java Application Bundle

There are three ways to make a Java application bundle:

= With Xcode
= With Jar Bundler

= From the command line

If you build a new Java Swing application using one of the Xcode Organizer’s templates, Xcode automatically
generates an application bundle complete with a default Info.p1ist file. You can fine-tune the Info.plist
file directly in Xcode or with Property List Editor. For more information on using Xcode for Java development,
see Xcode Help (available from the Help menu in Xcode).

If you want to turn your existing Java application into a Mac OS X Java application, use the Jar Bundler
application available in /Developer/Applications/Utilities.Itallows you to take existing .class or
. jar files and wrap them as application bundles. Information about Jar Bundler, including a tutorial, is
provided in Jar Bundler User Guide.

To build a valid application bundle from the command-line, for example, in a shell script or an Ant file, you
need to follow these steps:

1. Set up the correct directory hierarchy. The top level directory should be named with the name of your
application with the suffix . app.

Mac OS X Application Bundles
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

There should be a Contents directory at the root of the application bundle. It should contain a MacOS
directory and a Resources directory. A Java directory should be inside of the Resources directory.

The directory layout should look like this:

YourApplicationName.app/
Contents/
Mac0S/
Resources/
Java/

2. Copythe JavaApplicationStub file from
/System/Library/Frameworks/JavaVM.framework/Versions/Current/Resources/Mac0S/
into the MacOS directory of your application bundle.

3. Makean Info.plist fileinthe Contents directory of your application bundle. You can start with an
example from an existing Java application (such as Jar Bundler) and modify it or generate a completely
new one from scratch. Note that the application bundle does not launch unless you have set the correct
attributes in this property list, especially the MainClass key.

4. Make a PkgInfo filein the Contents directory. It should be a plain text file. If you have not registered
a creator code with ADC, the contents should be APPL?77??.If you have registered a creator code replace
the ?77? with your creator code.

5. Put your application’s icon file into the Contents/Resources/ directory. Use Icon Composer in
Developer/Applications/Utilities for help creating your icon file.

6. CopyyourJava .jar or .class filesinto Contents/Resources/Java/.

7. Set the bundle bit Finder attribute with SetFile, found in /Developer/Tools/.For example,
/Developer/Tools/SetFile -a B YourApplicationName.app.Formoreinformationon SetFile,
see the man page.

After these steps, you should have a double-clickable application bundle that contains your Java application.

Localizing Java Applications

To run correctly in locales other than US English, Java application bundles must have a localized folder for
each appropriate language inside the application bundle. Even if the Java application handles its localization
through Java ResourceBund1es, the folder itself must be there for the operating system to set the locale
correctly when the application launches. Otherwise Mac OS X launches your application with the US English
locale.

Put a folder named with the locale name and the . 1proj suffix in the application’s Resources folder for any
locale that you wish to use. For example if you include a Japanese and French version of your application,
includea jp.1projfolderanda fr.1projfolderinYourApplicationName.app/Contents/Resources/.
The folder itself can be empty, but it must be present.

Bundle Programming Guide provides more detail about the application bundle format.

Mac OS X Application Bundles 25
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

Distributing Application Bundles

The recommended way to distribute application bundles is as a compressed disk image. This gives users the
ease of a drag-and-drop installation. Put your application bundle, along with any relevant documentation,
on a disk image with Disk Utility, and then compress and distribute it. Disk Utility is available in
/Applications/Utilities/.You can further simplify the installation process for your application by
making the disk image Internet enabled. For information on how to do this see Distributing Software With
Internet-Enabled Disk Images.

Making a Mac OS X Java Application Bundle on other Platforms

You can create Java application bundles for Mac OS X on another platform by following the steps outlined
for creating a bundle from the command-line, in “Making a Java Application Bundle.” Ignore the step involving
JavaApplicationStub and the step involving setting the bundle bit when bundling on another platform.
Bundles created on other platforms are recognized by Mac OS X; however, they lack certain features, such
as the resource fork and access control list (ACL) support.

Double-Clickable JAR Files

26

You can deploy an application as a JAR file, but this method should be used for testing purposes only. This
technique requires very few, if any, changes from the JAR files you distribute on other platforms. However,
it also has significant drawbacks for your users. Applications distributed as JAR files are given a default Java
application icon instead of one specific to the application, and JAR files do not allow you to easily specify
runtime options without doing so either programatically or from a shell script. If your application has a
graphical interface and will be run by general users, this deployment method is not recommended.

Double-clickable JAR files launch with the default version of Java. If a JAR file needs to be launched in another
version of Java, wrap the JAR file as a Mac OS X application bundle using Jar Bundler and specify the minimum
version required in the application bundle's Info.plist file.

If you choose to deploy your application from a JAR file in Mac OS X, the manifest file must specify which
class contains the main method. Without this information, the JAR file is not double-clickable and users see
an error message like the one shown in Figure 2.

Figure 2 Jar Launcher error

The Java JAR file “Broken.jar" could not be
launched.

e Check the Console for possible error messages.

o)

Double-Clickable JAR Files
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

If you have a JAR file that does not already have the main class specified in the manifest, you can remedy
this as follows:

1. Unarchive your JAR file into a working directory with some variant of the command jar xvf myjar. jar.

2. Intheresulting META-INF directory isa MANIFEST . MF file. Copy that file and add a line that begins with
Main-Class: followed by the name of your main class. For example, a default manifest file in Mac OS
X looks like this:

Manifest-Version: 1.0
Created-By: 1.4.2_07 (Apple Computer, Inc.)

With the addition of the main class designation, the file looks like this:
Manifest-Version: 1.0
Created-By: 1.4.2_07 (Apple Computer, Inc.)

Main-Class: com.yourcompany.YourAppsMainClass

3. Archive your files again, but this time use the -m option with the jar command and designate the
relative path to the manifest file you just modified, for example, jar cmf
YourModifiedManifestFile.txt YourdARFile.jar *.class.

This basic example does not take into account more advanced uses of the jar program. More detailed
information on adding a manifest to a JAR file can be found in the jar (1) man page.

The Java Plug-in

J2SE 5.0 for Mac OS X includes the Java Plug-in for you to deploy applets in web browsers and other Java
embedding applications.

The Applet Launcher application in /Applications/Utilities/Java/ also launches applets for testing
purposes, without using a browser or the applet plug-in. For more information on Applet Launcher see
“Applet Launcher” (page 18).

For use in Safari, the <APPLET tag is preferred over the <OBJECT> and <EMBED> tags.

The Java Plug-in 27
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

28 The Java Plug-in
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Mac OS X Integration for Java

The more your application fits in with the native environment, the less users have to learn unique behaviors
to use your application. A great application looks and feels like an extension of the platform it runs on. This
article discusses a few details that can help you make your application look and feel like it is an integral part
of Mac OS X.

Making User Interface Decisions

Java SE cross-platform design demands a lot of flexibility from the user interface to accommodate multiple
operating systems. The Aqua user interface, on the other hand, is streamlined to provide the absolute best
user experience in Mac OS X.

This section aims to help you make the right user interface decisions, so that your Java application will look
like a Mac OS X native application, and will perform almost as well as one, too. In fact, by following these
same suggestions, your application can approach the look and performance of native applications on other
platforms as well. The topics covered here represent just a small subset of design decision topics, but they
are high-visibility issues that are often encountered in Java applications. The complete guidelines for the
Aqua user interface can be found inApple Human Interface Guidelines. For information on customization
options for Swing components in the Aqua Look and Feel, see “New Control Styles available within J2SE 5.0
on Mac OS X 10.5".

Working with Menus

The appearance and behavior of menu items varies across platforms. This section offers some techniques for
improving how your Java menus are presented, and how they perform, specifically in Mac OS X.

The Menu Bar

Removing menus from your windows and putting them in the menu bar is highly encouraged, but that
approach does not perfectly emulate the native experience of Mac OS X menus. In Mac OS X, a native
application’s menu bar is always visible when an application is the active application, whether or not any
windows are currently open. In Java for Mac OS X, the menus in the menu bar are associated with a top-level
frame, and the menus will disappear if the frame closes.

The Application Menu

Any Java application that uses AWT/Swing or is packaged in a double-clickable application bundle is

automatically launched with an application menu similar to native applications in Mac OS X. This application
menu, by default, contains the full name of the main class as the title. This name can be changed using the
-Xdock:name command-line property, or it can be set in the information property list file for your application
as the CFBundleName value. For more on Info.plist files, see “A Java Application’s Information Property

Making User Interface Decisions 29
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

30

Mac OS X Integration for Java

List File” (page 23). According to the Aqua guidelines, the name you specify for the application menu should
be the simplest name of the application (generally no more than 16 characters) and should not include
extraneous information like a company name. Figure 1 shows an application menu.

Figure 1 Application menu for a Java application in Mac OS X

I Wy Project NI

About My Project

Preferences... 3,
Services »

Hide My Project 3H
Hide Others #¥H
Show All

Quit My Project #Q

The next step to customizing your application menu is to have your own handling code called when certain
items in the application menu are chosen. Apple provides functionality for this in the com.apple.eawt
package. The Application and ApplicationAdaptor classes provide a way to handle the Preferences, About,
and Quit items.

For more information see J2SE 5.0 Apple Extensions Reference. Examples of how to use these can also be
found in a default Java application project in Xcode. Just open a new project in Xcode by selecting Java
Application from the Organizer window. The resulting project uses all of these handlers. For more on the
Xcode Organizer, see “The Xcode Organizer” (page 17).

If your application is to be deployed on other platforms, where Preferences, Quit, and About are elsewhere
on the menu bar (in a File or Edit menu, for example), you should make this placement conditional based
on the host platform’s operating system. Conditional placement is preferable to just adding a second instance
of each of these menu items for Mac OS X. This minor modification can go a long way to making your Java
application feel more like a native application in Mac OS X.

The Window Menu

Apple Human Interface Guidelines suggests that all Mac OS X applications should provide a Window menu to
keep track of all currently open windows. A Window menu should contain a list of windows, with a checkmark
next to the active window. Selection of a given Window menu item should result in the corresponding
window being brought to the front. New windows should be added to the menu, and closed windows should
be removed. The ordering of the menu items is typically the order in which the windows are opened. Apple
Human Interface Guidelines has more specific guidance on the Window menu.

Accelerators (Keyboard Shortcuts)

Do not set menu item accelerators with an explicit javax.swing.KeyStroke specification. Modifier keys
vary from platform to platform. Instead, use the java.awt.Tookit.getMenuShortcutKeyMask method
to ask the system for the appropriate key rather than defining it yourself.

Making User Interface Decisions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/documentation/Java/Reference/1.5.0/appledoc/api/index.html

Mac OS X Integration for Java

When calling this method, the current platform’s Toolkit implementation returns the proper mask for you.
This single call checks for the current platform and then guesses which key is correct. For example, in the
case of adding a Copy item to a menu, using getMenuShortcutKeyMask means that you can replace the
complexity of Listing 1 with the simplicity of Listing 2.

Listing 1 Explicitly setting accelerators based on the host platform

JMenultem jmi = new JMenultem("Copy");
String vers = System.getProperty("os.name").tolLowerCase();

if (s.indexOf("windows") != -1) {
jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.CTRL_MASK));
b else if (s.indexOf("mac") != -1) {

jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.META_MASK));
}

Listing 2 Using getMenuShortcutKeyMask to set modifier keys

JMenultem jmi = new JMenultem("Copy");
Jjmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,
Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()));

The default modifier key in Mac OS X is the Command key. There may be additional modifier keys like Shift,
Option, or Control, but the Command key is the primary key that alerts an application that a command, not
regular input follows. When assigning keyboard shortcuts to items for menu items, make sure that you are
not overriding any of the keyboard commands that Macintosh users are accustomed to. See Apple Human
Interface Guidelines for the definitive list of the most common and reserved keyboard shortcuts (keyboard
equivalents).

You should make your keyboard shortcuts conditional based on the current platform, because standard
shortcuts vary across platforms.

Mnemonics

The JMenultem class inherits the concept of mnemonics from the JAbstractButton class. In the context
of menus, mnemonics are shortcuts to menus and their contents, which are executed by using a modifier
key in conjunction with a single letter. When you set a mnemonic in a menu item, Java underscores the
mnemonic letter in the title of the JMenuItemor JMenu component when the Option key is held down. You
are discouraged from using mnemonics in Mac OS X, because they violate the principles of Apple Human
Interface Guidelines. If you are developing a Java application for multiple platforms and some of those platforms
recommend the use of mnemonics, just include a single setMnemonics () method that is conditionally
called (based on the platform) when constructing your interface.

How then do you get the functionality of mnemonics without using Java's mnemonics? If you have defined
a keystroke sequence in the setAccelerator method for a menu item, that key sequence is automatically
entered into your menus. For example, Listing 3 sets an accelerator of Command-Shift-S for a Save As menu.

Listing 3 Setting an accelerator

JMenultem saveAsItem = new JMenultem("Save As...");
saveAsItem.setAccelerator(
KeyStroke.getKeyStroke(KeyEvent.VK_S,
(java.awt.event.InputEvent.SHIFT_MASK |
(Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()))));
saveAsItem.addActionListener(new ActionlListener() {

Making User Interface Decisions 31
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

32

Mac OS X Integration for Java

public void actionPerformed(ActionEvent e) { System.out.printin("Save
As...") 5}
b) s
fileMenu.add(saveAsItem);

Figure 2 shows the result of this code, along with similar settings for the other items. Note that the symbols
representing the Command and Shift keys are automatically included.

Figure 2 A File menu

‘ JBIoggerEdit View Window

New £
Open... #£0
Close HW
Save #S

Page Setup... {r3tP
Print... #P

In addition to accelerators, Mac OS X provides keyboard and assistive-device navigation to the menus.
Preferences for these features are set in the Keyboard and Universal Access panes of System Preferences.

Note: Since the ALT_MASK modifier evaluates to the Option key on the Macintosh, Control-Alt masks set for
Windows become Command-Option masks if you use getMenuShortcutKeyMask in conjunction with
ALT_MASK.

Menu Item Icons and Special Characters

Menu item icons are available and functional in Mac OS X, via Swing. They are not a standard part of the
Aqua interface, although some applications do display them—most notably the Finder in the Go menu. You
may want to consider applying these icons conditionally based on platform.

Aqua specifies a specific set of special characters to be used in menus. See the information on using special
characters in menus in Apple Human Interface Guidelines.

Note: KeyEvent.getKeyText() returns the unicode characters of the Command (Meta), Option (Alt),
Control, and Shift keys, not the textual descriptions of those keys.

Contextual Menus

Contextual menus, which are called pop-up menus in Java, are fully supported. In Mac OS X, they are triggered
by a Control-click or a right-click. Even though both clicks trigger a contextual menu, they are not the same
mouse event. In Windows, the right mouse button is the standard trigger for contextual menus.

The different triggers present in Mac OS X could result in fragmented and conditional code. One important
aspect of both triggers is shared—the mouse click. To ensure that your program is interpreting the proper
contextual-menu trigger, it is again a good idea to ask the AWT to do the interpreting for you, with
Java.awt.event.Mousekvent.isPopupTrigger.

Making User Interface Decisions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Mac OS X Integration for Java

The method is definedin java.awt.event.MouseEvent because you need to activate the contextual menu
througha java.awt.event.Mouselistener onagiven component when a mouse event on that component
is detected. The important thing to determine is how and when to detect the proper event. In Mac OS X, the
pop-up trigger is set on MOUSE_PRESSED. In Windows it is set on MOUSE_RELEASED. For portability, both
cases should be considered.

Listing 4 Detecting contextual-menu activation

JLabel Tlabel = new JLabel("I have a pop-up menu!");

label.addMouselistener(new MouseAdapter(){
public void mousePressed(MouseEvent e) {
evaluatePopup(e);
}

public void mouseReleased(MouseEvent e) {
evaluatePopup(e);
}

private void evaluatePopup(MouseEvent e) {
if (e.isPopupTrigger()) {
// show the pop-up menu...
}

b) s

Like the application menu, contextual menus can differ between platforms. You should make the layout of
your contextual menus conditional based on the platform.

When designing contextual menus, keep in mind that a contextual menu should never be the only way a
user can access something. Contextual menus provide convenient access to often-used commands associated
with an item, not the primary or sole access.

Designing for Component Layout, Size, and Color

There are several key concepts to keep mind when designing the components in your user interface.

Laying Out and Sizing Components

Do not explicitly set the x and y coordinates of components when placing them; instead make use of layout
managers. The layout managers use abstracted location constants and determine the exact placement of
these controls for a specific environment. Layout managers take into account the preferred sizes of each
individual component while maintaining their placement relative to one another within the container.

In general, do not set component sizes explicitly. Each look and feel has its own font styles and sizes. These
font sizes affect the required size of the component containing the text. Moving explicitly sized components
to a new look and feel with a larger font size can cause problems. The safest way to make your components
a proper size in a portable manner is to change to or add another layout manager, or to set the component’s
minimum and maximum size to its preferred size. The setSize() and getPreferredSize() methods are
useful when following the latter approach.

You can create both small and miniature versions of Swing controls in Mac OS X by setting the sizeVariant
client property. See New Control Styles available within J2SE 5.0 on Mac OS X 10.5 for more information.

Making User Interface Decisions 33
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

34

Mac OS X Integration for Java

Coloring Components

Because a given look and feel tends to have universal coloring and styling for most, if not all of its controls,
you may be tempted to create custom components that match the look and feel of standard user interface
classes. This approach is perfectly legal, but adds maintenance and portability costs. It is easy to set an explicit
color that you think works well with the current look and feel. Changing to a different look and feel, though,
may surprise you with an occasional nonstandard component. To ensure that your custom control matches
standard components, query the UIManager class for the desired colors. One example is a custom window
object that contains some standard lightweight components but wants to paint its uncovered background
to match that of the rest of the application’s containers and windows. To do this, you can call

myPanel.setBackground(UIManager.getColor("window"))

This call returns the color appropriate for the current look and feel.

Working with Windows and Dialogs

Mac OS X window coordinates and insets are compatible with the JDK. Window bounds refer to the outside
of the window's frame. The coordinates of the window put (0,0) at the top left of the title bar. The getInsets
method returns the amount by which content needs to be inset in the window to avoid the window border.
This should affect only applications that are performing precision positioning of windows, especially full-screen
windows.

Windows behave differently in Mac OS X than they do on other platforms. For example, an application can
be open without having any windows. Windows minimize to the Dock, and windows with variable content
always have scroll bars. This section highlights the windows details you should be aware of and discusses
how to deal with window behavior in Mac OS X.

Use of the Multiple Document Interface

The multiple document interface (MDI) model of the javax.swing.JDesktopPane object can provide a
confusing user experience in Mac OS X. Therefore when building applications for Mac OS X, try to avoid using
this class. Windows minimized in a JDesktopPane object move around as the pane changes size. In
JDesktopPane, windows minimize to the bottom of the pane while independent windows minimize to the
Dock. Furthermore, the pane restricts users from moving windows where they want. They are forced to deal
with two different scopes of windows, those within the pane and the pane itself. Normally, Mac OS X users
interact with applications through numerous free-floating, independent windows and a single menu bar at
the top of the screen. Users can intersperse these windows with other application windows (from the same
application or other applications) anywhere they want in their view, which includes the entire desktop. Users
are not visually constrained to one area of the screen when using a particular application.

Windows with Scroll Bars

In Mac OS X, scrollable document windows display a scrollbar whether or not there is enough content in the
window to require scrolling (the scroller itself appears only when the content exceeds a window’s viewable
area). To mimic this behavior in Java applications, place your content inside a scroll pane (JScrol1Pane).
You do this because a Swing JF rame object by default has no scroll bars, no matter how it is resized. When
you use JScrol1Pane, make sure you set the scrollbar policy to always display scrollbars (to mimic Mac OS
X), as shown in Listing 5.

Making User Interface Decisions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Mac OS X Integration for Java

Listing 5 Setting JScrol1Bar policies to be more like those of Aqua
JScrollPane jsp = new JScrollPane();

Jjsp.setVerticalScrollBarPolicy(JdScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
jsp.setHorizontalScrol1BarPolicy(JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

When you are using a host platform other than Mac OS X, you may find that the JScro11Bar default policy,
AS_NEEDED, more closely resembles its native behavior.

File-Choosing Dialogs

File-choosing dialogs in Java applications are of two main types: dialogs created with java.awt.FileDialog
and those created with javax.swing.JFileChooser. Although each has its advantages,
java.awt.FileDialog makes your applications behave more like a native Mac OS X application. This
dialog, shown in Figure 3, looks much like a Finder window in Mac OS X.

Figure 3 Dialog created with java.awt.FileDialog

b

[a]»] [28 §|Eﬂ}] [Guest H'Qsearch)
» DEVICES Desktop P
» SHARED Documents =
Downloads P
¥ PLACES (@@ Library -
E pesktop Mavies P
TN i Music -
ﬁ Applications Pictures P
@ Documents | (@] Public P
v MEDIA @ sites >
ﬂ Music
|=| Photos
ﬁ Movies
I
(Cancel) (" Open)
P

The Swing dialog, shown in Figure 4, looks much less like a Mac OS X dialog.

Making User Interface Decisions 35
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

36

Mac OS X Integration for Java

Figure 4 Dialog created with javax.swing.JFileChooser
[NN Dj.i.en
[% Guest I-H
| Date Modified
Desktop Friday, September 26, 2008 10:55 AM
(@ Documents Friday, September 26, 2008 10:56 AM
Downloads Friday, September 26, 2008 10:55 AM
@@ Library Friday, September 26, 2008 10:58 AM
Movies Friday, September 26, 2008 10:55 AM
(@ music Friday, September 26, 2008 10:55 AM
Pictures Friday, September 26, 2008 10:55 AM
(& Public Friday, September 26, 2008 10:55 AM
Sites Friday, September 26, 2008 10:55 AM
File Format: | All Files I-G-l
(Cancel) (Open |

Unless you need the functional advantages of JFileChooser, use FileDialog instead.

When using FileDialog, you may want a user to select a directory instead of a file. In this case, use the
apple.awt.fileDialogForDirectories property with the setProperty.invoke() method on your
FileDialog instance.

Window-Modified Indicator

In Mac OS X, when a document has unsaved changes, the window’s close button displays a dot. Adopting
this same approach, that is, using a window-modified indicator, in your application makes it look more like
a Mac OS X native application and so conform to user expectations.

To display an indicator that a window was modified, you need to use the Swing property
Window.documentModified. It can be set on any subclass of JComponent that implements a top-level
window using the putClientProperty () method. The value of the property is either Boolean.TRUE or
Boolean.FALSE.

For more on using the window-modified indicator in your application, review New Control Styles available
within J2SE 5.0 on Mac OS X 10.5.

Making User Interface Decisions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Mac OS X Integration for Java

Apple Events and AppleScript

Mac OS X uses Apple events for interprocess communication. Apple events are high-level semantic events
that an application can send to itself or other applications. AppleScript allows you to script actions based on
these events. Without including native code in your Java application you can nevertheless let users take
some level of control of your application through AppleScript. To do so, implement the Application and
ApplicationAdaptor classes available in the com.apple.eawt package. By implementing the event
handlers in the ApplicationAdaptor class, your application can generate and handle basic events such as
Print and Open. Information on these two classes is available in J2SE 5.0 Apple Extensions Reference.

Java SE 6 also enables you to invoke AppleScript with the javax.script APL Listing 6 (page 37) provides
a sample implementation of this functionality. Full documentation for the API can be found at http://ja-
va.sun.com/javase/6/docs/api/javax/script/package-summary.html.

Listing 6 Invoking AppleScript with the javax.script API

public static void main(String[] args) throws Throwable {
String script = "say \"Hello from Java\"";

ScriptEngineManager mgr = new ScriptEngineManager();

ScriptEngine engine = mgr.getEngineByName("AppleScript");
engine.eval(script);

For more on AppleScript, see Getting Started with AppleScript.

System Properties

There are many Mac OS X-specific system properties you can set to modify the behavior of your Java
application. A complete list of supported Mac OS X system properties, including how to use them, is available
in Java System Properties.

Apple Events and AppleScript 37
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/documentation/Java/Reference/1.5.0/appledoc/api/index.html
http://java.sun.com/javase/6/docs/api/javax/script/package-summary.html
http://java.sun.com/javase/6/docs/api/javax/script/package-summary.html

Mac OS X Integration for Java

38 System Properties
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

User Interface Toolkits for Java

Swing

This article discusses how the Mac OS X implementation of the user interface toolkits Swing, AWT, accessibility,
and sound differ from the toolkits on other platforms. Although there is some additional functionality in Mac
OS X, for the most part these toolkits work as you would expect them to on other platforms. This article does
not discuss user interface design issues that you should consider in Mac OS X. For that information, see
“Making User Interface Decisions” (page 29).

In Mac OS X, Swing uses the Aqua Look and Feel as the default look and feel (LAF). Swing attempts to be
platform neutral, but some aspects of it are an impedance mismatch with the Aqua user interface. Apple
attempts to bridge the gap with a common ground that provides both developers and users an experience
that is not foreign. This section discusses where the Aqua LAF differs from the default implementation on
other platforms.

Note: While testing your application, you should test it on the standard Java cross-platform LAF as well as
Aqua. To do this, add
UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassname()) to your
code.

Menu Bars (JMenuBar)

In Java’s default cross-platform LAF, as well as the Windows LAF, menus are applied on a per-frame basis
inside the window under the title bar. On a Mac, in contrast, menus appear in one spot no matter what
windows users have open—at the top of the screen, in the menu bar.

To get menus out of the window and into the menu bar, you need only to set a single system property:
apple.laf.useScreenMenuBar

This property can have a value of true or false. By default, itis false, which means menus are in the
window instead of the menu bar. When this property is set to true, the Java runtime moves the menu bar
of any Java frame to the top of the screen, where Macintosh users expect it. Since this is just a simple runtime
property that only the Mac OS X Java VM looks for, there is no harm in putting it into your cross-platform
code base.

Note that this setting does not work for Java dialogs having menus. A dialog should be informational or
present the user with a simple decision, not provide complex choices. If users are performing actions in a
dialog, it is not really a dialog and you should consider using a JFrame object instead of a JDia10g object.

Swing 39
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

40

User Interface Toolkits for Java

Tabbed Panes (JTabbedPane)

On other platforms, if you have a tabbed pane (JTabbedPane) with too many tabs to fit in the parent window,
the tabs are simply stacked on top of each other. In the Aqua user interface of Mac OS X, tab controls are
never stacked. The Aqua LAF implementation of multiple tabs includes a special tab on the right that exposes
a pull-down menu to navigate to the tabbed panes not visible. This behavior, allows you to program your
application just as you would on any other platform while providing users an experience that is more consistent
with Mac OS X guidelines. The difference between a tabbed pane in Mac OS X and a tabbed pane in Windows
is shown in Figure 1.

Figure 1 Tabbed panes with multiple tabs in Mac OS X and Windows
& O) Tabs Every\bhere |&| Tabs Everywhere M
[Tab1 Tab 2 > | Tab9 | Tab10 |

Tab 3 [Tab6 | Tab7 | Tans |
Tab 4 [Tab3 | Tab4 | Tab5 |
Tab 6
Tab 7
Tab 8
Tab 9
Tab 10

S

One other thing to keep in mind about JTabbedPane objects in Mac OS X is that they have a standard size.

If you put an image in a tab, the image is scaled to fit the tab instead of the tab to the image. This standard
size applies to several other Swing components as well.

Component Sizing

Aqua has very well-defined guidelines for the size of its controls. Swing, on the other hand, does not. The
Aqua LAF tries to find a common ground. For example, since any combo box larger than twenty pixels would
look out of place in Mac OS X, that is all that is displayed, even if the actual size of the combo box is bigger.
Figure 2 shows a very large JComboBox component in Windows XP. Note that the drop-down scrolling list
appears at the bottom of the button.

Swing
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

User Interface Toolkits for Java

Figure 2 An oversize JComboBox component in Windows
|£| Big Combo Box =SHECE X
There is a really big JComhboBox over there -= 0 -
(You just can't see it in Mac 05 X)

\ 0 :i
1
2
3 =]
4
5 L
ﬁ —
7 =

The same code yields quite a different look in Mac OS X, as can be seen in Figure 3. The visible button is sized
to that of a standard Aqua combo box. The drop-down list appears at the bottom of the visible button. The
entire area that is active on other platforms is still active, but the button itself doesn’t appear as large.

Figure 3 An oversize JComboBox component in the Aqua LAF

8,00 Big Combo Box

There is a really big JComboBox over there -: 70 E
(You just can't see it in Mac OS5 X) 1

2

4

5

1 6 ’

7

8

9

Note that some other components have similar sizing adjustments to align with the standards set in Apple
Human Interface Guidelines for example, scroller and sliders. The JComboBox example is an extreme example.
Most are not as large, but this gives you an idea of how the Aqua LAF handles this type of situation.

Buttons

There are basically three button types in Mac OS X:

Swing 1
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

User Interface Toolkits for Java

= Push buttons, which are rounded rectangles with text labels on them.

= Radio buttons, which are in sets of two to seven circular buttons. They are for making mutually exclusive,
but related choices.

= Bevel buttons, which can display text, an icon, or a picture that can be either a standard push button or
have a menu attached.

Bevel buttons normally have rounded corners. When displayed in a toolbar or when sizing constraints
are tight, the corners are squared off.

To be consistent with these button types and their defined use in Mac OS X, there are some nuances of Swing
buttons that you should be aware of:

= JButton components with images in them are rendered as bevel buttons by default.

m A default JButton component that contains only text is usually rendered as a push button. (Over a
certain height, it is rendered as a bevel button, since Aqua push buttons are limited in their height.)

= JButton components in a toolbar are rendered as bevel buttons with square, not rounded, edges.

In addition to these default characteristics which are dependent on height and the contents of the button,
you can also explicitly set the type of button with JButton.buttontype, which accepts three values:

= toolbar gives you square bevel button.
m text gives you a push button.

m icon gives you a rounded bevel button.

Keep Apple’s human interface guidelines in mind if you explicitly set a button type.

For a more thorough treatment of the Aqua LAF in Swing, see New Control Styles available within J2SE 5.0 on
Mac OS X 10.5.

Abstract Window Toolkit (AWT)

42

By its nature, AWT is very different on every platform. When developing Java applications in Mac OS X, follow
these tips for best results:

= The value of the accelerator key can be determined by calling

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(). Thisis further discussed in “
Accelerators (Keyboard Shortcuts)” (page 30).

= Mac OS X does not specify a default minimum size for windows. To avoid a 0 by 0 (0x0) pixel window
being opened, top-level frames have a minimum size of 128 by 37 (128x37).

m java.awt.GraphicsDevice includes methods for controlling the full screen of a client computer
through Java. In addition to these standard tools, Mac OS X provides a few system properties that may
be useful for development of full-screen Java applications. These are discussed in Java System Properties.

Abstract Window Toolkit (AWT)
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

User Interface Toolkits for Java

Character Encoding

The default character encoding in Java for Mac OS X is MacRoman. The default font encoding on some other
platforms is ISO-Latin-1 or WinLatin-1; unlike MacRoman, these encodings are subsets of UTF-8. Programs

that assume that filenames can be turned into UTF-8 by just turning a byte into a char will cause problems
in Mac OS X.

The simplest way to work around this problem is to specify a font encoding explicitly rather than assuming
one.

If you do not specify a font encoding explicitly, recognize that:

= In the conversion from a Unicode subset to MacRoman you may lose information.

= Filenames are not stored on disk in the default font encoding, but in UTF-8. Usually this isn’t a problem,
because most files are handled in Java as java.io.Files, though it is good to be aware of.

= Although filenames are stored on disk as UTF-8, they are stored decomposed. This means that certain
characters—for example, e-acute (é)—are stored as two characters, “e followed by “*” (acute accent).
The default HFS+ filesystem of Mac OS X enforces this behavior. SMB enforces composed Unicode

characters. UFS and NFS do not specify whether filenames are stored composed or decomposed, so they
can do either.

Accessibility

With some platforms, to use the Java Accessibility API, you must use a native bridge. This is not necessary in
Mac OS X because the bridging code is built in. Users can configure the accessibility features of Mac OS X
through the Universal Access pane of System Preferences. As a result, if you are using the Accessibility API,
your application can use devices that the user has configured there.

Beginning with Mac OS X v10.4, a screen reader called VoiceOver is included with the operating system. Your
Java application automatically uses this technology.

Security

In Mac OS X v10.5, Java applications that use the Kerberos computer network authentication protocol
automatically access the system credentials cache and tickets.

Apple also includes a cryptographic service provider based on the Java Cryptography Architecture. Currently,
the following algorithms are supported:

= Mac: MD5, SHA1
m Message Digest: MD5, SHA1

= Secure Random: YarrowPRNG

Character Encoding 43
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Sound

User Interface Toolkits for Java

Java on Mac OS X v10.5 features an implementation of KeyStore that uses the Mac OS X Keychain as its
permanent store. You can get an instance of this implementation by using code like this:

keyStore = KeyStore.getInstance("KeychainStore", "Apple");

For more usage information, see the reference documentation on java.security.KeyStore at http://ja-
va.sun.com/j2se/1.5.0/docs/api/java/security/KeyStore.html.

Java on Mac OS X allows you to sample sound with Apple’s Core Audio framework at any frame rate supported
by your input device. Input can be signed or unsigned PCM encoding, mono or stereo, 8 or 16 bits per sample.

By default, the Java Sound engine in Mac OS X uses the mids i ze sound bank from http://java.sun.com/prod-
ucts/java-media/sound/soundbanks.html.

Input Methods

Mac OS X supports Java input methods. The utility application Input Method Hot Key, installed in
/Applications/Utilities/Java/,allowsyou to configure atrigger for input methods. You can download
sample input methods from http://java.sun.com/products/jfc/tsc/articles/InputMethod/inputmethod.html.

Java 2D

44

In Mac OS X, Java windows are double buffered. The Java implementation itself attempts to flush the buffer
to the screen often enough to have good drawing behavior without compromising performance. If, for some
reason, you need to force window buffers to be flushed immediately, use Toolkit.sync.

By default, Java on Mac OS X uses the Sun2D renderer, which exactly mimics the behavior of Java 2D on
other platforms. If you are developing a graphically intensive application specifically for the Mac OS X platform
and the Sun2D renderer’s performance is inadequate, you may find better success using Apple’s Quartz
graphics engine for your Java rendering instead (see http://developer.apple.com/graphicsimaging/quartz/
for more information). Quartz is optimized for a different set of operations from the Sun2D renderer, and as
a consequence its behavior is by no means identical to that of Java on other platforms.

By default, Quartz displays text anti-aliased. Therefore, if you use Quartz as your renderer, Java2D turns
anti-aliasing on in order to render text in the Aqua look and feel for Swing (it does this by setting
KEY_ANTIALIASING to VALUE_ANTIALTIAS_ON). If you want the pixels of your images and text to more
closely approximate that same content on other platforms, turn off anti-aliasing. You can do so by using the
properties described in Java System Properties or by calling java.awt.Graphics.setRenderingHint
from within your Java application. In applets, anti-aliasing is turned off by default.

Sound
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://java.sun.com/j2se/1.5.0/docs/api/java/security/KeyStore.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/KeyStore.html
http://java.sun.com/products/java-media/sound/soundbanks.html
http://java.sun.com/products/java-media/sound/soundbanks.html
http://java.sun.com/products/jfc/tsc/articles/InputMethod/inputmethod.html
http://developer.apple.com/graphicsimaging/quartz/

User Interface Toolkits for Java

Tip: When you are using anti-aliasing, if you need to replace text or an image, repaint the graphics context.
Do not use XOR mode to repaint images.

Resolution Independence

Java is not explicitly designed for resolution independence (also known as HiDPI); therefore, Java for Mac OS
X borrows some functionality from the Cocoa framework. To load a resolution-independent tiff, icns, or
pdf file from the Resources folder of your application bundle into your Java application, use the getImage
method of java.awt.Toolkit.The string you passinto getImage is of the form "NSImage://MyImage".
Do not include the file extension of the image. Also be aware that if you are using the Sun2D renderer, Java
will automatically switch to the Quartz engine and enable anti-aliasing if you load a resolution-independent
image.

You can test resolution independence in your application with the Quartz Debug tool, located in
/Developer/Applications/Performance Tools. Quartz Debug allows you to launch your application
at up to three times the default screen resolution. For a full list of features included in Quartz Debug, consult
the Quartz Debug Help.

Mac OS X includes resolution-independent standard images for user interfaces that you can also access with
the getImage method of java.awt.Toolkit. Forinstance,
Toolkit.getDefaultToolkit().getImage("NSImage://NSColorPanel") will return an Image
reference representing the color wheel icon seen on the Colors button in applications such as Mail. For a
comprehensive list of the standard images available, see “Constants” in NSImage Class Reference.

Note: The standard image constants defined in NSTmage . h all include the substring ImageName. For instance,
the constant for the NSColorPanel image has the name NSImageNameColorPanel. When passing a string
to getImage, do notinclude ImageName in the string—it is included in the name of the Objective-C constant,
but not the value of the name itself.

Resolution Independence 45
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

User Interface Toolkits for Java

46 Resolution Independence
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Core Java APIs and the Java Runtime on Mac
OS X

This article discusses the differences between the Core Java APIs on Mac OS X and other platforms. In general,
the Core Java APIs behave as you would expect them to on other platforms, so most of them are not discussed
in this article. There are a couple of details concerning Preferences that you should be aware of, as discussed
in “Other Tools” (page 18).

Networking

Mac OS X v10.3 and later supports IPv6 (Internet Protocol version 6). Because J2SE 5.0 and Java SE 6 use IPv6
on platforms that support it, the default networking stack in Mac OS X is the IPv6 stack. You can make Java
use the IPv4 stack by setting the java.net.preferIPv4Stack system property to true.

Preferences

The Preferences API is fully supported in Mac OS X, but there are two details you should be aware of to
provide the best experience to users:

m The preferences files generated by the Preferences APl are named com.apple.java.util.prefs.The
user’s preferences file is stored in their home directory (~/Library/Preferences/). The system
preferences are stored in /Library/Preferences/ and are only persisted to disk if the user is an
administrator.

= To be consistent with the Mac OS X user experience, your preferences should be available from the
application menu. The com.apple.eawt.Application class provides a mechanism for doing this. See
J2SE 5.0 Apple Extensions Reference for more information.

JNI

It is recommended that you use the Java JNI Application template in the Xcode Organizer as a starting point
for your JNI development. For more on the Xcode Organizer, see “The Xcode Organizer” (page 17).

NI libraries are named with the library name used in the System.1oadlLibrary method of your Java code,
prefixed by 11b and suffixed with . jni11b. For example, System.loadlLibrary("hello") loads the
library named 1ibhel7l0.jni11b.Java HotSpot also recognizes .dy11ib as a valid NI library format as of
Mac OS X v10.5.

To build as a dynamic shared library, use the -dynamic11ib flag. Since your . h file produced by javah
includes jni . h, you need to make sure you include its source directory. Putting all of that together looks
something like this:

Networking 47
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/documentation/Java/Reference/1.5.0/appledoc/api/index.html

48

Core Java APIs and the Java Runtime on Mac OS X

cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers sourceFile.c
cc -dynamiclib -o libhello.jnilib sourcefFile.o -framework JavaVM

For example, if the files he110.cand hola. c contain the implementations of the native methods to be built
into a dynamic shared JNI library that will be called with System.ToadlLibrary("hello"), youwould build
the resultant library, 1ibhel70.jni11b, with this code:

cc -c¢ -I/System/Library/Frameworks/JavaVM.framework/Headers hola.c
cc -c¢ -1/System/Library/Frameworks/JavaVM.framework/Headers hello.c
cc -dynamiclib -o Tibhello.jnilib hola.o hello.o -framework JavaVM

Often JNI libraries have interdependencies. For example assume the following:

m 1ibA.jnilib contains a function foo().

m 1ibB.jnilib needstolinkagainst 1ibA.jni11ib to make use of foo().

Such an interdependency is not a problem if you build your JNI libraries as dynamic shared libraries, but if
you build them as bundles it does not work since symbols are private to a bundle. If you need to use bundles
for backward compatibility, one solution is to put the common functions into a separate dynamic shared
library and link that to the bundle. For example:

1. Compile the JNI library.

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o myJNILib.o
myJNILib.c

2. Compile the file with the common functions.

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -0
CommonFunctions.o CommonFunctions.c

3. Build the object file for your common functions as a dynamic shared library.
cc -dynamiclib -o TibCommonFunctions.dylib CommonFunctions.o

4. Build your NI library as a bundle and link against the dynamic shared library with your common functions
in it.

cc -bundle -TCommonFunctions -o TibMyJNILib.jnilib myJdNILib.o

JNI
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Core Java APIs and the Java Runtime on Mac OS X

Note: When building JNI libraries, you need to explicitly designate the path to jni.h. Thisisin
/System/Library/Frameworks/JavaVM. framework/Headers/,not/usr/include/ asonsome other
platforms.

Note: After you have built your JNI libraries, make sure to let Java know where they are. It is recommended
that you do this by putting your libraries into your application bundle and passing in the path with the
-Djava.library.path option. It is also possible to do this by putting your libraries in
/Library/Java/Extensions/, but this is discouraged, as it breaks the encapsulation of your bundle.

A complete example of JNI development can be found in the MyFirstJNIProject sample code. More details on
INI can be found in Tech Note TN2147: JNI Development on Mac OS X.

The Java Runtime

The Java implementation for Mac OS X includes the Java HotSpot VM runtime and the Java HotSpot client
VM, both from Sun. The VM options available with the Java VM in Mac OS X vary slightly from those available
on other platforms. The available options are presented in Java Virtual Machine Options.

Table 1 lists the basic properties of the Java VM in Mac OS X. You can use
System.getProperties().1ist(System.out) to obtain a complete list of system properties.

Table 1 JVM properties

Property Sample value | Notes

java.version 1.5.0_13 Mac OS X v10.4 and earlier ships with earlier versions of Java. Use
this property to test for the minimal version your application
requires.

java.vm.version 1.5.0_13

file.separator ‘' Note that this is a change from Mac OS 9.

line.separator \n’ This is consistent with UNIX-based Java implementations, but
different from Mac OS 9 and Windows.

0S.name Mac OS X Make sure to check for Mac 0S X ,notjust Mac 0S because
Mac 0S returns true for Mac OS 9 (and earlier) which did
not even have a Java 2 VM.

0s.version 10.54 Java 1.5 runs only in Mac OS X v10.4 or later.

Note: The mrj.version system property is still exposed by the VM in Java 1.5. Although you may still
use this to determine if you are running in the Mac OS, for forward compatibility consider using the os . name
property to determine if you are running in Mac OS X. The reason is that this property may go away in future
attempts to further synchronize the Apple source with the source from Sun.

The Java Runtime 49
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/technotes/tn2005/tn2147.html

Core Java APIs and the Java Runtime on Mac OS X

50 The Java Runtime
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Java Development Guide for Mac OS X.

Date Notes

2008-10-15 Updated to focus on J2SE 5.0 and Java SE6 and reflect recent updates to Java
for Mac OS X.

2006-05-23 Updated content to include information for J2SE 5.0 Release 4 for Mac OS X.

2006-01-10 Fixed typos throughout the document.

2005-10-04 Fixed various errors and inconsistencies.

2005-04-29 Updated content to include information for J2SE 5.0 Release 1 for Mac OS X.
Document renamed Java Development Guide for Mac OS X.
Updated with information about Java on Mac OS X v104.

2004-11-02 Minor revisions and corrections throughout the document.

2004-08-31 Revised for Java 1.4.2. Updated links to reflect documentation changes.

2003-06-23 Removed appendices. They are now available as separate documents. Minor
corrections in the overview chapter. Spelling and grammatical errors fixed.

2003-05-15 Revised for Java 14.1. Most sections are completely new to reflect the completely
new Java implementation. Only the user experience information has been
retained although it has been updated as well. Structure of the document was
modified dramatically to align with Sun’s presentation of the Java 2 platform.

2002-09-01 Format completely revised. Changed target emphasis from Mac OS 9 Java
developers to Java developers coming from other platforms. Updated to include
new features introduced in Java 1.3.1 including the Java.applet.plugin
and information about hardware acceleration.

2002-07-01 Updated for Mac OS X version 10.2. Modified tutorials to work with new operating
system and corrected some typographical errors.

2001-12-01 Document originally released with a focus on describing what is different in
Java development from Mac OS 9 to Mac OS X.

51

2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

52

Document Revision History

2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

	Java Development Guide for Mac OS X
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of Java for Mac OS X
	Java and Mac OS X
	Java, Built In
	32-Bit and 64-Bit Java
	The Aqua User Interface
	Finding Your Way Around
	The Java Home Directory
	Java Extensions
	Output from Java Programs

	The File System

	Apple Developer Tools for Java
	JDK Tools in Mac OS X
	Java IDEs
	Xcode Tools
	Get the Current Tools
	Xcode
	The Xcode Organizer
	Xcode and Ant

	Jar Bundler
	Applet Launcher

	Other Tools
	Developer Documentation
	Providing Documentation Feedback

	Java Deployment Options for Mac OS X
	Java Web Start
	Mac OS X Application Bundles
	The Contents of an Application Bundle
	A Java Application’s Information Property List File
	Making a Java Application Bundle
	Localizing Java Applications
	Distributing Application Bundles
	Making a Mac OS X Java Application Bundle on other Platforms

	Double-Clickable JAR Files
	The Java Plug-in

	Mac OS X Integration for Java
	Making User Interface Decisions
	Working with Menus
	The Menu Bar
	The Application Menu
	The Window Menu
	Accelerators (Keyboard Shortcuts)
	Mnemonics
	Menu Item Icons and Special Characters
	Contextual Menus

	Designing for Component Layout, Size, and Color
	Laying Out and Sizing Components
	Coloring Components

	Working with Windows and Dialogs
	Use of the Multiple Document Interface
	Windows with Scroll Bars
	File-Choosing Dialogs
	Window-Modified Indicator

	Apple Events and AppleScript
	System Properties

	User Interface Toolkits for Java
	Swing
	Menu Bars (JMenuBar)
	Tabbed Panes (JTabbedPane)
	Component Sizing
	Buttons

	Abstract Window Toolkit (AWT)
	Character Encoding
	Accessibility
	Security
	Sound
	Input Methods
	Java 2D
	Resolution Independence

	Core Java APIs and the Java Runtime on Mac OS X
	Networking
	Preferences
	JNI
	The Java Runtime

	Revision History

