
Project Builder for Java
(Legacy)

Java > Tools

2003-10-10

Apple Inc.
© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Project Builder for Java 9

Organization of This Document 9
See Also 10

Chapter 1 Application Development 11

The Tool Template 12
The Swing Application Template 13
The JNI Application Template 14

Chapter 2 Build System 17

Build Settings 17
Targets 19
Target Information Panes 19

Target Summary 19
Build Settings 20
Information Property List Entries 24

Build Styles 29
Build Phases 30

Chapter 3 Developing a Tool 33

Creating the “Hello, World” Tool 33
Creating the Clock Tool 36
Installing the Clock Tool 38

Chapter 4 Developing a Swing Application 41

Creating the “Hello, Swing” Application 41
Creating the File Chooser Demo 43
Changing an Application’s Icon 48

Chapter 5 Developing a JNI Application 51

Creating the “Hello, JNI” Application 51
JNI-Based Examples 54

Chapter 6 Debugging Applications 55

Adding Breakpoints 55

3
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

Stepping Through Lines of Code 56
Viewing the Debug Information 58
Accessing the Contents of Objects 59

Appendix A Build Settings Reference 61

Project Settings Reference 61
Deployment Settings Reference 61
Target Settings Reference 62
Java Compiler Settings 63
Java Application Settings 64

Document Revision History 65

Glossary 67

4
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Application Development 11

Figure 1-1 Project Builder templates for Java development 11
Figure 1-2 The files of a Java tool project 12
Figure 1-3 Target editor for the Hammer project. 13
Figure 1-4 The files of a Java Swing application project 14
Figure 1-5 A JNI-based application project 15
Figure 1-6 Targets of JNI-based application project 16
Table 1-1 Applications types and their corresponding project templates 11

Chapter 2 Build System 17

Figure 2-1 Target Summary pane of the target editor in Project Builder 20
Figure 2-2 General Settings pane of the target editor in Project Builder 21
Figure 2-3 Installation Settings pane of the target editor in Project Builder 21
Figure 2-4 Search Paths pane of the target editor in Project Builder 22
Figure 2-5 Java Compiler Settings pane of the target editor in Project Builder 23
Figure 2-6 Java Archive Settings pane of the target editor in Project Builder 24
Figure 2-7 Basic Information pane of the target editor in Project Builder 25
Figure 2-8 Display Information pane of the target editor in Project Builder 26
Figure 2-9 Application Icon pane of the target editor in Project Builder 27
Figure 2-10 Cocoa Java–Specific pane of the target editor in Project Builder 27
Figure 2-11 Pure Java–Specific pane of the target editor in Project Builder 28
Figure 2-12 Build style definition 30
Figure 2-13 Build-setting display script 31
Figure 2-14 Output of a build-setting display script 31
Table 2-1 Project build settings 17
Table 2-2 Deployment build settings 18
Table 2-3 Target build settings 18
Table 2-4 Java compiler build settings 18
Table 2-5 Java application build setting 18
Table 2-6 Elements of the Target Summary pane 20
Table 2-7 Elements of the General Settings pane 21
Table 2-8 Elements of the Installation Settings pane 22
Table 2-9 Elements of the Search Paths pane 22
Table 2-10 Elements of the Java Compiler Settings pane 23
Table 2-11 Elements of the Java Archive Settings pane 24
Table 2-12 Elements of the Basic Information pane 25
Table 2-13 Elements of the Display Information pane 26
Table 2-14 Elements of the Application Icon pane 27
Table 2-15 Elements of the Cocoa Java–Specific pane 28
Table 2-16 Elements of the Pure Java–Specific pane 28

5
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

Chapter 3 Developing a Tool 33

Figure 3-1 The Hello project in Project Builder 35
Figure 3-2 Project Builder’s Run pane showing Hello’s console output 35
Figure 3-3 Arguments pane of the executable editor in Project Builder 37
Figure 3-4 Output of Clock tool displayed in Project Builder 37
Figure 3-5 Expert View pane of the target editor in Project Builder 38
Figure 3-6 Clock distribution directory in /tmp 39
Figure 3-7 Clock target directory 39
Figure 3-8 Output of Clock viewed through Console 39

Chapter 4 Developing a Swing Application 41

Figure 4-1 The Hello_Swing project in Project Builder’s window 43
Figure 4-2 Hello_Swing application in action 43
Figure 4-3 Delete References dialog of Project Builder 44
Figure 4-4 Adding source files to a project in Project Builder 45
Figure 4-5 FileChooser in action 47
Figure 4-6 Open dialog displayed by FileChooserDemo 47

Chapter 5 Developing a JNI Application 51

Figure 5-1 The Leverage project in the Project Builder window 52
Figure 5-2 The build folder of the Leverage project after building the application 54
Listing 5-1 Leveragejnilib.c source file in the Leverage project 53
Listing 5-2 JNIWrapper.java source file in the Leverage project 53

Chapter 6 Debugging Applications 55

Figure 6-1 Breakpoint in Debug.java file of Debug project 56
Figure 6-2 Debugging an application—stopping 57
Figure 6-3 Debugging an application—stepping over 57
Figure 6-4 Debugging an application—stepping into a method 58
Figure 6-5 Debugging an application—viewing variable information 59
Figure 6-6 Debugging an application—viewing an object’s contents 60
Listing 6-1 Debug.java file of Debug project 55
Listing 6-2 Person.java file 59
Listing 6-3 Console output after executing Print Description to Console command on a Person

object 60

Appendix A Build Settings Reference 61

Table A-1 Project build settings 61
Table A-2 Deployment build settings 61
Table A-3 Target build settings 62

6
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Table A-4 Java compiler build settings 63
Table A-5 Java application build settings 64

7
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

8
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The information in this document is obsolete and should not be used for new development.

This document addresses Java development in Mac OS X using Project Builder. Project Builder is part of
Apple’s integrated development environment.

Important: To run the examples described in this document, you must have installed Java 1.4.1 and the
December 2002 (or later) Developer Tools package.

You should read this document if you are a Java developer who is interested in developing applications for
Mac OS X or want to port an existing application into Mac OS X.

Organization of This Document

This document has the following chapters and appendixes:

 ■ “Application Development” (page 11) introduces Java development using Project Builder. The chapter
explains each of the Java-based templates, which give you a head start when developing a project.

 ■ “Build System” (page 17) addresses the Project Builder build system. It describes build settings, build
targets, and build styles.

 ■ “Developing a Tool” (page 33) explains how to use the Java Tool template to develop a text-based Java
application. This a good place to start if you’re new to Java development in Mac OS X.

 ■ “Developing a Swing Application” (page 41) explains how to use the Java Swing Application template
to develop a graphical user interface–based application.

 ■ “Developing a JNI Application” (page 51) provides an overview of the Java JNI Application template,
which you can use to develop Java applications that need to interact with native code.

 ■ “Debugging Applications” (page 55) focuses on Project Builder’s debugging facilities.

 ■ “Build Settings Reference” (page 61) describes the build settings that you may need to configure in Java
applications.

Following the appendixes are a document revision history, and a glossary.

Organization of This Document 9
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Project Builder for Java

See Also

There are source files and Project Builder projects in the companion files of this document. They are located
in /Developer/ADC Reference
Library/documentation/Java/Conceptual/Project_Builder_for_Java/Project_Builder_for_Java_companion.zip;
that directory is called companion in the remainder of this document. You can also download the companion
files from http://developer.apple.com/documentation/Java/index.html.

For general information about Project Builder, see Project Builder Help. For information on specialized Project
Builder customization, see Customizing Project Builder, at http://developer.apple.com/documentation/Devel-
operTools/index.html.

10 See Also
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Project Builder for Java

http://developer.apple.com/documentation/Java/index.html
http://developer.apple.com/documentation/DeveloperTools/index.html
http://developer.apple.com/documentation/DeveloperTools/index.html

This chapter introduces the development of Java applications using Project Builder. Project Builder provides
a development environment in which you can develop, build, and deploy Java applications. In addition,
Project Builder has a project template that facilitates the development of applications that use the native
Mac OS X environment, that is, applications that have both Java code as well as C or Objective-C code.

Project Builder templates are prebuilt projects that give you a head start in the development of an application.
Figure 1-1 shows the New Project pane of the Project Builder Assistant, listing the Java project templates
you can use to develop applications. When you want to develop a Swing-based application, for example,
you can start with the Swing application template, which provides a fully configured application that follows
Apple’s guidelines for GUI (graphical user interface) applications. That template is also useful if you’re new
to Java and Swing and want to see the inner workings of a working application.

Figure 1-1 Project Builder templates for Java development

Table 1-1 shows the type of Java applications you can develop with Project Builder and their corresponding
project templates.

Table 1-1 Applications types and their corresponding project templates

Template nameApplication type

Java ToolText-based application

Java Swing AppletSwing applet

11
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Template nameApplication type

Java Swing ApplicationSwing application

Java JNI ApplicationJNI (Java Native Interface) application

Java AWT AppletAWT (Abstract Window Toolkit) applet

Java AWT ApplicationAWT application

Project Builder has a powerful and flexible build system that facilitates the potentially complex tasks involved
in building and deploying products, which include applications, libraries, frameworks, JAR files, and so on.
The main elements involved in building products are targets. A project can contain more than one product,
each produced by a target. In the case of text-based application projects, such as Java tool projects, the target
is a JAR file created by the project’s only target.

In general, a target encompasses instructions on how to build a product, which can be an application or a
component of one. Build settings are properties that tell Project Builder how to build a product. Build phases
are concrete steps Project Builder takes to build a target; for example, compiling source files into object files
and linking object files to create an executable file. For more information, see “Targets” (page 19), “Build
Settings” (page 17), and “Build Phases” (page 30).

The Tool Template

The Java Tool template provides the files needed to create a simple, text-based application. It includes source
files for the class with the main method, the JAR manifest, and the man page. Figure 1-2 shows the files that
make up a Java tool project.

Figure 1-2 The files of a Java tool project

1
2

3

4

The following list describes the files of a Java tool project named Hammer:

1. Hammer.java: Java source file that contains the main method. Project Builder names this file after the
project.

2. Manifest: File that contains information that Project Builder adds to the MANIFEST.MF file of the
generated JAR file.

3. Hammer.1: Source for the man page that documents the tool.

12 The Tool Template
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

4. Hammer.jar: JAR file in which Java class files, the manifest file, and other resources are stored for
distribution. This is the product of the project. It’s red because it hasn’t been produced yet, so the file
doesn’t exist in the file system.

Figure 1-3 shows the target editor for the Hammer project.

Figure 1-3 Target editor for the Hammer project.

The items under Build Phases in the target editor list the build phases of the Hammer target. The phases are
executed from top to bottom when the product is built. That is, the build phases are executed in the following
order:

1. Sources Determines which Java source files are to be compiled (run through the javac compiler).

2. Java Resource Files Indicates which files to copy to the root level of the product (the top level of the
JAR file).

3. Frameworks & Libraries Lists frameworks or libraries to which the Java class files generated in step 1
must link against.

4. Copy Files Copies files to specific parts of a product (for example, its resources directory or its plug-ins
directory).

The Swing Application Template

The Java Swing Application template provides the files needed to create a desktop application. It includes
source files for a controller class (which includes the main method) and two JFrames that the user can make
visible through menu commands, an icon file, and a properties file. Figure 1-4 shows the files that make up
a Java Swing application project.

The Swing Application Template 13
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Figure 1-4 shows the project’s files in the Project Builder window, the contents of the project’s build folder,
and the running application.

Figure 1-4 The files of a Java Swing application project

2

1

3 4

1

1
2
3
4

The following list describes the files in a Java Swing application project named Dance and their relationship
to the actual application:

1. Dance.java, AboutBox.java and Preferences.java: Java source files that implement an About
box and a preferences dialog.

2. Dance.icns: Icon file that contains the icon that the Finder displays for the application package.

3. Dancestrings.properties: File that contains the names and values of application properties accessible
at runtime. Project Builder places this file inside the JAR file for the application.

4. Dance.app: Application package that contains Mac OS X–specific information for the application, as
well as the application’s JAR file.

The JNI Application Template

The Java Native Interface (JNI) provides a standard interface for communication with native libraries. You
may want to use the JNI if you need to interface with native, legacy code from Java applications or when
you want to improve the performance of an application by porting certain tasks to native code.

Project Builder provides a template with which you can develop projects that include both native code and
Java code. Figure 1-5 shows a project called Pronto created with the JNI Application template.

14 The JNI Application Template
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Figure 1-5 A JNI-based application project

The most interesting part of the Pronto project are its targets. While the previous project types, tool and
Swing application, required only one target, a JNI project requires several targets. This is because a JNI project
contains three products, a JNI library (which contains the compiled C code), a header to the library, and a
JAR file for the Java side of the application. See Figure 1-6.

The JNI Application Template 15
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Figure 1-6 Targets of JNI-based application project

The project has three main targets:

 ■ JNIWrapper Compiles the Java source files of the application and archives them in a JAR file. This is the
Java application.

 ■ CreateHeaders Creates C function prototypes from Java class files in the JAR file generated by the
JNIWrapper target.

 ■ JNILib Builds the native library by compiling Prontojnilib.c and linking it with the Java VM framework
(/System/Library/Frameworks/JavaVM.framework).

The Native target is an aggregate target. Its purpose is to enclose the JNIWrapper, CreateHeaders, and JNILib
targets into one build unit, so that any action performed on it is performed on all the targets it contains. The
BuildUsingMake target bypasses the Project Builder build system. It uses gnumake (/usr/bin/gnumake) to
build the application.

You can find detailed information on the JNI at http://java.sun.com/j2se/1.4/docs/guide/jni/.

16 The JNI Application Template
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

http://java.sun.com/j2se/1.4/docs/guide/jni/

This chapter discusses the Project Builder build system, which determines how applications are built. Project
Builder uses the Jam software build tool as its build engine. Jam allows Project Builder to easily manage
dependencies between a project’s elements. It can also take advantage of computers with two or more
central processing units (CPUs).

Build Settings

Build settings are similar to Java properties: They store values that Project Builder uses to build products.
Project Builder facilitates configuring some build settings through specialized panes (see “Target Information
Panes” (page 19)). However, you can set the value of any build setting directly through expert panes. Expert
panes show the configuration build settings as a list of key-value pairs. Through these panes you can set the
values of build settings for which the more user-friendly specialized panes do not provide a user interface.

The following tables list some of the build settings you may have to use in your projects. “Build Settings
Reference” (page 61) has a complete list of Java-related settings. See the Project Builder release notes for a
complete list of all settings.

Table 2-1 lists build settings that identify a project and tell Project Builder where to put temporary files
generated during product building.

Table 2-1 Project build settings

DescriptionBuild setting

Name of the project. For example, MyProject. You should not modify this setting
directly.

PROJECT_NAME

Base location for built products. For example, MyProject/build.SYMROOT

Base location for the temporary files generated by a project’s targets. For example,
MyProject/build. You should not modify this setting directly.

BUILD_DIR

Base location for built products. It’s set to $BUILD_DIR in development builds (for
example, MyProject/build), $INSTALL_DIR (for example, /tmp/My-
Project.dst/usr/bin) in deployment builds when the product is installed, and
$BUILD_DIR/UninstalledProducts when the product is not installed.

TARGET_BUILD_DIR

Table 2-2 lists build settings that determine where files are placed when you use pbxbuild to install a
product.

Build Settings 17
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Table 2-2 Deployment build settings

DescriptionBuild setting

Base location for the installed product. For example, /tmp/MyProject.dst/.DSTROOT

Location of the installed product. For example usr/bin.INSTALL_PATH

Fully qualified path for the installed product. By default, it concatenates DSTROOT and
INSTALL_PATH. So, with the example values, it evaluates to /tmp/My-
Project.dst/usr/bin. You should not modify this setting directly.

INSTALL_DIR

Table 2-3 lists build settings that identify a target and tell Project Builder where to put the files it generates.

Table 2-3 Target build settings

DescriptionBuild setting

Name of the target. For example, MyProject. You should not modify this setting directly.TARGET_NAME

The action being performed on a target. Its possible values are build, clean, or install
(through pbxbuild). You should not modify this setting directly.

ACTION

Location for a target’s temporary files. For example, MyProject/build/My-
Project.build/MyTarget.build.

TEMP_DIR

Table 2-4 lists build settings used to call javac or jikes to compile Java source files.

Table 2-4 Java compiler build settings

DescriptionBuild setting

Base location for Java class files. For example,
MyProject/build/MyProject.build/MyTarget.build/Java-
Classes.

CLASS_FILE_DIR

Defines the Java virtual machine version that javac compiles Java
source files to—for example, 1.4. By default, this setting is undefined.

JAVA_COMPILER_-
TARGET_VM_VERSION

Table 2-5 lists the build setting that defines the archive of Java class files and the creation of the application
package.

Table 2-5 Java application build setting

DescriptionBuild setting

Path (relative to the project’s root directory) to a manifest file to use when
archiving Java class files into a JAR file. For example, Manifest.

JAVA_MANIFEST_FILE

18 Build Settings
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Targets

Project Builder targets represent a product, such as an application or a framework. A project can produce
more than one product. For example, a project can contain Java source files, which are compiled into Java
class files by javac, and Objective-C source files, which are compiled into object files by gcc. Such a project
must contain at least two targets, one that compiles the Java sources files and another that compiles the
Objective-C source files. The build settings introduced in “Build Settings” (page 17) are what Project Builder
uses to determine how to build a product.

Each target has its own set of build setting values; they are autonomous entities within a project. However,
you can tell Project Builder that a target depends on one or more additional targets. That way you can
guarantee, for example, that when target A needs files produced by target B, target B is executed before
target A. In addition, if there’s a problem with target B, target A doesn’t get executed.

In addition, Project Builder provides the ability to add aggregate targets to a project. An aggregate target
contains no product-building instructions; instead, it groups other targets. The operations you perform on
aggregate targets are carried out on all the targets they enclose.

Each target can contain some or all of the following types of elements:

 ■ Build settings The group of build settings that control the build system.

 ■ Information property list entries Application package–specific information, such as type, version, icon,
and so on.

 ■ Build phases Types of tasks to perform on a set of a project’s files, such as compile, link, archive, copy,
and so on. See “Build Phases” (page 30) for more information.

For more information on targets, see Project Builder Help.

Target Information Panes

Target information panes group information about how a product is built. They contain a user-friendly view
of the values of certain build settings. These information panes are grouped in three major groups: Summary,
Settings and Info.plist Entries.

Target Summary

The Summary pane shows summary information for a project, including its name, type, and developer
comments; it’s shown in Figure 2-1.

Targets 19
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-1 Target Summary pane of the target editor in Project Builder

Table 2-6 describes the elements of the Target Summary pane.

Table 2-6 Elements of the Target Summary pane

Corresponding build settingDescriptionElement label

None.Indicates the type of project. Can be Application, Tool,
Framework, and so on.

Product type

PRODUCT_NAMEName of the generated product file without an
extension.

Base product name

None.Developer comments about the target.Comments

Build Settings

The Build Settings pane groups views of the build settings of a project. It includes two views: Simple View
and Expert View. The Simple View provides a easy-to-use user interface to various build settings. The Expert
View lists all the build settings. You can use this view when the other views don’t provide a way of configuring
a particular build setting.

General Settings

The General Settings pane, depicted in Figure 2-2, shows information that pertains to the entire project.
Table 2-7 describes its elements.

20 Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-2 General Settings pane of the target editor in Project Builder

Table 2-7 Elements of the General Settings pane

Corresponding build settingDescriptionElement label

None.Indicates the type of project. Can be Application, Tool,
Framework, and so on.

Product type

PRODUCT_NAMEName of the generated product file without an extension.Product name

Installation Settings

The Installation Settings pane, depicted in Figure 2-3, shows installation information for the selected target.
Table 2-8 describes its elements.

Figure 2-3 Installation Settings pane of the target editor in Project Builder

Target Information Panes 21
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Table 2-8 Elements of the Installation Settings pane

Corresponding build settingDescriptionElement label

None.When selected, the product doesn’t get installed.None

INSTALL_PATHWhen selected, the product gets installed in the directory
entered in the text input field.

Path

Search Paths

The Search Paths pane, depicted in Figure 2-4, determines the places Project Builder searches for frameworks,
libraries, Java classes, and headers (in the case of a JNI application) to build the selected target. Table 2-9
describes its elements.

Figure 2-4 Search Paths pane of the target editor in Project Builder

Table 2-9 Elements of the Search Paths pane

Corresponding build settingDescriptionElement label

HEADER_SEARCH_PATHSSearch paths for Objective-C header files.Headers

FRAMEWORK_SEARCH_PATHSSearch paths for frameworks.Frameworks

LIBRARY_SEARCH_PATHSearch paths for libraries.Libraries

JAVA_CLASS_SEARCH_PATHSSearch paths for Java class files or JAR files.Java Classes

Java Compiler Settings

The Java Compiler Settings pane, depicted in Figure 2-5, determines some compiler settings for the selected
target. Table 2-10 describes its elements.

22 Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-5 Java Compiler Settings pane of the target editor in Project Builder

Table 2-10 Elements of the Java Compiler Settings pane

Corresponding build settingDescriptionElement label

JAVA_COMPILERDetermines the compiler to use to compile
Java source files. The options are javac and
jikes.

Java Compiler

JAVA_COMPILER_-
DISABLE_WARNINGS

When selected, the compiler doesn’t produce
warnings.

Disable warnings

JAVA_COMPILER_-
DEPRECATED_WARNINGS

When selected, the compiler warns about
deprecated API use.

Show usage of deprecated
API

JAVA_COMPILER_-
DEBUGGING_SYMBOLS

When selected, the compiler generates
debugging symbols.

Generate debugging
symbols

JAVA_COMPILER_-
TARGET_VM_VERSION

The virtual machine version the compiler is
to produce Java class files for.

Target VM version

JAVAC_SOURCE_FILE_-
ENCODING

Specifies the character encoding used in all
the Java source files that are to be compiled.

Source file encoding

JAVA_COMPILER_FLAGSAdditional compiler options.Other Java Compiler Flags

Java Archive Settings

The Java Archive Settings pane, depicted in Figure 2-6, determines how Java class files in the selected target
are archived. Table 2-11 describes its elements.

Target Information Panes 23
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-6 Java Archive Settings pane of the target editor in Project Builder

Table 2-11 Elements of the Java Archive Settings pane

Corresponding build settingDescriptionElement label

JAVA_ARCHIVE_CLASSESDetermines whether Java class files are archived
in a JAR file.

Product type

JAVA_ARCHIVE_COMPRESSIONWhen unselected, the Java class files are stored
in the JAR file, but are not compressed.

Compress

CLASS_ARCHIVE_SUFFIXThe extension to use for the JAR file. The options
are .jar, .war, and .ear.

Archive file extension

JAVA_MANIFEST_FILEName of the supplemental manifest file.Manifest file

Information Property List Entries

Information property lists (Info.plist files) contain information an application can access at runtime. This
is similar to Java’s system properties. Information property lists, however, specify Mac OS X–specific application
details, such as the application type and its icon. In addition, some Java-specific settings are also stored there;
for example, the Java VM version that Mac OS X uses to run the application.

The following sections describe the simple views of information property list entries. See MacOS X Developer
Release Notes: Information Property List at http://developer.apple.com/releasenotes/index.html for more
information about information property lists.

Basic Information

The Basic Information pane, depicted in Figure 2-7, encapsulates identification information about the
application package. Table 2-12 describes its elements.

24 Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

http://developer.apple.com/releasenotes/index.html

Figure 2-7 Basic Information pane of the target editor in Project Builder

Table 2-12 Elements of the Basic Information pane

Corresponding Info.plist entryDescriptionElement label

CFBundleExecutableName of the file containing the application’s executable
code.

Executable

CFBundleIdentifierPackage-style name (for example,
com.apple.ProjectBuilder) used to uniquely identify
the application or bundle.

Identifier

CFBundlePackageTypeFour-letter type indicator for the bundle. For example,
APPL for applications, FMWK for frameworks, and so on.

Type

CFBundleSignatureFour-letter creator code for the bundle.Signature

CFBundleVersionVersion number for the bundle. For example, 10.2.3.Version

Display Information

The Display Information pane, depicted in Figure 2-8, encapsulates display information about the application
package file. Table 2-13 describes its elements.

Target Information Panes 25
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-8 Display Information pane of the target editor in Project Builder

Table 2-13 Elements of the Display Information pane

Corresponding Info.plist entryDescriptionElement label

CFBundleNameIn application packages, localized name that is displayed
in the menu bar.

Display name

CFBundleGetInfoStringLocalized string that appears in Info windows or the
Inspector in the Finder.

Get-Info string

CFBundleShortVersion-
String

Localized string with bundle-version information. This is
the string displayed in Info windows or the Inspector in
the Finder whenCFBundleGetInfoString is undefined.

Short version

Application Icon

The Application Icon pane, depicted in Figure 2-9, identifies the icon file to be used for the application
package’s icon, which is the icon the Finder displays to the user. Table 2-14 describes its elements.

26 Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-9 Application Icon pane of the target editor in Project Builder

Table 2-14 Elements of the Application Icon pane

Corresponding Info.plist entryDescriptionElement label

CFBundleIconFileName of the icon file for the bundle.Icon file

Cocoa Java–Specific

The Cocoa Java–Specific pane, depicted in Figure 2-10, contains information specific for Cocoa applications
written in Java. Table 2-15 describes its elements.

Figure 2-10 Cocoa Java–Specific pane of the target editor in Project Builder

Target Information Panes 27
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Table 2-15 Elements of the Cocoa Java–Specific pane

Corresponding Info.plist
entry

DescriptionElements label

NSJavaNeededWhen selected, indicates that a Cocoa application needs
to instantiate a Java virtual machine.

Needs Java

NSJavaRootThe directory where the application’s JAR files are stored
in the application bundle. For example,
Contents/Resources/Java.

Root Directory

NSJavaPathList of JAR files contained in the root directory.Path

Pure Java–Specific

The Pure Java Specific pane, depicted in Figure 2-11, contains settings that are specific to Pure Java. Table
2-16 describes its elements.

Figure 2-11 Pure Java–Specific pane of the target editor in Project Builder

Table 2-16 Elements of the Pure Java–Specific pane

Corresponding Info.plist entryDescriptionElement label

Java/MainClassFully qualified name of an
application’s main class.

Main Class

Java/ClassPath/List of paths to Java class files
of JAR files the application
uses.

Class Path

28 Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Corresponding Info.plist entryDescriptionElement label

Java/Properties/com.apple.macos.useScreenMenuBarWhen selected, the
application’s menu bar follows
Mac OS X style: It’s placed at
the top of the screen instead
of within each application
window.

Place JFrame menu bars
at top of screen

Java/Properties/com.apple.mrj.application.growbox.intrudesWhen selected, the resize
control is part of the window
pane. When unselected, a
white band is added to the
bottom of the window, so that
the resize control doesn’t
intrude in the windows’
content.

Growbox intrudes

Java/WorkingDirectoryWhen selected, the
application’s working directory
is set to the bundle’s
Contents/Resources/Java
directory.

Set cwd to
Contents/Resources/Java
subdirectory

Java/Properties/com.apple.macosx.AntiAliasedTextOnToggles text anti-aliasing.Anti-alias text

Java/Properties/com.apple.mrj.application.live-resizeToggles live resizing of
windows.

Live resizing

Java/JVMVersionVersion of the Java runtime the
application requires. For
example, 1.4+.

Target VM Version

Java/VMOptionsCommand-line options to add
to the java invocation. For
example, -Xfuture -Xprof.

Additional VM Options

Java/Properties/Additional Java system
properties, which you can
access through
System.getProperty.

Additional Properties

Build Styles

During development, you may want to include debugging information in Java class files, but would rather
not include it in the final version of those files. For example, the JAVA_COMPILER_DEBUGGING_SYMBOLS
build setting determines whether debugging symbols are added to class files. So, a project could have a
target called MyAppDebug that sets that build setting to YES and a target called MyApp that sets it to NO.
However, when you need to set another build setting that affects the building of the application, you would
have to make the change in two targets instead of one. To solve this situation, Project Builder includes build
styles.

Build Styles 29
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Build styles contain build setting configurations that override target build settings. So, instead of having two
targets to produce an application, one for debugging and another for your customers, a project would contain
one target that builds both types of products and a couple of build styles, one called Development and
another named Deployment. The Development build style would contain the
JAVA_COMPILER_DEBUGGING_SYMBOLS = YES build configuration, while the Deployment build style would
have JAVA_COMPILER_DEBUGGING_SYMBOLS = NO.

To add a build style to a project, choose Project > New Build Style and name it. Then add the build settings
that the build style is to override. For example, the build style shown in Figure 2-12 tells javac to optimize
code for execution time.

Figure 2-12 Build style definition

Build Phases

Build phases define concrete tasks that Project Builder performs to build a product. These are the build phases
you use in Java application projects:

 ■ Sources Compiles the selected Java source files using javac and puts the generated class files in
$TEMP_DIR/JavaClasses. It uses the JavaFileList file in the target’s build directory (the TEMP_DIR
build setting).

 ■ Java Resource Files Copies the selected Java resource files, the Dancestrings.string file for example,
to $TEMP_DIR/JavaClasses.

 ■ Bundle Resources Copies the selected bundle resource files, such as the icon file, to the resulting bundle’s
Resources directory.

 ■ Frameworks & Libraries Links the class files generated in the Sources build phase with the selected
frameworks and libraries, and archives the result in a JAR file (when the JAVA_ARCHIVE_CLASSES build
setting is set to YES).

30 Build Phases
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

 ■ Shell Script Files Executes a custom shell script. The value of every build setting is accessible in the script
using the format $BUILD_SETTING, $(BUILD_SETTING), or ${BUILD_SETTING}. Therefore, you can
use shell script phases to perform tasks that the other type of build phases do not support. Further, you
can insert shell script phases between other build phases to confirm the value of a build setting.

 ■ Copy Files Copies the files indicated in the build phase to a specified location. To select the files to copy,
drag them from the Files list into the Files list.

Figure 2-13 is an example of inserting a shell script phase to confirm the value of a build setting. It shows a
script that displays the value of the JAVA_COMPILER_FLAGS build setting. Figure 2-14 shows the script’s
output.

Figure 2-13 Build-setting display script

Figure 2-14 Output of a build-setting display script

Build Phases 31
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

32 Build Phases
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

This chapter shows how to develop text-based Java applications or tools in Project Builder using the tool
project template. It guides you through the creation of two projects, Hello and Clock. The former one is a
“Hello, World” application, while the latter is a simple tool to display the current time, which is included in
this document’s companion files. See “Introduction to Project Builder for Java” (page 9) for details.

Creating the “Hello, World” Tool

The Java Tool project template provides the prototypical “Hello, World” application. Follow these steps to
create your first Java application using Project Builder.

1. Launch Project Builder. It’s located in /Developer/Applications.

2. Create a Java tool project.

Choose File > New Project, and select Java Tool under Java in the project-template list of the New Project
pane.

3. Name the project and choose a location for it.

Creating the “Hello, World” Tool 33
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

In the New Java Tool pane of the Assistant, enter Hello in the Project Name text input field, click Choose,
and choose a location for it.

When done, you should see the Project Builder window. Figure 3-1 shows the window with three editor
panes, one for each file in the project, the Java source file, the manifest file, and the man page documentation
file. The product, Hello.jar, is shown in red because it hasn’t been built.

34 Creating the “Hello, World” Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Figure 3-1 The Hello project in Project Builder

Build and run the application by choosing Build > Build and Run. Figure 3-2 shows the Run pane of the Project
Builder window. The Run pane displays the console output of the application.

Figure 3-2 Project Builder’s Run pane showing Hello’s console output

Creating the “Hello, World” Tool 35
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Creating the Clock Tool

This section shows how to create the Clock tool. Clock is a text-based application that tells time. It takes an
optional command-line argument, the name of the user. You can find the finished product among this
document’s companion files in companion/projects/Clock (see “Introduction to Project Builder for
Java” (page 9) for details on companion files).

Follow these instructions to create the Clock tool.

1. Create a Java tool project and name it Clock.

2. Edit the main method of the Clock class so that it looks like this:

public static void main (String args[]) {
 Date date = new Date();

 if (args.length > 0) {
 String user_name = args[0];
 System.out.println("Hello, " + user_name + ". It's " + date);
 }
 else {
 System.out.println("It's " + date);
 }
}

3. Add an argument to the application’s launch arguments to test it within Project Builder.

a. Click the Targets tab to display the Targets list.

b. Click java under Executables in the Targets list.

c. Click the plus sign (+) in the Arguments pane of the target editor.

d. Enter -jar "Clock.jar" Sheilla in the newly added row of the Launch Arguments list.

36 Creating the Clock Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

e. Deselect the Use option in the first row by clicking the checkmark in the Use column. The Arguments
pane should now look like Figure 3-3.

Figure 3-3 Arguments pane of the executable editor in Project Builder

Build and run the application. You should see its output in Project Builder’s Run pane, as shown in Figure
3-4.

Figure 3-4 Output of Clock tool displayed in Project Builder

Creating the Clock Tool 37
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Installing the Clock Tool

This section shows how to install the Clock tool on a computer. Follow these steps to install Clock on your
computer:

1. Determine the location of the installed product by adding the INSTALL_DIR build setting to the project
and configuring the setting appropriately.

a. Click the Targets tab to display the Targets list.

b. Click the Clock target.

c. Click Expert View under Settings in the target editor.

d. Click the plus sign (+) in the Build Settings pane.

e. In the newly added row, enter INSTALL_PATH in the Name column and Tools in the Value column.
The Expert View pane should look like Figure 3-5.

Figure 3-5 Expert View pane of the target editor in Project Builder

2. Run pbxbuild to install the application:

a. Launch Terminal. It’s located in /Applications/Utilities.

b. Execute the following commands:

% cd <path_to_Clock_project>
% pbxbuild install -buildstyle Deployment

Now, your /tmp directory contains the Clock distribution directory (Clock.dst), as shown in Figure 3-6.

38 Installing the Clock Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Figure 3-6 Clock distribution directory in /tmp

If you want pbxbuild to install in the final destination of a product instead of in /tmp, use the following
commands:

sudo pbxbuild clean
sudo pbxbuild install -buildstyle Deployment DSTROOT=/

This creates /Tools in your root volume if it doesn’t already exist and places the application’s JAR file there,
as shown in Figure 3-7.

Figure 3-7 Clock target directory

To run the application, double-click the JAR file. To view the application’s output when you launch it from
the Finder, launch Console, located in /Applications/Utilities. Figure 3-8 shows Console displaying
the output of a Clock session.

Figure 3-8 Output of Clock viewed through Console

Installing the Clock Tool 39
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

40 Installing the Clock Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

This chapter covers the steps needed to develop Swing applications. First, this chapter guides you through
the creation of a simple application, completely based on Project Builder’s Swing project template. Second,
to show how to port an existing Swing application to Mac OS X, it shows how to create a Swing project based
on Sun’s File Chooser Demo application and deploy it as a Mac OS X application; the finished project is in
companion/projects/FileChooser. (See “Introduction to Project Builder for Java” (page 9) for details
on this document’s companion files.) Finally, this chapter explains how to change the icon the Finder displays
for the application from the generic Java application icon. .

Creating the “Hello, Swing” Application

The Swing application template provides another version of the “Hello, World” application. Follow these
steps to create a project that demonstrates how a Swing application looks in Mac OS X.

1. Launch Project Builder. It’s located in /Developer/Applications.

2. Create a Java Swing application project.

Choose File > New Project, and select Java Swing Application under Java in the project-template list of
the New Project pane.

3. Name the project and choose a location for it.

Creating the “Hello, Swing” Application 41
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

In the New Java Swing Application pane of the Assistant enter Hello_Swing in the Project Name text
input field, click Choose, and choose a location for the project folder.

When done, you should see the Project Builder window, shown in Figure 4-1. The product, Hello_Swing.app,
appears in red because it hasn’t been built.

42 Creating the “Hello, Swing” Application
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

Figure 4-1 The Hello_Swing project in Project Builder’s window

Build and run the application by choosing Build > Build and Run. Figure 4-2 shows the running Hello_Swing
application.

Figure 4-2 Hello_Swing application in action

Creating the File Chooser Demo

This section explains how to use existing Java source files to create a Swing-based Mac OS X application.

Creating the File Chooser Demo 43
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

You can download source code that demonstrates the use of the JFileChooser class (javax.swing) at
http://java.sun.com/docs/books/tutorial/uiswing/components/filechooser.html. You can also use the files
included with this document in companion/source/FileChooser (see “Introduction to Project Builder
for Java” (page 9) for details on companion files).

Perform these steps to create a file-chooser demonstration project.

1. Create a Java Swing application project named FileChooser.

2. Remove the standard source files from the project:

a. Select the FileChooser.java, AboutBox.java, and Preferences.java files in the Files list.

b. Choose File > Delete or press the Delete key.

c. Click Delete References & Files in the Delete References dialog, shown in Figure 4-3.

Figure 4-3 Delete References dialog of Project Builder

3. Add the source files and image files required for the project:

a. Choose Project > Add Files.

44 Creating the File Chooser Demo
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

http://java.sun.com/docs/books/tutorial/uiswing/components/filechooser.html

b. Navigate to where the source files reside, select them, and click Add. Figure 4-4 exemplifies the
addition of the file-chooser demonstration files in companion/source/FileChooser.

Figure 4-4 Adding source files to a project in Project Builder

c. In the dialog that appears, select “Copy items into destination group’s folder” and make sure the
FileChooser target is selected in the Add To Targets list.

d. Repeat the previous step for the image files.

4. Examine the FileChooser target to verify that the newly added files are assigned to the correct build
phases:

a. Click the Targets tab and select the FileChooser target in the Targets list.

Creating the File Chooser Demo 45
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

b. Select the Sources build phase and the Java Resource Files build phase in the target editor. Make
sure the source files and image files you added to the project appear in the Sources pane and the
Java Resource Files pane, respectively.

5. Change the name of the main class in the information property list:

a. Select Pure Java–Specific under Simple view under Info.plist Entries in the target editor.

b. Enter FileChooserDemo in the Main Class text field.

6. Clean the FileChooser target by choosing Build > Clean and click Clean Active Target in the dialog that
appears.

Cleaning the target erases any temporary files stored in the target’s build directory, which may have
been left there in previous builds. (If you didn’t build the application, you may skip this step.)

46 Creating the File Chooser Demo
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

Build and run the application. You should see the window shown in Figure 4-5.

Figure 4-5 FileChooser in action

If instead of a running application you get an error message like the following in Project Builder’s Run pane,
make sure that the name of the application’s main class matches the contents of the Main Class entry of the
Pure Java–Specific pane of the Info.plist Entries pane in the target editor.

[LaunchRunner Error] The main class "FileChooser" could not be found.
[JavaAppLauncher Error] CallStaticVoidMethod() threw an exception
java.lang.NullPointerException
 at apple.launcher.LaunchRunner.run(LaunchRunner.java:85)
 at apple.launcher.LaunchRunner.callMain(LaunchRunner.java:50)
 at
apple.launcher.JavaApplicationLauncher.launch(JavaApplicationLauncher.java:52)
Exception in thread "main"
FileChooser has exited with status 0.

When you click the Show FileChooser button of the FileChooserDemo window, you should see a window
like the one in Figure 4-6. Of course, the actual look of the window depends on the selections you make in
the FileChooserDemo window.

Figure 4-6 Open dialog displayed by FileChooserDemo

Creating the File Chooser Demo 47
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

Changing an Application’s Icon

The Resources folder of an application package holds several types of files, including icon files. The Finder
consults the CFBundleIconFile information property list entry to determine which of these files to use as
the application’s icon.

Follow these steps to change the icon of the FileChooser application developed in “Creating the File Chooser
Demo” (page 43) from the default icon.

1. Identify the icon file for the new icon.

You can find an icon file in/Developer/Applications/Pixie.app/Contents/Resources/Big.icns.

In Terminal, execute the following command:

cp /Developer/Applications/Pixie.app/Contents/Resources/Big.icns
<FileChooser_project_directory>

2. Remove the FileChooser.icns file from the FileChooser project:

a. Select FileChooser.icns in the Files list in the Project Builder main window.

b. Choose Edit > Delete or press the Delete key.

c. Click Delete References & Files.

3. Add the icon file for the desired icon to the project:

a. Choose Project > Add Files.

b. Select Big.icns in the file list and click Add.

48 Changing an Application’s Icon
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

c. In the dialog that appears, make sure “Copy items into destination group’s folder” is not selected
and click Add.

4. Make sure that the new icon file is assigned to the Bundle Resources build phase and not the Java
Resource Files build phase.

a. Select the Java Resource Files build phase and the Bundle Resources build phase in the target editor
of the FileChooser target.

b. Drag Big.icns from the Files list of the Java Resource Files pane to the Files list of the Bundle
Resources pane.

5. Set the name of the icon file of the application.

a. Select Application Icon under Simple View under Info.plist Entries in the target editor.

Changing an Application’s Icon 49
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

b. Enter Big.icns in the “Icon file” text field of the Application Icon pane.

Clean the project, and build and run the application. The icon for FileChooser.app in the build folder of
the project should have the icon used by Pixie.

50 Changing an Application’s Icon
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

When you need to leverage existing C or Objective-C code in a Java application or need to improve the
performance of an application by executing critical parts natively instead of on the Java virtual machine, you
use the Java Native Interface (JNI). The JNI provides a way for Java code to communicate with C-based libraries.

Project Builder provides a template that facilitates the development of JNI-based applications. For an
explanation of the elements of that template, including its targets, see “The JNI Application Template” (page
14).

Creating the “Hello, JNI” Application

The JNI application template provides yet another version of a “Hello, World” application. This one, however,
joins the flexibility of Java with the high performance of C code to print the famous greeting on the console.
Follow these steps to create a JNI-based application.

1. Launch Project Builder. It’s located in /Developer/Applications.

2. Create a Java JNI application project.

Choose File > New Project, and select Java JNI Application under Java in the template list.

3. Name the project and choose a location for it.

Creating the “Hello, JNI” Application 51
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing a JNI Application

In the New Java JNI Application pane of the Assistant, enter Hello_JNI in the Project Name text input
field, click Choose, and choose a location for the project folder.

When done, you should see the Project Builder window, shown in Figure 5-1. The files in red are the project’s
products, which haven’t been built.

Figure 5-1 The Leverage project in the Project Builder window

Project Builder generated the source files for the native side and the Java side of the application. They’re
shown in Listing 5-1 and Listing 5-2.

52 Creating the “Hello, JNI” Application
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing a JNI Application

Listing 5-1 Leveragejnilib.c source file in the Leverage project

#include "JNIWrapper.h"

int shared_function(const char *arg) {
 printf("shared_function called with %s\n", arg);
 return 42;
}

JNIEXPORT jint JNICALL Java_JNIWrapper_native_1method(JNIEnv *env, jobject this,
 jstring arg) {
 /* Convert to UTF8 */
 const char *argutf = (*env)->GetStringUTFChars(env, arg, JNI_FALSE);

 /* Call into external dylib function */
 jint rc = shared_function(argutf);

 /* Release created UTF8 string. */
 (*env)->ReleaseStringUTFChars(env, arg, argutf);

 return rc;
}

Listing 5-2 JNIWrapper.java source file in the Leverage project

import java.util.*;

public class JNIWrapper {

 static {
 // Ensure native JNI library is loaded.
 System.loadLibrary("Leverage");
 }

 public JNIWrapper() {
 System.out.println("JNIWrapper instance created");
 }

 native int native_method(String arg);

 public static void main (String args[]) {
 System.out.println("Started JNIWrapper");
 JNIWrapper newjni = new JNIWrapper();
 int result = newjni.native_method("Hello World !");
 System.out.println("Finished JNIWrapper. Answer is " + result);
 }

}

Now, make sure the Leverage target is selected, and build and run the application. Several files appear in
the project’s build folder. Because this is a JNI application, in addition to the JAR file containing the Java
application, you see a JNI library file, which contains the object file for the native function specified in
Leveragejnilib.c (Figure 5-2). The Header folder contains the JNIWrapper.h file, which is generated
by javah from the JNIWrapper.class file.

Creating the “Hello, JNI” Application 53
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing a JNI Application

Figure 5-2 The build folder of the Leverage project after building the application

JNI-Based Examples

The developer tools package includes several examples of JNI-based applications, including a Cocoa/Java
application located in /Developer/Examples/Java/AppleDemos/CocoaComponent. Open those projects
and examine them to get a glimpse of the power and flexibility that Java and JNI provide.

54 JNI-Based Examples
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing a JNI Application

Project Builder provides facilities for debugging Java applications. They allow you to stop the execution of
an application at a specific line of code, execute a line of code within a method, step into a method call, step
out of a method, or view the contents of variables in any method in the call stack.

This chapter shows how to use Project Builder’s debugging facilities to analyze the execution of a small
application. It’s based on the Debug project included in the companion folder (companion/projects/Debug);
see “Introduction to Project Builder for Java” (page 9) for details on companion files.

Adding Breakpoints

To pause the execution of an application, place a breakpoint marker in the line of code you want execution
to stop. Listing 6-1 shows the definition of the Debug class in the Debug project.

Listing 6-1 Debug.java file of Debug project

import java.util.*;

public class Debug {

 public static void main (String args[]) {
 System.out.println("<Debug.main> Hello, World!");

 int a_number = 1;
// 1 int another_number = 10;

 method(a_number, another_number);

 System.out.println("<Debug.main> a_number = " + a_number);
 System.out.println("<Debug.main> another_number = " + another_number);
}

 public static void method(int number1, int number2) {
 Person person = new Person("Kathy", "Yates", "female", "brown");
 String a_string = person.firstName() + " likes debugging code.";
 System.out.println("<Debug.method> person = " + person);
 }
}

To add a breakpoint to the line numbered 1, click the line’s left margin in the editor. You can also set the
insertion point in the line and choose Debug > Add Breakpoint at Current Line. Figure 6-1 shows the result.

Adding Breakpoints 55
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

Figure 6-1 Breakpoint in Debug.java file of Debug project

To remove a breakpoint, click the breakpoint marker, drag the marker out of the margin, or choose Debug
> Remove Breakpoint at Current Line.

To disable a breakpoint, Command-click the breakpoint marker or choose Debug > Disable Breakpoint at
Current Line.

Stepping Through Lines of Code

To build and debug the Debug project, choose Build > Build and then choose Debug > Debug Executable,
or click the Build and Debug toolbar button. Figure 6-2 shows the result, in which the highlighted line is
about to be executed.

56 Stepping Through Lines of Code
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

Figure 6-2 Debugging an application—stopping

To step to the next line of code choose Debug > Step Over or click the Step Over toolbar button, as shown
in Figure 6-3. Because the line executed is not a method call, clicking the Step Into toolbar button would
give the same result.

Figure 6-3 Debugging an application—stepping over

To step into a method choose Debug > Step Into or click the Step Into toolbar button, as shown in Figure
6-4.

Stepping Through Lines of Code 57
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

Figure 6-4 Debugging an application—stepping into a method

To step out of a method, (that is, to execute the rest of the lines in the current method and return to calling
method), choose Debug > Step Out or click the Step Out toolbar button.

Viewing the Debug Information

The pop-up menu to the right of the Files tab (with main chosen) lists threads of execution. The list below
it shows the call stack for the chosen thread. The pane to the right of the call stack pane, the variable pane,
shows the names of the parameters and variables declared for the currently executing method in the chosen
thread. It may also show the arguments used in the method invocation and the values of the local variables.
Figure 6-5 shows the call stack of the main thread and parameters and local variables of a method.

58 Viewing the Debug Information
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

Figure 6-5 Debugging an application—viewing variable information

Accessing the Contents of Objects

While you debug code, you may need to see the values of an object’s instance variables. Most programmers
sprinkle System.out.println invocations throughout their code to accomplish this essential task. In Project
Builder you can execute an object’s toString method to get the same effect.

Listing 6-2 shows a partial listing of the Person class. It contains an implementation of the toStringmethod.

Listing 6-2 Person.java file

public class Person {
 private String firstName;
 private String lastName;
 private String gender;
 private String hairColor;

 public Person(String firstName, String lastName, String gender, String
hairColor) {
 setFirstName(firstName);
 setLastName(lastName);
 setGender(gender);
 setHairColor(hairColor);
 }

 ...

 public String toString() {
 return "{FirstName: " + firstName() + "},{LastName: " + lastName() +
"},{Gender: " + gender() + "},{HairColor: " + hairColor() + "}";
 }

Accessing the Contents of Objects 59
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

}

Figure 6-6 depicts a debugging session in which the user chooses the Print Description to Console command
through the contextual menu of person in the Variable list of the Debug pane.

Figure 6-6 Debugging an application—viewing an object’s contents

Listing 6-3 shows the output generated.

Listing 6-3 Console output after executing Print Description to Console command on a Person object

Picked up _JAVA_OPTIONS: -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_local,server=y,address=8000
<Debug.main> Hello, World!

Printing description of person:
"{FirstName: Kathy},{LastName: Yates},{Gender: female},{HairColor: brown}"
JavaBug>

60 Accessing the Contents of Objects
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

This appendix lists some of the build settings you are likely to use in Java-based projects. See the Project
Builder release notes for a complete treatment of Project Builder’s build settings.

Project Settings Reference

Table A-1 describes build settings that apply to a project as a whole; that is, they apply to all targets in a
project.

Table A-1 Project build settings

DescriptionBuild setting

Name of the project. This setting is read-only.PROJECT_NAME

Base location for built products. Configured initially as <project_-
directory>/build.

SYMROOT

Base location for the temporary files generated by a project’s targets. Default:
<project_directory>/build. This setting is read-only.

BUILD_DIR

The location for products. Set initially to $BUILD_DIR in development builds and
$INSTALL_DIR in deployment builds when the product is installed. When the
product is not installed, the setting is configured to $BUILD_-
DIR/UninstalledProducts in development and deployment builds.

TARET_BUILD_DIR

The base location for all products. Configured initially as $BUILD_DIR.BUILT_PRODUCTS_DIR

Deployment Settings Reference

Table A-2 describes build setting that determine the location of an installed product and its permissions.

Table A-2 Deployment build settings

DescriptionBuild setting

Base location for the installed product. Default: /tmp/$PROJECT_NAME.dst/.DSTROOT

Location of the installed product. For example, /my_app_path. This setting is
undefined by default.

INSTALL_PATH

Project Settings Reference 61
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

DescriptionBuild setting

Fully qualified path for the installed product. By default, it concatenates DSTROOT
and INSTALL_PATH. This setting is read-only.

INSTALL_DIR

Determines whether the target’s product gets installed. When undefined, which
is the default, the target’s product gets installed.

SKIP_INSTALL

When YES, the product gets installed in its deployment location
($INSTALL_DIR). Otherwise, the product gets installed in
$BUILT_PRODUCTS_DIR. This setting is undefined by default.

DEPLOYMENT_LOCATION

User who owns the generated product. As pbxbuild should be run by root,
the owner should be root. This is applied after the product is deployed.

INSTALL_OWNER

Group who owns the generated product. Usually, staff. This is applied after the
product is deployed.

INSTALL_GROUP

The mode that is applied to the product after it’s deployed. Default: ugo-w,
o+rX.

INSTALL_MODE_FLAG

Target Settings Reference

Table A-3 describes build settings that identify a target and determine the location of source files and of a
directory for temporary files created as a product gets built.

Table A-3 Target build settings

DescriptionBuild setting

Name of the target. This setting is read-only.TARGET_NAME

Name of the product the target builds. This setting is read-only.PRODUCT_NAME

The action being performed on the target. Values: build or clean from Project Builder,
install, installhdrs, and installsrc from pbxbuild. When its value is clean,
the target’s build directory is deleted and no build phases are executed. This setting is
read-only.

ACTION

The base location of project sources. It’s set to the contents of the PWD environment
variable when PWD is defined or to the current directory otherwise.

SRCROOT

The base location for intermediate build files. Configured initially as $SRCROOT/build
(MyProject/build).

OBJROOT

The location of a target’s intermediate files. Configured initially as
$OBJROOT/$PROJECT_NAME.build/$TARGET_NAME.build.

TEMP_DIR

62 Target Settings Reference
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

Java Compiler Settings

Table A-4 describes build settings that determine the flags that are used in the invocation of the Java compiler
as well as the location of generated Java class files.

Table A-4 Java compiler build settings

DescriptionBuild setting

The base location for Java class files. Configured as $TEMP_-
DIR/JavaClasses. This setting is read-only.

CLASS_FILE_DIR

The compiler used in Sources (compilation) build phases. Initially
configured as /usr/bin/javac.

JAVA_COMPILER

Determines whether Java classes are compiled with debugging symbols.
When NO, debugging symbols are not generated. When undefined or YES,
debugging symbols are generated. Initially undefined.

JAVA_COMPILER_-
DEBUGGING_SYMBOLS

Determines whether the compiler generates warnings. When YES,
warnings are not produced. When undefined orNO, warnings are produced.
Initially undefined.

JAVA_COMPILER_-
DISABLE_WARNINGS

Determines whether the compiler shows a description of the use of
deprecated API (whether the -deprecation command-line option of
javac and jikes is used).

JAVA_COMPILER_-
DEPRECATED_WARNINGS

Determines the target Java virtual machine for generated class files (javac
and jikes-target command-line options).

JAVA_COMPILER_-
TARGET_VM_VERSION

Determines the value for the -encoding command-line option of javac
and jikes. When undefined, MACINTOSH is used.

JAVAC_SOURCE_FILE_-
ENCODING

Use to set compiler options not supported in build settings for javac
and jikes. For example, you can set the -extdirs command-line option
of javac to include paths to additional JAR files.

JAVA_COMPILER_FLAGS

Base javac command-line options to use for javac. When undefined,
the options are configured as -J-Xms64m -J-XX:NewSize=4M
-J-Dfile.encoding=UTF8. For more information, see Inside Mac OS X:
Java Development on Mac OS X.

JAVAC_DEFAULT_FLAGS

Base jikes command-line options to use for javac. When undefined, the
options are configured as +E +OLDCSO.

JIKES_DEFAULT_FLAGS

Space-separated list of paths of required JAR files. This list is added to the
-classpath command-line option of the compiler invocation.

JAVA_CLASS_SEARCH_PATHS

Colon-separated list of additional paths of required JAR files. This list is
added to the -classpath command-line option of the compiler
invocation.

OTHER_JAVA_CLASS_PATH

Java Compiler Settings 63
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

DescriptionBuild setting

Space-separated list of required JAR files. Initially configured as the
combination of $LINKED_CLASS_ARCHIVES and $OTHER_JAVA_-
CLASS_PATH. This setting is read-only.

LINKED_CLASS_ARCHIVES

Java Application Settings

Table A-5 describes build settings that determine whether Java class files are archived, how they are archived,
and the name of the archive file, among other items.

Table A-5 Java application build settings

DescriptionBuild setting

Determines the disposition of Java class files generated by the target. This
setting can have two values, YES or NO. When YES (the default), Java classes
are archived in a JAR file, which is then copied to the product’s
Contents/Resources/Java directory. When NO, the class files are copied
to that directory. You should not change the value of this setting if you plan
to distribute your application or tool.

JAVA_ARCHIVE_CLASSES

Determines whether the contents of the archive file are compressed. When
YES the contents of the archive are compressed; otherwise, the contents are
not compressed. Initially unconfigured.

JAVA_ARCHIVE_-
COMPRESSION

Determines the extension used for the JAR file. Values: .jar, .war, or .ear.CLASS_ARCHIVE_SUFFIX

Project-directory based path to the file used to supplement the default
manifest file (MANIFEST.MF) of the JAR file.

JAVA_MANIFEST_FILE

Path to the Cocoa application stub that’s embedded in a bundle-based Java
application to launch the Java application. Configured as
/System/Library/Frameworks/JavaVM.framework/Resources/Mac-
OS/JavaApplicationStub. This setting is read-only.

JAVA_APP_STUB

Path to the development-settings property list file of the product. Initially
configured as $SYMROOT/pbdevelopment.plist.

DEVELOPMENT_PLIST_-
FILE

64 Java Application Settings
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

This table describes the changes to Project Builder for Java.

NotesDate

Corrected obsolete links.2003-10-10

Second preliminary version of Project Builder for Java.2003-05-01

Preliminary version of Project Builder for Java.2003-03-01

65
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

66
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

build phase A build phases defines a concrete task
that Project Builder performs to build a product.

build setting A build setting is a variable that stores
a specific aspect to be used for building a product.

build style Build styles contain build setting
configurations that override the configurations of the
active target in a project They allow you to make small
changes to a target’s configuration without having
to create a separate target.

information property list A property list that
contains essential configuration information for
bundles. A file named Info.plist (or a
platform-specific variant of that filename) contains
the information property list and is packaged inside
the bundle.

product An element that gets created as part of the
process of generating a running application, such as
library files and executable files.

target A target is a blueprint for building a product
from specified resources in a project. It consists of a
list of the necessary files the actions that need to be
performed on them to generate a product.

target, aggregate An aggregate target groups other
targets; it contains no product-building instructions.
The operations you perform on an aggregate targets
are carried out on all the targets it encloses.

67
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

Glossary

68
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

	Project Builder for Java
	Contents
	Figures, Tables, and Listings
	Introduction
	Application Development
	The Tool Template
	The Swing Application Template
	The JNI Application Template

	Build System
	Build Settings
	Targets
	Target Information Panes
	Target Summary
	Build Settings
	General Settings
	Installation Settings
	Search Paths
	Java Compiler Settings
	Java Archive Settings

	Information Property List Entries
	Basic Information
	Display Information
	Application Icon
	Cocoa Java–Specific
	Pure Java–Specific

	Build Styles
	Build Phases

	Developing a Tool
	Creating the “Hello, World” Tool
	Creating the Clock Tool
	Installing the Clock Tool

	Developing a Swing Application
	Creating the “Hello, Swing” Application
	Creating the File Chooser Demo
	Changing an Application’s Icon

	Developing a JNI Application
	Creating the “Hello, JNI” Application
	JNI-Based Examples

	Debugging Applications
	Adding Breakpoints
	Stepping Through Lines of Code
	Viewing the Debug Information
	Accessing the Contents of Objects

	Appendix A: Build Settings Reference
	Project Settings Reference
	Deployment Settings Reference
	Target Settings Reference
	Java Compiler Settings
	Java Application Settings

	Revision History
	Glossary

