
Java 1.4 Virtual Machine Options
Java > Unsupported

2005-04-29

Apple Inc.
© 2004, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
and Pages are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Java 1.4 Virtual Machine Options 5

Chapter 1 Option Flags and Settings 7

General Options 7
Mac OS X-Specific 8
Heap Size 8
Garbage Collection: Memory Usage 9
Garbage Collection: General Settings 9
Compilation 10
Threading 10
Sharing 11

Document Revision History 13

3
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

The standard Java HotSpot VM options are available with the Mac OS X Java VM. In addition to the standard
options, many nonstandard (-X and -XX) options are also available. These, and notable exceptions, are listed
in “Option Flags and Settings” (page 7).

The Options are grouped with those of similar functionality.

5
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Java 1.4 Virtual Machine
Options

6
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Java 1.4 Virtual Machine Options

Note: Except where specified, any time bytes are specified as a parameter in an option, you may also
designate kilobytes or megabytes by using the letter k or m respectivly. (You may use either uppercase or
lowercase letters.) For example, the following would all be equivalent values for bytes:4194301, 4096k,
4096K, 4m, and 4M

General Options

-server
There is not a distinct server VM for Mac OS X. Although you may use the -server flag when invoking
java, it does not start up a different VM, instead it starts the client VM that has been tuned for use
in a server environment. This tuning includes:

 ■ Using a different class list for the shared archive generation that does not include the GUI classes.

 ■ Increasing the size of the Java heap.

 ■ Increasing the size of the Eden generation.

 ■ Turns on thread local Eden garbage collection.

-X
Displays a brief description of the nonstandard VM options.

-Xbootclasspath:path
Specifies a list of directories and JAR and ZIP archives to search for boot class files in. Seperate multiple
entries with colons (:).

-Xfuture
Performs strict format-checking of class files. This option enforces a tighter conformance to the class
file specification than the default, which is based on the standard in Java 1.1.x. You should test your
code with this flag to ensure functionality in future versions of Java that may enforce stricter class file
format-checking.

-Xprof
Sends detailed profiling data of the running program to standard output. This option should not be
used in production code.

-Xrs
Same as -XX:+ReduceSignalUsage.

-XX:+ MaxFDLimit
Increases the file descriptor limit to the maximum.

-XX:MaxDirectMemorySize=size in megabytes
The maximum memory that can be allocated using NIO direct buffers. The default is 64 (64M).

General Options 7
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Option Flags and Settings

-XX:-PrintJavaStackAtFatalState
By default Java backtraces are generated when a crash occurs in native code. Turn this option off if
you are seeing crashes in your Java error reporting.

-XX:+ReduceSignalUsage
Normally, Java responds to SIGHUP, SIGINT, and SIGTERM signals. With this option, Java ignores
these signals; you need to implement handlers for them in native code as appropriate. Also, implement
any relevent shutdown procedure from System.exit().

-XX:ReservedCodeCacheSize=size in megabytes
Sets the maximum code cache size. The default is 32 (32M).

Mac OS X-Specific

-Xdock:icon=pathToIconFile
Sets the icon displayed in the Dock. By default Mac OS X displays a generic Java icon unless you specify
otherwise. You only need to use this for applications launched from the command line or from a JAR
file. Double-clickable application bundles designate their icon in the Info.plist file.

-Xdock:name=applicationName
Sets the name to display in the Dock and in the menu bar. By default Mac OS X displays the fully
qualified name of the main class unless you specify otherwise. You need to use this only for applications
launched from the command line or from a JAR file. Double-clickable application bundles get the
appropriate name from the Info.plist file.

-XX:+UseFileLocking
Off by default, this option enables Carbon file locking. If your Java application will be interracting
with files that may be simultaneously acted on by Carbon applications, use this flag. It keeps the
respective applications from modifying the file while the other is accessing it.

Heap Size

-Xmssize in bytes
Sets the initial size of the Java heap. The default size is 2097152 (2MB). The values must be a multiple
of, and greater than, 1024 bytes (1KB). (The -server flag increases the default size to 32M.)

-Xmnsize in bytes
Sets the initial Java heap size for the Eden generation. The default value is 640K. (The -server flag
increases the default size to 2M.)

-Xmxsize in bytes
Sets the maximum size to which the Java heap can grow. The default size is 64M. (The -server flag
increases the default size to 128M.) The maximum heap limit is about 2 GB (2048MB).

8 Mac OS X-Specific
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Option Flags and Settings

Garbage Collection: Memory Usage

Note: Many of the garbage collection flags are dependent on the settings for the heap size. Make sure that
you have the appropriate sizes set for the heap before fine-tuning how garbage collection uses that memory
space.

-XX:MinHeapFreeRatio=percentage as a whole number
Modifies the minimum percentage of the heap kept free after garbage collection. The default value
of 40. If at least 40% of the heap is not freed after garbage collection, the heap size increases.

-XX:MaxHeapFreeRatio=percentage as a whole number
Changes the maximum percentage of heap kept free after garbage collection before the heap is
shrunk. The default value is 70. This means that if a garbage collection results in more than 70% of
the heap being freed, the heap size decreases.

-XX:NewSize=size in bytes
Sets the default size for the Eden generation of allocated objects. The default value is 640K. (The
-server flag increases the default size to 2M.)

-XX:MaxNewSize=size in bytes
Allows you to change the upper limit of the young object space in which new objects are allocated.
The default value is 640K. (The -server flag increases the default size to 2M.)

-XX:NewRatio=value
Changes the ratio of new to old space sizes from the default value of 8 where the new space is 1/8
the size of the old space.

-XX:SurvivorRatio=number
Modifies the ratio of size of the Eden to the survivor space from the default of 10 where Eden is
survivorRatio+2 times larger than the survivor space.

-XX:TargetSurvivorRatio=percentage
Desired percentage of survivor space used after scavenge. Default is 50.

-XX:MaxPermSize=size in MB
Modifies the size of the permanent generation. The default is value is 32 (32MB).

-XX:-CleanPagesOnUncommit
Normally, when the garbage collection mechanism determines that the heap can be shrunk, i.e., a
lot of memory that had been used is no longer needed by the program, the Java VM marks the memory
as clean. The operating system is then able to reclaim pages for use by other processes without
needing to page out the old memory content to disk. This flag turns off this behavior so that these
pages are not marked as clean.

Garbage Collection: General Settings

-Xincgc
This flag is not supported in Mac OS X. The train garbage collector is not supported.

-Xnoclassgc
Disables garbage collection of classes.

Garbage Collection: Memory Usage 9
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Option Flags and Settings

-XX:+UseConcMarkSweepGC
Enables concurrent mark and sweep garbage collection. This option has an effect only on
multiprocessor computers.

-XX:+UseParallelGC
Enables parallel garbage collection. This option has an effect only on multiprocessor computers.

-XX:-DisableExplicitGC
Ignores explicit calls to System.gc() in your code. The VM still performs garbage collection when
it normally would. This option just disallows you from explictly forcing garbage collection in your
code.

-XX:+PrintTenuringDistribution
Prints tenuring age information for allocated objects in the young generation.

Compilation

-Xint
Runs the VM in interperated mode only. With this option, none of the bytecodes are compiled.

-XX:CompileThreshold=value
Changes the number of method invocations (branches) before compilation begins. The default is
1000.

-XX:-InlineUnreachedCalls
By default, the VM performs method inlining on whatever code it can to facilitate optimazation by
the compiler. Setting this flag causes less code to be compiled due to inlining. Code that would not
normally be reached, like exceptions, is not inlined and therefore interpereted at runtime. Setting
this flag may be detrimental to performance.

-XX:+CITime
Displays how much time is spent in compiled code.

-XX:+PrintCompilation
Prints a trace of the methods as they are compiled.

Threading

-XX:NewSizeThreadIncrease=size in KB
Allows you to specify how much to increment the young object space size per active thread. This
option may be useful in regulating an increased allocation rate due to increased threads. The default
increment is 16 (16 kilobytes).

-XX:ThreadStackSize=size in KB
Changes the thread stack size from the operating system’s default size.

-XX:+UseTLAB
Enables a thread-local allocation buffer. Using the buffer allows for more scalable allocation for heavily
threaded applications, greatly increasing allocation performance. It is on by default on multiprocessor
computers and in Mac OS X Server.

10 Compilation
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Option Flags and Settings

Sharing

-XX:+PrintSharedSpaces
Turns on verbose output about sharing.

-XX:-UseSharedSpaces
Turns sharing off.

Sharing 11
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Option Flags and Settings

12 Sharing
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Option Flags and Settings

This table describes the changes to Java 1.4 Virtual Machine Options.

NotesDate

Added information on the MaxDirectMemorySize option.2005-04-29

Fixed references to -XX:+PrintSharedSpaces and
-XX:-InlineUnreachedCalls.

2004-10-05

Added reference to -XX:-CleanPagesOnUncommit flag.2004-02-26

Added reference to-XX:+ MaxFDLimit flag.

Changed title to Java 1.4 Virtual Machine Options.2004-01-08

Added reference to -Xdock:icon flag.

Released as a standalone document.2003-06-23

Released as an appendix to Java 1.4.1 Development for Mac OS X.2003-05-15

13
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

14
2005-04-29 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Java 1.4 Virtual Machine Options
	Contents
	Introduction
	Option Flags and Settings
	General Options
	Mac OS X-Specific
	Heap Size
	Garbage Collection: Memory Usage
	Garbage Collection: General Settings
	Compilation
	Threading
	Sharing

	Revision History

