
Application Kit Reference for Java
(Legacy)

Cocoa > Java

2007-02-01

Apple Inc.
© 1997, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleWorks, Aqua,
Carbon, Cocoa, ColorSync, eMac, FireWire,
iBook, iPhoto, iPod, iTunes, Mac, Mac OS,
Macintosh, Objective-C, Pages, PowerBook,
Quartz, QuickDraw, QuickTime, Safari,
WebObjects, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder and Numbers are trademarks of Apple
Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Application Kit 35

Introduction 35
Application Kit Classes and Interfaces 35
Encapsulating an Application 37
General Event Handling and Drawing 38
Panels 38
Menus and Cursors 38
Grouping and Scrolling Views 38
Controlling an Application 39
Tables 39
Text and Fonts 39
Graphics and Color 40
Dragging 40
Printing 40
Accessing the File System 40
Sharing Data With Other Applications 41
Checking Spelling 41
Localization 41

Part I Classes 43

Chapter 1 NSActionCell 45

Overview 45
Tasks 45
Constructors 47
Instance Methods 47

Chapter 2 NSAffineTransform Additions 53

Overview 53
Tasks 53
Instance Methods 54

Chapter 3 NSAlert 55

Overview 55
Tasks 55
Constructors 57
Static Methods 58

3
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

Instance Methods 58
Constants 64
Delegate Methods 65

Chapter 4 NSAlertPanel 67

Overview 67
Tasks 67
Constructors 68
Static Methods 68
Constants 73

Chapter 5 NSAnimation 75

Overview 75
Tasks 75
Constructors 78
Instance Methods 78
Constants 86
Delegate Methods 87
Notifications 88

Chapter 6 NSAnimationEffect 91

Overview 91
Tasks 91
Constructors 91
Static Methods 92
Constants 92

Chapter 7 NSApplication 93

Class at a Glance 93
Overview 94
Tasks 96
Constructors 104
Static Methods 104
Instance Methods 106
Constants 128
Delegate Methods 130
Notifications 139

Chapter 8 NSArrayController 143

Overview 143
Tasks 143

4
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constructors 146
Instance Methods 147

Chapter 9 NSBezierPath 161

Overview 161
Tasks 161
Constructors 166
Static Methods 166
Instance Methods 172
Constants 184

Chapter 10 NSBitmapImageRep 185

Overview 185
Tasks 185
Constructors 188
Static Methods 190
Instance Methods 192
Constants 199

Chapter 11 NSBox 203

Overview 203
Tasks 204
Constructors 205
Instance Methods 205
Constants 211

Chapter 12 NSBrowser 213

Overview 213
Tasks 213
Constructors 220
Static Methods 220
Instance Methods 221
Constants 240
Delegate Methods 240
Notifications 243

Chapter 13 NSBrowserCell 245

Overview 245
Tasks 245
Constructors 246
Static Methods 247

5
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 247

Chapter 14 NSButton 251

Overview 251
Tasks 251
Constructors 254
Instance Methods 255
Constants 267

Chapter 15 NSButtonCell 269

Overview 269
Tasks 269
Constructors 273
Instance Methods 274
Constants 289

Chapter 16 NSCachedImageRep 293

Overview 293
Tasks 293
Constructors 294
Instance Methods 294

Chapter 17 NSCell 295

Overview 295
Tasks 295
Constructors 303
Static Methods 304
Instance Methods 305
Constants 337

Chapter 18 NSClipView 341

Class at a Glance 341
Overview 342
Tasks 342
Constructors 344
Instance Methods 344

Chapter 19 NSColor 349

Class at a Glance 349
Overview 349

6
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 350
Constructors 356
Static Methods 356
Instance Methods 370
Notifications 378

Chapter 20 NSColorList 379

Overview 379
Tasks 379
Constructors 380
Static Methods 381
Instance Methods 381
Notifications 383

Chapter 21 NSColorPanel 385

Overview 385
Tasks 385
Constructors 387
Static Methods 388
Instance Methods 389
Constants 393
Delegate Methods 394
Notifications 394

Chapter 22 NSColorPicker 395

Overview 395
Interfaces Implemented 395
Tasks 395
Constructors 396
Instance Methods 397

Chapter 23 NSColorSpace 401

Overview 401
Tasks 401
Constructors 402
Static Methods 402
Instance Methods 404
Constants 405

Chapter 24 NSColorWell 407

Overview 407

7
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 407
Constructors 408
Instance Methods 408

Chapter 25 NSComboBox 411

Overview 411
Tasks 412
Constructors 414
Instance Methods 415
Delegate Methods 424
Notifications 424

Chapter 26 NSComboBoxCell 427

Overview 427
Tasks 427
Constructors 430
Instance Methods 430

Chapter 27 NSControl 441

Overview 441
Tasks 441
Constructors 447
Static Methods 447
Instance Methods 448
Delegate Methods 463
Notifications 466

Chapter 28 NSController 469

Overview 469
Tasks 469
Constructors 470
Instance Methods 470

Chapter 29 NSControllerPlaceholders 473

Overview 473
Tasks 473
Constructors 474
Static Methods 474

8
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 30 NSCursor 477

Overview 477
Tasks 478
Constructors 480
Static Methods 480
Instance Methods 484

Chapter 31 NSCustomImageRep 489

Overview 489
Tasks 489
Constructors 489
Instance Methods 490

Chapter 32 NSDatePicker 491

Overview 491
Tasks 491
Constructors 493
Instance Methods 493

Chapter 33 NSDatePickerCell 503

Overview 503
Tasks 503
Constructors 505
Instance Methods 505
Constants 511
Delegate Methods 512

Chapter 34 NSDocument 513

Class at a Glance 513
Overview 514
Tasks 515
Constructors 521
Static Methods 522
Instance Methods 523
Constants 554

Chapter 35 NSDocumentController 557

Overview 557
Tasks 557
Constructors 561

9
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Static Methods 561
Instance Methods 561

Chapter 36 NSDPSContext 579

Overview 579
Tasks 579
Constructors 579
Static Methods 580
Constants 580

Chapter 37 NSDragDestination 581

Overview 581
Interfaces Implemented 581
Tasks 581
Constructors 582
Instance Methods 583

Chapter 38 NSDrawer 587

Overview 587
Tasks 587
Constructors 589
Instance Methods 590
Constants 595
Delegate Methods 596
Notifications 597

Chapter 39 NSEPSImageRep 599

Overview 599
Tasks 599
Constructors 600
Static Methods 600
Instance Methods 600

Chapter 40 NSEvent 603

Overview 603
Tasks 603
Constructors 607
Static Methods 607
Instance Methods 610
Constants 623

10
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 41 NSFileWrapper 631

Overview 631
Tasks 631
Constructors 633
Instance Methods 634

Chapter 42 NSFont 643

Overview 643
Tasks 643
Constructors 647
Static Methods 648
Instance Methods 654
Constants 663

Chapter 43 NSFontDescriptor 665

Overview 665
Tasks 665
Constructors 665
Instance Methods 666
Constants 666

Chapter 44 NSFontManager 667

Overview 667
Tasks 667
Constructors 671
Static Methods 671
Instance Methods 672
Constants 685
Delegate Methods 685

Chapter 45 NSFontPanel 687

Overview 687
Tasks 687
Constructors 688
Static Methods 689
Instance Methods 690
Constants 691

Chapter 46 NSForm 693

Overview 693

11
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 693
Constructors 695
Instance Methods 695

Chapter 47 NSFormCell 701

Overview 701
Tasks 701
Constructors 702
Instance Methods 703

Chapter 48 NSGlyphInfo 709

Overview 709
Tasks 709
Constructors 710
Static Methods 710
Instance Methods 711
Constants 712

Chapter 49 NSGraphics 713

Overview 713
Tasks 713
Constructors 716
Static Methods 716
Constants 727
Notifications 728

Chapter 50 NSGraphicsContext 729

Overview 729
Tasks 729
Constructors 731
Static Methods 731
Instance Methods 733
Constants 736

Chapter 51 NSHelpManager 739

Overview 739
Tasks 739
Constructors 740
Static Methods 740
Instance Methods 741
Notifications 743

12
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 52 NSImage 745

Overview 745
Tasks 745
Constructors 750
Static Methods 752
Instance Methods 754
Constants 769
Delegate Methods 771

Chapter 53 NSImageCell 773

Overview 773
Tasks 773
Constructors 774
Instance Methods 774
Constants 776

Chapter 54 NSImageRep 779

Overview 779
Tasks 779
Constructors 782
Static Methods 782
Instance Methods 788
Constants 793
Notifications 793

Chapter 55 NSImageView 795

Overview 795
Tasks 795
Constructors 796
Instance Methods 797

Chapter 56 NSInputManager 801

Overview 801
Interfaces Implemented 801
Tasks 802
Constructors 804
Static Methods 804
Instance Methods 804

13
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 57 NSInputServer 809

Overview 809
Interfaces Implemented 809
Tasks 810
Constructors 811
Instance Methods 811

Chapter 58 NSInterfaceStyle 815

Overview 815
Tasks 815
Constructors 815
Static Methods 816
Constants 816

Chapter 59 NSLayoutManager 819

Overview 819
Tasks 819
Constructors 827
Instance Methods 827
Constants 856
Delegate Methods 857

Chapter 60 NSLevelIndicator 859

Overview 859
Tasks 859
Constructors 860
Instance Methods 861

Chapter 61 NSLevelIndicatorCell 867

Overview 867
Tasks 867
Constructors 868
Instance Methods 869
Constants 873

Chapter 62 NSMatrix 875

Overview 875
Tasks 875
Constructors 881
Instance Methods 882

14
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 908

Chapter 63 NSMenu 909

Overview 909
Tasks 909
Constructors 913
Static Methods 913
Instance Methods 914
Delegate Methods 923
Notifications 926

Chapter 64 NSMenuItem 929

Overview 929
Interfaces Implemented 929
Tasks 929
Constructors 933
Static Methods 934
Instance Methods 935

Chapter 65 NSMenuItemCell 949

Overview 949
Tasks 949
Constructors 951
Instance Methods 951

Chapter 66 NSMenuView 959

Overview 959
Tasks 959
Constructors 962
Static Methods 962
Instance Methods 962

Chapter 67 NSModalSession 975

Overview 975
Tasks 975
Constructors 975

Chapter 68 NSMovie 977

Overview 977
Tasks 977

15
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constructors 978
Static Methods 978
Instance Methods 979

Chapter 69 NSMovieView 981

Overview 981
Tasks 981
Constructors 983
Instance Methods 984
Constants 992

Chapter 70 NSMutableParagraphStyle 993

Overview 993
Tasks 993
Constructors 995
Instance Methods 995

Chapter 71 NSNib 1003

Overview 1003
Tasks 1004
Constructors 1004
Instance Methods 1005
Constants 1006

Chapter 72 NSObjectController 1007

Overview 1007
Tasks 1007
Constructors 1009
Instance Methods 1010

Chapter 73 NSOpenPanel 1019

Overview 1019
Tasks 1019
Constructors 1021
Static Methods 1022
Instance Methods 1022

Chapter 74 NSOutlineView 1027

Class at a Glance 1027
Overview 1028

16
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 1028
Constructors 1032
Instance Methods 1032
Constants 1038
Delegate Methods 1038
Notifications 1043

Chapter 75 NSPageLayout 1045

Overview 1045
Tasks 1045
Constructors 1046
Static Methods 1046
Instance Methods 1047

Chapter 76 NSPanel 1051

Overview 1051
Tasks 1051
Constructors 1052
Instance Methods 1053
Constants 1055

Chapter 77 NSParagraphStyle 1057

Overview 1057
Tasks 1057
Constructors 1059
Static Methods 1059
Instance Methods 1060
Constants 1066

Chapter 78 NSPasteboard 1069

Class at a Glance 1069
Overview 1070
Tasks 1070
Constructors 1072
Static Methods 1072
Instance Methods 1074
Constants 1079
Delegate Methods 1081

Chapter 79 NSPDFImageRep 1083

Overview 1083

17
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 1083
Constructors 1084
Static Methods 1084
Instance Methods 1084

Chapter 80 NSPICTImageRep 1087

Overview 1087
Tasks 1087
Constructors 1088
Static Methods 1088
Instance Methods 1088

Chapter 81 NSPopUpButton 1091

Class at a Glance 1091
Overview 1091
Tasks 1092
Constructors 1095
Instance Methods 1095

Chapter 82 NSPopUpButtonCell 1107

Overview 1107
Tasks 1107
Constructors 1110
Instance Methods 1111
Constants 1124
Notifications 1125

Chapter 83 NSPrinter 1127

Overview 1127
Tasks 1127
Constructors 1129
Static Methods 1129
Instance Methods 1130
Constants 1135

Chapter 84 NSPrintInfo 1137

Overview 1137
Tasks 1137
Constructors 1140
Static Methods 1140
Instance Methods 1141

18
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 1148

Chapter 85 NSPrintOperation 1151

Overview 1151
Tasks 1151
Constructors 1154
Static Methods 1154
Instance Methods 1156
Constants 1164

Chapter 86 NSPrintPanel 1165

Overview 1165
Tasks 1165
Constructors 1166
Static Methods 1167
Instance Methods 1167
Constants 1170

Chapter 87 NSProgressIndicator 1171

Overview 1171
Tasks 1171
Constructors 1173
Instance Methods 1173
Constants 1180

Chapter 88 NSPureApplication 1183

Overview 1183
Tasks 1183
Constructors 1183
Static Methods 1184

Chapter 89 NSResponder 1185

Overview 1185
Tasks 1185
Constructors 1189
Instance Methods 1189

Chapter 90 NSRulerMarker 1201

Overview 1201
Tasks 1201

19
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constructors 1203
Instance Methods 1203

Chapter 91 NSRulerView 1209

Class at a Glance 1209
Overview 1210
Tasks 1210
Constructors 1213
Static Methods 1214
Instance Methods 1214
Constants 1222
Delegate Methods 1223

Chapter 92 NSSavePanel 1227

Class at a Glance 1227
Overview 1228
Tasks 1228
Constructors 1231
Static Methods 1232
Instance Methods 1232
Delegate Methods 1243

Chapter 93 NSScreen 1247

Overview 1247
Tasks 1247
Constructors 1248
Static Methods 1248
Instance Methods 1249
Constants 1251

Chapter 94 NSScroller 1253

Class at a Glance 1253
Overview 1253
Tasks 1254
Constructors 1256
Static Methods 1256
Instance Methods 1256
Constants 1261

Chapter 95 NSScrollView 1265

Class at a Glance 1265

20
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Overview 1266
Tasks 1266
Constructors 1270
Static Methods 1270
Instance Methods 1271

Chapter 96 NSSearchField 1287

Overview 1287
Tasks 1287
Constructors 1288
Instance Methods 1288

Chapter 97 NSSearchFieldCell 1291

Overview 1291
Tasks 1291
Constructors 1293
Instance Methods 1294
Constants 1300

Chapter 98 NSSecureTextField 1301

Overview 1301
Tasks 1301
Constructors 1301

Chapter 99 NSSecureTextFieldCell 1303

Overview 1303
Tasks 1303
Constructors 1303
Instance Methods 1304

Chapter 100 NSSegmentedCell 1305

Overview 1305
Tasks 1305
Constructors 1307
Instance Methods 1308
Constants 1315

Chapter 101 NSSegmentedControl 1317

Overview 1317
Tasks 1318

21
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constructors 1319
Instance Methods 1319

Chapter 102 NSShadow 1325

Overview 1325
Tasks 1325
Constructors 1326
Instance Methods 1326

Chapter 103 NSSlider 1329

Overview 1329
Tasks 1329
Constructors 1331
Instance Methods 1332

Chapter 104 NSSliderCell 1341

Overview 1341
Tasks 1341
Constructors 1344
Static Methods 1344
Instance Methods 1345
Constants 1353

Chapter 105 NSSound 1355

Overview 1355
Tasks 1355
Constructors 1356
Static Methods 1357
Instance Methods 1358

Chapter 106 NSSpeechRecognizer 1361

Overview 1361
Tasks 1361
Constructors 1363
Instance Methods 1363
Delegate Methods 1367

Chapter 107 NSSpeechSynthesizer 1369

Overview 1369
Tasks 1370

22
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constructors 1371
Static Methods 1372
Instance Methods 1373
Constants 1376
Delegate Methods 1377

Chapter 108 NSSpellChecker 1379

Overview 1379
Tasks 1379
Constructors 1381
Static Methods 1381
Instance Methods 1381

Chapter 109 NSSplitView 1385

Overview 1385
Tasks 1385
Constructors 1387
Instance Methods 1387
Delegate Methods 1389
Notifications 1392

Chapter 110 NSStatusBar 1393

Overview 1393
Tasks 1393
Constructors 1394
Static Methods 1394
Instance Methods 1394
Constants 1395

Chapter 111 NSStatusItem 1397

Overview 1397
Tasks 1397
Constructors 1399
Instance Methods 1399

Chapter 112 NSStepper 1409

Overview 1409
Tasks 1409
Constructors 1410
Instance Methods 1410

23
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 113 NSStepperCell 1415

Overview 1415
Tasks 1415
Constructors 1416
Instance Methods 1416

Chapter 114 NSTableColumn 1421

Overview 1421
Tasks 1421
Constructors 1423
Instance Methods 1423
Constants 1430

Chapter 115 NSTableHeaderCell 1431

Overview 1431
Tasks 1431
Constructors 1432
Instance Methods 1432

Chapter 116 NSTableHeaderView 1433

Overview 1433
Tasks 1433
Constructors 1434
Instance Methods 1434

Chapter 117 NSTableView 1437

Class at a Glance 1437
Overview 1438
Tasks 1438
Constructors 1447
Instance Methods 1447
Constants 1477
Delegate Methods 1478
Notifications 1482

Chapter 118 NSTabView 1483

Overview 1483
Tasks 1483
Constructors 1487
Instance Methods 1487

24
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 1495
Delegate Methods 1497

Chapter 119 NSTabViewItem 1499

Overview 1499
Tasks 1499
Constructors 1501
Instance Methods 1501

Chapter 120 NSText 1505

Class at a Glance 1505
Overview 1505
Interfaces Implemented 1506
Tasks 1506
Constructors 1512
Instance Methods 1512
Constants 1530
Delegate Methods 1531
Notifications 1532

Chapter 121 NSTextAttachment 1535

Overview 1535
Tasks 1535
Constructors 1536
Instance Methods 1536
Constants 1537

Chapter 122 NSTextAttachmentCell 1539

Overview 1539
Interfaces Implemented 1539
Tasks 1539
Constructors 1540
Instance Methods 1541

Chapter 123 NSTextBlock 1545

Overview 1545
Tasks 1545
Constructors 1547
Instance Methods 1547
Constants 1553

25
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 124 NSTextContainer 1555

Overview 1555
Tasks 1555
Constructors 1557
Instance Methods 1557
Constants 1562

Chapter 125 NSTextField 1563

Overview 1563
Tasks 1563
Constructors 1566
Instance Methods 1566

Chapter 126 NSTextFieldCell 1575

Overview 1575
Tasks 1575
Constructors 1576
Instance Methods 1577
Constants 1580

Chapter 127 NSTextList 1581

Overview 1581
Tasks 1581
Constructors 1582
Instance Methods 1582
Constants 1583

Chapter 128 NSTextStorage 1585

Overview 1585
Tasks 1585
Constructors 1587
Instance Methods 1588
Delegate Methods 1592
Notifications 1593

Chapter 129 NSTextTab 1595

Overview 1595
Tasks 1595
Constructors 1596
Instance Methods 1596

26
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 1597

Chapter 130 NSTextTable 1599

Overview 1599
Tasks 1599
Constructors 1600
Instance Methods 1601
Constants 1604

Chapter 131 NSTextTableBlock 1605

Overview 1605
Tasks 1605
Constructors 1606
Instance Methods 1606

Chapter 132 NSTextView 1609

Class at a Glance 1609
Overview 1609
Interfaces Implemented 1610
Tasks 1610
Constructors 1622
Static Methods 1623
Instance Methods 1623
Constants 1665
Delegate Methods 1666
Notifications 1672

Chapter 133 NSTokenField 1675

Overview 1675
Tasks 1675
Constructors 1677
Static Methods 1677
Instance Methods 1677
Delegate Methods 1679

Chapter 134 NSTokenFieldCell 1683

Overview 1683
Tasks 1683
Constructors 1685
Static Methods 1685
Instance Methods 1686

27
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 1688
Delegate Methods 1688

Chapter 135 NSToolbar 1693

Overview 1693
Tasks 1693
Constructors 1696
Instance Methods 1696
Constants 1703
Delegate Methods 1704
Notifications 1706

Chapter 136 NSToolbarItem 1707

Overview 1707
Interfaces Implemented 1707
Tasks 1707
Constructors 1709
Instance Methods 1709
Constants 1717

Chapter 137 NSUserDefaultsController 1719

Overview 1719
Tasks 1719
Constructors 1720
Static Methods 1720
Instance Methods 1721

Chapter 138 NSView 1725

Class at a Glance 1725
Overview 1726
Tasks 1726
Constructors 1737
Static Methods 1737
Instance Methods 1738
Constants 1788
Notifications 1788

Chapter 139 NSViewAnimation 1791

Overview 1791
Tasks 1791
Constructors 1792

28
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 1792
Constants 1793

Chapter 140 NSWindow 1795

Class at a Glance 1795
Overview 1796
Tasks 1796
Constructors 1813
Static Methods 1814
Instance Methods 1816
Constants 1875
Delegate Methods 1877
Notifications 1883

Chapter 141 NSWindowController 1887

Overview 1887
Tasks 1888
Constructors 1890
Instance Methods 1891

Chapter 142 NSWorkspace 1899

Overview 1899
Tasks 1899
Constructors 1902
Static Methods 1902
Instance Methods 1902
Constants 1911
Notifications 1913

Part II Interfaces 1917

Chapter 143 _NSObsoleteMenuItemProtocol 1919

Overview 1919
Tasks 1919
Instance Methods 1923

Chapter 144 NSCellForTextAttachment 1935

Overview 1935
Tasks 1935
Instance Methods 1936

29
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 145 NSChangeSpelling 1941

Overview 1941
Tasks 1941
Instance Methods 1941

Chapter 146 NSColorPickingCustom 1943

Overview 1943
Tasks 1943
Instance Methods 1944

Chapter 147 NSColorPickingDefault 1947

Overview 1947
Tasks 1947
Instance Methods 1948

Chapter 148 NSComboBox.DataSource 1951

Overview 1951
Tasks 1951
Instance Methods 1951

Chapter 149 NSComboBoxCell.DataSource 1953

Overview 1953
Tasks 1953
Instance Methods 1953

Chapter 150 NSDraggingDestination 1955

Overview 1955
Tasks 1955
Instance Methods 1956

Chapter 151 NSDraggingInfo 1959

Overview 1959
Tasks 1959
Instance Methods 1960
Constants 1962

Chapter 152 NSDraggingSource 1965

Overview 1965

30
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 1965
Instance Methods 1966

Chapter 153 NSEditor 1969

Overview 1969
Tasks 1969
Instance Methods 1969

Chapter 154 NSEditorRegistration 1971

Overview 1971
Tasks 1971
Instance Methods 1971

Chapter 155 NSIgnoreMisspelledWords 1973

Overview 1973
Tasks 1973
Instance Methods 1974

Chapter 156 NSInputServerMouseTracker 1975

Overview 1975
Tasks 1975
Instance Methods 1975

Chapter 157 NSInputServiceProvider 1977

Overview 1977
Tasks 1977
Instance Methods 1978

Chapter 158 NSKeyBindingResponder 1983

Overview 1983
Tasks 1983
Instance Methods 1987

Chapter 159 NSKeyValueBindingCreation 2003

Overview 2003
Tasks 2003
Instance Methods 2004
Constants 2005

31
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 160 NSMenu.MenuValidation 2011

Overview 2011
Tasks 2011
Instance Methods 2011

Chapter 161 NSOutlineView.DataSource 2013

Overview 2013
Tasks 2013
Instance Methods 2014

Chapter 162 NSTableView.DataSource 2019

Overview 2019
Tasks 2019
Instance Methods 2020

Chapter 163 NSTextInput 2025

Overview 2025
Tasks 2025
Instance Methods 2026

Chapter 164 NSToolbarItem.ItemValidation 2031

Overview 2031
Tasks 2031
Instance Methods 2031

Chapter 165 NSValidatedUserInterfaceItem 2033

Overview 2033
Tasks 2033
Instance Methods 2033

Index 2035

32
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Introduction The Application Kit 35

Figure I-1 The Application Kit class inheritance 36

Chapter 9 NSBezierPath 161

Figure 9-1 Line cap styles 170
Figure 9-2 Line join styles 170

Chapter 60 NSLevelIndicator 859

Figure 60-1 Major and minor tick marks in a level indicator 863

33
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

34
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

FIGURES

Package: com.apple.cocoa.application

Introduction

Important: The Java API for the Application Kit is deprecated in Mac OS X version 10.4 and later. You should
use the Objective-C API, documented in Application Kit Framework Reference, to develop Cocoa applications.

The Application Kit is a framework containing all the objects you need to implement your graphical,
event-driven user interface: windows, panels, buttons, menus, scrollers, and text fields. The Application Kit
handles all the details for you as it efficiently draws on the screen, communicates with hardware devices and
screen buffers, clears areas of the screen before drawing, and clips views. The number of classes in the
Application Kit may seem daunting at first. However, most Application Kit classes are support classes that
you use indirectly. You also have the choice at which level you use the Application Kit:

 ■ Use Interface Builder to create connections from user interface objects to your application objects. In
this case, all you need to do is implement your application classes—implement those action and delegate
methods. For example, implement the method that is invoked when the user selects a menu item.

 ■ Control the user interface programmatically, which requires more familiarity with Application Kit classes
and interfaces. For example, allowing the user to drag an icon from one window to another requires
some programming and familiarity with the NSDragging... interfaces.

 ■ Implement your own objects by subclassing NSView or other classes. When subclassing NSView you
write your own drawing methods using graphics functions. Subclassing requires a deeper understanding
of how the Application Kit works.

To learn more about the Application Kit, review the NSApplication (page 93), NSWindow (page 1795), and
NSView (page 1725) class specifications, paying close attention to delegate methods. For a deeper understanding
of how the Application Kit works, see the specifications for NSResponder (page 1185) and NSRunLoop
(NSRunLoop is in the Foundation framework).

Application Kit Classes and Interfaces

The Application Kit is large; it comprises more than 125 classes and interfaces. The classes all descend from
the Foundation framework’s NSObject class (see Figure I-1 (page 36)). The following sections briefly describe
some of the topics that the Application Kit addresses through its classes and interfaces.

Introduction 35
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Figure I-1 The Application Kit class inheritance

NSObject*

java.lang

Object

NSFormCell
NSLevelIndicatorCell

NSDatePickerCell

Text

NSSegmentedControl

Fonts

User Interface

NSBox
NSClipView
NSControl

NSText

NSMenuView
NSMovieView
NSProgressIndicator
NSRulerView
NSScrollView
NSSplitView
NSTabView
NSTableHeaderView

NSActionCell
NSBrowserCell
NSImageCell
NSTextAttachmentCell

NSSearchField Cell
NSComboBoxCell

NSSecureTextFieldCell
NSTableHeaderCell
NSTokenFieldCell

NSButtonCell

NSSegmentedCell
NSSliderCell
NSStepperCell
NSTextFieldCell

NSApplication
NSDrawer
NSView

NSWindow
NSWindowController

NSSearchField
NSComboBox

NSTokenField
NSSecureTextField

NSMenuItemCell NSPopUpButtonCell

NSPopUpButton

NSForm

NSOpenPanel

NSTextView

NSParagraphStyle NSMutableParagraphStyle

NSMutableAttributedString* NSTextStorage
NSTextTab

NSTextContainer
NSTextList

NSGlyphInfo
NSLayoutManager

NSTextAttachment
NSTextBlock

NSAttributedString*

NSStatusBar

NSCell

NSInterfaceStyle
NSRulerMaker

NSModalSession
NSAnimationEffect

NSAlertPanel

NSStatusItem

NSMenuItem

NSPureApplication
NSEvent
NSResponder

NSMenu

NSToolbar
NSToolbarItem

NSTableColumn
NSTabViewItem

NSBrowser
NSButton
NSColorWell
NSDatePicker
NSImageView

NSMatrix
NSLevelIndicator

NSScroller

NSSlider
NSStepper

NSOutlineViewNSTableView
NSTextField

NSColorPanel
NSFontPanel
NSSavePanel

NSPanel

NSFontManager
NSFont

Drag and Drop
NSDragDestination

*Class defined in the Foundation framework

NSAlert
NSArrayController

Controller Layer
NSController
NSControllerPlaceholders

NSObjectController
NSUserDefaultsController

NSFontDescriptor

NSTextTable
NSTextTableBlock

36 Application Kit Classes and Interfaces
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Graphics

Document Support

International Character Input Support

Printing

Operating-System Services

Color

NSAffineTransform

NSGraphicsContext
NSImage

NSCursor

NSAnimation
NSBezierPath

NSMovie
NSImageRep

NSGraphics
NSShadow

NSBitmapImageRep
NSDPSContext

NSViewAnimation

NSCachedImageRep
NSCustomImageRep

NSEPSImageRep
NSPDFImageRep

NSPICTImageRep

NSColorList
NSColor

NSColorPicker
NSColorSpace

NSSpellChecker
NSWorkspace

NSDocumentController
NSFileWrapper

NSDocument

NSInputServer
NSInputManager

Interface Builder Support
NSNib

NSPrinter
NSPageLayout

NSPrintPanel
NSPrintOperation
NSPrintInfo

NSPasteboard
NSHelpManager

NSSound

*Class defined in the Foundation framework

NSObject*

Java Application Kit Continued

NSSpeechSynthesizer
NSSpeechRecognizer

Encapsulating an Application

Every application uses a single instance of NSApplication to control the main event loop, keep track of the
application’s windows and menus, distribute events to the appropriate objects (that is, itself or one of its
windows), and receive notification of application-level events. An NSApplication object has a delegate (an
object that you assign) that is notified when the application starts or terminates, is hidden or activated, should
open a file selected by the user, and so forth. By setting the NSApplication object’s delegate and implementing
the delegate methods, you customize the behavior of your application without having to subclass
NSApplication.

Encapsulating an Application 37
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

General Event Handling and Drawing

The NSResponder class defines the responder chain, an ordered list of objects that respond to user events.
When the user clicks the mouse button or presses a key, an event is generated and passed up the responder
chain in search of an object that can “respond” to it. Any object that handles events must inherit from the
NSResponder class. The core Application Kit classes, NSApplication, NSWindow, and NSView, inherit from
NSResponder.

An NSApplication object maintains a list of NSWindow objects—one for each window belonging to the
application—and each NSWindow object maintains a hierarchy of NSView objects. The view hierarchy is used
for drawing and handling events within a window. An NSWindow object handles window-level events,
distributes other events to its views, and provides a drawing area for its views. An NSWindow object also has
a delegate allowing you to customize its behavior.

NSView is an abstract class for all objects displayed in a window. All subclasses implement a drawing method
using graphics functions; drawRect (page 1753) is the primary method you override when creating a new
NSView.

Panels

The NSPanel class is a subclass of NSWindow that you use to display transient, global, or pressing information.
For example, you would use an instance of NSPanel, rather than an instance of NSWindow, to display error
messages or to query the user for a response to remarkable or unusual circumstances. The Application Kit
implements some common panels for you such as the Save, Open and Print panels, used to save, open, and
print documents. Using these panels gives the user a consistent “look and feel” across applications for common
operations.

Menus and Cursors

The NSMenu, NSMenuItem, and NSCursor classes define the look and behavior of the menus and cursors
that your application displays to the user.

Grouping and Scrolling Views

The NSBox, NSScrollView, and NSSplitView classes provide graphic “accessories” to other view objects or
collections of views in windows. With the NSBox class, you can group elements in windows and draw a border
around the entire group. The NSSplitView class lets you “stack” views vertically or horizontally, apportioning
to each view some amount of a common territory; a sliding control bar lets the user redistribute the territory
among views. The NSScrollView class and its helper class, NSClipView, provide a scrolling mechanism as well
as the graphic objects that let the user initiate and control a scroll. The NSRulerView class allows you to add
a ruler and markers to a scroll view.

38 General Event Handling and Drawing
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Controlling an Application

The NSControl and NSCell classes, and their subclasses, define a common set of user interface objects such
as buttons, sliders, and browsers that the user can manipulate graphically to control some aspect of your
application. Just what a particular control affects is up to you: When a control is “touched,” it sends an action
message to a target object. You typically use Interface Builder to set these targets and actions by
Control-dragging from the control object to your application or other object. You can also set targets and
actions programmatically.

An NSControl object is associated with one or more NSCell objects that implement the details of drawing
and handling events. For example, a button comprises both an NSButton object and an NSButtonCell object.
The reason for this separation of functionality is primarily to allow NSCell classes to be reused by NSControl
classes. For example, NSMatrix and NSTableView can contain multiple NSCell objects of different types.

Tables

The NSTableView class displays data in row and column form. NSTableView is ideal for, but not limited to,
displaying database records, where rows correspond to each record and columns contain record attributes.
The user can edit individual cells and rearrange the columns. You control the behavior and content of an
NSTableView object by setting its delegate and data source objects.

Text and Fonts

The NSTextField class implements a simple editable text field, and the NSTextView class provides more
comprehensive editing features for larger text bodies.

NSTextView, a subclass of the abstract NSText class, defines the interface to Cocoa’s extended text system.
NSTextView supports rich text, attachments (graphics, file, and other), input management and key binding,
and marked text attributes. NSTextView works with the font panel and menu, rulers and paragraph styles,
the Services facility (for example, the spell-checking service), and the pasteboard. NSTextView also allows
customizing through delegation and notifications—you rarely need to subclass NSTextView. You rarely create
instances of NSTextView programmatically either, since objects on Interface Builder’s palettes, such as
NSTextField, NSForm, and NSScrollView, already contain NSTextView objects.

It is also possible to do more powerful and more creative text manipulation (such as displaying text in a
circle) using NSTextStorage, NSLayoutManager, NSTextContainer, and related classes.

The NSFont and NSFontManager classes encapsulate and manage font families, sizes, and variations. The
NSFont class defines a single object for each distinct font; for efficiency, these objects, which can be rather
large, are shared by all the objects in your application. The NSFontPanel class defines the font specification
panel that’s presented to the user.

Controlling an Application 39
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Graphics and Color

The classes NSImage and NSImageRep encapsulate graphics data, allowing you to easily and efficiently access
images stored in files on the disk and displayed on the screen. NSImageRep subclasses each know how to
draw an image from a particular kind of source data. The presentation of an image is greatly influenced by
the hardware that it’s displayed on. For example, a particular image may look good on a color monitor, but
may be too “rich” for monochrome. Through the image classes, you can group representations of the same
image, where each representation fits a specific type of display device—the decision of which representation
to use can be left to the NSImage class itself.

Color is supported by the classes NSColor, NSColorPanel, NSColorList, NSColorPicker, and NSColorWell. NSColor
supports a rich set of color formats and representations, including custom ones. The other classes are mostly
interface classes: They define and present panels and views that allow the user to select and apply colors.
For example, the user can drag colors from the color panel to any color well. The NSColorPicking interface
lets you extend the standard color panel.

Dragging

With very little programming on your part, custom view objects can be dragged and dropped anywhere.
Objects become part of this dragging mechanism by conforming to NSDragging... interfaces: draggable
objects conform to the NSDraggingSource interface, and destination objects (receivers of a drop) conform
to the NSDraggingDestination interface. The Application Kit hides all the details of tracking the cursor and
displaying the dragged image.

Printing

The NSPrinter, NSPrintPanel, NSPageLayout, and NSPrintInfo classes work together to provide the means for
printing the information that your application displays in its windows and views. You can also create an EPS
representation of an NSView.

Accessing the File System

Use the NSFileWrapper class to create objects that correspond to files or directories on disk. NSFileWrapper
will hold the contents of the file in memory so that it can be displayed, changed, or transmitted to another
application. It also provides an icon for dragging the file or representing it as an attachment. Or use the
NSFileManager class in the Foundation framework to access and enumerate file and directory contents. The
NSOpenPanel and NSSavePanel classes also provide a convenient and familiar user interface to the file system.

40 Graphics and Color
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Sharing Data With Other Applications

The NSPasteboard class defines the pasteboard, a repository for data that’s copied from your application,
making this data available to any application that cares to use it. NSPasteboard implements the familiar
cut-copy-paste operation. The NSServicesRequest interface uses the pasteboard to communicate data that’s
passed between applications by a registered service.

Checking Spelling

The NSSpellServer class lets you define a spell-checking service and provide it as a service to other applications.
To connect your application to a spell-checking service, you use the NSSpellChecker class. The
NSIgnoreMisspelledWords and NSChangeSpelling interfaces support the spell-checking mechanism.

Localization

If an application is to be used in more than one part of the world, its resources may need to be customized,
or “localized,” for language, country, or cultural region. For example, an application may need to have separate
Japanese, English, French, and German versions of character strings, icons, nib files, or context help. Resource
files specific to a particular language are grouped together in a subdirectory of the bundle directory (the
directories with the “.lproj” extension). Usually you set up localization resource files using Interface Builder.
See the specification for NSBundle class for more information on localization (NSBundle is in the Foundation
framework).

Sharing Data With Other Applications 41
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

42 Localization
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

43
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

PART I

Classes

44
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Action Messages

Overview

Important: The information in this document is obsolete and should not be used for new development.

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses).
As an NSControl’s active area, an NSActionCell does three things: it usually performs display of text or an
icon; it provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by properly
highlighting its area and sending action messages to its target based on cursor movement.

Tasks

Constructors

NSActionCell (page 47)
Creates an empty NSActionCell.

Configuring an NSActionCell

setAlignment (page 49)
Sets the alignment of text in the receiver.

setBezeled (page 49)
Sets whether the receiver draws itself with a bezeled border and marks it as needing redisplay.

setBordered (page 49)
Sets whether the receiver draws itself outlined with a plain border and marks it as needing redisplay.

setEnabled (page 49)
Sets whether the receiver is enabled or disabled.

Overview 45
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

setFloatingPointFormat (page 50)
Sets the receiver’s floating-point format as described in the NSCell class specification for the
setFloatingPointFormat (page 325) method.

setFont (page 50)
Sets the font to be used when the receiver displays text.

setImage (page 50)
Sets the image to be displayed in the receiver.

Obtaining and Setting Cell Values

doubleValue (page 48)
Returns the receiver’s value as a double after validating any editing of cell content.

floatValue (page 48)
Returns the receiver’s value as a float after validating any editing of cell content.

intValue (page 48)
Returns the receiver’s value as an int after validating any editing of cell content.

stringValue (page 51)
Returns the receiver’s value as a string object as converted by the cell’s formatter, if one exists.

setObjectValue (page 50)
Discards any editing of the receiver’s text and sets its object value to object.

Getting and Setting the Cell’s View

controlView (page 47)
Returns the view (normally an NSControl) in which the receiver was last drawn or null if the receiver
has no control view (usually because it hasn’t yet been placed in the view hierarchy).

setControlView (page 49)
Sets the view (normally an NSControl) of the receiver to view.

Assigning Target and Action

setAction (page 48)
Sets the selector used for the action message to aSelector.

action (page 47)
Returns the receiver’s action message selector.

setTarget (page 51)
Sets the receiver’s target object to anObject.

target (page 51)
Returns the receiver’s target object.

46 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

Assigning a Tag

setTag (page 51)
Sets the receiver’s tag to anInt.

tag (page 51)
Returns the receiver’s tag.

Constructors

NSActionCell
Creates an empty NSActionCell.

public NSActionCell()

Creates an NSActionCell initialized with aString and set to have the cell’s default menu.

public NSActionCell(String aString)

Discussion
If no field editor (a shared NSText object) has been created for all NSActionCells, one is created.

Creates an NSActionCell initialized with anImage and set to have the cell’s default menu.

public NSActionCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

action
Returns the receiver’s action message selector.

public NSSelector action()

See Also
setAction (page 48)
setTarget (page 51)
target (page 51)

controlView
Returns the view (normally an NSControl) in which the receiver was last drawn or null if the receiver has no
control view (usually because it hasn’t yet been placed in the view hierarchy).

Constructors 47
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

public NSView controlView()

doubleValue
Returns the receiver’s value as a double after validating any editing of cell content.

public double doubleValue()

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

See Also
validateEditing (page 463) (NSControl)

floatValue
Returns the receiver’s value as a float after validating any editing of cell content.

public float floatValue()

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

See Also
validateEditing (page 463) (NSControl)

intValue
Returns the receiver’s value as an int after validating any editing of cell content.

public int intValue()

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

See Also
validateEditing (page 463) (NSControl)

setAction
Sets the selector used for the action message to aSelector.

public void setAction(NSSelector aSelector)

See Also
action (page 47)
setTarget (page 51)
target (page 51)

48 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

setAlignment
Sets the alignment of text in the receiver.

public void setAlignment(int mode)

Discussion
mode is one of five constants: NSText.LeftTextAlignment, NSText.RightTextAlignment,
NSText.CenterTextAlignment, NSText.JustifiedTextAlignment, and
NSText.NaturalTextAlignment (the default alignment for the text). The method marks the receiver as
needing redisplay after discarding any editing changes that were being made to cell text.

setBezeled
Sets whether the receiver draws itself with a bezeled border and marks it as needing redisplay.

public void setBezeled(boolean flag)

Discussion
The setBezeled and setBordered (page 49) methods are mutually exclusive—that is, a border can be
only plain or bezeled.

setBordered
Sets whether the receiver draws itself outlined with a plain border and marks it as needing redisplay.

public void setBordered(boolean flag)

Discussion
The setBezeled (page 49) and setBordered methods are mutually exclusive—that is, a border can be
only plain or bezeled.

setControlView
Sets the view (normally an NSControl) of the receiver to view.

public void setControlView(NSView view)

Discussion
The control view is typically set in the receiver’s implementation of drawWithFrameInView (page 310)
(NSCell). Set to null if the receiver has no control view (usually because it hasn’t yet been placed in the view
hierarchy).

Availability
Available in Mac OS X v10.4 and later.

setEnabled
Sets whether the receiver is enabled or disabled.

public void setEnabled(boolean flag)

Instance Methods 49
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

Discussion
The text of disabled cells is changed to gray. If a cell is disabled, it cannot be highlighted, does not support
mouse tracking (and thus cannot participate in target/action functionality), and cannot be edited. The method
marks the receiver as needing redisplay after discarding any editing changes that were being made to cell
text.

setFloatingPointFormat
Sets the receiver’s floating-point format as described in the NSCell class specification for the
setFloatingPointFormat (page 325) method.

public void setFloatingPointFormat(boolean autoRange, int leftDigits, int
rightDigits)

Discussion
NSActionCell’s implementation of the method supplements NSCell’s by marking the receiver as needing
redisplay after discarding any editing changes that were being made to cell text.

setFont
Sets the font to be used when the receiver displays text.

public void setFont(NSFont fontObj)

Discussion
If the receiver is not a text-type cell, the method converts it to that type. If fontObj is null and the receiver
is a text-type cell, the font currently held by the receiver is autoreleased. NSActionCell supplements NSCell’s
implementation of this method by marking the updated cell as needing redisplay. If the receiver was converted
to a text-type cell and is selected, it also updates the field editor with fontObj.

setImage
Sets the image to be displayed in the receiver.

public void setImage(NSImage image)

Discussion
If image is null, the image currently displayed by the receiver is removed.

setObjectValue
Discards any editing of the receiver’s text and sets its object value to object.

public void setObjectValue(Object object)

Discussion
If the object value is afterward different from what it was before the method was invoked, the method marks
the receiver as needing redisplay.

50 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

setTag
Sets the receiver’s tag to anInt.

public void setTag(int anInt)

See Also
tag (page 51)

setTarget
Sets the receiver’s target object to anObject.

public void setTarget(Object anObject)

See Also
action (page 47)
setAction (page 48)
target (page 51)

stringValue
Returns the receiver’s value as a string object as converted by the cell’s formatter, if one exists.

public String stringValue()

Discussion
If no formatter exists and the value is a String, returns the value as a plain, attributed, or localized formatted
string. If the value is not a String or can’t be converted to one, returns an empty string. The method
supplements NSCell’s implementation by validating and retaining any editing changes being made to cell
text.

See Also
validateEditing (page 463) (NSControl)

tag
Returns the receiver’s tag.

public int tag()

See Also
setTag (page 51)

target
Returns the receiver’s target object.

public Object target()

Instance Methods 51
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

See Also
action (page 47)
setAction (page 48)
setTarget (page 51)

52 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

NSActionCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Cocoa Drawing Guide

Overview

The Application Kit extends Foundation’s NSAffineTransform class by adding:

 ■ Methods for applying affine transformations to the current graphics context.

 ■ A method for applying an affine transformation to an NSBezierPath.

Note: In Mac OS X v10.3 and earlier the NSAffineTransform class was declared and implemented entirely in
the Application Kit framework. As of Mac OS X v10.4 the NSAffineTransform class has been split across the
Foundation Kit and Application Kit frameworks.

Tasks

Setting the Current Transform in the Current Graphics State

set (page 54)
Sets the current transformation matrix to the receiver’s transformation matrix.

concat (page 54)
Appends the receiver’s matrix to the current transformation matrix stored in the current graphics
context, replacing the current transformation matrix with the result.

Transforming Data and Objects

transformBezierPath (page 54)
Creates and returns a new NSBezierPath object with each point in aPath transformed by the receiver.

Overview 53
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAffineTransform Additions

Instance Methods

concat
Appends the receiver’s matrix to the current transformation matrix stored in the current graphics context,
replacing the current transformation matrix with the result.

public void concat()

Discussion
Concatenation is performed by matrix multiplication—see “Manipulating Transform Values”.

If this method is invoked from within an NSView’s drawRect (page 1753) method, then the current
transformation matrix is an accumulation of the screen, window, and any superview’s transformation matrices.
Invoking this method defines a new user coordinate system whose coordinates are mapped into the former
coordinate system according to the receiver’s transformation matrix. To undo the concatenation, you must
invert the receiver’s matrix and invoke this method again.

See Also
set (page 54)
invert

set
Sets the current transformation matrix to the receiver’s transformation matrix.

public void set()

Discussion
The current transformation is stored in the current graphics context and is applied to subsequent drawing
operations. You should use this method sparingly because it removes the existing transformation matrix,
which is an accumulation of transformation matrices for the screen, window, and any superviews. Instead
use the concat (page 54) method to add this transformation matrix to the current transformation matrix.

transformBezierPath
Creates and returns a new NSBezierPath object with each point in aPath transformed by the receiver.

public NSBezierPath transformBezierPath(NSBezierPath aPath)

Discussion
The original NSBezierPath object is not modified.

See Also
transformPoint transformSize

54 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAffineTransform Additions

Inherits from NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guides Dialogs and Special Panels
Sheet Programming Topics for Cocoa

Overview

You use an NSAlert object to display an alert, either as an application-modal dialog or as a sheet attached
to a document window. The methods of the NSAlert class allow you to specify alert level, icon, button titles,
and alert text. The class also lets your alerts display help buttons and provides ways for applications to offer
help specific to an alert. To display an alert as a sheet, invoke the beginSheet (page 59) method; to display
one as an application-modal dialog, use the runModal (page 61) method.

By design, an NSAlert object is intended for a single alert—that is, an alert with a unique combination of
title, buttons, and so on—that is displayed upon a particular condition. It is recommended that you create
a unique NSAlert object for different alert dialogs.

Subclassing Notes

The NSAlert class is not designed for subclassing.

Tasks

Constructors

NSAlert (page 57)
Creates an empty NSAlert.

Creating an Alert

alertWithError (page 58)
Returns an NSAlert object initialized from information in error object anError.

Overview 55
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

Managing Alert Text

setInformativeText (page 62)
Set’s the receiver’s informative text to informativeText.

informativeText (page 60)
Returns the receiver’s informative text.

setMessageText (page 63)
Set’s the receiver’s message text, or title, to messageText.

messageText (page 61)
Returns the receiver’s message text, or title.

Managing Alert Icon

setIcon (page 62)
Sets the icon to be displayed in the alert to icon.

icon (page 60)
Returns the icon displayed in the alert.

Managing Alert Buttons

addButtonWithTitle (page 58)
Adds a button with title aTitle to the alert.

buttons (page 59)
Returns the receiver’s buttons.

Managing Help Text

setShowsHelp (page 63)
Sets whether the receiver has a help button.

showsHelp (page 63)
Returns whether the receiver has a help button.

setHelpAnchor (page 62)
Sets the help anchor associated with the alert to anchor.

helpAnchor (page 60)
Returns the receiver’s HTML help anchor or null if there is none.

Managing Alert Style

setAlertStyle (page 61)
Sets the alert style of the receiver.

alertStyle (page 58)
Returns the constant identifying the receiver’s alert style.

56 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

Managing the Delegate

setDelegate (page 62)
Sets the receiver’s delegate, the object responsible for displaying help for the alert.

delegate (page 60)
Returns the receiver’s delegate (not to be confused with the alert sheet’s modal delegate).

Displaying the Alert

runModal (page 61)
Runs the receiver as an application-modal dialog and returns the constant positionally identifying
the button clicked.

beginSheet (page 59)
Runs the receiver modally as a alert sheet attached to window.

Obtaining the Alert’s Window

window (page 64)
Returns the application-modal dialog (an NSPanel object) or the document-modal sheet (an NSWindow
object) associated with the receiver.

Showing help

alertShowHelp (page 65) delegate method
The delegate causes help to be displayed for alert, directly or indirectly.

Constructors

NSAlert
Creates an empty NSAlert.

public NSAlert()

Availability
Available in Mac OS X v10.3 and later.

Constructors 57
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

Static Methods

alertWithError
Returns an NSAlert object initialized from information in error object anError.

public static NSAlert alertWithError(NSError anError)

Discussion
NSAlert extracts the localized error description, recovery suggestion, and recovery options from anError
and uses them as the alert’s message text, informative text, and button titles, respectively.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

addButtonWithTitle
Adds a button with title aTitle to the alert.

public NSButton addButtonWithTitle(String aTitle)

Discussion
Buttons are placed starting near the right side of the alert and going toward the left side (for left to right
languages). The first three buttons are identified positionally as FirstButtonReturn, SecondButtonReturn,
ThirdButtonReturn in the return-code parameter evaluated by the modal delegate. Subsequent buttons
are identified as ThirdButtonReturn +n, where n is an integer. Do not make aTitle a null or empty
string, as doing so claims a spot in the button array.

By default, the first button has a key equivalent of Return, any button with a title of “Cancel” has a key
equivalent of Escape, and any button with the title “Don't Save” has a key equivalent of Command-d (but
only if it is not the first button). You can also assign a different key equivalents for a button using NSButton’s
setKeyEquivalent (page 262) method. You can also use NSButton’s setTag (page 460) method to set the
return value.

Availability
Available in Mac OS X v10.3 and later.

See Also
buttons (page 59)

alertStyle
Returns the constant identifying the receiver’s alert style.

public int alertStyle()

58 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

Availability
Available in Mac OS X v10.3 and later.

See Also
setAlertStyle (page 61)

beginSheet
Runs the receiver modally as a alert sheet attached to window.

public void beginSheet(NSWindow window, Object delegate, NSSelector didEndSelector,
Object contextInfo)

Discussion
After it gets the user’s response but before it dismisses the sheet, the receiver invokes the didEndSelector
method in the modal delegate, passing in any contextual data specified in contextInfo.

The didEndSelector method should have the following signature:

void alertDidEnd(NSAlert alert, int returnCode, Object contextInfo);

where alert is the NSAlert object, returnCode specifies which button the user pressed, and contextInfo
is the same contextInfo passed in the original message. The returnCode identifies which button the user
clicked; it is one of the ...ButtonReturn constants described in the Constants section. The modal delegate
determines which button was clicked (“OK”, “Cancel”, and so on) and proceeds accordingly.

If you want to dismiss the sheet from within the didEndSelectormethod before the modal delegate carries
out an action in response to the return value, send orderOut (page 1845) to the window object obtained by
sending window (page 64) to the alert argument. This allows you to chain sheets, for example, by dismissing
one sheet before showing the next from within the didEndSelector method. Note that you should be
careful not to call orderOut on the sheet from elsewhere in your program before the didEndSelector
method is invoked.

Availability
Available in Mac OS X v10.3 and later.

See Also
runModal (page 61)

buttons
Returns the receiver’s buttons.

public NSArray buttons()

Discussion
The rightmost button is at index 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
addButtonWithTitle (page 58)

Instance Methods 59
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

delegate
Returns the receiver’s delegate (not to be confused with the alert sheet’s modal delegate).

public Object delegate()

Discussion
This delegate shows help related to the alert.

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 62)
alertShowHelp (page 65)

helpAnchor
Returns the receiver’s HTML help anchor or null if there is none.

public String helpAnchor()

Availability
Available in Mac OS X v10.3 and later.

See Also
setHelpAnchor (page 62)

icon
Returns the icon displayed in the alert.

public NSImage icon()

Discussion
The default image is the application icon (property NSApplicationIcon).

Availability
Available in Mac OS X v10.3 and later.

See Also
setIcon (page 62)

informativeText
Returns the receiver’s informative text.

public String informativeText()

Availability
Available in Mac OS X v10.3 and later.

60 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

See Also
setInformativeText (page 62)
messageText (page 61)

messageText
Returns the receiver’s message text, or title.

public String messageText()

Availability
Available in Mac OS X v10.3 and later.

See Also
setMessageText (page 63)
informativeText (page 60)

runModal
Runs the receiver as an application-modal dialog and returns the constant positionally identifying the button
clicked.

public int runModal()

Discussion
See “Constants” (page 64) for the list of applicable constants.

Availability
Available in Mac OS X v10.3 and later.

See Also
beginSheet (page 59)

setAlertStyle
Sets the alert style of the receiver.

public void setAlertStyle(int style)

Discussion
The alert style indicates the severity level of the alert. See “Constants” (page 64) for the list of alert style
constants.

Availability
Available in Mac OS X v10.3 and later.

See Also
alertStyle (page 58)

Instance Methods 61
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

setDelegate
Sets the receiver’s delegate, the object responsible for displaying help for the alert.

public void setDelegate(Object delegate)

Discussion
To remove a delegate, invoke this method with null as the argument.

Availability
Available in Mac OS X v10.3 and later.

See Also
delegate (page 60)
setShowsHelp (page 63)

setHelpAnchor
Sets the help anchor associated with the alert to anchor.

public void setHelpAnchor(String anchor)

Discussion
To remove a help anchor, invoke this method with null as the argument.

Availability
Available in Mac OS X v10.3 and later.

See Also
helpAnchor (page 60),
setShowsHelp (page 63)

setIcon
Sets the icon to be displayed in the alert to icon.

public void setIcon(NSImage icon)

Discussion
By default, the image is the application icon, accessed via the application bundle’s NSApplicationIcon
property. To restore the application icon, invoke this method with an argument of null.

Availability
Available in Mac OS X v10.3 and later.

See Also
icon (page 60)

setInformativeText
Set’s the receiver’s informative text to informativeText.

62 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

public native void setInformativeText(String informativeText)

Availability
Available in Mac OS X v10.3 and later.

See Also
informativeText (page 60)
setMessageText (page 63)

setMessageText
Set’s the receiver’s message text, or title, to messageText.

public void setMessageText(String messageText)

Availability
Available in Mac OS X v10.3 and later.

See Also
messageText (page 61)
setInformativeText (page 62)

setShowsHelp
Sets whether the receiver has a help button.

public void setShowsHelp(boolean showsHelp)

Discussion
When the help button is pressed, the delegate (not the modal delegate) is first sent a alertShowHelp (page
65) message. If there is no delegate, or the delegate does not implement alertShowHelp or returns false,
then the openHelpAnchor (page 742) message is sent to the application’s NSHelpManager instance with
a null book and the anchor specified by setHelpAnchor (page 62), if any. An exception is thrown if the
delegate returns false and no help anchor is set.

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 62)
showsHelp (page 63)

showsHelp
Returns whether the receiver has a help button.

public boolean showsHelp()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 63
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

See Also
setShowsHelp (page 63)

window
Returns the application-modal dialog (an NSPanel object) or the document-modal sheet (an NSWindow
object) associated with the receiver.

public Object window()

Availability
Available in Mac OS X v10.3 and later.

Constants

NSAlert defines the following alert styles (each of type int):

DescriptionConstant

An alert used to warn the user about a current or impending event. The purpose
is more than informational but not critical. This is the default alert style.

WarningStyle

An alert used to inform the user about a current or impending event.InformationalStyle

Reserved this style for critical alerts, such as when there might be severe
consequences as a result of a certain user response (for example, a “clean install”
will erase all data on a volume). This style causes the icon to be badged with a
caution icon.

CriticalStyle

Currently, there is no visual difference between informational and warning alerts. You should only use the
critical (or “caution”) alert style if warranted, as specified in “Alerts” in the Apple Human Interface Guidelines.

NSAlert return values for buttons are position dependent. The following constants describe the return values
for the first three buttons on an alert (assuming a language that reads left to right).

DescriptionConstant

The user clicked the first (rightmost) button on the dialog or sheet.FirstButtonReturn

The user clicked the second button from the right edge of the dialog or sheet.SecondButtonReturn

The user clicked the third button from the right edge of the dialog or sheet.ThirdButtonReturn

If you have more than three buttons on your alert, the button-position return value is ThirdButtonReturn
+ n, where n is an integer. For languages that read right to left, the first button’s position is closest to the
left edge of the dialog or sheet.

64 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

Delegate Methods

alertShowHelp
The delegate causes help to be displayed for alert, directly or indirectly.

public abstract boolean alertShowHelp(NSAlert alert)

Discussion
If it directly displays help, it returns whether this action successfully occurred. If the NSAlert object has a help
anchor (setHelpAnchor (page 62)), the delegate can return false and the application’s NSHelpManager
instance will display help using the help anchor. This method is invoked when the user clicks the alert’s help
button. You do not need to implement this method unless you want to override the help-anchor lookup
behavior.

Availability
Available in Mac OS X v10.3 and later.

See Also
setShowsHelp (page 63)

Delegate Methods 65
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

66 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAlert

Inherits from Object

Package: com.apple.cocoa.application

Companion guides Dialogs and Special Panels
Sheet Programming Topics for Cocoa

Overview

The objects created by NSAlertPanel are NSPanels (or, in user terminology, dialogs and sheets) displayed in
modal sessions; they inform users of an event and offer, through buttons, a set of alternatives.

Tasks

Constructors

NSAlertPanel (page 68)

Running an Alert Panel

runAlert (page 71)
This method is deprecated. It creates and run an alert sheet on aWindow. Use beginAlertSheet (page
69) instead.

runCriticalAlert (page 72)
This method is deprecated. It creates and run a critical alert sheet on aWindow. Use
beginCriticalAlertSheet (page 70) instead.

runInformationalAlert (page 72)
This method is deprecated. It creates and run an informational alert sheet on aWindow. Use
beginInformationalAlertSheet (page 70) instead.

Getting an Alert Panel

alertPanel (page 68)

Overview 67
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

criticalAlertPanel (page 71)

informationalAlertPanel (page 71)

releaseAlert (page 71)

Starting Modal Sheets

beginAlertSheet (page 69)
Creates and runs an alert sheet

beginCriticalAlertSheet (page 70)
Creates and runs a critical alert sheet

beginInformationalAlertSheet (page 70)
Creates and runs an informational alert sheet

Constructors

NSAlertPanel
public NSRunAlertPanel()

Discussion
Returns an NSAlertPanel.

Static Methods

alertPanel
public static NSPanel alertPanel(String title, String message, String defaultButton,

String alternateButton, String otherButton)

Discussion
Creates and returns an NSPanel object with the title of title, the text of message, and buttons with titles
of defaultButton, alternateButton, and otherButton. The buttons are laid out right to left from the
lower-right corner of the NSPanel. If title is null, a default localized title is used as the dialog title. This
method creates a button only if the corresponding button title is non-null. You should deallocate objects
returned by this method with the releaseAlert (page 71) method.

See Also
criticalAlertPanel (page 71)
informationalAlertPanel (page 71)

68 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

beginAlertSheet
Creates and runs an alert sheet

public static void beginAlertSheet(String title, String defaultButton, String
alternateButton, String otherButton, NSWindow docWindow, Object modalDelegate,
NSSelector didEndSelector, NSSelector didDismissSelector, Object contextInfo,
String message)

Discussion
on docWindow, with the title of title, the text of message, and buttons with titles of defaultButton,
alternateButton, and otherButton.

The buttons are laid out on the lower-right corner of the sheet, with defaultButton on the right,
alternateButton on the left, and otherButton in the middle. If title is null or an empty string, a
default localized title is used (“Alert” in English). If defaultButton is null or an empty string, a default
localized button title (“OK” in English) is used. For the remaining buttons, this method creates them only if
their corresponding button title is non-null.

A Command-D key equivalent for the “Don’t Save” button is provided, if one is found. The button titles are
searched for the localized value for “Don’t Save.” If a match is found, that button is assigned a Command-D
key equivalent, provided it is not the default button.

If you create a modal panel using runModalForWindow (page 119) or beginSheet (page 108), you can assign
the key equivalent yourself, using setKeyEquivalent (page 262) and
setKeyEquivalentModifierMask (page 263).

When the modal session is ended, and before the sheet is dismissed, the didEndSelector is invoked on
the modalDelegate. passing contextInfo. After the sheet is dismissed, the didDismissSelector is
invoked on the modalDelegate, passing contextInfo. Typically, you will want to implement the
didEndSelector, but you may pass null for the didDismissSelector. The two selectors should be
defined as follows:

sheetDidEnd(NSWindow sheet, int returnCode, Object contextInfo)
sheetDidDismiss(NSWindow sheet, int returnCode, Object contextInfo)

where sheet is the alert sheet, returnCode specifies which button the user pressed, and contextInfo is
the same contextInfo passed into beginAlertSheet. returnCode can be one of the following:

 ■ DefaultReturn means the user pressed the default button.

 ■ AlternateReturn means the user pressed the alternate button.

 ■ OtherReturn means the user pressed the other button.

 ■ ErrorReturn means an error occurred while running the alert panel.

This method is deprecated. Creates and runs an alert sheet. Use the version with the contextInfo argument
instead.

public static void beginAlertSheet(String title, String defaultButton, String
alternateButton, String otherButton, NSWindow docWindow, Object modalDelegate,
NSSelector didEndSelector, NSSelector didDismissSelector, String message)

Static Methods 69
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

beginCriticalAlertSheet
Creates and runs a critical alert sheet

public static void beginCriticalAlertSheet(String title, String defaultButton,
String alternateButton, String otherButton, NSWindow docWindow, Object
modalDelegate, NSSelector didEndSelector, NSSelector didDismissSelector, Object
contextInfo, String message)

Discussion
on docWindow, with the title of title, the text of message, and buttons with titles of defaultButton,
alternateButton, and otherButton.

See the description of beginAlertSheet (page 69) for information on layout, default parameters, and the
selectors.

The sheet presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the “Alerts” section of Apple Human Interface Guidelines.

This method is deprecated. Creates and runs a critical alert sheet. Instead, use the version with the
contextInfo argument.

public static void beginCriticalAlertSheet(String title, String defaultButton,
String alternateButton, String otherButton, NSWindow docWindow, Object
modalDelegate, NSSelector didEndSelector, NSSelector didDismissSelector, String
message)

beginInformationalAlertSheet
Creates and runs an informational alert sheet

public static void beginInformationalAlertSheet(String title, String defaultButton,
String alternateButton, String otherButton, NSWindow docWindow, Object
modalDelegate, NSSelector didEndSelector, NSSelector didDismissSelector, Object
contextInfo, String message)

Discussion
on docWindow, with the title of title, the text of message, and buttons with titles of defaultButton,
alternateButton, and otherButton.

See the description of beginAlertSheet (page 69) for information on layout, default parameters, and the
selectors.

This method is deprecated. Creates and runs an informational alert sheet. Instead, use the version with the
contextInfo argument.

public static void beginInformationalAlertSheet(String title, String defaultButton,
String alternateButton, String otherButton, NSWindow docWindow, Object
modalDelegate, NSSelector didEndSelector, NSSelector didDismissSelector, String
message)

70 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

criticalAlertPanel
public static NSPanel criticalAlertPanel(String title, String message, String

defaultButton, String alternateButton, String otherButton)

Discussion
Creates and returns an NSPanel object with the title of title, the text of message, and buttons with titles
of defaultButton, alternateButton, and otherButton. The NSPanel looks and behaves no differently
than a normal alert panel (or dialog). See the description of alertPanel (page 68) for information on layout
and default parameters. You should deallocate objects returned by this method with the releaseAlert (page
71) method.

See Also
informationalAlertPanel (page 71)

informationalAlertPanel
public static NSPanel informationalAlertPanel(String title, String message, String

defaultButton, String alternateButton, String otherButton)

Discussion
Creates and returns an NSPanel object with the title of title, the text of message, and buttons with titles
of defaultButton, alternateButton, and otherButton. The NSPanel looks and behaves no differently
than a normal alert panel (or dialog). See the description of alertPanel (page 68) for information on layout
and default parameters. You should deallocate objects returned by this method with the releaseAlert (page
71) method.

See Also
criticalAlertPanel (page 71)

releaseAlert
public static void releaseAlert(NSPanel alertPanel)

Discussion
Sends autorelease to the delegate of alertPanel (page 68) designated by alertPanel.

runAlert
public static int runAlert(String title, String message, String defaultButton,

String alternateButton, String otherButton)

Discussion
Creates and runs an alert panel (or dialog) with the title of title, the text of message, and buttons with
titles of defaultButton, alternateButton, and otherButton. This method returns a constant indicating
which button was pressed (see “Constants” (page 73) for details) or ErrorReturn if an error occurred running
the modal panel. The buttons are laid out on the lower-right corner of the sheet, with defaultButton on
the right, alternateButton on the left, and otherButton in the middle. If title is null or an empty
string, a default localized title is used (“Alert” in English). If defaultButton is null or an empty string, a
default localized button title (“OK” in English) is used. For the remaining buttons, this method creates them
only if their corresponding button title is non-null.

Static Methods 71
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

A Command-D key equivalent for the “Don’t Save” button is provided, if one is found. The button titles are
searched for the localized value for “Don’t Save.” If a match is found, that button is assigned a Command-D
key equivalent, provided it is not the default button.

If you create a modal panel using runModalForWindow (page 119) or beginSheet (page 108), you can assign
the key equivalent yourself, using setKeyEquivalent (page 262) and
setKeyEquivalentModifierMask (page 263).

See Also
runCriticalAlert (page 72)
runInformationalAlert (page 72)

This method is deprecated. It creates and run an alert sheet on aWindow. Use beginAlertSheet (page 69)
instead.

public static int runAlert(String title, String message, String defaultButton,
String alternateButton, String otherButton, NSWindow aWindow)

runCriticalAlert
public static int runCriticalAlert(String title, String message, String

defaultButton, String alternateButton, String otherButton)

Discussion
Creates and runs an alert panel (or dialog) with the title of title, the text of message, and buttons with
titles of defaultButton, alternateButton, and otherButton. The NSPanel looks and behaves no
differently than a normal alert panel (or dialog). See the description of runAlert (page 71) for information
on layout and default parameters.

The panel presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the “Alerts” section of Apple Human Interface Guidelines.

See Also
runInformationalAlert (page 72)

This method is deprecated. It creates and run a critical alert sheet on aWindow. Use
beginCriticalAlertSheet (page 70) instead.

public static int runCriticalAlert(String title, String message, String
defaultButton, String alternateButton, String otherButton, NSWindow aWindow)

runInformationalAlert
public static int runInformationalAlert(String title, String message, String

defaultButton, String alternateButton, String otherButton)

Discussion
Creates and runs an alert panel (or dialog) with the title of title, the text of message, and buttons with
titles of defaultButton, alternateButton, and otherButton. The NSPanel looks and behaves no
differently than a normal alert panel (or dialog). See the description of runAlert (page 71) for information
on layout and default parameters.

72 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

See Also
runCriticalAlert (page 72)

This method is deprecated. It creates and run an informational alert sheet on aWindow. Use
beginInformationalAlertSheet (page 70) instead.

public static int runInformationalAlert(String title, String message, String
defaultButton, String alternateButton, String otherButton, NSWindow aWindow)

Constants

DescriptionConstant

The value returned when the first (default) button from the right edge of the
NSAlertPanel is clicked

DefaultReturn

The value returned when the second button from the right edge of the NSAlertPanel
is clicked

AlternateReturn

The value returned when the third button from the right edge of the NSAlertPanel
is clicked

OtherReturn

The value returned if running the NSAlertPanel resulted in an errorErrorReturn

Constants 73
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

74 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAlertPanel

Inherits from NSAnimation : NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Companion guide Drawing and Views Programming Topics for Cocoa

Overview

Objects of the NSAnimation class manage the timing and progress of animations in the user interface. The
class also lets you link together multiple animations so that when one animation ends another one starts. It
does not provide any drawing support for animation and does not directly deal with views, targets, or actions.

Note: For simple tasks requiring a timing mechanism, consider using NSTask.

NSAnimation objects have several characteristics, including duration, frame rate, and animation curve, which
describes the relative speed of the animation over its course. You can set progress marks in an animation,
each of which specifies a percentage of the animation completed; when an animation reaches a progress
mark, it notifies its delegate and posts a notification to any observers. Animations execute in one of three
blocking modes: blocking, non-blocking on the main thread, and non-blocking on a separate thread. The
non-blocking modes permit the handling of user events while the animation is running.

Subclassing Notes

For information on subclassing NSAnimation, see “Timing Animations” in Drawing and Views Programming
Topics for Cocoa.

Tasks

Constructors

NSAnimation (page 78)
Creates an NSAnimation object initialized with the specified duration and animation curve.

Overview 75
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Configuring an Animation

animationBlockingMode (page 78)
Returns the blocking mode the receiver is next scheduled to run under.

setAnimationBlockingMode (page 82)
Sets the blocking mode of the receiver.

runLoopModesForAnimating (page 82)
Overridden to return the NSRunLoop modes that the receiver uses to run the animation timer in.

animationCurve (page 79)
Returns the animation curve the receiver is running under.

setAnimationCurve (page 83)
Sets the receiver’s animation curve.

delegate (page 80)
Returns the delegate of the receiver.

setDelegate (page 83)
Sets the delegate of the receiver.

duration (page 81)
Returns the duration of the animation, in seconds.

setDuration (page 83)
Sets the duration of the animation to a specified number of seconds.

frameRate (page 81)
Returns the frame rate of the animation as the number of updates per second.

setFrameRate (page 84)
Sets the frame rate—the number of updates per second—of the receiver.

Controlling and Monitoring the Animation

startAnimation (page 84)
Starts the animation represented by the receiver.

stopAnimation (page 85)
Stops the animation represented by the receiver.

isAnimating (page 81)
Returns whether the receiver is currently animating.

currentProgress (page 80)
Returns the current progress of the receiver as a float value.

setCurrentProgress (page 83)
Sets the current progress of the receiver.

currentValue (page 80)
Returns the current value of the effect based on the current progress.

76 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Managing Progress Marks

addProgressMark (page 78)
Adds the progress mark to the receiver.

removeProgressMark (page 82)
Removes progress mark from the receiver.

progressMarks (page 81)
Returns the receiver’s progress marks.

setProgressMarks (page 84)
Sets the receiver’s progress marks to the values specified in the passed-in array.

Linking Animations Together

startWhenAnimation (page 85)
Starts running the animation represented by the receiver when another animation reaches a specific
progress mark.

stopWhenAnimation (page 86)
Stops running the animation represented by the receiver when another animation reaches a specific
progress mark.

clearStartAnimation (page 79)
Clears linkage to another animation made with startWhenAnimation (page 85).

clearStopAnimation (page 79)
Clears linkage to another animation made with stopWhenAnimation (page 86)

Methods for the delegate

animationDidEnd (page 87) delegate method
Sent to the delegate when the specified animation completes its run.

animationDidStop (page 87) delegate method
Sent to the delegate when the specified animation is stopped before it completes its run.

animationDidReachProgressMark (page 87) delegate method
Sent to the delegate when an animation reaches a specific progress mark.

animationShouldStart (page 88) delegate method
Sent to the delegate just after the animation animation receives a startAnimation (page 84)
message.

animationValueForProgress (page 88) delegate method
Sent to the delegate at each frame update, passing in a reference to the running animation animation
and its current progress value progress.

Tasks 77
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Constructors

NSAnimation
public NSAnimation()

Discussion
Creates an NSAnimation object.

Creates an NSAnimation object initialized with the specified duration and animation curve.

public NSAnimation(double duration, int animationCurve)

Discussion
The duration value specifies the number of seconds over which the animation occurs; specifying a negative
number throws an exception. You can always later change the duration of an NSAnimation object by sending
it a setDuration (page 83) message, even while the animation is running. The animationCurve parameter
is a constant that describes the relative speed of the animation over its course; if it is zero, the default curve
(NSAnimationEaseInOut) is used. See “Constants” (page 86) for descriptions of these constants.

Instance Methods

addProgressMark
Adds the progress mark to the receiver.

public void addProgressMark(float progressMark)

Discussion
The progressMark argument is a float value between 0.0 and 1.0. A progress mark represent a percentage
of the animation completed. When the animation reaches a progress mark, a
animationDidReachProgressMark (page 87) is sent to the delegate and an
AnimationProgressMarkNotification (page 88) is broadcast to all observers. You might receive multiple
notifications of progress advances over multiple marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
currentProgress (page 80)
removeProgressMark (page 82)

animationBlockingMode
Returns the blocking mode the receiver is next scheduled to run under.

public int animationBlockingMode()

78 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Discussion
The animation can run in blocking mode or non-blocking mode; non-blocking mode can be either on the
main thread or on a separate thread. See “Constants” (page 86) for valid constants. The default mode is
AnimationBlocking.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAnimationBlockingMode (page 82)

animationCurve
Returns the animation curve the receiver is running under.

public int animationCurve()

Discussion
The animation curve describes the relative frame rate over the course of the animation. See “Constants” (page
86) for valid constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAnimationCurve (page 83)

clearStartAnimation
Clears linkage to another animation made with startWhenAnimation (page 85).

public void clearStartAnimation()

Availability
Available in Mac OS X v10.4 and later.

See Also
startAnimation (page 84)

clearStopAnimation
Clears linkage to another animation made with stopWhenAnimation (page 86)

public void clearStopAnimation()

Availability
Available in Mac OS X v10.4 and later.

See Also
stopAnimation (page 85)

Instance Methods 79
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

currentProgress
Returns the current progress of the receiver as a float value.

public float currentProgress()

Discussion
The current progress is a value between 0.0 and 1.0 that represents the percentage of the animation currently
completed.

Availability
Available in Mac OS X v10.4 and later.

See Also
setCurrentProgress (page 83)

currentValue
Returns the current value of the effect based on the current progress.

public float currentValue()

Discussion
NSAnimation gets the current value from the delegate in animationValueForProgress (page 88) or, if
that method is not implemented, computes it from the current progress by factoring in the animation curve.
Although this method has no corresponding setter method, you may override it to provide a custom curve.
The current value can be less than 0.0 or greater than 1.0. For example, if you make the value greater than
1.0 you can achieve a “rubber effect” where the size of a view is temporarily larger before its final size.
Subclasses may override this method to return a custom curve value instead of implementing
animationValueForProgress (page 88), thereby saving on the overhead of using a delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
currentProgress (page 80)
setAnimationCurve (page 83)

delegate
Returns the delegate of the receiver.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 83)

80 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

duration
Returns the duration of the animation, in seconds.

public double duration()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDuration (page 83)

frameRate
Returns the frame rate of the animation as the number of updates per second.

public float frameRate()

Discussion
The frame rate is not guaranteed to be accurate because of differences between systems on the time needed
to process a frame.

Availability
Available in Mac OS X v10.4 and later.

isAnimating
Returns whether the receiver is currently animating.

public boolean isAnimating()

Availability
Available in Mac OS X v10.4 and later.

progressMarks
Returns the receiver’s progress marks.

public NSArray progressMarks()

Discussion
Each item in the returned array is an NSNumber object containing a float value. If the receiver has no
progress marks, an empty array is returned.

Availability
Available in Mac OS X v10.4 and later.

See Also
addProgressMark (page 78)
setProgressMarks (page 84)

Instance Methods 81
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

removeProgressMark
Removes progress mark from the receiver.

public void removeProgressMark(float progressMark)

Discussion
progressMark is a float value between 0.0 and 1.0 that indicates the portion of the animation completed.

Availability
Available in Mac OS X v10.4 and later.

See Also
addProgressMark (page 78)

runLoopModesForAnimating
Overridden to return the NSRunLoop modes that the receiver uses to run the animation timer in.

public NSArray runLoopModesForAnimating()

Discussion
By default, the method returns null, which indicates that the animation can be run in default, modal, or
event-tracking mode. The value returned from this method is ignored if the animation blocking mode is
something other than AnimationNonblocking.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAnimationBlockingMode (page 82)

setAnimationBlockingMode
Sets the blocking mode of the receiver.

public void setAnimationBlockingMode(int animationBlockingMode)

Discussion
The new blocking mode takes effect the next time the receiver is started and has no effect on an animation
underway. The default mode is AnimationBlocking, which means that the animation runs on the main
thread in a custom run-loop mode that blocks user events. If animationBlockingMode is
AnimationNonblocking the animation runs in the main thread in one of the standard run-loop modes or
in a mode returned from runLoopModesForAnimating (page 82). If animationBlockingMode is
AnimationNonblockingThreaded a new thread is spawned to run the animation. See “Constants” (page
86) for valid constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
animationBlockingMode (page 78)

82 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

setAnimationCurve
Sets the receiver’s animation curve.

public void setAnimationCurve(int curve)

Discussion
The animation curve describes the relative frame rate over the course of the animation; predefined curves
are linear, ease in (slow down near end), ease out (slowly speed up at start), and ease in-ease out (S-curve).
Sending this message affects animations already in progress. The setting is ignored if the delegate implements
animationValueForProgress (page 88). Invalid values throw an exception. See “Constants” (page 86)
for valid constants.

Availability
Available in Mac OS X v10.4 and later.

setCurrentProgress
Sets the current progress of the receiver.

public void setCurrentProgress(float progress)

Discussion
The progress parameter should be a float value between 0.0 and 1.0; values that are out of range are
pinned to 0.0 or 1.0. You can use this method to adjust the progress of a running animation. The NSAnimation
class invokes this method while animation is running to change the progress for the next frame. Subclasses
can override this method to get the latest value and perform their action with it, possibly in a secondary
thread. Alternatively, you can implement the delegation method animationValueForProgress (page
88).

Availability
Available in Mac OS X v10.4 and later.

See Also
currentProgress (page 80)

setDelegate
Sets the delegate of the receiver.

public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 80)

setDuration
Sets the duration of the animation to a specified number of seconds.

Instance Methods 83
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

public void setDuration(double duration)

Discussion
Negative values throw an exception. You can change the duration of an animation while it is running. However,
setting the duration of a running animation to an interval shorter than the current progress ends the animation.

Availability
Available in Mac OS X v10.4 and later.

See Also
duration (page 81)

setFrameRate
Sets the frame rate—the number of updates per second—of the receiver.

public void setFrameRate(float framesPerSecond)

Discussion
The framesPerSecond value must be positive; negative values throw an exception. A frame rate of 0.0
means to go as fast as possible. The frame rate is not guaranteed due to differences among systems for the
time needed to process a frame. You can change the frame rate while an animation is running and the new
value is used at the next frame. The default frame rate is set to a reasonable value (which is subject to future
change).

Availability
Available in Mac OS X v10.4 and later.

See Also
frameRate (page 81)

setProgressMarks
Sets the receiver’s progress marks to the values specified in the passed-in array.

public void setProgressMarks(NSArray progressMarks)

Discussion
Each item of the progressMarks array should be an NSNumber object containing a float value. Passing
in null clears all progress marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
progressMarks (page 81)

startAnimation
Starts the animation represented by the receiver.

public void startAnimation()

84 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Discussion
The receiver retains itself and is then autoreleased at the end of the animation or when it receives
stopAnimation (page 85). If the blocking mode is AnimationBlocking, the method only returns after
the animation has completed or the delegate sends it stopAnimation (page 85). If the receiver has a
progress of 1.0, it starts again at 0.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
startWhenAnimation (page 85)
stopAnimation (page 85)

startWhenAnimation
Starts running the animation represented by the receiver when another animation reaches a specific progress
mark.

public void startWhenAnimation(NSAnimation animation, float startProgress)

Discussion
The animation parameter is the other NSAnimation object and the progress mark is specified in
startProgress. This method links the running of two animations together. You can set only one NSAnimation
object as a start animation and one as a stop animation at any one time. Setting a new start animation
removes any animation previously set.

Availability
Available in Mac OS X v10.4 and later.

See Also
clearStartAnimation (page 79)
startAnimation (page 84)
stopWhenAnimation (page 86)

stopAnimation
Stops the animation represented by the receiver.

public void stopAnimation()

Discussion
The current progress of the receiver is not reset.

Availability
Available in Mac OS X v10.4 and later.

See Also
startAnimation (page 84)
stopWhenAnimation (page 86)

Instance Methods 85
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

stopWhenAnimation
Stops running the animation represented by the receiver when another animation reaches a specific progress
mark.

public void stopWhenAnimation(NSAnimation animation, float stopProgress)

Discussion
The animation parameter is the other NSAnimation object and the progress mark is specified in
stopProgress. This method links the running of two animations together. You can set only one NSAnimation
object as a start animation and one as a stop animation at any one time. Setting a new stop animation
removes any animation previously set.

Availability
Available in Mac OS X v10.4 and later.

See Also
clearStopAnimation (page 79)
startWhenAnimation (page 85)
stopAnimation (page 85)

Constants

These constants describe the curve of an animation—that is, the relative speed of an animation from start
to finish. You use them with setAnimationCurve (page 83). The following constants are available in Mac
OS X v10.4 and later.

DescriptionConstant

Describes an S-curve in which the animation slowly speeds up and then slows
down near the end of the animation. This constant is the default.

AnimationEaseInOut

Describes an animation that slows down as it reaches the end.AnimationEaseIn

Describes an animation that slowly speeds up from the start.AnimationEaseOut

Describes an animation in which there is no change in frame rate.AnimationLinear

These constants indicate the blocking mode of an NSAnimation object when it is running. You specify one
of these constants in setAnimationBlockingMode (page 82). The following constants are available in Mac
OS X v10.4 and later.

DescriptionConstant

Requests the animation to run in the main thread in a custom run-loop
mode that blocks user input. This is the default.

AnimationBlocking

Requests the animation to run in a standard or specified run-loop mode
that allows user input.

AnimationNonblocking

86 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

DescriptionConstant

Requests the animation to run in a separate thread that is spawned by
the NSAnimation object. (The secondary thread has its own run loop.)

AnimationNonblocking-
Threaded

The NSAnimation class also declares the string constant AnimationProgressMark for use as a key in
accessing the current progress mark in the userInfo dictionary of the
AnimationProgressMarkNotification (page 88) notification.

Delegate Methods

animationDidEnd
Sent to the delegate when the specified animation completes its run.

public abstract void animationDidEnd(NSAnimation animation)

Discussion
When an NSAnimation object reaches the end of its planned duration, it has a progress value of 1.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
animationDidEnd (page 87)
currentProgress (page 80)

animationDidReachProgressMark
Sent to the delegate when an animation reaches a specific progress mark.

public abstract void animationDidReachProgressMark(NSAnimation animation, float
progress)

Discussion
The delegate typically implements this method to perform some animation effect for the time slice indicated
by progress, such as redrawing objects in a view with new coordinates or changing the frame location or
size of a window or view. As an alternative to this delegation message, you may choose to observe the
AnimationProgressMarkNotification (page 88) notification.

Availability
Available in Mac OS X v10.4 and later.

animationDidStop
Sent to the delegate when the specified animation is stopped before it completes its run.

public abstract void animationDidStop(NSAnimation animation)

Delegate Methods 87
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Discussion
An NSAnimation object stops running when it receives a stopAnimation (page 85) message.

Availability
Available in Mac OS X v10.4 and later.

See Also
animationDidEnd (page 87)

animationShouldStart
Sent to the delegate just after the animation animation receives a startAnimation (page 84) message.

public abstract boolean animationShouldStart(NSAnimation animation)

Discussion
The delegate can use this method to prepare objects and resources for the effect. Return false to cancel the
animation.

Availability
Available in Mac OS X v10.4 and later.

See Also
animationDidEnd (page 87)
animationDidStop (page 87)

animationValueForProgress
Sent to the delegate at each frame update, passing in a reference to the running animation animation and
its current progress value progress.

public abstract float animationValueForProgress(NSAnimation animation, float
progress)

Discussion
The delegate can compute and return a custom curve value for the given progress value. The value of
progress is always between 0.0 and 1.0. If the delegate does not implement this method, NSAnimation
computes the current curve value.

Availability
Available in Mac OS X v10.4 and later.

See Also
currentValue (page 80)

Notifications

AnimationProgressMarkNotification

Posted when the current progress of a running animation reaches one of its progress marks.

88 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

The notification object is the running NSAnimation object. The userInfo dictionary contains the current
progress mark, accessed via the key AnimationProgressMark.

Availability
Available in Mac OS X v10.4 and later.

See Also
animationDidReachProgressMark (page 87)

Notifications 89
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

90 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAnimation

Inherits from Object

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Overview

The NSAnimationEffect class provides system animations for use in your application. An animation effect
includes both display and sound.

Tasks

Constructors

NSAnimationEffect (page 91)
Creates an empty NSAnimationEffect.

Showing an Effect

showEffect (page 92)
Runs one of the system animation effects, which includes display and sound.

Constructors

NSAnimationEffect
Creates an empty NSAnimationEffect.

public NSAnimationEffect()

Discussion
All of the NSAnimationEffect methods are static, so there is no need to create instances of the class.

Availability
Available in Mac OS X v10.3 and later.

Overview 91
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimationEffect

Static Methods

showEffect
Runs one of the system animation effects, which includes display and sound.

public static void showEffect(int animationEffect, NSPoint centerLocation, NSSize
size, Object animationDelegate, NSSelector didEndSelector, Object contextInfo)

Discussion
See “Constants” (page 92) for a description of possible values of animationEffect. centerLocation
specifies the center of the animated image in screen coordinates; it indicates where to show the effect. The
size parameter specifies how big the animated image should be; use NSSize.ZeroSize to get the default
size. animationDelegate is an object that wants to know when the effect has completed; specify null if
there is no animation delegate. If there is an animation delegate, this method invokes the method identified
bydidEndSelectorwhen the animation completes. Whatever value or object is supplied in thecontextInfo
parameter is passed in the didEndSelector.

The didEndSelector method should have the following signature:

 void animationEffectDidEnd (Object contextInfo)

Availability
Available in Mac OS X v10.3 and later.

Constants

NSAnimationEffect defines the following constants to specify the type of effect:

DescriptionConstant

The default effect used to indicate removal of an item from a collection, such
as toolbar (indicates removal, without destroying the underlying data). This is
currently Poof, but may change in the future. If you always want to be
guaranteed the animation effect will be a poof, use Poof.

DisappearingItem-
Default

An effect showing a puff of smoke.Poof

92 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimationEffect

Inherits from NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Application Architecture Overview
Notification Programming Topics for Cocoa
Sheet Programming Topics for Cocoa
System Services

Class at a Glance

An NSApplication object manages an application’s main event loop in addition to resources used by all of
that application’s objects.

Principal Attributes

 ■ Delegate

 ■ Key window

 ■ Display context

 ■ List of windows

 ■ Main window

Commonly Used Methods

keyWindow (page 113)
Returns an NSWindow representing the key window.

mainWindow (page 114)
Returns the application’s main window.

registerServicesMenuTypes (page 117)
Specifies which services are valid for this application.

runModalForWindow (page 119)
Runs a modal event loop for the specified NSWindow.

Class at a Glance 93
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Overview

The NSApplication class provides the central framework for your application’s execution. Every application
must have exactly one instance of NSApplication (or a subclass of NSApplication). Your program’s main()
function should create this instance by invoking the sharedApplication (page 105) class method. After
creating the NSApplication object, the main() function should load your application’s main nib file and then
start the event loop by sending the NSApplication object a run (page 119) message. If you create an Application
project in Xcode, this main() function is created for you. The main() function Xcode creates begins by
calling a function named NSApplicationMain().

The sharedApplication (page 105) class method initializes the display environment and connects your
program to the window server and the display server. The NSApplication object maintains a list of all the
NSWindows the application uses, so it can retrieve any of the application’s NSViews.
sharedApplication (page 105) only performs the initialization once; if you invoke it more than once, it
simply returns the NSApplication object it created previously.

NSApplication performs the important task of receiving events from the window server and distributing
them to the proper NSResponders. NSApplication.sharedApplication() translates an event into an
NSEvent object, then forwards the NSEvent to the affected NSWindow object. All keyboard and mouse events
go directly to the NSWindow associated with the event. The only exception to this rule is if the Command
key is pressed when a key-down event occurs; in this case, every NSWindow has an opportunity to respond
to the event. When an NSWindow receives an NSEvent from NSApplication.sharedApplication(), it
distributes it to the objects in its view hierarchy.

NSApplication is also responsible for dispatching certain Apple events received by the application. For
example, the Mac OS sends Apple events to your application at various times, such as when the application
is launched or reopened. NSApplication installs Apple event handlers to handle these events by sending a
message to the appropriate object. You can also use the NSAppleEventManager class to register your own
Apple event handlers. The applicationWillFinishLaunching (page 137) method is generally the best
place to do so. For more information on how events are handled and how you can modify the default behavior,
including information on working with Apple events in scriptable applications, see “How Cocoa Applications
Handle Apple Events.” in Scriptable Application Programming Guide for Cocoa.

The NSApplication class sets up autorelease pools (instances of the NSAutoreleasePool class) during
initialization and inside the event loop—specifically, within its initialization (or sharedApplication (page
105)) and run (page 119) methods. Similarly, the methods the Application Kit adds to NSBundle employ
autorelease pools during the loading of nib files. These autorelease pools aren’t accessible outside the scope
of the respective NSApplication and NSBundle methods. Typically, an application creates objects either while
the event loop is running or by loading objects from nib files, so this lack of access usually isn’t a problem.
However, if you do need to use Cocoa classes within the main() function itself (other than to load nib files
or to instantiate NSApplication), you should create an autorelease pool before using the classes and then
release the pool when you’re done. For more information, see NSAutoreleasePool in the Foundation Framework
Reference.

94 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

The Delegate and Notifications

You can assign a delegate to NSApplication.sharedApplication(). The delegate responds to certain
messages on behalf of NSApplication.sharedApplication(). Some of these messages, such as
applicationOpenFile (page 133), ask the delegate to perform an action. Another message,
applicationShouldTerminate (page 136), lets the delegate determine whether the application should
be allowed to quit. The NSApplication class sends these messages directly to its delegate.

The NSApplication.sharedApplication() also posts notifications to the application’s default notification
center. Any object may register to receive one or more of the notifications posted by
NSApplication.sharedApplication() by sending the message addObserver to the default notification
center (an instance of the NSNotificationCenter class). The delegate of
NSApplication.sharedApplication() is automatically registered to receive these notifications if it
implements certain delegate methods. For example, NSApplication.sharedApplication() posts
notifications when it is about to be done launching the application and when it is done launching the
application (ApplicationWillFinishLaunchingNotification (page 141) and
ApplicationDidFinishLaunchingNotification (page 140)). The delegate has an opportunity to respond
to these notifications by implementing the methods applicationWillFinishLaunching (page 137) and
applicationDidFinishLaunching (page 131). If the delegate wants to be informed of both events, it
implements both methods. If it needs to know only when the application is finished launching, it implements
only applicationDidFinishLaunching (page 131).

System Services

NSApplication interacts with the system services architecture to provide services to your application through
the Services menu.

Subclassing Notes

You rarely should find a real need to create a custom NSApplication subclass. Unlike some object-oriented
libraries, Cocoa does not require you to create a custom application class to customize application behavior.
Instead it gives you many other ways to customize an application. This section discusses both some of the
possible reasons to subclass NSApplication and some of the reasons not to subclass NSApplication.

To use a custom subclass of NSApplication, simply send sharedApplication (page 105) to your subclass
rather than directly to NSApplication. If you create your application in Xcode, you can accomplish this by
setting your custom application class to be the principal class. In Xcode, double-click the application target
in the Groups and Files list to open the Info window for the target. Then display the Properties pane of the
window and replace “NSApplication” in the Principal Class field with the name of your custom class.
TheNSApplicationMain function sends sharedApplication (page 105) to the principal class to obtain
the global application instance (NSApp)—which in this case will be an instance of your custom subclass of
NSApplication.

Methods to Override

Generally, you subclass NSApplication to provide your own special responses to messages that are routinely
sent to the global application object (NSApplication.sharedApplication()). NSApplication does not
have primitive methods in the sense of methods that you must override in your subclass. Here are four
methods that are possible candidates for overriding:

Overview 95
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

 ■ Override run (page 119) if you want the application to manage the main event loop differently than it
does by default. (This a critical and complex task, however, that you should only attempt with good
reason.)

 ■ Override sendEvent (page 121) if you want to change how events are dispatched or perform some
special event processing.

 ■ Override requestUserAttention (page 118) if you want to modify how your application attracts the
attention of the user (for example, offering an alternative to the bouncing application icon in the Dock).

 ■ Override targetForAction (page 125) to substitute another object for the target of an action message.

Special Considerations

The global application object uses autorelease pools in its run (page 119) method; if you override this method,
you’ll need to create your own autorelease pools.

Do not overridesharedApplication (page 105). The default implementation, which is essential to application
behavior, is too complex to duplicate on your own.

Alternatives to Subclassing

NSApplication defines over twenty delegation methods that offer opportunities for modifying specific aspects
of application behavior. Instead of making a custom subclass of NSApplication, your application delegate
may be able to implement one or more of these methods to accomplish your design goals.

In general, a better design than subclassing NSApplication is to put the code that expresses your application’s
special behavior into a number of custom objects called controllers. (Controller objects usually inherit directly
from NSObject.) Methods defined in your controllers can be invoked from a small dispatcher object without
being closely tied to the global application object.

Tasks

Constructors

NSApplication (page 104)

Creating and Initializing an NSApplication

sharedApplication (page 105)
Returns the NSApplication instance, creating it if it doesn’t exist yet.

finishLaunching (page 112)
Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the
application’s icon.

96 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Getting Information About the Framework

appkitVersionNumber (page 104)
Returns the version number for the Application Kit framework.

Changing the Active Application

activateIgnoringOtherApps (page 106)
Makes the receiver the active application.

hideOtherApplications (page 112)
Hides all applications, except the receiver.

unhideAllApplications (page 126)
Unhides all applications, including the receiver.

isActive (page 112)
Returns true if this is the active application, false otherwise.

deactivate (page 110)
Deactivates the receiver.

Running the Event Loop

run (page 119)
Starts the main event loop.

isRunning (page 113)
Returns true if the main event loop is running, false otherwise.

stop (page 124)
Stops the main event loop.

runModalForWindow (page 119)
Starts a modal event loop for aWindow.

stopModal (page 124)
Stops a modal event loop.

stopModalWithCode (page 124)
Like stopModal (page 124), except the argument returnCode allows you to specify the value
runModalForWindow (page 119) will return.

abortModal (page 106)
Aborts the event loop started by runModalForWindow (page 119) or runModalSession (page 120).

beginModalSessionForWindow (page 108)
Sets up a modal session with the NSWindow aWindow and returns an NSModalSession structure
representing the session.

runModalSession (page 120)
Runs a modal session represented by session, as defined in a previous invocation of
beginModalSessionForWindow (page 108).

endModalSession (page 111)
Finishes a modal session.

Tasks 97
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

sendEvent (page 121)
Dispatches anEvent to other objects.

modalWindow (page 115)
Returns the modal window that the receiver is displaying.

Getting, Removing, and Posting Events

currentEvent (page 110)
Returns the current event, the last event the receiver retrieved from the event queue.

nextEventMatchingMask (page 115)
Returns the next event matching mask, or null if no such event is found before the expiration date
specified by expiration.

discardEventsMatchingMask (page 110)
Removes all events matching mask and generated before lastEvent from the event queue.

postEvent (page 117)
Adds anEvent to the receiver’s event queue.

Managing Sheets

beginSheet (page 108)
Starts a document modal session.

endSheet (page 111)
Ends a document modal session by specifying the sheet window, sheet.

Managing Windows

keyWindow (page 113)
Returns the key window, the NSWindow that receives keyboard events.

mainWindow (page 114)
Returns the main window.

windowWithWindowNumber (page 128)
Returns the NSWindow object corresponding to windowNum.

windows (page 128)
Returns an NSArray of the receiver’s NSWindows, including offscreen windows.

makeWindowsPerform (page 114)
Sends the aSelectormessage to each NSWindow in the application in turn until one returns a value
other than null.

setWindowsNeedUpdate (page 123)
Sets whether the receiver’s windows need updating when the receiver has finished processing the
current event, depending on the Boolean value passed in place of flag.

updateWindows (page 127)
Sends an update (page 1871) message to each onscreen NSWindow.

98 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

miniaturizeAll (page 114)
Miniaturizes all the receiver’s windows.

preventWindowOrdering (page 117)
Suppresses the usual window ordering in handling the most recent mouse-down event.

Hiding All Windows

hide (page 112)
Hides all the receiver’s windows, and the next application in line is activated.

isHidden (page 113)
Returns true if the receiver is hidden, false otherwise.

unhide (page 126)
Restores hidden windows to the screen and makes the receiver active.

unhideWithoutActivation (page 127)
Restores hidden windows without activating their owner (the receiver).

Setting the Application’s Icon

setApplicationIconImage (page 122)
Sets the receiver’s icon to anImage. This method updates the dock application tile. anImage will be
scaled as necessary to fit the tile.

applicationIconImage (page 107)
Returns the NSImage used for the receiver’s icon.

Getting the Main Menu

setMainMenu (page 122)
Makes aMenu the receiver’s main menu.

mainMenu (page 113)
Returns the receiver’s main menu.

Managing the Window Menu

setWindowsMenu (page 123)
Makes aMenu the receiver’s Window menu.

windowsMenu (page 128)
Returns the Window menu or null if no Window menu has been created.

arrangeInFront (page 107)
Arranges windows listed in the Window menu in front of all other windows.

addWindowsItem (page 107)
Adds an item to the Window menu for aWindow.

changeWindowsItem (page 109)
Changes the item for aWindow in the Window menu to aString.

Tasks 99
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

removeWindowsItem (page 118)
Removes the Window menu item for aWindow.

updateWindowsItem (page 127)
Updates the Window menu item for aWindow to reflect the edited status of aWindow.

Managing the Services Menu

setServicesMenu (page 123)
Makes aMenu the receiver’s Services menu.

servicesMenu (page 121)
Returns the Services menu, or null if no Services menu has been created.

registerServicesMenuTypes (page 117)
Registers the pasteboard types the receiver can send and receive in response to service requests.

validRequestorForTypes (page 128)
Indicates whether the receiver can send and receive the specified pasteboard types.

setServicesProvider (page 123)
Registers the object aProvider as the service provider.

servicesProvider (page 122)
Returns the object that provides the services the receiver advertises in the Services menu of other
applications.

Showing Standard Panels

orderFrontColorPanel (page 116)
Brings up the color panel, an instance of NSColorPanel.

orderFrontStandardAboutPanel (page 116)
Displays a standard About window.

orderFrontStandardAboutPanelWithOptions (page 116)
Displays a standard About window with information from optionsDictionary.

orderFrontCharacterPalette (page 115)
Opens the character palette.

runPageLayout (page 120)
Displays the receiver’s page layout panel, an instance of NSPageLayout.

showSystemInfoPanel (page 105)
Deprecated. Do not use.

Displaying Help

showHelp (page 123)
If your project is properly registered, and the necessary keys have been set in the property list, this
method launches Help Viewer and displays the first page of your application’s help book.

activateContextHelpMode (page 106)
Places the receiver in context-sensitive help mode.

100 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Sending Action Messages

sendActionToTargetFromSender (page 121)
Sends the message anAction to aTarget.

tryToPerform (page 126)
Dispatches action messages.

targetForAction (page 125)
Returns the object that receives the action message aSelector.

targetForActionToFrom (page 125)
Finds an object that can receive the message specified by the selector anAction.

Getting the Display Context

context (page 109)
Returns the receiver’s display context.

Reporting an Exception

reportException (page 118)
Logs anException .

Terminating the Application

replyToApplicationShouldTerminate (page 118)
If an application delegate returns TerminateLater to applicationShouldTerminate (page 136),
this method must be called with shouldTerminate passed as true or false once the application
decides if it can terminate.

terminate (page 125)
Terminates the receiver.

Assigning a Delegate

setDelegate (page 122)
Makes anObject the receiver’s delegate.

delegate (page 110)
Returns the receiver’s delegate.

Handling User Attention Requests

cancelUserAttentionRequest (page 109)
Cancels a previous user attention request.

requestUserAttention (page 118)
Starts a user attention request.

Tasks 101
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

beep (page 104)
Plays the system beep.

replyToOpenOrPrint (page 118)
Handles errors that might occur when the user attempts to open or print files.

Loading Nib Files

loadNibFromBundle (page 105)
Unarchives the contents of the nib file named fileName in aBundle, using owner as the nib file’s
owner (shown as “File’s Owner” in Interface Builder).

loadNibNamed (page 105)
Unarchives the contents of the nib file named aNibName, using owner as the nib file’s owner (shown
as “File’s Owner” in Interface Builder).

Opening files

applicationOpenFiles (page 133) delegate method
Identical to applicationOpenFile (page 133) except that the receiver opens multiple files
corresponding to the file names in the filenames array.

applicationOpenFile (page 133) delegate method

applicationOpenFileWithoutUI (page 133) delegate method

applicationOpenTempFile (page 134) delegate method

applicationOpenUntitledFile (page 134) delegate method

applicationShouldOpenUntitledFile (page 136) delegate method

Printing

applicationPrintFiles (page 135) delegate method
Identical to applicationPrintFile (page 134) except that the receiver prints multiple files
corresponding to the file names in the filenames array.

applicationPrintFile (page 134) delegate method

applicationPrintFiles (page 135) delegate method
Prints a group of files.

102 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Supplying a dock menu

applicationDockMenu (page 132) delegate method
Allows the delegate to supply a dock menu for the application dynamically.

Activating, launching, and updating an application

applicationDidBecomeActive (page 130) delegate method

applicationWillBecomeActive (page 137) delegate method

applicationDidResignActive (page 131) delegate method

applicationWillResignActive (page 138) delegate method

applicationDidFinishLaunching (page 131) delegate method

applicationWillFinishLaunching (page 137) delegate method

applicationDidChangeScreenParameters (page 131) delegate method

applicationDidUpdate (page 132) delegate method

applicationWillUpdate (page 139) delegate method

applicationShouldHandleReopen (page 136) delegate method
Sent by theApplication to the delegate prior to default behavior to reopen (rapp) AppleEvents.

Hiding and unhiding an application

applicationDidHide (page 131) delegate method

applicationWillHide (page 138) delegate method

applicationDidUnhide (page 132) delegate method

applicationWillUnhide (page 139) delegate method

Terminating an application

applicationShouldTerminate (page 136) delegate method

Tasks 103
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

applicationShouldTerminateAfterLastWindowClosed (page 137) delegate method
Invoked when the user closes the last window the application has open.

applicationWillTerminate (page 139) delegate method

Handling errors

applicationWillPresentError (page 138) delegate method
Sent to the delegate before application presents an error message, based on the information in
error, to the user.

Constructors

NSApplication
public NSApplication()

Discussion
The constructor for the NSApplication object. You should not invoke this constructor directly; instead, use
the sharedApplication (page 105) method.

Static Methods

appkitVersionNumber
Returns the version number for the Application Kit framework.

public static double appkitVersionNumber()

beep
Plays the system beep.

public static void beep()

Discussion
A user can select a sound to be played. On a Macintosh computer, for example, the user chooses a sound
with the Sound control panel.

The implementation of this method calls the C function NSBeep.

104 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

loadNibFromBundle
Unarchives the contents of the nib file named fileName in aBundle, using owner as the nib file’s owner
(shown as “File’s Owner” in Interface Builder).

public static boolean loadNibFromBundle(NSBundle aBundle, String fileName, Object
owner)

Discussion
The method first looks for the nib file in the language-specific “.lproj” directory of aBundle. If fileName
isn’t there, this method looks for a non-localized resource in the immediate bundle directory. Returns true
upon success, or false if the specified nib file couldn’t be loaded.

loadNibNamed
Unarchives the contents of the nib file named aNibName, using owner as the nib file’s owner (shown as
“File’s Owner” in Interface Builder).

public static boolean loadNibNamed(String aNibName, Object owner)

Discussion
The argument aNibName need not include the “.nib” extension. If there’s a bundle for the class of owner,
this method looks in that bundle for aNibName; otherwise, it looks in the main bundle. Returns true upon
success, or false if the specified nib file couldn’t be loaded.

sharedApplication
Returns the NSApplication instance, creating it if it doesn’t exist yet.

public static NSApplication sharedApplication()

Discussion
This method also makes a connection to the window server and completes other initialization. Your program
should invoke this method as one of the first statements in main(); this invoking is done for you if you create
your application with Xcode. To retrieve the NSApplication instance after it has been created, invoke this
method.

See Also
run (page 119)
terminate (page 125)

showSystemInfoPanel
Deprecated. Do not use.

public static void showSystemInfoPanel(NSDictionary aDictionary)

Static Methods 105
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Instance Methods

abortModal
Aborts the event loop started by runModalForWindow (page 119) or runModalSession (page 120).

public void abortModal()

Discussion
When stopped with this method,runModalForWindow andrunModalSession returnRunAbortedResponse.

abortModalmust be used instead of stopModal (page 124) or stopModalWithCode (page 124) when you
need to stop a modal event loop from anywhere other than a callout from that event loop. In other words,
if you want to stop the loop in response to a user’s actions within the modal window, use stopModal;
otherwise, use abortModal. For example, use abortModal when running in a different thread from the
Application Kit’s main thread or when responding to an NSTimer that you have added to the
ModalPanelRunLoopMode mode of the default NSRunLoop.

See Also
endModalSession (page 111)

activateContextHelpMode
Places the receiver in context-sensitive help mode.

public void activateContextHelpMode(Object sender)

Discussion
In this mode, the cursor becomes a question mark, and help appears for any user interface item the user
clicks.

Most applications don’t use this method. Instead, applications enter context-sensitive mode when the user
presses the Help key. Applications exit context-sensitive help mode upon the first event after a help window
is displayed.

See Also
showHelp (page 123)

activateIgnoringOtherApps
Makes the receiver the active application.

public void activateIgnoringOtherApps(boolean flag)

Discussion
If flag is false, the application is activated only if no other application is currently active. If flag is true,
the application activates regardless.

106 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

The flag is normally set to false. When the Finder launches an application, using a value of false for
flag allows the application to become active if the user waits for it to launch, but the application remains
unobtrusive if the user activates another application. Regardless of the setting of flag, there may be a time
lag before the application activates—you should not assume the application will be active immediately after
sending this message.

You rarely need to invoke this method. Under most circumstances, the Application Kit takes care of proper
activation. However, you might find this method useful if you implement your own methods for interapplication
communication.

You don’t need to send this message to make one of the application’s NSWindows key. When you send a
makeKeyWindow (page 1842) message to an NSWindow, you ensure the NSWindow will be the key window
when the application is active.

See Also
deactivate (page 110)
isActive (page 112)

addWindowsItem
Adds an item to the Window menu for aWindow.

public void addWindowsItem(NSWindow aWindow, String aString, boolean isFilename)

Discussion
If isFilename is false, aString appears literally in the menu. If isFilename is true, aString is assumed
to be a converted pathname with the name of the file preceding the path (the way NSWindow’s
setTitleWithRepresentedFilename (page 1868) method shows a title). If an item for aWindow already
exists in the Window menu, this method has no effect. You rarely invoke this method because an item is
placed in the Window menu for you whenever an NSWindow’s title is set.

See Also
changeWindowsItem (page 109)
setTitle (page 1868) (NSWindow)

applicationIconImage
Returns the NSImage used for the receiver’s icon.

public NSImage applicationIconImage()

See Also
setApplicationIconImage (page 122)

arrangeInFront
Arranges windows listed in the Window menu in front of all other windows.

public void arrangeInFront(Object sender)

Instance Methods 107
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Discussion
Windows associated with the application but not listed in the Window menu are not ordered to the front.

See Also
addWindowsItem (page 107)
removeWindowsItem (page 118)
makeKeyAndOrderFront (page 1841) (NSWindow)

beginModalSessionForWindow
Sets up a modal session with the NSWindow aWindow and returns an NSModalSession structure representing
the session.

public NSModalSession beginModalSessionForWindow(NSWindow aWindow)

Discussion
In a modal session, the application receives mouse events only if they occur in aWindow. The NSWindow is
made key and ordered to the front.

The beginModalSessionForWindow method only sets up the modal session. To actually run the session,
use runModalSession (page 120). beginModalSessionForWindow should be balanced by
endModalSession (page 111). Make sure these two messages are sent within the same exception-handling
scope. That is, if you send beginModalSessionForWindow inside an NS_DURING construct, you must send
endModalSession before NS_ENDHANDLER.

If an exception is thrown, beginModalSessionForWindow arranges for proper cleanup. Do not use
NS_DURING constructs to send an endModalSession message in the event of an exception.

A loop using these methods is similar to a modal event loop run with runModalForWindow (page 119),
except the application can continue processing between method invocations.

This method has been deprecated. Use beginSheet (page 108) instead.

public NSModalSession beginModalSessionForWindow(NSWindow theWindow, NSWindow
docWindow)

beginSheet
Starts a document modal session.

public void beginSheet(NSWindow sheet, NSWindow docWindow, Object modalDelegate,
NSSelector didEndSelector, Object contextInfo)

Discussion
The didEndSelector method is optional. If implemented by the modalDelegate, this method is invoked
after the modal session has ended and is passed a return code and caller specified in contextInfo.
didEndSelector should have the following signature:

public void sheetDidEnd (NSWindow sheet, int returnCode, Object contextInfo)

108 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Use this method in cases where you do not need to do any additional background processing while your
sheet runs. This method consumes only enough CPU time to process events and dispatch them to the action
methods associated with the sheet. If you want to perform additional background processing, use
runModalSession (page 120) together with an NSModalSession object instead.

See Also
endSheet (page 111)

Starts a document modal session.

public void beginSheet(NSWindow sheet, NSWindow docWindow, Object modalDelegate,
NSSelector didEndSelector)

Discussion
The didEndSelector method is optional. If implemented by the modalDelegate, this method is invoked
after the modal session has ended.

cancelUserAttentionRequest
Cancels a previous user attention request.

public void cancelUserAttentionRequest(int request)

Discussion
request is the return value from a previous call to requestUserAttention (page 118). A request is also
canceled automatically by user activation of the application.

changeWindowsItem
Changes the item for aWindow in the Window menu to aString.

public void changeWindowsItem(NSWindow aWindow, String aString, boolean isFilename)

Discussion
If aWindow doesn’t have an item in the Window menu, this method adds the item. If isFilename is false,
aString appears literally in the menu. If isFilename is true, aString is assumed to be a converted
pathname with the file’s name preceding the path (the way NSWindow’s
setTitleWithRepresentedFilename (page 1868) places a title).

See Also
addWindowsItem (page 107)
removeWindowsItem (page 118)
setTitle (page 1868) (NSWindow)

context
Returns the receiver’s display context.

public NSGraphicsContext context()

Instance Methods 109
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

currentEvent
Returns the current event, the last event the receiver retrieved from the event queue.

public NSEvent currentEvent()

Discussion
NSApplication.sharedApplication() receives events and forwards the current event to the affected
NSWindow object, which then distributes it to the objects in its view hierarchy.

See Also
discardEventsMatchingMask (page 110)
postEvent (page 117)
sendEvent (page 121)

deactivate
Deactivates the receiver.

public void deactivate()

Discussion
Normally, you shouldn’t invoke this method—the Application Kit is responsible for proper deactivation.

See Also
activateIgnoringOtherApps (page 106)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 122)

discardEventsMatchingMask
Removes all events matching mask and generated before lastEvent from the event queue.

public void discardEventsMatchingMask(int mask, NSEvent lastEvent)

Discussion
Typically, you send this message to an NSWindow rather than to NSApplication.sharedApplication().

mask can contain these constants:

NSEvent.LeftMouseDownMask

NSEvent.LeftMouseUpMask

NSEvent.RightMouseDownMask

NSEvent.RightMouseUpMask

110 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

NSEvent.MouseMovedMask

NSEvent.LeftMouseDraggedMask

NSEvent.RightMouseDraggedMask

NSEvent.MouseEnteredMask

NSEvent.MouseExitedMask

NSEvent.KeyDownMask

NSEvent.KeyUpMask

NSEvent.FlagsChangedMask

NSEvent.PeriodicMask

NSEvent.CursorUpdateMask

NSEvent.AnyEventMask

Use this method to ignore events that occur before a particular kind of event. For example, suppose your
application has a tracking loop that you exit when the user releases the mouse button, and you want to
discard all events that occurred during that loop. You use NSEvent.AnyEventMask as the mask argument
and pass the mouse-up event as the lastEvent argument. Passing the mouse-up event as lastEvent
ensures that any events that might have occurred after the mouse-up event (that is, that appear in the queue
after the mouse-up event) don’t get discarded.

This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

See Also
nextEventMatchingMask (page 115)

endModalSession
Finishes a modal session.

public void endModalSession(NSModalSession session)

Discussion
session should be the return value from a previous invocation of beginModalSessionForWindow (page
108).

See Also
runModalSession (page 120)

endSheet
Ends a document modal session by specifying the sheet window, sheet.

public void endSheet(NSWindow sheet)

Ends a document modal session by specifying the sheet window, sheet.

public void endSheet(NSWindow sheet, int returnCode)

Discussion
Also passes along a returnCode to the delegate.

Instance Methods 111
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
beginSheet (page 108)

finishLaunching
Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the application’s
icon.

public void finishLaunching()

Discussion
The run (page 119) method invokes this method before it starts the event loop. When this method begins,
it posts an ApplicationWillFinishLaunchingNotification (page 141) to the default notification center.
If you override finishLaunching (page 112), the subclass method should invoke the superclass method.

See Also
applicationWillFinishLaunching (page 137)
applicationDidFinishLaunching (page 131)

hide
Hides all the receiver’s windows, and the next application in line is activated.

public void hide(Object sender)

Discussion
This method is usually invoked when the user chooses Hide in the application’s main menu. When this method
begins, it posts an ApplicationWillHideNotification (page 141) to the default notification center.
When it completes successfully, it posts an ApplicationDidHideNotification (page 140).

See Also
miniaturizeAll (page 114)
unhide (page 126)
unhideWithoutActivation (page 127)
applicationDidHide (page 131)
applicationWillHide (page 138)

hideOtherApplications
Hides all applications, except the receiver.

public void hideOtherApplications(Object sender)

isActive
Returns true if this is the active application, false otherwise.

public boolean isActive()

112 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
activateIgnoringOtherApps (page 106)
deactivate (page 110)

isHidden
Returns true if the receiver is hidden, false otherwise.

public boolean isHidden()

See Also
hide (page 112)
unhide (page 126)
unhideWithoutActivation (page 127)

isRunning
Returns true if the main event loop is running, false otherwise.

public boolean isRunning()

Discussion
false means the stop (page 124) method was invoked.

See Also
run (page 119)
terminate (page 125)

keyWindow
Returns the key window, the NSWindow that receives keyboard events.

public NSWindow keyWindow()

Discussion
This method returns null if there is no key window, if the application’s nib file hasn’t finished loading yet,
or if the receiver is not active.

See Also
mainWindow (page 114)
isKeyWindow (page 1838) (NSWindow)

mainMenu
Returns the receiver’s main menu.

public NSMenu mainMenu()

Instance Methods 113
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
setMainMenu (page 122)

mainWindow
Returns the main window.

public NSWindow mainWindow()

Discussion
This method returns null if there is no main window, if the application’s nib file hasn’t finished loading, if
the receiver is not active, or if the application is hidden.

See Also
keyWindow (page 113)
isMainWindow (page 1838) (NSWindow)

makeWindowsPerform
Sends the aSelector message to each NSWindow in the application in turn until one returns a value other
than null.

public NSWindow makeWindowsPerform(NSSelector aSelector, boolean flag)

Discussion
Returns that NSWindow, or null if all NSWindows returned null for aSelector.

If flag is true, the aSelector message is sent to each of the window server’s on-screen windows, going
in z-order, until one returns non-nil. A minimized window is not considered to be onscreen for this check. If
flag is false, the message is sent to all windows in NSApplication.sharedApplication()’s window
list, regardless of whether they are on-screen or not. This order is unspecified.

The method designated by aSelector can’t take any arguments.

See Also
sendActionToTargetFromSender (page 121)
tryToPerform (page 126)
windows (page 128)

miniaturizeAll
Miniaturizes all the receiver’s windows.

public void miniaturizeAll(Object sender)

See Also
hide (page 112)

114 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

modalWindow
Returns the modal window that the receiver is displaying.

public NSWindow modalWindow()

Discussion
If the application isn’t displaying a modal window, this method returns null.

This method does not return a sheet window. If you need access to a sheet window, use NSWindow’s
attachedSheet (page 1818).

nextEventMatchingMask
Returns the next event matching mask, or null if no such event is found before the expiration date specified
by expiration.

public NSEvent nextEventMatchingMask(int mask, NSDate expiration, String mode,
boolean flag)

Discussion
A value of null for expiration is equivalent to distantPast. If flag is true, the event is removed from
the queue. See the method description for discardEventsMatchingMask (page 110) for a list of the possible
values for mask.

The mode argument names an NSRunLoop mode that determines what other ports are listened to and what
timers may fire while NSApplication.sharedApplication() is waiting for the event. The possible modes
available in the Application Kit are:

NSRunLoop.DefaultRunLoopMode

NSApplication.EventTrackingRunLoopMode

NSApplication.ModalPanelRunLoopMode

Events that are skipped are left in the queue.

You can use this method to short circuit normal event dispatching and get your own events. For example,
you may want to do this in response to a mouse-down event in order to track the mouse while its button is
down. In this case, you would set mask to accept mouse-dragged or mouse-up events and use the
NSApplication.EventTrackingRunLoopMode.

See Also
postEvent (page 117)
run (page 119)
runModalForWindow (page 119)

orderFrontCharacterPalette
Opens the character palette.

public void orderFrontCharacterPalette(Object sender)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 115
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

orderFrontColorPanel
Brings up the color panel, an instance of NSColorPanel.

public void orderFrontColorPanel(Object sender)

Discussion
If the NSColorPanel does not exist yet, it creates one. This method is typically invoked when the user chooses
Colors from a menu.

orderFrontStandardAboutPanel
Displays a standard About window.

public void orderFrontStandardAboutPanel(Object sender)

Discussion
This method calls orderFrontStandardAboutPanelWithOptions (page 116) with a null argument. See
orderFrontStandardAboutPanelWithOptions for a description of what’s displayed.

orderFrontStandardAboutPanelWithOptions
Displays a standard About window with information from optionsDictionary.

public void orderFrontStandardAboutPanelWithOptions(NSDictionary optionsDictionary)

Discussion
The following strings are keys that can occur in optionsDictionary:

 ■ "Credits": An NSAttributedString displayed in the info area of the panel. If not specified, this method
then looks for a file named “Credits.html”, “Credits.rtf”, and “Credits.rtfd”, in that order, in
the bundle returned by the NSBundle static method mainBundle. The first file found is used. If none is
found, the info area is left blank.

 ■ "ApplicationName": A String displayed as the application’s name. If not specified, this method then
uses the value of CFBundleName (localizable). If neither is found, this method uses
NSProcessInfo.processInfo().processName().

 ■ "ApplicationIcon": An NSImage displayed as the application’s icon. If not specified, this method then
looks for an image named “NSApplicationIcon”, usingNSImage.imageNamed("ApplicationIcon").
If neither is available, this method uses the generic application icon.

 ■ "Version": A String with the build version number of the application (“58.4”), displayed as “(v58.4)”. If
not specified, obtain from the CFBundleVersion key in infoDictionary; if not specified, leave blank
(the “(v)” is not displayed).

 ■ "Copyright": A String with a line of copyright information. If not specified, this method then looks for
the value of HumanReadableCopyright in the localized version infoDictionary. If neither is available,
this method leaves the space blank.

 ■ "ApplicationVersion": A String with the application version (“Mac OS X”, “3”, “WebObjects 4.5”,
“AppleWorks 6”,...). If not specified, obtain from the CFBundleShortVersionString key in
infoDictionary. If neither is available, the build version, if available, is printed alone, as “Version x.x”.

116 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
orderFrontStandardAboutPanel (page 116)

postEvent
Adds anEvent to the receiver’s event queue.

public void postEvent(NSEvent anEvent, boolean flag)

Discussion
If flag is true, the event is added to the front of the queue; otherwise the event is added to the back of
the queue.

This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

See Also
currentEvent (page 110)
sendEvent (page 121)

preventWindowOrdering
Suppresses the usual window ordering in handling the most recent mouse-down event.

public void preventWindowOrdering()

Discussion
This method is only useful for mouse-down events when you want to prevent the window that receives the
event from being ordered to the front.

registerServicesMenuTypes
Registers the pasteboard types the receiver can send and receive in response to service requests.

public void registerServicesMenuTypes(NSArray sendTypes, NSArray returnTypes)

Discussion
If the receiver has a Services menu, a menu item is added for each service provider that can accept one of
the specified sendTypes or return one of the specified returnTypes. You should typically invoke this
method at application startup time or when an object that can use services is created. You can invoke it more
than once—its purpose is to ensure there is a menu item for every service the application can use. The
event-handling mechanism will dynamically enable the individual items to indicate which services are currently
appropriate. All the NSResponders in your application (typically NSViews) should register every possible type
they can send and receive by sending this message to NSApplication.sharedApplication().

See Also
validRequestorForTypes (page 128)

Instance Methods 117
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

removeWindowsItem
Removes the Window menu item for aWindow.

public void removeWindowsItem(NSWindow aWindow)

Discussion
This method doesn’t prevent the item from being automatically added again. Use NSWindow’s
setExcludedFromWindowsMenu (page 1860) method if you want the item to remain excluded from the
Window menu.

See Also
addWindowsItem (page 107)
changeWindowsItem (page 109)

replyToApplicationShouldTerminate
If an application delegate returns TerminateLater to applicationShouldTerminate (page 136), this
method must be called with shouldTerminate passed as true or false once the application decides if it
can terminate.

public replyToApplicationShouldTerminate(boolean shouldTerminate)

replyToOpenOrPrint
Handles errors that might occur when the user attempts to open or print files.

public void replyToOpenOrPrint(int reply)

Discussion
Delegates should invoke this method if an error is encountered in the applicationOpenFiles (page 133)
or applicationPrintFiles (page 135) delegate methods. Possible values for reply are described in
“Constants” (page 128).

Availability
Available in Mac OS X v10.3 and later.

reportException
Logs anException .

public void reportException(Throwable anException)

Discussion
This method does not throw anException. Use it inside of an exception handler to record that the exception
occurred.

requestUserAttention
Starts a user attention request.

118 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

public int requestUserAttention(int requestType)

Discussion
requestType is one of the values described in “Constants” (page 128). Activating the application cancels
the user attention request. A spoken notification will occur if spoken notifications are enabled. Sending
requestUserAttention to an application that is already active has no effect.

If the inactive application presents a modal panel, this method will be invoked with
UserAttentionRequestCritical automatically. The modal panel is not brought to the front for an inactive
application.

The value returned by this method can be used to manually cancel a request by passing it as the parameter
to cancelUserAttentionRequest (page 109).

run
Starts the main event loop.

public void run()

Discussion
The loop continues until a stop (page 124) or terminate (page 125) message is received. Upon each iteration
through the loop, the next available event from the window server is stored and then dispatched by sending
it to NSApplication.sharedApplication() using sendEvent (page 121).

After creating the NSApplication object, the main function should load your application’s main nib file and
then start the event loop by sending the NSApplication object a runmessage.If you create an Cocoa application
project in Xcode, this main function is implemented for you.

See Also
runModalForWindow (page 119)
runModalSession (page 120)
applicationDidFinishLaunching (page 131)

runModalForWindow
Starts a modal event loop for aWindow.

public int runModalForWindow(NSWindow aWindow)

Discussion
Until the loop is broken by a stopModal (page 124), stopModalWithCode (page 124), or abortModal (page
106) message, the application won’t respond to any mouse, keyboard, or window-close events unless they’re
associated with aWindow. If stopModalWithCode is used to stop the modal event loop, this method returns
the argument passed to stopModalWithCode. If stopModal is used, it returns the constant
RunStoppedResponse. If abortModal is used, it returns the constant RunAbortedResponse.

The window aWindow is placed on the screen using NSWindow’s center (page 1821) method, if not already
visible, and made key as a result of the runModalForWindow message. Do not send NSWindow’s
makeKeyAndOrderFront (page 1841) to aWindow.

See Also
run (page 119)

Instance Methods 119
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

runModalSession (page 120)

This method has been deprecated. Use beginSheet (page 108) instead.

public int runModalForWindow(NSWindow theWindow, NSWindow docWindow)

runModalSession
Runs a modal session represented by session, as defined in a previous invocation of
beginModalSessionForWindow (page 108).

public int runModalSession(NSModalSession session)

Discussion
A loop that uses this method is similar in some ways to a modal event loop run with
runModalForWindow (page 119), except with this method your code can do some additional work between
method invocations. When you invoke this method, events for the NSWindow of this session are dispatched
as normal. This method returns when there are no more events. You must invoke this method frequently
enough in your loop that the window remains responsive to events. However, you should not invoke this
method in a tight loop because it returns immediately if there are no events, and consequently you could
end up polling for events rather than blocking.

Typically, you use this method in situations where you want to do some additional background processing
while the modal loop runs. For example, while processing a large data set, you might want to use a modal
dialog to display progress and give the user a chance to cancel the operation. If you want to display a modal
dialog and do not need to do any additional work in parallel, use runModalForWindow (page 119) instead.
When there are no pending events, that method waits idly instead of consuming CPU time.

If the modal session was not stopped, this method returns RunContinuesResponse. At this point, your
application can do some work before the next invocation of runModalSession (page 120) (as indicated in
the example’s doSomeWork call). If stopModal (page 124) was invoked as the result of event processing,
runModalSession (page 120) returns RunStoppedResponse. If stopModalWithCode (page 124) was
invoked, this method returns the value passed to stopModalWithCode. If abortModal (page 106) was
invoked, this method returns RunAbortedResponse.

The window is placed on the screen and made key as a result of the runModalSession message. Do not
send a separate makeKeyAndOrderFront (page 1841) message.

See Also
endModalSession (page 111)
run (page 119)

runPageLayout
Displays the receiver’s page layout panel, an instance of NSPageLayout.

public void runPageLayout(Object sender)

Discussion
If the NSPageLayout instance does not exist, this method creates one. This method is typically invoked when
the user selects Page Layout from the application’s menu.

120 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

sendActionToTargetFromSender
Sends the message anAction to aTarget.

public boolean sendActionToTargetFromSender(NSSelector anAction, Object aTarget,
Object sender)

Discussion
If anAction is NULL, false is returned. If aTarget is null, NSApplication.sharedApplication()
looks for an object that can respond to the message—that is, an object that implements a method matching
anAction. It begins with the first responder of the key window. If the first responder can’t respond, it tries
the first responder’s next responder and continues following next responder links up the responder chain.
If none of the objects in the key window’s responder chain can handle the message,
NSApplication.sharedApplication() attempts to send the message to the key window’s delegate.

If the delegate doesn’t respond and the main window is different from the key window,
NSApplication.sharedApplication() begins again with the first responder in the main window. If
objects in the main window can’t respond, NSApplication.sharedApplication() attempts to send the
message to the main window’s delegate. If still no object has responded,
NSApplication.sharedApplication() tries to handle the message itself. If
NSApplication.sharedApplication() can’t respond, it attempts to send the message to its own delegate.

Returns true if the action is successfully sent, otherwise returns false.

See Also
targetForAction (page 125)
tryToPerform (page 126)
makeWindowsPerform (page 114)

sendEvent
Dispatches anEvent to other objects.

public void sendEvent(NSEvent anEvent)

Discussion
You rarely invoke sendEvent directly, although you might want to override this method to perform some
action on every event. sendEventmessages are sent from the main event loop (the run (page 119) method).
sendEvent is the method that dispatches events to the appropriate
responders—NSApplication.sharedApplication()handles application events, the NSWindow indicated
in the event record handles window-related events, and mouse and key events are forwarded to the
appropriate NSWindow for further dispatching.

See Also
currentEvent (page 110)
postEvent (page 117)

servicesMenu
Returns the Services menu, or null if no Services menu has been created.

public NSMenu servicesMenu()

Instance Methods 121
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
setServicesMenu (page 123)

servicesProvider
Returns the object that provides the services the receiver advertises in the Services menu of other applications.

public Object servicesProvider()

See Also
setServicesProvider (page 123)

setApplicationIconImage
Sets the receiver’s icon to anImage. This method updates the dock application tile. anImage will be scaled
as necessary to fit the tile.

public void setApplicationIconImage(NSImage anImage)

Discussion
The following code sample shows how to get the application’s icon image and then restore the dock’s image:

myImage = NSImage.imageNamed("NSApplicationIcon");
NSApplication.sharedApplication().setApplicationIconImage(myImage);

See Also
applicationIconImage (page 107)

setDelegate
Makes anObject the receiver’s delegate.

public void setDelegate(Object anObject)

Discussion
The messages a delegate can expect to receive are listed at the end of this specification. The delegate doesn’t
need to implement all the methods.

See Also
delegate (page 110)

setMainMenu
Makes aMenu the receiver’s main menu.

public void setMainMenu(NSMenu aMenu)

See Also
mainMenu (page 113)

122 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

setServicesMenu
Makes aMenu the receiver’s Services menu.

public void setServicesMenu(NSMenu aMenu)

See Also
servicesMenu (page 121)

setServicesProvider
Registers the object aProvider as the service provider.

public void setServicesProvider(Object aProvider)

Discussion
The service provider is an object that performs all services the application provides to other applications.
When another application requests a service from the receiver, it sends the service request to aProvider.
Service requests can arrive immediately after the service provider is set, so invoke this method only when
your application is ready to receive requests.

See Also
servicesProvider (page 122)

setWindowsMenu
Makes aMenu the receiver’s Window menu.

public void setWindowsMenu(NSMenu aMenu)

See Also
windowsMenu (page 128)

setWindowsNeedUpdate
Sets whether the receiver’s windows need updating when the receiver has finished processing the current
event, depending on the Boolean value passed in place of flag.

public void setWindowsNeedUpdate(boolean flag)

Discussion
This method is especially useful for making sure menus are updated to reflect changes not initiated by user
actions, such as messages received from remote objects.

See Also
updateWindows (page 127)

showHelp
If your project is properly registered, and the necessary keys have been set in the property list, this method
launches Help Viewer and displays the first page of your application’s help book.

Instance Methods 123
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

public void showHelp(Object sender)

Discussion
For information on how to set up your project to take advantage of having Help Viewer display your help
book, see “Specifying the Comprehensive Help File”.

See Also
activateContextHelpMode (page 106)

stop
Stops the main event loop.

public void stop(Object sender)

Discussion
This method will break the flow of control out of the run (page 119) method, thereby returning to the main()
function. A subsequent run message will restart the loop.

If this method is invoked during a modal event loop, it will break that loop but not the main event loop.

See Also
runModalForWindow (page 119)
runModalSession (page 120)
terminate (page 125)

stopModal
Stops a modal event loop.

public void stopModal()

Discussion
This method should always be paired with a previous invocation of runModalForWindow (page 119) or
beginModalSessionForWindow (page 108). When runModalForWindow (page 119) is stopped with this
method, it returns RunStoppedResponse. This method stops the loop only if it’s executed by code responding
to an event. If you need to stop a runModalForWindow (page 119) loop outside of one of its event callbacks
(for example, a method repeatedly invoked by an NSTimer object or a method running in a different thread),
use the abortModal (page 106) method.

See Also
runModalSession (page 120)
stopModalWithCode (page 124)

stopModalWithCode
Like stopModal (page 124), except the argument returnCode allows you to specify the value
runModalForWindow (page 119) will return.

public void stopModalWithCode(int returnCode)

124 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
abortModal (page 106)

targetForAction
Returns the object that receives the action message aSelector.

public Object targetForAction(NSSelector aSelector)

Discussion
If aSelector is NULL, null is returned.

See Also
sendActionToTargetFromSender (page 121)
tryToPerform (page 126)
targetForActionToFrom (page 125)

targetForActionToFrom
Finds an object that can receive the message specified by the selector anAction.

public Object targetForActionToFrom(NSSelector anAction, Object aTarget, Object
sender)

Discussion
If anAction is NULL, null is returned. If aTarget is null, NSApplication.sharedApplication() looks
for an object that can respond to the message—that is, an object that implements a method matching
anAction. If aTarget is not null, aTarget is returned. The search begins with the first responder of the
key window. If the first responder does not handle the message, it tries the first responder’s next responder
and continues following next responder links up the responder chain. If none of the objects in the key
window’s responder chain can handle the message, NSApplication.sharedApplication() asks the key
window’s delegate whether it can handle the message.

If the delegate cannot handle the message and the main window is different from the key window,
NSApplication.sharedApplication() begins searching again with the first responder in the main
window. If objects in the main window cannot handle the message,NSApplication.sharedApplication()
tries the main window’s delegate. If it cannot handle the message, NSApplication.sharedApplication()
asks itself. If NSApplication.sharedApplication() doesn’t handle the message, it asks the application
delegate. If there is no object capable of handling the message, null is returned.

See Also
sendActionToTargetFromSender (page 121)
tryToPerform (page 126)
targetForAction (page 125)

terminate
Terminates the receiver.

public void terminate(Object sender)

Instance Methods 125
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Discussion
This method is typically invoked when the user chooses Quit or Exit from the application’s menu. Each use
of terminate invokes applicationShouldTerminate (page 136) to notify the delegate that the application
will terminate. If applicationShouldTerminate (page 136) returns false, control is returned to the main
event loop, and the application isn’t terminated. Otherwise, the document controller of the application (if
one exists) is asked to check its documents and, if there are unsaved changes, ask the user to save those
changes. Then, this method posts an ApplicationWillTerminateNotification (page 141) to the default
notification center. Don’t put final cleanup code in your application’s main() function—it will never be
executed. If cleanup is necessary, have the delegate respond to applicationWillTerminate (page 139)
and perform cleanup in that method.

See Also
run (page 119)
stop (page 124)

tryToPerform
Dispatches action messages.

public boolean tryToPerform(NSSelector aSelector, Object anObject)

Discussion
If aSelector is NULL, false is returned. The receiver tries to perform the method aSelector using its
inherited NSResponder method tryToPerform (page 1199). If the receiver doesn’t perform aSelector, the
delegate is given the opportunity to perform it. If either the receiver or its delegate accepts aSelector, this
method returns true. Otherwise, it returns false.

unhide
Restores hidden windows to the screen and makes the receiver active.

public void unhide(Object sender)

Discussion
Invokes unhideWithoutActivation (page 127).

See Also
activateIgnoringOtherApps (page 106)
hide (page 112)

unhideAllApplications
Unhides all applications, including the receiver.

public void unhideAllApplications(Object sender)

Discussion
This action causes each application to order its windows to the front, which could obscure the currently
active window in the active application.

126 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

unhideWithoutActivation
Restores hidden windows without activating their owner (the receiver).

public void unhideWithoutActivation()

Discussion
When this method begins, it posts an ApplicationWillUnhideNotification (page 141) to the default
notification center. If it completes successfully, it posts an ApplicationDidUnhideNotification (page
140).

See Also
activateIgnoringOtherApps (page 106)
hide (page 112)
applicationDidUnhide (page 132)
applicationWillUnhide (page 139)

updateWindows
Sends an update (page 1871) message to each onscreen NSWindow.

public void updateWindows()

Discussion
This method is invoked automatically in the main event loop after each event when running in
NSRunLoop.DefaultRunLoopMode or NSApplication.ModalRunLoopMode. This method is not invoked
automatically when running in NSApplication.EventTrackingRunLoopMode. If the NSWindow has
automatic updating turned on, its update (page 1871) method will redraw all the NSWindow’s NSViews that
need redrawing. If automatic updating is turned off, the update (page 1871) message does nothing. (You turn
automatic updating on and off by sending setAutodisplay (page 1855) to an NSWindow.)

When this method begins, it posts an ApplicationWillUpdateNotification (page 141) to the default
notification center. When it successfully completes, it posts an ApplicationDidUpdateNotification (page
140).

See Also
setWindowsNeedUpdate (page 123)
applicationDidUpdate (page 132)
applicationWillUpdate (page 139)

updateWindowsItem
Updates the Window menu item for aWindow to reflect the edited status of aWindow.

public void updateWindowsItem(NSWindow aWindow)

Discussion
You rarely need to invoke this method because it is invoked automatically when the edit status of an NSWindow
is set.

See Also
changeWindowsItem (page 109)

Instance Methods 127
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

setDocumentEdited (page 1859) (NSWindow)

validRequestorForTypes
Indicates whether the receiver can send and receive the specified pasteboard types.

public Object validRequestorForTypes(String sendType, String returnType)

Discussion
This message is sent to all responders in a responder chain. NSApplication.sharedApplication() is
typically the last item in the responder chain, so it usually receives this message only if none of the current
responders can send sendType data and accept back returnType data.

The receiver passes this message on to its delegate if the delegate can respond (and isn’t an NSResponder
with its own next responder). If the delegate can’t respond or returns null, this method returns null. If the
delegate can find an object that can send sendType data and accept back returnType data, it returns that
object.

See Also
registerServicesMenuTypes (page 117)
validRequestorForTypes (page 1200) (NSResponder)

windows
Returns an NSArray of the receiver’s NSWindows, including offscreen windows.

public NSArray windows()

windowsMenu
Returns the Window menu or null if no Window menu has been created.

public NSMenu windowsMenu()

See Also
setWindowsMenu (page 123)

windowWithWindowNumber
Returns the NSWindow object corresponding to windowNum.

public NSWindow windowWithWindowNumber(int windowNum)

Constants

These are possible return values for runModalForWindow (page 119) and runModalSession (page 120):

128 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

DescriptionConstant

Modal session was broken with stopModal (page 124).RunStoppedResponse

Modal session was broken with abortModal (page 106).RunAbortedResponse

Modal session is continuing (returned by runModalSession (page 120) only).RunContinuesResponse

The following constants define whether an application should terminate:

DescriptionConstant

It is OK to proceed with termination.TerminateNow

The application should not be terminated.TerminateCancel

It may be OK to proceed with termination later. The application must call
replyToApplicationShouldTerminate (page 118) with true or false once the
answer is known. This return value is for delegates that need to provide document
modal alerts (sheets) in order to decide whether to quit.

TerminateLater

The following constants indicate whether or not a copy or print operation was successful, was cancelled, or
failed. These constants are used by the replyToOpenOrPrint (page 118) method:

DescriptionConstant

Indicates the operation succeeded.DelegateReplySuccess

Indicates the user cancelled the operation.DelegateReplyCancel

Indicates an error occurred processing the operation.DelegateReplyFailure

The following NSApplicationPrintReply constants are returned by applicationPrintFiles (page
135):

DescriptionConstant

Printing was cancelled.
Available in Mac OS X v10.4 and later.

PrintingCancelled

Printing was successful.
Available in Mac OS X v10.4 and later.

PrintingSuccess

Printing failed.
Available in Mac OS X v10.4 and later.

PrintingFailure

The result of printing cannot be returned immediately, for example, if printing
will cause the presentation of a sheet. If your method returns
NSPrintingReplyLater it must always invoke replyToOpenOrPrint (page
118) when the entire print operation has been completed, successfully or not.
Available in Mac OS X v10.4 and later.

PrintingReplyLater

Constants 129
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

The following loop mode constants are defined by NSApplication:

DescriptionConstant

A run loop should be set to this mode when tracking events modally,
such as a mouse-dragging loop.

EventTrackingRunLoopMode

A run loop should be set to this mode when waiting for input from a
modal panel, such as SavePanel or OpenPanel.

ModalPanelRunLoopMode

The following constants specify the level of severity of a user attention request and are used by
cancelUserAttentionRequest (page 109) and requestUserAttention (page 118):

DescriptionConstant

The user attention request is a critical request. The dock icon will bounce
until either the application becomes active or the request is canceled.

UserAttentionRequest-
Critical

The user attention request is an informational request. The dock icon
will bounce for one second (usually a single bounce). The request, though,
remains active until either the application becomes active or the request
is canceled.

UserAttentionRequest-
Informational

The following constant can be used to determine if you are using a version of the Application Kit framework
newer than the version delivered in Mac OS X v10.0:

DescriptionConstant

The Application Kit framework included in Mac OS X v10.0AppKitVersionNumber10_0

The Application Kit framework included in Mac OS X v10.1AppKitVersionNumber10_1

The Application Kit framework included in Mac OS X v10.2AppKitVersionNumber10_2

The Application Kit framework included in Mac OS X v10.2.3AppKitVersionNumber10_2_3

Delegate Methods

applicationDidBecomeActive
public abstract void applicationDidBecomeActive(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the application becomes active. aNotification
is always an ApplicationDidBecomeActiveNotification (page 140). You can retrieve the NSApplication
object by sending object to aNotification.

See Also
applicationDidFinishLaunching (page 131)

130 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

applicationDidResignActive (page 131)
applicationWillBecomeActive (page 137)

applicationDidChangeScreenParameters
public abstract void applicationDidChangeScreenParameters(NSNotification

aNotification)

Discussion
Sent by the default notification center when the configuration of the displays attached to the computer is
changed (either programmatically or when the user changes settings in the Displays control panel).
aNotification is always an ApplicationDidChangeScreenParametersNotification (page 140). You
can retrieve the NSApplication object by sending object to aNotification.

applicationDidFinishLaunching
public abstract void applicationDidFinishLaunching(NSNotification aNotification)

Discussion
Sent by the default notification center after the application has been launched and initialized but before it
has received its first event. aNotification is always an
ApplicationDidFinishLaunchingNotification (page 140). You can retrieve the NSApplication object
in question by sending object to aNotification. The delegate can implement this method to perform
further initialization. If the user started up the application by double-clicking a file, the delegate receives the
applicationOpenFile (page 133) message before receiving applicationDidFinishLaunching.
(applicationWillFinishLaunching (page 137) is sent before applicationOpenFile.)

See Also
finishLaunching (page 112)
applicationDidBecomeActive (page 130)

applicationDidHide
public abstract void applicationDidHide(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the application is hidden. aNotification is always
an ApplicationDidHideNotification (page 140). You can retrieve the NSApplication object in question
by sending object to aNotification.

See Also
applicationWillHide (page 138)
applicationDidUnhide (page 132)
hide (page 112)

applicationDidResignActive
public abstract void applicationDidResignActive(NSNotification aNotification)

Delegate Methods 131
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Discussion
Sent by the default notification center immediately after the application is deactivated. aNotification is
always an ApplicationDidResignActiveNotification (page 140). You can retrieve the NSApplication
object in question by sending object to aNotification.

See Also
applicationDidBecomeActive (page 130)
applicationWillResignActive (page 138)

applicationDidUnhide
public abstract void applicationDidUnhide(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the application is made visible. aNotification is
always an ApplicationDidUnhideNotification (page 140). You can retrieve the NSApplication object
in question by sending object to aNotification.

See Also
applicationDidHide (page 131)
applicationWillUnhide (page 139)
unhide (page 126)

applicationDidUpdate
public abstract void applicationDidUpdate(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the NSApplication object updates its NSWindows.
aNotification is always an ApplicationDidUpdateNotification (page 140). You can retrieve the
NSApplication object in question by sending object to aNotification.

See Also
applicationWillUpdate (page 139)
updateWindows (page 127)

applicationDockMenu
Allows the delegate to supply a dock menu for the application dynamically.

public abstract NSMenu applicationDockMenu(NSApplication sender)

Discussion
You can also connect a menu in Interface Builder to the dockMenu outlet. A third way for your application
to specify a dock menu is to provide an NSMenu in a nib.

If this method returns a menu, this menu takes precedence over the dockMenu in the nib.

132 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

The target and action for each menu item are passed to the dock. On selection of the menu item the dock
messages your application, which should invoke
(NSApplication.sharedApplication().sendActionToTargetFromSender (selector, target,
null).

To specify an NSMenu in a nib, you add the nib name to the info.plist, using the key AppleDockMenu.
The nib name is specified without an extension. You then create a connection from the file’s Owner object
(which by default is NSApplication) to the menu. Connect the menu to the dockMenu outlet of NSApplication.
The menu is in its own nib file so it can be loaded lazily when the dockMenu is requested, rather than at
launch time.

applicationOpenFile
public abstract boolean applicationOpenFile(NSApplication theApplication, String

filename)

Discussion
Sent directly by theApplication to the delegate. The method should open the file filename, returning
true if the file is successfully opened, and false otherwise. If the user started up the application by
double-clicking a file, the delegate receives the applicationOpenFile message before receiving
applicationDidFinishLaunching (page 131). (applicationWillFinishLaunching (page 137) is sent
before applicationOpenFile.)

See Also
applicationOpenFileWithoutUI (page 133)
applicationOpenTempFile (page 134)
applicationOpenUntitledFile (page 134)

applicationOpenFiles
Identical to applicationOpenFile (page 133) except that the receiver opens multiple files corresponding
to the file names in the filenames array.

public abstract void applicationOpenFiles(NSApplication sender, NSArray filenames)

Discussion
Delegates should invoke the replyToOpenOrPrint (page 118) method upon success or failure, or when the
user cancels the operation.

Availability
Available in Mac OS X v10.3 and later.

applicationOpenFileWithoutUI
public abstract boolean applicationOpenFileWithoutUI(Object sender, String filename)

Delegate Methods 133
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Discussion
Sent directly by sender to the delegate to request that the file filename be opened as a linked file. The
method should open the file without bringing up its application’s user interface—that is, work with the file
is under programmatic control of sender, rather than under keyboard control of the user. Returns true if
the file was successfully opened, false otherwise.

See Also
applicationOpenFile (page 133)
applicationOpenTempFile (page 134)
applicationOpenUntitledFile (page 134)
applicationPrintFile (page 134)

applicationOpenTempFile
public abstract boolean applicationOpenTempFile(NSApplication theApplication, String

filename)

Discussion
Sent directly by theApplication to the delegate. The method should attempt to open the file filename,
returning true if the file is successfully opened, and false otherwise.

By design, a file opened through this method is assumed to be temporary—it’s the application’s responsibility
to remove the file at the appropriate time.

See Also
applicationOpenFile (page 133)
applicationOpenFileWithoutUI (page 133)
applicationOpenUntitledFile (page 134)

applicationOpenUntitledFile
public abstract boolean applicationOpenUntitledFile(NSApplication theApplication)

Discussion
Sent directly by theApplication to the delegate to request that a new, untitled file be opened. Returns
true if the file was successfully opened, false otherwise.

See Also
applicationOpenFile (page 133)
applicationOpenFileWithoutUI (page 133)
applicationOpenTempFile (page 134)

applicationPrintFile
public abstract boolean applicationPrintFile(NSApplication theApplication, String

filename)

134 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Discussion
Sent when the user starts up the application on the command line with the -NSPrint option. Sent directly
by theApplication to the delegate.

The method should attempt to print the file filename, returning true if the file was successfully printed,
and false otherwise. The application terminates (using the terminate (page 125) method) after this method
returns.

If at all possible, this method should print the file without displaying the user interface. For example, if you
pass the -NSPrint option to the TextEdit application, TextEdit assumes you want to print the entire contents
of the specified file. However, if the application opens more complex documents, you may want to display
a panel that lets the user choose exactly what to print.

See Also
applicationOpenFileWithoutUI (page 133)

applicationPrintFiles
Identical to applicationPrintFile (page 134) except that the receiver prints multiple files corresponding
to the file names in the filenames array.

public abstract void applicationPrintFiles(NSApplication sender, NSArray filenames)

Discussion
Delegates should invoke the replyToOpenOrPrint (page 118) method upon success or failure, or when the
user cancels the operation.

This method has been deprecated. Use applicationPrintFiles (page 135) instead.

Availability
Deprecated in Mac OS X v10.4.

applicationPrintFiles
Prints a group of files.

public abstract int applicationPrintFiles(NSApplication application, NSArray
fileNames, NSDictionary printSettings, boolean showPrintPanels)

Discussion
Sent to the delegate by application. The method should print the files named in the fileNames array
using printSettings, a dictionary containing NSPrintInfo-compatible print job attributes. The
showPrintPanels argument is a flag indicating whether or not a print panel should be presented for each
file being printed. If it is false, no print panels should be presented (but print progress indicators should still
be presented).

The value returned should be one of the NSApplicationPrintReply values defined in “Constants” (page
128).

Return NSPrintingReplyLater if the result of printing cannot be returned immediately, for example, if
printing will cause the presentation of a sheet. If your method returns NSPrintingReplyLater it must
always invoke the NSApplication method replyToOpenOrPrint:] when the entire print operation has been
completed, successfully or not.

Delegate Methods 135
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

This delegate method replaces applicationPrintFiles (page 135), which is now deprecated. If your
application delegate only implements the deprecated method, it is still invoked, and NSApplication uses
private functionality to arrange for the print settings to take effect.

Availability
Available in Mac OS X v10.4 and later.

applicationShouldHandleReopen
Sent by theApplication to the delegate prior to default behavior to reopen (rapp) AppleEvents.

public abstract boolean applicationShouldHandleReopen(NSApplication theApplication,
boolean flag)

Discussion
These events are sent whenever the Finder reactivates an already running application because someone
double-clicked it again or used the dock to activate it. By default the Application Kit will handle this event
by checking whether there are any visible NSWindows (not NSPanels), and, if there are none, it goes through
the standard untitled document creation (the same as it does if theApplication is launched without any
document to open). For most document-based applications, an untitled document will be created. The
application delegate will also get a chance to respond to the normal untitled document delegations.If you
implement this method in your application delegate, it will be called before any of the default behavior
happens. If you return true, then NSApplication will go on to do its normal thing. If you return false, then
NSApplication will do nothing. So, you can either implement this method, do nothing, and return false if
you do not want anything to happen at all (not recommended), or you can implement this method, handle
the event yourself in some custom way, and return false.

flag indicates whether NSApplication has found any visible NSWindows in your application. flag can be
used as an indication of whether NSApplication would do anything if you return true.

Note that what happens to minimized windows is not determined yet, but the intent is that flag being
false indicates whether the Application Kit will create a new window to satisfy the reopen event.

applicationShouldOpenUntitledFile
public abstract boolean applicationShouldOpenUntitledFile(NSApplication sender)

Discussion
Invoked immediately before opening an untitled file. Return false to prevent the application from opening
an untitled file; return true otherwise. Note that applicationOpenUntitledFile (page 134) is invoked
if this method returns true.

applicationShouldTerminate
public abstract boolean applicationShouldTerminate(NSApplication sender)

Discussion
Invoked from within the terminate (page 125) method immediately before the application terminates.
sender is the NSApplication to be terminated. If this method returns false, the application is not terminated,
and control returns to the main event loop. Return true to allow the application to terminate.

136 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

See Also
terminate (page 125)
applicationShouldTerminateAfterLastWindowClosed (page 137)
applicationWillTerminate (page 139)

applicationShouldTerminateAfterLastWindowClosed
Invoked when the user closes the last window the application has open.

public abstract boolean applicationShouldTerminateAfterLastWindowClosed(NSApplication
theApplication)

Discussion
This method is sent when the last window is closed regardless of whether there are still open panels (a panel
in this case is defined as being an instance of NSPanel or one of its subclasses).

If this method returns false, the application is not terminated, and control returns to the main event loop.
Return true to allow the application to terminate. Note that applicationShouldTerminate (page 136)
is invoked if this method returns true.

See Also
terminate (page 125)

applicationWillBecomeActive
public abstract void applicationWillBecomeActive(NSNotification aNotification)

Discussion
Sent by the default notification center immediately before the application becomes active. aNotification
is always an ApplicationWillBecomeActiveNotification (page 140). You can retrieve the NSApplication
object in question by sending object to aNotification.

See Also
applicationDidBecomeActive (page 130)
applicationWillFinishLaunching (page 137)
applicationWillResignActive (page 138)

applicationWillFinishLaunching
public abstract void applicationWillFinishLaunching(NSNotification aNotification)

Discussion
Sent by the default notification center immediately before the NSApplication object is initialized.
aNotification is always an ApplicationWillFinishLaunchingNotification (page 141). You can
retrieve the NSApplication object in question by sending object to aNotification.

See Also
applicationDidFinishLaunching (page 131)
applicationWillBecomeActive (page 137)
finishLaunching (page 112)

Delegate Methods 137
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

applicationWillHide
public abstract void applicationWillHide(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the application is hidden. aNotification is always
an ApplicationWillHideNotification (page 141). You can retrieve the NSApplication object in question
by sending object to aNotification.

See Also
applicationDidHide (page 131)
hide (page 112)

applicationWillPresentError
Sent to the delegate before application presents an error message, based on the information in error,
to the user.

public abstract NSError applicationWillPresentError(NSApplication application,
NSError error)

Discussion
The delegate can return a new NSError object or the same one passed in error.

You can implement this delegate method to customize the presentation of any error presented by your
application, as long as no code in your application overrides either of the NSResponder methods
presentError:modalForWindow:delegate:didPresentSelector:contextInfo:orpresentError:
in a way that prevents errors from being passed down the responder chain to the application object.

Your implementation of this delegate method can examine error and, if its localized description or recovery
information is unhelpfully generic, return an error object with specific localized text that is more suitable for
presentation in alert sheets and dialogs. If you do this, always use the domain and error code of the NSError
object to distinguish between errors whose presentation you want to customize and those you do not. Don’t
make decisions based on the localized description, recovery suggestion, or recovery options because parsing
localized text is problematic. If you decide not to customize the error presentation, just return the passed-in
error object.

Availability
Available in Mac OS X v10.4 and later.

applicationWillResignActive
public abstract void applicationWillResignActive(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the application is deactivated. aNotification is
always an ApplicationWillResignActiveNotification (page 141). You can retrieve the NSApplication
object in question by sending object to aNotification.

See Also
applicationWillBecomeActive (page 137)
applicationDidResignActive (page 131)

138 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

applicationWillTerminate
public abstract void applicationWillTerminate(NSNotification aNotification)

Discussion
Sent by the default notification center immediately before the application terminates. aNotification is
always an ApplicationWillTerminateNotification (page 141). You can retrieve the NSApplication
object in question by sending object to aNotification. Put any necessary cleanup code in this method.

See Also
applicationShouldTerminate (page 136)
terminate (page 125)

applicationWillUnhide
public abstract void applicationWillUnhide(NSNotification aNotification)

Discussion
Sent by the default notification center immediately after the application is unhidden. aNotification is
always an ApplicationWillUnhideNotification (page 141). You can retrieve the NSApplication object
in question by sending object to aNotification.

See Also
unhide (page 126)
applicationDidUnhide (page 132)
applicationWillHide (page 138)

applicationWillUpdate
public abstract void applicationWillUpdate(NSNotification aNotification)

Discussion
Sent by the default notification center immediately before the NSApplication object updates its NSWindows.
aNotification is always an ApplicationWillUpdateNotification (page 141). You can retrieve the
NSApplication object in question by sending object to aNotification.

See Also
applicationDidUpdate (page 132)
updateWindows (page 127)

Notifications

These notifications apply to NSApplication. See “Notifications” (page 1913) in NSWorkspace for additional,
similar notifications.

Notifications 139
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

ApplicationDidBecomeActiveNotification

Posted immediately after the application becomes active. The notification object is
NSApplication.sharedApplication(). This notification does not contain a userInfo dictionary.

ApplicationDidChangeScreenParametersNotification

Posted when the configuration of the displays attached to the computer is changed (either programmatically
or when the user changes settings in the Displays control panel). The notification object is
NSApplication.sharedApplication(). This notification does not contain a userInfo dictionary.

ApplicationDidFinishLaunchingNotification

Posted at the end of the finishLaunching (page 112) method to indicate that the application has completed
launching and is ready to run. The notification object is NSApplication.sharedApplication(). This
notification does not contain a userInfo dictionary.

ApplicationDidHideNotification

Posted at the end of the hide (page 112) method to indicate that the application is now hidden. The notification
object is NSApplication.sharedApplication(). This notification does not contain a userInfodictionary.

ApplicationDidResignActiveNotification

Posted immediately after the application gives up its active status to another application. The notification
object is NSApplication.sharedApplication(). This notification does not contain a userInfodictionary.

ApplicationDidUnhideNotification

Posted at the end of the unhideWithoutActivation (page 127) method to indicate that the application
is now visible. The notification object is NSApplication.sharedApplication(). This notification does
not contain a userInfo dictionary.

ApplicationDidUpdateNotification

Posted at the end of the updateWindows (page 127) method to indicate that the application has finished
updating its windows. The notification object is NSApplication.sharedApplication(). This notification
does not contain a userInfo dictionary.

ApplicationWillBecomeActiveNotification

Posted immediately after the application becomes active. The notification object is
NSApplication.sharedApplication(). This notification does not contain a userInfo dictionary.

140 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

ApplicationWillFinishLaunchingNotification

Posted at the start of the finishLaunching (page 112) method to indicate that the application has completed
its initialization process and is about to finish launching. The notification object is
NSApplication.sharedApplication(). This notification does not contain a userInfo dictionary.

ApplicationWillHideNotification

Posted at the start of the hide (page 112) method to indicate that the application is about to be hidden. The
notification object isNSApplication.sharedApplication(). This notification does not contain auserInfo
dictionary.

ApplicationWillResignActiveNotification

Posted immediately before the application gives up its active status to another application. The notification
object is NSApplication.sharedApplication(). This notification does not contain a userInfodictionary.

ApplicationWillTerminateNotification

Posted by the terminate (page 125) method to indicate that the application will terminate. Posted only if
the delegate method applicationShouldTerminate (page 136) returns true. The notification object is
NSApplication.sharedApplication(). This notification does not contain a userInfo dictionary.

ApplicationWillUnhideNotification

Posted at the start of the unhideWithoutActivation (page 127) method to indicate that the application
is about to be visible. The notification object is NSApplication.sharedApplication(). This notification
does not contain a userInfo dictionary.

ApplicationWillUpdateNotification

Posted at the start of the updateWindows (page 127) method to indicate that the application is about to
update its windows. The notification object is NSApplication.sharedApplication(). This notification
does not contain a userInfo dictionary.

Notifications 141
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

142 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

NSApplication

Inherits from NSObjectController : NSController : NSObject

Implements NSCoding (NSController)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guides Cocoa Bindings Programming Topics
Predicate Programming Guide
Core Data Programming Guide

Overview

The NSArrayController is a bindings compatible class that manages an array of objects. It provides selection
management and sorting capabilities.

Tasks

Constructors

NSArrayController (page 146)
Creates and returns an empty NSArrayController.

Managing Sort Descriptors

setSortDescriptors (page 159)
Sets the sort descriptors used by the receiver to arrange objects to sortDescriptors.

sortDescriptors (page 159)
Returns an array of sort descriptors used by the receiver to arrange objects.

Arranging Objects

arrangeObjects (page 149)
Returns an array containing the content of the objects array arranged according to the receiver’s
sortDescriptors (page 159).

Overview 143
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

arrangedObjects (page 148)
Returns an array containing the receiver’s content objects arranged using arrangeObjects (page
149)

Setting Selection Attributes

setAvoidsEmptySelection (page 156)
Sets whether the receiver will attempt to avoid an empty selection.

avoidsEmptySelection (page 149)
Returns true if the receiver requires that the content array attempt to maintain a selection at all
times.

setClearsFilterPredicateOnInsertion (page 157)
Sets whether the receiver automatically clears an existing filter predicate when a new object is inserted
or added to the content array.

preservesSelection (page 152)
Returns whether the receiver will attempt to preserve the current selection then when the content
changes.

setPreservesSelection (page 157)
Sets whether the receiver will attempt to preserve selection when the content changes.

alwaysUsesMultipleValuesMarker (page 148)
Returns whether the receiver always returns the multiple values marker when multiple objects are
selected, even if the selected items have the same value.

setAlwaysUsesMultipleValuesMarker (page 156)
Sets whether the receiver always returns the multiple values marker when multiple objects are selected,
even if they have the same value.

Getting the Current Selection

setSelectionIndex (page 158)
Sets the receiver’s current selection to index, returning true if the selection was changed.

selectionIndex (page 154)
Returns the index of the first object in the receiver’s selection, NSArray.NotFound if there is no
selection.

Managing Selections

setSelectsInsertedObjects (page 159)
Sets whether the receiver will automatically select objects as they are inserted.

selectsInsertedObjects (page 156)
Returns whether the receiver selects inserted objects automatically.

setSelectionIndexes (page 158)
Sets the receiver’s current selection to the objects at indexes, returning true if the selection was
changed.

144 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

selectionIndexes (page 155)
Returns an index set containing the indexes of the receiver’s currently selected objects in the content
array.

addSelectionIndexes (page 148)
Adds the objects at the specified indexes in the receiver’s content array to the current selection,
returning true if the selection was changed.

removeSelectionIndexes (page 154)
Removes the object as the specified indexes from the receiver’s current selection, returning true
if the selection was changed.

setSelectedObjects (page 158)
Sets objects as the receiver’s current selection, returning true if the selection was changed.

selectedObjects (page 154)
Returns an array containing the receiver’s selected objects.

addSelectedObjects (page 147)
Adds objects from the receiver’s content array to the current selection, returning true if the selection
was changed.

removeSelectedObjects (page 154)
Removes objects from the receiver’s current selection, returning true if the selection was changed.

selectNext (page 155)
Selects the next object, relative to the current selection, in the receiver’s arranged content.

canSelectNext (page 150)
Returns true if the next object, relative to the current selection, in the receiver’s content array can
be selected.

selectPrevious (page 155)
Selects the previous object, relative to the current selection, in the receiver’s arranged content.

canSelectPrevious (page 150)
Returns true if the previous object, relative to the current selection, in the receiver’s content array
can be selected.

Inserting

canInsert (page 149)
Returns true if an object can be inserted into the receiver’s content array.

insert (page 151)
Creates a new object of the class specified by objectClass (page 1013) and inserts it into the receiver’s
content array.

Adding and Removing Objects

addObject (page 147)
Adds object to the receiver’s content array and the arranged objects array.

addObjects (page 147)
Adds objects to the receiver’s content array.

Tasks 145
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

insertObject (page 151)
Inserts object into the receiver’s arranged objects array at the location specified by index, and adds
it to the receiver’s content array.

insertObjects (page 152)
Inserts objects into the receiver’s arranged objects array at the locations specified in indexes, and
adds it to the receiver’s content array.

remove (page 152)
Removes the receiver’s selected objects from the content array.

removeObject (page 153)
Removes object from the receiver’s content collection.

removeObjects (page 153)
Removes objects from the receiver’s content array.

Filtering Objects

clearsFilterPredicateOnInsertion (page 150)
Returns whether the receiver automatically clears an existing filter predicate when new items are
inserted or added to the content.

filterPredicate (page 151)
Returns the predicate used by the receiver to filter the array controller contents.

setFilterPredicate (page 157)
Sets the predicate used to filter the contents of the receiver to filterPredicate, replacing any
existing filter predicate.

Constructors

NSArrayController
Creates and returns an empty NSArrayController.

public NSArrayController()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSArrayController with the specified content.

public NSArrayController(Object content)

Availability
Available in Mac OS X v10.3 and later.

146 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Instance Methods

addObject
Adds object to the receiver’s content array and the arranged objects array.

public void addObject(Object object)

Availability
Available in Mac OS X v10.3 and later.

See Also
addObjects (page 147)
insertObject (page 151)
removeObject (page 153)

addObjects
Adds objects to the receiver’s content array.

public void addObjects(NSArray objects)

Discussion
If selectsInsertedObjects (page 156) returns true, which is the default, the added objects are selected
in the array controller.

It is important to note that inserting many objects with selectsInsertedObjects on can cause a significant
performance penalty. In this case it is more efficient to use the setContent (page 1016) method to set the
array, or to set selectsInsertedObjects to false before adding the objects with addObjects.

Availability
Available in Mac OS X v10.3 and later.

See Also
addObject (page 147)
insertObjects (page 152)
removeObjects (page 153)

addSelectedObjects
Adds objects from the receiver’s content array to the current selection, returning true if the selection was
changed.

public boolean addSelectedObjects(NSArray objects)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

Instance Methods 147
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Availability
Available in Mac OS X v10.3 and later.

See Also
removeSelectedObjects (page 154)
setSelectedObjects (page 158)

addSelectionIndexes
Adds the objects at the specified indexes in the receiver’s content array to the current selection, returning
true if the selection was changed.

public boolean addSelectionIndexes(NSIndexSet indexes)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
removeSelectionIndexes (page 154)

alwaysUsesMultipleValuesMarker
Returns whether the receiver always returns the multiple values marker when multiple objects are selected,
even if the selected items have the same value.

public boolean alwaysUsesMultipleValuesMarker()

Discussion
The default is false.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAlwaysUsesMultipleValuesMarker (page 156)

arrangedObjects
Returns an array containing the receiver’s content objects arranged using arrangeObjects (page 149)

public Object arrangedObjects()

Discussion
.

This property is observable using key-value observing.

148 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Availability
Available in Mac OS X v10.3 and later.

See Also
arrangeObjects (page 149)

arrangeObjects
Returns an array containing the content of the objects array arranged according to the receiver’s
sortDescriptors (page 159).

public NSArray arrangeObjects(NSArray objects)

Discussion
Subclasses should override this method to use a different sort mechanism, provide custom object arrangement,
or filter the objects.

Availability
Available in Mac OS X v10.3 and later.

See Also
arrangedObjects (page 148)

avoidsEmptySelection
Returns true if the receiver requires that the content array attempt to maintain a selection at all times.

public boolean avoidsEmptySelection()

Discussion
The default is true.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAvoidsEmptySelection (page 156)

canInsert
Returns true if an object can be inserted into the receiver’s content array.

public boolean canInsert()

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Instance Methods 149
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Availability
Available in Mac OS X v10.3 and later.

See Also
insert (page 151)

canSelectNext
Returns true if the next object, relative to the current selection, in the receiver’s content array can be selected.

public boolean canSelectNext()

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectNext (page 155)
canSelectPrevious (page 150)

canSelectPrevious
Returns true if the previous object, relative to the current selection, in the receiver’s content array can be
selected.

public boolean canSelectPrevious()

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
canSelectNext (page 150)
selectPrevious (page 155)

clearsFilterPredicateOnInsertion
Returns whether the receiver automatically clears an existing filter predicate when new items are inserted
or added to the content.

public boolean clearsFilterPredicateOnInsertion()

150 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Discussion
The default is true.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
setClearsFilterPredicateOnInsertion (page 157)

filterPredicate
Returns the predicate used by the receiver to filter the array controller contents.

public NSPredicate filterPredicate()

Discussion
Returns null if no filter predicate is set.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
setClearsFilterPredicateOnInsertion (page 157)

insert
Creates a new object of the class specified by objectClass (page 1013) and inserts it into the receiver’s
content array.

public void insert(Object sender)

Discussion
The sender is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
canInsert (page 149)

insertObject
Inserts object into the receiver’s arranged objects array at the location specified by index, and adds it to
the receiver’s content array.

public void insertObject(Object object, int index)

Instance Methods 151
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Discussion
Subclasses can override this method to provide customized arranged objects support.

Availability
Available in Mac OS X v10.3 and later.

See Also
insertObjects (page 152)
addObject (page 147)
removeObject (page 153)

insertObjects
Inserts objects into the receiver’s arranged objects array at the locations specified in indexes, and adds it
to the receiver’s content array.

public void insertObjects(NSArray objects, NSIndexSet indexes)

Availability
Available in Mac OS X v10.3 and later.

See Also
insertObject (page 151)
addObjects (page 147)
removeObjects (page 153)

preservesSelection
Returns whether the receiver will attempt to preserve the current selection then when the content changes.

public boolean preservesSelection()

Discussion
The default is true.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setClearsFilterPredicateOnInsertion (page 157)

remove
Removes the receiver’s selected objects from the content array.

public void remove(Object object)

Discussion
The sender is typically the object that invoked this method.

152 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Availability
Available in Mac OS X v10.3 and later.

See Also
removeObjects (page 153)
addObject (page 147)

removeObject
Removes object from the receiver’s content collection.

public void removeObject(Object object)

Discussion
If you are using Core Data, the exact semantics of this method differ depending on the settings for the array
controller. If the receiver’s content is fetched automatically, removed objects are marked for deletion by the
managed object context (and hence removal from the object graph). If, however, the receiver’s contentSet
is bound to a relationship, removeObject: by default only removes the object from the relationship, not from
the object graph. You can, though, set the “Deletes Object on Remove” option for the contentSet binding,
in which case objects are marked for deletion as well as being removed from the relationship.

Removes the object at the specified index in the receiver’s arranged objects from the receiver’s content
array.

public void removeObject(int index)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeObjects (page 153)
addObject (page 147)

removeObjects
Removes objects from the receiver’s content array.

public void removeObjects(NSArray objects)

Removes the objects at the specified indexes in the receiver’s arranged objects from the content array.

public void removeObjects(NSIndexSet indexes)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeObject (page 153)
addObjects (page 147)

Instance Methods 153
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

removeSelectedObjects
Removes objects from the receiver’s current selection, returning true if the selection was changed.

public boolean removeSelectedObjects(NSArray objects)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
addSelectedObjects (page 147)

removeSelectionIndexes
Removes the object as the specified indexes from the receiver’s current selection, returning true if the
selection was changed.

public boolean removeSelectionIndexes(NSIndexSet indexes)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
addSelectionIndexes (page 148)

selectedObjects
Returns an array containing the receiver’s selected objects.

public NSArray selectedObjects()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectedObjects (page 158)

selectionIndex
Returns the index of the first object in the receiver’s selection, NSArray.NotFound if there is no selection.

154 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

public int selectionIndex()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectionIndex (page 158)
selectionIndexes (page 155)

selectionIndexes
Returns an index set containing the indexes of the receiver’s currently selected objects in the content array.

public NSIndexSet selectionIndexes()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectionIndexes (page 158)
selectionIndex (page 154)

selectNext
Selects the next object, relative to the current selection, in the receiver’s arranged content.

public void selectNext(Object sender)

Discussion
The sender is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectPrevious (page 155)
canSelectNext (page 150)

selectPrevious
Selects the previous object, relative to the current selection, in the receiver’s arranged content.

public void selectPrevious(Object sender)

Instance Methods 155
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Discussion
The sender is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectNext (page 155)
canSelectPrevious (page 150)

selectsInsertedObjects
Returns whether the receiver selects inserted objects automatically.

public boolean selectsInsertedObjects()

Discussion
The default is true.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectsInsertedObjects (page 159)

setAlwaysUsesMultipleValuesMarker
Sets whether the receiver always returns the multiple values marker when multiple objects are selected, even
if they have the same value.

public void setAlwaysUsesMultipleValuesMarker(boolean flag)

Discussion
Setting flag to true can increase performance if your application doesn’t allow editing multiple values.
The default is false.

Availability
Available in Mac OS X v10.4 and later.

See Also
alwaysUsesMultipleValuesMarker (page 148)

setAvoidsEmptySelection
Sets whether the receiver will attempt to avoid an empty selection.

public void setAvoidsEmptySelection(boolean)

156 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Discussion
If flag is true then the receiver will maintain a selection unless there are no objects in the content array.
The default is true.

Availability
Available in Mac OS X v10.3 and later.

See Also
avoidsEmptySelection (page 149)

setClearsFilterPredicateOnInsertion
Sets whether the receiver automatically clears an existing filter predicate when a new object is inserted or
added to the content array.

public void setClearsFilterPredicateOnInsertion(boolean flag)

Discussion
The default is true.

Availability
Available in Mac OS X v10.4 and later.

See Also
clearsFilterPredicateOnInsertion (page 150)

setFilterPredicate
Sets the predicate used to filter the contents of the receiver to filterPredicate, replacing any existing
filter predicate.

public void setFilterPredicate(NSPredicate filterPredicate)

Discussion
If filterPredicate is null any existing filter predicate is removed.

Availability
Available in Mac OS X v10.4 and later.

See Also
filterPredicate (page 151)

setPreservesSelection
Sets whether the receiver will attempt to preserve selection when the content changes.

public void setPreservesSelection(boolean flag)

Discussion
If flag is true then the selection will be preserved, if possible. The default is true.

Instance Methods 157
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Availability
Available in Mac OS X v10.3 and later.

See Also
preservesSelection (page 152)

setSelectedObjects
Sets objects as the receiver’s current selection, returning true if the selection was changed.

public boolean setSelectedObjects(NSArray objects)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectedObjects (page 154)
addSelectedObjects (page 147)

setSelectionIndex
Sets the receiver’s current selection to index, returning true if the selection was changed.

public boolean setSelectionIndex(int index)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectionIndex (page 154)
setSelectionIndexes (page 158)

setSelectionIndexes
Sets the receiver’s current selection to the objects at indexes, returning true if the selection was changed.

public boolean setSelectionIndexes(NSIndexSet indexes)

Discussion
Attempting to change the selection may cause a commitEditing (page 470) message which fails, thus
denying the selection change.

158 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

To select all the receiver’s objects, indexes should be an NSIndexSet with indexes [0..count -1]. To deselect
all indexes, pass an empty NSIndexSet.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectionIndexes (page 155)
setSelectionIndex (page 158)

setSelectsInsertedObjects
Sets whether the receiver will automatically select objects as they are inserted.

public void setSelectsInsertedObjects(boolean flag)

Discussion
If flag is true then items will be selected upon insertion. The default is true.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectsInsertedObjects (page 156)

setSortDescriptors
Sets the sort descriptors used by the receiver to arrange objects to sortDescriptors.

public void setSortDescriptors(NSArray sortDescriptors)

Availability
Available in Mac OS X v10.3 and later.

See Also
sortDescriptors (page 159)

sortDescriptors
Returns an array of sort descriptors used by the receiver to arrange objects.

public NSArray sortDescriptors()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSortDescriptors (page 159)

Instance Methods 159
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

160 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

NSArrayController

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Basic Drawing

Overview

An NSBezierPath object allows you to create paths using PostScript-style commands. Paths consist of straight
and curved line segments joined together. Paths can form recognizable shapes such as rectangles, ovals,
arcs, and glyphs; they can also form complex polygons using either straight or curved line segments. A single
path can be closed by connecting its two endpoints, or it can be left open.

An NSBezierPath object can contain multiple disconnected paths, whether they are closed or open. Each of
these paths is referred to as a subpath of the NSBezierPath object. The subpaths of an NSBezierPath object
must be manipulated as a group. The only way to manipulate subpaths individually is to create separate
NSBezierPath objects for each.

For a given NSBezierPath object, you can stroke the path’s outline or fill the region occupied by the path.
You can also use the path as a clipping region for views or other regions. Using methods of NSBezierPath,
you can also perform hit detection on the filled or stroked path. Hit detection is needed to implement
interactive graphics, as in rubberbanding and dragging operations.

The current graphics context is automatically saved and restored for all drawing operations, so your application
does not need to worry about the graphics settings changing across invocations.

Tasks

Constructors

NSBezierPath (page 166)
Creates a new NSBezierPath object.

Overview 161
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Creating an NSBezierPath Object

bezierPath (page 166)
Creates and returns a new NSBezierPath object.

bezierPathWithOvalInRect (page 166)
Creates and returns a new NSBezierPath object with an oval path, inscribed in the rectangle aRect,
to the receiver’s path.

bezierPathWithRect (page 166)
Creates and returns a new NSBezierPath object with a rectangular path specified by aRect.

bezierPathByFlatteningPath (page 174)
Returns a “flattened” copy of the receiver.

bezierPathByReversingPath (page 174)
Returns a new NSBezierPath created with the contents of the receiver’s path reversed.

Constructing Paths

moveToPoint (page 179)
Moves the receiver’s current point to aPoint, starting a new subpath, without adding any line
segments.

lineToPoint (page 178)
Appends a straight line to the receiver’s path from the current point to aPoint.

curveToPoint (page 176)
Adds a Bezier cubic curve to the receiver’s path from the current point to aPoint, using
controlPoint1 and controlPoint2 as the Bezier cubic control points.

closePath (page 175)
Closes the most recently added subpath by appending a straight line segment from the current point
to the subpath’s starting point.

relativeMoveToPoint (page 180)
Moves the receiver’s current point to a new point, specified by the parameter aPoint as a relative
distance from the current point.

relativeLineToPoint (page 180)
Appends a straight line to the receiver’s path from the current point to aPoint, which is specified as
a relative distance from the current point.

relativeCurveToPoint (page 179)
Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is
specified as a relative distance from the current point.

Appending Paths and Some Common Shapes

appendBezierPath (page 173)
Appends aPath to the receiver’s path.

appendBezierPathWithOvalInRect (page 174)
Appends an oval path, inscribed in the rectangle aRect, to the receiver’s path.

162 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

appendBezierPathWithArcFromPoint (page 173)
Appends an arc of a circle to the receiver’s path.

appendBezierPathWithArcWithCenter (page 173)
Appends an arc of a circle to the receiver’s path.

appendBezierPathWithGlyph (page 173)
Appends an outline of aGlyph in fontObj to the receiver’s path.

appendBezierPathWithRect (page 174)
Appends a rectangular path, specified by aRect, to the receiver’s path.

Accessing Attributes

defaultWindingRule (page 168)
Returns the default winding rule.

setDefaultWindingRule (page 171)
Sets the default winding rule to windingRule.

windingRule (page 184)
Returns the winding rule used to fill the receiver’s path, that is, paint the region enclosed by the path.

setWindingRule (page 183)
Sets the winding rule used to fill the receiver’s path, that is, paint the region enclosed by the path.

defaultLineCapStyle (page 167)
Returns the default line cap style.

setDefaultLineCapStyle (page 169)
Sets the default line cap style to lineCap.

lineCapStyle (page 177)
Returns the receiver’s line cap style.

setLineCapStyle (page 181)
Sets the receiver’s line cap style to lineCapStyle.

defaultLineJoinStyle (page 168)
Returns the default line join style.

setDefaultLineJoinStyle (page 170)
Sets the default line join style to lineJoinStyle.

lineJoinStyle (page 178)
Returns the receiver’s line join style.

setLineJoinStyle (page 182)
Sets the receiver’s line join style to lineJoinStyle.

defaultLineWidth (page 168)
Returns the default line width, in points.

setDefaultLineWidth (page 171)
Sets the default line width to width points.

lineWidth (page 179)
Returns the receiver’s line width, in points.

setLineWidth (page 182)
Sets the receiver’s line width to lineWidth points.

Tasks 163
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

defaultMiterLimit (page 168)
Returns the default miter limit.

setDefaultMiterLimit (page 171)
Sets the current default miter limit to limit.

miterLimit (page 179)
Returns the receiver’s miter limit.

setMiterLimit (page 182)
Sets the receiver’s miter limit to miterLimit.

defaultFlatness (page 167)
Returns the default flatness attribute.

setDefaultFlatness (page 169)
Sets the default flatness attribute to flatness.

flatness (page 177)
Returns the receiver’s flatness.

setFlatness (page 181)
Sets the receiver’s flatness to flatness.

lineDashPattern (page 177)
Returns the line-stroking pattern for the receiver.

lineDashPhase (page 178)
Returns the line-stroking phase for the receiver.

setLineDash (page 182)
Sets the line-stroking pattern for the receiver.

Drawing Paths

stroke (page 183)
Draws a line along the receiver’s path using the current color and other drawing attributes (for example,
line cap style, line join style, and line width).

fill (page 177)
Renders the receiver’s path by painting the region enclosed by the path.

fillRect (page 169)
Fills a rectangular path specified by aRect with the current color.

strokeRect (page 172)
Strokes a rectangular path specified by aRect using the current drawing style and color.

strokeLineFromPoint (page 172)
Strokes a line from point1 to point2 using the current drawing attributes (for example, color, line
cap style, and line width).

Clipping Paths

addClip (page 172)
Intersects the current clipping path, stored in the current graphics context, with the receiver’s path,
and replaces the current clipping path with the resulting path.

164 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

setClip (page 181)
Replaces the current clipping path with the area inside this path as determined by the winding rule.

clipRect (page 167)
Intersects the current clipping path, stored in the current graphics context, with the rectangle referred
to by aRect, and replaces the current clipping path with the resulting path.

Hit Detection

containsPoint (page 175)
Returns true if the receiver contains aPoint, false otherwise.

Querying Paths

bounds (page 175)
Returns the bounding box of the receiver’s path.

controlPointBounds (page 175)
Returns the bounding box of the receiver’s path, including any control points.

currentPoint (page 176)
Returns the receiver’s current point (the trailing point or ending point in the most recently added
segment).

isEmpty (page 177)
Returns whether the receiver is empty.

Applying Transformations

transformUsingAffineTransform (page 183)
Transforms all points in the receiver using aTransform.

Accessing Elements of a Path

elementCount (page 176)
Returns the number of element types currently stored by the receiver’s path.

removeAllPoints (page 180)
Remove all points from the receiver’s path.

Caching Paths

cachesBezierPath (page 175)
Returns true if this object maintains a cached image of its path; otherwise returns false.

setCachesBezierPath (page 180)
Sets whether the receiver should cache its path information.

Tasks 165
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Constructors

NSBezierPath
Creates a new NSBezierPath object.

public NSBezierPath()

Discussion
The path is initially empty.

Static Methods

bezierPath
Creates and returns a new NSBezierPath object.

public static NSBezierPath bezierPath()

Discussion
The path is initially empty.

bezierPathWithOvalInRect
Creates and returns a new NSBezierPath object with an oval path, inscribed in the rectangle aRect, to the
receiver’s path.

public static NSBezierPath bezierPathWithOvalInRect(NSRect aRect)

Discussion
If aRect specifies a square, the inscribed path is a circle. The inscribed path starts at the top center of aRect,
and arc segments are constructed counterclockwise to complete the oval.

See Also
bezierPath (page 166)
appendBezierPathWithOvalInRect (page 174)

bezierPathWithRect
Creates and returns a new NSBezierPath object with a rectangular path specified by aRect.

public static NSBezierPath bezierPathWithRect(NSRect aRect)

Discussion
The path starts at the origin of aRect and is constructed counterclockwise.

See Also
bezierPath (page 166)

166 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

appendBezierPathWithRect (page 174)
fillRect (page 169)
strokeRect (page 172)

clipRect
Intersects the current clipping path, stored in the current graphics context, with the rectangle referred to by
aRect, and replaces the current clipping path with the resulting path.

public static void clipRect(NSRect aRect)

See Also
addClip (page 172)
setClip (page 181)

defaultFlatness
Returns the default flatness attribute.

public static float defaultFlatness()

Discussion
The flatness attribute is the accuracy (or smoothness) with which curves are rendered. It is also the maximum
error tolerance, measured in pixels, where smaller numbers give smoother curves at the expense of more
computation. The exact interpretation may vary slightly on different rendering devices.

The default flatness value is 0.6.

See Also
setDefaultFlatness (page 169)
flatness (page 177)

defaultLineCapStyle
Returns the default line cap style.

public static int defaultLineCapStyle()

Discussion
The default line cap style is LineCapStyleButt.

See Also
setDefaultLineCapStyle (page 169)
defaultLineJoinStyle (page 168)
defaultLineWidth (page 168)
lineCapStyle (page 177)

Static Methods 167
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

defaultLineJoinStyle
Returns the default line join style.

public static int defaultLineJoinStyle()

Discussion
The default line join style is LineJoinStyleMiter.

See Also
setDefaultLineJoinStyle (page 170)
defaultLineCapStyle (page 167)
defaultLineWidth (page 168)
lineJoinStyle (page 178)

defaultLineWidth
Returns the default line width, in points.

public static float defaultLineWidth()

Discussion
The default line width is 1.0.

See Also
setDefaultLineWidth (page 171)
defaultLineCapStyle (page 167)
defaultLineJoinStyle (page 168)
lineWidth (page 179)

defaultMiterLimit
Returns the default miter limit.

public static float defaultMiterLimit()

Discussion
The default miter limit is 10.0.

See Also
setDefaultMiterLimit (page 171)
miterLimit (page 179)

defaultWindingRule
Returns the default winding rule.

public static int defaultWindingRule()

Discussion
The default winding rule is WindingRuleNonZero.

168 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

See Also
setDefaultWindingRule (page 171)
windingRule (page 184)

fillRect
Fills a rectangular path specified by aRect with the current color.

public static void fillRect(NSRect aRect)

See Also
appendBezierPathWithRect (page 174)
bezierPathWithRect (page 166)
strokeRect (page 172)
set (page 376) (NSColor)

setDefaultFlatness
Sets the default flatness attribute to flatness.

public static void setDefaultFlatness(float flatness)

Discussion
The flatness attribute is the accuracy (or smoothness) with which curves are rendered. flatness is the
maximum error tolerance, measured in pixels, where smaller numbers give smoother curves at the expense
of more computation. The exact interpretation may vary slightly on different rendering devices.

The default flatness value is 0.6.

See Also
defaultFlatness (page 167)
setFlatness (page 181)

setDefaultLineCapStyle
Sets the default line cap style to lineCap.

public static void setDefaultLineCapStyle(int lineCap)

Discussion
The line cap style specifies the shape of the endpoints of an open path when stroked. Figure 9-1 (page 170)
shows the appearance of the available line cap styles.

Static Methods 169
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Figure 9-1 Line cap styles

LineCapStyleButt

LineCapStyleRound

LineCapStyleSquare

See Also
defaultLineCapStyle (page 167)
setDefaultLineJoinStyle (page 170)
setDefaultLineWidth (page 171)
setLineCapStyle (page 181)

setDefaultLineJoinStyle
Sets the default line join style to lineJoinStyle.

public static void setDefaultLineJoinStyle(int lineJoinStyle)

Discussion
The line join style specifies the shape of the joints between connected segments of a stroked path. Figure
9-2 (page 170) shows the appearance of the available line join styles.

Figure 9-2 Line join styles

LineJoinStyleMiter

LineJoinStyleRound

LineJoinStyleBevel

170 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

See Also
defaultLineJoinStyle (page 168)
setDefaultLineCapStyle (page 169)
setDefaultLineWidth (page 171)
setDefaultMiterLimit (page 171)
setLineJoinStyle (page 182)

setDefaultLineWidth
Sets the default line width to width points.

public static void setDefaultLineWidth(float width)

Discussion
The line width is the thickness of stroked paths. A width of 0 is interpreted as the thinnest line that can be
rendered on a particular device. The actual rendered line width may vary from width by as much as 2 device
pixels, depending on the position of the line with respect to the pixel grid. The width of the line may also be
affected by scaling factors specified in the current transformation matrix of the active graphics context.

See Also
defaultLineWidth (page 168)
setDefaultLineCapStyle (page 169)
setDefaultLineJoinStyle (page 170)
setLineWidth (page 182)

setDefaultMiterLimit
Sets the current default miter limit to limit.

public static void setDefaultMiterLimit(float limit)

Discussion
Setting the miter limit avoids spikes produced by line segments that join at sharp angles. If the ratio of the
miter length—the diagonal length of the miter—to the line thickness exceeds the miter limit, the corner is
treated as a bevel join instead of a miter join. The default miter limit value is 10, which cuts off miters at
angles less than 11 degrees.

See Also
defaultMiterLimit (page 168)
setDefaultLineJoinStyle (page 170)
setMiterLimit (page 182)

setDefaultWindingRule
Sets the default winding rule to windingRule.

public static void setDefaultWindingRule(int windingRule)

Static Methods 171
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Discussion
The winding rule is used to fill the receiver’s path, that is, paint the region enclosed by the path. Possible
values for the windingRuleparameter are WindingRuleNonZero and WindingRuleEvenOdd. See “Winding
Rules and Filling Paths” for more information on how winding rules affect the appearance of filled paths.

See Also
defaultWindingRule (page 168)
setWindingRule (page 183)

strokeLineFromPoint
Strokes a line from point1 to point2 using the current drawing attributes (for example, color, line cap style,
and line width).

public static void strokeLineFromPoint(NSPoint point1, NSPoint point2)

See Also
lineToPoint (page 178)
moveToPoint (page 179)
setDefaultLineCapStyle (page 169)
setDefaultLineWidth (page 171)
stroke (page 183)

strokeRect
Strokes a rectangular path specified by aRect using the current drawing style and color.

public static void strokeRect(NSRect aRect)

Discussion
The path is stroked beginning at the rectangle’s origin and proceeding in a counterclockwise direction.

See Also
appendBezierPathWithRect (page 174)
bezierPathWithRect (page 166)
fillRect (page 169)
setDefaultLineJoinStyle (page 170)
setDefaultLineWidth (page 171)
set (page 376) (NSColor)

Instance Methods

addClip
Intersects the current clipping path, stored in the current graphics context, with the receiver’s path, and
replaces the current clipping path with the resulting path.

172 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

public void addClip()

Discussion
The current winding rule is applied to determine the clipping area of the receiver. This method does not
affect the receiver’s path.

See Also
clipRect (page 167)
setClip (page 181)

appendBezierPath
Appends aPath to the receiver’s path.

public void appendBezierPath(NSBezierPath aPath)

Discussion
This method adds the operations used to create aPath to the end of the receiver’s path. This method does
not explicitly try to connect the two paths, although the operations in aPath may still cause this effect.

appendBezierPathWithArcFromPoint
Appends an arc of a circle to the receiver’s path.

public void appendBezierPathWithArcFromPoint(NSPoint fromPoint, NSPoint toPoint,
float radius)

Discussion
The arc lies on the perimeter of a circle with radius radius inscribed in an angle defined by the current point,
fromPoint, and toPoint. The arc is drawn between the tangent points of the circle with the two legs of
the angle. The arc usually does not contain the points fromPoint and toPoint. A line is drawn from the
current point to the starting point of the arc, which is located at the tangent point of the first leg of the angle.

appendBezierPathWithArcWithCenter
Appends an arc of a circle to the receiver’s path.

public void appendBezierPathWithArcWithCenter(NSPoint center, float radius, float
startAngle, float endAngle, boolean clockwise)

Discussion
The circle is centered at center with radius radius. The arc lies on the perimeter of the circle, between
startAngle and endAngle, measured in degrees counterclockwise from the x axis. If clockwise is true,
the arc is drawn clockwise around the circle from startAngle to endAngle. If clockwise is false, then
the arc is drawn counterclockwise around the circle.

appendBezierPathWithGlyph
Appends an outline of aGlyph in fontObj to the receiver’s path.

public void appendBezierPathWithGlyph(int aGlyph, NSFont fontObj)

Instance Methods 173
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Discussion
If aGlyph is not encoded in fontObj—that is, the font does not have an entry for the specified glyph—then
no path is appended to the receiver.

The receiver must not be empty—that is, it must already contain an initial point, or an exception is thrown.
An initial point may be specified using moveToPoint (page 179).

appendBezierPathWithOvalInRect
Appends an oval path, inscribed in the rectangle aRect, to the receiver’s path.

public void appendBezierPathWithOvalInRect(NSRect aRect)

Discussion
If aRect specifies a square, the inscribed path is a circle. The inscribed path starts at the top center of aRect,
and arc segments are constructed counterclockwise to complete the oval.

appendBezierPathWithRect
Appends a rectangular path, specified by aRect, to the receiver’s path.

public void appendBezierPathWithRect(NSRect aRect)

Discussion
The path starts at the origin of aRect, and line segments are added proceeding counterclockwise from the
origin, ending with a closePath (page 175) message to complete the path.

See Also
bezierPathWithRect (page 166)
fillRect (page 169)
strokeRect (page 172)

bezierPathByFlatteningPath
Returns a “flattened” copy of the receiver.

public NSBezierPath bezierPathByFlatteningPath()

Discussion
Flattening a path converts all curved line segments into straight line approximations. For example, a curved
line can be approximated with a series of straight lines. The granularity of approximation is called the flatness.
This method uses the value set by setDefaultFlatness (page 169).

bezierPathByReversingPath
Returns a new NSBezierPath created with the contents of the receiver’s path reversed.

public NSBezierPath bezierPathByReversingPath()

174 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

bounds
Returns the bounding box of the receiver’s path.

public NSRect bounds()

Discussion
If the path contains curve segments, the bounding box encloses the curve but may not enclose the control
points used to calculate the curve.

See Also
controlPointBounds (page 175)

cachesBezierPath
Returns true if this object maintains a cached image of its path; otherwise returns false.

public boolean cachesBezierPath()

Discussion
The cached image is stored in a display user object.

See Also
setCachesBezierPath (page 180)

closePath
Closes the most recently added subpath by appending a straight line segment from the current point to the
subpath’s starting point.

public void closePath()

Discussion
A subpath is a sequence of connected segments. A path may be made up of one or more disconnected
subpaths. The current point is the ending point in the most recently added segment.

See Also
fill (page 177)

containsPoint
Returns true if the receiver contains aPoint, false otherwise.

public boolean containsPoint(NSPoint aPoint)

controlPointBounds
Returns the bounding box of the receiver’s path, including any control points.

public NSRect controlPointBounds()

Instance Methods 175
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Discussion
If the path contains curve segments, the bounding box encloses the control points of the curves as well as
the curves themselves.

See Also
bounds (page 175)

currentPoint
Returns the receiver’s current point (the trailing point or ending point in the most recently added segment).

public NSPoint currentPoint()

Discussion
Throws GenericException if the receiver is empty.

See Also
closePath (page 175)
curveToPoint (page 176)
lineToPoint (page 178)
moveToPoint (page 179)

curveToPoint
Adds a Bezier cubic curve to the receiver’s path from the current point to aPoint, using controlPoint1
and controlPoint2 as the Bezier cubic control points.

public void curveToPoint(NSPoint aPoint, NSPoint controlPoint1, NSPoint
controlPoint2)

Discussion
The current point is the ending point in the most recently added segment. To create a relative curve, use
relativeCurveToPoint (page 179).

See Also
closePath (page 175)
lineToPoint (page 178)
moveToPoint (page 179)
relativeCurveToPoint (page 179)
setDefaultFlatness (page 169)

elementCount
Returns the number of element types currently stored by the receiver’s path.

public int elementCount()

Discussion
Each element type corresponds to one of the operations described in “Path Elements”.

176 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

fill
Renders the receiver’s path by painting the region enclosed by the path.

public void fill()

Discussion
Uses the winding rule, specified by invoking setWindingRule (page 183), and the current color to fill the
path. Closes any open subpaths. A subpath is a sequence of connected segments. A path may be made up
of one or more disconnected subpaths. A subpath is closed if the ending point is connected to the starting
point (as in a polygon).

See Also
stroke (page 183)
windingRule (page 184)
set (page 376) (NSColor)

flatness
Returns the receiver’s flatness.

public float flatness()

See Also
setFlatness (page 181)
defaultFlatness (page 167)

isEmpty
Returns whether the receiver is empty.

public boolean isEmpty()

lineCapStyle
Returns the receiver’s line cap style.

public int lineCapStyle()

Discussion
See “Constants” (page 184) for a description of possible return values.

See Also
defaultLineCapStyle (page 167)
setDefaultLineCapStyle (page 169)
setLineCapStyle (page 181)

lineDashPattern
Returns the line-stroking pattern for the receiver.

Instance Methods 177
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

public float[] lineDashPattern()

Discussion
The pattern is specified as alternating lengths of painted and unpainted line segments.

See Also
setLineDash (page 182)

lineDashPhase
Returns the line-stroking phase for the receiver.

public float lineDashPhase()

Discussion
The phase specifies how far, in view coordinate units, into a line dash pattern to start.

See Also
setLineDash (page 182)
lineDashPattern (page 177)

lineJoinStyle
Returns the receiver’s line join style.

public int lineJoinStyle()

Discussion
See “Constants” (page 184) for a description of possible return values.

See Also
defaultLineJoinStyle (page 168)
setDefaultLineJoinStyle (page 170)
setLineJoinStyle (page 182)

lineToPoint
Appends a straight line to the receiver’s path from the current point to aPoint.

public void lineToPoint(NSPoint aPoint)

Discussion
The current point is the last point in the receiver’s most recently added segment.

See Also
closePath (page 175)
curveToPoint (page 176)
moveToPoint (page 179)

178 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

lineWidth
Returns the receiver’s line width, in points.

public float lineWidth()

See Also
setLineWidth (page 182)
defaultLineWidth (page 168)

miterLimit
Returns the receiver’s miter limit.

public float miterLimit()

See Also
setMiterLimit (page 182)
defaultMiterLimit (page 168)

moveToPoint
Moves the receiver’s current point to aPoint, starting a new subpath, without adding any line segments.

public void moveToPoint(NSPoint aPoint)

Discussion
A subpath is a sequence of connected segments. A path may be made up of one or more disconnected
subpaths. The current point is the ending point in the most recently added segment.

See Also
closePath (page 175)
curveToPoint (page 176)
lineToPoint (page 178)

relativeCurveToPoint
Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is specified
as a relative distance from the current point.

public void relativeCurveToPoint(NSPoint aPoint, NSPoint controlPoint1, NSPoint
controlPoint2)

Discussion
(The control points are similarly specified as relative distances from the current point.) The aPoint parameter
specifies the endpoint of the curve as a relative distance from the current point. The controlPoint1 and
controlPoint2 parameters specify the location of the two control points as relative distances from the
current point. Throws GenericException if the path is empty.

See Also
closePath (page 175)

Instance Methods 179
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

curveToPoint (page 176)
relativeLineToPoint (page 180)
relativeMoveToPoint (page 180)

relativeLineToPoint
Appends a straight line to the receiver’s path from the current point to aPoint, which is specified as a relative
distance from the current point.

public void relativeLineToPoint(NSPoint aPoint)

Discussion
Throws GenericException if the path is empty.

See Also
closePath (page 175)
lineToPoint (page 178)
relativeLineToPoint (page 180)
relativeMoveToPoint (page 180)

relativeMoveToPoint
Moves the receiver’s current point to a new point, specified by the parameter aPoint as a relative distance
from the current point.

public void relativeMoveToPoint(NSPoint aPoint)

Discussion
This method starts a new subpath without adding any line segments.

See Also
closePath (page 175)
moveToPoint (page 179)
relativeCurveToPoint (page 179)
relativeLineToPoint (page 180)

removeAllPoints
Remove all points from the receiver’s path.

public void removeAllPoints()

setCachesBezierPath
Sets whether the receiver should cache its path information.

public void setCachesBezierPath(boolean flag)

180 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Discussion
Caching improves subsequent drawing times but requires extra memory to store the cached path
representation. If caching is being turned on (flag is true), the receiver’s cache is marked as needing to be
calculated. Otherwise, if caching is being turned off, any existing cached data is deleted.

See Also
cachesBezierPath (page 175)

setClip
Replaces the current clipping path with the area inside this path as determined by the winding rule.

public void setClip()

Discussion
This method is not a preferred method of adjusting the clipping path, as it may expand the clipping path
beyond the bounds set by the enclosing NSView. The graphics state should be saved and restored before
and after invoking this method.

See Also
addClip (page 172)
clipRect (page 167)
saveGraphicsState (page 735) (NSGraphicsContext)
restoreGraphicsState (page 734) (NSGraphicsContext)

setFlatness
Sets the receiver’s flatness to flatness.

public void setFlatness(float flatness)

See Also
flatness (page 177)
setDefaultFlatness (page 169)

setLineCapStyle
Sets the receiver’s line cap style to lineCapStyle.

public void setLineCapStyle(int lineCapStyle)

Discussion
See “Constants” (page 184) for a list of possible values for lineCapStyle.

See Also
defaultLineCapStyle (page 167)
setDefaultLineCapStyle (page 169)
lineCapStyle (page 177)

Instance Methods 181
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

setLineDash
Sets the line-stroking pattern for the receiver.

public void setLineDash(float[] pattern, float phase)

Discussion
pattern specifies alternating lengths of painted and unpainted line segments.phase specifies how far, in
view coordinate units, into pattern to start.

For example, to produce a supermarket coupon type of dashed line:

array[0] = 5.0; //segment painted with stroke color
array[1] = 2.0; //segment not painted with a color

path.setLineDash(array, 0.0);

In the above example, if you set phase to 5.0, the line dash would begin approximately five units into
pattern, and the first filled segment would be effectively skipped.

See Also
lineDashPattern (page 177)
lineDashPhase (page 178)

setLineJoinStyle
Sets the receiver’s line join style to lineJoinStyle.

public void setLineJoinStyle(int lineJoinStyle)

Discussion
See “Constants” (page 184) for a list of possible values for lineJoinStyle.

See Also
defaultLineJoinStyle (page 168)
setDefaultLineJoinStyle (page 170)
lineJoinStyle (page 178)

setLineWidth
Sets the receiver’s line width to lineWidth points.

public void setLineWidth(float lineWidth)

See Also
lineWidth (page 179)
setDefaultLineWidth (page 171)

setMiterLimit
Sets the receiver’s miter limit to miterLimit.

182 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

public void setMiterLimit(float miterLimit)

See Also
miterLimit (page 179)
setDefaultMiterLimit (page 171)

setWindingRule
Sets the winding rule used to fill the receiver’s path, that is, paint the region enclosed by the path.

public void setWindingRule(int aWindingRule)

Discussion
Possible values for the aWindingRule parameter are WindingRuleNonZero and WindingRuleEvenOdd.
See “Winding Rules and Filling Paths” for more information on how winding rules affect the appearance of
filled paths.

See Also
fill (page 177)
windingRule (page 184)
setDefaultWindingRule (page 171)

stroke
Draws a line along the receiver’s path using the current color and other drawing attributes (for example, line
cap style, line join style, and line width).

public void stroke()

Discussion
The drawn line is centered on the path with sides (specified by the setDefaultLineWidth (page 171) static
method) parallel to the path segment.

See Also
fill (page 177)
setDefaultLineCapStyle (page 169)
setDefaultLineJoinStyle (page 170)
set (page 376) (NSColor)

transformUsingAffineTransform
Transforms all points in the receiver using aTransform.

public void transformUsingAffineTransform(NSAffineTransform aTransform)

Discussion
The following code translates a line from 0,0 to 100,100 to a line from 10,10 to 110,110.

NSBezierPath bezierPath = NSBezierPath.bezierPath();
NSAffineTransform transform = NSAffineTransform.transform();

Instance Methods 183
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

bezierPath.moveToPoint (new NSPoint(0.0, 0.0));
bezierPath.lineToPoint (new NSPoint(100.0, 100.0));

transform.translateXYBy (10.0, 10.0);
bezierPath.transformUsingAffineTransform (transform);

windingRule
Returns the winding rule used to fill the receiver’s path, that is, paint the region enclosed by the path.

public int windingRule()

Discussion
Possible return values are WindingRuleNonZero and WindingRuleEvenOdd. See “Winding Rules and Filling
Paths” for more information on how winding rules affect the appearance of filled paths.

See Also
fill (page 177)
setWindingRule (page 183)
defaultWindingRule (page 168)

Constants

As a convenience, the following constants are provided by NSBezierPath:

DescriptionConstant

Specifies the shape of endpoints for an open path when stroked. See
setDefaultLineCapStyle (page 169) for an example of the appearance.

LineCapStyleButt

Specifies the shape of endpoints for an open path when stroked. See
setDefaultLineCapStyle (page 169) for an example of the appearance.

LineCapStyle-
ProjectingSquare

Specifies the shape of endpoints for an open path when stroked. See
setDefaultLineCapStyle (page 169) for an example of the appearance.

LineCapStyleRound

Specifies the shape of the joints between connected segments of a stroked
path. See setDefaultLineJoinStyle (page 170) for an example of the
appearance.

LineJoinStyleBevel

Specifies the shape of the joints between connected segments of a stroked
path. See setDefaultLineJoinStyle (page 170) for an example of the
appearance.

LineJoinStyleMiter

Specifies the shape of the joints between connected segments of a stroked
path. See setDefaultLineJoinStyle (page 170) for an example of the
appearance.

LineJoinStyleRound

184 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

NSBezierPath

Inherits from NSImageRep : NSObject

Implements NSCoding (NSImageRep)

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

An NSBitmapImageRep is an object that can render an image from bitmap data. Bitmap data formats supported
include GIF, JPEG, TIFF, PNG, and various permutations of raw bitmap data.

Alpha Premultiplication

If a coverage (alpha) plane exists, a bitmap’s color components are premultiplied with it. If you modify the
contents of the bitmap, you are therefore responsible for premultiplying the data. For this reason, though,
if you want to manipulate the actual data, NSBitmapImageRep is not recommended for storage. If you need
to work with unpremultiplied data, you should use Quartz, specifically CGImageCreate with
kCGImageAlphaLast.

Note that premultiplying does not affect the output quality. Given source bitmap pixel s, destination pixel
d, and alpha value a, a blend is basically

d' = a * s + (1 - a) * d

All premultiplication does is precalculate a * s.

Tasks

Constructors

NSBitmapImageRep (page 188)
Throws an exception. Use one of the other constructors instead.

Overview 185
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Creating an NSBitmapImageRep

imageRep (page 190)
Creates and returns an initialized NSBitmapImageRep corresponding to the first image in bitmapData,
or null if NSBitmapImageRep is unable to interpret bitmapData.

imageRepsWithData (page 190)
Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images
in bitmapData.

colorizeByMappingGray (page 194)
Support for colorization of grayscale images.

Getting Information About the Image

bitmapFormat (page 192)
Returns the bitmap format of the receiver.

bitsPerPixel (page 193)
Returns the number of bits allocated for each pixel in each plane of data.

bytesPerPlane (page 193)
Returns the number of bytes in each plane or channel of data.

bytesPerRow (page 193)
Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning
the width of the image) in each data plane.

compressionFactor (page 194)
Returns the receiver’s compression factor.

compressionType (page 194)
Returns the receiver’s compression type.

isPlanar (page 196)
Returns true if image data is segregated into a separate plane for each color and coverage component
(planar configuration) and false if the data is integrated into a single plane (meshed configuration).

numberOfPlanes (page 196)
Returns the number of separate planes image data is organized into.

samplesPerPixel (page 197)
Returns the number of components in the data.

Getting Image Data

bitmapData (page 192)
Returns a pointer to the bitmap data.

bitmapDataPlanes (page 192)
Provides access to bitmap data for the receiver separated into planes.

setBitmapData (page 197)
Copies the data from bits to the image’s bitmap.

setBitmapDataPlanes (page 197)
Copies the data from planes to a planar image’s bitmap planes.

186 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Producing a TIFF Representation of the Image

TIFFRepresentationOfImageReps (page 191)
Returns a TIFF representation of the images in array, using the compression returned by
compressionFactor (page 194) (if applicable).

TIFFRepresentation (page 198)
Returns a TIFF representation of the image, using the compression that’s returned by
compressionFactor (page 194) (if applicable).

representationOfImageRepsInArray (page 191)
Returns a bitmap version of the NSBitmapImageRep objects in imageReps, using the format
storageType and the properties properties.

representationUsingType (page 196)
Returns a bitmap version of the receiver, using the format storageType and the properties
properties.

Setting and Checking Compression Types

TIFFCompressionTypes (page 191)
Returns the list of available compression types, which are defined in “Constants” (page 199).

localizedNameForTIFFCompressionType (page 190)
Returns a string containing the localized name for the compression type represented by compression,
or null if compression is unrecognized.

canBeCompressedUsingType (page 193)
Tests whether the receiver can be compressed by compression type compression.

setCompressionWithFactor (page 198)
Sets the receiver’s compression type and compression factor.

valueForProperty (page 199)
Returns the value for property.

setProperty (page 198)
Sets the image’s property to value.

Incremental Image Loading

incrementalLoadFromData (page 195)
Loads the current image data into an incrementally-loaded image representation and returns the
current status of the image.

Getting and Setting Pixel Values

color (page 194)

setColor (page 197)

Tasks 187
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

getPixel (page 195)
Provides access to the pixel data for the location x,y in the receiver.

setPixel (page 198)
Sets the receiver's pixel at the coordinate x,y to the raw pixel values in pixelData.

Constructors

NSBitmapImageRep
Throws an exception. Use one of the other constructors instead.

public NSBitmapImageRep()

Creates an NSBitmapImageRep, with bitmap data read from a rendered image.

public NSBitmapImageRep(NSRect rect)

Discussion
The image that’s read is located in the current window and is bounded by the rect rectangle as specified
in the current coordinate system.

This method uses imaging operators to read the image data into a buffer; the object is then created from
that data. The object is initialized with information about the image obtained from the window server.

If for any reason the new object can’t be created, this method returns null.

Creates an NSBitmapImageRep from the data found in bitmapData.

public NSBitmapImageRep(NSData bitmapData)

Discussion
The contents of bitmapData can be any supported bitmap format. For TIFF data, the NSBitmapImageRep
is initialized from the first header and image data found in bitmapData.

This method returns an initialized NSBitmapImageRep if the creation was successful or null if it was unable
to interpret the contents of bitmapData.

Creates an NSBitmapImageRep, so it can render the image described by the arguments. If the object can’t
be created, this method returns null.

public NSBitmapImageRep(int width, int height, int bps, int spp, boolean alpha,
boolean isPlanar, String colorSpaceName, int rowBytes, int pixelBits)

Discussion
This constructor allocates enough memory to hold the image described by the arguments. You can then
obtain pointers to this memory (with the bitmapDataPlanes (page 192) or bitmapData (page 192) method)
and fill in the image data. If the image has an alpha channel, you are responsible for premultiplying the color
samples. Each of the arguments informs the NSBitmapImageRep object about the image. They’re explained
below:

 ■ The width and height arguments specify the size of the image in pixels. The size in each direction must
be greater than 0.

188 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

 ■ The bps (bits per sample) argument is the number of bits used to specify 1 pixel in a single component
of the data. All components are assumed to have the same bits per sample. bps should be one of these
values: 1, 2, 4, 8, 12, or 16.

 ■ The spp (samples per pixel) argument is the number of data components. It includes both color
components and the coverage component (alpha), if present. Meaningful values range from 1 through
5. An image with cyan, magenta, yellow, and black (CMYK) color components plus a coverage component
would have an spp of 5; a grayscale image that lacks a coverage component would have an spp of 1.

 ■ The alpha argument should be true if one of the components counted in the number of samples per
pixel (spp) is a coverage component and false if there is no coverage component. If true, the color
samples you put into the bitmap must be premultiplied with their coverage component.

 ■ The isPlanar argument should be true if the data components are laid out in a series of separate
“planes” or channels (“planar configuration”) and false if component values are interwoven in a single
channel (“meshed configuration”).

For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of an
image would precede the red, green, blue, and coverage values for the second pixel, and so on. In planar
configuration, red values for all the pixels in the image would precede all green values, which would
precede all blue values, which would precede all coverage values.

 ■ The colorSpaceName argument indicates how data values are to be interpreted. It should be one of
the following enumerated values:

 ❏ NSGraphics.CalibratedWhiteColorSpace

 ❏ NSGraphics.CalibratedBlackColorSpace

 ❏ NSGraphics.CalibratedRGBColorSpace

 ❏ NSGraphics.DeviceWhiteColorSpace

 ❏ NSGraphics.DeviceBlackColorSpace

 ❏ NSGraphics.DeviceRGBColorSpace

 ❏ NSGraphics.DeviceCMYKColorSpace

 ❏ NSGraphics.NamedColorSpace

 ❏ NSGraphics.CustomColorSpace

If bps is 12, you cannot specify the monochrome color space.

 ■ The rowBytes argument is the number of bytes that are allocated for each scan line in each plane of
data. A scan line is a single row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary
to allocate more memory for each row than there is data to fill it. rowBytes lets the object know whether
that’s the case. If rowBytes is 0, the NSBitmapImageRep assumes there’s no empty space at the end of
a row.

 ■ The pixelBits argument informs the NSBitmapImageRep how many bits are actually allocated per
pixel in each plane of data. If the data is in planar configuration, this normally equals bps (bits per sample).
If the data is in meshed configuration, it normally equals bps times spp (samples per pixel). However,
it’s possible for a pixel specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only a

Constructors 189
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

limited number of pixelBits values (other than the default): for RGB images with 4 bps, pixelBits
may be 16; for RGB images with 8 bps, pixelBits may be 32. The legal values for pixelBits are
system dependent.

If pixelBits is 0, the object will interpret the number of bits per pixel to be the expected value, without
any meaningless bits.

Creates a NSBitmapImageRep object for incremental loading.

public NSBitmapImageRep(boolean bool)

Discussion
The receiver returns itself after setting its size and data buffer to zero. You can then call
incrementalLoadFromData (page 195) to incrementally add image data.

Availability
Available in Mac OS X v10.2 and later.

See Also
incrementalLoadFromData (page 195)

Static Methods

imageRep
Creates and returns an initialized NSBitmapImageRep corresponding to the first image in bitmapData, or
null if NSBitmapImageRep is unable to interpret bitmapData.

public static NSBitmapImageRep imageRep(NSData bitmapData)

Discussion
bitmapData can contain data in any supported bitmap format.

imageRepsWithData
Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images in
bitmapData.

public static NSArray imageRepsWithData(NSData bitmapData)

Discussion
If NSBitmapImageRep is unable to interpret bitmapData, the returned array is empty. bitmapData can
contain data in any supported bitmap format.

localizedNameForTIFFCompressionType
Returns a string containing the localized name for the compression type represented by compression, or
null if compression is unrecognized.

public static String localizedNameForTIFFCompressionType(int compression)

190 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Discussion
Compression types are listed in “Constants” (page 199). When implementing a user interface for selecting
TIFF compression types, use TIFFCompressionTypes (page 191) to get the list of supported compression
types, then use this method to get the localized names for each compression type.

See Also
TIFFCompressionTypes (page 191)

representationOfImageRepsInArray
Returns a bitmap version of the NSBitmapImageRep objects in imageReps, using the format storageType
and the properties properties.

public static NSData representationOfImageRepsInArray(NSArray imageReps, int
storageType, NSDictionary properties)

Discussion
The storageType can be BMPFileType, GIFFileType, JPEGFileType, PNGFileType, or TIFFFileType.
The contents of the properties dictionary is described in “Constants” (page 199).

TIFFCompressionTypes
Returns the list of available compression types, which are defined in “Constants” (page 199).

public static int[] TIFFCompressionTypes()

TIFFRepresentationOfImageReps
Returns a TIFF representation of the images in array, using the compression returned by
compressionFactor (page 194) (if applicable).

public static NSData TIFFRepresentationOfImageReps(NSArray array)

Discussion
If a problem is encountered during generation of the TIFF, throws a TIFFException or a
BadBitmapParametersException.

Returns a TIFF representation of the images in array, which are compressed using the specified compression
type and factor.

public static NSData TIFFRepresentationOfImageReps(NSArray array, int compression,
float factor)

Discussion
Legal values for compression are described in “Constants” (page 199). factor provides a hint for those
compression types that implement variable compression ratios; currently only JPEG compression uses a
compression factor. JPEG compression in TIFF files is not supported, and factor is ignored.

If the specified compression isn’t applicable, no compression is used. If a problem is encountered during
generation of the TIFF, throws a TIFFException or a BadBitmapParametersException.

Static Methods 191
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Instance Methods

bitmapData
Returns a pointer to the bitmap data.

public byte[] bitmapData()

Discussion
If the data is planar, returns a pointer to the first plane.

See Also
bitmapDataPlanes (page 192)

bitmapDataPlanes
Provides access to bitmap data for the receiver separated into planes.

public byte[][] bitmapDataPlanes()

Discussion
Returns an array of five character pointers. If the receiver is in planar configuration, each pointer is initialized
to point to one of the data planes. If there are less than five planes, the remaining pointers are set to null.
If the receiver is in meshed configuration, only the first pointer is initialized; the others are null.

Color components in planar configuration are arranged in the expected order—for example, red before green
before blue for RGB color. All color planes precede the coverage plane. If a coverage plane exists, the bitmap’s
color components are premultiplied with it. If you modify the contents of the bitmap, you are responsible
for premultiplying the data.

See Also
isPlanar (page 196)

bitmapFormat
Returns the bitmap format of the receiver.

public int bitmapFormat()

Discussion
The default is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
bytesPerRow (page 193)

192 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

bitsPerPixel
Returns the number of bits allocated for each pixel in each plane of data.

public int bitsPerPixel()

Discussion
This number is normally equal to the number of bits per sample or, if the data is in meshed configuration,
the number of bits per sample times the number of samples per pixel. It can be explicitly set to another value
in case extra memory is allocated for each pixel. This may be the case, for example, if pixel data is aligned
on byte boundaries.

bytesPerPlane
Returns the number of bytes in each plane or channel of data.

public int bytesPerPlane()

Discussion
This number is calculated from the number of bytes per row and the height of the image.

See Also
bytesPerRow (page 193)

bytesPerRow
Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning the
width of the image) in each data plane.

public int bytesPerRow()

Discussion
If not explicitly set to another value , this number will be figured from the width of the image, the number
of bits per sample, and, if the data is in a meshed configuration, the number of samples per pixel. It can be
set to another value to indicate that each row of data is aligned on word or other boundaries.

See Also
bytesPerPlane (page 193)

canBeCompressedUsingType
Tests whether the receiver can be compressed by compression type compression.

public boolean canBeCompressedUsingType(int compression)

Discussion
Legal values for compression can be found in NSBitmapImageRep.h and are described in “TIFF Compression
in NSBitmapImageReps”. This method returns true if the receiver’s data matches compression; for example,
if compression is TIFFCompressionCCITTFAX3, then the data must be 1 bit per sample and 1 sample per
pixel. It returns false if the data doesn’t match compression or if compression is unsupported.

Instance Methods 193
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

color
public native NSColor color(int x, int y)

Discussion
Returns the color of the pixel located at the coordinates x,y.

Availability
Available in Mac OS X v10.4 and later.

See Also
setColor (page 197)

colorizeByMappingGray
Support for colorization of grayscale images.

public void colorizeByMappingGray(float midPoint, NSColor midPointColor, NSColor
shadowColor, NSColor lightColor)

Discussion
Maps the receiver such that:

Gray value of midPoint –> midPointColor;
black –> shadowColor;
white –> lightColor.

Works on images with 8-bit SPP, thus either 8-bit gray or 24-bit color (with optional alpha).

compressionFactor
Returns the receiver’s compression factor.

public float compressionFactor()

Discussion
The compression factor is a value that is specific to the compression type; many types of compression don’t
support varying degrees of compression and thus ignore the factor. JPEG compression allows a compression
factor ranging from 0.0 to 1.0, with 0.0 being the lowest and 1.0 being the highest.

See Also
compressionType (page 194)

compressionType
Returns the receiver’s compression type.

public int compressionType()

Discussion
The compression type represents the compression type used on the data and corresponds to one of the
values returned by the class method TIFFCompressionTypes (page 191).

194 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

See Also
compressionFactor (page 194)

getPixel
Provides access to the pixel data for the location x,y in the receiver.

public long[] getPixel(int x, int y)

Discussion
The array returned will contain raw pixel data in the appropriate order for the receiver’s bitmapFormat (page
192). Smaller integer samples, such as 4-bit, are returned as an integer. Floating point values are cast to integer
values and returned.

See Also
setPixel (page 198)

incrementalLoadFromData
Loads the current image data into an incrementally-loaded image representation and returns the current
status of the image.

public int incrementalLoadFromData(NSData data, boolean complete)

Discussion
After initializing the receiver with the constructor with the boolean parameter, you should call this method
to incrementally load the image. Call this method each time new data becomes available. Always pass the
entire image data buffer in data, not just the newest data, because the image decompressor may need the
original data in order to backtrack. This method will block until the data is decompressed; it will decompress
as much of the image as possible based on the length of the data. The image rep does not retain data, so
you must ensure that data is not released for the duration of this method call. Pass false for complete
until the entire image is downloaded, at which time you should pass true. You should also pass true for
complete if you have only partially downloaded the data, but cannot finish the download.

This method returns ImageRepLoadStatusUnknownType if you did not pass enough data to determine
the image format; you should continue to invoke this method with additional data.

This method returns ImageRepLoadStatusReadingHeader if it has enough data to determine the image
format, but needs more data to determine the size and depth and other characteristics of the image. You
should continue to invoke this method with additional data.

This method returns ImageRepLoadStatusWillNeedAllData if the image format does not support
incremental loading or the Application Kit does not yet implement incremental loading for the image format.
You may continue to invoke this method in this case, but until you pass true for complete, this method
will continue to return ImageRepLoadStatusWillNeedAllData, and will perform no decompression. Once
you pass true, the image will be decompressed and one of the final three status messages will be returned.

If the image format does support incremental loading, then once enough data has been read, the image is
decompressed from the top down a row at a time. In this case, instead of a status value, this method returns
the number of pixel rows that have been decompressed, starting from the top of the image. You can use
this information to draw the part of the image that is valid. The rest of the image is filled with opaque white.

Instance Methods 195
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Note that if the image is progressive (as in a progressive JPEG or 2D interlaced PNG), this method may quickly
return the full height of the image, but the image may still be loading, so do not use this return value as an
indication of how much of the image remains to be decompressed.

If an error occurred while decompressing, this method returns ImageRepLoadStatusInvalidData. If
complete is true but not enough data was available for decompression,
ImageRepLoadStatusUnexpectedEOF is returned. If enough data has been provided (regardless of the
complete flag), then ImageRepLoadStatusCompleted is returned. When any of these three status results
are returned, this method has adjusted the NSBitmapImageRep so thatpixelsHigh (page 790) andsize (page
792), as well as the bitmap data, only contains the pixels that are valid, if any.

To cancel decompression, just pass in the existing data or null and true for complete. This method stops
decompression immediately, adjusts the image size, and returns ImageRepLoadStatusUnexpectedEOF.This
method returns ImageRepLoadStatusCompleted if you call it after receiving any error results
(ImageRepLoadStatusInvalidData or ImageRepLoadStatusUnexpectedEOF) or if you call it on an
NSBitmapImageRep that was not initialized with the constructor with the boolean parameter.

Availability
Available in Mac OS X v10.2 and later.

isPlanar
Returns true if image data is segregated into a separate plane for each color and coverage component
(planar configuration) and false if the data is integrated into a single plane (meshed configuration).

public boolean isPlanar()

See Also
samplesPerPixel (page 197)

numberOfPlanes
Returns the number of separate planes image data is organized into.

public int numberOfPlanes()

Discussion
This number is the number of samples per pixel if the data has a separate plane for each component
(isPlanar (page 196) returns true) and 1 if the data is meshed (isPlanar (page 196) returns false).

See Also
samplesPerPixel (page 197)
hasAlpha (page 789) (NSImageRep)
bitsPerSample (page 788) (NSImageRep)

representationUsingType
Returns a bitmap version of the receiver, using the format storageType and the properties properties.

public NSData representationUsingType(int storageType, NSDictionary properties)

196 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Discussion
The contents of the properties dictionary is described in “Constants” (page 199).

See Also
TIFFRepresentationOfImageReps (page 191)
TIFFRepresentation (page 198)
TIFFRepresentation (page 768) (NSImage)

samplesPerPixel
Returns the number of components in the data.

public int samplesPerPixel()

Discussion
It includes both color components and the coverage component, if present.

See Also
hasAlpha (page 789) (NSImageRep)
bitsPerSample (page 788) (NSImageRep)

setBitmapData
Copies the data from bits to the image’s bitmap.

public void setBitmapData(byte[] bits)

setBitmapDataPlanes
Copies the data from planes to a planar image’s bitmap planes.

public void setBitmapDataPlanes(byte[][] planes)

setColor
public void setColor(NSColor color, int x, int y)

Discussion
Sets the receiver's pixel located at the coordinates x,y to color.

Availability
Available in Mac OS X v10.4 and later.

See Also
color (page 194)

Instance Methods 197
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

setCompressionWithFactor
Sets the receiver’s compression type and compression factor.

public void setCompressionWithFactor(int compression, float factor)

Discussion
compression identifies one of the supported compression types as described in “Constants” (page 199).
factor is a value specific to the compression type; many types of compression don’t support varying degrees
of compression and thus ignore factor. JPEG compression allows a compression factor ranging from 0.0 to
1.0, with 0.0 being the lowest and 1.0 being the highest.

When an NSBitmapImageRep is created, the instance stores the compression type and factor for the source
data.TIFFRepresentation (page 198) andTIFFRepresentationOfImageReps (page 191) (static method)
try to use the stored compression type and factor. Use this method to change the compression type and
factor.

See Also
canBeCompressedUsingType (page 193)

setPixel
Sets the receiver's pixel at the coordinate x,y to the raw pixel values in pixelData.

public void setPixel(long[] pixelData, int x, int y)

Discussion
The values must be in an orderappropriate to the receiver's bitmapFormat (page 192). Small pixel sample
values should be passed as an integer value. Floating point values should be cast int[].

See Also
getPixel (page 195)

setProperty
Sets the image’s property to value.

public void setProperty(String property, Object value)

Discussion
The properties can affect how the image is read in and saved to file. They’re described in “Constants” (page
199). If value is null, the value at property is cleared.

TIFFRepresentation
public NSData TIFFRepresentation()

Returns a TIFF representation of the image, using the compression that’s returned by
compressionFactor (page 194) (if applicable).

public NSData TIFFRepresentation(int compression, float factor)

198 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Discussion
This method uses the stored compression type and factor retrieved from the initial image data or changed
using setCompressionWithFactor (page 198). If the stored compression type isn’t supported for writing
TIFF data (for example, TIFFCompressionNEXT), the stored compression is changed to
TIFFCompressionNone before the TIFF representation is generated. JPEG compression in TIFF files is not
supported, and factor is ignored.

If a problem is encountered during generation of the TIFF, throws a TIFFException or a
BadBitmapParametersException.

See Also
TIFFRepresentationOfImageReps (page 191)
representationUsingType (page 196)
TIFFRepresentation (page 768) (NSImage)

valueForProperty
Returns the value for property.

public Object valueForProperty(String property)

Discussion
The properties can affect how the image is read in and saved to file. They’re described in “Constants” (page
199).

Constants

These constants name properties that are used by representationOfImageRepsInArray (page 191),
representationUsingType (page 196), setPixel (page 198), and valueForProperty (page 199):

DescriptionConstant

The ColorSync profile. It can be used for TIFF, JPEG, GIF, and PNG files. The
value is NSData. It’s set when reading in and used when writing out image
data..

ImageColorSync-
ProfileData

The compression factor. Used only for JPEG files. JPEG compression in TIFF
files is not supported, and the factor is ignored. The value is a float between
0.0 and 1.0, with 0.0 being the lowest and 1.0 being the highest. It’s set when
reading in and used when writing out.

ImageCompression-
Factor

The compression method. Used only for TIFF files. The value is
NSTIFFCompression, described below. It’s set when reading in and used when
writing out.

ImageCompression-
Method

Whether the image is dithered. Used only for GIF files. The value is Boolean.
It’s used when writing out.

ImageDither-
Transparency

Whether the image is interlaced. Used only for PNG files. The value is Boolean.
It’s used when writing out.

ImageInterlaced

Constants 199
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

DescriptionConstant

The RGB color table. Used only for GIF files. It’s stored as packed RGB. It’s set
when reading in and used when writing out.

ImageRGBColorTable

The EXIF data for the image. Used only for JPEG files. The value is a
NSDictionary containing the EXIF keys and values. It’s set when reading in
and used when writing out.
Available in Mac OS X v10.4 and later.

ImageEXIFData

The number of frames in an animated GIF file. The value is an integer. It’s
used when reading in.

ImageFrameCount

The gamma value for the image. Used only for PNG files. Values are between
0.0 and 1.0, with 0.0 being black and 1.0 being the maximum color. The value
is a float . It’s set when reading in and used when writing out.
Available in Mac OS X v10.4 and later.

ImageGamma

The current frame for an animated GIF file. The first frame is 0. The value is
an integer.

ImageCurrentFrame

The duration in seconds of the current frame for an animated GIF image. The
value is a float. It is used when reading in, but not writing out.

ImageCurrentFrame-
Duration

Whether the image uses progressive encoding. Used only for JPEG files. The
value is a Boolean. It’s set when reading in and used when writing out.
Available in Mac OS X v10.4 and later.

ImageProgressive

The number of loops to make when animating a GIF image. Zero indicates
loop indefinitely. The value must be an integer. It is used when reading in
but not when writing out the image.
Available in Mac OS X v10.3 and later.

ImageLoopCount

The following file type constants are provided as a convenience by NSBitmapImageRep:

DescriptionConstant

Windows bitmap image (BMP) formatBMPFileType

Graphics Image Format (GIF), originally created by CompuServe for online downloadsGIFFileType

JPEG formatJPEGFileType

JPEG 2000 file format.
Available in Mac OS X v10.4 and later.

JPEG2000FileType

Portable Network Graphics (PNG) formatPNGFileType

Tagged Image File Format (TIFF)TIFFFileType

The following constants represent the various TIFF data-compression schemes supported by
NSBitmapImageRep and are returned by TIFFCompressionTypes (page 191):

200 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

DescriptionConstant

No compression.TIFFCompressionNone

CCITT Fax Group 3 compression. It’s for 1-bit fax images sent over
telephone lines.

TIFFCompressionCCITTFAX3

CCITT Fax Group 4 compression. It’s for 1-bit fax images sent over ISDN
lines.

TIFFCompressionCCITTFAX4

LZW compression.TIFFCompressionLZW

JPEG compression. No longer supported for input or output.TIFFCompressionJPEG

NeXT compressed. Used for input only.TIFFCompressionNEXT

PackBits compression.TIFFCompressionPackBits

Old JPEG compression. No longer supported for input or output.TIFFCompressionOldJPEG

The following constants represent the various bitmap component formats supported by NSBitmapImageRep.
These values are returned by bitmapFormat (page 192).

DescriptionConstant

If 0, alpha values are the last component. For example, CMYKA
and RGBA.
Available in Mac OS X v10.4 and later.

AlphaFirstBitmapFormat

If 0, alpha values are premultiplied.
Available in Mac OS X v10.4 and later.

AlphaNonpremultiplied-
BitmapFormat

If 0, samples are integer values.
Available in Mac OS X v10.4 and later.

FloatingPointSamplesBitmapFormat

The following constants represent the various status values returned by incrementalLoadFromData (page
195):

DescriptionConstant

Not enough data to determine image format. You should continue to
provide more data.

ImageRepLoadStatus-
UnknownType

The image format is known, but not enough data has been read to
determine the size, depth, etc., of the image. You should continue to
provide more data.

ImageRepLoadStatus-
ReadingHeader

Incremental loading cannot be supported. Until you call
incrementalLoadFromData (page 195) with true, this status will be
returned. You can continue to call the method but no decompression
will take place. Once you do call the method with true, then the image
will be decompressed and one of the final three status messages will be
returned.

ImageRepLoadStatus-
WillNeedAllData

Constants 201
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

DescriptionConstant

An error occurred during image decompression. The image contains the
portions of the data that have already been successfully decompressed,
if any

ImageRepLoadStatus-
InvalidData

incrementalLoadFromData (page 195) was called with true, but not
enough data was available for decompression. The image contains the
portions of the data that have already been succesfully decompressed,
if any.

ImageRepLoadStatus-
UnexpectedEOF

Enough data has been provided to successfully decompress the image
(regardless of the complete flag).

ImageRepLoadStatus-
Completed

202 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBitmapImageRep

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Boxes

Overview

An NSBox object is a simple NSView that can do two things: It can draw a border around itself, and it can
title itself. You can use an NSBox to group, visually, some number of other NSViews.

Subclassing Notes

An NSBox object is a view that draws a line around its rectangular bounds and that displays a title on or near
the line (or might display neither line nor title). You can adjust the style of the line (bezel, grooved, or plain)
as well as the placement and font of the title. An NSBox also has a content view to which other views can be
added; it thus offers a way for an application to group related views. You could create a custom subclass of
NSBox that alters or augments its appearance or that modifies its grouping behavior. For example, you might
add color to the lines or background, add a new line style, or have the views in the group automatically snap
to an invisible grid when added.

Methods to Override

You must override the drawRect (page 1753) method (inherited from NSView) if you want to customize the
appearance of your NSBox objects. Depending on the visual effect you’re trying to achieve, you may have
to invoke super’s implementation first. For example, if you are compositing a small image in a corner of the
box, you would invoke the superclass implementation first. If you’re adding a new style of line, you would
provide a way to store a request for this line type (such as a boolean instance variable and related accessor
methods). Then, in drawRect, if a request for this line type exists, you would draw the entire view yourself
(that is, without calling super). Otherwise, you would invoke the superclass implementation.

If you wish to change NSBox’s grouping behavior or other behavioral characteristics, consider overriding
setContentView (page 207), sizeToFit (page 210), or addSubview (page 1739) (inherited from NSView).

Special Considerations

If you are drawing the custom NSBox entirely by yourself, and you want it to look exactly like the superclass
object (except for your changes), it may take some effort and time to get the details right.

Overview 203
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

Tasks

Constructors

NSBox (page 205)
Creates an NSBox with a zero-sized frame rectangle.

Getting and Modifying the Border and Title

borderRect (page 205)
Returns the rectangle in which the receiver’s border is drawn.

borderType (page 205)
Returns the receiver’s border type.

setBorderType (page 207)
Sets the border type to aType, which must be a valid border type.

boxType (page 206)
Returns the receiver’s box type.

setBoxType (page 207)
Sets the box type to boxType, which must be a valid box type.

setTitle (page 208)
Sets the title to aString, and marks the region of the receiver within the title rectangle as needing
display.

setTitleFont (page 209)
Sets aFont as the NSFont object used to draw the receiver’s title and marks the region of the receiver
within the title rectangle as needing display.

setTitlePosition (page 209)
Sets the title position to aPosition, which can be one of the values described in “Constants” (page
211).

setTitleWithMnemonic (page 209)
Sets the title of the receiver with a character denoted as an access key.

title (page 210)
Returns the receiver’s title.

titleCell (page 210)
Returns the NSCell used to display the receiver’s title.

titleFont (page 210)
Returns the NSFont used to draw the receiver’s title.

titlePosition (page 211)
Returns a constant representing the title position.

titleRect (page 211)
Returns the rectangle in which the receiver’s title is drawn.

204 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

Setting and Placing the Content View

contentView (page 206)
Returns the receiver’s content view.

contentViewMargins (page 207)
Returns the distances between the border and the content view.

setContentView (page 207)
Sets the receiver’s content view to aView, resizing the NSView to fit within the box’s current content
area.

setContentViewMargins (page 208)
Sets the horizontal and vertical distance between the border of the receiver and its content view.

Resizing the Box

setFrameFromContentFrame (page 208)
Places the receiver so its content view lies on contentFrame, reckoned in the coordinate system of
the box’s superview.

sizeToFit (page 210)
Resizes and moves the receiver’s content view so it just encloses its subviews.

Constructors

NSBox
Creates an NSBox with a zero-sized frame rectangle.

public NSBox()

Creates an NSBox with frameRect as its frame rectangle.

public NSBox(NSRect frameRect)

Instance Methods

borderRect
Returns the rectangle in which the receiver’s border is drawn.

public NSRect borderRect()

borderType
Returns the receiver’s border type.

Constructors 205
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

public int borderType()

Discussion
Currently, the following border types are defined:

NSView.NoBorder

NSView.LineBorder

NSView.BezelBorder

NSView.GrooveBorder

By default, an NSBox’s border type is NSView.GrooveBorder.

See Also
setBorderType (page 207)

boxType
Returns the receiver’s box type.

public int boxType()

Discussion
Currently, the following box types are defined:

BoxPrimary

BoxSecondary

BoxSeparator

BoxOldStyle

By default, an NSBox’s box type is BoxPrimary.

See Also
setBoxType (page 207)

contentView
Returns the receiver’s content view.

public NSView contentView()

Discussion
The content view is created automatically when the box is created and resized as the box is resized (you
should never send frame-altering messages directly to a box’s content view). You can replace it with an
NSView of your own through the setContentView (page 207) method.

See Also
setContentView (page 207)

206 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

contentViewMargins
Returns the distances between the border and the content view.

public NSSize contentViewMargins()

Discussion
By default, both the width (the horizontal distance between the innermost edge of the border and the content
view) and the height (the vertical distance between the innermost edge of the border and the content view)
of the returned NSSize are 5.0 in the box’s coordinate system.

See Also
setContentViewMargins (page 208)

setBorderType
Sets the border type to aType, which must be a valid border type.

public void setBorderType(int aType)

Discussion
Currently, the following border types are defined:

NSView.NoBorder

NSView.LineBorder

NSView.BezelBorder

NSView.GrooveBorder

If the size of the new border is different from that of the old border, the content view is resized to absorb
the difference, and the box is marked for redisplay.

See Also
borderType (page 205)
setNeedsDisplay (page 1779) (NSView)

setBoxType
Sets the box type to boxType, which must be a valid box type.

public void setBoxType(int boxType)

See Also
boxType (page 206)

setContentView
Sets the receiver’s content view to aView, resizing the NSView to fit within the box’s current content area.

public void setContentView(NSView aView)

Instance Methods 207
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

Discussion
The box is marked for redisplay.

See Also
contentView (page 206)
setFrameFromContentFrame (page 208)
sizeToFit (page 210)
setNeedsDisplay (page 1779) (NSView)

setContentViewMargins
Sets the horizontal and vertical distance between the border of the receiver and its content view.

public void setContentViewMargins(NSSize offsetSize)

Discussion
The horizontal value is applied (reckoned in the box’s coordinate system) fully and equally to the left and
right sides of the box. The vertical value is similarly applied to the top and bottom.

Unlike changing a box’s other attributes, such as its title position or border type, changing the offsets doesn’t
automatically resize the content view. In general, you should send a sizeToFit (page 210) message to the
box after changing the size of its offsets. This message causes the content view to remain unchanged while
the box is sized to fit around it.

See Also
contentViewMargins (page 207)

setFrameFromContentFrame
Places the receiver so its content view lies on contentFrame, reckoned in the coordinate system of the box’s
superview.

public void setFrameFromContentFrame(NSRect contentFrame)

Discussion
The box is marked for redisplay.

See Also
setContentViewMargins (page 208)
setFrame (page 1776) (NSView)
setNeedsDisplay (page 1779) (NSView)

setTitle
Sets the title to aString, and marks the region of the receiver within the title rectangle as needing display.

public void setTitle(String aString)

Discussion
By default, an NSBox’s title is “Title.” If the size of the new title is different from that of the old title, the content
view is resized to absorb the difference.

208 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

See Also
title (page 210)
titleRect (page 211)
setNeedsDisplay (page 1779) (NSView)

setTitleFont
Sets aFont as the NSFont object used to draw the receiver’s title and marks the region of the receiver within
the title rectangle as needing display.

public void setTitleFont(NSFont aFont)

Discussion
The title is drawn using the 12.0-point system font by default. If the size of the new font is different from that
of the old font, the content view is resized to absorb the difference.

See Also
titleFont (page 210)
setNeedsDisplay (page 1779) (NSView)

setTitlePosition
Sets the title position to aPosition, which can be one of the values described in “Constants” (page 211).

public void setTitlePosition(int aPosition)

Discussion
The default position is AtTop.

If the new title position changes the size of the box’s border area, the content view is resized to absorb the
difference, and the box is marked as needing redisplay.

See Also
titlePosition (page 211)
setNeedsDisplay (page 1779) (NSView)

setTitleWithMnemonic
Sets the title of the receiver with a character denoted as an access key.

public void setTitleWithMnemonic(String aString)

Discussion
Mnemonics are not supported in Mac OS X.

By default, an NSBox’s title is “Title.” The content view is not automatically resized, and the box is not marked
for redisplay.

See Also
setTitleWithMnemonic (page 332) (NSCell)

Instance Methods 209
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

sizeToFit
Resizes and moves the receiver’s content view so it just encloses its subviews.

public void sizeToFit()

Discussion
The receiver is then moved and resized to wrap around the content view. The receiver’s width is constrained
so its title will be fully displayed.

You should invoke this method after:

 ■ Adding a subview (to the content view)

 ■ Altering the size or location of such a subview

 ■ Setting the margins around the content view

The mechanism by which the content view is moved and resized depends on whether the object responds
to its own sizeToFitmessage: If it does respond, then that message is sent, and the content view is expected
to be so modified. If the content view doesn’t respond, the box moves and resizes the content view itself.

title
Returns the receiver’s title.

public String title()

Discussion
By default, a box’s title is “Title.”

See Also
setTitle (page 208)

titleCell
Returns the NSCell used to display the receiver’s title.

public NSCell titleCell()

titleFont
Returns the NSFont used to draw the receiver’s title.

public NSFont titleFont()

Discussion
The title is drawn using the 12.0-point system font by default.

See Also
setTitleFont (page 209)

210 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

titlePosition
Returns a constant representing the title position.

public int titlePosition()

Discussion
See “Constants” (page 211) for a list of the title position constants.

See Also
setTitlePosition (page 209)

titleRect
Returns the rectangle in which the receiver’s title is drawn.

public NSRect titleRect()

See Also
setTitlePosition (page 209)
setTitle (page 208)
setTitleFont (page 209)
setFrameFromContentFrame (page 208)
sizeToFit (page 210)

Constants

The following constants are provided by NSBox to specify the location of a box’s title with respect to its
border:

DescriptionConstant

The box has no title.NoTitle

Title positioned above the box’s top border.AboveTop

Title positioned within the box’s top border.AtTop

Title positioned below the box’s top border.BelowTop

Title positioned above the box’s bottom border.AboveBottom

Title positioned within the box’s bottom border.AtBottom

Title positioned below the box’s bottom border.BelowBottom

Constants 211
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

212 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

NSBox

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Browsers

Overview

NSBrowser provides a user interface for displaying and selecting items from a list of data or from hierarchically
organized lists of data such as directory paths. When working with a hierarchy of data, the levels are displayed
in columns, which are numbered from left to right.

NSBrowser uses NSBrowserCell (page 245) to implement its user interface.

Tasks

Constructors

NSBrowser (page 220)
Creates an NSBrowser with a zero-sized frame rectangle.

Setting Component Classes

cellClass (page 220)
Always returns the NSBrowserCell class (even if the developer has sent a setNewCellClass (page
235) message to a particular instance).

cellPrototype (page 222)
Returns the receiver’s prototype NSCell.

setCellPrototype (page 233)
Sets the NSCell instance copied to display items in the matrices in the columns of the receiver.

matrixClass (page 227)
Returns the class of NSMatrix used in the receiver’s columns.

setNewCellClass (page 235)
Sets the class of NSCell used in the columns of the receiver to aClass.

Overview 213
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

setNewMatrixClass (page 235)
Sets the matrix class (NSMatrix or an NSMatrix subclass) used in the receiver’s columns to aClass.

Getting Matrices, Cells, and Rows

selectedCell (page 230)
Returns the last (rightmost and lowest) selected NSCell.

selectedCellInColumn (page 230)
Returns the last (lowest) NSCell selected in column.

selectedCells (page 231)
Returns all cells selected in the rightmost column.

selectAll (page 230)
Selects all NSCells in the last column of the receiver.

selectedRowInColumn (page 231)
Returns the row index of the selected cell in the column specified by index column.

selectRowInColumn (page 231)
Selects the cell at index row in the column identified by index column.

loadedCellAtLocation (page 226)
Loads if necessary and returns the NSCell at row in column.

matrixInColumn (page 227)
Returns the matrix located in the column identified by index column.

Getting and Setting Paths

path (page 227)
Returns the receiver’s current path.

setPath (page 235)
Sets the path displayed by the receiver to path.

pathToColumn (page 228)
Returns a string representing the path from the first column up to, but not including, the column at
index column.

pathSeparator (page 228)
Returns the path separator.

setPathSeparator (page 236)
Sets the path separator to newString.

Manipulating Columns

addColumn (page 221)
Adds a column to the right of the last column.

displayAllColumns (page 224)
Updates the receiver to display all loaded columns.

214 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

displayColumn (page 224)
Updates the receiver to display the column with the index column.

columnOfMatrix (page 222)
Returns the column number in which matrix is located.

selectedColumn (page 231)
Returns the index of the last column with a selected item.

lastColumn (page 226)
Returns the index of the last column loaded.

setLastColumn (page 234)
Sets the last column to column.

firstVisibleColumn (page 225)
Returns the index of the first visible column.

numberOfVisibleColumns (page 227)
Returns the number of columns visible.

lastVisibleColumn (page 226)
Returns the index of the last visible column.

validateVisibleColumns (page 239)
Invokes delegate method browserIsColumnValid (page 241) for visible columns.

Loading Columns

isLoaded (page 225)
Returns whether column 0 is loaded.

loadColumnZero (page 226)
Loads column 0; unloads previously loaded columns.

reloadColumn (page 229)
Reloads column if it exists and sets it to be the last column.

Setting Selection Characteristics

allowsBranchSelection (page 221)
Returns whether the user can select branch items when multiple selection is enabled.

setAllowsBranchSelection (page 232)
Sets whether the user can select branch items when multiple selection is enabled, depending on the
Boolean value passed in the flag.

allowsEmptySelection (page 221)
Returns whether there can be nothing selected.

setAllowsEmptySelection (page 232)
Sets whether there can be nothing selected, depending on the Boolean value passed in the flag.

allowsMultipleSelection (page 222)
Returns whether the user can select multiple items.

setAllowsMultipleSelection (page 233)
Sets whether the user can select multiple items, depending on the Boolean value passed in the flag.

Tasks 215
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

Setting Column Characteristics

reusesColumns (page 229)
Returns true if NSMatrix objects aren’t freed when their columns are unloaded.

setReusesColumns (page 236)
If flag is true, prevents NSMatrix objects from being freed when their columns are unloaded, so
they can be reused.

maxVisibleColumns (page 227)
Returns the maximum number of visible columns.

setMaxVisibleColumns (page 235)
Sets the maximum number of columns displayed to columnCount.

minColumnWidth (page 227)
Returns the minimum column width in pixels.

setMinColumnWidth (page 235)
Sets the minimum column width to columnWidth, specified in pixels.

separatesColumns (page 232)
Returns whether columns are separated by bezeled borders.

setSeparatesColumns (page 237)
Sets whether to separate columns with bezeled borders, depending on the Boolean value flag.

takesTitleFromPreviousColumn (page 238)
Returns true if the title of a column is set to the string value of the selected NSCell in the previous
column.

setTakesTitleFromPreviousColumn (page 237)
Sets whether the title of a column is set to the string value of the selected NSCell in the previous
column, depending on the Boolean value flag.

Manipulating Column Titles

titleOfColumn (page 239)

setTitleOfColumn (page 237)
Sets the title of the column at index column to aString.

isTitled (page 226)
Returns whether columns display titles.

setTitled (page 237)
Sets whether columns display titles, depending on the Boolean value flag.

drawTitleOfColumn (page 225)
Draws the title for the column at index column within the rectangle defined by aRect.

titleHeight (page 239)
Returns the height of column titles.

titleFrameOfColumn (page 238)
Returns the bounds of the title frame for the column at index column.

216 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

Scrolling an NSBrowser

scrollColumnToVisible (page 229)
Scrolls to make the column at index column visible.

scrollColumnsLeftBy (page 229)
Scrolls columns left by shiftAmount columns.

scrollColumnsRightBy (page 229)
Scrolls columns right by shiftAmount columns.

updateScroller (page 239)
Updates the horizontal scroller to reflect column positions.

scrollViaScroller (page 230)
Scrolls columns left or right based on an NSScroller.

Showing a Horizontal Scroller

hasHorizontalScroller (page 225)
Returns whether an NSScroller is used to scroll horizontally.

setHasHorizontalScroller (page 234)
Sets whether an NSScroller is used to scroll horizontally.

Setting the Behavior of Arrow Keys

acceptsArrowKeys (page 221)

setAcceptsArrowKeys (page 232)
Enables or disables the arrow keys as used for navigating within and between browsers, depending
on the Boolean value passed in the flag.

sendsActionOnArrowKeys (page 232)

setSendsActionOnArrowKeys (page 237)
Sets whether pressing an arrow key will cause the action message to be sent (in addition to causing
scrolling), depending on the Boolean value flag.

Getting Column Frames

frameOfColumn (page 225)
Returns the rectangle containing the column at index column.

frameOfInsideOfColumn (page 225)
Returns the rectangle containing the column at index column, not including borders.

Tasks 217
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

Arranging Browser Components

tile (page 238)
Adjusts the various subviews of the receiver—scrollers, columns, titles, and so on—without redrawing.

Setting the Delegate

delegate (page 223)
Returns the receiver’s delegate.

setDelegate (page 234)
Sets the receiver’s delegate to anObject.

Target and Action

doubleAction (page 224)
Returns the receiver’s double-click action method.

setDoubleAction (page 234)
Sets the receiver’s double-click action to aSelector.

sendAction (page 231)
Sends the action message to the target.

Event Handling

doClick (page 224)
Responds to (single) mouse clicks in a column of the receiver.

doDoubleClick (page 224)
Responds to double clicks in a column of the receiver.

Resizing Columns

columnContentWidthForColumnWidth (page 222)
Given the column width (the entire scrolling text view), returns the content width (the matrix in the
column).

columnWidthForColumnContentWidth (page 223)
Given the content width (the matrix in the column), returns the column width (the entire scrolling
text view).

setColumnResizingType (page 233)
Sets the receiver’s column resizing type.

columnResizingType (page 222)
Returns the receiver’s column resizing type.

setPrefersAllColumnUserResizing: (page 236)
Specifies whether the browser resizes all columns simultaneously rather than resizing a single column
at a time.

218 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

prefersAllColumnUserResizing (page 228)
Returns true if the browser is set to resize all columns simultaneously rather than resizing a single
column at a time.

setWidthOfColumn (page 238)
Sets the width of the specified column.

widthOfColumn (page 239)
Returns the width of the specified column.

setColumnsAutosaveName (page 233)
Sets the name used to automatically save the receiver’s column configuration.

columnsAutosaveName (page 223)
Returns the name used to automatically save the receiver’s column configuration.

removeSavedColumnsWithAutosaveName (page 221)
Removes the column configuration data stored under name from the application’s user defaults.

Creating rows

browserCreateRowsForColumn (page 240) delegate method
Creates a row in matrix for each row of data to be displayed in column of the browser.

Displaying a cell

browserWillDisplayCell (page 243) delegate method
This method gives the delegate the opportunity to modify the specified cell at row in column before
it’s displayed by the NSBrowser.

Getting information about a browser

browserIsColumnValid (page 241) delegate method
Returns whether the contents of the column, specified by column, are valid.

browserNumberOfRowsInColumn (page 241) delegate method
Returns the number of rows of data in the column at index column.

browserTitleOfColumn (page 243) delegate method
Asks the delegate for the title to display above the column at index column.

Selecting

browserSelectCellWithStringInColumn (page 241) delegate method
Asks the delegate to select the NSCell with title title in the column at index column.

browserSelectRowInColumn (page 241) delegate method
Asks the delegate to select the NSCell at row row in the column at index column.

Tasks 219
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

Scrolling

browserDidScroll (page 241) delegate method
Notifies the delegate when the NSBrowser has scrolled.

browserWillScroll (page 243) delegate method
Notifies the delegate when the NSBrowser will scroll.

Resizing columns

browserShouldSizeColumnToWidth (page 242) delegate method
Used for determining a column’s initial size.

browserSizeToFitWidthOfColumn (page 242) delegate method
Returns the ideal width for a column

browserColumnConfigurationDidChange (page 240) delegate method
Used by clients to implement their own column width persistence.

Constructors

NSBrowser
Creates an NSBrowser with a zero-sized frame rectangle.

public NSBrowser()

Creates an NSBrowser in frameRect.

public NSBrowser(NSRect frameRect)

Static Methods

cellClass
Always returns the NSBrowserCell class (even if the developer has sent a setNewCellClass (page 235)
message to a particular instance).

public static Class cellClass()

Discussion
This method is used by NSControl during initialization and is not meant to be used by applications.

See Also
cellPrototype (page 222)
setCellPrototype (page 233)

220 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

removeSavedColumnsWithAutosaveName
Removes the column configuration data stored under name from the application’s user defaults.

public static void removeSavedColumnsWithAutosaveName(String name)

Availability
Available in Mac OS X v10.3 and later.

See Also
columnsAutosaveName (page 223)
setColumnsAutosaveName (page 233)

Instance Methods

acceptsArrowKeys
public boolean acceptsArrowKeys()

Discussion
Returns true if the arrow keys are enabled.

See Also
setAcceptsArrowKeys (page 232)

addColumn
Adds a column to the right of the last column.

public void addColumn()

See Also
columnOfMatrix (page 222)
displayColumn (page 224)
selectedColumn (page 231)

allowsBranchSelection
Returns whether the user can select branch items when multiple selection is enabled.

public boolean allowsBranchSelection()

See Also
setAllowsBranchSelection (page 232)

allowsEmptySelection
Returns whether there can be nothing selected.

Instance Methods 221
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

public boolean allowsEmptySelection()

See Also
setAllowsEmptySelection (page 232)

allowsMultipleSelection
Returns whether the user can select multiple items.

public boolean allowsMultipleSelection()

See Also
setAllowsMultipleSelection (page 233)

cellPrototype
Returns the receiver’s prototype NSCell.

public NSCell cellPrototype()

See Also
setCellPrototype (page 233)
setNewCellClass (page 235)

columnContentWidthForColumnWidth
Given the column width (the entire scrolling text view), returns the content width (the matrix in the column).

public float columnContentWidthForColumnWidth(float columnWidth)

Availability
Available in Mac OS X v10.3 and later.

See Also
columnWidthForColumnContentWidth (page 223)

columnOfMatrix
Returns the column number in which matrix is located.

public int columnOfMatrix(NSMatrix matrix)

See Also
matrixInColumn (page 227)

columnResizingType
Returns the receiver’s column resizing type.

222 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

public int columnResizingType()

Discussion
Possible return values are described in “Constants” (page 240). The default is AutoColumnResizing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setColumnResizingType (page 233)

columnsAutosaveName
Returns the name used to automatically save the receiver’s column configuration.

public String columnsAutosaveName()

Availability
Available in Mac OS X v10.3 and later.

See Also
setColumnsAutosaveName (page 233)

columnWidthForColumnContentWidth
Given the content width (the matrix in the column), returns the column width (the entire scrolling text view).

public float columnWidthForColumnContentWidth(float columnContentWidth)

Discussion
For example, to guarantee that 16 pixels of your browser cell are always visible, call:

browser.setMinColumnWidth(browser.columnWidthForColumnContentWidth(16))

Availability
Available in Mac OS X v10.3 and later.

See Also
columnContentWidthForColumnWidth (page 222)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 234)

Instance Methods 223
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

displayAllColumns
Updates the receiver to display all loaded columns.

public void displayAllColumns()

See Also
addColumn (page 221)
validateVisibleColumns (page 239)

displayColumn
Updates the receiver to display the column with the index column.

public void displayColumn(int column)

See Also
addColumn (page 221)
validateVisibleColumns (page 239)

doClick
Responds to (single) mouse clicks in a column of the receiver.

public void doClick(Object sender)

See Also
sendAction (page 231)

doDoubleClick
Responds to double clicks in a column of the receiver.

public void doDoubleClick(Object sender)

See Also
setDoubleAction (page 234)

doubleAction
Returns the receiver’s double-click action method.

public NSSelector doubleAction()

See Also
setDoubleAction (page 234)

224 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

drawTitleOfColumn
Draws the title for the column at index column within the rectangle defined by aRect.

public void drawTitleOfColumn(int column, NSRect aRect)

See Also
setTitleOfColumn (page 237)
titleFrameOfColumn (page 238)
titleHeight (page 239)

firstVisibleColumn
Returns the index of the first visible column.

public int firstVisibleColumn()

See Also
lastVisibleColumn (page 226)
numberOfVisibleColumns (page 227)

frameOfColumn
Returns the rectangle containing the column at index column.

public NSRect frameOfColumn(int column)

frameOfInsideOfColumn
Returns the rectangle containing the column at index column, not including borders.

public NSRect frameOfInsideOfColumn(int column)

hasHorizontalScroller
Returns whether an NSScroller is used to scroll horizontally.

public boolean hasHorizontalScroller()

See Also
setHasHorizontalScroller (page 234)

isLoaded
Returns whether column 0 is loaded.

public boolean isLoaded()

Instance Methods 225
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

See Also
loadColumnZero (page 226)
reloadColumn (page 229)

isTitled
Returns whether columns display titles.

public boolean isTitled()

See Also
setTitled (page 237)

lastColumn
Returns the index of the last column loaded.

public int lastColumn()

See Also
selectedColumn (page 231)
setLastColumn (page 234)

lastVisibleColumn
Returns the index of the last visible column.

public int lastVisibleColumn()

See Also
firstVisibleColumn (page 225)
numberOfVisibleColumns (page 227)

loadColumnZero
Loads column 0; unloads previously loaded columns.

public void loadColumnZero()

See Also
isLoaded (page 225)
reloadColumn (page 229)

loadedCellAtLocation
Loads if necessary and returns the NSCell at row in column.

public NSCell loadedCellAtLocation(int row, int column)

226 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

See Also
selectedCellInColumn (page 230)

matrixClass
Returns the class of NSMatrix used in the receiver’s columns.

public Class matrixClass()

See Also
setNewMatrixClass (page 235)

matrixInColumn
Returns the matrix located in the column identified by index column.

public NSMatrix matrixInColumn(int column)

maxVisibleColumns
Returns the maximum number of visible columns.

public int maxVisibleColumns()

See Also
setMaxVisibleColumns (page 235)

minColumnWidth
Returns the minimum column width in pixels.

public float minColumnWidth()

See Also
setMinColumnWidth (page 235)

numberOfVisibleColumns
Returns the number of columns visible.

public int numberOfVisibleColumns()

See Also
validateVisibleColumns (page 239)

path
Returns the receiver’s current path.

Instance Methods 227
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

public String path()

Discussion
The components are separated with the string returned by pathSeparator (page 228).

Invoking this method is equivalent to invoking pathToColumn (page 228) for all columns.

See Also
setPath (page 235)

pathSeparator
Returns the path separator.

public String pathSeparator()

Discussion
The default is “/”.

See Also
setPathSeparator (page 236)

pathToColumn
Returns a string representing the path from the first column up to, but not including, the column at index
column.

public String pathToColumn(int column)

Discussion
The components are separated with the string returned by pathSeparator (page 228).

See Also
path (page 227)
setPath (page 235)

prefersAllColumnUserResizing
Returns true if the browser is set to resize all columns simultaneously rather than resizing a single column
at a time.

public boolean prefersAllColumnUserResizing()

Discussion
The default is false. This setting applies only to browsers that allow the user to resize columns (see
UserColumnResizing (page 240). Holding down the Option key while resizing switches the type of resizing
used.

Availability
Available in Mac OS X v10.3 and later.

228 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

See Also
setPrefersAllColumnUserResizing: (page 236)
setColumnResizingType (page 233)

reloadColumn
Reloads column if it exists and sets it to be the last column.

public void reloadColumn(int column)

See Also
isLoaded (page 225)
loadColumnZero (page 226)

reusesColumns
Returns true if NSMatrix objects aren’t freed when their columns are unloaded.

public boolean reusesColumns()

See Also
setReusesColumns (page 236)

scrollColumnsLeftBy
Scrolls columns left by shiftAmount columns.

public void scrollColumnsLeftBy(int shiftAmount)

See Also
scrollViaScroller (page 230)
updateScroller (page 239)

scrollColumnsRightBy
Scrolls columns right by shiftAmount columns.

public void scrollColumnsRightBy(int shiftAmount)

See Also
scrollViaScroller (page 230)
updateScroller (page 239)

scrollColumnToVisible
Scrolls to make the column at index column visible.

public void scrollColumnToVisible(int column)

Instance Methods 229
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

See Also
scrollViaScroller (page 230)
updateScroller (page 239)

scrollViaScroller
Scrolls columns left or right based on an NSScroller.

public void scrollViaScroller(NSScroller sender)

See Also
updateScroller (page 239)

selectAll
Selects all NSCells in the last column of the receiver.

public void selectAll(Object sender)

See Also
selectedCell (page 230)
selectedCells (page 231)
selectedColumn (page 231)

selectedCell
Returns the last (rightmost and lowest) selected NSCell.

public NSCell selectedCell()

See Also
loadedCellAtLocation (page 226)
selectedCell (page 230)
selectRowInColumn (page 231)

selectedCellInColumn
Returns the last (lowest) NSCell selected in column.

public NSCell selectedCellInColumn(int column)

See Also
loadedCellAtLocation (page 226)
selectedCell (page 230)
selectedRowInColumn (page 231)

230 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

selectedCells
Returns all cells selected in the rightmost column.

public NSArray selectedCells()

See Also
selectAll (page 230)
selectedCell (page 230)

selectedColumn
Returns the index of the last column with a selected item.

public int selectedColumn()

See Also
columnOfMatrix (page 222)
selectAll (page 230)

selectedRowInColumn
Returns the row index of the selected cell in the column specified by index column.

public int selectedRowInColumn(int column)

See Also
loadedCellAtLocation (page 226)
selectedCell (page 230)
selectedCellInColumn (page 230)

selectRowInColumn
Selects the cell at index row in the column identified by index column.

public void selectRowInColumn(int row, int column)

See Also
loadedCellAtLocation (page 226)

sendAction
Sends the action message to the target.

public boolean sendAction()

Discussion
Returns true upon success, false if no target for the message could be found.

Instance Methods 231
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

sendsActionOnArrowKeys
public boolean sendsActionOnArrowKeys()

Discussion
Returns false if pressing an arrow key only scrolls the receiver, true if it also sends the action message
specified by setAction (page 455).

See Also
acceptsArrowKeys (page 221)
setSendsActionOnArrowKeys (page 237)

separatesColumns
Returns whether columns are separated by bezeled borders.

public boolean separatesColumns()

See Also
setSeparatesColumns (page 237)

setAcceptsArrowKeys
Enables or disables the arrow keys as used for navigating within and between browsers, depending on the
Boolean value passed in the flag.

public void setAcceptsArrowKeys(boolean flag)

See Also
acceptsArrowKeys (page 221)
sendsActionOnArrowKeys (page 232)

setAllowsBranchSelection
Sets whether the user can select branch items when multiple selection is enabled, depending on the Boolean
value passed in the flag.

public void setAllowsBranchSelection(boolean flag)

See Also
allowsBranchSelection (page 221)

setAllowsEmptySelection
Sets whether there can be nothing selected, depending on the Boolean value passed in the flag.

public void setAllowsEmptySelection(boolean flag)

See Also
allowsEmptySelection (page 221)

232 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

setAllowsMultipleSelection
Sets whether the user can select multiple items, depending on the Boolean value passed in the flag.

public void setAllowsMultipleSelection(boolean flag)

See Also
allowsMultipleSelection (page 222)

setCellPrototype
Sets the NSCell instance copied to display items in the matrices in the columns of the receiver.

public void setCellPrototype(NSCell aCell)

See Also
cellClass (page 220)
cellPrototype (page 222)

setColumnResizingType
Sets the receiver’s column resizing type.

public void setColumnResizingType(int columnResizingType)

Discussion
Possible values for columnResizingType are described in “Constants” (page 240). The default is
AutoColumnResizing. This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
columnResizingType (page 222)

setColumnsAutosaveName
Sets the name used to automatically save the receiver’s column configuration.

public void setColumnsAutosaveName(String name)

Discussion
If name is different from the current name, this method also reads in any column configuration data previously
saved under name and applies the values to the browser. Column configuration is defined as an array of
column content widths. One width is saved for each level the user has reached. That is, the browser saves
column width based on depth, not on unique paths. To do more complex column persistence, you should
register for ColumnConfigurationDidChangeNotification (page 243) and handle persistence yourself.
This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 233
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

See Also
columnsAutosaveName (page 223)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

Discussion
Throws BrowserIllegalDelegateException if the delegate specified by anObject doesn’t respond to
browserWillDisplayCell (page 243) and either of the methods browserNumberOfRowsInColumn (page
241) or browserCreateRowsForColumn (page 240).

See Also
delegate (page 223)

setDoubleAction
Sets the receiver’s double-click action to aSelector.

public void setDoubleAction(NSSelector aSelector)

Discussion
For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

See Also
doubleAction (page 224)
sendAction (page 231)

setHasHorizontalScroller
Sets whether an NSScroller is used to scroll horizontally.

public void setHasHorizontalScroller(boolean flag)

See Also
hasHorizontalScroller (page 225)

setLastColumn
Sets the last column to column.

public void setLastColumn(int column)

See Also
lastColumn (page 226)
lastVisibleColumn (page 226)

234 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

setMaxVisibleColumns
Sets the maximum number of columns displayed to columnCount.

public void setMaxVisibleColumns(int columnCount)

See Also
maxVisibleColumns (page 227)

setMinColumnWidth
Sets the minimum column width to columnWidth, specified in pixels.

public void setMinColumnWidth(float columnWidth)

See Also
minColumnWidth (page 227)

setNewCellClass
Sets the class of NSCell used in the columns of the receiver to aClass.

public void setNewCellClass(Class aClass)

See Also
cellClass (page 220)
cellPrototype (page 222)

setNewMatrixClass
Sets the matrix class (NSMatrix or an NSMatrix subclass) used in the receiver’s columns to aClass.

public void setNewMatrixClass(Class aClass)

See Also
matrixClass (page 227)

setPath
Sets the path displayed by the receiver to path.

public boolean setPath(String path)

Discussion
If path is prefixed by the path separator, the path is absolute, containing the full path from the receiver’s
first column. Otherwise, the path is relative, extending the receiver’s current path starting at the last column.
Returns true if path is valid.

Instance Methods 235
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

While parsing path, the receiver compares each component with the entries in the current column. If an
exact match is found, the matching entry is selected, and the next component is compared to the next
column’s entries. If no match is found for a component, the method exits and returns false; the final path
is set to the valid portion of path. If each component of path specifies a valid branch or leaf in the receiver’s
hierarchy, the method returns true.

See Also
path (page 227)
pathToColumn (page 228)
pathSeparator (page 228)
setPathSeparator (page 236)

setPathSeparator
Sets the path separator to newString.

public void setPathSeparator(String newString)

See Also
pathSeparator (page 228)

setPrefersAllColumnUserResizing:
Specifies whether the browser resizes all columns simultaneously rather than resizing a single column at a
time.

public void setPrefersAllColumnUserResizing(boolean prefersAllColumnResizing)

Discussion
Set to true, to cause the browser to resize all columns simultaneously; the default is single column resizing
(false). This setting applies only to browsers that allow the user to resize columns (see
UserColumnResizing (page 240). Holding down the Option key while resizing switches the type of resizing
used. This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
prefersAllColumnUserResizing (page 228)
setColumnResizingType (page 233)

setReusesColumns
If flag is true, prevents NSMatrix objects from being freed when their columns are unloaded, so they can
be reused.

public void setReusesColumns(boolean flag)

See Also
reusesColumns (page 229)

236 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

setSendsActionOnArrowKeys
Sets whether pressing an arrow key will cause the action message to be sent (in addition to causing scrolling),
depending on the Boolean value flag.

public void setSendsActionOnArrowKeys(boolean flag)

See Also
sendsActionOnArrowKeys (page 232)

setSeparatesColumns
Sets whether to separate columns with bezeled borders, depending on the Boolean value flag.

public void setSeparatesColumns(boolean flag)

Discussion
This value is ignored if isTitled (page 226) does not return false.

See Also
separatesColumns (page 232)

setTakesTitleFromPreviousColumn
Sets whether the title of a column is set to the string value of the selected NSCell in the previous column,
depending on the Boolean value flag.

public void setTakesTitleFromPreviousColumn(boolean flag)

See Also
takesTitleFromPreviousColumn (page 238)

setTitled
Sets whether columns display titles, depending on the Boolean value flag.

public void setTitled(boolean flag)

See Also
isTitled (page 226)

setTitleOfColumn
Sets the title of the column at index column to aString.

public void setTitleOfColumn(String aString, int column)

See Also
drawTitleOfColumn (page 225)
titleOfColumn (page 239)

Instance Methods 237
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

setWidthOfColumn
Sets the width of the specified column.

public void setWidthOfColumn(float columnWidth, int columnIndex)

Discussion
This method can be used to set the initial width of browser columns unless the column sizing is automatic;
setWidthOfColumn does nothing if columnResizingType (page 222) is AutoColumnResizing. To set
the default width for new columns (that don’t otherwise have initial widths from defaults or via the delegate),
use a columnIndex of –1. A value set for columnIndex of –1 is persistent. An
ColumnConfigurationDidChangeNotification (page 243) notification is posted (not immediately), if
necessary, so that the receiver can autosave the new column configuration.

Availability
Available in Mac OS X v10.3 and later.

See Also
widthOfColumn (page 239)
browserShouldSizeColumnToWidth (page 242)

takesTitleFromPreviousColumn
Returns true if the title of a column is set to the string value of the selected NSCell in the previous column.

public boolean takesTitleFromPreviousColumn()

See Also
setTakesTitleFromPreviousColumn (page 237)

tile
Adjusts the various subviews of the receiver—scrollers, columns, titles, and so on—without redrawing.

public void tile()

Discussion
Your code shouldn’t send this message. It’s invoked any time the appearance of the receiver changes.

titleFrameOfColumn
Returns the bounds of the title frame for the column at index column.

public NSRect titleFrameOfColumn(int column)

See Also
drawTitleOfColumn (page 225)

238 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

titleHeight
Returns the height of column titles.

public float titleHeight()

See Also
drawTitleOfColumn (page 225)

titleOfColumn
public String titleOfColumn(int column)

Discussion
Returns the title displayed for the column at index column.

See Also
setTitleOfColumn (page 237)

updateScroller
Updates the horizontal scroller to reflect column positions.

public void updateScroller()

See Also
scrollViaScroller (page 230)

validateVisibleColumns
Invokes delegate method browserIsColumnValid (page 241) for visible columns.

public void validateVisibleColumns()

See Also
numberOfVisibleColumns (page 227)

widthOfColumn
Returns the width of the specified column.

public float widthOfColumn(int)

Availability
Available in Mac OS X v10.3 and later.

See Also
setWidthOfColumn (page 238)

Instance Methods 239
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

Constants

The following constants are defined by NSBrowser to describe types of browser column resizing, and are
used by setColumnResizingType (page 233) and columnResizingType (page 222):

DescriptionConstant

Neither NSBrowser nor the user can change the column width. The developer
must explicitly set all column widths.

NoColumnResizing

All columns have the same width, calculated using a combination of the minimum
column width and maximum number of visible columns settings. The column
width changes as the window size changes. The user cannot resize columns.

AutoColumnResizing

The developer chooses the initial column widths, but users can resize all columns
simultaneously or each column individually.

UserColumnResizing

Delegate Methods

browserColumnConfigurationDidChange
Used by clients to implement their own column width persistence.

public abstract void browserColumnConfigurationDidChange(NSNotification notification)

Discussion
Implementation is optional, and used for browsers with resize type UserColumnResizing only. It is called
when the method setWidthOfColumn (page 238) is used to change the width of any browser columns or
when the user resizes any columns. If the user resizes more than one column, a single notification is posted
when the user is finished resizing.

Availability
Available in Mac OS X v10.3 and later.

See Also
ColumnConfigurationDidChangeNotification (page 243)
setWidthOfColumn (page 238)

browserCreateRowsForColumn
Creates a row in matrix for each row of data to be displayed in column of the browser.

public abstract void browserCreateRowsForColumn(NSBrowser sender, int column,
NSMatrix matrix)

Discussion
Either this method or browserNumberOfRowsInColumn (page 241) must be implemented, but not both (or
a BrowserIllegalDelegateException will be thrown).

240 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

See Also
browserWillDisplayCell (page 243)

browserDidScroll
Notifies the delegate when the NSBrowser has scrolled.

public abstract void browserDidScroll(NSBrowser sender)

browserIsColumnValid
Returns whether the contents of the column, specified by column, are valid.

public abstract boolean browserIsColumnValid(NSBrowser sender, int column)

Discussion
If false is returned, sender reloads the column. This method is invoked in response to
validateVisibleColumns (page 239) being sent to sender.

browserNumberOfRowsInColumn
Returns the number of rows of data in the column at index column.

public abstract int browserNumberOfRowsInColumn(NSBrowser sender, int column)

Discussion
Either this method or browserCreateRowsForColumn (page 240) must be implemented, but not both.

See Also
browserWillDisplayCell (page 243)

browserSelectCellWithStringInColumn
Asks the delegate to select the NSCell with title title in the column at index column.

public abstract boolean browserSelectCellWithStringInColumn(NSBrowser sender, String
title, int column)

Discussion
It is the delegate’s responsibility to select the cell, rather than the browser. If the delegate returns false,
the NSCell was not selected; otherwise true is returned. Invoked in response to setPath (page 235) being
received by sender.

See Also
selectedCellInColumn (page 230)

browserSelectRowInColumn
Asks the delegate to select the NSCell at row row in the column at index column.

Delegate Methods 241
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

public abstract boolean browserSelectRowInColumn(NSBrowser sender, int row, int
column)

Discussion
It is the delegate’s responsibility to select the cell, rather than the browser. If the delegate returns false,
the NSCell was not selected; otherwise true is returned. Invoked in response to selectRowInColumn (page
231) being received by sender.

See Also
selectedRowInColumn (page 231)
selectRowInColumn (page 231)

browserShouldSizeColumnToWidth
Used for determining a column’s initial size.

public abstract float browserShouldSizeColumnToWidth(NSBrowser browser, int
columnIndex, boolean forUserResize, float suggestedWidth)

Discussion
Implementation is optional and applies only to browsers with resize type NoColumnResizing or
UserColumnResizing (see “Constants” (page 240)). When this method is called, it includes a suggested
width for the column. This method should return your desired initial width for a newly added column. If you
want to accept the suggested width, return suggestedWidth. If you return 0 or a size too small to display
the resize handle and a portion of the column, the actual size used will be larger than you requested.

As currently implemented, this method is always called with forUserResize set to false.

Availability
Available in Mac OS X v10.3 and later.

See Also
setWidthOfColumn (page 238)

browserSizeToFitWidthOfColumn
Returns the ideal width for a column

public abstract float browserSizeToFitWidthOfColumn(NSBrowser browser, int
columnIndex)

Discussion
. Implementation is optional and is for browsers with resize type UserColumnResizing only. This method
is used when performing a “right-size” operation; that is, when sizing a column to the smallest width that
contains all the content without clipping or truncating. If columnIndex is –1, the result is used for a
“right-size-all” operation. In that case, you should return a size that can be uniformly applied to all columns
(that is, every column will be set to this size). It is assumed that the implementation may be expensive, so it
will be called only when necessary.

Availability
Available in Mac OS X v10.3 and later.

242 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

browserTitleOfColumn
Asks the delegate for the title to display above the column at index column.

public abstract String browserTitleOfColumn(NSBrowser sender, int column)

See Also
setTitleOfColumn (page 237)
titleOfColumn (page 239)

browserWillDisplayCell
This method gives the delegate the opportunity to modify the specified cell at row in column before it’s
displayed by the NSBrowser.

public abstract void browserWillDisplayCell(NSBrowser sender, Object cell, int row,
int column)

Discussion
The delegate should set any state necessary for the correct display of the cell.

See Also
browserCreateRowsForColumn (page 240)
browserNumberOfRowsInColumn (page 241)

browserWillScroll
Notifies the delegate when the NSBrowser will scroll.

public abstract void browserWillScroll(NSBrowser sender)

Notifications

ColumnConfigurationDidChangeNotification
Notifies the delegate when the width of a browser column has changed. The notification object is the browser
whose column sizes need to be made persistent. This notification does not contain a userInfo dictionary.
If the user resizes more than one column, a single notification is posted when the user is finished resizing.

Availability
Available in Mac OS X v10.3 and later.

See Also
browserColumnConfigurationDidChange (page 240)

Notifications 243
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

244 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

NSBrowser

Inherits from NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Browsers

Overview

NSBrowserCell is the subclass of NSCell used by default to display data in the columns of an NSBrowser. (Each
column contains an NSMatrix filled with NSBrowserCells.)

NSBrowserCell implements the user interface of NSBrowser (page 213).

Tasks

Constructors

NSBrowserCell (page 246)
Creates an empty NSBrowserCell.

Accessing Graphics Images

branchImage (page 247)
Returns the default image for branch NSBrowserCells (a right-pointing triangle).

highlightedBranchImage (page 247)
Returns the default NSImage for branch NSBrowserCells that are highlighted (a lighter version of the
image returned by branchImage (page 247)).

alternateImage (page 247)
Returns this receiver’s image for the highlighted state or null if no image is set.

setAlternateImage (page 248)
Sets the receiver’s image for the highlighted state.

Overview 245
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBrowserCell

Setting State

reset (page 248)
Unhighlights the receiver and unsets its state.

set (page 248)
Highlights the receiver and sets its state.

Determining Cell Attributes

isLeaf (page 248)
Returns whether the receiver is a leaf or a branch cell.

setLeaf (page 249)
Sets whether the receiver is a leaf or a branch cell, depending on the Boolean value flag.

isLoaded (page 248)
Returns true if the receiver’s state has been set and the cell is ready to display.

setLoaded (page 249)
Sets whether the receiver’s state has been set and the cell is ready to display, depending on the
Boolean value flag.

highlightColorInView (page 247)
Returns the highlight color that the receiver wants to display as in controlView.

Constructors

NSBrowserCell
Creates an empty NSBrowserCell.

public NSBrowserCell()

Creates an NSBrowserCell initialized with aString and set to have the cell’s default menu.

public NSBrowserCell(String aString)

Creates an NSBrowserCell initialized with anImage and set to have the cell’s default menu.

public NSBrowserCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

246 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBrowserCell

Static Methods

branchImage
Returns the default image for branch NSBrowserCells (a right-pointing triangle).

public static NSImage branchImage()

Discussion
Override this method if you want a different image. To have a branch NSBrowserCell with no image (and no
space reserved for an image), override this method to return null.

See Also
highlightedBranchImage (page 247)
alternateImage (page 247)
setAlternateImage (page 248)

highlightedBranchImage
Returns the default NSImage for branch NSBrowserCells that are highlighted (a lighter version of the image
returned by branchImage (page 247)).

public static NSImage highlightedBranchImage()

Discussion
Override this method if you want a different image.

See Also
branchImage (page 247)
alternateImage (page 247)
setAlternateImage (page 248)

Instance Methods

alternateImage
Returns this receiver’s image for the highlighted state or null if no image is set.

public NSImage alternateImage()

See Also
setAlternateImage (page 248)

highlightColorInView
Returns the highlight color that the receiver wants to display as in controlView.

Static Methods 247
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBrowserCell

public NSColor highlightColorInView(NSView controlView)

isLeaf
Returns whether the receiver is a leaf or a branch cell.

public boolean isLeaf()

Discussion
A branch NSBrowserCell has an image near its right edge indicating that more, hierarchically related
information is available; when the user selects the cell, the NSBrowser displays a new column of NSBrowserCells.
A leaf NSBrowserCell has no image, indicating that the user has reached a terminal piece of information; it
doesn’t point to additional information.

See Also
setLeaf (page 249)

isLoaded
Returns true if the receiver’s state has been set and the cell is ready to display.

public boolean isLoaded()

See Also
setLoaded (page 249)

reset
Unhighlights the receiver and unsets its state.

public void reset()

See Also
set (page 248)

set
Highlights the receiver and sets its state.

public void set()

See Also
reset (page 248)

setAlternateImage
Sets the receiver’s image for the highlighted state.

public void setAlternateImage(NSImage newAltImage)

248 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBrowserCell

Discussion
If newAltImage is null, it removes the alternate image for the receiver. newAltImage is drawn vertically
centered on the left edge of the browser cell. Note that newAltImage is drawn at the given size of the image.
NSBrowserCell does not set the size of the image, nor does it clip the drawing of the image. Make sure
newAltImage is the correct size for drawing in the browser cell.

See Also
alternateImage (page 247)

setLeaf
Sets whether the receiver is a leaf or a branch cell, depending on the Boolean value flag.

public void setLeaf(boolean flag)

Discussion
A branch NSBrowserCell has an image near its right edge indicating that more, hierarchically related
information is available; when the user selects the cell, the NSBrowser displays a new column of NSBrowserCells.
A leaf NSBrowserCell has no image, indicating that the user has reached a terminal piece of information; it
doesn’t point to additional information.

See Also
isLeaf (page 248)

setLoaded
Sets whether the receiver’s state has been set and the cell is ready to display, depending on the Boolean
value flag.

public void setLoaded(boolean flag)

See Also
isLoaded (page 248)

Instance Methods 249
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBrowserCell

250 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBrowserCell

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Button Programming Topics for Cocoa

Overview

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to a
target object when it’s clicked or pressed.

NSButton uses NSButtonCell (page 269) to implement its user interface.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object.
However, while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods are
“covers” for identically declared methods in NSButtonCell. (In other words, the implementation of the NSButton
method invokes the corresponding NSButtonCell method for you, allowing you to be unconcerned with the
NSButtonCell’s existence.) The only NSButtonCell methods that don’t have covers relate to the font used to
display the key equivalent and to specific methods for highlighting or showing the NSButton’s state (these
last are usually set together with NSButton’s setButtonType (page 261) method).

Tasks

Constructors

NSButton (page 254)
Creates an NSButton with a zero-sized frame rectangle.

Setting the Button Type

setButtonType (page 261)
Sets how the receiver button highlights while pressed and how it shows its state.

Overview 251
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

Setting the State

allowsMixedState (page 255)
Returns true if the receiver has three states: on, off, and mixed.

setAllowsMixedState (page 259)

setNextState (page 263)
Sets the receiver to its next state.

setState (page 264)
Sets the cell’s state to value, which can be NSCell.OnState, NSCell.OffState, or
NSCell.MixedState.

state (page 266)
Returns the receiver’s state.

Setting the Repeat Interval

interval (page 257)
Returns the amount of time (in seconds) between the periodic messages that a continuous button
sends after its been pressed for a sufficient time.

periodicDelay (page 259)
Returns the amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object.

setPeriodicDelayAndInterval (page 263)
Sets the message delay and interval for the receiver.

Setting the Titles

alternateTitle (page 255)
Returns the string that appears on the receiver when it’s in its alternate state, or the empty string if
the receiver doesn’t display an alternate title.

attributedAlternateTitle (page 256)
Returns the string that appears on the receiver when it’s in its alternate state as an NSAttributedString,
or an empty attributed string if the receiver doesn’t display an alternate title.

attributedTitle (page 256)
Returns the string that appears on the receiver when it’s in its normal state as an NSAttributedString,
or an empty attributed string if the receiver doesn’t display a title.

setAlternateTitle (page 260)
Sets the string that appears on the receiver when it’s in its alternate state to aString.

setAttributedAlternateTitle (page 260)
Sets the string that appears on the receiver when it’s in its alternate state to the attributed string
aString.

setAttributedTitle (page 260)
Sets the string that appears on the receiver when it’s in its normal state to the attributed string
aString and redraws the button.

252 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

setTitle (page 265)
Sets the title displayed by the receiver when in its normal state to aString and, if necessary, redraws
the button’s contents.

setTitleWithMnemonic (page 265)
Sets the title of a button with a character denoting an access key, as specified by aString.

title (page 267)
Returns the title displayed on the receiver when it’s in its normal state (this title is always displayed
if the button doesn’t use its alternate contents for highlighting or displaying the alternate state).

Setting the Images

alternateImage (page 255)
Returns the image that appears on the receiver when it’s in its alternate state, or null if there is no
alternate image.

image (page 257)
Returns the image that appears on the receiver when it’s in its normal state, or null if there is no
such image.

imagePosition (page 257)
Returns the position of the receiver’s image relative to its title.

setAlternateImage (page 260)
Sets the image that appears on the receiver when it’s in its alternate state to image and, if necessary,
redraws the contents of the button.

setImage (page 262)
Sets the receiver’s image to anImage and redraws the button.

setImagePosition (page 262)
Sets the position of the receiver’s image relative to its title.

Modifying Graphics Attributes

bezelStyle (page 256)
Returns the appearance of the receiver’s border.

isBordered (page 258)
Returns true if the receiver has a border, false otherwise.

isTransparent (page 258)
Returns true if the receiver is transparent, false otherwise.

setBordered (page 261)
Sets whether the receiver has a bezeled border.

setBezelStyle (page 261)
Sets the appearance of the border, if the receiver has one.

setShowsBorderOnlyWhileMouseInside (page 264)
Sets whether the receiver’s border is displayed only when the cursor is over the button.

setTransparent (page 266)
Sets whether the receiver is transparent, depending on the Boolean value flag, and redraws the
receiver if necessary.

Tasks 253
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

showsBorderOnlyWhileMouseInside (page 266)
Returns true if the receiver’s border is displayed only when the cursor is over the button and the
button is active.

Displaying

highlight (page 256)
Highlights (or unhighlights) the receiver according to flag.

Setting the Key Equivalent

keyEquivalent (page 258)
Returns the key-equivalent character of the receiver, or the empty string if one hasn’t been defined.

keyEquivalentModifierMask (page 258)
Returns the mask indicating the modifier keys that are applied to the receiver’s key equivalent.

setKeyEquivalent (page 262)
Sets the key equivalent character of the receiver to the character represented by charCode and
redraws the button’s interior if it displays a key equivalent instead of an image.

setKeyEquivalentModifierMask (page 263)
Sets the mask indicating the modifier keys to be applied to the receiver’s key equivalent using the
value of mask.

Handling Events and Action Messages

performKeyEquivalent (page 259)

Playing Sound

setSound (page 264)
Sets the sound that’s played when the user presses the button to aSound.

sound (page 266)
Returns the sound that’s played when the user presses the button.

Constructors

NSButton
Creates an NSButton with a zero-sized frame rectangle.

public NSButton()

Creates an NSButton with frameRect as its frame rectangle.

254 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

public NSButton(NSRect frameRect)

Instance Methods

allowsMixedState
Returns true if the receiver has three states: on, off, and mixed.

public boolean allowsMixedState()

Discussion
Returns false if the receiver has two states: on and off. The default is false.

See Also
setAllowsMixedState (page 259)
setNextState (page 263)

alternateImage
Returns the image that appears on the receiver when it’s in its alternate state, or null if there is no alternate
image.

public NSImage alternateImage()

Discussion
Note that some button types don’t display an alternate image. Buttons don’t display images by default.

See Also
setAlternateImage (page 260)
image (page 257)
imagePosition (page 257)
keyEquivalent (page 258)
setButtonType (page 261)

alternateTitle
Returns the string that appears on the receiver when it’s in its alternate state, or the empty string if the
receiver doesn’t display an alternate title.

public String alternateTitle()

Discussion
Note that some button types don’t display an alternate title. By default, a button’s alternate title is “Button.”

See Also
setAlternateTitle (page 260)
attributedAlternateTitle (page 256)
setButtonType (page 261)

Instance Methods 255
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

title (page 267)

attributedAlternateTitle
Returns the string that appears on the receiver when it’s in its alternate state as an NSAttributedString, or
an empty attributed string if the receiver doesn’t display an alternate title.

public NSAttributedString attributedAlternateTitle()

Discussion
Note that some button types don’t display an alternate title. By default, a button’s alternate title is “Button.”

See Also
setAttributedAlternateTitle (page 260)
attributedTitle (page 256)
setButtonType (page 261)

attributedTitle
Returns the string that appears on the receiver when it’s in its normal state as an NSAttributedString, or an
empty attributed string if the receiver doesn’t display a title.

public NSAttributedString attributedTitle()

Discussion
A button’s title is always displayed if the button doesn’t use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

See Also
setAttributedTitle (page 260)
attributedAlternateTitle (page 256)
setButtonType (page 261)

bezelStyle
Returns the appearance of the receiver’s border.

public int bezelStyle()

Discussion
See NSButtonCell’s “Constants” (page 289) section for the list of possible values.

See Also
setBezelStyle (page 261)

highlight
Highlights (or unhighlights) the receiver according to flag.

public void highlight(boolean flag)

256 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

Discussion
Highlighting may involve the button appearing “pushed in” to the screen, displaying its alternate title or
image, or causing the button to appear to be “lit.” If the current state of the button matches flag, no action
is taken.

See Also
setButtonType (page 261)

image
Returns the image that appears on the receiver when it’s in its normal state, or null if there is no such image.

public NSImage image()

Discussion
This image is always displayed on a button that doesn’t change its contents when highlighting or showing
its alternate state. Buttons don’t display images by default.

See Also
setImage (page 262)
alternateImage (page 255)
setButtonType (page 261)

imagePosition
Returns the position of the receiver’s image relative to its title.

public int imagePosition()

Discussion
The return value is one of the image positions described in NSCell’s “Constants” (page 337) section.

If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

See Also
setImagePosition (page 262)
setButtonType (page 261)
setImage (page 262)
setTitle (page 265)

interval
Returns the amount of time (in seconds) between the periodic messages that a continuous button sends
after its been pressed for a sufficient time.

public float interval()

Discussion
The default value is taken from a user’s defaults (60 seconds maximum). If the user hasn’t specified a value,
it defaults to 0.075 seconds.

Instance Methods 257
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

See Also
isContinuous (page 452) (NSControl)
periodicDelay (page 259)
setPeriodicDelayAndInterval (page 263)

isBordered
Returns true if the receiver has a border, false otherwise.

public boolean isBordered()

Discussion
A button’s border isn’t the single line of most other controls’ borders—instead, it’s a raised bezel. By default,
buttons are bordered.

See Also
setBordered (page 261)

isTransparent
Returns true if the receiver is transparent, false otherwise.

public boolean isTransparent()

Discussion
A transparent button never draws itself, but it receives mouse-down events and tracks the mouse properly.

See Also
setTransparent (page 266)

keyEquivalent
Returns the key-equivalent character of the receiver, or the empty string if one hasn’t been defined.

public String keyEquivalent()

Discussion
Buttons don’t have a default key equivalent.

See Also
setKeyEquivalent (page 262)
performKeyEquivalent (page 259)
keyEquivalentFont (page 279) (NSButtonCell)

keyEquivalentModifierMask
Returns the mask indicating the modifier keys that are applied to the receiver’s key equivalent.

public int keyEquivalentModifierMask()

258 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

Discussion
The only mask bits relevant in button key-equivalent modifier masks are NSEvent.ControlKeyMask,
NSEvent.AlternateKeyMask, and NSEvent.CommandKeyMask bits.

See Also
setKeyEquivalentModifierMask (page 263)
keyEquivalent (page 258)

performKeyEquivalent
public boolean performKeyEquivalent(NSEvent anEvent)

Discussion
If the character in anEvent matches the receiver’s key equivalent, and the modifier flags in anEvent match
the key-equivalent modifier mask, performKeyEquivalent simulates the user clicking the button and
returning true. Otherwise, performKeyEquivalent does nothing and returns false.
performKeyEquivalent also returns false in the event that the receiver is blocked by a modal panel or
the button is disabled.

See Also
keyEquivalent (page 258)
keyEquivalentModifierMask (page 258)

periodicDelay
Returns the amount of time (in seconds) that a continuous button will pause before starting to periodically
send action messages to the target object.

public float periodicDelay()

Discussion
The default value is taken from a user’s defaults (60 seconds maximum). If the user hasn’t specified a value,
it defaults to 0.4 seconds.

See Also
interval (page 257)
setPeriodicDelayAndInterval (page 263)
isContinuous (page 452) (NSControl)

setAllowsMixedState
public void setAllowsMixedState(boolean flag)

Discussion
If flag is true, the receiver has three states: on, off, and mixed. If flag is false, the receiver has two states:
on and off.

See Also
allowsMixedState (page 255)
setNextState (page 263)

Instance Methods 259
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

setAlternateImage
Sets the image that appears on the receiver when it’s in its alternate state to image and, if necessary, redraws
the contents of the button.

public void setAlternateImage(NSImage image)

Discussion
Note that some button types don’t display an alternate image.

See Also
alternateImage (page 255)
setButtonType (page 261)
setImage (page 262)

setAlternateTitle
Sets the string that appears on the receiver when it’s in its alternate state to aString.

public void setAlternateTitle(String aString)

Discussion
Note that some button types don’t display an alternate title.

See Also
alternateTitle (page 255)
setTitle (page 265)
setTitleWithMnemonic (page 265)
setButtonType (page 261)
setFont (page 283) (NSButtonCell)

setAttributedAlternateTitle
Sets the string that appears on the receiver when it’s in its alternate state to the attributed string aString.

public void setAttributedAlternateTitle(NSAttributedString aString)

Discussion
Note that some button types don’t display an alternate title.

See Also
attributedAlternateTitle (page 256)
setAttributedTitle (page 260)
setButtonType (page 261)
setFont (page 283) (NSButtonCell)

setAttributedTitle
Sets the string that appears on the receiver when it’s in its normal state to the attributed string aString
and redraws the button.

260 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

public void setAttributedTitle(NSAttributedString aString)

Discussion
The title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

See Also
attributedTitle (page 256)
setAttributedAlternateTitle (page 260)
setButtonType (page 261)
setFont (page 283) (NSButtonCell)

setBezelStyle
Sets the appearance of the border, if the receiver has one.

public void setBezelStyle(int bezelStyle)

Discussion
bezelStyle must be one of the bezel styles described in NSButtonCell’s “Constants” (page 289) section.

The button uses shading to look like it’s sticking out or pushed in. You can set the shading with NSButtonCell’s
setGradientType (page 284) method.

If the button is not bordered, the bezel style is ignored.

See Also
bezelStyle (page 256)

setBordered
Sets whether the receiver has a bezeled border.

public void setBordered(boolean flag)

Discussion
If flag is true, the receiver displays a border; if flag is false, the receiver doesn’t display a border. A
button’s border is not the single line of most other controls’ borders—instead, it’s a raised bezel. This method
redraws the button if setBordered causes the bordered state to change.

See Also
isBordered (page 258)

setButtonType
Sets how the receiver button highlights while pressed and how it shows its state.

public void setButtonType(int aType)

Discussion
setButtonType redisplays the button before returning.

Instance Methods 261
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

The types available are for the most common button types, which are also accessible in Interface Builder.
You can configure different behavior with NSButtonCell’s setHighlightsBy (page 284) and
setShowsStateBy (page 287) methods.

The aType argument can be one of eight constants described in “Constants” (page 267).

See Also
setAlternateImage (page 260)
setImage (page 262)
setButtonType (page 283) (NSButtonCell)

setImage
Sets the receiver’s image to anImage and redraws the button.

public void setImage(NSImage anImage)

Discussion
A button’s image is displayed when the button is in its normal state, or all the time for a button that doesn’t
change its contents when highlighting or displaying its alternate state.

See Also
image (page 257)
setImagePosition (page 262)
setAlternateImage (page 260)
setButtonType (page 261)

setImagePosition
Sets the position of the receiver’s image relative to its title.

public void setImagePosition(int aPosition)

Discussion
See NSCell’s “Constants” (page 337) section for a listing of possible values for aPosition.

See Also
imagePosition (page 257)

setKeyEquivalent
Sets the key equivalent character of the receiver to the character represented by charCode and redraws the
button’s interior if it displays a key equivalent instead of an image.

public void setKeyEquivalent(String charCode)

Discussion
The key equivalent isn’t displayed if the image position is set to NSCell.NoImage, NSCell.ImageOnly, or
NSCell.ImageOverlaps; that is, the button must display both its title and its “image” (the key equivalent
in this case), and they must not overlap.

262 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

To display a key equivalent on a button, set the image and alternate image to null, then set the key equivalent,
then set the image position.

See Also
keyEquivalent (page 258)
performKeyEquivalent (page 259)
setAlternateImage (page 260)
setImage (page 262)
setImagePosition (page 262)
setKeyEquivalentFont (page 285) (NSButtonCell)

setKeyEquivalentModifierMask
Sets the mask indicating the modifier keys to be applied to the receiver’s key equivalent using the value of
mask.

public void setKeyEquivalentModifierMask(int mask)

Discussion
The only mask bits relevant in button key-equivalent modifier masks are NSEvent.ControlKeyMask,
NSEvent.AlternateKeyMask, and NSEvent.CommandKeyMask bits.

See Also
keyEquivalentModifierMask (page 258)
setKeyEquivalent (page 262)

setNextState
Sets the receiver to its next state.

public void setNextState()

Discussion
If the button has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
button has two states, it toggles between them.

See Also
allowsMixedState (page 255)
setAllowsMixedState (page 259)

setPeriodicDelayAndInterval
Sets the message delay and interval for the receiver.

public void setPeriodicDelayAndInterval(float delay, float interval)

Instance Methods 263
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

Discussion
These two values are used if the button is configured (by a setContinuous (page 456) message) to
continuously send the action message to the target object while tracking the mouse. delay is the amount
of time (in seconds) that a continuous button will pause before starting to periodically send action messages
to the target object. interval is the amount of time (also in seconds) between those messages.

The maximum value allowed for both delay and interval is 60.0 seconds; if a larger value is supplied, it
is ignored, and 60.0 seconds is used.

See Also
setContinuous (page 456) (NSControl)

setShowsBorderOnlyWhileMouseInside
Sets whether the receiver’s border is displayed only when the cursor is over the button.

public void setShowsBorderOnlyWhileMouseInside(boolean show)

Discussion
If show is true, the border is displayed only when the cursor is within the button’s border and the button
is active. If show is false, the button’s border continues to be displayed when the cursor is outside button’s
bounds.

If isBordered (page 258) returns false, the border is never displayed, regardless of what this method
returns.

See Also
showsBorderOnlyWhileMouseInside (page 266)

setSound
Sets the sound that’s played when the user presses the button to aSound.

public void setSound(Object aSound)

Discussion
The sound is played during a mouse-down event, such as NSEvent.LeftMouseDown.

See Also
sound (page 266)

setState
Sets the cell’s state to value, which can be NSCell.OnState, NSCell.OffState, or NSCell.MixedState.

public void setState(int value)

Discussion
If necessary, this method also redraws the receiver.

264 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

The cell can have two or three states. If it has two, value can be NSCell.OffState (the normal or unpressed
state) and NSCell.OnState (the alternate or pressed state). If it has three, value can be NSCell.OnState
(the feature is in effect everywhere), NSCell.OffState (the feature is in effect nowhere), or
NSCell.MixedState (the feature is in effect somewhere). Note that if the cell has only two states and value
is NSCell.MixedState, this method sets the cell’s state to NSCell.OnState.

Although using the enumerated constants is preferred, value can also be an integer. If the cell has two
states, 0 is treated as NSCell.OffState, and a nonzero value is treated as NSCell.OnState. If the cell has
three states, 0 is treated as NSCell.OffState; a negative value, as NSCell.MixedState; and a positive
value, as NSCell.OnState.

To check whether the button uses the mixed state, use the method allowsMixedState (page 255).

See Also
state (page 266)

setTitle
Sets the title displayed by the receiver when in its normal state to aString and, if necessary, redraws the
button’s contents.

public void setTitle(String aString)

Discussion
This title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

See Also
title (page 267)
setAlternateTitle (page 260)
setButtonType (page 261)
setTitleWithMnemonic (page 265)
setFont (page 283) (NSButtonCell)

setTitleWithMnemonic
Sets the title of a button with a character denoting an access key, as specified by aString.

public void setTitleWithMnemonic(String aString)

Discussion
Mnemonics are not supported in Mac OS X.

See Also
title (page 267)
setAlternateTitle (page 260)
setButtonType (page 261)
setTitle (page 265)
setFont (page 283) (NSButtonCell)

Instance Methods 265
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

setTransparent
Sets whether the receiver is transparent, depending on the Boolean value flag, and redraws the receiver if
necessary.

public void setTransparent(boolean flag)

Discussion
A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent button is useful
for sensitizing an area on the screen so that an action gets sent to a target when the area receives a mouse
click.

See Also
isTransparent (page 258)

showsBorderOnlyWhileMouseInside
Returns true if the receiver’s border is displayed only when the cursor is over the button and the button is
active.

public boolean showsBorderOnlyWhileMouseInside()

Discussion
By default, this method returns false.

If isBordered (page 258) returns false, the border is never displayed, regardless of what this method
returns.

See Also
setShowsBorderOnlyWhileMouseInside (page 264)

sound
Returns the sound that’s played when the user presses the button.

public Object sound()

See Also
setSound (page 264)

state
Returns the receiver’s state.

public int state()

Discussion
The button can have two or three states. If it has two, it returns either NSCell.OffState (the normal or
unpressed state) or NSCell.OnState (the alternate or pressed state). If it has three, it returns
NSCell.OnState (the feature is in effect everywhere), NSCell.OffState (the feature is in effect nowhere),
or NSCell.MixedState (the feature is in effect somewhere).

266 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

To check whether the button uses the mixed state, use the method allowsMixedState (page 255).

See Also
setState (page 264)

title
Returns the title displayed on the receiver when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state).

public String title()

Discussion
Returns the empty string if the button doesn’t display a title. By default, a button’s title is “Button.”

See Also
alternateTitle (page 255)
setButtonType (page 261)
setTitle (page 265)
setTitleWithMnemonic (page 265)

Constants

NSButton defines a number of constants to indicate, usingsetButtonType (page 261), how a button highlights
while pressed and how it shows its state:

DescriptionButton Type

While the button is held down it’s shown as “lit.” This type of button is best for simply
triggering actions, as it doesn’t show its state; it always displays its normal image or
title. This option is called “Momentary Light” in Interface Builder’s Button Inspector.
This type is the default button type.

MomentaryLight

While the button is held down it’s shown as “lit,” and also “pushed in” to the screen
if the button is bordered. This type of button is best for simply triggering actions, as
it doesn’t show its state; it always displays its normal image or title. This option is
called “Momentary Push” in Interface Builder’s Button Inspector.

MomentaryPush

While the button is held down, the alternate image and alternate title are displayed.
The normal image and title are displayed when the button isn’t pressed. This option
is called “Momentary Change” in Interface Builder’s Button Inspector.

MomentaryChange

The first click both highlights the button and causes it to be “pushed in” if the button
is bordered. A second click returns it to its normal state. This option is called “Push
On/Push Off” in Interface Builder’s Button Inspector.

PushOnPushOff

The first click highlights the button. A second click returns it to the normal
(unhighlighted) state. This option is called “On/Off” in Interface Builder’s Button
Inspector.

OnOff

Constants 267
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

DescriptionButton Type

The first click highlights the button, while a second click returns it to its normal state.
Highlighting is performed by changing to the alternate title or image and showing
the button as “pushed in” if the button is bordered. This option is called “Toggle” in
Interface Builder’s Button Inspector.

Toggle

This type is a variant of Toggle that has no border. This type of button is available
as a separate palette item in Interface Builder.

Switch

Similar to Switch. This type of button is available as a separate palette item in
Interface Builder.

Radio

268 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

NSButton

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Button Programming Topics for Cocoa

Overview

NSButtonCell is a subclass of NSActionCell used to implement the user interfaces of push buttons, switches,
and radio buttons. It can also be used for any other region of a view that’s designed to send a message to a
target when clicked. The NSButton subclass of NSControl uses a single NSButtonCell.

NSButtonCell implements the user interface of NSButton (page 251).

Setting an NSButtonCell's integer, float, double, or object value results in a call to setState (page 330) with
the value converted to integer. In the case of setObjectValue (page 328), null is equivalent to 0, and a
non-null object that doesn't respond to intValue (page 313) sets the state to 1. Otherwise, the state is set
to the object's intValue. Similarly, querying the integer, float, double, or object value of an NSButtonCell
returns the current state in the requested representation. In the case of objectValue (page 317), this is a
number containing true for on, false for off, and integer value -1 for the mixed state.

For more information on NSButtonCell’s behavior, see the NSButton (page 251) and NSMatrix (page 875) class
specifications.

Exceptions

In its implementation of the compare (page 308) method (declared in NSCell), NSButtonCell throws a
BadComparisonException if the otherCell argument is not of the NSButtonCell class.

Tasks

Constructors

NSButtonCell (page 273)
Creates an empty NSButtonCell.

Overview 269
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

Setting the Titles

alternateMnemonic (page 274)
Returns the character in the alternate title (the title displayed on the receiver when it’s in its alternate
state) that’s marked as the “keyboard mnemonic.”

alternateMnemonicLocation (page 274)
Returns an unsigned integer indicating the character in the alternate title (the title displayed on the
receiver when it’s in its alternate state) that’s marked as the “keyboard mnemonic.”

alternateTitle (page 275)
Returns the string that appears on the receiver when it’s in its alternate state, or the empty string if
the receiver doesn’t display an alternate title.

attributedAlternateTitle (page 275)
Returns the string that appears on the receiver when it’s in its alternate state as an NSAttributedString,
or an empty attributed string if the receiver doesn’t display an alternate title.

attributedTitle (page 275)
Returns the string that appears on the receiver when it’s in its normal state as an NSAttributedString,
or an empty attributed string if the receiver doesn’t display a title.

setAlternateMnemonicLocation (page 281)
Sets the character in the alternate title (the title displayed on the receiver when it’s in its alternate
state) that’s to be marked as the “keyboard mnemonic.”

setAlternateTitle (page 281)
Sets the title that’s displayed on the receiver when it’s in its alternate state to aString.

setAlternateTitleWithMnemonic (page 281)
Sets the title that is displayed on the receiver when it’s in its alternate state to aString, taking into
account the fact that an embedded “&” character is not a literal but instead marks the alternate state’s
“keyboard mnemonic.”

setAttributedAlternateTitle (page 282)
Sets the string that appears on the receiver when it’s in its alternate state to the attributed string
aString.

setAttributedTitle (page 282)
Sets the string that appears on the receiver when it’s in its normal state to the attributed string
aString and redraws the button.

setFont (page 283)
Sets the font used to display the title and alternate title to the font specified by fontObj.

setTitle (page 287)
Sets the title displayed by the receiver when in its normal state to aString and, if necessary, redraws
the receiver’s contents.

setTitleWithMnemonic (page 288)
Sets the title displayed on the receiver when it’s in its normal state to aString, taking into account
the fact that an embedded “&” character is not a literal but instead marks the normal state’s “keyboard
mnemonic.”

title (page 289)
Returns the title displayed on the receiver when it’s in its normal state (this title is always displayed
if the button doesn’t use its alternate contents for highlighting or displaying the alternate state).

270 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

Setting the Images

alternateImage (page 274)
Returns the image that appears on the receiver when it’s in its alternate state, or null if there is no
alternate image.

imagePosition (page 278)
Returns the position of the receiver’s image relative to its title.

setAlternateImage (page 280)
Sets the image that appears on the receiver when it’s in its alternate state to image and, if necessary,
redraws the contents of the receiver.

setImagePosition (page 285)
Sets the position of the receiver’s image relative to its title.

Setting the Repeat Interval

setPeriodicDelayAndInterval (page 286)
Sets the message delay and interval for the receiver.

Setting the Key Equivalent

keyEquivalent (page 279)
Returns the key-equivalent character of the receiver, or the empty string if one hasn’t been defined.

keyEquivalentFont (page 279)
Returns the font used to draw the key equivalent, or null if the receiver doesn’t have a key equivalent.

keyEquivalentModifierMask (page 279)
Returns the mask indicating the modifier keys that are applied to the receiver’s key equivalent.

setKeyEquivalent (page 285)
Sets the key equivalent character of the receiver, specified by aKeyEquivalent, and redraws the
receiver’s inside if it displays a key equivalent instead of an image.

setKeyEquivalentModifierMask (page 286)
Sets the mask indicating the modifier keys to be applied to the receiver’s key equivalent using the
value of mask.

setKeyEquivalentFont (page 285)
Sets the font used to draw the key equivalent to the font specified by fontObj and redisplays the
receiver if necessary.

setKeyEquivalentFontAndSize (page 286)
Sets by name and size the font used to draw the key equivalent and redisplays the receiver if necessary.

Modifying Graphics Attributes

backgroundColor (page 276)
Returns the background color of the button.

bezelStyle (page 276)
Returns the appearance of the receiver’s border.

Tasks 271
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

gradientType (page 277)
Returns the gradient of the receiver’s border.

imageDimsWhenDisabled (page 278)
Returns whether the receiver’s image and text appear “dim” when the receiver is disabled.

isOpaque (page 278)
Returns true if the receiver draws over every pixel in its frame, false if not.

isTransparent (page 279)
Returns true if the receiver is transparent, false otherwise.

setBackgroundColor (page 282)
Sets the background color of the button.

setBezelStyle (page 283)
Sets the appearance of the border, if the receiver has one.

setShowsBorderOnlyWhileMouseInside (page 286)
Sets whether the receiver’s border is displayed only when the cursor is over the button.

setGradientType (page 284)
Sets the type of gradient to use for the receiver.

setImageDimsWhenDisabled (page 284)
Sets whether the receiver’s image appears “dim” when the button cell is disabled, depending on the
Boolean value flag.

setTransparent (page 288)

showsBorderOnlyWhileMouseInside (page 288)
Returns true if the receiver’s border is displayed only when the cursor is over the button and the
button is active.

Displaying

highlightsBy (page 277)
Returns the logical OR of flags that indicate the way the receiver highlights when it receives a
mouse-down event.

setHighlightsBy (page 284)
Sets the way the receiver highlights itself while pressed.

setShowsStateBy (page 287)
Sets the way the receiver indicates its alternate state.

setButtonType (page 283)
Sets how the receiver highlights while pressed and how it shows its state.

showsStateBy (page 289)
Returns the logical OR of flags that indicate the way the receiver shows its alternate state.

Playing Sound

setSound (page 287)
Sets the sound that’s played when the user presses the receiver to aSound.

272 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

sound (page 289)
Returns the sound that’s played when the user presses the button.

Handling Events and Action Messages

mouseEntered (page 280)
Draws the receiver’s border.

mouseExited (page 280)
Erases the receiver’s border.

performClick (page 280)
Simulates the user clicking the receiver with the cursor.

Drawing the Button Content

drawBezel (page 276)
Draws the border of the button using the current bezel style.

drawImage (page 276)
Draws the image associated with the button’s current state.

drawTitle (page 277)
Draws the button’s title centered vertically in the specified frame rectangle.

Constructors

NSButtonCell
Creates an empty NSButtonCell.

public NSButtonCell()

Creates an NSButtonCell initialized with aString.

public NSButtonCell(String aString)

Creates an NSButtonCell initialized with anImage.

public NSButtonCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Constructors 273
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

Instance Methods

alternateImage
Returns the image that appears on the receiver when it’s in its alternate state, or null if there is no alternate
image.

public NSImage alternateImage()

Discussion
Note that some button types don’t display an alternate image. Buttons don’t display images by default.

See Also
setAlternateImage (page 280)
imagePosition (page 278)
keyEquivalent (page 279)
setButtonType (page 283)
image (page 313) (NSCell)

alternateMnemonic
Returns the character in the alternate title (the title displayed on the receiver when it’s in its alternate state)
that’s marked as the “keyboard mnemonic.”

public String alternateMnemonic()

Discussion
Mnemonics are not supported in Mac OS X.

See Also
alternateMnemonicLocation (page 274)
setAlternateTitleWithMnemonic (page 281)
mnemonic (page 316) (NSCell)

alternateMnemonicLocation
Returns an unsigned integer indicating the character in the alternate title (the title displayed on the receiver
when it’s in its alternate state) that’s marked as the “keyboard mnemonic.”

public int alternateMnemonicLocation()

Discussion
If the alternate title doesn’t have a keyboard mnemonic, NSArray.NotFound is returned. Mnemonics are
not supported in Mac OS X.

See Also
setAlternateMnemonicLocation (page 281)
alternateMnemonic (page 274)
setAlternateTitleWithMnemonic (page 281)

274 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

mnemonicLocation (page 317) (NSCell)

alternateTitle
Returns the string that appears on the receiver when it’s in its alternate state, or the empty string if the
receiver doesn’t display an alternate title.

public String alternateTitle()

Discussion
Note that some button types don’t display an alternate title. By default, a button’s alternate title is “Button.”

See Also
setAlternateTitle (page 281)
alternateMnemonic (page 274)
attributedAlternateTitle (page 275)
setButtonType (page 283)
title (page 289)

attributedAlternateTitle
Returns the string that appears on the receiver when it’s in its alternate state as an NSAttributedString, or
an empty attributed string if the receiver doesn’t display an alternate title.

public NSAttributedString attributedAlternateTitle()

Discussion
Note that some button types don’t display an alternate title. By default, a button’s alternate title is “Button.”

See Also
setAttributedAlternateTitle (page 282)
alternateMnemonic (page 274)
attributedTitle (page 275)
setButtonType (page 283)

attributedTitle
Returns the string that appears on the receiver when it’s in its normal state as an NSAttributedString, or an
empty attributed string if the receiver doesn’t display a title.

public NSAttributedString attributedTitle()

Discussion
A button’s title is always displayed if the button doesn’t use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

See Also
setAttributedTitle (page 282)
attributedAlternateTitle (page 275)
setButtonType (page 283)

Instance Methods 275
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

mnemonic (page 316) (NSCell)

backgroundColor
Returns the background color of the button.

public NSColor backgroundColor()

Discussion
The background color is used only when drawing borderless buttons.

Availability
Available in Mac OS X v10.4 and later.

See Also
setBackgroundColor (page 282)

bezelStyle
Returns the appearance of the receiver’s border.

public int bezelStyle()

Discussion
See “Constants” (page 289) for the list of the possible values.

See Also
setBezelStyle (page 283)

drawBezel
Draws the border of the button using the current bezel style.

public void drawBezel(NSRect frame, NSView controlView)

Discussion
This method is called automatically when the button is redrawn; you should not call it directly. The frame
parameter contains the bounding rectangle of the button. The controlView parameter contains the control
being drawn.

Availability
Available in Mac OS X v10.4 and later.

See Also
setBezelStyle (page 283)

drawImage
Draws the image associated with the button’s current state.

276 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

public void drawImage(NSImage image, NSRect frame, NSView controlView)

Discussion
This method is called automatically when the button is redrawn; you should not call it directly. The frame
parameter contains the bounding rectangle of the button. The controlView parameter contains the control
being drawn.

You specify the primary and alternate images for the button using Interface Builder.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAlternateImage (page 280)

drawTitle
Draws the button’s title centered vertically in the specified frame rectangle.

public NSRect drawTitle(NSAttributedString title, NSRect frame, NSView controlView)

Discussion
This method is called automatically when the button is redrawn; you should not call it directly. The
controlView parameter contains the control being drawn.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAlternateTitle (page 281)
setAttributedTitle (page 282)

gradientType
Returns the gradient of the receiver’s border.

public int gradientType()

Discussion
See “Constants” (page 289) for the list of the possible values.

See Also
setGradientType (page 284)

highlightsBy
Returns the logical OR of flags that indicate the way the receiver highlights when it receives a mouse-down
event.

public int highlightsBy()

Instance Methods 277
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

Discussion
See NSCell’s “Constants” (page 337) section for the list of flags.

See Also
setHighlightsBy (page 284)
showsStateBy (page 289)

imageDimsWhenDisabled
Returns whether the receiver’s image and text appear “dim” when the receiver is disabled.

public boolean imageDimsWhenDisabled()

Discussion
By default, all button types except SwitchButton and RadioButton do dim when disabled. When
SwitchButtons and RadioButtons are disabled, only the associated text dims.

See Also
setButtonType (page 283)
setImageDimsWhenDisabled (page 284)

imagePosition
Returns the position of the receiver’s image relative to its title.

public int imagePosition()

Discussion
The return value is one of the image positions described in NSCell’s “Constants” (page 337) section.

If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

See Also
setImagePosition (page 285)
setButtonType (page 283)
setTitle (page 287)
setImage (page 327) (NSCell)

isOpaque
Returns true if the receiver draws over every pixel in its frame, false if not.

public boolean isOpaque()

Discussion
A button cell is opaque only if it isn’t transparent and if it has a border.

See Also
isTransparent (page 279)
setTransparent (page 288)

278 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

isTransparent
Returns true if the receiver is transparent, false otherwise.

public boolean isTransparent()

Discussion
A transparent button never draws itself, but it receives mouse-down events and tracks the mouse properly.

See Also
setTransparent (page 288)
isOpaque (page 278)

keyEquivalent
Returns the key-equivalent character of the receiver, or the empty string if one hasn’t been defined.

public String keyEquivalent()

Discussion
Buttons don’t have a default key equivalent.

See Also
setKeyEquivalent (page 285)
keyEquivalentFont (page 279)

keyEquivalentFont
Returns the font used to draw the key equivalent, or null if the receiver doesn’t have a key equivalent.

public NSFont keyEquivalentFont()

Discussion
The default font is the same as that used to draw the title.

See Also
setKeyEquivalentFont (page 285)
setKeyEquivalentFontAndSize (page 286)
setFont (page 283)

keyEquivalentModifierMask
Returns the mask indicating the modifier keys that are applied to the receiver’s key equivalent.

public int keyEquivalentModifierMask()

Discussion
The only mask bits relevant in button key-equivalent modifier masks are NSEvent.ControlKeyMask,
NSEvent.AlternateKeyMask, and NSEvent.CommandKeyMask bits.

See Also
setKeyEquivalentModifierMask (page 286)

Instance Methods 279
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

keyEquivalent (page 279)

mouseEntered
Draws the receiver’s border.

public void mouseEntered(NSEvent event)

Discussion
The event argument is the event object generated by the mouse movement. This method is called only
when the cursor moves onto the receiver and showsBorderOnlyWhileMouseInside (page 288) returns
true.

mouseExited
Erases the receiver’s border.

public void mouseExited(NSEvent event)

Discussion
The event argument is the event object generated by the mouse movement. This method is called only
when the cursor moves off the receiver and showsBorderOnlyWhileMouseInside (page 288) returns true.

performClick
Simulates the user clicking the receiver with the cursor.

public void performClick(Object sender)

Discussion
This method essentially highlights the button, sends the button’s action message to the target object, and
then unhighlights the button. If an exception is thrown while the target object is processing the action
message, the button is unhighlighted before the exception is propagated out of performClick.

setAlternateImage
Sets the image that appears on the receiver when it’s in its alternate state to image and, if necessary, redraws
the contents of the receiver.

public void setAlternateImage(NSImage image)

Discussion
Note that some button types don’t display an alternate image.

See Also
alternateImage (page 274)
setButtonType (page 283)
setImage (page 327) (NSCell)

280 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

setAlternateMnemonicLocation
Sets the character in the alternate title (the title displayed on the receiver when it’s in its alternate state)
that’s to be marked as the “keyboard mnemonic.”

public void setAlternateMnemonicLocation(int location)

Discussion
If you don’t want the alternate title to have a keyboard mnemonic, specify a location of NSArray.NotFound.
Mnemonics are not supported in Mac OS X.

The setAlternateMnemonicLocation method doesn’t cause the button cell to be redisplayed.

See Also
alternateMnemonicLocation (page 274)
setAlternateTitleWithMnemonic (page 281)

setAlternateTitle
Sets the title that’s displayed on the receiver when it’s in its alternate state to aString.

public void setAlternateTitle(String aString)

Discussion
Note that some button types don’t display an alternate title.

See Also
alternateTitle (page 275)
setAlternateMnemonicLocation (page 281)
setAlternateTitleWithMnemonic (page 281)
setTitle (page 287)
setButtonType (page 283)
setFont (page 283)

setAlternateTitleWithMnemonic
Sets the title that is displayed on the receiver when it’s in its alternate state to aString, taking into account
the fact that an embedded “&” character is not a literal but instead marks the alternate state’s “keyboard
mnemonic.”

public void setAlternateTitleWithMnemonic(String aString)

Discussion
Mnemonics are not supported in Mac OS X.

If necessary, setAlternateTitleWithMnemonic redraws the button cell. Note that some button types
don’t display an alternate title.

See Also
setAlternateMnemonicLocation (page 281)
setTitleWithMnemonic (page 288)

Instance Methods 281
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

setAttributedAlternateTitle
Sets the string that appears on the receiver when it’s in its alternate state to the attributed string aString.

public void setAttributedAlternateTitle(NSAttributedString aString)

Discussion
Note that some button types don’t display an alternate title.

See Also
attributedAlternateTitle (page 275)
setAlternateMnemonicLocation (page 281)
setAlternateTitleWithMnemonic (page 281)
setAttributedTitle (page 282)
setButtonType (page 283)
setFont (page 283)

setAttributedTitle
Sets the string that appears on the receiver when it’s in its normal state to the attributed string aString
and redraws the button.

public void setAttributedTitle(NSAttributedString aString)

Discussion
The title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

See Also
attributedTitle (page 275)
setAttributedAlternateTitle (page 282)
setButtonType (page 283)
setFont (page 283)
setMnemonicLocation (page 328) (NSCell)

setBackgroundColor
Sets the background color of the button.

public void setBackgroundColor(NSColor)

Discussion
The background color is used only when drawing borderless buttons.

Availability
Available in Mac OS X v10.4 and later.

See Also
backgroundColor (page 276)

282 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

setBezelStyle
Sets the appearance of the border, if the receiver has one.

public void setBezelStyle(int bezelStyle)

Discussion
bezelStyle must be one of the values specified in “Constants” (page 289).

A button uses shading to look like it’s sticking out or pushed in. You can set the shading with
setGradientType (page 284).

If the receiver is not bordered, the bezel style is ignored.

See Also
bezelStyle (page 276)

setButtonType
Sets how the receiver highlights while pressed and how it shows its state.

public void setButtonType(int aType)

Discussion
setButtonType redisplays the receiver before returning.

The types available are for the most common button types, which are also accessible in Interface Builder;
you can configure different behavior with the setHighlightsBy (page 284) and setShowsStateBy (page
287) methods.

The aType argument can be one of the constants defined in “Constants” (page 289).

See Also
setAlternateImage (page 280)
setImage (page 327) (NSCell)

setFont
Sets the font used to display the title and alternate title to the font specified by fontObj.

public void setFont(NSFont fontObj)

Discussion
Does nothing if the receiver has no title or alternate title.

If the button cell has a key equivalent, its font is not changed, but the key equivalent’s font size is changed
to match the new title font.

See Also
setKeyEquivalentFont (page 285)
setKeyEquivalentFontAndSize (page 286)
font (page 311) (NSCell)

Instance Methods 283
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

setGradientType
Sets the type of gradient to use for the receiver.

public void setGradientType(int gradientType)

Discussion
If the receiver has no border, this method has no effect on its appearance. A concave gradient is darkest in
the top-left corner; a convex gradient is darkest in the bottom-right corner. Weak versus strong is how much
contrast exists between the colors used in opposite corners.

The gradientType argument can be one of the constants defined in “Constants” (page 289).

See Also
gradientType (page 277)

setHighlightsBy
Sets the way the receiver highlights itself while pressed.

public void setHighlightsBy(int aType)

Discussion
aType can be the logical OR of one or more of the cell masks described in NSCell’s “Constants” (page 337)
section.

If both NSCell.ChangeGrayCellMask and NSCell.ChangeBackgroundCellMask are specified, both are
recorded, but which behavior is used depends on the button cell’s image. If the button has no image, or if
the image has no alpha (transparency) data, NSCell.ChangeGrayCellMask is used. If the image does have
alpha data, NSCell.ChangeBackgroundCellMask is used; this arrangement allows the color swap of the
background to show through the image’s transparent pixels.

See Also
highlightsBy (page 277)
setShowsStateBy (page 287)

setImageDimsWhenDisabled
Sets whether the receiver’s image appears “dim” when the button cell is disabled, depending on the Boolean
value flag.

public void setImageDimsWhenDisabled(boolean flag)

Discussion
By default, all button types except SwitchButton and RadioButton do dim when disabled. When
SwitchButtons and RadioButtons are disabled, only the associated text dims. The default setting for this
condition is reasserted whenever you invoke setButtonType (page 283), so be sure to specify the button
cell’s type before you invoke setImageDimsWhenDisabled.

See Also
imageDimsWhenDisabled (page 278)

284 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

setImagePosition
Sets the position of the receiver’s image relative to its title.

public void setImagePosition(int aPosition)

Discussion
See NSCell’s “Constants” (page 337) section for a listing of possible values for aPosition.

See Also
imagePosition (page 278)

setKeyEquivalent
Sets the key equivalent character of the receiver, specified by aKeyEquivalent, and redraws the receiver’s
inside if it displays a key equivalent instead of an image.

public void setKeyEquivalent(String aKeyEquivalent)

Discussion
The key equivalent isn’t displayed if the image position is set to NSCell.NoImage, NSCell.ImageOnly, or
NSCell.ImageOverlaps; that is, the button must display both its title and its “image” (the key equivalent
in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to null, then set the key equivalent,
then set the image position.

See Also
keyEquivalent (page 279)
setAlternateImage (page 280)
setImagePosition (page 285)
setKeyEquivalentFont (page 285)
setImage (page 327) (NSCell)

setKeyEquivalentFont
Sets the font used to draw the key equivalent to the font specified by fontObj and redisplays the receiver
if necessary.

public void setKeyEquivalentFont(NSFont fontObj)

Discussion
Does nothing if the receiver doesn’t have a key equivalent associated with it. The default font is the same as
that used to draw the title.

See Also
keyEquivalentFont (page 279)
setFont (page 283)

Instance Methods 285
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

setKeyEquivalentFontAndSize
Sets by name and size the font used to draw the key equivalent and redisplays the receiver if necessary.

public void setKeyEquivalentFontAndSize(String fontName, float fontSize)

Discussion
Does nothing if the receiver doesn’t have a key equivalent associated with it. The default font is the same as
that used to draw the title.

See Also
keyEquivalentFont (page 279)
setFont (page 283)

setKeyEquivalentModifierMask
Sets the mask indicating the modifier keys to be applied to the receiver’s key equivalent using the value of
mask.

public void setKeyEquivalentModifierMask(int mask)

Discussion
The only mask bits relevant in button key-equivalent modifier masks are NSEvent.ControlKeyMask,
NSEvent.AlternateKeyMask, and NSEvent.CommandKeyMask bits.

See Also
keyEquivalentModifierMask (page 279)
setKeyEquivalent (page 285)

setPeriodicDelayAndInterval
Sets the message delay and interval for the receiver.

public void setPeriodicDelayAndInterval(float delay, float interval)

Discussion
These two values are used if the receiver is configured (by a setContinuous (page 322) message) to
continuously send the action message to the target object while tracking the mouse. delay is the amount
of time (in seconds) that a continuous button will pause before starting to periodically send action messages
to the target object. interval is the amount of time (also in seconds) between those messages.

The maximum value allowed for both delay and interval is 60.0 seconds; if a larger value is supplied, it’s
ignored, and 60.0 seconds is used.

See Also
setContinuous (page 322) (NSCell)

setShowsBorderOnlyWhileMouseInside
Sets whether the receiver’s border is displayed only when the cursor is over the button.

public void setShowsBorderOnlyWhileMouseInside(boolean show)

286 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

Discussion
If show is true, the border is displayed only when the cursor is within the receiver’s border and the button
is active. If show is false, the receiver’s border continues to be displayed when the cursor is outside button’s
bounds.

See Also
showsBorderOnlyWhileMouseInside (page 288)

setShowsStateBy
Sets the way the receiver indicates its alternate state.

public void setShowsStateBy(int aType)

Discussion
aType should be the logical OR of one or more of the cell masks described in NSCell’s “Constants” (page 337)
section.

If both NSCell.ChangeGrayCellMask and NSCell.ChangeBackgroundCellMask are specified, both are
recorded, but the actual behavior depends on the button cell’s image. If the button has no image, or if the
image has no alpha (transparency) data, NSCell.ChangeGrayCellMask is used. If the image exists and has
alpha data, NSCell.ChangeBackgroundCellMask is used; this arrangement allows the color swap of the
background to show through the image’s transparent pixels.

See Also
setHighlightsBy (page 284)
showsStateBy (page 289)

setSound
Sets the sound that’s played when the user presses the receiver to aSound.

public void setSound(Object aSound)

Discussion
The sound is played during a mouse-down event, such as NSEvent.LeftMouseDown.

See Also
sound (page 289)

setTitle
Sets the title displayed by the receiver when in its normal state to aString and, if necessary, redraws the
receiver’s contents.

public void setTitle(String aString)

Discussion
This title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

Instance Methods 287
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

See Also
title (page 289)
setAlternateTitle (page 281)
setButtonType (page 283)
setFont (page 283)
setTitleWithMnemonic (page 288)

setTitleWithMnemonic
Sets the title displayed on the receiver when it’s in its normal state to aString, taking into account the fact
that an embedded “&” character is not a literal but instead marks the normal state’s “keyboard mnemonic.”

public void setTitleWithMnemonic(String aString)

Discussion
If necessary, setTitleWithMnemonic redraws the button cell. This title is always shown on buttons that
don’t use their alternate contents when highlighting or displaying their alternate state. Mnemonics are not
supported in Mac OS X.

See Also
setAlternateTitleWithMnemonic (page 281)
setTitleWithMnemonic (page 332) (NSCell)
setMnemonicLocation (page 328) (NSCell)

setTransparent
public void setTransparent(boolean flag)

Discussion
Sets whether the receiver is transparent, depending on the Boolean value flag, and redraws the receiver if
necessary. A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent button
is useful for sensitizing an area on the screen so that an action gets sent to a target when the area receives
a mouse click.

See Also
isTransparent (page 279)
isOpaque (page 278)

showsBorderOnlyWhileMouseInside
Returns true if the receiver’s border is displayed only when the cursor is over the button and the button is
active.

public boolean showsBorderOnlyWhileMouseInside()

Discussion
By default, this method returns false.

See Also
setShowsBorderOnlyWhileMouseInside (page 286)

288 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

showsStateBy
Returns the logical OR of flags that indicate the way the receiver shows its alternate state.

public int showsStateBy()

Discussion
See NSCell’s “Constants” (page 337) section for the list of flags.

See Also
highlightsBy (page 277)
setShowsStateBy (page 287)

sound
Returns the sound that’s played when the user presses the button.

public Object sound()

See Also
setSound (page 287)

title
Returns the title displayed on the receiver when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state).

public String title()

Discussion
Returns the empty string if the button doesn’t display a title. By default, a button’s title is “Button.”

See Also
setTitle (page 287)
alternateTitle (page 275)
setButtonType (page 283)
mnemonic (page 316) (NSCell)
mnemonicLocation (page 317) (NSCell)

Constants

These are the bezel styles used by bezelStyle (page 276) and setBezelStyle (page 283):

DescriptionConstant

A rounded rectangle button, designed for text.RoundedBezelStyle

A rectangular button with a 2 pixel border, designed for icons.RegularSquareBezelStyle

Constants 289
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

DescriptionConstant

A rectangular button with a 3 pixel border, designed for icons.ThickSquareBezelStyle

A rectangular button with a 4 pixel border, designed for icons.ThickerSquareBezelStyle

A bezel style for use with a disclosure triangle. To create the disclosure
triangle, set the button bezel style to DisclosureBezelStyle and
the button type to OnOffButton.
Available for Mac OS X v10.3 or later.

DisclosureBezelStyle

Similar to RegularSquareBezelStyle, but has no shadow so you can
abut the cells without overlapping shadows. This style would be used
in a tool palette, for example.

ShadowlessSquareBezelStyle

A round button with room for a small icon or a single character. This
style has both regular and small variants, but the large variant is available
only in gray at this time.

CircularBezelStyle

A bezel style appropriate for use with textured (that is, metal) windows.
Available for Mac OS X v10.3 and later.

TexturedSquareBezelStyle

A round button with a question mark providing the standard help button
look.
Available for Mac OS X v10.3 and later.

HelpButtonBezelStyle

A simple square bezel style. Buttons using this style can be scaled to
any size.
Available for Mac OS X v10.4 and later.

SmallSquareBezelStyle

A textured (metal) bezel style similar in appearance to the Finder’s action
(gear) button. The height of this button is fixed. (Available for Mac OS
X v10.4 and later.)

TexturedRoundedBezelStyle

These are the button types that can be specified using setButtonType (page 283)

DescriptionButton Type

While the button is held down, the alternate image and alternate title are
displayed. The normal image and title are displayed when the button isn’t
pressed. This option is called “Momentary Change” in Interface Builder’s Button
Inspector.

MomentaryChange-
Button

The first click both highlights and causes the button to be “pushed in” if the
button is bordered. A second click returns it to its normal state. This option is
called “Push On/Push Off” in Interface Builder’s Button Inspector.

PushOnPushOffButton

The first click highlights the button. A second click returns it to the normal
(unhighlighted) state. This option is called “On/Off” in Interface Builder’s Button
Inspector.

OnOffButton

290 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

DescriptionButton Type

After the first click, the button displays its alternate image or title. A second
click returns the button to its normal state. This option is called “Toggle” in
Interface Builder’s Button Inspector.

ToggleButton

This style is a variant of ToggleButton that has no border. This type of button
is available as a separate palette item in Interface Builder.

SwitchButton

Similar to SwitchButton. This type of button is available as a separate palette
item in Interface Builder.

RadioButton

While the button is held down it’s shown as “lit.” This type of button is best for
simply triggering actions, as it doesn’t show its state; it always displays its normal
image or title.

MomentaryLight

While the button is held down it’s shown as “lit,” and also “pushed in” to the
screen if the button is bordered. This type of button is best for simply triggering
actions, as it doesn’t show its state; it always displays its normal image or title.

MomentaryPushButton

Constants 291
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

292 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

NSButtonCell

Inherits from NSImageRep : NSObject

Implements NSCoding (NSImageRep)

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

NSCachedImageRep defines an object that stores its source data as a rendered image in a window, typically
a window that stays offscreen. The only data available for reproducing the image is the image itself. Thus an
NSCachedImageRep differs from the other kinds of NSImageReps defined in the Application Kit, all of which
can reproduce an image from the information originally used to draw it. Instances of this class are generally
used indirectly, through an NSImage object.

Tasks

Constructors

NSCachedImageRep (page 294)
Throws an exception. Use one of the other constructors instead.

Getting the Representation

rect (page 294)
Returns the rectangle where the receiver is cached.

window (page 294)
Returns the window where the receiver is cached.

Overview 293
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCachedImageRep

Constructors

NSCachedImageRep
Throws an exception. Use one of the other constructors instead.

public NSCachedImageRep()

Creates a new NSCachedImageRep for an image that will be rendered within the aRect rectangle in the
window aWindow.

public NSCachedImageRep(NSWindow aWindow, NSRect aRect)

Discussion
The rectangle is specified in aWindow’s base coordinate system. The size of the image is set from the size of
the rectangle.

You must draw the image in the rectangle yourself; there are no NSCachedImageRep methods for this purpose.

Creates a new NSCachedImageRep for an image of the specified size and depth.

public NSCachedImageRep(NSSize size, int depth, boolean flag, boolean alpha)

Discussion
The flag argument indicates whether the image will get its own unique cache, instead of possibly sharing
one with other images. For best performance (although it’s not essential), alpha should be set according to
whether the image will have a channel for transparency information.

Instance Methods

rect
Returns the rectangle where the receiver is cached.

public NSRect rect()

See Also
size (page 792) (NSImageRep)

window
Returns the window where the receiver is cached.

public NSWindow window()

294 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCachedImageRep

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Control and Cell Programming Topics for Cocoa

Overview

The NSCell class provides a mechanism for displaying text or images in an NSView without the overhead of
a full NSView subclass. It’s used heavily by most of the NSControl classes to implement their internal workings.

Tasks

Constructors

NSCell (page 303)
Creates an empty NSCell.

Setting and Getting Cell Values

setObjectValue (page 328)
Sets the receiver’s object value to object.

objectValue (page 317)
Returns the receiver’s value as an object if a valid object has been associated with the receiver;
otherwise, returns null.

hasValidObjectValue (page 312)
Returns whether the object associated with the receiver has a valid object value.

setIntValue (page 327)
Sets the value of the receiver to an object anInt, representing an integer value.

intValue (page 313)
Returns the receiver’s value as an int.

setStringValue (page 331)
Sets the value of the receiver to aString.

Overview 295
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

stringValue (page 334)
Returns the receiver’s value as a String as converted by the receiver’s formatter, if one exists.

setDoubleValue (page 323)
Sets the value of the receiver to an object aDouble, representing a double value.

doubleValue (page 309)
Returns the receiver’s value as a double.

setFloatValue (page 325)
Sets the value of the receiver to an object aFloat, representing a float value.

floatValue (page 311)
Returns the receiver’s value as a float.

Setting and Getting Cell Attributes

setCellAttribute (page 322)
Sets a cell attribute identified by aParameter—such as the receiver’s state and whether it’s disabled,
editable, or highlighted—to value.

cellAttribute (page 307)
Depending on aParameter, returns a setting for a cell attribute, such as the receiver’s state, and
whether it’s disabled, editable, or highlighted.

setType (page 332)
If the type of the receiver is different from aType, sets it to aType, which must be one of
TextCellType, ImageCellType, or NullCellType.

type (page 337)
Returns the type of the receiver, one of TextCellType, ImageCellType, or NullCellType.

setEnabled (page 324)
Sets whether the receiver is enabled or disabled, depending on the Boolean value flag.

isEnabled (page 314)
Returns whether the receiver responds to mouse events.

setBezeled (page 321)
Sets whether the receiver draws itself with a bezeled border, depending on the Boolean value flag.

isBezeled (page 314)
Returns whether the receiver has a bezeled border.

setBordered (page 321)
Sets whether the receiver draws itself outlined with a plain border, depending on the Boolean value
flag.

isBordered (page 314)
Returns whether the receiver has a plain border.

isOpaque (page 315)
Returns whether the receiver is opaque (nontransparent).

allowsUndo (page 306)
Returns true if undo operations are handled directly by the cell.

setAllowsUndo (page 321)
If allowsUndo is true, the receiver assumes responsibility for undo operations within the cell.

296 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Setting the State

allowsMixedState (page 306)
Returns true if the receiver has three states: on, off, and mixed.

nextState (page 317)
Returns the receiver’s next state.

setAllowsMixedState (page 320)

setNextState (page 328)
Sets the receiver to its next state.

setState (page 330)
Sets the receiver’s state to value, which can be OnState, OffState, or MixedState.

state (page 333)
Returns the receiver’s state.

Modifying Textual Attributes of Cells

setEditable (page 323)
Sets whether the user can edit the receiver’s text, depending on the Boolean value flag.

isEditable (page 314)
Returns whether the receiver is editable.

setSelectable (page 329)
Sets whether text in the receiver can be selected, depending on the Boolean value flag.

isSelectable (page 315)
Returns whether the text of the receiver can be selected.

setScrollable (page 329)
Sets whether excess text in the receiver is scrolled past the cell’s bounds.

isScrollable (page 315)
Returns whether the receiver scrolls typed text that exceeds the cell’s bounds.

setAlignment (page 320)
Sets the alignment of text in the receiver.

alignment (page 305)
Returns the alignment of text in the receiver: NSText.LeftTextAlignment,
NSText.RightTextAlignment, NSText.CenterTextAlignment,
NSText.JustifiedTextAlignment, or NSText.NaturalTextAlignment.

setFont (page 326)
Sets the font to be used when the receiver displays text.

font (page 311)
Returns the font used to display text in the receiver or null if the receiver is not a text-type cell.

lineBreakMode (page 316)
Returns the line break mode currently used when drawing text.

setLineBreakMode (page 327)
Sets the line break mode used when drawing text to mode.

Tasks 297
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setWraps (page 333)
Sets whether text in the receiver wraps when its length exceeds the frame of the cell.

wraps (page 337)
Returns whether text of the receiver wraps when it exceeds the borders of the cell.

setAttributedStringValue (page 321)
Sets the value of the receiver to the attributed string attribStr.

attributedStringValue (page 306)
Returns the value of the receiver as an attributed string (that is, a string with attributes), using the
receiver’s formatter object (if one exists) to create the attributed string.

setAllowsEditingTextAttributes (page 320)
Sets whether the textual attributes of the receiver can be modified by the user.

allowsEditingTextAttributes (page 305)
Returns whether the receiver allows user editing of textual attributes.

setImportsGraphics (page 327)
Sets whether the receiver can import images into its text (that is, whether it supports RTFD text).

importsGraphics (page 313)
Returns whether the text of the receiver (if a text-type cell) is of Rich Text Format (RTF) and thus can
import graphics.

setUpFieldEditorAttributes (page 332)
Sets textual and background attributes of textObj, depending on certain attributes.

setTitle (page 332)
Sets the title of the receiver to aString.

Setting the Target and Action

setAction (page 319)

action (page 305)
Implemented by NSActionCell and its subclasses to return the selector of the receiver’s action method.
The default implementation returns a null selector.

setTarget (page 331)
Implemented by NSActionCell to set the receiver’s target object receiving the action message to
anObject.

target (page 336)

setContinuous (page 322)
Sets whether the receiver continuously sends its action message to its target while it tracks the mouse,
depending on the Boolean value flag.

isContinuous (page 314)
Returns whether the receiver sends its action message continuously on mouse down.

setEventMaskForSendingAction (page 324)
Sets the conditions on which the receiver sends action messages to its target and returns a bit mask
with which to detect the previous settings.

298 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Setting and Getting an Image

setImage (page 327)
Sets the image to be displayed by the receiver.

image (page 313)
Returns the image displayed by the receiver or null if the receiver is not an image-type cell.

Assigning a Tag

setTag (page 331)
Implemented by NSActionCell to set the receiver’s tag integer to anInt.

tag (page 334)
Implemented by NSActionCell to return the receiver’s tag integer.

Formatting and Validating Data

setFormatter (page 326)
Sets the formatter object used to format the textual representation of the receiver’s object value and
to validate cell input and convert it to that object value.

formatter (page 311)
Returns the formatter object (a kind of NSFormatter) associated with the receiver.

setEntryType (page 324)
Sets how numeric data is formatted in the receiver and places restrictions on acceptable input.

entryType (page 310)
Returns the type of data the user can type into the receiver.

isEntryAcceptable (page 314)
Returns whether a string representing a numeric or date value (aString) is formatted in a way suitable
to the entry type.

setFloatingPointFormat (page 325)
Sets whether floating-point numbers are autoranged in the receiver and sets the sizes of the fields
to the left and right of the decimal point.

Managing Menus for Cells

defaultMenu (page 304)
Returns the default menu for instances of the receiver.

setMenu (page 328)
Associates a menu with the cell that has commands contextually related to the receiver.

menu (page 316)
Returns the menu with commands contextually related to the cell or null if no menu is associated.

menuForEvent (page 316)
Returns the NSMenu associated with the receiver through the setMenu (page 328) method and related
to anEvent when the cursor is detected within cellFrame.

Tasks 299
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Comparing Cells

compare (page 308)
Compares the string values of the receiver and otherCell (which must be a kind of NSCell),
disregarding case.

Making Cells Respond to Keyboard Events

acceptsFirstResponder (page 305)
Returns whether or not the receiver will accept first responder status.

setShowsFirstResponder (page 330)
Sets whether the receiver draws some indication of its first responder status.

showsFirstResponder (page 333)
Returns whether the receiver should draw some indication when it assumes first responder status.

setTitleWithMnemonic (page 332)
Sets the title of the receiver to aString with a character denoted as an access key.

mnemonic (page 316)
Returns the character in the receiver’s title that appears underlined for use as a mnemonic.

refusesFirstResponder (page 318)
Returns true if the receiver can never become the first responder.

setMnemonicLocation (page 328)
Sets the character of the receiver’s title identified by location to be underlined.

setRefusesFirstResponder (page 329)
Sets whether the receiver can become the first responder.

mnemonicLocation (page 317)
Returns the position of the underlined character in the receiver’s title used as a mnemonic.

performClick (page 318)
Can be used to simulate a single mouse click on the receiver.

Deriving Values from Other Cells

takeObjectValue (page 335)
Sets the receiver’s own value as an object using the object value of sender.

takeIntValue (page 335)
Sets the receiver’s own value as an int using the int value of sender.

takeStringValue (page 335)
Sets the receiver’s own value as a string object using the String value of sender.

takeDoubleValue (page 335)
Sets the receiver’s own value as a double using the double value of sender.

takeFloatValue (page 335)
Sets the receiver’s own value as a float using the float value of sender.

300 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Representing an Object with a Cell

setRepresentedObject (page 329)
Sets the object represented by the receiver—f

representedObject (page 318)
Returns the object the receiver represents.

Tracking the Mouse

trackMouse (page 336)
Invoked by an NSControl to initiate the tracking behavior of one of its NSCells.

startTrackingMouse (page 333)

continueTrackingMouse (page 308)
Returns whether mouse tracking should continue in the receiving cell based on lastPoint and
currentPoint within controlView.

stopTrackingMouse (page 334)

mouseDownFlags (page 317)
Returns the modifier flags for the last (left) mouse-down event, or 0 if tracking hasn’t occurred yet for
the cell or no modifier keys accompanied the mouse-down event.

prefersTrackingUntilMouseUp (page 304)
The default implementation returns false, so tracking stops when the cursor leaves the NSCell;
subclasses may override.

Managing the Cursor

resetCursorRect (page 319)
Sets the receiver to show the I-beam cursor within cellFrame while it tracks the mouse.

Managing Cell Messaging

interval (page 313)
Returns the amount of time that the cell pauses between messages when it’s sending action messages
continuously to target objects.

periodicDelay (page 318)
Returns the amount of time that the cell pauses before sending its first message when it’s sending
action messages continuously to target objects.

Handling Keyboard Alternatives

keyEquivalent (page 315)
Implemented by subclasses to return a key equivalent to clicking the cell.

Tasks 301
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Managing Focus Rings

defaultFocusRingType (page 304)
Returns the default type of focus ring.

setFocusRingType (page 325)
Sets the type of focus ring to be used.

focusRingType (page 311)
Returns the type of focus ring currently set.

Determining Cell Sizes

calcDrawInfo (page 306)
Implemented by subclasses to recalculate drawing sizes with reference to aRect.

cellSize (page 307)
Returns the minimum size needed to display the receiver, taking account of the size of the image or
text within a certain offset determined by the border type.

cellSizeForBounds (page 307)
Returns the minimum size needed to display the receiver, taking account of the size of the image or
text within an offset determined by the border type.

drawingRectForBounds (page 309)
Returns the rectangle within which the receiver draws itself; this rectangle is slightly inset from
theRect on all sides to take the border into account.

imageRectForBounds (page 313)
Returns the rectangle the receiver’s image is drawn in, which is slightly offset from theRect.

titleRectForBounds (page 336)

controlSize (page 308)
Returns the size of the receiver.

setControlSize (page 322)
Sets the size of the receiver.

Drawing and Highlighting Cells

drawWithFrameInView (page 310)
Draws the receiver’s regular or bezeled border (if those attributes are set) and then draws the interior
of the cell by invoking drawInteriorWithFrameInView (page 309).

highlightColorWithFrameInView (page 312)
Returns the color to use when drawing the receiver’s selection highlight in cellFrame.

drawInteriorWithFrameInView (page 309)
Draws the “inside” of the receiver—including the image or text within the receiver’s frame in
controlView (usually the cell’s NSControl) but excluding the border.

controlView (page 309)
Implemented by subclasses to return the NSView last drawn in (normally an NSControl).

302 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setControlView (page 323)
Sets the receiver’s control view.

highlightWithFrameInView (page 312)
If the receiver’s highlight status is different from flag, sets that status to flag and, if flag is true,
highlights the rectangle cellFrame in the NSControl (controlView).

setHighlighted (page 326)
Sets whether the receiver has a highlighted appearance, depending on the Boolean value flag.

isHighlighted (page 315)
Returns whether the receiver is highlighted.

setControlTint (page 323)
Sets the receiver’s control tint.

controlTint (page 308)
Returns the receiver’s control tint.

Editing and Selecting Cell Text

editWithFrameInView (page 310)
Begins editing of the receiver’s text using the field editor textObj.

selectAndEditWithFrameInView (page 319)
Uses the field editor textObj to select text in a range marked by selStart and selLength, which
will be highlighted and selected as though the user had dragged the cursor over it.

sendsActionOnEndEditing (page 319)
Returns whether the receiver’s NSControl object sends its action message whenever the user finishes
editing the cell’s text.

setSendsActionOnEndEditing (page 330)
Sets whether the receiver’s NSControl object sends its action message whenever the user finishes
editing the cell’s text.

endEditing (page 310)
Ends any editing of text, using the field editor textObj, occurring in the receiver begun with
editWithFrameInView (page 310) and selectAndEditWithFrameInView (page 319).

Constructors

NSCell
Creates an empty NSCell.

public NSCell()

Creates an NSCell initialized with aString and set to have the cell’s default menu.

public NSCell(String aString)

Discussion
If no field editor (a shared NSText object) has been created for all NSCells, one is created.

Constructors 303
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Creates an NSCell initialized with anImage and set to have the cell’s default menu.

public NSCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Static Methods

defaultFocusRingType
Returns the default type of focus ring.

public static int defaultFocusRingType()

Discussion
Possible values are listed in the “Constants” (page 727) section of NSGraphics.

Availability
Available in Mac OS X v10.3 and later.

defaultMenu
Returns the default menu for instances of the receiver.

public static NSMenu defaultMenu()

Discussion
The default implementation returns null.

See Also
menu (page 316)
setMenu (page 328)

prefersTrackingUntilMouseUp
The default implementation returns false, so tracking stops when the cursor leaves the NSCell; subclasses
may override.

public static boolean prefersTrackingUntilMouseUp()

See Also
trackMouse (page 336)

304 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Instance Methods

acceptsFirstResponder
Returns whether or not the receiver will accept first responder status.

public boolean acceptsFirstResponder()

Discussion
The default implementation returns true if the receiver is enabled, and refusesFirstResponder (page
318) returns false; subclasses can override.

See Also
performClick (page 318)
setShowsFirstResponder (page 330)
setTitleWithMnemonic (page 332)

action
Implemented by NSActionCell and its subclasses to return the selector of the receiver’s action method. The
default implementation returns a null selector.

public NSSelector action()

See Also
setAction (page 319)
setTarget (page 331)
target (page 336)

alignment
Returns the alignment of text in the receiver:NSText.LeftTextAlignment,NSText.RightTextAlignment,
NSText.CenterTextAlignment, NSText.JustifiedTextAlignment, or
NSText.NaturalTextAlignment.

public int alignment()

See Also
setAlignment (page 320)

allowsEditingTextAttributes
Returns whether the receiver allows user editing of textual attributes.

public boolean allowsEditingTextAttributes()

See Also
setAllowsEditingTextAttributes (page 320)

Instance Methods 305
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

allowsMixedState
Returns true if the receiver has three states: on, off, and mixed.

public boolean allowsMixedState()

Discussion
Returns false if the receiver has two states: on and off.

See Also
nextState (page 317)
setAllowsMixedState (page 320)
setNextState (page 328)

allowsUndo
Returns true if undo operations are handled directly by the cell.

public boolean allowsUndo()

Discussion
By default, the NSTextFieldCell class uses this feature to handle undo operations for edited text. Other controls
set a value that is appropriate for their implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAllowsUndo (page 321)

attributedStringValue
Returns the value of the receiver as an attributed string (that is, a string with attributes), using the receiver’s
formatter object (if one exists) to create the attributed string.

public NSAttributedString attributedStringValue()

Discussion
The textual attributes are the default paragraph style, the receiver’s font and alignment, and whether the
receiver is enabled and scrollable.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue for
the object value of a cell, then the cell will use that method to fetch the string to draw rather than using
stringValue (page 334).

See Also
setAttributedStringValue (page 321)

calcDrawInfo
Implemented by subclasses to recalculate drawing sizes with reference to aRect.

306 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

public void calcDrawInfo(NSRect aRect)

Discussion
Objects (such as NSControls) that manage NSCells generally maintain a flag that informs them if any of their
cells has been modified in such a way that the location or size of the cell should be recomputed. If so,
NSControl’s calcSize (page 449) method is automatically invoked prior to the display of the NSCell, and
that method invokes the NSCell’s calcDrawInfo method. The default implementation does nothing.

See Also
cellSize (page 307)
drawingRectForBounds (page 309)

cellAttribute
Depending on aParameter, returns a setting for a cell attribute, such as the receiver’s state, and whether
it’s disabled, editable, or highlighted.

public int cellAttribute(int aParameter)

See Also
setCellAttribute (page 322)

cellSize
Returns the minimum size needed to display the receiver, taking account of the size of the image or text
within a certain offset determined by the border type.

public NSSize cellSize()

Discussion
If the receiver is of neither image nor text type, a size of 10000.0 x 10000.0 is returned; if the receiver is of
image type, and no image has been set, NSSize.ZeroSize is returned.

See Also
drawingRectForBounds (page 309)

cellSizeForBounds
Returns the minimum size needed to display the receiver, taking account of the size of the image or text
within an offset determined by the border type.

public NSSize cellSizeForBounds(NSRect aRect)

Discussion
If the receiver is of text type, the text is resized to fit within aRect (as much as aRect is within the bounds
of the cell). If the receiver is of neither image nor text type, the size of aRect parameter is returned; if the
receiver is of image type, and no image has been set, a size with zero width and height is returned.

See Also
drawingRectForBounds (page 309)

Instance Methods 307
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

compare
Compares the string values of the receiver and otherCell (which must be a kind of NSCell), disregarding
case.

public int compare(Object otherCell)

Discussion
Throws BadComparisonException if otherCell is not of the NSCell class.

continueTrackingMouse
Returns whether mouse tracking should continue in the receiving cell based on lastPoint and
currentPoint within controlView.

public boolean continueTrackingMouse(NSPoint lastPoint, NSPoint currentPoint, NSView
controlView)

Discussion
currentPoint is the current location of the cursor while lastPoint is either the initial location of the
cursor or the previous currentPoint. This method is invoked in trackMouse (page 336). The default
implementation returns true if the cell is set to continuously send action messages to its target when the
mouse button is down or the mouse is being dragged. Subclasses can override this method to provide more
sophisticated tracking behavior.

See Also
startTrackingMouse (page 333)
stopTrackingMouse (page 334)

controlSize
Returns the size of the receiver.

public int controlSize()

Discussion
Valid return values are described in “Constants” (page 337).

See Also
setControlSize (page 322)

controlTint
Returns the receiver’s control tint.

public int controlTint()

Discussion
Valid return values are described in “Constants” (page 337).

See Also
setControlTint (page 323)

308 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

controlView
Implemented by subclasses to return the NSView last drawn in (normally an NSControl).

public NSView controlView()

Discussion
The default implementation returns null.

See Also
drawWithFrameInView (page 310)
setControlView (page 323)

doubleValue
Returns the receiver’s value as a double.

public double doubleValue()

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

drawingRectForBounds
Returns the rectangle within which the receiver draws itself; this rectangle is slightly inset from theRect on
all sides to take the border into account.

public NSRect drawingRectForBounds(NSRect theRect)

See Also
calcSize (page 449) (NSControl)

drawInteriorWithFrameInView
Draws the “inside” of the receiver—including the image or text within the receiver’s frame in controlView
(usually the cell’s NSControl) but excluding the border.

public void drawInteriorWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
cellFrame is the frame of the NSCell or, in some cases, a portion of it. Text-type NSCells display their contents
in a rectangle slightly inset from cellFrame using a global NSText object. Image-type NSCells display their
contents centered within cellFrame. If the proper attributes are set, it also displays the dotted-line rectangle
to indicate first responder and highlights the cell. This method is invoked from NSControl’s
drawCellInside (page 450) to visually update what the NSCell displays when its contents change. This
drawing is minimal and becomes more complex in objects such as NSButtonCell and NSSliderCell.

This method draws the cell in the currently focused view, which can be different from the controlView
passed in. Taking advantage of this is not recommended.

Instance Methods 309
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Subclasses often override this method to provide more sophisticated drawing of cell contents. Because
drawWithFrameInView (page 310) invokes drawInteriorWithFrameInView after it draws the NSCell’s
border, don’t invoke drawWithFrameInView (page 310) in your override implementation.

See Also
isHighlighted (page 315)
setShowsFirstResponder (page 330)

drawWithFrameInView
Draws the receiver’s regular or bezeled border (if those attributes are set) and then draws the interior of the
cell by invoking drawInteriorWithFrameInView (page 309).

public void drawWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
This method draws the cell in the currently focused view, which can be different from the controlView
passed in. Taking advantage of this is not recommended.

editWithFrameInView
Begins editing of the receiver’s text using the field editor textObj.

public void editWithFrameInView(NSRect aRect, NSView controlView, NSText textObj,
Object anObject, NSEvent theEvent)

Discussion
This method is usually invoked in response to a mouse-down event. aRect must be the rectangle used for
displaying the NSCell. theEvent is the NSEvent.LeftMouseDown event. anObject is made the delegate
of textObj and so will receive various NSText delegation and notification messages.

If the receiver isn’t a text-type NSCell, no editing is performed. Otherwise, textObj is sized to aRect and its
superview is set to controlView, so it exactly covers the NSCell. Then it’s activated and editing begins. It’s
the responsibility of the delegate to end editing when responding to textShouldEndEditing. In doing
this, it should remove any data from textObj.

See Also
endEditing (page 310)
selectAndEditWithFrameInView (page 319)

endEditing
Ends any editing of text, using the field editor textObj, occurring in the receiver begun with
editWithFrameInView (page 310) and selectAndEditWithFrameInView (page 319).

public void endEditing(NSText textObj)

entryType
Returns the type of data the user can type into the receiver.

310 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

public int entryType()

Discussion
If the receiver is not a text-type cell, or if no type has been set, AnyType is returned. See “Constants” (page
337) for a list of type constants.

See Also
isEntryAcceptable (page 314)

floatValue
Returns the receiver’s value as a float.

public float floatValue()

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

focusRingType
Returns the type of focus ring currently set.

public int focusRingType()

Discussion
Possible values are listed in the “Constants” (page 727) section of NSGraphics You can disable a view's focus
ring drawing by overriding this method so it always returns NSGraphics.FocusRingTypeNone, or by calling
setFocusRingType (page 325) with NSGraphics.FocusRingTypeNone. You should only disable a view
from drawing its focus ring if you want to draw your own focus ring, or if there isn't sufficient space to display
a focus ring in the default location.

Availability
Available in Mac OS X v10.3 and later.

See Also
setFocusRingType (page 325)
defaultFocusRingType (page 304)

font
Returns the font used to display text in the receiver or null if the receiver is not a text-type cell.

public NSFont font()

See Also
setFont (page 326)

formatter
Returns the formatter object (a kind of NSFormatter) associated with the receiver.

Instance Methods 311
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

public NSFormatter formatter()

Discussion
This object handles translation of the receiver’s contents between its onscreen representation and its object
value.

See Also
setFormatter (page 326)

hasValidObjectValue
Returns whether the object associated with the receiver has a valid object value.

public boolean hasValidObjectValue()

Discussion
A valid object value is one that the receiver’s formatter can “understand.” Objects are always assumed to be
valid unless they are rejected by the formatter. Invalid objects can still be accepted by the delegate of the
receiver’s NSControl (in controlDidFailToFormatStringErrorDescription (page 463)).

See Also
objectValue (page 317)
setObjectValue (page 328)

highlightColorWithFrameInView
Returns the color to use when drawing the receiver’s selection highlight in cellFrame.

public NSColor highlightColorWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
You should not assume that a cell would necessarily want to draw itself with the value returned from
selectedControlColor (page 366). A cell may wish to draw with different a selection highlight color
depending on such things as the key state of its controlView.

highlightWithFrameInView
If the receiver’s highlight status is different from flag, sets that status to flag and, if flag is true, highlights
the rectangle cellFrame in the NSControl (controlView).

public void highlightWithFrameInView(boolean flag, NSRect cellFrame, NSView
controlView)

Discussion
Note that NSCell’s highlighting does not appear when highlighted cells are printed (although instances of
NSTextFieldCell, NSButtonCell, and others can print themselves highlighted). Generally, you cannot depend
on highlighting being printed because implementations of this method may choose (or not choose) to use
transparency.

See Also
drawWithFrameInView (page 310)
isHighlighted (page 315)

312 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

image
Returns the image displayed by the receiver or null if the receiver is not an image-type cell.

public NSImage image()

See Also
setImage (page 327)

imageRectForBounds
Returns the rectangle the receiver’s image is drawn in, which is slightly offset from theRect.

public NSRect imageRectForBounds(NSRect theRect)

See Also
cellSizeForBounds (page 307)
drawingRectForBounds (page 309)

importsGraphics
Returns whether the text of the receiver (if a text-type cell) is of Rich Text Format (RTF) and thus can import
graphics.

public boolean importsGraphics()

See Also
setImportsGraphics (page 327)

interval
Returns the amount of time that the cell pauses between messages when it’s sending action messages
continuously to target objects.

public float interval()

Discussion
Override this method to supply your own interval value.

See Also
periodicDelay (page 318)

intValue
Returns the receiver’s value as an int.

public int intValue()

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Instance Methods 313
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

isBezeled
Returns whether the receiver has a bezeled border.

public boolean isBezeled()

See Also
setBezeled (page 321)

isBordered
Returns whether the receiver has a plain border.

public boolean isBordered()

See Also
setBordered (page 321)

isContinuous
Returns whether the receiver sends its action message continuously on mouse down.

public boolean isContinuous()

See Also
setContinuous (page 322)

isEditable
Returns whether the receiver is editable.

public boolean isEditable()

See Also
setEditable (page 323)

isEnabled
Returns whether the receiver responds to mouse events.

public boolean isEnabled()

See Also
setEnabled (page 324)

isEntryAcceptable
Returns whether a string representing a numeric or date value (aString) is formatted in a way suitable to
the entry type.

314 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

public boolean isEntryAcceptable(String aString)

Discussion

Note: This method is being deprecated in favor of a new class of formatter objects. For more information,
see NSFormatter. This documentation is provided only for developers who need to modify older applications.

See Also
entryType (page 310)
setEntryType (page 324)

isHighlighted
Returns whether the receiver is highlighted.

public boolean isHighlighted()

isOpaque
Returns whether the receiver is opaque (nontransparent).

public boolean isOpaque()

isScrollable
Returns whether the receiver scrolls typed text that exceeds the cell’s bounds.

public boolean isScrollable()

See Also
setScrollable (page 329)

isSelectable
Returns whether the text of the receiver can be selected.

public boolean isSelectable()

See Also
setSelectable (page 329)

keyEquivalent
Implemented by subclasses to return a key equivalent to clicking the cell.

public String keyEquivalent()

Instance Methods 315
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Discussion
The default implementation returns an empty string object.

lineBreakMode
Returns the line break mode currently used when drawing text.

public int lineBreakMode()

Availability
Available in Mac OS X v10.4 and later.

See Also
setLineBreakMode (page 327)

menu
Returns the menu with commands contextually related to the cell or null if no menu is associated.

public NSMenu menu()

See Also
setMenu (page 328)

menuForEvent
Returns the NSMenu associated with the receiver through the setMenu (page 328) method and related to
anEvent when the cursor is detected within cellFrame.

public NSMenu menuForEvent(NSEvent anEvent, NSRect cellFrame, NSView aView)

Discussion
It is usually invoked by the NSControl (aView) managing the receiver. The default implementation simply
invokes menu (page 316) and returns null if no menu has been set. Subclasses can override to customize
the returned menu according to the event received and the area in which the mouse event occurs.

mnemonic
Returns the character in the receiver’s title that appears underlined for use as a mnemonic.

public String mnemonic()

Discussion
If there is no mnemonic character, returns an empty string. Mnemonics are not supported in Mac OS X

See Also
setTitleWithMnemonic (page 332)

316 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

mnemonicLocation
Returns the position of the underlined character in the receiver’s title used as a mnemonic.

public int mnemonicLocation()

Discussion
If there is no mnemonic character, returns NSArray.NotFound. Mnemonics are not supported in Mac OS
X.

See Also
setMnemonicLocation (page 328)

mouseDownFlags
Returns the modifier flags for the last (left) mouse-down event, or 0 if tracking hasn’t occurred yet for the
cell or no modifier keys accompanied the mouse-down event.

public int mouseDownFlags()

See Also
modifierFlags (page 616) (NSEvent)

nextState
Returns the receiver’s next state.

public int nextState()

Discussion
If the receiver has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
receiver has two states, it toggles between them.

See Also
allowsMixedState (page 306)
setAllowsMixedState (page 320)
setNextState (page 328)

objectValue
Returns the receiver’s value as an object if a valid object has been associated with the receiver; otherwise,
returns null.

public Object objectValue()

Discussion
To be valid, the receiver must have a formatter capable of converting the object to and from its textual
representation.

Instance Methods 317
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

performClick
Can be used to simulate a single mouse click on the receiver.

public void performClick(Object sender)

Discussion
The receiver must be enabled and either the receiver's current controlView (page 309) must be valid or
sender, which must be a subclass of NSView, is used instead. The receiver's action is performed on its target.
Throws an exception if the action message cannot be successfully sent.

periodicDelay
Returns the amount of time that the cell pauses before sending its first message when it’s sending action
messages continuously to target objects.

public float periodicDelay()

Discussion
Override this method to supply your own delay value.

See Also
interval (page 313)

refusesFirstResponder
Returns true if the receiver can never become the first responder.

public boolean refusesFirstResponder()

Discussion
To find out whether the receiver can become first responder at this time, use the method
acceptsFirstResponder (page 305).

See Also
setRefusesFirstResponder (page 329)

representedObject
Returns the object the receiver represents.

public Object representedObject()

Discussion
For example, you could have a pop-up list of color names, and the represented objects could be the appropriate
NSColor objects.

See Also
setRepresentedObject (page 329)

318 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

resetCursorRect
Sets the receiver to show the I-beam cursor within cellFrame while it tracks the mouse.

public void resetCursorRect(NSRect cellFrame, NSView controlView)

Discussion
The receiver must be an enabled and selectable (or editable) text-type cell. controlView is the NSControl
that manages the cell.

This method is invoked by resetCursorRects (page 1770) and in general you do not need to call this method
unless you have a custom NSView that uses a cell.

selectAndEditWithFrameInView
Uses the field editor textObj to select text in a range marked by selStart and selLength, which will be
highlighted and selected as though the user had dragged the cursor over it.

public void selectAndEditWithFrameInView(NSRect aRect, NSView controlView, NSText
textObj, Object anObject, int selStart, int selLength)

Discussion
This method is similar to editWithFrameInView (page 310), except that it can be invoked in any situation,
not only on a mouse-down event. aRect is the rectangle in which the selection should occur, controlView
is the NSControl managing the receiver, and anObject is the delegate of the field editor. Returns without
doing anything if controlView, textObj, or the receiver is null, or if the receiver has no font set for it.

sendsActionOnEndEditing
Returns whether the receiver’s NSControl object sends its action message whenever the user finishes editing
the cell’s text.

public boolean sendsActionOnEndEditing()

Discussion
If it returns true, the receiver’s NSControl object sends its action message when the user does one of the
following:

 ■ Presses the Return key

 ■ Presses the Tab key to move out of the field

 ■ Clicks another text field

If it returns false, the cell’s NSControl object sends its action message only when the user presses the Return
key.

See Also
setSendsActionOnEndEditing (page 330)

setAction
public void setAction(NSSelector aSelector)

Instance Methods 319
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Discussion
In NSCell, throws InternalInconsistencyException. However, NSActionCell overrides this method to
set the action method, depending on the value of aSelector, as part of the implementation of the
target/action mechanism.

See Also
action (page 305)
setTarget (page 331)
target (page 336)

setAlignment
Sets the alignment of text in the receiver.

public void setAlignment(int mode)

Discussion
mode is one of five constants: NSText.LeftTextAlignment, NSText.RightTextAlignment,
NSText.CenterTextAlignment, NSText.JustifiedTextAlignment, and
NSText.NaturalTextAlignment (the default alignment for the text).

See Also
alignment (page 305)
setWraps (page 333)

setAllowsEditingTextAttributes
Sets whether the textual attributes of the receiver can be modified by the user.

public void setAllowsEditingTextAttributes(boolean flag)

Discussion
If flag is false, the receiver also cannot import graphics (that is, it does not support RTFD text).

See Also
allowsEditingTextAttributes (page 305)
setImportsGraphics (page 327)

setAllowsMixedState
public void setAllowsMixedState(boolean flag)

Discussion
If flag is true, the receiver has three states: on, off, and mixed. If flag is false, the receiver has two states:
on and off.

See Also
allowsMixedState (page 306)
nextState (page 317)
setNextState (page 328)

320 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setAllowsUndo
If allowsUndo is true, the receiver assumes responsibility for undo operations within the cell.

public void setAllowsUndo(boolean allowsUndo)

Discussion
If allowsUndo is false, undo operations are handled by the application’s custom undo manager.

Availability
Available in Mac OS X v10.4 and later.

See Also
allowsUndo (page 306)

setAttributedStringValue
Sets the value of the receiver to the attributed string attribStr.

public void setAttributedStringValue(NSAttributedString attribStr)

Discussion
If a formatter is set for the receiver, but the formatter does not understand the attributed string, it marks
attribStr as an invalid object. If the receiver is not a text-type cell, it’s converted to one.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue (page
306) for the object value of a cell, then the cell will use that method to fetch the string to draw rather than
using stringValue (page 334).

See Also
attributedStringValue (page 306)

setBezeled
Sets whether the receiver draws itself with a bezeled border, depending on the Boolean value flag.

public void setBezeled(boolean flag)

Discussion
The setBezeled and setBordered (page 321) methods are mutually exclusive (that is, a border can be only
plain or bezeled). Invoking this method results in setBordered (page 321) being sent with a value of false.

See Also
isBezeled (page 314)

setBordered
Sets whether the receiver draws itself outlined with a plain border, depending on the Boolean value flag.

public void setBordered(boolean flag)

Instance Methods 321
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Discussion
The setBezeled (page 321) and setBorderedmethods are mutually exclusive (that is, a border can be only
plain or bezeled). Invoking this method results in setBezeled (page 321) being sent with a value of false.

See Also
isBordered (page 314)

setCellAttribute
Sets a cell attribute identified by aParameter—such as the receiver’s state and whether it’s disabled, editable,
or highlighted—to value.

public void setCellAttribute(int aParameter, int value)

See Also
cellAttribute (page 307)

setContinuous
Sets whether the receiver continuously sends its action message to its target while it tracks the mouse,
depending on the Boolean value flag.

public void setContinuous(boolean flag)

Discussion
In practice, the continuous setting has meaning only for instances of NSActionCell and its subclasses, which
implement the target/action mechanism. Some NSControl subclasses, notably NSMatrix, send a default action
to a default target when a cell doesn’t provide a target or action.

See Also
isContinuous (page 314)
setEventMaskForSendingAction (page 324)

setControlSize
Sets the size of the receiver.

public void setControlSize(int size)

Discussion
Valid values for size are described in “Constants” (page 337).

Changing the cell’s control size does not change the font of the cell. Use the NSFont class method
systemFontSizeForControlSize (page 652) to obtain the system font based on the new control size and
set it.

See Also
controlSize (page 308)

322 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setControlTint
Sets the receiver’s control tint.

public void setControlTint(int controlTint)

Discussion
Valid values for controlTint are described in “Constants” (page 337).

See Also
controlTint (page 308)

setControlView
Sets the receiver’s control view.

public void setControlView(NSView view)

Discussion
The control view represents the control currently being rendered by the cell.

Availability
Available in Mac OS X v10.4 and later.

See Also
controlView (page 309)

setDoubleValue
Sets the value of the receiver to an object aDouble, representing a double value.

public void setDoubleValue(double aDouble)

Discussion
In its implementation, this method invokes setObjectValue (page 328). Does nothing if the receiver is not
a text-type cell.

See Also
doubleValue (page 309)

setEditable
Sets whether the user can edit the receiver’s text, depending on the Boolean value flag.

public void setEditable(boolean flag)

Discussion
If flag is true, the text is also made selectable. If flag is false, the selectable attribute is restored to the
value it was before the cell was last made editable.

See Also
isEditable (page 314)

Instance Methods 323
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setSelectable (page 329)

setEnabled
Sets whether the receiver is enabled or disabled, depending on the Boolean value flag.

public void setEnabled(boolean flag)

Discussion
The text of disabled cells is changed to gray. If a cell is disabled, it cannot be highlighted, does not support
mouse tracking (and thus cannot participate in target/action functionality), and cannot be edited. However,
you can still alter many attributes of a disabled cell programmatically (setState (page 330), for instance, will
still work).

See Also
isEnabled (page 314)

setEntryType
Sets how numeric data is formatted in the receiver and places restrictions on acceptable input.

public void setEntryType(int aType)

Discussion
aType can be one of the types defined in “Constants” (page 337). The formatter associated with the receiver
is replaced with a newly instantiated formatter appropriate to the entry type.

If the receiver isn’t a text-type cell, this method converts it to one; in the process, it makes its title “Cell” and
sets its font to the user’s system font at 12 points.

You can check whether formatted strings conform to the entry types of cells with the
isEntryAcceptable (page 314) method. NSControl subclasses also use isEntryAcceptable (page 314)
to validate what users have typed in editable cells. You can control the format of values accepted and displayed
in cells by creating a custom subclass of NSFormatter and associating an instance of that class with cells
(through setFormatter (page 326)). In custom NSCell subclasses, you can also override
isEntryAcceptable (page 314) to check for the validity of data entered into cells.

Note: This method is being deprecated in favor of a new class of formatter objects. For more information,
see NSFormatter. This documentation is provided only for developers who need to modify older applications.

See Also
entryType (page 310)

setEventMaskForSendingAction
Sets the conditions on which the receiver sends action messages to its target and returns a bit mask with
which to detect the previous settings.

public int setEventMaskForSendingAction(int mask)

324 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Discussion
setEventMaskForSendingAction is used during mouse tracking when the mouse button state changes,
the mouse moves, or, if the cell is marked to send its action continuously while tracking, periodically. Because
of this, the only bits checked in mask are NSEvent.LeftMouseDownMask, NSEvent.LeftMouseUpMask,
NSEvent.LeftMouseDraggedMask, and NSEvent.PeriodicMask.

You can use setContinuous (page 322) to turn on the flag corresponding to NSEvent.PeriodicMask or
NSEvent.LeftMouseDraggedMask, whichever is appropriate to the given subclass of NSCell.

See Also
action (page 305)

setFloatingPointFormat
Sets whether floating-point numbers are autoranged in the receiver and sets the sizes of the fields to the
left and right of the decimal point.

public void setFloatingPointFormat(boolean autoRange, int leftDigits, int
rightDigits)

Discussion
If autoRange is false, leftDigits specifies the maximum number of digits to the left of the decimal point,
and rightDigits specifies the number of digits to the right (the fractional digit places will be padded with
zeros to fill this width). However, if a number is too large to fit its integer part in leftDigits digits, as many
places as are needed on the left are effectively removed from rightDigits when the number is displayed.

If autoRange is true, leftDigits and rightDigits are simply added to form a maximum total field
width for the receiver (plus 1 for the decimal point). The fractional part will be padded with zeros on the
right to fill this width, or truncated as much as possible (up to removing the decimal point and displaying
the number as an integer). The integer portion of a number is never truncated—that is, it is displayed in full
no matter what the field width limit is.

See Also
setEntryType (page 324)

setFloatValue
Sets the value of the receiver to an object aFloat, representing a float value.

public void setFloatValue(float aFloat)

Discussion
In its implementation, this method invokes setObjectValue (page 328). Does nothing if the receiver is not
a text-type cell.

See Also
floatValue (page 311)

setFocusRingType
Sets the type of focus ring to be used.

Instance Methods 325
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

public void setFocusRingType(int focusRingType)

Discussion
Possible values are listed in the “Constants” (page 727) section of NSGraphics. You can disable a view's focus
ring drawing by calling this method with NSGraphics.FocusRingTypeNone. You should only disable a
view from drawing its focus ring if you want to draw your own focus ring, or if there isn't sufficient space to
display a focus ring in the default location.

Availability
Available in Mac OS X v10.3 and later.

See Also
focusRingType (page 311)
defaultFocusRingType (page 304)

setFont
Sets the font to be used when the receiver displays text.

public void setFont(NSFont fontObj)

Discussion
If the receiver is not a text-type cell, the method converts it to that type.

See Also
font (page 311)

setFormatter
Sets the formatter object used to format the textual representation of the receiver’s object value and to
validate cell input and convert it to that object value.

public void setFormatter(NSFormatter newFormatter)

Discussion
If the new formatter cannot interpret the receiver’s current object value, that value is converted to a string
object. If newFormatter is null, the receiver is disassociated from the current formatter.

See Also
formatter (page 311)

setHighlighted
Sets whether the receiver has a highlighted appearance, depending on the Boolean value flag.

public void setHighlighted(boolean flag)

Discussion
By default, it does nothing. NSButtonCell overrides this method to draw the button with the appearance
specified by LightsByBackground, LightsByContents, or LightsByGray.

326 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setImage
Sets the image to be displayed by the receiver.

public void setImage(NSImage image)

Discussion
If the receiver is not an image-type cell, the method converts it to that type.

See Also
image (page 313)

setImportsGraphics
Sets whether the receiver can import images into its text (that is, whether it supports RTFD text).

public void setImportsGraphics(boolean flag)

Discussion
If flag is true, the receiver is also set to allow editing of text attributes
(setAllowsEditingTextAttributes (page 320)).

See Also
importsGraphics (page 313)

setIntValue
Sets the value of the receiver to an object anInt, representing an integer value.

public void setIntValue(int anInt)

Discussion
In its implementation, this method invokes setObjectValue (page 328). Does nothing if the receiver is not
a text-type cell.

See Also
intValue (page 313)

setLineBreakMode
Sets the line break mode used when drawing text to mode.

public void setLineBreakMode(int mode)

Discussion
The line break mode can also be modified by calling the setWraps (page 333) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
lineBreakMode (page 316)

Instance Methods 327
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setWraps (page 333)

setMenu
Associates a menu with the cell that has commands contextually related to the receiver.

public void setMenu(NSMenu aMenu)

Discussion
The associated menu is retained. If aMenu is null, any association with a previous menu is removed.

See Also
menu (page 316)

setMnemonicLocation
Sets the character of the receiver’s title identified by location to be underlined.

public void setMnemonicLocation(int location)

Discussion
Mnemonics are not supported in Mac OS X.

See Also
mnemonicLocation (page 317)

setNextState
Sets the receiver to its next state.

public void setNextState()

Discussion
If the receiver has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
receiver has two states, it toggles between them.

See Also
allowsMixedState (page 306)
nextState (page 317)
setAllowsMixedState (page 320)

setObjectValue
Sets the receiver’s object value to object.

public void setObjectValue(Object object)

See Also
objectValue (page 317)
setRepresentedObject (page 329)

328 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setRefusesFirstResponder
Sets whether the receiver can become the first responder.

public void setRefusesFirstResponder(boolean flag)

Discussion
If flag is true, the receiver cannot become the first responder.

If refusesFirstResponder (page 318) returns false and the cell is enabled, the method
acceptsFirstResponder (page 305) returns true, allowing the cell to become first responder.

setRepresentedObject
Sets the object represented by the receiver—f

public void setRepresentedObject(Object anObject)

Discussion
or example, an NSColor object for a cell with a title of “Blue.”

See Also
setObjectValue (page 328)
representedObject (page 318)

setScrollable
Sets whether excess text in the receiver is scrolled past the cell’s bounds.

public void setScrollable(boolean flag)

Discussion
If flag is true, wrapping is turned off.

See Also
isScrollable (page 315)

setSelectable
Sets whether text in the receiver can be selected, depending on the Boolean value flag.

public void setSelectable(boolean flag)

Discussion
If flag is false, editability is also disabled. If flag is true, editability is not affected.

See Also
isSelectable (page 315)
setEditable (page 323)

Instance Methods 329
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setSendsActionOnEndEditing
Sets whether the receiver’s NSControl object sends its action message whenever the user finishes editing
the cell’s text.

public void setSendsActionOnEndEditing(boolean flag)

Discussion
If flag is true, the receiver’s NSControl object sends its action message when the user does one of the
following:

 ■ Presses the Return key

 ■ Presses the Tab key to move out of the field

 ■ Clicks another text field

If flag is false, the cell’s NSControl object sends its action message only when the user presses the Return
key.

See Also
sendsActionOnEndEditing (page 319)

setShowsFirstResponder
Sets whether the receiver draws some indication of its first responder status.

public void setShowsFirstResponder(boolean flag)

Discussion
NSCell itself does not draw any indication but subclasses may use flag to decide to draw a focus ring.

See Also
showsFirstResponder (page 333)

setState
Sets the receiver’s state to value, which can be OnState, OffState, or MixedState.

public void setState(int value)

Discussion
A cell can have two or three states. If it has two, value can be OffState (the normal or unpressed state) or
OnState (the alternate or pressed state). If it has three, value can be OnState (the feature is in effect
everywhere), OffState (the feature is in effect nowhere), or MixedState (the feature is in effect somewhere).
Note that if the cell has only two states and value is MixedState, this method sets the cell’s state to OnState.

Although using the enumerated constants is preferred, value can also be an integer. If the cell has two
states, 0 is treated as OffState, and a nonzero value is treated as OnState. If the cell has three states, 0 is
treated as OffState; a negative value, as MixedState; and a positive value, as OnState.

Note that the value state (page 333) returns may not be the same value you passed into setState.

330 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

To check whether the cell has three states (and uses the mixed state), invoke the method
allowsMixedState (page 306).

See Also
state (page 333)

setStringValue
Sets the value of the receiver to aString.

public void setStringValue(String aString)

Discussion
In its implementation, this method invokes setObjectValue (page 328). If no formatter is assigned to the
receiver or if the formatter cannot “translate” aString to an underlying object, the receiver is flagged as
having an invalid object. If the receiver is not a text-type cell, this method converts it to one before setting
the object value.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue (page
306) for the object value of a cell, then the cell will use that method to fetch the string to draw rather than
using stringValue (page 334).

See Also
stringValue (page 334)

setTag
Implemented by NSActionCell to set the receiver’s tag integer to anInt.

public void setTag(int anInt)

Discussion
NSCell’s implementation throws InternalInconsistencyException. Tags allow you to identify particular
cells. Tag values are not used internally; they are only changed by external invocations of setTag. You
typically set tag values in Interface Builder. When you set the tag of a control with a single cell in Interface
Builder, it sets the tags of both the control and the cell to the same value as a convenience.

See Also
tag (page 334)

setTarget
Implemented by NSActionCell to set the receiver’s target object receiving the action message to anObject.

public void setTarget(Object anObject)

Discussion
NSCell’s implementation throws InternalInconsistencyException.

See Also
target (page 336)

Instance Methods 331
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setTitle
Sets the title of the receiver to aString.

public void setTitle(String aString)

setTitleWithMnemonic
Sets the title of the receiver to aString with a character denoted as an access key.

public void setTitleWithMnemonic(String aString)

Discussion
Mnemonics are not supported in Mac OS X.

See Also
mnemonic (page 316)
setMnemonicLocation (page 328)

setType
If the type of the receiver is different from aType, sets it to aType, which must be one of TextCellType,
ImageCellType, or NullCellType.

public void setType(int aType)

Discussion
If aType is TextCellType, converts the receiver to a cell of that type, giving it a default title and setting the
font to the system font at the default size. If aType is ImageCellType, sets a null image. If aType is set to
ImageCellType and the image is set to null, the cell type will be reported as NullCellType until a new,
non-null image is set.

See Also
type (page 337)

setUpFieldEditorAttributes
Sets textual and background attributes of textObj, depending on certain attributes.

public NSText setUpFieldEditorAttributes(NSText textObj)

Discussion
If the receiver is disabled, sets the text color to dark gray; otherwise sets it to the default color. If the receiver
has a bezeled border, sets the background to the default color for text backgrounds; otherwise, sets it to the
color of the receiver’s NSControl.

You should not use this method to substitute a new field editor. setUpFieldEditorAttributes (page
332) is intended to modify the attributes of the text object (that is, the field editor) passed into it and return
that text object. If you want to substitute your own field editor, use the NSWindow method
fieldEditorForObject (page 1832) or the NSWindow delegate method
windowWillReturnFieldEditor (page 1882).

332 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

setWraps
Sets whether text in the receiver wraps when its length exceeds the frame of the cell.

public void setWraps(boolean flag)

Discussion
If flag is true, then it also sets the receiver to be nonscrollable.

If the text of the receiver is an attributed string value you must explicitly set the paragraph style line break
mode. Calling this method with the value true is equivalent to calling the setLineBreakMode: method
with the value NSLineBreakByWordWrapping.

See Also
setLineBreakMode (page 327)
wraps (page 337)

showsFirstResponder
Returns whether the receiver should draw some indication when it assumes first responder status.

public boolean showsFirstResponder()

See Also
setShowsFirstResponder (page 330)

startTrackingMouse
public boolean startTrackingMouse(NSPoint startPoint, NSView controlView)

Discussion
NSCell’s implementation of trackMouse (page 336) invokes this method when tracking begins. startPoint
is the point the cursor is currently at, and controlView is the NSControl managing the receiver. NSCell’s
default implementation returns true if the receiver is either set to respond continuously or set to respond
when the mouse is dragged. Otherwise, false is returned. Subclasses override this method to implement
special mouse-tracking behavior at the beginning of mouse tracking—for example, displaying a special
cursor.

See Also
continueTrackingMouse (page 308)
stopTrackingMouse (page 334)

state
Returns the receiver’s state.

public int state()

Instance Methods 333
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Discussion
The receiver can have two or three states. If it has two, it returns either OffState (the normal or unpressed
state) or OnState (the alternate or pressed state). If it has three, it returns OnState (the feature is in effect
everywhere), OffState (the feature is in effect nowhere), or MixedState (the feature is in effect somewhere).

To check whether the receiver uses the mixed state, use the method allowsMixedState (page 306).

Note that the value state (page 333) returns may not be the same value you passed into setState (page
330).

See Also
setState (page 330)

stopTrackingMouse
public void stopTrackingMouse(NSPoint lastPoint, NSPoint stopPoint, NSView

controlView, boolean flag)

Discussion
NSCell’s implementation of trackMouse (page 336) invokes this method when the cursor has left the bounds
of the receiver or the mouse button goes up (in which case flag is true). lastPoint is the point the cursor
was at, and stopPoint is its current point. controlView is the NSControl managing the receiver. NSCell’s
default implementation does nothing. Subclasses often override this method to provide customized tracking
behavior.

See Also
startTrackingMouse (page 333)
stopTrackingMouse (page 334)

stringValue
Returns the receiver’s value as a String as converted by the receiver’s formatter, if one exists.

public String stringValue()

Discussion
If no formatter exists and the value is a String, returns the value as a plain, attributed, or localized formatted
string. If the value is not a String or can’t be converted to one, returns an empty string.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue (page
306) for the object value of a cell, then the cell will use that method to fetch the string to draw rather than
using stringValue.

See Also
setStringValue (page 331)

tag
Implemented by NSActionCell to return the receiver’s tag integer.

public int tag()

334 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Discussion
NSCell’s implementation returns –1. Tags allow you to identify particular cells. You typically set tag values in
Interface Builder. When you set the tag of a control with a single cell in Interface Builder, it sets the tags of
both the control and the cell to the same value as a convenience.

See Also
setTag (page 331)

takeDoubleValue
Sets the receiver’s own value as a double using the double value of sender.

public void takeDoubleValue(Object sender)

See Also
setDoubleValue (page 323)

takeFloatValue
Sets the receiver’s own value as a float using the float value of sender.

public void takeFloatValue(Object sender)

See Also
setFloatValue (page 325)

takeIntValue
Sets the receiver’s own value as an int using the int value of sender.

public void takeIntValue(Object sender)

See Also
setIntValue (page 327)

takeObjectValue
Sets the receiver’s own value as an object using the object value of sender.

public void takeObjectValue(Object sender)

See Also
setObjectValue (page 328)

takeStringValue
Sets the receiver’s own value as a string object using the String value of sender.

public void takeStringValue(Object sender)

Instance Methods 335
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

See Also
setStringValue (page 331)

target
public Object target()

Discussion
Implemented by NSActionCell to return the target object to which the receiver’s action message is sent.
NSCell’s implementation returns null.

See Also
setTarget (page 331)

titleRectForBounds
public NSRect titleRectForBounds(NSRect theRect)

Discussion
If the receiver is a text-type cell, resizes the drawing rectangle for the title (theRect) inward by a small offset
to accommodate the cell border. If the receiver is not a text-type cell, the method does nothing.

See Also
imageRectForBounds (page 313)

trackMouse
Invoked by an NSControl to initiate the tracking behavior of one of its NSCells.

public boolean trackMouse(NSEvent theEvent, NSRect cellFrame, NSView controlView,
boolean untilMouseUp)

Discussion
It’s generally not overridden because the default implementation invokes other NSCell methods that can be
overridden to handle specific events in a dragging session. This method’s return value depends on the
untilMouseUp flag. If untilMouseUp is set to true, this method returns true if the mouse button goes
up while the cursor is anywhere; false, otherwise. If untilMouseUp is set to false, this method returns
true if the mouse button goes up while the cursor is within cellFrame; false, otherwise. The argument
theEvent is typically the mouse event received by the initiating NSControl, usually identified by controlView.
The untilMouseUp argument indicates whether tracking should continue until the mouse button goes up;
if it's false, tracking ends when the mouse leaves the cell frame even if the mouse button isn't released.

This method first invokes startTrackingMouse (page 333). If that method returns true, then as
mouse-dragged events are intercepted, continueTrackingMouse (page 308) is invoked until either the
method returns false or the mouse is released. Finally, stopTrackingMouse (page 334) is invoked if the
mouse is released. If untilMouseUp is true, it’s invoked when the mouse button goes up while the cursor
is anywhere. If untilMouseUp is false, it’s invoked when the mouse button goes up while the cursor is
within cellFrame. (If cellFrame is NULL, then the bounds are considered infinitely large.) You usually
override one or more of these methods to respond to specific mouse events.

336 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

type
Returns the type of the receiver, one of TextCellType, ImageCellType, or NullCellType.

public int type()

Discussion
If the receiver’s type is set to ImageCellType and its image is set to null, the cell type will be reported as
NullCellType until a new, non-null image is set.

See Also
setType (page 332)

wraps
Returns whether text of the receiver wraps when it exceeds the borders of the cell.

public boolean wraps()

See Also
setWraps (page 333)

Constants

These constants specify how a cell formats numeric data. They’re used by setEntryType (page 324) and
entryType (page 310).

DescriptionConstant

Must be between INT_MIN and INT_MAX.IntType

Must be between 1 and INT_MAX.PositiveIntType

Must be between –FLT_MAX and FLT_MAX.FloatType

Must be between FLT_MIN and FLT_MAX.PositiveFloatType

Must be between –DBL_MAX and DBL_MAX.DoubleType

Must be between DBL_MAX and DBL_MAX.PositiveDoubleType

Any value is allowed.AnyType

These constants specify what a cell contains. They’re used by setType (page 332) and type (page 337).

DescriptionConstant

Cell displays nothing.NullCellType

Cell displays text.TextCellType

Constants 337
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

DescriptionConstant

Cell displays images.ImageCellType

These constants specify how a button behaves when pressed and how it displays its state. They’re used by
NSButton and NSButtonCell:

DescriptionConstant

If the cell’s state is MixedState or OnState, changes the cell’s background
color from gray to white.

ChangeBackground

If the cell’s state is MixedState or OnState, displays the cell’s alternate
image.

ChangesContents

If the cell’s state is MixedState or OnState, displays the cell’s image as
darkened.

ChangeGray

Does not let the user manipulate the cell.Disabled

Lets the user edit the cell’s contents.Editable

Controls the position of the cell’s image and text. To place the image above,
set none of them. To place the image below, set HasImageOnLeft-
OrBottom. To place the image to the right, set HasImageHorizontal. To
place the image to the left, set HasImageHorizontal and
HasImageOnLeftOrBottom. To place the image directly over, set
HasOverlappingImage.

HasImageHorizontal
HasImageOnLeftOrBottom
HasOverlappingImage

Draws the cell with a highlighted appearance. This constant is deprecated.
Use setHighlighted (page 326) instead.

Highlighted

Draws a border around the cell.IsBordered

Insets the cell’s contents from the border. By default, they’re inset by 2
pixels. This constant is ignored if the cell is unbordered.

IsInsetButton

If the cell is pushed in, changes the cell’s background color from gray to
white.

LightsByBackground

If the cell is pushed in, displays the cell’s alternate image.LightsByContents

If the cell is pushed in, displays the cell’s image as darkened.LightsByGray

Determines whether the cell’s image and text appear to be shifted down
and to the right.

PushIn

The cell’s state. It can be MixedState, OffState, or OnState.State

These constants specify the position of a button’s image relative to its title. They’re used by NSButton’s and
NSButtonCell’s setImagePosition (page 262) and imagePosition (page 257).

338 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

DescriptionConstant

The cell doesn’t display an image.NoImage

The cell displays an image, but not a title.ImageOnly

The image is to the left of the title.ImageLeft

The image is to the right of the title.ImageRight

The image is below the title.ImageBelow

The image is above the title.ImageAbove

The image overlaps the title.ImageOverlaps

These constants specify a cell’s state and are used mostly for buttons. They’re described in “Cell States”.

DescriptionConstant

The corresponding feature is in effect somewhere.MixedState

The corresponding feature is in effect nowhere.OffState

The corresponding feature is in effect everywhere.OnState

These constants specify what happens when a button is pressed or is displaying its alternate state. They’re
used by NSButtonCell’s highlightsBy (page 277) and showsStateBy (page 289).

DescriptionConstant

The button cell doesn’t change.NoCellMask

The button cell “pushes in” if it has a border.PushInCellMask

The button cell displays its alternate icon and/or title.ContentsCellMask

The button cell swaps the “control color” (NSColor’s controlColor (page
361)) and white pixels on its background and icon.

ChangeGrayCellMask

Same asChangeGrayCellMask, but only background pixels are changed.ChangeBackgroundCellMask

These constants specify a cell’s tint. They’re used by controlTint (page 308) and setControlTint (page
323).

DescriptionConstant

The current default tint settingDefaultControlTint

Clear control tintClearControlTint

Aqua control tintBlueControlTint

Constants 339
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

DescriptionConstant

Graphite control tintGraphiteControlTint

These constants specify a cell’s size. They’re used by controlSize (page 308) and setControlSize (page
322).

DescriptionConstant

The control is sized as regular.RegularControlSize

The control has a smaller size. This constant is for controls that cannot be resized
in one direction, such as push buttons, radio buttons, checkboxes, sliders, scroll
bars, pop-up buttons, tabs, and progress indicators. You should use a small system
font with a small control.

SmallControlSize

The control has a smaller size than SmallControlSize.MiniControlSize

340 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCell

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Drawing and Views

Class at a Glance

An NSClipView contains and scrolls the document view displayed by an NSScrollView. You normally don’t
need to program with NSClipViews, as NSScrollView handles most of the details of their operation.

Principal Attributes

 ■ Efficient scrolling by copying drawn portions of the document view

 ■ Monitoring of document view for automatic update

Interface Builder
Constructor

Creates the NSClipView.

Commonly Used Methods

setDocumentView (page 347)
Sets the view scrolled within the NSClipView.

setCopiesOnScroll (page 347)
Sets whether the NSClipView copies drawn portions of the document view during scrolling.

Class at a Glance 341
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

Overview

An NSClipView holds the document view of an NSScrollView, clipping the document view to its frame,
handling the details of scrolling in an efficient manner, and updating the NSScrollView when the document
view’s size or position changes. You don’t normally use the NSClipView class directly; it’s provided primarily
as the scrolling machinery for the NSScrollView class. However, you might use the NSClipView class to
implement a class similar to NSScrollView.

Interaction With NSScrollView

When using an NSClipView within an NSScrollView (the usual configuration), you should issue messages that
control background drawing state to the NSScrollView, rather than messaging the NSClipView directly. This
recommendation applies to the following methods:

 ■ - setBackgroundColor:

 ■ - backgroundColor

 ■ - setDrawsBackground:

 ■ - drawsBackground

The NSClipView methods are intended for when the NSClipView is used independently of a containing
NSScrollView. In the usual case, NSScrollView should be allowed to manage the background-drawing properties
of its associated NSClipView.

There is only one background-drawing state per NSScrollView/NSClipView pair. The two objects do not
maintain independent and distinct drawsBackground and backgroundColor properties; rather,
NSScrollView's accessors for these properties largely defer to the associated NSClipView and allow the
NSClipView to maintain the state. In Mac OS X v10.2 and earlier system versions, NSScrollView maintained a
cache of the last state it set for its NSClipView. If the NSClipView was sent a setDrawsBackground:message
directly, the cache might not reflect the state accurately. This caching of state has been removed in Mac OS
X v10.3.

It is also important to note that sending a setDrawsBackground: message with a parameter of false to an
NSScrollView has the added effect of sending the NSClipView a setCopiesOnScroll: message with a
parameter of false. The side effect of sending the setDrawsBackground:message directly to the NSClipView
is the appearance of “trails” (vestiges of previous drawing) in the document view as it is scrolled.

Tasks

Constructors

NSClipView (page 344)
Creates an NSClipView with a zero-sized frame rectangle.

342 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

Setting the Document View

setDocumentView (page 347)
Sets the receiver’s document view to aView, removing any previous document view, and sets the
origin of the receiver’s bounds rectangle to the origin of aView’s frame rectangle.

documentView (page 346)
Returns the receiver’s document view.

Scrolling

scrollToPoint (page 347)
Changes the origin of the receiver’s bounds rectangle to newOrigin.

autoscroll (page 344)
Scrolls the receiver proportionally to theEvent’s distance outside of it.

constrainScrollPoint (page 345)
Returns a scroll point adjusted from proposedNewOrigin, if necessary, to guarantee the receiver
will still lie within its document view.

Determining Scrolling Efficiency

setCopiesOnScroll (page 347)
Controls whether the receiver copies rendered images while scrolling.

copiesOnScroll (page 345)
Returns true if the receiver copies its existing rendered image while scrolling (only drawing exposed
portions of its document view), false if it forces its contents to be redrawn each time.

Getting the Visible Portion

documentRect (page 346)
Returns the rectangle defining the document view’s frame, adjusted to the size of the receiver if the
document view is smaller.

documentVisibleRect (page 346)
Returns the exposed rectangle of the receiver’s document view, in the document view’s own coordinate
system.

Setting the Document Cursor

setDocumentCursor (page 347)
Sets the cursor object used over the receiver to aCursor.

documentCursor (page 345)
Returns the cursor object used when the cursor lies over the receiver.

Tasks 343
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

Working with Background Color

drawsBackground (page 346)
Returns true if the receiver draws its background color.

setDrawsBackground (page 348)
Sets whether the receiver draws its background color, depending on the Boolean value flag.

setBackgroundColor (page 347)
Sets the receiver’s background color to aColor.

backgroundColor (page 345)
Returns the color of the receiver’s background.

Overriding NSView Methods

viewBoundsChanged (page 348)
Handles a ViewBoundsDidChangeNotification (page 1788), passed in the aNotification
argument, by updating a containing NSScrollView based on the new bounds.

viewFrameChanged (page 348)
Handles aViewFrameDidChangeNotification (page 1789), passed in theaNotification argument,
by updating a containing NSScrollView based on the new frame.

Constructors

NSClipView
Creates an NSClipView with a zero-sized frame rectangle.

public NSClipView()

Creates an NSClipView with frameRect as its frame rectangle.

public NSClipView(NSRect frameRect)

Instance Methods

autoscroll
Scrolls the receiver proportionally to theEvent’s distance outside of it.

public boolean autoscroll(NSEvent theEvent)

Discussion
theEvent’s location should be expressed in the window’s base coordinate system (which it normally is), not
the receiving NSClipView’s. Returns true if any scrolling is performed; otherwise returns false.

344 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

Never invoke this method directly; instead, the NSClipView’s document view should repeatedly send itself
autoscroll (page 1742) messages when the cursor is dragged outside the NSClipView’s frame during a modal
event loop initiated by a mouse-down event. The NSView class implementsautoscroll (page 1742) to forward
the message to the receiver’s superview; thus the message is ultimately forwarded to the NSClipView.

backgroundColor
Returns the color of the receiver’s background.

public NSColor backgroundColor()

See Also
setBackgroundColor (page 347)

constrainScrollPoint
Returns a scroll point adjusted from proposedNewOrigin, if necessary, to guarantee the receiver will still
lie within its document view.

public NSPoint constrainScrollPoint(NSPoint proposedNewOrigin)

Discussion
For example, if proposedNewOrigin’s y coordinate lies to the left of the document view’s origin, then the
y coordinate returned is set to that of the document view’s origin.

See Also
scrollToPoint (page 347)

copiesOnScroll
Returns true if the receiver copies its existing rendered image while scrolling (only drawing exposed portions
of its document view), false if it forces its contents to be redrawn each time.

public boolean copiesOnScroll()

See Also
setCopiesOnScroll (page 347)

documentCursor
Returns the cursor object used when the cursor lies over the receiver.

public NSCursor documentCursor()

See Also
setDocumentCursor (page 347)

Instance Methods 345
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

documentRect
Returns the rectangle defining the document view’s frame, adjusted to the size of the receiver if the document
view is smaller.

public NSRect documentRect()

Discussion
In other words, this rectangle is always at least as large as the receiver itself.

The document rectangle is used in conjunction with an NSClipView’s bounds rectangle to determine values
for the indicators of relative position and size between the NSClipView and its document view. For example,
NSScrollView uses these rectangles to set the size and position of the knobs in its scrollers. When the document
view is much larger than the NSClipView, the knob is small; when the document view is near the same size,
the knob is large; and when the document view is the same size or smaller, there is no knob.

See Also
reflectScrolledClipView (page 1276) (NSScrollView)
documentVisibleRect (page 346)

documentView
Returns the receiver’s document view.

public NSView documentView()

See Also
setDocumentView (page 347)

documentVisibleRect
Returns the exposed rectangle of the receiver’s document view, in the document view’s own coordinate
system.

public NSRect documentVisibleRect()

Discussion
Note that this rectangle doesn’t reflect the effects of any clipping that may occur above the NSClipView itself.
To get the portion of the document view that’s guaranteed to be visible, send it a visibleRect message.

See Also
documentRect (page 346)

drawsBackground
Returns true if the receiver draws its background color.

public boolean drawsBackground()

See Also
setDrawsBackground (page 348)

346 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

scrollToPoint
Changes the origin of the receiver’s bounds rectangle to newOrigin.

public void scrollToPoint(NSPoint newOrigin)

See Also
constrainScrollPoint (page 345)

setBackgroundColor
Sets the receiver’s background color to aColor.

public void setBackgroundColor(NSColor aColor)

See Also
backgroundColor (page 345)

setCopiesOnScroll
Controls whether the receiver copies rendered images while scrolling.

public void setCopiesOnScroll(boolean flag)

Discussion
If flag is true, the receiver copies the existing rendered image to its new location while scrolling and only
draws exposed portions of its document view. If flag is false, the receiver always forces its document view
to draw itself on scrolling.

See Also
copiesOnScroll (page 345)

setDocumentCursor
Sets the cursor object used over the receiver to aCursor.

public void setDocumentCursor(NSCursor aCursor)

See Also
documentCursor (page 345)

setDocumentView
Sets the receiver’s document view to aView, removing any previous document view, and sets the origin of
the receiver’s bounds rectangle to the origin of aView’s frame rectangle.

public void setDocumentView(NSView aView)

Discussion
If the receiver is contained in an NSScrollView, you should send the NSScrollView a setDocumentView (page
1279) message instead, so it can perform whatever updating it needs.

Instance Methods 347
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

In the process of setting the document view, this method registers the receiver for the notifications
ViewFrameDidChangeNotification (page 1789) andViewBoundsDidChangeNotification (page 1788),
adjusts the key view loop to include the new document view, and updates a parent NSScrollView’s display
if needed using reflectScrolledClipView (page 1276).

See Also
documentView (page 346)

setDrawsBackground
Sets whether the receiver draws its background color, depending on the Boolean value flag.

public void setDrawsBackground(boolean flag)

Discussion
If your NSClipView is enclosed in an NSScrollView, you should send the setDrawsBackground: message
to the NSScrollView. Sending a setDrawsBackground:message with a parameter of false to an NSScrollView
has the added effect of sending the NSClipView a setCopiesOnScroll:message with a parameter of false.
The side effect of sending the setDrawsBackground:message directly to the NSClipView is the appearance
of “trails” (vestiges of previous drawing) in the document view as it is scrolled.

See Also
drawsBackground (page 346)

viewBoundsChanged
Handles a ViewBoundsDidChangeNotification (page 1788), passed in the aNotification argument, by
updating a containing NSScrollView based on the new bounds.

public void viewBoundsChanged(NSNotification aNotification)

viewFrameChanged
Handles a ViewFrameDidChangeNotification (page 1789), passed in the aNotification argument, by
updating a containing NSScrollView based on the new frame.

public void viewFrameChanged(NSNotification aNotification)

348 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

NSClipView

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Class at a Glance

An NSColor object represents a color, which is defined in a color space, each point of which has a set of
components (such as red, green, and blue) that uniquely define a color.

Principal Attributes

 ■ Color space

 ■ Color components

Various colorWith... and colorUsing... methods.
Preset colors: blackColor (page 356), blueColor (page 357), and so on.

Commonly Used Methods

colorUsingColorSpaceName (page 372)
Creates an NSColor in the specified color space.

set (page 376)
Sets the drawing color.

Overview

An NSColor object represents color and sometimes opacity (alpha). By sending a set (page 376) message to
an NSColor instance, you set the color for the current drawing context. Setting the color causes subsequently
drawn graphics to have the color represented by the NSColor instance.

Class at a Glance 349
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

It is invalid to use an accessor method related to components of a particular color space on an NSColor object
that is not in that color space. For example, methods such as redComponent (page 375) work on color objects
in the calibrated and device RGB color spaces. If you send such a message to an NSColor object in the CMYK
color space, an exception is raised. If you have an NSColor object in an unknown color space and you want
to extract its components, you should first convert the color object to a known color space before using the
component accessor methods of that color space.

For definitons of NSColor constants, as well as a discussion of their usage, see “About Color Spaces” in Color
Programming Topics for Cocoa.

Tasks

Constructors

NSColor (page 356)
Creates an empty NSColor.

Creating an NSColor Object from Component Values

colorWithCalibratedHSB (page 357)
Creates and returns an NSColor whose opacity value is alpha and whose components in HSB space
would be hue, saturation, and brightness.

colorWithCalibratedRGB (page 358)
Creates and returns an NSColor whose opacity value is alpha and whose RGB components are red,
green, and blue.

colorWithCalibratedWhite (page 358)
Creates and returns an NSColor whose opacity value is alpha and whose grayscale value is white.

colorWithCatalogName (page 358)
Creates and returns an NSColor by finding the color named colorName in the catalog named
listName, which may be a standard catalog.

colorWithDeviceCMYK (page 359)
Creates and returns an NSColor whose opacity value is alpha and whose CMYK components are
cyan, magenta, yellow, and black.

colorWithDeviceHSB (page 359)
Creates and returns an NSColor whose opacity value is alpha and whose components in HSB space
would be hue, saturation, and brightness.

colorWithDeviceRGB (page 359)
Creates and returns an NSColor whose opacity value is alpha and whose RGB components are red,
green, and blue.

colorWithDeviceWhite (page 360)
Creates and returns an NSColor whose opacity value is alpha and whose grayscale value is white.

colorWithColorSpace (page 359)
Returns an NSColor object created from the specified components of color space space

350 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Creating an NSColor with Preset Components

blackColor (page 356)
Returns an NSColor whose grayscale value is 0.0 and whose alpha value is 1.0.

blueColor (page 357)
Returns an NSColor whose RGB value is 0.0, 0.0, 1.0 and whose alpha value is 1.0.

brownColor (page 357)
Returns an NSColor whose RGB value is 0.6, 0.4, 0.2 and whose alpha value is 1.0.

clearColor (page 357)
Returns an NSColor whose grayscale and alpha values are both 0.0.

cyanColor (page 362)
Returns an NSColor whose RGB value is 0.0, 1.0, 1.0 and whose alpha value is 1.0.

darkGrayColor (page 363)
Returns an NSColor whose grayscale value is 1/3 and whose alpha value is 1.0.

grayColor (page 363)
Returns an NSColor whose grayscale value is 0.5 and whose alpha value is 1.0.

greenColor (page 363)
Returns an NSColor whose RGB value is 0.0, 1.0, 0.0 and whose alpha value is 1.0.

lightGrayColor (page 365)
Returns an NSColor whose grayscale value is 2/3 and whose alpha value is 1.0.

magentaColor (page 365)
Returns an NSColor whose RGB value is 1.0, 0.0, 1.0 and whose alpha value is 1.0.

orangeColor (page 365)
Returns an NSColor whose RGB value is 1.0, 0.5, 0.0 and whose alpha value is 1.0.

purpleColor (page 365)
Returns an NSColor whose RGB value is 0.5, 0.0, 0.5 and whose alpha value is 1.0.

redColor (page 365)
Returns an NSColor whose RGB value is 1.0, 0.0, 0.0 and whose alpha value is 1.0.

whiteColor (page 369)
Returns an NSColor whose grayscale and alpha values are both 1.0.

yellowColor (page 369)
Returns an NSColor whose RGB value is 1.0, 1.0, 0.0 and whose alpha value is 1.0.

Working with Pattern Images

colorWithPatternImage (page 360)
Creates and returns an NSColor that uses the pattern in image.

patternImage (page 375)
Returns the image that the receiver is using as a pattern.

Tasks 351
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Creating a System Color—an NSColor Whose Value Is Specified by User
Preferences

alternateSelectedControlColor (page 356)
Returns the system color used for the face of a selected control—a control being clicked or dragged.

alternateSelectedControlTextColor (page 356)
Returns the system color used for text in a selected control—a control being clicked or dragged.

colorForControlTint (page 357)
Returns the NSColor specified by controlTint, which is one of the tint settings.

controlBackgroundColor (page 360)
Returns the system color used for the background of large controls such as browsers, table views,
and clip views.

controlColor (page 361)
Returns the system color used for the flat surfaces of a control.

controlAlternatingRowBackgroundColors (page 360)
Returns an array containing the system specified background colors for alternating rows in tables
and lists.

controlHighlightColor (page 361)
Returns the system color used for the highlighted bezels of controls.

controlLightHighlightColor (page 361)
Returns the system color used for light highlights in controls.

controlShadowColor (page 362)
Returns the system color used for the shadows dropped from controls.

controlDarkShadowColor (page 361)
Returns the system color used for the dark edge of the shadow dropped from controls.

controlTextColor (page 362)
Returns the system color used for text on controls that aren’t disabled.

currentControlTint (page 362)
Returns the current system control tint.

disabledControlTextColor (page 363)
Returns the system color used for text on disabled controls.

gridColor (page 363)
Returns the system color used for the optional gridlines in, for example, a table view.

highlightColor (page 364)
Returns the system color that represents the virtual light source on the screen.

keyboardFocusIndicatorColor (page 364)
Returns the system color that represents the keyboard focus ring around controls.

knobColor (page 364)
Returns the system color used for the flat surface of a slider knob that hasn’t been selected.

scrollBarColor (page 365)
Returns the system color used for scroll “bars”—that is, for the groove in which a scroller’s knob moves

secondarySelectedControlColor (page 366)
Returns the system color used in nonkey views.

352 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

selectedControlColor (page 366)
Returns the system color used for the face of a selected control—a control being clicked or dragged.

selectedControlTextColor (page 366)
Returns the system color used for text in a selected control—a control being clicked or dragged.

selectedMenuItemColor (page 367)
Returns the system color used for the face of selected menu items.

selectedMenuItemTextColor (page 367)
Returns the system color used for the text in menu items.

selectedTextBackgroundColor (page 367)
Returns the system color used for the background of selected text.

selectedTextColor (page 367)
Returns the system color used for selected text.

selectedKnobColor (page 366)
Returns the system color used for the slider knob when it is selected—that is, dragged.

shadowColor (page 368)
Returns the system color that represents the virtual shadows cast by raised objects on the screen.

textBackgroundColor (page 368)
Returns the system color used for the text background.

textColor (page 368)
Returns the system color used for text.

windowBackgroundColor (page 369)
Returns a pattern color that will draw the ruled lines for the window background.

windowFrameColor (page 369)
Returns the system color used for window frames, except for their text.

windowFrameTextColor (page 369)
Returns the system color used for the text in window frames.

Ignoring Alpha Components

ignoresAlpha (page 364)
Returns true if the application doesn’t support alpha.

setIgnoresAlpha (page 367)

Copying and Pasting

colorFromPasteboard (page 357)
Returns the NSColor currently on pasteBoard, or null if pasteBoard doesn’t contain color data.

writeToPasteboard (page 377)
Writes the receiver’s data to pasteBoard, unless pasteBoard doesn’t support color data (in which
case the method does nothing).

Tasks 353
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Retrieving a Set of Components

components (page 373)
Returns the components of the receiver as an array of float values.

numberOfComponents (page 375)
Returns the number of components in the receiver.

Retrieving Individual Components

alphaComponent (page 370)
Returns the receiver’s alpha (opacity) component.

blackComponent (page 370)
Returns the receiver’s black component.

blueComponent (page 370)
Returns the receiver’s blue component.

brightnessComponent (page 370)
Returns the brightness component of the HSB color equivalent to the receiver.

catalogNameComponent (page 371)
Returns the name of the catalog containing the receiver’s name.

colorNameComponent (page 371)
Returns the receiver’s name.

cyanComponent (page 373)
Returns the receiver’s cyan component.

greenComponent (page 374)
Returns the receiver’s green component.

hueComponent (page 374)
Returns the hue component of the HSB color equivalent to the receiver.

localizedCatalogNameComponent (page 374)

localizedColorNameComponent (page 374)

magentaComponent (page 375)
Returns the receiver’s magenta component.

redComponent (page 375)
Returns the receiver’s red component.

saturationComponent (page 376)
Returns the saturation component of the HSB color equivalent to the receiver.

whiteComponent (page 377)
Returns the receiver’s white component.

yellowComponent (page 378)
Returns the receiver’s yellow component.

354 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Working with the Color Space

colorSpaceName (page 371)
Returns the name of the receiver’s color space.

colorUsingColorSpaceName (page 372)
Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor
is in the color space named colorSpace.

colorUsingColorSpaceNameAndDevice (page 372)
Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor
is in the color space named colorSpace and is specific to the device described by
deviceDescription.

colorSpace (page 371)
Returns an object representing the color space of the receiver.

colorUsingColorSpace (page 372)
Returns a new color object representing the color of the receiver in the specified color space space.

Changing the Color

blendedColorWithFractionOfColor (page 370)
Creates and returns an NSColor whose component values are a weighted sum of the receiver’s and
color’s.

colorWithAlphaComponent (page 373)
Creates and returns an NSColor that has the same color space and component values as the receiver,
except its alpha component is alpha.

highlightWithLevel (page 374)
Returns an NSColor that represents a blend between the receiver and the highlight color returned
by highlightColor (page 364).

shadowWithLevel (page 377)
Returns an NSColor that represents a blend between the receiver and the shadow color returned by
shadowColor (page 368).

Drawing

drawSwatchInRect (page 373)
Draws the current color in the rectangle rect.

set (page 376)
Sets the color of subsequent drawing to the color that the receiver represents.

setFill (page 376)
Sets the fill color of subsequent drawing to the receiver’s color.

setStroke (page 376)
Sets the stroke color of subsequent drawing to the receiver’s color.

Tasks 355
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Constructors

NSColor
Creates an empty NSColor.

public NSColor()

Static Methods

alternateSelectedControlColor
Returns the system color used for the face of a selected control—a control being clicked or dragged.

public static NSColor alternateSelectedControlColor()

Discussion
For use where iApp-like highlighting is desired. For general information about system colors, see “Accessing
System Colors”.

Availability
Available in Mac OS X v10.2 and later.

See Also
alternateSelectedControlTextColor (page 356)
selectedControlColor (page 366)

alternateSelectedControlTextColor
Returns the system color used for text in a selected control—a control being clicked or dragged.

public static NSColor alternateSelectedControlTextColor()

Discussion
or use where iApp-like highlighting is desired. For general information about system colors, see “Accessing
System Colors”.

Availability
Available in Mac OS X v10.2 and later.

See Also
alternateSelectedControlColor (page 356)
selectedControlTextColor (page 366)

blackColor
Returns an NSColor whose grayscale value is 0.0 and whose alpha value is 1.0.

356 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

public static NSColor blackColor()

See Also
blackComponent (page 370)

blueColor
Returns an NSColor whose RGB value is 0.0, 0.0, 1.0 and whose alpha value is 1.0.

public static NSColor blueColor()

See Also
blueComponent (page 370)

brownColor
Returns an NSColor whose RGB value is 0.6, 0.4, 0.2 and whose alpha value is 1.0.

public static NSColor brownColor()

clearColor
Returns an NSColor whose grayscale and alpha values are both 0.0.

public static NSColor clearColor()

colorForControlTint
Returns the NSColor specified by controlTint, which is one of the tint settings.

public static NSColor colorForControlTint(int controlTint)

colorFromPasteboard
Returns the NSColor currently on pasteBoard, or null if pasteBoard doesn’t contain color data.

public static NSColor colorFromPasteboard(NSPasteboard pasteBoard)

Discussion
The returned color’s alpha component is set to 1.0 if ignoresAlpha (page 364) returns true.

See Also
writeToPasteboard (page 377)

colorWithCalibratedHSB
Creates and returns an NSColor whose opacity value is alpha and whose components in HSB space would
be hue, saturation, and brightness.

Static Methods 357
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

public static NSColor colorWithCalibratedHSB(float hue, float saturation, float
brightness, float alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.)

See Also
colorWithCalibratedRGB (page 358)
colorWithDeviceHSB (page 359)

colorWithCalibratedRGB
Creates and returns an NSColor whose opacity value is alpha and whose RGB components are red, green,
and blue.

public static NSColor colorWithCalibratedRGB(float red, float green, float blue,
float alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.)

See Also
colorWithCalibratedHSB (page 357)
colorWithDeviceRGB (page 359)

colorWithCalibratedWhite
Creates and returns an NSColor whose opacity value is alpha and whose grayscale value is white.

public static NSColor colorWithCalibratedWhite(float white, float alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.)

See Also
colorWithDeviceWhite (page 360)

colorWithCatalogName
Creates and returns an NSColor by finding the color named colorName in the catalog named listName,
which may be a standard catalog.

public static NSColor colorWithCatalogName(String listName, String colorName)

Discussion
Note that the color must be defined in the named color space to retrieve it with this method.

See Also
catalogNameComponent (page 371)
colorNameComponent (page 371)
localizedCatalogNameComponent (page 374)

358 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

colorWithColorSpace
Returns an NSColor object created from the specified components of color space space

public static NSColor colorWithColorSpace(NSColorSpace space, float[] components)

Discussion
. space must be a NSColorSpace object representing a color space. The number of components in the
components array should match the number dictated by the specified color space plus one for alpha. Throws
an exception if they do not match. The order of the components is determined by the color-space profile,
with the alpha component always last. (If you want the created color to be opaque, specify 1.0 for the alpha
component.) If space represents a color space that cannot cannot be used with NSColor objects—for example,
a “pattern” color space—the method returns null.

Availability
Available in Mac OS X v10.4.

See Also
colorUsingColorSpace (page 372)

colorWithDeviceCMYK
Creates and returns an NSColor whose opacity value is alpha and whose CMYK components are cyan,
magenta, yellow, and black.

public static NSColor colorWithDeviceCMYK(float cyan, float magenta, float yellow,
float black, float alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.) In PostScript, this color
space corresponds directly to the device-dependent operator setcmykcolor.

colorWithDeviceHSB
Creates and returns an NSColor whose opacity value is alpha and whose components in HSB space would
be hue, saturation, and brightness.

public static NSColor colorWithDeviceHSB(float hue, float saturation, float
brightness, float alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.) In PostScript, this color
space corresponds directly to the device-dependent operator setrgbcolor.

See Also
colorWithCalibratedHSB (page 357)
colorWithDeviceRGB (page 359)

colorWithDeviceRGB
Creates and returns an NSColor whose opacity value is alpha and whose RGB components are red, green,
and blue.

Static Methods 359
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

public static NSColor colorWithDeviceRGB(float red, float green, float blue, float
alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.) In PostScript, this color
space corresponds directly to the device-dependent operator setrgbcolor.

See Also
colorWithCalibratedRGB (page 358)
colorWithDeviceHSB (page 359)

colorWithDeviceWhite
Creates and returns an NSColor whose opacity value is alpha and whose grayscale value is white.

public static NSColor colorWithDeviceWhite(float white, float alpha)

Discussion
(Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.) In PostScript, this color
space corresponds directly to the device-dependent operator setgray.

See Also
colorWithCalibratedWhite (page 358)

colorWithPatternImage
Creates and returns an NSColor that uses the pattern in image.

public static NSColor colorWithPatternImage(NSImage image)

Discussion
The image is tiled starting at the bottom of the window. The image is not scaled.

controlAlternatingRowBackgroundColors
Returns an array containing the system specified background colors for alternating rows in tables and lists.

public static NSArray controlAlternatingRowBackgroundColors()

Discussion
You should not assume the array will contain only two colors. For general information on system colors, see
“Accessing System Colors”.

Availability
Available in Mac OS X v10.3 and later.

controlBackgroundColor
Returns the system color used for the background of large controls such as browsers, table views, and clip
views.

360 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

public static NSColor controlBackgroundColor()

Discussion
For general information on system colors, see “Accessing System Colors”.

controlColor
Returns the system color used for the flat surfaces of a control.

public static NSColor controlColor()

Discussion
By default, the control color is a pattern color that will draw the ruled lines for the window background.

If you use controlColor assuming that it is a solid, you may have an incorrect appearance. You should use
lightGrayColor (page 365) in its place.

controlDarkShadowColor
Returns the system color used for the dark edge of the shadow dropped from controls.

public static NSColor controlDarkShadowColor()

Discussion
Controls are displayed as though they were lit from the upper left. Two dark borders, representing shadows,
run along the bottom and right. controlDarkShadowColor (page 361) returns the color of the outer, darker
border. For general information about system colors, see “Accessing System Colors”.

See Also
controlShadowColor (page 362)

controlHighlightColor
Returns the system color used for the highlighted bezels of controls.

public static NSColor controlHighlightColor()

Discussion
Controls are displayed as though they were lit from the upper left. Two light borders, representing reflections
from the light source, run along the top and left. controlHighlightColor (page 361) returns the color of
the inner, duller border. For general information about system colors, see “Accessing System Colors”.

See Also
controlLightHighlightColor (page 361)

controlLightHighlightColor
Returns the system color used for light highlights in controls.

public static NSColor controlLightHighlightColor()

Static Methods 361
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Discussion
Controls are displayed as though they were lit from the upper left. Two light borders, representing reflections
from the light source, run along the top and left. controlLightHighlightColor (page 361) returns the
color of the outer, brighter border. For general information about system colors, see “Accessing System
Colors”.

See Also
controlHighlightColor (page 361)

controlShadowColor
Returns the system color used for the shadows dropped from controls.

public static NSColor controlShadowColor()

Discussion
Controls are displayed as though they were lit from the upper left. Two dark borders, representing shadows,
run along the bottom and right. controlShadowColor (page 362) returns the color of the inner, lighter
border. For general information about system colors, see “Accessing System Colors”.

See Also
controlDarkShadowColor (page 361)

controlTextColor
Returns the system color used for text on controls that aren’t disabled.

public static NSColor controlTextColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
disabledControlTextColor (page 363)

currentControlTint
Returns the current system control tint.

public static int currentControlTint()

Availability
Available in Mac OS X v10.3 and later.

See Also
colorForControlTint (page 357)

cyanColor
Returns an NSColor whose RGB value is 0.0, 1.0, 1.0 and whose alpha value is 1.0.

362 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

public static NSColor cyanColor()

See Also
cyanComponent (page 373)

darkGrayColor
Returns an NSColor whose grayscale value is 1/3 and whose alpha value is 1.0.

public static NSColor darkGrayColor()

See Also
lightGrayColor (page 365)
grayColor (page 363)

disabledControlTextColor
Returns the system color used for text on disabled controls.

public static NSColor disabledControlTextColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
controlTextColor (page 362)

grayColor
Returns an NSColor whose grayscale value is 0.5 and whose alpha value is 1.0.

public static NSColor grayColor()

See Also
lightGrayColor (page 365)
darkGrayColor (page 363)

greenColor
Returns an NSColor whose RGB value is 0.0, 1.0, 0.0 and whose alpha value is 1.0.

public static NSColor greenColor()

See Also
greenComponent (page 374)

gridColor
Returns the system color used for the optional gridlines in, for example, a table view.

Static Methods 363
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

public static NSColor gridColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

highlightColor
Returns the system color that represents the virtual light source on the screen.

public static NSColor highlightColor()

Discussion
This method is invoked by the highlightWithLevel (page 374) method. For general information about
system colors, see “Accessing System Colors”.

See Also
highlightWithLevel (page 374)

ignoresAlpha
Returns true if the application doesn’t support alpha.

public static boolean ignoresAlpha()

Discussion
This value is consulted when an application imports alpha (through color dragging, for instance). The value
determines whether the color panel has an opacity slider. This value is true by default, indicating that the
opacity components of imported colors will be set to 1.0. If an application wants alpha, it can invoke the
setIgnoresAlpha (page 367) method with a parameter of false.

See Also
setIgnoresAlpha (page 367)
alphaComponent (page 370)

keyboardFocusIndicatorColor
Returns the system color that represents the keyboard focus ring around controls.

public static NSColor keyboardFocusIndicatorColor()

knobColor
Returns the system color used for the flat surface of a slider knob that hasn’t been selected.

public static NSColor knobColor()

Discussion
The knob’s beveled edges, which set it in relief, are drawn in highlighted and shadowed versions of the face
color. When a knob is selected, its color changes to selectedKnobColor (page 366). For general information
about system colors, see “Accessing System Colors”.

364 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

lightGrayColor
Returns an NSColor whose grayscale value is 2/3 and whose alpha value is 1.0.

public static NSColor lightGrayColor()

See Also
grayColor (page 363)
darkGrayColor (page 363)

magentaColor
Returns an NSColor whose RGB value is 1.0, 0.0, 1.0 and whose alpha value is 1.0.

public static NSColor magentaColor()

See Also
magentaComponent (page 375)

orangeColor
Returns an NSColor whose RGB value is 1.0, 0.5, 0.0 and whose alpha value is 1.0.

public static NSColor orangeColor()

purpleColor
Returns an NSColor whose RGB value is 0.5, 0.0, 0.5 and whose alpha value is 1.0.

public static NSColor purpleColor()

redColor
Returns an NSColor whose RGB value is 1.0, 0.0, 0.0 and whose alpha value is 1.0.

public static NSColor redColor()

See Also
redComponent (page 375)

scrollBarColor
Returns the system color used for scroll “bars”—that is, for the groove in which a scroller’s knob moves

public static NSColor scrollBarColor()

Discussion
. For general information about system colors, see “Accessing System Colors”.

Static Methods 365
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

secondarySelectedControlColor
Returns the system color used in nonkey views.

public static NSColor secondarySelectedControlColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedControlColor (page 366)

selectedControlColor
Returns the system color used for the face of a selected control—a control being clicked or dragged.

public static NSColor selectedControlColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedControlTextColor (page 366)
secondarySelectedControlColor (page 366)
alternateSelectedControlColor (page 356)

selectedControlTextColor
Returns the system color used for text in a selected control—a control being clicked or dragged.

public static NSColor selectedControlTextColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedControlColor (page 366)
alternateSelectedControlTextColor (page 356)

selectedKnobColor
Returns the system color used for the slider knob when it is selected—that is, dragged.

public static NSColor selectedKnobColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
knobColor (page 364)

366 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

selectedMenuItemColor
Returns the system color used for the face of selected menu items.

public static NSColor selectedMenuItemColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedMenuItemTextColor (page 367)

selectedMenuItemTextColor
Returns the system color used for the text in menu items.

public static NSColor selectedMenuItemTextColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedMenuItemColor (page 367)

selectedTextBackgroundColor
Returns the system color used for the background of selected text.

public static NSColor selectedTextBackgroundColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedTextColor (page 367)

selectedTextColor
Returns the system color used for selected text.

public static NSColor selectedTextColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
selectedTextBackgroundColor (page 367)

setIgnoresAlpha
public static void setIgnoresAlpha(boolean flag)

Static Methods 367
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Discussion
If flag is true, the application won’t support alpha. In this case, no opacity slider is displayed in the color
panel, and colors dragged in or pasted have their alpha values set to 1.0. By default, applications ignore
alpha. Applications that need to import alpha can invoke this method with flag set to false and explicitly
make colors opaque in cases where it matters to them. Note that calling this with a value of true overrides
any value set with the NSColorPanel method setShowsAlpha (page 392).

See Also
ignoresAlpha (page 364)
alphaComponent (page 370)

shadowColor
Returns the system color that represents the virtual shadows cast by raised objects on the screen.

public static NSColor shadowColor()

Discussion
This method is invoked by shadowWithLevel (page 377). For general information about system colors, see
“Accessing System Colors”.

See Also
shadowWithLevel (page 377)

textBackgroundColor
Returns the system color used for the text background.

public static NSColor textBackgroundColor()

Discussion
When text is selected, its background color changes to the return value of
selectedTextBackgroundColor (page 367). For general information about system colors, see “Accessing
System Colors”.

See Also
textColor (page 368)

textColor
Returns the system color used for text.

public static NSColor textColor()

Discussion
When text is selected, its background color changes to the return value of selectedTextColor (page 367).
For general information about system colors, see “Accessing System Colors”.

See Also
textBackgroundColor (page 368)

368 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

whiteColor
Returns an NSColor whose grayscale and alpha values are both 1.0.

public static NSColor whiteColor()

See Also
whiteComponent (page 377)

windowBackgroundColor
Returns a pattern color that will draw the ruled lines for the window background.

public static NSColor windowBackgroundColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

windowFrameColor
Returns the system color used for window frames, except for their text.

public static NSColor windowFrameColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
windowFrameTextColor (page 369)

windowFrameTextColor
Returns the system color used for the text in window frames.

public static NSColor windowFrameTextColor()

Discussion
For general information about system colors, see “Accessing System Colors”.

See Also
windowFrameColor (page 369)

yellowColor
Returns an NSColor whose RGB value is 1.0, 1.0, 0.0 and whose alpha value is 1.0.

public static NSColor yellowColor()

See Also
yellowComponent (page 378)

Static Methods 369
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Instance Methods

alphaComponent
Returns the receiver’s alpha (opacity) component.

public float alphaComponent()

Discussion
Returns 1.0 (opaque) if the receiver has no alpha component.

blackComponent
Returns the receiver’s black component.

public float blackComponent()

Discussion
Throws an exception if the receiver isn’t a CMYK color.

blendedColorWithFractionOfColor
Creates and returns an NSColor whose component values are a weighted sum of the receiver’s and color’s.

public NSColor blendedColorWithFractionOfColor(float fraction, NSColor color)

Discussion
The method converts color and a copy of the receiver to RGB, and then sets each component of the returned
color to fraction of color’s value plus 1 – fraction of the receiver’s. Returns null if the colors can’t be
converted.

blueComponent
Returns the receiver’s blue component.

public float blueComponent()

Discussion
Throws an exception if the receiver isn’t an RGB color.

brightnessComponent
Returns the brightness component of the HSB color equivalent to the receiver.

public float brightnessComponent()

Discussion
Throws an exception if the receiver isn’t an RGB color.

370 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

catalogNameComponent
Returns the name of the catalog containing the receiver’s name.

public String catalogNameComponent()

Discussion
Throws an exception if the receiver’s color space isn’t NSGraphics.NamedColorSpace.

See Also
colorWithCatalogName (page 358)
colorNameComponent (page 371)
localizedCatalogNameComponent (page 374)

colorNameComponent
Returns the receiver’s name.

public String colorNameComponent()

Discussion
Throws an exception if the receiver’s color space isn’t NSGraphics.NamedColorSpace.

See Also
colorWithCatalogName (page 358)
catalogNameComponent (page 371)
localizedCatalogNameComponent (page 374)

colorSpace
Returns an object representing the color space of the receiver.

public NSColorSpace colorSpace()

Discussion
The returned NSColorSpace object may represent a custom color space.

Availability
Available in Mac OS X v10.4.

colorSpaceName
Returns the name of the receiver’s color space.

public String colorSpaceName()

Discussion
This method should be implemented in subclasses of NSColor.

See Also
colorUsingColorSpaceName (page 372)
colorUsingColorSpaceNameAndDevice (page 372)

Instance Methods 371
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

colorUsingColorSpace
Returns a new color object representing the color of the receiver in the specified color space space.

public NSColor colorUsingColorSpace(NSColorSpace space)

Discussion
In creating the new NSColor object, this method converts the receiver’s color to an equivalent one in the
new color space. Although the new color might have different component values, it looks the same as the
original. The method returns the same NSColor object as the receiver if its color space is the same as the one
specified. Returns nil if conversion is not possible.

Availability
Available in Mac OS X v10.4.

colorUsingColorSpaceName
Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor is in
the color space named colorSpace.

public NSColor colorUsingColorSpaceName(String colorSpace)

Discussion
If colorSpace is null, the most appropriate color space is used.

Returns null if the specified conversion cannot be done.

See Also
colorSpaceName (page 371)

colorUsingColorSpaceNameAndDevice
Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor is in
the color space named colorSpace and is specific to the device described by deviceDescription.

public NSColor colorUsingColorSpaceNameAndDevice(String colorSpace, NSDictionary
deviceDescription)

Discussion
Device descriptions can be obtained from windows, screens, and printers with the deviceDescription
method. If colorSpace is null, the most appropriate color space is used.

If deviceDescription is null, the current device (as obtained from the currently lockFocus’ed view’s
window or, if printing, the current printer) is used.

Returns null if the specified conversion cannot be done.

See Also
colorSpaceName (page 371)
colorUsingColorSpaceName (page 372)

372 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

colorWithAlphaComponent
Creates and returns an NSColor that has the same color space and component values as the receiver, except
its alpha component is alpha.

public NSColor colorWithAlphaComponent(float alpha)

Discussion
If the receiver’s color space doesn’t include an alpha component, the receiver is returned. A subclass with
explicit opacity components should override this method to return a color with the specified alpha.

See Also
alphaComponent (page 370)
blendedColorWithFractionOfColor (page 370)

components
Returns the components of the receiver as an array of float values.

public float[] components()

Discussion
You can invoke this method on NSColor objects created from custom color spaces to get the individual
floating point components, including alpha. Throws an exception if the receiver doesn’t have floating-point
components. To find out how many components are in the array, send the receiver a
numberOfComponents (page 375) message.

Availability
Available in Mac OS X v10.4.

See Also
colorSpace (page 371)

cyanComponent
Returns the receiver’s cyan component.

public float cyanComponent()

Discussion
Throws an exception if the receiver isn’t a CMYK color.

drawSwatchInRect
Draws the current color in the rectangle rect.

public void drawSwatchInRect(NSRect rect)

Discussion
Subclasses adorn the rectangle in some manner to indicate the type of color. This method is invoked by color
wells, swatches, and other user interface objects that need to display colors.

Instance Methods 373
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

greenComponent
Returns the receiver’s green component.

public float greenComponent()

Discussion
Throws an exception if the receiver isn’t an RGB color.

highlightWithLevel
Returns an NSColor that represents a blend between the receiver and the highlight color returned by
highlightColor (page 364).

public NSColor highlightWithLevel(float highlightLevel)

Discussion
The highlight color’s contribution to the blend depends on highlightLevel, which should be a number
from 0.0 through 1.0. (A highlightLevel below 0.0 is interpreted as 0.0 [the receiver]; a highlightLevel
above 1.0 is interpreted as 1.0 [highlightLevel].)

Returns null if the colors can’t be converted. Invoke this method when you want to brighten the receiving
NSColor for use in highlights.

See Also
shadowWithLevel (page 377)

hueComponent
Returns the hue component of the HSB color equivalent to the receiver.

public float hueComponent()

Discussion
Throws an exception if the receiver isn’t an RGB color.

localizedCatalogNameComponent
public String localizedCatalogNameComponent()

Discussion
Like catalogNameComponent (page 371), but returns a localized string. This string may be displayed in user
interface items like color pickers.

See Also
colorWithCatalogName (page 358)
colorNameComponent (page 371)

localizedColorNameComponent
public String localizedColorNameComponent()

374 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Discussion
Like colorNameComponent (page 371), but returns a localized string. This string may be displayed in user
interface items like color pickers.

See Also
colorWithCatalogName (page 358)
catalogNameComponent (page 371)
colorNameComponent (page 371)
localizedCatalogNameComponent (page 374)

magentaComponent
Returns the receiver’s magenta component.

public float magentaComponent()

Discussion
Throws an exception if the receiver isn’t a CMYK color.

numberOfComponents
Returns the number of components in the receiver.

public int numberOfComponents()

Discussion
The floating-point components counted include alpha. Throws an exception if the receiver doesn’t have
floating-point components.

Availability
Available in Mac OS X v10.4

See Also
colorSpace (page 371)
components (page 373)

patternImage
Returns the image that the receiver is using as a pattern.

public NSImage patternImage()

Discussion
Throws an exception if the receiver doesn’t have an image.

redComponent
Returns the receiver’s red component.

public float redComponent()

Instance Methods 375
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Discussion
Throws an exception if the receiver isn’t an RGB color.

saturationComponent
Returns the saturation component of the HSB color equivalent to the receiver.

public float saturationComponent()

Discussion
Throws an exception if the receiver isn’t an RGB color.

set
Sets the color of subsequent drawing to the color that the receiver represents.

public void set()

Discussion
If the application is drawing to the screen rather than printing, this method also sets the current drawing
context’s alpha value to the value returned by alphaComponent (page 370); if the color doesn’t know about
alpha, it’s set to 1.0. This method should be implemented in subclasses.

setFill
Sets the fill color of subsequent drawing to the receiver’s color.

public void setFill()

Discussion
If the application is drawing to the screen rather than printing, this method also sets the current drawing
context’s alpha value to the value returned by alphaComponent (page 370); if the color doesn’t know about
alpha, it’s set to 1.0.

Subclasses of NSColor should implement this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
setStroke (page 376)

setStroke
Sets the stroke color of subsequent drawing to the receiver’s color.

public void setStroke()

376 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Discussion
If the application is drawing to the screen rather than printing, this method also sets the current drawing
context’s alpha value to the value returned by alphaComponent (page 370); if the color doesn’t know about
alpha, it’s set to 1.0.

Subclasses of NSColor should implement this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
setFill (page 376)

shadowWithLevel
Returns an NSColor that represents a blend between the receiver and the shadow color returned by
shadowColor (page 368).

public NSColor shadowWithLevel(float shadowLevel)

Discussion
The shadow color’s contribution to the blend depends on shadowLevel, which should be a number from
0.0 through 1.0. (A shadowLevel below 0.0 is interpreted as 0.0 [the receiver]; a shadowLevel above 1.0 is
interpreted as 1.0 [shadowLevel].)

Returns null if the colors can’t be converted. Invoke this method when you want to darken the receiving
NSColor for use in shadows.

See Also
highlightWithLevel (page 374)

whiteComponent
Returns the receiver’s white component.

public float whiteComponent()

Discussion
Throws an exception if the receiver isn’t a grayscale color.

writeToPasteboard
Writes the receiver’s data to pasteBoard, unless pasteBoard doesn’t support color data (in which case the
method does nothing).

public void writeToPasteboard(NSPasteboard pasteBoard)

See Also
colorFromPasteboard (page 357)

Instance Methods 377
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

yellowComponent
Returns the receiver’s yellow component.

public float yellowComponent()

Discussion
Throws an exception if the receiver isn’t a CMYK color.

Notifications

SystemColorsDidChangeNotification

Sent when the system colors have been changed (such as through a system control panel interface).

This notification contains no notification object and no userInfo dictionary.

378 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

NSColor

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Overview

An NSColorList is an ordered list of NSColors, identified by keys. Instances of NSColorList, or more simply
color lists, are used to manage named lists of NSColors. NSColorPanel’s list mode color picker uses instances
of NSColorList to represent any lists of colors that come with the system, as well as any lists created by the
user. An application can use NSColorList to manage document-specific color lists.

Tasks

Constructors

NSColorList (page 380)
Creates an empty NSColorList.

Getting All Color Lists

availableColorLists (page 381)
Returns an array of all NSColorLists found in the standard color list directories, including color catalogs
(lists of colors identified only by name).

Getting a Color List by Name

colorListNamed (page 381)
Searches the array that’s returned by availableColorLists (page 381) and returns the NSColorList
named name, or null if no such color list exists.

name (page 382)
Returns the name of the receiver.

Overview 379
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

NSColorList

Managing Colors by Key

allKeys (page 381)
Returns an array of String objects that contains all the keys by which the NSColors are stored in the
receiver.

colorWithKey (page 382)
Returns the NSColor associated with key, or null if there is none.

insertColorForKeyAtIndex (page 382)
Inserts color at the specified location in the receiver (numbered starting with 0).

removeColorWithKey (page 382)
Removes the color associated with key from the receiver.

setColorForKey (page 383)
Associates the specified NSColor with key.

Editing

isEditable (page 382)
Returns true if the receiver can be modified.

Writing and Removing Files

removeFile (page 383)
Removes the file from which the list was created, if the file is in a standard search path and owned
by the user.

writeToFile (page 383)
If path is a directory, saves the receiver in a file named listname.clr in that directory (where listname
is the name with which the receiver was initialized).

Constructors

NSColorList
Creates an empty NSColorList.

public NSColorlist()

Creates a color list, registering it under name if name isn’t in use already.

public NSColorList(String name)

Discussion
This constructor invokes the constructor with two arguments, using null as the additional argument,
indicating that the color list doesn’t need to be initialized from a file.

Creates an NSColorList, registering it under name if name isn’t in use already.

380 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

NSColorList

public NSColorList(String name, String path)

Discussion
path should be the full path to the file for the color list; name should be the name of the file for the color
list (minus the “.clr” extension). A null path indicates the color list should be initialized with no colors.

Static Methods

availableColorLists
Returns an array of all NSColorLists found in the standard color list directories, including color catalogs (lists
of colors identified only by name).

public static NSArray availableColorLists()

Discussion
Color lists created at runtime aren’t included in this list unless they’re saved into one of the standard color
list directories.

See Also
colorListNamed (page 381)

colorListNamed
Searches the array that’s returned by availableColorLists (page 381) and returns the NSColorList named
name, or null if no such color list exists.

public static NSColorList colorListNamed(String name)

Discussion
name must not include the “.clr” suffix.

See Also
name (page 382)

Instance Methods

allKeys
Returns an array of String objects that contains all the keys by which the NSColors are stored in the receiver.

public NSArray allKeys()

Discussion
The length of this array equals the number of colors, and its contents are arranged according to the ordering
specified when the colors were inserted.

Static Methods 381
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

NSColorList

colorWithKey
Returns the NSColor associated with key, or null if there is none.

public NSColor colorWithKey(String key)

insertColorForKeyAtIndex
Inserts color at the specified location in the receiver (numbered starting with 0).

public void insertColorForKeyAtIndex(NSColor color, String key, int location)

Discussion
If the list already contains a color with the same key at a different location, it’s removed from the old location.
This method posts ColorListDidChangeNotification (page 383) to the default notification center. It
throws ColorListNotEditableException if the color list isn’t editable.

See Also
colorWithKey (page 382)
removeColorWithKey (page 382)
setColorForKey (page 383)

isEditable
Returns true if the receiver can be modified.

public boolean isEditable()

Discussion
This result depends on the source of the list: If it came from a write-protected file, this method returns false.

name
Returns the name of the receiver.

public String name()

removeColorWithKey
Removes the color associated with key from the receiver.

public void removeColorWithKey(String key)

Discussion
This method does nothing if the receiver doesn’t contain the key. This method posts
ColorListDidChangeNotification (page 383) to the default notification center. It throws
ColorListNotEditableException if the receiver is not editable.

See Also
insertColorForKeyAtIndex (page 382)
setColorForKey (page 383)

382 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

NSColorList

removeFile
Removes the file from which the list was created, if the file is in a standard search path and owned by the
user.

public void removeFile()

Discussion
The receiver is removed from the list of available color lists returned by availableColorLists (page 381).

setColorForKey
Associates the specified NSColor with key.

public void setColorForKey(NSColor color, String key)

Discussion
If the list already contains key, this method sets the corresponding color to color; otherwise, it inserts color
at the end of the list by invoking insertColorForKeyAtIndex (page 382).

See Also
colorWithKey (page 382)
insertColorForKeyAtIndex (page 382)
removeColorWithKey (page 382)

writeToFile
If path is a directory, saves the receiver in a file named listname.clr in that directory (where listname is the
name with which the receiver was initialized).

public boolean writeToFile(String path)

Discussion
If path includes a filename, this method saves the file under that name. If path is null, this method saves
the file as listname.clr in the user’s private colorlists directory. Returns true upon success and false if it
fails to write the file.

See Also
removeFile (page 383)

Notifications

ColorListDidChangeNotification

Posted whenever a color list changes. The notification object is the NSColorList object that changed. This
notification does not contain a userInfo dictionary.

Notifications 383
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

NSColorList

384 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

NSColorList

Inherits from NSPanel : NSWindow : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Overview

NSColorPanel provides a standard user interface for selecting color in an application. It provides a number
of standard color selection modes and, with the NSColorPickingDefault and NSColorPickingCustom interfaces,
allows an application to add its own color selection modes. It allows the user to save swatches containing
frequently used colors.

Tasks

Constructors

NSColorPanel (page 387)
Creates an empty NSColorPanel.

Creating the NSColorPanel

sharedColorPanel (page 389)
Returns the shared NSColorPanel, creating it if necessary.

sharedColorPanelExists (page 389)
Returns true if the NSColorPanel has been created already.

Setting Color Picker Modes

setPickerMask (page 388)
Accepts as the mask parameter one or more logically ORed color mode masks described in
“Constants” (page 393).

setPickerMode (page 388)

Overview 385
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Setting the NSColorPanel

accessoryView (page 389)
Returns the accessory view, or null if there is none.

isContinuous (page 390)
Returns whether the receiver continuously sends the action message to the target as the user
manipulates the color picker.

mode (page 390)
Returns the color picker mode of the receiver.

setAccessoryView (page 390)
Sets the accessory view displayed in the receiver to aView.

setAction (page 391)
Sets the action message to action.

setContinuous (page 391)
Sets the receiver to send the action message to its target continuously as the color of the NSColorPanel
is set by the user.

setMode (page 392)
Sets the mode of the receiver if mode is one of the modes allowed by the color mask.

setShowsAlpha (page 392)
Tells the receiver whether or not to show alpha values and an opacity slider, depending on the Boolean
value flag.

setTarget (page 392)
Sets the target of the receiver to target.

showsAlpha (page 392)
Returns whether or not the receiver shows alpha values and an opacity slider.

Attaching a Color List

attachColorList (page 389)
Adds the list of NSColors specified in colorList to all the color pickers in the receiver that display
color lists by invoking attachColorList (page 389) on all color pickers in the application.

detachColorList (page 390)
Removes the list of NSColors specified in colorList from all the color pickers in the receiver that
display color lists by invoking detachColorList on all color pickers in the application.

Setting Color

dragColor (page 388)
Drags color into a destination view from sourceView

setColor (page 391)
Sets the color of the receiver to color.

386 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Getting Color Information

color (page 390)
Returns the currently selected color in the receiver.

Responding to a color change

changeColor (page 394) delegate method

Constructors

NSColorPanel
Creates an empty NSColorPanel.

public NSColorPanel()

Creates a new NSColorPanel.

public NSColorPanel(NSRect contentRect, int styleMask, int backingType, boolean
defer)

Discussion
The contentRect argument specifies the location and size of the panel’s content area in screen coordinates.
Note that the Window Server limits window position coordinates to ±16,000 and sizes to 10,000.

The styleMask argument specifies the panel’s style. Either it can be NSWindow.BorderlessWindowMask,
or it can contain any of the options described in NSWindow’s “Constants” (page 1875), combined using the C
bitwise OR operator.

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSWindow.TitledWindowMask if it includes any of the others.

The backingType argument specifies how the drawing done in the panel is buffered by the object’s window
device, and possible values are described in NSWindow’s “Constants” (page 1875).

The defer argument determines whether the window server creates a window device for the new panel
immediately. If defer is true, it defers creating the window until the panel is moved onscreen. All display
messages sent are postponed until the panel is created, just before it’s moved onscreen. Deferring the creation
of the window improves launch time and minimizes the virtual memory load on the window server.

The new panel creates an instance of NSView to be its default content view. You can replace it with your
own object by using the setContentView (page 1858) method.

Creates a new NSColorPanel.

public NSColorPanel(NSRect contentRect, int styleMask, int backingType, boolean
defer, NSScreen aScreen)

Constructors 387
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Discussion
This constructor is equivalent to the one above, except contentRect is specified relative to the lower-left
corner of aScreen.

If aScreen is null, contentRect is interpreted relative to the lower-left corner of the main screen. The
main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

Static Methods

dragColor
Drags color into a destination view from sourceView

public static boolean dragColor(NSColor color, NSEvent anEvent, NSView sourceView)

Discussion
in response to anEvent. This method is usually invoked by the mouseDown method of sourceView. The
dragging mechanism handles all subsequent events.

Because it is a static method, dragColor can be invoked whether or not the instance of NSColorPanel exists.
Returns true.

setPickerMask
Accepts as the mask parameter one or more logically ORed color mode masks described in “Constants” (page
393).

public static void setPickerMask(int mask)

Discussion
This method determines which color selection modes will be available in an application’s NSColorPanel. This
method has an effect only before NSColorPanel is instantiated.

If you create a class that implements the color-picking interfaces (NSColorPickingDefault and
NSColorPickingCustom), you may want to give it a unique mask—one different from those defined for the
standard color pickers. To display your color picker, your application will need to logically OR that unique
mask with the standard color mask constants when invoking this method.

See Also
setPickerMode (page 388)

setPickerMode
public static void setPickerMode(int mode)

388 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Discussion
Sets the color panel’s initial picker to mode, which may be one of the symbolic constants described in
“Constants” (page 393). The mode determines which picker will initially be visible. This method may be called
at any time, whether or not an application’s NSColorPanel has been instantiated.

See Also
setPickerMask (page 388)
setMode (page 392)

sharedColorPanel
Returns the shared NSColorPanel, creating it if necessary.

public static NSColorPanel sharedColorPanel()

sharedColorPanelExists
Returns true if the NSColorPanel has been created already.

public static boolean sharedColorPanelExists()

See Also
sharedColorPanel (page 389)

Instance Methods

accessoryView
Returns the accessory view, or null if there is none.

public NSView accessoryView()

See Also
setAccessoryView (page 390)

attachColorList
Adds the list of NSColors specified in colorList to all the color pickers in the receiver that display color lists
by invoking attachColorList (page 389) on all color pickers in the application.

public void attachColorList(NSColorList colorList)

Discussion
An application should use this method to add an NSColorList saved with a document in its file package or
in a directory other than NSColorList’s standard search directories.

See Also
detachColorList (page 390)

Instance Methods 389
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

color
Returns the currently selected color in the receiver.

public NSColor color()

See Also
setColor (page 391)

detachColorList
Removes the list of NSColors specified in colorList from all the color pickers in the receiver that display
color lists by invoking detachColorList on all color pickers in the application.

public void detachColorList(NSColorList colorList)

Discussion
Your application should use this method to remove an NSColorList saved with a document in its file package
or in a directory other than NSColorList’s standard search directories.

See Also
attachColorList (page 389)

isContinuous
Returns whether the receiver continuously sends the action message to the target as the user manipulates
the color picker.

public boolean isContinuous()

See Also
setContinuous (page 391)

mode
Returns the color picker mode of the receiver.

public int mode()

Discussion
The mode constants for the standard color pickers are listed in “Choosing the Color Pickers in a Color Panel”.

See Also
setPickerMode (page 388)
setMode (page 392)

setAccessoryView
Sets the accessory view displayed in the receiver to aView.

public void setAccessoryView(NSView aView)

390 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Discussion
The accessory view can be any custom view you want to display with NSColorPanel, such as a view offering
color blends in a drawing program. The accessory view is displayed below the color picker and above the
color swatches in the NSColorPanel. The NSColorPanel automatically resizes to accommodate the accessory
view.

See Also
accessoryView (page 389)

setAction
Sets the action message to action.

public void setAction(NSSelector action)

Discussion
When you select a color in the color panel NSColorPanel sends its action to its target, provided that neither
the action nor the target is null. The action is NULL by default.

See Action Messages for additional information on action messages.

See Also
setTarget (page 392)

setColor
Sets the color of the receiver to color.

public void setColor(NSColor color)

Discussion
This method posts a ColorPanelColorDidChangeNotification (page 394) with the receiver to the default
notification center.

See Also
color (page 390)

setContinuous
Sets the receiver to send the action message to its target continuously as the color of the NSColorPanel is
set by the user.

public void setContinuous(boolean flag)

Discussion
Send this message with flag set to true if, for example, you want to continuously update the color of the
target.

See Also
isContinuous (page 390)

Instance Methods 391
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

setMode
Sets the mode of the receiver if mode is one of the modes allowed by the color mask.

public void setMode(int mode)

Discussion
The color mask is set when you first create the shared instance of NSColorPanel for an application. mode may
be one of the symbolic constants described in “Constants” (page 393).

See Also
setPickerMode (page 388)
mode (page 390)

setShowsAlpha
Tells the receiver whether or not to show alpha values and an opacity slider, depending on the Boolean value
flag.

public void setShowsAlpha(boolean flag)

Discussion
Note that calling the NSColor method setIgnoresAlpha (page 367) with a value of true overrides any
value set with this method.

See Also
showsAlpha (page 392)

setTarget
Sets the target of the receiver to target.

public void setTarget(Object target)

Discussion
When you select a color in the color panel NSColorPanel sends its action to its target, provided that neither
the action nor the target is null. The target is null by default.

See Also
setAction (page 391)
setContinuous (page 391)

showsAlpha
Returns whether or not the receiver shows alpha values and an opacity slider.

public boolean showsAlpha()

Discussion
Note that calling the NSColor method setIgnoresAlpha (page 367) with a value of true overrides any
value set with setShowsAlpha (page 392).

392 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

See Also
setShowsAlpha (page 392)

Constants

These constants specify which of the color modes the NSColorPanel can use. For more information, see
“Choosing the Color Pickers in a Color Panel”.

DescriptionConstant

Grayscale-alphaColorPanelGrayModeMask

Red-green-blueColorPanelRGBModeMask

Cyan-yellow-magenta-blackColorPanelCMYKModeMask

Hue-saturation-brightnessColorPanelHSBModeMask

Custom paletteColorPanelCustomPaletteModeMask

Custom color listColorPanelColorListModeMask

Color wheelColorPanelWheelModeMask

CrayonsColorPanelCrayonModeMask

All of the aboveColorPanelAllModesMask

These constants specify the active color mode used when an application’s instance of NSColorPanel is masked
for more than one color mode. For more information, see “Choosing the Color Pickers in a Color Panel”.

DescriptionConstant

Grayscale-alphaGrayModeColorPanel

Red-green-blueRGBModeColorPanel

Cyan-yellow-magenta-blackCMYKModeColorPanel

Hue-saturation-brightnessHSBModeColorPanel

Custom paletteCustomPaletteModeColorPanel

Custom color listColorListModeColorPanel

Color wheelWheelModeColorPanel

CrayonsCrayonModeColorPanel

Constants 393
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Delegate Methods

changeColor
public void changeColor(Object sender)

Discussion
When the user selects a color in an NSColorPanel, the NSColorPanel sends a changeColor action message
to the first responder. You can override this method in any responder that needs to respond to a color change.
sender is the color panel.

Notifications

ColorPanelColorDidChangeNotification

Posted when the NSColorPanel’s color is set, as when setColor (page 391) is invoked. The notification object
is the notifying NSColorPanel. This notification does not contain a userInfo dictionary.

394 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

NSColorPanel

Inherits from NSObject

Implements NSColorPickingDefault

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Overview

NSColorPicker is an abstract superclass that implements the NSColorPickingDefault interface. The
NSColorPickingDefault and NSColorPickingCustom interfaces define a way to add color pickers (custom user
interfaces for color selection) to the NSColorPanel.

Interfaces Implemented

NSColorPickingDefault
alphaControlAddedOrRemoved (page 1948)
attachColorList (page 1948)
detachColorList (page 397)
insertNewButtonImage (page 1949)
provideNewButtonImage (page 1949)
setMode (page 1949)
viewSizeChanged (page 399)

Tasks

Constructors

NSColorPicker (page 396)
Creates an empty NSColorPicker.

Overview 395
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

NSColorPicker

Getting the Color Panel

colorPanel (page 397)
Returns the NSColorPanel that owns the receiver.

Adding Button Images

insertNewButtonImage (page 397)
Sets newButtonImage as buttonCell’s image by invoking NSButtonCell’s setImage (page 50)
method.

provideNewButtonImage (page 398)
Returns the button image for the receiver.

Setting the Mode

setMode (page 398)
Does nothing. Override to set the color picker’s mode.

Using Color Lists

attachColorList (page 397)
Does nothing. Override to attach a color list to a color picker.

detachColorList (page 397)
Does nothing. Override to detach a color list from a color picker.

Responding to View Changes

viewSizeChanged (page 399)
Does nothing. Override to respond to a size change.

alphaControlAddedOrRemoved (page 397)

Constructors

NSColorPicker
Creates an empty NSColorPicker.

public NSColorPicker()

Creates a color picker, setting its color panel to owningColorPanel, caching the owningColorPanel value
so it can later be returned by the colorPanel (page 397) method.

396 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

NSColorPicker

public NSColorPicker(int mask, NSColorPanel owningColorPanel)

Discussion
Write your own version of this constructor in your superclass to respond to the values in mask or do other
custom initialization. If you do write your own version, forward the message to super as part of the
implementation.

Instance Methods

alphaControlAddedOrRemoved
public void alphaControlAddedOrRemoved(Object sender)

Discussion
Sent by the color panel when the opacity controls have been hidden or displayed. Invoked automatically
when the NSColorPanel’s opacity slider is added or removed; you never invoke this method directly.

If the receiver has its own opacity controls, it should hide or display them, depending on whether sender’s
showsAlpha (page 392) method returns false or true.

attachColorList
Does nothing. Override to attach a color list to a color picker.

public void attachColorList(NSColorList colorList)

See Also
detachColorList (page 397)

colorPanel
Returns the NSColorPanel that owns the receiver.

public NSColorPanel colorPanel()

detachColorList
Does nothing. Override to detach a color list from a color picker.

public void detachColorList(NSColorList colorList)

See Also
attachColorList (page 397)

insertNewButtonImage
Sets newButtonImage as buttonCell’s image by invoking NSButtonCell’s setImage (page 50) method.

Instance Methods 397
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

NSColorPicker

public void insertNewButtonImage(NSImage newButtonImage, NSButtonCell buttonCell)

Discussion
Called by the color panel to insert a new image into the specified cell. Override this method to customize
newButtonImage before insertion in buttonCell.

See Also
provideNewButtonImage (page 398)

provideNewButtonImage
Returns the button image for the receiver.

public NSImage provideNewButtonImage()

Discussion
The color panel will place this image in the mode button the user uses to select this picker. (This is the same
image the color panel uses as an argument when sending the insertNewButtonImage (page 397) message.)
The default implementation looks in the color picker’s bundle for a TIFF file named after the color picker’s
class, with the extension “.tiff”.

See Also
insertNewButtonImage (page 397)

setMode
Does nothing. Override to set the color picker’s mode.

public void setMode(int mode)

Discussion
Here are the standard color picking modes and mode constants:

Color Mode ConstantMode

NSColorPanel.GrayModeColorPanelGrayscale-alpha

NSColorPanel.RGBModeColorPanelRed-green-blue

NSColorPanel.CMYKModeColorPanelCyan-yellow-magenta-black

NSColorPanel.HSBModeColorPanelHue-saturation-brightness

NSColorPanel.CustomPaletteModeColorPanelCustom palette

NSColorPanel.ColorListModeColorPanelCustom color list

NSColorPanel.WheelModeColorPanelColor wheel

398 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

NSColorPicker

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

viewSizeChanged
Does nothing. Override to respond to a size change.

public void viewSizeChanged(Object sender)

Instance Methods 399
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

NSColorPicker

400 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

NSColorPicker

Inherits from NSColorSpace : NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Companion guide Color Programming Topics for Cocoa

Overview

The NSColorSpace class enables the creation of objects representing custom color spaces. You can make
custom color spaces from ColorSync profiles or from ICC profiles. NSColorSpace also has factory methods
that return objects representing the system color spaces.

You can send the colorUsingColorSpace (page 372) message to an NSColor object to convert it between
two color spaces, either of which may be a custom color space.

Tasks

Constructors

NSColorSpace (page 402)
Creates an NSColorSpace object initialized with the ICC profile in iccData.

Getting a Named NSColorSpace Object

deviceRGBColorSpace (page 403)
Returns an NSColorSpace object representing a calibrated or device-dependent RGB color space.

genericRGBColorSpace (page 404)
Returns an NSColorSpace object representing a device-independent RGB grayscale.

deviceCMYKColorSpace (page 402)
Returns an NSColorSpace object representing a calibrated or device-dependent CMYK color space.

genericCMYKColorSpace (page 403)
Returns an NSColorSpace object representing a device-independent CMYK color space.

Overview 401
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

NSColorSpace

deviceGrayColorSpace (page 403)
Returns an NSColorSpace object representing a calibrated or device-dependent gray-scale color space.

genericGrayColorSpace (page 404)
Returns an NSColorSpace object representing a device-independent grayscale color space.

Accessing Color-space Data and Attributes

colorSpaceModel (page 404)
Returns the model on which the color space of the receiver is based.

ICCProfileData (page 405)
Returns the ICC profile data from which the receiver was created.

localizedName (page 405)
Returns the localized name of the receiver.

numberOfColorComponents (page 405)
Returns the number of components (excluding alpha) supported by the receiver.

Constructors

NSColorSpace
public NSColorSpace()

Discussion
Creates an NSColorSpace object.

Creates an NSColorSpace object initialized with the ICC profile in iccData.

NSColorSpace(NSData iccData)

Discussion
For information on ICC profiles, see the latest ICC specification at the International Color Consortium website
(http://www.color.org/icc_specs2.html)

Static Methods

deviceCMYKColorSpace
Returns an NSColorSpace object representing a calibrated or device-dependent CMYK color space.

public static NSColorSpace deviceCMYKColorSpace()

Discussion
This color space has cyan, magenta, yellow, black, and alpha components. Typical devices that use the
color-subtractive CMYK color space are color printers. This object corresponds to the Cocoa color space name
DeviceCMYKColorSpace.

402 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

NSColorSpace

Availability
Available in Mac OS X v10.4 and later.

See Also
genericCMYKColorSpace (page 403)

deviceGrayColorSpace
Returns an NSColorSpace object representing a calibrated or device-dependent gray-scale color space.

public static NSColorSpace deviceGrayColorSpace()

Discussion
The color space also includes an alpha component. Typical devices that use this color space are grayscale
printers and displays. This object corresponds to the Cocoa color space name DeviceWhiteColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
genericGrayColorSpace (page 404)

deviceRGBColorSpace
Returns an NSColorSpace object representing a calibrated or device-dependent RGB color space.

public static NSColorSpace deviceRGBColorSpace()

Discussion
This color space has red, green, blue, and alpha components. Typical devices that use the color-additive RGB
color space are displays and scanners. This object corresponds to the Cocoa color space name
DeviceRGBColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
genericRGBColorSpace (page 404)

genericCMYKColorSpace
Returns an NSColorSpace object representing a device-independent CMYK color space.

public static NSColorSpace genericCMYKColorSpace()

Discussion
This color space has cyan, magenta, yellow, black and alpha component.

Availability
Available in Mac OS X v10.4 and later.

Static Methods 403
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

NSColorSpace

See Also
deviceCMYKColorSpace (page 402)

genericGrayColorSpace
Returns an NSColorSpace object representing a device-independent grayscale color space.

public static NSColorSpace genericGrayColorSpace()

Discussion
The color space also includes an alpha component. This object corresponds to the Cocoa color space name
CalibratedWhiteColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
deviceGrayColorSpace (page 403)

genericRGBColorSpace
Returns an NSColorSpace object representing a device-independent RGB grayscale.

public static NSColorSpace genericRGBColorSpace()

Discussion
This color-additive color space has red, green, blue, and alpha components. This object corresponds to the
Cocoa color space name CalibratedRGBColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
deviceRGBColorSpace (page 403)

Instance Methods

colorSpaceModel
Returns the model on which the color space of the receiver is based.

public int colorSpaceModel()

Discussion
See “Constants” (page 405) for a list of valid NSColorSpaceModel constants.

Availability
Available in Mac OS X v10.4 and later.

404 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

NSColorSpace

ICCProfileData
Returns the ICC profile data from which the receiver was created.

public native NSData ICCProfileData()

Discussion
This method attempts to compute the profile data from a CMProfileRef object and returns null if it is
unable to. For information on ICC profiles, see the latest ICC specification at the International Color Consortium
website (http://www.color.org/icc_specs2.html).

Availability
Available in Mac OS X v10.4 and later.

localizedName
Returns the localized name of the receiver.

public String localizedName()

Discussion
Returns null if no localized name exists.

Availability
Available in Mac OS X v10.4 and later.

numberOfColorComponents
Returns the number of components (excluding alpha) supported by the receiver.

public int numberOfColorComponents()

Discussion
Returns zero if the receiver is not based on float components.

Availability
Available in Mac OS X v10.4 and later.

Constants

The following constants indentify the abstract model on which an NSColorSpace object is based. This constant
is returned from colorSpaceModel (page 404) and is derived from the profile data encapsulated by the
object.

DescriptionConstant

This model is not known to NSColorSpace.UnknownColorSpaceModel

The grayscale color-space model. Can refer to both device-dependent and
generic color space variants.

GrayColorSpaceModel

Constants 405
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

NSColorSpace

DescriptionConstant

The RGB (red green blue) color-space model. Can refer to both
device-dependent and generic color space variants.

RGBColorSpaceModel

The CYMK (cyan, yellow, magenta, black) color-space model. Can refer to
both device-dependent and generic color space variants.

CMYKColorSpaceModel

The L*a*b* device-independent color-space model, which represents colors
relative to a reference white point.

LABColorSpaceModel

DeviceN is a color-space model from Adobe Systems, Inc. used in PostScript
and PDF color specification.

DeviceNColorSpaceModel

406 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

NSColorSpace

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Overview

NSColorWell is an NSControl for selecting and displaying a single color value. An example of an NSColorWell
object (or simply color well) is found in NSColorPanel, which uses a color well to display the current color
selection. A color well is available from the Palettes panel of Interface Builder.

Tasks

Constructors

NSColorWell (page 408)
Creates an NSColorWell with a zero-sized frame rectangle.

Drawing

drawWellInside (page 409)
Draws the colored area inside the receiver at the location specified by insideRect without drawing
borders.

Activating

activate (page 408)
Activates the receiver, displays the color panel, and makes the NSColorPanel’s current color the same
as its own.

deactivate (page 409)
Deactivates the receiver and redraws it.

isActive (page 409)
Returns true if the receiver is active, false otherwise.

Overview 407
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

NSColorWell

Managing Color

color (page 409)
Returns the color of the receiver.

setColor (page 410)
Sets the color of the receiver to color and redraws the receiver.

takeColorFrom (page 410)
Changes the color of the receiver to that of sender.

Managing Borders

isBordered (page 409)
Returns true if the receiver is bordered, false otherwise.

setBordered (page 410)
Places or removes a border on the receiver, depending on bordered, and redraws the receiver.

Constructors

NSColorWell
Creates an NSColorWell with a zero-sized frame rectangle.

public NSColorWell()

Creates an NSColor with frameRect as its frame rectangle.

public NSColorWell(NSRect frameRect)

Instance Methods

activate
Activates the receiver, displays the color panel, and makes the NSColorPanel’s current color the same as its
own.

public void activate(boolean exclusive)

Discussion
Redraws the receiver. An active color well will have its color updated when the NSColorPanel’s current color
changes. Any color well that shows its border highlights the border when it’s active.

If exclusive is true, deactivates any other color wells; if false, keeps them active. If a color panel is active
with exclusive set to true and another is subsequently activated with exclusive set to false, the
exclusive setting of the first panel is ignored.

408 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

NSColorWell

See Also
deactivate (page 409)
isActive (page 409)

color
Returns the color of the receiver.

public NSColor color()

See Also
setColor (page 410)
takeColorFrom (page 410)

deactivate
Deactivates the receiver and redraws it.

public void deactivate()

See Also
activate (page 408)
isActive (page 409)

drawWellInside
Draws the colored area inside the receiver at the location specified by insideRectwithout drawing borders.

public void drawWellInside(NSRect insideRect)

isActive
Returns true if the receiver is active, false otherwise.

public boolean isActive()

isBordered
Returns true if the receiver is bordered, false otherwise.

public boolean isBordered()

See Also
setBordered (page 410)

Instance Methods 409
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

NSColorWell

setBordered
Places or removes a border on the receiver, depending on bordered, and redraws the receiver.

public void setBordered(boolean bordered)

See Also
isBordered (page 409)

setColor
Sets the color of the receiver to color and redraws the receiver.

public void setColor(NSColor color)

See Also
color (page 409)
takeColorFrom (page 410)

takeColorFrom
Changes the color of the receiver to that of sender.

public void takeColorFrom(Object sender)

See Also
color (page 409)
setColor (page 410)

410 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

NSColorWell

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Combo Box Programming Topics

Overview

An NSComboBox is a kind of NSControl that allows you to either enter text directly (as you would with an
NSTextField) or click the attached arrow at the right of the combo box and select from a displayed (“pop-up”)
list of items. It normally looks like this:

When you click the downward-pointing arrow at the right side of the text field, the pop-up list appears, like
this:

NSComboBox uses NSComboBoxCell (page 427) to implement its user interface.

Also see the NSComboBox.DataSource (page 1951) interface, which declares the methods that an NSComboBox
uses to access the contents of its data source object.

Overview 411
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Tasks

Constructors

NSComboBox (page 414)
Creates an NSComboBox with a zero-sized frame rectangle.

Setting Display Attributes

hasVerticalScroller (page 416)
Returns true if the receiver will display a vertical scroller.

intercellSpacing (page 417)
Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list.

isButtonBordered (page 417)
Returns whether the combo box button is set to display a border.

itemHeight (page 417)
Returns the height of each item in the receiver’s pop-up list.

numberOfVisibleItems (page 418)
Returns the maximum number of items visible at any one time in the pop-up list.

setButtonBordered (page 421)
Determines whether the button in the combo box is displayed with a border.

setHasVerticalScroller (page 422)
Determines according to flag whether the receiver displays a vertical scroller.

setIntercellSpacing (page 422)
Sets the width and height between pop-up list items to the values in aSize.

setItemHeight (page 423)
Sets the height for items to itemHeight.

setNumberOfVisibleItems (page 423)
Sets the maximum number of items that will be visible at one time in the receiver’s pop-up list to
visibleItems.

Setting a Data Source

dataSource (page 415)
Returns the object that provides the data displayed in the receiver’s pop-up list.

setDataSource (page 422)
Sets the receiver’s data source to aSource.

setUsesDataSource (page 423)
Sets according to flag whether the receiver uses an external data source (specified by
setDataSource (page 422)) to populate the receiver’s pop-up list.

412 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

usesDataSource (page 423)
Returns true if the receiver uses an external data source to populate the receiver’s pop-up list, false
if it uses an internal item list.

Working with an Internal List

addItemsWithObjectValues (page 415)
Adds multiple objects to the end of the receiver’s internal item list.

addItemWithObjectValue (page 415)
Adds anObject to the end of the receiver’s internal item list.

insertItemWithObjectValueAtIndex (page 417)
Inserts anObject at index in the receiver’s internal item list, shifting the previous item at
index—along with all following items—down one slot to make room.

objectValues (page 419)
Returns as an array the receiver’s internal item list.

removeAllItems (page 419)
Removes all items from the receiver’s internal item list.

removeItemAtIndex (page 420)
Removes the object at index from the receiver’s internal item list and moves all items beyond index
up one slot to fill the gap.

removeItemWithObjectValue (page 420)
Removes all occurrences of anObject from the receiver’s internal item list.

numberOfItems (page 418)
Returns the total number of items in the pop-up list.

Manipulating the Displayed List

indexOfItemWithObjectValue (page 416)
Searches the receiver’s internal item list for anObject and returns the lowest index whose
corresponding value is equal to anObject.

itemObjectValueAtIndex (page 418)
Returns the object located at index within the receiver’s internal item list.

noteNumberOfItemsChanged (page 418)
Informs the receiver that the number of items in its data source has changed, allowing the receiver
to update the scrollers in its displayed pop-up list without actually reloading data into the receiver.

reloadData (page 419)
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and
draw the new values.

scrollItemAtIndexToTop (page 420)
Scrolls the receiver’s pop-up list vertically so that the item at index is as close to the top as possible.

scrollItemAtIndexToVisible (page 420)
Scrolls the receiver’s pop-up list vertically so that the item at index is visible.

Tasks 413
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Manipulating the Selection

deselectItemAtIndex (page 416)
Deselects the pop-up list item at index if it’s selected.

indexOfSelectedItem (page 416)
Returns the index of the last item selected from the receiver’s pop-up list, or –1 if no item is selected.

objectValueOfSelectedItem (page 419)
Returns the object from the receiver’s internal item list corresponding to the last item selected from
the pop-up list, or null if no item is selected.

selectItemAtIndex (page 420)
Selects the pop-up list row at index.

selectItemWithObjectValue (page 421)
Selects the first pop-up list item that corresponds to anObject.

Completing the Text Field

completes (page 415)
Returns true if the receiver tries to complete what the user types in the text field.

setCompletes (page 421)
Sets whether the receiver tries to complete what the user types in the text field.

Displaying and dismissing a combo box

comboBoxWillDismiss (page 424) delegate method
Informs the delegate that the pop-up list is about to be dismissed.

comboBoxWillPopUp (page 424) delegate method
Informs the delegate that the pop-up list is about to be displayed.

Changing selection

comboBoxSelectionDidChange (page 424) delegate method
Informs the delegate that the pop-up list selection has finished changing.

comboBoxSelectionIsChanging (page 424) delegate method
Informs the delegate that the pop-up list selection is changing.

Constructors

NSComboBox
Creates an NSComboBox with a zero-sized frame rectangle.

public NSComboBox()

414 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Creates an NSComboBox with frameRect as its frame rectangle.

public NSComboBox(NSRect frameRect)

Instance Methods

addItemsWithObjectValues
Adds multiple objects to the end of the receiver’s internal item list.

public void addItemsWithObjectValues(NSArray objects)

Discussion
This method logs a warning if usesDataSource (page 423) returns true.

addItemWithObjectValue
Adds anObject to the end of the receiver’s internal item list.

public void addItemWithObjectValue(Object anObject)

Discussion
This method logs a warning if usesDataSource (page 423) returns true.

completes
Returns true if the receiver tries to complete what the user types in the text field.

public boolean completes()

Discussion
It returns false otherwise.

See Also
setCompletes (page 421)

dataSource
Returns the object that provides the data displayed in the receiver’s pop-up list.

public Object dataSource()

Discussion
This method logs a warning if usesDataSource (page 423) returns false. See the class description and the
NSComboBox.DataSource (page 1951) interface specification for more information on combo box data source
objects.

Instance Methods 415
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

deselectItemAtIndex
Deselects the pop-up list item at index if it’s selected.

public void deselectItemAtIndex(int index)

Discussion
If the selection does in fact change, this method posts a
ComboBoxSelectionDidChangeNotification (page 424) to the default notification center.

See Also
indexOfSelectedItem (page 416)
numberOfItems (page 418)
selectItemAtIndex (page 420)

hasVerticalScroller
Returns true if the receiver will display a vertical scroller.

public boolean hasVerticalScroller()

Discussion
Note that the scroller will be displayed even if the pop-up list contains fewer items than will fit in the area
specified for display. Returns false if the receiver won’t display a vertical scroller.

See Also
numberOfItems (page 418)
numberOfVisibleItems (page 418)

indexOfItemWithObjectValue
Searches the receiver’s internal item list for anObject and returns the lowest index whose corresponding
value is equal to anObject.

public int indexOfItemWithObjectValue(Object anObject)

Discussion
Objects are considered equal if equals returns true. If none of the objects in the receiver’s internal item
list are equal to anObject, indexOfItemWithObjectValue returns NSArray.NotFound. This method
logs a warning if usesDataSource (page 423) returns true.

See Also
selectItemWithObjectValue (page 421)

indexOfSelectedItem
Returns the index of the last item selected from the receiver’s pop-up list, or –1 if no item is selected.

public int indexOfSelectedItem()

Discussion
Note that nothing is initially selected in a newly initialized combo box.

416 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

See Also
objectValueOfSelectedItem (page 419)

insertItemWithObjectValueAtIndex
Inserts anObject at index in the receiver’s internal item list, shifting the previous item at index—along
with all following items—down one slot to make room.

public void insertItemWithObjectValueAtIndex(Object anObject, int index)

Discussion
This method logs a warning if usesDataSource (page 423) returns true.

See Also
addItemWithObjectValue (page 415)
numberOfItems (page 418)

intercellSpacing
Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list.

public NSSize intercellSpacing()

Discussion
The default spacing is (3.0, 2.0).

See Also
itemHeight (page 417)
numberOfVisibleItems (page 418)

isButtonBordered
Returns whether the combo box button is set to display a border.

public boolean isButtonBordered()

Discussion
The return value is true if the button has a border.

Availability
Available in Mac OS X v10.3 and later.

See Also
setButtonBordered (page 421)

itemHeight
Returns the height of each item in the receiver’s pop-up list.

public float itemHeight()

Instance Methods 417
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Discussion
The default item height is 16.0.

See Also
intercellSpacing (page 417)
numberOfVisibleItems (page 418)

itemObjectValueAtIndex
Returns the object located at index within the receiver’s internal item list.

public Object itemObjectValueAtIndex(int index)

Discussion
If index is beyond the end of the list, a RangeException is thrown. This method logs a warning if
usesDataSource (page 423) returns true.

See Also
objectValueOfSelectedItem (page 419)

noteNumberOfItemsChanged
Informs the receiver that the number of items in its data source has changed, allowing the receiver to update
the scrollers in its displayed pop-up list without actually reloading data into the receiver.

public void noteNumberOfItemsChanged()

Discussion
This method is particularly useful for a data source that continually receives data in the background over a
period of time, in which case the NSComboBox can remain responsive to the user while the data is received.

See the NSComboBox.DataSource (page 1951) interface specification for information on the messages an
NSComboBox sends to its data source.

See Also
reloadData (page 419)

numberOfItems
Returns the total number of items in the pop-up list.

public int numberOfItems()

See Also
numberOfVisibleItems (page 418)
numberOfItemsInComboBox (page 1952) (NSComboBoxDataSource interface)

numberOfVisibleItems
Returns the maximum number of items visible at any one time in the pop-up list.

418 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

public int numberOfVisibleItems()

See Also
numberOfItems (page 418)

objectValueOfSelectedItem
Returns the object from the receiver’s internal item list corresponding to the last item selected from the
pop-up list, or null if no item is selected.

public Object objectValueOfSelectedItem()

Discussion
Note that nothing is initially selected in a newly initialized combo box. This method logs a warning if
usesDataSource (page 423) returns true.

See Also
indexOfSelectedItem (page 416)
comboBoxValueForItemAtIndex (page 1952) (NSComboBoxDataSource interface)

objectValues
Returns as an array the receiver’s internal item list.

public NSArray objectValues()

Discussion
This method logs a warning if usesDataSource (page 423) returns true.

reloadData
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and draw the
new values.

public void reloadData()

See Also
noteNumberOfItemsChanged (page 418)

removeAllItems
Removes all items from the receiver’s internal item list.

public void removeAllItems()

Discussion
This method logs a warning if usesDataSource (page 423) returns true.

See Also
objectValues (page 419)

Instance Methods 419
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

removeItemAtIndex
Removes the object at index from the receiver’s internal item list and moves all items beyond index up
one slot to fill the gap.

public void removeItemAtIndex(int index)

Discussion
This method throws a RangeException if index is beyond the end of the list and logs a warning if
usesDataSource (page 423) returns true.

removeItemWithObjectValue
Removes all occurrences of anObject from the receiver’s internal item list.

public void removeItemWithObjectValue(Object anObject)

Discussion
Objects are considered equal if equals returns true. This method logs a warning if usesDataSource (page
423) returns true.

See Also
indexOfItemWithObjectValue (page 416)

scrollItemAtIndexToTop
Scrolls the receiver’s pop-up list vertically so that the item at index is as close to the top as possible.

public void scrollItemAtIndexToTop(int index)

Discussion
The pop-up list need not be displayed at the time this method is invoked.

scrollItemAtIndexToVisible
Scrolls the receiver’s pop-up list vertically so that the item at index is visible.

public void scrollItemAtIndexToVisible(int index)

Discussion
The pop-up list need not be displayed at the time this method is invoked.

selectItemAtIndex
Selects the pop-up list row at index.

public void scrollItemAtIndexToVisible(int index)

420 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Discussion
Posts a ComboBoxSelectionDidChangeNotification (page 424) to the default notification center if the
selection does in fact change. Note that this method does not alter the contents of the combo box’s text
field—see “Setting the Combo Box’s Value” for more information.

See Also
setObjectValue (page 459) (NSControl)

selectItemWithObjectValue
Selects the first pop-up list item that corresponds to anObject.

public void selectItemWithObjectValue(Object anObject)

Discussion
Objects are considered equal if equals returns true. This method logs a warning if usesDataSource (page
423) returns true. Posts a ComboBoxSelectionDidChangeNotification (page 424) to the default
notification center if the selection does in fact change. Note that this method doesn’t alter the contents of
the combo box’s text field—see “Setting the Combo Box’s Value” for more information.

See Also
setObjectValue (page 459) (NSControl)

setButtonBordered
Determines whether the button in the combo box is displayed with a border.

public void setButtonBordered(boolean flag)

Discussion
For example, it is often useful when using a combo box in an NSTableView to display the button without the
border. Set flag to true to display a border.

Availability
Available in Mac OS X v10.3 and later.

See Also
isButtonBordered (page 417)

setCompletes
Sets whether the receiver tries to complete what the user types in the text field.

public void setCompletes(boolean completes)

Discussion
By default, the combo box does not try to.

Instance Methods 421
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

If completes is true, every time the user adds characters to the end of the text field, the combo box calls
the NSComboBoxCell methodcompletedString (page 431). IfcompletedString (page 431) returns a string
that’s longer than the existing string, the combo box replaces the existing string with the returned string
and selects the additional characters. If the user is deleting characters or adds characters somewhere besides
the end of the string, the combo box does not try to complete it.

See Also
completes (page 415)

setDataSource
Sets the receiver’s data source to aSource.

public void setDataSource(Object aSource)

Discussion
aSource should implement the appropriate methods of the NSComboBoxDataSource interface. This method
doesn’t automatically set usesDataSource (page 423) to false and in fact logs a warning if
usesDataSource (page 423) returns false.

This method logs a warning if aSource doesn’t respond to either numberOfItemsInComboBox (page 1952)
or comboBoxValueForItemAtIndex (page 1952).

See Also
setUsesDataSource (page 423)

setHasVerticalScroller
Determines according to flag whether the receiver displays a vertical scroller.

public void setHasVerticalScroller(boolean flag)

Discussion
By default, flag is true. If flag is false and the combo box has more list items (either in its internal item
list or from its data source) than are allowed by numberOfVisibleItems (page 418), only a subset will be
displayed. NSComboBox’s scroll... methods can be used to position this subset within the pop-up list.

Note that if flag is true, a scroller will be displayed even if the combo box has fewer list items than are
allowed by numberOfVisibleItems (page 418).

See Also
numberOfItems (page 418)
scrollItemAtIndexToTop (page 420)
scrollItemAtIndexToVisible (page 420)

setIntercellSpacing
Sets the width and height between pop-up list items to the values in aSize.

public void setIntercellSpacing(NSSize aSize)

422 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Discussion
The default intercell spacing is (3.0, 2.0).

See Also
setItemHeight (page 423)
setNumberOfVisibleItems (page 423)

setItemHeight
Sets the height for items to itemHeight.

public void setItemHeight(float itemHeight)

See Also
setIntercellSpacing (page 422)
setNumberOfVisibleItems (page 423)

setNumberOfVisibleItems
Sets the maximum number of items that will be visible at one time in the receiver’s pop-up list to
visibleItems.

public void setNumberOfVisibleItems(int visibleItems)

See Also
numberOfItems (page 418)
setItemHeight (page 423)
setIntercellSpacing (page 422)

setUsesDataSource
Sets according to flagwhether the receiver uses an external data source (specified by setDataSource (page
422)) to populate the receiver’s pop-up list.

public void setUsesDataSource(boolean flag)

usesDataSource
Returns true if the receiver uses an external data source to populate the receiver’s pop-up list, false if it
uses an internal item list.

public boolean usesDataSource()

See Also
dataSource (page 415)

Instance Methods 423
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Delegate Methods

comboBoxSelectionDidChange
Informs the delegate that the pop-up list selection has finished changing.

public abstract void comboBoxSelectionDidChange(NSNotification notification)

Discussion
The name of notification is ComboBoxSelectionDidChangeNotification (page 424).

comboBoxSelectionIsChanging
Informs the delegate that the pop-up list selection is changing.

public abstract void comboBoxSelectionIsChanging(NSNotification notification)

Discussion
The name of notification is ComboBoxSelectionIsChangingNotification (page 425).

comboBoxWillDismiss
Informs the delegate that the pop-up list is about to be dismissed.

public abstract void comboBoxWillDismiss(NSNotification notification)

Discussion
The name of notification is ComboBoxWillDismissNotification (page 425).

comboBoxWillPopUp
Informs the delegate that the pop-up list is about to be displayed.

public abstract void comboBoxWillPopUp(NSNotification notification)

Discussion
The name of notification is ComboBoxWillPopUpNotification (page 425).

Notifications

ComboBoxSelectionDidChangeNotification

Posted after the NSComboBox’s pop-up list selection changes. The notification object is the NSComboBox
whose selection changed. This notification does not contain a userInfo dictionary.

424 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

ComboBoxSelectionIsChangingNotification

Posted whenever the NSComboBox’s pop-up list selection is changing. The notification object is the
NSComboBox whose selection is changing. This notification does not contain a userInfo dictionary.

ComboBoxWillDismissNotification

Posted whenever the NSComboBox’s pop-up list is about to be dismissed. The notification object is the
NSComboBox whose pop-up list will be dismissed. This notification does not contain a userInfo dictionary.

ComboBoxWillPopUpNotification

Posted whenever the NSComboBox’s pop-up list is going to be displayed. The notification object is the
NSComboBox whose pop-up window will be displayed. This notification does not contain a userInfo
dictionary.

Notifications 425
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

426 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

NSComboBox

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Combo Box Programming Topics

Overview

NSComboBoxCell is a subclass of NSTextFieldCell used to implement the user interface of “combo boxes”
(see NSComboBox (page 411) for information on how combo boxes look and work). The NSComboBox subclass
of NSTextField uses a single NSComboBoxCell, and essentially all of NSComboBox’s methods simply invoke
the corresponding NSComboBoxCell method.

Also see the NSComboBoxCell.DataSource (page 1953) interface, which declares the methods that an
NSComboBoxCell uses to access the contents of its data source object.

Tasks

Constructors

NSComboBoxCell (page 430)
Creates an empty NSComboBoxCell.

Setting Display Attributes

hasVerticalScroller (page 432)
Returns true if the receiver will display a vertical scroller.

isButtonBordered (page 433)
Returns whether the combo box button is set to display a border.

intercellSpacing (page 433)
Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list.

itemHeight (page 433)
Returns the height of each item in the receiver’s pop-up list.

Overview 427
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

numberOfVisibleItems (page 434)
Returns the maximum number of items visible at any one time in the pop-up list.

setButtonBordered (page 437)
Determines whether the button in the combo box is displayed with a border.

setHasVerticalScroller (page 438)
Determines according to flag whether the receiver displays a vertical scroller.

setIntercellSpacing (page 438)
Sets the width and height between pop-up list items to the values in aSize.

setItemHeight (page 438)
Sets the height for items to itemHeight.

setNumberOfVisibleItems (page 439)
Sets the maximum number of items that will be visible at one time in the receiver’s pop-up list to
visibleItems.

Setting a Data Source

dataSource (page 431)
Returns the object that provides the data displayed in the receiver’s pop-up list.

setDataSource (page 437)
Sets the receiver’s data source to aSource.

setUsesDataSource (page 439)
Sets according to flag whether the receiver uses an external data source (specified by
setDataSource (page 437)) to populate the receiver’s pop-up list.

usesDataSource (page 439)
Returns true if the receiver uses an external data source to populate the receiver’s pop-up list, false
if it uses an internal item list.

Working with an Internal List

addItemsWithObjectValues (page 430)

addItemWithObjectValue (page 430)
Adds anObject to the end of the receiver’s internal item list.

insertItemWithObjectValueAtIndex (page 432)
Inserts anObject at index in the receiver’s internal item list, shifting the previous item at
index—along with all following items—down one slot to make room.

objectValues (page 435)
Returns as an array the receiver’s internal item list.

removeAllItems (page 435)
Removes all items from the receiver’s internal item list.

removeItemAtIndex (page 435)
Removes the object at index from the receiver’s internal item list and moves all items beyond index
up one slot to fill the gap.

428 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

removeItemWithObjectValue (page 436)
Removes all occurrences of anObject from the receiver’s internal item list.

numberOfItems (page 434)
Returns the total number of items in the pop-up list.

Manipulating the Displayed List

indexOfItemWithObjectValue (page 432)
Searches the receiver’s internal item list for anObject and returns the lowest index whose
corresponding value is equal to anObject.

itemObjectValueAtIndex (page 434)
Returns the object located at index within the receiver’s internal item list.

noteNumberOfItemsChanged (page 434)
Informs the receiver that the number of items in its data source has changed, allowing the receiver
to update the scrollers in its displayed pop-up list without actually reloading data into the receiver.

reloadData (page 435)
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and
draw the new values.

scrollItemAtIndexToTop (page 436)
Scrolls the receiver’s pop-up list vertically so that the item specified by index is as close to the top
as possible.

scrollItemAtIndexToVisible (page 436)
Scrolls the receiver’s pop-up list vertically so that the item specified by index is visible.

Manipulating the Selection

deselectItemAtIndex (page 431)
Deselects the pop-up list item at index if it’s selected.

indexOfSelectedItem (page 432)
Returns the index of the last item selected from the receiver’s pop-up list, or –1 if no item is selected.

objectValueOfSelectedItem (page 435)
Returns the object from the receiver’s internal item list corresponding to the last item selected from
the pop-up list, or null if no item is selected.

selectItemAtIndex (page 436)
Selects the pop-up list row at index.

selectItemWithObjectValue (page 437)
Selects the first pop-up list item that corresponds to anObject.

Completing the Text Field

completedString (page 431)
Returns a string from the receiver’s pop-up list that starts with the substring, or null if there is no
such string.

Tasks 429
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

completes (page 431)
Returns true if the receiver tries to complete what the user types in the text field.

setCompletes (page 437)
Sets whether the receiver tries to complete what the user types in the text field.

Constructors

NSComboBoxCell
Creates an empty NSComboBoxCell.

public NSComboBoxCell()

Creates an NSCell initialized with aString and set to have the cell’s default menu.

public NSComboBoxCell(String aString)

Creates an NSCell initialized with anImage and set to have the cell’s default menu.

public NSComboBoxCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

addItemsWithObjectValues
public void addItemsWithObjectValues(NSArray objects)

Discussion
Adds multiple objects to the end of the receiver’s internal item list. This method logs a warning if
usesDataSource (page 439) returns true.

addItemWithObjectValue
Adds anObject to the end of the receiver’s internal item list.

public void addItemWithObjectValue(Object anObject)

Discussion
This method logs a warning if usesDataSource (page 439) returns true.

430 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

completedString
Returns a string from the receiver’s pop-up list that starts with the substring, or null if there is no such
string.

public String completedString(String substring)

Discussion
The argument substring is what the user entered in the combo box’s text field. The default implementation
of this method first checks whether the combo box uses a data source and whether the data source responds
tocomboBoxCompletedString (page 1951) orcomboBoxCellCompletedString (page 1953). If so, the combo
box cell returns that method’s return value. Otherwise, this method goes through the combo box’s items
one by one and returns an item that starts with substring.

Override this method only if your subclass completes strings differently. The overriding method does not
need to call the superclass’s method. Generally, you do not need to call this method directly.

completes
Returns true if the receiver tries to complete what the user types in the text field.

public boolean completes()

Discussion
It returns false otherwise.

See Also
setCompletes (page 437)

dataSource
Returns the object that provides the data displayed in the receiver’s pop-up list.

public Object dataSource()

Discussion
This method logs a warning if usesDataSource (page 439) returns false. See the class description and the
NSComboBoxCell.DataSource (page 1953) interface specification for more information on combo box cell data
source objects.

deselectItemAtIndex
Deselects the pop-up list item at index if it’s selected.

public void deselectItemAtIndex(int index)

Discussion
If the selection does in fact change, this method posts a
ComboBoxSelectionDidChangeNotification (page 424) to the default notification center.

See Also
indexOfSelectedItem (page 432)

Instance Methods 431
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

numberOfItems (page 434)
selectItemAtIndex (page 436)

hasVerticalScroller
Returns true if the receiver will display a vertical scroller.

public boolean hasVerticalScroller()

Discussion
Note that the scroller will be displayed even if the pop-up list contains fewer items than will fit in the area
specified for display. Returns false if the receiver won’t display a vertical scroller.

See Also
numberOfItems (page 434)
numberOfVisibleItems (page 434)

indexOfItemWithObjectValue
Searches the receiver’s internal item list for anObject and returns the lowest index whose corresponding
value is equal to anObject.

public int indexOfItemWithObjectValue(Object anObject)

Discussion
Objects are considered equal if equals returns true. If none of the objects in the receiver’s internal item
list is equal to anObject, indexOfItemWithObjectValue returns NSArray.NotFound. This method logs
a warning if usesDataSource (page 439) returns true.

See Also
selectItemWithObjectValue (page 437)

indexOfSelectedItem
Returns the index of the last item selected from the receiver’s pop-up list, or –1 if no item is selected.

public int indexOfSelectedItem()

Discussion
Note that nothing is initially selected in a newly initialized combo box cell.

See Also
objectValueOfSelectedItem (page 435)

insertItemWithObjectValueAtIndex
Inserts anObject at index in the receiver’s internal item list, shifting the previous item at index—along
with all following items—down one slot to make room.

public void insertItemWithObjectValueAtIndex(Object anObject, int index)

432 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

Discussion
This method logs a warning if usesDataSource (page 439) returns true.

See Also
addItemWithObjectValue (page 430)
numberOfItems (page 434)

intercellSpacing
Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list.

public NSSize intercellSpacing()

Discussion
The default spacing is (3.0, 2.0).

See Also
itemHeight (page 433)
numberOfVisibleItems (page 434)

isButtonBordered
Returns whether the combo box button is set to display a border.

public boolean isButtonBordered()

Discussion
The return value is true if the button has a border.

Availability
Available in Mac OS X v10.3 and later.

See Also
setButtonBordered (page 437)

itemHeight
Returns the height of each item in the receiver’s pop-up list.

public float itemHeight()

Discussion
The default item height is 16.0.

See Also
intercellSpacing (page 433)
numberOfVisibleItems (page 434)

Instance Methods 433
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

itemObjectValueAtIndex
Returns the object located at index within the receiver’s internal item list.

public Object itemObjectValueAtIndex(int index)

Discussion
If index is beyond the end of the list, a RangeException is thrown. This method logs a warning if
usesDataSource (page 439) returns true.

See Also
objectValueOfSelectedItem (page 435)

noteNumberOfItemsChanged
Informs the receiver that the number of items in its data source has changed, allowing the receiver to update
the scrollers in its displayed pop-up list without actually reloading data into the receiver.

public void noteNumberOfItemsChanged()

Discussion
This method is particularly useful for a data source that continually receives data in the background over a
period of time, in which case the NSComboBoxCell can remain responsive to the user while the data is
received.

See the NSComboBoxCell.DataSource (page 1953) interface specification for information on the messages an
NSComboBoxCell sends to its data source.

See Also
reloadData (page 435)

numberOfItems
Returns the total number of items in the pop-up list.

public int numberOfItems()

See Also
numberOfVisibleItems (page 434)
numberOfItemsInComboBoxCell (page 1954) (NSComboBoxCellDataSource interface)

numberOfVisibleItems
Returns the maximum number of items visible at any one time in the pop-up list.

public int numberOfVisibleItems()

See Also
numberOfItems (page 434)

434 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

objectValueOfSelectedItem
Returns the object from the receiver’s internal item list corresponding to the last item selected from the
pop-up list, or null if no item is selected.

public Object objectValueOfSelectedItem()

Discussion
Note that nothing is initially selected in a newly initialized combo box cell. This method logs a warning if
usesDataSource (page 439) returns true.

See Also
indexOfSelectedItem (page 432)
comboBoxCellObjectValueForItemAtIndex (page 1954) (NSComboBoxCellDataSource interface)

objectValues
Returns as an array the receiver’s internal item list.

public NSArray objectValues()

Discussion
This method logs a warning if usesDataSource (page 439) returns true.

reloadData
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and draw the
new values.

public void reloadData()

See Also
noteNumberOfItemsChanged (page 434)

removeAllItems
Removes all items from the receiver’s internal item list.

public void removeAllItems()

Discussion
This method logs a warning if usesDataSource (page 439) returns true.

See Also
objectValues (page 435)

removeItemAtIndex
Removes the object at index from the receiver’s internal item list and moves all items beyond index up
one slot to fill the gap.

Instance Methods 435
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

public void removeItemAtIndex(int index)

Discussion
This method throws a RangeException if index is beyond the end of the list and logs a warning if
usesDataSource (page 439) returns true.

removeItemWithObjectValue
Removes all occurrences of anObject from the receiver’s internal item list.

public void removeItemWithObjectValue(Object anObject)

Discussion
Objects are considered equal if equals returns true. This method logs a warning if usesDataSource (page
439) returns true.

See Also
indexOfItemWithObjectValue (page 432)

scrollItemAtIndexToTop
Scrolls the receiver’s pop-up list vertically so that the item specified by index is as close to the top as possible.

public void scrollItemAtIndexToTop(int index)

Discussion
The pop-up list need not be displayed at the time this method is invoked.

scrollItemAtIndexToVisible
Scrolls the receiver’s pop-up list vertically so that the item specified by index is visible.

public void scrollItemAtIndexToVisible(int index)

Discussion
The pop-up list need not be displayed at the time this method is invoked.

selectItemAtIndex
Selects the pop-up list row at index.

public void selectItemAtIndex(int index)

Discussion
Posts a ComboBoxSelectionDidChangeNotification (page 424) to the default notification center if the
selection does in fact change. Note that this method does not alter the contents of the combo box cell’s text
field—see “Setting the Combo Box’s Value” for more information.

See Also
setObjectValue (page 459) (NSControl)

436 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

selectItemWithObjectValue
Selects the first pop-up list item that corresponds to anObject.

public void selectItemWithObjectValue(Object anObject)

Discussion
Objects are considered equal if equals returns true. This method logs a warning if usesDataSource (page
439) returns true. Posts a ComboBoxSelectionDidChangeNotification (page 424) to the default
notification center if the selection does in fact change. Note that this method doesn’t alter the contents of
the combo box cell’s text field—see “Setting the Combo Box’s Value” for more information.

See Also
setObjectValue (page 459) (NSControl)

setButtonBordered
Determines whether the button in the combo box is displayed with a border.

public void setButtonBordered(boolean flag)

Discussion
For example, it is often useful when using a combo box in an NSTableView to display the button without the
border. Set flag to true to display a border.

Availability
Available in Mac OS X v10.3 and later.

See Also
isButtonBordered (page 433)

setCompletes
Sets whether the receiver tries to complete what the user types in the text field.

public void setCompletes(boolean completes)

Discussion
By default, the combo box does not try to.

If completes is true, every time the user adds characters to the end of the text field, the combo box calls
the NSComboBoxCell methodcompletedString (page 431). IfcompletedString (page 431) returns a string
that’s longer than the existing string, the combo box replaces the existing string with the returned string
and selects the additional characters. If the user is deleting characters or adds characters somewhere besides
the end of the string, the combo box does not try to complete it.

See Also
completes (page 431)

setDataSource
Sets the receiver’s data source to aSource.

Instance Methods 437
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

public void setDataSource(Object aSource)

Discussion
aSource should implement the appropriate methods of the NSComboBoxCell.DataSource (page 1953) interface.
This method doesn’t automatically set usesDataSource (page 439) to false and in fact logs a warning if
usesDataSource returns false.

This method logs a warning if aSource doesn’t respond to either numberOfItemsInComboBoxCell (page
1954) or comboBoxCellObjectValueForItemAtIndex (page 1954).

See Also
setUsesDataSource (page 439)

setHasVerticalScroller
Determines according to flag whether the receiver displays a vertical scroller.

public void setHasVerticalScroller(boolean flag)

Discussion
By default, flag is true. If flag is false and the combo box cell has more list items (either in its internal
item list or from its data source) than are allowed by numberOfVisibleItems (page 434), only a subset will
be displayed. NSComboBoxCell’s scroll... methods can be used to position this subset within the pop-up
list.

Note that if flag is true, a scroller will be displayed even if the combo box cell has fewer list items than are
allowed by numberOfVisibleItems.

See Also
numberOfItems (page 434)
scrollItemAtIndexToTop (page 436)
scrollItemAtIndexToVisible (page 436)

setIntercellSpacing
Sets the width and height between pop-up list items to the values in aSize.

public void setIntercellSpacing(NSSize aSize)

Discussion
The default intercell spacing is (3.0, 2.0).

See Also
setItemHeight (page 438)
setNumberOfVisibleItems (page 439)

setItemHeight
Sets the height for items to itemHeight.

public void setItemHeight(float itemHeight)

438 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

See Also
setIntercellSpacing (page 438)
setNumberOfVisibleItems (page 439)

setNumberOfVisibleItems
Sets the maximum number of items that will be visible at one time in the receiver’s pop-up list to
visibleItems.

public void setNumberOfVisibleItems(int visibleItems)

See Also
numberOfItems (page 434)
numberOfVisibleItems (page 434)
setIntercellSpacing (page 438)
setItemHeight (page 438)

setUsesDataSource
Sets according to flagwhether the receiver uses an external data source (specified by setDataSource (page
437)) to populate the receiver’s pop-up list.

public void setUsesDataSource(boolean flag)

usesDataSource
Returns true if the receiver uses an external data source to populate the receiver’s pop-up list, false if it
uses an internal item list.

public boolean usesDataSource()

See Also
dataSource (page 431)

Instance Methods 439
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

440 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

NSComboBoxCell

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Control and Cell Programming Topics for Cocoa

Overview

NSControl is an abstract superclass that provides three fundamental features for implementing user interface
devices: drawing devices on the screen, responding to user events, and sending action messages. It works
closely with NSCell.

NSControl provides several delegate methods for its subclasses that allow text editing, such as NSTextField
and NSMatrix. Note that although NSControl defines delegate methods, it does not itself have a delegate.
Any subclass that uses these methods must have a delegate and the methods to get and set it.

Note that although NSControl defines delegate methods, it does not itself have a delegate. Any subclass that
uses these methods must have a delegate and the methods to get and set it.

Tasks

Constructors

NSControl (page 447)
Creates an NSControl object with a zero-sized frame rectangle and creates a cell for it if the cell’s class
has been specified for controls of this type with setCellClass (page 447).

Setting the Control’s Cell

cellClass (page 447)
Returns the class of cells used by the receiving class.

setCellClass (page 447)
Sets the class of cells used by instances of the receiver.

cell (page 449)
Returns the receiver’s cell.

Overview 441
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setCell (page 455)
Sets the receiver’s cell to aCell.

Enabling and Disabling the Control

isEnabled (page 452)
Returns whether the receiver reacts to mouse events.

setEnabled (page 456)
Sets whether the receiver’s cell—or if there is no associated cell, the NSControl itself—is active (that
is, whether it tracks the mouse and sends its action to its target).

Identifying the Selected Cell

selectedCell (page 454)
Returns the receiver’s selected cell.

selectedTag (page 454)
Returns the tag integer of the receiver’s selected cell (see selectedCell (page 454)) or –1 if there is
no selected cell.

Setting the Control’s Value

doubleValue (page 450)
Returns the value of the receiver’s cell as a double-precision floating-point number.

setDoubleValue (page 456)
Sets the value of the receiver’s cell (or selected cell) to aDouble (a double-precision floating-point
number).

floatValue (page 451)
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as a single-precision
floating-point number.

setFloatValue (page 457)
Sets the value of the receiver’s cell (or selected cell) to aFloat (a single-precision floating-point
number).

intValue (page 452)
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as an integer.

setIntValue (page 458)
Sets the value of the receiver’s cell (or selected cell) to the integer anInt.

objectValue (page 453)
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as an object.

setObjectValue (page 459)
Sets the value of the receiver’s cell (or selected cell) to object.

stringValue (page 461)
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as a String.

setStringValue (page 460)
Sets the value of the receiver’s cell (or selected cell) to the string aString.

442 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setNeedsDisplay (page 459)
Marks the receiver as needing redisplay (assuming automatic display is enabled) after recalculation
of its dimensions.

attributedStringValue (page 448)
Returns the object value of the receiver’s cell (or selected cell) as an attributed string after validating
any editing currently being done.

setAttributedStringValue (page 455)
Sets the value of the receiver’s cell (or selected cell) as an attributed string object.

Interacting with Other Controls

takeDoubleValue (page 461)
Sets the double-precision floating-point value of the receiver’s cell (or selected cell) to the value
obtained by sending a doubleValue (page 450) message to sender.

takeFloatValue (page 462)
Sets the receiver’s selected cell to the value obtained by sending a floatValue (page 451) message
to sender.

takeIntValue (page 462)
Sets the receiver’s selected cell to the value obtained by sending an intValue (page 452) message
to sender.

takeObjectValue (page 462)
Sets the receiver’s selected cell to the value obtained by sending an objectValue (page 453) message
to sender.

takeStringValue (page 462)
Sets the receiver’s selected cell to the value obtained by sending a stringValue (page 461) message
to sender.

Formatting Text

alignment (page 448)
Returns the alignment mode of the text in the receiver’s cell.

setAlignment (page 455)
Sets the alignment of text in the receiver’s cell and, if the cell is being edited, aborts editing and
updates the cell.

font (page 451)
Returns the NSFont used to draw text in the receiver’s cell.

setFont (page 458)
Sets the font used to draw text in the receiver’s cell to fontObject.

setFloatingPointFormat (page 457)
Sets the autoranging and floating point number format of the receiver’s cell, so that at most
leftDigits are displayed to the left of the decimal point, and rightDigits to the right.

formatter (page 451)
Returns the receiver’s formatter.

setFormatter (page 458)
Sets the receiver’s formatter to newFormatter.

Tasks 443
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Managing the Field Editor

abortEditing (page 448)
Terminates and discards any editing of text displayed by the receiver and removes the field editor’s
delegate.

currentEditor (page 449)

validateEditing (page 463)
Validates the user’s changes to text in a cell of the receiving control.

Resizing the Control

calcSize (page 449)
Recomputes any internal sizing information for the receiver, if necessary, by invoking its NSCell’s
calcDrawInfo (page 306) method.

sizeToFit (page 461)
Changes the width and the height of the receiver’s frame so they are the minimum needed to contain
its cell.

Displaying a Cell

selectCell (page 453)
Selects aCell (by setting its state to true) and redraws the NSControl if aCell is a cell of the receiver
and is unselected.

drawCell (page 450)
If aCell is the cell used to implement the receiver, then the receiver is displayed.

drawCellInside (page 450)
Draws the inside of the receiver’s cell (the area within a bezel or border) specified by aCell.

updateCell (page 463)
Redisplays aCell or marks it for redisplay.

updateCellInside (page 463)
Redisplays the inside of aCell or marks it for redisplay.

Implementing the Target/action Mechanism

action (page 448)
Returns the action-message selector of the receiver’s cell (the default NSControl behavior), or the
default action-message selector for a control with multiple cells (such as an NSMatrix or an NSForm).

setAction (page 455)
Sets the receiver’s action method to aSelector.

target (page 463)
Returns the target object of the receiver’s cell.

444 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setTarget (page 460)
Sets the target object for the action message of the receiver’s cell; NSCell’s setTarget (page 331) is
used instead of any subclass override of this method.

isContinuous (page 452)
Returns whether the receiver’s NSCell continuously sends its action message to its target during
mouse tracking.

setContinuous (page 456)
Sets whether the receiver’s cell continuously sends its action message to its target as it tracks the
mouse, depending on the Boolean value flag.

sendActionToTarget (page 454)
Sends sendActionToTargetFromSender (page 121) to NSApplication.sharedApplication(),
which in turn sends a message to theTarget to perform theAction, adding the receiver as the last
parameter.

setEventMaskForSendingAction (page 457)
Sets the conditions on which the receiver sends action messages to its target and returns a bit mask
with which to detect the previous settings.

Getting and Setting Tags

tag (page 461)
Returns the tag identifying the receiver (not the tag of the receiver’s cell).

setTag (page 460)
Sets the tag of the receiver to anInt.

Activating from the Keyboard

performClick (page 453)
Can be used to simulate a single mouse click on the receiver.

refusesFirstResponder (page 453)
Returns whether the receiver refuses first responder status.

setRefusesFirstResponder (page 459)
Sets whether the receiver refuses first responder status, depending on the Boolean value flag.

Tracking the Mouse

mouseDown (page 452)

ignoresMultiClick (page 451)
Returns whether the receiver ignores multiple clicks made in rapid succession.

setIgnoresMultiClick (page 458)
Sets whether the receiver ignores multiple clicks made in rapid succession, depending on the Boolean
value flag.

Tasks 445
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Validating the contents of a control

controlIsValidObject (page 464) delegate method
Invoked when the insertion point leaves a cell belonging to control, but before the string value of
the cell’s object is displayed.

Editing text in a control

controlTextShouldBeginEditing (page 465) delegate method
Sent directly by control to the delegate when the user tries to enter a character in a cell of a control
that allows editing of text (such as a text field or form field).

controlTextShouldEndEditing (page 465) delegate method
Sent directly by control to the delegate when the insertion point tries to leave a cell of the control
that has been edited.

controlTextDidBeginEditing (page 464) delegate method
Sent by the default notification center to the delegate and all observers of the notification when a
control with editable cells (such as a text field, a form field, or an NSMatrix) begins editing text.

controlTextDidChange (page 465) delegate method
Sent by the default notification center to the delegate when the text in the receiving control (usually
a text field, a form field, or NSMatrix with editable cells) changes.

controlTextDidEndEditing (page 465) delegate method
Sent by the default notification center to the delegate and all observers of the notification when a
control with editable cells (such as a text field, a form field, or an NSMatrix) ends editing text.

Getting error information from a formatter

controlDidFailToFormatStringErrorDescription (page 463) delegate method
Invoked when the formatter for the cell belonging to control (or selected cell) cannot convert a
String to an underlying object.

controlDidFailToValidatePartialString (page 464) delegate method
Invoked when the formatter for the cell belonging to control (or selected cell) rejects a partial string
a user is typing into the cell.

Working with key bindings

controlTextViewDoCommandBySelector (page 466) delegate method
Invoked when users press keys with predefined bindings in a cell of the control or selected cell, as
communicated to the control by the cell’s field editor (textView).

Working with text completion

controlTextViewCompletionsForPartialWordRange (page 465) delegate method
Sent to the delegate to allow you to control the list of proposed text completions generated by text
fields and other controls.

446 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Constructors

NSControl
Creates an NSControl object with a zero-sized frame rectangle and creates a cell for it if the cell’s class has
been specified for controls of this type with setCellClass (page 447).

public NSControl()

Discussion
Because NSControl is an abstract class, you should call this constructor only in the constructors of subclasses;
that is, there should always be a more specific constructor for the subclass, as this is the constructor for
NSControl.

Creates an NSControl object in frameRect and creates a cell for it if the cell’s class has been specified for
controls of this type with setCellClass (page 447).

public NSControl(NSRect frameRect)

Discussion
Because NSControl is an abstract class, you should call this constructor only in the constructors of subclasses;
that is, there should always be a more specific constructor for the subclass, as this is the constructor for
NSControl.

Static Methods

cellClass
Returns the class of cells used by the receiving class.

public static Class cellClass()

Discussion
Returns null if no cell class has been specified for the receiving class or any of its superclasses (up to
NSControl).

See Also
cell (page 449)
setCell (page 455)

setCellClass
Sets the class of cells used by instances of the receiver.

public static void setCellClass(Class class)

See Also
cell (page 449)
setCell (page 455)

Constructors 447
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Instance Methods

abortEditing
Terminates and discards any editing of text displayed by the receiver and removes the field editor’s delegate.

public boolean abortEditing()

Discussion
Returns true if there was a field editor associated with the control, false otherwise.

See Also
currentEditor (page 449)
validateEditing (page 463)

action
Returns the action-message selector of the receiver’s cell (the default NSControl behavior), or the default
action-message selector for a control with multiple cells (such as an NSMatrix or an NSForm).

public NSSelector action()

Discussion
For controls with multiple cells, it’s better to get the action-message selector for a particular cell.

See Also
setAction (page 455)
setTarget (page 460)
target (page 463)

alignment
Returns the alignment mode of the text in the receiver’s cell.

public int alignment()

Discussion
The return value can be one of these constants: NSText.LeftTextAlignment,
NSText.RightTextAlignment, NSText.CenterTextAlignment, NSText.JustifiedTextAlignment,
or NSText.NaturalTextAlignment (the default alignment).

See Also
setAlignment (page 455)

attributedStringValue
Returns the object value of the receiver’s cell (or selected cell) as an attributed string after validating any
editing currently being done.

448 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

public NSAttributedString attributedStringValue()

Discussion
If no cell is associated with the receiver, returns an empty attributed string.

See Also
setAttributedStringValue (page 455)

calcSize
Recomputes any internal sizing information for the receiver, if necessary, by invoking its NSCell’s
calcDrawInfo (page 306) method.

public void calcSize()

Discussion
Most NSControls maintain a flag that informs them if any of their cells have been modified in such a way
that the location or size of the cell should be recomputed. If such a modification happens, calcSize is
automatically invoked whenever the NSControl is displayed; you never need to invoke it yourself.

See Also
sizeToFit (page 461)

cell
Returns the receiver’s cell.

public NSCell cell()

Discussion
In NSControls with multiple cells (such as NSMatrix or NSForm), use selectedCell (page 454) or a similar
method for finding a particular cell.

See Also
cellClass (page 447)
setCellClass (page 447)
setCell (page 455)

currentEditor
public NSText currentEditor()

Discussion
If the receiver is being edited—that is, it has a field editor and is the first responder of its NSWindow—this
method returns the field editor; otherwise, it returns null.

The field editor is a single NSTextView object that is shared among all the controls in a window for light
text-editing needs. It is automatically instantiated when needed.

See Also
abortEditing (page 448)

Instance Methods 449
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

validateEditing (page 463)

doubleValue
Returns the value of the receiver’s cell as a double-precision floating-point number.

public double doubleValue()

Discussion
If the NSControl contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the NSControl is in the process of editing the affected cell, then it invokes validateEditing (page
463) before extracting and returning the value.

See Also
doubleValue (page 450)
floatValue (page 451)
intValue (page 452)
objectValue (page 453)
stringValue (page 461)
setDoubleValue (page 456)

drawCell
If aCell is the cell used to implement the receiver, then the receiver is displayed.

public void drawCell(NSCell aCell)

Discussion
This method is provided primarily to support a consistent set of methods between NSControls with single
and multiple cells, because an NSControl with multiple cells needs to be able to draw a single cell at a time.

See Also
selectCell (page 453)
updateCell (page 463)
updateCellInside (page 463)

drawCellInside
Draws the inside of the receiver’s cell (the area within a bezel or border) specified by aCell.

public void drawCellInside(NSCell aCell)

Discussion
If the receiver is transparent, the method causes the superview to draw itself. This method invokes NSCell’s
drawInteriorWithFrameInView (page 309) method. This method has no effect on NSControls (such as
NSMatrix and NSForm) that have multiple cells.

See Also
selectCell (page 453)
updateCell (page 463)

450 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

updateCellInside (page 463)

floatValue
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as a single-precision
floating-point number.

public float floatValue()

Discussion
See doubleValue (page 450) for more details.

See Also
doubleValue (page 450)
intValue (page 452)
objectValue (page 453)
stringValue (page 461)
setFloatValue (page 457)

font
Returns the NSFont used to draw text in the receiver’s cell.

public NSFont font()

See Also
setFont (page 458)

formatter
Returns the receiver’s formatter.

public Object formatter()

See Also
setFormatter (page 458)

ignoresMultiClick
Returns whether the receiver ignores multiple clicks made in rapid succession.

public boolean ignoresMultiClick()

Discussion
See setIgnoresMultiClick (page 458) for details.

Instance Methods 451
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

intValue
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as an integer.

public int intValue()

Discussion
See doubleValue (page 450) for more details.

See Also
doubleValue (page 450)
floatValue (page 451)
objectValue (page 453)
stringValue (page 461)
setIntValue (page 458)

isContinuous
Returns whether the receiver’s NSCell continuously sends its action message to its target during mouse
tracking.

public boolean isContinuous()

See Also
setContinuous (page 456)

isEnabled
Returns whether the receiver reacts to mouse events.

public boolean isEnabled()

See Also
setEnabled (page 456)

mouseDown
public void mouseDown(NSEvent theEvent)

Discussion
Invoked when the mouse button is pressed while the cursor is within the bounds of the receiver, generating
theEvent. This method highlights the receiver’s NSCell and sends it a trackMouse (page 336) message.
Whenever the NSCell finishes tracking the mouse (for example, because the cursor has left the cell’s bounds),
the cell is unhighlighted. If the mouse button is still down and the cursor reenters the bounds, the cell is
again highlighted and a new trackMouse (page 336) message is sent. This behavior repeats until the mouse
button goes up. If it goes up with the cursor in the control, the state of the control is changed, and the action
message is sent to the target. If the mouse button goes up when the cursor is outside the control, no action
message is sent.

See Also
ignoresMultiClick (page 451)

452 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

trackMouse (page 336) (NSCell)

objectValue
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as an object.

public Object objectValue()

Discussion
See doubleValue (page 450) for more details.

See Also
doubleValue (page 450)
floatValue (page 451)
intValue (page 452)
stringValue (page 461)
setObjectValue (page 459)

performClick
Can be used to simulate a single mouse click on the receiver.

public void performClick(Object sender)

Discussion
sender is ignored. This method calls performClick (page 318) on the receiver's cell with the sender being
the control itself. Throws an exception if the action message cannot be successfully sent.

refusesFirstResponder
Returns whether the receiver refuses first responder status.

public boolean refusesFirstResponder()

See Also
setRefusesFirstResponder (page 459)

selectCell
Selects aCell (by setting its state to true) and redraws the NSControl if aCell is a cell of the receiver and
is unselected.

public void selectCell(NSCell aCell)

See Also
selectedCell (page 454)

Instance Methods 453
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

selectedCell
Returns the receiver’s selected cell.

public NSCell selectedCell()

Discussion
The default implementation for NSControl simply returns the associated cell (or null if no cell has been set).
Subclasses of NSControl that manage multiple cells (such as NSMatrix and NSForm) override this method to
return the cell selected by users.

See Also
cell (page 449)
setCell (page 455)

selectedTag
Returns the tag integer of the receiver’s selected cell (see selectedCell (page 454)) or –1 if there is no
selected cell.

public int selectedTag()

Discussion
When you set the tag of a control with a single cell in Interface Builder, it sets the tags of both the control
and the cell with the same value as a convenience.

See Also
setTag (page 460)
tag (page 461)

sendActionToTarget
Sends sendActionToTargetFromSender (page 121) to NSApplication.sharedApplication(), which
in turn sends a message to theTarget to perform theAction, adding the receiver as the last parameter.

public boolean sendActionToTarget(NSSelector theAction, Object theTarget)

Discussion
sendActionToTarget is invoked primarily by NSCell’s trackMouse (page 336).

If theAction is NULL, no message is sent. If theTarget is null, NSApplication.sharedApplication()
looks for an object that can respond to the message by following the responder chain (see the class description
for NSActionCell (page 45)). This method returns false if no object that responds to theAction could be
found.

See Also
action (page 448)
target (page 463)

454 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setAction
Sets the receiver’s action method to aSelector.

public void setAction(NSSelector aSelector)

Discussion
If aSelector is NULL, then no action messages will be sent from the receiver.

See Action Messages for additional information on action messages.

See Also
action (page 448)
setTarget (page 460)
target (page 463)

setAlignment
Sets the alignment of text in the receiver’s cell and, if the cell is being edited, aborts editing and updates the
cell.

public void setAlignment(int mode)

Discussion
mode is one of five constants: NSText.LeftTextAlignment, NSText.RightTextAlignment,
NSText.CenterTextAlignment,NSText.JustifiedTextAlignment,NSText.NaturalTextAlignment
(the default alignment for the text).

See Also
alignment (page 448)

setAttributedStringValue
Sets the value of the receiver’s cell (or selected cell) as an attributed string object.

public void setAttributedStringValue(NSAttributedString object)

Discussion
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks it for automatic redisplay (NSActionCell performs its own updating of cells).

See Also
attributedStringValue (page 448)

setCell
Sets the receiver’s cell to aCell.

public void setCell(NSCell aCell)

Instance Methods 455
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Discussion
Use this method with great care as it can irrevocably damage the affected control; specifically, you should
only use this method in initializers for subclasses of NSControl.

See Also
cell (page 449)
selectedCell (page 454)

setContinuous
Sets whether the receiver’s cell continuously sends its action message to its target as it tracks the mouse,
depending on the Boolean value flag.

public void setContinuous(boolean flag)

See Also
isContinuous (page 452)

setDoubleValue
Sets the value of the receiver’s cell (or selected cell) to aDouble (a double-precision floating-point number).

public void setDoubleValue(double aDouble)

Discussion
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior as needing to be redisplayed (NSActionCell performs its own updating
of cells).

See Also
doubleValue (page 450)
setFloatValue (page 457)
setIntValue (page 458)
setObjectValue (page 459)
setStringValue (page 460)

setEnabled
Sets whether the receiver’s cell—or if there is no associated cell, the NSControl itself—is active (that is,
whether it tracks the mouse and sends its action to its target).

public void setEnabled(boolean flag)

Discussion
If flag is false, any editing is aborted. Redraws the entire control if it is marked as needing redisplay.
Subclasses may want to override this method to redraw only a portion of the control when the enabled state
changes, as do NSButton and NSSlider.

See Also
isEnabled (page 452)

456 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setEventMaskForSendingAction
Sets the conditions on which the receiver sends action messages to its target and returns a bit mask with
which to detect the previous settings.

public int setEventMaskForSendingAction(int mask)

Discussion
You use this method during mouse tracking when the mouse button changes state, the mouse moves, or—if
the cell is marked to send its action continuously while tracking—periodically. Because of this, the only bits
checked in mask are LeftMouseDownMask, LeftMouseUpMask, LeftMouseDraggedMask, and
PeriodicMask, which are declared in NSEvent.h. NSControl’s default implementation simply invokes the
setEventMaskForSendingAction (page 324) method of its associated cell.

See Also
sendActionToTarget (page 454)
setEventMaskForSendingAction (page 324) (NSCell)

setFloatingPointFormat
Sets the autoranging and floating point number format of the receiver’s cell, so that at most leftDigits
are displayed to the left of the decimal point, and rightDigits to the right.

public void setFloatingPointFormat(boolean autoRange, int leftDigits, int
rightDigits)

Discussion
The autoRange argument specifies whether floating-point numbers are autoranged in the receiver. See the
description of this method in the NSCell (page 295) class specification for details. If the cell is being edited,
what’s typed is discarded, and the cell’s interior is redrawn.

See Also
setFloatingPointFormat (page 325) (NSCell)

setFloatValue
Sets the value of the receiver’s cell (or selected cell) to aFloat (a single-precision floating-point number).

public void setFloatValue(float aFloat)

Discussion
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior as needing to be redisplayed (NSActionCell performs its own updating
of cells).

See Also
floatValue (page 451)
setDoubleValue (page 456)
setIntValue (page 458)
setObjectValue (page 459)
setStringValue (page 460)

Instance Methods 457
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setFont
Sets the font used to draw text in the receiver’s cell to fontObject.

public void setFont(NSFont fontObject)

Discussion
If the cell is being edited, the text in the cell is redrawn in the new font, and the cell’s editor (the NSText
object used globally for editing) is updated with the new NSFont.

See Also
setFont (page 458)

setFormatter
Sets the receiver’s formatter to newFormatter.

public void setFormatter(NSFormatter newFormatter)

See Also
formatter (page 451)

setIgnoresMultiClick
Sets whether the receiver ignores multiple clicks made in rapid succession, depending on the Boolean value
flag.

public void setIgnoresMultiClick(boolean flag)

Discussion
By default, controls treat double clicks as two distinct clicks, triple clicks as three distinct clicks, and so on.
However, when an NSControl returning true to this method receives multiple clicks (within a predetermined
interval), each mouseDown event after the first is passed on to super.

See Also
ignoresMultiClick (page 451)

setIntValue
Sets the value of the receiver’s cell (or selected cell) to the integer anInt.

public void setIntValue(int anInt)

Discussion
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior as needing to be redisplayed (NSActionCell performs its own updating
of cells).

See Also
intValue (page 452)
setDoubleValue (page 456)
setFloatValue (page 457)

458 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setObjectValue (page 459)
setStringValue (page 460)

setNeedsDisplay
Marks the receiver as needing redisplay (assuming automatic display is enabled) after recalculation of its
dimensions.

public void setNeedsDisplay()

See Also
setNeedsDisplay (page 1779) (NSView)

setObjectValue
Sets the value of the receiver’s cell (or selected cell) to object.

public void setObjectValue(Object object)

Discussion
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior as needing to be redisplayed (NSActionCell performs its own updating
of cells).

See Also
objectValue (page 453)
setDoubleValue (page 456)
setFloatValue (page 457)
setIntValue (page 458)
setStringValue (page 460)

setRefusesFirstResponder
Sets whether the receiver refuses first responder status, depending on the Boolean value flag.

public void setRefusesFirstResponder(boolean flag)

Discussion
By default, the user can advance the focus of keyboard events between controls by pressing the Tab key;
when this focus—or first responder status—is indicated for a control (by the insertion point or, for nontext
controls, a faint rectangle), the user can activate the control by pressing the Space bar.

See Also
refusesFirstResponder (page 453)
objectValue (page 453)
setDoubleValue (page 456)
setFloatValue (page 457)

Instance Methods 459
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

setStringValue
Sets the value of the receiver’s cell (or selected cell) to the string aString.

public void setStringValue(String aString)

Discussion
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior as needing to be redisplayed (NSActionCell performs its own updating
of cells).

See Also
setDoubleValue (page 456)
setFloatValue (page 457)
setIntValue (page 458)
setObjectValue (page 459)
stringValue (page 461)

setTag
Sets the tag of the receiver to anInt.

public void setTag(int anInt)

Discussion
It doesn’t affect the tag of the receiver’s cell. Tags allow you to identify particular cells. Tag values are not
used internally; they are only changed by external invocations of setTag (page 460). You typically set tag
values in Interface Builder. When you set the tag of a control with a single cell in Interface Builder, it sets the
tags of both the control and the cell to the same value as a convenience.

See Also
tag (page 461)
selectedTag (page 454)

setTarget
Sets the target object for the action message of the receiver’s cell; NSCell’s setTarget (page 331) is used
instead of any subclass override of this method.

public void setTarget(Object anObject)

Discussion
If anObject is null and the control sends an action message, the application looks for an object that can
respond to the message by following the responder chain (see description of the NSActionCell (page 45)
class for details).

See Also
action (page 448)
setAction (page 455)
target (page 463)
setTarget (page 331) (NSCell)

460 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

sizeToFit
Changes the width and the height of the receiver’s frame so they are the minimum needed to contain its
cell.

public void sizeToFit()

Discussion
If you want a multiple-cell custom subclass of NSControl to size itself to fit its cells, you must override this
method. This method neither redisplays the receiver nor marks it as needing display. You must do this yourself
with either display (page 1747) or setNeedsDisplay (page 459).

See Also
calcSize (page 449)

stringValue
Returns the value of the receiver’s cell (or selected cell, if a multiple-cell NSControl) as a String.

public String stringValue()

Discussion
See doubleValue (page 450) for details.

See Also
doubleValue (page 450)
floatValue (page 451)
intValue (page 452)
objectValue (page 453)
setStringValue (page 460)

tag
Returns the tag identifying the receiver (not the tag of the receiver’s cell).

public int tag()

Discussion
Tags allow you to identify particular controls. Tag values are not used internally; they are only changed by
external invocations of setTag. You typically set tag values in Interface Builder. When you set the tag of a
control with a single cell in Interface Builder, it sets the tags of both the control and the cell to the same
value as a convenience.

See Also
setTag (page 460)
selectedTag (page 454)

takeDoubleValue
Sets the double-precision floating-point value of the receiver’s cell (or selected cell) to the value obtained
by sending a doubleValue (page 450) message to sender.

Instance Methods 461
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

public void takeDoubleValue(Object sender)

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it will
send a takeDoubleValue message to the text field. The text field will then get the slider’s floating-point
value, turn it into a text string, and display it, thus tracking the value of the slider.

takeFloatValue
Sets the receiver’s selected cell to the value obtained by sending a floatValue (page 451) message to
sender.

public void takeFloatValue(Object sender)

Discussion
See takeDoubleValue (page 461) for more information.

takeIntValue
Sets the receiver’s selected cell to the value obtained by sending an intValue (page 452) message to sender.

public void takeIntValue(Object sender)

Discussion
See takeDoubleValue (page 461) for more information.

takeObjectValue
Sets the receiver’s selected cell to the value obtained by sending an objectValue (page 453) message to
sender.

public void takeObjectValue(Object sender)

Discussion
See takeDoubleValue (page 461) for more information.

takeStringValue
Sets the receiver’s selected cell to the value obtained by sending a stringValue (page 461) message to
sender.

public void takeStringValue(Object sender)

Discussion
See takeDoubleValue (page 461) for more information.

462 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

target
Returns the target object of the receiver’s cell.

public Object target()

See Also
action (page 448)
setAction (page 455)
setTarget (page 460)

updateCell
Redisplays aCell or marks it for redisplay.

public void updateCell(NSCell aCell)

updateCellInside
Redisplays the inside of aCell or marks it for redisplay.

public void updateCellInside(NSCell aCell)

validateEditing
Validates the user’s changes to text in a cell of the receiving control.

public void validateEditing()

Discussion
Validation sets the object value of the cell to the current contents of the cell’s editor (the NSText object used
for editing), storing it as a simple String or an attributed string object based on the attributes of the editor.

See Also
abortEditing (page 448)
currentEditor (page 449)

Delegate Methods

controlDidFailToFormatStringErrorDescription
Invoked when the formatter for the cell belonging to control (or selected cell) cannot convert a String to
an underlying object.

public abstract boolean controlDidFailToFormatStringErrorDescription(NSControl
control, String string, String error)

Delegate Methods 463
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Discussion
error is a localized user-presentable String that explains why the conversion failed. Evaluate the error or
query the user and return true if string should be accepted as is, or false if string should be rejected.

See Also
objectValueForString (NSFormatter)

controlDidFailToValidatePartialString
Invoked when the formatter for the cell belonging to control (or selected cell) rejects a partial string a user
is typing into the cell.

public abstract void controlDidFailToValidatePartialString(NSControl control, String
string, String error)

Discussion
This String (string) includes the character that caused the rejection. error is a localized user-presentable
String that explains why the validation failed. You can implement this method to display a warning message
or perform a similar action when the user enters improperly formatted text.

See Also
isPartialStringValid (NSFormatter)

controlIsValidObject
Invoked when the insertion point leaves a cell belonging to control, but before the string value of the cell’s
object is displayed.

public abstract boolean controlIsValidObject(NSControl control, Object object)

Discussion
Return true to allow display of the string and false to reject display and return the cursor to the cell. This
method gives the delegate the opportunity to validate the contents of the control’s cell (or selected cell). In
validating, the delegate checks object to determine if it falls within a permissible range, has required
attributes, accords with a given context, and so on. Examples of objects subject to such evaluations are an
NSDate object that should not represent a future date or a monetary amount (represented by an NSNumber)
that exceeds a predetermined limit.

controlTextDidBeginEditing
Sent by the default notification center to the delegate and all observers of the notification when a control
with editable cells (such as a text field, a form field, or an NSMatrix) begins editing text.

public abstract void controlTextDidBeginEditing(NSNotification aNotification)

Discussion
The name of notification aNotification is always ControlTextDidBeginEditingNotification (page
466). Use the key "NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary.
If the delegate implements this method, it’s automatically registered to receive this notification.

464 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

controlTextDidChange
Sent by the default notification center to the delegate when the text in the receiving control (usually a text
field, a form field, or NSMatrix with editable cells) changes.

public abstract void controlTextDidChange(NSNotification aNotification)

Discussion
The name of notification aNotification is always ControlTextDidChangeNotification (page 467).
Use the key "NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary. If
the delegate implements this method, it’s automatically registered to receive this notification.

controlTextDidEndEditing
Sent by the default notification center to the delegate and all observers of the notification when a control
with editable cells (such as a text field, a form field, or an NSMatrix) ends editing text.

public abstract void controlTextDidEndEditing(NSNotification aNotification)

Discussion
The name of notification aNotification is always ControlTextDidEndEditingNotification (page
467). Use the key "NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary.
If the delegate implements this method, it’s automatically registered to receive this notification.

controlTextShouldBeginEditing
Sent directly by control to the delegate when the user tries to enter a character in a cell of a control that
allows editing of text (such as a text field or form field).

public abstract boolean controlTextShouldBeginEditing(NSControl control, NSText
fieldEditor)

Discussion
Return true if the NSControl’s fieldEditor should be allowed to start editing the text, false otherwise.

controlTextShouldEndEditing
Sent directly by control to the delegate when the insertion point tries to leave a cell of the control that has
been edited.

public abstract boolean controlTextShouldEndEditing(NSControl control, NSText
fieldEditor)

Discussion
It’s sent only by controls that allow editing of text (such as a text field or a form field). Return true if the
control’s fieldEditor should be allowed to end its edit session, false otherwise.

controlTextViewCompletionsForPartialWordRange
Sent to the delegate to allow you to control the list of proposed text completions generated by text fields
and other controls.

Delegate Methods 465
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

public abstract NSArray controlTextViewCompletionsForPartialWordRange(NSControl
control, NSTextView textView, NSArray words, NSRange charRange)

Discussion
Arguments include the text view for which the list was generated, the list of potential completions, and the
partial word range (that is, the number of characters the user has already typed). The array you return is used
for the completions list in place of the potential list passed to this method.

The completions list is an array of strings, in the order in which they should be presented. Each string should
be a complete word that the user might be trying to type. The strings must be complete words rather than
just the remainder of the word, in case completion requires some slight modification of what the user has
already typed—for example, the addition of an accent, or a change in capitalization. You can also use this
method to support abbreviations that complete into words that don't start with the characters of the
abbreviation.

Availability
Available in Mac OS X v10.3 and later.

controlTextViewDoCommandBySelector
Invoked when users press keys with predefined bindings in a cell of the control or selected cell, as
communicated to the control by the cell’s field editor (textView).

public abstract boolean controlTextViewDoCommandBySelector(NSControl control,
NSTextView textView, NSSelector command)

Discussion
The delegate returns true if it handles the key binding, and false otherwise. These bindings are usually
implemented as methods (command) defined in NSResponder; examples of such key bindings are arrow keys
(for directional movement) and the Escape key (for name completion). By implementing this method, the
delegate can override the default implementation of command and supply its own behavior.

Notifications

NSControl posts the following notifications to interested observers and its delegate.

ControlTextDidBeginEditingNotification

The field editor of the edited cell originally sends a TextDidBeginEditingNotification (page 1532) to
the control, which passes it on in this form to its delegate. The notification object is the NSControl posting
the notification. The userInfo dictionary contains the following information:

ValueKey

The edited cell’s field editor"NSFieldEditor"

See the description of controlTextDidBeginEditing (page 464) for details.

466 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

ControlTextDidChangeNotification

The field editor of the edited cell originally sends a TextDidChangeNotification (page 1532) to the control,
which passes it on in this form to its delegate. The notification object is the NSControl posting the notification.
The userInfo dictionary contains the following information:

ValueKey

The edited cell’s field editor"NSFieldEditor"

See the description of controlTextDidChange (page 465) for details.

ControlTextDidEndEditingNotification

The field editor of the edited cell originally sends a ControlTextDidEndEditingNotification (page
467) to the control, which passes it on in this form to its delegate. The notification object is the NSControl
posting the notification. The userInfo dictionary contains the following information:

ValueKey

The edited cell’s field editor"NSFieldEditor"

See the description of controlTextDidEndEditing (page 465) for details.

Notifications 467
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

468 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

NSControl

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

NSController is an abstract class that implements the base functionality required by the Controller Layer.

Tasks

Constructors

NSController (page 470)
Creates and returns an empty NSController.

Managing Editing

objectDidBeginEditing (page 471)
Invoked to inform the receiver that editor has uncommitted changes that can affect the receiver.

objectDidEndEditing (page 471)
Invoked to inform the receiver that editor has committed or discarded its changes.

commitEditing (page 470)
Causes the receiver to attempt to commit any pending edits, returning true if successful or no edits
where pending.

discardEditing (page 471)
Discards any pending changes by registered editors.

isEditing (page 471)
Returns true if there are any editors currently registered with the receiver, false otherwise.

Overview 469
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

NSController

Binding

bind (page 470)
Creates a relationship between the receiver’s binding and the property of observableController
specified by keyPath.

Constructors

NSController
Creates and returns an empty NSController.

public NSController()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

bind
Creates a relationship between the receiver’s binding and the property of observableController specified
by keyPath.

public void bind(String binding, Object observableController, String keyPath,
NSDictionary options)

Discussion
The binding is the key path for a property of the receiver previously exposed. The options dictionary is
optional. If present, it contains placeholder objects or an NSValueTransformer identifier as described in
“Constants” (page 2005).

Availability
Available in Mac OS X v10.4 and later.

commitEditing
Causes the receiver to attempt to commit any pending edits, returning true if successful or no edits where
pending.

public boolean commitEditing()

Discussion
A commit is denied if the receiver fails to apply the changes to the model object, perhaps due to a validation
error.

470 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

NSController

Availability
Available in Mac OS X v10.3 and later.

See Also
discardEditing (page 471)

discardEditing
Discards any pending changes by registered editors.

public void discardEditing()

Availability
Available in Mac OS X v10.3 and later.

See Also
commitEditing (page 470)

isEditing
public boolean isEditing()

Returns true if there are any editors currently registered with the receiver, false otherwise.

- (BOOL)isEditing

Availability
Available in Mac OS X v10.3 and later.

objectDidBeginEditing
Invoked to inform the receiver that editor has uncommitted changes that can affect the receiver.

public void objectDidBeginEditing(Object editor)

Availability
Available in Mac OS X v10.3 and later.

See Also
objectDidEndEditing (page 471)

objectDidEndEditing
Invoked to inform the receiver that editor has committed or discarded its changes.

public void objectDidEndEditing(Object editor)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 471
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

NSController

See Also
objectDidBeginEditing (page 471)

472 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

NSController

Inherits from NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSControllerPlaceholders class provides an means for an object to register default placeholders that will
be displayed for a binding when no other placeholder has been specified. Individual placeholder values can
be specified for each of the marker objects, as well as when the property is null.

Placeholders are used when a property of an instance of the receiving class is accessed through a key value
coding compliant method, and returns null or a specialized marker.

Tasks

Constructors

NSControllerPlaceholders (page 474)
Creates a new NSControllerPlaceholders instance.

Managing Default Placeholders

setDefaultPlaceholderForMarker (page 476)
Sets placeholder as the default placeholder for the binding, when a key value coding compliant
property of an instance of classObject returns the value specified by marker, and no other
placeholder has been specified.

defaultPlaceholderForMarker (page 474)
Returns an object that will be used as the placeholder for the binding, when a key value coding
compliant property of an instance of classObject returns the value specified by marker, and no
other placeholder has been specified.

Overview 473
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

NSControllerPlaceholders

Obtaining Controller Markers

multipleValuesMarker (page 475)
Returns a marker which indicates that a controller’s selection contains multiple items.

noSelectionMarker (page 475)
Returns a marker which indicates that a controller’s selection is currently empty.

notApplicableMarker (page 475)
Returns a marker which indicates that a controller does not support selection.

Testing Markers

isControllerMarker (page 475)
Returns whether marker is a valid controller marker.

Constructors

NSControllerPlaceholders
Creates a new NSControllerPlaceholders instance.

public NSControllerPlaceholders()

Discussion
All NSControllerPlaceholders methods are static, so there is no need create individual instances.

Static Methods

defaultPlaceholderForMarker
Returns an object that will be used as the placeholder for the binding, when a key value coding compliant
property of an instance of classObject returns the value specified by marker, and no other placeholder
has been specified.

public static Object defaultPlaceholderForMarker(Class classObject, Object marker,
String binding)

Discussion
marker can be null or one of the controller markers returned by multipleValuesMarker (page 475),
noSelectionMarker (page 475), and notApplicableMarker (page 475).

Availability
Available in Mac OS X v10.3 and later.

See Also
setDefaultPlaceholderForMarker (page 476)

474 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

NSControllerPlaceholders

isControllerMarker
Returns whether marker is a valid controller marker.

public static boolean isControllerMarker(Object marker)

Discussion
Valid controller markers are returned by multipleValuesMarker (page 475), noSelectionMarker (page
475), and notApplicableMarker (page 475).

Availability
Available in Mac OS X v10.3 and later.

multipleValuesMarker
Returns a marker which indicates that a controller’s selection contains multiple items.

public static Object multipleValuesMarker()

Availability
Available in Mac OS X v10.3 and later.

See Also
noSelectionMarker (page 475)
notApplicableMarker (page 475)

noSelectionMarker
Returns a marker which indicates that a controller’s selection is currently empty.

public static Object noSelectionMarker()

Availability
Available in Mac OS X v10.3 and later.

See Also
multipleValuesMarker (page 475)
notApplicableMarker (page 475)

notApplicableMarker
Returns a marker which indicates that a controller does not support selection.

public static Object notApplicableMarker()

Discussion
NSUserDefaultsController is an example of a controller that does not support the concept of selection.

Availability
Available in Mac OS X v10.3 and later.

Static Methods 475
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

NSControllerPlaceholders

See Also
multipleValuesMarker (page 475)
noSelectionMarker (page 475)

setDefaultPlaceholderForMarker
Sets placeholder as the default placeholder for the binding, when a key value coding compliant property
of an instance of classObject returns the value specified by marker, and no other placeholder has been
specified.

public static void setDefaultPlaceholderForMarker(Class classObject, Object
placeholder, Object marker, String binding)

Discussion
marker can be null or one of the controller markers returned by multipleValuesMarker (page 475),
noSelectionMarker (page 475), and notApplicableMarker (page 475).

Availability
Available in Mac OS X v10.3 and later.

See Also
defaultPlaceholderForMarker (page 474)

476 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

NSControllerPlaceholders

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Cursor Management

Overview

Instances of the NSCursor class manage the appearance of the cursor.

The following table shows and describes the system cursors, and indicates the static method for obtaining
them:

DescriptionCursor

The arrow cursor (arrowCursor (page 480))

The I-beam cursor for indicating insertion points (IBeamCursor (page 482))

The cross-hair cursor (crosshairCursor (page 481))

The closed-hand cursor (closedHandCursor (page 481))

The open-hand cursor (openHandCursor (page 482))

The pointing-hand cursor (pointingHandCursor (page 482))

The resize-left cursor (resizeLeftCursor (page 483))

The resize-right cursor (resizeRightCursor (page 483))

Overview 477
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

DescriptionCursor

The resize-left-and-right cursor (resizeLeftRightCursor (page 483))

The resize-up cursor (resizeUpCursor (page 483))

The resize-down cursor (resizeDownCursor (page 483))

The resize-up-and-down cursor (resizeUpDownCursor (page 484))

The disappearing item cursor (disappearingItemCursor (page 481))

In Mac OS X version 10.3 and later, cursor size is no longer limited to 16 by 16 pixels.

Tasks

Constructors

NSCursor (page 480)
Creates a new cursor, assigning it a null image and a hot spot of NSPoint.ZeroPoint.

Setting Cursor Attributes

image (page 485)
Returns the image for the receiver, or null if none exists.

hotSpot (page 484)
Returns the position of the hot spot, specified according to the cursor’s flipped coordinate system.

hide (page 481)
Makes the current cursor invisible.

unhide (page 484)
Negates an earlier call to hide (page 481) by showing the current cursor.

setHiddenUntilMouseMoves (page 484)

478 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

Controlling Which Cursor Is Current

popCursor (page 482)
Pops the current cursor off the top of the stack.

pop (page 486)
Sends a popCursor (page 482) message to the receiver’s class.

push (page 486)
Puts the receiver on top of the cursor stack and makes it the current cursor.

set (page 486)
Makes the receiver the current cursor.

mouseEntered (page 485)

setOnMouseEntered (page 487)

isSetOnMouseEntered (page 485)

mouseExited (page 486)

setOnMouseExited (page 487)

isSetOnMouseExited (page 485)

Retrieving Cursor Instances

currentCursor (page 481)
Returns the cursor currently displayed on the screen.

arrowCursor (page 480)
Returns the default cursor, a slanted arrow with its hot spot at the tip.

closedHandCursor (page 481)
Returns the closed-hand system cursor.

crosshairCursor (page 481)
Returns the cross-hair system cursor.

disappearingItemCursor (page 481)
Returns a cursor indicating that the current operation will result in a disappearing item (for example,
when dragging an item from the dock or a toolbar).

IBeamCursor (page 482)
Returns a cursor that looks like a capital I with a tiny crossbeam at its middle.

openHandCursor (page 482)
Returns the open-hand system cursor.

pointingHandCursor (page 482)
Returns the pointing-hand system cursor.

resizeDownCursor (page 483)

Tasks 479
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

resizeLeftCursor (page 483)

resizeLeftRightCursor (page 483)
Returns the resize-left-and-right system cursor.

resizeRightCursor (page 483)
Returns the resize-right system cursor.

resizeUpCursor (page 483)
Returns the resize-up system cursor.

resizeUpDownCursor (page 484)
Returns the resize-up-and-down system cursor.

Constructors

NSCursor
Creates a new cursor, assigning it a null image and a hot spot of NSPoint.ZeroPoint.

public NSCursor()

Creates a cursor, assigns it newImage, and sets its hot spot to aPoint.

public NSCursor(NSImage newImage, NSPoint aPoint)

Creates a new cursor, assigns it newImage, and sets its hot spot to aPoint.

public NSCursor(NSImage newImage, NSColor fg, NSColor bg, NSPoint aPoint)

Discussion
The foreground and background colors (fg and bg, respectively) are currently ignored.

Static Methods

arrowCursor
Returns the default cursor, a slanted arrow with its hot spot at the tip.

public static NSCursor arrowCursor()

Discussion
The arrow cursor is the one you’re used to seeing over buttons, scrollers, and many other objects in the
window system.

See Also
IBeamCursor (page 482)
currentCursor (page 481)
hotSpot (page 484)

480 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

closedHandCursor
Returns the closed-hand system cursor.

public static NSCursor closedHandCursor()

Availability
Available in Mac OS X v10.3 and later.

crosshairCursor
Returns the cross-hair system cursor.

public static NSCursor crosshairCursor()

Discussion
This cursor is used for situations when precise location is required (where the lines cross is the hot spot).

Availability
Available in Mac OS X v10.3 and later.

currentCursor
Returns the cursor currently displayed on the screen.

public static NSCursor currentCursor()

See Also
set (page 486)
push (page 486)
pop (page 486)
mouseEntered (page 485)
mouseExited (page 486)

disappearingItemCursor
Returns a cursor indicating that the current operation will result in a disappearing item (for example, when
dragging an item from the dock or a toolbar).

public static NSCursor disappearingItemCursor()

Availability
Available in Mac OS X v10.3 and later.

hide
Makes the current cursor invisible.

public static void hide()

Static Methods 481
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

Discussion
If another cursor becomes current, that cursor will be invisible, too. It will remain invisible until you invoke
the unhide (page 484) method.

hide (page 481) overrides setHiddenUntilMouseMoves (page 484).

IBeamCursor
Returns a cursor that looks like a capital I with a tiny crossbeam at its middle.

public static NSCursor IBeamCursor()

Discussion
This is the cursor that you’re used to seeing over editable or selectable text. The I-beam cursor’s default hot
spot is where the crossbeam intersects the I.

See Also
arrowCursor (page 480)
currentCursor (page 481)

openHandCursor
Returns the open-hand system cursor.

public static NSCursor openHandCursor()

Availability
Available in Mac OS X v10.3 and later.

pointingHandCursor
Returns the pointing-hand system cursor.

public static NSCursor pointingHandCursor()

Discussion
The tip of the pointing finger is the hot spot.

Availability
Available in Mac OS X v10.3 and later.

popCursor
Pops the current cursor off the top of the stack.

public static void popCursor()

Discussion
The new object on the top of the stack becomes the current cursor. If the current cursor is the only cursor
on the stack, this method does nothing.

482 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

See Also
push (page 486)

resizeDownCursor
public static NSCursor resizeDownCursor()

Discussion
Returns the resize-down system cursor.

Availability
Available in Mac OS X v10.3 and later.

resizeLeftCursor
public static NSCursor resizeLeftCursor()

Discussion
Returns the resize-left system cursor.

Availability
Available in Mac OS X v10.3 and later.

resizeLeftRightCursor
Returns the resize-left-and-right system cursor.

public static NSCursor resizeLeftRightCursor()

Availability
Available in Mac OS X v10.3 and later.

resizeRightCursor
Returns the resize-right system cursor.

public static NSCursor resizeRightCursor()

Availability
Available in Mac OS X v10.3 and later.

resizeUpCursor
Returns the resize-up system cursor.

public static NSCursor resizeUpCursor()

Availability
Available in Mac OS X v10.3 and later.

Static Methods 483
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

resizeUpDownCursor
Returns the resize-up-and-down system cursor.

public static NSCursor resizeUpDownCursor()

Availability
Available in Mac OS X v10.3 and later.

setHiddenUntilMouseMoves
public static void setHiddenUntilMouseMoves(boolean flag)

Discussion
If flag is true, hides the cursor. The cursor remains invisible until one of the following occurs:

 ■ The mouse moves.

 ■ You invoke the method again, with flag set to false.

Do not try to counter this method by invoking unhide (page 484). The results are undefined.

See Also
hide (page 481)

unhide
Negates an earlier call to hide (page 481) by showing the current cursor.

public static void unhide()

See Also
setHiddenUntilMouseMoves (page 484)
hide (page 481)

Instance Methods

hotSpot
Returns the position of the hot spot, specified according to the cursor’s flipped coordinate system.

public NSPoint hotSpot()

Discussion
For a more complete explanation, see the class description.

Note that an NSCursor object is immutable: you cannot change its hot spot after it’s created. Instead, use a
constructor to create a new cursor with the new settings.

484 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

image
Returns the image for the receiver, or null if none exists.

public NSImage image()

Discussion
Note that an NSCursor object is immutable: you cannot change its image after it’s created. Instead, use a
constructor to create a new cursor with the new settings.

isSetOnMouseEntered
public boolean isSetOnMouseEntered()

Discussion
Returns true if the receiver will become current when it receives a mouseEntered (page 485) message;
otherwise, returns false.

To receive such a message, the receiver must first be assigned a cursor rectangle. This assignment can be
made using NSView’s addCursorRect (page 1739) method. For a more complete explanation, see the class
description.

See Also
setOnMouseEntered (page 487)
isSetOnMouseExited (page 485)

isSetOnMouseExited
public boolean isSetOnMouseExited()

Discussion
Returns true if the receiver becomes current when it receives a mouseExited (page 486) message; otherwise,
returns false.

To receive such a message, the receiver must first be assigned a cursor rectangle. This assignment can be
made using NSView’s addCursorRect (page 1739) method. For a more complete explanation, see the class
description.

See Also
setOnMouseExited (page 487)

mouseEntered
public void mouseEntered(NSEvent anEvent)

Discussion
This message is automatically sent to the receiver when the cursor enters a tracking rectangle owned by the
receiver, generating anEvent. If used after setOnMouseEntered (page 487) has been called with an argument
of true, mouseEntered can make the receiver the current cursor.

Instance Methods 485
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

In your programs, you won’t invoke mouseEntered explicitly. It’s only included in the class interface so you
can override it.

For a more complete explanation, see “Handling Tracking-Rectangle and Cursor-Update Events in Views”.

See Also
isSetOnMouseEntered (page 485)
mouseExited (page 486)

mouseExited
public void mouseExited(NSEvent anEvent)

Discussion
This message is automatically sent to the receiver when the cursor exits a tracking rectangle owned by the
receiver, generating anEvent. Like mouseEntered (page 485), it is part of the class interface only so you can
override it.

For a more complete explanation, see “Handling Tracking-Rectangle and Cursor-Update Events in Views”.

See Also
setOnMouseExited (page 487)
isSetOnMouseExited (page 485)

pop
Sends a popCursor (page 482) message to the receiver’s class.

public void pop()

See Also
push (page 486)
pop (page 486)

push
Puts the receiver on top of the cursor stack and makes it the current cursor.

public void push()

See Also
pop (page 486)
pop (page 486)

set
Makes the receiver the current cursor.

public void set()

486 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

See Also
currentCursor (page 481)

setOnMouseEntered
public void setOnMouseEntered(boolean flag)

Discussion
If flag is true, the receiver accepts future mouseEntered (page 485) event messages; otherwise it ignores
them. Accepting mouseEntered (page 485) event messages allows the cursor to be made the current cursor
when the cursor enters a view’s cursor rectangle.

See Also
mouseEntered (page 485)

setOnMouseExited
public void setOnMouseExited(boolean flag)

Discussion
If flag is true, the receiver accepts future mouseExited (page 486) event messages; otherwise it ignores
them. Accepting mouseExited (page 486) event messages allows the cursor to be made the current cursor
when the cursor exits a view’s cursor rectangle.

Instance Methods 487
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

488 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

NSCursor

Inherits from NSImageRep : NSObject

Implements NSCoding (NSImageRep)

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

An NSCustomImageRep is an object that uses a delegated method to render an image. When called upon
to produce the image, it sends a message to its delegate to have the method performed.

Tasks

Constructors

NSCustomImageRep (page 489)
Throws an exception. Use the other constructor instead.

Identifying the Object

delegate (page 490)
Returns the delegate object that renders the image for the receiver.

drawMethod (page 490)
Returns the associated draw method selector.

Constructors

NSCustomImageRep
Throws an exception. Use the other constructor instead.

public NSCustomImageRep()

Overview 489
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

NSCustomImageRep

Creates a new NSCustomImageRep instance, so that it delegates responsibility for rendering the image to
anObject.

public NSCustomImageRep(NSSelector aMethod, Object anObject)

Discussion
When the NSCustomImageRep receives a draw message, it will in turn send a message to anObject to
perform aMethod. aMethod should take only one argument, the NSCustomImageRep. It should draw the
image at location (0.0, 0.0) in the current coordinate system.

Instance Methods

delegate
Returns the delegate object that renders the image for the receiver.

public Object delegate()

drawMethod
Returns the associated draw method selector.

public NSSelector drawMethod()

490 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

NSCustomImageRep

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Overview

NSDatePicker is a subclass of NSControl that provides for visually displaying and editing an NSDate instance.

NSDatePicker uses an NSDatePickerCell to implement much of the control’s functionality. NSDatePicker
provides cover methods for most of NSDatePickerCell methods, which invoke the corresponding cell method.

Tasks

Constructors

NSDatePicker (page 493)

Appearance

isBezeled (page 495)

setBezeled (page 496)
Specifies whether the receiver has a bezeled border.

isBordered (page 495)

setBordered (page 497)
Specifies whether the receiver draws a plain border.

backgroundColor (page 493)
Returns the background color of the receiver.

setBackgroundColor (page 496)
Sets the receiver’s background color to color.

Overview 491
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

drawsBackground (page 495)

setDrawsBackground (page 498)

textColor (page 500)
Returns the text color of the receiver.

setTextColor (page 499)
Sets the text color of the receiver to color.

datePickerStyle (page 494)
Returns the receiver’s date picker style.

setDatePickerStyle (page 497)
Sets the receiver’s date picker style to newStyle.

Range Mode Control

datePickerMode (page 494)
Returns the receiver’s date picker mode.

setDatePickerMode (page 497)
Sets the receiver’s date picker mode to newMode.

timeZone (page 500)
Returns the receiver’s time zone.

setTimeZone (page 500)
Sets the receiver’s time zone to newTimeZone.

Object Value Access

dateValue (page 494)
Returns the receiver’s date.

setDateValue (page 498)
Sets the date of the receiver to newStartDate.

timeInterval (page 500)
Returns the time interval that represents the date range.

setTimeInterval (page 499)
Sets the time interval of the date range to newTimeInterval.

datePickerElements (page 494)
Returns the receiver’s date picker elements flags.

setDatePickerElements (page 497)
Sets the date picker elements displayed by the receiver to those specified by elementFlags.

Constraints on Displayable/selectable Range

minDate (page 496)
Returns the minimum date value that the receiver allows as input.

492 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

setMinDate (page 499)
Sets the minimum date allowed as input by the receiver to date.

maxDate (page 496)
Returns the maximum date value that the receiver allows as input.

setMaxDate (page 498)
Sets the maximum date allowed as input by the receiver to date.

Getting and Setting the Delegate

delegate (page 495)
Returns the receiver’s delegate.

setDelegate (page 498)
Sets the receiver’s delegate to anObject.

Constructors

NSDatePicker
NSDatePicker()

Discussion
Creates an NSDatePicker object with a zero-sized frame rectangle.

public NSDatePicker(NSRect frameRect)

Discussion
Creates an NSDatePicker object with frameRect as its frame rectangle.

Instance Methods

backgroundColor
Returns the background color of the receiver.

public native NSColor backgroundColor()

Availability
Available in Mac OS X v10.4 and later.

See Also
setBackgroundColor (page 496)

Constructors 493
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

datePickerElements
Returns the receiver’s date picker elements flags.

public int datePickerElements()

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
setDatePickerElements (page 497)

datePickerMode
Returns the receiver’s date picker mode.

public int datePickerMode()

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
setDatePickerMode (page 497)

datePickerStyle
Returns the receiver’s date picker style.

public int datePickerStyle()

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerStyle (page 494)

dateValue
Returns the receiver’s date.

public NSDate dateValue()

Availability
Available in Mac OS X v10.4 and later.

494 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

See Also
setDateValue (page 498)

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 498)

drawsBackground
public boolean drawsBackground()

Discussion
Returns whether the receiver draws the background.

Availability
Available in Mac OS X v10.4 and later.

See Also
setDrawsBackground (page 498)

isBezeled
public boolean isBezeled()

Discussion
Returns whether the receiver has a bezeled border.

Availability
Available in Mac OS X v10.4 and later.

See Also
setBezeled (page 496)

isBordered
public boolean isBordered()

Discussion
Returns whether the receiver has a plain border.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 495
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

See Also
setBordered (page 497)

maxDate
Returns the maximum date value that the receiver allows as input.

public NSDate maxDate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMaxDate (page 498)

minDate
Returns the minimum date value that the receiver allows as input.

public NSDate minDate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMinDate (page 499)

setBackgroundColor
Sets the receiver’s background color to color.

public void setBackgroundColor(NSColor color)

Availability
Available in Mac OS X v10.4 and later.

setBezeled
Specifies whether the receiver has a bezeled border.

public void setBezeled(boolean flag)

Discussion
The flag parameter specifies the Boolean value.

Availability
Available in Mac OS X v10.4 and later.

See Also
isBezeled (page 495)

496 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

setBordered
Specifies whether the receiver draws a plain border.

public void setBordered(boolean flag)

Discussion
The flag parameter specifies the Boolean value.

Availability
Available in Mac OS X v10.4 and later.

See Also
isBordered (page 495)

setDatePickerElements
Sets the date picker elements displayed by the receiver to those specified by elementFlags.

public void setDatePickerElements(int elementFlags)

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerElements (page 494)

setDatePickerMode
Sets the receiver’s date picker mode to newMode.

public void setDatePickerMode(int newMode)

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerMode (page 494)

setDatePickerStyle
Sets the receiver’s date picker style to newStyle.

public void setDatePickerStyle(int newStyle)

Instance Methods 497
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerStyle (page 494)

setDateValue
Sets the date of the receiver to newStartDate.

public void setDateValue(NSDate newStartDate)

Availability
Available in Mac OS X v10.4 and later.

See Also
dateValue (page 494)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 495)

setDrawsBackground
public void setDrawsBackground(boolean flag)

Discussion
Sets whether the receiver draws the background.

Availability
Available in Mac OS X v10.4 and later.

See Also
drawsBackground (page 495)

setMaxDate
Sets the maximum date allowed as input by the receiver to date.

498 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

public void setMaxDate(NSDate date)

Discussion
Passing null for date allows any date as the maximum value.

Availability
Available in Mac OS X v10.4 and later.

See Also
maxDate (page 496)

setMinDate
Sets the minimum date allowed as input by the receiver to date.

public void setMinDate(NSDate date)

Discussion
Passing null for date allows any date as the minimum value.

Availability
Available in Mac OS X v10.4 and later.

See Also
minDate (page 496)

setTextColor
Sets the text color of the receiver to color.

public void setTextColor(NSColor color)

Availability
Available in Mac OS X v10.4 and later.

See Also
textColor (page 500)

setTimeInterval
Sets the time interval of the date range to newTimeInterval.

public void setTimeInterval(double newTimeInterval)

Discussion
The time interval is only applicable when the receiver is in NSDateRangeMode.

Availability
Available in Mac OS X v10.4 and later.

See Also
timeInterval (page 500)

Instance Methods 499
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

setTimeZone
Sets the receiver’s time zone to newTimeZone.

public void setTimeZone(NSTimeZone newTimeZone)

Availability
Available in Mac OS X v10.4 and later.

See Also
timeZone (page 500)

textColor
Returns the text color of the receiver.

public NSColor textColor()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTextColor (page 499)

timeInterval
Returns the time interval that represents the date range.

public double timeInterval()

Discussion
The date range begins at the date returned by dateValue (page 494). This method returns 0 when the
receiver is not in the NSDateRangeMode mode.

Currently this method always returns 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
setTimeInterval (page 499)

timeZone
Returns the receiver’s time zone.

public NSTimeZone timeZone()

Availability
Available in Mac OS X v10.4 and later.

500 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

See Also
setTimeZone (page 500)

Instance Methods 501
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

502 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDatePicker

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Overview

An NSDatePickerCell controls the behavior of an NSDatePicker control, or of a single date picker cell in a
matrix.

Tasks

Constructors

NSDatePickerCell (page 505)
Creates an empty NSDatePickerCell.

Appearance

backgroundColor (page 505)
Returns the background color of the receiver.

setBackgroundColor (page 507)
Sets the receiver’s background color to color.

textColor (page 510)
Returns the text color of the receiver.

setTextColor (page 509)
Sets the text color of the receiver to color.

datePickerStyle (page 506)
Returns the receiver’s date picker style.

setDatePickerStyle (page 508)
Sets the receiver’s date picker style to newTyle.

Overview 503
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

Range Mode Control

datePickerMode (page 506)
Returns the receiver’s date picker mode.

setDatePickerMode (page 508)
Sets the receiver’s date picker mode to newMode.

Object Value Access

dateValue (page 506)
Returns the receiver’s date.

setDateValue (page 508)
Sets the date of the receiver to newStartDate.

timeInterval (page 510)
Returns the time interval that represents the date range.

setTimeInterval (page 510)
Sets the time interval of the date range to newTimeInterval.

timeZone (page 511)
Returns the receiver’s time zone.

setTimeZone (page 510)
Sets the receiver’s time zone to newTimeZone.

datePickerElements (page 505)
Returns the receiver’s date picker elements flags.

setDatePickerElements (page 507)
Sets the date picker elements displayed by the receiver to those specified by elementFlags.

Constraints on the Minimum and Maximum Date Range

minDate (page 507)
Returns the minimum date value that the receiver allows as input.

setMinDate (page 509)
Sets the minimum date allowed as input by the receiver to date.

maxDate (page 507)
Returns the maximum date value that the receiver allows as input.

setMaxDate (page 509)
Sets the maximum date allowed as input by the receiver to date.

Getting and Setting the Delegate

delegate (page 507)
Returns the receiver’s delegate.

setDelegate (page 509)
Sets the receivers delegate to anObject.

504 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

Validation

datePickerCellValidateProposedDateValue (page 512) delegate method
The delegate receives this message each time the user attempts to change the receiver‘s value,
allowing the delegate the opportunity to override the change.

Constructors

NSDatePickerCell
Creates an empty NSDatePickerCell.

public NSDatePickerCell()

Creates an NSDatePickerCell initialized with aString.

public NSDatePickerCell(String aString)

Creates an NSDatePickerCell initialized with anImage.

public NSDatePickerCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

backgroundColor
Returns the background color of the receiver.

public NSColor backgroundColor()

Availability
Available in Mac OS X v10.4 and later.

See Also
setBackgroundColor (page 507)

datePickerElements
Returns the receiver’s date picker elements flags.

public int datePickerElements()

Discussion
See “Constants” (page 511) for a description of the possible values.

Constructors 505
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

Availability
Available in Mac OS X v10.4 and later.

See Also
setDatePickerElements (page 507)

datePickerMode
Returns the receiver’s date picker mode.

public int datePickerMode()

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
setDatePickerMode (page 508)

datePickerStyle
Returns the receiver’s date picker style.

public int datePickerStyle()

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
setDatePickerStyle (page 508)

dateValue
Returns the receiver’s date.

public NSDate dateValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDateValue (page 508)

506 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 509)

maxDate
Returns the maximum date value that the receiver allows as input.

public NSDate maxDate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMaxDate (page 509)

minDate
Returns the minimum date value that the receiver allows as input.

public NSDate minDate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMinDate (page 509)

setBackgroundColor
Sets the receiver’s background color to color.

public void setBackgroundColor(NSColor color)

Availability
Available in Mac OS X v10.4 and later.

See Also
backgroundColor (page 505)

setDatePickerElements
Sets the date picker elements displayed by the receiver to those specified by elementFlags.

Instance Methods 507
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

public void setDatePickerElements(int elementFlags)

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerElements (page 505)

setDatePickerMode
Sets the receiver’s date picker mode to newMode.

public void setDatePickerMode(int newMode)

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerMode (page 506)

setDatePickerStyle
Sets the receiver’s date picker style to newTyle.

public void setDatePickerStyle(int newStyle)

Discussion
See “Constants” (page 511) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
datePickerStyle (page 506)

setDateValue
Sets the date of the receiver to newStartDate.

public void setDateValue(NSDate newStartDate)

Availability
Available in Mac OS X v10.4 and later.

See Also
dateValue (page 506)

508 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

setDelegate
Sets the receivers delegate to anObject.

public void setDelegate(Object anObject)

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 507)

setMaxDate
Sets the maximum date allowed as input by the receiver to date.

public void setMaxDate(NSDate date)

Discussion
Passing null for date allows any date as the maximum value.

Availability
Available in Mac OS X v10.4 and later.

See Also
maxDate (page 507)

setMinDate
Sets the minimum date allowed as input by the receiver to date.

public void setMinDate(NSDate date)

Discussion
Passing null for date allows any date as the minimum value.

Availability
Available in Mac OS X v10.4 and later.

See Also
minDate (page 507)

setTextColor
Sets the text color of the receiver to color.

public void setTextColor(NSColor color)

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 509
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

See Also
textColor (page 510)

setTimeInterval
Sets the time interval of the date range to newTimeInterval.

public void setTimeInterval(double newTimeInterval)

Discussion
The time interval is only applicable when the receiver is in NSDateRangeMode.

Availability
Available in Mac OS X v10.4 and later.

See Also
timeInterval (page 510)

setTimeZone
Sets the receiver’s time zone to newTimeZone.

public void setTimeZone(NSTimeZone newTimeZone)

Availability
Available in Mac OS X v10.4 and later.

See Also
timeZone (page 511)

textColor
Returns the text color of the receiver.

public NSColor textColor()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTextColor (page 509)

timeInterval
Returns the time interval that represents the date range.

public double timeInterval()

510 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

Discussion
The date range begins at the date returned by dateValue (page 506). This method returns 0 when the
receiver is not in the NSDateRangeMode mode.

Currently this method always returns 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
setTimeInterval (page 510)

timeZone
Returns the receiver’s time zone.

public NSTimeZone timeZone()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTimeZone (page 510)

Constants

The NSDatePickerStyle constants define the visual appearance of the NSDatePickerCell. These values are used
by datePickerStyle (page 506) and setDatePickerStyle (page 508):

DescriptionConstant

Provide a text field and stepper style interface. (Available on
Mac OS X v10.4 and later.)

TextFieldAndStepper-
DatePickerStyle

Provide a visual clock and calendar style interface. (Available
on Mac OS X v10.4 and later.)

ClockAndCalendarDatePickerStyle

The NSDatePickerMode constants define whether the control provides a single date, or a range of dates.
These values are used by datePickerMode (page 506) and setDatePickerMode (page 508). Currently only
NSSingleDateMode is implemented.

DescriptionConstant

Allow selection of a single date. (Available in Mac OS X v10.4 and later.)SingleDateMode

Allow selection of a range of dates. (Available in Mac OS X v10.4 and later.)RangeDateMode

Constants 511
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

The NSDatePickerElementFlags allow you to specify the date and time elements that the NSDatePickerCell
can edit by combining these constants using the C bitwise OR operator. These values are used by
datePickerElements (page 505) and setDatePickerElements (page 507):

DescriptionConstant

Display and allow editing of the hour and minute elements of the
date. (Available in Mac OS X v10.4 and later.)

HourMinuteDatePicker-
ElementFlag

Display and allow editing of the hour, minute and second elements
of the date. (Available in Mac OS X v10.4 and later.)

HourMinuteSecondDate-
PickerElementFlag

Display and allow editing of the time zone. (Available in Mac OS
X v10.4 and later.)

TimeZoneDatePickerElementFlag

Display and allow editing of the year and month elements of the
date. (Available in Mac OS X v10.4 and later.)

YearMonthDatePickerElementFlag

Display and allow editing of the year, month and day elements of
the date. (Available in Mac OS X v10.4 and later.)

YearMonthDayDate-
PickerElementFlag

Display and allow editing of the era of the date, if applicable.
(Available in Mac OS X v10.4 and later.)

EraDatePickerElementFlag

Delegate Methods

datePickerCellValidateProposedDateValue
The delegate receives this message each time the user attempts to change the receiver‘s value, allowing the
delegate the opportunity to override the change.

public abstract NSDate datePickerCellValidateProposedDateValue(NSDatePickerCell
aDatePickerCell, NSDate proposedDateValue)

Discussion
The proposed new date is passed by-reference in proposedDateValue. The delegate may change the value
before returning. When returning a new proposedDateValue, the NSDate instance should be autoreleased,
and the proposedDateValue should not be released by the delegate.

The proposedDateValue is guaranteed to lie between the dates returned by minDate (page 507) and
maxDate (page 507). If you modify this value, you should ensure that the new value is within the appropriate
range.

Availability
Available in Mac OS X v10.4 and later.

512 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDatePickerCell

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Document-Based Applications Overview

Class at a Glance

NSDocument is an abstract class that defines the interface for documents, objects that can internally represent
data displayed in windows and that can read data from and write data to files. Documents create and manage
one or more window controllers and are in turn managed by a document controller. Documents respond to
first-responder action messages to save, revert, and print their data.

Principal Attributes

 ■ Window controllers

 ■ Filenames

 ■ Document types

 ■ Print information

Commonly Used Methods

dataOfType (page 525)
Returns the document’s data in a specified type.

readFromDataOfType (page 537)
Sets the contents of this document by reading from data of a specified type.

writeToFile (page 552)
Writes the document’s data to a file.

writeToURLOfType (page 553)
Writes the document’s data to a URL.

readFromURLOfType (page 538)
Reads the document’s data from a file.

windowNibName (page 551)
Returns the name of the document’s sole nib file (resulting in the creation of a window controller for
the window in that file).

Class at a Glance 513
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

makeWindowControllers (page 533)
Creates and returns the window controllers used to manage document windows.

Overview

NSDocument is an abstract class that defines the interface for documents. In a functional sense, a document
is a repeatable container for a unique body of information identified by a name under which it is stored. In
the context of the Application Kit, a document is an instance of an NSDocument subclass that knows how
to represent internally, in one or more formats, the persistent data displayed in windows. A document can
read that data from files and write it to files. It is also the first-responder target for many menu commands
related to documents, such as Save Document, Revert Document, and Print Document. (When going up the
responder chain, the Application Kit queries a window’s NSDocument, if it exists, just after it queries the
window delegate, if that is different from the NSDocument.) A document manages its window’s edited status
and is set up to perform undo and redo operations. When a window is closing, the document is asked before
the window delegate to approve the closing.

NSDocument is one of the triad of Application Kit classes that establish an architectural basis for
document-based applications (the others being NSDocumentController and NSWindowController).

To create a useful NSDocument subclass, you must override some primitive methods and might want to
override others. The NSDocument class itself knows how to handle document data as undifferentiated
“lumps”; although it understands that these lumps are typed, it knows nothing about particular types. In
their overrides of the data-based primitive methods, subclasses must add the knowledge of particular types
and how data of the document’s native type is structured internally and represented in document windows.
Subclasses are also responsible for the creation of the window controllers that manage document windows
and for the implementation of undo and redo. NSDocument takes care of much of the rest, including running
Open and Save panels and generally managing the state of the document. See “Creating a Subclass of
NSDocument” for more on creating subclasses of NSDocument, particularly the list of primitive methods that
subclasses must override and those that may be overridden.

Writing of HFS Creator and File Type Codes

The fileAttributesToWriteToFile (page 526) method can be overridden to specify that a creator code
and/or file type code should be written to a file as it is being saved. See NSPathUtilities for descriptions of
the new FileHFSCreatorCode and FileHFSTypeCode file attributes. NSDocument’s implementation of
fileAttributesToWriteToFile returns zeroed-out creator and file type codes, effectively excluding
creator code and file type code from the attribute preservation described infileAttributesToWriteToFile.

NSDocument Saving Behavior

NSDocument implements document saving in a way that preserves, when possible, various attributes of
each document, including:

 ■ Creation date

 ■ Permissions/privileges

 ■ Location of the document’s icon in its parent folder’s Icon View Finder window

514 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

 ■ Value of the document’s Show Extension setting

Care is also taken to save documents in a way that does not break any user-created aliases that may point
to documents. As a result, some methods in any class of NSDocument may be invoked with parameters that
do not have the same meaning as they did in early releases of Mac OS X. It is important that overrides of
writeToFile (page 552) make no assumptions about the file paths passed as parameters, including:

 ■ The location to which the file is being written. This location might be a hidden temporary directory.

 ■ The name of the file being written. It is possible that this file has no obvious relation to the document
name.

 ■ The relation of any file being passed, including the original file, to the return value of fileName (page
527).

Tasks

Constructors

NSDocument (page 521)
Creates an empty NSDocument object.

Initializing an NSDocument

initWithContentsOfURLOfType (page 531)
Initializes a document located by a URL of a specified type.

initForURLWithContentsOfURLOfType (page 530)
Initializes a document located by a URL.

initWithType (page 531)
Initializes a document of a specified type, and returns it if successful.

Loading and Representing Document Data

dataOfType (page 525)
Creates and returns a data object that contains the contents of the document, formatted to a specified
type.

fileWrapperOfType (page 529)
Creates and returns a file wrapper that contains the contents of the document.

readFromDataOfType (page 537)
Sets the contents of this document by reading from data of a specified type and returns true if
successful.

Tasks 515
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Creating and Managing Window Controllers

makeWindowControllers (page 533)
Subclasses may override this method to create the initial window controller(s) for the document.

windowNibName (page 551)
Overridden by subclasses to return the name of the document’s sole nib file.

windowControllerDidLoadNib (page 550)
Sent after windowController loads a nib file if the receiver is the nib file's owner.

windowControllerWillLoadNib (page 550)
Sent before windowController loads a nib file if the receiver is the nib file's owner.

windowControllers (page 550)
Returns the receiver’s current window controllers.

addWindowController (page 523)
Adds the window controller aController to the list of window controllers associated with the
receiver.

removeWindowController (page 538)
Removes windowController from the receiver.

Managing Document Windows

showWindows (page 548)
Displays all of the document’s windows, bringing them to the front and making them main or key as
necessary.

displayName (page 526)
Returns the name of the receiver as displayed in the title bars of the document’s windows and in alert
dialogs related to the document.

setWindow (page 547)
Sets the window Interface Builder outlet of this class.

windowForSheet (page 551)
Returns the most appropriate window, of the windows associated with the receiver, to use as the
parent window of a document-modal sheet.

Reading from and Writing to Files

readFromFileWrapperOfType (page 537)
Set the contents of this document by reading from a file wrapper of a specified type, and return true
if successful.

writeToFile (page 552)
Writes document data of type docType to the file fileName, returning whether the operation was
successful.

fileModificationDate (page 527)
Returns the last known modification date of the document's on-disk representation.

setFileModificationDate (page 544)
Sets the last known modification date of the document's on-disk representation tomodificationDate.

516 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

shouldRunSavePanelWithAccessoryView (page 548)
Returns true by default; as a result, when NSDocument displays the Save panel, it includes an accessory
view containing a pop-up list of supported writable document types.

keepBackupFile (page 532)
Returns whether the receiver should keep the backup files created before document data is written
to a file (false by default).

Reading from and Writing to URLs

readFromURLOfType (page 538)
Sets the contents of this document by reading from a file or file package located by a URL, of a specified
type, and returns true if successful.

writeToURLOfType (page 553)
Writes the contents of the file to a file or file package located by a URL, formatted to a specified type,
and returns true if successful.

writeSafelyToURLOfType (page 552)
Writes the contents of the document to a file or file package.

setFileURL (page 545)
Sets the location of the document's on-disk representation.

fileURL (page 529)
Returns the location of the document's on-disk representation.

fileAttributesToWriteToURLOfType (page 526)
As a file is being saved, returns the attributes that should be written to a file or file package located
by a URL, formatted to a specified type, for a particular kind of save operation.

saveToURLOfType (page 543)
Saves the contents of the document to a file or file package located by a URL, formatted to a specified
type, for a particular kind of save operation, and returns true if successful.

Autosaving

hasUnautosavedChanges (page 530)
Return true if the document has changes that have not been autosaved, false otherwise, as
determined by the history of previous invocations of updateChangeCount (page 549).

autosaveDocument (page 523)
Autosaves the document’s contents at an appropriate location.

autosavingFileType (page 524)
Returns the document type that should be used for an autosave operation.

setAutosavedContentsFileURL (page 544)
Sets the location of the most recently autosaved document contents.

autosavedContentsFileURL (page 523)
Returns the location of the most recently autosaved document contents.

Tasks 517
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Managing Document Status

isDocumentEdited (page 531)
Returns true if the receiver has been edited since it was last saved or if the document is new; otherwise,
returns false.

updateChangeCount (page 549)
Updates the receiver’s change count according to changeType.

fileNameExtensionWasHiddenInLastRunSavePanel (page 528)
Returns true if a Save panel has been presented by this document, and the user chose to hide the
name extension of the file that was selected in that Save panel.

Responding to User Actions

prepareSavePanel (page 533)
Invoked by runModalSavePanel (page 541) to do any customization of the Save panel savePanel.

printDocument (page 535)
Prints the receiver in response to the user choosing the Print menu command.

runPageLayout (page 541)
The action method invoked in the receiver as first responder when the user chooses the Page Setup
menu command.

revertDocumentToSaved (page 539)
The action of the File menu item Revert to Saved in a document-based application.

saveDocument (page 542)
The action method invoked in the receiver as first responder when the user chooses the Save menu
command.

saveDocumentAs (page 542)
The action method invoked in the receiver as first responder when the user chooses the Save As menu
command.

saveDocumentTo (page 543)
The action method invoked in the receiver as first responder when the user chooses the Save To menu
command.

Closing Documents

close (page 525)
Closes all windows owned by the receiver and removes the receiver from the list of documents
maintained by the document controller, which consequently releases it.

Reverting Documents

revertToContentsOfURLOfType (page 539)
Discards all unsaved document modifications and replaces the document's contents by reading a file
or file package located by a URL of a specified type and returns true if successful.

518 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Printing Documents

printInfo (page 536)
Returns the receiver’s customized NSPrintInfo object or the default NSPrintInfo instance.

setPrintInfo (page 546)
Sets the receiver’s NSPrintInfo object to printInfo; this object is used in laying out the document
for printing.

preparePageLayout (page 533)
Invoked by runModalPageLayoutWithPrintInfo (page 540) and runModalPageLayout (page
540) to do any customization of the Page Layout panel pageLayout, such as adding an accessory
view.

runModalPageLayout (page 540)
Runs the modal page layout panel with the receiver’s printing information object (printInfo).

runModalPrintOperation (page 541)
Runs a print operation printOperation modally.

shouldChangePrintInfo (page 547)
Returns whether the receiver should allow changes to the default NSPrintInfo object newPrintInfo
used in printing the document.

printDocumentWithSettings (page 535)
Prints the document.

printOperationWithSettings (page 536)
Creates a print operation and returns it if successful.

Handling Errors

lastError (page 532)
Returns the NSError object that was most recently set.

presentErrorModalForWindow (page 534)
Presents an error alert to the user as a modal panel.

presentError (page 534)
Presents an error alert to the user as a modal panel.

setLastError (page 546)
Sets the NSError object that will be returned by the lastError member function.

willPresentError (page 549)
Called when the receiver is about to present an error. Returns the error that should actually be
presented.

Working with Undo Manager

hasUndoManager (page 530)
Returns whether the receiver owns or should own an NSUndoManager.

setHasUndoManager (page 546)
Sets whether the receiver has its own NSUndoManager.

Tasks 519
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

setUndoManager (page 547)
Sets the undo manager owned by the receiver to undoManager and releases any undo manager
currently owned by the receiver.

undoManager (page 548)
Returns the NSUndoManager used by the receiver or null if the receiver should not own one.

Managing File Types

setFileType (page 545)
Sets the document type under which the file is saved to docType.

fileType (page 528)
Returns the document type under which the receiver is saved.

fileTypeFromLastRunSavePanel (page 528)
Returns the file type that was last selected in the Save panel.

isNativeType (page 522)
Returns whether document data of type aType is a native type—one the receiver can both read and
write.

readableTypes (page 522)
Returns the types of data the receiver can read natively and any types filterable to that native type.

writableTypes (page 522)
Returns the types of data the receiver can write natively and any types filterable to that native type.

writableTypesForSaveOperation (page 551)
Returns the names of the types to which this document can be saved for a specified kind of save
operation.

Managing Menu Commands

validateMenuItem (page 549)
Validates the Revert menu item and items selected from the Save panel’s pop-up list of writable
document types items.

Deprecated Methods

canCloseDocument (page 524)
This method is no longer supported.

dataRepresentationOfType (page 525)

fileAttributesToWriteToFile (page 526)

fileName (page 527)

fileNameFromRunningSavePanelForSaveOperation (page 528)

520 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

fileWrapperRepresentationOfType (page 529)

loadDataRepresentation (page 532)
This method has been deprecated.

loadFileWrapperRepresentation (page 533)
This method has been deprecated.

printShowingPrintPanel (page 536)
This method has been deprecated.

readFromFile (page 537)
This method has been deprecated.

readFromURL (page 538)
This method has been deprecated.

revertToSavedFromFile (page 539)
This method has been deprecated.

revertToSavedFromURL (page 540)
This method has been deprecated.

runModalSavePanel (page 541)
Runs the modal Save panel savePanel with accessory view accessoryView and returns the result
constant (indicating the button clicked by the user).

runModalPageLayoutWithPrintInfo (page 540)
This method has been deprecated. Use runModalPageLayout (page 540) instead.

setFileName (page 545)
This method has been deprecated.

saveToFile (page 543)
This method has been deprecated.

shouldCloseWindowController (page 547)
This method variant is no longer supported. Instead use the other variant of this method.

writeToURL (page 553)

writeWithBackupToFile (page 554)
This method has been deprecated.

Constructors

NSDocument
Creates an empty NSDocument object.

public NSDocument()

Creates an NSDocument object of document type docType containing data stored in the file fileName.

public NSDocument(String fileName, String docType)

Constructors 521
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Discussion
If the file cannot be opened, displays an alert dialog informing the user and then returns null. In opening
the file, invokes the readFromFile (page 537) method. If the document successfully opens the file, it calls
setFileName and setFileType (page 545) with fileName and docType, respectively, as arguments.

Creates an NSDocument of document type docType containing data stored at aURL.

public NSDocument(java.net.URL aURL, String docType)

Discussion
If the location cannot be opened, displays an alert dialog informing the user and then returns null. In
opening the location, invokes the readFromURL (page 538) method. If the document successfully opens the
file, it calls setFileName and setFileType (page 545) with fileName and docType, respectively, as arguments.

Static Methods

isNativeType
Returns whether document data of type aType is a native type—one the receiver can both read and write.

public static boolean isNativeType(String aType)

See Also
readableTypes (page 522)
writableTypes (page 522)

readableTypes
Returns the types of data the receiver can read natively and any types filterable to that native type.

public static NSArray readableTypes()

See Also
isNativeType (page 522)
writableTypes (page 522)

writableTypes
Returns the types of data the receiver can write natively and any types filterable to that native type.

public static NSArray writableTypes()

See Also
isNativeType (page 522)
readableTypes (page 522)

522 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Instance Methods

addWindowController
Adds the window controller aController to the list of window controllers associated with the receiver.

public void addWindowController(NSWindowController aController)

Discussion
An NSDocument uses this list when it displays all document windows, sets window edited status upon an
undo or redo operation, and modifies window titles. The method also sets the document outlet of the window
controller to this if it is not already set. If you create window controllers by overriding windowNibName (page
551), this method is invoked automatically. If you create window controllers inmakeWindowControllers (page
533) or in any other context, such as in response to a user event, you should invoke this method for each
created window controller. To remove a window controller from the list of active controllers, send it
NSWindowController’s close (page 1891) message.

See Also
setDocument (page 1892) (NSWindowController)

autosavedContentsFileURL
Returns the location of the most recently autosaved document contents.

public URL autosavedContentsFileURL()

Discussion
The default implementation of this method just returns whatever was stored by a previous invocation of the
default implementation of setAutosavedContentsFileURL (page 544).

Availability
Available in Mac OS X v10.4 and later.

See Also
setAutosavedContentsFileURL (page 544)

autosaveDocument
Autosaves the document’s contents at an appropriate location.

public void autosaveDocument(Object delegate, NSSelector didAutosaveSelector, Object
contextInfo)

Discussion
After autosaving, sends the message selected by didAutosaveSelector to the delegate, with contextInfo
as the last argument. The method selected by didAutosaveSelector must have the same signature as:

public void documentDidAutosave (NSDocument document, boolean
didAutosaveSuccessfully, Object contextInfo)

Instance Methods 523
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

If an error occurs while autosaving, the method reports it to the user before sending the delegate a
succeeded:NO message.

Availability
Available in Mac OS X v10.4 and later.

See Also
autosavedContentsFileURL (page 523)

autosavingFileType
Returns the document type that should be used for an autosave operation.

public String autosavingFileType()

Discussion
The default implementation just returns [self fileType]. You can override this method and return null
in your override to completely disable autosaving of individual documents. You can also override it if your
application defines a document type that is specifically designed for autosaving, for example, one that
efficiently represents document content changes instead of complete document contents.

Availability
Available in Mac OS X v10.4 and later.

canCloseDocument
This method is no longer supported.

public boolean canCloseDocument()

Discussion
Instead use the three parameter version of this method.

If the receiver is not dirty, this method will immediately call the shouldCloseSelector callback on delegate
with true.

public void canCloseDocument(Object delegate, NSSelector shouldCloseSelector, Object
contextInfo)

Discussion
If the receiver is dirty, an alert will be presented giving the user a chance to save, not save, or cancel. If the
user chooses to save, this method will save the document. If the save completes successfully, this method
will call the callback with true. If the save is canceled or otherwise unsuccessful, this method will call the
callback with false. This method may be called by shouldCloseWindowController (page 547). It is also
called by NSDocumentController’s closeAllDocuments (page 562). You should call it before you call
close (page 525) if you are closing the document and want to give the user a chance save any edits. Pass
the contextInfo object with the callback.

The shouldCloseSelector callback method should have the following signature:

public void documentShouldClose (NSDocument doc, boolean shouldClose, Object
 contextInfo)

524 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Availability
Deprecated in Mac OS X v10.0.
Not supported in Mac OS X v10.4 and later.

close
Closes all windows owned by the receiver and removes the receiver from the list of documents maintained
by the document controller, which consequently releases it.

public void close()

Discussion
This method closes the document immediately, without asking users if they want to save the document.

This method may not always be called. Specifically, this method is not called when a user quits an application.
Additional information on application termination can be found in Graceful Application Termination.

See Also
canCloseDocument (page 524)
shouldCloseWindowController (page 547)

dataOfType
Creates and returns a data object that contains the contents of the document, formatted to a specified type.

public NSData dataOfType(String typeName)

Discussion
The typeName argument specifies the document type. If the data object cannot be created, returns null.
The default implementation of this method throws an exception because at least one of the writing methods
(this method, writeToURLOfType (page 553), or fileWrapperOfType (page 529)) must be overridden.

Availability
Available in Mac OS X v10.4 and later.

See Also
writeToURLOfType (page 553)
fileWrapperOfType (page 529)

dataRepresentationOfType
public NSData dataRepresentationOfType(String aType)

Discussion
A primitive method overridden by subclasses to return a data object that represents the data of the receiver
in a given type (aType).The default implementation throws an InternalInconsistencyException. This
method is invoked by the default implementation of fileWrapperRepresentationOfType.

aType is the type name corresponding to the value of the CFBundleTypeName entry in the document type's
Info.plist dictionary.

Instance Methods 525
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Availability
Deprecated in Mac OS X v10.4.

See Also
loadDataRepresentation (page 532)

displayName
Returns the name of the receiver as displayed in the title bars of the document’s windows and in alert dialogs
related to the document.

public String displayName()

Discussion
If the document has been saved, the display name is the last component of the directory location of the
saved file (for example, “MyDocument” if the path is “/tmp/MyDocument.rtf”). If the document is new,
NSDocument makes the display name “Untitled n,” where n is a number in a sequence of new and unsaved
documents. The displayable name also takes into account whether the document’s filename extension should
be hidden. Subclasses of NSWindowController can override windowTitleForDocumentDisplayName (page
1896) to modify the display name as it appears in window titles.

fileAttributesToWriteToFile
public NSDictionary fileAttributesToWriteToFile(String fullDocumentPath, String

docType, int saveOperationType)

Discussion
Returns the file attributes that should be written to the named document file of the specified type docType,
as part of a particular saveOperationType. The set of valid file attributes is a subset of those understood
by the NSPathUtilities class.

Availability
Deprecated in Mac OS X v10.4.

fileAttributesToWriteToURLOfType
As a file is being saved, returns the attributes that should be written to a file or file package located by a URL,
formatted to a specified type, for a particular kind of save operation.

public NSDictionary fileAttributesToWriteToURLOfType(URL absoluteURL, String
typeName, int saveOperation, URL absoluteOriginalContentsURL)

Discussion
If not successful, returns null.The set of valid file attributes is a subset of those understood by the
NSPathUtilities class. The default implementation of this method returns a dictionary with
FileHFSCreatorCode and FileHFSTypeCode entries that have a value of 0 for SaveOperation, or a
dictionary with an appropriateFileExtensionHidden entry forSaveAsOperation andSaveToOperation.
You can override this method to customize the attributes that are written to document files.

This method is meant to be used just for attributes that need to be written for the first time, for
SaveAsOperation and SaveToOperation.

526 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Invokers of this method should silently ignore invalid attributes. Of particular interest is the
FileExtensionHidden attribute, which is documented in NSPathUtilities.

The dictionary returned by the default implementation of this method contains an FileExtensionHidden
entry when that is appropriate. Your subclass of NSDocument can override this method to control the
attributes that are set during a save operation. An override of this method should return a copy of the
dictionary returned by its superclass’s version of this method, with appropriate alterations.

An override of writeSafelyToURLOfType (page 552) should invoke this method and set the returned
attributes on the written document file.

Implementers of overrides of this method should not assume that:

 ■ The file pointed to by absoluteURL at the moment the method is invoked, if there is one, is related to
the document itself. It may be an unrelated file that is about to be overwritten.

 ■ The fileURL (page 529) or fileType (page 528) method will return anything useful at the moment.

Availability
Available in Mac OS X v10.4 and later.

fileModificationDate
Returns the last known modification date of the document's on-disk representation.

public NSDate fileModificationDate()

Discussion
NSDocument's default file saving machinery uses this information to warn the user when the on-disk
representation of an open document has been modified by something other than the current application.

Availability
Available in Mac OS X v10.4 and later.

See Also
setFileModificationDate (page 544)

fileName
public String fileName()

Discussion
Returns the filename (as a fully qualified path) under which the receiver has been saved.

Availability
Deprecated in Mac OS X v10.4.

See Also
fileNameFromRunningSavePanelForSaveOperation (page 528)
setFileName (page 545)

Instance Methods 527
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

fileNameExtensionWasHiddenInLastRunSavePanel
Returns true if a Save panel has been presented by this document, and the user chose to hide the name
extension of the file that was selected in that Save panel.

public boolean fileNameExtensionWasHiddenInLastRunSavePanel()

Discussion
Returns false otherwise.

fileNameFromRunningSavePanelForSaveOperation
public String fileNameFromRunningSavePanelForSaveOperation(int saveOperation)

Discussion

Runs the modal Save panel and returns the filename (as a fully qualified path) selected for the receiver.
saveOperation determines the title of the Save panel (Save, Save As, Save To). It also affects whether the
Save panel includes an accessory view with a pop-up list containing the document’s native or writable types.
If saveOperation is SaveOperation or SaveAsOperation, the accessory pop-up list contains only those
document types the application can read and write. If saveOperation is SaveToOperation, the pop-up
list additionally includes the document types that the application can write (but can’t read). If there is only
one type the document can be written to, or if shouldRunSavePanelWithAccessoryView (page 548)
returns false, the accessory view isn’t shown. The default extension for saved documents is the first extension
assigned for the document’s native type or, if there is no native type, the extension for the first writable type
specified in the CFBundleDocumentTypes property. File packages are treated as files.

Availability
Deprecated in Mac OS X v10.0.
Not supported in Mac OS X v10.4 and later.

See Also
fileName (page 527)
runModalSavePanel (page 541)

fileType
Returns the document type under which the receiver is saved.

public String fileType()

Discussion
When a document is saved, the type is determined by the file extension, as defined in the custom info
dictionary (specified in Info.plist).

See Also
setFileType (page 545)

fileTypeFromLastRunSavePanel
Returns the file type that was last selected in the Save panel.

528 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

public String fileTypeFromLastRunSavePanel()

Discussion
This type is primarily used by the saveDocument (page 542), saveDocumentAs (page 542), and
saveDocumentTo (page 543) methods to determine the type the user chose after the Save panel has been
run.

fileURL
Returns the location of the document's on-disk representation.

public URL fileURL()

Discussion
The default implementation of this method returns whatever was stored by a previous invocation of the
default implementation of setFileURL (page 545).For backward binary compatibility with Mac OS X v10.3
and earlier, if fileName (page 527) is overridden, the default implementation of this method instead invokes
[self fileName] and returns the result as a URL.

Availability
Available in Mac OS X v10.4 and later.

See Also
setFileURL (page 545)

fileWrapperOfType
Creates and returns a file wrapper that contains the contents of the document.

public NSFileWrapper fileWrapperOfType(String typeName)

Discussion
The document is formatted to a specified type typeName. If unsuccessful, the default implementation of this
method returns null.

Availability
Available in Mac OS X v10.4 and later.

See Also
dataOfType (page 525)

fileWrapperRepresentationOfType
public NSFileWrapper fileWrapperRepresentationOfType(String aType)

Discussion
Returns an NSFileWrapper object that represents the data of the receiver in a given type (aType). This method
invokes dataRepresentationOfType to get the data object from which to create a plain-file file wrapper.
Subclasses can override this method if dataRepresentationOfType is not adequate for their needs. This method
is invoked by the default implementation of writeToFile (page 552).

Instance Methods 529
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Availability
Deprecated in Mac OS X v10.4.

See Also
loadFileWrapperRepresentation (page 533)

hasUnautosavedChanges
Return true if the document has changes that have not been autosaved, false otherwise, as determined
by the history of previous invocations of updateChangeCount (page 549).

public boolean hasUnautosavedChanges()

Availability
Available in Mac OS X v10.4 and later.

hasUndoManager
Returns whether the receiver owns or should own an NSUndoManager.

public boolean hasUndoManager()

See Also
setHasUndoManager (page 546)

initForURLWithContentsOfURLOfType
Initializes a document located by a URL.

public boolean initForURLWithContentsOfURLOfType(URL absoluteDocumentURL, URL
absoluteDocumentContentsURL, String typeName)

Discussion
Initializes the document located by absoluteDocumentURL, of the specified type typeName, but by reading
the contents for the document from absoluteDocumentContentsURL, and returns it if successful. If not
successful, returns null.

The absoluteDocumentURL argument is null if the initializing is part of the reopening of an autosaved
document when the autosaved document was never explicitly saved.

During reopening of autosaved documents, this method uses the following constant to indicate that an
autosaved document is being reopened:

ChangeReadOtherContents

Availability
Available in Mac OS X v10.4 and later.

530 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

initWithContentsOfURLOfType
Initializes a document located by a URL of a specified type.

public boolean initWithContentsOfURLOfType(URL absoluteURL, String typeName)

Discussion
The URL is specified by absoluteURL, and the type is specified by typeName. Returns the document if
successful. If not successful, returns null. You can override this method to customize the reopening of
autosaved documents.

This method is invoked by the NSDocumentController method
makeDocumentWithContentsOfURLOfType (page 568). The default implementation of this method invokes
readFromURLOfType (page 538), setFileURL (page 545), setFileType (page 545), and
setFileModificationDate (page 544).

For backward binary compatibility with Mac OS v10.3 and earlier, the default implementation of this method
instead another method if it is overridden and the URL uses the file: scheme. It still invokes
setFileModificationDate in this situation.

Availability
Available in Mac OS X v10.4 and later.

initWithType
Initializes a document of a specified type, and returns it if successful.

public boolean initializeWithType(String typeName)

Discussion
The type is specified by typeName. If not successful, returns null.

You can override this method to perform initialization that must be done when creating new documents
but should not be done when opening existing documents. Your override should typically invoke super to
initialize NSDocument's private instance variables.

Availability
Available in Mac OS X v10.4 and later.

isDocumentEdited
Returns true if the receiver has been edited since it was last saved or if the document is new; otherwise,
returns false.

public boolean isDocumentEdited()

Discussion
The edited status of each document window reflects the document’s edited status.

See Also
updateChangeCount (page 549)
setDocumentEdited (page 1859) (NSWindow)

Instance Methods 531
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

keepBackupFile
Returns whether the receiver should keep the backup files created before document data is written to a file
(false by default).

public boolean keepBackupFile()

Discussion
Override this method if you want different behavior.

See Also
writeToFile (page 552)

lastError
Returns the NSError object that was most recently set.

public NSError lastError()

Discussion
Errors are set by NSDocument Java member functions or overrides using the setLastError (page 546)
member function. Typically, this member function is called only by the Application Kit itself.

Availability
Available in Mac OS X v10.4 and later.

See Also
setLastError (page 546)

loadDataRepresentation
This method has been deprecated.

public boolean loadDataRepresentation(NSData docData, String docType)

Discussion
Overridden by subclasses to load document data (docData) of type docType into the receiver, display it in
windows, and return whether the operation was successful. This method is typically invoked by
loadFileWrapperRepresentation (page 533) after an NSData object is created from the contents of the
file wrapper (which can include directories). The default implementation throws an
InternalInconsistencyException. Subclasses must override this method unless they override
readFromFile (page 537) or loadFileWrapperRepresentation (page 533) to do specialized reading and
loading of document data.

The docType argument is the type name corresponding to the value of the CFBundleTypeName entry in
the document type's Info.plist dictionary.

Availability
Deprecated in Mac OS X v10.4.

See Also
dataRepresentationOfType (page 525)

532 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

loadFileWrapperRepresentation
This method has been deprecated.

public boolean loadFileWrapperRepresentation(NSFileWrapper wrapper, String docType)

Discussion
Loads document data in file wrapper wrapper of type docType into the receiver, displays it in windows,
and returns whether the operation was successful. If wrapper is a simple file, it invokes
loadDataRepresentation (page 532) to load the data. If wrapper is a directory, it returns false by default;
subclasses can override to handle file wrappers that are directories. This method is typically invoked by
readFromFile (page 537) after it creates an NSData object from the contents of the file.

Availability
Deprecated in Mac OS X v10.4.

See Also
fileWrapperRepresentationOfType (page 529)

makeWindowControllers
Subclasses may override this method to create the initial window controller(s) for the document.

public void makeWindowControllers()

Discussion
The base class implementation creates an NSWindowController with windowNibName (page 551) and with
the document as the file’s owner if windowNibName (page 551) returns a name. If you override this method
to create your own window controllers, be sure to use addWindowController (page 523) to add them to
the document after creating them.

This method is called by NSDocumentController’s open... methods, but you might want to call it directly
in some circumstances.

See Also
windowControllers (page 550)

preparePageLayout
Invoked by runModalPageLayoutWithPrintInfo (page 540) and runModalPageLayout (page 540) to do
any customization of the Page Layout panel pageLayout, such as adding an accessory view.

public boolean preparePageLayout(NSPageLayout pageLayout)

Discussion
Returns true if successfully prepared, and false otherwise. The default implementation is empty and returns
true.

prepareSavePanel
Invoked by runModalSavePanel (page 541) to do any customization of the Save panel savePanel.

Instance Methods 533
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

public boolean prepareSavePanel(NSSavePanel savePanel)

Discussion
Returns true if successfully prepared, and false otherwise. The default implementation is empty and returns
true.

presentError
Presents an error alert to the user as a modal panel.

public boolean presentError(NSError error)

Discussion
Returns true if error recovery was done, false otherwise. This method does not return until the user
dismisses the alert.

NSDocument’s default implementation of this method is equivalent to that of NSResponder and treats the
shared NSDocumentController as the next responder and forwards these messages to it.

The default implementation of this method invokes willPresentError (page 549) to give subclassers an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError (page 549).

Availability
Available in Mac OS X v10.4 and later.

See Also
willPresentError (page 549)
presentErrorModalForWindow (page 534)

presentErrorModalForWindow
Presents an error alert to the user as a modal panel.

public void presentErrorModalForWindow(NSError error, NSWindow window, Object
delegate, NSSelector didPresentSelector, Object contextInfo)

Discussion
When the user dismisses the alert and any recovery possible for the error and chosen by the user has been
attempted, sends the message didPresentSelector to the specified delegate. The method selected by
didPresentSelector must have the same signature as:

public void didPresentErrorWithRecovery (boolean didRecover, Object contextInfo)

NSDocument’s default implementation of this method is equivalent to that of NSResponder and treats the
shared NSDocumentController as the next responder and forwards these messages to it. The default
implementations of several NSDocument methods invoke this method.

The default implementation of this method invokes willPresentError (page 549) to give subclassers an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError.

534 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Availability
Available in Mac OS X v10.4 and later.

See Also
presentError (page 534)
willPresentError (page 549)

printDocument
Prints the receiver in response to the user choosing the Print menu command.

public void printDocument(Object sender)

Discussion
An NSDocument receives this action message as it travels up the responder chain. The default implementation
invokes printShowingPrintPanel with an argument of true.

See Also
printInfo (page 536)
runPageLayout (page 541)
setPrintInfo (page 546)
shouldChangePrintInfo (page 547)

printDocumentWithSettings
Prints the document.

public void printDocumentWithSettings(NSDictionary printSettings, boolean
showPrintPanel, Object delegate, NSSelector didPrintSelector, Object contextInfo)

Discussion
If showing of the print panel is specified by showPrintPanel, the method presents it first and prints only
if the user approves the panel. The NSPrintInfo attributes in the passed-in printSettings dictionary are
added to a copy of the document's print info, and the resulting print info are used for the operation. When
printing is complete or canceled, the method sends the message selected by didPrintSelector to the
delegate, with the contextInfo as the last argument. The method selected by didPrintSelectormust
have the same signature as:

public void documentDidPrint (NSDocument document, boolean didPrintSuccessfully,
 Object contextInfo)

The default implementation of this method invokes printOperationWithSettings (page 536). If null is
returned it presents the error to the user in a document-modal panel before messaging the delegate..

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
invokes printShowingPrintPanel (page 536) if it is overridden. When doing this it uses private functionality
to arrange for the print settings to take effect (despite the fact that the override of printShowingPrintPanel
can't possibly know about them) and to get notified when the print operation has been completed, so it can
message the delegate at the correct time. Correct messaging of the delegate is necessary for correct handling
of the Print Apple event.

Instance Methods 535
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Availability
Available in Mac OS X v10.4 and later.

See Also
printOperationWithSettings (page 536)

printInfo
Returns the receiver’s customized NSPrintInfo object or the default NSPrintInfo instance.

public NSPrintInfo printInfo()

Discussion
The document’s copy of the NSPrintInfo object can either be directly set or set as a result of running the Page
Layout panel. A subclass can override this method to always return the shared NSPrintInfo instance if it does
not want its own copy.

See Also
runPageLayout (page 541)
setPrintInfo (page 546)
shouldChangePrintInfo (page 547)

printOperationWithSettings
Creates a print operation and returns it if successful.

public NSPrintOperation printOperationWithSettings(NSDictionary printSettings)

Discussion
If not successful, returns null. The print operation can be run to print the document’s current contents. The
NSPrintInfo attributes in the passed-in printSettings dictionary are added to a copy of the document's
print info, and the resulting print info is used for the operation. The default implementation of this method
does nothing. You must override it to enable printing in your application.

Availability
Available in Mac OS X v10.4 and later.

See Also
printDocumentWithSettings (page 535)

printShowingPrintPanel
This method has been deprecated.

public void printShowingPrintPanel(boolean flag)

Discussion
Overridden by subclasses to print the current document’s (the receiver’s) data; if flag is true, the
implementation should first display the Print panel. This method is typically invoked by printDocument with
an argument of true. The default implementation does nothing. If there is any printing information other
than that encoded in the receiver’s NSPrintInfo object, subclasses should get it here.

536 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Availability
Deprecated in Mac OS X v10.4.

See Also
printInfo (page 536)

readFromDataOfType
Sets the contents of this document by reading from data of a specified type and returns true if successful.

public boolean readFromDataOfType(NSData data, String typeName)

Discussion
The type is specified by typeName. If not successful, the method returns false. The default implementation
of this method throws an exception because at least one of the three reading methods (this method,
readFromURLOfType (page 538), readFromFileWrapperOfType (page 537)), or every method that may
invoke readFromURLOfType (page 538), must be overridden.

Availability
Available in Mac OS X v10.4 and later.

readFromFile
This method has been deprecated.

public boolean readFromFile(String fileName, String docType)

Discussion
Reads and loads document data of type docType from the file fileName, returning whether the operation
was successful. This method invokes loadDataRepresentation and is invoked when the receiver is first created
and initialized.

This method is one of the location-based primitives. Subclasses can override this method instead of overriding
loadDataRepresentation to read and load document data. Subclasses that handle file packages such as RTFD
or that treat locations of files as anything other than paths should override this method. Override
implementations of this method can filter the document data using NSPasteboard’s or other filtering services.

Availability
Deprecated in Mac OS X v10.4.

See Also
dataRepresentationOfType (page 525)
writeToFile (page 552)

readFromFileWrapperOfType
Set the contents of this document by reading from a file wrapper of a specified type, and return true if
successful.

public boolean readFromFileWrapperOfType(NSFileWrapper fileWrapper, StringtypeName)

Instance Methods 537
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Discussion
If not successful, return false.

Availability
Available in Mac OS X v10.4 and later.

See Also
readFromURLOfType (page 538)
readFromDataOfType (page 537)

readFromURL
This method has been deprecated.

public boolean readFromURL(java.net.URL aURL, String docType)

Discussion
Reads and loads document data of type docType from the URL aURL, returning whether the operation was
successful. This method only supports URLs of the file: scheme and calls readFromFile (page 537).

Availability
Deprecated in Mac OS X v10.4.

readFromURLOfType
Sets the contents of this document by reading from a file or file package located by a URL, of a specified
type, and returns true if successful.

public boolean readFromURLOfType(URL absoluteURL, String typeName)

Discussion
The URL is represented by absoluteURL, and the document type by typeName. If not successful, returns
false.

Availability
Available in Mac OS X v10.4 and later.

See Also
readFromFileWrapperOfType (page 537)
readFromDataOfType (page 537)

removeWindowController
Removes windowController from the receiver.

public void removeWindowController(NSWindowController windowController)

Discussion
A document with no window controllers is not necessarily closed. However, a window controller can be set
to close its associated document when the window is closed or the window controller is deallocated.

538 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

See Also
shouldCloseDocument (page 1894) (NSWindowController)

revertDocumentToSaved
The action of the File menu item Revert to Saved in a document-based application.

public void revertDocumentToSaved(Object sender)

Discussion
The default implementation of this method presents an alert dialog giving the user the opportunity to cancel
the operation. If the user chooses to continue, the method ensures that any editor registered using the Cocoa
Bindings NSEditorRegistration informal protocol has discarded its changes and then invokes
revertToContentsOfURLOfType (page 539). If that returns false, the method presents the error to the user
in an document-modal alert dialog.

See Also
updateChangeCount (page 549)

revertToContentsOfURLOfType
Discards all unsaved document modifications and replaces the document's contents by reading a file or file
package located by a URL of a specified type and returns true if successful.

public boolean revertToContentsOfURLOfType(URL absoluteURL, String typeName)

Discussion
The URL is represented by absoluteURL, and the document type by typeName. If not successful, returns
false.

Availability
Available in Mac OS X v10.4 and later.

revertToSavedFromFile
This method has been deprecated.

public boolean revertToSavedFromFile(String fileName, String type)

Discussion
Reverts the receiver to the data stored in the file system in file named fileName of file type type. Invokes
readFromFile (page 537) and returns whether that method successfully read the file and processed the
document data.

Availability
Deprecated in Mac OS X v10.4.

See Also
revertDocumentToSaved (page 539)

Instance Methods 539
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

revertToSavedFromURL
This method has been deprecated.

public boolean revertToSavedFromURL(java.net.URL aURL, String type)

Discussion
Reverts the receiver to the data stored at aURL of type type. Invokes readFromURL (page 538) and returns
whether that method successfully read the file and processed the document data.

Availability
Deprecated in Mac OS X v10.4.

See Also
revertDocumentToSaved (page 539)

runModalPageLayout
Runs the modal page layout panel with the receiver’s printing information object (printInfo).

public void runModalPageLayout(NSPrintInfo printInfo, Object delegate, NSSelector
didRunSelector, Object contextInfo)

Discussion
Invoked from the action method runPageLayout (page 541). The contextInfo argument provides any
additional context information. Presents the page layout panel application modally if there is no document
window to which it can be presented document modally.

When the panel is dismissed, delegate is sent a didRunSelectormessage. The didRunSelector callback
method should have the following signature:

public void documentDidRunModalPageLayout (NSDocument document, boolean accepted,
 void contextInfo)

runModalPageLayoutWithPrintInfo
This method has been deprecated. Use runModalPageLayout (page 540) instead.

public int runModalPageLayoutWithPrintInfo(NSPrintInfo printInfo)

Discussion
Runs the page layout modal panel with the receiver’s printing information object (printInfo) as argument
and returns the result constant (indicating the button pressed by the user). To run as sheet on the receiver’s
document window, use runModalPageLayout (page 540) instead.

Availability
Deprecated in Mac OS X v10.4.

See Also
shouldChangePrintInfo (page 547)
runModalWithPrintInfo (page 1049) (NSPageLayout)

540 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

runModalPrintOperation
Runs a print operation printOperation modally.

public void runModalPrintOperation(NSPrintOperation printOperation, Object delegate,
NSSelector didRunSelector, Object contextInfo)

Discussion
Overrides of printShowingPrintPanel (page 536) can invoke this method.

When the panel is dismissed, delegate is sent a didRunSelector message. Pass the contextInfo object
with the callback. The didRunSelector callback method should have the following signature:

public void documentDidRunModalPrintOperation(NSDocument document, boolean
success, void contextInfo)

runModalSavePanel
Runs the modal Save panel savePanelwith accessory view accessoryView and returns the result constant
(indicating the button clicked by the user).

public int runModalSavePanel(NSSavePanel savePanel, NSView accessoryView)

Discussion
accessoryView is usually a pop-up list containing the receiver’s native types and its supported writable
types. Invoked by fileNameFromRunningSavePanelForSaveOperation.

This method is no longer supported.

Prepares and runs the modal Save panel.

public void runModalSavePanel(int saveOperation, Object delegate, NSSelector
didSaveSelector, Object contextInfo)

Discussion
Invoked from saveDocument (page 542), and the action methods saveDocumentAs (page 542) and
saveDocumentTo (page 543). Calls prepareSavePanel (page 533) to allow further customization of the
Save panel. The delegate is assigned to the Save panel. Pass the contextInfo object with the callback.

The didSaveSelector callback method should have the following signature:

public void documentDidSave (NSDocument doc, boolean didSave, Object contextInfo)

Availability
Deprecated in Mac OS X v10.0.
Not supported in Mac OS X v10.4 and later.

See Also
shouldRunSavePanelWithAccessoryView (page 548)

runPageLayout
The action method invoked in the receiver as first responder when the user chooses the Page Setup menu
command.

Instance Methods 541
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

public void runPageLayout(Object sender)

Discussion
The default implementation invokesrunModalPageLayout (page 540) with the document’s current NSPrintInfo
object as argument; if the user clicks the OK button and the document authorizes changes to its printing
information (shouldChangePrintInfo), the method sets the document’s new NSPrintInfo object and increments
the document’s change count.

See Also
setPrintInfo (page 546)
updateChangeCount (page 549)

saveDocument
The action method invoked in the receiver as first responder when the user chooses the Save menu command.

public void saveDocument(Object sender)

Discussion
The default implementation saves the document in two different ways, depending on whether the document
has a file path and a document type assigned. If path and type are assigned, it simply writes the document
under its current file path and type after making a backup copy of the previous file. If the document is new
(no file path and type), it runs the modal Save panel to get the file location under which to save the document.
It writes the document to this file, sets the document’s file location and document type (if a native type), and
clears the document’s edited status.

See Also
fileNameFromRunningSavePanelForSaveOperation (page 528)
setFileName (page 545)
setFileType (page 545)
updateChangeCount (page 549)

Runs the Save panel and invokes saveToFile (page 543) with the result.

public void saveDocument(Object delegate, NSSelector didSaveSelector, Object
contextInfo)

Discussion
It is called from the saveDocument (page 542) action method and from canCloseDocument (page 524) if
the user chooses to save. Pass the contextInfo object with the callback. The delegate is assigned to the
Save panel.

The didSaveSelector callback method should have the following signature:

public void documentDidSave (NSDocument doc, boolean didSave, Object contextInfo)

saveDocumentAs
The action method invoked in the receiver as first responder when the user chooses the Save As menu
command.

public void saveDocumentAs(Object sender)

542 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Discussion
The default implementation runs the modal Save panel to get the file location under which to save the
document. It writes the document to this file, sets the document’s file location and document type (if a native
type), and clears the document’s edited status.

See Also
fileNameFromRunningSavePanelForSaveOperation (page 528)
setFileName (page 545)
setFileType (page 545)
updateChangeCount (page 549)

saveDocumentTo
The action method invoked in the receiver as first responder when the user chooses the Save To menu
command.

public void saveDocumentTo(Object sender)

Discussion
The default implementation is identical to saveDocumentAs, except that this method doesn’t clear the
document’s edited status and doesn’t reset file location and document type if the document is a native type.

See Also
fileNameFromRunningSavePanelForSaveOperation (page 528)

saveToFile
This method has been deprecated.

public void saveToFile(String fileName, int saveOperation, Object delegate,
NSSelector didSaveSelector, Object contextInfo)

Discussion
Called after the user has been given the opportunity to select a destination through the modal Save panel
presented by runModalSavePanel (page 541). The delegate is assigned to the Save panel. If fileName is
non-null, this method writes the document to fileName, sets the document’s file location and document
type (if a native type), and clears the document’s edited status. didSaveSelector gets called with true if
the document is saved successfully, and false otherwise. The saveOperation is one of the constants in
“Constants” (page 554). Pass contextInfo with the callback.

The didSaveSelector callback method should have the following signature:

public void documentDidSave (NSDocument doc, boolean didSave, Object contextInfo)

Availability
Deprecated in Mac OS X v10.4.

saveToURLOfType
Saves the contents of the document to a file or file package located by a URL, formatted to a specified type,
for a particular kind of save operation, and returns true if successful.

Instance Methods 543
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

public boolean saveToURLOfType(URL absoluteURL, String typeName, int saveOperation)

Discussion
The URL is represented by absoluteURL, the document type by typeName, and the save operation type by
saveOperation. If not successful, returns false.

Saves the contents of the document to a file or file package located by a URL, formatted to a specified type,
for a particular kind of save operation.

public void saveToURLOfType(URL absoluteURL, String typeName, int saveOperation,
Object delegate, NSSelector didSaveSelector, Object contextInfo)

Discussion
The URL is represented by absoluteURL,, the document type by typeName, and the save operation type
by saveOperation. When saving is completed, regardless of success or failure, the method sends the
message selected by didSaveSelector to the delegate, with the contextInfo as the last argument.
The method selected by didSaveSelector must have the same signature as:

public void documentDidSave (NSDocument document, boolean didSaveSuccessfully,
 Object contextInfo)

Availability
Available in Mac OS X v10.4 and later.

setAutosavedContentsFileURL
Sets the location of the most recently autosaved document contents.

public void setAutosavedContentsFileURL(URL absoluteURL)

Discussion
The default implementation of this method records the URL and notifies the shared document controller
that this document should be autoreopened if the application quits or crashes before the document is saved.

Availability
Available in Mac OS X v10.4 and later.

See Also
autosavedContentsFileURL (page 523)

setFileModificationDate
Sets the last known modification date of the document's on-disk representation to modificationDate.

public void setFileModificationDate(NSDate modificationDate)

Discussion
NSDocument's default file saving machinery uses this information to warn the user when the on-disk
representation of an open document has been modified by something other than the current application.

Availability
Available in Mac OS X v10.4 and later.

544 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

See Also
fileModificationDate (page 527)

setFileName
This method has been deprecated.

public void setFileName(String fileName)

Discussion
Sets the file (filename and directory path) under which document data is saved to fileName. As a side effect,
synchronizes the titles of the document’s windows with the new name or location. A document’s filename
is automatically set when it is saved as a new document (Save) and when an existing document is saved
under a different filename or path (Save As). The Finder also keeps track of open documents and their
associated files. When a user moves or renames a file in the Finder that corresponds to an open document,
the Finder calls setFileName with the new filename.

Availability
Deprecated in Mac OS X v10.4.

See Also
fileName (page 527)

setFileType
Sets the document type under which the file is saved to docType.

public void setFileType(String docType)

Discussion
The document type affects how the data is filtered when it is written to or read from a file.

See Also
fileType (page 528)

setFileURL
Sets the location of the document's on-disk representation.

public void setFileURL(URL absoluteURL)

Discussion
This method doesn't actually rename the document; it's just for recording the document's location during
initial opening or saving. The default implementation of this method just records the URL so that the default
implementation of fileURL (page 529) can return it.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes [self setFileName:[absoluteURL path]] if setFileName (page 545) is overridden
and the URL is null or uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 545
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

See Also
fileURL (page 529)

setHasUndoManager
Sets whether the receiver has its own NSUndoManager.

public void setHasUndoManager(boolean flag)

Discussion
If flag is false and the receiver currently owns an NSUndoManager, the NSUndoManager is released after
being removed as an observer of undo-related notifications.

See Also
hasUndoManager (page 530)

setLastError
Sets the NSError object that will be returned by the lastError member function.

public void setLastError(NSError inError)

Discussion
The inError parameter represents the NSError object to be set.

Whenever your application’s override of an NSDocument member function detects failure and is going to
return null or whatever signals failure for that particular function, it should first call this function and pass
in an NSError object that encapsulates the reason for the failure. However, it needn’t do so if it’s going to
signal failure because it called a member function that itself failed and is expected to have already called
setLastError.

Availability
Available in Mac OS X v10.4 and later.

See Also
lastError (page 532)

setPrintInfo
Sets the receiver’s NSPrintInfo object to printInfo; this object is used in laying out the document for
printing.

public void setPrintInfo(NSPrintInfo printInfo)

See Also
printInfo (page 536)

546 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

setUndoManager
Sets the undo manager owned by the receiver to undoManager and releases any undo manager currently
owned by the receiver.

public void setUndoManager(NSUndoManager undoManager)

Discussion
If undoManager is null, it turns off the hasUndoManager flag. If undoManager is non-null, it adds the
receiver as an observer of NSUndoManager.DidUndoChangeNotification,
NSUndoManager.DidRedoChangeNotification, and
NSUndoManager.WillCloseUndoGroupNotification.

See Also
undoManager (page 548)

setWindow
Sets the window Interface Builder outlet of this class.

public void setWindow(NSWindow aWindow)

Discussion
This method is invoked automatically during the loading of any nib for which this document is the file’s
owner, if the file’s owner window outlet is connected in the nib. You should not invoke this method directly,
and typically you would not override it either.

shouldChangePrintInfo
Returns whether the receiver should allow changes to the default NSPrintInfo object newPrintInfo used
in printing the document.

public boolean shouldChangePrintInfo(NSPrintInfo newPrintInfo)

Discussion
The default implementation returns true. Subclasses can override this method to return false. This method
is invoked by the runPageLayout method, which sets a new NSPrintInfo for the document only if this method
returns true.

shouldCloseWindowController
This method variant is no longer supported. Instead use the other variant of this method.

public boolean shouldCloseWindowController(NSWindowController windowController)

Discussion
If closing the windowControllerwould cause the receiver to be closed, invokes canCloseDocument (page
524) to display a Save panel and give the user an opportunity to save the document. Returns the return value
of canCloseDocument. Note that the receiver doesn’t close until its window controller closes.

Availability
Deprecated in Mac OS X v10.0.

Instance Methods 547
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Not supported in Mac OS X v10.4 and later.

InvokesshouldCloseSelectorwith the result ofcanCloseDocument (page 524) if thewindowController
that is closing is the last one or is marked as causing the document to close.

public void shouldCloseWindowController(NSWindowController windowController, Object
delegate, NSSelector shouldCloseSelector, Object contextInfo)

Discussion
Otherwise it invokes shouldCloseSelector with true. This method is called automatically by NSWindow
for any window that has a window controller and a document associated with it. NSWindow calls this method
prior to asking its delegate windowShouldClose (page 1880). Pass contextInfo with the callback.

The shouldCloseSelector callback method should have the following signature:

public void documentShouldClose (NSDocument document, boolean shouldClose,
Object contextInfo)

See Also
close (page 525)
shouldCloseDocument (page 1894) (NSWindowController)

shouldRunSavePanelWithAccessoryView
Returns true by default; as a result, when NSDocument displays the Save panel, it includes an accessory
view containing a pop-up list of supported writable document types.

public boolean shouldRunSavePanelWithAccessoryView()

Discussion
Subclasses can override to return false, thus excluding the accessory view from the Save panel.

See Also
runModalSavePanel (page 541)

showWindows
Displays all of the document’s windows, bringing them to the front and making them main or key as necessary.

public void showWindows()

undoManager
Returns the NSUndoManager used by the receiver or null if the receiver should not own one.

public NSUndoManager undoManager()

Discussion
If the undo manager doesn’t exist and hasUndoManager returns true, it creates one and invokes
setUndoManager with the NSUndoManager as argument.

548 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

updateChangeCount
Updates the receiver’s change count according to changeType.

public void updateChangeCount(int changeType)

Discussion
The change count indicates the document’s edited status; if the change count is 0, the document has no
changes to save, and if the change count is greater than 0, the document has been edited and is unsaved.
changeType is described in “Constants” (page 554). If you are implementing undo and redo in an application,
you should increment the change count every time you create an undo group and decrement the change
count when an undo or redo operation is performed.

Note that if you are using NSDocument’s default undo/redo features, setting the document’s edited status
by updating the change count happens automatically. You only need to invoke this method when you are
not using these features.

validateMenuItem
Validates the Revert menu item and items selected from the Save panel’s pop-up list of writable document
types items.

public boolean validateMenuItem(NSMenuItem anItem)

Discussion
Returns true if anItem should be enabled, false otherwise. Returns true for Revert if the document has
been edited and a file exists for the document. Returns true for an item representing a writable type if,
during a Save or Save As operation, it is a native type for the document. Subclasses can override this method
to perform additional validations.

willPresentError
Called when the receiver is about to present an error. Returns the error that should actually be presented.

public NSError willPresentError(NSError error)

Discussion
The default implementation of this method merely returns the passed-in error. The returned error may simply
be forwarded to the document controller.

You can override this method to customize the presentation of errors by examining the passed-in error and,
for example, returning more specific information. When you override this method always check the NSError
object's domain and code to discriminate between errors whose presentation you want to customize and
those you don't. For errors you don't want to customize, call the superclass implementation, passing the
original error.

Availability
Available in Mac OS X v10.4 and later.

See Also
presentError (page 534)
presentErrorModalForWindow (page 534)

Instance Methods 549
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

windowControllerDidLoadNib
Sent after windowController loads a nib file if the receiver is the nib file's owner.

public void windowControllerDidLoadNib(NSWindowController windowController)

Discussion
See the class description for NSWindowController (page 1887) for additional information about nib files and
"File's Owner".

Typically an NSDocument subclass overrides windowNibName (page 551) or makeWindowControllers (page
533), but not both. If windowNibName is overridden, the default implementation of makeWindowControllers
will load the named nib file, making the NSDocument the nib file's owner. In that case, you can override
windowControllerDidLoadNib and do custom processing after the nib file is loaded.

The default implementation of this method does nothing.

See Also
windowControllerWillLoadNib (page 550)
windowControllers (page 550)

windowControllers
Returns the receiver’s current window controllers.

public NSArray windowControllers()

Discussion
If there are no window controllers, returns an empty NSArray.

See Also
makeWindowControllers (page 533)
windowControllerDidLoadNib (page 550)
windowControllerWillLoadNib (page 550)
windowNibName (page 551)

windowControllerWillLoadNib
Sent before windowController loads a nib file if the receiver is the nib file's owner.

public void windowControllerWillLoadNib(NSWindowController windowController)

Discussion
See the class description for NSWindowController (page 1887) for additional information about nib files and
"File's Owner".

Typically an NSDocument subclass overrides windowNibName (page 551) or makeWindowControllers (page
533), but not both. If windowNibName is overridden, the default implementation of makeWindowControllers
will load the named nib file, making the NSDocument the nib file's owner. In that case, you can override
windowControllerWillLoadNib and do custom processing before the nib file is loaded.

The default implementation of this method does nothing.

550 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

See Also
windowControllerDidLoadNib (page 550)
windowControllers (page 550)

windowForSheet
Returns the most appropriate window, of the windows associated with the receiver, to use as the parent
window of a document-modal sheet.

public NSWindow windowForSheet()

Discussion
May return null, in which case the sender should present an application-modal panel. NSDocument's
implementation of this method returns the window of the first window controller, or
NSApplication.sharedApplication(). mainWindow() if there are no window controllers or if the
first window controller has no window.

windowNibName
Overridden by subclasses to return the name of the document’s sole nib file.

public String windowNibName()

Discussion
Using this name, NSDocument creates and instantiates a default instance of NSWindowController to manage
the window. If your document has multiple nib files, each with its own single window, or if the default
NSWindowController instance is not adequate for your purposes, you should override makeWindowControllers.

The default implementation returns null.

See Also
windowControllers (page 550)

writableTypesForSaveOperation
Returns the names of the types to which this document can be saved for a specified kind of save operation.

public NSArray writableTypesForSaveOperation(int saveOperation)

Discussion
The save operation type is represented by saveOperation. For every kind of save operation except
NSSaveToOperation, the returned array must only include types for which the the application can play the
Editor role. For NSSaveToOperation the returned array may include types for which the application can
only play the Viewer role, and other types that the application can merely export. The default implementation
of this method returns [[self class] writableTypes] with, except during NSSaveToOperations,
types for which isNativeType (page 522) returns false filtered out.

You can override this method to limit the set of writable types when the document currently contains data
that is not representable in all types. For example, you can disallow saving to .rtf files when the document
contains an attachment and can only be saved properly to .rtfd files.

Instance Methods 551
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

You can invoke this method when creating a custom save panel accessory view to present easily the same
set of types as NSDocument does in its standard file format popup menu.

Availability
Available in Mac OS X v10.4 and later.

writeSafelyToURLOfType
Writes the contents of the document to a file or file package.

public boolean writeSafelyToURLOfType(URL absoluteURL, String typeName, int
saveOperation)

Discussion
The file or file package is located by the URL absoluteURL, formatted to the specified type typeName, for
a particular kind of save operation saveOperation. Returns true if successful. If not successful, returns
false.

The default implementation of this method invokes fileAttributesToWriteToURLOfType (page 526)
and writes the returned attributes, if any, to the file. It may copy some attributes from the old on-disk revision
of the document at the same time, if applicable.

This method is responsible for doing document writing in a way that minimizes the danger of leaving the
disk to which writing is being done in an inconsistent state in the event of an application crash, system crash,
hardware failure, power outage, and so on. If you override this method, be sure to invoke the superclass
implementation.

For SaveOperation, the default implementation of this method invokes keepBackupFile (page 532) to
determine whether or not the old on-disk revision of the document, if there was one, should be preserved
after being renamed.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes writeWithBackupToFile (page 554) if that method is is overridden and the URL uses the
file: scheme. The save operation in this case is never AutosaveOperation; SaveToOperation is used
instead.

Availability
Available in Mac OS X v10.4 and later.

See Also
fileAttributesToWriteToURLOfType (page 526)

writeToFile
Writes document data of type docType to the file fileName, returning whether the operation was successful.

public boolean writeToFile(String fileName, String docType)

Discussion
This method invokes dataRepresentationOfType (page 525) and is indirectly invoked whenever the
document file is saved. It uses NSData’s writeToFile method to write to the file.

552 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

This method is one of the location-based primitives. Subclasses can override this method instead of overriding
dataRepresentationOfType to write document data to the file system as an NSData object after creating that
object from internal data structures. Subclasses that handle file packages such as RTFD or that treat locations
of files as anything other than paths should override this method. Override implementations of this method
should ensure that they filter document data appropriately using NSPasteboard’s filtering services.

See “NSDocument Saving Behavior” (page 514) for additional information about saving documents.

See Also
loadDataRepresentation (page 532)
readFromFile (page 537)

This method is called from writeWithBackupToFile (page 554) to actually write the file of type docType
to fullDocumentPath.

public boolean writeToFile(String fullDocumentPath, String docType, String
fullOriginalDocumentPath, int saveOperationType)

Discussion
fullOriginalDocumentPath is the path to the original file if there is one and null otherwise. The default
implementation simply calls writeToFile (page 552) with no arguments. You should not need to call this
method directly, but subclasses that need access to the previously saved copy of their document while saving
the new one can override this method. The saveOperationType argument is one of the constants listed
in “Constants” (page 554).

See “NSDocument Saving Behavior” (page 514) for additional information about saving documents.

writeToURL
public boolean writeToURL(java.net.URL aURL, String docType)

Discussion
Writes document data of type docType to the URL aURL, returning whether the operation was successful.
This method only supports URLs of the file: scheme and calls writeToFile (page 552).

writeToURLOfType
Writes the contents of the file to a file or file package located by a URL, formatted to a specified type, and
returns true if successful.

public boolean writeToURLOfType(URL absoluteURL, String typeName)

Discussion
The URL is represented by absoluteURL and the document type by typeName. If not successful, the method
returns false.

Writes the contents of the document to a file or file package located by a URL, formatted to a specified type,
for a particular kind of save operation, and returns true if successful.

public boolean writeToURLOfType(URL absoluteURL, String typeName, int saveOperation,
URL absoluteOriginalContentsURL)

Instance Methods 553
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Discussion
The URL is represented by absoluteURL, the document type by typeName, and the save operation type by
saveOperation. If not successful, returns false.

You can override this method instead of one of the three simple writing methods (readFromURLOfType (page
538),readFromFileWrapperOfType (page 537),readFromDataOfType (page 537)) if your document writing
machinery needs access to the on-disk representation of the document revision that is about to be overwritten.
The value of absoluteURL is often not the same as that returned by fileURL (page 529). Other times it is
not the same as the URL for the final save destination. Likewise, absoluteOriginalContentsURL is often
not the same value as that returned by – fileURL.

Availability
Available in Mac OS X v10.4 and later.

See Also
fileWrapperOfType (page 529)
dataOfType (page 525)

writeWithBackupToFile
This method has been deprecated.

public boolean writeWithBackupToFile(String fullDocumentPath, String docType, int
saveOperationType)

Discussion
This method is called by action methods like saveDocument (page 542), saveDocumentAs (page 542), and
saveDocumentTo (page 543). It is responsible for handling backup of the existing file, if any, and removal of
that backup if keepBackupFile (page 532) returns false. In between those two things, it calls
writeToFile (page 552) to write the document of type docType to fullDocumentPath. You should never
need to call writeWithBackupToFile, but subclasses that want to change the way the backup works can
override it. The saveOperationType argument is one of the constants listed in “Constants” (page 554).

Availability
Deprecated in Mac OS X v10.4.

Constants

The following constants specify types of save operations. These values are used with method parameters,
such as int saveOperation,. Depending on the method, those parameters can affect the title of the Save
panel, as well as the files displayed.

DescriptionConstant

Specifies a Save operation.SaveOperation

Specifies a Save As operation.SaveAsOperation

Specifies a Save To operation.SaveToOperation

554 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

DescriptionConstant

Specifies an autosave operation, writing a document’s contents to a file or file
package separate from the document's current one.
Available in Mac OS X v10.4 and later.

AutosaveOperation

Change counts indicate a document’s edit status. The following constants indicate how a document should
operate on its change count and are used by updateChangeCount (page 549)

DescriptionConstant

Increment change count.ChangeDone

Decrement change count.ChangeUndone

Set change count to 0.ChangeCleared

Document was initialized with contents of file or file package other than
the one whose location would be returned by fileURL.
Available in Mac OS X v10.4 and later.

ChangeReadOtherContents

Document's contents have been autosaved.
Available in Mac OS X v10.4 and later.

ChangeAutosaved

Constants 555
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

556 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDocument

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Document-Based Applications Overview

Overview

An NSDocumentController object manages an application’s documents. As the first-responder target of New
and Open menu commands, it creates and opens documents and tracks them throughout a session of the
application. When opening documents, an NSDocumentController runs and manages the modal Open panel.
NSDocumentControllers also maintain and manage the mappings of document types, extensions, and
NSDocument subclasses as specified in the CFBundleDocumentTypes property loaded from the information
property list (Info.plist).

You can use various NSDocumentController methods to get a list of the current documents; get the current
document (which is the document whose window is currently key); get documents based on a given filename
or window; and find out about a document’s extension, type, display name, and document class.

In some situations, it is worthwhile to subclass NSDocumentController in non-NSDocument-based applications
to get some of its features. For example, NSDocumentController’s management of the Open Recent menu
is useful in applications that don’t use subclasses of NSDocument.

Tasks

Constructors

NSDocumentController (page 561)
Creates a new NSDocumentController.

Obtaining the Shared Document Controller

sharedDocumentController (page 561)
Returns the shared NSDocumentController instance.

Overview 557
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Creating and Opening Documents

documentForURL (page 565)
Returns, for a given URL, the open document whose file or file package is located by the URL, or null
if there is no such open document.

openUntitledDocument (page 571)
Creates a new untitled document, presents its user interface if displayDocument is true, and returns
the document if successful.

makeUntitledDocumentOfType (page 568)
Instantiates a new untitled document of the specified type and returns it if successful.

openDocumentWithContentsOfURL (page 570)
Opens a document located by a URL absoluteURL, presents its user interface if displayDocuments
is true, and returns the document if successful.

makeDocumentWithContentsOfURLOfType (page 568)
Instantiates a document located by a URL, of a specified type, and return it if successful.

reopenDocumentForURLWithContentsOfURL (page 573)
Reopens an autosaved document located by a URL, by reading the contents for the document from
another URL, presents its user interface, and returns true if successful.

makeDocumentForURLWithContentsOfURLOfType (page 567)
Instantiates a document located by a URL, of a specified type, but by reading the contents for the
document from another URL, and returns it if successful.

Handling Errors

lastError (page 567)
Returns the NSError object that was most recently set.

presentError (page 572)
Presents an error alert to the user as a modal panel.

presentErrorModalForWindow (page 572)
Presents an error alert to the user as a modal panel.

setLastError (page 575)
Sets the NSError object that will be returned by the lastError member function.

willPresentError (page 577)
Called when the receiver is about to present an error, returns the error that should actually be
presented.

Managing the Open Panel

runModalOpenPanel (page 574)
Invokes NSOpenPanel’s runModalForTypes (page 1024), passing the openPanel object and the file
extensions associated with a document type.

currentDirectory (page 563)
Returns the directory path to be used as the starting point in the Open panel.

URLsFromRunningOpenPanel (page 576)
Creates an NSOpenPanel and initializes it appropriately.

558 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Autosaving

autosavingDelay (page 562)
Returns the time interval in seconds for periodic autosaving.

setAutosavingDelay (page 574)
Sets the time interval in seconds for periodic autosaving.

Responding to Action Messages

newDocument (page 569)
An action method invoked by the New menu command, this method creates a new NSDocument
object and adds it to the list of such objects managed by the receiver.

openDocument (page 570)

saveAllDocuments (page 574)
As the action method invoked by the Save All command, saves all open documents of the application
that need to be saved.

Managing Documents

documentClassNames (page 564)
Returns the names of NSDocument subclasses supported by this application.

documents (page 566)
Returns the NSDocument objects managed by the receiver.

addDocument (page 561)
Adds document to the list of open documents.

currentDocument (page 563)
Returns the NSDocument object associated with the main window.

documentClassForType (page 564)
Returns the NSDocument subclass associated with document type documentTypeName.

documentForWindow (page 565)
Returns the NSDocument object whose window controller owns window.

hasEditedDocuments (page 566)
Returns whether the receiver has any documents with unsaved changes.

removeDocument (page 573)
Removes document from the list of open documents.

Managing the Open Recent Menu

maximumRecentDocumentCount (page 568)
Returns the maximum number of items that may be presented in the standard Open Recent menu.

clearRecentDocuments (page 562)
Empties the recent documents list for the application.

Tasks 559
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

noteNewRecentDocumentURL (page 569)
This method should be called by applications not based on NSDocument when they open or save
documents identified by aURL.

noteNewRecentDocument (page 569)
This method is called by NSDocuments at appropriate times for managing the recents list.

recentDocumentURLs (page 573)
Returns the list of recent document URLs.

Managing Document Types

typeForContentsOfURL (page 576)
Returns, for a specified URL, the name of the document type that should be used when opening the
document at that location, if successful.

defaultType (page 563)
Returns the name of the document type that should be used when creating new documents.

displayNameForType (page 564)
Returns the descriptive name for the document type (documentTypeName), which is often part of
the document’s window title.

fileExtensionsFromType (page 566)
Returns the allowable file extensions (as String objects) for document type documentTypeName.

typeFromFileExtension (page 576)
Returns the document type associated with files having extension fileExtensionOrHFSFileType.

Validating User Interface Items

validateMenuItem (page 576)
Validates menu item anItem, returning true if it should be enabled, false otherwise.

Deprecated Methods

closeAllDocuments (page 562)
Attempts to close all documents owned by the receiver and returns whether all documents were
closed.

documentForFileName (page 565)
This method has been deprecated.

fileNamesFromRunningOpenPanel (page 566)
This method has been deprecated.

makeDocumentWithContentsOfURL (page 568)

makeDocumentWithContentsOfFile (page 567)
This method has been deprecated.

openDocumentWithContentsOfFile (page 570)
This method has been deprecated.

560 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

openUntitledDocumentOfType (page 571)

reviewUnsavedDocumentsWithAlertTitle (page 573)
This method variant has been deprecated. Instead use the other variant of this method.

setShouldCreateUI (page 575)
This method has been deprecated.

shouldCreateUI (page 575)
This method has been deprecated.

Constructors

NSDocumentController
Creates a new NSDocumentController.

public NSDocumentController()

Discussion
The first instance of NSDocumentController or any of its subclasses becomes the shared instance.

Static Methods

sharedDocumentController
Returns the shared NSDocumentController instance.

public static NSDocumentController sharedDocumentController()

Discussion
If one doesn’t exist yet, it is created. Initialization reads in the document types from the
CFBundleDocumentTypes property list (in Info.plist), registers the instance for
WorkspaceWillPowerOffNotification (page 1915)s, and turns on the flag indicating that document user
interfaces should be visible. You should always obtain your application’s NSDocumentController using this
method.

See Also
setShouldCreateUI (page 575)

Instance Methods

addDocument
Adds document to the list of open documents.

Constructors 561
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

public void addDocument(NSDocument document)

Discussion
The open... methods automatically call addDocument. This method is mostly provided for subclassers that
want to know when documents arrive.

autosavingDelay
Returns the time interval in seconds for periodic autosaving.

public double autosavingDelay()

Discussion
A value of 0 indicates that periodic autosaving should not be done at all. NSDocumentController uses this
number as the amount of time to wait between detecting that a document has unautosaved changes and
sending the document an autosaveDocument (page 523) message. The default value is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
setAutosavingDelay (page 574)

clearRecentDocuments
Empties the recent documents list for the application.

public void clearRecentDocuments(Object sender)

Discussion
This is the action for the Clear menu command, but it can be invoked directly if necessary.

closeAllDocuments
Attempts to close all documents owned by the receiver and returns whether all documents were closed.

public boolean closeAllDocuments()

Discussion
It does not ask users whether they want to save documents. This method is invoked in
reviewUnsavedDocumentsWithAlertTitle (page 573) when users decide to discard all changes.

Iterates through all the open documents and tries to close them one by one using delegate.

public void closeAllDocuments(Object delegate, NSSelector didCloseAllSelector,
Object contextInfo)

Discussion
Each NSDocument is sent canCloseDocument (page 524), which, if the document is dirty, gives it a chance
to refuse to close or to save itself first. This method may ask whether to save or to perform a save.

562 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

The didCloseAllSelector callback method is invoked with true if all documents are closed, and false
otherwise. Pass contextInfo with the callback. The didCloseAllSelector callback method should have
the following signature:

public void documentControllerDidCloseAll (NSDocumentController docController,
 boolean didCloseAll, Object contextInfo)

currentDirectory
Returns the directory path to be used as the starting point in the Open panel.

public String currentDirectory()

Discussion
The first valid directory from the following list is returned:

 ■ The directory location where the current document was last saved

 ■ The last directory visited in the Open panel

 ■ The user’s home directory

See Also
documentForFileName (page 565)

currentDocument
Returns the NSDocument object associated with the main window.

public NSDocument currentDocument()

Discussion
This method returns null if it is called when its application is not active. This can occur during processing
of a drag-and-drop operation, for example, in an implementation of readSelectionFromPasteboard:.
In such a case, send the following message instead from an NSView subclass associated with the document:

[[[self window] windowController] document];

See Also
documentForFileName (page 565)
documentForWindow (page 565)
documents (page 566)

defaultType
Returns the name of the document type that should be used when creating new documents.

public String defaultType()

Instance Methods 563
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Discussion
The default implementation of this method returns the first Editor type declared in the application's Info.plist,
or returns null if no Editor type is declared. You can override it to customize the type of document that is
created when, for instance, the user chooses New in the File menu.

Availability
Available in Mac OS X v10.4 and later.

displayNameForType
Returns the descriptive name for the document type (documentTypeName), which is often part of the
document’s window title.

public String displayNameForType(String documentTypeName)

Discussion
This returned value is associated with the TypeName key in the CFBundleDocumentTypes property list. If
there is no such value, documentTypeName is returned.

See Also
fileExtensionsFromType (page 566)
typeFromFileExtension (page 576)

documentClassForType
Returns the NSDocument subclass associated with document type documentTypeName.

public Class documentClassForType(String documentTypeName)

Discussion
The document type must be one the document can read. If the class cannot be found, returns null.

See Also
displayNameForType (page 564)
fileExtensionsFromType (page 566)
typeFromFileExtension (page 576)

documentClassNames
Returns the names of NSDocument subclasses supported by this application.

public NSArray documentClassNames()

Discussion
The default implementation of this method returns information derived from the application's Info.plist. You
can override it to return the names of document classes that are dynamically loaded from plugins.

Availability
Available in Mac OS X v10.4 and later.

564 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

documentForFileName
This method has been deprecated.

public NSDocument documentForFileName(String fileName)

Discussion
Returns the NSDocument object for the file in which the document data is stored. The fileName argument
is a fully qualified path in the file system. Returns null if no document can be found.

Availability
Deprecated in Mac OS X v10.4.

See Also
documentForWindow (page 565)
documents (page 566)

documentForURL
Returns, for a given URL, the open document whose file or file package is located by the URL, or null if there
is no such open document.

public NSDocument documentForURL(URL absoluteURL)

Discussion
The default implementation of this method queries each open document to find one whose URL matches,
and returns the first one whose URL does match.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes documentForFileName (page 565) if it is overridden and the URL uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

documentForWindow
Returns the NSDocument object whose window controller owns window.

public NSDocument documentForWindow(NSWindow window)

Discussion
Returns null if window is null, if window has no window controller, or if the window controller does not
have an association with an NSDocument.

See Also
currentDocument (page 563)
documentForFileName (page 565)
documents (page 566)

Instance Methods 565
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

documents
Returns the NSDocument objects managed by the receiver.

public NSArray documents()

Discussion
If there are currently no documents, returns an empty NSArray.

See Also
currentDocument (page 563)
documentForFileName (page 565)
documentForWindow (page 565)

fileExtensionsFromType
Returns the allowable file extensions (as String objects) for document type documentTypeName.

public NSArray fileExtensionsFromType(String documentTypeName)

Discussion
The first string in the returned NSArray is typically the most common extension. The array may also contain
encoded HFS file types as will as filename extensions.

See Also
displayNameForType (page 564)
typeFromFileExtension (page 576)

fileNamesFromRunningOpenPanel
This method has been deprecated.

public NSArray fileNamesFromRunningOpenPanel()

Discussion
Returns a selection of files chosen by the user in the Open panel. Each file in the returned NSArray is a fully
qualified path to the file’s location in the file system. This method is invoked by openDocument (page 570),
and it invokes runModalOpenPanel (page 574) after initializing the Open panel (which includes getting the
starting directory with currentDirectory (page 563)). Returns null if the user cancels the Open panel or
makes no selection.

Availability
Deprecated in Mac OS X v10.4.

hasEditedDocuments
Returns whether the receiver has any documents with unsaved changes.

public boolean hasEditedDocuments()

See Also
documents (page 566)

566 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

lastError
Returns the NSError object that was most recently set.

public NSError lastError()

Discussion
Errors are set by NSDocument Java member functions or overrides using the setLastError (page 575)
member function. Typically, this member function is called only by the Application Kit itself.

Availability
Available in Mac OS X v10.4 and later.

See Also
setLastError (page 575)

makeDocumentForURLWithContentsOfURLOfType
Instantiates a document located by a URL, of a specified type, but by reading the contents for the document
from another URL, and returns it if successful.

public NSDocument makeDocumentForURLWithContentsOfURLOfType(URL absoluteDocumentURL,
URL absoluteDocumentContentsURL, String typeName)

Discussion
The URL is specified by absoluteDocumentURL, the type by typeName, and the other URL providing the
contents by absoluteDocumentContentsURL. If not successful, the method returns null. The default
implementation of this method invokes documentClassForType (page 564) to find out the class of document
to instantiate, allocates a document object, and initializes it by sending it an
initForURLWithContentsOfURLOfType (page 530) message.

Availability
Available in Mac OS X v10.4 and later.

makeDocumentWithContentsOfFile
This method has been deprecated.

public NSDocument makeDocumentWithContentsOfFile(String fileName, String docType)

Discussion
Creates and returns an NSDocument object for document type docType from the contents of the file
fileName, which must be a fully qualified path. Returns null if the NSDocument subclass for docType
couldn’t be determined or if the object couldn’t be created. This method is invoked by
openDocumentWithContentsOfFile (page 570).

Availability
Deprecated in Mac OS X v10.4.

See Also
openDocument (page 570)

Instance Methods 567
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

makeDocumentWithContentsOfURL
public NSDocument makeDocumentWithContentsOfURL(java.net.URL aURL, String docType)

Discussion
Creates and returns an NSDocument object for document type docType from the contents of aURL. Returns
null if the NSDocument subclass for docType couldn’t be determined or if the object couldn’t be created.
This method is invoked by openDocumentWithContentsOfURL (page 570).

See Also
makeUntitledDocumentOfType (page 568)
openDocument (page 570)

makeDocumentWithContentsOfURLOfType
Instantiates a document located by a URL, of a specified type, and return it if successful.

public NSDocument makeDocumentWithContentsOfURLOfType(URL absoluteURL, String
typeName)

Discussion
The URL is specifed by absoluteURL and the document type by typeName. If not successful, the method
returns null. The default implementation of this method invokes documentClassForType (page 564) to
find out the class of document to instantiate, allocates a document object, and initializes it by sending it an
initWithContentsOfURLOfType (page 531) message.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes makeDocumentWithContentsOfFile (page 567) if it is overridden and the URL uses the
file: scheme.

Availability
Available in Mac OS X v10.4 and later.

makeUntitledDocumentOfType
Instantiates a new untitled document of the specified type and returns it if successful.

public NSDocument makeUntitledDocumentOfType(String typeName)

Discussion
The document type is specified by typeName. If not successful, the method returns null. The default
implementation of this method invokes documentClassForType (page 564) to find out the class of document
to instantiate, then allocates and initializes a document by sending it initWithType (page 531).

Availability
Available in Mac OS X v10.4 and later.

maximumRecentDocumentCount
Returns the maximum number of items that may be presented in the standard Open Recent menu.

public int maximumRecentDocumentCount()

568 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Discussion
A value of 0 indicates that NSDocumentController will not attempt to add an Open Recent menu to your
application's File menu, although NSDocumentController will not attempt to remove any preexisting Open
Recent menu item. The default implementation returns a value that is subject to change and may or may
not be derived from a setting made by the user in System Preferences.

Availability
Available in Mac OS X v10.4 and later.

newDocument
An action method invoked by the New menu command, this method creates a new NSDocument object and
adds it to the list of such objects managed by the receiver.

public void newDocument(Object sender)

Discussion
It invokes openUntitledDocumentOfType (page 571) with the document type (first argument) being the
first one specified in the CFBundleDocumentTypes property (defined in Info.plist); the document type
determines the NSDocument subclass used to instantiate the document object.

See Also
openDocument (page 570)

noteNewRecentDocument
This method is called by NSDocuments at appropriate times for managing the recents list.

public void noteNewRecentDocument(NSDocument aDocument)

Discussion
This method constructs a URL and calls noteNewRecentDocumentURL (page 569). Subclasses might override
this method to prevent certain documents or kinds of documents from getting into the list.

noteNewRecentDocumentURL
This method should be called by applications not based on NSDocument when they open or save documents
identified by aURL.

public void noteNewRecentDocumentURL(java.net.URL aURL)

Discussion
NSDocument automatically calls this method when appropriate for NSDocument-based applications.
Applications not based on NSDocument must also implement theapplicationOpenFile (page 133) method
in the application delegate to handle requests from the Open Recent menu command. You can override this
method in an NSDocument-based application to prevent certain kinds of documents from getting into the
list (but you have to identify them by URL).

Instance Methods 569
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

openDocument
public void openDocument(Object sender)

Discussion
An action method invoked by the Open menu command, it runs the modal Open panel and, based on the
selected filenames, creates one or more NSDocument objects from the contents of the files; it adds these
objects to the list of NSDocument objects managed by the receiver. This method invokes
openDocumentWithContentsOfFile (page 570), which actually creates the NSDocument objects.

See Also
fileNamesFromRunningOpenPanel (page 566)
newDocument (page 569)

openDocumentWithContentsOfFile
This method has been deprecated.

public NSDocument openDocumentWithContentsOfFile(String fileName, boolean flag)

Discussion
Returns an NSDocument object created from the contents of the file fileName (an absolute path) and
displays it if flag is true. The returned object is added to the receiver’s list of managed documents. Returns
null if the object could not be created, typically because fileName does not point to a valid file or because
there is no NSDocument subclass for the document type (as indicated by the file extension or HFS file type).
Even if flag is true, the document is not displayed if shouldCreateUI (page 575) returns false. This
method invokes makeDocumentWithContentsOfFile (page 567) to obtain the created NSDocument object.
If you override this method, your implementation should be prepared to handle either true or false.

To handle an Open Documents Apple event, the Application Kit’s built-in Apple event handling automatically
invokes this method with the path to the file to open and a display argument.

Invoked with a display argument of true instead of false when a Print Documents Apple event is handled.
This may have been handled differently in versions of Mac OS X prior to version 10.3.

Availability
Deprecated in Mac OS X v10.4.

See Also
openDocument (page 570)
openUntitledDocumentOfType (page 571)
setShouldCreateUI (page 575)

openDocumentWithContentsOfURL
Opens a document located by a URL absoluteURL, presents its user interface if displayDocuments is
true, and returns the document if successful.

public NSDocument openDocumentWithContentsOfURL(URL absoluteURL, boolean
displayDocument)

570 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Discussion
If not successful, the method returns null.

The default implementation of this method checks to see if the document is already open according to
documentForURL (page 565), and if it is not open determines the type of the document, invokes
makeDocumentWithContentsOfURLOfType (page 568) to instantiate it, then invokes addDocument (page
561) to record its opening, and sends the document makeWindowControllers (page 533) and
showWindows (page 548) messages if displayDocument is true. If the document is already open it is just
sent a showWindows (page 548) message if displayDocument is true.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes openDocumentWithContentsOfFile (page 570), if it is overridden and the URL uses the
file: scheme.

openUntitledDocument
Creates a new untitled document, presents its user interface if displayDocument is true, and returns the
document if successful.

public NSDocument openUntitledDocument(boolean displayDocument)

Discussion
If not successful, the method returns null.

The default implementation of this method invokes defaultType (page 563) to determine the type of new
document to create, invokes makeUntitledDocumentOfType (page 568) to create it, then invokes
addDocument (page 561) to record its opening. If displayDocument is true, it then sends the new document
makeWindowControllers (page 533) and showWindows (page 548) messages.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes openUntitledDocumentOfType (page 571) if it is overridden.

Availability
Available in Mac OS X v10.4 and later.

openUntitledDocumentOfType
public NSDocument openUntitledDocumentOfType(String docType, boolean display)

Discussion
Returns an NSDocument object instantiated from the NSDocument subclass required by document type
docType and displays it if flag is true. The returned object is added to the receiver’s list of managed
documents. Returns null if the object could not be created, typically because no NSDocument subclass
could be found for docType. Even if flag is true, the document is not displayed if shouldCreateUI (page
575) returns false.

See Also
newDocument (page 569)
openDocumentWithContentsOfFile (page 570)
setShouldCreateUI (page 575)

Instance Methods 571
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

presentError
Presents an error alert to the user as a modal panel.

public boolean presentError(NSError error)

Discussion
Returns true if error recovery was done, false otherwise. This method does not return until the user
dismisses the alert.

NSDocumentController's default implementation of this method is equivalent to that of NSResponder while
treating the application object as the next responder and forwarding error presentation messages to it.
(NSDocument’s default implementation of this method treats the shared NSDocumentController as the next
responder and forwards these messages to it.) The default implementations of several NSDocumentController
methods invoke this method.

The default implementation of this method invokes willPresentError (page 577) to give subclassers an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError (page 577).

Availability
Available in Mac OS X v10.4 and later.

See Also
willPresentError (page 577)
presentErrorModalForWindow (page 572)

presentErrorModalForWindow
Presents an error alert to the user as a modal panel.

public void presentErrorModalForWindow(NSError error, NSWindow window, Object
delegate, NSSelector didPresentSelector, Object contextInfo)

Discussion
When the user dismisses the alert and any recovery possible for the error and chosen by the user has been
attempted, sends the message didPresentSelector to the specified delegate. The method selected by
didPresentSelector must have the same signature as:

public void didPresentErrorWithRecovery (boolean didRecover, Object contextInfo)

NSDocumentController's default implementation of this method is equivalent to that of NSResponder while
treating the application object as the next responder and forwarding error presentation messages to it.
(NSDocument’s default implementation of this method treats the shared NSDocumentController as the next
responder and forwards these messages to it.)

The default implementation of this method invokes willPresentError (page 577) to give subclassers an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError (page 577).

Availability
Available in Mac OS X v10.4 and later.

See Also
willPresentError (page 577)

572 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

presentError (page 572)

recentDocumentURLs
Returns the list of recent document URLs.

public NSArray recentDocumentURLs()

Discussion
This method is not a good one to override since the internals of NSDocumentController do not generally use
it.

removeDocument
Removes document from the list of open documents.

public void removeDocument(NSDocument document)

Discussion
A document will automatically call removeDocument (page 573) when it closes. This method is mostly provided
for subclassers that want to know when documents close.

reopenDocumentForURLWithContentsOfURL
Reopens an autosaved document located by a URL, by reading the contents for the document from another
URL, presents its user interface, and returns true if successful.

public boolean reopenDocumentForURLWithContentsOfURL(URL absoluteDocumentURL, URL
absoluteDocumentContentsURL)

Discussion
The document is located by absoluteDocumentURL and the contents are read from
absoluteDocumentContentsURL. If not successful, the method returns false.

Availability
Available in Mac OS X v10.4 and later.

reviewUnsavedDocumentsWithAlertTitle
This method variant has been deprecated. Instead use the other variant of this method.

public boolean reviewUnsavedDocumentsWithAlertTitle(String title, boolean flag)

Discussion
Displays an alert dialog asking users if they want to review unsaved documents, quit regardless of unsaved
documents, or (if flag is true) cancel the impending save-and-terminate operation. Returns true if the
application is to quit and false if otherwise (used only when the application is terminating). If the user
selects the Review Unsaved option, closeAllDocuments (page 562) is invoked. This method is invoked
when users choose the Quit menu command and when the computer power is being turned off (in which
case, flag is false).

Instance Methods 573
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Displays an alert dialog asking if the user wants to review unsaved documents, quit regardless of unsaved
documents, or (if cancellable is true) cancel the impending save operation.

public void reviewUnsavedDocumentsWithAlertTitle(String title, boolean cancellable,
Object delegate, NSSelector didReviewAllSelector, Object contextInfo)

Discussion
Invokes didReviewAllSelectorwith true if quit without saving is chosen or if there are no dirty documents,
and false otherwise. Assigns delegate to the panel. If the user selects the “Review Unsaved” option,
closeAllDocuments (page 562) is invoked. This method is invoked when the user chooses the Quit menu
command and also when the computer power is being turned off (in which case, cancellable is false).
Note that title is ignored. Pass the contextInfo object with the callback.

The didReviewAllSelector callback method should have the following signature:

public void documentControllerDidReviewAll (NSDocumentController docController,
 boolean didReviewAll, Object contextInfo)

runModalOpenPanel
Invokes NSOpenPanel’s runModalForTypes (page 1024), passing the openPanel object and the file
extensions associated with a document type.

public int runModalOpenPanel(NSOpenPanel openPanel, NSArray extensions)

Discussion
This method is invoked by the fileNamesFromRunningOpenPanel (page 566) method. extensions may
also contain encoded HFS file types as well as filename extensions.

saveAllDocuments
As the action method invoked by the Save All command, saves all open documents of the application that
need to be saved.

public void saveAllDocuments(Object sender)

See Also
saveDocument (page 542) (NSDocument)

setAutosavingDelay
Sets the time interval in seconds for periodic autosaving.

public void setAutosavingDelay(double autosavingDelay)

Discussion
A value of 0 indicates that periodic autosaving should not be done at all. NSDocumentController uses this
number as the amount of time to wait between detecting that a document has unautosaved changes and
sending the document an autosaveDocument (page 523) message. The default value is 0.

Availability
Available in Mac OS X v10.4 and later.

574 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

See Also
autosavingDelay (page 562)

setLastError
Sets the NSError object that will be returned by the lastError member function.

public void setLastError(NSError inError)

Discussion
The inError parameter represents the NSError object to be set.

Whenever your application’s override of an NSDocumentController member function detects failure and is
going to return null or whatever signals failure for that particular function, it should first call this function
and pass in an NSError object that encapsulates the reason for the failure. However, it needn’t do so if it’s
going to signal failure because it called a member function that itself failed and is expected to have already
called setLastError.

Availability
Available in Mac OS X v10.4 and later.

See Also
lastError (page 567)

setShouldCreateUI
This method has been deprecated.

public void setShouldCreateUI(boolean flag)

Discussion
Sets whether the window controllers (NSWindowControllers) of a document should be created when the
document is created. When a window controller is created, it loads the nib file containing the window it
manages. Often flag is set to false for scripting or searching operations involving the document’s data.

Availability
Deprecated in Mac OS X v10.4.

See Also
shouldCreateUI (page 575)

shouldCreateUI
This method has been deprecated.

public boolean shouldCreateUI()

Discussion
Returns whether the window controllers (NSWindowControllers) of a document should be created when the
document is created.

Instance Methods 575
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Availability
Deprecated in Mac OS X v10.4.

See Also
setShouldCreateUI (page 575)

typeForContentsOfURL
Returns, for a specified URL, the name of the document type that should be used when opening the document
at that location, if successful.

public String typeForContentsOfURL(URL absoluteURL)

Discussion
The URL is represented by absoluteURL. If not successful, the method returns null.

You can override this method to customize type determination for documents being opened.

Availability
Available in Mac OS X v10.4 and later.

typeFromFileExtension
Returns the document type associated with files having extension fileExtensionOrHFSFileType.

public String typeFromFileExtension(String fileExtensionOrHFSFileType)

Discussion
fileExtensionOrHFSFileType may also be an encoded HFS file type, as well as a filename extension.

See Also
displayNameForType (page 564)
fileExtensionsFromType (page 566)

URLsFromRunningOpenPanel
Creates an NSOpenPanel and initializes it appropriately.

public NSArray URLsFromRunningOpenPanel()

Discussion
Then uses runModalOpenPanel (page 574) to run the NSOpenPanel. Returns the chosen files as an array of
URLs. Returns null if the user cancels the Open panel or makes no selection.

validateMenuItem
Validates menu item anItem, returning true if it should be enabled, false otherwise.

public boolean validateMenuItem(NSMenuItem anItem)

576 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Discussion
As implemented, if anItem is the Save All menu item, returns true if there are any edited documents.
Subclasses can override this method to perform additional validations. Subclasses should call super in their
implementation for items they don’t handle themselves.

willPresentError
Called when the receiver is about to present an error, returns the error that should actually be presented.

public NSError willPresentError(NSError error)

Discussion
The default implementation of this method merely returns the passed-in error. The returned error may simply
be forwarded to the application object.

You can override this method to customize the presentation of errors by examining the passed-in error and,
for example, returning more specific information. When you override this method always check the NSError
object's domain and code to discriminate between errors whose presentation you want to customize and
those you don't. For errors you don't want to customize, call the superclass implementation, passing the
original error.

Availability
Available in Mac OS X v10.4 and later.

See Also
presentError (page 572)
presentErrorModalForWindow (page 572)

Instance Methods 577
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

578 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDocumentController

Inherits from NSGraphicsContext : NSObject

Package: com.apple.cocoa.application

Companion guide Basic Drawing

Overview

NSDPSContext provides the context for the Display PostScript graphics environment. Display PostScript is
no longer supported. Use NSGraphicsContext (page 729) instead.

Tasks

Constructors

NSDPSContext (page 579)
Creates an empty instance of NSDPSContext.

Getting Current Context

currentContext (page 580)
Returns the current context of the current thread.

Constructors

NSDPSContext
Creates an empty instance of NSDPSContext.

public NSDPSContext()

Overview 579
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDPSContext

Static Methods

currentContext
Returns the current context of the current thread.

public static NSGraphicsContext currentContext()

Constants

The following constant is defined by NSDPSContext:

DescriptionConstant

A special run-loop mode for processing DPS eventsDPSRunLoopMode

580 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDPSContext

Inherits from NSObject

Implements NSDraggingInfo

Package: com.apple.cocoa.application

Companion guide Drag and Drop Programming Topics for Cocoa

Overview

NSDragDestination implements the functionality of the NSDraggingInfo (page 1959) interface. Instances are
created by the Application Kit during drag operations and passed to the NSDraggingDestination methods.

Interfaces Implemented

NSDraggingInfo
draggedImage (page 1960)
draggedImageLocation (page 1960)
draggingDestinationWindow (page 1960)
draggingLocation (page 1961)
draggingPasteboard (page 1961)
draggingSequenceNumber (page 1961)
draggingSource (page 1961)
draggingSourceOperationMask (page 1961)
slideDraggedImageTo (page 1962)

Tasks

Constructors

NSDragDestination (page 582)
Creates an empty NSDragDestination.

Overview 581
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDragDestination

Dragging Session Information

draggingSource (page 584)
Returns the source, or owner, of the dragged data or null if the source isn’t in the same application
as the destination.

draggingSourceOperationMask (page 584)
Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal (page 1966) method).

draggingDestinationWindow (page 583)
Returns the destination window for the dragging operation.

draggingPasteboard (page 584)
Returns the pasteboard object that holds the data being dragged.

draggingSequenceNumber (page 584)
Returns a number that uniquely identifies the dragging session.

draggingLocation (page 583)
Returns the current location of the mouse pointer in the base coordinate system of the destination
object’s window.

namesOfPromisedFilesDroppedAtDestination (page 585)
Sets the drop location for promised files to dropDestination and returns the names (not full paths)
of the files that the receiver promises to create there.

Image Information

draggedImage (page 583)
Returns the image being dragged.

draggedImageLocation (page 583)
Returns the current location of the dragged image’s origin in the base coordinate system of the
destination object’s window.

Sliding the Image

slideDraggedImageTo (page 585)
Slides the image to aPoint, a specified location in the screen coordinate system.

Constructors

NSDragDestination
Creates an empty NSDragDestination.

public NSDragDestination()

582 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDragDestination

Instance Methods

draggedImage
Returns the image being dragged.

public NSImage draggedImage()

Discussion
This image object visually represents the data put on the pasteboard during the drag operation; however,
it is the pasteboard data and not this image that is ultimately utilized in the dragging operation.

See Also
draggedImageLocation (page 583)

draggedImageLocation
Returns the current location of the dragged image’s origin in the base coordinate system of the destination
object’s window.

public NSPoint draggedImageLocation()

Discussion
The image moves along with the mouse pointer (the position of which is given by draggingLocation (page
583)) but may be positioned at some offset.

See Also
draggedImage (page 583)

draggingDestinationWindow
Returns the destination window for the dragging operation.

public NSWindow draggingDestinationWindow()

Discussion
Either this window is the destination itself, or it contains the view object that is the destination.

draggingLocation
Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

public NSPoint draggingLocation()

See Also
draggedImageLocation (page 583)

Instance Methods 583
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDragDestination

draggingPasteboard
Returns the pasteboard object that holds the data being dragged.

public NSPasteboard draggingPasteboard()

Discussion
The dragging operation that is ultimately performed utilizes this pasteboard data and not the image returned
by the draggedImage (page 583) method.

draggingSequenceNumber
Returns a number that uniquely identifies the dragging session.

public int draggingSequenceNumber()

draggingSource
Returns the source, or owner, of the dragged data or null if the source isn’t in the same application as the
destination.

public Object draggingSource()

Discussion
The dragging source implements methods from the NSDraggingSource (page 1965) interface.

draggingSourceOperationMask
Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal (page 1966) method).

public int draggingSourceOperationMask()

Discussion
If the source permits dragging operations, the elements in the mask will be one or more of the constants
described in NSDraggingInfo’s “Constants” (page 1962), combined using the C bitwise OR operator.

If the source does not permit any dragging operations, this method should return
NSDraggingInfo.DragOperationNone.

If the user is holding down a modifier key during the dragging session and the source doesn’t prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDraggingmethod),
then the operating system combines the dragging operation value that corresponds to the modifier key (see
the descriptions below) with the source’s mask using the C bitwise AND operator.

The modifier keys are associated with the dragging operation options shown below:

Dragging OperationModifier Key

NSDraggingInfo.DragOperationLinkControl

NSDraggingInfo.DragOperationCopyOption

584 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDragDestination

Dragging OperationModifier Key

NSDraggingInfo.DragOperationGenericCommand

namesOfPromisedFilesDroppedAtDestination
Sets the drop location for promised files to dropDestination and returns the names (not full paths) of the
files that the receiver promises to create there.

public abstract NSArray namesOfPromisedFilesDroppedAtDestination(java.net.URL
dropDestination)

Discussion
Drag destinations should invoke this method within their performDragOperation (page 1957) method. The
source may or may not have created the files by the time this method returns.

slideDraggedImageTo
Slides the image to aPoint, a specified location in the screen coordinate system.

public void slideDraggedImageTo(NSPoint aPoint)

Discussion
This method can be used to snap the image down to a particular location. It should be invoked only from
within the destination’s implementation of prepareForDragOperation (page 1958)—in other words, after
the user has released the image but before it’s removed from the screen.

Instance Methods 585
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDragDestination

586 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDragDestination

Inherits from NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Drawers

Overview

NSDrawer is a user interface element that contains and displays view objects including NSTextView,
NSScrollView, NSBrowserView, and other classes that inherit from NSView. A drawer is associated with a
window, called its parent, and can appear only while its parent is visible onscreen. A drawer cannot be moved
or ordered independently of a window, but is instead attached to one edge of its parent and moves along
with it.

Tasks

Constructors

NSDrawer (page 589)

Opening and Closing Drawers

close (page 590)
If the receiver is open, this method closes it.

open (page 592)
If the receiver is closed, this method opens it.

openOnEdge (page 592)
Causes the receiver to open on the specified edge.

toggle (page 595)
If the receiver is closed, or in the process of either opening or closing, it is opened.

Overview 587
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

Managing Drawer Size

contentSize (page 590)
Returns the size of the receiver’s content area.

leadingOffset (page 591)
Returns the receiver’s leading offset.

maxContentSize (page 591)
Returns the maximum allowed size of the content area.

minContentSize (page 591)
Returns the minimum allowed size of the receiver’s content area.

setContentSize (page 592)
Sets the size of the receiver’s content area to size.

setLeadingOffset (page 593)
Sets the receiver’s leading offset to offset.

setMaxContentSize (page 593)
Specifies the maximum size of the receiver’s content area. See “Positioning and Sizing a Drawer” for
additional detail.

setMinContentSize (page 594)
Specifies the minimum size of the receiver’s content area. See “Positioning and Sizing a Drawer” for
additional detail.

setTrailingOffset (page 594)
Sets the receiver’s trailing offset to offset.

trailingOffset (page 595)
Returns the receiver’s trailing offset.

Managing Drawer Edges

edge (page 591)
Returns the edge of the window that the receiver is connected to.

preferredEdge (page 592)
When the receiver is told to open and an edge is not specified at that time, it opens on this value.

setPreferredEdge (page 594)

Managing a Drawer’s Views

contentView (page 590)
Returns the receiver’s content view.

parentWindow (page 592)
Returns the receiver’s parent window

setContentView (page 593)
Rather than connect a drawer to its content view in Interface Builder, you can specify it programatically
with the aView argument of this method.

588 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

setParentWindow (page 594)
Sets the receiver’s parent window to parent.

Accessing Other Drawer Information

delegate (page 591)
Returns the receiver’s delegate.

setDelegate (page 593)

state (page 595)
Returns the state of the receiver.

Opening a drawer

drawerDidOpen (page 596) delegate method

drawerShouldOpen (page 596) delegate method

drawerWillOpen (page 597) delegate method

Resizing a drawer

drawerWillResizeContents (page 597) delegate method

Closing a drawer

drawerDidClose (page 596) delegate method

drawerShouldClose (page 596) delegate method

drawerWillClose (page 596) delegate method

Constructors

NSDrawer
public NSDrawer()

Constructors 589
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

Discussion
Creates a new NSDrawer object. You must specify the parent window, content view, and edge of the drawer
before using it. If you create a drawer in Interface Builder, you don’t need to invoke the constructor
programmatically.

public NSDrawer(NSSize contentSize, int edge)

Discussion
Creates a new NSDrawer object with size specified by contentSize and the edge to attach to specified by
edge. You must specify the parent window and content view of the drawer using the methods included.
When you create a drawer in Interface Builder, this constructor is invoked. The NSDrawer Inspector in Interface
Builder allows you to set edge, and you can specific contentSize by changing the content view in Interface
Builder.

See “Positioning and Sizing a Drawer” for additional detail on content size and drawer positioning.

Instance Methods

close
If the receiver is open, this method closes it.

public void close()

Discussion
Calling close on a closed drawer does nothing. You can get the state of a drawer by sending it state (page
595).

See Also
open (page 592)

contentSize
Returns the size of the receiver’s content area.

public NSSize contentSize()

See Also
setContentSize (page 592)
setMaxContentSize (page 593)
setMinContentSize (page 594)

contentView
Returns the receiver’s content view.

public NSView contentView()

590 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

See Also
setContentView (page 593)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 593)

edge
Returns the edge of the window that the receiver is connected to.

public int edge()

Discussion
See “Constants” (page 595) for a list of edge constants and locations.

leadingOffset
Returns the receiver’s leading offset.

public float leadingOffset()

See Also
setLeadingOffset (page 593)

maxContentSize
Returns the maximum allowed size of the content area.

public NSSize maxContentSize()

Discussion
Useful for determining if an opened drawer would fit onscreen given the current window position.

See Also
setMaxContentSize (page 593)

minContentSize
Returns the minimum allowed size of the receiver’s content area.

public NSSize minContentSize()

See Also
setMinContentSize (page 594)

Instance Methods 591
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

open
If the receiver is closed, this method opens it.

public void open()

Discussion
Calling open on an open drawer does nothing. You can get the state of a drawer by sending it state (page
595). If an edge is not specified, an attempt will be made to choose an edge based on the space available to
display the drawer onscreen. If you need to ensure that a drawer opens on a particular edge, use
openOnEdge (page 592).

See Also
close (page 590)

openOnEdge
Causes the receiver to open on the specified edge.

public void openOnEdge(int edge)

Discussion
See “Constants” (page 595) for a list of edge constants and locations.

parentWindow
Returns the receiver’s parent window

public NSWindow parentWindow()

Discussion
. By definition, a drawer can appear onscreen only if it has a parent.

See Also
setParentWindow (page 594)

preferredEdge
When the receiver is told to open and an edge is not specified at that time, it opens on this value.

public int preferredEdge()

Discussion
When you a create a drawer with Interface Builder, the preferred edge is set to the left by default.

See Also
setPreferredEdge (page 594)

setContentSize
Sets the size of the receiver’s content area to size.

592 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

public void setContentSize(NSSize size)

Discussion
See “Positioning and Sizing a Drawer” for additional detail.

See Also
contentSize (page 590)
setMaxContentSize (page 593)
setMinContentSize (page 594)

setContentView
Rather than connect a drawer to its content view in Interface Builder, you can specify it programatically with
the aView argument of this method.

public void setContentView(NSView aView)

See Also
contentView (page 590)

setDelegate
public void setDelegate(Object anObject)

Discussion
You may find it useful to associate a delegate with a drawer, especially since drawers do not open and close
instantly. A drawer’s delegate can better regulate drawer behavior. However, a drawer can be used without
a delegate.

See Also
delegate (page 591)

setLeadingOffset
Sets the receiver’s leading offset to offset.

public void setLeadingOffset(float offset)

Discussion
See “Positioning and Sizing a Drawer” for additional detail.

See Also
leadingOffset (page 591)
setTrailingOffset (page 594)

setMaxContentSize
Specifies the maximum size of the receiver’s content area. See “Positioning and Sizing a Drawer” for additional
detail.

Instance Methods 593
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

public void setMaxContentSize(NSSize size)

See Also
maxContentSize (page 591)

setMinContentSize
Specifies the minimum size of the receiver’s content area. See “Positioning and Sizing a Drawer” for additional
detail.

public void setMinContentSize(NSSize size)

See Also
minContentSize (page 591)

setParentWindow
Sets the receiver’s parent window to parent.

public void setParentWindow(NSWindow parent)

Discussion
Every drawer must be associated with a parent window for a drawer to appear onscreen. Calling
setParentWindow with a null argument removes a drawer from its parent. Changes in a drawer’s parent
window do not take place while the drawer is onscreen; they are delayed until the drawer next closes.

See Also
parentWindow (page 592)

setPreferredEdge
public void setPreferredEdge(int preferredEdge)

Discussion
A drawer can be told to open on a specific edge (page 591). However, when the edge is not specified, the
drawer is opened on the preferredEdge.

See Also
preferredEdge (page 592)

setTrailingOffset
Sets the receiver’s trailing offset to offset.

public void setTrailingOffset(float offset)

Discussion
See “Positioning and Sizing a Drawer” for additional detail.

See Also
leadingOffset (page 591)

594 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

state
Returns the state of the receiver.

public int state()

Discussion
Refer to “Constants” (page 595) for more details.

toggle
If the receiver is closed, or in the process of either opening or closing, it is opened.

public void toggle(Object sender)

Discussion
Otherwise, the drawer is closed.

trailingOffset
Returns the receiver’s trailing offset.

public float trailingOffset()

See Also
setTrailingOffset (page 594)

Constants

The following constants are defined by NSDrawer and are returned by state (page 595):

DescriptionConstant

The drawer is closed (not visible onscreen).ClosedState

The drawer is in the process of opening.OpeningState

The drawer is open (visible onscreen).OpenState

The drawer is in the process of closing.ClosingState

The following constants are defined by NSRect and can be used to specify window edges:

DescriptionConstant

The left edge of a windowNSRect.MinXEdge

The bottom edge of a windowNSRect.MinYEdge

Constants 595
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

DescriptionConstant

The right edge of a windowNSRect.MaxXEdge

The top edge of a windowNSRect.MaxYEdge

Delegate Methods

drawerDidClose
public abstract void drawerDidClose(NSNotification notification)

Discussion
Sent by the default notification center with theDrawerDidCloseNotification (page 597) innotification
immediately after an NSDrawer has closed.

drawerDidOpen
public abstract void drawerDidOpen(NSNotification notification)

Discussion
Sent by the default notification center with the DrawerDidOpenNotification (page 597) in notification
immediately after an NSDrawer has opened.

drawerShouldClose
public abstract boolean drawerShouldClose(NSDrawer sender)

Discussion
Invoked on user-initiated attempts to close a drawer by dragging it , but not when the close (page 590)
method is called. The delegate can return false to prevent sender from closing.

drawerShouldOpen
public abstract boolean drawerShouldOpen(NSDrawer sender)

Discussion
Invoked on user-initiated attempts to open a drawer by dragging it , but not when the open (page 592)
method is called. The delegate can return false to prevent the sender from opening.

drawerWillClose
public abstract void drawerWillClose(NSNotification notification)

596 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

Discussion
Sent by the default notification center with the DrawerWillCloseNotification (page 597) in
notification immediately before an NSDrawer is closed.

drawerWillOpen
public abstract void drawerWillOpen(NSNotification notification)

Discussion
Sent by the default notification center with theDrawerWillOpenNotification (page 597) innotification
immediately before an NSDrawer is opened.

drawerWillResizeContents
public abstract NSSize drawerWillResizeContents(NSDrawer sender, NSSize contentSize)

Discussion
Invoked when the user resizes the drawer or parent. contentSize contains the size sender will be resized
to. To resize to a different size, simply return the desired size from this method; to avoid resizing, return the
current size. The receiver’s minimum and maximum size constraints have already been applied when this
method is invoked. While the user is resizing an NSDrawer or its parent, the delegate is sent a series of
windowWillResize messages as the NSDrawer or parent window is dragged.

Notifications

DrawerDidCloseNotification

Posted whenever the NSDrawer is closed. The notification object is the NSDrawer that closed. This notification
does not contain a userInfo dictionary.

DrawerDidOpenNotification

Posted whenever the NSDrawer is opened. The notification object is the NSDrawer that opened. This
notification does not contain a userInfo dictionary.

DrawerWillCloseNotification

Posted whenever the NSDrawer is about to close. The notification object is the NSDrawer about to close.
This notification does not contain a userInfo dictionary.

DrawerWillOpenNotification

Posted whenever the NSDrawer is about to open. The notification object is the NSDrawer about to open.
This notification does not contain a userInfo dictionary.

Notifications 597
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

598 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDrawer

Inherits from NSImageRep : NSObject

Implements NSCoding (NSImageRep)

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

An NSEPSImageRep is an object that can render an image from encapsulated PostScript (EPS) code.

Tasks

Constructors

NSEPSImageRep (page 600)
Throws an exception. Use the other constructor instead.

Creating an NSEPSImageRep

imageRep (page 600)
Creates a new NSEPSImageRep instance and then calls a constructor with epsData.

Getting Image Data

boundingBox (page 600)
Returns the rectangle that bounds the receiver.

EPSRepresentation (page 601)
Returns the EPS representation of the receiver.

Drawing the Image

prepareGState (page 601)
Implemented by subclasses to initialize the graphics state before the image is drawn.

Overview 599
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

NSEPSImageRep

Constructors

NSEPSImageRep
Throws an exception. Use the other constructor instead.

public NSEPSImageRep()

Creates a new NSEPSImageRep, with the contents of epsData.

public NSEPSImageRep(NSData epsData)

Discussion
If the new object can’t be created for any reason (for example, epsData doesn’t contain EPS code), returns
null.

The size of the object is set from the bounding box specified in the EPS header comments.

Static Methods

imageRep
Creates a new NSEPSImageRep instance and then calls a constructor with epsData.

public static NSEPSImageRep imageRep(NSData epsData)

Discussion
If the new object can’t be initialized for any reason (for example, epsData doesn’t contain EPS code), this
method frees the receiver and returns null. Otherwise, it returns a new instance of NSEPSImageRep.

The size of the object is set from the bounding box specified in the EPS header comments.

Instance Methods

boundingBox
Returns the rectangle that bounds the receiver.

public NSRect boundingBox()

Discussion
The rectangle is obtained from the “%%BoundingBox:” comment in the EPS header when the NSEPSImageRep
is initialized.

See Also
imageRep (page 600)

600 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

NSEPSImageRep

EPSRepresentation
Returns the EPS representation of the receiver.

public NSData EPSRepresentation()

prepareGState
Implemented by subclasses to initialize the graphics state before the image is drawn.

public void prepareGState()

Discussion
NSEPSImageRep’s draw (page 788) method sends a prepareGState message just before rendering the EPS
code. The default implementation of prepareGState does nothing.

Instance Methods 601
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

NSEPSImageRep

602 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

NSEPSImageRep

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Cocoa Event-Handling Guide

Overview

An NSEvent object, or simply an event, contains information about an input action such as a mouse click or
a key down. The Application Kit associates each such user action with a window, reporting the event to the
application that created the window. The NSEvent object contains pertinent information about each event,
such as where the cursor was located or which character was typed. As the application receives events, it
temporarily places them in a buffer called the event queue. When the application is ready to process an
event, it takes one from the queue.

Beginning with Mac OS X version 10.4, NSEvent objects can represent tablet-pointing and tablet-proximity
events. A tablet-proximity event is generated when a pointing device enters or leaves proximity of its tablet;
such event objects have a type of TypeProximity or a mouse subtype of TabletProximityEventSubtype.
A tablet-pointing event is generated when a pointing device changes state, such as location, pressure, or
tilt; such event objects have a type of TypePoint or a mouse subtype of TabletPointEventSubtype. The
Application Kit reports all pure tablet events to responder objects through the NSResponder methods
tabletPoint (page 1198) and tabletProximity (page 1199). Mouse events can also contain tablet data (as
event subtypes), so you can handle these events by overriding the NSResponder methods mouseDown (page
1192), mouseDragged (page 1192), and mouseUp (page 1193).

Tasks

Constructors

NSEvent (page 607)
Creates an empty NSEvent.

Creating Events

eventMaskFromType (page 607)
Returns the event mask for the given eventType.

Overview 603
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

keyEvent (page 607)
Returns a new NSEvent object describing a key event.

mouseEvent (page 608)
Returns a new NSEvent object describing a mouse-down, -up, -moved, or -dragged event.

otherEvent (page 609)
Returns a new NSEvent object describing a custom event.

Requesting and Stopping Periodic Events

startPeriodicEvents (page 609)
Begins generating periodic events for the current thread every periodSeconds, after a delay of
delaySeconds.

stopPeriodicEvents (page 610)
Stops generating periodic events for the current thread and discards any periodic events remaining
in the queue.

Getting General Event Information

context (page 613)
Returns the display context of the receiver.

locationInWindow (page 616)
Returns the receiver’s location in the base coordinate system of the associated window.

modifierFlags (page 616)
Returns an integer bit field indicating the modifier keys in effect for the receiver.

timestamp (page 620)
Returns the time the receiver occurred in seconds since system startup.

type (page 621)
Returns the type of the receiving event.

window (page 622)
Returns the window object associated with the receiver.

windowNumber (page 623)
Returns the identifier for the window device associated with the receiver.

Getting Key Event Information

characters (page 612)
Returns the characters associated with the receiving key-up or key-down event.

charactersIgnoringModifiers (page 612)
Returns the characters generated by the receiving key event as if no modifier key (except for Shift)
applies.

isARepeat (page 615)
Returns true if the receiving key event is a repeat caused by the user holding the key down, false
if the key event is new.

604 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

keyCode (page 616)
Returns the virtual key code for the keyboard key associated with the receiving key event.

Getting Mouse Event Information

mouseLocation (page 609)
Exports the current mouse position, in screen coordinates. S

buttonNumber (page 612)
Returns the button number for the mouse button that generated an “OtherMouse” event.

clickCount (page 613)
Returns the number of mouse clicks associated with the receiver, a mouse-down or -up event.

pressure (page 618)
Returns a value from 0.0 through 1.0 indicating the pressure applied to the input device (used for
appropriate devices).

Getting Tracking-rectangle Event Information

eventNumber (page 615)
Returns the counter value of the latest mouse or tracking-rectangle event; every system-generated
mouse and tracking-rectangle event increments this counter.

trackingNumber (page 620)
Returns the identifier of the tracking rectangle for a tracking-rectangle event.

Getting Custom Event Information

data1 (page 613)
Returns additional data associated with the receiver.

data2 (page 614)
Returns additional data associated with the receiver.

subtype (page 618)
Returns the subtype of the receiving custom event.

Getting Scroll Wheel Event Information

deltaX (page 614)
Returns the change in x for a scroll wheel, mouse-move, or mouse-drag event.

deltaY (page 614)
Returns the change in y for a scroll wheel, mouse-move, or mouse-drag event.

deltaZ (page 614)
Returns the change in z for a scroll wheel, mouse-move, or mouse-drag event.

Tasks 605
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

Getting Tablet Proximity Information

capabilityMask (page 612)
Returns a mask whose set bits indicate the capabilities of the tablet device that generated the event
represented by the receiver.

deviceID (page 615)
Returns a special identifier that is used to match tablet-pointer events with the tablet-proximity event
represented by the receiver.

isEnteringProximity (page 616)
Returns true to indicate that a pointing device is entering the proximity of its tablet and NO when it
is leaving it.

pointingDeviceID (page 617)
Returns the index of the pointing device currently in proximity with the tablet.

pointingDeviceSerialNumber (page 617)
Returns the vendor-assigned serial number of a pointing device of a certain type.

pointingDeviceType (page 617)
Returns a constant indicating the kind of pointing device associated with the receiver.

systemTabletID (page 619)
Returns the index of the tablet device connected to the system.

tabletID (page 619)
Returns the USB model identifier of the tablet device associated with the receiver.

uniqueID (page 621)
Returns the unique identifier of the pointing device that generated the event represented by the
receiver.

vendorID (page 622)
Returns the vendor identifier of the tablet associated with the receiver.

vendorPointingDeviceType (page 622)
Returns a coded bit field whose set bits indicate the type of pointing device (within a vendor selection)
associated with the receiver.

Getting Tablet Pointing Information

absoluteX (page 610)
Reports the absolute x coordinate of a pointing device on its tablet at full tablet resolution.

absoluteY (page 610)
Reports the absolute y coordinate of a pointing device on its tablet at full tablet resolution.

absoluteZ (page 611)
Reports the absolute z coordinate of pointing device on its tablet at full tablet resolution.

buttonMask (page 611)
Returns a bit mask identifying the buttons pressed when the tablet event represented by the receiver
was generated.

rotation (page 618)
Returns the rotation in degrees of the tablet pointing device associated with the receiver.

tangentialPressure (page 619)
Reports the tangential pressure on the device that generated the event represented by the receiver.

606 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

tilt (page 620)
Reports the scaled tilt values of the pointing device that generated the event represented by the
receiver.

vendorDefined (page 622)
Returns an array of three vendor-defined NSNumber objects associated with the pointing-type event
represented by the receiver.

Constructors

NSEvent
Creates an empty NSEvent.

public NSEvent()

Static Methods

eventMaskFromType
Returns the event mask for the given eventType.

public static final int eventMaskFromType(int eventType)

Discussion
Event masks and event types are described in “Constants” (page 623).

keyEvent
Returns a new NSEvent object describing a key event.

public static NSEvent keyEvent(int type, NSPoint location, int flags, double time,
int windowNum, NSGraphicsContext context, String characters, String
unmodCharacters, boolean repeatKey, short code)

Discussion
type must be one of the following, or an InternalInconsistencyException is thrown:

KeyDown

KeyUp

FlagsChanged

The location argument is the cursor location in the base coordinate system of the window specified by
windowNum.

The flags argument is an integer bit field containing any of the modifier key masks described in
“Constants” (page 623), combined using the C bitwise OR operator.

Constructors 607
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

The time argument is the time the event occurred in seconds since system startup.

The windowNum argument identifies the window device associated with the event, which is associated with
the NSWindow that will receive the event.

The context argument is the display context of the event.

The characters argument is a string of characters associated with the key event. Though most key events
contain only one character, it is possible for a single keypress to generate a series of characters.

The unmodCharacters argument is the string of characters generated by the key event as if no modifier
key had been pressed (except for Shift). This argument is useful for getting the “basic” key value in a
hardware-independent manner.

The repeatKey argument is true if the key event is a repeat caused by the user holding the key down,
false if the key event is new.

The code argument identifies the keyboard key associated with the key event. Its value is
hardware-independent.

See Also
characters (page 612)
charactersIgnoringModifiers (page 612)
isARepeat (page 615)
keyCode (page 616)

mouseEvent
Returns a new NSEvent object describing a mouse-down, -up, -moved, or -dragged event.

public static NSEvent mouseEvent(int type, NSPoint location, int flags, double
time, int windowNum, NSGraphicsContext context, int eventNumber, int clickNumber,
float pressure)

Discussion
type must be one of the modifier key masks described in “Constants” (page 623), or an
InternalInconsistencyException is thrown.

The location, flags, time, windowNum, and context arguments are as described under keyEvent (page
607).

The eventNumber argument is an identifier for the new event. It’s normally taken from a counter for mouse
events, which continually increases as the application runs.

The clickNumber argument is the number of mouse clicks associated with the mouse event.

The pressure argument is a value from 0.0 to 1.0 indicating the pressure applied to the input device on a
mouse event, used for an appropriate device such as a graphics tablet. For devices that aren’t pressure-sensitive,
the value should be either 0.0 or 1.0.

See Also
clickCount (page 613)
eventNumber (page 615)
pressure (page 618)

608 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

mouseLocation
Exports the current mouse position, in screen coordinates. S

public static NSPoint mouseLocation()

Discussion
imilar to NSWindow’smouseLocationOutsideOfEventStream (page 1843), this method returns the location
regardless of the current event or pending events. The difference between these methods is that
mouseLocationOutsideOfEventStream returns a point in the receiving window’s coordinates and
mouseLocation returns the same information in screen coordinates.

otherEvent
Returns a new NSEvent object describing a custom event.

public static NSEvent otherEvent(int type, NSPoint location, int flags, double
time, int windowNum, NSGraphicsContext context, short subtype, int data1, int
data2)

Discussion
type must be one of the values below, or an InternalInconsistencyException is thrown. Your code
should only create events of type ApplicationDefined.

AppKitDefined

SystemDefined

ApplicationDefined

Periodic

The location, flags, time, windowNum, and context arguments are as described under keyEvent (page
607). Arguments specific to custom events are:

 ■ The subtype argument further differentiates custom events of types AppKitDefined, SystemDefined,
and ApplicationDefined. Periodic events don’t use this attribute.

 ■ The data1 and data2 arguments contain additional data associated with the event. Periodic events
don’t use these attributes.

See Also
subtype (page 618)
data1 (page 613)
data2 (page 614)

startPeriodicEvents
Begins generating periodic events for the current thread every periodSeconds, after a delay of
delaySeconds.

public static void startPeriodicEvents(double delaySeconds, double periodSeconds)

Static Methods 609
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

Discussion
Throws an InternalInconsistencyException if periodic events are already being generated for the
current thread. This method is typically used in a modal loop while tracking mouse-dragged events.

See Also
stopPeriodicEvents (page 610)

stopPeriodicEvents
Stops generating periodic events for the current thread and discards any periodic events remaining in the
queue.

public static void stopPeriodicEvents()

Discussion
This message is ignored if periodic events aren’t currently being generated.

See Also
startPeriodicEvents (page 609)

Instance Methods

absoluteX
Reports the absolute x coordinate of a pointing device on its tablet at full tablet resolution.

public int absoluteX()

Discussion
For the coordinate to be valid, the receiver should represent an event generated by a tablet pointing device
(otherwise 0 is returned). This method is valid only for mouse events with a subtype of
TabletPointEventSubtype and for events of type TabletPoint. Use this value if you want to scale from
tablet location to screen location yourself; otherwise use the class method mouseLocation (page 609) or
the instance method locationInWindow (page 616).

Availability
Available in Mac OS X v10.4 and later.

See Also
absoluteY (page 610)
absoluteZ (page 611)

absoluteY
Reports the absolute y coordinate of a pointing device on its tablet at full tablet resolution.

public int absoluteY()

610 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

Discussion
For the coordinate to be valid, the receiver should represent an event generated by a tablet pointing device
(otherwise 0 is returned). This method is valid only for mouse events with a subtype of
TabletPointEventSubtype and for events of type TabletPoint. Use this value if you want to scale from
tablet location to screen location yourself; otherwise use the class method mouseLocation (page 609) or
the instance method locationInWindow (page 616).

Availability
Available in Mac OS X v10.4 and later.

See Also
absoluteX (page 610)
absoluteZ (page 611)

absoluteZ
Reports the absolute z coordinate of pointing device on its tablet at full tablet resolution.

public int absoluteZ()

Discussion
For the coordinate to be valid, the receiver should represent an event generated by a tablet pointing device
(otherwise 0 is returned). The z coordinate does not represent pressure. It registers the depth coordinate
returned by some tablet devices with wheels; if the device is something other than these, 0 is returned. This
method is valid only for mouse events with a subtype of TabletPointEventSubtype and for events of
type TabletPoint.

Availability
Available in Mac OS X v10.4 and later.

See Also
absoluteX (page 610)
absoluteY (page 610)

buttonMask
Returns a bit mask identifying the buttons pressed when the tablet event represented by the receiver was
generated.

public int buttonMask()

Discussion
Use one or more of the button-mask constants described in “Constants” (page 623) to determine which
buttons of the pointing device are pressed. This method is valid only for mouse events with a subtype of
TabletPointEventSubtype and for events of type TabletPoint.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 611
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

buttonNumber
Returns the button number for the mouse button that generated an “OtherMouse” event.

public int buttonNumber()

Discussion
This method is intended for use with the “OtherMouse” events, but will return values for LeftMouse and
RightMouse events, also.

capabilityMask
Returns a mask whose set bits indicate the capabilities of the tablet device that generated the event
represented by the receiver.

public int capabilityMask()

Discussion
These bits are vendor-defined. This method is valid only for mouse events with a subtype of
TabletProximityEventSubtype and for events of type TabletProximity.

Availability
Available in Mac OS X v10.4 and later.

characters
Returns the characters associated with the receiving key-up or key-down event.

public String characters()

Discussion
These characters are derived from a keyboard mapping that associates various key combinations with Unicode
characters. Throws an InternalInconsistencyException if sent to any other kind of event.

This method will return an empty string for dead keys, such as option-E.

See Also
charactersIgnoringModifiers (page 612)
keyEvent (page 607)

charactersIgnoringModifiers
Returns the characters generated by the receiving key event as if no modifier key (except for Shift) applies.

public String charactersIgnoringModifiers()

Discussion
Throws an InternalInconsistencyException if sent to a nonkey event.

This method will return an empty string for dead keys, such as option-E.

612 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

This method is useful for determining “basic” key values in a hardware-independent manner, enabling such
features as keyboard equivalents defined in terms of modifier keys plus character keys. For example, to
determine if the user typed Alt-S, you don’t have to know whether Alt-S generates a German double ess, an
integral sign, or a section symbol. You simply examine the string returned by this method along with the
event’s modifier flags, checking for “s” and AlternateKeyMask.

See Also
characters (page 612)
modifierFlags (page 616)
keyEvent (page 607)

clickCount
Returns the number of mouse clicks associated with the receiver, a mouse-down or -up event.

public int clickCount()

Discussion
Throws an InternalInconsistencyException if sent to a nonmouse event.

Returns 0 for a mouse-up event if a time threshold has passed since the corresponding mouse-down event.
This is because if this time threshold passes before the mouse button is released, it is no longer considered
a mouse click, but a mouse-down event followed by a mouse-up event.

The return value of this method is meaningless for events other than mouse-down or -up events.

See Also
mouseEvent (page 608)

context
Returns the display context of the receiver.

public NSGraphicsContext context()

data1
Returns additional data associated with the receiver.

public int data1()

Discussion
The value returned by this method is dependent on the event type, and is defined by the originator of the
event. Throws an InternalInconsistencyException if sent to an event not of type AppKitDefined,
SystemDefined, ApplicationDefined, or Periodic.

Periodic events don’t use this attribute.

See Also
data2 (page 614)
subtype (page 618)

Instance Methods 613
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

otherEvent (page 609)

data2
Returns additional data associated with the receiver.

public int data2()

Discussion
The value returned by this method is dependent on the event type, and is defined by the originator of the
event. Throws an InternalInconsistencyException if sent to an event not of type AppKitDefined,
SystemDefined, ApplicationDefined, or Periodic.

Periodic events don’t use this attribute.

See Also
data1 (page 613)
subtype (page 618)
otherEvent (page 609)

deltaX
Returns the change in x for a scroll wheel, mouse-move, or mouse-drag event.

public float deltaX()

See Also
deltaY (page 614)
deltaZ (page 614)

deltaY
Returns the change in y for a scroll wheel, mouse-move, or mouse-drag event.

public float deltaY()

See Also
deltaX (page 614)
deltaZ (page 614)

deltaZ
Returns the change in z for a scroll wheel, mouse-move, or mouse-drag event.

public float deltaZ()

Discussion
This value is typically 0.0.

614 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

See Also
deltaX (page 614)
deltaY (page 614)

deviceID
Returns a special identifier that is used to match tablet-pointer events with the tablet-proximity event
represented by the receiver.

public int deviceID()

Discussion
All tablet-pointer events generated in the period between the device entering and leaving tablet proximity
have the same device ID. This message is valid only for mouse events with subtype
TabletPointEventSubtype or TabletProximityEventSubtype, and for TabletPoint and
TabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
pointingDeviceID (page 617)
systemTabletID (page 619)
tabletID (page 619)

eventNumber
Returns the counter value of the latest mouse or tracking-rectangle event; every system-generated mouse
and tracking-rectangle event increments this counter.

public int eventNumber()

Discussion
Throws an InternalInconsistencyException if sent to any other type of event.

See Also
mouseEvent (page 608)

isARepeat
Returns true if the receiving key event is a repeat caused by the user holding the key down, false if the
key event is new.

public boolean isARepeat()

Discussion
Throws an InternalInconsistencyException if sent to a FlagsChanged event or other nonkey event.

See Also
keyEvent (page 607)

Instance Methods 615
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

isEnteringProximity
Returns true to indicate that a pointing device is entering the proximity of its tablet and NOwhen it is leaving
it.

public boolean isEnteringProximity()

Discussion
This method is valid for mouse events with subtype TabletProximityEventSubtype and for
TabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

keyCode
Returns the virtual key code for the keyboard key associated with the receiving key event.

public short keyCode()

Discussion
Its value is hardware-independent. The value returned is the same as the value returned in the
kEventParamKeyCode when using Carbon Events.

Throws an InternalInconsistencyException if sent to a non-key event.

See Also
keyEvent (page 607)

locationInWindow
Returns the receiver’s location in the base coordinate system of the associated window.

public NSPoint locationInWindow()

Discussion
For nonmouse events the return value of this method is undefined.

In a method of a custom view that handles mouse events, you commonly use the locationInWindow
method in conjunction with the NSView method convertPointFromView (page 1744)to get the mouse
location in the view’s coordinate system. For example:

NSPoint event_location = [theEvent locationInWindow];
NSPoint local_point = [self convertPoint:event_location fromView:nil];

See Also
window (page 622)

modifierFlags
Returns an integer bit field indicating the modifier keys in effect for the receiver.

public int modifierFlags()

616 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

Discussion
You can examine individual flag settings using the C bitwise AND operator with the predefined key masks
described in “Constants” (page 623). The lower 16 bits of the modifier flags are reserved for device-dependent
bits.

pointingDeviceID
Returns the index of the pointing device currently in proximity with the tablet.

public int pointingDeviceID()

Discussion
This index is significant for multimode (or Dual Tracking) tablets that support multiple concurrent pointing
devices; the index is incremented for each pointing device that comes into proximity. Otherwise, zero is
always returned. The receiver of this message should be a mouse event object with subtype
TabletProximityEventSubtype or an event of type TabletProximity.

Availability
Available in Mac OS X v10.4 and later.

See Also
pointingDeviceSerialNumber (page 617)
pointingDeviceType (page 617)
systemTabletID (page 619)

pointingDeviceSerialNumber
Returns the vendor-assigned serial number of a pointing device of a certain type.

public int pointingDeviceSerialNumber()

Discussion
Devices of different types, such as a puck and a pen, may have the same serial number. The receiver of this
message should be a mouse event object with subtype TabletProximityEventSubtype or an event of
type TabletProximity.

Availability
Available in Mac OS X v10.4 and later.

See Also
pointingDeviceID (page 617)
pointingDeviceType (page 617)

pointingDeviceType
Returns a constant indicating the kind of pointing device associated with the receiver.

public int pointingDeviceType()

Instance Methods 617
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

Discussion
For example, the device could be a pen, eraser, or cursor pointing device. This method is valid for mouse
events with subtype TabletProximityEventSubtype and for TabletProximity events. See
“Constants” (page 623) for descriptions of valid constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
pointingDeviceSerialNumber (page 617)
pointingDeviceType (page 617)

pressure
Returns a value from 0.0 through 1.0 indicating the pressure applied to the input device (used for appropriate
devices).

public float pressure()

Discussion
For devices that aren’t pressure-sensitive, the value is either 0.0 or 1.0. Throws an
InternalInconsistencyException if sent to a nonmouse event.

For tablet pointing devices that are in proximity, the pressure value is 0.0 if they are not actually touching
the tablet. As the device is pressed into the tablet, the value is increased.

See Also
mouseEvent (page 608)
rotation (page 618)

rotation
Returns the rotation in degrees of the tablet pointing device associated with the receiver.

public float rotation()

Discussion
Many devices do not support rotation, in which case the returned value is 0.0. This method is valid only for
mouse events with subtype TabletPointEventSubtype and for TabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

See Also
pressure (page 618)
tilt (page 620)

subtype
Returns the subtype of the receiving custom event.

618 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

public short subtype()

Discussion
Throws an InternalInconsistencyException if sent to an event not of type AppKitDefined,
SystemDefined, ApplicationDefined, or Periodic.

Periodic events don’t use this attribute.

See Also
data1 (page 613)
data2 (page 614)
otherEvent (page 609)

systemTabletID
Returns the index of the tablet device connected to the system.

public int systemTabletID()

Discussion
If multiple tablets are connected to the system, the system-tablet ID is incremented for each subsequent
one. If there is only one tablet device, its system-tablet ID is zero. The receiver of this message should be a
mouse event object with subtype TabletProximityEventSubtype or an event of type TabletProximity.

Availability
Available in Mac OS X v10.4 and later.

See Also
pointingDeviceID (page 617)
tabletID (page 619)

tabletID
Returns the USB model identifier of the tablet device associated with the receiver.

public int tabletID()

Discussion
This method is valid for mouse events with subtype TabletProximityEventSubtype and for
TabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
pointingDeviceID (page 617)
systemTabletID (page 619)

tangentialPressure
Reports the tangential pressure on the device that generated the event represented by the receiver.

Instance Methods 619
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

public float tangentialPressure()

Discussion
The value returned can range from -1.0 to 1.0. Tangential pressure is also known as barrel pressure. Only
some pointing devices support tangential pressure. This method is valid for mouse events with subtype
TabletPointEventSubtype and for TabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

See Also
pressure (page 618)

tilt
Reports the scaled tilt values of the pointing device that generated the event represented by the receiver.

public NSPoint tilt()

Discussion
The value returned can range from -1.0 to 1.0 for both axes. A x value that is negative indicates a tilt to the
left and a positive value indicates a tilt to the right; a y value that is negative indicates a tilt to the top and a
positive value indicates a tilt to the bottom. If the device is perfectly perpendicular to the table surface, the
values are 0.0 for both axes. This method is valid for mouse events with subtype TabletPointEventSubtype
and for TabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

See Also
pressure (page 618)
rotation (page 618)

timestamp
Returns the time the receiver occurred in seconds since system startup.

public double timestamp()

trackingNumber
Returns the identifier of the tracking rectangle for a tracking-rectangle event.

public int trackingNumber()

Discussion
Throws an InternalInconsistencyException if sent to any other type of event.

620 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

type
Returns the type of the receiving event.

public int type()

Discussion
The type must be one of the following:

LeftMouseDown

LeftMouseUp

RightMouseDown

RightMouseUp

OtherMouseDown

OtherMouseUp

MouseMoved

LeftMouseDragged

RightMouseDragged

OtherMouseDragged

MouseEntered

MouseExited

KeyDown

KeyUp

FlagsChanged

AppKitDefined

SystemDefined

ApplicationDefined

Periodic

CursorUpdate

ScrollWheel

uniqueID
Returns the unique identifier of the pointing device that generated the event represented by the receiver.

public int uniqueID()

Discussion
Also known as tool ID, this is a unique number recorded in the chip inside every pointing device. The unique
ID makes it possible to assign a specific pointing device to a specific tablet. You can also use it to “sign”
documents or to restrict access to document layers to a specific pointing device. This method is valid for
mouse events with subtype TabletProximityEventSubtype and for TabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
vendorDefined (page 622)
vendorID (page 622)

Instance Methods 621
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

vendorDefined
Returns an array of three vendor-defined NSNumber objects associated with the pointing-type event
represented by the receiver.

public Object vendorDefined()

Discussion
The NSNumbers encapsulate short values that vendors may return for various reasons; see the vendor
documentation for details.This method is valid for mouse events with subtype TabletPointEventSubtype
and for TabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

vendorID
Returns the vendor identifier of the tablet associated with the receiver.

public int vendorID()

Discussion
The tablet is typically a USB device. This method is valid only for mouse events with subtype
TabletProximityEventSubtype and for TabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
tabletID (page 619)
vendorPointingDeviceType (page 622)

vendorPointingDeviceType
Returns a coded bit field whose set bits indicate the type of pointing device (within a vendor selection)
associated with the receiver.

public int vendorPointingDeviceType()

Discussion
See the vendor documentation for an interpretation of significant bits. This method is valid only for mouse
events with subtype TabletProximityEventSubtype and for TabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
vendorID (page 622)

window
Returns the window object associated with the receiver.

622 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

public NSWindow window()

Discussion
A periodic event, however, has no window; in this case the return value is undefined.

See Also
windowNumber (page 623)

windowNumber
Returns the identifier for the window device associated with the receiver.

public int windowNumber()

Discussion
A periodic event, however, has no window; in this case the return value is undefined.

See Also
window (page 622)

Constants

These constants represent various kinds of events. They are returned by type (page 621) and are used as the
first argument to the methods keyEvent (page 607), mouseEvent (page 608), and otherEvent (page 609).

DescriptionConstant

See “Mouse Events”.LeftMouseDown

See “Mouse Events”.LeftMouseUp

See “Mouse Events”.RightMouseDown

See “Mouse Events”.RightMouseUp

See “Mouse Events”.OtherMouseDown

See “Mouse Events”.OtherMouseUp

See “Mouse Events”.MouseMoved

See “Mouse Events”.LeftMouseDragged

See “Mouse Events”.RightMouseDragged

See “Mouse Events”.OtherMouseDragged

See “Tracking-Rectangle and Cursor-Update Events”.MouseEntered

See “Tracking-Rectangle and Cursor-Update Events”.MouseExited

See “Tracking-Rectangle and Cursor-Update Events”.CursorUpdate

Constants 623
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

DescriptionConstant

See “Keyboard Events”.KeyDown

See “Keyboard Events”.KeyUp

See “Keyboard Events”.FlagsChanged

See “Other Events”.AppKitDefined

See “Other Events”.SystemDefined

See “Other Events”.ApplicationDefined

See “Periodic Events”.Periodic

See “Mouse Events”.ScrollWheel

An event representing the current state of a tablet pointing device, including its
location, pressure, and tilt.
Available in Mac OS X v10.4 and later.

TabletPoint

An event representing the proximity of a pointing device to its tablet.
Available in Mac OS X v10.4 and later.

TabletProximity

These constants are masks for the events listed above. Pass them to the NSCell method
setEventMaskForSendingAction (page 324) to specify when an NSCell should send its action message.

DescriptionConstant

Corresponds to LeftMouseDown. See “Mouse Events”.LeftMouseDownMask

Corresponds to LeftMouseUp. See “Mouse Events”.LeftMouseUpMask

Corresponds to RightMouseDown. See “Mouse Events”.RightMouseDownMask

Corresponds to RightMouseUp. See “Mouse Events”.RightMouseUpMask

Corresponds to OtherMouseDown. See “Mouse Events”.OtherMouseDownMask

Corresponds to OtherMouseUp. See “Mouse Events”.OtherMouseUpMask

Corresponds to MouseMoved. See “Mouse Events”.MouseMovedMask

Corresponds to LeftMouseDragged. See “Mouse Events”.LeftMouseDraggedMask

Corresponds to RightMouseDragged. See “Mouse Events”.RightMouseDraggedMask

Corresponds to OtherMouseDragged. See “Mouse Events”.OtherMouseDraggedMask

Corresponds to MouseEntered. See “Tracking-Rectangle and Cursor-Update
Events”.

MouseEnteredMask

Corresponds to MouseExited. See “Tracking-Rectangle and Cursor-Update
Events”.

MouseExitedMask

624 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

DescriptionConstant

Corresponds to CursorUpdate. See “Tracking-Rectangle and Cursor-Update
Events”.

CursorUpdateMask

Corresponds to KeyDown. See “Keyboard Events”.KeyDownMask

Corresponds to KeyUp. See “Keyboard Events”.KeyUpMask

Corresponds to FlagsChanged. See “Keyboard Events”.FlagsChangedMask

Corresponds to AppKitDefined. See “Other Events”.AppKitDefinedMask

Corresponds to SystemDefined. See “Other Events”.SystemDefinedMask

Corresponds to ApplicationDefined. See “Other Events”.ApplicationDefinedMask

Corresponds to Periodic. See “Periodic Events”.PeriodicMask

Corresponds to ScrollWheel. See “Mouse Events”.ScrollWheelMask

Corresponds to TabletPoint.
Available in Mac OS X v10.4 and later.

TabletPointMask

Corresponds to TabletProximity.
Available in Mac OS X v10.4 and later.

TabletProximityMask

Corresponds to any of the above events.AnyEventMask

The following constants represent pointing-device types for TabletProximity events or mouse events
with subtype TabletProximityEventSubtype. The pointingDeviceType (page 617) method returns
one of these constants.

DescriptionConstant

Represents an unknown type of pointing device.
Available in Mac OS X v10.4 and later.

UnknownPointingDevice

Represents the tip end of a stylus-like pointing device.
Available in Mac OS X v10.4 and later.

PenPointingDevice

Represents a cursor (or puck-like) pointing device.
Available in Mac OS X v10.4 and later.

CursorPointingDevice

Represents the eraser end of a stylus-like pointing device.
Available in Mac OS X v10.4 and later.

EraserPointingDevice

The following constants represent button masks for TabletPoint events or mouse events with subtype
TabletPointEventSubtype. The buttonMask (page 611) method returns a bit mask, which you test with
one or more of these constants to determine the state of the buttons on a tablet pointing device.

Constants 625
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

DescriptionConstant

The pen tip is activated.
Available in Mac OS X v10.4 and later.

PenTipMask

The button on the lower side of the device is activated.
Available in Mac OS X v10.4 and later.

PenLowerSideMask

The button on the upper side of the device is activated.
Available in Mac OS X v10.4 and later.

PenUpperSideMask

The following constants represent mouse-event subtypes for mouse and tablet events (accessed with the
subtype (page 618) method).

DescriptionConstant

Indicates a purely mouse event.
Available in Mac OS X v10.4 and later.

MouseEventSubtype

Indicates a tablet-pointer event; see description of TabletPoint.
Available in Mac OS X v10.4 and later.

TabletPointEventSubtype

Indicates a tablet-proximity event; see description of
TabletProximity.
Available in Mac OS X v10.4 and later.

TabletProximityEventSubtype

The following constants (except forDeviceIndependentModifierFlagsMask) represent device-independent
bits found in event modifier flags:

DescriptionConstant

Set if Caps Lock key is pressed.AlphaShiftKeyMask

Set if Shift key is pressed.ShiftKeyMask

Set if Control key is pressed.ControlKeyMask

Set if Option or Alternate key is pressed.AlternateKeyMask

Set if Command key is pressed.CommandKeyMask

Set if any key in the numeric keypad is pressed. The numeric keypad
is generally on the right side of the keyboard.

NumericPadKeyMask

Set if the Help key is pressed.HelpKeyMask

Set if any function key is pressed. The function keys include the F keys
at the top of most keyboards (F1, F2, and so on) and the navigation
keys in the center of most keyboards (Help, Forward Delete, Home,
End, Page Up, Page Down, and the arrow keys).

FunctionKeyMask

626 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

DescriptionConstant

Used to retrieve only the device-independent modifier flags, allowing
applications to mask off the device-dependent modifier flags, including
event coalescing information.
Available in Mac OS X v10.4.

DeviceIndependent-
ModifierFlagsMask

These constants represent Unicode characters (0xF700–0xF8FF) that are reserved for function keys on the
keyboard. Combined in Strings, they are the return values of the NSEvent methods characters (page 612)
and charactersIgnoringModifiers (page 612) and may be used in some parameters in the NSEvent
method keyEvent (page 607).

Note that some function keys are handled at a lower level and are never seen by your application. They
include the Volume Up key, Volume Down key, Volume Mute key, Eject key, and Function key found on many
iBook and PowerBook computers.

DescriptionConstant

Up Arrow key.UpArrowFunctionKey

Down Arrow key.DownArrowFunctionKey

Left Arrow key.LeftArrowFunctionKey

Right Arrow key.RightArrowFunctionKey

F1 key.F1FunctionKey

F2 key.F2FunctionKey

F3 key.F3FunctionKey

F4 key.F4FunctionKey

F5 key.F5FunctionKey

F6 key.F6FunctionKey

F7 key.F7FunctionKey

F8 key.F8FunctionKey

F9 key.F9FunctionKey

F10 key.F10FunctionKey

F11 key.F11FunctionKey

F12 key.F12FunctionKey

F13 key.F13FunctionKey

F14 key.F14FunctionKey

F15 key.F15FunctionKey

Constants 627
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

DescriptionConstant

F16 key. Not on most Macintosh keyboards.F16FunctionKey

F17 key. Not on most Macintosh keyboards.F17FunctionKey

F18 key. Not on most Macintosh keyboards.F18FunctionKey

F19 key. Not on most Macintosh keyboards.F19FunctionKey

F20 key. Not on most Macintosh keyboards.F20FunctionKey

F21 key. Not on most Macintosh keyboards.F21FunctionKey

F22 key. Not on most Macintosh keyboards.F22FunctionKey

F23 key. Not on most Macintosh keyboards.F23FunctionKey

F24 key. Not on most Macintosh keyboards.F24FunctionKey

F25 key. Not on most Macintosh keyboards.F25FunctionKey

F26 key. Not on most Macintosh keyboards.F26FunctionKey

F27 key. Not on most Macintosh keyboards.F27FunctionKey

F28 key. Not on most Macintosh keyboards.F28FunctionKey

F29 key. Not on most Macintosh keyboards.F29FunctionKey

F30 key. Not on most Macintosh keyboards.F30FunctionKey

F31 key. Not on most Macintosh keyboards.F31FunctionKey

F32 key. Not on most Macintosh keyboards.F32FunctionKey

F33 key. Not on most Macintosh keyboards.F33FunctionKey

F34 key. Not on most Macintosh keyboards.F34FunctionKey

F35 key. Not on most Macintosh keyboards.F35FunctionKey

Insert key. Not on most Macintosh keyboards.InsertFunctionKey

Forward Delete key.DeleteFunctionKey

Home key.HomeFunctionKey

Begin key. Not on most Macintosh keyboards.BeginFunctionKey

End key.EndFunctionKey

Page Up key.PageUpFunctionKey

Page Down key.PageDownFunctionKey

Print Screen key. Not on most Macintosh keyboards.PrintScreenFunctionKey

628 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

DescriptionConstant

Scroll Lock key. Not on most Macintosh keyboards.ScrollLockFunctionKey

Pause key. Not on most Macintosh keyboards.PauseFunctionKey

System Request key. Not on most Macintosh keyboards.SysReqFunctionKey

Break key. Not on most Macintosh keyboards.BreakFunctionKey

Reset key. Not on most Macintosh keyboards.ResetFunctionKey

Stop key. Not on most Macintosh keyboards.StopFunctionKey

Menu key. Not on most Macintosh keyboards.MenuFunctionKey

User key. Not on most Macintosh keyboards.UserFunctionKey

System key. Not on most Macintosh keyboards.SystemFunctionKey

Print key. Not on most Macintosh keyboards.PrintFunctionKey

Clear/Num Lock key.ClearLineFunctionKey

Clear Display key. Not on most Macintosh keyboards.ClearDisplayFunctionKey

Insert Line key. Not on most Macintosh keyboards.InsertLineFunctionKey

Delete Line key. Not on most Macintosh keyboards.DeleteLineFunctionKey

Insert Character key. Not on most Macintosh keyboards.InsertCharFunctionKey

Delete Character key. Not on most Macintosh keyboards.DeleteCharFunctionKey

Previous key. Not on most Macintosh keyboards.PrevFunctionKey

Next key. Not on most Macintosh keyboards.NextFunctionKey

Select key. Not on most Macintosh keyboards.SelectFunctionKey

Execute key. Not on most Macintosh keyboards.ExecuteFunctionKey

Undo key. Not on most Macintosh keyboards.UndoFunctionKey

Redo key. Not on most Macintosh keyboards.RedoFunctionKey

Find key. Not on most Macintosh keyboards.FindFunctionKey

Help key.HelpFunctionKey

Mode Switch key. Not on most Macintosh keyboards.ModeSwitchFunctionKey

Constants 629
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

630 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

NSEvent

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Application File Management

Overview

An NSFileWrapper holds a file’s contents in dynamic memory. In this role it enables a document object to
embed a file, treating it as a unit of data that can be displayed as an image (and possibly edited in place),
saved to disk, or transmitted to another application. It can also store an icon for representing the file in a
document or in a dragging operation.

Tasks

Constructors

NSFileWrapper (page 633)
Creates an empty NSFileWrapper.

Writing to a File or Serializing

writeToFile (page 641)
Writes the receiver’s contents to a file or directory at path.

serializedRepresentation (page 639)
Returns the receiver’s contents as an opaque collection of data, in the format used for the pasteboard
type NSPasteboard.FileContentsPboardType.

Checking a File Wrapper’s Type

isRegularFile (page 637)
Returns true if the receiver is a regular file wrapper, false otherwise.

isDirectory (page 637)
Returns true if the receiver is a directory wrapper, false otherwise.

Overview 631
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

isSymbolicLink (page 637)
Returns true if the receiver is a link wrapper, false otherwise.

Setting Attributes

setFilename (page 639)
Sets the filename for the disk representation of the receiver to filename.

filename (page 636)
Returns the filename for the last known disk representation of the receiver, or null if the receiver
has no filename.

setPreferredFilename (page 640)
Sets the receiver’s preferred filename to filename.

preferredFilename (page 638)
Returns the file wrapper’s preferred filename.

setIcon (page 640)
Sets the image that can be used to represent the file wrapper to the user to anImage.

icon (page 636)
Returns an image that can be used to represent the file wrapper to the user, or null if the file wrapper
has none.

setFileAttributes (page 639)
Sets the file attributes applied whenever the file wrapper is saved using writeToFile (page 641) to
attributes.

fileAttributes (page 636)
Returns the file attributes last read from disk or set using setFileAttributes (page 639).

Updating

needsToBeUpdatedFromPath (page 638)
Returns true if the receiver’s contents on disk may have changed, false otherwise.

updateFromPath (page 640)
Rereads the file wrapper’s information from the file or directory at path, including contents or link
destination, icon, and file attributes.

Modifying a Directory Wrapper

addFileWrapper (page 634)
Adds wrapper to the receiving directory wrapper.

removeFileWrapper (page 638)
Removes wrapper from the receiving directory wrapper and releases it.

addFileWithPath (page 634)
Adds a new file wrapper to the receiving directory wrapper.

addRegularFileWithContents (page 635)
Adds a new regular file wrapper to the receiving directory wrapper.

632 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

addSymbolicLinkWithDestination (page 635)
Adds a new link wrapper to the receiving directory wrapper.

fileWrappers (page 636)
Returns the file wrappers contained in a directory wrapper.

keyForFileWrapper (page 637)
Returns the key by which the receiving directory wrapper stores wrapper in its dictionary (as returned
by the fileWrappers (page 636) method).

Inspecting a Regular File Wrapper

regularFileContents (page 638)
Returns the contents of the receiving regular file wrapper.

Inspecting a Link Wrapper

symbolicLinkDestination (page 640)
Returns the actual path represented by the receiving link wrapper.

Constructors

NSFileWrapper
Creates an empty NSFileWrapper.

public NSFileWrapper()

Creates a new NSFileWrapper, based on symLink.

public NSFileWrapper(String path, boolean symLink)

Discussion
If symLink is true, the NSFileWrapper is a link wrapper pointing to path. The new file wrapper has no
filename or associated disk representation until you save it using writeToFile (page 641). It’s also initialized
with open permissions; anyone can read or write the disk representations it saves.

If symLink is false, the NSFileWrapper is initialized with the file or directory at path, setting its type to
regular file, directory, or link wrapper based on the type of that file and caching the file’s attributes. Also sets
the wrapper’s preferred filename and recorded filename to the last component of path. If path identifies a
directory, this method recursively creates file wrappers for each file or directory within that directory.

Creates a new NSFileWrapper based on serialized.

public NSFileWrapper(NSData data, boolean serialized)

Constructors 633
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

Discussion
If serialized is true, the NSFileWrapper is initialized with data, setting its type to regular file, directory,
or link wrapper based on the nature of that data and reading the file attributes from the data as well. data
is a serialized representation of a file’s or directory’s contents in the format used for the pasteboard type
NSPasteboard.FileContentsPboardType. Data of this format is returned by such methods as
serializedRepresentation (page 639) or NSAttributedString’s RTFFromRange.

The new file wrapper has no filename or associated disk representation until you save it using
writeToFile (page 641).

If serialized is false, the NSFileWrapper is initialized as a regular file wrapper with data. The new file
wrapper has no filename or associated disk representation until you save it using writeToFile (page 641).
It’s also initialized with open permissions; anyone can read or write the disk representations that it saves.

Creates a new NSFileWrapper as a directory wrapper containing wrappers.

public NSFileWrapper(NSDictionary aDictionary)

Discussion
The new directory wrapper has no filename or associated disk representation until you save it using
writeToFile (page 641). It’s also initialized with open permissions; anyone can read, write, or change
directory to the disk representations that it saves.

If any file wrapper in wrappers doesn’t have a preferred name, its preferred name is automatically set to its
corresponding dictionary key in wrappers.

Instance Methods

addFileWithPath
Adds a new file wrapper to the receiving directory wrapper.

public String addFileWithPath(String path)

Discussion
Initializes the new file wrapper using path , then adds the new file wrapper by invoking
addFileWrapper (page 634). Returns the dictionary key used for the newly added file wrapper within the
directory wrapper. Throws an InternalInconsistencyException if sent to a regular file or link wrapper.

See Also
addRegularFileWithContents (page 635)
addSymbolicLinkWithDestination (page 635)
removeFileWrapper (page 638)
fileWrappers (page 636)

addFileWrapper
Adds wrapper to the receiving directory wrapper.

public String addFileWrapper(NSFileWrapper wrapper)

634 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

Discussion
Returns the dictionary key used for wrapper within the directory wrapper. Throws an
InternalInconsistencyException if sent to a regular file or link wrapper or an
InvalidArgumentException if wrapper doesn’t have a preferred name (set using
setPreferredFilename (page 640)).

See Also
addFileWithPath (page 634)
addRegularFileWithContents (page 635)
addSymbolicLinkWithDestination (page 635)
removeFileWrapper (page 638)
fileWrappers (page 636)

addRegularFileWithContents
Adds a new regular file wrapper to the receiving directory wrapper.

public String addRegularFileWithContents(NSData contents, String filename)

Discussion
Initializes the new file wrapper using contents, sets its preferred name with setPreferredFilename (page
640) using filename as the argument, then adds the new file wrapper by invoking addFileWrapper (page
634). Returns the dictionary key used for the newly added file wrapper within the directory wrapper. Throws
an InternalInconsistencyException if sent to a regular file or link wrapper or an
InvalidArgumentException if filename is null or empty.

See Also
addFileWithPath (page 634)
addSymbolicLinkWithDestination (page 635)
removeFileWrapper (page 638)
fileWrappers (page 636)

addSymbolicLinkWithDestination
Adds a new link wrapper to the receiving directory wrapper.

public String addSymbolicLinkWithDestination(String path, String filename)

Discussion
Initializes the new link wrapper , sets its preferred name with setPreferredFilename (page 640) using
filename as the argument, then adds the new link wrapper by invoking addFileWrapper (page 634).
Returns the dictionary key used for the newly added link wrapper within the directory wrapper. Throws an
InternalInconsistencyException if sent to a regular file or link wrapper or an
InvalidArgumentException if filename is null or empty.

See Also
addFileWithPath (page 634)
addFileWrapper (page 634)
addRegularFileWithContents (page 635)
removeFileWrapper (page 638)

Instance Methods 635
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

fileWrappers (page 636)

fileAttributes
Returns the file attributes last read from disk or set using setFileAttributes (page 639).

public NSDictionary fileAttributes()

Discussion
These attributes are used whenever the file wrapper is saved using writeToFile (page 641). See
NSPathUtilities for information on the contents of the attributes dictionary.

filename
Returns the filename for the last known disk representation of the receiver, or null if the receiver has no
filename.

public String filename()

Discussion
The filename is used for record-keeping purposes only and is set automatically when the file wrapper is
created from disk and when it’s saved to a disk using writeToFile (page 641) (although this method allows
you to request that the filename not be updated).

See Also
preferredFilename (page 638)
setFilename (page 639)

fileWrappers
Returns the file wrappers contained in a directory wrapper.

public NSDictionary fileWrappers()

Discussion
Throws an InternalInconsistencyException if sent to a regular file or link wrapper. See “Working With
Directory Wrappers” for information on the dictionary.

See Also
filename (page 636)
addFileWrapper (page 634)

icon
Returns an image that can be used to represent the file wrapper to the user, or null if the file wrapper has
none.

public NSImage icon()

636 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

Discussion
You don’t have to use this image; for example, a file viewer typically looks up icons automatically based on
file extensions, and so wouldn’t need this image. Similarly, if a file wrapper represents an image file, you can
display the image directly rather than a file icon.

See Also
setIcon (page 640)

isDirectory
Returns true if the receiver is a directory wrapper, false otherwise.

public boolean isDirectory()

See Also
isRegularFile (page 637)
isSymbolicLink (page 637)

isRegularFile
Returns true if the receiver is a regular file wrapper, false otherwise.

public boolean isRegularFile()

See Also
isDirectory (page 637)
isSymbolicLink (page 637)

isSymbolicLink
Returns true if the receiver is a link wrapper, false otherwise.

public boolean isSymbolicLink()

See Also
isDirectory (page 637)
isRegularFile (page 637)

keyForFileWrapper
Returns the key by which the receiving directory wrapper stores wrapper in its dictionary (as returned by
the fileWrappers (page 636) method).

public String keyForFileWrapper(NSFileWrapper wrapper)

Discussion
This key is not necessarily the filename for wrapper. Throws an InternalInconsistencyException if
sent to a regular file or link wrapper.

Instance Methods 637
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

See Also
filename (page 636)

needsToBeUpdatedFromPath
Returns true if the receiver’s contents on disk may have changed, false otherwise.

public boolean needsToBeUpdatedFromPath(String path)

Discussion
For a regular file wrapper, whether contents have changed is determined by comparing the modification
time and access permissions of the file or directory at path against those of the receiver. For a link wrapper,
whether contents have changed is determined by checking whether the destination path has changed (not
by checking the modification time or access attributes of the destination). For a directory, whether contents
have changed is determined as needed recursively for each file wrapper contained in the directory; added
or removed files also count as changes.

See Also
updateFromPath (page 640)
fileAttributes (page 636)

preferredFilename
Returns the file wrapper’s preferred filename.

public String preferredFilename()

Discussion
This name is used as the default dictionary key and filename when a file wrapper is added to a directory
wrapper. However, if another file wrapper with the same preferred name already exists in the directory
wrapper when the receiver is added, the dictionary key and filename assigned may differ from the preferred
filename.

See Also
setPreferredFilename (page 640)
filename (page 636)

regularFileContents
Returns the contents of the receiving regular file wrapper.

public NSData regularFileContents()

Discussion
Throws an InternalInconsistencyException if sent to a directory or link wrapper.

removeFileWrapper
Removes wrapper from the receiving directory wrapper and releases it.

638 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

public void removeFileWrapper(NSFileWrapper wrapper)

Discussion
Throws an InternalInconsistencyException if sent to a regular file or link wrapper.

See Also
addFileWithPath (page 634)
addFileWrapper (page 634)
addRegularFileWithContents (page 635)
addSymbolicLinkWithDestination (page 635)
fileWrappers (page 636)

serializedRepresentation
Returns the receiver’s contents as an opaque collection of data, in the format used for the pasteboard type
NSPasteboard.FileContentsPboardType.

public NSData serializedRepresentation()

setFileAttributes
Sets the file attributes applied whenever the file wrapper is saved using writeToFile (page 641) to
attributes.

public void setFileAttributes(NSDictionary attributes)

Discussion
See NSPathUtilities for information on the contents of the attributes dictionary.

See Also
fileAttributes (page 636)

setFilename
Sets the filename for the disk representation of the receiver to filename.

public void setFilename(String filename)

Discussion
The filename is used for record-keeping purposes only and is set automatically when the file wrapper is saved
to a disk using writeToFile (page 641) (although this method allows you to request that the filename not
be updated). You should rarely need to invoke this method.

Throws an InvalidArgumentException if filename is null or empty.

See Also
setPreferredFilename (page 640)
filename (page 636)

Instance Methods 639
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

setIcon
Sets the image that can be used to represent the file wrapper to the user to anImage.

public void setIcon(NSImage anImage)

Discussion
You don’t have to use this image; for example, a file viewer typically looks up icons automatically based on
file extensions and so wouldn’t need this image. Similarly, if a file wrapper represents an image file, you can
display the image directly rather than a file icon.

See Also
icon (page 636)

setPreferredFilename
Sets the receiver’s preferred filename to filename.

public void setPreferredFilename(String filename)

Discussion
This name is used as the default dictionary key and filename when a file wrapper is added to a directory
wrapper. However, if another file wrapper with the same preferred name already exists in the directory
wrapper when the receiver is added, the dictionary key and filename assigned may differ from the preferred
filename. Throws an InvalidArgumentException if filename is null or empty.

See Also
preferredFilename (page 638)
addFileWrapper (page 634)
setFilename (page 639)

symbolicLinkDestination
Returns the actual path represented by the receiving link wrapper.

public String symbolicLinkDestination()

Discussion
Throws InternalInconsistencyException if sent to a regular file or directory wrapper.

updateFromPath
Rereads the file wrapper’s information from the file or directory at path, including contents or link destination,
icon, and file attributes.

public boolean updateFromPath(String path)

Discussion
For a directory wrapper, the contained file wrappers are also sent updateFromPath messages. If files in the
directory on disk have been added or removed, corresponding file wrappers are released or created as needed.
Returns true if updating actually occurred, false if it wasn’t necessary.

640 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

See Also
needsToBeUpdatedFromPath (page 638)

writeToFile
Writes the receiver’s contents to a file or directory at path.

public boolean writeToFile(String path, boolean atomicFlag, boolean updateNamesFlag)

Discussion
Returns true on success and false on failure. If atomicFlag is true, attempts to write the file safely so
that an existing file at path is not overwritten, nor does a new file at path actually get created, unless the
write is successful. If updateNamesFlag is true and the contents are successfully written, changes the
receiver’s filename to the last component of path, and the filenames of any children of a directory wrapper
to the filenames under which they’re written to disk.

If you’re executing a Save or Save As operation, pass true for updateNamesFlag; if you’re executing a Save
To operation, pass false for updateNamesFlag.

See Also
filename (page 636)

Instance Methods 641
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

642 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

NSFileWrapper

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Font Handling

Overview

NSFont objects represent fonts to an application, providing access to characteristics of the font and assistance
in laying out glyphs relative to one another. Font objects are also used to establish the current font when
drawing in an NSView, using the set (page 661) method.

You don’t create NSFont objects using a constructor. Instead, you use fontWithNameAndSize (page 648)
to look up an available font and alter its size or matrix to your needs. These methods check for an existing
font object with the specified characteristics, returning it if there is one. Otherwise, they look up the font
data requested and create the appropriate object. NSFont also defines a number of methods for getting
standard system fonts, such as systemFontOfSize (page 652), userFontOfSize (page 654), and
messageFontOfSize (page 650). To request the default size for these standard fonts, pass a negative number
or 0 as the font size.

Tasks

Constructors

NSFont (page 647)
Creates an empty NSFont.

Creating Arbitrary Fonts

fontWithNameAndSize (page 648)
Returns a font object for fontName and fontSize.

fontWithNameAndMatrix (page 648)
Returns a font object for typeface and fontMatrix.

Overview 643
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Creating User Fonts

userFontOfSize (page 654)
Returns the font used by default for documents and other text under the user’s control (that is, text
whose font the user can normally change).

userFixedPitchFontOfSize (page 653)
Returns the font used by default for documents and other text under the user’s control (that is, text
whose font the user can normally change), when that font should be fixed-pitch.

Creating System Fonts

boldSystemFontOfSize (page 648)
Returns the Aqua system font used for standard interface items that are rendered in boldface type,
in fontSize.

controlContentFontOfSize (page 648)
Returns the font used for the content of controls, in fontSize.

labelFontOfSize (page 649)
Returns the Aqua font used for standard interface labels in fontSize.

menuFontOfSize (page 649)
Returns the font used for menu items in fontSize.

menuBarFontOfSize (page 649)
Returns the font used for menu bar items in fontSize.

messageFontOfSize (page 650)
Returns the font used for standard interface items, such as button labels, menu items, and so on, in
fontSize.

paletteFontOfSize (page 650)
Returns the font used for palette window title bars.

systemFontOfSize (page 652)
Returns the Aqua system font used for standard interface items, such as button labels, menu items,
and so on, in fontSize.

titleBarFontOfSize (page 652)
Returns the font used for window title bars, in fontSize.

toolTipsFontOfSize (page 653)
Returns the font used for tool tips labels, in fontSize.

Getting Preferred Fonts

setPreferredFontNames (page 650)
This method is deprecated.

preferredFontNames (page 650)
This method is deprecated. NSFontCascadeListAttribute offers more powerful font substitution
management.

644 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Using a Font to Draw

set (page 661)
Establishes the receiver as the current font for PostScript show and other text-drawing operators.

Getting General Font Information

coveredCharacterSet (page 656)
Returns an NSCharacterSet containing all of the nominal characters renderable by the receiver, which
is all of the entries mapped in the receiver’s ‘cmap’ table.

encodingScheme (page 657)
This method is deprecated.

fontDescriptor (page 657)
Returns the receiver’s font descriptor.

isBaseFont (page 658)
This method is deprecated.

isFixedPitch (page 659)
Returns true if all glyphs in the receiver have the same advancement, false if any advancements
differ.

mostCompatibleStringEncoding (page 659)
Returns the string encoding that works best with the receiver, where there are the fewest possible
unmatched characters in the string encoding and glyphs in the font.

Getting Information About Glyphs

glyphIsEncoded (page 658)
This method is deprecated. The value can be deduced by aGlyph < [NSFont numberOfGlyphs]
since only NSNativeShortGlyphPacking is supported.

glyphPacking (page 658)
This method is deprecated.

glyphWithName (page 658)
Returns the encoded glyph named glyphName, or –1 if the receiver contains no such glyph.

Getting Metrics Information

labelFontSize (page 649)
Returns the size of the standard label font.

smallSystemFontSize (page 651)
Returns the size of the standard small system font.

systemFontSize (page 652)
Returns the size of the standard system font.

systemFontSizeForControlSize (page 652)
Returns the font size used for controlSize. If

Tasks 645
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

advancementForGlyph (page 654)
Returns the nominal spacing for aGlyph—the distance the current point moves after showing the
glyph—accounting for the receiver’s size.

afmDictionary (page 654)
This method is deprecated.

afmFileContents (page 655)
This method is deprecated.

ascender (page 655)
Returns the top y coordinate, offset from the baseline, of the receiver’s longest ascender.

boundingRectForFont (page 655)
Returns the receiver’s bounding rectangle, scaled to the font’s size.

boundingRectForGlyph (page 655)
Returns the bounding rectangle for aGlyph, scaled to the receiver’s size.

capHeight (page 656)
Returns the receiver’s cap height.

descender (page 656)
Returns the bottom y coordinate, offset from the baseline, of the receiver’s longest descender.

italicAngle (page 659)
Returns the receiver’s italic angle, the amount that the font is slanted in degrees counterclockwise
from the vertical, as read from its AFM file. Because the slant is measured counterclockwise, English
italic fonts typically return a negative value.

maximumAdvancement (page 659)
Returns the greatest advancement of any of the receiver’s glyphs.

numberOfGlyphs (page 660)
Returns the number of glyphs in the receiver.

pointSize (page 660)
Returns the receiver’s point size, or the effective vertical point size for a font with a nonstandard
matrix.

underlinePosition (page 662)
Returns the baseline offset that should be used when drawing underlines with the receiver, as
determined by the font’s AFM file.

underlineThickness (page 662)
Returns the thickness that should be used when drawing underlines with the receiver, as determined
by the font’s AFM file.

widthOfString (page 662)
Returns the x axis offset of the current point when aString is drawn with a PostScript show operator
in the receiving font.

xHeight (page 662)
Returns the x height of the receiver.

Getting Font Names

displayName (page 656)
Returns the name, including family and face, used to represent the font in the user interface, typically
localized for the user’s language.

646 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

familyName (page 657)
Returns the receiver’s family name—for example, “Times” or “Helvetica.”

fontName (page 657)
Returns the receiver’s full font name, as used in PostScript language code—for example, “Times-Roman”
or “Helvetica-Oblique.”

Laying out Overstruck Glyphs

positionOfGlyphForCharacterStruckOverRect (page 660)
This method is deprecated. Context-sensitive inter-glyph spacing is now performed at the typesetting
stage.

Setting User Fonts

setUserFont (page 651)
Sets the font used by default for documents and other text under the user’s control to aFont.

setUserFixedPitchFont (page 651)
Sets the font used by default for documents and other text under the user’s control, when that font
should be fixed-pitch, to aFont.

Getting Corresponding Device Fonts

printerFont (page 661)

screenFont (page 661)

Deprecated Methods

useFont (page 653)
This method is deprecated. This is now automatically handled by Quartz.

Constructors

NSFont
Creates an empty NSFont.

public NSFont()

Constructors 647
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Static Methods

boldSystemFontOfSize
Returns the Aqua system font used for standard interface items that are rendered in boldface type, in
fontSize.

public static NSFont boldSystemFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the boldface system font at the default size.

See Also
fontWithNameAndSize (page 648)

controlContentFontOfSize
Returns the font used for the content of controls, in fontSize.

public static NSFont controlContentFontOfSize(float fontSize)

Discussion
For example, in a table, the user’s input uses the control content font, and the table’s header uses another
font. If fontSize is 0 or negative, returns the control content font at the default size.

See Also
fontWithNameAndSize (page 648)

fontWithNameAndMatrix
Returns a font object for typeface and fontMatrix.

public static Object fontWithNameAndMatrix(String typeface, NSArray fontMatrix)

Discussion
typeface is a fully specified family-face name, such as Helvetica-BoldOblique or Times-Roman (not a name
as shown in the Font Panel). fontMatrix is a standard 6-element transformation matrix as used in the
PostScript language, specifically with the makefont operator. In most cases, you can simply use
fontWithNameAndSize (page 648) to create standard scaled fonts.

See Also
isFlipped (page 1756) (NSView)

fontWithNameAndSize
Returns a font object for fontName and fontSize.

public static NSFont fontWithNameAndSize(String fontName, float fontSize)

648 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Discussion
fontName is a fully specified family-face name, such as Helvetica-BoldOblique or Times-Roman. fontSize
is used to scale the font. If you use a fontSize of 0.0, this method uses the default User Font size.

Fonts created with this method automatically flip themselves in flipped views. This method is the preferred
means for creating fonts.

labelFontOfSize
Returns the Aqua font used for standard interface labels in fontSize.

public static NSFont labelFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the label font with the default size.

labelFontSize
Returns the size of the standard label font.

public static float labelFontSize()

Availability
Available in Mac OS X v10.3 and later.

menuBarFontOfSize
Returns the font used for menu bar items in fontSize.

public static NSFont menuBarFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the menu bar font with the default size.

Availability
Available in Mac OS X v10.3 and later.

See Also
fontWithNameAndSize (page 648)

menuFontOfSize
Returns the font used for menu items in fontSize.

public static NSFont menuFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the menu items font with the default size.

See Also
fontWithNameAndSize (page 648)

Static Methods 649
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

messageFontOfSize
Returns the font used for standard interface items, such as button labels, menu items, and so on, in fontSize.

public static NSFont messageFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns this font at the default size. This method is equivalent to
systemFontOfSize (page 652).

See Also
fontWithNameAndSize (page 648)

paletteFontOfSize
Returns the font used for palette window title bars.

public static NSFont paletteFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the palette title font at the default size.

See Also
fontWithNameAndSize (page 648)
titleBarFontOfSize (page 652)

preferredFontNames
This method is deprecated. NSFontCascadeListAttribute offers more powerful font substitution management.

public static NSArray preferredFontNames()

Discussion
Returns the names of fonts that the Application Kit tries first when a character has no font specified or when
the font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the remaining
fonts on the system are searched for a glyph.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

See Also
setPreferredFontNames (page 650)

setPreferredFontNames
This method is deprecated.

public static void setPreferredFontNames(NSArray fontNames)

650 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Discussion
Sets the list of preferred font names to fontNames and records them in the user defaults database for all
applications. The Application Kit tries these fonts first when a character has no font specified or when the
font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the remaining
fonts on the system are searched for a glyph.

This method is useful for optimizing glyph rendering for uncommon scripts, by guaranteeing that appropriate
fonts are searched first. For example, suppose you have three hundred Latin alphabet fonts and one Cyrillic
alphabet font. When you read a document in Russian, you want it to find the Cyrillic font quickly. Ordinarily,
the Application Kit will search for the Cyrillic font among all 301 fonts. But if it is in the list of preferred fonts,
the Cyrillic font will be one of the first searched.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

See Also
preferredFontNames (page 650)

setUserFixedPitchFont
Sets the font used by default for documents and other text under the user’s control, when that font should
be fixed-pitch, to aFont.

public static void setUserFixedPitchFont(NSFont aFont)

Discussion
Specifying aFont as null causes the default to be removed from the application domain.

See Also
setUserFont (page 651)
userFixedPitchFontOfSize (page 653)

setUserFont
Sets the font used by default for documents and other text under the user’s control to aFont.

public static void setUserFont(NSFont aFont)

Discussion
Specifying aFont as null causes the default to be removed from the application domain.

See Also
setUserFixedPitchFont (page 651)
userFontOfSize (page 654)

smallSystemFontSize
Returns the size of the standard small system font.

public static float smallSystemFontSize()

Static Methods 651
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Availability
Available in Mac OS X v10.3 and later.

systemFontOfSize
Returns the Aqua system font used for standard interface items, such as button labels, menu items, and so
on, in fontSize.

public static NSFont systemFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the system font at the default size.

See Also
boldSystemFontOfSize (page 648)
userFontOfSize (page 654)
userFixedPitchFontOfSize (page 653)
fontWithNameAndSize (page 648)

systemFontSize
Returns the size of the standard system font.

public static float systemFontSize()

Availability
Available in Mac OS X v10.3 and later.

systemFontSizeForControlSize
Returns the font size used for controlSize. If

public static float systemFontSizeForControlSize(int controlSize)

Discussion
controlSize does not correspond to a valid control size, it returns the size of the standard system font.

Availability
Available in Mac OS X v10.3 and later.

titleBarFontOfSize
Returns the font used for window title bars, in fontSize.

public static NSFont titleBarFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the title bar font at the default size. This method is equivalent to
boldSystemFontOfSize (page 648).

652 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

See Also
paletteFontOfSize (page 650)

toolTipsFontOfSize
Returns the font used for tool tips labels, in fontSize.

public static NSFont toolTipsFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the tool tips font at the default size.

See Also
fontWithNameAndSize (page 648)

useFont
This method is deprecated. This is now automatically handled by Quartz.

public static void useFont(String fontName)

Discussion
Records fontName as one used in the current print operation.

The NSFont class object keeps track of the fonts used in an NSView by recording each one that receives a
set (page 661) message. When the view is called upon to generate conforming PostScript language output
(such as during printing), the NSFont class provides the list of fonts required for the %%DocumentFonts
comment, as required by Adobe’s document structuring conventions.

The useFont argument augments this system by providing a way to register fonts that are included in the
document but not set using NSFont’s set (page 661) method. For example, you might set a font by executing
the setfont operator within a function created by the pswrap utility. In such a case, be sure to pair the use
of the font with a useFont message to register the font for listing in the document comments.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

userFixedPitchFontOfSize
Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change), when that font should be fixed-pitch.

public static NSFont userFixedPitchFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the fixed-pitch font at the default size.

The system does not guarantee that all the glyphs in a fixed-pitch font are the same width. For example,
certain Japanese fonts are dual-pitch, and other fonts may have nonspacing marks that can affect the display
of other glyphs.

Static Methods 653
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

See Also
userFontOfSize (page 654)
fontWithNameAndSize (page 648)
setUserFixedPitchFont (page 651)

userFontOfSize
Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change).

public static NSFont userFontOfSize(float fontSize)

Discussion
If fontSize is 0 or negative, returns the user font at the default size.

See Also
userFixedPitchFontOfSize (page 653)
fontWithNameAndSize (page 648)
setUserFont (page 651)

Instance Methods

advancementForGlyph
Returns the nominal spacing for aGlyph—the distance the current point moves after showing the
glyph—accounting for the receiver’s size.

public NSSize advancementForGlyph(int aGlyph)

Discussion
This spacing is given according to the glyph’s movement direction, which is either strictly horizontal or strictly
vertical.

See Also
boundingRectForGlyph (page 655)
maximumAdvancement (page 659)

afmDictionary
This method is deprecated.

public NSDictionary afmDictionary()

Discussion
It simply returns null.

Availability
Deprecated.

654 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.3.

See Also
afmFileContents (page 655)

afmFileContents
This method is deprecated.

public String afmFileContents()

Discussion
It simply returns null.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.3.

ascender
Returns the top y coordinate, offset from the baseline, of the receiver’s longest ascender.

public float ascender()

See Also
descender (page 656)
capHeight (page 656)
xHeight (page 662)

boundingRectForFont
Returns the receiver’s bounding rectangle, scaled to the font’s size.

public NSRect boundingRectForFont()

Discussion
The bounding rectangle is the union of the bounding rectangles of every glyph in the font.

See Also
boundingRectForGlyph (page 655)

boundingRectForGlyph
Returns the bounding rectangle for aGlyph, scaled to the receiver’s size.

public NSRect boundingRectForGlyph(int aGlyph)

Instance Methods 655
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Discussion
Japanese fonts encoded with the scheme “EUC12-NJE-CFEncoding” do not have individual metrics or bounding
boxes available for the glyphs above 127. For those glyphs, this method returns the bounding rectangle for
the font instead.

See Also
boundingRectForFont (page 655),

capHeight
Returns the receiver’s cap height.

public float capHeight()

See Also
ascender (page 655)
descender (page 656)
xHeight (page 662)

coveredCharacterSet
Returns an NSCharacterSet containing all of the nominal characters renderable by the receiver, which is all
of the entries mapped in the receiver’s ‘cmap’ table.

public NSCharacterSet coveredCharacterSet()

Discussion
The number of glyphs supported by a given font is often larger than the number of characters contained in
the character set returned by this method.

Availability
Available in Mac OS X v10.2 and later.

descender
Returns the bottom y coordinate, offset from the baseline, of the receiver’s longest descender.

public float descender()

Discussion
Thus, if the longest descender extends 2 pixels below the baseline, descender will return –2.

displayName
Returns the name, including family and face, used to represent the font in the user interface, typically localized
for the user’s language.

public String displayName()

656 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

encodingScheme
This method is deprecated.

public String encodingScheme()

Discussion
Returns the name of the receiver’s encoding scheme, such as “AdobeStandardEncoding,” “ISOLatin1Encoding,”
“FontSpecific,” and so on.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

familyName
Returns the receiver’s family name—for example, “Times” or “Helvetica.”

public String familyName()

Discussion
This name is the one that NSFontManager uses and may differ slightly from the AFM name.

The value returned by this method is intended for an application’s internal usage and not for display. Use
displayName (page 656) instead.

See Also
fontName (page 657)

fontDescriptor
Returns the receiver’s font descriptor.

public NSFontDescriptor fontDescriptor()

Discussion
The font descriptor contains a mutable dictionary of optional attributes for creating an NSFont object. See
documentation on NSFontDescriptor (page 665) for more information.

Availability
Available in Mac OS X v10.3 and later.

fontName
Returns the receiver’s full font name, as used in PostScript language code—for example, “Times-Roman” or
“Helvetica-Oblique.”

public String fontName()

Discussion
The value returned by this method is intended for an application’s internal usage and not for display. Use
displayName (page 656) instead.

Instance Methods 657
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

See Also
familyName (page 657)

glyphIsEncoded
This method is deprecated. The value can be deduced by aGlyph < [NSFont numberOfGlyphs] since
only NSNativeShortGlyphPacking is supported.

public boolean glyphIsEncoded(int aGlyph)

Discussion
Returns true if the receiver encodes aGlyph, false if it doesn’t contain it.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

glyphPacking
This method is deprecated.

public int glyphPacking()

Discussion
Returns the best way to encode the receiver’s glyphs into an array of bytes. The return value is one of values
described in “Constants” (page 663).

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

glyphWithName
Returns the encoded glyph named glyphName, or –1 if the receiver contains no such glyph.

public int glyphWithName(String glyphName)

Discussion
Returns –1 if the glyph named glyphName isn’t encoded.

Glyph names in fonts do not always accurately identify the glyph. If possible, look up the appropriate glyph
on your own.

isBaseFont
This method is deprecated.

public boolean isBaseFont()

658 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Discussion
Returns true if the receiver is a PostScript base font, false if it’s a PostScript composite font composed of
other base fonts.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.3.

isFixedPitch
Returns true if all glyphs in the receiver have the same advancement, false if any advancements differ.

public boolean isFixedPitch()

Discussion
Some Japanese fonts encoded with the scheme “EUC12-NJE-CFEncoding” return that they have the same
advancement, but actually encode glyphs with one of two advancements, for historical compatibility. You
may need to handle such fonts specially for some applications.

See Also
advancementForGlyph (page 654)

italicAngle
Returns the receiver’s italic angle, the amount that the font is slanted in degrees counterclockwise from the
vertical, as read from its AFM file. Because the slant is measured counterclockwise, English italic fonts typically
return a negative value.

public float italicAngle()

maximumAdvancement
Returns the greatest advancement of any of the receiver’s glyphs.

public NSSize maximumAdvancement()

Discussion
This advancement is always either strictly horizontal or strictly vertical.

See Also
advancementForGlyph (page 654)

mostCompatibleStringEncoding
Returns the string encoding that works best with the receiver, where there are the fewest possible unmatched
characters in the string encoding and glyphs in the font.

public int mostCompatibleStringEncoding()

Instance Methods 659
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Discussion
You can use NSStringReferences’s dataUsingEncoding method to convert the string to this encoding.

If this method returns NSStringReference.ASCIIStringEncoding, it could not determine the correct
encoding and assumed that the font can render only ASCII characters.

This method works heuristically using well-known font encodings, so for nonstandard encodings it may not
in fact return the optimal string encoding.

See Also
widthOfString (page 662)

numberOfGlyphs
Returns the number of glyphs in the receiver.

public int numberOfGlyphs()

Discussion
Glyphs are numbered starting at 0.

pointSize
Returns the receiver’s point size, or the effective vertical point size for a font with a nonstandard matrix.

public float pointSize()

positionOfGlyphForCharacterStruckOverRect
This method is deprecated. Context-sensitive inter-glyph spacing is now performed at the typesetting stage.

public NSPoint positionOfGlyphForCharacterStruckOverRect(int aGlyph, char aChar,
NSRect aRect)

Discussion
Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or nonspacing mark relative
to aRect, assuming that aGlyph represents aChar. Returns NSPoint.ZeroPoint if the location can’t be
calculated. The nature of aChar as one appearing above or below its base character determines the location
returned. For example, in the first figure below, the gray tilde and box represent aGlyph and aRect, and
the black dot is the point returned (defined relative to the origin of the aRect).

660 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

To place multiple glyphs with respect to a rectangle, work from the innermost glyphs to the outermost. As
you calculate the position of each glyph, enlarge the rectangle to include the bounding rectangle of the
glyph in preparation for the next glyph. The second figure shows a tilde, acute accent, and cedilla all placed
in their appropriate positions with respect to a rectangle, with the acute accent placed relative to the expanded
bounding box of the base rectangle and the tilde.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

printerFont
public NSFont printerFont()

Discussion
When sent to a font object representing a scalable PostScript font, returns this. When sent to a font object
representing a bitmapped screen font, returns its corresponding scalable PostScript font.

See Also
screenFont (page 661)

screenFont
public NSFont screenFont()

Discussion
When sent to a font object representing a scalable PostScript font, returns a bitmapped screen font matching
the receiver in typeface and matrix (or size), or null if such a font can’t be found. When sent to a font object
representing a bitmapped screen font, returns null.

Screen fonts are for direct use with the window server only. Never use them with Application Kit objects,
such as in setFont methods. Internally, the Application Kit automatically uses the corresponding screen
font for a font object as long as the view is not rotated or scaled.

See Also
printerFont (page 661)

set
Establishes the receiver as the current font for PostScript show and other text-drawing operators.

public void set()

Discussion
During a print operation, also records the font as used in the PostScript code emitted.

See Also
useFont (page 653)

Instance Methods 661
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

underlinePosition
Returns the baseline offset that should be used when drawing underlines with the receiver, as determined
by the font’s AFM file.

public float underlinePosition()

Discussion
This value is usually negative, which must be considered when drawing in a flipped coordinate system.

See Also
underlineThickness (page 662)

underlineThickness
Returns the thickness that should be used when drawing underlines with the receiver, as determined by the
font’s AFM file.

public float underlineThickness()

See Also
underlinePosition (page 662)

widthOfString
Returns the x axis offset of the current point when aString is drawn with a PostScript show operator in the
receiving font.

public float widthOfString(String aString)

Discussion
This method performs lossy conversion of aString to the most compatible encoding for the receiving font.

Use this method only when you’re sure all of aString can be rendered with the receiving font.

This method is for backward compatibility only.

See Also
mostCompatibleStringEncoding (page 659)

xHeight
Returns the x height of the receiver.

public float xHeight()

See Also
ascender (page 655)
descender (page 656)

662 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Constants

Cocoa stores all text data as Unicode. The text system converts Unicode into glyph IDs and places them in
1-, 2-, or 4-byte storage depending on the context. To render text, you must convert the storage into a format
the text engine understands. The following constants describe the glyph packing schemes the text rendering
engine can use. They are used to extract glyphs from a font for making a multibyte (or single-byte) array of
glyphs for passing to an interpreter, such as the window server, which expects a big-endian multibyte stream
(that is, “packed glyphs”) instead of a pure NSGlyph stream. They’re used by glyphPacking (page 658). With
Quartz, the engine always expects the format to be in 2 -byte short array, so NativeShortGlyphPacking
is the only format currently in use.

DescriptionConstant

Deprecated in Mac OS X v10.3OneByteGlyphPacking

Deprecated in Mac OS X v10.3JapaneseEUCGlyphPacking

The native format for Mac OS XNativeShortGlyphPacking

Deprecated in Mac OS X v10.3WithDoubleByteEUCGlyphPacking

Deprecated in Mac OS X v10.4TwoByteGlyphPacking

Deprecated in Mac OS X v10.4FourByteGlyphPacking

Constants 663
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

664 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

NSFont

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Font Handling

Overview

NSFontDescriptor objects provide a mechanism to describe a font with a dictionary of attributes. This font
descriptor can be used later to create or modify an NSFont object.

All attributes in the attributes dictionary are optional.

Tasks

Constructors

NSFontDescriptor (page 665)
Creates an empty NSFontDescriptor.

Getting Information About a Font Descriptor

fontAttributes (page 666)
Returns the receiver’s dictionary of attributes.

Constructors

NSFontDescriptor
Creates an empty NSFontDescriptor.

Overview 665
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

NSFontDescriptor

public NSFontDescriptor()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSFontDescriptor with a dictionary of attributes.

public NSFontDescriptor(NSDictionary attributes)

Discussion
If attributes is null, the font descriptor’s dictionary will be empty.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

fontAttributes
Returns the receiver’s dictionary of attributes.

public NSDictionary fontAttributes()

Availability
Available in Mac OS X v10.3 and later.

Constants

The following font attributes are defined by NSFontDescriptor:

Default ValueValue ClassAttribute Identifier

None (optional)StringFontFamilyAttribute

None (optional)StringFontNameAttribute

None (optional)StringFontFaceAttribute

None (optional)String, as a floatFontSizeAttribute

None (optional)StringFontVisibleNameAttribute

None (optional)NSDataFontColorAttribute

666 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

NSFontDescriptor

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Font Panel

Overview

NSFontManager is the center of activity for the font conversion system. It records the currently selected font,
updates the Font panel and Font menu to reflect the selected font, initiates font changes, and converts fonts
in response to requests from text-bearing objects. In a more prosaic role, NSFontManager can be queried
for the fonts available to the application and for the particular attributes of a font, such as whether it’s
condensed or extended.

You normally set up a font manager and the Font menu using Interface Builder. However, you can also do
so programmatically by getting the shared font manager instance and having it create the standard Font
menu at runtime.

You can then add the Font menu to your application’s main menu. Once the Font menu is installed, your
application automatically gains the functionality of both the Font menu and the Font panel.

As of Mac OS X version 10.3, font collections are managed by NSFontManager.

Tasks

Constructors

NSFontManager (page 671)
Returns the shared font manager, creating it if necessary.

Getting the Shared Font Manager

sharedFontManager (page 671)
Returns the shared instance of the font manager for the application, creating it if necessary.

Overview 667
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Getting Available Fonts

availableFonts (page 673)
Returns the names of the fonts available in the system (not the NSFont objects themselves).

availableFontFamilies (page 673)
Returns the names of the font families available in the system.

availableFontNamesWithTraits (page 673)
Returns the names of the fonts available in the system whose traits are described exactly by
fontTraitMask (not the NSFont objects themselves).

Setting and Examining the Selected Font

setSelectedFont (page 684)
Records aFont as the currently selected font and updates the Font panel to reflect this.

selectedFont (page 682)
Returns the last font recorded with a setSelectedFont (page 684) message.

isMultiple (page 679)
Returns true if the last font selection recorded has multiple fonts, false if it’s a single font.

sendAction (page 682)
Sends the receiver’s action message up the responder chain, initiating a font change for whatever
conversion and trait to change were last requested.

localizedNameForFamily (page 680)
Returns a localized string with the name of the specified font family and face (for example, "Times"
and "Roman"), if one exists.

Action Methods

addFontTrait (page 672)
This action method causes the receiver to send its action message up the responder chain.

removeFontTrait (page 682)
This action method causes the receiver to send its action message up the responder chain.

modifyFont (page 680)
This action method causes the receiver to send its action message up the responder chain.

modifyFontViaPanel (page 680)
This action method causes the receiver to send its action message up the responder chain.

orderFrontStylesPanel (page 681)
This action method opens the Font styles panel.

orderFrontFontPanel (page 681)
This action method opens the Font panel by sending it an orderFront (page 1844) message, creating
the Font panel if necessary.

668 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Converting Fonts Automatically

convertFont (page 674)
Converts aFont according to the object that initiated a font change, typically the Font panel or Font
menu.

Converting Fonts Manually

convertFontToFace (page 675)
Returns an NSFont whose traits are as similar as possible to those of aFont except for the typeface,
which is changed to typeface.

convertFontToFamily (page 675)
Returns an NSFont whose traits are as similar as possible to those of aFont except for the font family,
which is changed to family.

convertFontToHaveTrait (page 675)
Returns an NSFont whose traits are the same as those of aFont except for the traits, which are changed
to include the single trait fontTrait.

convertFontToNotHaveTrait (page 676)
Returns an NSFont with the same traits as aFont except for the traits in fontTraitMask, which are
removed.

convertFontToSize (page 676)
Returns an NSFont whose traits are the same as those of aFont except for the size, which is changed
to size.

convertWeight (page 677)
Returns an NSFont whose weight is greater or lesser than that of aFont, if possible.

Getting a Particular Font

fontWithFamily (page 679)
Attempts to load a font with the specified characteristics, returning the font if successful and null if
not.

Examining Fonts

traitsOfFont (page 684)
Returns the traits of aFont.

fontWithNameHasTraits (page 679)
Returns true if the font named typeface has all the traits specified in fontTraitMask, false if it
doesn’t.

weightOfFont (page 684)
Returns a rough numeric measure the weight of aFont, where 0 indicates the lightest possible weight,
5 indicates a normal or book weight, and 9 or more indicates a bold or heavier weight.

Tasks 669
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Enabling the Font Panel and Font Menu

setEnabled (page 683)
Controls whether the font conversion system’s user interface items (the Font panel and Font menu
items) are enabled.

isEnabled (page 679)
Returns true if the font conversion system’s user interface items (the Font panel and Font menu
items) are enabled, false if they’re not.

Setting the Font Menu

setFontMenu (page 683)
Records aMenu as the application’s Font menu.

fontMenu (page 678)
Returns the menu that’s hooked up to the font conversion system, creating it if necessary if
createFlag is true.

Getting the Font Panel

fontPanel (page 678)
Returns the application’s shared Font panel object, creating it if necessary if createFlag is true.

Setting the Delegate

setDelegate (page 683)
Sets the receiver’s delegate to anObject.

delegate (page 678)
Returns the receiver’s delegate.

Setting the Action Method

setAction (page 683)
Sets the action that’s sent to the first responder when the user selects a new font from the Font panel
or chooses a command from the Font menu to aSelector.

action (page 672)
Returns the action sent to the first responder when the user selects a new font from the Font panel
or chooses a command from the Font menu.

Setting Attributes

setSelectedAttributes (page 683)
Informs the paragraph and character formatting panels when text in a selection has changed attributes.

670 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

convertAttributes (page 674)

Working with Font Descriptors

collectionNames (page 674)
Returns the names of the currently loaded font collections.

fontDescriptorsInCollection (page 678)
Returns an array of the font descriptors in the collection specified by collectionNames.

addCollection (page 672)
Adds a font collection named collectionName to the font manager with a set of options described
in “Constants” (page 685).

removeCollection (page 681)
Removes the collection specified by collectionName.

addFontDescriptors (page 672)
Adds an array of font descriptors to the font collection specified by collectionName.

removeFontDescriptor (page 681)
Removes the font collection named collectionName from the collection specified by collection.

Implemented by responders

fontManagerWillIncludeFont (page 685) delegate method
Requests permission from the delegate to display fontName in the Font panel.

Constructors

NSFontManager
Returns the shared font manager, creating it if necessary.

public NSFontManager()

See Also
sharedFontManager (page 671)

Static Methods

sharedFontManager
Returns the shared instance of the font manager for the application, creating it if necessary.

public static NSFontManager sharedFontManager()

Constructors 671
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Instance Methods

action
Returns the action sent to the first responder when the user selects a new font from the Font panel or chooses
a command from the Font menu.

public NSSelector action()

See Also
setAction (page 683)

addCollection
Adds a font collection named collectionName to the font manager with a set of options described in
“Constants” (page 685).

public boolean addCollection(String collectionName, int collectionOptions)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeCollection (page 681)

addFontDescriptors
Adds an array of font descriptors to the font collection specified by collectionName.

public void addFontDescriptors(NSArray descriptors, String collectionName)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeFontDescriptor (page 681)

addFontTrait
This action method causes the receiver to send its action message up the responder chain.

public void addFontTrait(Object sender)

Discussion
When a responder replies by providing a font to convert in a convertFont (page 674) message, the receiver
converts the font by adding the trait specified by sender. This trait is determined by sending a tag message
to sender and interpreting it as a font trait mask for a convertFontToHaveTrait (page 675) message.

672 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

See Also
removeFontTrait (page 682)
modifyFont (page 680)
modifyFontViaPanel (page 680)

availableFontFamilies
Returns the names of the font families available in the system.

public NSArray availableFontFamilies()

Discussion
These fonts are in various system font directories.

See Also
availableFontNamesWithTraits (page 673)
availableFonts (page 673)

availableFontNamesWithTraits
Returns the names of the fonts available in the system whose traits are described exactly by fontTraitMask
(not the NSFont objects themselves).

public NSArray availableFontNamesWithTraits(int fontTraitMask)

Discussion
These fonts are in various system font directories. You specify the desired traits by combining the font trait
mask values described in “Constants” (page 685) using the C bitwise OR operator.

If fontTraitMask is 0, this method returns all fonts that are neither italic nor bold. This result is the same
one you’d get if fontTraitMask were UnitalicMask | UnboldMask.

See Also
availableFontFamilies (page 673)
availableFonts (page 673)

availableFonts
Returns the names of the fonts available in the system (not the NSFont objects themselves).

public NSArray availableFonts()

Discussion
These fonts are in various system font directories.

See Also
availableFontFamilies (page 673)
availableFontNamesWithTraits (page 673)

Instance Methods 673
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

collectionNames
Returns the names of the currently loaded font collections.

public NSArray collectionNames()

Availability
Available in Mac OS X v10.3 and later.

See Also
fontDescriptorsInCollection (page 678)

convertAttributes
public NSDictionary convertAttributes(NSDictionary attributes)

Discussion
Converts attributes in response to an object initiating an attribute change, typically the Font panel or
Font menu. Returns the converted attributes dictionary, or attributes itself if the conversion isn’t possible.
Attributes unused by the sender should not be changed or removed.

This method is usually invoked on the sender of changeAttributes (page 1625). See NSTextView (page 1609)
for more information.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectedAttributes (page 683)

convertFont
Converts aFont according to the object that initiated a font change, typically the Font panel or Font menu.

public NSFont convertFont(NSFont aFont)

Discussion
Returns the converted font, or aFont itself if the conversion isn’t possible.

This method is invoked in response to an action message such as addFontTrait (page 672) or
modifyFontViaPanel (page 680). These initiating methods cause the font manager to query the sender for
the action to take and the traits to change. See “Converting Fonts Manually” for more information.

See Also
convertFontToFace (page 675)
convertFontToFamily (page 675)
convertFontToHaveTrait (page 675)
convertFontToNotHaveTrait (page 676)
convertFontToSize (page 676)
convertWeight (page 677)

674 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

convertFontToFace
Returns an NSFont whose traits are as similar as possible to those of aFont except for the typeface, which
is changed to typeface.

public NSFont convertFontToFace(NSFont aFont, String typeface)

Discussion
Returns aFont if it can’t be converted. A typeface is a fully specified family-face name, such as
Helvetica-BoldOblique or Times-Roman.

This method attempts to match the weight and posture of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0 to 15.

See Also
convertFontToFamily (page 675)
convertFontToHaveTrait (page 675)
convertFontToNotHaveTrait (page 676)
convertFontToSize (page 676)
convertWeight (page 677)
convertFont (page 674)

convertFontToFamily
Returns an NSFont whose traits are as similar as possible to those of aFont except for the font family, which
is changed to family.

public NSFont convertFontToFamily(NSFont aFont, String family)

Discussion
Returns aFont if it can’t be converted. A family is a generic font name, such as Helvetica or Times.

This method attempts to match the weight and posture of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0 to 15.

See Also
convertFontToFace (page 675)
convertFontToHaveTrait (page 675)
convertFontToNotHaveTrait (page 676)
convertFontToSize (page 676)
convertWeight (page 677)
convertFont (page 674)

convertFontToHaveTrait
Returns an NSFont whose traits are the same as those of aFont except for the traits, which are changed to
include the single trait fontTrait.

public NSFont convertFontToHaveTrait(NSFont aFont, int fontTrait)

Instance Methods 675
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Discussion
fontTrait may be any one of the traits described in “Constants” (page 685).

Using UnboldMask or UnitalicMask removes the bold or italic trait, respectively.

Returns aFont if it can’t be converted.

See Also
convertFontToNotHaveTrait (page 676)
convertFontToFace (page 675)
convertFontToFamily (page 675)
convertFontToSize (page 676)
convertWeight (page 677)
convertFont (page 674)

convertFontToNotHaveTrait
Returns an NSFont with the same traits as aFont except for the traits in fontTraitMask, which are removed.

public NSFont convertFontToNotHaveTrait(NSFont aFont, int fontTraitMask)

Discussion
fontTraitMask is a mask created using the C bitwise OR operator to combine the traits described in
“Constants” (page 685).

Using BoldMask or ItalicMask removes the bold or italic trait, respectively.

Returns aFont if it can’t be converted.

See Also
convertFontToHaveTrait (page 675)
convertFontToFace (page 675)
convertFontToFamily (page 675)
convertFontToSize (page 676)
convertWeight (page 677)
convertFont (page 674)

convertFontToSize
Returns an NSFont whose traits are the same as those of aFont except for the size, which is changed to size.

public NSFont convertFontToSize(NSFont aFont, float size)

Discussion
Returns aFont if it can’t be converted.

See Also
convertFontToFace (page 675)
convertFontToFamily (page 675)
convertFontToHaveTrait (page 675)
convertFontToNotHaveTrait (page 676)

676 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

convertWeight (page 677)
convertFont (page 674)

convertWeight
Returns an NSFont whose weight is greater or lesser than that of aFont, if possible.

public NSFont convertWeight(boolean increaseFlag, NSFont aFont)

Discussion
If increaseFlag is true, a heavier font is returned; if it’s false, a lighter font is returned. Returns aFont
unchanged if it can’t be converted.

Weights are graded along the following scale. The list on the left gives Apple’s terminology, and the list on
the right gives the ISO equivalents. Names on the same line are treated as identical:

ISO EquivalentApple Terminology

1. ultralight

W1. ultralight2. thin

W2. extralight3. light, extralight

W3. light4. book

W4. semilight5. regular, plain, display, roman

W5. medium6. medium

7. demi, demibold

W6. semibold8. semi, semibold

W7. bold9. bold

W8. extrabold10. extra, extrabold

11. heavy, heavyface

W9. ultrabold12. black, super

13. ultra, ultrablack, fat

14. extrablack, obese, nord

NSFontManager’s implementation of this method refuses to convert a font’s weight if it can’t maintain all
other traits, such as italic and condensed. You might wish to override this method to allow a looser
interpretation of weight conversion.

See Also
convertFontToFace (page 675)
convertFontToFamily (page 675)

Instance Methods 677
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

convertFontToHaveTrait (page 675)
convertFontToNotHaveTrait (page 676)
convertFontToSize (page 676)
convertFont (page 674)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 683)

fontDescriptorsInCollection
Returns an array of the font descriptors in the collection specified by collectionNames.

public NSArray fontDescriptorsInCollection(String collectionNames)

Availability
Available in Mac OS X v10.3 and later.

See Also
collectionNames (page 674)

fontMenu
Returns the menu that’s hooked up to the font conversion system, creating it if necessary if createFlag is
true.

public NSMenu fontMenu(boolean createFlag)

See Also
setFontMenu (page 683)

fontPanel
Returns the application’s shared Font panel object, creating it if necessary if createFlag is true.

public NSFontPanel fontPanel(boolean createFlag)

See Also
sharedFontPanel (page 689) (NSFontPanel)
sharedFontPanelExists (page 689) (NSFontPanel)

678 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

fontWithFamily
Attempts to load a font with the specified characteristics, returning the font if successful and null if not.

public NSFont fontWithFamily(String family, int fontTraitMask, int weight, float
size)

Discussion
family is the generic name of the font desired, such as Times or Helvetica. weight is a hint for the weight
desired, on a scale of 0 to 15: a value of 5 indicates a normal or book weight, and 9 or more a bold or heavier
weight. The weight is ignored if fontTraitMask includes BoldMask.

You specify fontTraitMask by combining the font trait mask values described in “Constants” (page 685)
using the C bitwise OR operator.

Using UnboldMask or UnitalicMask loads a font that doesn’t have either the bold or italic trait, respectively.

fontWithNameHasTraits
Returns true if the font named typeface has all the traits specified in fontTraitMask, false if it doesn’t.

public boolean fontWithNameHasTraits(String typeface, int fontTraitMask)

Discussion
You specify the desired traits by combining the font trait mask values described in “Constants” (page 685)
using the C bitwise OR operator.

Using UnboldMask returns true if the font is not bold, false otherwise. Using UnitalicMask returns true
if the font is not italic, false otherwise.

isEnabled
Returns true if the font conversion system’s user interface items (the Font panel and Font menu items) are
enabled, false if they’re not.

public boolean isEnabled()

See Also
isEnabled (page 690) (NSFontPanel)
isEnabled (page 1924) (NSMenuItem)
setEnabled (page 683)

isMultiple
Returns true if the last font selection recorded has multiple fonts, false if it’s a single font.

public boolean isMultiple()

See Also
setSelectedFont (page 684)
selectedFont (page 682)

Instance Methods 679
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

localizedNameForFamily
Returns a localized string with the name of the specified font family and face (for example, "Times" and
"Roman"), if one exists.

public String localizedNameForFamily(String family, String face)

Discussion
The user’s location is determined from the user’s Languages default setting. The method also loads the
localized strings for the font, if they aren’t already loaded.

If face is null, this method returns the font family only.

modifyFont
This action method causes the receiver to send its action message up the responder chain.

public void modifyFont(Object sender)

Discussion
When a responder replies by providing a font to convert in a convertFont (page 674) message, the receiver
converts the font in the manner specified by sender. The conversion is determined by sending a tagmessage
to sender and invoking a corresponding method:

Method UsedSender’s Tag

None; the font is returned unchanged.NoFontChangeAction

The Font panel’s panelConvertFont (page 690).ViaPanelFontAction

convertFontToHaveTrait (page 675).AddTraitFontAction

convertFontToNotHaveTrait (page 676).RemoveTraitFontAction

convertFontToSize (page 676).SizeUpFontAction

convertFontToSize (page 676).SizeDownFontAction

convertWeight (page 677).HeavierFontAction

convertWeight (page 677).LighterFontAction

See Also
addFontTrait (page 672)
removeFontTrait (page 682)
modifyFontViaPanel (page 680)

modifyFontViaPanel
This action method causes the receiver to send its action message up the responder chain.

public void modifyFontViaPanel(Object sender)

680 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Discussion
When a responder replies by providing a font to convert in a convertFont (page 674) message, the receiver
converts the font by sending a panelConvertFont (page 690) message to the Font panel. The panel in turn
may send convertFontToFamily (page 675), convertFontToHaveTrait (page 675), and other specific
conversion methods to make its change.

See Also
addFontTrait (page 672)
removeFontTrait (page 682)
modifyFont (page 680)

orderFrontFontPanel
This action method opens the Font panel by sending it an orderFront (page 1844) message, creating the
Font panel if necessary.

public void orderFrontFontPanel(Object sender)

See Also
fontPanel (page 678)

orderFrontStylesPanel
This action method opens the Font styles panel.

public void orderFrontStylesPanel(Object sender)

Availability
Available in Mac OS X v10.3 and later.

removeCollection
Removes the collection specified by collectionName.

public boolean removeCollection(String collectionName)

Availability
Available in Mac OS X v10.3 and later.

See Also
addCollection (page 672)

removeFontDescriptor
Removes the font collection named collectionName from the collection specified by collection.

public void removeFontDescriptor(NSFontDescriptor descriptor, String collection)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 681
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

See Also
addFontDescriptors (page 672)

removeFontTrait
This action method causes the receiver to send its action message up the responder chain.

public void removeFontTrait(Object sender)

Discussion
When a responder replies by providing a font to convert in a convertFont (page 674) message, the receiver
converts the font by removing the trait specified by sender. This trait is determined by sending a tag
message to sender and interpreting it as a font trait mask for a convertFontToNotHaveTrait (page 676)
message.

See Also
addFontTrait (page 672)
modifyFont (page 680)
modifyFontViaPanel (page 680)

selectedFont
Returns the last font recorded with a setSelectedFont (page 684) message.

public NSFont selectedFont()

Discussion
While fonts are being converted in response to a convertFont (page 674) message, you can determine the
font selected in the Font panel like this:

NSFontManager fontManager = NSFontManager.sharedFontManager();
panelFont = fontManager.convertFont(fontManager.selectedFont());

See Also
isMultiple (page 679)

sendAction
Sends the receiver’s action message up the responder chain, initiating a font change for whatever conversion
and trait to change were last requested.

public boolean sendAction()

Discussion
Returns true if some object handled the message, false if the message went unheard.

This method is used internally by the font conversion system. You should never need to invoke it directly.
Instead, use the action methods such as addFontTrait (page 672) or modifyFontViaPanel (page 680).

See Also
setAction (page 683)

682 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

setAction
Sets the action that’s sent to the first responder when the user selects a new font from the Font panel or
chooses a command from the Font menu to aSelector.

public void setAction(NSSelector aSelector)

Discussion
You should rarely need to change this setting.

See Also
action (page 672)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

See Also
delegate (page 678)

setEnabled
Controls whether the font conversion system’s user interface items (the Font panel and Font menu items)
are enabled.

public void setEnabled(boolean flag)

Discussion
If flag is true they’re enabled; if flag is false they’re disabled.

See Also
setEnabled (page 691) (NSFontPanel)
isEnabled (page 679)

setFontMenu
Records aMenu as the application’s Font menu.

public void setFontMenu(NSMenu aMenu)

See Also
fontMenu (page 678)

setSelectedAttributes
Informs the paragraph and character formatting panels when text in a selection has changed attributes.

public void setSelectedAttributes(NSDictionary attributes, boolean flag)

Instance Methods 683
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Discussion
flag is used to inform the panel that multiple fonts or attributes are enclosed within the selection. Used
primarily by NSTextView.

Availability
Available in Mac OS X v10.3 and later.

See Also
convertAttributes (page 674)

setSelectedFont
Records aFont as the currently selected font and updates the Font panel to reflect this.

public void setSelectedFont(NSFont aFont, boolean flag)

Discussion
If flag is true, the Font panel indicates that more than one font is contained in the selection.

An object that manipulates fonts should invoke this method whenever it becomes first responder and
whenever its selection changes. After all fonts have been converted, the font manager itself records the new
selected font.

See Also
selectedFont (page 682)
isMultiple (page 679)

traitsOfFont
Returns the traits of aFont.

public int traitsOfFont(NSFont aFont)

Discussion
The traits are returned as a mask created by combining these options with the C bitwise OR operator.

Font trait mask values are listed in “Constants” (page 685).

weightOfFont
Returns a rough numeric measure the weight of aFont, where 0 indicates the lightest possible weight, 5
indicates a normal or book weight, and 9 or more indicates a bold or heavier weight.

public int weightOfFont(NSFont aFont)

684 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Constants

NSFontManager categorizes fonts according to a small set of traits. You can convert fonts by adding and
removing individual traits, and you can get a font with a specific combination of traits. The traits defined and
available for your use are:

BoldMask

CompressedMask

CondensedMask

ExpandedMask

FixedPitchMask

ItalicMask

NarrowMask

NonstandardCharacterSetMask

PosterMask

SmallCapsMask

UnboldMask

UnitalicMask

These pairs of traits are mutually exclusive:

CondensedMask and ExpandedMask

BoldMask and UnboldMask

ItalicMask and UnitalicMask

This constant specifies options accepted by addCollection (page 672):

FontCollectionApplicationOnlyMask

Delegate Methods

fontManagerWillIncludeFont
Requests permission from the delegate to display fontName in the Font panel.

public abstract boolean fontManagerWillIncludeFont(Object theFontManager, String
fontName)

Discussion
fontName is the full PostScript name of the font, such as Helvetica-BoldOblique or Helvetica-Narrow-Bold.
If the delegate returns true, fontName is listed in theFontManager; if the delegate returns false, it isn’t.

Constants 685
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Important: This delegate method is not called in Mac OS X versions 10.3 and 10.4.

This method is invoked repeatedly as necessary whenever the Font panel needs updating, such as when the
Font panel is first loaded, and when the user selects a family name to see which typefaces in that family are
available. Your implementation should execute fairly quickly to ensure the responsiveness of the Font panel.

686 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

NSFontManager

Inherits from NSPanel : NSWindow : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Font Panel

Overview

The NSFontPanel class implements the Font panel—a user interface object that displays a list of available
fonts, letting the user preview them and change the font used to display text. The actual changes are made
through conversion messages sent to the shared NSFontManager instance. There’s only one Font panel for
each application.

Tasks

Constructors

NSFontPanel (page 688)
Creates an empty NSFontPanel.

Getting the Font Panel

sharedFontPanel (page 689)
Returns the single NSFontPanel instance for the application, creating it if necessary.

sharedFontPanelExists (page 689)
Returns true if the shared Font panel has been created, false if it hasn’t.

Enabling Font Changes

setEnabled (page 691)
Controls whether the receiver’s Set button is enabled.

isEnabled (page 690)
Returns true if the receiver’s Set button is enabled, false if it isn’t.

Overview 687
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

NSFontPanel

Updating the Font Panel

setPanelFont (page 691)
Sets the selected font in the receiver to aFont if flag is false; otherwise selects no font and displays
a message in the preview area indicating that multiple fonts are selected.

Converting Fonts

panelConvertFont (page 690)
Converts aFont using the settings in the receiver, with the aid of the shared NSFontManager if
necessary, and returns the converted font.

Working in Modal Loops

worksWhenModal (page 691)
Returns true, regardless of the setting established using the NSPanel method
setWorksWhenModal (page 1054).

Setting an Accessory View

setAccessoryView (page 690)
Establishes aView as the receiver’s accessory view, allowing you to add custom controls to your
application’s Font panel without having to create a subclass.

accessoryView (page 690)
Returns the receiver’s accessory view.

Constructors

NSFontPanel
Creates an empty NSFontPanel.

public NSFontPanel()

Creates a new NSFontPanel.

public NSFontPanel(NSRect contentRect, int styleMask, int backingType, boolean
defer)

Discussion
The contentRect argument specifies the location and size of the panel’s content area in screen coordinates.
Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

The styleMask argument specifies the panel’s style. Either it can be NSWindow.BorderlessWindowMask,
or it can contain any of the options described in NSWindow’s “Constants” (page 1875), combined using the C
bitwise OR operator.

688 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

NSFontPanel

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSWindow.TitledWindowMask if it includes any of the others.

The backingType argument specifies how the drawing done in the panel is buffered by the object’s window
device, and possible values are described in NSWindow’s “Constants” (page 1875).

The defer argument determines whether the window server creates a window device for the new panel
immediately. If defer is true, it defers creating the window until the panel is moved onscreen. All display
messages sent are postponed until the panel is created, just before it’s moved onscreen. Deferring the creation
of the window improves launch time and minimizes the virtual memory load on the window server.

The new panel creates an instance of NSView to be its default content view. You can replace it with your
own object by using the setContentView (page 1858) method.

Creates a new NSFontPanel.

public NSFontPanel(NSRect contentRect, int styleMask, int backingType, boolean
defer, NSScreen aScreen)

Discussion
This constructor is equivalent to the preceding one, except contentRect is specified relative to the lower-left
corner of aScreen.

If aScreen is null, contentRect is interpreted relative to the lower-left corner of the main screen. The
main screen is the one that contains the current key window, or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

Static Methods

sharedFontPanel
Returns the single NSFontPanel instance for the application, creating it if necessary.

public static NSFontPanel sharedFontPanel()

See Also
sharedFontPanelExists (page 689)

sharedFontPanelExists
Returns true if the shared Font panel has been created, false if it hasn’t.

public static boolean sharedFontPanelExists()

See Also
sharedFontPanel (page 689)

Static Methods 689
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

NSFontPanel

Instance Methods

accessoryView
Returns the receiver’s accessory view.

public NSView accessoryView()

See Also
setAccessoryView (page 690)

isEnabled
Returns true if the receiver’s Set button is enabled, false if it isn’t.

public boolean isEnabled()

Discussion
The receiver continues to reflect the font of the selection for cooperating text objects regardless of this
setting.

See Also
setEnabled (page 691)

panelConvertFont
Converts aFont using the settings in the receiver, with the aid of the shared NSFontManager if necessary,
and returns the converted font.

public NSFont panelConvertFont(NSFont aFont)

Discussion
If aFont can’t be converted it’s returned unchanged.

For example, if aFont is Helvetica Oblique 12.0 point and the user has selected the Times font family (and
nothing else) in the Font panel, the font returned is Times Italic 12.0 point.

See Also
convertFont (page 674) (NSFontManager)

setAccessoryView
Establishes aView as the receiver’s accessory view, allowing you to add custom controls to your application’s
Font panel without having to create a subclass.

public void setAccessoryView(NSView aView)

See Also
accessoryView (page 690)

690 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

NSFontPanel

setEnabled
Controls whether the receiver’s Set button is enabled.

public void setEnabled(boolean flag)

Discussion
If flag is true the Set button is enabled; if flag is false it’s disabled. The receiver continues to reflect the
font of the selection for cooperating text objects regardless of this setting.

See Also
isEnabled (page 690)

setPanelFont
Sets the selected font in the receiver to aFont if flag is false; otherwise selects no font and displays a
message in the preview area indicating that multiple fonts are selected.

public void setPanelFont(NSFont aFont, boolean flag)

Discussion
You normally don’t use this method directly; instead, you send setSelectedFont (page 684) to the shared
NSFontManager, which in turn invokes this method.

worksWhenModal
Returns true, regardless of the setting established using the NSPanel method setWorksWhenModal (page
1054).

public boolean worksWhenModal()

Discussion
This method allows fonts to be changed in modal windows and panels.

See Also
worksWhenModal (page 1874) (NSWindow)
worksWhenModal (page 1054) (NSPanel)

Constants

The constants in the following table specify the available font panel mode masks. They are available only on
Mac OS X v10.3 and later.

DescriptionConstant

Display the typeface column.FaceModeMask

Display the font size column.SizeModeMask

Display the font collections column.CollectionModeMask

Constants 691
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

NSFontPanel

DescriptionConstant

Display the standard default font panel—that is, including the collections,
typeface, and size columns.

StandardModesMask

Display all the available adornments.AllModesMask

692 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

NSFontPanel

Inherits from NSMatrix : NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Forms
Matrix Programming Guide for Cocoa

Overview

An NSForm is a vertical NSMatrix of NSFormCells. Here’s an example:

NSForm uses NSFormCell (page 701) to implement its user interface.

Tasks

Constructors

NSForm (page 695)
Creates an empty NSForm with a zero-sized frame rectangle.

Adding and Removing Entries

addEntry (page 695)
Adds a new entry to the end of the receiver and gives it the title title.

insertEntryAtIndex (page 696)
Inserts an entry with the title title at the position in the receiver specified by entryIndex.

removeEntryAtIndex (page 697)
Removes the entry at entryIndex.

Overview 693
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

Changing the Appearance of All the Entries

setBezeled (page 697)

setBordered (page 697)
Sets whether the entries in the receiver display a border—that is, a thin line—around their editable
text fields.

setEntryWidth (page 698)
Sets the width (in pixels) of all the entries in the receiver.

setFrameSize (page 698)
Sets the receiver’s frame size to be newSize.

setInterlineSpacing (page 698)
Sets the number of pixels between entries in the receiver to spacing.

setTitleAlignment (page 698)
Sets the alignment for all of the entry titles.

setTextAlignment (page 698)
Sets the alignment for all of the receiver’s editable text.

setTitleFont (page 699)
Sets the font for all of the entry titles to font.

setTextFont (page 698)
Sets the font for all of the receiver’s editable text fields to font.

Getting Cells and Indices

indexOfCellWithTag (page 696)
Returns the index of the entry whose tag is tag.

indexOfSelectedItem (page 696)
Returns the index of the selected entry.

cellAtIndex (page 696)
Returns the entry specified by entryIndex.

Displaying a Cell

drawCellAtIndex (page 696)
Displays the entry specified by entryIndex.

Editing Text

selectTextAtIndex (page 697)
Selects the entry at entryIndex.

694 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

Constructors

NSForm
Creates an empty NSForm with a zero-sized frame rectangle.

public NSForm()

Creates an NSForm with frameRect as its frame rectangle.

public NSForm(NSRect frameRect)

Creates an NSForm, in the frame specified by frameRect.

public NSForm(NSRect frameRect, int mode, NSCell aCell, int numRows, int numColumns)

Discussion
The new NSForm contains numRows rows and numColumns columns. mode is set as the tracking mode for
the NSForm and can be one of the modes described in NSMatrix’s “Constants” (page 908).

The new form creates cells by copying aCell, which should be an instance of a subclass of NSCell.

Creates an NSForm, in the frame specified by frameRect.

public NSForm(NSRect frameRect, int mode, Class aClass, int numRows, int numColumns)

Discussion
The new NSForm contains numRows rows and numColumns columns. mode is set as the tracking mode for
the NSForm and can be one of the modes described in NSMatrix’s “Constants” (page 908).

The new form creates and uses cells of class aClass.

Instance Methods

addEntry
Adds a new entry to the end of the receiver and gives it the title title.

public NSFormCell addEntry(String title)

Discussion
The new entry has no tag, target, or action, but is enabled and editable.

See Also
insertEntryAtIndex (page 696)
setEditable (page 323) (NSCell)
setTag (page 51) (NSActionCell)
setTarget (page 51) (NSActionCell)
setAction (page 48) (NSActionCell)
setEnabled (page 49) (NSActionCell)

Constructors 695
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

cellAtIndex
Returns the entry specified by entryIndex.

public NSCell cellAtIndex(int entryIndex)

See Also
indexOfCellWithTag (page 696)
indexOfSelectedItem (page 696)

drawCellAtIndex
Displays the entry specified by entryIndex.

public void drawCellAtIndex(int entryIndex)

Discussion
Because this method is called automatically whenever a cell needs drawing, you never need to invoke it
explicitly. It is included in the API so you can override it if you subclass NSFormCell.

See Also
indexOfCellWithTag (page 696)
indexOfSelectedItem (page 696)

indexOfCellWithTag
Returns the index of the entry whose tag is tag.

public int indexOfCellWithTag(int tag)

See Also
tag (page 334) (NSCell)

indexOfSelectedItem
Returns the index of the selected entry.

public int indexOfSelectedItem()

Discussion
If no entry is selected, indexOfSelectedItem returns –1.

insertEntryAtIndex
Inserts an entry with the title title at the position in the receiver specified by entryIndex.

public NSFormCell insertEntryAtIndex(String title, int entryIndex)

Discussion
The new entry has no tag, target, or action, and, as explained in the class description, it won’t appear on the
screen automatically.

696 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

Returns the newly inserted NSFormCell.

See Also
addEntry (page 695)
removeEntryAtIndex (page 697)

removeEntryAtIndex
Removes the entry at entryIndex.

public void removeEntryAtIndex(int entryIndex)

Discussion
If entryIndex is not a valid position in the receiver, does nothing.

selectTextAtIndex
Selects the entry at entryIndex.

public void selectTextAtIndex(int entryIndex)

Discussion
If entryIndex is not a valid position in the receiver, does nothing.

setBezeled
public void setBezeled(boolean flag)

Discussion
If flag is true, sets all the entries in the receiver to show a bezel around their editable text; if flag is false,
sets all the entries to show no bezel.

See Also
setBordered (page 697)
isBezeled (page 314) (NSCell)

setBordered
Sets whether the entries in the receiver display a border—that is, a thin line—around their editable text
fields.

public void setBordered(boolean flag)

Discussion
If flag is true, they display a border; otherwise, they don’t. An entry can have a border or a bezel, but not
both.

See Also
setBezeled (page 697)
isBordered (page 314) (NSCell)

Instance Methods 697
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

setEntryWidth
Sets the width (in pixels) of all the entries in the receiver.

public void setEntryWidth(float width)

Discussion
This width includes both the title and the text field.

setFrameSize
Sets the receiver’s frame size to be newSize.

public void setFrameSize(NSSize newSize)

Discussion
The width of NSFormCells always match the width of the NSForm. The cell width is always changed to match
the view regardless of the value returned by autosizesCells (page 884).

setInterlineSpacing
Sets the number of pixels between entries in the receiver to spacing.

public void setInterlineSpacing(float spacing)

setTextAlignment
Sets the alignment for all of the receiver’s editable text.

public void setTextAlignment(int alignment)

Discussion
alignment can be one of three constants:NSText.RightTextAlignment,NSText.CenterTextAlignment,
or NSText.LeftTextAlignment (the default).

See Also
setTitleAlignment (page 698)

setTextFont
Sets the font for all of the receiver’s editable text fields to font.

public void setTextFont(NSFont font)

See Also
setTextFont (page 698)

setTitleAlignment
Sets the alignment for all of the entry titles.

698 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

public void setTitleAlignment(int alignment)

Discussion
alignment can be one of three constants:NSText.RightTextAlignment,NSText.CenterTextAlignment,
or the default, NSText.LeftTextAlignment.

See Also
setTextAlignment (page 698)

setTitleFont
Sets the font for all of the entry titles to font.

public void setTitleFont(NSFont font)

See Also
setTextFont (page 698)

Instance Methods 699
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

700 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

NSForm

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Forms

Overview

The NSFormCell class is used to implement text entry fields in a form. The left part of an NSFormCell is a title.
The right part is an editable text entry field.

NSFormCell implements the user interface of NSForm (page 693).

Tasks

Constructors

NSFormCell (page 702)
Creates an empty NSFormCell.

Asking About a Cell’s Appearance

isOpaque (page 703)
Returns true if the title is empty and an opaque bezel is set, otherwise false is returned.

Asking About a Cell’s Title

attributedTitle (page 703)
Returns the title as an attributed string.

title (page 706)
Returns the receiver’s title.

titleAlignment (page 706)
Returns the alignment of the title.

Overview 701
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

titleFont (page 706)
Returns the font used to draw the receiver’s title.

titleWidth (page 706)
Returns the width (in pixels) of the title field.

titleWidthWithSize (page 706)
Returns the width (in pixels) of the title field.

Changing the Cell’s Title

setAttributedTitle (page 704)
Sets the receiver’s title and title attributes according to anAttributedString.

setTitle (page 705)
Sets the receiver’s title to aString.

setTitleAlignment (page 705)
Sets the alignment of the title.

setTitleFont (page 705)
Sets the title’s font to font.

setTitleWidth (page 705)
Sets the width in pixels.

Setting a Keyboard Equivalent

setTitleWithMnemonic (page 705)
Sets the cell title and a single mnemonic character.

Asking About Placeholder Values

placeholderAttributedString (page 703)
Returns the cell’s attributed placeholder string.

placeholderString (page 704)
Returns the cell’s plain text placeholder string.

setPlaceholderAttributedString (page 704)
Sets the placeholder text for the cell as an attributed string.

setPlaceholderString (page 704)
Sets the placeholder text for the cell as a plain text string.

Constructors

NSFormCell
Creates an empty NSFormCell.

702 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

public NSFormCell()

Creates a new NSFormCell.

public NSFormCell(String aString)

Discussion
Its title is set to aString. The contents of its text entry field are set to the empty string (“”). The font for both
title and text is the user’s chosen system font in 12.0 point, and the text area is drawn with a bezel.

Creates an NSFormCell initialized with anImage and set to have the cell’s default menu.

public NSFormCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

attributedTitle
Returns the title as an attributed string.

public NSAttributedString attributedTitle()

isOpaque
Returns true if the title is empty and an opaque bezel is set, otherwise false is returned.

public boolean isOpaque()

placeholderAttributedString
Returns the cell’s attributed placeholder string.

public NSAttributedString placeholderAttributedString()

Discussion
If this method returns null, you can also call placeholderString to see if the cell has a plain text
placeholder string.

Availability
Available in Mac OS X v10.4 and later.

See Also
placeholderString (page 704)
setPlaceholderAttributedString (page 704)

Instance Methods 703
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

placeholderString
Returns the cell’s plain text placeholder string.

public String placeholderString()

Discussion
If this method returns null, you can also call placeholderAttributedString to see if the cell has an
attributed placeholder string.

Availability
Available in Mac OS X v10.4 and later.

See Also
placeholderAttributedString (page 703)
setPlaceholderString (page 704)

setAttributedTitle
Sets the receiver’s title and title attributes according to anAttributedString.

public void setAttributedTitle(NSAttributedString anAttributedString)

setPlaceholderAttributedString
Sets the placeholder text for the cell as an attributed string.

public void setPlaceholderAttributedString(NSAttributedString string)

Discussion
The string argument is represented by string.

Note that invoking this method clears out any plain text string set by setPlaceholderString.

Availability
Available in Mac OS X v10.4 and later.

See Also
placeholderAttributedString (page 703)
setPlaceholderString (page 704)

setPlaceholderString
Sets the placeholder text for the cell as a plain text string.

public void setPlaceholderString(String string)

Discussion
The text string is represented by the string argument.

Note that invoking this method clears out any attributed string set by
setPlaceholderAttributedString (page 704).

704 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

Availability
Available in Mac OS X v10.4 and later.

See Also
placeholderString (page 704)
setPlaceholderAttributedString (page 704)

setTitle
Sets the receiver’s title to aString.

public void setTitle(String aString)

setTitleAlignment
Sets the alignment of the title.

public void setTitleAlignment(int alignment)

Discussion
alignment can be one of three constants: NSText.LeftTextAlignment, NSText.RightTextAlignment,
or NSText.CenterTextAlignment.

setTitleFont
Sets the title’s font to font.

public void setTitleFont(NSFont font)

setTitleWidth
Sets the width in pixels.

public void setTitleWidth(float width)

Discussion
You usually won’t need to invoke this method, because the Application Kit automatically sets the title width
whenever the title changes. If, however, the automatic width doesn’t suit your needs, you can use
setTitleWidth to set the width explicitly.

Once you have set the width this way, the Application Kit stops setting the width automatically; you will
need to invoke setTitleWidth every time the title changes. If you want the Application Kit to resume
automatic width assignments, invoke setTitleWidth with a negative width value.

setTitleWithMnemonic
Sets the cell title and a single mnemonic character.

public void setTitleWithMnemonic(String titleWithAmpersand)

Instance Methods 705
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

Discussion
Mnemonics are not supported in Mac OS X.

See Also
setTitle (page 705)

title
Returns the receiver’s title.

public String title()

Discussion
The default title is “Field:”.

titleAlignment
Returns the alignment of the title.

public int titleAlignment()

Discussion
The alignment can be one of the following:NSText.LeftTextAlignment,NSText.CenterTextAlignment,
or NSText.RightTextAlignment (the default).

titleFont
Returns the font used to draw the receiver’s title.

public NSFont titleFont()

titleWidth
Returns the width (in pixels) of the title field.

public float titleWidth()

Discussion
If you specified the width using setTitleWidth (page 705), this method returns the value you chose.
Otherwise, it returns the width calculated automatically by the Application Kit.

See Also
titleWidthWithSize (page 706)

titleWidthWithSize
Returns the width (in pixels) of the title field.

public float titleWidthWithSize(NSSize aSize)

706 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

Discussion
If you specified the width using setTitleWidth (page 705), this method returns the value you chose.
Otherwise, it calculates the width, constrained to aSize.

See Also
titleWidth (page 706)

Instance Methods 707
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

708 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFormCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.2 and later.

Companion guide Font Handling

Overview

NSGlyphInfo is a glyph attribute value (GlyphInfoAttributeName) in an attributed string. NSGlyphInfo
allows you to override a font’s specified mapping from Unicode to the glyph ID. Overriding the mapping
allows you to specify a variant glyph for a given character if the font contains multiple variations for that
character or to specify a glyph that doesn’t have a standard mapping (such as some ligature glyphs).

Tasks

Constructors

NSGlyphInfo (page 710)
You should not call this constructor; use the class methods to create NSGlyphInfo objects instead.

Creating an NSGlyphInfo Object

glyphInfoWithCharacterIdentifierInCollectionAndBaseString (page 710)
Instantiates and returns an NSGlyphInfo object using a character identifier and a character collection.

glyphInfoWithGlyphForFontAndBaseString (page 710)
Instantiates and returns an NSGlyphInfo object using a glyph index and an NSFont.

glyphInfoWithGlyphNameForFontAndBaseString (page 711)
Instantiates and returns an NSGlyphInfo object using a glyph name and an NSFont.

Overview 709
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

NSGlyphInfo

Getting Information About an NSGlyphInfo Object

characterCollection (page 711)
Returns a value specifying the glyph–to–character identifier mapping of the receiver, if the receiver
was instantiated usingglyphInfoWithCharacterIdentifierInCollectionAndBaseString (page
710).

characterIdentifier (page 711)
Returns the receiver’s character identifier (CID).

glyphName (page 712)
Returns the receiver’s glyph name.

Constructors

NSGlyphInfo
You should not call this constructor; use the class methods to create NSGlyphInfo objects instead.

public NSGlyphInfo()

Availability
Available in Mac OS X v10.2 and later.

Static Methods

glyphInfoWithCharacterIdentifierInCollectionAndBaseString
Instantiates and returns an NSGlyphInfo object using a character identifier and a character collection.

public static NSGlyphInfo
glyphInfoWithCharacterIdentifierInCollectionAndBaseString(int cid, int
characterCollection, String theString)

Discussion
theString is the part of the attributed string the returned instance is intended to override. Possible values
for characterCollection are described in “Constants” (page 712).

Availability
Available in Mac OS X v10.2 and later.

glyphInfoWithGlyphForFontAndBaseString
Instantiates and returns an NSGlyphInfo object using a glyph index and an NSFont.

public static NSGlyphInfo glyphInfoWithGlyphForFontAndBaseString(int glyph, NSFont
font, String theString)

710 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

NSGlyphInfo

Discussion
theString is the part of the attributed string the returned instance is intended to override.

Availability
Available in Mac OS X v10.2 and later.

glyphInfoWithGlyphNameForFontAndBaseString
Instantiates and returns an NSGlyphInfo object using a glyph name and an NSFont.

public static NSGlyphInfo glyphInfoWithGlyphNameForFontAndBaseString(String
glyphName, NSFont font, String theString)

Discussion
theString is the part of the attributed string the returned instance is intended to override.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods

characterCollection
Returns a value specifying the glyph–to–character identifier mapping of the receiver, if the receiver was
instantiated using glyphInfoWithCharacterIdentifierInCollectionAndBaseString (page 710).

public int characterCollection()

Discussion
Returns IdentityMappingCharacterCollection if the receiver was instantiated a glyph name. Other
possible return values are described in “Constants” (page 712).

Availability
Available in Mac OS X v10.2 and later.

characterIdentifier
Returns the receiver’s character identifier (CID).

public int characterIdentifier()

Discussion
If the receiver was instantiated with a method other than
glyphInfoWithCharacterIdentifierInCollectionAndBaseString (page 710), this method returns
NULL.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 711
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

NSGlyphInfo

glyphName
Returns the receiver’s glyph name.

public String glyphName()

Discussion
If the receiver was instantiated with a method other than
glyphInfoWithGlyphNameForFontAndBaseString (page 711), this method returns null.

Availability
Available in Mac OS X v10.2 and later.

Constants

The following values specify the mapping of character identifiers to glyphs, and is returned by
characterCollection (page 711):

DescriptionConstant

Indicates that the character identifier is equal to the glyph
index.

IdentityMappingCharacterCollection

Indicates the Adobe-CNS1 mapping.AdobeCNS1CharacterCollection

Indicates the Adobe-GB1 mapping.AdobeGB1CharacterCollection

Indicates the Adobe-Japan1 mapping.AdobeJapan1CharacterCollection

Indicates the Adobe-Japan2 mapping.AdobeJapan2CharacterCollection

Indicates the Adobe-Korea1 mapping.AdobeKorea1CharacterCollection

712 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

NSGlyphInfo

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Basic Drawing

Overview

The NSGraphics class provides static methods for performing some basic drawing operations, view clipping,
and inquiries about the application’s windows.

Tasks

Constructors

NSGraphics (page 716)
Creates and returns an empty NSGraphics object.

Obtaining Device Information

availableWindowDepths (page 716)
Returns an array of values specifying which window depths are currently available.

bestDepth (page 716)
Returns a window depth deep enough for the given number of colors in colorSpace, bits per sample
specified by bps, bits per pixel specified by bpp, and whether planar as specified by planar.

bitsPerPixelFromDepth (page 717)
Returns the number of bits per pixel for the window depth specified by depth.

bitsPerSampleFromDepth (page 717)
Returns the number of bits per sample (bits per pixel in each color component) for the window depth
specified by depth.

colorSpaceFromDepth (page 718)
Returns the color space name for the specified depth.

numberOfColorComponents (page 725)
Returns the number of color components in the color space colorSpaceName.

planarFromDepth (page 725)
Returns true if the specified window depth is planar and false if it is not.

Overview 713
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

Working with NSAttributedStrings

drawAttributedString (page 720)
Draws attributedString with its font and other display attributes at aPoint in the currently
focused NSView.

sizeOfAttributedString (page 726)
Returns the bounding box of the marks that attributedString draws.

Working with Windows

convertGlobalToWindowNumber (page 718)
Deprecated.

convertWindowNumberToGlobal (page 718)
Deprecated.

windowCount (page 726)
Returns the number of onscreen windows belonging to the application.

windowList (page 726)
Provides an ordered list of the application’s onscreen windows.

Working with Bitmap Images

copyBitmapFromGState (page 719)
Deprecated.

copyBits (page 719)
Copies the pixels in the rectangle specified by srcRect to the location specified by destPoint.

drawBitmap (page 720)
Renders a bitmap image using an appropriate display operator.

readPixel (page 726)
Returns the color of the pixel at the location specified by aPoint.

Filling a List of Rectangles

fillRectList (page 724)
Fills a list of rectangles, rectangles, with the current color.

fillRectListInRange (page 724)
Fills a subset aRange of rectangles from the array rectangles with the current color.

fillRectListWithColors (page 724)
Takes a list of rectangles, rectangles, and a matching list of color values.

fillRectListWithColorsInRange (page 724)
Fills a subset aRange of rectangles from the array rectangles with the corresponding subset colors
from the array colors.

714 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

Clipping a List of Rectangles

clipRectList (page 717)
Takes an array of rectangles, rectangles, constructs a path that is the graphic union of those
rectangles, and intersects that path with the current clipping path.

clipRectListInRange (page 718)
Extracts the subset aRange from the array of rectangles, rectangles, constructs a path that is the
graphic union of those rectangles, and intersects that path with the current clipping path.

Working with Frame Rects

frameRect (page 725)
Draws a frame around the inside of boundsRect in the current color.

frameRectWithWidth (page 725)
Draws a frame around the inside of boundsRect in the current color.

frameRectWithWidthUsingOperation (page 725)
Draws a frame around the inside of boundsRect in the current color, using the compositing operation
operation.

Drawing

dottedFrameRect (page 719)
Deprecated.

drawButton (page 721)
Draws a gray-filled rectangle, used to signify a user interface button.

drawColorTiledRects (page 722)
Draws rectangles with colored borders.

drawDarkBezel (page 722)
Draws a dark gray–filled rectangle with a bezel border.

drawGrayBezel (page 722)
Draws a gray-filled rectangle with a bezel border.

drawGroove (page 723)
Draws a gray-filled rectangle with a groove border.

drawLightBezel (page 723)
Draws a light gray–filled rectangle with a bezel border.

drawWhiteBezel (page 723)
Draws a white-filled rectangle with a bezel border.

drawWindowBackground (page 723)
Draws the window’s default background pattern into the rectangle aRect of the currently focused
view.

eraseRect (page 724)
Erases the rectangle referred to by boundsRect, filling it with white.

highlightRect (page 725)
Deprecated.

Tasks 715
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

Focus Rings

setFocusRingStyle (page 726)
Sets the style of the focus ring in the current graphics context in the current locked focus view.

Updating Screen

disableScreenUpdates (page 719)
Disables screen updates.

enableScreenUpdates (page 723)
Enables screen updates.

Constructors

NSGraphics
Creates and returns an empty NSGraphics object.

public NSGraphics()

Discussion
All of the NSGraphic methods are static, so there is no need to create instances of the class.

Static Methods

availableWindowDepths
Returns an array of values specifying which window depths are currently available.

public static int[] availableWindowDepths()

See Also
bitsPerPixelFromDepth (page 717)
bitsPerSampleFromDepth (page 717)
colorSpaceFromDepth (page 718)
planarFromDepth (page 725)

bestDepth
Returns a window depth deep enough for the given number of colors in colorSpace, bits per sample
specified by bps, bits per pixel specified by bpp, and whether planar as specified by planar.

public static int bestDepth(String colorSpace, int bps, int bpp, boolean planar)

716 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

Discussion
This method tries to accommodate all the parameters (match or better); if there are multiple matches, it gives
the closest, with matching colorSpace first, then bps, then planar, then bpp. bpp is “bits per pixel”; 0
indicates default (same as the number of bits per plane, either bps or bps *
numberOfColorComponents (page 725)); other values may be used as hints to provide backing stores of
different configuration—for instance, 8-bit color.

See Also
bitsPerPixelFromDepth (page 717)
bitsPerSampleFromDepth (page 717)
colorSpaceFromDepth (page 718)
planarFromDepth (page 725)

bitsPerPixelFromDepth
Returns the number of bits per pixel for the window depth specified by depth.

public static int bitsPerPixelFromDepth(int depth)

See Also
availableWindowDepths (page 716)
bestDepth (page 716)

bitsPerSampleFromDepth
Returns the number of bits per sample (bits per pixel in each color component) for the window depth specified
by depth.

public static int bitsPerSampleFromDepth(int depth)

See Also
availableWindowDepths (page 716)
bestDepth (page 716)

clipRectList
Takes an array of rectangles, rectangles, constructs a path that is the graphic union of those rectangles,
and intersects that path with the current clipping path.

public static void clipRectList(NSRect[] rectangles)

Discussion
After computing the new clipping path, the current path is reset to empty.

See Also
clipRectListInRange (page 718)

Static Methods 717
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

clipRectListInRange
Extracts the subset aRange from the array of rectangles, rectangles, constructs a path that is the graphic
union of those rectangles, and intersects that path with the current clipping path.

public static void clipRectListInRange(NSRect[] rectangles, NSRange aRange)

Discussion
After computing the new clipping path, the current path is reset to empty.

See Also
clipRectList (page 717)

colorSpaceFromDepth
Returns the color space name for the specified depth.

public static String colorSpaceFromDepth(int depth)

Discussion
For example, the returned color space name can beCalibratedRGBColorSpaceorDeviceCMYKColorSpace.

See Also
availableWindowDepths (page 716)
bestDepth (page 716)

convertGlobalToWindowNumber
Deprecated.

public static int convertGlobalToWindowNumber(int globalNum)

Discussion
Local and global window numbers are identical, so this method returns globalNum.

See Also
convertWindowNumberToGlobal (page 718)

convertWindowNumberToGlobal
Deprecated.

public static int convertWindowNumberToGlobal(int winNum)

Discussion
Local and global window numbers are identical, so this method returns winNum.

See Also
convertGlobalToWindowNumber (page 718)

718 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

copyBitmapFromGState
Deprecated.

public static void copyBitmapFromGState(int srcGState, NSRect srcRect, NSRect
destRect)

copyBits
Copies the pixels in the rectangle specified by srcRect to the location specified by destPoint.

public static void copyBits(int srcGState, NSRect srcRect, NSPoint destPoint)

Discussion
The source rectangle is defined in the graphics state designated by srcGState. If srcGState is NSNull,
the current graphics state is assumed. The destPoint destination is defined in the current graphics state.

disableScreenUpdates
Disables screen updates.

public static void disableScreenUpdates()

Discussion
Prevents drawing operations from being flushed to the screen for all windows belonging to the calling
process. When you reenable screen updates (with enableScreenUpdates (page 723)) screen flushing for
all windows belonging to the calling process appears to be simultaneous. You typically call this method so
that operations on multiple windows appear atomic to the user. This is a technique particularly useful for
synchronizing parent and child windows. Make sure that the period after calling this method and before
reenabling updates is short; the system only allow updating to be disabled for a limited time (currently one
second) before automatically reenabling updates. Multiple disableScreenUpdates calls stack and are
popped off the stack by matching enableScreenUpdates calls.

Availability
Available in Mac OS X v10.3 and later.

See Also
enableScreenUpdates (page 723)

dottedFrameRect
Deprecated.

public static void dottedFrameRect(NSRect aRect)

Discussion
Use a dashed NSBezierPath instead.

Static Methods 719
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

drawAttributedString
Draws attributedString with its font and other display attributes at aPoint in the currently focused
NSView.

public static void drawAttributedString(NSAttributedString attributedString, NSPoint
aPoint)

Discussion
The width (height for vertical layout) of the rendering area is unlimited, unlike the two parameter version of
this method, which uses a bounding rectangle. As a result, this method renders the text in a single line.

If the focus view is flipped, the origin is set at the upper-left corner of the drawing bounding box; otherwise
the origin is set at the lower-left corner.

Don’t invoke this method while no NSView is focused.

See Also
sizeOfAttributedString (page 726)
lockFocus (page 1759) (NSView)

Draws attributedString with its font and other display attributes within aRect in the currently focused
NSView, clipping the drawing to this rectangle.

public static void drawAttributedString(NSAttributedString attributedString, NSRect
aRect)

Discussion
Text is drawn within aRect according to its line sweep direction; for example, Arabic text will begin at the
right edge and potentially be clipped on the left.

If the focus view is flipped, the origin is set at the upper-left corner of the drawing bounding box; otherwise
the origin is set at the lower-left corner.

Don’t invoke this method while no NSView is focused.

See Also
lockFocus (page 1759) (NSView)

drawBitmap
Renders a bitmap image using an appropriate display operator.

public static void drawBitmap(NSRect rect, int pixelsWide, int pixelsHigh, int
bitsPerSample, int samplesPerPixel, int bitsPerPixel, int bytesPerRow, boolean
isPlanar, boolean hasAlpha, String colorSpace, byte[] data)

Discussion
The image is put in the rectangular area specified by rect, which is specified in the current coordinate system
and is located in the current window. pixelsWide and pixelsHigh give the width and height of the image
in pixels. If either of these dimensions is larger or smaller than the corresponding dimension of the destination
rectangle, the image is scaled to fit.

720 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

The bitsPerSample argument is the number of bits per sample for each pixel, and samplesPerPixel is
the number of samples per pixel. bitsPerPixel is based on samplesPerPixel and the configuration of
the bitmap: if the configuration is planar, then the value of bitsPerPixel should equal the value of
bitsPerSample; if the configuration isn’t planar (is meshed instead), bitsPerPixel should equal
bitsPerSample * samplesPerPixel.

The bytesPerRow argument is calculated in one of two ways, depending on the configuration of the image
data (data configuration is described below). If the data is planar, bytesPerRow is (7 + (pixelsWide *
bitsPerSample)) / 8. If the data is meshed, bytesPerRow is (7 + (pixelsWide * bitsPerSample *
samplesPerPixel)) / 8.

A sample is data that describes one component of a pixel. In an RGB color system, the red, green, and blue
components of a color are specified as separate samples, as are the cyan, magenta, yellow, and black
components in a CMYK system. Color values in grayscale are a single sample. Alpha values that determine
transparency and opaqueness are specified as a coverage sample separate from color. In bitmap images with
alpha, the color (or gray) components have to be premultiplied with the alpha. Images with alpha are displayed,
read back, and stored in TIFFs in this way.

The isPlanar argument refers to the way data is configured in the bitmap. This flag should be set true if
a separate data channel is used for each sample. The function provides for up to five channels, data1, data2,
data3, data4, and data5. It should be set false if sample values are interwoven in a single channel (meshed);
all values for one pixel are specified before values for the next pixel.

Grayscale windows store pixel data in planar configuration; color windows store it in meshed configuration.
This method can render meshed data in a planar window, or planar data in a meshed window. However, it’s
more efficient if the image has a depth (bitsPerSample) and configuration (isPlanar) that matches the
window.

The hasAlpha argument indicates whether the image contains alpha. If it does, the number of samples
should be one greater than the number of color components in the model (for example, four for RGB).

The colorSpace argument can be CustomColorSpace, indicating that the image data is to be interpreted
according to the current color space in the graphics state. This interpretation allows for imaging using custom
color spaces. The image parameters supplied as the other arguments should match what the color space is
expecting.

If the image data is planar, data[0] through data[samplesPerPixel–1] point to the planes; if the data is
meshed, only data[0] needs to be set.

drawButton
Draws a gray-filled rectangle, used to signify a user interface button.

public static void drawButton(NSRect boundsRect, NSRect clipRect)

Discussion
For an Aqua button, use an NSButton object.

The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Since this method is often used to draw the border of a view, this rectangle is typically
that view’s bounds rectangle. Only those parts of boundsRect that lie within the clipRect, a clipping
rectangle, are drawn.

Static Methods 721
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

The rectangle is filled with light gray. This method is designed for rectangles that are defined in unscaled,
unrotated coordinate systems (that is, where the y axis is vertical, the x axis is horizontal, and a unit along
either axis is equal to 1 screen pixel). The coordinate system can be either flipped or unflipped. The sides of
the rectangle should lie on pixel boundaries.

drawColorTiledRects
Draws rectangles with colored borders.

public static void drawColorTiledRects(NSRect boundsRect, NSRect clipRect, int[]
sides, NSColor[] colors, NSRange aRange)

Discussion
The drawColorTiledRectsmethod is a generic method that can be used to draw different types of borders.
These borders can be used to outline an area or to give rectangles the effect of being recessed from or
elevated above the surface of the screen.

The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Since this function is often used to draw the border of a view, this rectangle will typically
be that view’s bounds rectangle. Only those parts of aRect that lie within clipRect, a clipping rectangle,
are drawn.

In addition to its boundsRect and clipRect arguments, drawColorTiledRects takes three more
arguments, which determine how thick the border is and what colors are used to form it.
drawColorTiledRects takes successive 1.0-unit-wide slices from the sides of the rectangle specified by
the sides argument. Each slice is then drawn using the corresponding color from colors.
drawColorTiledRectsmakes and draws these slices for each pair of elements in sides and colorswithin
the range aRange. If a side is used more than once, the second slice is made inside the first.

drawDarkBezel
Draws a dark gray–filled rectangle with a bezel border.

public static void drawDarkBezel(NSRect boundsRect, NSRect clipRect)

Discussion
The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Only those parts of boundsRect that lie within clipRect, a clipping rectangle, are drawn.

drawGrayBezel
Draws a gray-filled rectangle with a bezel border.

public static void drawGrayBezel(NSRect boundsRect, NSRect clipRect)

Discussion
The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Only those parts of boundsRect that lie within clipRect, a clipping rectangle, are drawn.

722 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

drawGroove
Draws a gray-filled rectangle with a groove border.

public static void drawGroove(NSRect boundsRect, NSRect clipRect)

Discussion
The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Only those parts of boundsRect that lie within clipRect, a clipping rectangle, are drawn.

drawLightBezel
Draws a light gray–filled rectangle with a bezel border.

public static void drawLightBezel(NSRect boundsRect, NSRect clipRect)

Discussion
The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Only those parts of boundsRect that lie within clipRect, a clipping rectangle, are drawn.

drawWhiteBezel
Draws a white-filled rectangle with a bezel border.

public static void drawWhiteBezel(NSRect boundsRect, NSRect clipRect)

Discussion
The boundsRect argument specifies the rectangle within which the border is to be drawn in the current
coordinate system. Only those parts of boundsRect that lie within clipRect, a clipping rectangle, are drawn.

drawWindowBackground
Draws the window’s default background pattern into the rectangle aRect of the currently focused view.

public static void drawWindowBackground(NSRect aRect)

enableScreenUpdates
Enables screen updates.

public static void enableScreenUpdates()

Discussion
Reenables, for all windows of a process, the flushing of drawing operations to the screen that was previously
disabled by disableScreenUpdates (page 719). Multiple enableScreenUpdates calls pop matching
disableScreenUpdates calls off a stack.

Availability
Available in Mac OS X v10.3 and later.

Static Methods 723
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

See Also
disableScreenUpdates (page 719)

eraseRect
Erases the rectangle referred to by boundsRect, filling it with white.

public static void eraseRect(NSRect boundsRect)

Discussion
It does not alter the current color.

fillRectList
Fills a list of rectangles, rectangles, with the current color.

public static void fillRectList(NSRect[] rectangles)

fillRectListInRange
Fills a subset aRange of rectangles from the array rectangles with the current color.

public static void fillRectListInRange(NSRect[] rectangles, NSRange aRange)

fillRectListWithColors
Takes a list of rectangles, rectangles, and a matching list of color values.

public static void fillRectListWithColors(NSRect[] rectangles, NSColor[] colors)

Discussion
The first rectangle is filled with the first color, the second rectangle with the second color, and so on. There
must be an equal number of rectangles and color values. The rectangles should not overlap; the order in
which they are filled cannot be guaranteed. This method alters the current color of the current graphics state,
setting it unpredictably to one of the values passed in colors.

See Also
fillRectListWithColorsInRange (page 724)

fillRectListWithColorsInRange
Fills a subset aRange of rectangles from the array rectangles with the corresponding subset colors from
the array colors.

public static void fillRectListWithColors(NSRect[] rectangles, NSColor[] colors,
NSRange aRange)

See Also
fillRectListWithColors (page 724)

724 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

frameRect
Draws a frame around the inside of boundsRect in the current color.

public static void frameRect(NSRect boundsRect)

Discussion
The width is equal to 1.0 in the current coordinate system. Since the frame is drawn inside the rectangle, it
will be visible even if drawing is clipped to the rectangle.

frameRectWithWidth
Draws a frame around the inside of boundsRect in the current color.

public static void frameRectWithWidth(NSRect boundsRect, float width)

Discussion
The width is equal to width in the current coordinate system. Since the frame is drawn inside the rectangle,
it will be visible even if drawing is clipped to the rectangle.

frameRectWithWidthUsingOperation
Draws a frame around the inside of boundsRect in the current color, using the compositing operation
operation.

public static void frameRectWithWidthUsingOperation(NSRect boundsRect, float width,
int operation)

Discussion
The width is equal to width in the current coordinate system. Since the frame is drawn inside the rectangle,
it will be visible even if drawing is clipped to the rectangle.

highlightRect
Deprecated.

public static void highlightRect(NSRect aRect)

numberOfColorComponents
Returns the number of color components in the color space colorSpaceName.

public static int numberOfColorComponents(String colorSpaceName)

planarFromDepth
Returns true if the specified window depth is planar and false if it is not.

public static boolean planarFromDepth(int depth)

Static Methods 725
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

See Also
availableWindowDepths (page 716)
bestDepth (page 716)

readPixel
Returns the color of the pixel at the location specified by aPoint.

public static NSColor readPixel(NSPoint aPoint)

Discussion
The location argument is taken in the current coordinate system—in other words, you must lock focus on
the view that contains the pixel that you wish to query and then pass the coordinate for the pixel in the
view’s coordinate system.

setFocusRingStyle
Sets the style of the focus ring in the current graphics context in the current locked focus view.

public static void setFocusRingStyle(int style)

Discussion
This style affects all rendering until the graphics state is restored. style is one of the values discussed in
“Constants” (page 727).

Note that the focus ring may actually be drawn outside the view, but will be clipped to any clipping superview
or the window content view.

sizeOfAttributedString
Returns the bounding box of the marks that attributedString draws.

public static NSSize sizeOfAttributedString(NSAttributedString attributedString)

See Also
drawAttributedString (page 720)

windowCount
Returns the number of onscreen windows belonging to the application.

public static int windowCount()

windowList
Provides an ordered list of the application’s onscreen windows.

public static void windowList(int[] list)

726 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

Discussion
The order of windows in list is the same as their order in the window server’s screen list (their front-to-back
order on the screen).

Constants

The following colors are the standard gray values for the 2-bit-deep grayscale color space:

Black

DarkGray

LightGray

White

The following color spaces are defined by NSGraphics and are described in “About Color Spaces”:

CalibratedBlackColorSpace

CalibratedRGBColorSpace

CalibratedWhiteColorSpace

CustomColorSpace

DeviceBlackColorSpace

DeviceCMYKColorSpace

DeviceRGBColorSpace

DeviceWhiteColorSpace

DynamicSystemColorSpace

NamedColorSpace

PatternColorSpace

The following device constants are defined by NSGraphics. These are the keys for device description
dictionaries, such as those returned by the deviceDictionary methods of NSPrinter, NSScreen, and
NSWindow.

DescriptionConstant

An int that indicates the bit depth of the deviceDeviceBitsPerSample

A string describing the color space of the deviceDeviceColorSpaceName

Boolean value that tells whether the device is a printerDeviceIsPrinter

Boolean value that tells whether the device is a screenDeviceIsScreen

An NSSize representing dots per inchDeviceResolution

An NSSize representing the device’s size in pointsDeviceSize

NSGraphics defines the following constants to specify where a focus ring should be drawn and is used by:

Constants 727
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

DescriptionConstant

Use if you don’t have an image or text to add a keyboard focus ring to.FocusRingOnly

Draw below text.FocusRingBelow

Draw over an image.FocusRingAbove

NSGraphics defines the following constants to specify focus ring types; the focus ring type is used by NSCell
(and potentially by any NSView object) and to configure if and how a control or other view object should
draw its focus ring.

DescriptionConstant

The default focus ring type for an NSView or NSCell object.FocusRingTypeDefault

No focus ring. If you set the focus ring type to this value, NSView and NSCell
objects do not draw any focus ring

FocusRingTypeNone

The standard Aqua type of focus ring, which is drawn around the NSView or
NSCell object.

FocusRingTypeExterior

Notifications

SystemColorsDidChangeNotification

Sent when the system colors have been changed (such as through a system control panel interface).

This notification contains no notification object and no userInfo dictionary.

728 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGraphics

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Basic Drawing

Overview

The NSGraphicsContext class is the programmatic interface to objects that represent graphics contexts. A
context can be thought of as a destination to which drawing and graphics state operations are sent for
execution. Each graphics context contains its own graphics environment and state.

The NSGraphicsContext class is an abstract superclass for destination-specific graphics contexts. You obtain
instances of concrete subclasses with the static methods currentContext (page 731),
graphicsContextWithAttributes (page 732), , , and graphicsContextWithWindow (page 732).

At any time there is the notion of the current context. The current context for the current thread may be set
using setCurrentContext (page 732).

Graphics contexts are maintained on a stack. You push a graphics context onto the stack by sending it a
saveGraphicsState (page 735) message, and pop it off the stack by sending it a
restoreGraphicsState (page 734) message. By sending restoreGraphicsState (page 734) to an
NSGraphicsContext object you remove it from the stack, and the next graphics context on the stack becomes
the current graphics context.

Tasks

Constructors

NSGraphicsContext (page 731)
NSGraphicsContext is an abstract class, so you should not create your own instances.

Creating a Graphics Context

graphicsContextWithAttributes (page 732)
Instantiates a concrete subclass of NSGraphicsContext using the information in attributes.

graphicsContextWithWindow (page 732)
Creates and returns a new graphics context for drawing into aWindow.

Overview 729
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

Testing the Drawing Destination

currentContextDrawingToScreen (page 732)
Convenience method equivalent to sending isDrawingToScreen (page 734) to the result of
currentContext (page 731).

isDrawingToScreen (page 734)
Returns true if the drawing destination is the screen or a bitmap, false otherwise.

Setting and Identifying the Current Context

currentContext (page 731)
Returns the current graphics context of the current thread.

restoreGraphicsContext (page 732)
Pops a graphics context from the per-thread stack, makes it current, and sends the context a
restoreGraphicsState (page 734) message.

setCurrentContext (page 732)
Sets the current graphics context of the current thread to context.

saveGraphicsContext (page 732)
Sends the current graphics context a saveGraphicsState (page 735) message and pushes the
context onto the per-thread stack

Getting Information About a Context

attributes (page 733)
Returns the receiver’s attributes, if any.

Controlling the Context Flush

flush (page 733)
Not implemented.

flushGraphics (page 733)
Forces any buffered operations or data to be sent to the receiver’s destination.

restoreGraphicsState (page 734)
Removes the receiver’s graphics state from the top of the graphics state stack and makes the next
graphics state the current graphics state.

saveGraphicsState (page 735)
Saves the current graphics state and creates a new graphics state on the top of the stack.

setGraphicsState (page 733)
Makes the graphics context of graphicState current, and resets graphics state.

synchronize (page 736)
Not implemented.

730 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

Rendering Options

imageInterpolation (page 733)
Returns the receiver’s interpolation (image smoothing).

setImageInterpolation (page 735)
Sets the receiver’s interpolation (image smoothing) to interpolation.

shouldAntialias (page 736)
Returns whether the receiver uses antialiasing.

setShouldAntialias (page 735)
Sets whether the receiver should use antialiasing, depending on the Boolean value antialias.

patternPhase (page 734)
Returns the amount to offset the pattern color when filling the receiver.

setPatternPhase (page 735)
Sets the amount to offset the pattern color when filling the receiver.

Constructors

NSGraphicsContext
NSGraphicsContext is an abstract class, so you should not create your own instances.

public NSGraphicsContext()

Discussion
Use one of the static methods to obtain an instance of the appropriate concrete subclass.

See Also
currentContext (page 731)
currentContext (page 731)
graphicsContextWithAttributes (page 732)
graphicsContextWithWindow (page 732)

Static Methods

currentContext
Returns the current graphics context of the current thread.

public static NSGraphicsContext currentContext()

Discussion
Returns a concrete subclass of NSGraphicsContext.

Constructors 731
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

currentContextDrawingToScreen
Convenience method equivalent to sending isDrawingToScreen (page 734) to the result of
currentContext (page 731).

public static boolean currentContextDrawingToScreen()

graphicsContextWithAttributes
Instantiates a concrete subclass of NSGraphicsContext using the information in attributes.

public static NSGraphicsContext graphicsContextWithAttributes(NSDictionary
attributes)

Discussion
Use this method to create a graphics context for a window or bitmap destination. If you want to create a
graphics context for a PDF or PostScript destination, do not use this method; instead, use the NSPrintOperation
class to set up the printing environment needed to generate that type of information.

See the "Constants" section for the dictionary keys available for attributes.

graphicsContextWithWindow
Creates and returns a new graphics context for drawing into aWindow.

public static NSGraphicsContext graphicsContextWithWindow(NSWindow aWindow)

restoreGraphicsContext
Pops a graphics context from the per-thread stack, makes it current, and sends the context a
restoreGraphicsState (page 734) message.

public static void restoreGraphicsContext()

saveGraphicsContext
Sends the current graphics context a saveGraphicsState (page 735) message and pushes the context onto
the per-thread stack

public static void saveGraphicsContext()

Discussion
.

setCurrentContext
Sets the current graphics context of the current thread to context.

public static void setCurrentContext(NSGraphicsContext context)

732 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

Discussion
context must be a concrete subclass of NSGraphicsContext.

setGraphicsState
Makes the graphics context of graphicState current, and resets graphics state.

public static void setGraphicsState(int graphicsState)

Discussion
The graphicState must be created in the calling thread.

Instance Methods

attributes
Returns the receiver’s attributes, if any.

public NSDictionary attributes()

Discussion
Screen-based graphics contexts do not store attributes, even if you create them using
graphicsContextWithAttributes (page 732).

flush
Not implemented.

public void flush()

Discussion
Use flushGraphics (page 733).

flushGraphics
Forces any buffered operations or data to be sent to the receiver’s destination.

public void flushGraphics()

Discussion
Graphics contexts use buffers to queue pending operations but for efficiency reasons may not always empty
those buffers immediately. This method forces the buffers to be emptied.

imageInterpolation
Returns the receiver’s interpolation (image smoothing).

public int imageInterpolation()

Instance Methods 733
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

See Also
setImageInterpolation (page 735)

isDrawingToScreen
Returns true if the drawing destination is the screen or a bitmap, false otherwise.

public boolean isDrawingToScreen()

Discussion
You can interpret a return value of false to mean that the drawing destination is a printer, although it may
also be a PDF or EPS file. The NSColor method set, for example, invokes isDrawingToScreen to determine
whether it can apply an alpha value, which is not supported by printing contexts.

If this method returns false, you can call attributes (page 733) to see if additional information is available
about the drawing destination.

patternPhase
Returns the amount to offset the pattern color when filling the receiver.

public NSPoint patternPhase()

Discussion
The pattern phase is a translation (width, height) applied before a pattern is drawn in the current context
and is part of the saved graphics state of the context. The default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you decide to draw. For
example, setting the pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X v10.2 and later.

See Also
setPatternPhase (page 735)

restoreGraphicsState
Removes the receiver’s graphics state from the top of the graphics state stack and makes the next graphics
state the current graphics state.

public void restoreGraphicsState()

Discussion
This method must have been preceded with a saveGraphicsState (page 735) message to add the graphics
state to the stack. Invocations of saveGraphicsState and restoreGraphicsState methods may be
nested.

Restoring the graphics state restores such attributes as the current drawing style, transformation matrix,
color, and font of the original graphics state.

734 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

saveGraphicsState
Saves the current graphics state and creates a new graphics state on the top of the stack.

public void saveGraphicsState()

Discussion
The new graphics state is a copy of the previous state that can be modified to handle new drawing operations.

Saving the graphics state saves such attributes as the current drawing style, transformation matrix, color,
and font. To set drawing style attributes, use the methods of NSBezierPath. Other attributes are accessed
through appropriate objects such as NSAffineTransform, NSColor, and NSFont.

setImageInterpolation
Sets the receiver’s interpolation (image smoothing) to interpolation.

public void setImageInterpolation(int interpolation)

Discussion
Note that this value is not part of the graphics state, so it cannot be reset using restoreGraphicsState (page
734).

See Also
imageInterpolation (page 733)

setPatternPhase
Sets the amount to offset the pattern color when filling the receiver.

public void setPatternPhase(NSPoint phase)

Discussion
Use it when you need to line up the pattern color with another pattern, such as the pattern in a superview.

The pattern phase is a translation (width, height) applied before a pattern is drawn in the current context
and is part of the saved graphics state of the context. The default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you decide to draw. For
example, setting the pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X v10.2 and later.

See Also
patternPhase (page 734)

setShouldAntialias
Sets whether the receiver should use antialiasing, depending on the Boolean value antialias.

public void setShouldAntialias(boolean antialias)

Instance Methods 735
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

Discussion
This value is part of the graphics state and is restored by restoreGraphicsState (page 734).

See Also
shouldAntialias (page 736)

shouldAntialias
Returns whether the receiver uses antialiasing.

public boolean shouldAntialias()

See Also
setShouldAntialias (page 735)

synchronize
Not implemented.

public void synchronize()

Constants

The following constants are defined by NSGraphicsContext and are dictionary keys used by
graphicsContextWithAttributes (page 732) and attributes (page 733):

DescriptionConstant

Can be an instance of NSWindow, NSBitmapImageRep when
creating a graphics context. When determining the type of a
graphics context, this value can be an NSMutableData, NSString,
or URL.

GraphicsContext-
DestinationAttributeName

Specifies the destination file format. This value should be retrieved
only and not used to create a graphics context.

GraphicsContext-
RepresentationFormat-
AttributeName

The following constants are possible values for the
GraphicsContextRepresentationFormatAttributeName key in a graphic context’s attribute dictionary:

DescriptionConstant

Destination file format is PDF.GraphicsContextPDFFormat

Destination file format is PostScript.GraphicsContextPSFormat

The following interpolations are defined by NSGraphicsContext and used by imageInterpolation (page
733) and setImageInterpolation (page 735):

736 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

DescriptionConstant

Use the context’s default interpolation.ImageInterpolationDefault

No interpolation.ImageInterpolationNone

Fast, low-quality interpolation.ImageInterpolationLow

Slower, higher-quality interpolation.ImageInterpolationHigh

Constants 737
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

738 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGraphicsContext

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Online Help

Overview

NSHelpManager provides an approach to displaying online help. An application contains one instance of
NSHelpManager. Your application’s code rarely needs to access NSHelpManager directly. Instead, you use
Interface Builder and Xcode to set up online help for your application.

Tasks

Constructors

NSHelpManager (page 740)
Creates an empty NSHelpManager.

Creating an NSHelpManager Instance

sharedHelpManager (page 741)
Returns the shared NSHelpManager instance, creating it if it does not already exist.

Getting and Setting Context Help Mode

setContextHelpModeActive (page 740)
Controls context-sensitive help mode.

isContextHelpModeActive (page 740)
Returns true if the application is currently in context-sensitive help mode, false otherwise.

Returning Context-sensitive Help

contextHelpForObject (page 741)
Returns context-sensitive help for object.

Overview 739
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHelpManager

showContextHelpForObject (page 742)
Displays the context-sensitive help for object at or near the point on the screen specified by point.

Setting Up Context-sensitive Help

setContextHelpForObject (page 742)
Associates help with object.

removeContextHelpForObject (page 742)
Removes the association between object and its context-sensitive help.

Displaying Application Help

findString (page 741)
Performs a search for the specified string in the specified book.

openHelpAnchor (page 742)
Finds and displays the text at the given anchor location in the given book.

Constructors

NSHelpManager
Creates an empty NSHelpManager.

public NSHelpManager()

Static Methods

isContextHelpModeActive
Returns true if the application is currently in context-sensitive help mode, false otherwise.

public static boolean isContextHelpModeActive()

Discussion
In context-sensitive help mode, when a user clicks a user interface item, help for that item is displayed in a
small window just below the cursor.

See Also
setContextHelpModeActive (page 740)

setContextHelpModeActive
Controls context-sensitive help mode.

740 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHelpManager

public static void setContextHelpModeActive(boolean flag)

Discussion
If flag is true, the application enters context-sensitive help mode. If flag is false, the application returns
to normal operation.

You never send this message directly; instead, the NSApplication method activateContextHelpMode (page
106) activates context-sensitive help mode, and the first mouse click after displaying the context-sensitive
help window deactivates it.

When the application enters context-sensitive help mode, NSHelpManager posts a
ContextHelpModeDidActivateNotification (page 743) to the default notification center. When the
application returns to normal operation, NSHelpManager posts a
ContextHelpModeDidDeactivateNotification (page 743).

See Also
isContextHelpModeActive (page 740)

sharedHelpManager
Returns the shared NSHelpManager instance, creating it if it does not already exist.

public static NSHelpManager sharedHelpManager()

Instance Methods

contextHelpForObject
Returns context-sensitive help for object.

public NSAttributedString contextHelpForObject(Object object)

See Also
setContextHelpForObject (page 742)
showContextHelpForObject (page 742)

findString
Performs a search for the specified string in the specified book.

public void findString(String query, String book)

Discussion
The query parameter specifies the search string, and book should be a localized help book name or null.
If book is null, all installed help books are searched.

This is a wrapper for AHRegisterHelpBook (which is called only once to register the help book specified
in the application's main bundle) and AHSearch.

Instance Methods 741
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHelpManager

Availability
Available in Mac OS X v10.3 and later.

openHelpAnchor
Finds and displays the text at the given anchor location in the given book.

public void openHelpAnchor(String anchor, String book)

Discussion
The anchor parameter is a string specifying the anchor location, and book should be a localized help book
name or null. If book is null, all installed help books are searched.

This method is a wrapper for AHRegisterHelpBook (which is called only once to register the help book
specified in the application's main bundle) and AHLookupAnchor.

Availability
Available in Mac OS X v10.3 and later.

removeContextHelpForObject
Removes the association between object and its context-sensitive help.

public void removeContextHelpForObject(Object object)

Discussion
If object does not have context-sensitive help associated with it, this method does nothing. Typically, you
use Interface Builder to remove context-sensitive help from an item.

See Also
setContextHelpForObject (page 742)

setContextHelpForObject
Associates help with object.

public void setContextHelpForObject(NSAttributedString help, Object object)

Discussion
When the application enters context-sensitive help mode, if object is clicked, help will appear in the
context-sensitive help window. Typically, you use Interface Builder to associate context-sensitive help with
an object.

See Also
removeContextHelpForObject (page 742)

showContextHelpForObject
Displays the context-sensitive help for object at or near the point on the screen specified by point.

public boolean showContextHelpForObject(Object object, NSPoint point)

742 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHelpManager

Discussion
This point is usually just under the cursor. Returns true if it successfully displays context-sensitive help for
the object, false if it cannot (for example, if there is no context-sensitive help associated with this object).

See Also
contextHelpForObject (page 741)

Notifications

ContextHelpModeDidActivateNotification
Posted when the application enters context-sensitive help mode. This typically happens when the user holds
down the Help key.

The notification object is the NSHelpManager object. This notification does not contain a userInfo dictionary.

ContextHelpModeDidDeactivateNotification
Posted when the application exits context-sensitive help mode. This happens when the user clicks the mouse
button while the cursor is anywhere on the screen after displaying a context-sensitive help topic.

The notification object is the NSHelpManager object. This notification does not contains a userInfodictionary.

Notifications 743
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHelpManager

744 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHelpManager

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

An NSImage object contains an image that can be composited anywhere without first being drawn in any
particular view.

Tasks

Constructors

NSImage (page 750)
Creates an empty NSImage with a zero-sized frame rectangle.

Setting the Size of the Image

setSize (page 767)
Sets the width and height of the image.

size (page 767)
Returns the size of the receiver.

Referring to Images by Name

imageNamed (page 752)
Returns the NSImage instance associated with name.

setName (page 766)
Registers the receiver under the name specified by aString, provided that no other NSImage is
registered using that name.

Overview 745
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

name (page 762)
Returns the name assigned to the receiver, or null if no name has been assigned.

Specifying the Image

addRepresentation (page 754)
Adds imageRep to the receiver’s list of representations.

addRepresentations (page 754)
Adds each of the representations in imageReps to the receiver’s list of representations.

lockFocus (page 761)
Prepares the current device for drawing the receiver by setting the offscreen window (where the
receiver’s representation will be cached) as the current window. It also sets the coordinate system of
the offscreen window’s relevant area to the current coordinate system.

lockFocusOnRepresentation (page 761)
Prepares the current device for drawing the imageRepresentation receiver by setting the offscreen
window (where the representation will be cached) as the current window. It also sets the coordinate
system of the offscreen window’s relevant area to the current coordinate system.

unlockFocus (page 768)
Balances a previous lockFocus (page 761) or lockFocusOnRepresentation (page 761) message.

Using the Image

compositeToPoint (page 756)
Composites the image to the location specified by aPoint using the specified compositing operation,
op.

compositeToPointFromRect (page 757)
Composites the portion of the image enclosed by the srcRect rectangle to the location specified
by aPoint in the current coordinate system.

compositeToPointFromRectWithFraction (page 757)
Partially composites the srcRect portion of the image to the location specified by aPoint, using
the specified compositing operation, op.

compositeToPointWithFraction (page 758)
Partially composites the image to the location specified by aPoint, using the specified compositing
operation, op.

dissolveToPoint (page 758)
Partially composites the image to the location specified by aPoint, just as compositeToPoint (page
756) does, but uses the CompositeSourceOver operator implicitly.

dissolveToPointFromRect (page 758)
Partially composites the srcRect portion of the image to the location specified by aPoint, just as
compositeToPointFromRect (page 757) does, but uses the CompositeSourceOver operator
implicitly.

746 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Choosing Which Image Representation to Use

setPrefersColorMatch (page 766)
Sets whether color matches are preferred over resolution matches when determining which
representation to use.

prefersColorMatch (page 762)

setUsesEPSOnResolutionMismatch (page 767)
Sets whether EPS representations are preferred when there are no representations that match the
resolution of the device, depending on the Boolean value flag.

usesEPSOnResolutionMismatch (page 768)
Returns whether EPS representations are preferred when there are no representations that match
the resolution of the device.

setMatchesOnMultipleResolution (page 765)
Sets whether image representations with resolutions that are integral multiples of the resolution of
the device are considered to match the device, depending on the Boolean value flag.

matchesOnMultipleResolution (page 762)
Returns true if the resolution of the device and the resolution specified for the image are considered
to match if one is an integer multiple of the other, and false if device and image resolutions are
considered to match only if they are exactly the same.

Getting the Representations

bestRepresentationForDevice (page 755)
Returns the best representation for the device described by deviceDescription.

representations (page 763)
Returns an array containing all the representations of the receiver.

removeRepresentation (page 763)
Removes and releases the imageRep representation from the receiver’s list of representations.

Determining How the Image Is Stored

setCachedSeparately (page 764)
Sets whether each image representation will be cached in its own offscreen window or in a window
shared with other images.

isCachedSeparately (page 760)
Returns true if each representation of the receiver is cached separately in an offscreen window of
its own and false if they can be cached in offscreen windows together with other images.

setDataRetained (page 765)
Sets whether the receiver retains the data needed to render the image, depending on the Boolean
value flag.

isDataRetained (page 760)
Returns true if the receiver retains the data needed to render the image and false if it doesn’t.

Tasks 747
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

setCacheDepthMatchesImageDepth (page 764)
Sets whether the application’s default depth limit applies to the offscreen windows where the receiver’s
representations are cached.

cacheDepthMatchesImageDepth (page 755)
Returns false if the application’s default depth limit applies to the offscreen windows where the
receiver’s representations are cached.

cacheMode (page 756)
Returns the receiver’s caching mode.

setCacheMode (page 764)
Set the receiver’s caching mode.

Drawing the Image

drawAtPoint (page 759)
Partially composites the srcRect portion of the image to the location point in the current coordinate
system, using the specified operation, op.

drawInRect (page 759)
Partially composites the srcRect portion of the image inside the dstRect portion of the current
coordinate system, using the specified operation, op.

drawRepresentationInRect (page 759)
Fills the specified rectangle with the background color, then sends the imageRep a drawInRect (page
789) message to draw itself inside the dstRect rectangle (if the NSImage is scalable) or a
drawAtPoint (page 789) message to draw itself at the location of the rectangle (if the NSImage is
not scalable).

Determining How the Image Is Drawn

isValid (page 761)
Returns true if a representation for the receiver can drawn in the cache and false if it can’t—for
example, because the file from which it was initialized is nonexistent, or the data in that file is invalid.

setScalesWhenResized (page 766)
Sets whether representations with sizes that differ from the size of the receiver will be scaled to fit.

scalesWhenResized (page 763)

setBackgroundColor (page 763)
Sets the background color of the image.

backgroundColor (page 755)
Returns the background color of the rectangle where the image is cached.

setFlipped (page 765)
Determines whether the polarity of the y axis is inverted when drawing an image.

isFlipped (page 760)
Returns true if a vertically flipped coordinate system is used when locating the position of the receiver
and false if it isn’t.

recache (page 762)
Invalidates the offscreen caches of all representations and frees them.

748 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Assigning a Delegate

setDelegate (page 765)
Makes anObject the delegate of the receiver.

delegate (page 758)
Returns the delegate of the receiver, or null if no delegate has been set.

Producing TIFF Data for the Image

TIFFRepresentation (page 768)
Returns a data object containing TIFF for all representations, using their default compressions.

Testing Image Data Sources

canInitWithPasteboard (page 752)
Tests whether the receiver can create an instance of itself from the data represented by pasteboard.

imageFileTypes (page 752)
Returns an array of strings representing those file types for which a registered NSImageRep exists.

imageUnfilteredFileTypes (page 753)
Returns an array of strings representing those file types for which a registered NSImageRep exists.

imagePasteboardTypes (page 753)
Returns an array of pasteboard types for which a registered NSImageRep exists.

imageUnfilteredPasteboardTypes (page 754)
Returns an array of pasteboard types for which a registered NSImageRep exists.

Incremental Loading

cancelIncrementalLoad (page 756)
Immediately cancels the download operation if the image is being incrementally loaded.

Loading an image

imageDidLoadRepresentation (page 771) delegate method
This method is invoked when image has been as fully decompressed as is possible.

imageDidLoadPartOfRepresentation (page 771) delegate method
During incremental loading, this method is called repeatedly to inform the delegate that more of the
image rep is available.

imageDidLoadRepresentationHeader (page 771) delegate method
During incremental loading, the image invokes this method once enough data has been read to
determine the size of the image.

imageWillLoadRepresentation (page 772) delegate method
For incremental loading, this method is invoked when you first draw image or otherwise require the
bitmap data.

Tasks 749
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Drawing an image

imageDidNotDraw (page 772) delegate method
Implemented by the delegate to respond to a message sent by the sender (an NSImage) when the
sender was unable, for whatever reason, to composite or lock focus on its image to draw in aRect.

Constructors

NSImage
Creates an empty NSImage with a zero-sized frame rectangle.

public NSImage()

Creates an NSImage based on byReferencing.

public NSImage(String filename, boolean byReferencing)

Discussion
If byReferencing is true, the NSImage doesn’t actually open filename or create image representations
from its data until an application attempts to composite or requests information about the NSImage.

The setDataRetained (page 765) is invoked with an argument of true, thus enabling the image to hold
onto its filename. Note that if an image created by referencing is archived, only the filename will be saved.

If byReferencing is false, filename is opened, and one or more image representations is created from
its data.

In both cases, filename may be a full or relative pathname and should include an extension that identifies
the data type in the file. If byReferencing is true, the constructor will look for an NSImageRep subclass
that handles that data type from among those registered with NSImage. If byReferencing is false, the
mechanism that actually creates the image representation for filenamewill look for an NSImageRep subclass
that handles that data type from among those registered with NSImage.

If byReferencing is false and at least one image representation can’t be created from the contents of
filename, null is returned.If byReferencing is true and the new instance can’t be initialized, null is
returned. Since creating by reference doesn’t actually create image representations for the data, your
application should do error checking before attempting to use the image; one way to do so is by invoking
the isValid (page 761) method to check whether the image can be drawn.

Creates a new NSImage, setting its size to aSize.

public NSImage(NSSize aSize)

Discussion
The size should be specified in units of the base coordinate system. Although you can create an NSImage
without specifying a size by passing a size of (0.0, 0.0), the NSImage’s size must be set before it can be used.

Creates a new NSImage, with the contents of the data object aData.

public NSImage(NSData aData)

750 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Discussion
If unable to create one or more image representations from aData, null is returned.

Creates a new NSImage, with the contents of the URL aURL.

public NSImage(java.net.URL aURL)

Discussion
If at least one image representation can’t be created from the contents of aURL, null is returned.

Creates a new NSImage instance for the file at url.

public com.apple.cocoa.application.NSImage(URL url, boolean)

Discussion
This constructor initializes lazily: The NSImage doesn’t actually open url or create image representations
from its data until an application attempts to composite or requests information about the NSImage.

The URL should include an extension that identifies the data type in the file. The mechanism that actually
creates the image representation for url will look for an NSImageRep subclass that handles that data type
from among those registered with NSImage.

After finishing the initialization, this method returns the NSImage. However, if the new instance can’t be
initialized, it’s freed and null is returned. Since this constructor doesn’t actually create image representations
for the data, your application should do error checking before attempting to use the image; one way to do
so is by invoking the isValid (page 761) method to check whether the image can be drawn.

This method invokes setDataRetained (page 765) with an argument of true, thus enabling it to hold onto
its URL. Note that if an image created with this method is archived, only the URL will be saved.

Availability
Available in Mac OS X v10.2 and later.

Creates a new NSImage, with data from aPasteboard.

public NSImage(NSPasteboard aPasteboard)

Discussion
The aPasteboard object should contain a type returned by one of the registered NSImageRep’s
imageUnfilteredPasteboardTypes (page 787) methods; the default types supported are
NSPasteboard.PostscriptPboardType (NSEPSImageRep), NSPasteboard.PDFPboardType
(NSPDFImageRep), NSPasteboard.PICTPboardType (NSPICTImageRep), and
NSPasteboard.TIFFPboardType (NSBitmapImageRep). If aPasteboard contains a
NSPasteboard.FilenamesPboardType, the filename should have an extension returned by one of the
registered NSImageRep’s imageUnfilteredFileTypes (page 786) methods; the default types supported
include “tiff”, “gif”, “jpg” (all in NSBitmapImageRep), “pdf” (NSPDFImageRep), “pict” (NSPICTImageRep),
and “eps” (NSEPSImageRep).

If unable to create one or more image representations, null is returned.

Constructors 751
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Static Methods

canInitWithPasteboard
Tests whether the receiver can create an instance of itself from the data represented by pasteboard.

public static boolean canInitWithPasteboard(NSPasteboard pasteboard)

Discussion
Returns true if the receiver’s list of registered NSImageReps includes a class that can handle the data
represented by pasteboard.

NSImage uses the NSImageRep class method imageUnfilteredPasteboardTypes (page 787) to find a
class that can handle the data in pasteboard. When creating a subclass of NSImageRep that accepts image
data from a nondefault pasteboard type, override the imageUnfilteredPasteboardTypes (page 787)
method to notify NSImage of the pasteboard types your class supports.

See Also
imagePasteboardTypes (page 753)

imageFileTypes
Returns an array of strings representing those file types for which a registered NSImageRep exists.

public static NSArray imageFileTypes()

Discussion
This list includes all file types supported by registered subclasses of NSImageRep, plus those types that can
be converted to supported file types through a user-installed filter service. The array returned by this method
may be passed directly to NSOpenPanel’s runModalForTypes (page 1024) method.

File types are identified by extension and HFS file types.

When creating a subclass of NSImageRep that accepts image data from nondefault file types, override
NSImageRep’s imageUnfilteredFileTypes (page 786) method to notify NSImage of the file types your
class supports.

See Also
imageUnfilteredFileTypes (page 753)

imageNamed
Returns the NSImage instance associated with name.

public static NSImage imageNamed(String name)

Discussion
The returned object is one that’s been assigned a name with the setName (page 766) method.

752 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

If there’s no known NSImage with name, this method tries to create one by searching for image data in the
application’s main bundle (see NSBundle’s class description for a description of how the bundle’s contents
are searched). If a file contains data for more than one image, a separate representation is created for each.
If an image representation can’t be found for name, no object is created, and null is returned.

The preferred way to name an image is to ask for a name without the extension, but to include the extension
for a filename.

One particularly useful image is referenced by the string @"NSApplicationIcon". If you supply this string
to imageNamed (page 752), the returned image will be the application’s own icon. Icons for other applications
can be obtained through the use of methods declared in the NSWorkspace class.

NSImage keeps a reference to the image in a table until the image name is cleared. Consequently you do
not need to retain the returned image object unless its name could be cleared. You clear an image name by
sending the associated NSImage object a setName (page 766) message with an argument of null. This message
removes the image from the table and autoreleases the object. However, if the image has been fetched
elsewhere using imageNamed (page 752), then those instances could still be used.

See Also
setName (page 766)
name (page 762)
iconForFile (page 1904) (NSWorkspace)
imageFileTypes (page 752)

imagePasteboardTypes
Returns an array of pasteboard types for which a registered NSImageRep exists.

public static NSArray imagePasteboardTypes()

Discussion
This list includes all pasteboard types supported by registered subclasses of NSImageRep and those that can
be converted to supported pasteboard types through a user-installed filter service.

By default, the list returned by this method includes NSPasteboard.PDFPboardType,
NSPasteboard.PICTPboardType, NSPasteboard.PostScriptPboardType, and
NSPasteboard.TIFFPboardType.

When creating a subclass of NSImageRep that accepts image data from nondefault pasteboard types, override
NSImageRep’simageUnfilteredPasteboardTypes (page 787) method to notify NSImage of the pasteboard
types your class supports.

See Also
imageUnfilteredPasteboardTypes (page 754)

imageUnfilteredFileTypes
Returns an array of strings representing those file types for which a registered NSImageRep exists.

public static NSArray imageUnfilteredFileTypes()

Static Methods 753
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Discussion
This list consists of all file types supported by registered subclasses of NSImageRep, but does not include
those types that can be converted to supported file types through a user-installed filter service. The array
returned by this method may be passed directly to NSOpenPanel’s runModalForTypes (page 1024) method.

See Also
imageFileTypes (page 752)

imageUnfilteredPasteboardTypes
Returns an array of pasteboard types for which a registered NSImageRep exists.

public static NSArray imageUnfilteredPasteboardTypes()

Discussion
This list consists of all pasteboard types supported by registered subclasses of NSImageRep, but does not
include those that can be converted to supported pasteboard types through a user-installed filter service.

See Also
imagePasteboardTypes (page 753)

Instance Methods

addRepresentation
Adds imageRep to the receiver’s list of representations.

public void addRepresentation(NSImageRep imageRep)

Discussion
After invoking this method, you may need to explicitly set features of the new representation, such as size,
number of colors, and so on. This fact is true in particular if the NSImage has multiple image representations
to choose from. See NSImageRep (page 779) and its subclasses for the methods you use to complete
initialization.

Any representation added by this method is retained by the NSImage. Note that representations can’t be
shared among NSImages.

See Also
representations (page 763)
removeRepresentation (page 763)

addRepresentations
Adds each of the representations in imageReps to the receiver’s list of representations.

public void addRepresentations(NSArray imageReps)

754 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Discussion
After invoking this method, you may need to explicitly set features of the new representations, such as size,
number of colors, and so on. This fact is true in particular if the NSImage has multiple image representations
to choose from. See NSImageRep (page 779) and its subclasses for the methods you use to complete
initialization.

Representations added by this method are retained by the NSImage. Note that representations can’t be
shared among NSImages.

See Also
representations (page 763)
removeRepresentation (page 763)

backgroundColor
Returns the background color of the rectangle where the image is cached.

public NSColor backgroundColor()

Discussion
If no background color has been specified, NSColor’s clearColor (page 357) is returned, indicating a
transparent background.

The background color will be visible when the image is composited only if the image doesn’t completely
cover all the pixels within the area specified for its size.

bestRepresentationForDevice
Returns the best representation for the device described by deviceDescription.

public NSImageRep bestRepresentationForDevice(NSDictionary deviceDescription)

Discussion
If deviceDescription is null, the current device is assumed. “How an Image Representation Is Chosen”
outlines the process NSImage goes through to determine the “best” representation for a given device.

See Also
representations (page 763)
prefersColorMatch (page 762)

cacheDepthMatchesImageDepth
Returns false if the application’s default depth limit applies to the offscreen windows where the receiver’s
representations are cached.

public boolean cacheDepthMatchesImageDepth()

Discussion
If window depths are instead determined by the specifications of the representations,
cacheDepthMatchesImageDepth returns true.

Instance Methods 755
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

See Also
setCacheDepthMatchesImageDepth (page 764)

cacheMode
Returns the receiver’s caching mode.

public int cacheMode()

Discussion
Possible return values are described in “Constants” (page 769).

Availability
Available in Mac OS X v10.2 and later.

See Also
setCacheMode (page 764)

cancelIncrementalLoad
Immediately cancels the download operation if the image is being incrementally loaded.

public void cancelIncrementalLoad()

Discussion
This call has no effect if the image is not loading.

Availability
Available in Mac OS X v10.2 and later.

compositeToPoint
Composites the image to the location specified by aPoint using the specified compositing operation, op.

public void compositeToPoint(NSPoint aPoint, int op)

Discussion
The aPoint argument specified in the current coordinate system—the coordinate system of the currently
focused NSView—and designates where the lower-left corner of the image will appear. The image will have
the orientation of the base coordinate system, regardless of the destination coordinates. op should be one
of the compositing operations described in “Constants” (page 769).

The image is composited from its offscreen window cache. Since the cache isn’t created until the image
representation is first used, this method may need to render the image before compositing. Bitmap
representations are not cached unless explicitly rendered, by invoking lockFocus (page 761) and
unlockFocus (page 768), before compositing.

When printing, the compositing methods do not composite, but attempt to render the same image on the
page that compositing would render on the screen, choosing the best available representation for the printer.
The op argument is ignored.

756 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

See Also
dissolveToPoint (page 758)
drawAtPoint (page 759)

compositeToPointFromRect
Composites the portion of the image enclosed by the srcRect rectangle to the location specified by aPoint
in the current coordinate system.

public void compositeToPointFromRect(NSPoint aPoint, NSRect srcRect, int op)

Discussion
The aPoint argument is the same as for compositeToPoint (page 756). op should be one of the compositing
operations described in “Constants” (page 769).

The source rectangle is specified relative to a coordinate system that has its origin at the lower-left corner
of the image, but is otherwise the same as the base coordinate system.

This method doesn’t check to be sure that the rectangle encloses only portions of the image. Therefore,
when multiple representations are cached in a single window, it can conceivably composite areas that don’t
properly belong to the image, if the srcRect rectangle happens to include them. If this inclusion turns out
to be a problem, you can prevent it from happening by having the NSImage cache its representations in
their own individual windows (with the setCachedSeparately (page 764) method). In this case, the window’s
clipping path will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compositing the whole image, but printing just part of an
image is not. When printing, it’s necessary to draw the whole image and rely on a clipping path to be sure
that only the desired portion appears.

See Also
dissolveToPointFromRect (page 758)
drawAtPoint (page 759)

compositeToPointFromRectWithFraction
Partially composites the srcRect portion of the image to the location specified by aPoint, using the specified
compositing operation, op.

public void compositeToPointFromRectWithFraction(NSPoint aPoint, NSRect srcRect,
int op, float delta)

Discussion
Behaves the same as compositeToPointFromRect (page 757), except that the delta argument specifies
how much of the resulting composite will come from the NSImage object. By invoking repeatedly with delta
increasing from 0.0 to 1.0 (refreshing and flushing the destination view between invocations), you gradually
fade the original destination into the fully composited image.

See Also
dissolveToPointFromRect (page 758)
drawAtPoint (page 759)

Instance Methods 757
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

compositeToPointWithFraction
Partially composites the image to the location specified by aPoint, using the specified compositing operation,
op.

public void compositeToPointWithFraction(NSPoint aPoint, int op, float delta)

Discussion
Behaves the same as compositeToPoint (page 756), except that the delta argument specifies how much
of the resulting composite will come from the NSImage object. By invoking repeatedly with delta increasing
from 0.0 to 1.0 (refreshing and flushing the destination view between invocations), you gradually fade the
original destination into the fully composited image.

See Also
dissolveToPoint (page 758)

delegate
Returns the delegate of the receiver, or null if no delegate has been set.

public Object delegate()

See Also
setDelegate (page 765)

dissolveToPoint
Partially composites the image to the location specified by aPoint, just as compositeToPoint (page 756)
does, but uses the CompositeSourceOver operator implicitly.

public void dissolveToPoint(NSPoint aPoint, float delta)

Discussion
delta is a fraction from 0.0 to 1.0 that specifies how much of the resulting composite will come from the
NSImage. If the source image contains alpha, this operation may promote the destination NSWindow to
contain alpha.

To slowly dissolve one image into another, this method (or dissolveToPointFromRect (page 758)) needs
to be invoked repeatedly with an ever-increasing delta. Since delta refers to the fraction of the source
image that’s combined with the original destination (not the destination image after some of the source has
been dissolved into it), the destination image should be replaced with the original destination before each
invocation. This replacement is best done in a buffered window before the results of the composite are
flushed to the screen.

When printing, this method is identical to compositeToPoint (page 756). The delta argument is ignored.

dissolveToPointFromRect
Partially composites the srcRect portion of the image to the location specified by aPoint, just as
compositeToPointFromRect (page 757) does, but uses the CompositeSourceOver operator implicitly.

public void dissolveToPointFromRect(NSPoint aPoint, NSRect srcRect, float delta)

758 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Discussion
delta is a fraction from 0.0 to 1.0 that specifies how much of the resulting composite will come from the
NSImage. If the source image contains alpha, this operation may promote the destination NSWindow.

When printing, this method is identical to compositeToPointFromRect (page 757). The delta argument
is ignored.

See Also
dissolveToPoint (page 758)

drawAtPoint
Partially composites the srcRect portion of the image to the location point in the current coordinate
system, using the specified operation, op.

public void drawAtPoint(NSPoint point, NSRect srcRect, int op, float delta)

Discussion
delta is a fraction from 0.0 to 1.0 that specifies how much of the resulting composite will come from the
NSImage. The composite is positioned and oriented according to the current coordinate system. The image
is rotated and scaled as needed.

See Also
compositeToPointFromRectWithFraction (page 757)
dissolveToPoint (page 758)

drawInRect
Partially composites the srcRect portion of the image inside the dstRect portion of the current coordinate
system, using the specified operation, op.

public void drawInRect(NSRect dstRect, NSRect srcRect, int op, float delta)

Discussion
delta is a fraction from 0.0 to 1.0 that specifies how much of the resulting composite will come from the
NSImage. The composite is positioned and oriented according to the current coordinate system. The image
is rotated and scaled as needed.

See Also
dissolveToPoint (page 758)

drawRepresentationInRect
Fills the specified rectangle with the background color, then sends the imageRep a drawInRect (page 789)
message to draw itself inside the dstRect rectangle (if the NSImage is scalable) or a drawAtPoint (page
789) message to draw itself at the location of the rectangle (if the NSImage is not scalable).

public boolean drawRepresentationInRect(NSImageRep imageRep, NSRect dstRect)

Instance Methods 759
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Discussion
The rectangle is located in the current window and is specified in the current coordinate system. This method
returns the value returned by thedrawInRect (page 789) ordrawAtPoint (page 789) method, which indicates
whether or not the representation was successfully drawn.

This method shouldn’t be called directly; the NSImage uses it to cache and print its representations. By
overriding it in a subclass, you can change how representations appear in the cache and thus how they’ll
appear when composited. For example, your version of the method could scale or rotate the coordinate
system, then send a message to super to perform this version.

If the background color is fully transparent and the image isn’t being cached by the NSImage, the rectangle
won’t be filled before the representation draws.

isCachedSeparately
Returns true if each representation of the receiver is cached separately in an offscreen window of its own
and false if they can be cached in offscreen windows together with other images.

public boolean isCachedSeparately()

Discussion
A return of false doesn’t mean that the windows are, in fact, shared, just that they can be. The default is
false.

isDataRetained
Returns true if the receiver retains the data needed to render the image and false if it doesn’t.

public boolean isDataRetained()

Discussion
The default is false. If the data is available in a file that won’t be moved or deleted, or if responsibility for
drawing the image is delegated to another object with a custom method, there’s no reason for the NSImage
to retain the data.

isFlipped
Returns true if a vertically flipped coordinate system is used when locating the position of the receiver and
false if it isn’t.

public boolean isFlipped()

Discussion
The default is false.

See Also
setFlipped (page 765)

760 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

isValid
Returns true if a representation for the receiver can drawn in the cache and false if it can’t—for example,
because the file from which it was initialized is nonexistent, or the data in that file is invalid.

public boolean isValid()

Discussion
If no representations exist for the receiver, isValid first creates a cache with the default depth.

lockFocus
Prepares the current device for drawing the receiver by setting the offscreen window (where the receiver’s
representation will be cached) as the current window. It also sets the coordinate system of the offscreen
window’s relevant area to the current coordinate system.

public void lockFocus()

Discussion
If the receiver has no representations, lockFocus first creates one with the default depth. See “How an
Image Representation Is Chosen” for information on how the “best” representation is chosen.

A successful lockFocus message must be balanced by a subsequent unlockFocus (page 768) message to
the same NSImage. These messages bracket the code that draws the image.

If lockFocus is unable to focus on the representation, it throws an ImageCacheException.

See Also
bestRepresentationForDevice (page 755)
isValid (page 761)
prefersColorMatch (page 762)
representations (page 763)

lockFocusOnRepresentation
Prepares the current device for drawing the imageRepresentation receiver by setting the offscreen
window (where the representation will be cached) as the current window. It also sets the coordinate system
of the offscreen window’s relevant area to the current coordinate system.

public void lockFocusOnRepresentation(NSImageRep imageRepresentation)

Discussion
If imageRepresentation is null, lockFocusOnRepresentation acts like lockFocus (page 761), setting
focus to the best representation for the NSImage. Otherwise, imageRepresentation must be one of the
representations in the NSImage.

A successfullockFocusOnRepresentationmessage must be balanced by a subsequentunlockFocus (page
768) message to the same NSImage. These messages bracket the code that draws the image.

If lockFocusOnRepresentation is unable to focus on the representation, it throws an
ImageCacheException.

Instance Methods 761
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

See Also
isValid (page 761)

matchesOnMultipleResolution
Returns true if the resolution of the device and the resolution specified for the image are considered to
match if one is an integer multiple of the other, and false if device and image resolutions are considered
to match only if they are exactly the same.

public boolean matchesOnMultipleResolution()

Discussion
The default is true.

See Also
setMatchesOnMultipleResolution (page 765)

name
Returns the name assigned to the receiver, or null if no name has been assigned.

public String name()

See Also
setName (page 766)

prefersColorMatch
public boolean prefersColorMatch()

Discussion
Returns true if, when selecting the representation it will use, the receiver first looks for one that matches
the color capability of the rendering device (choosing a grayscale representation for a monochrome device
and a color representation for a color device), then if necessary narrows the selection by looking for one that
matches the resolution of the device. If the return is false, the NSImage first looks for a representation that
matches the resolution of the device, then tries to match the representation to the color capability of the
device. The default is true.

See Also
setPrefersColorMatch (page 766)

recache
Invalidates the offscreen caches of all representations and frees them.

public void recache()

Discussion
The next time any representation is composited, it will first be asked to redraw itself in the cache.
NSCachedImageReps aren’t destroyed by this method.

762 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

If an image is likely not to be used again, it’s a good idea to free its caches, since that will reduce the amount
of memory consumed by your program and therefore improve performance. If you modify an image
represenation of an NSImage object, you must send recache (page 762) to the image object to have the
changed representation redrawn and recached.

removeRepresentation
Removes and releases the imageRep representation from the receiver’s list of representations.

public void removeRepresentation(NSImageRep imageRep)

See Also
representations (page 763)

representations
Returns an array containing all the representations of the receiver.

public NSArray representations()

scalesWhenResized
public boolean scalesWhenResized()

Discussion
Returns true if image representations are scaled to fit the size specified for the receiver. If representations
are not scalable, this method returns false. The default is false.

Representations created from data that specifies a size (for example, the “ImageLength” and “ImageWidth”
fields of a TIFF representation or the bounding box of an EPS representation) will have the size the data
specifies, which may differ from the size of the NSImage.

See Also
setScalesWhenResized (page 766)
setSize (page 767)

setBackgroundColor
Sets the background color of the image.

public void setBackgroundColor(NSColor aColor)

Discussion
The default is NSColor’s clearColor (page 357), indicating a transparent background. The background color
will be visible only for representations that don’t completely cover all the pixels within the image when
drawing. The background color is ignored for cached image representations; such caches are always created
with a white background. This method doesn’t cause the receiver to recache itself.

See Also
recache (page 762)

Instance Methods 763
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

backgroundColor (page 755)

setCacheDepthMatchesImageDepth
Sets whether the application’s default depth limit applies to the offscreen windows where the receiver’s
representations are cached.

public void setCacheDepthMatchesImageDepth(boolean flag)

Discussion
If flag is true, window depths are determined by the specifications of the representations. If flag is false
(the default), the application’s default depth limit applies to the off-screen windows where the receiver’s
representations are cached. This method doesn’t cause the receiver to recache itself.

See Also
cacheDepthMatchesImageDepth (page 755)
lockFocus (page 761)
recache (page 762)

setCachedSeparately
Sets whether each image representation will be cached in its own offscreen window or in a window shared
with other images.

public void setCachedSeparately(boolean flag)

Discussion
If flag is true, each representation is guaranteed to be in a separate window. If flag is false (the default),
a representation can be cached together with other images, though in practice it might not be.

If an NSImage is to be resized frequently, it’s more efficient to cache its representations separately.

This method doesn’t invalidate any existing caches.

See Also
recache (page 762)

setCacheMode
Set the receiver’s caching mode.

public void setCacheMode(int mode)

Discussion
Possible values for mode are described in “Constants” (page 769).

Availability
Available in Mac OS X v10.2 and later.

See Also
cacheMode (page 756)

764 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

setDataRetained
Sets whether the receiver retains the data needed to render the image, depending on the Boolean value
flag.

public void setDataRetained(boolean flag)

Discussion
The default is false. If the data is available in a file that won’t be moved or deleted, or if responsibility for
drawing the image is delegated to another object with a custom method, there’s no reason for the receiver
to retain the data. However, if the receiver reads image data from a file that could change, you may want to
have it keep the data itself. Generally, this method is useful to redraw the image to a device of different
resolution.

setDelegate
Makes anObject the delegate of the receiver.

public void setDelegate(Object anObject)

See Also
delegate (page 758)

setFlipped
Determines whether the polarity of the y axis is inverted when drawing an image.

public void setFlipped(boolean flag)

Discussion
If flag is true, the image will have its coordinate origin in the upper-left corner, and the positive y axis will
extend downward. This method affects only the coordinate system used to draw the image; it doesn’t affect
the coordinate system for specifying portions of the image for methods like
compositeToPointFromRect (page 757) or dissolveToPointFromRect (page 758). This method doesn’t
cause the receiver to recache itself.

If the image is cached while flag is true, then the receiver is cached flipped and changing flag does not
affect the orientation of the cached image.

See Also
isFlipped (page 760)
recache (page 762)

setMatchesOnMultipleResolution
Sets whether image representations with resolutions that are integral multiples of the resolution of the device
are considered to match the device, depending on the Boolean value flag.

public void setMatchesOnMultipleResolution(boolean flag)

Discussion
The default is true.

Instance Methods 765
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

See Also
matchesOnMultipleResolution (page 762)

setName
Registers the receiver under the name specified by aString, provided that no other NSImage is registered
using that name.

public boolean setName(String aString)

Discussion
If the receiver is already registered under another name, setName (page 766) first unregisters the prior name.
setName returns true unless another NSImage is registered using the name specified by aString, in which
case setName does nothing and returns false.

See Also
imageNamed (page 752)
name (page 762)

setPrefersColorMatch
Sets whether color matches are preferred over resolution matches when determining which representation
to use.

public void setPrefersColorMatch(boolean flag)

Discussion
If flag is true, the receiver first tries to match the representation to the color capability of the rendering
device (choosing a color representation for a color device and a gray-scale representation for a monochrome
device), and then if necessary narrows the selection by trying to match the resolution of the representation
to the resolution of the device. If flag is false, the NSImage first tries to match the representation to the
resolution of the device, and then tries to match it to the color capability of the device. The default is true.

See Also
prefersColorMatch (page 762)

setScalesWhenResized
Sets whether representations with sizes that differ from the size of the receiver will be scaled to fit.

public void setScalesWhenResized(boolean flag)

Discussion
If flag is true, representations are scaled to fit. The default is false.

A representation added with either addRepresentation (page 754) or addRepresentations (page 754)
may have a different size, and representations created from data that specifies a size (for example, the
“ImageLength” and “ImageWidth” fields of a TIFF representation or the bounding box of an EPS
representation) will have the size specified.

This method doesn’t cause the receiving NSImage to recache itself when it is next composited.

766 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

See Also
scalesWhenResized (page 763)
setSize (page 767)

setSize
Sets the width and height of the image.

public void setSize(NSSize aSize)

Discussion
aSize should be in units of the base coordinate system.

The size of an NSImage must be set before it can be used. You can change the size of an NSImage after it
has been used, but changing it invalidates all its caches and frees them. When the image is next composited,
the selected representation will draw itself in an offscreen window to recreate the cache.

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the size
will be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The TIFF
fields “ImageLength” and “ImageWidth” are used to determine the size of an NSBitmapImageRep.

See Also
size (page 767)
setScalesWhenResized (page 766)

setUsesEPSOnResolutionMismatch
Sets whether EPS representations are preferred when there are no representations that match the resolution
of the device, depending on the Boolean value flag.

public void setUsesEPSOnResolutionMismatch(boolean flag)

Discussion
The default is false.

See Also
usesEPSOnResolutionMismatch (page 768)
setMatchesOnMultipleResolution (page 765)

size
Returns the size of the receiver.

public NSSize size()

Discussion
If no size has been set, and no size can be determined from any of the receiver’s representations, the returned
NSSize will have a width and height of 0.0.

See Also
setSize (page 767)

Instance Methods 767
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

TIFFRepresentation
Returns a data object containing TIFF for all representations, using their default compressions.

public NSData TIFFRepresentation()

Returns a data object containing TIFF for all representations, using the specified compression type and
compression factor.

public NSData TIFFRepresentation(int comp, float aFloat)

Discussion
Legal values for comp are described in “TIFF Compression in NSBitmapImageReps”. aFloat provides a hint
for those compression types that implement variable compression ratios; currently only JPEG compression
uses a compression factor.

If the specified compression isn’t applicable, no compression is used. If a problem is encountered during
generation of the TIFF, TIFFRepresentation throws an exception.

See Also
TIFFRepresentation (page 198) (NSBitmapImageRep)
representationUsingType (page 196) (NSBitmapImageRep)

unlockFocus
Balances a previous lockFocus (page 761) or lockFocusOnRepresentation (page 761) message.

public void unlockFocus()

Discussion
All successful lockFocus and lockFocusOnRepresentation messages (those that don’t throw an
ImageCacheException) must be followed by a subsequent unlockFocus message. Those that throw
should never be followed by unlockFocus.

usesEPSOnResolutionMismatch
Returns whether EPS representations are preferred when there are no representations that match the
resolution of the device.

public boolean usesEPSOnResolutionMismatch()

Discussion
The default is false.

See Also
setUsesEPSOnResolutionMismatch (page 767)
matchesOnMultipleResolution (page 762)

768 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Constants

The following compositing operators are defined by NSImage and used by
compositeToPointFromRect (page 757), compositeToPoint (page 756),
compositeToPointFromRectWithFraction (page 757), compositeToPointWithFraction (page 758),
drawAtPoint (page 759), and drawInRect (page 759).

The constants are described in terms of having source and destination images, each having an opaque and
transparent region. The destination image after the operation is defined in terms of the source and destination
before images as follows:

DescriptionConstant

Transparent.CompositeClear

Source image.CompositeCopy

Destination image wherever both images are opaque, source image
wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

CompositeDestinationAtop

Destination image wherever both images are opaque, and transparent
elsewhere.

CompositeDestinationIn

Destination image wherever destination image is opaque but source
image is transparent, and transparent elsewhere.

CompositeDestinationOut

Destination image wherever destination image is opaque, and source
image elsewhere.

CompositeDestinationOver

Deprecated. Mapped to CompositeSourceOver.CompositeHighlight

Sum of source and destination images, with color values approaching 0
as a limit.

CompositePlusDarker

Sum of source and destination images, with color values approaching 1
as a limit.

CompositePlusLighter

Source image wherever both images are opaque, destination image
wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

CompositeSourceAtop

Source image wherever both images are opaque, and transparent
elsewhere.

CompositeSourceIn

Source image wherever source image is opaque but destination image
is transparent, and transparent elsewhere.

CompositeSourceOut

Source image wherever source image is opaque, and destination image
elsewhere.

CompositeSourceOver

Exclusive OR of source and destination images. Works only with black
and white images and is not recommended for color contexts.

CompositeXOR

Constants 769
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

The following constants are status values passed to the incremental loading delegate method
imageDidLoadRepresentation (page 771).

DescriptionConstant

Enough data has been provided to completely decompress the image.ImageLoadStatusCompleted

Image loading was canceled. The image contains the portions of the
data that have already been successfully decompressed, if any.

ImageLoadStatusCancelled

An error occurred during image decompression. The image data is
probably corrupt. The image contains the portions of the data that have
already been successfully decompressed, if any.

ImageLoadStatus-
InvalidData

Not enough data was available for full decompression of the image. The
image contains the portions of the data that have already been
successfully decompressed, if any.

ImageLoadStatus-
UnexpectedEOF

Not enough data was available for full decompression of the image. The
image contains the portions of the data that have already been
successfully decompressed, if any.

ImageLoadStatusReadError

The follow constants specify the caching policy on a per NSImage basis. The caching policy is set using
cacheMode (page 756) and setCacheMode (page 764).

DescriptionConstant

Caching is unspecified. Use the image rep's default.ImageCacheDefault

Always generate a cache when drawing.ImageCacheAlways

Cache if cache size is smaller than the original data.ImageCacheBySize

Never cache; always draw direct.ImageCacheNever

For the various types of image reps, the default caching policy is:

Default caching policyImage Rep Class

ImageCacheBySize. Cache if bitmap is 32-bits in 16-bit world or greater than 72
dpi.

NSBitmapImageRep

ImageCacheBySize. Same reasoning as NSBitmapImageRep in the event the PICT
contains a bitmap.

NSPICTImageRep

ImageCacheAlwaysNSPDFImageRep

770 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Delegate Methods

imageDidLoadPartOfRepresentation
During incremental loading, this method is called repeatedly to inform the delegate that more of the image
rep is available.

public abstract void imageDidLoadPartOfRepresentation(NSImage image, NSImageRep
rep, int rows)

Discussion
This method is optional; incremental loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.

imageDidLoadRepresentation
This method is invoked when image has been as fully decompressed as is possible.

public abstract void imageDidLoadRepresentation(NSImage image, NSImageRep rep, int
status)

Discussion
The image invokes this method on the delegate to notify it that the NSImageRep rep has finished downloading
with a final status of status.

If an error occurs during downloading or decompression, status will be ImageLoadStatusInvalidData,
ImageLoadStatusUnexpectedEOF, or ImageLoadStatusReadError. If you cancel the download, status
will be ImageLoadStatusCancelled.

This method is required for incremental loading; the delegate must implement it if incremental loading is
desired. You must also set up the instance to be loaded lazily, by initializing it using either Constructor that
initializes a file or URL lazily.

Availability
Available in Mac OS X v10.2 and later.

imageDidLoadRepresentationHeader
During incremental loading, the image invokes this method once enough data has been read to determine
the size of the image.

public abstract void imageDidLoadRepresentationHeader(NSImage image, NSImageRep
rep)

Discussion
At this point, the NSBitmapImageRep rep is valid and has storage for the bitmap. The bitmap is filled with
the image's background color. This method is optional; incremental loading will continue if the delegate
does not implement it.

Delegate Methods 771
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Availability
Available in Mac OS X v10.2 and later.

imageDidNotDraw
Implemented by the delegate to respond to a message sent by the sender (an NSImage) when the sender
was unable, for whatever reason, to composite or lock focus on its image to draw in aRect.

public abstract NSImage imageDidNotDraw(Object sender, NSRect aRect)

Discussion
The delegate can do one of the following:

 ■ Return another NSImage to draw in the sender’s place.

 ■ Draw the image itself and return null,.

 ■ Simply return null to indicate that sender should give up the attempt at drawing the image.

imageWillLoadRepresentation
For incremental loading, this method is invoked when you first draw image or otherwise require the bitmap
data.

public abstract void imageWillLoadRepresentation(NSImage image, NSImageRep rep)

Discussion
The image download begins immediately after this method returns. This method is optional; incremental
loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.

772 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

NSImage

Inherits from NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guides Image Views
Matrix Programming Guide for Cocoa
Table View Programming Guide

Overview

An NSImageCell displays a single NSImage in a frame. This class provides methods for choosing the frame
and for aligning and scaling the image to fit the frame.

The object value of an NSImageCell must be an NSImage, so if you use NSCell’s setObjectValue (page 328)
method, be sure to supply an NSImage as an argument. Because an NSImage doesn’t need to be converted
for display, you won’t use the NSCell methods relating to formatters.

An NSImageCell is usually associated with some kind of NSControl (page 441)—an NSImageView (page 795),
an NSMatrix (page 875), or an NSTableView (page 1437).

Tasks

Constructors

NSImageCell (page 774)
Creates an empty NSImageCell.

Aligning and Scaling the Image

imageAlignment (page 774)
Returns the position of the receiver’s image in the frame.

setImageAlignment (page 775)
Lets you specify the position of the image in the frame.

imageScaling (page 775)
Returns the way the receiver’s image alters to fit the frame.

Overview 773
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

NSImageCell

setImageScaling (page 775)
Lets you specify the way the image alters to fit the frame.

Choosing the Frame

imageFrameStyle (page 774)
Returns the style of frame that appears around the image.

setImageFrameStyle (page 775)
Lets you specify the kind of frame that borders the image.

Constructors

NSImageCell
Creates an empty NSImageCell.

public NSImageCell()

Creates an NSImageCell initialized with aString and set to have the cell’s default menu.

public NSImageCell(String aString)

Creates an NSImageCell initialized with anImage and set to have the cell’s default menu.

public NSImageCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

imageAlignment
Returns the position of the receiver’s image in the frame.

public int imageAlignment()

Discussion
For a list of possible alignments, see “Constants” (page 776).

See Also
setImageAlignment (page 775)

imageFrameStyle
Returns the style of frame that appears around the image.

774 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

NSImageCell

public int imageFrameStyle()

Discussion
For a list of frame styles, see “Constants” (page 776).

See Also
setImageFrameStyle (page 775)

imageScaling
Returns the way the receiver’s image alters to fit the frame.

public int imageScaling()

Discussion
For a list of possible values, see “Constants” (page 776).

See Also
setImageScaling (page 775)

setImageAlignment
Lets you specify the position of the image in the frame.

public void setImageAlignment(int alignment)

Discussion
The possible alignments are listed in “Constants” (page 776).

The default alignment is ImageAlignCenter.

See Also
imageAlignment (page 774)

setImageFrameStyle
Lets you specify the kind of frame that borders the image.

public void setImageFrameStyle(int frameStyle)

Discussion
The possible styles are listed in “Constants” (page 776).

The default frameStyle is ImageFrameNone.

See Also
imageFrameStyle (page 774)

setImageScaling
Lets you specify the way the image alters to fit the frame.

Instance Methods 775
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

NSImageCell

public void setImageScaling(int scaling)

Discussion
The possible values are listed in “Constants” (page 776).

The default scaling is ScaleProportionally.

See Also
imageScaling (page 775)

Constants

These constants allow you to specify the location of the image in the frame and are used by
imageAlignment (page 774) and setImageAlignment (page 775):

 ■ ImageAlignLeft

 ■ ImageAlignRight

 ■ ImageAlignCenter

 ■ ImageAlignTop

 ■ ImageAlignBottom

 ■ ImageAlignTopLeft

 ■ ImageAlignTopRight

 ■ ImageAlignBottomLeft

 ■ ImageAlignBottomRight

These constants allow you to specify the kind of frame bordering the image and are used by
imageFrameStyle (page 774) and setImageFrameStyle (page 775). These constants are obsolete, and are
not compliant with the Apple Human Interface Guidelines:

DescriptionConstant

An invisible frameImageFrameNone

A thin black outline and a dropped shadowImageFramePhoto

A gray, concave bezel that makes the image look sunkenImageFrameGrayBezel

A thin groove that looks etched around the imageImageFrameGroove

A convex bezel that makes the image stand out in relief, like a buttonImageFrameButton

These constants allow you to specify the way the image alters to fit the frame. They are used by
imageScaling (page 775) and setImageScaling (page 775).

776 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

NSImageCell

DescriptionConstant

If the image is too large, it shrinks to fit inside the frame. The proportions of the
image are preserved.

ScaleProportionally

The image shrinks or expands, and its proportions distort, until it exactly fits
the frame.

ScaleToFit

The size and proportions of the image don’t change. If the frame is too small
to display the whole image, the edges of the image are trimmed off.

ScaleNone

Constants 777
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

NSImageCell

778 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

NSImageCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

NSImageRep is a semiabstract superclass (“semi” because it has some instance variables and implementation
of its own); each of its subclasses knows how to draw an image from a particular kind of source data. While
an NSImageRep subclass can be used directly, it’s typically used through an NSImage object. An NSImage
manages a group of representations, choosing the best one for the current output device.

Tasks

Constructors

NSImageRep (page 782)
Creates an empty NSImageRep with a zero-sized frame rectangle.

Creating an NSImageRep

imageRepsWithContentsOfFile (page 783)

imageRepsWithPasteboard (page 784)

imageRepsWithContentsOfURL (page 784)

imageRepWithContentsOfFile (page 785)

imageRepWithPasteboard (page 786)

imageRepWithContentsOfURL (page 786)

Overview 779
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Checking Data Types

canInitWithData (page 782)
Should be overridden in subclasses to return true if the receiver can initialize itself from data, and
false if it cannot.

canInitWithPasteboard (page 782)
Returns true if the NSImageRep can handle the data represented by pasteboard, otherwise returns
false.

imageFileTypes (page 782)
Returns an array of Strings representing all file types supported by NSImageRep or one of its subclasses.

imagePasteboardTypes (page 783)
Returns an array of Strings representing all pasteboard types supported by NSImageRep or one of its
subclasses.

imageUnfilteredFileTypes (page 786)
Returns an array of Strings representing all file types (extensions) supported by the NSImageRep.

imageUnfilteredPasteboardTypes (page 787)
Returns an array representing all pasteboard types supported by the NSImageRep.

Setting the Size of the Image

setSize (page 792)
Sets the size of the image to aSize in units of the base coordinate system.

size (page 792)
Returns the size of the image in units of the base coordinate system.

Specifying Information About the Representation

bitsPerSample (page 788)
Returns the number of bits per sample—that is, the number of bits used to specify each component
of data in a pixel. If the receiver is a planar image, this method returns the number of bits per sample
per plane.

colorSpaceName (page 788)
Returns the name if the image’s color space, or NSGraphics.CalibratedRGBColorSpace if no
name has been assigned.

hasAlpha (page 789)
Returns true if the receiver has been informed that the image has a coverage component (alpha),
and false if not.

isOpaque (page 790)
Returns true if the receiver is opaque, false otherwise.

pixelsHigh (page 790)
Returns the height of the image in pixels, as specified in the image data.

pixelsWide (page 790)
Returns the width of the image in pixels, as specified in the image data.

780 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

setAlpha (page 790)
Informs the receiver whether the image has an alpha component.

setBitsPerSample (page 791)
Informs the receiver that the image has anInt bits of data for each pixel in each component.

setColorSpaceName (page 791)
Informs the receiver of the image’s color space.

setOpaque (page 791)
Sets opacity of the receiver’s image.

setPixelsHigh (page 792)
Informs the receiver that the data specifies an image anInt pixels high.

setPixelsWide (page 792)
Informs the receiver that the data specifies an image anInt pixels wide.

Drawing the Image

draw (page 788)
Implemented by subclasses to draw the image at location (0.0, 0.0) in the current coordinate system.

drawAtPoint (page 789)
Sets the current coordinates to aPoint, invokes the receiver’s draw method to draw the image at
that point, then restores the current coordinates to their original setting.

drawInRect (page 789)
Draws the image so it fits inside rect.

Managing NSImageRep Subclasses

imageRepClassForData (page 783)
Returns the NSImageRep subclass that handles data of type data, or null if the NSImage class registry
contains no subclasses that handle data of the specified type.

imageRepClassForFileType (page 783)
Returns the NSImageRep subclass that handles files of type type, or null if the NSImage class registry
contains no subclasses that handle files of the specified type.

imageRepClassForPasteboardType (page 783)
Returns the NSImageRep subclass that handles pasteboard data of type type, or null if the NSImage
class registry contains no subclasses that handle pasteboard data of the specified type.

registeredImageRepClasses (page 787)
Returns an array containing the registered NSImageRep classes.

registerImageRepClass (page 787)
Adds imageRepClass to the registry of available NSImageRep classes.

unregisterImageRepClass (page 788)
Removes imageRepClass from the registry of available NSImageRep classes.

Tasks 781
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Constructors

NSImageRep
Creates an empty NSImageRep with a zero-sized frame rectangle.

public NSImageRep()

Static Methods

canInitWithData
Should be overridden in subclasses to return true if the receiver can initialize itself from data, and false
if it cannot.

public static boolean canInitWithData(NSData data)

Discussion
Note that this method doesn’t need to do a comprehensive check; it should return false only if it knows
the receiver can’t initialize itself from data.

See Also
canInitWithPasteboard (page 782)

canInitWithPasteboard
Returns true if the NSImageRep can handle the data represented by pasteboard, otherwise returns false.

public static boolean canInitWithPasteboard(NSPasteboard pasteboard)

Discussion
This method invokes the imageUnfilteredPasteboardTypes (page 787) class method and checks the list
of types returned by that method against the data types in pasteboard. If it finds a match, it returns true.
When creating a subclass of NSImageRep that accepts image data from a non-default pasteboard type,
override the imageUnfilteredPasteboardTypes (page 787) method to assure this method returns the
correct response.

See Also
canInitWithData (page 782)

imageFileTypes
Returns an array of Strings representing all file types supported by NSImageRep or one of its subclasses.

public static NSArray imageFileTypes()

782 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Discussion
The list includes both those types returned by the imageUnfilteredFileTypes (page 786) class method
and those that can be converted to a supported type by a user-installed filter service. The file types returned
can include encoded HFS file types as well as filename extensions.

Don’t override this method when subclassing NSImageRep—it always returns a valid list for any subclass of
NSImageRep that correctly overrides the imageUnfilteredFileTypes (page 786) method.

imagePasteboardTypes
Returns an array of Strings representing all pasteboard types supported by NSImageRep or one of its subclasses.

public static NSArray imagePasteboardTypes()

Discussion
The list includes both those types returned by the imageUnfilteredPasteboardTypes (page 787) class
method and those that can be converted by a user-installed filter service to a supported type. Don’t override
this method when subclassing NSImageRep—it always returns a valid list for any subclass of NSImageRep
that correctly overrides the imageUnfilteredPasteboardTypes (page 787) method.

imageRepClassForData
Returns the NSImageRep subclass that handles data of type data, or null if the NSImage class registry
contains no subclasses that handle data of the specified type.

public static Class imageRepClassForData(NSData data)

imageRepClassForFileType
Returns the NSImageRep subclass that handles files of type type, or null if the NSImage class registry
contains no subclasses that handle files of the specified type.

public static Class imageRepClassForFileType(String type)

Discussion
type may be either an encoded HFS file type or a filename extension.

imageRepClassForPasteboardType
Returns the NSImageRep subclass that handles pasteboard data of type type, or null if the NSImage class
registry contains no subclasses that handle pasteboard data of the specified type.

public static Class imageRepClassForPasteboardType(String type)

imageRepsWithContentsOfFile
public static NSArray imageRepsWithContentsOfFile(String filename)

Static Methods 783
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Discussion
If sent to the NSImageRep class object, this method returns an array of objects (all newly allocated instances
of a subclass of NSImageRep, chosen through the use of imageRepClassForFileType (page 783)) that
have been initialized with the contents of the file filename. If sent to a subclass of NSImageRep that
recognizes the type of file specified by filename, it returns an array of objects (all instances of that subclass)
that have been initialized with the contents of the file filename.

The imageRepsWithContentsOfFile (page 783) method returns null in any of the following cases:

 ■ The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type indicated by filename.

 ■ The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
indicated by filename.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of filename.

The filename argument may be a full or relative pathname and should include an extension that identifies
the data type in the file. By default, the files handled include those with the extensions “tiff”, “gif”, “jpg”,
“pict”, “pdf”, and “eps”.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file, then
passing it to imageRepsWithData.

See Also
imageFileTypes (page 782)

imageRepsWithContentsOfURL
public static NSArray imageRepsWithContentsOfURL(java.net.URL aURL)

Discussion
If sent to the NSImageRep class object, this method returns an array of objects (all newly allocated instances
of a subclass of NSImageRep) that have been initialized with the contents of aURL. If sent to a subclass of
NSImageRep that recognizes the type of data contained in aURL, it returns an array of objects (all instances
of that subclass) that have been initialized with the contents of aURL.

The imageRepsWithContentsOfURL (page 784) method returns null in any of the following cases:

 ■ The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in aURL.

 ■ The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
contained in aURL.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of aURL.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of aURL, then
passing it to imageRepsWithData.

imageRepsWithPasteboard
public static NSArray imageRepsWithPasteboard(NSPasteboard pasteboard)

784 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Discussion
If sent to the NSImageRep class object, this method returns an array of objects (all newly-allocated instances
of a subclass of NSImageRep) that have been initialized with the data in pasteboard. If sent to a subclass
of NSImageRep that recognizes the type of data contained in pasteboard, it returns an array of objects (all
instances of that subclass) initialized with the data in pasteboard.

imageRepsWithPasteboard returns null in any of the following cases:

 ■ The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in pasteboard.

 ■ The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
contained in pasteboard.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of pasteboard.

The NSImageRep subclass is initialized by creating an NSData object based on the data in pasteboard, then
passing it to imageRepsWithData.

See Also
imagePasteboardTypes (page 783)

imageRepWithContentsOfFile
public static NSImageRep imageRepWithContentsOfFile(String filename)

Discussion
If sent to the NSImageRep class object, this method returns a newly allocated instance of a subclass of
NSImageRep (chosen through the use of imageRepClassForFileType (page 783)) initialized with the
contents of the file filename. If sent to a subclass of NSImageRep that recognizes the type of file specified
by filename, it returns an instance of that subclass initialized with the contents of the file filename.

The imageRepWithContentsOfFile method returns null in any of the following cases:

 ■ The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type indicated by filename.

 ■ The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
indicated by filename.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of filename.

The filename argument may be a full or relative pathname and should include an extension that identifies
the data type in the file. By default, the files handled include those with the extensions “tiff”, “gif”, “jpg”,
“pict”, “pdf”, and “eps”.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file, then
passing it to imageRepWithData.

See Also
imageFileTypes (page 782)

Static Methods 785
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

imageRepWithContentsOfURL
public static Object imageRepWithContentsOfURL(java.net.URL aURL)

Discussion
If sent to the NSImageRep class object, this method returns a newly allocated instance of a subclass of
NSImageRep initialized with the contents of aURL. If sent to a subclass of NSImageRep that recognizes the
type of data contained in aURL, it returns an instance of that subclass initialized with the contents of aURL.

The imageRepWithContentsOfURL method returns null in any of the following cases:

 ■ The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in aURL.

 ■ The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
contained in aURL.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of aURL.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file, then
passing it to imageRepWithData.

imageRepWithPasteboard
public static NSImageRep imageRepWithPasteboard(NSPasteboard pasteboard)

Discussion
If sent to the NSImageRep class object, this method returns a newly allocated instance of a subclass of
NSImageRep initialized with the data in pasteboard. If sent to a subclass of NSImageRep that recognizes
the type of data contained in pasteboard, it returns an instance of that subclass initialized with the data in
pasteboard.

The imageRepWithPasteboard method returns null in any of the following cases:

 ■ The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in pasteboard.

 ■ The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
contained in pasteboard.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of pasteboard.

The NSImageRep subclass is initialized by creating an NSData object based on the data in pasteboard, then
passing it to imageRepWithData.

See Also
imagePasteboardTypes (page 783)

imageUnfilteredFileTypes
Returns an array of Strings representing all file types (extensions) supported by the NSImageRep.

public static NSArray imageUnfilteredFileTypes()

786 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Discussion
The file types returned can include encoded HFS file types as well as filename extensions. By default, the
returned array is empty.

When creating a subclass of NSImageRep, override this method to return a list of strings representing the
supported file types.

If your subclass supports the types supported by its superclass, you must explicitly get the array of types
from the superclass and put them in the array returned by this method.

See Also
imageFileTypes (page 782)
imageUnfilteredFileTypes (page 753) (NSImage)

imageUnfilteredPasteboardTypes
Returns an array representing all pasteboard types supported by the NSImageRep.

public static NSArray imageUnfilteredPasteboardTypes()

Discussion
By default, the returned array is empty.

When creating a subclass of NSImageRep, override this method to return a list representing the supported
pasteboard types.

If your subclass supports the types supported by its superclass, you must explicitly get the list of types from
the superclass and add them to the array returned by this method.

See Also
imagePasteboardTypes (page 783)
imageUnfilteredPasteboardTypes (page 754) (NSImage)

registeredImageRepClasses
Returns an array containing the registered NSImageRep classes.

public static NSArray registeredImageRepClasses()

registerImageRepClass
Adds imageRepClass to the registry of available NSImageRep classes.

public static void registerImageRepClass(Class imageRepClass)

Discussion
This method posts an ImageRepRegistryDidChangeNotification (page 793), along with the receiving
object, to the default notification center.

See Also
unregisterImageRepClass (page 788)

Static Methods 787
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

unregisterImageRepClass
Removes imageRepClass from the registry of available NSImageRep classes.

public static void unregisterImageRepClass(Class imageRepClass)

Discussion
This method posts the ImageRepRegistryDidChangeNotification (page 793), along with the receiving
object, to the default notification center.

See Also
registerImageRepClass (page 787)

Instance Methods

bitsPerSample
Returns the number of bits per sample—that is, the number of bits used to specify each component of data
in a pixel. If the receiver is a planar image, this method returns the number of bits per sample per plane.

public int bitsPerSample()

See Also
setBitsPerSample (page 791)
bitsPerPixel (page 193) (NSBitmapImageRep)
samplesPerPixel (page 197) (NSBitmapImageRep)
isPlanar (page 196) (NSBitmapImageRep)

colorSpaceName
Returns the name if the image’s color space, or NSGraphics.CalibratedRGBColorSpace if no name has
been assigned.

public String colorSpaceName()

See Also
setColorSpaceName (page 791)

draw
Implemented by subclasses to draw the image at location (0.0, 0.0) in the current coordinate system.

public boolean draw()

Discussion
Subclass methods return true if the image is successfully drawn, and false if it isn’t. This version of the
method simply returns true.

788 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

The standard Application Kit subclasses all draw the image using the NSImage.CompositeCopy composite
operation defined in NSImage’s “Constants” (page 769) section. The image data overwrites the destination
without any blending effects; any transparent (alpha) regions in the source image appear black. To use other
composite operations, you must place the representation into an NSImage object and use its
drawAtPoint (page 759) or drawInRect (page 759) methods.

drawAtPoint
Sets the current coordinates to aPoint, invokes the receiver’s draw method to draw the image at that point,
then restores the current coordinates to their original setting.

public boolean drawAtPoint(NSPoint aPoint)

Discussion
If aPoint is (0.0, 0.0), drawAtPoint simply invokes draw (page 788).

This method returns false without translating, scaling, or drawing if the size of the image has not been set.
Otherwise it returns the value returned by the drawmethod, which indicates whether the image is successfully
drawn.

See Also
setSize (page 792)
drawInRect (page 789)

drawInRect
Draws the image so it fits inside rect.

public boolean drawInRect(NSRect rect)

Discussion
The current coordinates are set to the point specified in the rectangle and are scaled so the image will fit
within the rectangle. The receiver’s draw method is then invoked to draw the image. After draw has been
invoked, the current coordinates and scale factors are restored to their original settings.

This method returns false without translating, scaling, or drawing if the size of the image has not been set.
Otherwise it returns the value returned by the drawmethod, which indicates whether the image is successfully
drawn.

See Also
setSize (page 792)
drawAtPoint (page 789)

hasAlpha
Returns true if the receiver has been informed that the image has a coverage component (alpha), and false
if not.

public boolean hasAlpha()

Instance Methods 789
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

See Also
setAlpha (page 790)

isOpaque
Returns true if the receiver is opaque, false otherwise.

public boolean isOpaque()

Discussion
Use this method to test whether an NSImageRep completely covers the area within the rectangle returned
by size (page 792).

This value does not indicate if the image has an alpha channel and if there is partial or complete transparency
when drawing the image rep. Use hasAlpha (page 789) to determine if the image has an alpha channel.

See Also
setOpaque (page 791)

pixelsHigh
Returns the height of the image in pixels, as specified in the image data.

public int pixelsHigh()

See Also
setPixelsHigh (page 792)
pixelsWide (page 790)
size (page 792)

pixelsWide
Returns the width of the image in pixels, as specified in the image data.

public int pixelsWide()

See Also
setPixelsWide (page 792)
pixelsHigh (page 790)
size (page 792)

setAlpha
Informs the receiver whether the image has an alpha component.

public void setAlpha(boolean flag)

Discussion
flag should be true if it does, and false if it doesn’t.

790 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

See Also
hasAlpha (page 789)

setBitsPerSample
Informs the receiver that the image has anInt bits of data for each pixel in each component.

public void setBitsPerSample(int anInt)

See Also
bitsPerSample (page 788)

setColorSpaceName
Informs the receiver of the image’s color space.

public void setColorSpaceName(String string)

Discussion
By default, an NSImageRep’s color space name is NSGraphics.CalibratedRGBColorSpace. Color space
names are defined as part of the NSGraphics class. The following are valid color space names:

NSGraphics.CalibratedWhiteColorSpace

NSGraphics.CalibratedBlackColorSpace

NSGraphics.CalibratedRGBColorSpace

NSGraphics.DeviceWhiteColorSpace

NSGraphics.DeviceBlackColorSpace

NSGraphics.DeviceRGBColorSpace

NSGraphics.DeviceCMYKColorSpace

NSGraphics.NamedColorSpace

NSGraphics.CustomColorSpace

See Also
colorSpaceName (page 788)

setOpaque
Sets opacity of the receiver’s image.

public void setOpaque(boolean flag)

Discussion
If flag is true, the image is opaque.

See Also
isOpaque (page 790)

Instance Methods 791
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

setPixelsHigh
Informs the receiver that the data specifies an image anInt pixels high.

public void setPixelsHigh(int anInt)

See Also
pixelsHigh (page 790)
setPixelsWide (page 792)
setSize (page 792)

setPixelsWide
Informs the receiver that the data specifies an image anInt pixels wide.

public void setPixelsWide(int anInt)

See Also
pixelsWide (page 790)
setPixelsHigh (page 792)
setSize (page 792)

setSize
Sets the size of the image to aSize in units of the base coordinate system.

public void setSize(NSSize aSize)

Discussion
This method determines the size of the image when it’s rendered; it’s not necessarily the same as the width
and height of the image in pixels as specified in the image data. You must set the image size before you can
render it.

See Also
size (page 792)
draw (page 788)
setPixelsHigh (page 792)
setPixelsWide (page 792)

size
Returns the size of the image in units of the base coordinate system.

public NSSize size()

Discussion
This size is the size of the image when it’s rendered; it’s not necessarily the same as the width and height of
the image in pixels as specified in the image data.

See Also
setSize (page 792)

792 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

pixelsHigh (page 790)
pixelsWide (page 790)

Constants

The following constant is defined as a convenience by NSImageRep:

DescriptionConstant

Indicates that the value of certain attributes, such as the number of colors or
bits per sample, will change to match the display device.

ImageRepMatchesDevice

Notifications

ImageRepRegistryDidChangeNotification
Posted whenever the NSImageRep class registry changes.

The notification object is the image class that is registered or unregistered. This notification does not contain
a userInfo dictionary.

Constants 793
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

794 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

NSImageRep

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Image Views

Overview

An NSImageView displays a single NSImage in a frame and can optionally allow a user to drag an image to
it.

Tasks

Constructors

NSImageView (page 796)
Creates an NSImageView with a zero-sized frame rectangle.

Choosing the Image

image (page 797)
Returns the NSImage displayed by the receiver.

setImage (page 799)
Lets you specify the image the receiver displays as image.

Choosing the Frame

imageFrameStyle (page 798)
Returns the style of frame that appears around the image.

setImageFrameStyle (page 800)
Lets you specify the kind of frame that borders the image.

Overview 795
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

NSImageView

Aligning and Scaling the Image

imageAlignment (page 797)
Returns the position of the cell’s image in the frame.

setImageAlignment (page 799)
Lets you specify the position of the image in the frame.

imageScaling (page 798)
Returns the way the cell’s image alters to fit the frame.

setImageScaling (page 800)
Lets you specify the way the image alters to fit the frame.

Responding to User Events

isEditable (page 798)
Returns whether the user can drag a new image into the frame.

setEditable (page 799)
Specifies whether the user can drag a new image into the frame, depending on the Boolean value
flag.

Animating Image Playback

animates (page 797)
Returns whether the receiver automatically plays an animated image that is assigned to it.

setAnimates (page 798)
Specifies whether the receiver automatically plays an animated image that is assigned to it.

Pasteboard Support

setAllowsCutCopyPaste (page 798)
Specifies whether the receiver allows the user to cut, copy and paste the image contents.

allowsCutCopyPaste (page 797)
Returns whether the receiver allows the user to cut, copy and paste of the image contents.

Constructors

NSImageView
Creates an NSImageView with a zero-sized frame rectangle.

public NSImageView()

Creates an NSImageView with frameRect as its frame rectangle.

796 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

NSImageView

public NSImageView(NSRect frameRect)

Instance Methods

allowsCutCopyPaste
Returns whether the receiver allows the user to cut, copy and paste of the image contents.

public boolean allowsCutCopyPaste()

Availability
Available in Mac OS X v10.4 and later.

See Also
setAllowsCutCopyPaste (page 798)

animates
Returns whether the receiver automatically plays an animated image that is assigned to it.

public boolean animates()

Discussion
If this method returns true, the receiver automatically plays animated images, with the timing and looping
characteristics specified by the image data.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAnimates (page 798)

image
Returns the NSImage displayed by the receiver.

public NSImage image()

See Also
setImage (page 799)

imageAlignment
Returns the position of the cell’s image in the frame.

public int imageAlignment()

Discussion
For a list of possible alignments, see setImageAlignment (page 799).

Instance Methods 797
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

NSImageView

imageFrameStyle
Returns the style of frame that appears around the image.

public int imageFrameStyle()

Discussion
For a list of frame styles, see setImageFrameStyle (page 800).

imageScaling
Returns the way the cell’s image alters to fit the frame.

public int imageScaling()

Discussion
For a list of possible values, see setImageScaling (page 800).

isEditable
Returns whether the user can drag a new image into the frame.

public boolean isEditable()

Discussion
The default is true.

See Also
setEditable (page 799)

setAllowsCutCopyPaste
Specifies whether the receiver allows the user to cut, copy and paste the image contents.

public void setAllowsCutCopyPaste(boolean allow)

Availability
Available in Mac OS X v10.4 and later.

See Also
allowsCutCopyPaste (page 797)

setAnimates
Specifies whether the receiver automatically plays an animated image that is assigned to it.

public void setAnimates(boolean flag)

798 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

NSImageView

Discussion
If flag is set totrue, the receiver automatically plays animated images, with the timing and looping
characteristics specified by the image data. If flag is set to false, the receiver displays the first frame of
the animation. The default is true for newly created instances of NSImageView and false for
previously-created NSImageView objects loaded from nib files.

Availability
Available in Mac OS X v10.3 and later.

See Also
animates (page 797)

setEditable
Specifies whether the user can drag a new image into the frame, depending on the Boolean value flag.

public void setEditable(boolean flag)

See Also
isEditable (page 798)

setImage
Lets you specify the image the receiver displays as image.

public void setImage(NSImage image)

See Also
image (page 797)

setImageAlignment
Lets you specify the position of the image in the frame.

public void setImageAlignment(int alignment)

Discussion
The possible values for alignment are:

 ■ NSImageCell.ImageAlignLeft

 ■ NSImageCell.ImageAlignRight

 ■ NSImageCell.ImageAlignCenter

 ■ NSImageCell.ImageAlignTop

 ■ NSImageCell.ImageAlignBottom

 ■ NSImageCell.ImageAlignTopLeft

 ■ NSImageCell.ImageAlignTopRight

 ■ NSImageCell.ImageAlignBottomLeft

Instance Methods 799
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

NSImageView

 ■ NSImageCell.ImageAlignBottomRight

The default alignment is NSImageCell.ImageAlignCenter.

See Also
imageAlignment (page 797)

setImageFrameStyle
Lets you specify the kind of frame that borders the image.

public void setImageFrameStyle(int frameStyle)

Discussion
The possible values for frameStyle are:

 ■ NSImageCell.ImageFrameNone—an invisible frame

 ■ NSImageCell.ImageFramePhoto—a thin black outline and a dropped shadow

 ■ NSImageCell.ImageFrameGrayBezel—a gray, concave bezel that makes the image look sunken

 ■ NSImageCell.ImageFrameGroove—a thin groove that looks etched around the image

 ■ NSImageCell.ImageFrameButton—a convex bezel that makes the image stand out in relief, like a
button

The default frameStyle is NSImageCell.ImageFrameNone.

See Also
imageFrameStyle (page 798)

setImageScaling
Lets you specify the way the image alters to fit the frame.

public void setImageScaling(int scaling)

Discussion
The possible values for scaling are:

 ■ NSImageCell.ScaleProportionally. If the image is too large, it shrinks to fit inside the frame. The
proportions of the image are preserved. The image is never scaled up to fit a larger frame.

 ■ NSImageCell.ScaleToFit. The image shrinks or expands, and its proportions distort, until it exactly
fits the frame.

 ■ NSImageCell.ScaleNone. The size and proportions of the image don’t change. If the frame is too small
to display the whole image, the edges of the image are trimmed off.

The default scaling is NSImageCell.ScaleProportionally.

See Also
imageScaling (page 798)

800 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

NSImageView

Inherits from NSObject

Implements NSTextInput

Package: com.apple.cocoa.application

Companion guide Text Input Management

Overview

NSInputManager is one of the three players in the Cocoa text input management system. The input manager
acts as a proxy between "NSInputServer" (page 809) and text views. You never have to instantiate or subclass
NSInputManager, and unless you are implementing a text view that does not inherit from NSTextView, you
never have to directly access its methods either.

If an application needs more complex text handling than the standard Cocoa text view classes can provide,
then it will use its own text view class that implements the "NSTextInput" (page 2025) interface, and that class
will call NSInputManager’s methods. The current input manager’s input server will call some of the text view’s
NSTextInput interface methods.

The wantsToDelayTextChangeNotifications (page 807), wantsToHandleMouseEvents (page 808),
and wantsToInterpretAllKeystrokes (page 808) methods call methods of the same names on the input
manager’s current input server and return the result.

Interfaces Implemented

NSTextInput
characterIndexForPoint (page 2026)
conversationIdentifier (page 2027)
doCommandBySelector (page 2027)
firstRectForCharacterRange (page 2027)
hasMarkedText (page 2027)
insertText (page 2028)
markedRange (page 2028)
selectedRange (page 2028)
setMarkedTextAndSelectedRange (page 2028)
unmarkText (page 2029)
validAttributesForMarkedText (page 2029)

Overview 801
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

Tasks

Constructors

NSInputManager (page 804)
Cocoa constructs an NSInputManager automatically. This method is an implementation detail. You
will never call this method.

Input Server Selection

currentInputManager (page 804)
The current input manager is the one that has been chosen to handle keyboard events at the time
this method is called.

cycleToNextInputLanguage (page 804)
Deprecated.

cycleToNextInputServerInLanguage (page 804)
Deprecated.

Marked Text

markedTextSelectionChanged (page 806)
The user clicked at the beginning of marked text, the end of marked text, or in between, or the user
made a selection within the marked text in the client text view.

markedTextAbandoned (page 806)
The input server must abandon whatever it was doing with marked text.

Event Handling

handleMouseEvent (page 805)

Input Server Information

image (page 805)
Deprecated.

language (page 806)
Returns the Language property from the input server’s Info file, or null if none is specified there.

localizedInputManagerName (page 806)
Returns the name of the input server as it appears in the Edit>Input submenu.

server (page 807)
Deprecated.

802 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

Input Server Options

wantsToDelayTextChangeNotifications (page 807)
A true return value tells the sender that only a call to its insertText (page 1980) method constitutes
a modification to its text storage.

wantsToHandleMouseEvents (page 808)
Returns true if the sender should forward all mouse events within the text view to the input server.

wantsToInterpretAllKeystrokes (page 808)
Returns true if the server wants all keystrokes to be sent to it as characters.

NSTextInput Interface (used Internally Only)

attributedSubstringWithRange (page 804)
From NSTextInput interface; called internally only.

characterIndexForPoint (page 805)
From NSTextInput interface; called internally only.

conversationIdentifier (page 805)
From NSTextInput interface; called internally only.

doCommandBySelector (page 805)
From NSTextInput interface; called internally only.

firstRectForCharacterRange (page 805)
From NSTextInput interface; called internally only.

hasMarkedText (page 805)
From NSTextInput interface; called internally only.

insertText (page 806)
From NSTextInput interface; called internally only.

markedRange (page 806)
From NSTextInput interface; called internally only.

selectedRange (page 807)
From NSTextInput interface; called internally only.

setMarkedTextAndSelectedRange (page 807)
From NSTextInput interface; called internally only.

unmarkText (page 807)
From NSTextInput interface; called internally only.

validAttributesForMarkedText (page 807)
From NSTextInput interface; called internally only.

Tasks 803
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

Constructors

NSInputManager
Cocoa constructs an NSInputManager automatically. This method is an implementation detail. You will never
call this method.

public NSInputManager(String inputServerName, String hostName)

Static Methods

currentInputManager
The current input manager is the one that has been chosen to handle keyboard events at the time this
method is called.

public static NSInputManager currentInputManager()

Discussion
Don’t cache the return value, because the user can switch to a different input manager at any time.

cycleToNextInputLanguage
Deprecated.

public static void cycleToNextInputLanguage(Object sender)

cycleToNextInputServerInLanguage
Deprecated.

public static void cycleToNextInputServerInLanguage(Object sender)

Instance Methods

attributedSubstringWithRange
From NSTextInput interface; called internally only.

public NSAttributedString attributedSubstringWithRange(NSRange theRange)

804 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

characterIndexForPoint
From NSTextInput interface; called internally only.

public int characterIndexForPoint(NSPoint thePoint)

conversationIdentifier
From NSTextInput interface; called internally only.

public int conversationIdentifier()

doCommandBySelector
From NSTextInput interface; called internally only.

public void doCommandBySelector(NSSelector aSelector)

firstRectForCharacterRange
From NSTextInput interface; called internally only.

public NSRect firstRectForCharacterRange(NSRange theRange)

handleMouseEvent
public boolean handleMouseEvent(NSEvent theMouseEvent)

Discussion
Forwards a mouse event passed intheMouseEvent to the input server. IfwantsToHandleMouseEvents (page
808) returns true, then the text view must forward all mouse events that occur within it. As usual, a return
value of false means that the text view should proceed with handling the event.

hasMarkedText
From NSTextInput interface; called internally only.

public boolean hasMarkedText()

image
Deprecated.

public NSImage image()

Instance Methods 805
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

insertText
From NSTextInput interface; called internally only.

public void insertText(Object aString)

language
Returns the Language property from the input server’s Info file, or null if none is specified there.

public String language()

Discussion
For additional information, see “Deploying Input Servers”.

localizedInputManagerName
Returns the name of the input server as it appears in the Edit>Input submenu.

public String localizedInputManagerName()

Discussion
This value comes from the input server’s Info file.For additional information, see “Deploying Input Servers”.

markedRange
From NSTextInput interface; called internally only.

public NSRange markedRange()

markedTextAbandoned
The input server must abandon whatever it was doing with marked text.

public void markedTextAbandoned(Object client)

Discussion
The NSTextView object client calls this when the user clicks outside the marked text (anywhere other
than the beginning of marked text, the end of marked text, or in between), then NSTextView promotes the
marked text to normal text as if it had been inserted. A custom text view is free to choose not to keep the
marked text.

See Also
markedTextSelectionChanged (page 806)
markedTextAbandoned (page 1981) (NSInputServiceProvider)

markedTextSelectionChanged
The user clicked at the beginning of marked text, the end of marked text, or in between, or the user made
a selection within the marked text in the client text view.

806 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

public void markedTextSelectionChanged(NSRange newSel, Object client)

Discussion
The range newSel is relative to the beginning of the marked text.

See Also
markedTextAbandoned (page 806)
markedTextSelectionChanged (page 1981) (NSInputServiceProvider)

selectedRange
From NSTextInput interface; called internally only.

public NSRange selectedRange()

server
Deprecated.

public NSInputServer server()

setMarkedTextAndSelectedRange
From NSTextInput interface; called internally only.

public void setMarkedTextAndSelectedRange(Object aString, NSRange selRange)

unmarkText
From NSTextInput interface; called internally only.

public void unmarkText()

validAttributesForMarkedText
From NSTextInput interface; called internally only.

public NSArray validAttributesForMarkedText()

wantsToDelayTextChangeNotifications
A true return value tells the sender that only a call to its insertText (page 1980) method constitutes a
modification to its text storage.

public boolean wantsToDelayTextChangeNotifications()

Instance Methods 807
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

Discussion
A false return value tells the sender that all text given to it, either by insertion or as part of marked text,
should constitute a modification to its text storage. The sender may for example want to filter all text that is
part of a modification but leave marked text unfiltered.

See Also
wantsToDelayTextChangeNotifications (page 807) (NSInputServiceProvider)

wantsToHandleMouseEvents
Returns true if the sender should forward all mouse events within the text view to the input server.

public boolean wantsToHandleMouseEvents()

See Also
wantsToHandleMouseEvents (page 1982) (NSInputServiceProvider)

wantsToInterpretAllKeystrokes
Returns true if the server wants all keystrokes to be sent to it as characters.

public boolean wantsToInterpretAllKeystrokes()

Discussion
This method is needed only by the inner workings of Cocoa. You will probably not need to call this method.

See Also
wantsToInterpretAllKeystrokes (page 1982) (NSInputServiceProvider)

808 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

NSInputManager

Inherits from NSObject

Implements NSInputServiceProvider
NSInputServerMouseTracker

Package: com.apple.cocoa.application

Companion guide Text Input Management

Overview

NSInputServer and NSInputManager (page 801) are central to the mechanism that interprets keystrokes and
delivers text characters to text view objects. NSInputServer objects provide the direct interface between the
user and the text management system, communicating to text views via NSInputManager.

Interfaces Implemented

NSInputServiceProvider
activeConversationChanged (page 1978)
activeConversationWillChange (page 1978)
canBeDisabled (page 1979)
doCommandBySelector (page 1979)
inputClientBecomeActive (page 1979)
inputClientDisabled (page 1980)
inputClientEnabled (page 1980)
inputClientResignActive (page 1980)
insertText (page 1980)
markedTextAbandoned (page 1981)
markedTextSelectionChanged (page 1981)
terminate (page 1981)
wantsToDelayTextChangeNotifications (page 1981)
wantsToHandleMouseEvents (page 1982)
wantsToInterpretAllKeystrokes (page 1982)

NSInputServerMouseTracker
mouseDownOnCharacterIndex (page 1975)
mouseDraggedOnCharacterIndex (page 1976)

Overview 809
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

NSInputServer

mouseUpOnCharacterIndex (page 1976)

Tasks

Constructors

NSInputServer (page 811)
Constructs an input server with optional delegate and with name.

NSInputServiceProvider Interface Implementations

activeConversationChanged (page 811)
Forwards to the delegate if provided.

activeConversationWillChange (page 811)
Forwards to the delegate if provided.

canBeDisabled (page 812)
Returns false or forwards to the delegate if provided.

doCommandBySelector (page 812)
Forwards to the delegate if provided.

inputClientBecameActive (page 812)
Forwards to the delegate if provided.

inputClientDisabled (page 812)
Forwards to the delegate if provided.

inputClientEnabled (page 812)
Forwards to the delegate if provided.

inputClientResignActive (page 812)
Forwards to the delegate if provided.

insertText (page 813)
Forwards to the delegate if provided.

markedTextAbandoned (page 813)
Forwards to the delegate if provided.

markedTextSelectionChanged (page 813)
Forwards to the delegate if provided.

terminate (page 814)
Forwards to the delegate if provided.

wantsToDelayTextChangeNotifications (page 814)
Returns false or forwards to the delegate if provided.

wantsToHandleMouseEvents (page 814)
Returns false or forwards to the delegate if provided.

wantsToInterpretAllKeystrokes (page 814)
Returns false or forwards to the delegate if provided.

810 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

NSInputServer

NSInputServerMouseTracker Interface Implementations

mouseDownOnCharacterIndex (page 813)
Returns false or forwards to the delegate if provided.

mouseDraggedOnCharacterIndex (page 813)
Returns false or forwards to the delegate if provided.

mouseUpOnCharacterIndex (page 814)
Returns false or forwards to the delegate if provided.

Constructors

NSInputServer
Constructs an input server with optional delegate and with name.

public NSInputServer(Object delegate, String name)

Discussion
The given name identifies this service in the IPC mechanism, so NSInputManager (page 801) can find it. If
delegate is null, then the methods in this class must be overridden in a subclass of NSInputServer. If
delegate is non-null, then all methods forward to the delegate, which must implement the
NSInputServiceProvider (page 1977) interface and which may need to implement the
NSInputServerMouseTracker (page 1975) interface.

Instance Methods

activeConversationChanged
Forwards to the delegate if provided.

public void activeConversationChanged(Object anObject, int anInt)

See Also
activeConversationChanged (page 1978) (NSInputServiceProvider)

activeConversationWillChange
Forwards to the delegate if provided.

public void activeConversationWillChange(Object anObject, int anInt)

See Also
activeConversationWillChange (page 1978) (NSInputServiceProvider)

Constructors 811
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

NSInputServer

canBeDisabled
Returns false or forwards to the delegate if provided.

public boolean canBeDisabled()

See Also
canBeDisabled (page 1979) (NSInputServiceProvider)

doCommandBySelector
Forwards to the delegate if provided.

public void doCommandBySelector(NSSelector aSelector, Object anObject)

See Also
doCommandBySelector (page 1979) (NSInputServiceProvider)

inputClientBecameActive
Forwards to the delegate if provided.

public void inputClientBecameActive(Object anObject)

See Also
inputClientBecomeActive (page 1979) (NSServiceProvider)

inputClientDisabled
Forwards to the delegate if provided.

public void inputClientDisabled(Object anObject)

See Also
inputClientDisabled (page 1980) (NSInputServiceProvider)

inputClientEnabled
Forwards to the delegate if provided.

public void inputClientEnabled(Object anObject)

See Also
inputClientEnabled (page 1980) (NSInputServiceProvider)

inputClientResignActive
Forwards to the delegate if provided.

public void inputClientResignActive(Object anObject)

812 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

NSInputServer

See Also
inputClientResignActive (page 1980) (NSInputServiceProvider)

insertText
Forwards to the delegate if provided.

public void insertText(Object anObject, Object anObject)

See Also
insertText (page 1980) (NSInputServiceProvider)

markedTextAbandoned
Forwards to the delegate if provided.

public void markedTextAbandoned(Object anObject)

See Also
markedTextAbandoned (page 1981) (NSInputServiceProvider)

markedTextSelectionChanged
Forwards to the delegate if provided.

public void markedTextSelectionChanged(NSRange aRange, Object anObject)

See Also
markedTextSelectionChanged (page 1981) (NSInputServiceProvider)

mouseDownOnCharacterIndex
Returns false or forwards to the delegate if provided.

public boolean mouseDownOnCharacterIndex(int anInt, NSPoint aPoint, int anInt,
Object anObject)

See Also
mouseDownOnCharacterIndex (page 1975) (NSInputServiceMouseTracker)

mouseDraggedOnCharacterIndex
Returns false or forwards to the delegate if provided.

public boolean mouseDraggedOnCharacterIndex(int anInt, NSPoint aPoint, int anInt,
Object anObject)

See Also
mouseDraggedOnCharacterIndex (page 1976) (NSInputServiceMouseTracker)

Instance Methods 813
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

NSInputServer

mouseUpOnCharacterIndex
Returns false or forwards to the delegate if provided.

public void mouseUpOnCharacterIndex(int anInt, NSPoint aPoint, int anInt, Object
anObject)

See Also
mouseUpOnCharacterIndex (page 1976) (NSInputServerMouseTracker)

terminate
Forwards to the delegate if provided.

public void terminate(Object sender)

See Also
terminate (page 1981) (NSInputServiceProvider)

wantsToDelayTextChangeNotifications
Returns false or forwards to the delegate if provided.

public boolean wantsToDelayTextChangeNotifications()

See Also
wantsToDelayTextChangeNotifications (page 1981) (NSInputServiceProvider)

wantsToHandleMouseEvents
Returns false or forwards to the delegate if provided.

public boolean wantsToHandleMouseEvents()

See Also
wantsToHandleMouseEvents (page 1982) (NSInputServiceProvider)

wantsToInterpretAllKeystrokes
Returns false or forwards to the delegate if provided.

public boolean wantsToInterpretAllKeystrokes()

See Also
wantsToInterpretAllKeystrokes (page 1982) (NSInputServiceProvider)

814 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

NSInputServer

Inherits from NSObject

Package: com.apple.cocoa.application

Overview

This class defines parameterized values that allow applications to adhere to the UI conventions of the current
operating-system environment. Only the Macintosh interface style is supported.

Tasks

Constructors

NSInterfaceStyle (page 815)
Constructor. Instantiating an NSInterfaceStyle is useless, because all methods are static.

Getting an Interface Style

interfaceStyleForKey (page 816)

Constructors

NSInterfaceStyle
Constructor. Instantiating an NSInterfaceStyle is useless, because all methods are static.

public NSInterfaceStyle()

Overview 815
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

NSInterfaceStyle

Static Methods

interfaceStyleForKey
public static int interfaceStyleForKey(String aString, NSResponder aResponder)

Discussion
Responders can use this function to parameterize their drawing and behavior. If the responder has specific
defaults to control various aspects of its interface individually, the keys for those special settings can be
passed in aString; otherwise pass null to get the global setting. The responder should always be passed
in aResponder, but in situations where a responder is not available, pass null.

Constants

You can pass the following style defaults to interfaceStyleForKey (page 816):

DescriptionConstant

Pass this to retrieve the default interface style.InterfaceStyleDefault

Deprecated.AlertInterfaceStyleDefault

Deprecated.BrowserInterfaceStyleDefault

Deprecated.ControlInterfaceStyleDefault

Deprecated.MenuInterfaceStyleDefault

Deprecated.MiniWindowStyleDefault

Deprecated.PopUpButtonInterfaceStyleDefault

Deprecated.ScrollerArrowPositioningDefault

Deprecated.ScrollerInterfaceStyleDefault

Deprecated.ScrollerPagingBehaviorDefault

Deprecated.SystemColorInterfaceStyleDefault

Deprecated.TableViewInterfaceStyleDefault

Deprecated.WindowInterfaceStyleDefault

Macintosh.MacintoshInterfaceStyleDefaultValue

Windows 95.Windows95InterfaceStyleDefaultValue

The following values are returned by interfaceStyleForKey (page 816):

816 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

NSInterfaceStyle

DescriptionConstant

Conforms to Mac OS interface standards.MacintoshInterfaceStyle

No particular interface style specified.NoInterfaceStyle

Conforms to Microsoft Windows 95 interface standards.Windows95InterfaceStyle

Constants 817
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

NSInterfaceStyle

818 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

NSInterfaceStyle

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text Layout Programming Guide for Cocoa

Overview

An NSLayoutManager coordinates the layout and display of characters held in an NSTextStorage object. It
maps Unicode character codes to glyphs, sets the glyphs in a series of NSTextContainers, and displays them
in a series of NSTextViews. In addition to its core function of laying out text, an NSLayoutManager coordinates
its NSTextViews, provides services to those NSTextViews to support NSRulerViews for editing paragraph
styles, and handles the layout and display of text attributes not inherent in glyphs (such as underline or
strikethrough). You can create a subclass of NSLayoutManager to handle additional text attributes, whether
inherent or not.

NSLayoutManager now provides the threshold for text antialiasing. It looks at the
AppleAntiAliasingThreshold default value. If the font size is smaller than or equal to this threshold size,
the text is rendered aliased by NSLayoutManager. You can change the threshold value from the System
Preferences application’s General pane.

Tasks

Constructors

NSLayoutManager (page 827)
Creates an empty NSLayoutManager.

Setting the Text Storage

setTextStorage (page 850)
Sets the receiver’s NSTextStorage to textStorage.

textStorage (page 853)
Returns the receiver’s NSTextStorage.

Overview 819
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

replaceTextStorage (page 844)
Replaces the NSTextStorage for the group of text-system objects containing the receiver with
newTextStorage.

Setting Text Containers

textContainers (page 853)
Returns the receiver’s NSTextContainers.

addTextContainer (page 827)
Appends aTextContainer to the series of NSTextContainers where the receiver arranges text.

insertTextContainerAtIndex (page 837)
Inserts aTextContainer into the series of text containers at index and invalidates layout for all
subsequent NSTextContainer’s.

removeTextContainerAtIndex (page 843)
Removes the NSTextContainer at index and invalidates the layout as needed.

Invalidating Glyphs and Layout

invalidateGlyphsForCharacterRange (page 838)
Invalidates the cached glyphs for the characters in charRange and adjusts the remaining
glyph-to-character mapping according to lengthChange, which indicates the number of characters
added to or removed from the text store.

invalidateLayoutForCharacterRange (page 838)
Invalidates the layout information for the glyphs mapped to the characters in charRange.

invalidateDisplayForCharacterRange (page 837)
Invalidates display for charRange.

invalidateDisplayForGlyphRange (page 838)
Marks the glyphs in glyphRange as needing display, as well as the appropriate regions of the
NSTextViews that display those glyphs (using NSView’s setNeedsDisplay (page 1779)).

textContainerChangedGeometry (page 852)
Invalidates the layout information, and possibly glyphs, for aTextContainer and all subsequent
NSTextContainers.

textContainerChangedTextView (page 853)
Updates information needed to manage NSTextView objects in aTextContainer.

textStorageChanged (page 854)
Invalidates glyph and layout information for a portion of the text in aTextStorage.

Turning Background Layout On/off

setBackgroundLayoutEnabled (page 845)
Sets whether the receiver generates glyphs and lays them out when the application’s run loop is idle
according to flag.

820 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

backgroundLayoutEnabled (page 827)
Returns true if the receiver generates glyphs and lays out text when the application’s run loop is
idle, false if it performs glyph generation and layout only when necessary.

Accessing Glyphs

insertGlyphAtGlyphIndex (page 837)
Inserts aGlyph into the glyph cache at glyphIndex and maps it to the character at charIndex.

isValidGlyphIndex (page 839)
Returns true if the specified glyphIndex refers to a valid glyph, otherwise false.

glyphAtIndex (page 834)
Returns the glyph at glyphIndex.

replaceGlyphAtIndex (page 843)
Replaces the glyph at glyphIndex with newGlyph.

glyphsInRange (page 836)
Returns displayable glyphs from glyphRange.

deleteGlyphsInRange (page 830)
Deletes the glyphs in glyphRange.

numberOfGlyphs (page 841)
Returns the number of glyphs in the receiver, performing glyph generation if needed to determine
this number.

Mapping Characters to Glyphs

setCharacterIndexForGlyphAtIndex (page 845)
Maps the character at charIndex to the glyph at glyphIndex.

characterIndexForGlyphAtIndex (page 829)
Returns the index in the NSTextStorage for the first character mapped to the glyph at glyphIndex
within the receiver.

characterRangeForGlyphRange (page 829)
Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in
glyphRange.

glyphRangeForCharacterRange (page 836)
Returns the range for the glyphs mapped to the characters of the text store in charRange.

Setting Glyph Attributes

setGlyphAttributeForGlyphAtIndex (page 847)
Sets a custom attribute value for the glyph at glyphIndex.

glyphAttributeForGlyphAtIndex (page 834)
Returns the value of the attribute identified by attributeTag for the glyph at glyphIndex.

setDefaultAttachmentScaling (page 846)
Sets the default scaling behavior to scaling if an attachment image is too large to fit in a text
container.

Tasks 821
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

defaultAttachmentScaling (page 829)
Returns the default behavior desired if an attachment image is too large to fit in a text container.

showAttachmentCell (page 851)
Actually draws an attachment cell.

Handling Layout for Text Containers

setTextContainerForGlyphRange (page 850)
Sets to aTextContainer the NSTextContainer where the glyphs in glyphRange are laid out.

glyphRangeForTextContainer (page 836)
Returns the range for glyphs laid out within aTextContainer.

textContainerForGlyphAtIndex (page 853)
Returns the NSTextContainer where the glyph at glyphIndex is laid out.

usedRectForTextContainer (page 855)
Returns the bounding rectangle for the glyphs laid out in aTextContainer, which tells “how full” it
is.

Handling Line Fragment Rectangles

setLineFragmentRectForGlyphAtIndex (page 848)
Sets the line fragment rectangle where the glyphs in glyphRange are laid out to fragmentRect.

lineFragmentRectForGlyphAtIndex (page 840)
Returns the line fragment rectangle containing the glyph at glyphIndex.

lineFragmentUsedRectForGlyphAtIndex (page 840)
Returns the portion of the line fragment rectangle containing glyphIndex that actually contains
glyphs (such as for a partial or wrapped line), plus the line fragment padding defined by the
NSTextContainer where the glyphs reside.

setExtraLineFragmentRect (page 846)
Sets a line fragment rectangle for displaying an empty last line in a body of text.

extraLineFragmentRect (page 832)
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text
(either in an empty text or after a final paragraph separator).

extraLineFragmentUsedRect (page 833)
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

extraLineFragmentTextContainer (page 833)
Returns the NSTextContainer that contains the extra line fragment rectangle, or null if there is no
extra line fragment rectangle.

setDrawsOutsideLineFragmentForGlyphAtIndex (page 846)
Sets according to flag whether the glyph at glyphIndex exceeds the bounds of the line fragment
where it’s laid out.

drawsOutsideLineFragmentForGlyphAtIndex (page 831)
Returns true if the glyph at glyphIndex exceeds the bounds of the line fragment where it’s laid
out, false otherwise.

822 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Layout of Glyphs

setLocationForStartOfGlyphRange (page 848)
Sets the location where the glyphs in glyphRange are laid out to aPoint, which is expressed relative
to the origin of the line fragment rectangle for glyphRange.

locationForGlyphAtIndex (page 841)
Returns the location, in terms of its line fragment rectangle, for the glyph at glyphIndex.

rangeOfNominallySpacedGlyphsContainingIndex (page 841)
Returns the range for the glyphs around glyphIndex that can be displayed using only their
advancements from the font, without pairwise kerning or other adjustments to spacing.

rectArrayForCharacterRange (page 842)
Returns a rectangle for the glyphs in aTextContainer that correspond to charRange.

rectArrayForGlyphRange (page 842)
Returns a rectangle for the glyphs in aTextContainer in glyphRange.

boundingRectForGlyphRange (page 828)
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks
drawn in aTextContainer for glyphRange, including glyphs that draw outside their line fragment
rectangles and text attributes such as underlining.

glyphRangeForBoundingRect (page 835)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within aRect
in aTextContainer.

glyphRangeForBoundingRectWithoutAdditionalLayout (page 835)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within bounds
in aTextContainer.

fractionOfDistanceThroughGlyphForPoint (page 834)
Returns the ratio of the distance into the glyph relative to the next glyph (in the appropriate sweep
direction).

glyphIndexForPoint (page 835)
Returns the index for the glyph nearest aPoint within aTextContainer.

Handling Layout for Text Blocks

setLayoutRect (page 847)
Sets the layout rectangle enclosing a text block block containing the glyph range glyphRange to
rect.

layoutRectForTextBlock (page 839)
Returns the layout rectangle within which the text block block containing the glyph range
glyphRange is to be laid out.

setBoundsRect (page 845)
Sets the bounding rectangle enclosing a text block block containing the glyph range glyphRange
to rect.

boundsRectForTextBlock (page 828)
Returns the bounding rectangle enclosing a text block block containing the glyph range glyphRange.

Tasks 823
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

layoutRectForTextBlockAtIndex (page 839)
Returns the layout rectangle within which the text block block containing the glyph at glyphIndex
is to be laid out.

boundsRectForTextBlockAtIndex (page 828)
Returns the bounding rectangle enclosing a text block block containing the glyph at glyphIndex.

Display of Special Glyphs

setNotShownForGlyphAtIndex (page 848)
Sets according to flag whether the glyph at glyphIndex is one that isn’t shown.

notShownAttributeForGlyphAtIndex (page 841)
Returns true if the glyph at glyphIndex isn’t shown (in the sense of the PostScript show operator),
false if it is.

setShowsInvisibleCharacters (page 849)
Controls whether the receiver makes whitespace and other typically nonvisible characters visible in
layout where possible.

showsInvisibleCharacters (page 851)
Returns true if the receiver substitutes visible glyphs for invisible characters if the font and script
support it, false if it doesn’t.

setShowsControlCharacters (page 849)
Controls whether the receiver makes control characters visible in layout where possible.

showsControlCharacters (page 851)
Returns true if the receiver substitutes visible glyphs for control characters if the font and script
support it, false if it doesn’t.

Controlling Hyphenation

setHyphenationFactor (page 847)
Sets the threshold as to when hyphenation will be done.

hyphenationFactor (page 837)

Finding Unlaid Characters and Glyphs

firstUnlaidCharacterIndex (page 833)
Returns the index for the first unlaid character in the layout manager.

firstUnlaidGlyphIndex (page 834)
Returns the index for the first unlaid glyph in the layout manager.

Using Screen Fonts

setUsesScreenFonts (page 851)
Sets according to flag whether the receiver calculates layout and displays text using screen fonts
when possible.

824 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

usesScreenFonts (page 856)
Returns true if the receiver calculates layout and displays text using screen fonts when possible,
false otherwise.

substituteFontForFont (page 852)
Returns a screen font suitable for use in place of originalFont, or simply returns originalFont
if a screen font can’t be used or isn’t available.

Handling Rulers

rulerAccessoryViewForTextView (page 844)
Returns the accessory NSView for aRulerView in aTextView.

rulerMarkersForTextView (page 844)
Returns the NSRulerMarkers for aRulerView in aTextView, based on paraStyle.

Managing the Responder Chain

layoutManagerOwnsFirstResponderInWindow (page 839)
Returns true if the first responder in aWindow is an NSTextView associated with the receiver, false
otherwise.

firstTextView (page 833)
Returns the first NSTextView in the receiver’s series of text views.

textViewForBeginningOfSelection (page 854)
Returns the NSTextView containing the first glyph in the selection, or null if there’s no selection or
there isn’t enough layout information to determine the text view.

Drawing

drawBackgroundForGlyphRange (page 830)
Draws background marks for glyphRange, which must lie completely within a single NSTextContainer.

drawGlyphsForGlyphRange (page 831)
Draws the glyphs in glyphRange, which must lie completely within a single NSTextContainer.

drawUnderlineForGlyphRange (page 832)
Draws underlining for the glyphs in glyphRange, which must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex (page 840)).

underlineGlyphRange (page 855)
Calculates and draws underlining for the glyphs in glyphRange, which must belong to a single line
fragment rectangle (as returned by lineFragmentRectForGlyphAtIndex (page 840)).

drawStrikethroughForGlyphRange (page 831)
Draws strikethrough for the glyphs in glyphRange, which must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex (page 840)).

strikethroughGlyphRange (page 851)
Calculates and draws strikethrough for the glyphs in glyphRange, which must belong to a single line
fragment rectangle (as returned by lineFragmentRectForGlyphAtIndex (page 840)).

Tasks 825
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Setting the Delegate

setDelegate (page 846)
Sets the receiver’s delegate to anObject.

delegate (page 830)
Returns the receiver’s delegate.

Typesetter Compatibility

defaultLineHeightForFont (page 830)
Returns the default line height for a line of text drawn using theFont.

setTypesetterBehavior (page 850)
Sets according to theBehavior the default typesetter behavior, which affects glyph spacing and
line height.

typesetterBehavior (page 854)
Returns the current typesetter behavior value.

Temporary Attribute Support

addTemporaryAttributes (page 827)
Appends one or more temporary attributes to the attributes dictionary of the specified character
range.

removeTemporaryAttribute (page 843)
Removes a temporary attribute name from the list of attributes for the specified character range
charRange.

setTemporaryAttributes (page 849)
Sets one or more temporary attributes passed in attrs for the character range specified in charRange.

temporaryAttributesAtCharacterIndex (page 852)
Returns the dictionary of temporary attributes for the character range specified in
effectiveCharRange at character index charIndex.

Laying out text

layoutManagerDidCompleteLayoutForTextContainer (page 857) delegate method
Informs the delegate that aLayoutManager has finished laying out text in aTextContainer.

layoutManagerDidInvalidateLayout (page 857) delegate method
Informs the delegate that aLayoutManager has invalidated layout information (not glyph information).

826 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Constructors

NSLayoutManager
Creates an empty NSLayoutManager.

public NSLayoutManager()

Instance Methods

addTemporaryAttributes
Appends one or more temporary attributes to the attributes dictionary of the specified character range.

public void addTemporaryAttributes(NSDictionary attrs, NSRange charRange)

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView uses
them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes that will be recognized are those related to colors and underlines.

See Also
setTemporaryAttributes (page 849)
removeTemporaryAttribute (page 843)
temporaryAttributesAtCharacterIndex (page 852)

addTextContainer
Appends aTextContainer to the series of NSTextContainers where the receiver arranges text.

public void addTextContainer(NSTextContainer aTextContainer)

Discussion
Invalidates glyphs and layout as needed, but doesn’t perform glyph generation or layout.

See Also
insertTextContainerAtIndex (page 837)
removeTextContainerAtIndex (page 843)
textContainers (page 853)
invalidateGlyphsForCharacterRange (page 838)
invalidateLayoutForCharacterRange (page 838)

backgroundLayoutEnabled
Returns true if the receiver generates glyphs and lays out text when the application’s run loop is idle, false
if it performs glyph generation and layout only when necessary.

Constructors 827
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

public boolean backgroundLayoutEnabled()

See Also
setBackgroundLayoutEnabled (page 845)

boundingRectForGlyphRange
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks drawn
in aTextContainer for glyphRange, including glyphs that draw outside their line fragment rectangles and
text attributes such as underlining.

public NSRect boundingRectForGlyphRange(NSRange glyphRange, NSTextContainer
aTextContainer)

Discussion
This method is useful for determining the area that needs to be redrawn when a range of glyphs changes.

Performs glyph generation and layout if needed.

See Also
glyphRangeForTextContainer (page 836)
drawsOutsideLineFragmentForGlyphAtIndex (page 831)

boundsRectForTextBlock
Returns the bounding rectangle enclosing a text block block containing the glyph range glyphRange.

public NSRect boundsRectForTextBlock(NSTextBlock block, NSRange glyphRange)

Discussion
This method causes glyph generation but not layout. It returns ZeroRect if no rectangle has been set for
the specified block since the last invalidation.

Availability
Available in Mac OS X v10.4 and later.

See Also
setBoundsRect (page 845)

boundsRectForTextBlockAtIndex
Returns the bounding rectangle enclosing a text block block containing the glyph at glyphIndex.

public NSRect boundsRectForTextBlockAtIndex(NSTextBlock block, int glyphIndex,
NSMutableRange effectiveGlyphRange)

Discussion
The effectiveGlyphRange is set to contain the range for all glyphs in the text block. This method causes
glyph generation but not layout. It returns ZeroRect if no rectangle has been set for the specified block
since the last invalidation.

828 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Availability
Available in Mac OS X v10.4 and later.

See Also
setBoundsRect (page 845)

characterIndexForGlyphAtIndex
Returns the index in the NSTextStorage for the first character mapped to the glyph at glyphIndex within
the receiver.

public int characterIndexForGlyphAtIndex(int glyphIndex)

Discussion
In many cases it’s better to use the range-mapping methods, characterRangeForGlyphRange (page 829)
and glyphRangeForCharacterRange (page 836), which provide more comprehensive information.

Performs glyph generation if needed.

characterRangeForGlyphRange
Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in glyphRange.

public NSRange characterRangeForGlyphRange(NSRange glyphRange, NSMutableRange
actualGlyphRange)

Discussion
If actualGlyphRange is non-null, expands the requested range as needed so that it identifies all glyphs
mapped to those characters and returns the new range by reference in actualGlyphRange.

Suppose the text store begins with the character “Ö” and the glyph cache contains “O” and “¨”. If you get the
character range for the glyph range {0, 1} or {1, 1}, actualGlyphRange is returned as {0, 2}, indicating that
both glyphs are mapped to the character “Ö”.

Performs glyph generation if needed.

See Also
characterIndexForGlyphAtIndex (page 829)
glyphRangeForCharacterRange (page 836)

defaultAttachmentScaling
Returns the default behavior desired if an attachment image is too large to fit in a text container.

public int defaultAttachmentScaling()

Discussion
Note that attachment cells control their own size and drawing, so this setting can only be advisory for them,
but Application Kit–supplied attachment cells will respect it.

See Also
setDefaultAttachmentScaling (page 846)

Instance Methods 829
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

defaultLineHeightForFont
Returns the default line height for a line of text drawn using theFont.

public float defaultLineHeightForFont(NSFont theFont)

Discussion
This value may vary according to the typesetter behavior.

Availability
Available in Mac OS X v10.2 and later.

See Also
setTypesetterBehavior (page 850)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 846)

deleteGlyphsInRange
Deletes the glyphs in glyphRange.

public void deleteGlyphsInRange(NSRange glyphRange)

Discussion
This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. You should never directly invoke this method.

See Also
insertGlyphAtGlyphIndex (page 837)

drawBackgroundForGlyphRange
Draws background marks for glyphRange, which must lie completely within a single NSTextContainer.

public void drawBackgroundForGlyphRange(NSRange glyphRange, NSPoint containerOrigin)

Discussion
containerOrigin indicates the position of the NSTextContainer in the coordinate system of the NSView
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Background marks are such things as selection highlighting, text background color, and any background for
marked text.

Performs glyph generation and layout if needed.

830 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

See Also
drawGlyphsForGlyphRange (page 831)
glyphRangeForTextContainer (page 836)
textContainerOrigin (page 1659) (NSTextView)

drawGlyphsForGlyphRange
Draws the glyphs in glyphRange, which must lie completely within a single NSTextContainer.

public void drawGlyphsForGlyphRange(NSRange glyphRange, NSPoint containerOrigin)

Discussion
containerOrigin indicates the position of the NSTextContainer in the coordinate system of the NSView
being drawn. This method expects the coordinate system of the view to be flipped. This method must be
invoked with the graphics focus locked on that NSView.

Performs glyph generation and layout if needed.

See Also
drawBackgroundForGlyphRange (page 830)
glyphRangeForTextContainer (page 836)
textContainerOrigin (page 1659) (NSTextView)

drawsOutsideLineFragmentForGlyphAtIndex
Returns true if the glyph at glyphIndex exceeds the bounds of the line fragment where it’s laid out, false
otherwise.

public boolean drawsOutsideLineFragmentForGlyphAtIndex(int glyphIndex)

Discussion
Exceeding bounds can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

Glyphs that draw outside their line fragment rectangles aren’t considered when calculating enclosing
rectangles with the rectArrayForCharacterRange (page 842) and rectArrayForGlyphRange (page
842) methods. They are, however, considered by boundingRectForGlyphRange (page 828).

Performs glyph generation and layout if needed.

drawStrikethroughForGlyphRange
Draws strikethrough for the glyphs in glyphRange, which must belong to a single line fragment rectangle
(as returned by lineFragmentRectForGlyphAtIndex (page 840)).

public void drawStrikethroughForGlyphRange(NSRange glyphRange, int strikethroughVal,
float baselineOffset, NSRect lineRect, NSRange lineGlyphRange, NSPoint
containerOrigin)

Instance Methods 831
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
strikethroughVal indicates the style of strikethrough to draw. baselineOffset indicates how far above
the text baseline the underline should be drawn (usually a negative value). lineRect is the line fragment
rectangle containing the glyphs to draw strikethrough for, and lineGlyphRange is the range of all glyphs
within that line fragment rectangle. containerOrigin is the origin of the line fragment rectangle’s
NSTextContainer in its NSTextView.

This method is invoked automatically by strikethroughGlyphRange (page 851); you should rarely need
to invoke it directly.

Availability
Available in Mac OS X v10.3 and later.

drawUnderlineForGlyphRange
Draws underlining for the glyphs in glyphRange, which must belong to a single line fragment rectangle (as
returned by lineFragmentRectForGlyphAtIndex (page 840)).

public void drawUnderlineForGlyphRange(NSRange glyphRange, int underlineType, float
baselineOffset, NSRect lineRect, NSRange lineGlyphRange, NSPoint
containerOrigin)

Discussion
underlineType indicates the style of underlining to draw; NSLayoutManager accepts only
NSAttributedString.SingleUnderlineStyle, but subclasses can define their own underline styles.
baselineOffset indicates how far below the text baseline the underline should be drawn; it’s usually a
positive value. lineRect is the line fragment rectangle containing the glyphs to draw underlining for, and
lineGlyphRange is the range of all glyphs within that line fragment rectangle. containerOrigin is the
origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

This method is invoked automatically by underlineGlyphRange (page 855); you should rarely need to
invoke it directly.

See Also
textContainerForGlyphAtIndex (page 853)
textContainerOrigin (page 1659) (NSTextView)

extraLineFragmentRect
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text (either in
an empty text or after a final paragraph separator).

public NSRect extraLineFragmentRect()

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. Returns NSRect.ZeroRect if there
is no such rectangle.

See Also
extraLineFragmentUsedRect (page 833)
extraLineFragmentTextContainer (page 833)
setExtraLineFragmentRect (page 846)

832 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

extraLineFragmentTextContainer
Returns the NSTextContainer that contains the extra line fragment rectangle, or null if there is no extra line
fragment rectangle.

public NSTextContainer extraLineFragmentTextContainer()

Discussion
This rectangle is used to display the insertion point at the end of a text (either in an empty text or after a
final paragraph separator).

See Also
extraLineFragmentRect (page 832)
extraLineFragmentUsedRect (page 833)
setExtraLineFragmentRect (page 846)

extraLineFragmentUsedRect
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

public NSRect extraLineFragmentUsedRect()

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. Returns NSRect.ZeroRect if there
is no extra line fragment rectangle.

The extra line fragment used rectangle is twice as wide (or tall) as the NSTextContainer’s line fragment
padding, with the insertion point itself in the middle.

See Also
extraLineFragmentRect (page 832)
extraLineFragmentTextContainer (page 833)
setExtraLineFragmentRect (page 846)

firstTextView
Returns the first NSTextView in the receiver’s series of text views.

public NSTextView firstTextView()

Discussion
This NSTextView is the object of various NSText and NSTextView notifications posted.

firstUnlaidCharacterIndex
Returns the index for the first unlaid character in the layout manager.

public int firstUnlaidCharacterIndex()

Instance Methods 833
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

firstUnlaidGlyphIndex
Returns the index for the first unlaid glyph in the layout manager.

public int firstUnlaidGlyphIndex()

fractionOfDistanceThroughGlyphForPoint
Returns the ratio of the distance into the glyph relative to the next glyph (in the appropriate sweep direction).

public float fractionOfDistanceThroughGlyphForPoint(NSPoint aPoint, NSTextContainer
aTextContainer)

Discussion
NSLayoutManager currently supports only left-to-right sweep. aPoint is expressed in the coordinate system
of aTextContainer.

For purposes such as dragging out a selection or placing the insertion point, a return value less than or equal
to 0.5 indicates that aPoint should be considered as falling before the glyph index returned by
glyphIndexForPoint (page 835) for the specified point. A return value greater than 0.5 indicates that it
should be considered as falling after the glyph index returned by glyphIndexForPoint (page 835). If the
nearest glyph doesn’t lie under aPoint at all (for example, if aPoint is beyond the beginning or end of a
line), this ratio will be 0 or 1.

Suppose the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points. If the user
clicks at a location 8 points into “A”, the return value is 8/13, or 0.615. In this case, the point given should be
considered as falling between “A” and “b” for purposes such as dragging out a selection or placing the
insertion point.

Performs glyph generation and layout if needed.

See Also
glyphIndexForPoint (page 835)

glyphAtIndex
Returns the glyph at glyphIndex.

public int glyphAtIndex(int glyphIndex)

Discussion
Throws a RangeException if glyphIndex is out of bounds.

Performs glyph generation if needed. To avoid an exception with glyphAtIndex you must first check the
glyph index against the number of glyphs, which requires generating all glyphs.

glyphAttributeForGlyphAtIndex
Returns the value of the attribute identified by attributeTag for the glyph at glyphIndex.

public int glyphAttributeForGlyphAtIndex(int attributeTag, int glyphIndex)

834 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
Subclasses that define their own custom attributes must override this method to access their own storage
for the attribute values. Nonnegative tags are reserved by Apple; you can define your own attributes with
negative tags and set values using setGlyphAttributeForGlyphAtIndex (page 847).

glyphIndexForPoint
Returns the index for the glyph nearest aPoint within aTextContainer.

public int glyphIndexForPoint(NSPoint aPoint, NSTextContainer aTextContainer)

Discussion
aPoint is expressed in the coordinate system of aTextContainer.

Performs glyph generation and layout if needed.

See Also
fractionOfDistanceThroughGlyphForPoint (page 834)

glyphRangeForBoundingRect
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within aRect in
aTextContainer.

public NSRange glyphRangeForBoundingRect(NSRect aRect, NSTextContainer
aTextContainer)

Discussion
The range returned can include glyphs that don’t fall inside or intersect aRect, though the first and last
glyphs in the range always do. This method is used to determine which glyphs need to be displayed within
a given rectangle.

Performs glyph generation and layout if needed.

See Also
glyphRangeForBoundingRectWithoutAdditionalLayout (page 835)

glyphRangeForBoundingRectWithoutAdditionalLayout
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within bounds in
aTextContainer.

public NSRange glyphRangeForBoundingRectWithoutAdditionalLayout(NSRect bounds,
NSTextContainer container)

Discussion
The range returned can include glyphs that don’t fall inside or intersect aRect, though the first and last
glyphs in the range always do.

Unlike glyphRangeForBoundingRect (page 835), this method doesn’t perform glyph generation or layout.
Its results, though faster, can be incorrect. This method is primarily for use by NSTextView; you should rarely
need to use it yourself.

Instance Methods 835
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

See Also
glyphRangeForBoundingRect (page 835)

glyphRangeForCharacterRange
Returns the range for the glyphs mapped to the characters of the text store in charRange.

public NSRange glyphRangeForCharacterRange(NSRange charRange, NSMutableRange
actualCharRange)

Discussion
If actualCharRange is non-null, expands the requested range as needed so that it identifies all characters
mapped to those glyphs and returns the new range by reference in actualCharRange.

Suppose the text store contains the characters “n˜”, and the glyph cache contains “ñ”. If you get the glyph
range for the character range {0, 1} or {1, 1}, actualCharRange is returned as {0, 2}, indicating both of the
characters mapped to the glyph “ñ”.

Performs glyph generation if needed.

See Also
characterIndexForGlyphAtIndex (page 829)

glyphRangeForTextContainer
Returns the range for glyphs laid out within aTextContainer.

public NSRange glyphRangeForTextContainer(NSTextContainer aTextContainer)

Discussion
Performs glyph generation and layout if needed.

glyphsInRange
Returns displayable glyphs from glyphRange.

public int [] glyphsInRange(NSRange glyphRange)

Discussion
Throws a RangeException if the range specified exceeds the bounds of the actual glyph range for the
receiver.

Performs glyph generation if needed.

See Also
glyphAtIndex (page 834)
notShownAttributeForGlyphAtIndex (page 841)

836 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

hyphenationFactor
public float hyphenationFactor()

Discussion
Whenever (width of the real contents of the line) / (the line fragment width) is less than hyphenationFactor,
hyphenation will be attempted when laying out the line. The range of this factor is from 0.0 to 1.0. By default,
the value is 0.0, meaning hyphenation is off. A value of 1.0 causes hyphenation to be attempted always. Note
that hyphenation will slow down text layout and increase memory usage, so it should be used sparingly.

See Also
setHyphenationFactor (page 847)

insertGlyphAtGlyphIndex
Inserts aGlyph into the glyph cache at glyphIndex and maps it to the character at charIndex.

public void insertGlyphAtGlyphIndex(int aGlyph, int glyphIndex, int charIndex)

Discussion
If the glyph is mapped to several characters, charIndex should indicate the first character it’s mapped to.

This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. You should never directly invoke this method.

See Also
deleteGlyphsInRange (page 830)
replaceGlyphAtIndex (page 843)

insertTextContainerAtIndex
Inserts aTextContainer into the series of text containers at index and invalidates layout for all subsequent
NSTextContainer’s.

public void insertTextContainerAtIndex(NSTextContainer aTextContainer, int index)

Discussion
Also invalidates glyph information as needed.

See Also
addTextContainer (page 827)
removeTextContainerAtIndex (page 843)
textContainers (page 853)

invalidateDisplayForCharacterRange
Invalidates display for charRange.

public void invalidateDisplayForCharacterRange(NSRange charRange)

Instance Methods 837
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
Unlaid parts of the range are remembered and will definitely be redisplayed at some point later when the
layout is available. Does not actually cause layout.

invalidateDisplayForGlyphRange
Marks the glyphs in glyphRange as needing display, as well as the appropriate regions of the NSTextViews
that display those glyphs (using NSView’s setNeedsDisplay (page 1779)).

public void invalidateDisplayForGlyphRange(NSRange glyphRange)

Discussion
You should rarely need to invoke this method.

invalidateGlyphsForCharacterRange
Invalidates the cached glyphs for the characters in charRange and adjusts the remaining glyph-to-character
mapping according to lengthChange, which indicates the number of characters added to or removed from
the text store.

public void invalidateGlyphsForCharacterRange(NSRange charRange, int lengthChange,
NSMutableRange actualCharRange)

Discussion
If non-null, actualCharRange is set to the range of characters mapped to the glyphs just invalidated. This
range can be larger than the range of characters given due to the effect of context on glyphs and layout.

You should rarely need to invoke this method. It only invalidates glyph information, and performs no glyph
generation or layout. Because invalidating glyphs also invalidates layout, after invoking this method you
should also invoke invalidateLayoutForCharacterRange (page 838), passing charRange as the first
argument and false as the flag.

invalidateLayoutForCharacterRange
Invalidates the layout information for the glyphs mapped to the characters in charRange.

public void invalidateLayoutForCharacterRange(NSRange charRange, boolean flag,
NSMutableRange actualCharRange)

Discussion
If flag is true, attempts to save some layout information to avoid recalculation; if flag is false, saves no
layout information. You should typically pass false for flag. If non-null, actualCharRange is set to the
range of characters mapped to the glyphs whose layout information has been invalidated. This range can
be larger than the range of characters given due to the effect of context on glyphs and layout.

This method only invalidates information; it performs no glyph generation or layout. You should rarely need
to invoke this method.

See Also
invalidateGlyphsForCharacterRange (page 838)

838 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

isValidGlyphIndex
Returns true if the specified glyphIndex refers to a valid glyph, otherwise false.

public boolean isValidGlyphIndex(int glyphIndex)

layoutManagerOwnsFirstResponderInWindow
Returns true if the first responder in aWindow is an NSTextView associated with the receiver, false otherwise.

public boolean layoutManagerOwnsFirstResponderInWindow(NSWindow aWindow)

layoutRectForTextBlock
Returns the layout rectangle within which the text block block containing the glyph range glyphRange is
to be laid out.

public NSRect layoutRectForTextBlock(NSTextBlock block, NSRange glyphRange)

Discussion
This method causes glyph generation but not layout. It returns ZeroRect if no rectangle has been set for
the specified block since the last invalidation.

Availability
Available in Mac OS X v10.4 and later.

See Also
setLayoutRect (page 847)

layoutRectForTextBlockAtIndex
Returns the layout rectangle within which the text block block containing the glyph at glyphIndex is to
be laid out.

public NSRect layoutRectForTextBlockAtIndex(NSTextBlock block, int glyphIndex,
NSMutableRange effectiveGlyphRange)

Discussion
The effectiveGlyphRange is set to contain the range for all glyphs in the text block. This method causes
glyph generation but not layout. It returns ZeroRect if no rectangle has been set for the specified block
since the last invalidation.

Availability
Available in Mac OS X v10.4 and later.

See Also
setLayoutRect (page 847)

Instance Methods 839
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

lineFragmentRectForGlyphAtIndex
public NSRect lineFragmentRectForGlyphAtIndex(int glyphIndex, NSMutableRange

effectiveGlyphRange)

Returns the line fragment rectangle containing the glyph at glyphIndex.

public NSRect lineFragmentRectForGlyphAtIndex(int glyphIndex, NSMutableRange
effectiveGlyphRange, boolean flag)

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. If non-null, effectiveGlyphRange
is set to contain the range for all glyphs in that line fragment.

Performs glyph generation if needed. For the variant method with the Boolean argument flag, if flag is
true, the method performs no additional layout so as to avoid an infinite recursion.

Availability
Available in Mac OS X v10.4 and later.

See Also
setLineFragmentRectForGlyphAtIndex (page 848)
lineFragmentUsedRectForGlyphAtIndex (page 840)

lineFragmentUsedRectForGlyphAtIndex
Returns the portion of the line fragment rectangle containing glyphIndex that actually contains glyphs
(such as for a partial or wrapped line), plus the line fragment padding defined by the NSTextContainer where
the glyphs reside.

public NSRect lineFragmentUsedRectForGlyphAtIndex(int glyphIndex, NSMutableRange
effectiveGlyphRange)

Returns the portion of the line fragment rectangle containing glyphIndex that actually contains glyphs
(such as for a partial or wrapped line), plus the line fragment padding defined by the NSTextContainer where
the glyphs reside. If flag is true, performs no additional layout so as to avoid an infinite recursion.

public NSRect lineFragmentUsedRectForGlyphAtIndex(int glyphIndex, NSMutableRange
effectiveGlyphRange, boolean flag)

Discussion
This rectangle is defined in the coordinate system of its NSTextContainer, and is based on line calculation
only—that is, it isn’t a bounding box for the glyphs in the line fragment.

If non-null, effectiveGlyphRange is set to contain the range for all glyphs in the line fragment.

Performs glyph generation if needed.

Availability
Available in Mac OS X v10.4 and later.

See Also
setLineFragmentRectForGlyphAtIndex (page 848)
lineFragmentRectForGlyphAtIndex (page 840)

840 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

locationForGlyphAtIndex
Returns the location, in terms of its line fragment rectangle, for the glyph at glyphIndex.

public NSPoint locationForGlyphAtIndex(int glyphIndex)

Discussion
The line fragment rectangle in turn is defined in the coordinate system of the text container where it resides.

Performs glyph generation and layout if needed.

See Also
lineFragmentRectForGlyphAtIndex (page 840)
lineFragmentUsedRectForGlyphAtIndex (page 840)

notShownAttributeForGlyphAtIndex
Returns true if the glyph at glyphIndex isn’t shown (in the sense of the PostScript show operator), false
if it is.

public boolean notShownAttributeForGlyphAtIndex(int glyphIndex)

Discussion
For example, a tab, newline, or attachment glyph doesn’t get shown; it just affects the layout of following
glyphs or locates the attachment graphic. Space characters, however, typically are shown as glyphs with a
displacement, though they leave no visible marks. Throws a RangeException if glyphIndex is out of
bounds.

Performs glyph generation and layout if needed.

See Also
setNotShownForGlyphAtIndex (page 848)

numberOfGlyphs
Returns the number of glyphs in the receiver, performing glyph generation if needed to determine this
number.

public int numberOfGlyphs()

rangeOfNominallySpacedGlyphsContainingIndex
Returns the range for the glyphs around glyphIndex that can be displayed using only their advancements
from the font, without pairwise kerning or other adjustments to spacing.

public NSRange rangeOfNominallySpacedGlyphsContainingIndex(int glyphIndex)

Discussion
Performs glyph generation and layout if needed.

Instance Methods 841
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

rectArrayForCharacterRange
Returns a rectangle for the glyphs in aTextContainer that correspond to charRange.

public NSRect rectArrayForCharacterRange(NSRange charRange, NSRange selCharRange,
NSTextContainer aTextContainer)

Discussion
This rectangles can be used to draw the background or highlight for the given range of characters.
selCharRange indicates selected characters, which can affect the size of the rectangles; it must be equal
to or contain charRange. To calculate the rectangles for drawing the background, use a selected character
range whose location is NSArray.NotFound. To calculate the rectangles for drawing highlighting for
charRange, use a selected character range that contains charRange.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

The rectangle returned is owned by the receiver, and is overwritten by various NSLayoutManager methods.
You should never free it and should copy it if you need to keep the values or use them after sending other
messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange (page 828) to determine the area that contains all drawing performed for
a range of glyphs.

Performs glyph generation and layout if needed.

See Also
glyphRangeForTextContainer (page 836)
characterRangeForGlyphRange (page 829)
drawsOutsideLineFragmentForGlyphAtIndex (page 831)

rectArrayForGlyphRange
Returns a rectangle for the glyphs in aTextContainer in glyphRange.

public NSRect rectArrayForGlyphRange(NSRange glyphRange, NSRange selGlyphRange,
NSTextContainer aTextContainer)

Discussion
This rectangles can be used to draw the background or highlight for the given range of glyphs.
selGlyphRange indicates selected glyphs. To calculate the rectangles for drawing the background, use a
selected glyph range whose location is NSArray.NotFound. To calculate the rectangles for highlighting,
use a selected glyph range that contains glyphRange.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

The rectangle returned is owned by the receiver and is overwritten by various NSLayoutManager methods.
You should never free it and should copy it if you need to keep the values or use them after sending other
messages to the layout manager.

842 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange (page 828) to determine the area that contains all drawing performed for
a range of glyphs.

Performs glyph generation and layout if needed.

See Also
glyphRangeForTextContainer (page 836)
drawsOutsideLineFragmentForGlyphAtIndex (page 831)

removeTemporaryAttribute
Removes a temporary attribute name from the list of attributes for the specified character range charRange.

public void removeTemporaryAttribute(String name, NSRange charRange)

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView uses
them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes that will be recognized are those related to colors and underlines.

See Also
setTemporaryAttributes (page 849)
addTemporaryAttributes (page 827)
temporaryAttributesAtCharacterIndex (page 852)

removeTextContainerAtIndex
Removes the NSTextContainer at index and invalidates the layout as needed.

public void removeTextContainerAtIndex(int index)

Discussion
Also invalidates glyph information as needed.

See Also
addTextContainer (page 827)
insertTextContainerAtIndex (page 837)
textContainers (page 853)
invalidateGlyphsForCharacterRange (page 838)
invalidateLayoutForCharacterRange (page 838)

replaceGlyphAtIndex
Replaces the glyph at glyphIndex with newGlyph.

public void replaceGlyphAtIndex(int glyphIndex, int newGlyph)

Instance Methods 843
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
Doesn’t alter the glyph-to-character mapping or invalidate layout information.

This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. You should never directly invoke this method.

See Also
setCharacterIndexForGlyphAtIndex (page 845)
invalidateGlyphsForCharacterRange (page 838)
invalidateLayoutForCharacterRange (page 838)

replaceTextStorage
Replaces the NSTextStorage for the group of text-system objects containing the receiver with
newTextStorage.

public void replaceTextStorage(NSTextStorage newTextStorage)

Discussion
All NSLayoutManagers sharing the original NSTextStorage then share the new one. This method makes all
the adjustments necessary to keep these relationships intact, unlike setTextStorage (page 850).

rulerAccessoryViewForTextView
Returns the accessory NSView for aRulerView in aTextView.

public NSView rulerAccessoryViewForTextView(NSTextView aTextView, NSParagraphStyle
paraStyle, NSRulerView aRulerView, boolean flag)

Discussion
This accessory contains tab wells, text alignment buttons, and so on. paraStyle is used to set the state of
the controls in the accessory NSView; it must not be null. If flag is true the accessory view is enabled and
accepts mouse and keyboard events; if false it’s disabled.

This method is invoked automatically by the NSTextView object using the layout manager. You should rarely
need to invoke it, but you can override it to customize ruler support. If you do this method directly, note that
it neither installs the ruler accessory view nor sets the markers for the NSRulerView. You must install the
accessory view into the ruler using NSRulerView’s setAccessoryView (page 1219) method. To set the markers,
use rulerMarkersForTextView (page 844) to get the markers needed and then send setMarkers (page
1220) to the ruler.

See Also
horizontalRulerView (page 1275) (NSScrollView)

rulerMarkersForTextView
Returns the NSRulerMarkers for aRulerView in aTextView, based on paraStyle.

public NSArray rulerMarkersForTextView(NSTextView aTextView, NSParagraphStyle
paraStyle, NSRulerView aRulerView)

844 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
These markers represent such things as left and right margins, first-line indent, and tab stops. You can set
these markers immediately with NSRulerView’s setMarkers (page 1220) method.

This method is invoked automatically by the NSTextView object using the layout manager. You should rarely
need to invoke it, but you can override it to add new kinds of markers or otherwise customize ruler support.

See Also
rulerAccessoryViewForTextView (page 844)

setBackgroundLayoutEnabled
Sets whether the receiver generates glyphs and lays them out when the application’s run loop is idle according
to flag.

public void setBackgroundLayoutEnabled(boolean flag)

See Also
backgroundLayoutEnabled (page 827)

setBoundsRect
Sets the bounding rectangle enclosing a text block block containing the glyph range glyphRange to rect.

public void setBoundsRect(NSRect rect, NSTextBlock block, NSRange glyphRange)

Discussion
This method causes glyph generation but not layout.

Availability
Available in Mac OS X v10.4 and later.

See Also
boundingRectForGlyphRange (page 828)
boundsRectForTextBlockAtIndex (page 828)
boundsRectForTextBlock (page 828)

setCharacterIndexForGlyphAtIndex
Maps the character at charIndex to the glyph at glyphIndex.

public void setCharacterIndexForGlyphAtIndex(int charIndex, int glyphIndex)

Discussion
This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. You should never directly invoke this method.

See Also
characterIndexForGlyphAtIndex (page 829)
characterRangeForGlyphRange (page 829)
glyphRangeForCharacterRange (page 836)

Instance Methods 845
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

setDefaultAttachmentScaling
Sets the default scaling behavior to scaling if an attachment image is too large to fit in a text container.

public void setDefaultAttachmentScaling(int scaling)

Discussion
Note that attachment cells control their own size and drawing, so this setting can only be advisory for them,
but Application Kit–supplied attachment cells will respect it.

See Also
defaultAttachmentScaling (page 829)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

See Also
delegate (page 830)

setDrawsOutsideLineFragmentForGlyphAtIndex
Sets according to flag whether the glyph at glyphIndex exceeds the bounds of the line fragment where
it’s laid out.

public void setDrawsOutsideLineFragmentForGlyphAtIndex(boolean flag, int glyphIndex)

Discussion
This can happen when text is set at a fixed line height. For example, if the user specifies a fixed line height
of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

This method is used by the layout mechanism; you should never invoke it directly.

See Also
drawsOutsideLineFragmentForGlyphAtIndex (page 831)

setExtraLineFragmentRect
Sets a line fragment rectangle for displaying an empty last line in a body of text.

public void setExtraLineFragmentRect(NSRect aRect, NSRect usedRect, NSTextContainer
aTextContainer)

Discussion
aRect is the rectangle to set, and aTextContainer is the NSTextContainer where the rectangle should be
laid out. usedRect indicates where the insertion point is drawn.

This method is used by the layout mechanism; you should never invoke it directly.

See Also
extraLineFragmentRect (page 832)

846 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

extraLineFragmentUsedRect (page 833)
textContainers (page 853)

setGlyphAttributeForGlyphAtIndex
Sets a custom attribute value for the glyph at glyphIndex.

public void setGlyphAttributeForGlyphAtIndex(int attributeTag, int anInt, int
glyphIndex)

Discussion
attributeTag identifies the custom attribute, and anInt is its new value.

Subclasses that define their own custom attributes must override this method and provide their own storage
for the attribute values. Nonnegative tags are reserved; you can define your own attributes with negative
tags and set values using this method.

This method doesn’t perform glyph generation or layout. The glyph at glyphIndex must already have been
generated.

See Also
glyphAttributeForGlyphAtIndex (page 834)

setHyphenationFactor
Sets the threshold as to when hyphenation will be done.

public void setHyphenationFactor(float factor)

Discussion
factor is in the range of 0.0 to 1.0. Whenever (width of the real contents of the line) / (the line fragment
width) is below factor, hyphenation will be attempted when laying out the line. By default, the value is 0.0,
meaning hyphenation is off. A factor of 1.0 causes hyphenation to be attempted always. Note that
hyphenation will slow down text layout and increase memory usage, so it should be used sparingly.

See Also
hyphenationFactor (page 837)

setLayoutRect
Sets the layout rectangle enclosing a text block block containing the glyph range glyphRange to rect.

public void setLayoutRect(NSRect rect, NSTextBlock block, NSRange glyphRange)

Discussion
This method causes glyph generation but not layout.

Availability
Available in Mac OS X v10.4 and later.

See Also
layoutRectForTextBlockAtIndex (page 839)

Instance Methods 847
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

layoutRectForTextBlock (page 839)

setLineFragmentRectForGlyphAtIndex
Sets the line fragment rectangle where the glyphs in glyphRange are laid out to fragmentRect.

public void setLineFragmentRectForGlyphAtIndex(NSRect fragmentRect, NSRange
glyphRange, NSRect usedRect)

Discussion
The text container must be specified first with setTextContainerForGlyphRange (page 850), and the
exact positions of the glyphs must be set after the line fragment rectangle with
setLocationForStartOfGlyphRange (page 848). usedRect indicates the portion of fragmentRect, in
the NSTextContainer’s coordinate system, that actually contains glyphs or other marks that are drawn
(including the text container’s line fragment padding). usedRect must be equal to or contained within
fragmentRect.

This method is used by the layout mechanism; you should never invoke it directly.

See Also
lineFragmentRectForGlyphAtIndex (page 840)
lineFragmentUsedRectForGlyphAtIndex (page 840)

setLocationForStartOfGlyphRange
Sets the location where the glyphs in glyphRange are laid out to aPoint, which is expressed relative to the
origin of the line fragment rectangle for glyphRange.

public void setLocationForStartOfGlyphRange(NSPoint aPoint, NSRange glyphRange)

Discussion
glyphRange defines a series of glyphs that can be displayed with a single PostScript show operation (a
nominal range). Setting the location for a series of glyphs implies that the glyphs preceding it can’t be included
in a single show operation.

Before setting the location for a glyph range, you must specify the text container with
setTextContainerForGlyphRange (page 850) and the line fragment rectangle with
setLineFragmentRectForGlyphAtIndex (page 848).

This method is used by the layout mechanism; you should never invoke it directly.

See Also
rangeOfNominallySpacedGlyphsContainingIndex (page 841)

setNotShownForGlyphAtIndex
Sets according to flag whether the glyph at glyphIndex is one that isn’t shown.

public void setNotShownForGlyphAtIndex(boolean flag, int glyphIndex)

848 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
For example, a tab or newline character doesn’t leave any marks; it just indicates where following glyphs are
laid out. Throws a RangeException if glyphIndex is out of bounds.

This method is used by the layout mechanism; you should never invoke it directly.

See Also
notShownAttributeForGlyphAtIndex (page 841)

setShowsControlCharacters
Controls whether the receiver makes control characters visible in layout where possible.

public void setShowsControlCharacters(boolean flag)

Discussion
If flag is true, it substitutes visible glyphs for control characters if the font and script support it; if flag is
false it doesn’t.

See Also
setShowsInvisibleCharacters (page 849)
showsControlCharacters (page 851)

setShowsInvisibleCharacters
Controls whether the receiver makes whitespace and other typically nonvisible characters visible in layout
where possible.

public void setShowsInvisibleCharacters(boolean flag)

Discussion
If flag is true, it substitutes visible glyphs for invisible characters if the font and script support it; if flag is
false it doesn’t.

See Also
setShowsControlCharacters (page 849)
showsInvisibleCharacters (page 851)

setTemporaryAttributes
Sets one or more temporary attributes passed in attrs for the character range specified in charRange.

public void setTemporaryAttributes(NSDictionary attrs, NSRange charRange)

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView uses
them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes that will be recognized are those related to colors and underlines.

See Also
addTemporaryAttributes (page 827)

Instance Methods 849
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

removeTemporaryAttribute (page 843)
temporaryAttributesAtCharacterIndex (page 852)

setTextContainerForGlyphRange
Sets to aTextContainer the NSTextContainer where the glyphs in glyphRange are laid out.

public void setTextContainerForGlyphRange(NSTextContainer aTextContainer, NSRange
glyphRange)

Discussion
You specify the layout within the container with the setLineFragmentRectForGlyphAtIndex (page 848)
and setLocationForStartOfGlyphRange (page 848) methods.

This method is used by the layout mechanism; you should never invoke it directly.

See Also
textContainerForGlyphAtIndex (page 853)

setTextStorage
Sets the receiver’s NSTextStorage to textStorage.

public void setTextStorage(NSTextStorage textStorage)

Discussion
This method is invoked automatically when you add an NSLayoutManager to an NSTextStorage object; you
should never need to invoke it directly, but might want to override it. If you want to replace the NSTextStorage
for an established group of text-system objects containing the receiver, use replaceTextStorage (page
844).

See Also
addLayoutManager (page 1588) (NSTextStorage)

setTypesetterBehavior
Sets according to theBehavior the default typesetter behavior, which affects glyph spacing and line height.

public void setTypesetterBehavior(int theBehavior)

Discussion
Possible values for theBehavior are described in “Constants” (page 856).

If the application was linked on a system prior to Mac OS X version 10.2, NSLayoutManager uses
TypesetterOriginalBehavior by default.

Availability
Available in Mac OS X v10.2 and later.

See Also
typesetterBehavior (page 854)

850 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

setUsesScreenFonts
Sets according to flag whether the receiver calculates layout and displays text using screen fonts when
possible.

public void setUsesScreenFonts(boolean flag)

See Also
usesScreenFonts (page 856)
substituteFontForFont (page 852)

showAttachmentCell
Actually draws an attachment cell.

public void showAttachmentCell(NSCell cell, NSRect rect, int attachmentIndex)

Discussion
The attachment passed in cell should be drawn within the given rect. attachmentIndex is provided for
those cells that alter their appearance based on their location.

showsControlCharacters
Returns true if the receiver substitutes visible glyphs for control characters if the font and script support it,
false if it doesn’t.

public boolean showsControlCharacters()

See Also
showsInvisibleCharacters (page 851)
setShowsControlCharacters (page 849)

showsInvisibleCharacters
Returns true if the receiver substitutes visible glyphs for invisible characters if the font and script support
it, false if it doesn’t.

public boolean showsInvisibleCharacters()

See Also
showsControlCharacters (page 851)
setShowsInvisibleCharacters (page 849)

strikethroughGlyphRange
Calculates and draws strikethrough for the glyphs in glyphRange, which must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex (page 840)).

public void strikethroughGlyphRange(NSRange glyphRange, int strikethroughVal, NSRect
lineRect, NSRange lineGlyphRange, NSPoint containerOrigin)

Instance Methods 851
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
strikethroughVal indicates the style of strikethrough to draw. lineRect is the line fragment rectangle
containing the glyphs to draw strikethrough for, and lineGlyphRange is the range of all glyphs within that
line fragment rectangle. containerOrigin is the origin of the line fragment rectangle’s NSTextContainer
in its NSTextView.

This method determines which glyphs actually need to be strikethrough based on strikethroughVal.
After determining which glyphs to draw strikethrough on, this method invokes
drawStrikethroughForGlyphRange (page 831) for each contiguous range of glyphs that requires it.

Availability
Available in Mac OS X v10.3 and later.

substituteFontForFont
Returns a screen font suitable for use in place of originalFont, or simply returns originalFont if a screen
font can’t be used or isn’t available.

public NSFont substituteFontForFont(NSFont originalFont)

Discussion
A screen font can be substituted if the receiver is set to use screen fonts and if no NSTextView associated
with the receiver is scaled or rotated.

See Also
usesScreenFonts (page 856)

temporaryAttributesAtCharacterIndex
Returns the dictionary of temporary attributes for the character range specified in effectiveCharRange
at character index charIndex.

public NSDictionary temporaryAttributesAtCharacterIndex(int charIndex, NSMutableRange
effectiveCharRange)

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView uses
them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes that will be recognized are those related to colors and underlines.

See Also
addTemporaryAttributes (page 827)
removeTemporaryAttribute (page 843)
setTemporaryAttributes (page 849)

textContainerChangedGeometry
Invalidates the layout information, and possibly glyphs, for aTextContainer and all subsequent
NSTextContainers.

public void textContainerChangedGeometry(NSTextContainer aTextContainer)

852 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Discussion
This method is invoked automatically by other components of the text system; you should rarely need to
invoke it directly. Subclasses of NSTextContainer, however, must invoke this method any time their size of
shape changes (a text container that dynamically adjusts its shape to wrap text around placed graphics, for
example, must do so when a graphic is added, moved, or removed).

textContainerChangedTextView
Updates information needed to manage NSTextView objects in aTextContainer.

public void textContainerChangedTextView(NSTextContainer aTextContainer)

Discussion
This method is invoked automatically by other components of the text system; you should rarely need to
invoke it directly.

textContainerForGlyphAtIndex
Returns the NSTextContainer where the glyph at glyphIndex is laid out.

public NSTextContainer textContainerForGlyphAtIndex(int glyphIndex, NSMutableRange
effectiveGlyphRange)

Discussion
If non-null, effectiveGlyphRange is set to the range for all glyphs laid out in that text container.

Performs glyph generation and layout if needed.

See Also
setTextContainerForGlyphRange (page 850)

textContainers
Returns the receiver’s NSTextContainers.

public NSArray textContainers()

See Also
addTextContainer (page 827)
insertTextContainerAtIndex (page 837)
removeTextContainerAtIndex (page 843)

textStorage
Returns the receiver’s NSTextStorage.

public NSTextStorage textStorage()

See Also
setTextStorage (page 850)

Instance Methods 853
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

replaceTextStorage (page 844)

textStorageChanged
Invalidates glyph and layout information for a portion of the text in aTextStorage.

public void textStorageChanged(NSTextStorage aTextStorage, int mask, NSRange range,
int lengthChange, NSRange invalidatedCharRange)

Discussion
This message is sent from NSTextStorage’s processEditing (page 1591) method to indicate that its characters
or attributes have been changed. This method invalidates glyphs and layout for the affected characters, and
performs a soft invalidation of the layout information for all subsequent characters. mask specifies the nature
of the changes. Its value is made by combining these options with the C bitwise OR operator:

MeaningOption

Attributes were added, removed, or changed.TextStorageEditedAttributes

Characters were added, removed, or replaced.TextStorageEditedCharacters

The range argument indicates the extent of characters resulting from the edits. If the
TextStorageEditedCharacters bit of mask is set, lengthChange gives the number of characters added
to or removed from the original range (otherwise its value is irrelevant). For example, after replacing “The”
with “Several” to produce the string “Several files couldn’t be saved”, range is {0, 7} and lengthChange is
4. The receiver uses this information to update its character-to-glyph mapping and to update the selection
range based on the change.

The invalidatedCharRange argument represents the range of characters affected after attributes have
been fixed. For example, deleting a paragraph separator character invalidates the layout information for all
characters in the paragraphs that precede and follow the separator.

The textStorageChanged messages are sent in a series to each NSLayoutManager associated with the text
storage object, so the NSLayoutManagers receiving them shouldn’t edit aTextStorage. If one of them does,
the range, lengthChange, and invalidatedCharRange arguments will be incorrect for all following
NSLayoutManagers that receive the message.

See Also
invalidateLayoutForCharacterRange (page 838)

textViewForBeginningOfSelection
Returns the NSTextView containing the first glyph in the selection, or null if there’s no selection or there
isn’t enough layout information to determine the text view.

public NSTextView textViewForBeginningOfSelection()

typesetterBehavior
Returns the current typesetter behavior value.

854 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

public int typesetterBehavior()

Discussion
Possible return values are described in “Constants” (page 856).

Availability
Available in Mac OS X v10.2 and later.

See Also
setTypesetterBehavior (page 850)

underlineGlyphRange
Calculates and draws underlining for the glyphs in glyphRange, which must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex (page 840)).

public void underlineGlyphRange(NSRange glyphRange, int underlineType, NSRect
lineRect, NSRange lineGlyphRange, NSPoint containerOrigin)

Discussion
underlineType indicates the style of underlining to draw; NSLayoutManager accepts only
NSAttributedString.SingleUnderlineStyle, but subclasses can define their own underline styles.
lineRect is the line fragment rectangle containing the glyphs to draw underlining for, and lineGlyphRange
is the range of all glyphs within that line fragment rectangle. containerOrigin is the origin of the line
fragment rectangle’s NSTextContainer in its NSTextView.

This method determines which glyphs actually need to be underlined based on underlineType. With
NSAttributedString.SingleUnderlineStyle, for example, leading and trailing whitespace isn’t
underlined, but whitespace between visible glyphs is. A potential word-underline style would omit underlining
on any whitespace. After determining which glyphs to draw underlining on, this method invokes
drawUnderlineForGlyphRange (page 832) for each contiguous range of glyphs that requires it.

See Also
textContainerForGlyphAtIndex (page 853)
textContainerOrigin (page 1659) (NSTextView)

usedRectForTextContainer
Returns the bounding rectangle for the glyphs laid out in aTextContainer, which tells “how full” it is.

public NSRect usedRectForTextContainer(NSTextContainer aTextContainer)

Discussion
This rectangle is given in the coordinate system of aTextContainer.

See Also
containerSize (page 1557) (NSTextContainer)

Instance Methods 855
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

usesScreenFonts
Returns true if the receiver calculates layout and displays text using screen fonts when possible, false
otherwise.

public boolean usesScreenFonts()

See Also
setUsesScreenFonts (page 851)
substituteFontForFont (page 852)

Constants

These constants specify how a glyph is laid out relative to the previous glyph. The glyph inscription constants
are possible values for the glyph attribute GlyphAttributeInscribe. The only constants that the text
system currently uses are GlyphInscribeBase (for most glyphs) and GlyphInscribeOverstrike (for
nonbase glyphs). Nonbase glyphs occur when diacritical marks are applied to a base character, and the font
does not have a single glyph to represent the combination. For example, if a font did not contain a single
glyph for ü, but did contain separate glyphs for u and ¨, then it could be rendered with a base glyph u followed
by a nonbase glyph ¨. In that case the nonbase glyph would have the value GlyphInscribeOverstrike
for the inscribe attribute.

Glyph inscriptions are set during glyph generation.

DescriptionConstant

A base glyph; a character that the font can represent with a single glyph.GlyphInscribeBase

Glyph was rendered below the previous glyph.GlyphInscribeBelow

Glyph was rendered above the previous glyph.GlyphInscribeAbove

Glyph was rendered on top of the previous glyph.GlyphInscribeOverstrike

Glyph was rendered on top and below the previous glyph.GlyphInscribeOverBelow

The following constants are used by setTypesetterBehavior (page 850) and typesetterBehavior (page
854) to control the compatibility level of the typesetter.

DescriptionConstant

Use the most current typesetter behavior in the current system version.
For Mac OS X v10.2, this behavior is identical to
TypesetterBehavior_10_2. If you use this behavior setting, you
cannot necessarily rely on line width and height metrics remaining the
same across different versions of Mac OS X.

TypesetterLatestBehavior

Use the original typesetter behavior, as shipped with Mac OS X v10.1
and earlier.

TypesetterOriginalBehavior

856 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

DescriptionConstant

Perform typesetting as with TypesetterBehavior_10_2, but using
line widths and height metric calculations that are the same as with
TypesetterOriginalBehavior.

TypesetterBehavior_10_2_-
WithCompatibility

Use the typesetter behavior introduced in Mac OS X version 10.2. This
typesetter behavior provides enhanced line and character spacing
accuracy and supports more languages than the original typesetter
behavior.

TypesetterBehavior_10_2

Use the typesetter behavior introduced in Mac OS X version 10.3.TypesetterBehavior_10_3

Use the typesetter behavior introduced in Mac OS X version 10.4.TypesetterBehavior_10_4

Delegate Methods

layoutManagerDidCompleteLayoutForTextContainer
Informs the delegate that aLayoutManager has finished laying out text in aTextContainer.

public abstract void layoutManagerDidCompleteLayoutForTextContainer(NSLayoutManager
aLayoutManager, NSTextContainer aTextContainer, boolean flag)

Discussion
aTextContainer is null if there aren’t enough containers to hold all the text; the delegate can use this
information as a cue to add another container. If flag is true, aLayoutManager is finished laying out its
text—this also means that aTextContainer is the final text container used by the layout manager. Delegates
can use this information to show an indicator or background or to enable or disable a button that forces
immediate layout of text.

layoutManagerDidInvalidateLayout
Informs the delegate that aLayoutManager has invalidated layout information (not glyph information).

public abstract void layoutManagerDidInvalidateLayout(NSLayoutManager aLayoutManager)

Discussion
This method is invoked only when layout was complete and then became invalidated for some reason.
Delegates can use this information to show an indicator or background layout or to enable a button that
forces immediate layout of text.

Delegate Methods 857
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

858 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

NSLayoutManager

Inherits from NSControl : NSView : NSResponder : NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Overview

NSLevelIndicator is a subclass of NSControl that displays a value on a linear scale. Level indicators provide a
visual representation of a level or amount of something, using discrete values. While similar to NSSlider, it
provides a more customized visual feedback to the user. Level indicators do not have a “knob” indicating
the current setting or allowing the user to adjust settings. The supported indicator styles include:

 ■ A capacity style level indicator. The continuous mode for this style is often used to indicate conditions
such as how much data is on hard disk. The discrete mode is similar to audio level indicators in audio
playback applications. You can specify both a warning value and a critical value that provides additional
visual feedback to the user.

 ■ A ranking style level indicator. This is similar to the star ranking displays provided in iTunes and iPhoto.
You can also specify your own ranking image.

 ■ A relevancy style level indicator. This style is used to display the relevancy of a search result, for example
in Mail.

NSLevelIndicator uses an NSLevelIndicatorCell (page 867) to implement much of the control’s functionality.
NSLevelIndicator provides cover methods for most of NSLevelIndicatorCell’s methods, which invoke the
corresponding cell method.

Tasks

Constructors

NSLevelIndicator (page 860)

Specifying Value Range

minValue (page 861)
Returns the receiver’s minimum value.

Overview 859
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

setMinValue (page 863)
Sets the minimum value the receiver can represent to minValue.

maxValue (page 861)
Returns the receiver’s maximum value.

setMaxValue (page 863)
Sets the maximum value the receiver can represent to maxValue.

warningValue (page 865)
Returns the receiver’s warning value.

setWarningValue (page 864)
Sets the receiver’s warning value to warningValue.

criticalValue (page 861)
Returns the receiver’s critical value.

setCriticalValue (page 862)
Sets the receiver’s critical value to criticalValue.

Managing Tick Marks

tickMarkPosition (page 864)
Returns how the receiver’s tick marks are aligned with it.

setTickMarkPosition (page 864)
Sets where tick marks appear relative to the receiver.

numberOfTickMarks (page 862)
Returns the number of tick marks associated with the receiver.

setNumberOfTickMarks (page 864)
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum
and maximum values) to count.

numberOfMajorTickMarks (page 862)
Returns the number of major tick marks associated with the receiver.

setNumberOfMajorTickMarks (page 863)
Sets the number of major tick marks displayed by the receiver.

tickMarkValueAtIndex (page 865)
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has
an index of 0).

rectOfTickMarkAtIndex (page 862)
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark
is at index 0).

Constructors

NSLevelIndicator
public NSLevelIndicator()

860 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

Discussion
Creates a new NSLevelIndicator object.

public NSLevelIndicator(NSRect frameRect)

Discussion
Creates a new NSLevelIndicator object in frameRect.

Instance Methods

criticalValue
Returns the receiver’s critical value.

public double criticalValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setCriticalValue (page 862)

maxValue
Returns the receiver’s maximum value.

public double maxValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMaxValue (page 863)

minValue
Returns the receiver’s minimum value.

public double minValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMinValue (page 863)

Instance Methods 861
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

numberOfMajorTickMarks
Returns the number of major tick marks associated with the receiver.

public int numberOfMajorTickMarks()

Availability
Available in Mac OS X v10.4 and later.

See Also
setNumberOfMajorTickMarks (page 863)

numberOfTickMarks
Returns the number of tick marks associated with the receiver.

public int numberOfTickMarks()

Discussion
The tick marks assigned to the minimum and maximum values are included.

Availability
Available in Mac OS X v10.4 and later.

See Also
setNumberOfTickMarks (page 864)

rectOfTickMarkAtIndex
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0).

public NSRect rectOfTickMarkAtIndex(int index)

Discussion
If no tick mark is associated with index, the method throws a RangeException.

Availability
Available in Mac OS X v10.4 and later.

setCriticalValue
Sets the receiver’s critical value to criticalValue.

public void setCriticalValue(double criticalValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
criticalValue (page 861)

862 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

setMaxValue
Sets the maximum value the receiver can represent to maxValue.

public void setMaxValue(double maxValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
maxValue (page 861)

setMinValue
Sets the minimum value the receiver can represent to minValue.

public void setMinValue(double minValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
minValue (page 861)

setNumberOfMajorTickMarks
Sets the number of major tick marks displayed by the receiver.

public void setNumberOfMajorTickMarks(int count)

Discussion
The count must be less than or equal to the number of tick marks returned by numberOfTickMarks (page
862). For example, if the number of tick marks is 11 and you specify 3 major tick marks, the resulting level
indicator will display 3 major tickmarks alternating with 8 minor tick marks, as in the example shown in Figure
60-1.

Figure 60-1 Major and minor tick marks in a level indicator

0 256 MB 512 MB

Disk Space:

Availability
Available in Mac OS X v10.4 and later.

See Also
numberOfMajorTickMarks (page 862)

Instance Methods 863
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

setNumberOfTickMarks
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximum values) to count.

public void setNumberOfTickMarks(int count)

Discussion
By default, this value is 0, and no tick marks appear. The number of tick marks assigned to a slider, along
with the slider’s minimum and maximum values, determines the values associated with the tick marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
numberOfTickMarks (page 862)

setTickMarkPosition
Sets where tick marks appear relative to the receiver.

public void setTickMarkPosition(int position)

Discussion
This method has no effect if no tick marks have been assigned (that is, numberOfTickMarks (page 862)
returns 0).

Availability
Available in Mac OS X v10.4 and later.

See Also
tickMarkPosition (page 864)

setWarningValue
Sets the receiver’s warning value to warningValue.

public void setWarningValue(double warningValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
warningValue (page 865)

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

public int tickMarkPosition()

864 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

Discussion
The default alignments are TickMarkBelow and TickMarkLeft.

Availability
Available in Mac OS X v10.4 and later.

See Also
setTickMarkPosition (page 864)

tickMarkValueAtIndex
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an index
of 0).

public double tickMarkValueAtIndex(int index)

Availability
Available in Mac OS X v10.4 and later.

warningValue
Returns the receiver’s warning value.

public double warningValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setWarningValue (page 864)

Instance Methods 865
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

866 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

NSLevelIndicator

Inherits from NSActionCell : NSCell : NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Overview

NSLevelIndicatorCell is a subclass of NSActionCell that provides several level indicator display styles including:
capacity, ranking and relevancy. The capacity style provides both continuous and discrete modes.

Tasks

Constructors

NSLevelIndicatorCell (page 868)
Creates an NSLevelIndicatorCell object with the style specified by levelIndicatorStyle.

Specifying Value Range

minValue (page 870)
Returns the receiver’s minimum value.

setMinValue (page 871)
Sets the minimum value the receiver can represent to minValue.

maxValue (page 869)
Returns the receiver’s maximum value.

setMaxValue (page 871)
Sets the maximum value the receiver can represent to maxValue.

levelIndicatorStyle (page 869)
Returns the level indicator style of the receiver.

setLevelIndicatorStyle (page 871)
Sets the style of the receiver to levelIndicatorStyle.

warningValue (page 873)
Returns the receiver’s warning value.

Overview 867
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

setWarningValue (page 872)
Sets the receiver’s warning value to warningValue.

criticalValue (page 869)
Returns the receiver’s critical value.

setCriticalValue (page 871)
Sets the receiver’s critical value to criticalValue.

Managing Tick Marks

tickMarkPosition (page 873)
Returns how the receiver’s tick marks are aligned with it.

setTickMarkPosition (page 872)
Sets where tick marks appear relative to the receiver.

numberOfTickMarks (page 870)
Returns the number of tick marks associated with the receiver.

setNumberOfTickMarks (page 872)
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum
and maximum values) to numberOfTickMarks.

numberOfMajorTickMarks (page 870)
Returns the number of major tick marks associated with the receiver.

setNumberOfMajorTickMarks (page 872)
Sets the number of major tick marks displayed by the receiver.

tickMarkValueAtIndex (page 873)
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has
an index of 0).

rectOfTickMarkAtIndex (page 870)
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark
is at index 0).

Constructors

NSLevelIndicatorCell
public NSLevelIndicatorCell()

Discussion
Creates an NSLevelIndicatorCell object.

Creates an NSLevelIndicatorCell object with the style specified by levelIndicatorStyle.

public NSLevelIndicatorCell(int levelIndicatorStyle)

868 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

Discussion
The default value and minimum value are 0.0. The default maximum value is dependent on
levelIndicatorStyle. For continuous styles, the default maximum value is 100.0. For discrete styles the
default maximum value is 5.0.

Instance Methods

criticalValue
Returns the receiver’s critical value.

public double criticalValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setCriticalValue (page 871)

levelIndicatorStyle
Returns the level indicator style of the receiver.

public int levelIndicatorStyle()

Discussion
Possible return values are described in “Constants” (page 873).

Availability
Available in Mac OS X v10.4 and later.

See Also
setLevelIndicatorStyle (page 871)

maxValue
Returns the receiver’s maximum value.

public double maxValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setLevelIndicatorStyle (page 871)

Instance Methods 869
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

minValue
Returns the receiver’s minimum value.

public double minValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setMinValue (page 871)

numberOfMajorTickMarks
Returns the number of major tick marks associated with the receiver.

public int numberOfMajorTickMarks()

Availability
Available in Mac OS X v10.4 and later.

See Also
setNumberOfMajorTickMarks (page 872)

numberOfTickMarks
Returns the number of tick marks associated with the receiver.

public int numberOfTickMarks()

Discussion
The tick marks assigned to the minimum and maximum values are included.

Availability
Available in Mac OS X v10.4 and later.

See Also
setNumberOfTickMarks (page 872)

rectOfTickMarkAtIndex
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0).

public NSRect rectOfTickMarkAtIndex(int index)

Discussion
If no tick mark is associated with index, the method throws a RangeException.

Availability
Available in Mac OS X v10.4 and later.

870 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

setCriticalValue
Sets the receiver’s critical value to criticalValue.

public void setCriticalValue(double criticalValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
criticalValue (page 869)

setLevelIndicatorStyle
Sets the style of the receiver to levelIndicatorStyle.

public void setLevelIndicatorStyle(int levelIndicatorStyle)

Discussion
The available values of levelIndicatorStyle are described in “Constants” (page 873).

Availability
Available in Mac OS X v10.4 and later.

See Also
levelIndicatorStyle (page 869)

setMaxValue
Sets the maximum value the receiver can represent to maxValue.

public void setMaxValue(double maxValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
levelIndicatorStyle (page 869)

setMinValue
Sets the minimum value the receiver can represent to minValue.

public void setMinValue(double minValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
minValue (page 870)

Instance Methods 871
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

setNumberOfMajorTickMarks
Sets the number of major tick marks displayed by the receiver.

public void setNumberOfMajorTickMarks(int count)

Discussion
The count must be less than or equal to the number of tick marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
numberOfMajorTickMarks (page 870)

setNumberOfTickMarks
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximum values) to numberOfTickMarks.

public void setNumberOfTickMarks(int count)

Discussion
By default, this value is 0, and no tick marks appear. The number of tick marks assigned to a slider, along
with the slider’s minimum and maximum values, determines the values associated with the tick marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
numberOfTickMarks (page 870)

setTickMarkPosition
Sets where tick marks appear relative to the receiver.

public void setTickMarkPosition(int position)

Discussion
This method has no effect if no tick marks have been assigned (that is, numberOfTickMarks (page 870)
returns 0).

Availability
Available in Mac OS X v10.4 and later.

See Also
tickMarkPosition (page 873)

setWarningValue
Sets the receiver’s warning value to warningValue.

872 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

public void setWarningValue(double warningValue)

Availability
Available in Mac OS X v10.4 and later.

See Also
warningValue (page 873)

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

public int tickMarkPosition()

Discussion
The default alignments are TickMarkBelow and TickMarkLeft.

Availability
Available in Mac OS X v10.4 and later.

See Also
setTickMarkPosition (page 872)

tickMarkValueAtIndex
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an index
of 0).

public double tickMarkValueAtIndex(int index)

Availability
Available in Mac OS X v10.4 and later.

warningValue
Returns the receiver’s warning value.

public double warningValue()

Availability
Available in Mac OS X v10.4 and later.

See Also
setWarningValue (page 872)

Constants

The following constants specify the level indicator’s style and are used by levelIndicatorStyle (page
869) and setLevelIndicatorStyle (page 871).

Constants 873
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

DescriptionConstant

A style similar to the star ranking displays provided in iTunes and
iPhoto.
Available in Mac OS X v10.4 and later.

RatingLevelIndicatorStyle

A style similar to audio level indicators in iTunes.
Available in Mac OS X v10.4 and later.

DiscreteCapacity-
LevelIndicatorStyle

A style that is often used to indicate conditions such as how much
data is on a hard disk.
Available in Mac OS X v10.4 and later.

ContinuousCapacity-
LevelIndicatorStyle

A style that is used to indicate the relevancy of a search result, for
example in Mail.
Available in Mac OS X v10.4 and later.

RelevancyLevelIndicatorStyle

874 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

NSLevelIndicatorCell

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Matrix Programming Guide for Cocoa

Overview

NSMatrix is a class used for creating groups of NSCells that work together in various ways.

The cells in an NSMatrix are numbered by row and column, each starting with 0; for example, the top left
NSCell would be at (0, 0), and the NSCell that’s second down and third across would be at (1, 2). NSMatrix
has the notion of a single selected cell, which is the cell that was most recently clicked or that was so
designated by a selectCellAtLocation (page 896) or selectCellWithTag (page 896) message. The
selected cell is the cell chosen for action messages except for performClick (page 318) (NSCell), which is
assigned to the key cell. (The key cell is generally identical to the selected cell, but can be given click focus
while leaving the selected cell unchanged.) If the user has selected multiple cells, the selected cell is the one
lowest and furthest to the right in the matrix of cells.

Tasks

Constructors

NSMatrix (page 881)
Creates an empty NSMatrix.

Setting the Selection Mode

mode (page 892)

setMode (page 902)
Sets the selection mode of the receiver.

Overview 875
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Configuring the NSMatrix

allowsEmptySelection (page 884)
Returns whether it’s possible to have no cells selected in a radio-mode matrix.

isSelectionByRect (page 891)
Returns true if the user can select a rectangle of cells in the receiver by dragging the cursor, false
otherwise.

setAllowsEmptySelection (page 899)

setSelectionByRect (page 903)
Sets whether the user can select a rectangle of cells in the receiver by dragging the cursor.

Setting the Cell Class

newCellClass (page 892)
Returns the subclass of NSCell that the receiver uses when creating new (empty) cells.

prototype (page 893)
Returns the prototype cell that’s copied whenever a new cell needs to be created, or null if there is
none.

setNewCellClass (page 902)
Configures the receiver to use instances of aClass when creating new cells.

setPrototype (page 903)
Sets the prototype cell that’s copied whenever a new cell needs to be created.

Laying out the NSMatrix

addColumn (page 882)
Adds a new column of cells to the right of the last column, creating new cells as needed with
makeCellAtLocation (page 891).

addColumnWithCells (page 883)
Adds a new column of cells to the right of the last column.

addRow (page 883)
Adds a new row of cells below the last row, creating new cells as needed with
makeCellAtLocation (page 891).

addRowWithCells (page 884)
Adds a new row of cells below the last row.

cellFrameAtLocation (page 885)
Returns the frame rectangle of the cell that would be drawn at the location specified by row and
column (whether or not the specified cell actually exists).

cellSize (page 886)
Returns the width and the height of each cell in the receiver (all cells in an NSMatrix are the same
size).

876 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

insertColumn (page 889)
Inserts a new column of cells before column, creating new cells if needed with
makeCellAtLocation (page 891).

insertColumnWithCells (page 889)
Inserts a new column of cells before column.

insertRow (page 890)
Inserts a new row of cells before row, creating new cells if needed with makeCellAtLocation (page
891).

insertRowWithCells (page 890)
Inserts a new row of cells before row.

intercellSpacing (page 890)
Returns the vertical and horizontal spacing between cells in the receiver.

makeCellAtLocation (page 891)
Creates a new cell at the location specified by row and column in the receiver.

numberOfColumns (page 893)
Returns the number of columns in the receiver.

numberOfRows (page 893)
Returns the number of rows in the receiver.

putCellAtLocation (page 893)
Replaces the cell at the location specified by row and column with newCell and redraws the cell.

removeColumn (page 894)
Removes the column at position column from the receiver and autoreleases the column’s cells.

removeRow (page 894)
Removes the row at position row from the receiver and autoreleases the row’s cells.

renewRowsAndColumns (page 894)
Changes the number of rows and columns in the receiver.

setCellSize (page 900)
Sets the width and height of each of the cells in the receiver to those in aSize.

setIntercellSpacing (page 902)
Sets the vertical and horizontal spacing between cells in the receiver to aSize.

sortUsingMethod (page 905)
Sorts the receiver’s cells in ascending order as defined by the comparison method comparator.

Modifying Individual Cells

setStateAtLocation (page 904)
Sets the state of the cell at row and column to value.

setToolTip (page 905)
Sets the tooltip for cell to be toolTipString.

toolTip (page 907)
Returns the string used as the tooltip for cell.

Tasks 877
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Selecting Cells

deselectAllCells (page 887)
Deselects all cells in the receiver and, if necessary, redisplays the receiver.

deselectSelectedCell (page 887)
Deselects the selected cell or cells.

keyCell (page 891)
Returns the cell that will be clicked when the user presses the Space bar.

selectAll (page 896)
Selects and highlights all cells in the receiver, except for editable text cells and disabled cells.

selectCellAtLocation (page 896)
Selects the cell at the specified row and column within the receiver.

selectCellWithTag (page 896)
If the receiver has at least one cell whose tag is equal to anInt, the last cell (when viewing the matrix
as a row-ordered array) is selected.

selectedCell (page 896)
Returns the most recently selected cell, or null if no cell is selected.

selectedCells (page 897)
Returns an array containing all of the receiver’s highlighted cells plus its selected cell.

selectedColumn (page 897)
Returns the column number of the selected cell, or –1 if no cells are selected.

selectedRow (page 897)
Returns the row number of the selected cell, or –1 if no cells are selected.

setKeyCell (page 902)
Sets the cell that will be clicked when the user presses the Space bar to aCell.

setSelectionWithAnchor (page 903)
Programmatically selects a range of cells.

Finding Cells

cellAtLocation (page 885)
Returns the NSCell object at the location specified by row and column, or null if either row or column
is outside the bounds of the receiver.

cellWithTag (page 886)
Searches the receiver and returns the last (when viewing the matrix as a row-ordered array) NSCell
object that has a tag matching anInt, or null if no such cell exists.

cells (page 885)
Returns an NSArray that contains the receiver’s cells.

columnForPoint (page 886)
Returns the column for the cell within which the specified point lies.

columnOfCell (page 886)
Searches the receiver for aCell and returns the column of the cell.

rowForPoint (page 895)
Returns the row for the cell within which the specified point lies.

878 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

rowOfCell (page 895)
Searches the receiver for aCell and returns the row of the cell.

Modifying Graphics Attributes

backgroundColor (page 885)
Returns the color used to draw the background of the receiver (the space between the cells).

cellBackgroundColor (page 885)
Returns the color used to fill the background of the receiver’s cells.

drawsBackground (page 888)
Returns whether the receiver draws its background (the space between the cells).

drawsCellBackground (page 888)
Returns whether the receiver draws the background within each of its cells.

setBackgroundColor (page 900)
Sets the background color for the receiver to aColor and redraws the receiver.

setCellBackgroundColor (page 900)
Sets the background color for the cells in the receiver to aColor.

setDrawsBackground (page 901)
Sets whether the receiver draws its background (the space between the cells) to flag.

setDrawsCellBackground (page 901)
Sets whether the receiver draws the background within each of its cells to flag.

Editing Text in Cells

selectText (page 897)

selectTextAtLocation (page 898)

textDidBeginEditing (page 906)
Invoked when notification is posted indicating that there’s a change in the text after the receiver
gains first responder status.

textDidChange (page 906)
Invoked when notification is posted indicating a key-down event or paste operation that changes
the receiver’s contents.

textDidEndEditing (page 906)
Invoked when notification is posted indicating that text editing ends.

textShouldBeginEditing (page 907)
Invoked to let the NSTextField respond to impending changes to its text.

textShouldEndEditing (page 907)
Invoked to let the NSTextField respond to impending loss of first-responder status.

Tasks 879
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Setting Tab Key Behavior

setTabKeyTraversesCells (page 904)
Sets whether pressing the Tab key advances the key cell to the next selectable cell in the receiver.

tabKeyTraversesCells (page 905)
Returns whether pressing the Tab key advances the key cell to the next selectable cell in the receiver.

Assigning a Delegate

delegate (page 887)
Returns the delegate for messages from the field editor.

setDelegate (page 900)
Sets the delegate for messages from the field editor to anObject.

Resizing the Matrix and Its Cells

autosizesCells (page 884)

setAutosizesCells (page 899)
Sets whether the cell sizes change when the receiver is resized.

setValidateSize (page 905)
If flag is true, then the size information in the receiver is assumed to be correct.

sizeToCells (page 905)
Changes the width and the height of the receiver’s frame so it exactly contains the cells.

Scrolling

isAutoscroll (page 891)
Returns whether the receiver will be automatically scrolled whenever the cursor is dragged outside
the receiver after a mouse-down event within its bounds.

scrollCellAtLocationToVisible (page 895)
If the receiver is in a scrolling view, and row and column represent a valid cell within the receiver,
this method scrolls the receiver so the specified cell is visible.

setAutoscroll (page 899)

setScrollable (page 903)

Displaying

drawCellAtLocation (page 888)
Displays the cell at the specified row and column, providing that row and column reference a cell
within the receiver.

880 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

highlightCellAtLocation (page 889)
Assuming that row and column indicate a valid cell within the receiver, this method highlights (if
flag is true) or unhighlights (if flag is false) the specified cell.

Target and Action

doubleAction (page 888)
Returns the action method sent by the receiver to its target when the user double-clicks an entry, or
NULL if there’s no double-click action.

sendAction (page 898)
If the selected cell has both an action and a target, its action is sent to its target.

sendActionToTargetForAllCells (page 898)
Iterates through all cells in the receiver (if flag is true) or just the selected cells in the receiver (if
flag is false), sending aSelector to anObject for each.

sendDoubleAction (page 899)

setDoubleAction (page 901)
Makes aSelector the action sent to the target of the receiver when the user double-clicks a cell.

Handling Event and Action Messages

acceptsFirstMouse (page 882)
Returns false if the selection mode of the receiver is ListMode, true if the receiver is in any other
selection mode.

mouseDown (page 892)
Responds to theEvent mouse-down event.

mouseDownFlags (page 892)
Returns the flags in effect at the mouse-down event that started the current tracking session.

performKeyEquivalent (page 893)

Managing the Cursor

resetCursorRects (page 895)
Resets cursor rectangles so the cursor becomes an I-beam over text cells.

Constructors

NSMatrix
Creates an empty NSMatrix.

public NSMatrix()

Constructors 881
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Creates an NSMatrix, with default parameters in the frame specified by frameRect.

public NSMatrix(NSRect frameRect)

Discussion
The new NSMatrix contains no rows or columns. The default mode is RadioMode. The default cell class is
NSActionCell.

Creates an NSMatrix, in the frame specified by frameRect

public NSMatrix(NSRect frameRect, int aMode, NSCell aCell, int numRows, int
numColumns)

Discussion
The new NSMatrix contains numRows rows and numColumns columns. aMode is set as the tracking mode for
the NSMatrix and can be one of the modes described in “Constants” (page 908).

The new Matrix creates cells by copying aCell, which should be an instance of a subclass of NSCell.

Creates an NSMatrix, in the frame specified by frameRect.

public NSMatrix(NSRect frameRect, int aMode, Class aClass, int numRows, int
numColumns)

Discussion
The new NSMatrix contains numRows rows and numColumns columns. aMode is set as the tracking mode for
the NSMatrix and can be one of the modes described in “Constants” (page 908).

The new NSMatrix creates and uses cells of class aClass.

Instance Methods

acceptsFirstMouse
Returns false if the selection mode of the receiver is ListMode, true if the receiver is in any other selection
mode.

public boolean acceptsFirstMouse(NSEvent theEvent)

Discussion
The receiver does not accept first mouse in ListMode to prevent the loss of multiple selections. The NSEvent
parameter, theEvent, is ignored.

See Also
mode (page 892)

addColumn
Adds a new column of cells to the right of the last column, creating new cells as needed with
makeCellAtLocation (page 891).

public void addColumn()

882 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Discussion
This method throws a RangeException if there are 0 rows or 0 columns. Use renewRowsAndColumns (page
894) to add new cells to an empty matrix.

If the number of rows or columns in the receiver has been changed with renewRowsAndColumns (page 894),
new cells are created only if they are needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

This method redraws the receiver. Your code may need to send sizeToCells (page 905) after sending this
method to resize the receiver to fit the newly added cells.

See Also
newCellClass (page 892)
insertColumn (page 889)
prototype (page 893)
addRow (page 883)

addColumnWithCells
Adds a new column of cells to the right of the last column.

public void addColumnWithCells(NSArray newCells)

Discussion
The new column is filled with objects from newCells, starting with the object at index 0. Each object in
newCells should be an instance of NSCell or one of its subclasses (usually NSActionCell). newCells should
have a sufficient number of cells to fill the entire column. Extra cells are ignored, unless the matrix is empty.
In that case, a matrix is created with one column and enough rows for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 905) after sending this
method to resize the receiver to fit the newly added cells.

See Also
insertColumnWithCells (page 889)
addRowWithCells (page 884)

addRow
Adds a new row of cells below the last row, creating new cells as needed with makeCellAtLocation (page
891).

public void addRow()

Discussion
This method throws a RangeException if there are 0 rows or 0 columns. Use renewRowsAndColumns (page
894) to add new cells to an empty matrix.

If the number of rows or columns in the receiver has been changed with renewRowsAndColumns (page 894),
then new cells are created only if they are needed. This fact allows you to grow and shrink an NSMatrix
without repeatedly creating and freeing the cells.

Instance Methods 883
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

This method redraws the receiver. Your code may need to send sizeToCells (page 905) after sending this
method to resize the receiver to fit the newly added cells.

See Also
newCellClass (page 892)
insertRow (page 890)
prototype (page 893)
addColumn (page 882)

addRowWithCells
Adds a new row of cells below the last row.

public void addRowWithCells(NSArray newCells)

Discussion
The new row is filled with objects from newCells, starting with the object at index 0. Each object in newCells
should be an instance of NSCell or one of its subclasses (usually NSActionCell). newCells should have a
sufficient number of cells to fill the entire row. Extra cells are ignored, unless the matrix is empty. In that case,
a matrix is created with one row and enough columns for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 905) after sending this
method to resize the receiver to fit the newly added cells.

See Also
insertRowWithCells (page 890)
addColumnWithCells (page 883)

allowsEmptySelection
Returns whether it’s possible to have no cells selected in a radio-mode matrix.

public boolean allowsEmptySelection()

See Also
mode (page 892)
setAllowsEmptySelection (page 899)

autosizesCells
public boolean autosizesCells()

Discussion
Returns true if cells are resized proportionally to the receiver when its size changes (and intercell spacing
is kept constant). Returns false if the cell size and intercell spacing remain constant.

See Also
setAutosizesCells (page 899)

884 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

backgroundColor
Returns the color used to draw the background of the receiver (the space between the cells).

public NSColor backgroundColor()

See Also
cellBackgroundColor (page 885)
drawsBackground (page 888)
setBackgroundColor (page 900)

cellAtLocation
Returns the NSCell object at the location specified by row and column, or null if either row or column is
outside the bounds of the receiver.

public NSCell cellAtLocation(int row, int column)

See Also
columnOfCell (page 886)
rowOfCell (page 895)

cellBackgroundColor
Returns the color used to fill the background of the receiver’s cells.

public NSColor cellBackgroundColor()

See Also
backgroundColor (page 885)
drawsCellBackground (page 888)
setCellBackgroundColor (page 900)

cellFrameAtLocation
Returns the frame rectangle of the cell that would be drawn at the location specified by row and column
(whether or not the specified cell actually exists).

public NSRect cellFrameAtLocation(int row, int column)

See Also
cellSize (page 886)

cells
Returns an NSArray that contains the receiver’s cells.

public NSArray cells()

Instance Methods 885
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Discussion
The cells in the array are row-ordered; that is, the first row of cells appears first in the array, followed by the
second row, and so forth.

See Also
cellAtLocation (page 885)

cellSize
Returns the width and the height of each cell in the receiver (all cells in an NSMatrix are the same size).

public NSSize cellSize()

See Also
cellFrameAtLocation (page 885)
intercellSpacing (page 890)
setCellSize (page 900)

cellWithTag
Searches the receiver and returns the last (when viewing the matrix as a row-ordered array) NSCell object
that has a tag matching anInt, or null if no such cell exists.

public NSCell cellWithTag(int anInt)

See Also
selectCellWithTag (page 896)
setTag (page 51) (NSActionCell)

columnForPoint
Returns the column for the cell within which the specified point lies.

public int columnForPoint(NSPoint aPoint)

Discussion
If aPoint falls outside the bounds of the receiver or lies within an intercell spacing, this method returns –1.

Make sure aPoint is in the coordinate system of the receiver.

See Also
rowForPoint (page 895)
columnOfCell (page 886)

columnOfCell
Searches the receiver for aCell and returns the column of the cell.

public int columnOfCell(NSCell aCell)

886 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Discussion
If aCell is not found within the receiver, this method returns –1.

See Also
rowOfCell (page 895)
columnForPoint (page 886)

delegate
Returns the delegate for messages from the field editor.

public Object delegate()

See Also
textShouldBeginEditing (page 907)
textShouldEndEditing (page 907)
setDelegate (page 900)

deselectAllCells
Deselects all cells in the receiver and, if necessary, redisplays the receiver.

public void deselectAllCells()

Discussion
If the selection mode is RadioMode and empty selection is not allowed, this method does nothing.

See Also
allowsEmptySelection (page 884)
mode (page 892)
selectAll (page 896)

deselectSelectedCell
Deselects the selected cell or cells.

public void deselectSelectedCell()

Discussion
If the selection mode is RadioMode and empty selection is not allowed, or if nothing is currently selected,
this method does nothing. This method doesn’t redisplay the receiver.

See Also
allowsEmptySelection (page 884)
mode (page 892)
selectCellAtLocation (page 896)

Instance Methods 887
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

doubleAction
Returns the action method sent by the receiver to its target when the user double-clicks an entry, or NULL
if there’s no double-click action.

public NSSelector doubleAction()

Discussion
The double-click action of an NSMatrix is sent after the appropriate single-click action (for the NSCell clicked
or for the NSMatrix if the NSCell doesn’t have its own action). If there is no double-click action and the
NSMatrix doesn’t ignore multiple clicks, the single-click action is sent twice.

See Also
action (page 448) (NSControl)
target (page 463) (NSControl)
ignoresMultiClick (page 451) (NSControl)
sendDoubleAction (page 899)
setDoubleAction (page 901)

drawCellAtLocation
Displays the cell at the specified row and column, providing that row and column reference a cell within the
receiver.

public void drawCellAtLocation(int row, int column)

See Also
drawCell (page 450) (NSControl)
drawCellInside (page 450) (NSControl)

drawsBackground
Returns whether the receiver draws its background (the space between the cells).

public boolean drawsBackground()

See Also
backgroundColor (page 885)
drawsCellBackground (page 888)
setDrawsBackground (page 901)

drawsCellBackground
Returns whether the receiver draws the background within each of its cells.

public boolean drawsCellBackground()

See Also
cellBackgroundColor (page 885)
drawsBackground (page 888)

888 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

setDrawsCellBackground (page 901)

highlightCellAtLocation
Assuming that row and column indicate a valid cell within the receiver, this method highlights (if flag is
true) or unhighlights (if flag is false) the specified cell.

public void highlightCellAtLocation(boolean flag, int row, int column)

insertColumn
Inserts a new column of cells before column, creating new cells if needed with makeCellAtLocation (page
891).

public void insertColumn(int column)

Discussion
If column is greater than the number of columns in the receiver, enough columns are created to expand the
receiver to be column columns wide. This method redraws the receiver. Your code may need to send
sizeToCells (page 905) after sending this method to resize the receiver to fit the newly added cells.

If the number of rows or columns in the receiver has been changed with renewRowsAndColumns (page 894),
new cells are created only if they’re needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

See Also
addColumn (page 882)
insertRow (page 890)

insertColumnWithCells
Inserts a new column of cells before column.

public void insertColumnWithCells(int column, NSArray newCells)

Discussion
The new column is filled with objects from newCells, starting with the object at index 0. Each object in
newCells should be an instance of NSCell or one of its subclasses (usually NSActionCell). If column is greater
than the number of columns in the receiver, enough columns are created to expand the receiver to be column
columns wide. newCells should either be empty or contain a sufficient number of cells to fill each new
column. If newCells is null or an array with no elements, the call is equivalent to calling
insertColumn (page 889). Extra cells are ignored, unless the matrix is empty. In that case, a matrix is created
with one column and enough rows for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 905) after sending this
method to resize the receiver to fit the newly added cells.

See Also
addColumnWithCells (page 883)
insertRowWithCells (page 890)

Instance Methods 889
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

insertRow
Inserts a new row of cells before row, creating new cells if needed with makeCellAtLocation (page 891).

public void insertRow(int row)

Discussion
If row is greater than the number of rows in the receiver, enough rows are created to expand the receiver
to be row rows high. This method redraws the receiver. Your code may need to send sizeToCells (page
905) after sending this method to resize the receiver to fit the newly added cells.

If the number of rows or columns in the receiver has been changed with renewRowsAndColumns (page 894),
then new cells are created only if they’re needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

See Also
addRow (page 883)
insertColumn (page 889)

insertRowWithCells
Inserts a new row of cells before row.

public void insertRowWithCells(int row, NSArray newCells)

Discussion
The new row is filled with objects from newCells, starting with the object at index 0. Each object in newCells
should be an instance of NSCell or one of its subclasses (usually NSActionCell). If row is greater than the
number of rows in the receiver, enough rows are created to expand the receiver to be row rows high.
newCells should either be empty or contain a sufficient number of cells to fill each new row. If newCells
is null or an array with no elements, the call is equivalent to calling insertRow (page 890). Extra cells are
ignored, unless the matrix is empty. In that case, a matrix is created with one row and enough columns for
all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 905) after sending this
method to resize the receiver to fit the newly added cells.

See Also
addRowWithCells (page 884)
insertColumnWithCells (page 889)

intercellSpacing
Returns the vertical and horizontal spacing between cells in the receiver.

public NSSize intercellSpacing()

See Also
cellSize (page 886)
setIntercellSpacing (page 902)

890 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

isAutoscroll
Returns whether the receiver will be automatically scrolled whenever the cursor is dragged outside the
receiver after a mouse-down event within its bounds.

public boolean isAutoscroll()

See Also
scrollCellAtLocationToVisible (page 895)
setScrollable (page 903)

isSelectionByRect
Returns true if the user can select a rectangle of cells in the receiver by dragging the cursor, false otherwise.

public boolean isSelectionByRect()

See Also
setSelectionWithAnchor (page 903)

keyCell
Returns the cell that will be clicked when the user presses the Space bar.

public NSCell keyCell()

See Also
tabKeyTraversesCells (page 905)
setKeyCell (page 902)

makeCellAtLocation
Creates a new cell at the location specified by row and column in the receiver.

public NSCell makeCellAtLocation(int row, int column)

Discussion
If the receiver has a prototype cell, it’s copied to create the new cell. If not, and if the receiver has a cell class
set, it creates an instance of that class. If the receiver hasn’t had either a prototype cell or a cell class set,
makeCellAtLocation creates an NSActionCell. Returns the newly created cell.

Your code should never invoke this method directly; it’s used by addRow (page 883) and other methods when
a cell must be created. It may be overridden to provide more specific initialization of cells.

See Also
addColumn (page 882)
addRow (page 883)
insertColumn (page 889)
insertRow (page 890)
setNewCellClass (page 902)
setPrototype (page 903)

Instance Methods 891
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

mode
public int mode()

Discussion
Returns the selection mode of the receiver. Possible return values are listed in “Constants” (page 908).

See Also
setMode (page 902)

mouseDown
Responds to theEvent mouse-down event.

public void mouseDown(NSEvent theEvent)

Discussion
A mouse-down event in a text cell initiates editing mode. A double click in any cell type except a text cell
sends the double-click action of the receiver (if there is one) in addition to the single-click action.

Your code should never invoke this method, but you may override it to implement different mouse tracking
than NSMatrix does. The response of the receiver depends on its selection mode, as explained in the class
description.

See Also
sendAction (page 898)
sendDoubleAction (page 899)

mouseDownFlags
Returns the flags in effect at the mouse-down event that started the current tracking session.

public int mouseDownFlags()

Discussion
NSMatrix’s mouseDown (page 892) method obtains these flags by sending a modifierFlags (page 616)
message to the event passed into mouseDown (page 892). Use this method if you want to access these flags.
This method is valid only during tracking; it isn’t useful if the target of the receiver initiates another tracking
loop as part of its action method (as a cell that pops up a pop-up list does, for example).

See Also
setEventMaskForSendingAction (page 457) (NSCell)

newCellClass
Returns the subclass of NSCell that the receiver uses when creating new (empty) cells.

public Class newCellClass()

See Also
prototype (page 893)
makeCellAtLocation (page 891)

892 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

setNewCellClass (page 902)

numberOfColumns
Returns the number of columns in the receiver.

public int numberOfColumns()

numberOfRows
Returns the number of rows in the receiver.

public int numberOfRows()

performKeyEquivalent
public boolean performKeyEquivalent(NSEvent theEvent)

Discussion
If there’s a cell in the receiver that has a key equivalent equal to the character in [theEvent
charactersIgnoringModifiers (page 612)] (taking into account any key modifier flags) and that cell is
enabled, that cell is made to react as if the user had clicked it: by highlighting, changing its state as appropriate,
sending its action if it has one, and then unhighlighting. Returns true if a cell in the receiver responds to
the key equivalent in theEvent, false if no cell responds.

Your code should never send this message—it is sent when the receiver or one of its superviews is the first
responder and the user presses a key. You may want to override this method to change the way key equivalents
are performed or displayed or to disable them in your subclass.

prototype
Returns the prototype cell that’s copied whenever a new cell needs to be created, or null if there is none.

public NSCell prototype()

See Also
makeCellAtLocation (page 891)
setPrototype (page 903)

putCellAtLocation
Replaces the cell at the location specified by row and column with newCell and redraws the cell.

public void putCellAtLocation(NSCell newCell, int row, int column)

Instance Methods 893
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

removeColumn
Removes the column at position column from the receiver and autoreleases the column’s cells.

public void removeColumn(int column)

Discussion
Redraws the receiver. Your code should normally send sizeToCells (page 905) after invoking this method
to resize the receiver so it fits the reduced cell count.

See Also
removeRow (page 894)
addColumn (page 882)
insertColumn (page 889)

removeRow
Removes the row at position row from the receiver and autoreleases the row’s cells.

public void removeRow(int row)

Discussion
Redraws the receiver. Your code should normally send sizeToCells (page 905) after invoking this method
to resize the receiver so it fits the reduced cell count.

See Also
removeColumn (page 894)
addRow (page 883)
insertRow (page 890)

renewRowsAndColumns
Changes the number of rows and columns in the receiver.

public void renewRowsAndColumns(int newRows, int newCols)

Discussion
This method uses the same cells as before, creating new cells only if the new size is larger; it never frees cells.
Doesn’t redisplay the receiver. Your code should normally send sizeToCells (page 905) after invoking this
method to resize the receiver so it fits the changed cell arrangement. This method deselects all cells in the
receiver.

See Also
addColumn (page 882)
addRow (page 883)
removeColumn (page 894)
removeRow (page 894)

894 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

resetCursorRects
Resets cursor rectangles so the cursor becomes an I-beam over text cells.

public void resetCursorRects()

Discussion
It does this by sending resetCursorRect (page 319) to each cell in the receiver. Any cell that has a cursor
rectangle to set up should then send addCursorRect (page 1739) back to the receiver.

See Also
resetCursorRect (page 319) (NSCell)
addCursorRect (page 1739) (NSView)

rowForPoint
Returns the row for the cell within which the specified point lies.

public int rowForPoint(NSPoint aPoint)

Discussion
If aPoint falls outside the bounds of the receiver or lies within an intercell spacing, this method returns –1.

Make sure aPoint is in the coordinate system of the receiver.

See Also
columnOfCell (page 886)
rowOfCell (page 895)

rowOfCell
Searches the receiver for aCell and returns the row of the cell.

public int rowOfCell(NSCell aCell)

Discussion
If aCell is not found within the receiver, this method returns –1.

See Also
columnOfCell (page 886)
rowForPoint (page 895)

scrollCellAtLocationToVisible
If the receiver is in a scrolling view, and row and column represent a valid cell within the receiver, this method
scrolls the receiver so the specified cell is visible.

public void scrollCellAtLocationToVisible(int row, int column)

See Also
scrollRectToVisible (page 1772) (NSView)

Instance Methods 895
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

selectAll
Selects and highlights all cells in the receiver, except for editable text cells and disabled cells.

public void selectAll(Object sender)

Discussion
Redisplays the receiver. sender is ignored.

See Also
selectCell (page 453) (NSControl)

selectCellAtLocation
Selects the cell at the specified row and column within the receiver.

public void selectCellAtLocation(int row, int column)

Discussion
If the specified cell is an editable text cell, its text is selected. If either row or column is –1, then the current
selection is cleared (unless the receiver is an RadioMode and doesn’t allow empty selection). Redraws the
affected cells.

See Also
allowsEmptySelection (page 884)
mode (page 892)
selectCell (page 453) (NSControl)

selectCellWithTag
If the receiver has at least one cell whose tag is equal to anInt, the last cell (when viewing the matrix as a
row-ordered array) is selected.

public boolean selectCellWithTag(int anInt)

Discussion
If the specified cell is an editable text cell, its text is selected. Returns true if the receiver contains a cell
whose tag matches anInt, or false if no such cell exists.

See Also
cellWithTag (page 886)
selectCell (page 453) (NSControl)

selectedCell
Returns the most recently selected cell, or null if no cell is selected.

public NSCell selectedCell()

Discussion
If more than one cell is selected, this method returns the cell that is lowest and farthest to the right in the
receiver.

896 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

selectedCells
Returns an array containing all of the receiver’s highlighted cells plus its selected cell.

public NSArray selectedCells()

Discussion
See the class description for a discussion of the selected cell.

As an alternative to using setSelectionWithAnchor (page 903) for programmatically making discontiguous
selections of cells in a matrix, you could first set the single selected cell and then set subsequent cells to be
highlighted; aftewards you can call selectedCells (page 897) to obtain the selection of cells.

See Also
setHighlighted (page 326) (NSCell)
selectedCell (page 896)

selectedColumn
Returns the column number of the selected cell, or –1 if no cells are selected.

public int selectedColumn()

Discussion
If cells in multiple columns are selected, this method returns the number of the last (rightmost) column
containing a selected cell.

selectedRow
Returns the row number of the selected cell, or –1 if no cells are selected.

public int selectedRow()

Discussion
If cells in multiple rows are selected, this method returns the number of the last row containing a selected
cell.

selectText
public void selectText(Object sender)

Discussion
If the currently selected cell is editable and enabled, its text is selected. Otherwise, the key cell is selected.

See Also
keyCell (page 891)
selectText (page 1569) (NSTextField)

Instance Methods 897
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

selectTextAtLocation
public Object selectTextAtLocation(int row, int column)

Discussion
If row and column indicate a valid cell within the receiver, and that cell is both editable and selectable, this
method selects and then returns the specified cell. If the cell specified by row and column is either not
editable or not selectable, this method does nothing, and returns null. Finally, if row and column indicate
a cell that is outside the receiver, this method does nothing and returns the receiver.

See Also
selectText (page 897)

sendAction
If the selected cell has both an action and a target, its action is sent to its target.

public boolean sendAction()

Discussion
If the cell has an action but no target, its action is sent to the target of the receiver. If the cell doesn’t have
an action, or if there is no selected cell, the receiver sends its own action to its target. Returns true if an
action was successfully sent to a target.

If the selected cell is disabled, this method does nothing and returns false.

See Also
sendDoubleAction (page 899)
action (page 305) (NSCell)
target (page 336) (NSCell)

sendActionToTargetForAllCells
Iterates through all cells in the receiver (if flag is true) or just the selected cells in the receiver (if flag is
false), sending aSelector to anObject for each.

public void sendActionToTargetForAllCells(NSSelector aSelector, Object anObject,
boolean flag)

Discussion
Iteration begins with the cell in the upper-left corner of the receiver, proceeding through the appropriate
entries in the first row, then on to the next.

The aSelector argument must represent a method that takes a single argument: the id of the current cell
in the iteration. aSelector’s return value must be a boolean. If aSelector returns false for any cell,
sendActionToTargetForAllCells terminates immediately, without sending the message for the remaining
cells. If it returns true, sendActionToTargetForAllCells proceeds to the next cell.

This method is not invoked to send action messages to target objects in response to mouse-down events in
the receiver. Instead, you can invoke it if you want to have multiple cells in an NSMatrix interact with an
object. For example, you could use it to verify the titles in a list of items or to enable a series of radio buttons
based on their purpose in relation to anObject.

898 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

sendDoubleAction
public void sendDoubleAction()

Discussion
If the receiver has a double-click action, sendDoubleAction sends that message to the target of the receiver.
If not, then if the selected cell (as returned by selectedCell (page 896)) has an action, that message is sent
to the selected cell’s target. Finally, if the selected cell also has no action, then the single-click action of the
receiver is sent to the target of the receiver.

If the selected cell is disabled, this method does nothing.

Your code shouldn’t invoke this method; it’s sent in response to a double-click event in the NSMatrix. Override
it if you need to change the search order for an action to send.

See Also
sendAction (page 898)
ignoresMultiClick (page 451) (NSControl)

setAllowsEmptySelection
public void setAllowsEmptySelection(boolean flag)

Discussion
If flag is true, then the receiver will allow one or zero cells to be selected. If flag is false, then the receiver
will allow one and only one cell (not zero cells) to be selected. This setting has effect only in the RadioMode
selection mode.

See Also
allowsEmptySelection (page 884)

setAutoscroll
public void setAutoscroll(boolean flag)

Discussion
If flag is true and the receiver is in a scrolling view, it will be automatically scrolled whenever the cursor
is dragged outside the receiver after a mouse-down event within the bounds of the receiver.

setAutosizesCells
Sets whether the cell sizes change when the receiver is resized.

public void setAutosizesCells(boolean flag)

Discussion
If flag is true, then whenever the receiver is resized, the sizes of the cells change in proportion, keeping
the intercell space constant; further, this method verifies that the cell sizes and intercell spacing add up to
the exact size of the receiver, adjusting the size of the cells and updating the receiver if they don’t. If flag
is false, then the intercell spacing and cell size remain constant.

Instance Methods 899
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

See Also
autosizesCells (page 884)

setBackgroundColor
Sets the background color for the receiver to aColor and redraws the receiver.

public void setBackgroundColor(NSColor aColor)

Discussion
This color is used to fill the space between cells or the space behind any nonopaque cells. The default
background color is NSColor’s controlColor (page 361).

See Also
drawsBackground (page 888)
setCellBackgroundColor (page 900)
backgroundColor (page 885)

setCellBackgroundColor
Sets the background color for the cells in the receiver to aColor.

public void setCellBackgroundColor(NSColor aColor)

Discussion
This color is used to fill the space behind nonopaque cells. The default cell background color is NSColor’s
controlColor (page 361).

See Also
drawsCellBackground (page 888)
setBackgroundColor (page 900)
cellBackgroundColor (page 885)

setCellSize
Sets the width and height of each of the cells in the receiver to those in aSize.

public void setCellSize(NSSize aSize)

Discussion
This method may change the size of the receiver. Does not redraw the receiver.

See Also
calcSize (page 449) (NSControl)
cellSize (page 886)

setDelegate
Sets the delegate for messages from the field editor to anObject.

900 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

public void setDelegate(Object anObject)

See Also
textShouldBeginEditing (page 907)
textShouldEndEditing (page 907)
delegate (page 887)

setDoubleAction
Makes aSelector the action sent to the target of the receiver when the user double-clicks a cell.

public void setDoubleAction(NSSelector aSelector)

Discussion
A double-click action is always sent after the appropriate single-click action, which is the cell’s single-click
action, if it has one, or the receiver single-click action, otherwise. If aSelector is a non-NULL selector, this
method also sets the ignoresMultiClick flag to false; otherwise, it leaves the flag unchanged.

If an NSMatrix has no double-click action set, then by default a double click is treated as a single click.

For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

See Also
sendDoubleAction (page 899)
setAction (page 455) (NSControl)
setTarget (page 460) (NSControl)
doubleAction (page 888)

setDrawsBackground
Sets whether the receiver draws its background (the space between the cells) to flag.

public void setDrawsBackground(boolean flag)

See Also
backgroundColor (page 885)
setDrawsCellBackground (page 901)
drawsBackground (page 888)

setDrawsCellBackground
Sets whether the receiver draws the background within each of its cells to flag.

public void setDrawsCellBackground(boolean flag)

See Also
cellBackgroundColor (page 885)
setDrawsBackground (page 901)
drawsCellBackground (page 888)

Instance Methods 901
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

setIntercellSpacing
Sets the vertical and horizontal spacing between cells in the receiver to aSize.

public void setIntercellSpacing(NSSize aSize)

Discussion
By default, both values are 1.0 in the receiver’s coordinate system.

See Also
cellSize (page 886)
intercellSpacing (page 890)

setKeyCell
Sets the cell that will be clicked when the user presses the Space bar to aCell.

public void setKeyCell(NSCell aCell)

See Also
setTabKeyTraversesCells (page 904)
keyCell (page 891)

setMode
Sets the selection mode of the receiver.

public void setMode(int aMode)

Discussion
Possible values for aMode are listed in “Constants” (page 908).

See Also
mode (page 892)

setNewCellClass
Configures the receiver to use instances of aClass when creating new cells.

public void setNewCellClass(Class aClass)

Discussion
aClass should be the id of a subclass of NSCell, which can be obtained by sending the class message to
either the NSCell subclass object or to an instance of that subclass. The default cell class is that set with the
class method setCellClass (page 447), or NSActionCell if no other default cell class has been specified.

See Also
addColumn (page 882)
addRow (page 883)
insertColumn (page 889)
insertRow (page 890)

902 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

makeCellAtLocation (page 891)
setPrototype (page 903)
newCellClass (page 892)

setPrototype
Sets the prototype cell that’s copied whenever a new cell needs to be created.

public void setPrototype(NSCell aCell)

See Also
makeCellAtLocation (page 891)
prototype (page 893)

setScrollable
public void setScrollable(boolean flag)

Discussion
If flag is true, makes all the cells scrollable, so the text they contain scrolls to remain in view if the user
types past the edge of the cell. If flag is false, all cells are made nonscrolling. The prototype cell, if there
is one, is also set accordingly.

See Also
prototype (page 893)
setScrollable (page 329) (NSCell)

setSelectionByRect
Sets whether the user can select a rectangle of cells in the receiver by dragging the cursor.

public void setSelectionByRect(boolean flag)

Discussion
If flag is false, selection is on a row-by-row basis. The default is true.

See Also
setSelectionWithAnchor (page 903)

setSelectionWithAnchor
Programmatically selects a range of cells.

public void setSelectionWithAnchor(int startPos, int endPos, int anchorPos, boolean
lit)

Instance Methods 903
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Discussion
startPos, endPos, and anchorPos are cell positions, counting from 0 at the upper left cell of the receiver,
in row order. For example, the third cell in the top row would be number 2. The startPos and endPos
arguments are used to mark where the user would have pressed the mouse button and released it, respectively.

anchorPos specifies which cell to treat as the last cell the user would have selected. To simulate Shift-dragging
(continuous selection) anchorPos should be the endPos used in the last method call. To simulate
Command-dragging (discontinuous selection), anchorPos should be the same as this method call’s startPos.
To simulate dragging without a modifier key, deselecting anything that was selected before, call
deselectAllCells before calling this method.

Finally, lit determines whether cells selected by this method should be highlighted.

See Also
isSelectionByRect (page 891)
selectedCells (page 897)

setStateAtLocation
Sets the state of the cell at row and column to value.

public void setStateAtLocation(int value, int row, int column)

Discussion
For radio-mode matrices, if value is nonzero the specified cell is selected before its state is set to value. If
value is 0 and the receiver is a radio-mode matrix, the currently selected cell is deselected (providing that
empty selection is allowed).

This method redraws the affected cell.

See Also
allowsEmptySelection (page 884)
setState (page 330) (NSCell)
selectCellAtLocation (page 896)

setTabKeyTraversesCells
Sets whether pressing the Tab key advances the key cell to the next selectable cell in the receiver.

public void setTabKeyTraversesCells(boolean flag)

Discussion
If flag is false, or if there aren’t any selectable cells after the current one, when the user presses the Tab
key the next view in the window becomes key. Pressing Shift-Tab causes the key cell to advance in the
opposite direction (if flag is false, or if there aren’t any selectable cells before the current one, the previous
view in the window becomes key).

See Also
selectKeyViewFollowingView (page 1852) (NSWindow)
selectNextKeyView (page 1852) (NSWindow)
setKeyCell (page 902)
tabKeyTraversesCells (page 905)

904 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

setToolTip
Sets the tooltip for cell to be toolTipString.

public void setToolTip(String toolTipString, NSCell cell)

See Also
toolTip (page 907)

setValidateSize
If flag is true, then the size information in the receiver is assumed to be correct.

public void setValidateSize(boolean flag)

Discussion
If flag is false, NSControl’s calcSize (page 449) method will be invoked before any further drawing is
done.

sizeToCells
Changes the width and the height of the receiver’s frame so it exactly contains the cells.

public void sizeToCells()

Discussion
Does not redraw the receiver.

See Also
setFrameSize (page 1777) (NSView)
sizeToFit (page 461) (NSControl)

sortUsingMethod
Sorts the receiver’s cells in ascending order as defined by the comparison method comparator.

public void sortUsingMethod(NSSelector comparator)

Discussion
The comparator message is sent to each object in the matrix and has as its single argument another object
in the array. The comparison method is used to compare two elements at a time and should return
OrderedAscending if the receiver is smaller than the argument, OrderedDescending if the receiver is
larger than the argument, and OrderedSame if they are equal.

See Also
sortUsingSelector (NSMutableArray)

tabKeyTraversesCells
Returns whether pressing the Tab key advances the key cell to the next selectable cell in the receiver.

Instance Methods 905
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

public boolean tabKeyTraversesCells()

See Also
keyCell (page 891)
setTabKeyTraversesCells (page 904)

textDidBeginEditing
Invoked when notification is posted indicating that there’s a change in the text after the receiver gains
first responder status.

public void textDidBeginEditing(NSNotification notification)

Discussion
This method’s default behavior is to post a ControlTextDidBeginEditingNotification (page 466)
along with the receiving object to the default notification center. The posted notification’s user info contains
the contents of notification’s user info dictionary, plus an additional key-value pair. The additional key is
“FieldEditor”; the value for this key is the text object that began editing.

See Also
textDidChange (page 906)
textDidEndEditing (page 906)
textShouldEndEditing (page 907)

textDidChange
Invoked when notification is posted indicating a key-down event or paste operation that changes the
receiver’s contents.

public void textDidChange(NSNotification notification)

Discussion
This method’s default behavior is to pass this message on to the selected cell (if the selected cell responds
to textDidChange) and then to post a ControlTextDidChangeNotification (page 467) along with the
receiving object to the default notification center. The posted notification’s user info contains the contents
of notification’s user info dictionary, plus an additional key-value pair. The additional key is “FieldEditor”;
the value for this key is the text object that changed.

See Also
textDidBeginEditing (page 906)
textDidEndEditing (page 906)

textDidEndEditing
Invoked when notification is posted indicating that text editing ends.

public void textDidEndEditing(NSNotification notification)

906 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Discussion
This method’s default behavior is to post a ControlTextDidEndEditingNotification (page 467) along
with the receiving object to the default notification center. The posted notification’s user info contains the
contents of notification’s user info dictionary, plus an additional key-value pair. The additional key is
“FieldEditor”; the value for this key is the text object that began editing. After posting the notification,
textDidEndEditing sends an endEditing (page 310) message to the selected cell, draws and makes the
selected cell key, and then takes the appropriate action based on which key was used to end editing (Return,
Tab, or Back-Tab).

See Also
textDidBeginEditing (page 906)
textDidChange (page 906)
textShouldEndEditing (page 907)

textShouldBeginEditing
Invoked to let the NSTextField respond to impending changes to its text.

public boolean textShouldBeginEditing(NSText textObject)

Discussion
This method’s default behavior is to send controlTextShouldBeginEditing (page 465) to the receiver’s
delegate (passing the receiver and textObject as parameters). The textShouldBeginEditing method
returns the value obtained from controlTextShouldBeginEditing (page 465), unless the delegate doesn’t
respond to that method, in which case it returns true, thereby allowing text editing to proceed.

See Also
delegate (page 887)

textShouldEndEditing
Invoked to let the NSTextField respond to impending loss of first-responder status.

public boolean textShouldEndEditing(NSText textObject)

Discussion
This method’s default behavior checks the text field for validity; providing that the field contents are deemed
valid, and providing that the delegate responds, controlTextShouldEndEditing (page 465) is sent to the
receiver’s delegate (passing the receiver and textObject as parameters). If the contents of the text field
aren’t valid, textShouldEndEditing sends the error action to the selected cell’s target.

The textShouldEndEditing method returns false if the text field contains invalid contents; otherwise it
returns the value passed back from controlTextShouldEndEditing (page 465).

See Also
delegate (page 887)

toolTip
Returns the string used as the tooltip for cell.

Instance Methods 907
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

public String toolTip(NSCell cell)

See Also
setToolTip (page 905)

Constants

These constants determine how NSCells behave when the NSMatrix is tracking the mouse.

DescriptionConstant

The NSCells are asked to track the mouse with trackMouse (page 336) whenever the
cursor is inside their bounds. No highlighting is performed.

TrackMode

An NSCell is highlighted before it’s asked to track the mouse, then unhighlighted when
it’s done tracking.

HighlightMode

Selects no more than one NSCell at a time. Any time an NSCell is selected, the previously
selected NSCell is unselected.

RadioMode

NSCells are highlighted, but don’t track the mouse.ListMode

908 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 62

NSMatrix

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

This class defines an object that manages an application’s menus.

Tasks

Constructors

NSMenu (page 913)
Creates a new empty menu.

Managing Delegates

setDelegate (page 921)
Sets the receiver’s delegate.

delegate (page 915)
Returns the receiver’s delegate.

Managing the Menu Bar

menuBarVisible (page 913)
Returns true if the menu bar is visible, false otherwise.

setMenuBarVisible (page 914)
Sets whether the menu bar is visible and selectable by the user.

menuBarHeight (page 919)
Returns the menu bar height for the current application’s main menu.

Overview 909
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Setting Up Menu Commands

insertItemAtIndex (page 917)
Inserts the menu item newItem in the receiver at location index.

addItem (page 914)
Adds the menu item newItem to the end of the receiver.

removeItem (page 920)
Removes anItem from the receiver.

removeItemAtIndex (page 920)
Removes the menu item at location index.

itemChanged (page 918)
Invoked when menu item anObject is modified visually (for example, its title changes).

Finding Menu Items

itemWithTag (page 919)
Returns the first menu item in the receiver with tag aTag.

itemWithTitle (page 919)
Returns the first menu item in the receiver with title aString.

itemAtIndex (page 918)
Returns the menu item at location index of the receiver.

numberOfItems (page 920)
Returns the number of menu items in the receiver, including separator items.

itemArray (page 918)
Returns the receiver’s menu items.

Finding Indices of Menu Items

indexOfItem (page 916)
Returns the index identifying the location of menu item anObject in the receiver.

indexOfItemWithTitle (page 917)
Returns the index of the first menu item in the receiver that has the title aTitle.

indexOfItemWithTag (page 916)
Returns the index of the first menu item in the receiver identified by tag aTag.

indexOfItemWithTargetAndAction (page 917)
Returns the index of the first menu item in the receiver that has target anObject and action
actionSelector.

indexOfItemWithRepresentedObject (page 916)
Returns the index of the first menu item in the receiver that has anObject as its represented object.

indexOfItemWithSubmenu (page 916)
Returns the index of the menu item in the receiver that has submenu anObject.

910 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Managing Submenus

setSubmenuForItem (page 922)
Makes aMenu a submenu controlled by anItem, automatically setting the action of anItem to
submenuAction (page 923).

submenuAction (page 923)
This method is the action method assigned to menu items that open submenus.

attachedMenu (page 915)
Returns the menu currently attached to the receiver or null if there’s no such object.

isAttached (page 918)
Returns true if the receiver is currently attached to another menu, false otherwise.

isTornOff (page 918)
Returns false if the receiver is offscreen or attached to another menu (or if it’s the main menu), true
otherwise.

locationForSubmenu (page 919)

supermenu (page 923)
Returns the receiver’s supermenu or null if it has none.

setSupermenu (page 922)
Sets the receiver’s supermenu to supermenu.

Enabling and Disabling Menu Items

autoenablesItems (page 915)
Returns whether the receiver automatically enables and disables its menu items based on the
"NSMenu.MenuValidation" (page 2011) interface.

setAutoenablesItems (page 921)
Controls whether the receiver automatically enables and disables its menu items based on delegates
implementing the NSMenu.MenuValidation interface.

update (page 923)
Enables or disables the receiver’s menu items based on the NSMenu.MenuValidation interface and
sizes the menu to fit its current menu items if necessary.

Handling Keyboard Equivalents

performKeyEquivalent (page 920)

Simulating Mouse Clicks

performActionForItemAtIndex (page 920)
Causes the application to send the action message of the menu item at index to its target.

Tasks 911
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Setting the Title

setTitle (page 922)
Sets the receiver’s title to aString.

title (page 923)
Returns the receiver’s title.

Setting the Representing Object

setMenuRepresentation (page 922)
Deprecated. Mac OS X does not use menu representations to draw menus.

menuRepresentation (page 920)
Deprecated. Returns null.

Updating Menu Layout

menuChangedMessagesEnabled (page 919)
Returns true if messages are being sent to the application’s windows upon each change to the
receiver, false otherwise.

setMenuChangedMessagesEnabled (page 921)
Controls whether the receiver sends messages to the application’s windows upon each menu change.

sizeToFit (page 922)
Resizes the receiver to exactly fit its items.

Displaying Context-sensitive Help

popUpContextMenu (page 914)
Displays menu as a context menu over view for event.

helpRequested (page 915)
Overridden by subclasses to implement specialized context-sensitive help behavior by causing the
Help manager to display the help associated with the receiver.

Deprecated Methods

contextMenuRepresentation (page 915)
Deprecated. Returns null.

setContextMenuRepresentation (page 921)
Deprecated. Mac OS X does not use menu representations to draw menus.

tearOffMenuRepresentation (page 923)
Deprecated. Returns null

setTearOffMenuRepresentation (page 922)
Deprecated. Mac OS X does not use menu representations to draw menus.

912 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Populating a menu

menuUpdateItemAtIndex (page 925) delegate method
Called to let you update a menu item before it is displayed.

menuNeedsUpdate (page 925) delegate method
Called when a menu is about to be displayed at the start of a tracking session so the delegate can
modify the menu.

numberOfItemsInMenu (page 925) delegate method
Called when a menu is about to be displayed at the start of a tracking session so the delegate can
specify the number of items in the menu.

Handling key equivalents

menuHasKeyEquivalent (page 923) delegate method
Called to allow the delegate to return the key down event has a key equivalent.

menuKeyEquivalentAction (page 924) delegate method
Called to allow the delegate to return the action for a key down event.

menuKeyEquivalentTarget (page 924) delegate method
Called to allow the delegate to return the target for a key down event.

Constructors

NSMenu
Creates a new empty menu.

public NSMenu()

Creates a new menu using aTitle for its title with autoenabling of menu items turned on.

public NSMenu(String aTitle)

Static Methods

menuBarVisible
Returns true if the menu bar is visible, false otherwise.

public static boolean menuBarVisible()

Availability
Available in Mac OS X v10.2 and later.

Constructors 913
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

See Also
"setMenuBarVisible" (page 914)

popUpContextMenu
Displays menu as a context menu over view for event.

public static void popUpContextMenu(NSMenu menu, NSEvent event, NSView view)

Displays menu as a context menu over view for event using font.

public static void popUpContextMenu(NSMenu menu, NSEvent event, NSView view, NSFont
font)

Discussion
If you pass in null for the font, the method uses the default font for menu.

Availability
Available in Mac OS X v10.3 and later.

setMenuBarVisible
Sets whether the menu bar is visible and selectable by the user.

public static void setMenuBarVisible(boolean visible)

Availability
Available in Mac OS X v10.2 and later.

See Also
"menuBarVisible" (page 913)

Instance Methods

addItem
Adds the menu item newItem to the end of the receiver.

public void addItem(NSMenuItem newItem)

Discussion
The receiver does not accept the menu item if it already belongs to another menu. After adding the menu
item, the receiver updates itself.

Adds a new item with title aString, action aSelector, and key equivalent keyEquiv to the end of the
receiver.

public NSMenuItem addItem(String aString, NSSelector aSelector, String keyEquiv)

914 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Discussion
Returns the new menu item. If you do not want the menu item to have a key equivalent, keyEquiv should
be an empty string and not null.

attachedMenu
Returns the menu currently attached to the receiver or null if there’s no such object.

public NSMenu attachedMenu()

autoenablesItems
Returns whether the receiver automatically enables and disables its menu items based on the
"NSMenu.MenuValidation" (page 2011) interface.

public boolean autoenablesItems()

Discussion
By default NSMenus do autoenable their menu items. See the interface specification for more information.

See Also
setAutoenablesItems (page 921)

contextMenuRepresentation
Deprecated. Returns null.

public Object contextMenuRepresentation()

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 921)

helpRequested
Overridden by subclasses to implement specialized context-sensitive help behavior by causing the Help
manager to display the help associated with the receiver.

public void helpRequested(NSEvent event)

Instance Methods 915
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Discussion
Never invoke this method directly.

See Also
showContextHelpForObject (page 742) (NSHelpManager)

indexOfItem
Returns the index identifying the location of menu item anObject in the receiver.

public int indexOfItem(NSMenuItem anObject)

Discussion
If no such menu item is in the menu, returns –1.

See Also
insertItemAtIndex (page 917)
itemAtIndex (page 918)

indexOfItemWithRepresentedObject
Returns the index of the first menu item in the receiver that has anObject as its represented object.

public int indexOfItemWithRepresentedObject(Object anObject)

Discussion
If no such menu item is in the menu, returns –1.

See Also
insertItemAtIndex (page 917)
itemAtIndex (page 918)

indexOfItemWithSubmenu
Returns the index of the menu item in the receiver that has submenu anObject.

public int indexOfItemWithSubmenu(NSMenu anObject)

Discussion
If no such menu item is in the menu, returns –1.

See Also
insertItemAtIndex (page 917)
itemAtIndex (page 918)

indexOfItemWithTag
Returns the index of the first menu item in the receiver identified by tag aTag.

public int indexOfItemWithTag(int aTag)

916 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Discussion
If no such menu item is in the menu, returns –1.

See Also
insertItemAtIndex (page 917)
itemAtIndex (page 918)

indexOfItemWithTargetAndAction
Returns the index of the first menu item in the receiver that has target anObject and action actionSelector.

public int indexOfItemWithTargetAndAction(Object anObject, NSSelector actionSelector)

Discussion
If actionSelector is NULL, the first menu item in the receiver that has target anObject is returned. If no
menu item matching these criteria is in the menu, returns –1.

See Also
insertItemAtIndex (page 917)
itemAtIndex (page 918)

indexOfItemWithTitle
Returns the index of the first menu item in the receiver that has the title aTitle.

public int indexOfItemWithTitle(String aTitle)

Discussion
If no such menu item is in the menu, returns –1.

See Also
insertItemAtIndex (page 917)
itemAtIndex (page 918)

insertItemAtIndex
Inserts the menu item newItem in the receiver at location index.

public void insertItemAtIndex(NSMenuItem newItem, int index)

Discussion
If the menu item already exists in another menu, it is not inserted. This method posts an
MenuDidAddItemNotification (page 926), allowing interested observers to update as appropriate. It also
causes the menu to update itself. This method is a primitive method. All item addition methods end up
calling this method, so this is where you should implement custom behavior on adding new items to a menu
in a custom subclass.

Adds a new item at location index in the receiver with title aString, action aSelector, and key equivalent
keyEquiv.

Instance Methods 917
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

public NSMenuItem insertItemAtIndex(String aString, NSSelector aSelector, String
keyEquiv, int index)

Discussion
Returns the new menu item. If you do not want the menu item to have a key equivalent, keyEquiv should
be an empty string and not null.

See Also
addItem (page 914)
itemAtIndex (page 918)
removeItem (page 920)

isAttached
Returns true if the receiver is currently attached to another menu, false otherwise.

public boolean isAttached()

isTornOff
Returns false if the receiver is offscreen or attached to another menu (or if it’s the main menu), true
otherwise.

public boolean isTornOff()

itemArray
Returns the receiver’s menu items.

public NSArray itemArray()

See Also
numberOfItems (page 920)

itemAtIndex
Returns the menu item at location index of the receiver.

public NSMenuItem itemAtIndex(int index)

Discussion
It throws an exception if index is out of bounds.

itemChanged
Invoked when menu item anObject is modified visually (for example, its title changes).

public void itemChanged(NSMenuItem anObject)

918 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Discussion
It is not called for action, target, represented object, or tag changes. Posts a
MenuDidChangeItemNotification (page 926).

itemWithTag
Returns the first menu item in the receiver with tag aTag.

public NSMenuItem itemWithTag(int aTag)

itemWithTitle
Returns the first menu item in the receiver with title aString.

public NSMenuItem itemWithTitle(String aString)

locationForSubmenu
public NSPoint locationForSubmenu(NSMenu aSubmenu)

Discussion
Returns the screen coordinates where aSubmenuwill be displayed when opened as a submenu of the receiver.

menuBarHeight
Returns the menu bar height for the current application’s main menu.

public float menuBarHeight()

Discussion
Returns 0.0 if the receiver is some other menu. This method supersedes the "menuBarHeight" (page 962)
class method of the NSMenuView class.

Availability
Available in Mac OS X v10.4 or later.

menuChangedMessagesEnabled
Returns true if messages are being sent to the application’s windows upon each change to the receiver,
false otherwise.

public boolean menuChangedMessagesEnabled()

See Also
setMenuChangedMessagesEnabled (page 921)

Instance Methods 919
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

menuRepresentation
Deprecated. Returns null.

public Object menuRepresentation()

See Also
setMenuRepresentation (page 922)

numberOfItems
Returns the number of menu items in the receiver, including separator items.

public int numberOfItems()

See Also
itemArray (page 918)

performActionForItemAtIndex
Causes the application to send the action message of the menu item at index to its target.

public void performActionForItemAtIndex(int index)

Discussion
If a target is not specified, the message is sent to the first responder. As a side effect, this method posts
MenuWillSendActionNotification (page 927) and MenuDidSendActionNotification (page 927).

performKeyEquivalent
public boolean performKeyEquivalent(NSEvent theEvent)

Discussion
Performs the action for the menu item that corresponds to the key equivalent in theEvent.

removeItem
Removes anItem from the receiver.

public void removeItem(NSMenuItem anItem)

removeItemAtIndex
Removes the menu item at location index.

public void removeItemAtIndex(int index)

Discussion
Posts a MenuDidRemoveItemNotification (page 926).

920 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

setAutoenablesItems
Controls whether the receiver automatically enables and disables its menu items based on delegates
implementing the NSMenu.MenuValidation interface.

public void setAutoenablesItems(boolean flag)

Discussion
If flag is true, menu items are automatically enabled and disabled. If flag is false, menu items are not
automatically enabled or disabled. See the "NSMenu.MenuValidation" (page 2011) interface specification for
more information.

See Also
autoenablesItems (page 915)

setContextMenuRepresentation
Deprecated. Mac OS X does not use menu representations to draw menus.

public void setContextMenuRepresentation(Object menuRep)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object anObject)

Discussion
You can use the delegate to populate a menu just before it is going to be drawn and to check for key
equivalents without creating a menu item.

Availability
Available in Mac OS X v10.3 and later.

See Also
delegate (page 915)

setMenuChangedMessagesEnabled
Controls whether the receiver sends messages to the application’s windows upon each menu change.

public void setMenuChangedMessagesEnabled(boolean flag)

Discussion
To avoid the “flickering” effect of many successive menu changes, invoke this method with flag set to false,
make changes to the menu, and invoke the method again with flag set to true. This approach has the
effect of batching changes and applying them all at once.

See Also
menuChangedMessagesEnabled (page 919)

Instance Methods 921
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

setMenuRepresentation
Deprecated. Mac OS X does not use menu representations to draw menus.

public void setMenuRepresentation(Object menuRep)

See Also
menuRepresentation (page 920)

setSubmenuForItem
Makes aMenu a submenu controlled by anItem, automatically setting the action of anItem to
submenuAction (page 923).

public void setSubmenuForItem(NSMenu aMenu, NSMenuItem anItem)

setSupermenu
Sets the receiver’s supermenu to supermenu.

public void setSupermenu(NSMenu supermenu)

Discussion
You should never invoke this method directly; it is public so subclassers can add behavior to the default
implementation. Subclassers should call the superclass’s method as part of their implementation.

See Also
supermenu (page 923)

setTearOffMenuRepresentation
Deprecated. Mac OS X does not use menu representations to draw menus.

public void setTearOffMenuRepresentation(Object menuRep)

setTitle
Sets the receiver’s title to aString.

public void setTitle(String aString)

See Also
title (page 923)

sizeToFit
Resizes the receiver to exactly fit its items.

public void sizeToFit()

922 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

submenuAction
This method is the action method assigned to menu items that open submenus.

public void submenuAction(Object sender)

Discussion
Never invoke this method directly.

supermenu
Returns the receiver’s supermenu or null if it has none.

public NSMenu supermenu()

tearOffMenuRepresentation
Deprecated. Returns null

public Object tearOffMenuRepresentation()

Discussion
.

title
Returns the receiver’s title.

public String title()

See Also
setTitle (page 922)

update
Enables or disables the receiver’s menu items based on the NSMenu.MenuValidation interface and sizes the
menu to fit its current menu items if necessary.

public void update()

Discussion
See the "NSMenu.MenuValidation" (page 2011) interface specification for more information.

Delegate Methods

menuHasKeyEquivalent
Called to allow the delegate to return the key down event has a key equivalent.

Delegate Methods 923
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

public abstract boolean menuHasKeyEquivalent(NSMenu menu, NSEvent event)

Discussion
If there is a valid and enabled menu item that corresponds to this key down even, return true. Return false
if there are no items with that key equivalent or if the item is disabled. If the delegate does not define this
method, the menu is populated to find out if any items have a matching key equivalent.

Availability
Available in Mac OS X v10.3 and later.

See Also
menuKeyEquivalentTarget (page 924)
menuKeyEquivalentAction (page 924)

menuKeyEquivalentAction
Called to allow the delegate to return the action for a key down event.

public abstract NSSelector menuKeyEquivalentAction(NSMenu menu, NSEvent event)

Discussion
If there is a valid and enabled menu item that corresponds to this key down even, return the action. Return
null if there are no items with that key equivalent or if the item is disabled.

Availability
Available in Mac OS X v10.3 and later.

See Also
menuHasKeyEquivalent (page 923)
menuKeyEquivalentTarget (page 924)

menuKeyEquivalentTarget
Called to allow the delegate to return the target for a key down event.

public abstract Object menuKeyEquivalentTarget(NSMenu menu, NSEvent event)

Discussion
If there is a valid and enabled menu item that corresponds to this key down even, return the target. Return
null if there are no items with that key equivalent or if the item is disabled.

Availability
Available in Mac OS X v10.3 and later.

See Also
menuHasKeyEquivalent (page 923)
menuKeyEquivalentAction (page 924)

924 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

menuNeedsUpdate
Called when a menu is about to be displayed at the start of a tracking session so the delegate can modify
the menu.

public abstract void menuNeedsUpdate(NSMenu menu)

Discussion
You can change the menu by adding, removing or modifying menu items. Be sure to set the proper enable
state for any new menu items. If populating the menu will take a long time, implement
numberOfItemsInMenu (page 925) and menuUpdateItemAtIndex (page 925) instead.

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 921)

menuUpdateItemAtIndex
Called to let you update a menu item before it is displayed.

public abstract boolean menuUpdateItemAtIndex(NSMenu menu, NSMenuItem item, int
index, boolean shouldCancel)

Discussion
If your numberOfItemsInMenu (page 925) delegate method returns a positive value, then your
menuUpdateItemAtIndex method is called for each item in the menu. You can then update the menu title,
image, and so forth for the menu item. Return true to continue the process. If you return false, your
menuUpdateItemAtIndex is not called again. In that case, it is your responsibility to trim any extra items
from the menu.

The shouldCancel parameter is set to true when your delegate is called if, due to some user action, the
menu no longer needs to be displayed before all the menu items have been updated. You can ignore this
flag, return true, and continue; or you can save your work (to save time the next time your delegate is called)
and return false to stop the updating.

Availability
Available in Mac OS X v10.3 and later.

numberOfItemsInMenu
Called when a menu is about to be displayed at the start of a tracking session so the delegate can specify
the number of items in the menu.

public abstract int numberOfItemsInMenu(NSMenu menu)

Discussion
If you return a positive value, the menu is resized by either removing or adding items. Newly created items
are blank. After the menu is resized, your menuUpdateItemAtIndex (page 925) method is called for each
item. If you return a negative value, the number of items is left unchanged and menuUpdateItemAtIndex
is not called. If you can populate the menu quickly, you can implement menuNeedsUpdate (page 925) instead
of numberOfItemsInMenu and menuUpdateItemAtIndex.

Delegate Methods 925
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 921)

Notifications

MenuDidAddItemNotification
Posted after a menu item is added to the menu. The notification object is the NSMenu that just added the
new menu item. The userInfo dictionary contains the following information:

ValueKey

The integer index of the menu item that was added."NSMenuItemIndex"

MenuDidChangeItemNotification
Posted after a menu item in the menu changes appearance. Changes include enabling/disabling, changes
in state, and changes to title. The notification object is the NSMenu with the menu item that changed. The
userInfo dictionary contains the following information:

ValueKey

The integer index of the menu item that changed."NSMenuItemIndex"

MenuDidEndTrackingNotification
Posted when menu tracking ends, even if no action is sent. The notification object is the main menu bar
(NSApplication.sharedApplication().mainMenu.()) or the root menu of a popup button. This
notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.3 and later.

MenuDidRemoveItemNotification
Posted after a menu item is removed from the menu. The notification object is the NSMenu that just removed
the menu item. The userInfo dictionary contains the following information:

ValueKey

The integer index of the menu item that was
removed. Note that this index may no longer be valid
and in any event no longer points to the menu item
that was removed.

"NSMenuItemIndex"

926 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

MenuDidSendActionNotification
Posted just after the application dispatches a menu item’s action method to the menu item’s target. The
notification object is the NSMenu containing the chosen menu item. The userInfo dictionary contains the
following information:

ValueKey

The menu item that was chosen."MenuItem"

MenuWillSendActionNotification
Posted just before the application dispatches a menu item’s action method to the menu item’s target. The
notification object is the NSMenu containing the chosen menu item. The userInfo dictionary contains the
following information:

ValueKey

The menu item that was chosen."MenuItem"

Notifications 927
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

928 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 63

NSMenu

Inherits from NSObject

Implements NSValidatedUserInterfaceItem
_NSObsoleteMenuItemProtocol
NSCoding

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

The NSMenuItem class defines objects that are used as command items in menus. Additionally, the
NSMenuItem class also includes some private functionality needed to maintain binary compatibility with
other components of Cocoa. Because of this fact, you cannot replace the NSMenuItem class with a different
class. You may, however, subclass NSMenuItem if necessary.

Interfaces Implemented

NSValidatedUserInterfaceItem
action (page 2033)
tag (page 2033)

Tasks

Constructors

NSMenuItem (page 933)
Creates a new menu item with no action and key equivalent and the title "NSMenuItem".

Enabling a Menu Item

setEnabled (page 940)
Sets whether the receiver is enabled based on flag.

Overview 929
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

isEnabled (page 936)
Returns true if the receiver is enabled, false if not.

Setting the Target and Action

setTarget (page 944)
Sets the receiver’s target to anObject.

target (page 946)
Returns the receiver’s target.

setAction (page 939)
Sets the receiver’s action method to aSelector.

action (page 935)
Returns the receiver’s action method.

Setting the Title

setTitle (page 945)
Sets the receiver’s title to aString.

title (page 946)
Returns the receiver’s title.

setAttributedTitle (page 939)
Specifies a custom string for a menu item.

attributedTitle (page 935)
Returns the custom title string for a menu item.

Setting the Tag

setTag (page 944)
Sets the receiver’s tag to anInt.

tag (page 946)
Returns the receiver’s tag.

Setting the State

setState (page 944)
Sets the state of the receiver to itemState, which should be one of NSCell.OffState,
NSCell.OnState, or NSCell.MixedState.

state (page 945)
Returns the state of the receiver, which is NSCell.OffState (the default), NSCell.OnState, or
NSCell.MixedState.

930 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Setting the Image

setImage (page 940)
Sets the receiver’s image to menuImage.

image (page 935)
Returns the image displayed by the receiver, or null if it displays no image.

setOnStateImage (page 943)
Sets the image of the receiver that indicates an “on” state.

onStateImage (page 938)
Returns the image used to depict the receiver’s “on” state, or null if the image has not been set.

setOffStateImage (page 943)
Sets the image of the receiver that indicates an “off” state.

offStateImage (page 938)
Returns the image used to depict the receiver’s “off” state, or null if the image has not been set.

setMixedStateImage (page 942)
Sets the image of the receiver that indicates a “mixed” state, that is, a state neither “on” nor “off.”

mixedStateImage (page 937)
Returns the image used to depict a “mixed state.”

Managing Submenus

setSubmenu (page 944)
Sets the submenu of the receiver to aSubmenu.

submenu (page 946)
Returns the submenu associated with the receiving menu item, or null if no submenu is associated
with it.

hasSubmenu (page 935)
Returns true if the receiver has a submenu, false if it doesn’t.

Getting a Separator Item

protocolSeparatorItem (page 934)
Returns a menu item that is used to separate logical groups of menu commands.

separatorItem (page 939)
Returns a menu item that is used to separate logical groups of menu commands.

isSeparatorItem (page 936)
Returns whether the receiver is a separator item (that is, a menu item used to visually segregate
related menu items).

Setting the Owning Menu

setMenu (page 942)
Sets the receiver’s menu to aMenu.

Tasks 931
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

menu (page 937)
Returns the menu to which the receiver belongs, or null if no menu has been set.

Managing Key Equivalents

setKeyEquivalent (page 941)
Sets the receiver’s unmodified key equivalent to aString.

keyEquivalent (page 936)
Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined.

setKeyEquivalentModifierMask (page 941)
Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Option
keys) to those in mask.

keyEquivalentModifierMask (page 937)
Returns the receiver’s keyboard equivalent modifier mask.

Managing Mnemonics

setMnemonicLocation (page 942)
Deprecated. Sets the character of the menu item title at location that is to be underlined.

mnemonicLocation (page 937)
Deprecated. Returns the position of the underlined character in the menu item title used as a
mnemonic.

setTitleWithMnemonic (page 945)
Deprecated. Sets the title of a menu item with a character denoting an access key.

mnemonic (page 937)
Deprecated. Returns the character in the menu item title that appears underlined for use as a
mnemonic.

Managing User Key Equivalents

setUsesUserKeyEquivalents (page 934)
If flag is true, menu items conform to user preferences for key equivalents; otherwise, the key
equivalents originally assigned to the menu items are used.

usesUserKeyEquivalents (page 934)
Returns true if menu items conform to user preferences for key equivalents; otherwise, returns false.

userKeyEquivalent (page 947)
Returns the user-assigned key equivalent for the receiver.

userKeyEquivalentModifierMask (page 947)
Returns the modifier mask for the receiver’s user-assigned key equivalent.

932 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Managing Alternates

setAlternate (page 939)
Marks the receiver as an alternate to the previous menu item.

isAlternate (page 936)
Returns whether the receiver is an alternate to the previous menu item.

Managing Indentation Levels

setIndentationLevel (page 940)
Sets the menu item indentation level for the receiver.

indentationLevel (page 935)
Returns the menu item indentation level for the receiver.

Managing Tool Tips

setToolTip (page 945)
Sets a help tag for a menu item.

toolTip (page 946)
Returns the help tag for a menu item.

Representing an Object

setRepresentedObject (page 943)
Sets the object represented by the receiver to anObject.

representedObject (page 938)
Returns the object that the receiving menu item represents.

Constructors

NSMenuItem
Creates a new menu item with no action and key equivalent and the title "NSMenuItem".

public NSMenuItem()

Creates a new NSMenuItem.

public NSMenuItem(String itemName, NSSelector action, String charCode)

Constructors 933
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Discussion
The arguments itemName and charCode must not be null (if there is no title or key equivalent, specify an
empty string). The action argument must be a valid selector or null. For instances of the NSMenuItem
class, the default initial state is NSCell.OffState, the default on-state image is a checkmark, and the default
mixed-state image is a dash.

Static Methods

protocolSeparatorItem
Returns a menu item that is used to separate logical groups of menu commands.

public static _NSObsoleteMenuItemProtocol protocolSeparatorItem()

Discussion
This menu item is disabled. The default separator item is blank space.

See Also
isSeparatorItem (page 936)
setEnabled (page 940)

setUsesUserKeyEquivalents
If flag is true, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

public static void setUsesUserKeyEquivalents(boolean flag)

See Also
usesUserKeyEquivalents (page 934)
userKeyEquivalent (page 947)

usesUserKeyEquivalents
Returns true if menu items conform to user preferences for key equivalents; otherwise, returns false.

public static boolean usesUserKeyEquivalents()

See Also
setUsesUserKeyEquivalents (page 934)
userKeyEquivalent (page 947)

934 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Instance Methods

action
Returns the receiver’s action method.

public NSSelector action()

See Also
target (page 946)
setAction (page 939)

attributedTitle
Returns the custom title string for a menu item.

public NSAttributedString attributedTitle()

Availability
Available in Mac OS X v10.3 and later.

See Also
setAttributedTitle (page 939)
title (page 946)

hasSubmenu
Returns true if the receiver has a submenu, false if it doesn’t.

public boolean hasSubmenu()

See Also
setSubmenuForItem (page 922) (NSMenu)

image
Returns the image displayed by the receiver, or null if it displays no image.

public NSImage image()

See Also
setImage (page 940)

indentationLevel
Returns the menu item indentation level for the receiver.

public int indentationLevel()

Instance Methods 935
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Discussion
The return value is from 0 to 15. The default indentation level is 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
setIndentationLevel (page 940)

isAlternate
Returns whether the receiver is an alternate to the previous menu item.

public boolean isAlternate()

Availability
Available in Mac OS X v10.3 and later.

See Also
setAlternate (page 939)

isEnabled
Returns true if the receiver is enabled, false if not.

public boolean isEnabled()

See Also
setEnabled (page 940)

isSeparatorItem
Returns whether the receiver is a separator item (that is, a menu item used to visually segregate related menu
items).

public boolean isSeparatorItem()

See Also
separatorItem (page 939)

keyEquivalent
Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined.

public String keyEquivalent()

Discussion
Use keyEquivalentModifierMask (page 937) to determine the modifier mask for the key equivalent.

See Also
userKeyEquivalent (page 947)

936 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

mnemonic (page 937)
setKeyEquivalent (page 941)

keyEquivalentModifierMask
Returns the receiver’s keyboard equivalent modifier mask.

public int keyEquivalentModifierMask()

See Also
setKeyEquivalentModifierMask (page 941)

menu
Returns the menu to which the receiver belongs, or null if no menu has been set.

public NSMenu menu()

See Also
setMenu (page 942)

mixedStateImage
Returns the image used to depict a “mixed state.”

public NSImage mixedStateImage()

Discussion
A mixed state is useful for indicating “off” and “on” attribute values in a group of selected objects, such as a
selection of text containing boldface and plain (nonboldface) words. By default this is a horizontal line.

See Also
setMixedStateImage (page 942)

mnemonic
Deprecated. Returns the character in the menu item title that appears underlined for use as a mnemonic.

public String mnemonic()

Discussion
If there is no mnemonic character, returns an empty string.

See Also
setTitleWithMnemonic (page 945)

mnemonicLocation
Deprecated. Returns the position of the underlined character in the menu item title used as a mnemonic.

Instance Methods 937
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

public int mnemonicLocation()

Discussion
The position is the 0 based index of that character in the title string. If the receiver has no mnemonic character,
returns NSArray.NotFound.

See Also
setMnemonicLocation (page 942)

offStateImage
Returns the image used to depict the receiver’s “off” state, or null if the image has not been set.

public NSImage offStateImage()

Discussion
By default there is no image.

See Also
setOffStateImage (page 943)

onStateImage
Returns the image used to depict the receiver’s “on” state, or null if the image has not been set.

public NSImage onStateImage()

Discussion
By default this image is a checkmark.

See Also
setOnStateImage (page 943)

representedObject
Returns the object that the receiving menu item represents.

public Object representedObject()

Discussion
For example, you might have a menu list the names of views that are swapped into the same panel. The
represented objects would be the appropriate NSView objects. The user would then be able to switch back
and forth between the different views that are displayed by selecting the various menu items.

See Also
tag (page 946)
setRepresentedObject (page 943)

938 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

separatorItem
Returns a menu item that is used to separate logical groups of menu commands.

public NSMenuItem separatorItem()

Discussion
This menu item is disabled. The default separator item is blank space.

See Also
isSeparatorItem (page 936)
setEnabled (page 940)

setAction
Sets the receiver’s action method to aSelector.

public void setAction(NSSelector aSelector)

Discussion
See Action Messages for additional information on action messages.

See Also
setTarget (page 944)
action (page 935)

setAlternate
Marks the receiver as an alternate to the previous menu item.

public void setAlternate(boolean isAlternate)

Discussion
If the receiver has the same key equivalent as the previous item, but has different key equivalent modifiers,
the items are folded into a single visible item and the appropriate item shows while tracking the menu. The
menu items may also have no key equivalent as long as the key equivalent modifiers are different.

If there are two or more items with no key equivalent but different modifiers, then the only way to get access
to the alternate items is with the mouse. If you mark items as alternates but their key equivalents don’t match,
they might be displayed as separate items. Marking the first item as an alternate has no effect.

The isAlternate value is archived.

Availability
Available in Mac OS X v10.3 and later.

See Also
isAlternate (page 936)

setAttributedTitle
Specifies a custom string for a menu item.

Instance Methods 939
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

public void setAttributedTitle(NSAttributedString string)

Discussion
You can use this method to add styled text and embedded images to menu item strings. If you do not set a
text color for the attributed string, it is black when not selected, white when selected, and gray when disabled.
Colored text remains unchanged when selected.

When you call this method to set the menu title to an attributed string, the setTitle (page 945) method is
also called to set the menu title with a plain string. If you clear the attributed title, the plain title remains
unchanged. To clear the attributed title, set the attributed string to either null or an empty attributed string.

The attributed string is not archived in the old nib format.

Availability
Available in Mac OS X v10.3 and later.

See Also
attributedTitle (page 935)
setTitle (page 945)

setEnabled
Sets whether the receiver is enabled based on flag.

public void setEnabled(boolean flag)

Discussion
If a menu item is disabled, its keyboard equivalent is also disabled. See the "NSMenu.MenuValidation" (page
2011) interface specification for cautions regarding this method.

See Also
isEnabled (page 936)

setImage
Sets the receiver’s image to menuImage.

public void setImage(NSImage menuImage)

Discussion
If menuImage is null, the current image (if any) is removed. This image is not affected by changes in
menu-item state.

See Also
image (page 935)

setIndentationLevel
Sets the menu item indentation level for the receiver.

public void setIndentationLevel(int indentationLevel)

940 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Discussion
The value for indentationLevel may be from 0 to 15. If indentationLevel is greater than 15, the value
is pinned to the maximum. If indentationLevel is less than 0, an exception is thrown. The default
indentation level is 0.

The indentationLevel value is archived.

Availability
Available in Mac OS X v10.3 and later.

See Also
indentationLevel (page 935)

setKeyEquivalent
Sets the receiver’s unmodified key equivalent to aString.

public void setKeyEquivalent(String aString)

Discussion
If you want to remove the key equivalent from a menu item, pass an empty string ("") for aString (never
pass null). Use setKeyEquivalentModifierMask (page 941) to set the appropriate mask for the modifier
keys for the key equivalent.

If you want to specify the Backspace key as the key equivalent for a menu item, use a single character string
with NSBackspaceCharacter (defined in NSText.h as 0x08) and for the Forward Delete key, use
NSDeleteCharacter (defined in NSText.h as 0x7F). Note that these are not the same characters you get from
an NSEvent key-down event when pressing those keys.

See Also
setMnemonicLocation (page 942)
keyEquivalent (page 936)

setKeyEquivalentModifierMask
Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Option keys) to
those in mask.

public void setKeyEquivalentModifierMask(int mask)

Discussion
mask is an integer bit field containing any of these modifier key masks, combined using the C bitwise OR
operator:

NSEvent.ShiftKeyMask

NSEvent.AlternateKeyMask

NSEvent.CommandKeyMask

NSEvent.ControlKeyMask

You should always set NSEvent.CommandKeyMask in mask.

Instance Methods 941
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

NSEvent.ShiftKeyMask is relevant only for function keys—that is, for key events whose modifier flags
include NSEvent.FunctionKeyMask. For all other key events NSEvent.ShiftKeyMask is ignored, and
characters typed while the Shift key is pressed are interpreted as the shifted versions of those characters; for
example, Command-Shift-c is interpreted as Command-C.

See the NSEvent (page 603) class specification for more information about modifier mask values.

See Also
keyEquivalentModifierMask (page 937)

setMenu
Sets the receiver’s menu to aMenu.

public void setMenu(NSMenu aMenu)

Discussion
This method is invoked by the owning NSMenu when the receiver is added or removed. You shouldn’t have
to invoke this method in your own code, although it can be overridden to provide specialized behavior.

See Also
menu (page 937)

setMixedStateImage
Sets the image of the receiver that indicates a “mixed” state, that is, a state neither “on” nor “off.”

public void setMixedStateImage(NSImage itemImage)

Discussion
If itemImage is null, any current mixed-state image is removed. Changing state images is currently
unsupported in Mac OS X.

See Also
mixedStateImage (page 937)
setOffStateImage (page 943)
setOnStateImage (page 943)
setState (page 944)

setMnemonicLocation
Deprecated. Sets the character of the menu item title at location that is to be underlined.

public void setMnemonicLocation(int location)

Discussion
locationmust be from 0 to 254. This character identifies the access key by which users can access the menu
item.

See Also
mnemonicLocation (page 937)

942 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

setOffStateImage
Sets the image of the receiver that indicates an “off” state.

public void setOffStateImage(NSImage itemImage)

Discussion
If itemImage is null, any current off-state image is removed. Changing state images is currently unsupported
in Mac OS X.

See Also
offStateImage (page 938)
setMixedStateImage (page 942)
setOffStateImage (page 943)
setState (page 944)

setOnStateImage
Sets the image of the receiver that indicates an “on” state.

public void setOnStateImage(NSImage itemImage)

Discussion
If itemImage is null, any current on-state image is removed. Changing state images is currently unsupported
in Mac OS X.

See Also
onStateImage (page 938)
setMixedStateImage (page 942)
setOffStateImage (page 943)
setState (page 944)

setRepresentedObject
Sets the object represented by the receiver to anObject.

public void setRepresentedObject(Object anObject)

Discussion
By setting a represented object for a menu item, you make an association between the menu item and that
object. The represented object functions as a more specific form of tag that allows you to associate any
object, not just an int, with the items in a menu.

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the display
of multiple views in the same panel.

See Also
setTag (page 944)
representedObject (page 938)

Instance Methods 943
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

setState
Sets the state of the receiver to itemState, which should be one of NSCell.OffState, NSCell.OnState,
or NSCell.MixedState.

public void setState(int itemState)

Discussion
The image associated with the new state is displayed to the left of the menu item.

See Also
state (page 945)
setMixedStateImage (page 942)
setOffStateImage (page 943)
setOnStateImage (page 943)

setSubmenu
Sets the submenu of the receiver to aSubmenu.

public void setSubmenu(NSMenu aSubmenu)

Discussion
The default implementation of the NSMenuItem class throws an exception if aSubmenu already has a
supermenu.

See Also
submenu (page 946)
hasSubmenu (page 935)

setTag
Sets the receiver’s tag to anInt.

public void setTag(int anInt)

See Also
setRepresentedObject (page 943)
tag (page 946)

setTarget
Sets the receiver’s target to anObject.

public void setTarget(Object anObject)

See Also
setAction (page 939)
target (page 946)

944 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

setTitle
Sets the receiver’s title to aString.

public void setTitle(String aString)

See Also
title (page 946)

setTitleWithMnemonic
Deprecated. Sets the title of a menu item with a character denoting an access key.

public void setTitleWithMnemonic(String aString)

Discussion
Use an ampersand character to mark the character (the one following the ampersand) to be designated.

See Also
mnemonic (page 937)
setMnemonicLocation (page 942)

setToolTip
Sets a help tag for a menu item.

public void setToolTip(String toolTip)

Discussion
You can call this method for any menu item, including items in the main menu bar.

This string is not archived in the old nib format.

Availability
Available in Mac OS X v10.3 and later.

See Also
toolTip (page 946)

state
Returns the state of the receiver, which is NSCell.OffState (the default), NSCell.OnState, or
NSCell.MixedState.

public int state()

See Also
setState (page 944)

Instance Methods 945
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

submenu
Returns the submenu associated with the receiving menu item, or null if no submenu is associated with it.

public NSMenu submenu()

Discussion
If the receiver responds true to hasSubmenu (page 935), the submenu is returned.

See Also
hasSubmenu (page 935)
setSubmenu (page 944)

tag
Returns the receiver’s tag.

public int tag()

See Also
representedObject (page 938)
setTag (page 944)

target
Returns the receiver’s target.

public Object target()

See Also
action (page 935)
setTarget (page 944)

title
Returns the receiver’s title.

public String title()

See Also
setTitle (page 945)

toolTip
Returns the help tag for a menu item.

public String toolTip()

Availability
Available in Mac OS X v10.3 and later.

946 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

See Also
setToolTip (page 945)

userKeyEquivalent
Returns the user-assigned key equivalent for the receiver.

public String userKeyEquivalent()

See Also
keyEquivalent (page 936)

userKeyEquivalentModifierMask
Returns the modifier mask for the receiver’s user-assigned key equivalent.

public int userKeyEquivalentModifierMask()

Instance Methods 947
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

948 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 64

NSMenuItem

Inherits from NSButtonCell : NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

Note: NSMenuItemCell and NSMenuView are deprecated and are no longer used to draw menus. Using
them will not affect the appearance of your menus.

NSMenuItemCell is a class that handles the measurement and display of a single menu item in its encompassing
frame. Instances of NSMenuItemCell work in conjunction with an NSMenuView object to control the overall
appearance of the menu.

Tasks

Constructors

NSMenuItemCell (page 951)
This class is deprecated and is no longer used to draw menus.

Getting and Setting Menu Item Attributes

isHighlighted (page 954)
Returns true if the receiver currently draws its menu item with a highlighted appearance

setHighlighted (page 956)
Sets the highlight state for the receiver to flag.

menuItem (page 955)
Returns the NSMenuItem associated with the receiver.

setMenuItem (page 956)
Sets the NSMenuItem for the receiver to item.

Overview 949
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

menuView (page 955)
Returns the menu view associated with the receiver.

setMenuView (page 956)
Sets the menu view for the receiver menuView.

Calculating Menu Item Sizes

calcSize (page 951)
Calculates the minimum required width and height of the receiver’s menu item.

needsSizing (page 955)
Returns true if the size of the menu item needs to be calculated; otherwise returns false.

setNeedsSizing (page 957)
Sets a flag that indicates whether or not the menu item must be resized.

imageWidth (page 954)
Returns the width of the image associated with a menu item.

titleWidth (page 958)
Returns the width of the menu item text.

keyEquivalentWidth (page 955)
Returns the width of the key equivalent associated with the menu item.

stateImageWidth (page 957)
Returns the width of the image used to indicate the state of the menu item.

Getting the Menu Item’s Drawing Rectangle

imageRectForBounds (page 953)
Returns the rectangle into which the menu item’s image should be drawn.

keyEquivalentRectForBounds (page 954)
Returns the rectangle into which the menu item’s key equivalent should be drawn.

stateImageRectForBounds (page 957)
Returns the rectangle into which the menu item’s state image should be drawn.

titleRectForBounds (page 958)
Returns the rectangle into which the menu item’s title should be drawn.

Drawing the Menu Item

drawBorderAndBackgroundWithFrameInView (page 952)
Draws the borders and background associated with the receiver’s menu item (if any).

drawImageWithFrameInView (page 952)
Draws the image associated with the menu item.

drawKeyEquivalentWithFrameInView (page 952)
Draws the key equivalent associated with the menu item.

drawSeparatorItemWithFrameInView (page 953)
Draws a menu item separator.

950 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

drawStateImageWithFrameInView (page 953)
Draws the state image associated with the menu item.

drawTitleWithFrameInView (page 953)
Draws the title associated with the menu item.

needsDisplay (page 955)
Returns true if the menu item needs to be displayed; otherwise returns false.

setNeedsDisplay (page 956)
Sets whether the menu item needs to be drawn to flag.

Assigning a Tag

tag (page 958)
Returns the tag of the selected menu item, or 0 if no item is selected.

Constructors

NSMenuItemCell
This class is deprecated and is no longer used to draw menus.

public NSMenuItemCell()

Discussion
Do not use this constructor.

This class is deprecated and is no longer used to draw menus.

public NSMenuItemCell(String aString)

Discussion
Do not use this constructor.

This class is deprecated and is no longer used to draw menus.

public NSMenuItemCell(NSImage anImage)

Discussion
Do not use this constructor.

Instance Methods

calcSize
Calculates the minimum required width and height of the receiver’s menu item.

public void calcSize()

Constructors 951
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

Discussion
The calculated values are cached for future use. This method also calculates the sizes of individual components
of the cell’s menu item and caches those values.

This method is invoked automatically when necessary. You should not need to invoke it directly.

See Also
needsSizing (page 955)

drawBorderAndBackgroundWithFrameInView
Draws the borders and background associated with the receiver’s menu item (if any).

public void drawBorderAndBackgroundWithFrameInView(NSRect cellFrame, NSView
controlView)

Discussion
This method invokes imageRectForBounds (page 953), passing it cellFrame, to calculate the rectangle in
which to draw the image. The controlView parameter specifies the view that contains this cell. The cell
invokes this method before invoking the methods to draw the other menu item components.

See Also
drawWithFrameInView (page 310) (NSCell)

drawImageWithFrameInView
Draws the image associated with the menu item.

public void drawImageWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
This method invokes imageRectForBounds (page 953), passing it cellFrame, to calculate the rectangle in
which to draw the image. The controlView parameter specifies the view that contains this cell.

This method is invoked by the cell’s drawWithFrame method. You should not need to invoke it directly.
Subclasses may override this method to control the drawing of the image.

drawKeyEquivalentWithFrameInView
Draws the key equivalent associated with the menu item.

public void drawKeyEquivalentWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
This method invokes keyEquivalentRectForBounds (page 954), passing it cellFrame, to calculate the
rectangle in which to draw the key equivalent. The controlView parameter specifies the view that contains
this cell.

This method is invoked by the cell’s drawWithFrame method. You should not need to invoke it directly.
Subclasses may override this method to control the drawing of the key equivalent.

952 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

drawSeparatorItemWithFrameInView
Draws a menu item separator.

public void drawSeparatorItemWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
This method uses the cellFrame parameter to calculate the rectangle in which to draw the menu item
separator. This method uses the controlView to determine whether the separator item should be drawn
normally or flipped.

You should not need to invoke this method directly. Subclasses may override this method to control the
drawing of the separator.

See Also
drawKeyEquivalentWithFrameInView (page 952)
drawTitleWithFrameInView (page 953)
isFlipped (page 1756) (NSView)

drawStateImageWithFrameInView
Draws the state image associated with the menu item.

public void drawStateImageWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
This method invokesstateImageRectForBounds (page 957), passing itcellFrame, to calculate the rectangle
in which to draw the state image. The controlView parameter specifies the view that contains this cell.

This method is invoked by the cell’s drawWithFrame method. You should not need to invoke it directly.
Subclasses may override this method to control the drawing of the state image.

drawTitleWithFrameInView
Draws the title associated with the menu item.

public void drawTitleWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
This method invokes titleRectForBounds (page 958), passing it cellFrame, to calculate the rectangle in
which to draw the title. The controlView parameter specifies the view that contains this cell.

This method is invoked by the cell’s drawWithFrame method. You should not need to invoke it directly.
Subclasses may override this method to control the drawing of the title.

imageRectForBounds
Returns the rectangle into which the menu item’s image should be drawn.

public NSRect imageRectForBounds(NSRect cellFrame)

Instance Methods 953
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

Discussion
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the image.

See Also
stateImageRectForBounds (page 957)
imageRectForBounds (page 953)
titleRectForBounds (page 958)
keyEquivalentRectForBounds (page 954)

imageWidth
Returns the width of the image associated with a menu item.

public float imageWidth()

Discussion
You can associate an image with a menu item using NSMenuItem’s setImage (page 1928) method.

See Also
stateImageWidth (page 957)
calcSize (page 951)
needsSizing (page 955)

isHighlighted
Returns true if the receiver currently draws its menu item with a highlighted appearance

public boolean isHighlighted()

Discussion
.

See Also
setHighlighted (page 956)

keyEquivalentRectForBounds
Returns the rectangle into which the menu item’s key equivalent should be drawn.

public NSRect keyEquivalentRectForBounds(NSRect cellFrame)

Discussion
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the key
equivalent.

See Also
keyEquivalent (page 1924) (NSMenuItem)
stateImageRectForBounds (page 957)
imageRectForBounds (page 953)
titleRectForBounds (page 958)

954 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

keyEquivalentRectForBounds (page 954)

keyEquivalentWidth
Returns the width of the key equivalent associated with the menu item.

public float keyEquivalentWidth()

Discussion
You can associate a key equivalent with a menu item using NSMenuItem’s setKeyEquivalent (page 1928)
method.

See Also
calcSize (page 951)
needsSizing (page 955)

menuItem
Returns the NSMenuItem associated with the receiver.

public NSMenuItem menuItem()

See Also
setMenuItem (page 956)

menuView
Returns the menu view associated with the receiver.

public NSMenuView menuView()

See Also
setMenuView (page 956)

needsDisplay
Returns true if the menu item needs to be displayed; otherwise returns false.

public boolean needsDisplay()

See Also
setNeedsDisplay (page 956)

needsSizing
Returns true if the size of the menu item needs to be calculated; otherwise returns false.

public boolean needsSizing()

Instance Methods 955
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

See Also
setNeedsSizing (page 957)
calcSize (page 951)

setHighlighted
Sets the highlight state for the receiver to flag.

public void setHighlighted(boolean flag)

Discussion
You should not need to call this method directly. It is invoked by the NSMenuView’s
setHighlightedItemIndex (page 969) method to provide user feedback during menu tracking or when
the user selects a menu item (either by clicking or using a key equivalent).

See Also
isHighlighted (page 954)
setHighlightedItemIndex (page 969) (NSMenuView)

setMenuItem
Sets the NSMenuItem for the receiver to item.

public void setMenuItem(NSMenuItem item)

See Also
menuItem (page 955)

setMenuView
Sets the menu view for the receiver menuView.

public void setMenuView(NSMenuView menuView)

See Also
menuView (page 955)

setNeedsDisplay
Sets whether the menu item needs to be drawn to flag.

public void setNeedsDisplay(boolean flag)

See Also
needsDisplay (page 955)

956 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

setNeedsSizing
Sets a flag that indicates whether or not the menu item must be resized.

public void setNeedsSizing(boolean flag)

Discussion
If flag is true, the next attempt to obtain any size-related information from this menu item cell invokes
the calcSize (page 951) method to recalculate the information. If flag is false, the next attempt to obtain
size-related information returns the currently cached values.

Subclasses that drastically change the way a menu item is drawn may need to invoke this method to recalculate
the menu item information. Other parts of your application should not need to invoke this method directly.
The cell invokes this method as necessary when the content of its menu item changes.

See Also
needsSizing (page 955)

stateImageRectForBounds
Returns the rectangle into which the menu item’s state image should be drawn.

public NSRect stateImageRectForBounds(NSRect cellFrame)

Discussion
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the menu
item’s state image.

See Also
stateImageRectForBounds (page 957)
imageRectForBounds (page 953)
titleRectForBounds (page 958)
keyEquivalentRectForBounds (page 954)

stateImageWidth
Returns the width of the image used to indicate the state of the menu item.

public float stateImageWidth()

Discussion
If the menu item has multiple images associated with it (to indicate any of the available states: on, off, or
mixed), this method returns the width of the largest image. You can set the state images for a menu item
using NSMenuItem’s setOnStateImage (page 1930), setOffStateImage (page 1930), and
setMixedStateImage (page 1929) methods.

To change the state of the cell’s menu item, use NSMenuItem’s setState (page 1931) method.

See Also
calcSize (page 951)
needsSizing (page 955)
setState (page 1931) (NSMenuItem)

Instance Methods 957
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

tag
Returns the tag of the selected menu item, or 0 if no item is selected.

public int tag()

Discussion
Setting the tag value of an NSMenuItemCell with setTag (page 51) does nothing.

See Also
setTag (page 51) (NSActionCell)

titleRectForBounds
Returns the rectangle into which the menu item’s title should be drawn.

public NSRect titleRectForBounds(NSRect cellFrame)

Discussion
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the text
of the title.

See Also
stateImageRectForBounds (page 957)
imageRectForBounds (page 953)
titleRectForBounds (page 958)
keyEquivalentRectForBounds (page 954)

titleWidth
Returns the width of the menu item text.

public float titleWidth()

Discussion
To set the menu item text, use NSMenuItem’s setTitle (page 1932) method.

See Also
calcSize (page 951)
needsSizing (page 955)

958 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 65

NSMenuItemCell

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

Note: NSMenuItemCell and NSMenuView are deprecated and are no longer used to draw menus. Calling
their methods will not affect the appearance of your menus.

The NSMenuView class handles the display of menus on the user’s screen. A menu view displays its menu
either horizontally or vertically and allows the user to interact with the items of that menu, either to navigate
through hierarchical menus or to select a particular item.

Tasks

Constructors

NSMenuView (page 962)
This class is deprecated and is no longer used to draw menus.

Getting and Setting Menu View Attributes

menuBarHeight (page 962)
Returns the height of the menu bar.

setMenu (page 970)
Sets the menu to be displayed in this view to menu.

menu (page 968)
Returns the NSMenu associated with this menu view.

setHorizontal (page 970)
Sets the orientation of the menu.

Overview 959
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

isHorizontal (page 966)
Returns true if the menu is displayed horizontally; such as for a menu bar, otherwise returns false.

setFont (page 969)
Sets the default font to use when drawing the menu text.

font (page 964)
Returns the default font used to draw the menu text.

setHighlightedItemIndex (page 969)
Highlights the menu item at index.

highlightedItemIndex (page 964)
Returns the index of the currently highlighted menu item, or –1 if no menu item in the menu is
highlighted.

setMenuItemCellForItemAtIndex (page 970)
Replaces the menu item cell at index with cell.

menuItemCellForItemAtIndex (page 968)
Returns the menu item cell at the specified index.

attachedMenuView (page 963)
Returns the NSMenuView of this object’s attached menu view.

attachedMenu (page 962)
Returns the NSMenu object associated with this object’s attached menu view.

isAttached (page 965)
Returns true if this menu is currently attached to its parent menu.

isTornOff (page 966)
Deprecated. Tear-off menus are not supported in Mac OS X.

horizontalEdgePadding (page 964)
Returns the amount of horizontal space used for padding menu item components.

setHorizontalEdgePadding (page 970)
Sets the horizontal padding for menu item components to pad.

Notification Methods

itemChanged (page 966)
Marks the menu view as needing to be resized so changes in size resulting from a change in the menu
will be tracked.

itemAdded (page 966)
Creates a new menu item cell for the newly created item and marks the menu view as needing to be
resized.

itemRemoved (page 967)
Removes the removed item’s menu item cell and marks the menu view as needing to be resized.

Working with Submenus

detachSubmenu (page 963)
Detaches the window associated with the currently visible submenu and removes any menu item
highlights.

960 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

attachSubmenuForItemAtIndex (page 963)
Attaches the submenu associated with the menu item at index.

Calculating Menu Geometry

update (page 973)
Asks the associated NSMenu to update itself.

setNeedsSizing (page 971)
Sets a flag that indicates whether the layout is invalid and needs resizing. If flag is true, the menu
contents have changed or the menu appearance has changed.

needsSizing (page 968)
Returns true if the menu view needs to be resized due to changes in the NSMenu.

sizeToFit (page 972)
Used internally by the menu view to cache information about the menu item geometry.

stateImageOffset (page 972)
Returns the offset to the space reserved for state images of this menu.

stateImageWidth (page 972)
Returns the maximum width of the state images used by this menu.

imageAndTitleOffset (page 964)
Returns the offset to the starting point of a menu item’s image and title section.

imageAndTitleWidth (page 965)
Returns the maximum width of a menu item’s image and title section.

keyEquivalentOffset (page 967)
Returns the beginning position of the menu’s key equivalent text.

keyEquivalentWidth (page 967)
Returns the width of the menu’s key equivalent text.

innerRect (page 965)
Returns the drawing rectangle for the menu contents.

rectOfItemAtIndex (page 969)
Returns the drawing rectangle of the menu item at index.

indexOfItemAtPoint (page 965)
Returns the index of the menu item underneath point or –1 if no menu item is underneath point.

setNeedsDisplayForItemAtIndex (page 971)
Adds the region occupied by the menu item at index to the menu view’s invalid region.

locationForSubmenu (page 967)
Returns the origin of the submenu view’s window.

setWindowFrameForAttachingToRect (page 971)
Causes the menu view to resize its window so its frame is the appropriate size to attach to screenRect
within screen.

Tasks 961
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

Event Handling

performActionWithHighlightingForItemAtIndex (page 968)
Uses the associated NSMenu object to perform the action associated with the item at index when
a key equivalent is pressed.

trackWithEvent (page 973)
Handles events sent to this menu view.

Constructors

NSMenuView
This class is deprecated and is no longer used to draw menus.

public NSMenuView()

Discussion
Do not use this constructor.

This class is deprecated and is no longer used to draw menus.

public NSMenuView(boolean flag)

Discussion
Do not use this constructor.

Static Methods

menuBarHeight
Returns the height of the menu bar.

public static float menuBarHeight()

Discussion
This method is superseded in Mac OS X v10.4 by the NSMenu menuBarHeight (page 919) instance method.

Instance Methods

attachedMenu
Returns the NSMenu object associated with this object’s attached menu view.

public NSMenu attachedMenu()

962 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

Discussion
The attached menu view is the one associated with the currently visible submenu, if any.

See Also
attachedMenuView (page 963)
isAttached (page 965)

attachedMenuView
Returns the NSMenuView of this object’s attached menu view.

public NSMenuView attachedMenuView()

Discussion
The attached menu view is the one associated with the currently visible submenu, if any.

See Also
attachedMenu (page 962)
detachSubmenu (page 963)
isAttached (page 965)

attachSubmenuForItemAtIndex
Attaches the submenu associated with the menu item at index.

public void attachSubmenuForItemAtIndex(int index)

Discussion
This method prepares the submenu for display by positioning its window and ordering it to the front.

See Also
setWindowFrameForAttachingToRect (page 971)
orderFront (page 1844) (NSWindow)

detachSubmenu
Detaches the window associated with the currently visible submenu and removes any menu item highlights.

public void detachSubmenu()

Discussion
If the submenu itself displays further submenus, this method detaches the windows associated with those
submenus as well.

See Also
attachSubmenuForItemAtIndex (page 963)
setHighlightedItemIndex (page 969)
orderOut (page 1845) (NSWindow)

Instance Methods 963
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

font
Returns the default font used to draw the menu text.

public NSFont font()

Discussion
New items use this font by default, although the item’s menu item cell can use a different font.

See Also
setFont (page 969)

highlightedItemIndex
Returns the index of the currently highlighted menu item, or –1 if no menu item in the menu is highlighted.

public int highlightedItemIndex()

See Also
setHighlightedItemIndex (page 969)

horizontalEdgePadding
Returns the amount of horizontal space used for padding menu item components.

public float horizontalEdgePadding()

Discussion
The edge padding is added to the sides of each menu item component. This space is used to provide a visual
separation between components of the menu item.

See Also
setHorizontalEdgePadding (page 970)

imageAndTitleOffset
Returns the offset to the starting point of a menu item’s image and title section.

public float imageAndTitleOffset()

Discussion
The image and title section of a menu item displays an image, a title, or possibly both as a way to identify
the purpose of the menu item. The value returned by this method is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
imageAndTitleWidth (page 965)
stateImageOffset (page 972)
keyEquivalentOffset (page 967)

964 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

imageAndTitleWidth
Returns the maximum width of a menu item’s image and title section.

public float imageAndTitleWidth()

Discussion
The image and title section of a menu item displays an image, a title, or possibly both as a way to identify
the purpose of the menu item. The value returned by this method is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
imageAndTitleOffset (page 964)
stateImageWidth (page 972)
keyEquivalentWidth (page 967)

indexOfItemAtPoint
Returns the index of the menu item underneath point or –1 if no menu item is underneath point.

public int indexOfItemAtPoint(NSPoint point)

Discussion
This method considers the menu borders as part of the item when calculating whether point is in the menu
item rectangle. This method invokes therectOfItemAtIndex (page 969) method to obtain the basic rectangle
for each menu item but may adjust that rectangle before testing.

See Also
rectOfItemAtIndex (page 969)

innerRect
Returns the drawing rectangle for the menu contents.

public NSRect innerRect()

Discussion
This rectangle is different (typically smaller) from the view bounds in that it does not include the space used
to draw the menu borders.

See Also
bounds (page 1743) (NSView)

isAttached
Returns true if this menu is currently attached to its parent menu.

public boolean isAttached()

Instance Methods 965
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

See Also
attachedMenu (page 962)
attachedMenuView (page 963)

isHorizontal
Returns true if the menu is displayed horizontally; such as for a menu bar, otherwise returns false.

public boolean isHorizontal()

See Also
setHorizontal (page 970)

isTornOff
Deprecated. Tear-off menus are not supported in Mac OS X.

public boolean isTornOff()

Discussion
Returns true if this menu view’s window is disassociated from its parent menu.

itemAdded
Creates a new menu item cell for the newly created item and marks the menu view as needing to be resized.

public void itemAdded(NSNotification notification)

Discussion
This method is registered with the menu view’s associated NSMenu object for notifications of the type
MenuDidAddItemNotification (page 926). The notification parameter contains the notification data.

See Also
setNeedsSizing (page 971)

itemChanged
Marks the menu view as needing to be resized so changes in size resulting from a change in the menu will
be tracked.

public void itemChanged(NSNotification notification)

Discussion
This method is registered with the menu view’s associated NSMenu object for notifications of the type
MenuDidChangeItemNotification (page 926). The notification parameter contains the notification
data.

See Also
setNeedsSizing (page 971)

966 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

itemRemoved
Removes the removed item’s menu item cell and marks the menu view as needing to be resized.

public void itemRemoved(NSNotification notification)

Discussion
This method is registered with the menu view’s associated NSMenu object for notifications of the type
MenuDidRemoveItemNotification (page 926). The notification parameter contains the notification
data.

See Also
setNeedsSizing (page 971)

keyEquivalentOffset
Returns the beginning position of the menu’s key equivalent text.

public float keyEquivalentOffset()

Discussion
If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
keyEquivalentWidth (page 967)
stateImageOffset (page 972)
imageAndTitleOffset (page 964)

keyEquivalentWidth
Returns the width of the menu’s key equivalent text.

public float keyEquivalentWidth()

Discussion
If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
keyEquivalentOffset (page 967)
stateImageWidth (page 972)
imageAndTitleWidth (page 965)

locationForSubmenu
Returns the origin of the submenu view’s window.

public NSPoint locationForSubmenu(NSMenu aSubMenu)

Instance Methods 967
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

Discussion
The aSubmenu parameter specifies the submenu being positioned and must belong to a menu item of this
menu view. This method positions the submenu adjacent to its menu item as well as possible given the type
of menu and the space constraints of the user’s screen.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
setWindowFrameForAttachingToRect (page 971)
sizeToFit (page 972)

menu
Returns the NSMenu associated with this menu view.

public NSMenu menu()

See Also
setMenu (page 970)

menuItemCellForItemAtIndex
Returns the menu item cell at the specified index.

public NSMenuItemCell menuItemCellForItemAtIndex(int index)

See Also
setMenuItemCellForItemAtIndex (page 970)
sizeToFit (page 972)

needsSizing
Returns true if the menu view needs to be resized due to changes in the NSMenu.

public boolean needsSizing()

See Also
setNeedsSizing (page 971)

performActionWithHighlightingForItemAtIndex
Uses the associated NSMenu object to perform the action associated with the item at index when a key
equivalent is pressed.

public void performActionWithHighlightingForItemAtIndex(int index)

968 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

Discussion
Because the menu item at index might not currently be visible, this method provides visual feedback by
highlighting the nearest visible parent menu item before performing the action. After the action has been
sent, this method removes the highlighting for the menu item.

See Also
performActionForItemAtIndex (page 920) (NSMenu)

rectOfItemAtIndex
Returns the drawing rectangle of the menu item at index.

public NSRect rectOfItemAtIndex(int index)

Discussion
The drawing rectangle may not be the same width or height as the actual menu and in fact is typically smaller
to account for borders drawn by the menu view.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
innerRect (page 965)
needsSizing (page 968)
sizeToFit (page 972)

setFont
Sets the default font to use when drawing the menu text.

public void setFont(NSFont font)

See Also
font (page 964)

setHighlightedItemIndex
Highlights the menu item at index.

public void setHighlightedItemIndex(int index)

Discussion
Specify –1 for index to remove all highlighting from the menu.

The rectangle of the menu item is marked as invalid and is redrawn the next time the event loop comes
around. If another menu item was previously highlighted, that menu item is redrawn without highlights
when the event loop comes around again.

See Also
setNeedsDisplayForItemAtIndex (page 971)
highlightedItemIndex (page 964)

Instance Methods 969
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

setHorizontal
Sets the orientation of the menu.

public void setHorizontal(boolean flag)

Discussion
If flag is true, the menu’s items are displayed horizontally; otherwise the menu’s items are displayed
vertically.

See Also
isHorizontal (page 966)

setHorizontalEdgePadding
Sets the horizontal padding for menu item components to pad.

public void setHorizontalEdgePadding(float pad)

See Also
horizontalEdgePadding (page 964)

setMenu
Sets the menu to be displayed in this view to menu.

public void setMenu(NSMenu menu)

Discussion
This method invokes the setNeedsSizing (page 971) method to force the menu view’s layout to be
recalculated before drawing.

This method adds the menu view to the new NSMenu object’s list of observers. The notifications this method
establishes notify this menu view when menu items in the NSMenu object are added, removed, or changed.
This method removes the menu view from its previous NSMenu object’s list of observers.

See Also
setNeedsSizing (page 971)
itemAdded (page 966)
itemRemoved (page 967)
itemChanged (page 966)

setMenuItemCellForItemAtIndex
Replaces the menu item cell at index with cell.

public void setMenuItemCellForItemAtIndex(NSMenuItemCell cell, int index)

Discussion
This method does not change the contents of the menu itself; it changes only the cell used to display the
menu item at index. The old cell is released, and both the new cell and the menu view are marked as needing
resizing.

970 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

See Also
menuItemCellForItemAtIndex (page 968)
setNeedsSizing (page 971)

setNeedsDisplayForItemAtIndex
Adds the region occupied by the menu item at index to the menu view’s invalid region.

public void setNeedsDisplayForItemAtIndex(int index)

Discussion
The region to be redrawn includes the space occupied by the menu borders. This invalid region is redrawn
the next time the event loop comes around.

See Also
rectOfItemAtIndex (page 969)
setNeedsDisplay (page 1779) (NSView)

setNeedsSizing
Sets a flag that indicates whether the layout is invalid and needs resizing. If flag is true, the menu contents
have changed or the menu appearance has changed.

public void setNeedsSizing(boolean flag)

Discussion
This method is used internally; you should not need to invoke it directly unless you are implementing a
subclass that can cause the layout to become invalid.

See Also
sizeToFit (page 972)

setWindowFrameForAttachingToRect
Causes the menu view to resize its window so its frame is the appropriate size to attach to screenRect
within screen.

public void setWindowFrameForAttachingToRect(NSRect screenRect, NSScreen screen,
int edge, int selectedItemIndex)

Discussion
If selectedItemIndex contains a value other than –1, this method attempts to position the menu such
that the item at selectedItemIndex appears on top of screenRect.

The selectedItemIndex parameter specifies the amount by which the selected item’s rectangle overlaps
screenRect.

If the preferred edge, edge, cannot be honored, because there is not enough room, the opposite edge is
used. If the rectangle does not completely fit either edge, this method uses the edge where there is more
room.

Instance Methods 971
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
sizeToFit (page 972)

sizeToFit
Used internally by the menu view to cache information about the menu item geometry.

public void sizeToFit()

Discussion
This cache is updated as necessary when menu items are added, removed, or changed.

The geometry of each menu item is determined by asking its corresponding menu item cell. The menu item
cell is obtained from the menuItemCellForItemAtIndex (page 968) method.

See Also
setNeedsSizing (page 971)
menuItemCellForItemAtIndex (page 968)

stateImageOffset
Returns the offset to the space reserved for state images of this menu.

public float stateImageOffset()

Discussion
The offset is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

See Also
horizontalEdgePadding (page 964)
setHorizontalEdgePadding (page 970)
sizeToFit (page 972)

stateImageWidth
Returns the maximum width of the state images used by this menu.

public float stateImageWidth()

Discussion
The width is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view information.

972 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

See Also
sizeToFit (page 972)

trackWithEvent
Handles events sent to this menu view.

public boolean trackWithEvent(NSEvent event)

Discussion
If event is a mouse event, this method tracks the cursor position in the menu and displays the menus as
appropriate. This method also handles mouse clicks that result in the selection of a menu item, in which case
the menu item’s action is performed.

You should not need to use this method directly.

update
Asks the associated NSMenu to update itself.

public void update()

Discussion
If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 972) to update
the menu view’s layout.

See Also
sizeToFit (page 972)
setNeedsSizing (page 971)
update (page 923) (NSMenu)

Instance Methods 973
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

974 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 66

NSMenuView

Inherits from Object

Package: com.apple.cocoa.application

Companion guide Window Programming Guide for Cocoa

Overview

An application uses an NSModalSession object when it begins and runs a modal session. An NSModalSession
object encapsulates certain information about a session, such as the application, window, and graphics
context involved. Because NSModalSession is a final class, you cannot subclass it. The NSApplication method
beginModalSessionForWindow (page 108) creates a modal session, and the NSApplication methods
runModalSession (page 120) and endModalSession (page 111) take it as an argument.

Tasks

Constructors

NSModalSession (page 975)

Constructors

NSModalSession
public NSModalSession(int sessionID)

Discussion
Returns an NSModalSession identified by the session number sessionID, which must be unique for the
session.

Overview 975
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 67

NSModalSession

976 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 67

NSModalSession

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Video

Overview

An NSMovie is a wrapper for a QuickTime Movie, providing a simple interface for loading a movie into
memory. The movie data can come from a URL or a pasteboard, including the drag-and-drop and cut-and-paste
pasteboards. The data can be of any type recognized by QuickTime, including nonvideo data such as pure
audio or even still images. Once loaded, you can obtain a pointer to the movie data and use the extensive
QuickTime APIs to manipulate the data.

Tasks

Constructors

NSMovie (page 978)
Creates an empty NSMovie instance.

Checking Data Types

canInitWithPasteboard (page 978)
Tests whether the class can initialize an instance of itself from the data on pasteboard.

movieUnfilteredFileTypes (page 978)
Returns an array of strings representing those file types that contain supported movie data.

movieUnfilteredPasteboardTypes (page 979)
Returns an array of pasteboard types from which an NSMovie instance can be created.

Accessing Movie Information

URL (page 979)
Returns the URL of the file used to initialize the receiver.

Overview 977
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMovie

Constructors

NSMovie
Creates an empty NSMovie instance.

public NSMovie()

Creates a new NSMovie instance initialized with data from aPasteboard.

public NSMovie(NSPasteboard aPasteboard)

Discussion
aPasteboard should contain data either of a type returned by movieUnfilteredPasteboardTypes (page
979) or of type NSPasteboard.FilenamesPboardType. In the latter case, the filename on aPasteboard
should be for a file of a type returned by movieUnfilteredFileTypes (page 978). If multiple filenames are
on aPasteboard, only the first name is used.

When archiving an NSMovie object, the movie data is encoded if the data was obtained directly from
aPasteboard. If instead a filename was on the pasteboard, only the file’s URL is encoded.

Creates a new NSMovie instance initialized with data located at aURL.

public NSMovie(java.net.URL aURL, boolean byRef)

Discussion
aURL can use any appropriate URL protocol, including file:, http:, or rtsp:, and reference any type of
data recognized by QuickTime, including video, pure audio, or still images. If byRef is true, only the URL is
encoded when the NSMovie is archived. If byRef is false, the movie’s QuickTime header information is
encoded.

Static Methods

canInitWithPasteboard
Tests whether the class can initialize an instance of itself from the data on pasteboard.

public static boolean canInitWithPasteboard(NSPasteboard pasteboard)

Discussion
Returns true if the receiver’s list of supported pasteboard types includes a data type available from
pasteboard.

See Also
movieUnfilteredPasteboardTypes (page 979)

movieUnfilteredFileTypes
Returns an array of strings representing those file types that contain supported movie data.

978 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMovie

public static NSArray movieUnfilteredFileTypes()

Discussion
The default list contains the filename extensions “mov” and “MOV” and the HFS file type “‘MooV’”. The array
returned by this method may be passed directly to NSOpenPanel’s runModalForTypes (page 1024) method.

See Also
movieUnfilteredPasteboardTypes (page 979)

movieUnfilteredPasteboardTypes
Returns an array of pasteboard types from which an NSMovie instance can be created.

public static NSArray movieUnfilteredPasteboardTypes()

Discussion
Compare the elements of this array to the available data types on a pasteboard to detect the presence of
movie data.

See Also
canInitWithPasteboard (page 978)

Instance Methods

URL
Returns the URL of the file used to initialize the receiver.

public java.net.URL URL()

Discussion
If the receiver was not initialized from a file, it returns null.

Instance Methods 979
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMovie

980 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMovie

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Video

Overview

An NSMovieView displays an NSMovie (a wrapper for a QuickTime movie) in a frame and provides methods
for playing and editing the movie. The view can optionally display a standard QuickTime movie controller,
or you can provide your own interface linked to NSMovieView’s action methods.

Tasks

Constructors

NSMovieView (page 983)
Creates an NSMovieView instance with a zero-size frame.

Setting Movie

movie (page 987)
Returns the NSMovie object displayed in the view.

setMovie (page 989)
Sets the NSMovie displayed in the view to movie.

Playing a Movie

gotoBeginning (page 985)
This action method repositions the play position to the beginning of the movie.

gotoEnd (page 985)
This action method repositions the play position to the end of the movie.

Overview 981
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

gotoPosterFrame (page 985)
This action method repositions the play position to the movie’s poster frame.

isPlaying (page 986)
Returns true if the movie is currently playing.

rate (page 988)
Returns the relative frame rate at which the movie is to be played.

setRate (page 990)
Sets the frame rate, relative to the movie’s internal frame rate, at which to play the movie.

start (page 991)
This action method starts the movie playing at its current location.

stepBack (page 991)
This action method repositions the movie’s play position to one frame before the current frame.

stepForward (page 992)
This action method repositions the movie’s play position to one frame after the current frame.

stop (page 992)
This action method stops the movie.

Sound

isMuted (page 986)
Returns true if the movie’s sound is currently muted.

setMuted (page 989)
Sets whether the movie’s sound is muted.

setVolume (page 990)
Sets the relative sound volume of the movie.

volume (page 992)
Returns the relative volume at which the movie is to be played. Default is 1.0.

Play Modes

loopMode (page 987)
Returns the playback behavior for when the end of the movie is reached.

setLoopMode (page 989)
Sets the playback behavior for when the end of the movie is reached.

playsSelectionOnly (page 988)
Returns true if the movie is configured to play only the selected portion.

setPlaysSelectionOnly (page 990)
Sets whether only the selected portion of the movie is played to flag.

playsEveryFrame (page 987)
Returns true if the movie is configured to display every frame when playing.

setPlaysEveryFrame (page 990)
Sets whether the movie plays every frame of the movie.

982 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

Setting Controller

isControllerVisible (page 986)
Returns true if the movie controller is visible.

showController (page 991)
Sets whether a standard QuickTime movie controller is displayed beneath the movie to show.

Sizing

movieRect (page 987)
Returns the rectangle into which the movie is to be placed.

resizeWithMagnification (page 988)
Resizes the view’s frame to the size required to display the movie with a magnification of
magnification and with a movie controller below it.

sizeForMagnification (page 991)
Returns the required size of the movie view if the movie were magnified to magnification.

Editing

clear (page 984)
This action method deletes the current movie selection from the movie.

copy (page 984)
This action method copies the current movie selection onto the clipboard.

cut (page 984)
This action method deletes the current movie selection from the movie, placing it on the clipboard.

delete (page 985)
This action method deletes the current movie selection from the movie, placing it on the clipboard.

paste (page 987)
This action method inserts the contents of the clipboard (if it contains a movie clip) into the movie
at the current play position.

selectAll (page 988)
This action method selects the entire movie.

isEditable (page 986)
Returns true if the movie is editable.

setEditable (page 988)
Sets whether the movie can be edited.

Constructors

NSMovieView
Creates an NSMovieView instance with a zero-size frame.

Constructors 983
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

public NSMovieView()

Creates an NSMovieView instance with a frame of aRect.

public NSMovieView(NSRect aRect)

Instance Methods

clear
This action method deletes the current movie selection from the movie.

public void clear(Object sender)

Discussion
If there is no selection, the current frame is deleted. This action is undoable. If the movie is not editable, this
method does nothing.

This method has been deprecated use delete (page 985) instead.

Availability
Deprecated in Mac OS X v10.3.

copy
This action method copies the current movie selection onto the clipboard.

public void clear(Object sender)

Discussion
If there is no selection, the current frame is copied. The movie does not need to be editable.

See Also
paste (page 987)

cut
This action method deletes the current movie selection from the movie, placing it on the clipboard.

public void cut(Object sender)

Discussion
If there is no selection, the current frame is deleted. This action is undoable. If the movie is not editable, this
method does nothing.

See Also
paste (page 987)

984 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

delete
This action method deletes the current movie selection from the movie, placing it on the clipboard.

public void delete(Object sender)

Discussion
If there is no selection, the current frame is deleted. This action is undoable. If the movie is not editable, this
method does nothing.

Availability
Available in Mac OS X v10.3 and later.

gotoBeginning
This action method repositions the play position to the beginning of the movie.

public void gotoBeginning(Object sender)

Discussion
If the movie is playing, the movie continues playing from the new position.

See Also
gotoEnd (page 985)
gotoPosterFrame (page 985)

gotoEnd
This action method repositions the play position to the end of the movie.

public void gotoEnd(Object sender)

Discussion
If the movie is playing in one of the looping modes, the movie continues playing accordingly; otherwise,
play stops.

See Also
gotoBeginning (page 985)
gotoPosterFrame (page 985)

gotoPosterFrame
This action method repositions the play position to the movie’s poster frame.

public void gotoPosterFrame(Object sender)

Discussion
If no poster frame is defined, the movie jumps to the beginning. If the movie is playing, the movie continues
playing from the new position.

See Also
gotoBeginning (page 985)

Instance Methods 985
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

gotoEnd (page 985)

isControllerVisible
Returns true if the movie controller is visible.

public boolean isControllerVisible()

Discussion
The default is true.

See Also
showController (page 991)

isEditable
Returns true if the movie is editable.

public boolean isEditable()

Discussion
When editable, a movie can be modified using the clear (page 984), cut (page 984), and paste (page 987)
methods and associated key commands. You can also drag movie files into the view, replacing the movie.
The default is true.

See Also
setEditable (page 988)

isMuted
Returns true if the movie’s sound is currently muted.

public boolean isMuted()

See Also
setMuted (page 989)

isPlaying
Returns true if the movie is currently playing.

public boolean isPlaying()

See Also
start (page 991)
stop (page 992)

986 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

loopMode
Returns the playback behavior for when the end of the movie is reached.

public int loopMode()

Discussion
Return value is one of the constants defined in “Constants” (page 992). Default is NormalPlayback.

See Also
setLoopMode (page 989)

movie
Returns the NSMovie object displayed in the view.

public NSMovie movie()

See Also
setMovie (page 989)

movieRect
Returns the rectangle into which the movie is to be placed.

public NSRect movieRect()

Discussion
By default, this method returns the view’s bounding rectangle. Override this method if you want the movie
to be positioned or sized differently within the view.

paste
This action method inserts the contents of the clipboard (if it contains a movie clip) into the movie at the
current play position.

public void paste(Object sender)

Discussion
This action is undoable. If the movie is not editable, this method does nothing.

See Also
copy (page 984)
cut (page 984)

playsEveryFrame
Returns true if the movie is configured to display every frame when playing.

public boolean playsEveryFrame()

Instance Methods 987
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

Discussion
Default is false.

See Also
setPlaysEveryFrame (page 990)

playsSelectionOnly
Returns true if the movie is configured to play only the selected portion.

public boolean playsSelectionOnly()

Discussion
Default is false.

See Also
setPlaysSelectionOnly (page 990)

rate
Returns the relative frame rate at which the movie is to be played.

public float rate()

Discussion
The default value of 1.0 indicates the normal frame rate defined by the movie.

See Also
setRate (page 990)

resizeWithMagnification
Resizes the view’s frame to the size required to display the movie with a magnification of magnification
and with a movie controller below it.

public void resizeWithMagnification(float magnification)

See Also
sizeForMagnification (page 991)

selectAll
This action method selects the entire movie.

public void selectAll(Object sender)

setEditable
Sets whether the movie can be edited.

988 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

public void setEditable(boolean flag)

Discussion
If flag is true, you can use the clear (page 984), cut (page 984), and paste (page 987) methods and
associated key commands to modify the movie. You can also drag a new movie file into the view, replacing
the current movie. If flag is false, these features are disabled.

See Also
isEditable (page 986)

setLoopMode
Sets the playback behavior for when the end of the movie is reached.

public void setLoopMode(int flag)

Discussion
flag is one of the constants defined in “Constants” (page 992). If flag is NormalPlayback, the movie stops
playing when it reaches the end. If flag is LoopingPlayback, the movie will continue playing at the
beginning. If flag is LoopingBackAndForthPlayback, the movie will play in reverse, then forward again,
as it reaches each end of the movie. If playsSelectionOnly (page 988) is true, these behaviors apply to
the endpoints of the selection, not the movie.

See Also
loopMode (page 987)

setMovie
Sets the NSMovie displayed in the view to movie.

public void setMovie(NSMovie movie)

See Also
movie (page 987)

setMuted
Sets whether the movie’s sound is muted.

public void setMuted(boolean flag)

Discussion
When flag is true, muting is turned on. When muting is turned off again by sending false for flag, the
previous sound volume is restored.

See Also
isMuted (page 986)
setVolume (page 990)

Instance Methods 989
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

setPlaysEveryFrame
Sets whether the movie plays every frame of the movie.

public void setPlaysEveryFrame(boolean flag)

Discussion
If flag is true, every frame of the movie is displayed, even if this requires playing the movie slower than its
preferred rate. If flag is false, the movie may skip some frames if needed to maintain its time sequence.

If flag is true, audio is not played.

See Also
playsEveryFrame (page 987)

setPlaysSelectionOnly
Sets whether only the selected portion of the movie is played to flag.

public void setPlaysSelectionOnly(boolean flag)

Discussion
If there is no selection, the entire movie is played.

See Also
playsSelectionOnly (page 988)

setRate
Sets the frame rate, relative to the movie’s internal frame rate, at which to play the movie.

public void setRate(float rate)

Discussion
The default rate of 1.0 indicates the movie is played at its normal rate. Larger values indicate faster rates,
and fractional values indicate slower rates. Negative values are allowed, causing the movie to play in reverse.
Invoking this method does not automatically start the movie playing.

This value is ignored if the movie is started using the movie controller, which always plays the movie at the
normal rate.

See Also
rate (page 988)

setVolume
Sets the relative sound volume of the movie.

public void setVolume(float volume)

Discussion
The default volume of 1.0 indicates the current system volume.

990 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

See Also
setMuted (page 989)
volume (page 992)

showController
Sets whether a standard QuickTime movie controller is displayed beneath the movie to show.

public void showController(boolean show, boolean adjustSize)

Discussion
If adjustSize is true, the view’s height is modified so that the size and position of the movie are unchanged.
If adjustSize is false, the view’s size is unchanged, and the movie is resized to fit into the frame. The
adjustment is made only if the visibility of the controller is indeed changed.

See Also
isControllerVisible (page 986)

sizeForMagnification
Returns the required size of the movie view if the movie were magnified to magnification.

public NSSize sizeForMagnification(float magnification)

Discussion
An extra 16 pixels are added to the vertical dimension to allow room for the movie controller, even if it is
currently hidden.

See Also
resizeWithMagnification (page 988)

start
This action method starts the movie playing at its current location.

public void start(Object sender)

Discussion
This method does nothing if the movie is already playing.

See Also
isPlaying (page 986)
stop (page 992)

stepBack
This action method repositions the movie’s play position to one frame before the current frame.

public void stepBack(Object sender)

Instance Methods 991
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

Discussion
If the movie is playing, the movie will stop at the new frame.

See Also
stepForward (page 992)

stepForward
This action method repositions the movie’s play position to one frame after the current frame.

public void stepForward(Object sender)

Discussion
If the movie is playing, the movie will stop at the new frame.

See Also
stepBack (page 991)

stop
This action method stops the movie.

public void stop(Object sender)

See Also
isPlaying (page 986)
start (page 991)

volume
Returns the relative volume at which the movie is to be played. Default is 1.0.

public float volume()

See Also
setVolume (page 990)

Constants

The following constants are defined as a convenience by NSMovieView:

DescriptionConstant

Playback runs forward and backward between both endpoints.LoopingBackAndForthPlayback

Restarts playback at beginning when end is reached.LoopingPlayback

Playback stops when end is reached.NormalPlayback

992 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMovieView

Inherits from NSParagraphStyle : NSObject

Implements NSCoding (NSParagraphStyle)

Package: com.apple.cocoa.application

Companion guide Rulers and Paragraph Styles

Overview

NSMutableParagraphStyle adds methods to its superclass, NSParagraphStyle, for changing the values of the
subattributes in a paragraph style attribute. See the NSParagraphStyle (page 1057) and NSAttributedString
specifications for more information.

Tasks

Constructors

NSMutableParagraphStyle (page 995)
Creates an empty NSMutableParagraphStyle.

Setting Tab Stops

setTabStops (page 1000)
Replaces the tab stops in the receiver with tabStops.

addTabStop (page 995)
Adds tabStop to the receiver.

removeTabStop (page 995)
Removes the first text tab whose location and type are equal to those of tabStop.

Setting Other Style Information

setParagraphStyle (page 1000)
Replaces the subattributes of the receiver with those in aStyle.

Overview 993
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

setAlignment (page 995)
Sets the alignment of the receiver to alignment.

setFirstLineHeadIndent (page 997)
Sets the distance in points from the leading margin of a text container to the beginning of the
paragraph’s first line to aFloat.

setHeadIndent (page 997)
Sets the distance in points from the leading margin of a text container to the beginning of lines other
than the first to aFloat.

setTailIndent (page 1000)
Sets the distance in points from the margin of a text container to the end of lines to aFloat.

setLineBreakMode (page 998)
Sets the mode used to break lines in a layout container to mode.

setMaximumLineHeight (page 999)
Sets the maximum height that any line in the paragraph style will occupy, regardless of the font size
or size of any attached graphic, to aFloat.

setMinimumLineHeight (page 999)
Sets the minimum height that any line in the paragraph style will occupy, regardless of the font size
or size of any attached graphic, to aFloat.

setLineSpacing (page 998)
Sets the space in points added between lines within the paragraph to aFloat.

setParagraphSpacing (page 999)
Sets the space added at the end of the paragraph to separate it from the following paragraph to
aFloat.

setBaseWritingDirection (page 996)
Sets the base writing direction for the receiver.

setLineHeightMultiple (page 998)
Sets the line height multiple for the receiver.

setParagraphSpacingBefore (page 1000)
Sets the distance between the paragraph’s top and the beginning of its text content

setDefaultTabInterval (page 996)
Sets the default tab interval for the receiver.

Setting Text Blocks and Lists

setTextBlocks (page 1001)
Sets the text blocks containing the paragraph, nested from outermost to innermost to array.

setTextLists (page 1001)

Controlling Hyphenation and Truncation

setHyphenationFactor (page 997)
Specifies the threshold for hyphenation.

994 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

setTighteningFactorForTruncation (page 1001)
Specifies the threshold for using tightening as an alternative to truncation.

Setting HTML Header Level

setHeaderLevel (page 997)
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

Constructors

NSMutableParagraphStyle
Creates an empty NSMutableParagraphStyle.

public NSMutableParagraphStyle()

Instance Methods

addTabStop
Adds tabStop to the receiver.

public void addTabStop(NSTextTab tabStop)

See Also
removeTabStop (page 995)
setTabStops (page 1000)
tabStops (page 1064) (NSParagraphStyle)

removeTabStop
Removes the first text tab whose location and type are equal to those of tabStop.

public void removeTabStop(NSTextTab tabStop)

See Also
addTabStop (page 995)
setTabStops (page 1000)
tabStops (page 1064) (NSParagraphStyle)

setAlignment
Sets the alignment of the receiver to alignment.

Constructors 995
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

public void setAlignment(int alignment)

Discussion
alignment may be one of:

NSText.LeftTextAlignment

NSText.RightTextAlignment

NSText.CenterTextAlignment

NSText.JustifiedTextAlignment

NSText.NaturalTextAlignment

See Also
alignment (page 1060) (NSParagraphStyle)

setBaseWritingDirection
Sets the base writing direction for the receiver.

public void setBaseWritingDirection(int writingDirection)

Discussion
It can be WritingDirectionNaturalDirection, WritingDirectionLeftToRight, or
WritingDirectionRightToLeft. If you specify WritingDirectionNaturalDirection, the receiver
resolves the writing direction to either WritingDirectionLeftToRight or
WritingDirectionRightToLeft, depending on the direction for the user’s language preference setting.

Availability
Available in Mac OS X v10.2 and later.

See Also
defaultWritingDirectionForLanguage (page 1060) (NSParagraphStyle)
baseWritingDirection (page 1060) (NSParagraphStyle)

setDefaultTabInterval
Sets the default tab interval for the receiver.

public void setDefaultTabInterval(float aFloat)

Discussion
Tabs after the last specified in tabStops (page 1064) are placed at integral multiples of this distance. This
value must be nonnegative.

Availability
Available in Mac OS X v10.3 and later.

See Also
defaultTabInterval (page 1061) (NSParagraphStyle)

996 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

setFirstLineHeadIndent
Sets the distance in points from the leading margin of a text container to the beginning of the paragraph’s
first line to aFloat.

public void setFirstLineHeadIndent(float aFloat)

Discussion
This value must be nonnegative.

See Also
setHeadIndent (page 997)
setTailIndent (page 1000)
firstLineHeadIndent (page 1061) (NSParagraphStyle)

setHeaderLevel
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

public void setHeaderLevel(int level)

Discussion
Should be set to 0 (the default value) if the paragraph is not a header, or from 1 through 6 if the paragraph
is to be treated as a header.

Availability
Available in Mac OS X v10.4 and later.

See Also
headerLevel (page 1061) (NSParagraphStyle)

setHeadIndent
Sets the distance in points from the leading margin of a text container to the beginning of lines other than
the first to aFloat.

public void setHeadIndent(float aFloat)

Discussion
This value must be nonnegative.

See Also
setFirstLineHeadIndent (page 997)
setTailIndent (page 1000)
headIndent (page 1062) (NSParagraphStyle)

setHyphenationFactor
Specifies the threshold for hyphenation.

public void setHyphenationFactor(float aFactor)

Instance Methods 997
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

Discussion
Valid values lie between 0.0 and 1.0 inclusive. The default value is 0.0. Hyphenation is attempted when the
ratio of the text width (as broken without hyphenation) to the width of the line fragment is less than the
hyphenation factor. When the paragraph’s hyphenation factor is 0.0, the layout manager’s hyphenation factor
is used instead. When both are 0.0, hyphenation is disabled.

Availability
Available in Mac OS X v10.4 and later.

See Also
hyphenationFactor (page 1062) (NSParagraphStyle)

setLineBreakMode
Sets the mode used to break lines in a layout container to mode.

public void setLineBreakMode(int mode)

Discussion
mode may be one of:

NSParagraphStyle.LineBreakByWordWrapping

NSParagraphStyle.LineBreakByCharWrapping

NSParagraphStyle.LineBreakByClipping

NSParagraphStyle.LineBreakByTruncatingHead

NSParagraphStyle.LineBreakByTruncatingTail

NSParagraphStyle.LineBreakByTruncatingMiddle

See the description of lineBreakMode (page 1062) in the NSParagraphStyle class specification for descriptions
of these values.

setLineHeightMultiple
Sets the line height multiple for the receiver.

public void setLineHeightMultiple(float aFloat)

Discussion
The natural line height of the receiver is multiplied by this factor before being constrained by minimum and
maximum line height. This value must be nonnegative.

Availability
Available in Mac OS X v10.3 and later.

See Also
lineHeightMultiple (page 1062) (NSParagraphStyle)

setLineSpacing
Sets the space in points added between lines within the paragraph to aFloat.

998 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

public void setLineSpacing(float aFloat)

Discussion
This value must be nonnegative.

See Also
setMaximumLineHeight (page 999)
setMinimumLineHeight (page 999)
setParagraphSpacing (page 999)
lineSpacing (page 1063) (NSParagraphStyle)

setMaximumLineHeight
Sets the maximum height that any line in the paragraph style will occupy, regardless of the font size or size
of any attached graphic, to aFloat.

public void setMaximumLineHeight(float aFloat)

Discussion
Glyphs and graphics exceeding this height will overlap neighboring lines; however, a maximum height of 0
implies no line height limit. This value must be nonnegative.

Although this limit applies to the line itself, line spacing adds extra space between adjacent lines.

See Also
setMinimumLineHeight (page 999)
setLineSpacing (page 998)
maximumLineHeight (page 1063) (NSParagraphStyle)

setMinimumLineHeight
Sets the minimum height that any line in the paragraph style will occupy, regardless of the font size or size
of any attached graphic, to aFloat.

public void setMinimumLineHeight(float aFloat)

Discussion
This value must be nonnegative.

See Also
setMaximumLineHeight (page 999)
setLineSpacing (page 998)
minimumLineHeight (page 1063) (NSParagraphStyle)

setParagraphSpacing
Sets the space added at the end of the paragraph to separate it from the following paragraph to aFloat.

public void setParagraphSpacing(float aFloat)

Instance Methods 999
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

Discussion
This value must be nonnegative.

See Also
setLineSpacing (page 998)
paragraphSpacing (page 1064) (NSParagraphStyle)

setParagraphSpacingBefore
Sets the distance between the paragraph’s top and the beginning of its text content

public void setParagraphSpacingBefore(float aFloat)

Discussion
. This value must be nonnegative.

Availability
Available in Mac OS X v10.3 and later.

See Also
setParagraphSpacing (page 999)
paragraphSpacingBefore (page 1064) (NSParagraphStyle)

setParagraphStyle
Replaces the subattributes of the receiver with those in aStyle.

public void setParagraphStyle(NSParagraphStyle aStyle)

setTabStops
Replaces the tab stops in the receiver with tabStops.

public void setTabStops(NSArray tabStops)

See Also
addTabStop (page 995)
removeTabStop (page 995)
tabStops (page 1064) (NSParagraphStyle)

setTailIndent
Sets the distance in points from the margin of a text container to the end of lines to aFloat.

public void setTailIndent(float aFloat)

Discussion
If positive, this is the distance from the leading margin (for example, the left margin in left-to-right text). That
is, it’s the absolute line width. If 0 or negative, it’s the distance from the trailing margin—the value is added
to the line width.

1000 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

For example, to create a paragraph style that fits exactly in a 2-inch wide container, set its head indent to
0.0 and its tail indent to 0.0. To create a paragraph style with quarter-inch margins, set its head indent to
0.25 and its tail indent to –0.25.

See Also
setHeadIndent (page 997)
setFirstLineHeadIndent (page 997)
tailIndent (page 1065) (NSParagraphStyle)

setTextBlocks
Sets the text blocks containing the paragraph, nested from outermost to innermost to array.

public void setTextBlocks(NSArray array)

Availability
Available in Mac OS X v10.4 and later.

See Also
textBlocks (page 1065) (NSParagraphStyle)

setTextLists
public void setTextLists(NSArray array)

Discussion
Sets the text lists containing the paragraph, nested from outermost to innermost, to array.

Availability
Available in Mac OS X v10.4 and later.

See Also
textLists (page 1065) (NSParagraphStyle)

setTighteningFactorForTruncation
Specifies the threshold for using tightening as an alternative to truncation.

public void setTighteningFactorForTruncation(float aFactor)

Discussion
When the line break mode specifies truncation, the text system attempts to tighten intercharacter spacing
as an alternative to truncation, provided that the ratio of the text width to the line fragment width does not
exceed 1.0 + the value returned by tighteningFactorForTruncation (page 1065). Otherwise the text is
truncated at a location determined by the line break mode. This method accepts positive and negative values,
excluding 0. The default value is 0.05.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1001
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

See Also
tighteningFactorForTruncation (page 1065) (NSParagraphStyle)

1002 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMutableParagraphStyle

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Resource Programming Guide

Overview

Instances of the NSNib class serve as object wrappers, or containers, for Interface Builder nib files. An NSNib
object keeps the contents of a nib file resident in memory, ready for unarchiving and instantiation.

When you create an NSNib instance from a nib file, the object loads the contents of the referenced nib
bundle—the object graph as well as any images and sounds—into memory; but it does not yet unarchive
it. To unarchive all of the nib data and thus truly instantiate the nib you must call an NSNib instantiate...
method.

During the instantiation process, each object in the archive is unarchived and then initialized with the method
befitting its type. View classes are initialized using their initWithFrame: method. Custom objects are
initialized using their init method. In the case of Cocoa views (and custom views that have options on an
associated Interface Builder palette) the initialization process also reads in any values set by the user in
Interface Builder.

Once all objects have been instantiated and initialized from the archive, the nib loading code attempts to
reestablish the connections between each object’s outlets and the corresponding target objects. If your
custom objects have outlets, NSNib attempts to reestablish any connections you created in Interface Builder.
It starts by trying to establish the connections using your object’s own methods first. For each outlet that
needs a connection, NSNib looks for a method of the form setOutletName: in your object. If that method
exists, NSNib calls it, passing the target object as a parameter. If you did not define a setter method with that
exact name, NSNib searches the object for an instance variable (of type IBOutlet id) with the corresponding
outlet name and tries to set its value directly. If an instance variable with the correct name cannot be found,
initialization of that connection does not occur.

Overview 1003
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 71

NSNib

Subclassing Notes

You can subclass NSNib if you want to extend or specialize nib-loading behavior. For example, you could
create a custom NSNib subclass that performs some post-processing on the top-level objects returned from
the instantiateNib... methods. If you want to modify how nib instantiations are performed, it is
recommended that you override the primitive method instantiateNibWithExternalNameTable (page
1005). Note that the instance variables of NSNib are private and thus are not available to subclasses.

Tasks

Constructors

NSNib (page 1004)
Creates and returns an empty NSNib.

Instantiating a Nib

instantiateNibWithOwner (page 1005)
Unarchives and instantiates the in-memory contents of the nib file represented by the receiver, creating
a distinct object tree and top level objects.

instantiateNibWithExternalNameTable (page 1005)
Unarchives and instantiates the in-memory contents of the nib file represented by the receiver, creating
a distinct object tree and top level objects.

Constructors

NSNib
Creates and returns an empty NSNib.

public NSNib()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSNib representing the nib file located at nibFileURL.

public NSNib(java.net.URL nibFileURL)

Discussion
Because this constructor does not associate the nib file with a bundle, the owner’s bundle, if specified, is
used for the resource map during nib instantiation. If no owner is specified, the application’s main bundle is
used instead. Returns null if it cannot locate the nib file or if there are any other errors during creation.

1004 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 71

NSNib

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSNib representing a nib file named nibName in the specified bundle, bundle.

public NSNib(String nibName, NSBundle bundle)

Discussion
If bundle is null, this constructor looks for the nib file in the main bundle. NSNib uses this bundle for its
resource map during instantiation. Returns null if it cannot locate the nib file or if there are any other errors
during creation.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

instantiateNibWithExternalNameTable
Unarchives and instantiates the in-memory contents of the nib file represented by the receiver, creating a
distinct object tree and top level objects.

public boolean instantiateNibWithExternalNameTable(NSDictionary externalNameTable)

Discussion
The sole argument, externalNameTable, may contain the nib file’s owner and, optionally, an NSMutableArray
object that will be populated with the top-level objects of the object tree upon return. With this method you
may instantiate a nib file multiple times. Each instantiation of the nib must have a distinct owner object that
is responsible for the resulting object tree. This is the primitive method for performing instantiations of a nib
file.

Returns true if the nib was successfully instantiated.

The possible keys and values for externalNameTable are described in “Constants” (page 1006).

Availability
Available in Mac OS X v10.3 and later.

instantiateNibWithOwner
Unarchives and instantiates the in-memory contents of the nib file represented by the receiver, creating a
distinct object tree and top level objects.

public boolean instantiateNibWithOwner(Object owner, NSMutableArray topLevelObjects)

Discussion
The object owning the nib file must be specified in owner. If topLevelObjects is non-null, it points to,
upon return, an array of the top-level objects of the instantiated object tree. With this method you may
instantiate a nib file multiple times. This is a convenience method that composes the name-table dictionary
and invokes the instantiateNibWithExternalNameTable (page 1005), passing it the name table.

Instance Methods 1005
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 71

NSNib

Returns true if the nib was successfully instantiated.

Availability
Available in Mac OS X v10.3 and later.

Constants

NSNib defines the following constants which are used as keys in the dictionary passed to
instantiateNibWithExternalNameTable (page 1005):

DescriptionConstant

The external object that is responsible for the instantiated nib (File's Owner).NibOwner

An NSMutableArray object that, if present, is populated with the top-level objects of
the newly instantiated nib.

TopLevelObjects

1006 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 71

NSNib

Inherits from NSController : NSObject

Implements NSCoding (NSController)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guides Cocoa Bindings Programming Topics
Predicate Programming Guide
Core Data Programming Guide

Overview

NSObjectController is a Cocoa bindings compatible controller class. Properties of the content object of an
instance of this class can be bound to user interface elements to access and modify their values.

By default the content object of an NSObjectController instance is NSMutableDictionary. This allows a single
NSObjectController instance to be used to manage many different properties referenced by key value paths.
The default content object class can be changed by calling setObjectClass (page 1017), which subclassers
must override.

Tasks

Constructors

NSObjectController (page 1009)
Creates and returns an empty NSObjectController.

Managing Content

setContent (page 1016)
Set’s the receiver’s content object to content.

content (page 1011)
Returns the receiver’s content object.

Overview 1007
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

setAutomaticallyPreparesContent (page 1015)
Sets whether the receiver creates and inserts new content objects automatically when loading from
a nib file.

automaticallyPreparesContent (page 1010)
Returns true if the receiver invokes prepareContent (page 1014) automatically when the receiver is
loaded from a nib.

prepareContent (page 1014)
Typically overridden by subclasses that require additional control over the creation of new objects.

Setting the Content Class

setObjectClass (page 1017)
Sets the object class used when creating new objects.

objectClass (page 1013)
Returns the class used when creating new objects.

Managing Objects

managedObjectContext (page 1013)
Returns the receiver’s managed object context.

newObject (page 1013)
Creates and returns a new object of the class specified by objectClass (page 1013).

addObject (page 1010)
Sets object as the receiver’s content object.

removeObject (page 1014)
If object is the receiver’s content object, the receiver’s content is set to null.

add (page 1010)
Creates a new object of the class specified by objectClass (page 1013) and sets it as the receiver’s
content object using addObject (page 1010).

canAdd (page 1011)
Returns true if an object can be added to the receiver using add (page 1010).

remove (page 1014)
Removes the receiver’s content object using removeObject (page 1014).

canRemove (page 1011)
Returns true if an object can be removed from the receiver using remove (page 1014).

Managing Entity Names

entityName (page 1012)
Returns the entity name used by the receiver to create new objects.

setEntityName (page 1016)
Sets the receiver’s entity name to entityName.

1008 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

Managing Editing

setEditable (page 1016)
Sets whether the receiver allows adding and removing objects.

isEditable (page 1012)
Returns true if the receiver allows adding and removing objects.

Managing Fetch Predicates

setFetchPredicate (page 1017)
Sets the receiver’s fetch predicate to predicate.

Core Data Object Contexts

setManagedObjectContext (page 1017)
Sets the receiver’s managed object context to managedObjectContext.

fetch (page 1012)
Causes the receiver to fetch the data objects specified by the entity name and fetch predicate.

Obtaining Selections

selectedObjects (page 1015)
Returns an array of all objects to be affected by editing.

selection (page 1015)
Returns a proxy object representing the receiver’s selection.

Validating Menu Items

validateMenuItem (page 1017)
Validates menu item anItem, returning true if it should be enabled, false otherwise.

Constructors

NSObjectController
Creates and returns an empty NSObjectController.

public NSObjectController()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSObjectController with the specified content.

Constructors 1009
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

public NSObjectController(Object content)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

add
Creates a new object of the class specified by objectClass (page 1013) and sets it as the receiver’s content
object using addObject (page 1010).

public void add(Object sender)

Discussion
The sender is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
canAdd (page 1011)
remove (page 1014)

addObject
Sets object as the receiver’s content object.

public void addObject(Object object)

Discussion
If the receiver's content is bound to another object or controller through a relationship key, the relationship
of the “master” object is changed.

Availability
Available in Mac OS X v10.3 and later.

See Also
removeObject (page 1014)

automaticallyPreparesContent
Returns true if the receiver invokes prepareContent (page 1014) automatically when the receiver is loaded
from a nib.

public boolean automaticallyPreparesContent()

1010 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

Discussion
If the receiver has a mananged object context set, it automatically fetches data from the managed object
context using the current fetch predicate. The default is true..

Availability
Available in Mac OS X v10.3 and later.

See Also
setAutomaticallyPreparesContent (page 1015)
prepareContent (page 1014)

canAdd
Returns true if an object can be added to the receiver using add (page 1010).

public boolean canAdd()

Discussion
Bindings can use this method to control the enabling of user interface objects.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
canRemove (page 1011)
add (page 1010)

canRemove
Returns true if an object can be removed from the receiver using remove (page 1014).

public boolean canRemove()

Discussion
Bindings can use this method to control the enabling of user interface objects.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
canAdd (page 1011)
remove (page 1014)

content
Returns the receiver’s content object.

Instance Methods 1011
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

public Object content()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setContent (page 1016)

entityName
Returns the entity name used by the receiver to create new objects.

public NSString entityName()

Availability
Available in Mac OS X v10.4 and later.

See Also
setEntityName (page 1016)

fetch
Causes the receiver to fetch the data objects specified by the entity name and fetch predicate.

public void fetch(Object sender)

Availability
Available in Mac OS X v10.4 and later.

See Also
setFetchPredicate (page 1017)

isEditable
Returns true if the receiver allows adding and removing objects.

public boolean isEditable()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setEditable (page 1016)

1012 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

managedObjectContext
Returns the receiver’s managed object context.

public NSManagedObjectContext managedObjectContext()

Availability
Available in Mac OS X v10.4 and later.

See Also
setManagedObjectContext (page 1017)

newObject
Creates and returns a new object of the class specified by objectClass (page 1013).

public Object newObject()

Discussion
This method is called when adding and inserting objects if setAutomaticallyPreparesContent (page
1015) is true.

The default implementation assumes the class returned byobjectClass (page 1013) has a standard initialization
method.

Availability
Available in Mac OS X v10.3 and later.

See Also
setObjectClass (page 1017)
objectClass (page 1013)

objectClass
Returns the class used when creating new objects.

public Class objectClass()

Discussion
The default class is NSMutableDictionary.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setObjectClass (page 1017)
managedObjectContext (page 1013)

Instance Methods 1013
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

prepareContent
Typically overridden by subclasses that require additional control over the creation of new objects.

public void prepareContent()

Discussion
Subclasses that implement this method are responsible for creating the new content object and setting it
as the receiver’s content object. This method is only called if setAutomaticallyPreparesContent (page
1015) has been set to true.

Availability
Available in Mac OS X v10.3 and later.

See Also
automaticallyPreparesContent (page 1010)
setAutomaticallyPreparesContent (page 1015)

remove
Removes the receiver’s content object using removeObject (page 1014).

public void remove(Object sender)

Discussion
The sender is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
canRemove (page 1011)
add (page 1010)

removeObject
If object is the receiver’s content object, the receiver’s content is set to null.

public void removeObject(Object object)

Discussion
If the receiver's content is bound to another object or controller through a relationship key, the relationship
of the ‘master’ object is cleared.

Availability
Available in Mac OS X v10.3 and later.

See Also
addObject (page 1010)

1014 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

selectedObjects
Returns an array of all objects to be affected by editing.

public NSArray selectedObjects()

Discussion
If the receiver supports a selection mechanism the array contains key value coding compliant proxies of the
selected objects; otherwise proxies for all content objects are returned. If the receiver is a concrete instance
of NSObjectController, returns an array containing the receiver’s content object.

You should avoid registering for key-value observing changes for key paths that pass through this method,
that is selectedObjects.firstName. Using the proxy returned by the selection (page 1015) method is
better for performance.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
selection (page 1015)

selection
Returns a proxy object representing the receiver’s selection.

public Object selection()

Discussion
If a value requested from the selection proxy using key-value coding returns multiple objects, the controller
has no selection, or the proxy is not key-value coding compliant for the requested key, the appropriate marker
(MultipleValuesMarker, NoSelectionMarker or NotApplicableMarker) is returned. Otherwise, the
value of the key is returned. This proxy is fully key-value coding compliant.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectedObjects (page 1015)

setAutomaticallyPreparesContent
Sets whether the receiver creates and inserts new content objects automatically when loading from a nib
file.

public void setAutomaticallyPreparesContent(boolean flag)

Discussion
If flag is true and the receiver is not using a managed object context, prepareContent (page 1014) is used
to create the content object. If flag is true and a managed object context is set, the initial content is fetched
from the managed object context using the current fetch predicate.

Instance Methods 1015
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

Setting flag to true is the same as checking the “Automatically Prepares Content” option in the Interface
Builder controller inspector.

Availability
Available in Mac OS X v10.3 and later.

See Also
automaticallyPreparesContent (page 1010)
prepareContent (page 1014)

setContent
Set’s the receiver’s content object to content.

public void setContent(Object content)

Availability
Available in Mac OS X v10.3 and later.

See Also
content (page 1011)

setEditable
Sets whether the receiver allows adding and removing objects.

public void setEditable(boolean flag)

Discussion
The default is true.

Availability
Available in Mac OS X v10.3 and later.

See Also
isEditable (page 1012)

setEntityName
Sets the receiver’s entity name to entityName.

public void setEntityName(NSString entityName)

Availability
Available in Mac OS X v10.4 and later.

See Also
entityName (page 1012)

1016 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

setFetchPredicate
Sets the receiver’s fetch predicate to predicate.

public void setFetchPredicate(NSPredicate predicate)

Availability
Available in Mac OS X v10.4 and later.

See Also
fetch (page 1012)

setManagedObjectContext
Sets the receiver’s managed object context to managedObjectContext.

public void setManagedObjectContext(NSManagedObjectContext managedObjectContext)

Availability
Available in Mac OS X v10.4 and later.

See Also
managedObjectContext (page 1013)

setObjectClass
Sets the object class used when creating new objects.

public void setObjectClass(Class objectClass)

Discussion
NSObjectController’s default implementation assumes that instances of objectClass are initialized using a
method that takes no arguments.

Availability
Available in Mac OS X v10.3 and later.

See Also
objectClass (page 1013)
managedObjectContext (page 1013)

validateMenuItem
Validates menu item anItem, returning true if it should be enabled, false otherwise.

public boolean validateMenuItem(_NSObsoleteMenuItemProtocol anItem)

Discussion
For example, if canAdd (page 1011) returns false, menu items with the add action and the receiver as the
target object are disabled.

Instance Methods 1017
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

Availability
Available in Mac OS X v10.3 and later.

1018 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 72

NSObjectController

Inherits from NSSavePanel : NSPanel : NSWindow : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Application File Management
Sheet Programming Topics for Cocoa

Overview

NSOpenPanel provides the Open panel for the Cocoa user interface. Applications use the Open panel as a
convenient way to query the user for the name of a file to open. The Open panel can only be run modally.

Tasks

Constructors

NSOpenPanel (page 1021)
Creates an empty NSOpenPanel.

Obtaining

openPanel (page 1022)
Creates and returns a new NSOpenPanel object.

Running the Panel

beginForDirectory (page 1023)
Presents a modeless Open panel.

beginSheetForDirectory (page 1023)
Presents a sheet Open panel on a given window, docWindow.

runModalInDirectory (page 1025)
Displays the receiver and begins a modal event loop that is terminated when the user clicks either
OK or Cancel, resulting in the return of NSPanel.OKButton or NSPanel.CancelButton, respectively.

Overview 1019
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

runModalForTypes (page 1024)
Invokes the runModalInDirectory (page 1025) method, using null for both the filename and
directory arguments.

Getting the User Selection

filenames (page 1024)
Returns an array containing the absolute paths (as String objects) of the selected files and directories.

URLs (page 1026)
Returns an array containing the absolute paths of the selected files and directories as URLs.

Specifying the File Types

allowedFileTypes (page 1022)
Returns an array of the allowed file types.

setAllowedFileTypes (page 1025)
Specifies the allowed file types for the receiver.

Allowing Browser Selections

setCanChooseFiles (page 1026)
Sets whether the user can select files in the receiver’s browser.

canChooseFiles (page 1024)
Returns whether the receiver allows the user to choose files to open.

setCanChooseDirectories (page 1026)
Sets whether the user can select directories in the receiver’s browser.

canChooseDirectories (page 1024)
Returns whether the receiver allows the user to choose directories to open.

setResolvesAliases (page 1026)
Sets whether the receiver resolves aliases to resolvesAliases.

resolvesAliases (page 1024)
Returns whether the receiver resolves aliases.

Allowing Multiple Selections

setAllowsMultipleSelection (page 1025)
Sets whether the user can select multiple files (and directories) at one time for opening to flag.

allowsMultipleSelection (page 1022)
Returns whether the receiver’s browser allows the user to open multiple files (and directories) at a
time.

1020 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

Constructors

NSOpenPanel
Creates an empty NSOpenPanel.

public NSOpenPanel()

Creates a new NSOpenPanel.

public NSOpenPanel(NSRect contentRect, int styleMask, int backingType, boolean
flag)

Discussion
The contentRect argument specifies the location and size of the panel’s content area in screen coordinates.
Note that the Window Server limits window position coordinates to ±16,000 and sizes to 10,000.

The styleMask argument specifies the panel’s style. Either it can be NSWindow.BorderlessWindowMask,
or it can contain any of the options described in NSWindow’s “Constants” (page 1875), combined using the C
bitwise OR operator.

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSWindow.TitledWindowMask if it includes any of the others.

The backingType argument specifies how the drawing done in the panel is buffered by the object’s window
device, and possible values are described in NSWindow’s “Constants” (page 1875).

The flag argument determines whether the window server creates a window device for the new panel
immediately. If flag is true, it defers creating the window until the panel is moved onscreen. All display
messages sent are postponed until the panel is created, just before it’s moved onscreen. Deferring the creation
of the window improves launch time and minimizes the virtual memory load on the window server.

The new panel creates an instance of NSView to be its default content view. You can replace it with your
own object by using the setContentView (page 1858) method.

Creates a new NSOpenPanel.

public NSOpenPanel(NSRect contentRect, int styleMask, int backingType, boolean
flag, NSScreen aScreen)

Discussion
This constructor is equivalent to NSOpenPanel (page 1021) except contentRect is specified relative to the
lower-left corner of aScreen.

If aScreen is null, contentRect is interpreted relative to the lower-left corner of the main screen. The
main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

Constructors 1021
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

Static Methods

openPanel
Creates and returns a new NSOpenPanel object.

public static NSOpenPanel openPanel()

Discussion
The open panel has been initialized with default values.

Instance Methods

allowedFileTypes
Returns an array of the allowed file types.

public NSArray allowedFileTypes()

Discussion
File type strings encoding HFS file types are valid values for this attribute. A null return value, which is the
default, indicates that all file types are allowed.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAllowedFileTypes (page 1025)

allowsMultipleSelection
Returns whether the receiver’s browser allows the user to open multiple files (and directories) at a time.

public boolean allowsMultipleSelection()

Discussion
If multiple files or directories are allowed, then the filename (page 1235) method—inherited from
NSSavePanel—returns a non-null value only if one and only one file is selected. By contrast, NSOpenPanel’s
filenames (page 1024) method always returns the selected files, even if only one file is selected.

See Also
filename (page 1235) (NSSavePanel)
filenames (page 1024)
setAllowsMultipleSelection (page 1025)

1022 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

beginForDirectory
Presents a modeless Open panel.

public void beginForDirectory(String path, String filename, NSArray fileTypes,
Object modelessDelegate, NSSelector didEndSelector, Object contextInfo)

Discussion
Similar to beginSheetForDirectory (page 1023), but allows for modeless operation of the panel.

The receiver displays the files in directory (an absolute directory path), and allows selections of ones that
match the types in fileTypes (an NSArray of file extensions and/or HFS file types). If directory is null
the directory is the same directory used in the previous invocation of the panel. Passing null for directory
is probably the best choice for most situations. If all files in a directory should be selectable in the browser,
fileTypes should be null. The filename argument specifies a particular file in directory that is selected
when the Open panel is presented to the user; otherwise, filename should be null. When the panel
operation is ended, didEndSelector is invoked on the modelessDelegate, passing contextInfo as an
argument. modelessDelegate is not the same as a delegate assigned to the panel. This delegate is temporary
and the relationship only lasts until the panel is dismissed.

didEndSelector should have the following signature:

void openPanelDidEnd(NSOpenPanel panel, int returnCode, void contextInfo)

The value passed as returnCode will be either NSPanel.CancelButton or NSPanel.OKButton.

Availability
Available in Mac OS X v10.3 and later.

beginSheetForDirectory
Presents a sheet Open panel on a given window, docWindow.

public void beginSheetForDirectory(String directory, String filename, NSArray
fileTypes, NSWindow docWindow, Object modalDelegate, NSSelector didEndSelector,
Object contextInfo)

Discussion
The receiver displays the files in directory (an absolute directory path), and allows selection of ones that
match the types in fileTypes (an NSArray of file extensions and/or HFS file types). If directory is null
the directory is the same directory used in the previous invocation of the panel. Passing null for directory
is probably the best choice for most situations. If all files in a directory should be selectable in the browser,
fileTypes should be null. The filename argument specifies a particular file in directory that is selected
when the Open panel is presented to the user; otherwise, filename should be null. When the modal session
is ended, didEndSelector is invoked on the modalDelegate, passing contextInfo as an argument.
modalDelegate is not the same as a delegate assigned to the panel. Modal delegates in sheets are temporary
and the relationship only lasts until the sheet is dismissed.

didEndSelector should have the following signature:

public void openPanelDidEnd (NSOpenPanel sheet, int returnCode, Object
contextInfo)

The value passed as returnCode will be either NSPanel.CancelButton or NSPanel.OKButton.

Instance Methods 1023
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

canChooseDirectories
Returns whether the receiver allows the user to choose directories to open.

public boolean canChooseDirectories()

See Also
setCanChooseDirectories (page 1026)

canChooseFiles
Returns whether the receiver allows the user to choose files to open.

public boolean canChooseFiles()

See Also
setCanChooseFiles (page 1026)

filenames
Returns an array containing the absolute paths (as String objects) of the selected files and directories.

public NSArray filenames()

Discussion
If multiple selections aren’t allowed, the array contains a single name. The filenames method is preferable
over NSSavePanel’s filename (page 1235) to get the name or names of files and directories that the user has
selected.

See Also
URLs (page 1026)

resolvesAliases
Returns whether the receiver resolves aliases.

public boolean resolvesAliases()

Discussion
If true, the effect is that dropping an alias on the receiver or asking for filenames or URLs returns the resolved
aliases. The default is true.

See Also
setResolvesAliases (page 1026)

runModalForTypes
Invokes the runModalInDirectory (page 1025) method, using null for both the filename and directory
arguments.

public int runModalForTypes(NSArray fileTypes)

1024 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

Discussion
See the description ofrunModalInDirectory (page 1025) for details. ThefileTypes argument is an NSArray
containing the extensions of files to be selectable in the browser. Returns NSPanel.OKButton (if the user
clicks the OK button) or NSPanel.CancelButton (if the user clicks the Cancel button).

runModalInDirectory
Displays the receiver and begins a modal event loop that is terminated when the user clicks either OK or
Cancel, resulting in the return of NSPanel.OKButton or NSPanel.CancelButton, respectively.

public int runModalInDirectory(String directory, String filename, NSArray fileTypes)

Discussion
The receiver displays the files in directory (an absolute directory path), and allows selection of ones that
match the types in fileTypes (an NSArray of file extensions and/or HFS file types). If directory is null
the directory is the same directory used in the previous invocation of the panel. Passing null for directory
is probably the best choice for most situations. If all files in a directory should be selectable in the browser,
fileTypes should be null. You can control whether directories and files appear in the browser with the
setCanChooseDirectories (page 1026) and setCanChooseFiles (page 1026) methods. The filename
argument specifies a particular file in directory that is selected when the Open panel is presented to the
user; otherwise, filename should be null.

If window is not null, the Open panel slides down as a sheet running as a document modal window. If
window is null, the behavior defaults to a standalone modal panel.

public int runModalInDirectory(String directory, String filename, NSArray fileTypes,
NSWindow window)

See Also
runModalForTypes (page 1024)

setAllowedFileTypes
Specifies the allowed file types for the receiver.

public void setAllowedFileTypes(NSArray types)

Discussion
types may not be empty. The items in types should not include the period that begins the extension. File
type strings encoding HFS file types are valid values. Pass null, to allow any file type, which is the default.

Availability
Available in Mac OS X v10.3 and later.

See Also
allowedFileTypes (page 1022)

setAllowsMultipleSelection
Sets whether the user can select multiple files (and directories) at one time for opening to flag.

public void setAllowsMultipleSelection(boolean flag)

Instance Methods 1025
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

See Also
allowsMultipleSelection (page 1022)

setCanChooseDirectories
Sets whether the user can select directories in the receiver’s browser.

public void setCanChooseDirectories(boolean flag)

Discussion
When a directory is selected, the OK button is enabled only if flag is true.

See Also
canChooseDirectories (page 1024)

setCanChooseFiles
Sets whether the user can select files in the receiver’s browser.

public void setCanChooseFiles(boolean flag)

See Also
canChooseFiles (page 1024)

setResolvesAliases
Sets whether the receiver resolves aliases to resolvesAliases.

public void setResolvesAliases(boolean resolvesAliases)

Discussion
If true, the effect is that dropping an alias on the receiver or asking for filenames or URLs returns the resolved
aliases. Set this value to false to allow selection of aliases without resolving.

See Also
resolvesAliases (page 1024)

URLs
Returns an array containing the absolute paths of the selected files and directories as URLs.

public NSArray URLs()

Discussion
If multiple selections aren’t allowed, the array contains a single name.

See Also
filenames (page 1024)

1026 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 73

NSOpenPanel

Inherits from NSTableView : NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Outline View Programming Topics for Cocoa
Drag and Drop Programming Topics for Cocoa

Class at a Glance

An NSOutlineView object uses a row-and-column format to display hierarchical data that can be expanded
and collapsed, such as directories and files in a file system. A user can expand and collapse rows, edit values,
and resize and rearrange columns.

Principal Attributes

 ■ Expands and collapses rows.

 ■ Works with NSTableView.

 ■ Requires that each item in the outline view be unique.

 ■ Gets data from object you provide.

 ■ Retrieves only data that needs to be displayed.

 ■ Uses a delegate.

Commonly Used Methods

numberOfRows (page 1460)
Returns the number of rows in the NSOutlineView (inherited from NSTableView).

collapseItem (page 1032)
Causes an item to be collapsed.

expandItem (page 1033)
Causes an item to be expanded.

reloadItemAndChildren (page 1035)
Informs the NSOutlineView that data for an item has changed and needs to be retrieved and
redisplayed.

Class at a Glance 1027
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Overview

An NSOutlineView is a subclass of NSTableView that lets the user expand or collapse rows that contain
hierarchical data.

Also see the NSOutlineView.DataSource (page 2013) interface, which declares the methods that an NSOutlineView
uses to access the contents of its data source object.

Tasks

Constructors

NSOutlineView (page 1032)
Creates an NSOutlineView with a zero-sized frame rectangle.

Expanding and Collapsing the Outline

isExpandable (page 1034)
Returns true if item is expandable—that is, item can contain other items.

expandItem (page 1033)
Expands item if item is expandable and is not already expanded; otherwise, does nothing.

expandItemAndChildren (page 1033)

collapseItem (page 1032)
Collapses item if item is expanded and expandable; otherwise does nothing.

collapseItemAndChildren (page 1033)

isItemExpanded (page 1034)
Returns true if item is expanded.

Redisplaying Information

reloadItem (page 1035)
Reloads and redisplays the data for item.

reloadItemAndChildren (page 1035)

Converting Between Items and Rows

itemAtRow (page 1034)
Returns the item associated with row.

1028 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

rowForItem (page 1036)
Returns the row associated with item.

Setting the Outline Column

setOutlineTableColumn (page 1037)
Sets the table column in which hierarchical data is displayed to outlineTableColumn.

outlineTableColumn (page 1035)
Returns the table column in which hierarchical data is displayed.

setAutoresizesOutlineColumn (page 1036)
Sets whether the receiver automatically resizes its outline column when the user expands or collapses
an item to resize.

autoresizesOutlineColumn (page 1032)
Returns whether the receiver automatically resizes its outline column when the user expands or
collapses items.

Setting the Indentation

levelForItem (page 1034)
Returns the indentation level for item.

levelForRow (page 1035)
Returns the indentation level for row.

setIndentationPerLevel (page 1037)
Sets indentation per level, in points, to newIndentLevel.

indentationPerLevel (page 1034)
Returns the current indentation per level, in points.

setIndentationMarkerFollowsCell (page 1037)
Sets whether the indentation marker symbol displayed in the outline column should be indented
along with the cell contents, or always displayed left-justified in the column.

indentationMarkerFollowsCell (page 1033)
Returns whether the indentation marker symbol displayed in the outline column should be indented
along with the cell contents, or always displayed left-justified in the column.

Persistence

autosaveExpandedItems (page 1032)
Returns whether the expanded items in the receiver are automatically saved.

setAutosaveExpandedItems (page 1036)
Sets whether the expanded items in the receiver are automatically saved.

Tasks 1029
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Dragging and Dropping

setDropItemAndDropChildIndex (page 1036)
Used to “retarget” a proposed drop.

shouldCollapseAutoExpandedItemsForDeposited (page 1037)
Returns true to indicate that autoexpanded items should return to their original collapsed state.

Collapsing and expanding items

outlineViewShouldCollapseItem (page 1041) delegate method
Returns true to permit outlineView to collapse item, false to deny permission.

outlineViewItemWillCollapse (page 1040) delegate method
Invoked when notification is posted—that is, whenever the user is about to collapse an item in
the outline view.

outlineViewItemDidCollapse (page 1039) delegate method
Invoked when notification is posted—that is, whenever the user collapses an item in the outline
view.

outlineViewShouldExpandItem (page 1041) delegate method
Returns true to permit outlineView to expand item, false to deny permission.

outlineViewItemWillExpand (page 1040) delegate method
Invoked when notification is posted—that is, whenever the user is about to expand an item in
the outline view.

outlineViewItemDidExpand (page 1039) delegate method
Invoked when notification is posted—that is, whenever the user expands an item in the outline
view.

Selecting

outlineViewShouldSelectTableColumn (page 1041) delegate method
Returns true to permit outlineView to select tableColumn, false to deny permission.

outlineViewShouldSelectItem (page 1041) delegate method
Returns true to permit outlineView to select item, false to deny permission.

selectionShouldChangeInOutlineView (page 1042) delegate method
Returns true to permit outlineView to change its selection (typically a row being edited), false
to deny permission.

outlineViewSelectionIsChanging (page 1040) delegate method
Invoked when notification is posted—that is, whenever the outline view’s selection changes.

outlineViewSelectionDidChange (page 1040) delegate method
Invoked when notification is posted—that is, immediately after the outline view’s selection has
changed.

1030 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Displaying cells

outlineViewWillDisplayCell (page 1042) delegate method
Informs the delegate that outlineView is about to display the cell specified by tableColumn and
item.

outlineViewWillDisplayOutlineCellForTableColumn (page 1042) delegate method
Informs the delegate that outlineView is about to display cell (the cell used to draw the expansion
symbol) for the column and item specified by tableColumn and item.

outlineViewToolTipForCell (page 1042) delegate method
When the cursor pauses over a cell, identified by cell, the value returned from this method is displayed
in a tooltip.

Moving and resizing columns

outlineViewColumnDidMove (page 1038) delegate method
Invoked when notification is posted—that is, whenever the user moves a column in the outline
view.

outlineViewColumnDidResize (page 1038) delegate method
Invoked when notification is posted—that is, whenever the user resizes a column in the outline
view.

Editing columns

outlineViewShouldEditTableColumn (page 1041) delegate method
Returns true to permit outlineView to edit the cell specified by tableColumn and item, false
to deny permission.

Working with table columns

outlineViewMouseDownInHeaderOfTableColumn (page 1040) delegate method
Sent to the delegate whenever the mouse button is clicked in outlineView while the cursor is in a
column header tableColumn.

outlineViewDidClickTableColumn (page 1038) delegate method
Sent at the time the mouse button subsequently goes up in outlineView and tableColumn has
been “clicked” without having been dragged anywhere.

outlineViewDidDragTableColumn (page 1039) delegate method
Sent at the time the mouse button goes up in outlineView and tableColumn has been dragged
during the time the mouse button was down.

Returning row information

outlineViewHeightOfRowForItem (page 1039) delegate method
Returns the height in points of the row containing item.

Tasks 1031
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Constructors

NSOutlineView
Creates an NSOutlineView with a zero-sized frame rectangle.

public NSOutlineView()

Creates an NSOutlineView with frameRect as its frame rectangle.

public NSOutlineView(NSRect frameRect)

Instance Methods

autoresizesOutlineColumn
Returns whether the receiver automatically resizes its outline column when the user expands or collapses
items.

public boolean autoresizesOutlineColumn()

Discussion
The outline column contains the cells with the expansion symbols and is generally the first column. The
default is true (the outline column is automatically resized).

See Also
setAutoresizesOutlineColumn (page 1036)

autosaveExpandedItems
Returns whether the expanded items in the receiver are automatically saved.

public boolean autosaveExpandedItems()

Discussion
The outline view information is saved separately for each user and for each application that user uses. Note
that if autosaveName (page 1449) returns null, this setting is ignored, and outline information isn’t saved.

See Also
autosaveName (page 1449) (NSTableView)
autosaveTableColumns (page 1450) (NSTableView)
setAutosaveExpandedItems (page 1036)

collapseItem
Collapses item if item is expanded and expandable; otherwise does nothing.

1032 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

public void collapseItem(Object item)

Discussion
If collapsing takes place, posts item collapse notification.

See Also
expandItem (page 1033)

collapseItemAndChildren
public void collapseItemAndChildren(Object item, boolean collapseChildren)

Discussion
If collapseChildren is set to false, collapses item only (identical to collapseItem (page 1032)). If
collapseChildren is set to true, recursively collapses item and its children. For each item collapsed, posts
item collapsed notification.

See Also
collapseItem (page 1032)

expandItem
Expands item if item is expandable and is not already expanded; otherwise, does nothing.

public void expandItem(Object item)

Discussion
If expanding takes place, posts item expanded notification.

See Also
collapseItem (page 1032)

expandItemAndChildren
public void expandItemAndChildren(Object item, boolean expandChildren)

Discussion
If expandChildren is set to false, expands item only (identical to expandItem (page 1033)). If
expandChildren is set to true, recursively expands item and its children. For each item expanded, posts
item expanded notification.

See Also
collapseItemAndChildren (page 1033)

indentationMarkerFollowsCell
Returns whether the indentation marker symbol displayed in the outline column should be indented along
with the cell contents, or always displayed left-justified in the column.

public boolean indentationMarkerFollowsCell()

Instance Methods 1033
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Discussion
The default is true, the indentation marker is indented along with the cell contents.

See Also
setIndentationMarkerFollowsCell (page 1037)

indentationPerLevel
Returns the current indentation per level, in points.

public float indentationPerLevel()

See Also
setIndentationPerLevel (page 1037)

isExpandable
Returns true if item is expandable—that is, item can contain other items.

public boolean isExpandable(Object item)

See Also
expandItem (page 1033)
isItemExpanded (page 1034)

isItemExpanded
Returns true if item is expanded.

public boolean isItemExpanded(Object item)

See Also
expandItem (page 1033)
isExpandable (page 1034)

itemAtRow
Returns the item associated with row.

public Object itemAtRow(int row)

See Also
rowForItem (page 1036)

levelForItem
Returns the indentation level for item.

public int levelForItem(Object item)

1034 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Discussion
The levels are zero-based—that is, the first level of displayed items is level 0. If item is null (which is the
root item), –1 is returned.

See Also
indentationPerLevel (page 1034)
levelForRow (page 1035)

levelForRow
Returns the indentation level for row.

public int levelForRow(int row)

Discussion
The levels are zero-based—that is, the first level of displayed items is level 0. For an invalid row, –1 is returned.

See Also
indentationPerLevel (page 1034)
levelForItem (page 1034)

outlineTableColumn
Returns the table column in which hierarchical data is displayed.

public NSTableColumn outlineTableColumn()

See Also
setOutlineTableColumn (page 1037)

reloadItem
Reloads and redisplays the data for item.

public void reloadItem(Object item)

See Also
reloadItemAndChildren (page 1035)

reloadItemAndChildren
public void reloadItemAndChildren(Object item, boolean reloadChildren)

Discussion
If reloadChildren is set to false, reloads and redisplays the data for item only (identical to
reloadItem (page 1035)). If reloadChildren is set to true, recursively reloads and redisplays the data for
item and its children. It is not necessary, or efficient, to reload children if the item is not expanded.

See Also
reloadItem (page 1035)

Instance Methods 1035
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

rowForItem
Returns the row associated with item.

public int rowForItem(Object item)

Discussion
Returns –1 if item is null or cannot be found.

See Also
itemAtRow (page 1034)

setAutoresizesOutlineColumn
Sets whether the receiver automatically resizes its outline column when the user expands or collapses an
item to resize.

public void setAutoresizesOutlineColumn(boolean resize)

Discussion
The outline column contains the cells with the expansion symbols and is generally the first column. The
default is true (the outline column is automatically resized).

See Also
autoresizesOutlineColumn (page 1032)

setAutosaveExpandedItems
Sets whether the expanded items in the receiver are automatically saved.

public void setAutosaveExpandedItems(boolean flag)

Discussion
If flag is different from the current value, this method also reads in the saved information and sets the
outline view’s options to match.

The outline information is saved separately for each user and for each application that user uses.

If autosaveName (page 1449) returns null this setting is ignored, and expanded item information isn’t saved.

Note that you can have separate settings for autosaveExpandedItems (page 1032) and
autosaveTableColumns (page 1450), so you could, for example, save expanded item information, but not
table column positions.

See Also
autosaveExpandedItems (page 1032)
setAutosaveTableColumns (page 1469) (NSTableView)

setDropItemAndDropChildIndex
Used to “retarget” a proposed drop.

1036 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

public void setDropItemAndDropChildIndex(Object item, int index)

Discussion
For example, to specify a drop on an item I, one would specify item as I and index as DropOnItemIndex.
To specify a drop between child 2 and 3 of item I, one would specify item as I and index as 3 (children are
a zero-based index). To specify a drop on an unexpandable item I, one would specify item as I and index
as DropOnItemIndex.

setIndentationMarkerFollowsCell
Sets whether the indentation marker symbol displayed in the outline column should be indented along with
the cell contents, or always displayed left-justified in the column.

public void setIndentationMarkerFollowsCell(boolean drawInCell)

Discussion
The default is true, the indentation marker is indented along with the cell contents.

See Also
indentationMarkerFollowsCell (page 1033)

setIndentationPerLevel
Sets indentation per level, in points, to newIndentLevel.

public void setIndentationPerLevel(float newIndentLevel)

See Also
indentationPerLevel (page 1034)

setOutlineTableColumn
Sets the table column in which hierarchical data is displayed to outlineTableColumn.

public void setOutlineTableColumn(NSTableColumn outlineTableColumn)

See Also
outlineTableColumn (page 1035)

shouldCollapseAutoExpandedItemsForDeposited
Returns true to indicate that autoexpanded items should return to their original collapsed state.

public boolean shouldCollapseAutoExpandedItemsForDeposited(boolean deposited)

Discussion
Override this method to provide custom behavior. deposited tells whether or not the drop terminated due
to a successful drop.

Instance Methods 1037
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

This method is called in a variety of situations. For example, it is sent shortly after
outlineViewAcceptDrop (page 2014) is processed and also if the drag exits the outline view (exiting the
view is treated the same as a failed drop).

Constants

The following constant is provided by NSOutlineView:

DescriptionConstant

May be used as a valid child index of a drop target item. In this case, the drop will
happen directly on the target item.

DropOnItemIndex

Delegate Methods

outlineViewColumnDidMove
Invoked when notification is posted—that is, whenever the user moves a column in the outline view.

public abstract void outlineViewColumnDidMove(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewColumnDidMoveNotification (page 1043).

outlineViewColumnDidResize
Invoked when notification is posted—that is, whenever the user resizes a column in the outline view.

public abstract void outlineViewColumnDidResize(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewColumnDidResizeNotification (page
1043).

outlineViewDidClickTableColumn
Sent at the time the mouse button subsequently goes up in outlineView and tableColumn has been
“clicked” without having been dragged anywhere.

public abstract void outlineViewDidClickTableColumn(NSOutlineView outlineView,
NSTableColumn tableColumn)

Availability
Available in Mac OS X v10.3 and later.

1038 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

outlineViewDidDragTableColumn
Sent at the time the mouse button goes up in outlineView and tableColumn has been dragged during
the time the mouse button was down.

public abstract void outlineViewDidDragTableColumn(NSOutlineView outlineView,
NSTableColumn tableColumn)

Availability
Available in Mac OS X v10.3 and later.

outlineViewHeightOfRowForItem
Returns the height in points of the row containing item.

public abstract float outlineViewHeightOfRowForItem(NSOutlineView outlineView,
Object item)

Discussion
Values returned by this method should not include intercell spacing and must be greater than 0. Implement
this method to support an outline view with varying row heights.

Performance Considerations: For large tables in particular, you should make sure that this method is efficient.
NSTableView may cache the values this method returns. So if you would like to change a row's height make
sure to invalidate the row height by calling -noteHeightOfRowsWithIndexesChanged:. NSTableView
automatically invalidates its entire row height cache in -reloadData, and -noteNumberOfRowsChanged..

Availability
This method is available in Mac OS X 10.4 and later.

outlineViewItemDidCollapse
Invoked when notification is posted—that is, whenever the user collapses an item in the outline view.

public abstract void outlineViewItemDidCollapse(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewItemDidCollapseNotification (page
1043).

outlineViewItemDidExpand
Invoked when notification is posted—that is, whenever the user expands an item in the outline view.

public abstract void outlineViewItemDidExpand(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewItemDidExpandNotification (page 1043).

Delegate Methods 1039
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

outlineViewItemWillCollapse
Invoked when notification is posted—that is, whenever the user is about to collapse an item in the
outline view.

public abstract void outlineViewItemWillCollapse(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewItemWillCollapseNotification (page
1044).

outlineViewItemWillExpand
Invoked when notification is posted—that is, whenever the user is about to expand an item in the outline
view.

public abstract void outlineViewItemWillExpand(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewItemWillExpandNotification (page 1044).

outlineViewMouseDownInHeaderOfTableColumn
Sent to the delegate whenever the mouse button is clicked in outlineView while the cursor is in a column
header tableColumn.

public abstract void outlineViewMouseDownInHeaderOfTableColumn(NSOutlineView
outlineView, NSTableColumn tableColumn)

Availability
Available in Mac OS X v10.3 and later.

outlineViewSelectionDidChange
Invoked when notification is posted—that is, immediately after the outline view’s selection has changed.

public abstract void outlineViewSelectionDidChange(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewSelectionDidChangeNotification (page
1044).

outlineViewSelectionIsChanging
Invoked when notification is posted—that is, whenever the outline view’s selection changes.

public abstract void outlineViewSelectionIsChanging(NSNotification notification)

Discussion
This method is invoked as a result of posting an OutlineViewSelectionIsChangingNotification (page
1044).

1040 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

outlineViewShouldCollapseItem
Returns true to permit outlineView to collapse item, false to deny permission.

public abstract boolean outlineViewShouldCollapseItem(NSOutlineView outlineView,
Object item)

Discussion
The delegate can implement this method to disallow collapsing of specific items.

outlineViewShouldEditTableColumn
Returns true to permit outlineView to edit the cell specified by tableColumn and item, false to deny
permission.

public abstract boolean outlineViewShouldEditTableColumn(NSOutlineView outlineView,
NSTableColumn tableColumn, Object item)

Discussion
The delegate can implement this method to disallow editing of specific cells.

outlineViewShouldExpandItem
Returns true to permit outlineView to expand item, false to deny permission.

public abstract boolean outlineViewShouldExpandItem(NSOutlineView outlineView,
Object item)

Discussion
The delegate can implement this method to disallow expanding of specific items.

outlineViewShouldSelectItem
Returns true to permit outlineView to select item, false to deny permission.

public abstract boolean outlineViewShouldSelectItem(NSOutlineView outlineView,
Object item)

Discussion
The delegate can implement this method to disallow selection of particular items.

outlineViewShouldSelectTableColumn
Returns true to permit outlineView to select tableColumn, false to deny permission.

public abstract boolean outlineViewShouldSelectTableColumn(NSOutlineView outlineView,
NSTableColumn tableColumn)

Discussion
The delegate can implement this method to disallow selection of specific columns.

Delegate Methods 1041
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

outlineViewToolTipForCell
When the cursor pauses over a cell, identified by cell, the value returned from this method is displayed in
a tooltip.

public String outlineViewToolTipForCell(NSOutlineView ov, NSCell cell, NSMutableRect
rect, NSTableColumn tc, Object item, NSPoint mouseLocation)

Discussion
point represents the current mouse location in view coordinates. If you don’t want a tooltip at that location,
return null or the empty string. On entry, rect represents the proposed active area of the tooltip. By default,
rect is computed as [cell drawingRectForBounds:cellFrame]. To control the default active area,
you can modify the rect parameter.

Availability
This method is available in Mac OS X 10.4 and later.

outlineViewWillDisplayCell
Informs the delegate that outlineView is about to display the cell specified by tableColumn and item.

public abstract void outlineViewWillDisplayCell(NSOutlineView outlineView, Object
cell, NSTableColumn tableColumn, Object item)

Discussion
The delegate can modify cell to alter its display attributes—for example, making uneditable values display
in italic or gray text.

outlineViewWillDisplayOutlineCellForTableColumn
Informs the delegate that outlineView is about to display cell (the cell used to draw the expansion symbol)
for the column and item specified by tableColumn and item.

public abstract void outlineViewWillDisplayOutlineCellForTableColumn(NSOutlineView
outlineView, Object cell, NSTableColumn tableColumn, Object item)

Discussion
The delegate can modify cell to alter its display attributes.

selectionShouldChangeInOutlineView
Returns true to permit outlineView to change its selection (typically a row being edited), false to deny
permission.

public abstract boolean selectionShouldChangeInOutlineView(NSOutlineView outlineView)

Discussion
For example, if the user is editing a cell and enters an improper value, the delegate can prevent the user
from selecting or editing any other cells until a proper value has been entered into the original cell. The
delegate can implement this method for complex validation of edited rows based on the values of any of
their cells.

1042 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Notifications

OutlineViewColumnDidMoveNotification
Posted whenever a column is moved by user action in an NSOutlineView.

The notification object is the NSOutlineView in which a column moved. The userInfo dictionary contains
the following information:

ValueKey

The integer value of the column’s original index"NSOldColumn"

The integer value of the column’s present index"NSNewColumn"

See Also
moveColumnToColumn (page 1459) (NSTableView)

OutlineViewColumnDidResizeNotification
Posted whenever a column is resized in an NSOutlineView.

The notification object is the NSOutlineView in which a column was resized. The userInfo dictionary contains
the following information:

ValueKey

The column that was resized."NSTableColumn"

The integer value of the column’s original width"NSOldWidth"

OutlineViewItemDidCollapseNotification
Posted whenever an item is collapsed in an NSOutlineView.

The notification object is the NSOutlineView in which an item was collapsed. A collapsed item’s children lose
their status as being selected. The userInfo dictionary contains the following information:

ValueKey

The item that was collapsed"NSObject"

OutlineViewItemDidExpandNotification
Posted whenever an item is expanded in an NSOutlineView.

The notification object is the NSOutlineView in which an item was expanded. The userInfo dictionary
contains the following information:

Notifications 1043
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

ValueKey

The item that was expanded"NSObject"

OutlineViewItemWillCollapseNotification
Posted before an item is collapsed (after the user clicks the arrow but before the item is collapsed).

The notification object is the NSOutlineView object that contains the item about to be collapsed. A collapsed
item’s children will lose their status as being selected. The userInfo dictionary contains the following
information:

ValueKey

The item about to be collapsed"NSObject"

OutlineViewItemWillExpandNotification
Posted before an item is expanded (after the user clicks the arrow but before the item is collapsed).

The notification object is the NSOutlineView that contains an item about to be expanded. The userInfo
dictionary contains the following information:

ValueKey

The item that is to be expanded"NSObject"

OutlineViewSelectionDidChangeNotification
Posted after the NSOutlineView’s selection changes.

The notification object is the NSOutlineView whose selection changed. This notification does not contain a
userInfo dictionary.

OutlineViewSelectionIsChangingNotification
Posted as the NSOutlineView’s selection changes (while the mouse button is still down).

The notification object is the NSOutlineView whose selection is changing. This notification does not contain
a userInfo dictionary.

1044 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 74

NSOutlineView

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Printing Programming Topics for Cocoa

Overview

NSPageLayout is a panel that queries the user for information such as paper type and orientation. It is normally
displayed in response to the user selecting the Page Setup menu item. You obtain an instance with the
pageLayout (page 1046) class method. The pane can then be run as a sheet using
beginSheetWithPrintInfo (page 1047) or modally using runModal (page 1048) or
runModalWithPrintInfo (page 1049).

Tasks

Constructors

NSPageLayout (page 1046)
Creates an empty NSPageLayout.

Creating an NSPageLayout

pageLayout (page 1046)
Returns a newly created NSPageLayout object.

Running an NSPageLayout

beginSheetWithPrintInfo (page 1047)
Presents a page layout sheet for printInfo, document modal relative to docWindow.

runModal (page 1048)
Displays the receiver and begins the modal loop.

runModalWithPrintInfo (page 1049)
Displays the receiver and begins the modal loop.

Overview 1045
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPageLayout

Customizing an NSPageLayout

accessoryView (page 1047)
Returns the receiver’s accessory view (used to customize the receiver).

setAccessoryView (page 1049)
Adds an NSView to the receiver.

Accessing the NSPrintInfo

printInfo (page 1048)
Returns the NSPrintInfo object used when the receiver is run.

readPrintInfo (page 1048)
Sets the receiver’s values to those stored in the NSPrintInfo object used when the receiver is run.

writePrintInfo (page 1049)
Writes the receiver’s values to the NSPrintInfo object used when the receiver is run.

Deprecated Methods

pickedButton (page 1047)

pickedOrientation (page 1047)

pickedPaperSize (page 1048)

pickedUnits (page 1048)

Constructors

NSPageLayout
Creates an empty NSPageLayout.

public NSPageLayout()

Static Methods

pageLayout
Returns a newly created NSPageLayout object.

1046 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPageLayout

public static NSPageLayout pageLayout()

Instance Methods

accessoryView
Returns the receiver’s accessory view (used to customize the receiver).

public NSView accessoryView()

See Also
setAccessoryView (page 1049)

beginSheetWithPrintInfo
Presents a page layout sheet for printInfo, document modal relative to docWindow.

public void beginSheetWithPrintInfo(NSPrintInfo printInfo, NSWindow docWindow,
Object delegate, NSSelector didEndSelector, Object contextInfo)

Discussion
When the modal session ends, if neither delegate nor didEndSelector is null, didEndSelector is
invoked on delegate, passing contextInfo, among others, as an argument.

The didEndSelector argument must have the same signature as:

public void pageLayoutDidEnd (NSPageLayout pageLayout, int returnCode, void
contextInfo)

The value passed as returnCode will be either PLCancelButton or PLOKButton.

pickedButton
public void pickedButton(Object sender)

Discussion
This method has been deprecated.

pickedOrientation
public void pickedOrientation(Object sender)

Discussion
This method has been deprecated.

Instance Methods 1047
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPageLayout

pickedPaperSize
public void pickedPaperSize(Object sender)

Discussion
This method has been deprecated.

pickedUnits
public void pickedUnits(Object sender)

Discussion
This method has been deprecated.

printInfo
Returns the NSPrintInfo object used when the receiver is run.

public NSPrintInfo printInfo()

Discussion
The NSPrintInfo object is set using the beginSheetWithPrintInfo (page 1047) or
runModalWithPrintInfo (page 1049) method. The shared NSPrintInfo object is used if the receiver is run
using runModal (page 1048).

See Also
readPrintInfo (page 1048)
writePrintInfo (page 1049)

readPrintInfo
Sets the receiver’s values to those stored in the NSPrintInfo object used when the receiver is run.

public void readPrintInfo()

Discussion
Do not invoke this method directly; it is invoked automatically before the receiver is displayed.

See Also
printInfo (page 1048)
writePrintInfo (page 1049)
runModal (page 1048)
runModalWithPrintInfo (page 1049)

runModal
Displays the receiver and begins the modal loop.

public int runModal()

1048 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPageLayout

Discussion
The receiver’s values are recorded in the shared NSPrintInfo object. Returns PLCancelButton if the user
clicks the Cancel button; otherwise returns PLOKButton.

See Also
pickedButton (page 1047)
runModalWithPrintInfo (page 1049)

runModalWithPrintInfo
Displays the receiver and begins the modal loop.

public int runModalWithPrintInfo(NSPrintInfo printInfo)

Discussion
The receiver’s values are recorded in printInfo. Returns PLCancelButton if the user clicks the Cancel
button; otherwise returns PLOKButton.

See Also
pickedButton (page 1047)
runModal (page 1048)

setAccessoryView
Adds an NSView to the receiver.

public void setAccessoryView(NSView aView)

Discussion
Invoke this method to add a custom view containing your controls. aView is added to the receiver’s Settings
popup menu with your application’s name as its menu item. The receiver is automatically resized to
accommodate aView. This method can be invoked repeatedly to change the accessory view depending on
the situation. If aView is null, then the receiver’s current accessory view, if any, is removed.

See Also
accessoryView (page 1047)

writePrintInfo
Writes the receiver’s values to the NSPrintInfo object used when the receiver is run.

public void writePrintInfo()

Discussion
Do not invoke this method directly; it is invoked automatically when the receiver is dismissed.

See Also
printInfo (page 1048)
readPrintInfo (page 1048)
runModal (page 1048)
runModalWithPrintInfo (page 1049)

Instance Methods 1049
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPageLayout

1050 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 75

NSPageLayout

Inherits from NSWindow : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Window Programming Guide for Cocoa

Overview

A panel is a special kind of window, typically serving an auxiliary function in an application.

Tasks

Constructors

NSPanel (page 1052)
Creates an empty NSPanel.

Configuring Panel Behavior

setFloatingPanel (page 1054)
Controls whether the receiver floats above normal windows.

isFloatingPanel (page 1053)
Returns true if the receiver is set to float above normal windows, false otherwise.

setBecomesKeyOnlyIfNeeded (page 1053)
Controls whether the receiver becomes the key window only when the user clicks a view object that
edits text or otherwise accepts keyboard input.

becomesKeyOnlyIfNeeded (page 1053)

setWorksWhenModal (page 1054)
Controls whether the receiver receives keyboard and mouse events even when some other window
is being run modally.

worksWhenModal (page 1054)
Returns true if the receiver is able to receive keyboard and mouse events even when some other
window is being run modally, false otherwise.

Overview 1051
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 76

NSPanel

Constructors

NSPanel
Creates an empty NSPanel.

public NSPanel()

Creates a new NSPanel.

public NSPanel(NSRect contentRect, int styleMask, int backingType, boolean defer)

Discussion
The contentRect argument specifies the location and size of the panel’s content area in screen coordinates.
Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

The styleMask argument specifies the panel’s style. Either it can be NSWindow.BorderlessWindowMask,
or it can contain any of the options described in NSWindow’s “Constants” (page 1875), combined using the C
bitwise OR operator.

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSWindow.TitledWindowMask if it includes any of the others.

The backingType argument specifies how the drawing done in the panel is buffered by the object’s window
device, and possible values are described in NSWindow’s “Constants” (page 1875).

The defer argument determines whether the window server creates a window device for the new panel
immediately. If defer is true, it defers creating the window until the panel is moved onscreen. All display
messages sent are postponed until the panel is created, just before it’s moved on screen. Deferring the
creation of the window improves launch time and minimizes the virtual memory load on the window server.

The new panel creates an instance of NSView to be its default content view. You can replace it with your
own object by using the setContentView (page 1858) method.

Creates a new NSPanel.

public NSPanel(NSRect contentRect, int styleMask, int bufferingType, boolean defer,
NSScreen aScreen)

Discussion
This constructor is equivalent to the preceding one, except contentRect is specified relative to the lower-left
corner of aScreen.

If aScreen is null, contentRect is interpreted relative to the lower-left corner of the main screen. The
main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

1052 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 76

NSPanel

Instance Methods

becomesKeyOnlyIfNeeded
public boolean becomesKeyOnlyIfNeeded()

Discussion
Returns true if the receiver becomes the key window only when the user clicks a view object that needs to
be first responder to receive event and action messages—for example, if it edits text or otherwise accepts
keyboard input. Returns false if it becomes the key window whenever clicked. NSPanel by default returns
false, indicating that panels become key as other windows do.

See Also
setBecomesKeyOnlyIfNeeded (page 1053)
needsPanelToBecomeKey (page 1761) (NSView)

isFloatingPanel
Returns true if the receiver is set to float above normal windows, false otherwise.

public boolean isFloatingPanel()

Discussion
A floating panel’s window level is NSWindow.FloatingWindowLevel. NSPanel by default returns false,
indicating that the receiver inhabits the normal window level.

See Also
setFloatingPanel (page 1054)
level (page 1841) (NSWindow)

setBecomesKeyOnlyIfNeeded
Controls whether the receiver becomes the key window only when the user clicks a view object that edits
text or otherwise accepts keyboard input.

public void setBecomesKeyOnlyIfNeeded(boolean flag)

Discussion
If flag is true, the receiver becomes the key window only when keyboard input is needed; if flag is false,
it becomes the key window whenever clicked. This behavior is not set by default. You should consider setting
it only if most controls in the NSPanel aren’t text fields, and if the choices that can be made by entering text
can also be made in another way (such as by clicking an item in a list).

If the receiver is a non-activating panel, then it becomes key only if the hit view returns true from
needsPanelToBecomeKey (page 1761). In this way, a non-activating panel can control whether it takes
keyboard focus.

See Also
becomesKeyOnlyIfNeeded (page 1053)
needsPanelToBecomeKey (page 1761) (NSView)

Instance Methods 1053
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 76

NSPanel

setFloatingPanel
Controls whether the receiver floats above normal windows.

public void setFloatingPanel(boolean flag)

Discussion
If flag is true, sets the receiver’s window level to NSWindow.FloatingWindowLevel; if flag is false,
sets the receiver’s window level to NSWindow.NormalWindowLevel. The default is false. It’s appropriate
for an NSPanel to float above other windows only if all of the following conditions are true:

 ■ It’s small enough not to obscure whatever’s behind it.

 ■ It’s oriented more to the mouse than to the keyboard—that is, if it doesn’t become the key window or
becomes so only when needed.

 ■ It needs to remain visible while the user works in the application’s normal windows—for example, if the
user must frequently move the cursor back and forth between a normal window and the panel (such as
a tool palette), or if the panel gives information relevant to the user’s actions in a normal window.

 ■ It hides when the application is deactivated (the default behavior for panels).

See Also
isFloatingPanel (page 1053)
setLevel (page 1863) (NSWindow)

setWorksWhenModal
Controls whether the receiver receives keyboard and mouse events even when some other window is being
run modally.

public void setWorksWhenModal(boolean flag)

Discussion
If flag is true, the application object sends events to the receiver even during a modal loop or session; if
flag is false, the receiver gets no events while a modal loop or session is running. See “How Modal Windows
Work” for more information on modal windows and panels.

See Also
worksWhenModal (page 1054)
runModalForWindow (page 119) (NSApplication)
runModalSession (page 120) (NSApplication)

worksWhenModal
Returns true if the receiver is able to receive keyboard and mouse events even when some other window
is being run modally, false otherwise.

public boolean worksWhenModal()

Discussion
NSPanels by default return false, indicating their ineligibility for events during a modal loop or session. See
“How Modal Windows Work” for more information on modal windows and panels.

1054 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 76

NSPanel

See Also
setWorksWhenModal (page 1054)
runModalForWindow (page 119) (NSApplication)
runModalSession (page 120) (NSApplication)

Constants

These constants define the possible return values for such methods as the runModal... methods of
NSOpenPanel, which tell which button (OK or Cancel) the user has clicked on an open panel:

DescriptionConstant

The Cancel buttonCancelButton

The OK buttonOKButton

NSPanel defines the following constants for panel styles:

DescriptionConstant

The panel is created as a modal sheet.DocModalWindowMask

The panel is created as a floating window.UtilityWindowMask

The panel can receive keyboard input without activating the owning
application. Valid only for an NSPanel or its subclasses; not valid for an
NSWindow.

NonactivatingPanelMask

Constants 1055
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 76

NSPanel

1056 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 76

NSPanel

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Rulers and Paragraph Styles

Overview

NSParagraphStyle and its subclass NSMutableParagraphStyle encapsulate the paragraph or ruler attributes
used by the NSAttributedString classes. Instances of these classes are often referred to as paragraph style
objects or, when no confusion will result, paragraph styles.

The mutable subclass of NSParagraphStyle is NSMutableParagraphStyle (page 993).

Tasks

Constructors

NSParagraphStyle (page 1059)
Creates an empty NSParagraphStyle.

Creating an NSParagraphStyle

defaultParagraphStyle (page 1059)
Returns the default paragraph style.

Accessing Style Information

alignment (page 1060)
Returns the text alignment of the receiver.

firstLineHeadIndent (page 1061)
Returns the distance in points from the leading margin of a text container to the beginning of the
paragraph’s first line.

Overview 1057
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

headIndent (page 1062)
Returns the distance in points from the leading margin of a text container to the beginning of lines
other than the first.

tailIndent (page 1065)
Returns the distance in points from the margin of a text container to the end of lines.

tabStops (page 1064)
Returns the NSTextTab objects, sorted by location, that define the tab stops for the paragraph style.

defaultTabInterval (page 1061)
Returns the document-wide default tab interval.

lineHeightMultiple (page 1062)
Returns the line height multiple.

maximumLineHeight (page 1063)
Returns the maximum height that any line in the receiver will occupy, regardless of the font size or
size of any attached graphic.

minimumLineHeight (page 1063)
Returns the minimum height that any line in the receiver will occupy, regardless of the font size or
size of any attached graphic.

lineSpacing (page 1063)
Returns the space in points added between lines within the paragraph (commonly known as leading).

paragraphSpacing (page 1064)
Returns the space added at the end of the paragraph to separate it from the following paragraph.

paragraphSpacingBefore (page 1064)
Returns the distance between the paragraph’s top and the beginning of its text content.

Getting Text Block and List Information

textBlocks (page 1065)
Returns an array specifying the text blocks containing the paragraph, nested from outermost to
innermost.

textLists (page 1065)
Returns an array specifying the text lists containing the paragraph, nested from outermost to innermost.

Getting Line Breaking Information

lineBreakMode (page 1062)
Returns the mode that should be used to break lines when laying out the paragraph’s text.

hyphenationFactor (page 1062)
Returns the paragraph’s threshold for hyphenation.

tighteningFactorForTruncation (page 1065)
Returns the threshold for using tightening as an alternative to truncation.

1058 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

Getting HTML Header Level

headerLevel (page 1061)
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

Writing Direction

defaultWritingDirectionForLanguage (page 1060)
Returns the default writing direction for languageName.

baseWritingDirection (page 1060)
Returns the base writing direction for the receiver. Possible return values are described in
“Constants” (page 1066).

Constructors

NSParagraphStyle
Creates an empty NSParagraphStyle.

public NSParagraphStyle()

Static Methods

defaultParagraphStyle
Returns the default paragraph style.

public static NSParagraphStyle defaultParagraphStyle()

Discussion
The default paragraph style has the following default values:

Default ValueSubattribute

NSText.NaturalTextAlignmentAlignment

12 left-aligned tabs, spaced by 28.0 pointsTab stops

LineBreakByWordWrappingLine break mode

0.0All others

See individual method descriptions for explanations of each subattribute.

Constructors 1059
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

defaultWritingDirectionForLanguage
Returns the default writing direction for languageName.

public static int defaultWritingDirectionForLanguage(String languageName)

Discussion
languageName is in ISO language region format. Possible return values are described in “Constants” (page
1066).

Availability
Available in Mac OS X v10.2 and later.

See Also
baseWritingDirection (page 1060)
setBaseWritingDirection (page 996) (NSMutableParagraphStyle)

Instance Methods

alignment
Returns the text alignment of the receiver.

public int alignment()

Discussion
Text alignment is one of:

NSText.LeftTextAlignment

NSText.RightTextAlignment

NSText.CenterTextAlignment

NSText.JustifiedTextAlignment

NSText.NaturalTextAlignment

Natural text alignment is realized as left or right alignment depending on the line sweep direction of the first
script contained in the paragraph.

See Also
setAlignment (page 995) (NSMutableParagraphStyle)

baseWritingDirection
Returns the base writing direction for the receiver. Possible return values are described in “Constants” (page
1066).

public int baseWritingDirection()

Availability
Available in Mac OS X v10.2 and later.

1060 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

See Also
defaultWritingDirectionForLanguage (page 1060)
setBaseWritingDirection (page 996) (NSMutableParagraphStyle)

defaultTabInterval
Returns the document-wide default tab interval.

public float defaultTabInterval()

Discussion
Tabs after the last specified in tabStops (page 1064) are placed at integer multiples of this distance (if positive).
Default return value is 0.0.

Availability
Available in Mac OS X v10.3 and later.

See Also
setDefaultTabInterval (page 996) (NSMutableParagraphStyle)

firstLineHeadIndent
Returns the distance in points from the leading margin of a text container to the beginning of the paragraph’s
first line.

public float firstLineHeadIndent()

Discussion
This value is always nonnegative.

See Also
headIndent (page 1062)
tailIndent (page 1065)
setFirstLineHeadIndent (page 997) (NSMutableParagraphStyle)

headerLevel
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

public int headerLevel()

Discussion
Returns 0 (the default value), if the paragraph is not a header, or from 1 through 6 if the paragraph is to be
treated as a header.

Availability
Available in Mac OS X v10.4 and later.

See Also
setHeaderLevel (page 997) (NSMutableParagraphStyle)

Instance Methods 1061
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

headIndent
Returns the distance in points from the leading margin of a text container to the beginning of lines other
than the first.

public float headIndent()

Discussion
This value is always nonnegative.

See Also
firstLineHeadIndent (page 1061)
tailIndent (page 1065)
setHeadIndent (page 997) (NSMutableParagraphStyle)

hyphenationFactor
Returns the paragraph’s threshold for hyphenation.

public float hyphenationFactor()

Discussion
Valid values lie between 0.0 and 1.0 inclusive. The default value is 0.0. Hyphenation is attempted when the
ratio of the text width (as broken without hyphenation) to the width of the line fragment is less than the
hyphenation factor. When the paragraph’s hyphenation factor is 0.0, the layout manager’s hyphenation factor
is used instead. When both are 0.0, hyphenation is disabled.

Availability
Available in Mac OS X v10.4 and later.

See Also
setHyphenationFactor (page 997) (NSMutableParagraphStyle)

lineBreakMode
Returns the mode that should be used to break lines when laying out the paragraph’s text.

public int lineBreakMode()

Discussion
See “Constants” (page 1066) for a list of values.

See Also
setLineBreakMode (page 998) (NSMutableParagraphStyle)

lineHeightMultiple
Returns the line height multiple.

public float lineHeightMultiple()

1062 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

Discussion
The natural line height of the receiver is multiplied by this factor (if positive) before being constrained by
minimum and maximum line height. Default return value is 0.0.

Availability
Available in Mac OS X v10.3 and later.

See Also
maximumLineHeight (page 1063)
minimumLineHeight (page 1063)
setLineHeightMultiple (page 998) (NSMutableParagraphStyle)

lineSpacing
Returns the space in points added between lines within the paragraph (commonly known as leading).

public float lineSpacing()

Discussion
This value is always nonnegative.

See Also
maximumLineHeight (page 1063)
minimumLineHeight (page 1063)
paragraphSpacing (page 1064)
setLineSpacing (page 998) (NSMutableParagraphStyle)

maximumLineHeight
Returns the maximum height that any line in the receiver will occupy, regardless of the font size or size of
any attached graphic.

public float maximumLineHeight()

Discussion
Glyphs and graphics exceeding this height will overlap neighboring lines; however, a maximum height of 0
implies no line height limit. This value is always nonnegative. The default value is 0.

Although this limit applies to the line itself, line spacing adds extra space between adjacent lines.

See Also
minimumLineHeight (page 1063)
lineSpacing (page 1063)
lineHeightMultiple (page 1062)
setMaximumLineHeight (page 999) (NSMutableParagraphStyle)

minimumLineHeight
Returns the minimum height that any line in the receiver will occupy, regardless of the font size or size of
any attached graphic.

Instance Methods 1063
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

public float minimumLineHeight()

Discussion
This value is always nonnegative.

See Also
maximumLineHeight (page 1063)
lineSpacing (page 1063)
lineHeightMultiple (page 1062)
setMinimumLineHeight (page 999) (NSMutableParagraphStyle)

paragraphSpacing
Returns the space added at the end of the paragraph to separate it from the following paragraph.

public float paragraphSpacing()

Discussion
This value is always nonnegative. Determined by adding the previous paragraph’s paragraphSpacing and
the current paragraph’s paragraphSpacingBefore (page 1064).

See Also
lineSpacing (page 1063)
setParagraphSpacing (page 999) (NSMutableParagraphStyle)

paragraphSpacingBefore
Returns the distance between the paragraph’s top and the beginning of its text content.

public float paragraphSpacingBefore()

Discussion
Default return value is 0.0.

Availability
Available in Mac OS X v10.3 and later.

See Also
paragraphSpacing (page 1064)
setParagraphSpacingBefore (page 1000) (NSMutableParagraphStyle)

tabStops
Returns the NSTextTab objects, sorted by location, that define the tab stops for the paragraph style.

public NSArray tabStops()

See Also
location (page 1597) (NSTextTab)
setTabStops (page 1000) (NSMutableParagraphStyle)
addTabStop (page 995) (NSMutableParagraphStyle)

1064 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

removeTabStop (page 995) (NSMutableParagraphStyle)

tailIndent
Returns the distance in points from the margin of a text container to the end of lines.

public float tailIndent()

Discussion
If positive, this value is the distance from the leading margin (for example, the left margin in left-to-right
text). If 0 or negative, it’s the distance from the trailing margin.

For example, a paragraph style designed to fit exactly in a 2-inch wide container has a head indent of 0.0
and a tail indent of 0.0. One designed to fit with a quarter-inch margin has a head indent of 0.25 and a tail
indent of –0.25.

See Also
headIndent (page 1062)
firstLineHeadIndent (page 1061)
setTailIndent (page 1000) (NSMutableParagraphStyle)

textBlocks
Returns an array specifying the text blocks containing the paragraph, nested from outermost to innermost.

public NSArray textBlocks()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTextBlocks (page 1001) (NSMutableParagraphStyle)

textLists
Returns an array specifying the text lists containing the paragraph, nested from outermost to innermost.

public NSArray textLists()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTextLists (page 1001) (NSMutableParagraphStyle)

tighteningFactorForTruncation
Returns the threshold for using tightening as an alternative to truncation.

public float tighteningFactorForTruncation()

Instance Methods 1065
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

Discussion
When the line break mode specifies truncation, the text system attempts to tighten intercharacter spacing
as an alternative to truncation, provided that the ratio of the text width to the line fragment width does not
exceed 1.0 + the tightening factor returned by this method. Otherwise the text is truncated at a location
determined by the line break mode. The default value is 0.05.

Availability
Available in Mac OS X v10.4 and later.

See Also
setTighteningFactorForTruncation (page 1001) (NSMutableParagraphStyle)

Constants

These constants specify what happens when a line is too long for its container:

DescriptionConstant

Wrapping occurs at word boundaries, unless the word itself doesn’t
fit on a single line.

LineBreakByWordWrapping

Wrapping occurs before the first character that doesn’t fit.LineBreakByCharWrapping

Lines are simply not drawn past the edge of the text container.LineBreakByClipping

Each line is displayed so that the end fits in the container and the
missing text is indicated by some kind of ellipsis glyph.

LineBreakByTruncatingHead

Each line is displayed so that the beginning fits in the container and
the missing text is indicated by some kind of ellipsis glyph.

LineBreakByTruncatingTail

Each line is displayed so that the beginning and end fit in the
container and the missing text is indicated by some kind of ellipsis
glyph in the middle.

LineBreakByTruncatingMiddle

These constants specify the types of tab stops:

DescriptionConstant

A left-aligned tab stop.LeftTabStopType

A right-aligned tab stop.RightTabStopType

A center-aligned tab stop.CenterTabStopType

Aligns columns of numbers by the decimal point.DecimalTabStopType

These constants specify the writing directions:

1066 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

DescriptionConstant

The writing direction is left to right.WritingDirectionLeftToRight

The writing direction is right to left.WritingDirectionRightToLeft

Constants 1067
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

1068 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 77

NSParagraphStyle

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guides Pasteboard Programming Topics for Cocoa
Drag and Drop Programming Topics for Cocoa
System Services

Class at a Glance

An NSPasteboard object is an interface to a pasteboard server that allows you to transfer data between
applications, as in copy, cut, and paste operations. The data can be placed in the pasteboard server in a
variety of representations.

Principal Attributes

 ■ Owners

 ■ Change count

 ■ Data types

 ■ Name

generalPasteboard (page 1072)
Returns the general NSPasteboard.

pasteboardWithName (page 1073)
Returns a named NSPasteboard.

Commonly Used Methods

types (page 1079)
Returns an NSArray of pasteboard data types.

declareTypes (page 1075)
Prepares NSPasteboard to receive new data.

dataForType (page 1075)
Reads data from a pasteboard.

setDataForType (page 1077)
Writes data to a pasteboard.

Class at a Glance 1069
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

stringForType (page 1078)
Reads a String from a pasteboard.

setStringForType (page 1078)
Writes a String to a pasteboard.

Overview

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running
applications. It contains data that the user has cut or copied, as well as other data that one application wants
to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all
pasteboard operations.

The drag pasteboard (NSDragPboard) is used to transfer data that is being dragged by the user.

NSPasteboard is also used to transfer data between applications and service providers listed in each
application’s Services menu.

Tasks

Constructors

NSPasteboard (page 1072)
Not implemented. Use pasteboardWithName (page 1073) or pasteboardWithUniqueName (page
1074) instead to create new pasteboards.

Creating and Releasing an NSPasteboard Object

generalPasteboard (page 1072)
Returns the general NSPasteboard.

pasteboardByFilteringData (page 1072)
Creates and returns a new pasteboard with a unique name that supplies data in as many types as
possible given the available filter services.

pasteboardByFilteringFile (page 1073)
Creates and returns a new pasteboard with a unique name that supplies the data in filename in as
many types as possible given the available filter services.

pasteboardByFilteringTypesInPasteboard (page 1073)
Creates and returns a new pasteboard with a unique name that supplies the data on pasteboard in
as many types as possible given the available filter services.

pasteboardWithName (page 1073)
Returns the pasteboard for the name name.

pasteboardWithUniqueName (page 1074)
Creates and returns a new pasteboard with a name that is guaranteed to be unique with respect to
other pasteboards on the computer.

1070 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

typesFilterableTo (page 1074)
Returns an array listing the types of data that can be converted to type by available filter services.

releaseGlobally (page 1077)
Releases the receiver’s resources in the pasteboard server.

Referring to a Pasteboard by Name

name (page 1076)
Returns the receiver’s name.

Writing Data

addTypes (page 1074)
Adds the data types in newTypes to the receiver and declares a new owner newOwner.

declareTypes (page 1075)
Prepares the receiver for a change in its contents by declaring the new types of data it will contain
and a new owner.

setDataForType (page 1077)
Writes data to the pasteboard server.

setPropertyListForType (page 1078)
Writes propertyList to the pasteboard server.

setStringForType (page 1078)
Writes string to the pasteboard server.

writeFileContents (page 1079)

writeFileWrapper (page 1079)

Determining Types

availableTypeFromArray (page 1074)
Scans types and returns the first type that matches a type declared on the receiver.

types (page 1079)
Returns an array of the receiver’s data types.

Reading Data

changeCount (page 1075)
Returns the receiver’s change count.

dataForType (page 1075)
Reads the dataType representation of the current contents of the receiver.

propertyListForType (page 1076)
Returns a property list object using the type specified by dataType.

Tasks 1071
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

readFileContentsTypeToFile (page 1077)
Reads data representing a file’s contents from the receiver and writes it to the file filename.

readFileWrapper (page 1077)
Reads data representing a file’s contents from the receiver and returns it as a file wrapper.

stringForType (page 1078)
Returns a String using the type specified by dataType.

Methods implemented by the owner

pasteboardChangedOwner (page 1081) delegate method
Notifies a prior owner of the sender pasteboard (and owners of representations on the pasteboard)
that the pasteboard has changed owners.

pasteboardProvideDataForType (page 1081) delegate method
Implemented by the owner (previously declared in a declareTypes (page 1075) message) to provide
promised data.

Constructors

NSPasteboard
Not implemented. UsepasteboardWithName (page 1073) orpasteboardWithUniqueName (page 1074) instead
to create new pasteboards.

public NSPasteboard()

Static Methods

generalPasteboard
Returns the general NSPasteboard.

public static NSPasteboard generalPasteboard()

Discussion
Invokes pasteboardWithName (page 1073) to obtain the pasteboard.

pasteboardByFilteringData
Creates and returns a new pasteboard with a unique name that supplies data in as many types as possible
given the available filter services.

public static NSPasteboard pasteboardByFilteringData(NSData data, String type)

1072 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

Discussion
The returned pasteboard also declares data of the supplied type.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

pasteboardByFilteringFile
Creates and returns a new pasteboard with a unique name that supplies the data in filename in as many
types as possible given the available filter services.

public static NSPasteboard pasteboardByFilteringFile(String filename)

Discussion
No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

pasteboardByFilteringTypesInPasteboard
Creates and returns a new pasteboard with a unique name that supplies the data on pasteboard in as many
types as possible given the available filter services.

public static NSPasteboard pasteboardByFilteringTypesInPasteboard(NSPasteboard
pasteboard)

Discussion
This process can be thought of as expanding the pasteboard, because the new pasteboard generally contains
more representations of the data than pasteboard.

This method returns pasteboard if pasteboard was returned by one of the pasteboardByFiltering...
methods, so a pasteboard cannot be expanded multiple times. This method only returns the original types
and the types that can be created as a result of a single filter; the pasteboard does not have defined types
that are the result of translation by multiple filters.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

pasteboardWithName
Returns the pasteboard for the name name.

public static NSPasteboard pasteboardWithName(String name)

Discussion
A new object is created only if the application does not yet have an NSPasteboard object for the specified
name; otherwise, the existing one is returned. To get a standard pasteboard, name should be one of the
following variables:

GeneralPboard

FontPboard

RulerPboard

Static Methods 1073
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

FindPboard

DragPboard

Other names can be assigned to create private pasteboards for other purposes.

pasteboardWithUniqueName
Creates and returns a new pasteboard with a name that is guaranteed to be unique with respect to other
pasteboards on the computer.

public static NSPasteboard pasteboardWithUniqueName()

Discussion
This method is useful for applications that implement their own interprocess communication using
pasteboards.

typesFilterableTo
Returns an array listing the types of data that can be converted to type by available filter services.

public static NSArray typesFilterableTo(String type)

Discussion
The array contains the original type.

Instance Methods

addTypes
Adds the data types in newTypes to the receiver and declares a new owner newOwner.

public int addTypes(NSArray newTypes, Object newOwner)

Discussion
This method can be useful when multiple entities (such as a combination of application and library methods)
contribute data for a single copy command. This method should be invoked only after a declareTypes (page
1075) message has been sent for the same types. The owner for the new types may be different from the
owner(s) of the previously declared types.

Returns the new change count, or 0 in case of an error.

See Also
changeCount (page 1075)

availableTypeFromArray
Scans types and returns the first type that matches a type declared on the receiver.

1074 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

public String availableTypeFromArray(NSArray types)

Discussion
A types (page 1079) or availableTypeFromArray message should be sent before reading any data from
an NSPasteboard.

changeCount
Returns the receiver’s change count.

public int changeCount()

Discussion
The change count starts at zero when a client creates the receiver and becomes the first owner. The change
count increments for reasons other than ownership changes. Basically any modification of the pasteboard
increments the change count. For example, when an owner converts a promise to actual data, the change
count is incremented.

See Also
declareTypes (page 1075)

dataForType
Reads the dataType representation of the current contents of the receiver.

public NSData dataForType(String dataType)

Discussion
dataType should be one of the types returned by the types (page 1079) method. A types or
availableTypeFromArray (page 1074) message should be sent before invoking dataForType.

If the data is successfully read, this method returns the data. It returns null if the contents of the pasteboard
have changed (if the change count has been incremented by a declareTypes (page 1075) message) since
they were last checked with the types (page 1079) method. It also returns null if the pasteboard server
cannot supply the data in time—for example, if the pasteboard’s owner is slow in responding to a
pasteboardProvideDataForType (page 1081) message and the interprocess communication times out.
The integer seconds timeout value is obtained from PasteboardPromiseTimeout, or is 120 seconds if the
default does not exist. All other errors throw an PasteboardCommunicationException.

If null is returned, the application should put up a panel informing the user that it was unable to carry out
the paste operation.

See Also
setDataForType (page 1077)

declareTypes
Prepares the receiver for a change in its contents by declaring the new types of data it will contain and a
new owner.

public int declareTypes(NSArray newTypes, Object newOwner)

Instance Methods 1075
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

Discussion
This is the first step in responding to a user’s copy or cut command and must precede the messages that
actually write the data. A declareTypes message essentially changes the contents of the receiver: It
invalidates the current contents of the receiver and increments its change count.

The newTypes argument is an array of Strings that specifies the types the new contents of the pasteboard
may assume. The types should be ordered according to the preference of the source application, with the
most preferred type coming first (typically, the richest representation).

The newOwner argument is the object responsible for writing data to the pasteboard in all the types listed
in newTypes. You can write the data immediately after declaring the types or wait until it is required for a
paste operation. If you wait, the owner will receive a pasteboardProvideDataForType (page 1081) message
requesting the data in a particular type when it is needed. You might choose to write data immediately for
the most preferred type, but wait for the others to see whether they’ll be requested.

The newOwner argument can be null if data is provided for all types immediately. Otherwise, the owner
should be an object that will not be released. It should not, for example, be the NSView that displays the
data if that NSView is in a window that might be closed.

Returns the receiver’s new change count.

See Also
setStringForType (page 1078)
addTypes (page 1074)
changeCount (page 1075)

name
Returns the receiver’s name.

public String name()

See Also
pasteboardWithName (page 1073)

propertyListForType
Returns a property list object using the type specified by dataType.

public Object propertyListForType(String dataType)

Discussion
A property list is an object of NSArray, NSData, NSDictionary, or String objects—or any combination thereof.

A types (page 1079) or availableTypeFromArray (page 1074) message should be sent before invoking
propertyListForType.

This method invokes dataForType (page 1075).

See Also
setPropertyListForType (page 1078)

1076 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

readFileContentsTypeToFile
Reads data representing a file’s contents from the receiver and writes it to the file filename.

public String readFileContentsTypeToFile(String type, String filename)

Discussion
An availableTypeFromArray (page 1074) or types (page 1079) message should be sent before invoking
readFileContentsTypeToFile.

Data of any file contents type should only be read using this method. type should generally be specified; if
type is null, a type based on the extension of filename is substituted. If data matching type is not found
on the NSPasteboard, data of type FileContentsPboardType is requested. Returns the name of the file
the data was actually written to.

See Also
writeFileContents (page 1079)

readFileWrapper
Reads data representing a file’s contents from the receiver and returns it as a file wrapper.

public NSFileWrapper readFileWrapper()

Discussion
If there is no data of type FileContentsPboardType on the receiver, this method returns null.

releaseGlobally
Releases the receiver’s resources in the pasteboard server.

public void releaseGlobally()

Discussion
After this method is invoked, no other application can use the named pasteboard. A temporary, privately
named pasteboard can be released this way when it is no longer needed, but a standard pasteboard should
never be released globally.

setDataForType
Writes data to the pasteboard server.

public boolean setDataForType(NSData data, String dataType)

Discussion
dataType gives the type of data being written; it must be a type declared in the previous
declareTypes (page 1075) message. data points to the data to be sent to the pasteboard server.

Returns true if the data is successfully written or false if ownership of the pasteboard has changed. Any
other error throws a PasteboardCommunicationException.

See Also
dataForType (page 1075)

Instance Methods 1077
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

setPropertyListForType (page 1078)
setStringForType (page 1078)

setPropertyListForType
Writes propertyList to the pasteboard server.

public boolean setPropertyListForType(Object propertyList, String dataType)

Discussion
dataType gives the type of data being written; it must be a type declared in the previous
declareTypes (page 1075) message. propertyList points to the data to be sent to the pasteboard server.

This method invokes setDataForType (page 1077) with a serialized property list parameter.

Returns true if the data is successfully written or false if ownership of the pasteboard has changed. Any
other error throws a PasteboardCommunicationException.

See Also
propertyListForType (page 1076)
setStringForType (page 1078)

setStringForType
Writes string to the pasteboard server.

public boolean setStringForType(String string, String dataType)

Discussion
dataType gives the type of data being written; it must be a type declared in the previous
declareTypes (page 1075) message. string points to the data to be sent to the pasteboard server.

This method invokes setDataForType (page 1077) to perform the write.

Returns true if the data is successfully written or false if ownership of the pasteboard has changed. Any
other error throws a PasteboardCommunicationException.

See Also
stringForType (page 1078)
setDataForType (page 1077)
setPropertyListForType (page 1078)

stringForType
Returns a String using the type specified by dataType.

public String stringForType(String dataType)

Discussion
types (page 1079) oravailableTypeFromArray (page 1074) should be sent before invokingstringForType.

1078 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

This method invokes dataForType to obtain the string. If the string cannot be obtained, stringForType
will return null. See dataForType (page 1075) for a description of what will cause null to be returned.

See Also
setStringForType (page 1078)

types
Returns an array of the receiver’s data types.

public NSArray types()

Discussion
Returns an array of the types declared for the current contents of the NSPasteboard. The array is an array of
Strings holding the type names. Types are listed in the order they were declared.

The types or availableTypeFromArray (page 1074) method should be sent before reading any data from
the receiver.

See Also
declareTypes (page 1075)
dataForType (page 1075)

writeFileContents
public boolean writeFileContents(String filename)

Discussion
Writes the contents of the file filename to the receiver and declares the data to be of type
FileContentsPboardType and also of a type appropriate for the file’s extension, if it has one. Returns true
if the data from filename was successfully written to the receiver and false otherwise.

See Also
readFileContentsTypeToFile (page 1077)

writeFileWrapper
public boolean writeFileWrapper(NSFileWrapper wrapper)

Discussion
Writes the serialized contents of the file wrapper wrapper to the receiver and declares the data to be of type
FileContentsPboardType and also of a type appropriate for the file’s extension, if it has one. If wrapper
does not have a preferred filename, this method throws an exception. Returns true if it could successfully
write the data from wrapper to the receiver and false otherwise.

Constants

NSPasteboard defines the following named pasteboards:

Constants 1079
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

DescriptionConstant

The pasteboard that’s used for ordinary cut, copy, and paste operations. It holds the
contents of the last selection that’s been cut or copied.

GeneralPboard

The pasteboard that holds font and character information and supports Copy Font and
Paste Font commands that may be implemented in a text editor.

FontPboard

The pasteboard that holds information about paragraph formats in support of the Copy
Ruler and Paste Ruler commands that may be implemented in a text editor.

RulerPboard

The pasteboard that holds information about the current state of the active application’s
find panel. This information permits users to enter a search string into the find panel,
then switch to another application to conduct another search.

FindPboard

The pasteboard that stores data to be moved as the result of a drag operation. For
additional information on working with the drag pasteboard, see Drag and Drop
Programming Topics for Cocoa.

DragPboard

NSPasteboard defines the following common pasteboard data types:

DescriptionConstant

NSColor dataColorPboardType

A representation of a file’s contentsFileContentsPboardType

Array of Strings designating one or more filenamesFilenamesPboardType

Font and character informationFontPboardType

HTML (which NSTextView can read from, but not write to)HTMLPboardType

PDF dataPDFPboardType

QuickDraw picture dataPICTPboardType

Encapsulated PostScript (EPS) codePostScriptPboardType

Paragraph formatting informationRulerPboardType

Rich Text Format (RTF)RTFPboardType

RTFD formatted file contentsRTFDPboardType

String dataStringPboardType

String containing tab-separated fields of textTabularTextPboardType

Tag Image File Format (TIFF)TIFFPboardType

URL data for one file or resourceURLPboardType

VCard dataVCardPboardType

1080 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

DescriptionConstant

Promised filesFilesPromisePboardType

Delegate Methods

pasteboardChangedOwner
Notifies a prior owner of the sender pasteboard (and owners of representations on the pasteboard) that
the pasteboard has changed owners.

public abstract void pasteboardChangedOwner(NSPasteboard sender)

Discussion
This method is optional and need only be implemented by pasteboard owners that need to know when they
have lost ownership. The owner is not able to read the contents of the pasteboard when responding to this
method. The owner should be prepared to receive this method at any time, even from within the
declareTypes (page 1075) method used to declare ownership.

See Also
changeCount (page 1075)

pasteboardProvideDataForType
Implemented by the owner (previously declared in adeclareTypes (page 1075) message) to provide promised
data.

public abstract void pasteboardProvideDataForType(NSPasteboard sender, String type)

Discussion
The owner receives a pasteboardProvideDataForType message from the sender pasteboard when the
data is required for a paste operation; type gives the type of data being requested. The requested data
should be written to sender using the setDataForType (page 1077), setPropertyListForType (page
1078), or setStringForType (page 1078) methods.

pasteboardProvideDataForType messages may also be sent to the owner when the application is shut
down through Application's terminate (page 125) method. This is the method that’s invoked in response
to a Quit command. Thus the user can copy something to the pasteboard, quit the application, and still paste
the data that was copied.

A pasteboardProvideDataForType message is sent only if type data has not already been supplied.
Instead of writing all data types when the cut or copy operation is done, an application can choose to
implement this method to provide the data for certain types only when they’re requested.

If an application writes data to the NSPasteboard in the richest, and therefore most preferred, type at the
time of a cut or copy operation, its pasteboardProvideDataForType method can simply read that data
from the pasteboard, convert it to the requested type, and write it back to the pasteboard as the new type.

Delegate Methods 1081
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

1082 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 78

NSPasteboard

Inherits from NSImageRep : NSObject

Implements NSCoding (NSImageRep)

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

An NSPDFImageRep is an object that can render an image from a PDF format data stream.

Tasks

Constructors

NSPDFImageRep (page 1084)
Creates an empty NSPDFImageRep.

Creating an NSPDFImageRep

imageRep (page 1084)
Creates a new NSPDFImageRep instance and then invokes a constructor to initialize it with the contents
of pdfData, a PDF format data stream.

Getting Image Data

bounds (page 1084)
Returns the rectangle that bounds the receiver.

currentPage (page 1085)
Gets the currently displayed page.

pageCount (page 1085)
Returns the number of pages in the receiver.

PDFRepresentation (page 1085)
Returns the PDF representation of the receiver.

Overview 1083
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 79

NSPDFImageRep

setCurrentPage (page 1085)
Sets the page to display to page.

Constructors

NSPDFImageRep
Creates an empty NSPDFImageRep.

public NSPDFImageRep()

Creates a new NSPDFImageRep, with the contents of pdfData, a PDF format data stream.

public NSPDFImageRep(NSData pdfData)

Discussion
If the new image rep can’t be initialized for any reason (for example, pdfData doesn’t conform to the PDF
file format), this method returns null.

Static Methods

imageRep
Creates a new NSPDFImageRep instance and then invokes a constructor to initialize it with the contents of
pdfData, a PDF format data stream.

public static Object imageRep(NSData pdfData)

Discussion
If the new object can’t be initialized for any reason (for example, pdfData doesn’t conform to the PDF file
format), this method returns null. Otherwise, it returns a new instance of NSPDFImageRep.

See Also
PDFRepresentation (page 1085)

Instance Methods

bounds
Returns the rectangle that bounds the receiver.

public NSRect bounds()

Discussion
The rectangle is obtained from the PDF format using its crop box.

1084 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 79

NSPDFImageRep

currentPage
Gets the currently displayed page.

public int currentPage()

Discussion
The page index is zero-based.

See Also
setCurrentPage (page 1085)

pageCount
Returns the number of pages in the receiver.

public int pageCount()

PDFRepresentation
Returns the PDF representation of the receiver.

public NSData PDFRepresentation()

Discussion
The returned PDF data is a copy of the data used to create the receiver.

setCurrentPage
Sets the page to display to page.

public void setCurrentPage(int page)

Discussion
The page index is zero-based.

See Also
currentPage (page 1085)

Instance Methods 1085
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 79

NSPDFImageRep

1086 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 79

NSPDFImageRep

Inherits from NSImageRep : NSObject

Implements NSCoding (NSImageRep)

Package: com.apple.cocoa.application

Companion guide Drawing and Images

Overview

An NSPICTImageRep is an object that can render an image from a PICT format data stream as described in
the Carbon QuickDraw Manager documentation including PICT format version 1, version 2, and extended
version 2 pictures.

Warning: There is no guarantee that the image will render exactly the same as it would under QuickDraw
because of the differences between the display medium and QuickDraw. In particular, some transfer
modes and region operations may not be supported.

Tasks

Constructors

NSPICTImageRep (page 1088)
Throws an exception. Use the other constructor instead.

Creating an NSPICTImageRep

imageRep (page 1088)
Creates a new NSPICTImageRep instance and then initializes it with the contents of pictData, a PICT
format data stream.

Getting Image Data

boundingBox (page 1088)
Returns the rectangle that bounds the receiver.

Overview 1087
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 80

NSPICTImageRep

PICTRepresentation (page 1089)
Returns the PICT representation of the receiver.

Constructors

NSPICTImageRep
Throws an exception. Use the other constructor instead.

public NSPICTImageRep()

Creates a new NSPICTImageRep, with the contents of pictData, a PICT format data stream.

public NSPICTImageRep(NSData pictData)

Discussion
If pictData is obtained directly from a PICT file or document, it contains a 512-byte header before the actual
picture data starts. This constructor simply ignores that header. If the new image rep can’t be initialized for
any reason (for example, pictData doesn’t conform to the PICT file format), this method returns null.

Static Methods

imageRep
Creates a new NSPICTImageRep instance and then initializes it with the contents of pictData, a PICT format
data stream.

public static NSPICTImageRep imageRep(NSData pictData)

Discussion
If the new object can’t be initialized for any reason (for example, pictData doesn’t conform to the PICT file
format), this method returns null. Otherwise, it returns a new instance of NSPICTImageRep.

See Also
PICTRepresentation (page 1089)

Instance Methods

boundingBox
Returns the rectangle that bounds the receiver.

public NSRect boundingBox()

1088 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 80

NSPICTImageRep

Discussion
The rectangle is obtained from the PICT format data, specifically the picFrame field in the picture header.
See the Carbon QuickDraw Manager documentation for information on the picture header.

PICTRepresentation
Returns the PICT representation of the receiver.

public NSData PICTRepresentation()

Discussion
The returned PICT data is a copy of the data minus the 512-byte header, if it is present. PICT files or documents
contain a 512-byte header, so if you wish to save the returned data to a file you need to precede the data
with 512 bytes (all zero) to conform to the PICT document format.

Instance Methods 1089
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 80

NSPICTImageRep

1090 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 80

NSPICTImageRep

Inherits from NSButton : NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Class at a Glance

An NSPopUpButton object controls a pop-up menu or a pull-down menu from which a user can select an
item.

Principal Attributes

 ■ An NSMenu (page 909)

Interface Builder
Use Interface Builder to add a pop-up or pull-down menu to a window or panel.

Commonly Used Methods

selectedItem (page 1101)
Returns the currently selected item.

indexOfSelectedItem (page 1097)
Returns an integer identifying the currently selected item.

titleOfSelectedItem (page 1104)
Returns a string identifying the currently selected item.

Overview

The NSPopUpButton class defines objects that implement the pop-up and pull-down menus of the graphical
user interface.

NSPopUpButton uses NSPopUpButtonCell (page 1107) to implement its user interface.

Class at a Glance 1091
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Note that while a menu is tracking, adding, removing, or changing items on the menu is not reflected.

Tasks

Constructors

NSPopUpButton (page 1095)
Creates an empty NSPopUpButton with a zero-sized frame rectangle.

Setting the Type of Menu

setPullsDown (page 1104)
Controls whether the receiver behaves as a pull-down or pop-up menu.

pullsDown (page 1100)
Returns true if the receiver is configured as a pull-down menu or false if it’s configured as a pop-up
menu.

setAutoenablesItems (page 1103)
Sets whether the receiver automatically enables and disables its items every time a user event occurs.

autoenablesItems (page 1096)
Returns whether the receiver automatically enables and disables its items every time a user event
occurs.

Inserting and Deleting Items

addItem (page 1095)
Adds an item named title to the end of the menu.

addItemsWithTitles (page 1095)
Adds multiple items to the end of the menu.

insertItemAtIndex (page 1097)
Inserts an item with title title at position index in the menu.

removeAllItems (page 1100)
Removes all items in the receiver’s item menu.

removeItemWithTitle (page 1101)
Removes the first item named title.

removeItemAtIndex (page 1101)
Removes the item at index.

Getting the User’s Selection

selectedItem (page 1101)
Returns the item last selected by the user (the item that was highlighted when the user released the
mouse button).

1092 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

titleOfSelectedItem (page 1104)
Returns the title of the item last selected by the user or the empty string if there’s no such item.

indexOfSelectedItem (page 1097)
Returns the index of the item last selected by the user or –1 if there’s no selected item.

objectValue (page 1100)
Returns the index of the selected item.

Setting the Current Selection

selectItem (page 1102)
Selects the menu item anObject in the pop-up menu.

selectItemAtIndex (page 1102)
Selects the item in the menu at index.

selectItemWithTag (page 1102)
Selects the menu item with the specified tag and returns true if the item was successfully selected.

selectItemWithTitle (page 1102)
Selects the first item with title.

setObjectValue (page 1103)
Attempts to select the item at an index of object if the receiver responds to intValue and object
is a valid index.

Getting Menu Items

menu (page 1099)
Returns the pop-up button’s associated menu.

setMenu (page 1103)
Sets the pop-up button’s associated menu to menu.

numberOfItems (page 1100)
Returns the number of items in the menu.

itemArray (page 1098)
Returns the NSArray that holds the menu’s items.

itemAtIndex (page 1098)
Returns the menu item at index.

itemTitleAtIndex (page 1098)
Returns the title of the item at index.

itemTitles (page 1099)
Returns an NSArray object that holds the titles of all of the items in the menu.

itemWithTitle (page 1099)
Returns the first item whose title is title.

lastItem (page 1099)
Returns the last item in the menu.

Tasks 1093
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Getting the Indices of Menu Items

indexOfItem (page 1096)
Returns the index of menu item anObject in the pop-up menu or –1 if the menu item is not found.

indexOfItemWithTag (page 1097)
Returns the index of the first menu item in the pop-up menu that has the tag value tag or –1 if the
item is not found.

indexOfItemWithTitle (page 1097)
Returns the index of the first item whose title matches title or –1 if no match is found.

indexOfItemWithRepresentedObject (page 1096)
Returns the index of the first menu item in the pop-up menu that holds the represented object
anObject, or –1 if no menu item with this object is found.

indexOfItemWithTargetAndAction (page 1097)
Returns the index of the first menu item in the pop-up menu that has the target target and the
action actionSelector.

Setting the Cell Edge to Pop out in Restricted Situations

preferredEdge (page 1100)
Returns the edge of the receiver next to which the pop-up menu is displayed under restrictive screen
conditions.

setPreferredEdge (page 1103)
Sets the edge of the receiver next to which the pop-up menu should appear under restrictive screen
conditions to edge.

Setting the Title

setTitle (page 1104)
Sets the string displayed in the receiver when the user isn’t pressing the mouse button.

Setting the Image

setImage (page 1103)
This method has no effect.

Setting the State

synchronizeTitleAndSelectedItem (page 1104)
Ensures that the item being displayed by the receiver agrees with the selected item (see
indexOfSelectedItem (page 1097)).

1094 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Constructors

NSPopUpButton
Creates an empty NSPopUpButton with a zero-sized frame rectangle.

public NSPopUpButton()

Creates an NSPopUpButton, giving it the dimensions specified by frameRect.

public NSPopUpButton(NSRect frameRect)

Discussion
The new button is initialized to operate as a pop-up menu.

Creates an NSPopUpButton, giving it the dimensions specified by frameRect.

public NSPopUpButton(NSRect frameRect, boolean flag)

Discussion
If flag is true, the new button is initialized to operate as a pull-down menu; otherwise, it operates as a
pop-up menu.

Instance Methods

addItem
Adds an item named title to the end of the menu.

public void addItem(String title)

Discussion
If an item with the name title already exists in the menu, it’s removed, and the new one is added. This
method then calls synchronizeTitleAndSelectedItem (page 1104) to make sure the item displayed
matches the currently selected item.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

See Also
insertItemAtIndex (page 1097)
removeItemWithTitle (page 1101)
setTitle (page 1104)

addItemsWithTitles
Adds multiple items to the end of the menu.

public void addItemsWithTitles(NSArray itemTitles)

Constructors 1095
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Discussion
The titles for the new items are taken from the itemTitles array. The titles within itemTitles should be
unique. If an item with a title already exists in the menu, it’s removed, and the new one is added. Once the
items are added, this method uses synchronizeTitleAndSelectedItem (page 1104) to make sure the item
displayed matches the currently selected item.

Since this method searches for duplicate items, it should not be used if you are adding items to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

See Also
insertItemAtIndex (page 1097)
removeAllItems (page 1100)
removeItemWithTitle (page 1101)

autoenablesItems
Returns whether the receiver automatically enables and disables its items every time a user event occurs.

public boolean autoenablesItems()

Discussion
Autoenabling is turned on unless you send the messagesetAutoenablesItems (page 1103) with an argument
of false to the NSPopUpButton. See the NSMenu.MenuValidation (page 2011) interface specification for more
information.

See Also
setAutoenablesItems (page 1103)

indexOfItem
Returns the index of menu item anObject in the pop-up menu or –1 if the menu item is not found.

public int indexOfItem(NSMenuItem anObject)

Discussion
This method invokes the method of the same name of its NSPopUpButtonCell.

indexOfItemWithRepresentedObject
Returns the index of the first menu item in the pop-up menu that holds the represented object anObject,
or –1 if no menu item with this object is found.

public int indexOfItemWithRepresentedObject(Object anObject)

Discussion
Represented objects bear some direct relation to the title or image of a menu item; for example, an item
entitled “100” might have a Number encapsulating that value as its represented object. This method invokes
the method of the same name of its NSPopUpButtonCell.

1096 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

indexOfItemWithTag
Returns the index of the first menu item in the pop-up menu that has the tag value tag or –1 if the item is
not found.

public int indexOfItemWithTag(int tag)

Discussion
This method invokes the method of the same name of its NSPopUpButtonCell.

indexOfItemWithTargetAndAction
Returns the index of the first menu item in the pop-up menu that has the target target and the action
actionSelector.

public int indexOfItemWithTargetAndAction(Object target, NSSelector actionSelector)

Discussion
If actionSelector is NULL, the index of the first menu item in the pop-up menu that has target target is
returned. If no menu item matching the above criteria is found, –1 is returned. This method invokes the
method of the same name of its NSPopUpButtonCell.

indexOfItemWithTitle
Returns the index of the first item whose title matches title or –1 if no match is found.

public int indexOfItemWithTitle(String title)

indexOfSelectedItem
Returns the index of the item last selected by the user or –1 if there’s no selected item.

public int indexOfSelectedItem()

See Also
selectedItem (page 1101)
titleOfSelectedItem (page 1104)

insertItemAtIndex
Inserts an item with title title at position index in the menu.

public void insertItemAtIndex(String title, int index)

Discussion
index 0 indicates the top item. Once the item is inserted, this method uses
synchronizeTitleAndSelectedItem (page 1104) to make sure the item displayed matches the currently
selected item.

Instance Methods 1097
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

If an item with the name title already exists in the menu, it’s removed, and the new one is added. This
action essentially moves title to a new position. If you want to move an item, it’s better to invoke
removeItemWithTitle (page 1101) explicitly and then send this method.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

See Also
addItem (page 1095)
addItemsWithTitles (page 1095)
indexOfItemWithTitle (page 1097)
removeItemWithTitle (page 1101)

itemArray
Returns the NSArray that holds the menu’s items.

public NSArray itemArray()

Discussion
Usually you access the menu’s items and modify the menu by sending messages directly to the NSPopUpButton
rather than accessing the array of items.

See Also
itemAtIndex (page 1098)
insertItemAtIndex (page 1097)
removeItemAtIndex (page 1101)

itemAtIndex
Returns the menu item at index.

public NSMenuItem itemAtIndex(int index)

Discussion
If there is no item at index, this method returns null.

See Also
itemWithTitle (page 1099)
lastItem (page 1099)

itemTitleAtIndex
Returns the title of the item at index.

public String itemTitleAtIndex(int index)

Discussion
If there is no item at index, this method returns an empty string.

1098 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

See Also
itemTitles (page 1099)

itemTitles
Returns an NSArray object that holds the titles of all of the items in the menu.

public NSArray itemTitles()

Discussion
The titles appear in the order in which the items appear in the menu.

See Also
itemTitleAtIndex (page 1098)
itemWithTitle (page 1099)
numberOfItems (page 1100)

itemWithTitle
Returns the first item whose title is title.

public NSMenuItem itemWithTitle(String title)

Discussion
If there is no item with title, this method returns null.

See Also
addItem (page 1095)
selectItemWithTitle (page 1102)
itemAtIndex (page 1098)
indexOfItemWithTitle (page 1097)

lastItem
Returns the last item in the menu.

public NSMenuItem lastItem()

See Also
itemAtIndex (page 1098)

menu
Returns the pop-up button’s associated menu.

public NSMenu menu()

Instance Methods 1099
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

numberOfItems
Returns the number of items in the menu.

public int numberOfItems()

See Also
lastItem (page 1099)

objectValue
Returns the index of the selected item.

public Object objectValue()

Discussion
It is equivalent to indexOfSelectedItem (page 1115).

See Also
setObjectValue (page 1103)

preferredEdge
Returns the edge of the receiver next to which the pop-up menu is displayed under restrictive screen
conditions.

public int preferredEdge()

Discussion
For pull-down menus, the default behavior is to display the menu under the receiver. For most pop-up menus,
NSPopUpButton attempts to show the selected item directly over the button.

See Also
setPreferredEdge (page 1103)

pullsDown
Returns true if the receiver is configured as a pull-down menu or false if it’s configured as a pop-up menu.

public boolean pullsDown()

See Also
setPullsDown (page 1104)

removeAllItems
Removes all items in the receiver’s item menu.

public void removeAllItems()

1100 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Discussion
This method then uses synchronizeTitleAndSelectedItem (page 1104) to refresh the menu.

See Also
numberOfItems (page 1100)
removeItemAtIndex (page 1101)
removeItemWithTitle (page 1101)

removeItemAtIndex
Removes the item at index.

public void removeItemAtIndex(int index)

Discussion
This method then uses synchronizeTitleAndSelectedItem (page 1104) to make sure the title displayed
matches the currently selected item.

See Also
insertItemAtIndex (page 1097)
removeAllItems (page 1100)
removeItemWithTitle (page 1101)

removeItemWithTitle
Removes the first item named title.

public void removeItemWithTitle(String title)

Discussion
This method then uses synchronizeTitleAndSelectedItem (page 1104) to refresh the menu. An assertion
is triggered if the string in title does not correspond to an existing menu item.

See Also
addItem (page 1095)
removeAllItems (page 1100)
removeItemAtIndex (page 1101)

selectedItem
Returns the item last selected by the user (the item that was highlighted when the user released the mouse
button).

public NSMenuItem selectedItem()

Discussion
If there is no selected item, this method returns null. It is possible for a pull-down menu’s selected item to
be its first item.

Instance Methods 1101
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

selectItem
Selects the menu item anObject in the pop-up menu.

public void selectItem(NSMenuItem anObject)

Discussion
If anObject is null, all items in the menu are deselected (this is a technique for obtaining a pop-up menu
with no items selected).

selectItemAtIndex
Selects the item in the menu at index.

public void selectItemAtIndex(int index)

Discussion
If index is –1, all items in the menu are deselected.

See Also
indexOfSelectedItem (page 1097)

selectItemWithTag
Selects the menu item with the specified tag and returns true if the item was successfully selected.

public boolean selectItemWithTag(int tag)

Discussion
If no item with the specified tag is found, returns false and leaves the menu state unchanged.

You typically assign tags to menu items from Interface Builder, but you can also assign them programmatically
using the setTag (page 1931) method of NSMenuItem.

Availability
Available in Mac OS X v10.4 and later.

See Also
indexOfItemWithTag (page 1097)

selectItemWithTitle
Selects the first item with title.

public void selectItemWithTitle(String title)

Discussion
If title is null or contains an empty string, all items in the menu are deselected.

See Also
indexOfItemWithTitle (page 1097)
addItem (page 1095)

1102 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

setTitle (page 1104)

setAutoenablesItems
Sets whether the receiver automatically enables and disables its items every time a user event occurs.

public void setAutoenablesItems(boolean flag)

Discussion
Autoenabling is turned on unless you specify false as the value for flag.

See Also
autoenablesItems (page 1096)

setImage
This method has no effect.

public void setImage(NSImage anImage)

Discussion
The image displayed in a pop up button cell is taken from the selected menu item (in the case of a pop up
menu) or from the first menu item (in the case of a pull-down menu).

setMenu
Sets the pop-up button’s associated menu to menu.

public void setMenu(NSMenu menu)

setObjectValue
Attempts to select the item at an index of object if the receiver responds to intValue and object is a
valid index.

public void setObjectValue(Object object)

Discussion
Otherwise, the selected item is cleared.

See Also
objectValue (page 1100)

setPreferredEdge
Sets the edge of the receiver next to which the pop-up menu should appear under restrictive screen conditions
to edge.

public void setPreferredEdge(int edge)

Instance Methods 1103
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Discussion
For pull-down menus, the default behavior is to display the menu under the receiver. For most pop-up menus,
NSPopUpButton attempts to show the selected item directly over the button.

See Also
preferredEdge (page 1100)

setPullsDown
Controls whether the receiver behaves as a pull-down or pop-up menu.

public void setPullsDown(boolean flag)

Discussion
If flag is true, the receiver is configured as a pull-down menu. If flag is false, the receiver is configured
as a pop-up menu.

See Also
pullsDown (page 1100)

setTitle
Sets the string displayed in the receiver when the user isn’t pressing the mouse button.

public void setTitle(String aString)

Discussion
If this menu is a pop-up menu, it changes the current item to be the item named aString, adding a new
item by that name if it doesn’t already exist. If this menu is a pull-down list, it sets its title to be aString.

synchronizeTitleAndSelectedItem
Ensures that the item being displayed by the receiver agrees with the selected item (see
indexOfSelectedItem (page 1097)).

public void synchronizeTitleAndSelectedItem()

Discussion
If there’s no selected item, this method selects the first item in the item menu and sets the receiver’s item
to match. For pull-down menus, this method makes sure that the first item is being displayed (the
NSPopUpButtonCell must be set to use the selected menu item, which happens by default).

See Also
itemArray (page 1098)

titleOfSelectedItem
Returns the title of the item last selected by the user or the empty string if there’s no such item.

public String titleOfSelectedItem()

1104 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

See Also
indexOfSelectedItem (page 1097)

Instance Methods 1105
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

1106 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 81

NSPopUpButton

Inherits from NSMenuItemCell : NSButtonCell : NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

NSPopUpButtonCell defines the visual appearance of pop-up buttons that display pop-up or pull-down
menus. Pop-up menus present the user with a set of choices, much the way radio buttons do, but using
much less space. Pull-down menus also provide a set of choices but present the information in a slightly
different way, usually to provide a set of commands from which the user can choose.

NSPopUpButtonCell implements the user interface of NSPopUpButton (page 1091).

Note that while a menu is tracking, adding, removing, or changing items on the menu is not reflected.

Tasks

Constructors

NSPopUpButtonCell (page 1110)
Creates an empty NSPopUpButtonCell.

Getting and Setting Attributes

setMenu (page 1122)
Sets the menu object to be used by this pop-up button to menu.

menu (page 1117)
Returns the menu object associated with the pop-up button.

setPullsDown (page 1123)
Sets whether the pop-up button uses a pop-up or a pull-down menu.

pullsDown (page 1118)
Returns true if the menu is a pull-down menu; otherwise returns false.

Overview 1107
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

setAutoenablesItems (page 1121)
Controls whether the pop-up button’s menu automatically enables and disables its menu items.

autoenablesItems (page 1112)
Returns whether the pop-up button’s menu automatically enables and disables its menu items.

setPreferredEdge (page 1122)
Sets the edge of the pop-up button to which menus are attached to edge.

preferredEdge (page 1117)
Returns the preferred edge on which to attach the menu.

setUsesItemFromMenu (page 1123)
Controls whether the pop-up button uses an item from the menu for its own purposes.

usesItemFromMenu (page 1124)
Returns true if the pop-up button uses the title text of a menu item for its own title.

setAltersStateOfSelectedItem (page 1120)

altersStateOfSelectedItem (page 1112)
Returns true if the receiver sets the state of the selected menu item to NSCell.StateOn.

setArrowPosition (page 1121)
Sets the position of the arrow displayed on the receiver to position.

arrowPosition (page 1112)
Returns the position of the arrow displayed on the receiver.

Adding and Removing Items

addItem (page 1111)
Creates a new menu item with the specified title and adds it to the end of the menu.

addItemsWithTitles (page 1111)
For each string in itemTitles, this method creates a new menu item and adds it to the end of the
menu.

insertItemAtIndex (page 1115)
Creates a new menu item with the specified title and inserts it into the array of menu items at
index.

removeItemWithTitle (page 1118)
Removes the first menu item with the specified title from the pop-up button’s menu.

removeItemAtIndex (page 1118)
Removes the menu item at index from the pop-up button’s menu.

removeAllItems (page 1118)
Removes all of the pop-up button’s menu items.

Accessing the Items

itemArray (page 1115)
Returns the array of menu items associated with the menu.

numberOfItems (page 1117)
Returns the number of menu items in the pop-up button’s menu.

1108 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

indexOfItem (page 1113)
Returns the index of item.

indexOfItemWithTitle (page 1114)
Returns the index of the first menu item with the specified title.

indexOfItemWithTag (page 1114)
Returns the index of the first menu item with the specified tag.

indexOfItemWithRepresentedObject (page 1113)
Returns the index of the first menu item with the represented object specified by obj.

indexOfItemWithTargetAndAction (page 1114)
Returns the index of the first menu item that invokes the specified actionSelector on the given
target.

itemAtIndex (page 1116)
Returns the menu item at index.

itemWithTitle (page 1116)
Returns the first menu item whose title matches title, or null if no such item exists.

lastItem (page 1117)
Returns the last menu item in the pop-up button’s menu.

setObjectValue (page 1122)
Attempts to select the item at an index of object if the receiver responds to intValue and object
is a valid index.

objectValue (page 1117)
Returns the index of the selected item.

Dealing with Selection

selectItem (page 1119)
Makes item the currently selected menu item.

selectItemAtIndex (page 1119)
Makes the item at index the current selection.

selectItemWithTag (page 1120)
Makes the menu item with the specified tag the current selection.

selectItemWithTitle (page 1120)
Makes the first menu item with the given title the currently selected item.

setTitle (page 1123)

selectedItem (page 1119)
Returns the currently selected menu item or null if no menu item is selected.

indexOfSelectedItem (page 1115)
Returns the index of the currently selected menu item.

synchronizeTitleAndSelectedItem (page 1124)
For pop-up menus, this method sets the pop-up button’s menu item to the currently selected menu
item or to the first menu item if none is selected.

Tasks 1109
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Title Conveniences

itemTitleAtIndex (page 1116)
Returns the title of the menu item located at index.

itemTitles (page 1116)
Returns a mutable array of strings containing the titles of this pop-up button’s menu items.

titleOfSelectedItem (page 1124)
Returns a string containing the title of the currently selected menu item or an empty string if no item
is selected.

Setting the Image

setImage (page 1121)
This method has no effect.

Handling Events and Action Messages

attachPopUpWithFrameInView (page 1112)
Displays the pop-up button’s menu, making adjustments as necessary to display the menu along the
preferred edge of the cell if possible.

dismissPopUp (page 1113)
Dismisses the pop-up button’s menu by ordering its window out.

performClickWithFrameInView (page 1117)
Displays the receiver’s menu as a context menu over controlView in frame.

Constructors

NSPopUpButtonCell
Creates an empty NSPopUpButtonCell.

public NSPopUpButtonCell()

Creates an NSPopUpButtonCell initialized with title. If title contains a nonempty string, title is used
to create the first menu item in the menu. This menu item is assigned the default pop-up button action that
displays the menu.

public NSPopUpButtonCell(String title)

Creates an NSPopUpButtonCell initialized with anImage.

public NSPopUpButtonCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

1110 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Creates a new button with the title title.

public NSPopUpButtonCell(String title, boolean pullDown)

Discussion
If pullDown is true, the menu style is a pull-down menu; otherwise the menu is a pop-up menu. If title
contains a nonempty string, title is used to create the first menu item in the menu. This menu item is
assigned the default pop-up button action that displays the menu. To set the action and target, use the
setAction (page 1926) andsetTarget (page 1932) methods of the item’s corresponding NSMenuItem object.

Instance Methods

addItem
Creates a new menu item with the specified title and adds it to the end of the menu.

public void addItem(String title)

Discussion
If an item with the name title already exists in the menu, it’s removed, and the new one is added. The
menu item uses the pop-up button’s default action and target, but you can change these using the
setAction (page 1926) and setTarget (page 1932) methods of the corresponding NSMenuItem object.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the button's menu instead.

See Also
addItemsWithTitles (page 1111)
setAction (page 1926) (NSMenuItem)
setTarget (page 1932) (NSMenuItem)

addItemsWithTitles
For each string in itemTitles, this method creates a new menu item and adds it to the end of the menu.

public void addItemsWithTitles(NSArray itemTitles)

Discussion
The titles within itemTitles should be unique. If an item with a title already exists in the menu, it’s removed,
and the new one is added. The menu items use the pop-up button’s default action and target, but you can
change these using the setAction (page 1926) and setTarget (page 1932) methods of the corresponding
NSMenuItem object.

Since this method searches for duplicate items, it should not be used if you are adding items to an already
populated menu with more than a few hundred items. Add items directly to the button's menu instead.

See Also
addItem (page 1111)
setAction (page 1926) (NSMenuItem)
setTarget (page 1932) (NSMenuItem)

Instance Methods 1111
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

altersStateOfSelectedItem
Returns true if the receiver sets the state of the selected menu item to NSCell.StateOn.

public boolean altersStateOfSelectedItem()

Discussion
This option is usually used only by pop-up menus. You typically do not alter the state of menu items in a
pull-down menu.

See Also
selectItemAtIndex (page 1119)
selectItemWithTitle (page 1120)

arrowPosition
Returns the position of the arrow displayed on the receiver.

public int arrowPosition()

Discussion
PopUpNoArrowmeans no arrow is displayed. PopUpArrowAtCentermeans the arrow is vertically centered,
pointing to the right, vertically centered. PopUpArrowAtBottom means the arrow is at the bottom, pointing
downward.

See Also
setArrowPosition (page 1121)

attachPopUpWithFrameInView
Displays the pop-up button’s menu, making adjustments as necessary to display the menu along the preferred
edge of the cell if possible.

public void attachPopUpWithFrameInView(NSRect cellFrame, NSView controlView)

Discussion
The cellFrame parameter specifies the rectangle of the cell in the specified controlView to which the
menu is to be attached. Before displaying the menu, this method sends a
PopUpButtonCellWillPopUpNotification (page 1125) to both the controlView and this cell.

See Also
dismissPopUp (page 1113)

autoenablesItems
Returns whether the pop-up button’s menu automatically enables and disables its menu items.

public boolean autoenablesItems()

Discussion
By default NSMenu objects do autoenable their menu items.

1112 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

See Also
setAutoenablesItems (page 1121)

dismissPopUp
Dismisses the pop-up button’s menu by ordering its window out.

public void dismissPopUp()

Discussion
If the pop-up button was not displaying its menu, this method does nothing.

See Also
attachPopUpWithFrameInView (page 1112)
orderOut (page 1845) (NSWindow)

indexOfItem
Returns the index of item.

public int indexOfItem(NSMenuItem item)

Discussion
If item is null or cannot be found, this method returns –1.

See Also
indexOfItemWithRepresentedObject (page 1113)
indexOfItemWithTag (page 1114)
indexOfItemWithTargetAndAction (page 1114)
indexOfItemWithTitle (page 1114)
indexOfSelectedItem (page 1115)

indexOfItemWithRepresentedObject
Returns the index of the first menu item with the represented object specified by obj.

public int indexOfItemWithRepresentedObject(Object obj)

Discussion
If obj is null or if a menu item with the given represented object cannot be found, this method returns –1.

See Also
indexOfItem (page 1113)
indexOfItemWithTag (page 1114)
indexOfItemWithTargetAndAction (page 1114)
indexOfItemWithTitle (page 1114)
indexOfSelectedItem (page 1115)
representedObject (page 1926) (NSMenuItem)
setRepresentedObject (page 1930) (NSMenuItem)

Instance Methods 1113
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

indexOfItemWithTag
Returns the index of the first menu item with the specified tag.

public int indexOfItemWithTag(int tag)

Discussion
If a menu item with tag cannot be found, this method returns –1.

Tags are values your application assigns to an object to identify it. You can assign tags to menu items using
the setTag (page 1931) method of NSMenuItem.

See Also
indexOfItem (page 1113)
indexOfItemWithRepresentedObject (page 1113)
indexOfItemWithTargetAndAction (page 1114)
indexOfItemWithTitle (page 1114)
indexOfSelectedItem (page 1115)
setTag (page 1931) (NSMenuItem)

indexOfItemWithTargetAndAction
Returns the index of the first menu item that invokes the specified actionSelector on the given target.

public int indexOfItemWithTargetAndAction(Object target, NSSelector actionSelector)

Discussion
If a menu item with the given actionSelector and target cannot be found, this method returns –1.

NSPopUpButtonCell assigns a default action and target to each menu item, but you can change these values
using the setAction (page 1926) and setTarget (page 1932) methods of NSMenuItem.

See Also
indexOfItem (page 1113)
indexOfItemWithRepresentedObject (page 1113)
indexOfItemWithTag (page 1114)
indexOfItemWithTargetAndAction (page 1114)
indexOfItemWithTitle (page 1114)
indexOfSelectedItem (page 1115)
setAction (page 1926) (NSMenuItem)
setTarget (page 1932) (NSMenuItem)

indexOfItemWithTitle
Returns the index of the first menu item with the specified title.

public int indexOfItemWithTitle(String title)

Discussion
title must not be null. If title contains a string that does not match the title of any menu item, this
method returns –1.

1114 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

See Also
indexOfItem (page 1113)
indexOfItemWithRepresentedObject (page 1113)
indexOfItemWithTag (page 1114)
indexOfItemWithTargetAndAction (page 1114)
indexOfItemWithTitle (page 1114)
indexOfSelectedItem (page 1115)

indexOfSelectedItem
Returns the index of the currently selected menu item.

public int indexOfSelectedItem()

Discussion
If no menu item is selected, this method returns –1.

See Also
indexOfItem (page 1113)
indexOfItemWithRepresentedObject (page 1113)
indexOfItemWithTag (page 1114)
indexOfItemWithTargetAndAction (page 1114)
indexOfItemWithTitle (page 1114)

insertItemAtIndex
Creates a new menu item with the specified title and inserts it into the array of menu items at index.

public void insertItemAtIndex(String title, int index)

Discussion
The value in index must represent a valid position in the array. The menu item at index and all those that
follow it are shifted down one slot to make room for the new menu item.

This method assigns the pop-up button’s default action and target to the new menu item. Use the menu
item’s setAction (page 1926) and setTarget (page 1932) methods to assign a new action and target.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the button's menu instead.

See Also
insertObjectAtIndex (NSMutableArray)
setAction (page 1926) (NSMenuItem)
setTarget (page 1932) (NSMenuItem)

itemArray
Returns the array of menu items associated with the menu.

Instance Methods 1115
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

public NSArray itemArray()

See Also
itemArray (page 918) (NSMenu)

itemAtIndex
Returns the menu item at index.

public NSMenuItem itemAtIndex(int index)

Discussion
The value in index must refer to an existing menu item.

See Also
itemTitleAtIndex (page 1116)
itemAtIndex (page 918) (NSMenu)

itemTitleAtIndex
Returns the title of the menu item located at index.

public String itemTitleAtIndex(int index)

See Also
itemAtIndex (page 1116)

itemTitles
Returns a mutable array of strings containing the titles of this pop-up button’s menu items.

public NSArray itemTitles()

Discussion
If the menu contains separator items, the array contains an empty string (””) for each separator item.

See Also
itemTitleAtIndex (page 1116)

itemWithTitle
Returns the first menu item whose title matches title, or null if no such item exists.

public NSMenuItem itemWithTitle(String title)

See Also
itemTitleAtIndex (page 1116)
itemAtIndex (page 1116)

1116 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

lastItem
Returns the last menu item in the pop-up button’s menu.

public NSMenuItem lastItem()

menu
Returns the menu object associated with the pop-up button.

public NSMenu menu()

See Also
setMenu (page 1122)

numberOfItems
Returns the number of menu items in the pop-up button’s menu.

public int numberOfItems()

See Also
count (NSArray)

objectValue
Returns the index of the selected item.

public Object objectValue()

Discussion
It is equivalent to indexOfSelectedItem (page 1115).

See Also
setObjectValue (page 1122)

performClickWithFrameInView
Displays the receiver’s menu as a context menu over controlView in frame.

public void performClickWithFrameInView(NSRect frame, NSView controlView)

preferredEdge
Returns the preferred edge on which to attach the menu.

public int preferredEdge()

Instance Methods 1117
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Discussion
If no edge was set using the setPreferredEdge (page 1122) method, this method sets the preferred edge
to the bottom edge of the pop-up button and returns that value.

See Also
setPreferredEdge (page 1122)

pullsDown
Returns true if the menu is a pull-down menu; otherwise returns false.

public boolean pullsDown()

See Also
setPullsDown (page 1123)

removeAllItems
Removes all of the pop-up button’s menu items.

public void removeAllItems()

See Also
removeItemAtIndex (page 1118)
removeItemWithTitle (page 1118)
insertItemAtIndex (page 1115)

removeItemAtIndex
Removes the menu item at index from the pop-up button’s menu.

public void removeItemAtIndex(int index)

Discussion
index must be a valid index into the array of menu items and therefore must not be negative.

See Also
removeAllItems (page 1118)
removeItemWithTitle (page 1118)
insertItemAtIndex (page 1115)

removeItemWithTitle
Removes the first menu item with the specified title from the pop-up button’s menu.

public void removeItemWithTitle(String title)

Discussion
An assertion is triggered if the string in title does not correspond to an existing menu item.

1118 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

See Also
removeAllItems (page 1118)
removeItemAtIndex (page 1118)
insertItemAtIndex (page 1115)

selectedItem
Returns the currently selected menu item or null if no menu item is selected.

public NSMenuItem selectedItem()

See Also
selectItem (page 1119)
selectItemAtIndex (page 1119)
selectItemWithTitle (page 1120)

selectItem
Makes item the currently selected menu item.

public void selectItem(NSMenuItem item)

Discussion
If item is null, this method deselects the currently selected menu item.

By default, selecting or deselecting a menu item from a pop-up menu changes its state. Selecting a menu
item from a pull-down menu does not automatically alter the state of the item. Use the
setAltersStateOfSelectedItem (page 1120) method, passing it a value of false, to disassociate the
current selection from the state of menu items.

See Also
selectedItem (page 1119)
selectItemAtIndex (page 1119)
selectItemWithTitle (page 1120)
setAltersStateOfSelectedItem (page 1120)
setState (page 1931) (NSMenuItem)

selectItemAtIndex
Makes the item at index the current selection.

public void selectItemAtIndex(int index)

Discussion
If index is –1, this method deselects the currently selected menu item.

By default, selecting or deselecting a menu item from a pop-up menu changes its state. Selecting a menu
item from a pull-down menu does not automatically alter the state of the item. Use the
setAltersStateOfSelectedItem (page 1120) method, passing it a value of false, to disassociate the
current selection from the state of menu items.

Instance Methods 1119
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Subclassers can override this method to be able to catch all select calls.

See Also
selectedItem (page 1119)
selectItem (page 1119)
selectItemWithTitle (page 1120)
setAltersStateOfSelectedItem (page 1120)
setState (page 1931) (NSMenuItem)

selectItemWithTag
Makes the menu item with the specified tag the current selection.

public boolean selectItemWithTag(int tag)

Discussion
Returns true if the item was successfully selected or false if it was not selected. If the specified tag could
not be found, the menu state remains unchanged.

Availability
Available in Mac OS X v10.4 and later.

selectItemWithTitle
Makes the first menu item with the given title the currently selected item.

public void selectItemWithTitle(String title)

Discussion
If title is null or contains a string that does not match the title of any menu item, this method deselects
the currently selected menu item.

By default, selecting or deselecting a menu item changes its state. Use the
setAltersStateOfSelectedItem (page 1120) method, passing it a value of false, to disassociate the
current selection from the state of menu items.

See Also
selectedItem (page 1119)
selectItem (page 1119)
selectItemAtIndex (page 1119)
setAltersStateOfSelectedItem (page 1120)
setState (page 1931) (NSMenuItem)

setAltersStateOfSelectedItem
public void setAltersStateOfSelectedItem(boolean flag)

1120 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Discussion
If flag is false, this method disassociates the current selection from the state of menu items. Before
disassociating the selection from the menu item state, this method first sets the state of the currently selected
menu item to NSCell.StateOff. If flag is true, this method sets the state of the currently selected menu
item to NSCell.StateOn.

See Also
altersStateOfSelectedItem (page 1112)
selectedItem (page 1119)
selectItem (page 1119)
selectItemAtIndex (page 1119)
setState (page 1931) (NSMenuItem)

setArrowPosition
Sets the position of the arrow displayed on the receiver to position.

public void setArrowPosition(int position)

Discussion
PopUpNoArrow displays no arrow. PopUpArrowAtCenter displays the arrow centered horizontally within
the cell. PopUpArrowAtBottom displays the arrow at the edge of the cell. This method works with
setPreferredEdge: to determine the exact location and orientation of the arrow. For more information,
see setPreferredEdge (page 1122).

This method is ignored unless the receiver is a pull-down list with a beveled border.

See Also
arrowPosition (page 1112)

setAutoenablesItems
Controls whether the pop-up button’s menu automatically enables and disables its menu items.

public void setAutoenablesItems(boolean flag)

Discussion
If flag is true, menu items are automatically enabled and disabled. If flag is false, menu items are not
automatically enabled or disabled.

See Also
autoenablesItems (page 1112)

setImage
This method has no effect.

public void setImage(NSImage anImage)

Instance Methods 1121
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Discussion
The image displayed in a pop up button is taken from the selected menu item (in the case of a pop up menu)
or from the first menu item (in the case of a pull-down menu).

setMenu
Sets the menu object to be used by this pop-up button to menu.

public void setMenu(NSMenu menu)

Discussion
If another menu was already associated with the pop-up button, this method releases the old menu. If you
want to explicitly save the old menu, you should retain it before invoking this method.

See Also
menu (page 1117)

setObjectValue
Attempts to select the item at an index of object if the receiver responds to intValue and object is a
valid index.

public void setObjectValue(Object object)

Discussion
Otherwise, the selected item is cleared.

See Also
objectValue (page 1117)

setPreferredEdge
Sets the edge of the pop-up button to which menus are attached to edge.

public void setPreferredEdge(int edge)

Discussion
At display time, if attaching the menu to the preferred edge would cause part of the menu to be obscured,
the pop-up button may use a different edge. If no preferred edge is set, the pop-up button uses the bottom
edge by default.

This method works with setArrowPosition (page 1121) to determine the exact location of the arrow:

 ■ If the arrow position is PopUpArrowAtCenter, the arrow stays in the center of the button and this
method determines which edge the arrow points to. NSRect.MinXEdge points to the left,
NSRect.MaxYEdge points to the top, NSRect.MaxXEdge points to the right, and NSRect.MinYEdge
points to the bottom.

1122 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

 ■ If the arrow position is PopUpArrowAtBottom, this method determines which edge the arrow is at.
NSRect.MinXEdge places the arrow at the center of the left side, pointing to the left. NSRect.MinYEdge
places the arrow at bottom right corner, pointing up. NSRect.MaxXEdge places the arrow at the center
of the right side, pointing to the right. NSRect.MaxYEdge places the arrow at the bottom right corner,
pointing down.

See Also
preferredEdge (page 1117)

setPullsDown
Sets whether the pop-up button uses a pop-up or a pull-down menu.

public void setPullsDown(boolean flag)

Discussion
If flag is true, the pop-up button displays a pull-down menu; otherwise the pop-up button displays a
pop-up menu. This method does not change the contents of the menu; it changes only the style of the menu.

When changing the menu type to a pull-down menu, if the menu was a pop-up menu and the cell alters the
state of its selected items, this method sets the state of the currently selected item to NSCell.StateOff
before changing the menu type.

See Also
pullsDown (page 1118)
synchronizeTitleAndSelectedItem (page 1124)

setTitle
public void setTitle(String aString)

Discussion
For pull-down menus that get their titles from a menu item, this method simply sets the pop-up button cell’s
menu item to the first item in the menu. For pop-up menus, if a menu item whose title matches aString
exists, this method makes that menu item the current selection; otherwise, it creates a new menu item with
the title aString, adds it to the pop-up menu, and selects it.

setUsesItemFromMenu
Controls whether the pop-up button uses an item from the menu for its own purposes.

public void setUsesItemFromMenu(boolean flag)

Discussion
For pull-down menus, the pop-up button uses the first menu item as its own title if flag is true. For pop-up
menus, the pop-up button uses the title of the currently selected menu item; if no menu item is selected,
the pop-up button displays no item and is drawn empty.

See Also
usesItemFromMenu (page 1124)

Instance Methods 1123
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

synchronizeTitleAndSelectedItem
For pop-up menus, this method sets the pop-up button’s menu item to the currently selected menu item or
to the first menu item if none is selected.

public void synchronizeTitleAndSelectedItem()

Discussion
For pull-down menus, this method sets the item to the first menu item. If the pop-up button cell does not
get its title from a menu item, this method does nothing.

If the pop-up button’s menu does not contain any menu items, this method sets the pop-up button’s item
to null.

titleOfSelectedItem
Returns a string containing the title of the currently selected menu item or an empty string if no item is
selected.

public String titleOfSelectedItem()

See Also
selectItemWithTitle (page 1120)

usesItemFromMenu
Returns true if the pop-up button uses the title text of a menu item for its own title.

public boolean usesItemFromMenu()

Discussion
If this option is set, pull-down menus use the title of the first menu item in the menu while pop-up menus
use the title of the currently selected menu.

See Also
setUsesItemFromMenu (page 1123)

Constants

The following constants are defined by NSPopUpButtonCell and used by arrowPosition (page 1112) and
setArrowPosition (page 1121):

DescriptionConstant

Does not display any arrow in the receiver.PopUpNoArrow

Arrow is centered vertically, pointing toward the preferredEdge (page 1117).PopUpArrowAtCenter

Arrow is drawn at the edge of the button, pointing toward the
preferredEdge (page 1117).

PopUpArrowAtBottom

1124 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Notifications

PopUpButtonCellWillPopUpNotification
This notification is posted just before an pop-up menu is attached to its window frame. You can use this
notification to lazily construct your part’s menus, thus preventing unnecessary calculations until they are
needed. The notification object can be either a pop-up button or its enclosed pop-up button cell. This
notification does not contain a userInfo dictionary.

Notifications 1125
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

1126 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 82

NSPopUpButtonCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Printing Programming Topics for Cocoa

Overview

An NSPrinter object describes a printer’s capabilities as defined in its PPD file. An NSPrinter object can be
constructed by specifying either the printer name or the make and model of an available printer. You use
NSPrinter to get information about printers, not to modify printer attributes or control a printing job.

Tasks

Constructors

NSPrinter (page 1129)
Creates an empty NSPrinter.

Creating an NSPrinter

printerWithName (page 1130)
Returns an NSPrinter that represents the printer with the given name.

printerWithType (page 1130)
Returns an NSPrinter object that represents the first available printer that has the make and model
described by type.

Getting General Printer Information

printerNames (page 1129)
Returns the names of all available printers.

printerTypes (page 1129)
Returns descriptions of the makes and models of all available printers identified by
printerNames (page 1129)

Overview 1127
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

Getting Attributes

name (page 1133)
Returns the printer’s name.

type (page 1135)
Returns a description of the printer’s make and model.

Getting Specific Information

pageSizeForPaper (page 1133)
Returns the size of the page for the paper type paperName.

languageLevel (page 1132)
Returns the PostScript language level recognized by the printer.

Querying the Tables

isKeyInTable (page 1132)
Returns true if key is in table, false otherwise.

stringForKeyInTable (page 1134)
Returns the first occurrence of a value associated with key in table.

stringListForKeyInTable (page 1134)
Returns an array of strings, one for each occurrence, associated with key in table.

booleanForKeyInTable (page 1130)
Returns a boolean value associated with key in table.

floatForKeyInTable (page 1131)
Returns a floating-point value associated with key in table.

intForKeyInTable (page 1132)
Returns an integer value associated with key in table.

rectForKeyInTable (page 1133)
Returns the rectangle associated with key in table.

sizeForKeyInTable (page 1134)
Returns the size associated with key in table.

statusForTable (page 1134)
Returns the status of table.

deviceDescription (page 1131)
Returns a dictionary of keys and values describing the device.

Deprecated Methods

acceptsBinary (page 1130)
Deprecated.

domain (page 1131)

1128 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

host (page 1131)
Deprecated.

imageRectForPaper (page 1131)
Deprecated.

isColor (page 1132)
Deprecated.

isFontAvailable (page 1132)
Deprecated.

isOutputStackInReverseOrder (page 1132)
Deprecated.

note (page 1133)
Deprecated.

Constructors

NSPrinter
Creates an empty NSPrinter.

public NSPrinter()

Static Methods

printerNames
Returns the names of all available printers.

public static NSArray printerNames()

Discussion
The user constructs the list of available printers with the Print Center application.

See Also
printerTypes (page 1129)
name (page 1133)

printerTypes
Returns descriptions of the makes and models of all available printers identified by printerNames (page
1129)

public static NSArray printerTypes()

Discussion
.

Constructors 1129
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

See Also
type (page 1135)

printerWithName
Returns an NSPrinter that represents the printer with the given name.

public static NSPrinter printerWithName(String name)

Discussion
Returns null if the specified printer is not available.

Deprecated.

public static NSPrinter printerWithName(String name, String domain, boolean
includeUnavailable)

See Also
printerWithType (page 1130)
printerNames (page 1129)

printerWithType
Returns an NSPrinter object that represents the first available printer that has the make and model described
by type.

public static NSPrinter printerWithType(String type)

Discussion
type is of the form returned by printerTypes (page 1129).

See Also
printerWithName (page 1130)
type (page 1135)

Instance Methods

acceptsBinary
Deprecated.

public boolean acceptsBinary()

booleanForKeyInTable
Returns a boolean value associated with key in table.

public boolean booleanForKeyInTable(String key, String table)

1130 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

Discussion
Also returns false if key is not in table or if the receiver lacks a PPD file.

See Also
isKeyInTable (page 1132)
stringForKeyInTable (page 1134)

deviceDescription
Returns a dictionary of keys and values describing the device.

public NSDictionary deviceDescription()

Discussion
See NSGraphics “Constants” (page 727) for possible keys. The only key guaranteed to exist is
NSDeviceIsPrinter.

domain
public String domain()

Discussion
Deprecated.

floatForKeyInTable
Returns a floating-point value associated with key in table.

public float floatForKeyInTable(String key, String table)

Discussion
Returns 0.0 if key is not in table or if the receiver lacks a PPD file.

See Also
isKeyInTable (page 1132)
stringForKeyInTable (page 1134)

host
Deprecated.

public String host()

imageRectForPaper
Deprecated.

public NSRect imageRectForPaper(String paperName)

Instance Methods 1131
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

Discussion
If used, it attempts to determine and return the bounds of the imagable area for a particular paper named
paperName, but the result is not completely reliable.

See Also
pageSizeForPaper (page 1133)

intForKeyInTable
Returns an integer value associated with key in table.

public int intForKeyInTable(String key, String table)

Discussion
Returns 0 if key is not in table or if the receiver lacks a PPD file.

See Also
isKeyInTable (page 1132)
stringForKeyInTable (page 1134)

isColor
Deprecated.

public boolean isColor()

isFontAvailable
Deprecated.

public boolean isFontAvailable(String faceName)

isKeyInTable
Returns true if key is in table, false otherwise.

public boolean isKeyInTable(String key, String table)

isOutputStackInReverseOrder
Deprecated.

public boolean isOutputStackInReverseOrder()

languageLevel
Returns the PostScript language level recognized by the printer.

1132 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

public int languageLevel()

Discussion
Returns 0 if the receiver is not a Postscript printer.

name
Returns the printer’s name.

public String name()

See Also
printerNames (page 1129)
printerWithName (page 1130)

note
Deprecated.

public String note()

pageSizeForPaper
Returns the size of the page for the paper type paperName.

public NSSize pageSizeForPaper(String paperName)

Discussion
Possible values for paperName are contained in the printer’s PPD file. Typical values are Letter and Legal.
Returns a zero size if paperName is not recognized, or its entry in the PPD cannot be parsed.

See Also
imageRectForPaper (page 1131)

rectForKeyInTable
Returns the rectangle associated with key in table.

public NSRect rectForKeyInTable(String key, String table)

Discussion
Returns NSRect.ZeroRect if key is not in table or if the receiver lacks a PPD file.

See Also
isKeyInTable (page 1132)
stringForKeyInTable (page 1134)

Instance Methods 1133
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

sizeForKeyInTable
Returns the size associated with key in table.

public NSSize sizeForKeyInTable(String key, String table)

Discussion
The returned width and height are 0.0 if key is not in table or if the receiver lacks a PPD file.

See Also
isKeyInTable (page 1132)
stringForKeyInTable (page 1134)

statusForTable
Returns the status of table.

public int statusForTable(String table)

Discussion
The possible return values are described in “Constants” (page 1135).

stringForKeyInTable
Returns the first occurrence of a value associated with key in table.

public String stringForKeyInTable(String key, String table)

Discussion
If key is a main keyword only, and if that keyword has options in the PPD file, this method returns an empty
string. Use stringListForKeyInTable (page 1134) to retrieve the values for all occurrences of a main
keyword. Returns null if key is not in table.

See Also
isKeyInTable (page 1132)
booleanForKeyInTable (page 1130)
floatForKeyInTable (page 1131)
intForKeyInTable (page 1132)
rectForKeyInTable (page 1133)
sizeForKeyInTable (page 1134)

stringListForKeyInTable
Returns an array of strings, one for each occurrence, associated with key in table.

public NSArray stringListForKeyInTable(String key, String table)

Discussion
Returns null if key is not in table.

1134 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

See Also
isKeyInTable (page 1132)
stringForKeyInTable (page 1134)

type
Returns a description of the printer’s make and model.

public String type()

See Also
printerTypes (page 1129)

Constants

These constants describe the state of a printer information table stored by an NSPrinter object. They’re used
by statusForTable (page 1134).

DescriptionConstant

Printer table was found and is valid.PrinterTableOK

Printer table was not found.PrinterTableNotFound

Printer table is not valid.PrinterTableError

Constants 1135
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

1136 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 83

NSPrinter

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Printing Programming Topics for Cocoa

Overview

An NSPrintInfo object stores information that’s used to generate output. A shared NSPrintInfo object is
automatically created for an application and is used by default for all printing jobs for that application.

Tasks

Constructors

NSPrintInfo (page 1140)
Creates an empty NSPrintInfo.

Managing the Shared NSPrintInfo

setSharedPrintInfo (page 1140)
Sets the shared NSPrintInfo object to printInfo.

sharedPrintInfo (page 1141)
Returns the shared NSPrintInfo object.

Managing the Printing Rectangle

bottomMargin (page 1141)
Returns the height of the bottom margin in points.

imageablePageBounds (page 1142)
Returns the imageable area of a sheet of paper specified by the receiver, taking into account the
current printer, paper size, and orientation settings, but not scaling.

Overview 1137
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

leftMargin (page 1143)
Returns the width of the left margin in points.

orientation (page 1143)
Returns the orientation attribute.

paperName (page 1143)
Returns the paper name, such as Letter or Legal.

localizedPaperName (page 1143)
Returns the human-readable name of the currently selected paper size, suitable for presentation in
user interfaces.

paperSize (page 1143)
Returns the size of the paper in points.

rightMargin (page 1144)
Returns the width of the right margin in points.

setBottomMargin (page 1144)
Sets the bottom margin to margin specified in points.

setLeftMargin (page 1145)
Sets the left margin to margin specified in points.

setOrientation (page 1145)
Sets the page orientation to orientation where orientation is either PortraitOrientation
or LandscapeOrientation.

setPaperName (page 1146)
Sets the paper name to name (for example, Letter or Legal).

setPaperSize (page 1146)
Sets the width and height of the paper to aSize specified in points.

setRightMargin (page 1146)
Sets the right margin to margin specified in points.

setTopMargin (page 1147)
Sets the top margin to margin specified in points.

topMargin (page 1147)
Returns the top margin in points.

Pagination

horizontalPagination (page 1141)
Returns the horizontal pagination mode.

setHorizontalPagination (page 1144)
Sets the horizontal pagination to mode.

setVerticalPagination (page 1147)
Sets the vertical pagination to mode.

verticalPagination (page 1148)
Returns the vertical pagination mode.

1138 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

Positioning the Image on the Page

isHorizontallyCentered (page 1142)
Returns true if the image is centered horizontally, false otherwise.

isVerticallyCentered (page 1142)
Returns true if the image is centered vertically, false otherwise.

setHorizontallyCentered (page 1144)

setVerticallyCentered (page 1147)

Specifying the Printer

printer (page 1144)
Returns the NSPrinter to be used for printing.

setPrinter (page 1146)
Sets the printer used in subsequent printing jobs to printer.

Controlling Printing

jobDisposition (page 1142)
Returns the action specified for the job.

setJobDisposition (page 1145)
Sets the action specified for the job to disposition.

setUpPrintOperationDefaultValues (page 1147)
Validates the attributes encapsulated by the receiver.

Accessing the Dictionary

dictionary (page 1141)
Returns the receiver’s dictionary that stores its attribute settings

Deprecated Methods

defaultPrinter (page 1140)
Deprecated.

setDefaultPrinter (page 1140)
Deprecated.

sizeForPaperName (page 1141)
Deprecated.

Tasks 1139
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

Constructors

NSPrintInfo
Creates an empty NSPrintInfo.

public NSPrintInfo()

Creates a new NSPrintInfo object, assigning it the parameters specified in aDictionary.

public NSPrintInfo(NSDictionary aDictionary)

Discussion
The possible key-value pairs contained in aDictionary are described in “Constants” (page 1148).

See Also
dictionary (page 1141)

Static Methods

defaultPrinter
Deprecated.

public static NSPrinter defaultPrinter()

setDefaultPrinter
Deprecated.

public static void setDefaultPrinter(NSPrinter aPrinter)

setSharedPrintInfo
Sets the shared NSPrintInfo object to printInfo.

public static void setSharedPrintInfo(NSPrintInfo printInfo)

Discussion
The shared NSPrintInfo object defines the settings for the NSPageLayout panel and print operations that will
be used if no NSPrintInfo object is specified for those operations. printInfo should never be null.

See Also
sharedPrintInfo (page 1141)

1140 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

sharedPrintInfo
Returns the shared NSPrintInfo object.

public static NSPrintInfo sharedPrintInfo()

See Also
setSharedPrintInfo (page 1140)

sizeForPaperName
Deprecated.

public static NSSize sizeForPaperName(String name)

Discussion
Use NSPrinter’s method pageSizeForPaper (page 1133) instead.

Instance Methods

bottomMargin
Returns the height of the bottom margin in points.

public float bottomMargin()

See Also
setBottomMargin (page 1144)

dictionary
Returns the receiver’s dictionary that stores its attribute settings

public NSMutableDictionary dictionary()

Discussion
. The key-value pairs contained in the dictionary are described in “Constants” (page 1148). Modifying the
returned dictionary changes the receiver’s attributes.

horizontalPagination
Returns the horizontal pagination mode.

public int horizontalPagination()

Discussion
It can return one of the pagination modes described in “Constants” (page 1148).

Instance Methods 1141
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

See Also
setVerticalPagination (page 1147)
verticalPagination (page 1148)

imageablePageBounds
Returns the imageable area of a sheet of paper specified by the receiver, taking into account the current
printer, paper size, and orientation settings, but not scaling.

public NSRect imageablePageBounds()

Discussion
“Imageable area” is the maximum area that can possibly be marked on by the printer hardware, not the area
defined by the current margin settings. The rectangle is in a coordinate space measured by points, with (0,
0) being the lower-left corner of the oriented sheet and (paperWidth, paperHeight) being the upper-right
corner of the oriented sheet. The imageable bounds may extend past the edges of the sheet when, for
example, a printer driver specifies it so that borderless printing can be done reliably.

Availability
Available in Mac OS X v10.2 and later.

isHorizontallyCentered
Returns true if the image is centered horizontally, false otherwise.

public boolean isHorizontallyCentered()

See Also
isVerticallyCentered (page 1142)
setHorizontallyCentered (page 1144)

isVerticallyCentered
Returns true if the image is centered vertically, false otherwise.

public boolean isVerticallyCentered()

See Also
isHorizontallyCentered (page 1142)
setVerticallyCentered (page 1147)

jobDisposition
Returns the action specified for the job.

public String jobDisposition()

Discussion
See setJobDisposition (page 1145) for a description of return values.

1142 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

leftMargin
Returns the width of the left margin in points.

public float leftMargin()

See Also
setLeftMargin (page 1145)

localizedPaperName
Returns the human-readable name of the currently selected paper size, suitable for presentation in user
interfaces.

public String localizedPaperName()

Discussion
This is typically different from the name returned by paperName (page 1143), which is almost never suitable
for presentation to the user.

Availability
Available in Mac OS X v10.3 and later.

orientation
Returns the orientation attribute.

public int orientation()

Discussion
See setOrientation (page 1145) for a description of return values.

paperName
Returns the paper name, such as Letter or Legal.

public String paperName()

Discussion
Paper names are implementation specific.

See Also
setPaperName (page 1146)
localizedPaperName (page 1143)

paperSize
Returns the size of the paper in points.

public NSSize paperSize()

Instance Methods 1143
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

See Also
setPaperSize (page 1146)

printer
Returns the NSPrinter to be used for printing.

public NSPrinter printer()

See Also
setPrinter (page 1146)

rightMargin
Returns the width of the right margin in points.

public float rightMargin()

See Also
setRightMargin (page 1146)

setBottomMargin
Sets the bottom margin to margin specified in points.

public void setBottomMargin(float margin)

See Also
bottomMargin (page 1141)

setHorizontallyCentered
public void setHorizontallyCentered(boolean flag)

Discussion
If flag is true the image will be centered horizontally.

See Also
isHorizontallyCentered (page 1142)
isVerticallyCentered (page 1142)
setVerticallyCentered (page 1147)

setHorizontalPagination
Sets the horizontal pagination to mode.

public void setHorizontalPagination(int mode)

1144 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

Discussion
mode can be one of the pagination modes described in “Constants” (page 1148).

See Also
horizontalPagination (page 1141)
setVerticalPagination (page 1147)
verticalPagination (page 1148)

setJobDisposition
Sets the action specified for the job to disposition.

public void setJobDisposition(String disposition)

Discussion
disposition can be one of the following:

 ■ PrintSpoolJob is a normal print job.

 ■ PrintPreviewJob sends the print job to the Preview application.

 ■ PrintSaveJob saves the print job to a file.

 ■ PrintCancelJob aborts the print job.

See Also
jobDisposition (page 1142)

setLeftMargin
Sets the left margin to margin specified in points.

public void setLeftMargin(float margin)

See Also
leftMargin (page 1143)

setOrientation
Sets the page orientation to orientation where orientation is either PortraitOrientation or
LandscapeOrientation.

public void setOrientation(int orientation)

Discussion
This method may change either the paper name or size for consistency. To avoid this side effect set the values
in the dictionary directly.

See Also
dictionary (page 1141)
orientation (page 1143)

Instance Methods 1145
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

setPaperName
Sets the paper name to name (for example, Letter or Legal).

public void setPaperName(String name)

Discussion
Paper names are implementation specific. This method may change either the size or orientation for
consistency. To avoid this side effect set the values in the dictionary directly.

See Also
dictionary (page 1141)
paperName (page 1143)

setPaperSize
Sets the width and height of the paper to aSize specified in points.

public void setPaperSize(NSSize aSize)

Discussion
This method may change either the paper name or orientation for consistency. To avoid this side effect set
the values in the dictionary directly.

See Also
dictionary (page 1141)
paperSize (page 1143)

setPrinter
Sets the printer used in subsequent printing jobs to printer.

public void setPrinter(NSPrinter printer)

Discussion
This method iterates through the dictionary. If a feature in the dictionary is not supported by the new printer
(as determined by a query to the PPD file), that feature is removed from the dictionary.

See Also
printer (page 1144)

setRightMargin
Sets the right margin to margin specified in points.

public void setRightMargin(float margin)

See Also
rightMargin (page 1144)

1146 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

setTopMargin
Sets the top margin to margin specified in points.

public void setTopMargin(float margin)

See Also
topMargin (page 1147)

setUpPrintOperationDefaultValues
Validates the attributes encapsulated by the receiver.

public void setUpPrintOperationDefaultValues()

Discussion
Invoked when the print operation is about to start. Subclasses may override this method to set default values
for any attributes that are not set.

setVerticallyCentered
public void setVerticallyCentered(boolean flag)

Discussion
If flag is true, the image will be vertically centered.

See Also
isHorizontallyCentered (page 1142)
isVerticallyCentered (page 1142)
setHorizontallyCentered (page 1144)

setVerticalPagination
Sets the vertical pagination to mode.

public void setVerticalPagination(int mode)

Discussion
mode can be one of the pagination modes described in “Constants” (page 1148).

See Also
horizontalPagination (page 1141)
setHorizontalPagination (page 1144)
verticalPagination (page 1148)

topMargin
Returns the top margin in points.

public float topMargin()

Instance Methods 1147
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

See Also
setTopMargin (page 1147)

verticalPagination
Returns the vertical pagination mode.

public int verticalPagination()

Discussion
It can return one of the pagination modes described in “Constants” (page 1148).

See Also
horizontalPagination (page 1141)
setHorizontalPagination (page 1144)

Constants

These constants specify the different ways in which an image is divided into pages. They’re used by
horizontalPagination (page 1141),setHorizontalPagination (page 1144),verticalPagination (page
1148), and setVerticalPagination (page 1147).

MeaningPagination Constant

The image is divided into equal-sized rectangles and placed in one column of pages.AutoPagination

The image is scaled to produce one column or one row of pages.FitPagination

The image is clipped to produce one column or row of pages.ClipPagination

These constants specify page orientations. They’re used by orientation (page 1143) and
setOrientation (page 1145).

MeaningOrientation

Orientation is portrait (page is taller than it is wide).PortraitOrientation

Orientation is landscape (page is wider than it is tall).LandscapeOrientation

These constants specify job dispositions. They’re used by jobDisposition (page 1142), and
setJobDisposition (page 1145).

MeaningMode

Normal print job.PrintSpoolJob

Send to Preview application.PrintPreviewJob

1148 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

MeaningMode

Save to a file.PrintSaveJob

Cancel print job.PrintCancelJob

The following sets of constants specify the keys in the dictionary returned by dictionary (page 1141) or used
to create an instance.

The following dictionary keys access page setup attributes.

DescriptionTypeConstant

The paper name.StringPrintPaperName

Height and width of paper in points.NSSizePrintPaperSize

PortraitOrientation or LandscapeOrientationintPrintOrientation

Scale factor percentage before pagination.floatPrintScalingFactor

The following dictionary keys access pagination attributes.

DescriptionTypeConstant

The left margin in points.floatPrintLeftMargin

The right margin in points.floatPrintRightMargin

The top margin in points.floatPrintTopMargin

The bottom margin in points.floatPrintBottomMargin

If true, pages are centered horizontally.booleanPrintHorizontallyCentered

If true, pages are centered vertically.booleanPrintVerticallyCentered

AutoPagination, FitPagination, or ClipPagination.
See setHorizontalPagination (page 1144) for details.

intPrintHorizontalPagination

AutoPagination, FitPagination, or ClipPagination.
See setVerticalPagination (page 1147) for details.

intPrintVerticalPagination

The following dictionary keys access print job attributes.

DescriptionTypeConstant

The printer to use.NSPrinterPrintPrinter

Number of copies to spool.intPrintCopies

If true, includes all pages in output.booleanPrintAllPages

Constants 1149
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

DescriptionTypeConstant

The first page in the print job.intPrintFirstPage

The last page in the print job.intPrintLastPage

If true, prints last page first.booleanPrintReversePageOrder

If true, collates output.booleanPrintMustCollate

PrintSpoolJob,PrintPreviewJob,PrintSaveJob,
orPrintCancelJob. SeesetJobDisposition (page
1145) for details.

StringPrintJobDisposition

Pathname to save as a file if job disposition is
PrintSaveJob.

StringPrintSavePath

The number of logical pages to be tiled horizontally
on a physical sheet of paper. (Available in Mac OS X
v10.4 and later.)

NumberPrintPagesAcross

The number of logical pages to be tiled veritcally on a
physical sheet of paper. (Available in Mac OS X v10.4
and later.)

NumberPrintPagesDown

The time at which printing should begin. (Available in
Mac OS X v10.4 and later.)

DatePrintTime

If true, produce detailed reports when an error occurs.
(Available in Mac OS X v10.4 and later.)

Number,
containing
aboolean

PrintDetailedError-
Reporting

A fax number. (Available in Mac OS X v10.4 and later.)StringPrintFaxNumber

The name of a printer. (Available in Mac OS X v10.4
and later.)

StringPrintPrinterName

1150 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 84

NSPrintInfo

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Printing Programming Topics for Cocoa

Overview

An NSPrintOperation object controls operations that generate Encapsulated PostScript (EPS) code, Portable
Document Format (PDF) code, or print jobs. NSPrintOperation works in conjunction with two other objects:
an NSPrintInfo object, which specifies how the code should be generated, and an NSView object, which
generates the actual code.

It is important to note that the majority of methods in NSPrintOperation copy the instance of NSPrintInfo
passed into them. Future changes to that print info are not reflected in the print info retained by
NSPrintOperation. All changes should be made to the print info before passing to NSPrintOperation methods.
The only method in NSPrintOperation which does not copy the NSPrintInfo instance is setPrintInfo (page
1162).

Tasks

Constructors

NSPrintOperation (page 1154)
Creates an empty NSPrintOperation.

Creating an NSPrintOperation

EPSOperationWithViewInsideRect (page 1154)
Returns a new NSPrintOperation object that controls the copying of EPS graphics from the area
specified by rect in aView.

PDFOperationWithViewInsideRect (page 1155)
Returns a new NSPrintOperation object that controls the copying of PDF graphics from the area
specified by rect in aView.

printOperationWithView (page 1156)
Returns a new NSPrintOperation that controls the printing of aView.

Overview 1151
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

Setting the Current NSPrintOperation for This Thread

currentOperation (page 1154)
Returns the current print operation for this thread.

setCurrentOperation (page 1156)
Sets the current print operation for this thread to operation.

Determining the Type of Operation

isCopyingOperation (page 1158)
Returns true if the receiver is an EPS or PDF copy operation.

isEPSOperation (page 1158)
Returns true if the receiver controls an EPS operation (initiated by a copy command), and false if
the receiver controls a printing operation (initiated by a print command).

Modifying the NSPrintInfo Object

printInfo (page 1159)
Returns the receiver’s NSPrintInfo object.

setPrintInfo (page 1162)
Sets the receiver’s NSPrintInfo object to aPrintInfo.

Getting the NSView Object

view (page 1164)
Returns the NSView object that generates the actual PostScript or PDF code controlled by the receiver.

Running a Print Operation

runOperation (page 1160)
Runs the operation, either copying an EPS or PDF graphic or printing a job.

runModalOperation (page 1160)
Runs the print operation, with document-modal sheets attached to docWindow. When the modal
session ends, if neither delegate or didRunSelector are null, didRunSelector is sent to
delegate with contextInfo as an argument. The

cleanUpOperation (page 1157)
Invoked by runOperation (page 1160) at the end of an operation to remove the receiver as the current
operation.

deliverResult (page 1158)
Delivers the results generated by runOperation (page 1160) to the intended destination (for example,
the printer spool or preview application).

1152 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

Modifying the User Interface

showPanels (page 1163)
Returns true if the NSPrintPanel will be used in the operation, otherwise false.

setShowPanels (page 1162)

showsPrintPanel (page 1163)
Returns true if the NSPrintPanel will be used in the operation, otherwise false.

showsProgressPanel (page 1164)
Returns true if a progress panel will be used in the operation, otherwise false.

setShowsPrintPanel (page 1162)
If flag is true, then the receiver’s NSPrintPanel is used in the operation; otherwise, it is not.

setShowsProgressPanel (page 1163)
If flag is true, then the receiver’s progress panel is used in the operation; otherwise, it is not.

accessoryView (page 1156)
Returns the accessory view used by the receiver’s NSPrintPanel object.

setAccessoryView (page 1160)
Sets the custom accessory view aView, to be used by the receiver’s NSPrintPanel object.

jobStyleHint (page 1159)
Returns the type of content that the print job is printing.

setJobStyleHint (page 1161)
Sets the type of content that the print job is printing.

printPanel (page 1159)
Returns the NSPrintPanel object used when running the operation.

setPrintPanel (page 1162)
Sets the receiver’s NSPrintPanel used in the operation to panel.

Managing the Drawing Context

context (page 1157)
Returns the receiver’s display context used for generating output.

createContext (page 1157)
Creates the display context for output generation, using the receiver’s NSPrintInfo settings.

destroyContext (page 1158)
Destroys the receiver’s display context.

Modifying Page Information

currentPage (page 1158)
Returns the page number of the page currently being printed.

pageOrder (page 1159)
Returns the order in which pages will be printed.

Tasks 1153
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

setPageOrder (page 1161)
Sets the order in which pages will be printed to order.

Managing Printing Threads

canSpawnSeparateThread (page 1157)
Returns whether the receiver is allowed to spawn a separate printing thread.

setCanSpawnSeparateThread (page 1161)
Sets whether the receiver is allowed to spawn a separate printing thread.

Constructors

NSPrintOperation
Creates an empty NSPrintOperation.

public NSPrintOperation()

Static Methods

currentOperation
Returns the current print operation for this thread.

public static NSPrintOperation currentOperation()

Discussion
Returns null if there isn’t a current operation.

See Also
setCurrentOperation (page 1156)

EPSOperationWithViewInsideRect
Returns a new NSPrintOperation object that controls the copying of EPS graphics from the area specified by
rect in aView.

public static NSPrintOperation EPSOperationWithViewInsideRect(NSView aView, NSRect
rect, NSMutableData data)

Discussion
The new NSPrintOperation object uses the default NSPrintInfo object. The EPS code is written to data. Throws
an exception if there is already a print operation in progress; otherwise the returned object is made the
current print operation for this thread.

1154 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

Returns a new NSPrintOperation object that controls the copying of EPS graphics from the area specified by
rect in aView.

public static NSPrintOperation EPSOperationWithViewInsideRect(NSView aView, NSRect
rect, NSMutableData data, NSPrintInfo aPrintInfo)

Discussion
The new NSPrintOperation object uses the settings stored in aPrintInfo. The code is written to data.
Throws an exception if there is already a print operation in progress; otherwise the returned object is made
the current print operation for this thread.

Creates and returns a new NSPrintOperation object that controls the copying of EPS graphics from the area
specified by rect in aView.

public static NSPrintOperation EPSOperationWithViewInsideRect(NSView aView, NSRect
rect, String path, NSPrintInfo aPrintInfo)

Discussion
The new NSPrintOperation object uses the settings stored in aPrintInfo. The code is written to path.
Throws an exception if there is already a print operation in progress; otherwise the returned object is made
the current print operation for this thread.

PDFOperationWithViewInsideRect
Returns a new NSPrintOperation object that controls the copying of PDF graphics from the area specified by
rect in aView.

public static NSPrintOperation PDFOperationWithViewInsideRect(NSView aView, NSRect
rect, NSMutableData data)

Discussion
The new NSPrintOperation object uses the default NSPrintInfo object. The PDF is written to data. Throws
an exception if there is already a print operation in progress; otherwise the returned object is made the
current print operation for this thread.

Returns a new NSPrintOperation object that controls the copying of PDF graphics from the area specified by
rect in aView.

public static NSPrintOperation PDFOperationWithViewInsideRect(NSView aView, NSRect
rect, NSMutableData data, NSPrintInfo aPrintInfo)

Discussion
The new NSPrintOperation object uses the settings stored in aPrintInfo. The PDF is written to data. Throws
an exception if there is already a print operation in progress; otherwise the returned object is made the
current print operation for this thread.

Creates and returns a new NSPrintOperation object that controls the copying of PDF graphics from the area
specified by rect in aView.

public static NSPrintOperation PDFOperationWithViewInsideRect(NSView aView, NSRect
rect, String path, NSPrintInfo aPrintInfo)

Static Methods 1155
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

Discussion
The new NSPrintOperation object uses the settings stored in aPrintInfo. The PDF is written to path. Throws
an exception if there is already a print operation in progress; otherwise the returned object is made the
current print operation for this thread.

printOperationWithView
Returns a new NSPrintOperation that controls the printing of aView.

public static NSPrintOperation printOperationWithView(NSView aView)

Discussion
The new NSPrintOperation object uses the settings stored in the shared NSPrintInfo object. Throws an
exception if there is already a print operation in progress; otherwise the returned object is made the current
print operation for this thread.

Returns a new NSPrintOperation that controls the printing of aView.

public static NSPrintOperation printOperationWithView(NSView aView, NSPrintInfo
aPrintInfo)

Discussion
The new NSPrintOperation object uses the settings stored in aPrintInfo. Throws an exception if there is
already a print operation in progress; otherwise the returned object is made the current print operation for
this thread.

setCurrentOperation
Sets the current print operation for this thread to operation.

public static void setCurrentOperation(NSPrintOperation operation)

Discussion
If operation is null, then there is no current print operation.

See Also
currentOperation (page 1154)

Instance Methods

accessoryView
Returns the accessory view used by the receiver’s NSPrintPanel object.

public NSView accessoryView()

Discussion
You use setAccessoryView (page 1160) to customize the default NSPrintPanel object without having to
subclass NSPrintPanel or specify your own NSPrintPanel object.

1156 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

See Also
printPanel (page 1159)
setPrintPanel (page 1162)
setShowPanels (page 1162)
showPanels (page 1163)

canSpawnSeparateThread
Returns whether the receiver is allowed to spawn a separate printing thread.

public boolean canSpawnSeparateThread()

See Also
setCanSpawnSeparateThread (page 1161)

cleanUpOperation
Invoked by runOperation (page 1160) at the end of an operation to remove the receiver as the current
operation.

public void cleanUpOperation()

Discussion
You typically do not invoke this method directly.

context
Returns the receiver’s display context used for generating output.

public NSGraphicsContext context()

See Also
createContext (page 1157)
destroyContext (page 1158)

createContext
Creates the display context for output generation, using the receiver’s NSPrintInfo settings.

public NSGraphicsContext createContext()

Discussion
Do not invoke this method directly—it is invoked before any output is generated.

See Also
context (page 1157)
destroyContext (page 1158)

Instance Methods 1157
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

currentPage
Returns the page number of the page currently being printed.

public int currentPage()

See Also
pageOrder (page 1159)
setPageOrder (page 1161)

deliverResult
Delivers the results generated by runOperation (page 1160) to the intended destination (for example, the
printer spool or preview application).

public boolean deliverResult()

Discussion
Returns true if the operation was successful, false otherwise. Do not invoke this method directly—it is
invoked automatically when the operation is done generating the output.

destroyContext
Destroys the receiver’s display context.

public void destroyContext()

Discussion
Do not invoke this method directly—it is invoked at the end of a print operation.

See Also
context (page 1157)
createContext (page 1157)

isCopyingOperation
Returns true if the receiver is an EPS or PDF copy operation.

public boolean isCopyingOperation()

isEPSOperation
Returns true if the receiver controls an EPS operation (initiated by a copy command), and false if the
receiver controls a printing operation (initiated by a print command).

public boolean isEPSOperation()

1158 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

jobStyleHint
Returns the type of content that the print job is printing.

public String jobStyleHint()

Discussion
Returns null if no job style hint has been set.

Availability
Available in Mac OS X v10.2 and later.

See Also
setJobStyleHint (page 1161)

pageOrder
Returns the order in which pages will be printed.

public int pageOrder()

Discussion
See “Constants” (page 1164) for possible return values.

See Also
currentPage (page 1158)

printInfo
Returns the receiver’s NSPrintInfo object.

public NSPrintInfo printInfo()

See Also
setPrintInfo (page 1162)

printPanel
Returns the NSPrintPanel object used when running the operation.

public NSPrintPanel printPanel()

See Also
accessoryView (page 1156)
setAccessoryView (page 1160)
setPrintPanel (page 1162)
setShowPanels (page 1162)
showPanels (page 1163)

Instance Methods 1159
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

runModalOperation
Runs the print operation, with document-modal sheets attached to docWindow. When the modal session
ends, if neither delegate or didRunSelector are null, didRunSelector is sent to delegate with
contextInfo as an argument. The

public void runModalOperation(NSWindow docWindow, Object delegate, NSSelector
didRunSelector, Object contextInfo)

Discussion
didRunSelector argument must have the following signature:

public void printOperationDidRun(NSPrintOperation printOperation, boolean
success, void contextInfo)

The value of success is true if the print operation ran to completion without cancellation or error, and
false otherwise.

If you send setCanSpawnSeparateThread (page 1161) to an NSPrintOperation object with an argument of
true, then the delegate specified in a subsequent invocation of runModalOperation (page 1160) may be
messaged in that spawned, non-main thread.

runOperation
Runs the operation, either copying an EPS or PDF graphic or printing a job.

public boolean runOperation()

Discussion
Returns true if successful, false otherwise. The operation runs to completion in the current thread, blocking
the application. A separate thread is not spawned, even if canSpawnSeparateThread (page 1157) is true.
Use runModalOperation (page 1160) to use document-modal sheets and to allow a separate thread to
perform the operation.

See Also
cleanUpOperation (page 1157)
deliverResult (page 1158)

setAccessoryView
Sets the custom accessory view aView, to be used by the receiver’s NSPrintPanel object.

public void setAccessoryView(NSView aView)

Discussion
By using this method you do not need to subclass NSPrintPanel or specify your own NSPrintPanel object.
The NSPrintPanel is automatically resized to accommodate the new accessory view aView.

See Also
accessoryView (page 1156)
printPanel (page 1159)
setPrintPanel (page 1162)
setShowPanels (page 1162)

1160 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

showPanels (page 1163)

setCanSpawnSeparateThread
Sets whether the receiver is allowed to spawn a separate printing thread.

public void setCanSpawnSeparateThread(boolean canSpawnSeparateThread)

Discussion
If canSpawnSeparateThread is true, an NSThread is detached when the print panel is dismissed (or
immediately, if the panel is not to be displayed). The new thread performs the print operation, so that control
can return to your application. A thread is detached only if the print operation is run using
runModalOperation (page 1160). If canSpawnSeparateThread is false, the operation runs on the current
thread, blocking the application until the operation completes.

If you send setCanSpawnSeparateThread (page 1161) to an NSPrintOperation object with an argument of
true, then the delegate specified in a subsequent invocation of runModalOperation (page 1160) may be
messaged in that spawned, non-main thread.

See Also
canSpawnSeparateThread (page 1157)

setJobStyleHint
Sets the type of content that the print job is printing.

public void setJobStyleHint(String hint)

Discussion
This controls the set of items that appear in the Presets menu of the simplified Print panel interface presented
by this operation, if it presents one. The supported job style hints are described in the “Constants” (page 1170)
section of NSPrintPanel. If hint is null, the standard interface is used.

Availability
Available in Mac OS X v10.2 and later.

See Also
jobStyleHint (page 1159)

setPageOrder
Sets the order in which pages will be printed to order.

public void setPageOrder(int order)

Discussion
order is one of the values described in “Constants” (page 1164).

See Also
currentPage (page 1158)
pageOrder (page 1159)

Instance Methods 1161
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

setPrintInfo
Sets the receiver’s NSPrintInfo object to aPrintInfo.

public void setPrintInfo(NSPrintInfo aPrintInfo)

See Also
printInfo (page 1159)

setPrintPanel
Sets the receiver’s NSPrintPanel used in the operation to panel.

public void setPrintPanel(NSPrintPanel panel)

See Also
accessoryView (page 1156)
printPanel (page 1159)
setAccessoryView (page 1160)
setShowPanels (page 1162)
showPanels (page 1163)

setShowPanels
public void setShowPanels(boolean flag)

Discussion
If flag is true then the receiver’s NSPrintPanel will be used in the operation; otherwise it will not. This
method also affects whether a progress panel is presented while the operation runs. If an EPS or PDF copy
operation is being performed, neither panel is displayed, regardless of the value of flag.

See Also
accessoryView (page 1156)
printPanel (page 1159)
–setAccessoryView (page 1160)
setPrintPanel (page 1162)
showPanels (page 1163)

setShowsPrintPanel
If flag is true, then the receiver’s NSPrintPanel is used in the operation; otherwise, it is not.

public void setShowsPrintPanel(boolean flag)

Discussion
This method does not affect the display of a progress panel; that operation is now controlled by
setShowsProgressPanel (page 1163).

If an EPS or PDF copy operation is being performed, an NSPrintPanel is not displayed, regardless of the value
of flag.

1162 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

Availability
Available in Mac OS X v10.4 and later.

See Also
setShowsProgressPanel (page 1163)
showsPrintPanel (page 1163)

setShowsProgressPanel
If flag is true, then the receiver’s progress panel is used in the operation; otherwise, it is not.

public void setShowsProgressPanel(boolean flag)

Discussion
This method does not affect the display of a print panel; that operation is now controlled by
setShowsPrintPanel (page 1162). This method replaces the setShowPanels (page 1162) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
setShowsPrintPanel (page 1162)
showsProgressPanel (page 1164)

showPanels
Returns true if the NSPrintPanel will be used in the operation, otherwise false.

public boolean showPanels()

See Also
accessoryView (page 1156)
printPanel (page 1159)
setAccessoryView (page 1160)
setPrintPanel (page 1162)
setShowPanels (page 1162)

showsPrintPanel
Returns true if the NSPrintPanel will be used in the operation, otherwise false.

public boolean showsPrintPanel()

Availability
Available in Mac OS X v10.4 and later.

See Also
setShowsPrintPanel (page 1162)

Instance Methods 1163
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

showsProgressPanel
Returns true if a progress panel will be used in the operation, otherwise false.

public boolean showsProgressPanel()

Availability
Available in Mac OS X v10.4 and later.

See Also
setShowsProgressPanel (page 1163)

view
Returns the NSView object that generates the actual PostScript or PDF code controlled by the receiver.

public NSView view()

Constants

These constants specify the page order. They’re used by pageOrder (page 1159) and setPageOrder (page
1161).

DescriptionConstant

Ascending (back to front) page order.AscendingPageOrder

Descending (front to back) page order.DescendingPageOrder

The spooler does not rearrange pages—they are printed in the order received
by the spooler.

SpecialPageOrder

No page order specified.UnknownPageOrder

1164 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 85

NSPrintOperation

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guides Printing Programming Topics for Cocoa
Sheet Programming Topics for Cocoa

Overview

NSPrintPanel creates a Print panel used to query the user for information about a print job, such as which
pages to print and how many copies, and to executes the Print command.

Print panels can display a simplified interface when printing certain types of data. The interface presents a
list of presets for commonly used sets of print settings based on the type of data being printed. The user can
select a preset instead of individually selecting the appropriate settings in each pane of the Print panel. The
setJobStyleHint (page 1169) method activates the simplified interface and identifies which presets to
present. Pass null to this method to deactivate the simplified interface.

Tasks

Constructors

NSPrintPanel (page 1166)
Creates an empty NSPrintPanel.

Creating an NSPrintPanel

printPanel (page 1167)
Returns a newly created NSPrintPanel object.

Customizing the Panel

accessoryView (page 1167)
Returns the receiver’s accessory view (used to customize the receiver).

setAccessoryView (page 1169)
Adds an NSView to the receiver.

Overview 1165
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 86

NSPrintPanel

jobStyleHint (page 1168)
Returns the type of content that the Print panel is representing.

setJobStyleHint (page 1169)

Running the Panel

beginSheetWithPrintInfo (page 1167)
Presents a print sheet for printInfo, document-modal relative to docWindow.

runModal (page 1168)
Displays the receiver and begins the modal loop.

Communicating with the NSPrintInfo Object

updateFromPrintInfo (page 1169)
Reads the receiver’s values from the NSPrintInfo object belonging to the current NSPrintOperation
and updates the receiver accordingly.

finalWritePrintInfo (page 1167)
Writes the values of the receiver’s printing attributes to the NSPrintInfo object belonging to the current
NSPrintOperation.

Deprecated Methods

pickedButton (page 1168)

pickedAllPages (page 1168)

pickedLayoutList (page 1168)

Constructors

NSPrintPanel
Creates an empty NSPrintPanel.

public NSPrintPanel()

1166 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 86

NSPrintPanel

Static Methods

printPanel
Returns a newly created NSPrintPanel object.

public static NSPrintPanel printPanel()

Instance Methods

accessoryView
Returns the receiver’s accessory view (used to customize the receiver).

public NSView accessoryView()

See Also
setAccessoryView (page 1169)

beginSheetWithPrintInfo
Presents a print sheet for printInfo, document-modal relative to docWindow.

public void beginSheetWithPrintInfo(NSPrintInfo printInfo, NSWindow docWindow,
Object modalDelegate, NSSelector didEndSelector, Object contextInfo)

Discussion
When the modal session ends, if neither modalDelegate nor didEndSelector is null, didEndSelector
is invoked on modalDelegate, passing contextInfo, among others, as an argument. modalDelegate is
not the same as a delegate assigned to the panel. Modal delegates in sheets are temporary and the relationship
only lasts until the sheet is dismissed.

The didEndSelector argument must have the following signature:

public void printPanelDidEnd (NSPrintPanel printPanel, int returnCode, void
contextInfo)

The value passed as returnCode is either NSPanel.CancelButton or NSPanel.OKButton.
NSPanel.OKButton is returned even if the user clicked the Preview button.

finalWritePrintInfo
Writes the values of the receiver’s printing attributes to the NSPrintInfo object belonging to the current
NSPrintOperation.

public void finalWritePrintInfo()

Static Methods 1167
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 86

NSPrintPanel

Discussion
Do not invoke this method directly—it is invoked automatically when the Print panel is dismissed by the
user clicking the OK button.

See Also
updateFromPrintInfo (page 1169)
currentOperation (page 1154) (NSPrintOperation)

jobStyleHint
Returns the type of content that the Print panel is representing.

public String jobStyleHint()

Discussion
Returns null if no job style hint has been set.

Availability
Available in Mac OS X v10.2 and later.

See Also
setJobStyleHint (page 1169)

pickedAllPages
public void pickedAllPages(Object sender)

Discussion
Deprecated.

pickedButton
public void pickedButton(Object sender)

Discussion
Deprecated.

pickedLayoutList
public void pickedLayoutList(Object sender)

Discussion
Deprecated.

runModal
Displays the receiver and begins the modal loop.

public int runModal()

1168 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 86

NSPrintPanel

Discussion
Returns NSPanel.CancelButton if the user clicks the Cancel button; otherwise returns NSPanel.OKButton.

setAccessoryView
Adds an NSView to the receiver.

public void setAccessoryView(NSView aView)

Discussion
Invoke this method to add a custom view containing your controls. If you invoke this method prior to
displaying the receiver, an item whose title is the same as your application’s name is added to the
pane-selection pull-down menu on the Print panel. When the user selects this item, your accessory view is
shown. This method can be invoked repeatedly to change the accessory view depending on the situation.
If aView is null, the receiver’s current accessory view is removed.

See Also
accessoryView (page 1167)

setJobStyleHint
public void setJobStyleHint(String hint)

Discussion
Sets the type of content that the Print panel is representing. This controls the set of items that appear in the
Presets menu of the simplified Print panel interface. The supported job style hints are described in
“Constants” (page 1170). If hint is null, the standard interface is used.

Availability
Available in Mac OS X v10.2 and later.

See Also
jobStyleHint (page 1168)

updateFromPrintInfo
Reads the receiver’s values from the NSPrintInfo object belonging to the current NSPrintOperation and
updates the receiver accordingly.

public void updateFromPrintInfo()

Discussion
Do not invoke this method directly—it is invoked automatically before the Print panel is displayed.

See Also
finalWritePrintInfo (page 1167)
currentOperation (page 1154) (NSPrintOperation)

Instance Methods 1169
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 86

NSPrintPanel

Constants

The following constant can be passed to setJobStyleHint (page 1169) to activate the simplified Print panel
interface and identify which presets to present.

DescriptionConstant

Output is of photographic data.PrintPhotoJobStyleHint

1170 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 86

NSPrintPanel

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Progress Indicators

Overview

NSProgressIndicator causes an application to display a progress indicator to show that a lengthy task is under
way. Some progress indicators are indeterminate and do nothing more than spin to show that the application
is busy. Others are determinate and show the percentage of the task that has been completed.

Tasks

Constructors

NSProgressIndicator (page 1173)
Creates an empty NSProgressIndicator with a zero-sized frame rectangle.

Animating the Progress Indicator

animate (page 1173)
This action method advances the progress animation of an indeterminate progress animator by one
step.

animationDelay (page 1174)
Returns the delay, in seconds, between animation steps for an indeterminate progress indicator.

setAnimationDelay (page 1176)
Sets the delay, in seconds, between animation steps for an indeterminate progress indicator to delay.

setUsesThreadedAnimation (page 1179)
Sets whether the receiver implements animation of the progress indicator in a separate thread to
flag.

startAnimation (page 1179)
This action method starts the animation of an indeterminate progress indicator, which causes the
barber pole to start spinning.

Overview 1171
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

stopAnimation (page 1180)
This action method stops the animation of an indeterminate progress indicator, which causes the
barber pole to stop spinning.

usesThreadedAnimation (page 1180)
Returns whether the receiver implements the animation of the progress indicator in a separate thread.

Advancing the Progress Bar

incrementBy (page 1175)
Advances the progress bar of a determinate progress indicator by delta.

setDoubleValue (page 1178)
Sets the value that indicates the current extent of the receiver to doubleValue.

doubleValue (page 1175)
Returns a value that indicates the current extent of the progress bar of a determinate progress indicator.

setMinValue (page 1178)
Sets the minimum value for the receiver to newMinimum.

minValue (page 1176)
Returns the minimum value for the progress bar of a determinate progress indicator.

setMaxValue (page 1178)
Sets the maximum value for the receiver to newMaximum.

maxValue (page 1176)
Returns the maximum value for the progress bar of a determinate progress indicator.

Setting the Appearance

setControlSize (page 1177)
Sets the size of the receiver.

controlSize (page 1174)
Returns the size of the receiver.

setControlTint (page 1177)
Sets the receiver’s control tint.

controlTint (page 1174)
Returns the receiver’s control tint.

setBezeled (page 1177)
Sets whether the receiver’s frame has a three-dimensional bezel to flag.

isBezeled (page 1175)
Returns true if the receiver’s frame has a three-dimensional bezel.

setIndeterminate (page 1178)
Sets whether the receiver is indeterminate to flag, if style (page 1180) returns
ProgressIndicatorBarStyle.

isIndeterminate (page 1176)
Returns true if the receiver is indeterminate, and style (page 1180) returns
ProgressIndicatorBarStyle.

1172 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

setStyle (page 1179)
Sets whether to use a bar indicator or spinning.

style (page 1180)
Returns whether the receiver is a bar indicator or spinning.

sizeToFit (page 1179)
This action method resizes the receiver to an appropriate size depending on what style (page 1180)
returns.

setDisplayedWhenStopped (page 1177)
Sets whether the receiver hides itself when it isn’t animating. By default, isDisplayedWhenStopped
returns true if style (page 1180) is ProgressIndicatorBarStyle, and
isDisplayedWhenStopped (page 1175) returns false if style (page 1180) is
ProgressIndicatorSpinningStyle.

isDisplayedWhenStopped (page 1175)
Returns true if the receiver shows itself even when it’s not animating. By default, this returns true
if style (page 1180) is ProgressIndicatorBarStyle, and this returns false if style (page 1180) is
ProgressIndicatorSpinningStyle.

Constructors

NSProgressIndicator
Creates an empty NSProgressIndicator with a zero-sized frame rectangle.

public NSProgressIndicator()

Creates an NSProgressIndicator with frameRect as its frame rectangle

public NSProgressIndicator(NSRect frameRect)

Discussion
.

It’s usually more convenient to use Interface Builder, which allows you to create an NSProgressIndicator and
embed it in the superview of your choice.

Instance Methods

animate
This action method advances the progress animation of an indeterminate progress animator by one step.

public void animate(Object sender)

Constructors 1173
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

Discussion
Your application uses this method to control animation directly (as opposed to invoking
startAnimation (page 1179) andstopAnimation (page 1180) for automatic animation). The more often you
invoke animate, the faster the animation progresses. Determinate progress indicators do not use the same
animation method; therefore, this method does nothing for a determinate progress indicator.

The animate method only invalidates the progress indicator, so it will be redrawn the next time through
the event loop. To ensure immediate redrawing, invoke the displayIfNeeded (page 1748) method.

See Also
animationDelay (page 1174)
setAnimationDelay (page 1176)

animationDelay
Returns the delay, in seconds, between animation steps for an indeterminate progress indicator.

public double animationDelay()

Discussion
By default, the animation delay is set to 1/12 of a second (5.0/60.0). A determinate progress indicator does
not use the animation delay value.

See Also
animate (page 1173)

controlSize
Returns the size of the receiver.

public int controlSize()

Discussion
Valid return values are described in “Constants” (page 1180).

See Also
setControlSize (page 1177)

controlTint
Returns the receiver’s control tint.

public int controlTint()

Discussion
Valid return values are described in “Constants” (page 1180).

See Also
setControlTint (page 1177)

1174 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

doubleValue
Returns a value that indicates the current extent of the progress bar of a determinate progress indicator.

public double doubleValue()

Discussion
For example, a determinate progress indicator goes from 0.0 to 100.0 by default. If the progress bar has
advanced halfway across the view, the value returned by doubleValue would be 50.0. An indeterminate
progress indicator does not use this value.

See Also
incrementBy (page 1175)
setDoubleValue (page 1178)

incrementBy
Advances the progress bar of a determinate progress indicator by delta.

public void incrementBy(double delta)

Discussion
For example, if you want to advance a progress bar from 0.0 to 100.0 in 20 steps, you would invoke
incrementBy (page 1175) 20 times with a delta value of 5.0.

See Also
doubleValue (page 1175)

isBezeled
Returns true if the receiver’s frame has a three-dimensional bezel.

public boolean isBezeled()

See Also
setBezeled (page 1177)

isDisplayedWhenStopped
Returns true if the receiver shows itself even when it’s not animating. By default, this returns true if
style (page 1180) is ProgressIndicatorBarStyle, and this returns false if style (page 1180) is
ProgressIndicatorSpinningStyle.

public boolean isDisplayedWhenStopped()

Availability
Available in Mac OS X v10.2 and later.

See Also
setDisplayedWhenStopped (page 1177)

Instance Methods 1175
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

isIndeterminate
Returns true if the receiver is indeterminate, and style (page 1180) returns ProgressIndicatorBarStyle.

public boolean isIndeterminate()

Discussion
If style (page 1180) returns ProgressIndicatorSpinningStyle., the indicator is always indeterminate,
regardless of what this method returns.

A determinate indicator displays how much of the task has been completed. An indeterminate indicator
shows simply that the application is busy.

See Also
setIndeterminate (page 1178)

maxValue
Returns the maximum value for the progress bar of a determinate progress indicator.

public double maxValue()

Discussion
By default, a determinate progress indicator goes from 0.0 to 100.0, so the value returned would be 100.0.
An indeterminate progress indicator does not use this value.

See Also
minValue (page 1176)
setMaxValue (page 1178)

minValue
Returns the minimum value for the progress bar of a determinate progress indicator.

public double minValue()

Discussion
By default, a determinate progress indicator goes from 0.0 to 100.0, so the value returned would be 0.0. An
indeterminate progress indicator does not use this value.

See Also
maxValue (page 1176)
setMinValue (page 1178)

setAnimationDelay
Sets the delay, in seconds, between animation steps for an indeterminate progress indicator to delay.

public void setAnimationDelay(double delay)

1176 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

Discussion
By default, the animation delay is set to 1/12 of a second (5.0/60.0). Setting the delay to a double value
larger than 5.0/60.0 slows the animation, while setting the delay to a smaller value speeds it up. A determinate
progress indicator does not use the animation delay value.

setBezeled
Sets whether the receiver’s frame has a three-dimensional bezel to flag.

public void setBezeled(boolean flag)

See Also
isBezeled (page 1175)

setControlSize
Sets the size of the receiver.

public void setControlSize(int size)

Discussion
Valid values for size are described in “Constants” (page 1180).

See Also
controlSize (page 1174)

setControlTint
Sets the receiver’s control tint.

public void setControlTint(int controlTint)

Discussion
Valid values for controlTint are described in “Constants” (page 1180).

See Also
controlTint (page 1174)

setDisplayedWhenStopped
Sets whether the receiver hides itself when it isn’t animating. By default, isDisplayedWhenStopped returns
true if style (page 1180) is ProgressIndicatorBarStyle, and isDisplayedWhenStopped (page 1175)
returns false if style (page 1180) is ProgressIndicatorSpinningStyle.

public void setDisplayedWhenStopped(boolean isDisplayed)

Availability
Available in Mac OS X v10.2 and later.

See Also
isDisplayedWhenStopped (page 1175)

Instance Methods 1177
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

setDoubleValue
Sets the value that indicates the current extent of the receiver to doubleValue.

public void setDoubleValue(double doubleValue)

Discussion
An indeterminate progress indicator does not use this value.

See Also
doubleValue (page 1175)
incrementBy (page 1175)
setMaxValue (page 1178)
setMinValue (page 1178)

setIndeterminate
Sets whether the receiver is indeterminate to flag, if style (page 1180) returns
ProgressIndicatorBarStyle.

public void setIndeterminate(boolean flag)

Discussion
If style (page 1180) returns ProgressIndicatorSpinningStyle, the indicator is always indeterminate,
regardless of what you pass to this method.

See Also
isIndeterminate (page 1176)

setMaxValue
Sets the maximum value for the receiver to newMaximum.

public void setMaxValue(double newMaximum)

Discussion
An indeterminate progress indicator does not use this value.

See Also
maxValue (page 1176)

setMinValue
Sets the minimum value for the receiver to newMinimum.

public void setMinValue(double newMinimum)

Discussion
An indeterminate progress indicator does not use this value.

See Also
minValue (page 1176)

1178 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

setStyle
Sets whether to use a bar indicator or spinning.

public void setStyle(int style)

Discussion
Possible values for style are described in “Constants” (page 1180).

Availability
Available in Mac OS X v10.2 and later.

See Also
style (page 1180)

setUsesThreadedAnimation
Sets whether the receiver implements animation of the progress indicator in a separate thread to flag.

public void setUsesThreadedAnimation(boolean flag)

Discussion
If the application becomes multithreaded as a result of an invocation of this method, the application’s
performance could become noticeably slower.

See Also
usesThreadedAnimation (page 1180)

sizeToFit
This action method resizes the receiver to an appropriate size depending on what style (page 1180) returns.

public void sizeToFit()

Discussion
Use this after you use setStyle (page 1179) to re-size the receiver.

Availability
Available in Mac OS X v10.2 and later.

startAnimation
This action method starts the animation of an indeterminate progress indicator, which causes the barber
pole to start spinning.

public void startAnimation(Object sender)

Discussion
Does nothing for a determinate progress indicator.

See Also
animationDelay (page 1174)

Instance Methods 1179
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

stopAnimation (page 1180)

stopAnimation
This action method stops the animation of an indeterminate progress indicator, which causes the barber
pole to stop spinning.

public void stopAnimation(Object sender)

Discussion
Does nothing for a determinate progress indicator.

See Also
animationDelay (page 1174)
startAnimation (page 1179)

style
Returns whether the receiver is a bar indicator or spinning.

public int style()

Discussion
Possible return values are described in “Constants” (page 1180).

Availability
Available in Mac OS X v10.2 and later.

See Also
setStyle (page 1179)

usesThreadedAnimation
Returns whether the receiver implements the animation of the progress indicator in a separate thread.

public boolean usesThreadedAnimation()

See Also
setUsesThreadedAnimation (page 1179)

Constants

These constants specify a cell’s tint. They’re used by controlTint (page 1174) and setControlTint (page
1177).

DescriptionConstant

The current default tint setting.DefaultControlTint

1180 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

DescriptionConstant

Clear control tint.ClearControlTint

Aqua control tintBlueControlTint

Graphite control tintGraphiteControlTint

These constants specify a cell’s size. They’re used by controlSize (page 1174) and setControlSize (page
1177).

DescriptionConstant

A regular sized controlRegularControlSize

A small-sized control for use when space is tight.SmallControlSize

The control has a smaller size than SmallControlSize.MiniControlSize

The following constants specify the progress indicator’s style and are used by style (page 1180) and
setStyle (page 1179):

DescriptionConstant

A rectangular indicator that can be determinate or indeterminate.ProgressIndicatorBarStyle

A small square indicator that can be indeterminate only .ProgressIndicatorSpinningStyle

Constants 1181
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

1182 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 87

NSProgressIndicator

Inherits from NSObject

Package: com.apple.cocoa.application

Overview

NSPureApplication can be used to start a Java-based NSApplication from the java command-line tool. It
contains one static method, main (page 1184), which performs the actual work.

Tasks

Constructors

NSPureApplication (page 1183)
Constructor for NSPureApplication. There’s no reason to instantiate NSPureApplication, since it contains
neither instance data nor instance methods.

Starting a Java Application

main (page 1184)

Constructors

NSPureApplication
Constructor for NSPureApplication. There’s no reason to instantiate NSPureApplication, since it contains
neither instance data nor instance methods.

public NSPureApplication()

Overview 1183
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPureApplication

Static Methods

main
public static void main(String[] args)

Discussion
The main method that starts an NSPureApplication using args as the argument list.

1184 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPureApplication

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Cocoa Event-Handling Guide

Overview

NSResponder is an abstract class that forms the basis of event and command processing in the Application
Kit. The core classes—NSApplication, NSWindow, and NSView—inherit from NSResponder, as must any class
that handles events. The responder model is built around three components: event messages, action messages,
and the responder chain.

Starting with Mac OS X v10.4, NSResponder plays an important role in the presentation of error information.
The default implementations of the presentError (page 1195) and presentErrorModalForWindow (page
1195) methods send willPresentError (page 1200) to self, thereby giving subclasses the opportunity to
customize the localized information presented in error alerts. NSResponder then forwards the message to
the next responder, passing it the customized NSError object. The exact path up the modified responder
chain depends on the type of application window:

 ■ Windows owned by document: view to superviews to window to window controller to document object
to document controller to the application object

 ■ Windows with window controllers but no documents: view to superviews to window to window controller
to the application object

 ■ Windows with no window controllers: view to superviews to window to the application object

Tasks

Constructors

NSResponder (page 1189)
Creates an empty NSResponder.

Overview 1185
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Changing the First Responder

acceptsFirstResponder (page 1189)
Overridden by subclasses to return true if the receiver can handle key events and action messages
sent up the responder chain.

becomeFirstResponder (page 1190)
Notifies the receiver that it’s about to become first responder in its NSWindow.

resignFirstResponder (page 1196)
Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow.

Setting the Next Responder

setNextResponder (page 1198)
Sets the receiver’s next responder to aResponder.

nextResponder (page 1193)
Returns the receiver’s next responder, or null if it has none.

Event Methods

mouseDown (page 1192)
Informs the receiver that the user has pressed the left mouse button specified by theEvent.

mouseDragged (page 1192)
Informs the receiver that the user has moved the mouse with the left button pressed specified by
theEvent.

mouseUp (page 1193)
Informs the receiver that the user has released the left mouse button specified by theEvent.

mouseMoved (page 1193)
Informs the receiver that the mouse has moved specified by theEvent.

mouseEntered (page 1192)
Informs the receiver that the cursor has entered a tracking rectangle specified by theEvent.

mouseExited (page 1193)
Informs the receiver that the cursor has exited a tracking rectangle.

rightMouseDown (page 1196)
Informs the receiver that the user has pressed the right mouse button specified by theEvent.

rightMouseDragged (page 1197)
Informs the receiver that the user has moved the mouse with the right button pressed specified by
theEvent.

rightMouseUp (page 1197)
Informs the receiver that the user has released the right mouse button specified by theEvent.

otherMouseDown (page 1194)
Informs the receiver that the user has pressed a mouse button other than left or right specified by
theEvent.

1186 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

otherMouseDragged (page 1194)
Informs the receiver that the user has moved the mouse with a button other than the left or right
button pressed specified by theEvent.

otherMouseUp (page 1194)
Informs the receiver that the user has released a mouse button other than the left or right specified
by theEvent.

scrollWheel (page 1197)
Informs the receiver that the mouse’s scroll wheel has moved specified by theEvent.

keyDown (page 1191)
Informs the receiver that the user has pressed a key.

keyUp (page 1192)
Informs the receiver that the user has released a key event specified by theEvent.

flagsChanged (page 1190)
Informs the receiver that the user has pressed or released a modifier key (Shift, Control, and so on)
specified by theEvent.

helpRequested (page 1191)
Displays context-sensitive help for the receiver if such exists; otherwise passes this message to the
next responder.

tabletPoint (page 1198)
Informs the receiver that tablet-point event theEvent has occurred.

tabletProximity (page 1199)
Informs the receiver that the tablet-proximity event theEvent has occurred.

Special Key Event Methods

interpretKeyEvents (page 1191)
Invoked by subclasses from their keyDown (page 1191) method to handle a series of key events.

performKeyEquivalent (page 1194)
Overridden by subclasses to handle a key equivalent.

performMnemonic (page 1195)
Overridden by subclasses to handle a mnemonic.

Clearing Key Events

flushBufferedKeyEvents (page 1190)
Overridden by subclasses to clear any unprocessed key events.

Action Methods

showContextHelp (page 1198)
Implemented by subclasses to invoke the help system, displaying information relevant to the receiver
and its current state. The sender argument is typically the object that invoked this method.

Tasks 1187
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Dispatch Methods

tryToPerform (page 1199)
Attempts to perform the action method indicated by anAction.

Terminating the Responder Chain

noResponderForSelector (page 1193)
Handles the case where an event or action message falls off the end of the responder chain.

Services Menu Updating

validRequestorForTypes (page 1200)
Overridden by subclasses to determine what services are available.

Setting the Menu

setMenu (page 1197)
Sets the receiver’s menu to aMenu.

menu (page 1192)
Returns the receiver’s menu.

Setting the Interface Style

setInterfaceStyle (page 1197)
Sets the receiver’s style to the style specified by interfaceStyle, such as
NSInterfaceStyle.MacintoshInterfaceStyle or
NSInterfaceStyle.Windows95InterfaceStyle.

interfaceStyle (page 1191)
Returns the receiver’s interface style.

Testing Events

shouldBeTreatedAsInkEvent (page 1198)
Returns true if theEvent should be treated as an ink event, false if theEvent should be treated
as a mouse event.

Getting the Undo Manager

undoManager (page 1199)
Returns the undo manager for this responder.

1188 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Presenting and Customizing Error Information

presentError (page 1195)
Presents an error alert to the user as an application-modal dialog.

presentErrorModalForWindow (page 1195)
Presents an error alert to the user as a document-modal sheet attached to document window.

willPresentError (page 1200)
Implemented by subclasses to return a custom version of error object anError that is more suitable
for presentation in alert sheets and dialogs.

Binding

bind (page 1190)
Creates a relationship between the receiver’s binding and the property of observableController
specified by keyPath.

Constructors

NSResponder
Creates an empty NSResponder.

public NSResponder()

Instance Methods

acceptsFirstResponder
Overridden by subclasses to return true if the receiver can handle key events and action messages sent up
the responder chain.

public boolean acceptsFirstResponder()

Discussion
NSResponder’s implementation returns false, indicating that by default a responder object doesn’t agree
to become first responder. Objects that aren’t first responder can receive mouse-down messages, but no
other event or action messages.

See Also
becomeFirstResponder (page 1190)
resignFirstResponder (page 1196)
needsPanelToBecomeKey (page 1761) (NSView)

Constructors 1189
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

becomeFirstResponder
Notifies the receiver that it’s about to become first responder in its NSWindow.

public boolean becomeFirstResponder()

Discussion
NSResponder’s implementation returns true, accepting first responder status. Subclasses can override this
method to update state or perform some action such as highlighting the selection, or to return false,
refusing first responder status.

Use NSWindow’s makeFirstResponder (page 1841), not this method, to make an object the first responder.
Never invoke this method directly.

See Also
resignFirstResponder (page 1196)
acceptsFirstResponder (page 1189)

bind
Creates a relationship between the receiver’s binding and the property of observableController specified
by keyPath.

public void bind(String binding, Object observableController, String keyPath,
NSDictionary options)

Discussion
The binding is the key path for a property of the receiver previously exposed. The options dictionary is
optional. If present, it contains placeholder objects or an NSValueTransformer identifier as described in
“Constants” (page 2005).

Availability
Available in Mac OS X v10.4 and later.

flagsChanged
Informs the receiver that the user has pressed or released a modifier key (Shift, Control, and so on) specified
by theEvent.

public void flagsChanged(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

flushBufferedKeyEvents
Overridden by subclasses to clear any unprocessed key events.

public void flushBufferedKeyEvents()

1190 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

helpRequested
Displays context-sensitive help for the receiver if such exists; otherwise passes this message to the next
responder.

public void helpRequested(NSEvent theEvent)

Discussion
NSWindow invokes this method automatically when the user clicks for help—while processing theEvent.
Subclasses need not override this method, and application code shouldn’t directly invoke it.

See Also
showContextHelp (page 1198)

interfaceStyle
Returns the receiver’s interface style.

public int interfaceStyle()

Discussion
interfaceStyle is an abstract method in NSResponder and just returns
NSInterfaceStyle.NoInterfaceStyle. It is overridden in classes such as NSWindow and NSView to
return the interface style, such as NSInterfaceStyle.MacintoshInterfaceStyle. A responder’s style
(if other than NSInterfaceStyle.NoInterfaceStyle) overrides all other settings, such as those established
by the defaults system.

See Also
setInterfaceStyle (page 1197)

interpretKeyEvents
Invoked by subclasses from their keyDown (page 1191) method to handle a series of key events.

public void interpretKeyEvents(NSArray eventArray)

Discussion
This method sends the character input in eventArray to the system input manager for interpretation as
text to insert or commands to perform. Subclasses shouldn’t override this method.

See the NSInputManager (page 801) and NSTextInput (page 2025) class and interface specifications for more
information on input management.

keyDown
Informs the receiver that the user has pressed a key.

public void keyDown(NSEvent theEvent)

Instance Methods 1191
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Discussion
The receiver can interpret theEvent itself, or pass it to the system input manager using
interpretKeyEvents (page 1191). NSResponder’s implementation simply passes this message to the next
responder.

keyUp
Informs the receiver that the user has released a key event specified by theEvent.

public void keyUp(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

menu
Returns the receiver’s menu.

public NSMenu menu()

Discussion
For NSApplication this menu is the same as the menu returned by its mainMenu (page 113) method.

See Also
setMenu (page 1197)
menuForEvent (page 1760) (NSView)
defaultMenu (page 1738) (NSView)

mouseDown
Informs the receiver that the user has pressed the left mouse button specified by theEvent.

public void mouseDown(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

mouseDragged
Informs the receiver that the user has moved the mouse with the left button pressed specified by theEvent.

public void mouseDragged(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

mouseEntered
Informs the receiver that the cursor has entered a tracking rectangle specified by theEvent.

1192 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

public void mouseEntered(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

mouseExited
Informs the receiver that the cursor has exited a tracking rectangle.

public void mouseExited(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

mouseMoved
Informs the receiver that the mouse has moved specified by theEvent.

public void mouseMoved(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

See Also
setAcceptsMouseMovedEvents (page 1853) (NSWindow)

mouseUp
Informs the receiver that the user has released the left mouse button specified by theEvent.

public void mouseUp(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

nextResponder
Returns the receiver’s next responder, or null if it has none.

public NSResponder nextResponder()

See Also
setNextResponder (page 1198)
noResponderForSelector (page 1193)

noResponderForSelector
Handles the case where an event or action message falls off the end of the responder chain.

public void noResponderForSelector(NSSelector eventSelector)

Instance Methods 1193
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Discussion
NSResponder’s implementation beeps if eventSelector is keyDown (page 1191).

otherMouseDown
Informs the receiver that the user has pressed a mouse button other than left or right specified by theEvent.

public void otherMouseDown(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

otherMouseDragged
Informs the receiver that the user has moved the mouse with a button other than the left or right button
pressed specified by theEvent.

public void otherMouseDragged(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

otherMouseUp
Informs the receiver that the user has released a mouse button other than the left or right specified by
theEvent.

public void otherMouseUp(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

performKeyEquivalent
Overridden by subclasses to handle a key equivalent.

public boolean performKeyEquivalent(NSEvent theEvent)

Discussion
If the character code or codes in theEvent match the receiver’s key equivalent, the receiver should respond
to the event and return true. NSResponder’s implementation does nothing and returns false.

Note: performKeyEquivalent (page 1194) takes an NSEvent as its argument, whileperformMnemonic (page
1195) takes a String containing the uninterpreted characters of the key event. You should extract the characters
for a key equivalent using NSEvent’s charactersIgnoringModifiers (page 612).

See Also
performKeyEquivalent (page 1763) (NSView)
performKeyEquivalent (page 259) (NSButton)

1194 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

performMnemonic
Overridden by subclasses to handle a mnemonic.

public boolean performMnemonic(String aString)

Discussion
If the character code or codes in aString match the receiver’s mnemonic, the receiver should perform the
mnemonic and return true. NSResponder’s implementation does nothing and returns false. Mnemonics
are not supported in Mac OS X.

See Also
performMnemonic (page 1763) (NSView)

presentError
Presents an error alert to the user as an application-modal dialog.

public boolean presentError(NSError anError)

Discussion
The alert displays information found in the NSError object anError; this information can include error
description, recovery suggestion, failure reason, and button titles (all localized). The method returns true if
error recovery succeeded and false otherwise.

The default implementation of this method sends willPresentError (page 1200) to self. By doing this,
NSResponder gives subclasses an opportunity to customize error presentation. It then forwards the message,
passing any customized error object, to the next responder; if there is no next responder, it passes the error
object to NSApp, which displays a document-modal error alert. When the user dismisses the alert, any recovery
attempter associated with the error object is given a chance to recover from the error. See the class description
for the precise route up the responder chain (plus document and controller objects) this message might
travel.

It is not recommended that you attempt to override this method. If you wish to customize the error
presentation, override willPresentError (page 1200) instead.

Availability
Available in Mac OS X v10.4 and later.

See Also
presentErrorModalForWindow (page 1195)

presentErrorModalForWindow
Presents an error alert to the user as a document-modal sheet attached to document window.

public void presentErrorModalForWindow(NSError error, NSWindow aWindow, Object
delegate, NSSelector didPresentSelector, Object contextInfo)

Discussion
The aWindow parameter represents the window. The information displayed in the alert is extracted from the
NSError object error; it may include a description, recovery suggestion, failure reason, and button titles (all
localized). Once the user dismisses the alert and any recovery attempter associated with the error object has

Instance Methods 1195
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

had a chance to recover from it, the receiver sends a message identified by didPresentSelector to the
modal delegatedelegate. (A recovery attempter is an object that conforms to the NSErrorRecoveryAttempting
informal protocol.) The didPresentSelector selector must have the signature:

void didPresentErrorWithRecovery(boolean didRecover, Object contextInfo

The modal delegate implements this method to perform any post-error processing if recovery failed or was
not attempted (that is, didRecover is NO). Any supplemental data is passed to the modal delegate via
contextInfo.

The default implementation of this method sends willPresentError (page 1200) to self. By doing this,
NSResponder gives subclasses an opportunity to customize error presentation. It then forwards the message,
passing any customized error, to the next responder or; if there is no next responder, it passes the error object
to NSApp, which displays a document-modal error alert. When the user dismisses the alert, any recovery
attempter associated with the error object is given a chance to recover from the error. See the class description
for the precise route up the responder chain (plus document and controller objects) this message might
travel.

It is not recommended that you attempt to override this method. If you wish to customize the error
presentation, override willPresentError (page 1200) instead.

Availability
Available in Mac OS X v10.4 and later.

See Also
presentError (page 1195)

resignFirstResponder
Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow.

public boolean resignFirstResponder()

Discussion
NSResponder’s implementation returns true, resigning first responder status. Subclasses can override this
method to update state or perform some action such as unhighlighting the selection, or to return false,
refusing to relinquish first responder status.

Use NSWindow’s makeFirstResponder (page 1841), not this method, to make an object the first responder.
Never invoke this method directly.

See Also
becomeFirstResponder (page 1190)
acceptsFirstResponder (page 1189)

rightMouseDown
Informs the receiver that the user has pressed the right mouse button specified by theEvent.

public void rightMouseDown(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

1196 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

rightMouseDragged
Informs the receiver that the user has moved the mouse with the right button pressed specified by theEvent.

public void rightMouseDragged(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

rightMouseUp
Informs the receiver that the user has released the right mouse button specified by theEvent.

public void rightMouseUp(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

scrollWheel
Informs the receiver that the mouse’s scroll wheel has moved specified by theEvent.

public void scrollWheel(NSEvent theEvent)

Discussion
NSResponder’s implementation simply passes this message to the next responder.

setInterfaceStyle
Sets the receiver’s style to the style specified by interfaceStyle, such as
NSInterfaceStyle.MacintoshInterfaceStyleorNSInterfaceStyle.Windows95InterfaceStyle.

public void setInterfaceStyle(int interfaceStyle)

Discussion
setInterfaceStyle is an abstract method in NSResponder, but is overridden in classes such as NSWindow
and NSView to actually set the interface style. You should almost never need to invoke or override this
method, but if you do override it, your version should always invoke the implementation in super.

See Also
interfaceStyle (page 1191)

setMenu
Sets the receiver’s menu to aMenu.

public void setMenu(NSMenu aMenu)

Discussion
If the receiver is an NSApplication object, this method sets the main menu, typically set using
setMainMenu (page 122).

Instance Methods 1197
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

See Also
menu (page 1192)

setNextResponder
Sets the receiver’s next responder to aResponder.

public void setNextResponder(NSResponder aResponder)

See Also
nextResponder (page 1193)

shouldBeTreatedAsInkEvent
Returns true if theEvent should be treated as an ink event, false if theEvent should be treated as a
mouse event.

public boolean shouldBeTreatedAsInkEvent(NSEvent theEvent)

Discussion
This provides the ability to distinguish when a pen-down should start inking versus when a pen-down should
be treated as a mouse down event. This allows for a write-anywhere model for pen-based input.

The default implementation in NSApplication sends the method to the NSWindow under the pen. If the
window is inactive, this method returns true, unless the pen-down is in the window drag region. If the
window is active, this method is sent to the NSView under the pen.

The default implementation in NSView returns true, and NSControl overrides and returns false. This allows
write-anywhere over most NSViews, but allows the pen to be used to track in controls and to move windows.

A custom view should override this method to get the correct behavior for a pen-down in the view.

Availability
Available in Mac OS X v10.2 and later.

showContextHelp
Implemented by subclasses to invoke the help system, displaying information relevant to the receiver and
its current state. The sender argument is typically the object that invoked this method.

public void showContextHelp(Object sender)

See Also
helpRequested (page 1191)

tabletPoint
Informs the receiver that tablet-point event theEvent has occurred.

public void tabletPoint(NSEvent theEvent)

1198 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Discussion
Tablet events are represented by NSEvent objects of type NSTabletPoint. They describe the current state
of a transducer (that is, a pointing device) that is in proximity to its tablet, reflecting changes such as location,
pressure, tilt, and rotation. See “NSEvent” (page 603) for the methods that allow you to extract this and other
information from theEvent. The default implementation of NSResponder passes the message to the next
responder.

Availability
Available in Mac OS X v10.4 or later.

See Also
tabletProximity (page 1199)

tabletProximity
Informs the receiver that the tablet-proximity event theEvent has occurred.

public void tabletProximity(NSEvent theEvent)

Discussion
Tablet events are represented by NSEvent objects of type NSTabletProximity. Tablet devices generate
proximity events when the transducer (pointing device) nears a tablet and when it moves away from a tablet.
From an event object of this type you can extract information about the kind of device and its capabilities,
as well as the relation of this tablet-proximity event to various tablet-point events; see “NSEvent” (page 603)
for details. The default implementation of NSResponder passes the message to the next responder.

Availability
Available in Mac OS X v10.4 or later.

See Also
tabletPoint (page 1198)

tryToPerform
Attempts to perform the action method indicated by anAction.

public boolean tryToPerform(NSSelector anAction, Object anObject)

Discussion
The method should take a single argument of type Object and return void. If the receiver responds to
anAction, it invokes the method with anObject as the argument and returns true. If the receiver doesn’t
respond, it sends this message to its next responder with the same selector and object. Returns false if no
responder is found that responds to anAction.

See Also
sendActionToTargetFromSender (page 121) (NSApplication)

undoManager
Returns the undo manager for this responder.

Instance Methods 1199
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

public NSUndoManager undoManager()

Discussion
NSResponder’s implementation simply passes this message to the next responder.

validRequestorForTypes
Overridden by subclasses to determine what services are available.

public Object validRequestorForTypes(String sendType, String returnType)

Discussion
With each event, and for each service in the Services menu, the application object sends this message up
the responder chain with the send and return type for the service being checked. This method is therefore
invoked many times per event. If the receiver can place data of sendType on the pasteboard and receive
data of returnType, it should return this; otherwise it should return either
super.validRequestorForTypes()ornextResponder().validRequestorForTypes(), which allows
an object higher up in the responder chain to have an opportunity to handle the message. NSResponder’s
implementation simply forwards this message to the next responder, ultimately returning null.

Either sendType or returnType—but not both—may be empty. If sendType is empty, the service doesn’t
require input from the application requesting the service. If returnType is empty, the service doesn’t return
data.

See Also
registerServicesMenuTypes (page 117) (NSApplication)

willPresentError
Implemented by subclasses to return a custom version of error object anError that is more suitable for
presentation in alert sheets and dialogs.

public NSError willPresentError(NSError anError)

Discussion
The default implementation of this method simply returns anError unchanged. When overriding this method,
you can examine anError and, if its localized description or recovery information is unhelpfully generic,
return an error object with more specific localized text. If you do this, always use the domain and error code
of the NSError object to distinguish between errors whose presentation you want to customize and those
you do not. Don’t make decisions based on the localized description, recovery suggestion, or recovery options
because parsing localized text is problematic. If you decide not to customize the error presentation, return
by sending this message to super.

Availability
Available in Mac OS X v10.4 and later.

See Also
presentError (page 1195)

1200 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 89

NSResponder

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Rulers and Paragraph Styles

Overview

An NSRulerMarker displays a symbol on an NSRulerView, indicating a location for whatever graphics element
it represents in the client of the NSRulerView (for example, a margin or tab setting, or the edges of a graphic
on the page).

Tasks

Constructors

NSRulerMarker (page 1203)
Creates an empty NSRulerMarker.

Getting the Ruler View

ruler (page 1205)
Returns the NSRulerView the receiver belongs to.

Setting the Image

setImage (page 1206)
Sets the receiver’s image to anImage.

image (page 1204)
Returns the NSImage object displayed by the receiver.

setImageOrigin (page 1206)
Sets the point in the receiver’s image positioned at the receiver’s location on the NSRulerView to
aPoint.

Overview 1201
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

imageOrigin (page 1204)
Returns the point in the receiver’s image positioned at the receiver’s location on the NSRulerView,
expressed in the image’s coordinate system.

imageRectInRuler (page 1204)
Returns the rectangle occupied by the receiver’s image, in the NSRulerView’s coordinate system,
accounting for whether the NSRulerView’s coordinate system is flipped.

thicknessRequiredInRuler (page 1207)
Returns the amount of the receiver’s image that’s displayed above or to the left of the NSRulerView’s
baseline, the height for a horizontal ruler or width for a vertical ruler.

Setting Movability

setMovable (page 1206)
Controls whether the user can move the receiver in its NSRulerView.

isMovable (page 1204)
Returns true if the user can move the receiver on its NSRulerView, false otherwise.

setRemovable (page 1207)
Controls whether the user can remove the receiver from its NSRulerView.

isRemovable (page 1205)
Returns true if the user can remove the receiver from its NSRulerView, false otherwise.

Setting the Location

setMarkerLocation (page 1206)
Sets the location of the receiver in the coordinate system of the NSRulerView’s client view to location.

markerLocation (page 1205)
Returns the location of the receiver in the coordinate system of the NSRulerView’s client view.

Setting the Represented Object

setRepresentedObject (page 1207)
Sets the object the receiver represents to anObject.

representedObject (page 1205)
Returns the object the receiver represents, as explained in the class description.

Drawing and Event Handling

drawRect (page 1203)
Draws the part of the receiver’s image that intersects aRect in the NSRulerView’s coordinate system.

isDragging (page 1204)
Returns true if the receiver is being dragged, false otherwise.

trackMouseToAddMarker (page 1207)
Handles user manipulation of the receiver in its NSRulerView specified by theEvent.

1202 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

Constructors

NSRulerMarker
Creates an empty NSRulerMarker.

public NSRulerMarker()

Creates an NSRulerMarker object, associating it with (but not adding it to) aRulerView and assigning the
attributes provided.

public NSRulerMarker(NSRulerView aRulerView, float location, NSImage anImage,
NSPoint imageOrigin)

Discussion
location is the x or y position of the marker in the client view’s coordinate system, depending on whether
the NSRulerView is horizontal or vertical. anImage is the image displayed at the marker location, and
imageOrigin is the point within the image positioned at the marker location, expressed in pixels relative
to the lower-left corner of the image. This method throws an exception if aRulerView or anImage is null.

The image used to draw the marker must be appropriate for the orientation of the ruler. Markers may need
to look different on a horizontal ruler than on a vertical ruler, and the NSRulerView neither scales nor rotates
the images.

To add the new ruler marker to aRulerView, use either of NSRulerView’s addMarker (page 1215) or
trackMarker (page 1222) methods. addMarker (page 1215) immediately puts the marker on the ruler, while
trackMarker (page 1222) allows the client view to intercede in the addition and placement of the marker.

A new ruler marker can be moved on its NSRulerView, but not removed. Use setMovable (page 1206) and
setRemovable (page 1207) to change these attributes. The new ruler marker also has no represented object;
use setRepresentedObject (page 1207) to provide or change it.

See Also
setMarkerLocation (page 1206)
setImage (page 1206)
setImageOrigin (page 1206)

Instance Methods

drawRect
Draws the part of the receiver’s image that intersects aRect in the NSRulerView’s coordinate system.

public void drawRect(NSRect aRect)

See Also
imageRectInRuler (page 1204)

Constructors 1203
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

image
Returns the NSImage object displayed by the receiver.

public NSImage image()

See Also
setImage (page 1206)

imageOrigin
Returns the point in the receiver’s image positioned at the receiver’s location on the NSRulerView, expressed
in the image’s coordinate system.

public NSPoint imageOrigin()

Discussion
For a horizontal ruler, the x coordinate of the image origin is aligned with the location of the marker, and
the y coordinate lies on the baseline of the ruler. For vertical rulers, the y coordinate of the image origin is
the location, and the x coordinate lies on the baseline.

See Also
setImageOrigin (page 1206)
imageRectInRuler (page 1204)

imageRectInRuler
Returns the rectangle occupied by the receiver’s image, in the NSRulerView’s coordinate system, accounting
for whether the NSRulerView’s coordinate system is flipped.

public NSRect imageRectInRuler()

See Also
drawRect (page 1203)
thicknessRequiredInRuler (page 1207)

isDragging
Returns true if the receiver is being dragged, false otherwise.

public boolean isDragging()

See Also
trackMouseToAddMarker (page 1207)

isMovable
Returns true if the user can move the receiver on its NSRulerView, false otherwise.

public boolean isMovable()

1204 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

Discussion
NSRulerMarkers are by default movable.

See Also
setMovable (page 1206)
isRemovable (page 1205)

isRemovable
Returns true if the user can remove the receiver from its NSRulerView, false otherwise.

public boolean isRemovable()

Discussion
NSRulerMarkers cannot by default be removed from their NSRulerViews.

See Also
setRemovable (page 1207)
isMovable (page 1204)

markerLocation
Returns the location of the receiver in the coordinate system of the NSRulerView’s client view.

public float markerLocation()

Discussion
This is an x position for a horizontal ruler, a y position for a vertical ruler.

See Also
setMarkerLocation (page 1206)

representedObject
Returns the object the receiver represents, as explained in the class description.

public Object representedObject()

See Also
setRepresentedObject (page 1207)

ruler
Returns the NSRulerView the receiver belongs to.

public NSRulerView ruler()

See Also
addMarker (page 1215) (NSRulerView)

Instance Methods 1205
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

setImage
Sets the receiver’s image to anImage.

public void setImage(NSImage anImage)

See Also
image (page 1204)
setImageOrigin (page 1206)

setImageOrigin
Sets the point in the receiver’s image positioned at the receiver’s location on the NSRulerView to aPoint.

public void setImageOrigin(NSPoint aPoint)

Discussion
This point is always expressed in pixels relative to the lower-left corner of the image.

For a horizontal ruler, the x coordinate of the image origin is aligned with the location of the marker, and
the y coordinate lies on the baseline of the ruler. For vertical rulers, the y coordinate of the image origin is
the location, and the x coordinate lies on the baseline.

See Also
imageOrigin (page 1204)
setImage (page 1206)
setMarkerLocation (page 1206)

setMarkerLocation
Sets the location of the receiver in the coordinate system of the NSRulerView’s client view to location.

public void setMarkerLocation(float location)

Discussion
This location is an x position for a horizontal ruler, a y position for a vertical ruler.

See Also
markerLocation (page 1205)
setImageOrigin (page 1206)

setMovable
Controls whether the user can move the receiver in its NSRulerView.

public void setMovable(boolean flag)

Discussion
If flag is true, the user can drag the marker image in the ruler. If flag is false, the receiver is immovable.
NSRulerMarkers are by default movable.

1206 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

See Also
isMovable (page 1204)
setRemovable (page 1207)

setRemovable
Controls whether the user can remove the receiver from its NSRulerView.

public void setRemovable(boolean flag)

Discussion
If flag is true, the user can drag the marker image off of the ruler. If flag is false, the receiver can’t be
removed. NSRulerMarkers are by default not removable.

See Also
isRemovable (page 1205)
setMovable (page 1206)

setRepresentedObject
Sets the object the receiver represents to anObject.

public void setRepresentedObject(Object anObject)

Discussion
See the class description for more information on the represented object.

See Also
representedObject (page 1205)

thicknessRequiredInRuler
Returns the amount of the receiver’s image that’s displayed above or to the left of the NSRulerView’s baseline,
the height for a horizontal ruler or width for a vertical ruler.

public float thicknessRequiredInRuler()

See Also
imageOrigin (page 1204)

trackMouseToAddMarker
Handles user manipulation of the receiver in its NSRulerView specified by theEvent.

public boolean trackMouseToAddMarker(NSEvent theEvent, boolean flag)

Discussion
NSRulerView invokes this method automatically to add a new marker or to move or remove an existing
marker. You should never need to invoke it directly.

Instance Methods 1207
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

If flag is true, the receiver is a new marker being added to its NSRulerView. Before the receiver actually
adds itself to the NSRulerView, it queries the NSRulerView’s client view using
rulerViewShouldAddMarker (page 1224). If the client view responds to this method and returns false,
this method immediately returns false, and the new marker isn’t added.

If flag is false, this method attempts to move or remove an existing marker, once again based on responses
from the NSRulerView’s client view. If the receiver is neither movable nor removable, this method immediately
returns false. Further, if the NSRulerView’s client responds to rulerViewShouldMoveMarker (page 1224)
and returns false, this method returns false, indicating the receiver can’t be moved.

If the receiver is being added or moved, this method queries the client view using
rulerViewWillAddMarker (page 1225) orrulerViewWillMoveMarker (page 1225), respectively. If the client
responds to the method, the return value is used as the receiver’s location. These methods are invoked
repeatedly as the receiver is dragged within the NSRulerView.

If the receiver is an existing marker being removed (dragged off the ruler), this method queries the client
view using rulerViewShouldRemoveMarker (page 1225). If the client responds to this method and returns
false, the marker is pinned to the NSRulerView’s baseline (following the cursor on the baseline if it’s movable).

When the user releases the mouse button, this method informs the client view of the marker’s new status
using rulerViewDidAddMarker (page 1223), rulerViewDidMoveMarker (page 1223), or
rulerViewDidRemoveMarker (page 1223) as appropriate. The client view can use this notification to set the
marker’s represented object, modify its state and redisplay (for example, adjusting text layout around a new
tab stop), or take whatever other action it might need. If flag is true and the user dragged the new marker
away from the ruler, the marker isn’t added, no message is sent, and this method returns false.

See the NSRulerView (page 1209) class description for more information on these client methods.

See Also
isMovable (page 1204)
isRemovable (page 1205)

1208 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 90

NSRulerMarker

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Rulers and Paragraph Styles

Class at a Glance

An NSRulerView displays a ruler and markers above or to the side of an NSScrollView’s document view. Views
within the NSScrollView can become clients of the ruler view, having it display markers for their elements,
and receiving messages from the ruler view when the user manipulates the markers.

Principal Attributes

 ■ Displays markers that represent elements of the client view.

 ■ Displays in arbitrary units.

 ■ Provides for an accessory view containing extra controls.

Constructor
setHasHorizontalRuler (page 1279) (NSScrollView)
setHasVerticalRuler (page 1280) (NSScrollView)

Commonly Used Methods

setClientView (page 1219)
Changes the ruler’s client view.

setMarkers (page 1220)
Sets the markers displayed by the ruler view.

setAccessoryView (page 1219)
Sets the accessory view.

trackMarker (page 1222)
Allows the user to add a new marker.

Class at a Glance 1209
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

Overview

An NSRulerView resides in an NSScrollView, displaying a labeled ruler and markers for its client, the document
view of the NSScrollView, or a subview of the document view.

Tasks

Constructors

NSRulerView (page 1213)
Creates an NSRulerView with a zero-sized frame rectangle.

Altering Measurement Units

registerUnit (page 1214)
Registers a new unit of measurement with the NSRulerView class, making it available to all instances
of NSRulerView.

setMeasurementUnits (page 1220)
Sets the measurement units used by the ruler to unitName.

measurementUnits (page 1217)
Returns the full name of the measurement units in effect for the receiver.

Setting the Client View

setClientView (page 1219)
Sets the receiver’s client view to aView, without retaining it, and removes its ruler markers, after
informing the prior client of the change using rulerViewWillSetClientView (page 1225).

clientView (page 1215)
Returns the receiver’s client view, if it has one.

Setting an Accessory View

setAccessoryView (page 1219)
Sets the receiver’s accessory view to aView.

accessoryView (page 1214)
Returns the receiver’s accessory view, if it has one.

1210 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

Setting the Zero Mark Position

setOriginOffset (page 1220)
Sets the distance to the zero hash mark from the bounds origin of the NSScrollView’s document view
(not of the receiver’s client view), in the document view’s coordinate system.

originOffset (page 1217)
Returns the distance from the receiver’s zero hash mark to the bounds origin of the NSScrollView’s
document view (not the receiver’s client view), in the document view’s coordinate system.

Adding and Removing Markers

setMarkers (page 1220)
Sets the receiver’s ruler markers to markers, removing any existing ruler markers and not consulting
with the client view about the new markers.

markers (page 1216)
Returns the receiver’s NSRulerMarkers.

addMarker (page 1215)
Adds aMarker to the receiver, without consulting the client view for approval.

removeMarker (page 1218)
Removes aMarker from the receiver, without consulting the client view for approval.

trackMarker (page 1222)
Tracks the mouse to add aMarker based on the initial mouse-down or mouse-dragged event
theEvent.

Drawing Temporary Ruler Lines

moveRulerline (page 1217)
Draws temporary lines in the ruler area.

Drawing

drawHashMarksAndLabelsInRect (page 1215)
Draws the receiver’s hash marks and labels in aRect, which is expressed in the receiver’s coordinate
system.

drawMarkersInRect (page 1216)
Draws the receiver’s markers in aRect, which is expressed in the receiver’s coordinate system.

invalidateHashMarks (page 1216)
Forces recalculation of the hash mark spacing for the next time the receiver is displayed.

Ruler Layout

setScrollView (page 1222)
Sets the NSScrollView that owns the receiver to scrollView, without retaining it.

Tasks 1211
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

scrollView (page 1219)
Returns the NSScrollView object that contains the receiver.

setOrientation (page 1220)
Sets the orientation of the receiver to orientation.

orientation (page 1217)
Returns the orientation of the receiver.

setReservedThicknessForAccessoryView (page 1221)
Sets the room available for the receiver’s accessory view to thickness.

reservedThicknessForAccessoryView (page 1218)
Returns the thickness reserved to contain the receiver’s accessory view, its height or width depending
on the receiver’s orientation.

setReservedThicknessForMarkers (page 1221)
Sets the room available for ruler markers to thickness.

reservedThicknessForMarkers (page 1218)
Returns the thickness reserved to contain the images of the receiver’s ruler markers, the height or
width depending on the receiver’s orientation.

setRuleThickness (page 1221)
Sets to thickness the thickness of the area where ruler hash marks and labels are drawn.

ruleThickness (page 1219)
Returns the thickness of the receiver’s ruler area (the area where hash marks and labels are drawn),
its height or width depending on the receiver’s orientation.

requiredThickness (page 1218)
Returns the thickness needed for proper tiling of the receiver within an NSScrollView.

baselineLocation (page 1215)
Returns the location of the receiver’s baseline, in its own coordinate system.

isFlipped (page 1216)
Returns true if the NSRulerView’s coordinate system is flipped, false otherwise.

Adding markers

rulerViewShouldAddMarker (page 1224) delegate method
Requests permission for aRulerView to add aMarker, an NSRulerMarker being dragged onto the
ruler by the user.

rulerViewWillAddMarker (page 1225) delegate method
Informs the client that aRulerView will add the new NSRulerMarker, aMarker.

rulerViewDidAddMarker (page 1223) delegate method
Informs the client that aRulerView allowed the user to add aMarker.

Moving markers

rulerViewShouldMoveMarker (page 1224) delegate method
Requests permission for aRulerView to move aMarker.

rulerViewWillMoveMarker (page 1225) delegate method
Informs the client that aRulerView will move aMarker, an NSRulerMarker already on the ruler view.

1212 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

rulerViewDidMoveMarker (page 1223) delegate method
Informs the client that aRulerView allowed the user to move aMarker.

Removing markers

rulerViewShouldRemoveMarker (page 1225) delegate method
Requests permission for aRulerView to remove aMarker.

rulerViewDidRemoveMarker (page 1223) delegate method
Informs the client that aRulerView allowed the user to remove aMarker.

Handling mouse events

rulerViewHandleMouseDown (page 1224) delegate method
Informs the client that the user has pressed the mouse button while the cursor is in the ruler area of
aRulerView.

Changing client view

rulerViewWillSetClientView (page 1225) delegate method
Informs the client view that aRulerView is about to be appropriated by newClient.

Constructors

NSRulerView
Creates an NSRulerView with a zero-sized frame rectangle.

public NSRulerView()

Discussion
The orientation is horizontal (HorizontalRuler).

Creates an NSRulerView with aRect as its frame rectangle.

public NSRulerView(NSRect aRect)

Discussion
The orientation is horizontal (HorizontalRuler).

Creates an NSRulerView with orientation (HorizontalRuler or VerticalRuler) within aScrollView.

public NSRulerView(NSScrollView aScrollView, int orientation)

Discussion
The new ruler view displays the user’s preferred measurement units and has no client, markers, or accessory
view. Unlike most subclasses of NSView, no initial frame rectangle is given for NSRulerView; its containing
NSScrollView adjusts its frame rectangle as needed.

Constructors 1213
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

Static Methods

registerUnit
Registers a new unit of measurement with the NSRulerView class, making it available to all instances of
NSRulerView.

public static void registerUnit(String unitName, String abbreviation, float
conversionFactor, NSArray stepUpCycle, NSArray stepDownCycle)

Discussion
unitName is the name of the unit in English, in plural form and capitalized by convention—“Inches”, for
example. The unit name is used as a key to identify the measurement units and so shouldn’t be localized.
abbreviation is a localized short form of the unit name, such as “in” for Inches. conversionFactor is the
number of PostScript points in the specified unit; there are 72.0 points per inch, for example. stepUpCycle
and stepDownCycle are arrays of Numbers that specify how hash marks are calculated, as explained in
“Setting Up a Ruler View”. All numbers in stepUpCycle should be greater than 1.0, those in stepDownCycle
should be less than 1.0.

NSRulerView supports these units by default:

Step-Down CycleStep-Up CyclePoints/UnitAbbreviationUnit Name

0.52.072.0inInches

0.5, 0.22.028.35cmCentimeters

0.510.01.0ptPoints

0.510.012.0pcPicas

See Also
setMeasurementUnits (page 1220)

Instance Methods

accessoryView
Returns the receiver’s accessory view, if it has one.

public NSView accessoryView()

See Also
setAccessoryView (page 1219)
reservedThicknessForAccessoryView (page 1218)

1214 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

addMarker
Adds aMarker to the receiver, without consulting the client view for approval.

public void addMarker(NSRulerMarker aMarker)

Discussion
Throws an InternalInconsistencyException if the receiver has no client view.

See Also
setMarkers (page 1220)
removeMarker (page 1218)
markers (page 1216)
trackMarker (page 1222)

baselineLocation
Returns the location of the receiver’s baseline, in its own coordinate system.

public float baselineLocation()

Discussion
This is a y position for horizontal rulers and an x position for vertical ones.

See Also
ruleThickness (page 1219)

clientView
Returns the receiver’s client view, if it has one.

public NSView clientView()

See Also
setClientView (page 1219)

drawHashMarksAndLabelsInRect
Draws the receiver’s hash marks and labels in aRect, which is expressed in the receiver’s coordinate system.

public void drawHashMarksAndLabelsInRect(NSRect aRect)

Discussion
This method is invoked by drawRect (page 1203)—you should never need to invoke it directly. You can define
custom measurement units using the class method registerUnit (page 1214). Override this method if you
want to customize the appearance of the hash marks themselves.

See Also
invalidateHashMarks (page 1216)
drawMarkersInRect (page 1216)

Instance Methods 1215
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

drawMarkersInRect
Draws the receiver’s markers in aRect, which is expressed in the receiver’s coordinate system.

public void drawMarkersInRect(NSRect aRect)

Discussion
This method is invoked by drawRect (page 1203); you should never need to invoke it directly, but you might
want to override it if you want to do something different when drawing markers.

See Also
reservedThicknessForMarkers (page 1218)
drawHashMarksAndLabelsInRect (page 1215)

invalidateHashMarks
Forces recalculation of the hash mark spacing for the next time the receiver is displayed.

public void invalidateHashMarks()

Discussion
You should never need to invoke this method directly, but might need to override it if you override
drawHashMarksAndLabelsInRect (page 1215).

See Also
drawHashMarksAndLabelsInRect (page 1215)

isFlipped
Returns true if the NSRulerView’s coordinate system is flipped, false otherwise.

public boolean isFlipped()

Discussion
A vertical ruler takes into account whether the coordinate system of the NSScrollView’s document view—not
the receiver’s client view—is flipped. A horizontal ruler is always flipped.

markers
Returns the receiver’s NSRulerMarkers.

public NSArray markers()

Discussion
The markers aren’t guaranteed to be sorted in any particular order.

See Also
setMarkers (page 1220)
addMarker (page 1215)
removeMarker (page 1218)
markerLocation (page 1205) (NSRulerMarker)

1216 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

measurementUnits
Returns the full name of the measurement units in effect for the receiver.

public String measurementUnits()

See Also
setMeasurementUnits (page 1220)
registerUnit (page 1214)

moveRulerline
Draws temporary lines in the ruler area.

public void moveRulerline(float oldLoc, float newLoc)

Discussion
If oldLoc is 0 or greater, erases the ruler line at that location; if newLoc is 0 or greater, draws a new rulerline
at that location. oldLoc and newLoc are expressed in the coordinate system of the NSRulerView, not the
client or document view, and are x coordinates for horizontal rulers and y coordinates for vertical rulers. Use
NSView’s convert...methods to convert coordinates from the client or document view’s coordinate system
to that of the NSRulerView.

This method is useful for drawing highlight lines in the ruler to show the position or extent of an object while
it’s being dragged in the client view. The sender is responsible for keeping track of the number and positions
of temporary lines—the NSRulerView only does the drawing.

orientation
Returns the orientation of the receiver.

public int orientation()

Discussion
Possible values are described in “Constants” (page 1222).

See Also
setOrientation (page 1220)

originOffset
Returns the distance from the receiver’s zero hash mark to the bounds origin of the NSScrollView’s document
view (not the receiver’s client view), in the document view’s coordinate system.

public float originOffset()

See Also
setOriginOffset (page 1220)

Instance Methods 1217
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

removeMarker
Removes aMarker from the receiver, without consulting the client view for approval.

public void removeMarker(NSRulerMarker aMarker)

See Also
setMarkers (page 1220)
addMarker (page 1215)

requiredThickness
Returns the thickness needed for proper tiling of the receiver within an NSScrollView.

public float requiredThickness()

Discussion
This thickness is the height of a horizontal ruler and the width of a vertical ruler. The required thickness is
the sum of the thicknesses of the ruler area, the marker area, and the accessory view.

See Also
ruleThickness (page 1219)
reservedThicknessForMarkers (page 1218)
reservedThicknessForAccessoryView (page 1218)

reservedThicknessForAccessoryView
Returns the thickness reserved to contain the receiver’s accessory view, its height or width depending on
the receiver’s orientation.

public float reservedThicknessForAccessoryView()

Discussion
This thickness is automatically enlarged as necessary to the accessory view’s thickness (but never automatically
reduced). To prevent retiling of a ruler view’s scroll view, you should set its maximal thickness upon creating
using setReservedThicknessForAccessoryView (page 1221).

reservedThicknessForMarkers
Returns the thickness reserved to contain the images of the receiver’s ruler markers, the height or width
depending on the receiver’s orientation.

public float reservedThicknessForMarkers()

Discussion
This thickness is automatically enlarged as necessary to accommodate the thickest ruler marker image (but
never automatically reduced). To prevent retiling of a ruler view’s scroll view, you should set its maximal
thickness upon creating using setReservedThicknessForMarkers (page 1221).

See Also
thicknessRequiredInRuler (page 1207) (NSRulerMarker)

1218 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

ruleThickness
Returns the thickness of the receiver’s ruler area (the area where hash marks and labels are drawn), its height
or width depending on the receiver’s orientation.

public float ruleThickness()

See Also
setRuleThickness (page 1221)

scrollView
Returns the NSScrollView object that contains the receiver.

public NSScrollView scrollView()

See Also
setScrollView (page 1222)
setHorizontalRulerView (page 1281) (NSScrollView)
setVerticalRulerView (page 1284) (NSScrollView)

setAccessoryView
Sets the receiver’s accessory view to aView.

public void setAccessoryView(NSView aView)

Discussion
Throws an InternalInconsistencyException if aView is not null and the receiver has no client view.

See Also
accessoryView (page 1214)
reservedThicknessForAccessoryView (page 1218)

setClientView
Sets the receiver’s client view to aView, without retaining it, and removes its ruler markers, after informing
the prior client of the change using rulerViewWillSetClientView (page 1225).

public void setClientView(NSView aView)

Discussion
aView must be either the document view of the NSScrollView that contains the receiver or a subview of the
document view.

See Also
clientView (page 1215)

Instance Methods 1219
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

setMarkers
Sets the receiver’s ruler markers to markers, removing any existing ruler markers and not consulting with
the client view about the new markers.

public void setMarkers(NSArray markers)

Discussion
markers can be null or empty to remove all ruler markers. Throws an InternalInconsistencyException
if markers is not null and the receiver has no client view.

See Also
addMarker (page 1215)
removeMarker (page 1218)

setMeasurementUnits
Sets the measurement units used by the ruler to unitName.

public void setMeasurementUnits(String unitName)

Discussion
unitName must have been registered with the NSRulerView class object prior to invoking this method. See
the description of the class method registerUnit (page 1214) for a list of predefined units.

See Also
measurementUnits (page 1217)

setOrientation
Sets the orientation of the receiver to orientation.

public void setOrientation(int orientation)

Discussion
Possible values for orientation are described in “Constants” (page 1222). You should never need to invoke
this method directly—it’s automatically invoked by the containing NSScrollView.

See Also
orientation (page 1217)

setOriginOffset
Sets the distance to the zero hash mark from the bounds origin of the NSScrollView’s document view (not
of the receiver’s client view), in the document view’s coordinate system.

public void setOriginOffset(float offset)

Discussion
The default offset is 0.0, meaning that the ruler origin coincides with the bounds origin of the document
view.

1220 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

See Also
originOffset (page 1217)

setReservedThicknessForAccessoryView
Sets the room available for the receiver’s accessory view to thickness.

public void setReservedThicknessForAccessoryView(float thickness)

Discussion
If the ruler is horizontal, thickness is the height of the accessory view; otherwise, it’s the width. NSRulerViews
by default reserve no space for an accessory view.

An NSRulerView automatically increases the reserved thickness as necessary to that of the accessory view.
When the accessory view is thinner than the reserved space, it’s centered in that space. If you plan to use
several accessory views of different sizes, you should set the reserved thickness beforehand to that of the
thickest accessory view, in order to avoid retiling of the NSScrollView.

See Also
reservedThicknessForAccessoryView (page 1218)
setAccessoryView (page 1219)
setReservedThicknessForMarkers (page 1221)

setReservedThicknessForMarkers
Sets the room available for ruler markers to thickness.

public void setReservedThicknessForMarkers(float thickness)

Discussion
The default thickness reserved for markers is 15.0 PostScript units for a horizontal ruler and 0.0 PostScript
units for a vertical ruler (under the assumption that vertical rulers rarely contain markers). If you don’t expect
to have any markers on the ruler, you can set the reserved thickness to 0.0.

An NSRulerView automatically increases the reserved thickness as necessary to that of its thickest marker. If
you plan to use markers of varying sizes, you should set the reserved thickness beforehand to that of the
thickest one in order to avoid retiling of the NSScrollView.

See Also
reservedThicknessForMarkers (page 1218)
setMarkers (page 1220)
setReservedThicknessForAccessoryView (page 1221)
thicknessRequiredInRuler (page 1207) (NSRulerMarker)

setRuleThickness
Sets to thickness the thickness of the area where ruler hash marks and labels are drawn.

public void setRuleThickness(float thickness)

Instance Methods 1221
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

Discussion
This value is the height of the ruler area for a horizontal ruler or the width of the ruler area for a vertical ruler.
Rulers are by default 16.0 PostScript units thick. You should rarely need to change this layout attribute, but
subclasses might do so to accommodate custom drawing.

See Also
ruleThickness (page 1219)

setScrollView
Sets the NSScrollView that owns the receiver to scrollView, without retaining it.

public void setScrollView(NSScrollView scrollView)

Discussion
This method is generally invoked only by the ruler’s scroll view; you should rarely need to invoke it directly.

See Also
scrollView (page 1219)
setHorizontalRulerView (page 1281) (NSScrollView)
setVerticalRulerView (page 1284) (NSScrollView)

trackMarker
Tracks the mouse to add aMarker based on the initial mouse-down or mouse-dragged event theEvent.

public boolean trackMarker(NSRulerMarker aMarker, NSEvent theEvent)

Discussion
Returns true if the receiver adds aMarker, false if it doesn’t. This method works by sending
trackMouseToAddMarker (page 1207) to aMarker with theEvent and true as arguments.

An application typically invokes this method in one of two cases. In the simpler case, the client view can
implement rulerViewHandleMouseDown (page 1224) to invoke this method when the user presses the
mouse button while the cursor is in the NSRulerView’s ruler area. This technique is appropriate when it’s
clear what kind of marker will be added by clicking the ruler area. The second, more general, case involves
the application providing a palette of different kinds of markers that can be dragged onto the ruler, from
the ruler’s accessory view or from some other place. With this technique the palette tracks the cursor until
it enters the ruler view, at which time it hands over control to the ruler view by invoking trackMarker (page
1222).

See Also
addMarker (page 1215)
setMarkers (page 1220)

Constants

The following constants are defined to specify a ruler’s orientation and are used by orientation (page 1217)
and setOrientation (page 1220):

1222 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

DescriptionConstant

Ruler is oriented horizontally.HorizontalRuler

Ruler is oriented vertically.VerticalRuler

Delegate Methods

rulerViewDidAddMarker
Informs the client that aRulerView allowed the user to add aMarker.

public abstract void rulerViewDidAddMarker(NSRulerView aRulerView, NSRulerMarker
aMarker)

Discussion
The client can take whatever action it needs based on this message, such as adding a new tab stop to the
selected paragraph or creating a layout guideline.

See Also
representedObject (page 1205) (NSRulerMarker)
markerLocation (page 1205) (NSRulerMarker)

rulerViewDidMoveMarker
Informs the client that aRulerView allowed the user to move aMarker.

public abstract void rulerViewDidMoveMarker(NSRulerView aRulerView, NSRulerMarker
aMarker)

Discussion
The client can take whatever action it needs based on this message, such as updating the location of a tab
stop in the selected paragraph, moving a layout guideline, or resizing a graphics element.

See Also
representedObject (page 1205) (NSRulerMarker)
markerLocation (page 1205) (NSRulerMarker)

rulerViewDidRemoveMarker
Informs the client that aRulerView allowed the user to remove aMarker.

public abstract void rulerViewDidRemoveMarker(NSRulerView aRulerView, NSRulerMarker
aMarker)

Discussion
The client can take whatever action it needs based on this message, such as deleting a tab stop from the
paragraph style or removing a layout guideline.

Delegate Methods 1223
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

See Also
representedObject (page 1205) (NSRulerMarker)

rulerViewHandleMouseDown
Informs the client that the user has pressed the mouse button while the cursor is in the ruler area of
aRulerView.

public abstract void rulerViewHandleMouseDown(NSRulerView aRulerView, NSEvent
theEvent)

Discussion
theEvent is the mouse-down event that triggered the message. The client view can implement this method
to perform an action such as adding a new marker usingtrackMarker (page 1222) or adding layout guidelines.

rulerViewShouldAddMarker
Requests permission for aRulerView to add aMarker, an NSRulerMarker being dragged onto the ruler by
the user.

public abstract boolean rulerViewShouldAddMarker(NSRulerView aRulerView,
NSRulerMarker aMarker)

Discussion
If the client returns true the ruler view accepts the new marker and begins tracking its movement; if the
client returns false the ruler view refuses the new marker.

See Also
rulerViewWillAddMarker (page 1225)

rulerViewShouldMoveMarker
Requests permission for aRulerView to move aMarker.

public abstract boolean rulerViewShouldMoveMarker(NSRulerView aRulerView,
NSRulerMarker aMarker)

Discussion
If the client returns true the ruler view allows the user to move the marker; if the client returns false the
marker doesn’t move.

The user’s ability to move a marker is typically set on the marker itself, using NSRulerMarker’s
setMovable (page 1206) method. You should use this client view method only when the marker’s movability
can vary depending on a variable condition (for example, if graphic items can be locked down to prevent
them from being inadvertently moved).

See Also
rulerViewWillMoveMarker (page 1225)

1224 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

rulerViewShouldRemoveMarker
Requests permission for aRulerView to remove aMarker.

public abstract boolean rulerViewShouldRemoveMarker(NSRulerView aRulerView,
NSRulerMarker aMarker)

Discussion
If the client returns true the ruler view allows the user to remove the marker; if the client returns false the
marker is kept pinned to the ruler’s baseline. This message is sent as many times as needed while the user
drags the marker.

The user’s ability to remove a marker is typically set on the marker itself, using NSRulerMarker’s
setRemovable (page 1207) method. You should use this client view method only when the marker’s
removability can vary while the user drags it (for example, if the user must press the Shift key to remove a
marker).

rulerViewWillAddMarker
Informs the client that aRulerView will add the new NSRulerMarker, aMarker.

public abstract float rulerViewWillAddMarker(NSRulerView aRulerView, NSRulerMarker
aMarker, float location)

Discussion
location is the marker’s tentative new location, expressed in the client view’s coordinate system. The value
returned by the client view is actually used; the client can simply return location unchanged or adjust it
as needed. For example, it may snap the location to a grid. This message is sent repeatedly to the client as
the user drags the marker.

See Also
rulerViewWillMoveMarker (page 1225)

rulerViewWillMoveMarker
Informs the client that aRulerView will move aMarker, an NSRulerMarker already on the ruler view.

public abstract float rulerViewWillMoveMarker(NSRulerView aRulerView, NSRulerMarker
aMarker, float location)

Discussion
location is the marker’s tentative new location, expressed in the client view’s coordinate system. The value
returned by the client view is actually used; the client can simply return location unchanged or adjust it
as needed. For example, it may snap the location to a grid. This message is sent repeatedly to the client as
the user drags the marker.

See Also
rulerViewWillAddMarker (page 1225)

rulerViewWillSetClientView
Informs the client view that aRulerView is about to be appropriated by newClient.

Delegate Methods 1225
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

public abstract void rulerViewWillSetClientView(NSRulerView aRulerView, NSView
newClient)

Discussion
The client view can use this opportunity to clear any cached information related to the ruler.

1226 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 91

NSRulerView

Inherits from NSPanel : NSWindow : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Application File Management
Sheet Programming Topics for Cocoa

Class at a Glance

An NSSavePanel object manages a panel that allows users to specify the directory and name under which a
file is saved. It supports browsing of the file system, and it accommodates custom accessory views. An
NSSavePanel is a recycled object: when you request a Save panel, NSSavePanel tries to reuse an existing Save
panel rather than create a new one.

Principal Attributes

 ■ Filename

savePanel (page 1232)
Returns a Save panel instance.

Commonly Used Methods

runModal (page 1237)
Displays the panel and begins the event loop.

filename (page 1235)
Returns the selected or entered filename.

directory (page 1235)
Returns the full path of the selected file.

ok (page 1236)
Invoked when users click OK.

Class at a Glance 1227
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Overview

NSSavePanel creates and manages a Save panel and allows you to run the panel in a modal loop. The Save
panel provides a simple way for a user to specify a file to use when saving a document or other data. It can
restrict the user to files of a certain type, as specified by an extension.

Tasks

Constructors

NSSavePanel (page 1231)
Creates an empty NSSavePanel.

Obtaining

savePanel (page 1232)
Creates and returns a new NSSavePanel object.

Customizing the NSSavePanel

setAccessoryView (page 1238)
Customizes the panel for the application by adding a custom NSView (aView) to the panel.

accessoryView (page 1232)
Returns the custom accessory view for the current application.

setTitle (page 1242)
Sets the title of the receiver to title.

title (page 1242)
Returns the title of the receiver.

setPrompt (page 1241)
Sets the prompt of the default button.

prompt (page 1237)
Returns the prompt of the default button.

setNameFieldLabel (page 1241)
Sets the text displayed in front of the text field to label.

nameFieldLabel (page 1236)
Returns the string displayed in front of the filename text field.

setMessage (page 1241)
Sets the message text displayed in the panel.

message (page 1236)
Returns the message displayed in the save panel.

1228 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Working with Extension Hiding

setCanSelectHiddenExtension (page 1240)
Sets whether the receiver allows the user to hide or show extensions to flag.

canSelectHiddenExtension (page 1235)
Returns whether the receiver allows the user to hide or show extensions.

setExtensionHidden (page 1240)
Sets the value of the extension-hiding checkbox to flag.

isExtensionHidden (page 1236)
Returns true if the extension-hiding checkbox is visible and checked.

Setting Directory and File Type

setDirectory (page 1240)
Sets the current pathname in the receiver’s browser.

setRequiredFileType (page 1242)
Specifies the type, an extension to be appended to any selected files that don’t already have that
extension; “nib” and “rtf” are examples.

requiredFileType (page 1237)
Returns the required file type (if any).

setAllowedFileTypes (page 1239)
Specifies the allowed file types for the receiver.

allowedFileTypes (page 1233)
Returns an array of the allowed file types.

setAllowsOtherFileTypes (page 1239)
Sets whether the receiver allows the user to save files with an extension that’s not in the list of allowed
types.

allowsOtherFileTypes (page 1233)
Returns whether the receiver allows the user to save files with an extension that’s not in the list of
allowed types.

treatsFilePackagesAsDirectories (page 1243)
Returns whether the receiver displays file packages to the user as directories.

setTreatsFilePackagesAsDirectories (page 1242)
Sets the receiver’s behavior for displaying file packages (for example, MyApp.app) to the user.

validateVisibleColumns (page 1243)
Validates and possibly reloads the browser columns visible in the receiver by invoking the delegate
method panelShouldShowFilename (page 1244).

setCanCreateDirectories (page 1239)
Sets whether the receiver allows the user to create directories.

canCreateDirectories (page 1234)
Returns whether the receiver allows the user to create directories.

Tasks 1229
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Running the NSSavePanel

beginSheetForDirectory (page 1234)
Presents a Save panel as a sheet with the directory specified by path and optionally, the file specified
by name selected.

runModal (page 1237)
Displays the receiver and begins its event loop with the current working (or last selected) directory
as the default starting point.

runModalInDirectory (page 1238)
Initializes the receiver to the directory specified by path and, optionally, the file specified by filename,
then displays it and begins its modal event loop; path and filename can be empty strings.

Getting User Selections

directory (page 1235)
Returns the absolute pathname of the directory currently shown in the receiver.

filename (page 1235)
Returns the absolute pathname of the file currently shown in the receiver.

URL (page 1243)
Returns the absolute pathname of the file currently shown in the receiver as a URL.

isExpanded (page 1235)
Returns whether the receiver is expanded.

Action Methods

cancel (page 1234)
This action method is invoked when the user clicks the panel’s Cancel button.

ok (page 1236)
This action method is invoked when the user clicks the panel’s OK button.

Responding to User Input

selectText (page 1238)
This method has been deprecated.

Setting the Delegate

setDelegate (page 1240)
Makes anObject the receiver’s delegate, after verifying which delegate methods are implemented.

delegate (page 1235)
Returns the receiver’s delegate.

1230 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Working with filenames

panelCompareFilenames (page 1243) delegate method
Controls the ordering of files presented by the NSSavePanel sender.

panelIsValidFilename (page 1244) delegate method

panelShouldShowFilename (page 1244) delegate method
Gives the delegate the opportunity to filter out items that it doesn’t want the user to see or choose.

panelUserEnteredFilename (page 1245) delegate method
Sent when the user confirms a filename choice by hitting OK or Return in the NSSavePanel sender.

Expanding the panel

panelWillExpand (page 1245) delegate method
Sent when the NSSavePanel sender is about to expand or collapse because the user clicked the
disclosure triangle that displays or hides the file browser.

Managing panel changes

panelDirectoryDidChange (page 1244) delegate method
Sent when the user has changed the selected directory in the NSSavePanel sender.

panelSelectionDidChange (page 1244) delegate method
Sent when the user has changed the selection in the NSSavePanel sender.

Constructors

NSSavePanel
Creates an empty NSSavePanel.

public NSSavePanel()

Creates a new NSSavePanel.

public NSSavePanel(NSRect contentRect, int styleMask, int backingType, boolean
flag)

Discussion
The contentRect argument specifies the location and size of the panel’s content area in screen coordinates.
Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

The styleMask argument specifies the panel’s style. Either it can be NSWindow.BorderlessWindowMask,
or it can contain any of the options described in NSWindow’s “Constants” (page 1875), combined using the C
bitwise OR operator.

Constructors 1231
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSWindow.TitledWindowMask if it includes any of the others.

The backingType argument specifies how the drawing done in the panel is buffered by the object’s window
device, and possible values are described in NSWindow’s “Constants” (page 1875).

The flag argument determines whether the window server creates a window device for the new panel
immediately. If flag is true, it defers creating the window until the panel is moved onscreen. All display
messages sent are postponed until the panel is created, just before it’s moved onscreen. Deferring the creation
of the window improves launch time and minimizes the virtual memory load on the window server.

The new panel creates an instance of NSView to be its default content view. You can replace it with your
own object by using the setContentView (page 1858) method.

Creates a new NSSavePanel.

public NSSavePanel(NSRect contentRect, int styleMask, int backingType, boolean
flag, NSScreen aScreen)

Discussion
This constructor is equivalent to the preceding one except contentRect is specified relative to the lower-left
corner of aScreen.

If aScreen is null, contentRect is interpreted relative to the lower-left corner of the main screen. The
main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

Static Methods

savePanel
Creates and returns a new NSSavePanel object.

public static NSSavePanel savePanel()

Discussion
The save panel has been initialized with default values.

Instance Methods

accessoryView
Returns the custom accessory view for the current application.

public NSView accessoryView()

1232 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Discussion
This view is set by setAccessoryView (page 1238).

In order to free up unused memory after closing the receiver, the accessory view is released after the panel
is closed. If you rely on the receiver to hold onto the accessory view until the next time you use it, the accessory
view may be deallocated unexpectedly. If you retain the accessory view in your own code, though, this
deallocation should not be a problem.

See Also
setAccessoryView (page 1238)

allowedFileTypes
Returns an array of the allowed file types.

public NSArray allowedFileTypes()

Discussion
If the user specifies a file whose type is in the array of allowed types, they will not be presented with another
dialog (see allowsOtherFileTypes (page 1233) for details about this dialog) when trying to save. Examples
of common file types are “rtf”, “tiff”, and “ps”. File type strings encoding HFS file types are not valid values
for this attribute. A null return value, which is the default, indicates that the user can save to any ASCII file.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAllowedFileTypes (page 1239)
requiredFileType (page 1237)

allowsOtherFileTypes
Returns whether the receiver allows the user to save files with an extension that’s not in the list of allowed
types.

public boolean allowsOtherFileTypes()

Discussion
If the user tries to save a filename with a recognized extension that's not in the list of allowed types they are
presented with a dialog. If this method returns true, then the dialog presents the option of using the
extension the user specified.

The default setting is false.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAllowsOtherFileTypes (page 1239)
allowedFileTypes (page 1233)

Instance Methods 1233
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

beginSheetForDirectory
Presents a Save panel as a sheet with the directory specified by path and optionally, the file specified by
name selected.

public void beginSheetForDirectory(String path, String name, NSWindow docWindow,
Object modalDelegate, NSSelector didEndSelector, Object contextInfo)

Discussion
If docWindow is not null, the Save panel slides down as a sheet running as a document modal window. If
docWindow is null, the behavior defaults to a standalone modal window.

The didEndSelector method is optional. If implemented by the modalDelegate, this method is invoked,
passing contextInfo as an argument, after the modal session has ended, but before dismissing the Save
panel. didEndSelector may dismiss the Save panel itself; otherwise it will be dismissed on return from the
method. modalDelegate is not the same as a delegate assigned to the panel. Modal delegates in sheets
are temporary and the relationship only lasts until the sheet is dismissed. The NSSavePanel object does not
retain the modal delegate.

didEndSelector should have the following signature:

public void savePanelDidEndReturnCode (NSSavePanel sheet, int returnCode, Object
 contextInfo)

The value passed as returnCode will be either NSPanel.CancelButton or NSPanel.OKButton.

Save as above, without the optional contextInfo.

public void beginSheetForDirectory(String path, String name, NSWindow docWindow,
Object modalDelegate, NSSelector didEndSelector)

cancel
This action method is invoked when the user clicks the panel’s Cancel button.

public void cancel(Object sender)

See Also
ok (page 1236)

canCreateDirectories
Returns whether the receiver allows the user to create directories.

public boolean canCreateDirectories()

Availability
Available in Mac OS X v10.3 and later.

See Also
setCanCreateDirectories (page 1239)

1234 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

canSelectHiddenExtension
Returns whether the receiver allows the user to hide or show extensions.

public boolean canSelectHiddenExtension()

Availability
Available in Mac OS X v10.3 and later.

See Also
setCanSelectHiddenExtension (page 1240)

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 1240)

directory
Returns the absolute pathname of the directory currently shown in the receiver.

public String directory()

See Also
setDirectory (page 1240)

filename
Returns the absolute pathname of the file currently shown in the receiver.

public String filename()

See Also
URL (page 1243)

isExpanded
Returns whether the receiver is expanded.

public boolean isExpanded()

Instance Methods 1235
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

isExtensionHidden
Returns true if the extension-hiding checkbox is visible and checked.

public boolean isExtensionHidden()

Discussion
Returns false otherwise.

See Also
setCanSelectHiddenExtension (page 1240)
setExtensionHidden (page 1240)

message
Returns the message displayed in the save panel.

public String message()

Discussion
This message appears on all NSSavePanels (or all NSOpenPanels if the receiver of this message is an
NSOpenPanel) in your application. The default message text is an empty string.

Availability
Available in Mac OS X v10.3 and later.

See Also
setMessage (page 1241)

nameFieldLabel
Returns the string displayed in front of the filename text field.

public String nameFieldLabel()

Discussion
By default the label is “Save As:”.

Availability
Available in Mac OS X v10.3 and later.

See Also
setNameFieldLabel (page 1241)

ok
This action method is invoked when the user clicks the panel’s OK button.

public void ok(Object sender)

See Also
cancel (page 1234)

1236 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

prompt
Returns the prompt of the default button.

public String prompt()

Discussion
This prompt appears on all NSSavePanels (or all NSOpenPanels if the receiver of this message is an
NSOpenPanel) in your application. By default the text in the default button is “Open” for an open panel and
“Save” for a Save panel.

See Also
setPrompt (page 1241)

requiredFileType
Returns the required file type (if any).

public String requiredFileType()

Discussion
A file specified in the Save panel is saved with the designated filename and this file type as an extension.
Examples of common file types are “rtf”, “tiff”, and “ps”. File type strings encoding HFS file types are not valid
values for this attribute. An null return value indicates that the user can save to any ASCII file.

This method is equivalent to calling allowedFileTypes (page 1233) and returning the first element of the
list of allowed types, or null if there are none.

See Also
setRequiredFileType (page 1242)

runModal
Displays the receiver and begins its event loop with the current working (or last selected) directory as the
default starting point.

public int runModal()

Discussion
Invokes runModalInDirectory (page 1238) (file argument is an empty String), which in turn performs
NSApplication’s runModalForWindow (page 119) method with this as the argument. Returns
NSPanel.OKButton (if the user clicks the OK button) or NSPanel.CancelButton (if the user clicks the
Cancel button). Do not invoke filename (page 1235) or directory (page 1235) within a modal loop because
the information these methods fetch is updated only upon return.

See Also
runModalInDirectory (page 1238)
runModalForWindow (page 119) (NSApplication)

Instance Methods 1237
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

runModalInDirectory
Initializes the receiver to the directory specified by path and, optionally, the file specified by filename, then
displays it and begins its modal event loop; path and filename can be empty strings.

public int runModalInDirectory(String path, String filename)

Discussion
If path is null, the previous directory the Save panel was in is used. This method invokes NSApplication’s
runModalForWindow (page 119) method with this as the argument. Returns NSPanel.OKButton (if the
user clicks the OK button) or NSPanel.CancelButton (if the user clicks the Cancel button). Do not invoke
filename (page 1235) ordirectory (page 1235) within a modal loop because the information these methods
fetch is updated only upon return.

If window is not null, the Save panel slides down as a sheet running as a document modal window. If window
is null, the behavior defaults to a standalone modal panel.

public int runModalInDirectory(String path, String filename, NSWindow window)

Availability
Available in Mac OS X v10.3 and later.

See Also
runModal (page 1237)
runModalForWindow (page 119) (NSApplication)

selectText
This method has been deprecated.

public void selectText(Object sender)

Availability
Deprecated in Mac OS X v10.3.

setAccessoryView
Customizes the panel for the application by adding a custom NSView (aView) to the panel.

public void setAccessoryView(NSView aView)

Discussion
The custom NSView that’s added appears just above the OK and Cancel buttons at the bottom of the panel.
The NSSavePanel automatically resizes itself to accommodate aView. You can invoke this method repeatedly
to change the accessory view as needed. If aView is null, the NSSavePanel removes the current accessory
view.

See Also
accessoryView (page 1232)

1238 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

setAllowedFileTypes
Specifies the allowed file types for the receiver.

public void setAllowedFileTypes(NSArray types)

Discussion
types may not be empty. A file type is an extension to be appended to any selected files that don’t already
have that extension; “nib” and “rtf” are examples. The items in types should not include the period that
begins the extension. File type strings encoding HFS file types are not valid values. Pass null, to allow any
file type, which is the default.

Availability
Available in Mac OS X v10.3 and later.

See Also
allowedFileTypes (page 1233)
setRequiredFileType (page 1242)

setAllowsOtherFileTypes
Sets whether the receiver allows the user to save files with an extension that’s not in the list of allowed types.

public void setAllowsOtherFileTypes(boolean flag)

Discussion
If the user tries to save a filename with a recognized extension that's not in the list of allowed types they are
presented with a dialog. If allowsOtherFileTypes (page 1233) is true, then the dialog presents the option
of using the extension the user specified.

The default setting is false.

Availability
Available in Mac OS X v10.3 and later.

See Also
allowsOtherFileTypes (page 1233)
allowedFileTypes (page 1233)

setCanCreateDirectories
Sets whether the receiver allows the user to create directories.

public void setCanCreateDirectories(boolean)

Availability
Available in Mac OS X v10.3 and later.

See Also
canCreateDirectories (page 1234)

Instance Methods 1239
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

setCanSelectHiddenExtension
Sets whether the receiver allows the user to hide or show extensions to flag.

public void setCanSelectHiddenExtension(boolean flag)

Discussion
This method must be called before the panel is displayed.

See Also
canSelectHiddenExtension (page 1235)
isExtensionHidden (page 1236)
setExtensionHidden (page 1240)

setDelegate
Makes anObject the receiver’s delegate, after verifying which delegate methods are implemented.

public void setDelegate(Object anObject)

Discussion
Use NSWindow’s delegate (page 1826) method to retrieve the NSSavePanel’s delegate.

setDirectory
Sets the current pathname in the receiver’s browser.

public void setDirectory(String path)

Discussion
The path argument must be an absolute pathname.

See Also
directory (page 1235)

setExtensionHidden
Sets the value of the extension-hiding checkbox to flag.

public void setExtensionHidden(boolean flag)

Discussion
This method should rarely be used since the state is saved on a per application basis. Use this method to set
whether a file’s extension should be indicated as being shown.

See Also
setCanSelectHiddenExtension (page 1240)
isExtensionHidden (page 1236)

1240 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

setMessage
Sets the message text displayed in the panel.

public void setMessage(String message)

Discussion
This message appears on all NSSavePanels (or all NSOpenPanels if the receiver of this message is an
NSOpenPanel) in your application. The default message text is an empty string.

Availability
Available in Mac OS X v10.3 and later.

See Also
message (page 1236)

setNameFieldLabel
Sets the text displayed in front of the text field to label.

public void setNameFieldLabel(String label)

Discussion
By default the label is “Save As:”.

Availability
Available in Mac OS X v10.3 and later.

See Also
nameFieldLabel (page 1236)

setPrompt
Sets the prompt of the default button.

public void setPrompt(String prompt)

Discussion
This prompt appears on all NSSavePanels (or all NSOpenPanels if the receiver of this message is an
NSOpenPanel) in your application. By default the text in the default button is “Open” for an Open panel and
“Save” for a Save panel.

It is intended that short words or phrases, such as “Open,” “Save,” “Set,” or “Choose,” be used on the button.
The button is not resized to accommodate long prompts.

Since this method previously affected a title field, any colon at the end of prompt is removed.

See Also
prompt (page 1237)

Instance Methods 1241
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

setRequiredFileType
Specifies the type, an extension to be appended to any selected files that don’t already have that extension;
“nib” and “rtf” are examples.

public void setRequiredFileType(String type)

Discussion
The argument type should not include the period that begins the extension. Pass null to indicate any type.
File type strings encoding HFS file types are not valid values for this attribute. You need to invoke this method
each time the Save panel is used for another file type within the application.

This method is equivalent to calling setAllowedFileTypes (page 1239) with an array containing only type
(unless type is null, and then it’s equivalent to calling setAllowedFileTypes with null).

See Also
requiredFileType (page 1237)

setTitle
Sets the title of the receiver to title.

public void setTitle(String title)

Discussion
By default, “Save” is the title string. If you adapt the NSSavePanel for other uses, its title should reflect the
user action that brings it to the screen.

See Also
title (page 1242)

setTreatsFilePackagesAsDirectories
Sets the receiver’s behavior for displaying file packages (for example, MyApp.app) to the user.

public void setTreatsFilePackagesAsDirectories(boolean flag)

Discussion
If flag is true, the user is shown files and subdirectories within a file package. If false, the NSSavePanel
shows each file package as a file, thereby giving no indication that it is a directory.

See Also
treatsFilePackagesAsDirectories (page 1243)

title
Returns the title of the receiver.

public String title()

See Also
setTitle (page 1242)

1242 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

treatsFilePackagesAsDirectories
Returns whether the receiver displays file packages to the user as directories.

public boolean treatsFilePackagesAsDirectories()

See Also
setTreatsFilePackagesAsDirectories (page 1242)

URL
Returns the absolute pathname of the file currently shown in the receiver as a URL.

public java.net.URL URL()

See Also
filename (page 1235)

validateVisibleColumns
Validates and possibly reloads the browser columns visible in the receiver by invoking the delegate method
panelShouldShowFilename (page 1244).

public void validateVisibleColumns()

Discussion
You might use this method if you want the browser to show only files with certain extensions based on the
selection made in an accessory-view pop-up list. When the user changes the selection, you would invoke
this method to revalidate the visible columns.

Delegate Methods

panelCompareFilenames
Controls the ordering of files presented by the NSSavePanel sender.

public abstract int panelCompareFilenames(Object sender, String fileName1, String
fileName2, boolean flag)

Discussion
This method should return:

 ■ OrderedAscending if fileName1 should precede fileName2

 ■ OrderedSame if the two names are equivalent

 ■ OrderedDescending if fileName2 should precede fileName1

The flag argument, if true, indicates that the ordering is to be case-sensitive.

Delegate Methods 1243
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Don’t reorder filenames in the Save panel without good reason, because it may confuse the user to have
files in one Save panel or Open panel ordered differently than those in other such panels or in the Finder.
The default behavior of Save and Open panels is to order files as they appear in the Finder. Note also that
by implementing this method you will reduce the operating performance of the panel.

panelDirectoryDidChange
Sent when the user has changed the selected directory in the NSSavePanel sender.

public abstract void panelDirectoryDidChange(Object sender, String path)

Discussion
path contains the newly selected directory.

Availability
Available in Mac OS X v10.3 and later.

panelIsValidFilename
public abstract boolean panelIsValidFilename(Object sender, String filename)

Discussion
The NSSavePanel sender sends this message just before the end of a modal session for each filename
displayed or selected (including filenames in multiple selections). The delegate determines whether it wants
the file identified by filename; it returns true if the filename is valid, or false if the NSSavePanel should
stay in its modal loop and wait for the user to type in or select a different filename or names. If the delegate
refuses a filename in a multiple selection, none of the filenames in the selection is accepted.

panelSelectionDidChange
Sent when the user has changed the selection in the NSSavePanel sender.

public abstract void panelSelectionDidChange(Object sender)

Availability
Available in Mac OS X v10.3 and later.

panelShouldShowFilename
Gives the delegate the opportunity to filter out items that it doesn’t want the user to see or choose.

public abstract boolean panelShouldShowFilename(Object sender, String filename)

Discussion
The NSSavePanel sender sends this message to the panel’s delegate for each file or directory (filename) it
is about to load in the browser. The delegate returns true if filename should be displayed, and false if
the NSSavePanel should ignore the file or directory.

1244 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

panelUserEnteredFilename
Sent when the user confirms a filename choice by hitting OK or Return in the NSSavePanel sender.

public abstract String panelUserEnteredFilename(Object sender, String filename,
boolean okFlag)

Discussion
You can either leave the filename alone, return a new filename, or return null to cancel the save (and leave
the Save panel as is). This method is sent before any required extension is appended to the filename and
before the Save panel asks the user whether to replace an existing file.

Note that in the future, this method may be called multiple times in the sessions as the user types. In those
cases, okFlag will be false until the user confirms the choice, in which case okFlag will become true. If
the delegate does extensive validation or puts up alerts, it should do so only when okFlag is true.

See Also
panelIsValidFilename (page 1244)

panelWillExpand
Sent when the NSSavePanel sender is about to expand or collapse because the user clicked the disclosure
triangle that displays or hides the file browser.

public abstract void panelWillExpand(Object sender, boolean expanding)

Delegate Methods 1245
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

1246 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 92

NSSavePanel

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide The Drawing Environment

Overview

An NSScreen object describes the attributes of a computer’s monitor, or screen. An application may use an
NSScreen object to retrieve information about a screen and use this information to decide what to display
upon that screen. For example, an application may use the deepestScreen (page 1248) method to find out
which of the available screens can best represent color and then may choose to display all of its windows
on that screen.

The application object should be created before you use the methods in this class, so that the application
object can make the necessary connection to the window system. You can make sure the application object
exists by invoking NSApplication’s sharedApplication (page 105) method, which creates it if necessary. If
you created your application with Xcode, the application object is automatically created for you during
initialization.

Note: NSScreen is for getting information about the available displays only. If you need additional information
or want to change the attributes relating to a display, you must use Quartz Services. For more information,
see Quartz Display Services Reference.

Tasks

Constructors

NSScreen (page 1248)
Throws an exception.

Getting NSScreens

mainScreen (page 1248)
Returns an NSScreen object representing the main screen.

deepestScreen (page 1248)
Returns an NSScreen object representing the screen that can best represent color.

Overview 1247
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 93

NSScreen

screens (page 1249)
Returns an array of NSScreen objects representing all of the screens available on the system.

Reading Screen Information

depth (page 1249)
Returns the receiver’s current depth, including whether it can display color.

frame (page 1250)
Returns the dimensions and location of the receiver in an NSRect.

supportedWindowDepths (page 1250)
Returns a zero-terminated array of the window depths supported by the receiver.

deviceDescription (page 1249)
Returns the device dictionary for the screen.

userSpaceScaleFactor (page 1250)
Returns the scaling factor from user space to device space on the screen represented by the receiver.

visibleFrame (page 1250)
Returns the current location and dimensions of the visible screen.

Constructors

NSScreen
Throws an exception.

public NSScreen()

Discussion
Use mainScreen (page 1248) instead.

Static Methods

deepestScreen
Returns an NSScreen object representing the screen that can best represent color.

public static NSScreen deepestScreen()

Discussion
This method always returns an object, even if there is only one screen and it is not a color screen.

mainScreen
Returns an NSScreen object representing the main screen.

1248 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 93

NSScreen

public static NSScreen mainScreen()

Discussion
The main screen is the screen with the key window. To obtain the menu bar screen use
NSScreen.screens().objectAtIndex(0) (after checking that the screens array is not empty).

screens
Returns an array of NSScreen objects representing all of the screens available on the system.

public static NSArray screens()

Discussion
Throws a WindowServerCommunicationException if the screen’s information can’t be obtained from the
window system. When the display configuration is changed,
ApplicationDidChangeScreenParametersNotification (page 140) is sent by the default notification
center.

The first screen in the screens array is always the “zero” screen. To obtain the menu bar screen use
NSScreen.screens().objectAtIndex(0) (after checking that the screens array is not empty).

The array should not be cached, as screens can be dynamically reconfigured, and a display can be added or
removed.

Instance Methods

depth
Returns the receiver’s current depth, including whether it can display color.

public int depth()

Discussion
The return value is not directly usable; you must pass it to one of the static methods of the NSGraphics class
to obtain concrete values.

See Also
bitsPerPixelFromDepth (page 717) (NSGraphics)
bitsPerSampleFromDepth (page 717) (NSGraphics)
colorSpaceFromDepth (page 718) (NSGraphics)

deviceDescription
Returns the device dictionary for the screen.

public NSDictionary deviceDescription()

Discussion
See “Constants” (page 1251) for the list of keys you can use to retrieve values from the returned dictionary.

Instance Methods 1249
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 93

NSScreen

frame
Returns the dimensions and location of the receiver in an NSRect.

public NSRect frame()

Discussion
This method returns the full screen rectangle at the current resolution and includes any space currently
occupied by the menu bar and dock.

See Also
visibleFrame (page 1250)

supportedWindowDepths
Returns a zero-terminated array of the window depths supported by the receiver.

public int[] supportedWindowDepths()

userSpaceScaleFactor
Returns the scaling factor from user space to device space on the screen represented by the receiver.

public float userSpaceScaleFactor()

Discussion
This factor is in pixels per point, where a point is always equal to 1/72 of an inch. For example, a scaling factor
of 2.0 indicates the display has a resolution of 144 pixels-per-inch.

Availability
Available in Mac OS X v10.4 and later.

visibleFrame
Returns the current location and dimensions of the visible screen.

public NSRect visibleFrame()

Discussion
The returned rectangle represents the portion of the screen in which it is currently safe to draw your application
content. This rectangle is always based on the current user-interface settings and does not include the area
currently occupied by the dock and menu bar. Because it is based on the current user -interface settings, the
returned rectangle can change between calls and should not be cached.

Note: Even when dock hiding is enabled, the rectangle returned by this method may be smaller than the
full screen. The system uses a small boundary area to determine when it should display the dock.

See Also
frame (page 1250)

1250 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 93

NSScreen

Constants

The following constants are used as keys to retrieve attributes from the display device dictionary.

ValueConstant

An NSNumber containing an integer that indicates the current bit depth of
each color sample in the device (2-bit, 8-bit, and so on).

NSDeviceBitsPerSample

The device’s current color space name. See the NSGraphics Java class
specification or the NSGraphics.h header file for a list of possible values.

NSDeviceColorSpaceName

“YES” (a string), if present, indicating the device is a printer.NSDeviceIsPrinter

“YES” (a string), if present, indicating the device is a screen.NSDeviceIsScreen

An NSValue that contains an NSSize which indicates the device’s current
resolution in dots per inch (dpi).

NSDeviceResolution

An NSValue that contains an NSSize which indicates the device’s current
size in points.

NSDeviceSize

An NSNumber that contains the CGDirectDisplayID for the screen device.
This key is only valid for the device description dictionary for an NSScreen.

@"NSScreenNumber"

Constants 1251
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 93

NSScreen

1252 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 93

NSScreen

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Drawing and Views

Class at a Glance

An NSScroller object is a user control for scrolling a document view within a container view. You normally
don’t need to program with NSScrollers, as Interface Builder allows you to fully configure them with an
NSScrollView.

Principal Attributes

 ■ Scrolling by small and large increments

 ■ Proportional knob showing visible amount of document

Commonly Used Methods

hitPart (page 1258)
Indicates where the user clicked the NSScroller.

floatValue (page 451) (NSControl)
Returns the position of the NSScroller’s knob.

setFloatValueAndKnobProportion (page 1260)
Sets the position and size of the NSScroller’s knob.

Overview

An NSScroller controls scrolling of a document view within an NSScrollView’s clip view (or potentially another
kind of container view). It typically displays a pair of buttons that the user can click to scroll by a small amount
(called a line increment or decrement) and Alt-click to scroll by a large amount (called a page increment or
decrement), plus a slot containing a knob that the user can drag directly to the desired location. The knob

Class at a Glance 1253
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

indicates both the position within the document view and, by varying in size within the slot, the amount
visible relative to the size of the document view. You can configure whether an NSScroller uses scroll buttons,
but it always draws the knob when there’s room for it.

Don’t use an NSScroller when an NSSlider would be better. A slider represents a range of values for something
in the application and lets the user choose a setting. A scroller represents the relative position of the visible
portion of a view and lets the user choose which portion to view.

Tasks

Constructors

NSScroller (page 1256)
Creates an NSScroller with a zero-size frame rectangle.

Determining NSScroller Size

scrollerWidth (page 1256)
Returns the width of “normal-sized” instances.

scrollerWidthForControlSize (page 1256)
Returns the width of the scroller based on controlSize.

setControlSize (page 1259)
Sets the size of the receiver.

controlSize (page 1257)
Returns the size of the receiver.

Laying out an NSScroller

setArrowsPosition (page 1259)
Sets the location of the scroll buttons within the receiver to location, or inhibits their display.

arrowsPosition (page 1256)
Returns the location of the scroll buttons within the receiver, as described under “Constants” (page
1261).

Setting the Knob Position

setFloatValueAndKnobProportion (page 1260)
Sets the position of the knob to aFloat, which is a value from 0.0 (indicating the top or left end) to
1.0 (the bottom or right end).

knobProportion (page 1259)
Returns the portion of the knob slot the knob should fill, as a floating-point value from 0.0 (minimal
size) to 1.0 (fills the slot).

1254 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

Calculating Layout

rectForPart (page 1259)
Returns the rectangle occupied by aPart, which for this method is interpreted literally rather than
as an indicator of scrolling direction.

testPart (page 1260)
Returns the part that would be hit by a mouse-down event at aPoint (expressed in the window’s
coordinate system).

checkSpaceForParts (page 1257)
Checks to see if there is enough room in the receiver to display the knob and buttons.

usableParts (page 1261)
Returns a value indicating which parts of the receiver are displayed and usable.

Drawing the Parts

drawArrow (page 1257)
Draws the scroll button indicated by arrow, which is either IncrementArrow (the down or right
scroll button) or DecrementArrow (up or left).

drawKnob (page 1258)
Draws the knob

drawParts (page 1258)
Caches images for the scroll buttons and knob.

highlight (page 1258)
Highlights or unhighlights the scroll button the user clicked.

Event Handling

hitPart (page 1258)
Returns a part code indicating the manner in which the scrolling should be performed.

trackKnob (page 1260)
Tracks the knob and sends action messages to the receiver’s target.

trackScrollButtons (page 1261)
Tracks the scroll buttons and sends action messages to the receiver’s target.

Setting Control Tint

controlTint (page 1257)
Returns the receiver’s control tint.

setControlTint (page 1260)
Sets the receiver’s control tint.

Tasks 1255
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

Constructors

NSScroller
Creates an NSScroller with a zero-size frame rectangle.

public NSScroller()

Creates an NSScroller with frameRect as its frame rectangle.

public NSScroller(NSRect frameRect)

Static Methods

scrollerWidth
Returns the width of “normal-sized” instances.

public static float scrollerWidth()

Discussion
NSScrollView uses this value to lay out its components. Subclasses that use a different width should override
this method.

scrollerWidthForControlSize
Returns the width of the scroller based on controlSize.

public static float scrollerWidthForControlSize(int controlSize)

Discussion
Valid values for controlSize are described in NSCell’s “Constants” (page 337).

Instance Methods

arrowsPosition
Returns the location of the scroll buttons within the receiver, as described under “Constants” (page 1261).

public int arrowsPosition()

See Also
setArrowsPosition (page 1259)

1256 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

checkSpaceForParts
Checks to see if there is enough room in the receiver to display the knob and buttons.

public void checkSpaceForParts()

Discussion
usableParts (page 1261) returns the state calculated by this method. You should never need to invoke this
method; it’s invoked automatically whenever the NSScroller’s size changes.

controlSize
Returns the size of the receiver.

public int controlSize()

Discussion
Valid return values are described in “Constants” (page 1261).

See Also
setControlSize (page 1259)

controlTint
Returns the receiver’s control tint.

public int controlTint()

Discussion
Valid return values are described in “Constants” (page 1261).

See Also
setControlTint (page 1260)

drawArrow
Draws the scroll button indicated by arrow, which is either IncrementArrow (the down or right scroll
button) or DecrementArrow (up or left).

public void drawArrow(int arrow, boolean flag)

Discussion
If flag is true, the button is drawn highlighted; otherwise it’s drawn normally. You should never need to
invoke this method directly, but may wish to override it to customize the appearance of scroll buttons.

See Also
drawKnob (page 1258)
rectForPart (page 1259)

Instance Methods 1257
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

drawKnob
Draws the knob

public void drawKnob()

Discussion
. You should never need to invoke this method directly, but may wish to override it to customize the
appearance of the knob.

See Also
drawArrow (page 1257)
rectForPart (page 1259)

drawParts
Caches images for the scroll buttons and knob.

public void drawParts()

Discussion
It’s invoked only once when the NSScroller is created. You may want to override this method if you alter the
look of the NSScroller, but you should never invoke it directly.

highlight
Highlights or unhighlights the scroll button the user clicked.

public void highlight(boolean flag)

Discussion
The receiver invokes this method while tracking the mouse; you should not invoke it directly. If flag is true,
the appropriate part is drawn highlighted; otherwise it’s drawn normally.

See Also
drawArrow (page 1257)
rectForPart (page 1259)

hitPart
Returns a part code indicating the manner in which the scrolling should be performed.

public int hitPart()

Discussion
See “Constants” (page 1261) for a list of part codes.

This method is typically invoked by an NSScrollView to determine how to scroll its document view when it
receives an action message from the NSScroller.

1258 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

knobProportion
Returns the portion of the knob slot the knob should fill, as a floating-point value from 0.0 (minimal size) to
1.0 (fills the slot).

public float knobProportion()

rectForPart
Returns the rectangle occupied by aPart, which for this method is interpreted literally rather than as an
indicator of scrolling direction.

public NSRect rectForPart(int aPart)

Discussion
See “Constants” (page 1261) for a list of possible values for aPart.

Note the interpretations of DecrementPage and IncrementPage. The actual part of an NSScroller that
causes page-by-page scrolling varies, so as a convenience these part codes refer to useful parts different
from the scroll buttons.

Returns NSRect.ZeroRect if the part requested isn’t present on the receiver.

See Also
hitPart (page 1258)
testPart (page 1260)
usableParts (page 1261)

setArrowsPosition
Sets the location of the scroll buttons within the receiver to location, or inhibits their display.

public void setArrowsPosition(int location)

Discussion
See “Constants” (page 1261) for a list of possible values for location.

See Also
arrowsPosition (page 1256)

setControlSize
Sets the size of the receiver.

public void setControlSize(int controlSize)

Discussion
Valid values for controlSize are described in “Constants” (page 1261).

See Also
controlSize (page 1257)

Instance Methods 1259
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

setControlTint
Sets the receiver’s control tint.

public void setControlTint(int controlTint)

Discussion
Valid values for controlTint are described in “Constants” (page 1261).

See Also
controlTint (page 1257)

setFloatValueAndKnobProportion
Sets the position of the knob to aFloat, which is a value from 0.0 (indicating the top or left end) to 1.0 (the
bottom or right end).

public void setFloatValueAndKnobProportion(float aFloat, float knobProp)

Discussion
Also sets the proportion of the knob slot filled by the knob to knobProp, also a value from 0.0 (minimal size)
to 1.0 (fills the slot).

See Also
floatValue (page 451) (NSControl)
knobProportion (page 1259)

testPart
Returns the part that would be hit by a mouse-down event at aPoint (expressed in the window’s coordinate
system).

public int testPart(NSPoint aPoint)

Discussion
See “Constants” (page 1261) for a list of possible return values.

Note the interpretations of DecrementPage and IncrementPage. The actual part of an NSScroller that
causes page-by-page scrolling varies, so as a convenience these part codes refer to useful parts different
from the scroll buttons.

See Also
hitPart (page 1258)
rectForPart (page 1259)

trackKnob
Tracks the knob and sends action messages to the receiver’s target.

public void trackKnob(NSEvent theEvent)

1260 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

Discussion
This method is invoked automatically when the receiver receives theEvent mouse-down event in the knob;
you should not invoke it directly.

trackScrollButtons
Tracks the scroll buttons and sends action messages to the receiver’s target.

public void trackScrollButtons(NSEvent theEvent)

Discussion
This method is invoked automatically when the receiver receives theEvent mouse-down event in a scroll
button; you should not invoke this method directly.

usableParts
Returns a value indicating which parts of the receiver are displayed and usable.

public int usableParts()

Discussion
See “Constants” (page 1261) for a list of possible values.

See Also
checkSpaceForParts (page 1257)
arrowsPosition (page 1256)

Constants

These constants specify the different parts of the scroller:

DescriptionConstant

Directly to the NSScroller’s value, as given by floatValue (page 451).Knob

Directly to the NSScroller’s value, as given by floatValue (page 451).KnobSlot

Up or left by a small amount.DecrementLine

Up or left by a large amount.DecrementPage

Down or right by a small amount.IncrementLine

Down or right by a large amount.IncrementPage

Don’t scroll at all.NoPart

These constants describe the two scroller buttons and are used by drawArrow (page 1257):

Constants 1261
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

DescriptionConstant

The down or right scroll button.IncrementArrow

The up or left scroll button.DecrementArrow

These constants specify where the scroller’s buttons appear and are used by arrowsPosition (page 1256)
and setArrowsPosition (page 1259):

DescriptionConstant

Buttons at bottom or right. This constant has been deprecated.ArrowsMaxEnd

Buttons at top or left. This has been deprecated.ArrowsMinEnd

Contains the information from the AppleScrollBarVariant default value.ArrowsDefaultSetting

No buttons.ArrowsNone

These constants specify which parts of the scroller are visible:

DescriptionConstant

Scroller has neither a knob nor scroll buttons, only the knob slot.NoParts

Scroller has only scroll buttons, no knob.OnlyArrows

Scroller has at least a knob, possibly also scroll buttons.AllParts

These constants specify control tints:

DescriptionConstant

The current default tint setting.DefaultControlTint

Clear control tint.ClearControlTint

Aqua control tintBlueControlTint

Graphite control tintGraphiteControlTint

These constants specify control size:

DescriptionConstant

The control is sized as regular.RegularControlSize

The control has a smaller size. This constant is for controls that cannot be resized
in one direction, such as push buttons, radio buttons, checkboxes, sliders, scroll
bars, pop-up buttons, tabs, and progress indicators. You should use a small system
font when using with a small control.

SmallControlSize

1262 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

DescriptionConstant

The control has a smaller size than SmallControlSize.MiniControlSize

Constants 1263
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

1264 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 94

NSScroller

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Drawing and Views

Class at a Glance

An NSScrollView allows the user to scroll a document view that’s too large to display in its entirety. In
addition to the document view, it displays horizontal and vertical scrollers and rulers (depending on which
it’s configured to have).

Principal Attributes

 ■ Configurable scrollers

 ■ Configurable rulers

 ■ Small and large increment scrolling

 ■ Dynamic (continuous) scrolling

 ■ Display of a special cursor over its document view

Interface Builder
Drag a scroll view to a window.

Commonly Used Methods

setDocumentView (page 1279)
Sets the scroll view’s document view.

setLineScroll (page 1282)
Sets the amount by which the document view moves during scrolling.

setRulersVisible (page 1283)
Displays or hides rulers.

Class at a Glance 1265
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

Overview

The NSScrollView class is the central coordinator for the Application Kit’s scrolling machinery, composed of
this class, NSClipView, and NSScroller. An NSScrollView displays a portion of a document view that’s too large
to be displayed whole and provides NSScroller scroll bars that allow the user to move the document view
within the NSScrollView. Note that, when using an NSClipView within an NSScrollView (the usual configuration),
you should issue messages that control background drawing state to the NSScrollView, rather than messaging
the NSClipView directly.

Tasks

Constructors

NSScrollView (page 1270)
Creates an NSScrollView with a zero-sized frame rectangle.

Calculating Layout

contentSizeForFrameSize (page 1270)
Returns the size of a content view for an NSScrollView whose frame size is frameSize.

frameSizeForContentSize (page 1270)
Returns the frame size of an NSScrollView that contains a content view whose size is contentSize.

Determining Component Sizes

contentSize (page 1272)
Returns the size of the receiver’s content view.

documentVisibleRect (page 1273)
Returns the portion of the document view, in its own coordinate system, visible through the receiver’s
content view.

Managing Graphics Attributes

setBackgroundColor (page 1278)
Sets the color of the content view’s background to aColor.

backgroundColor (page 1272)
Returns the content view’s background color.

drawsBackground (page 1273)
Returns true if the receiver cell fills the background with its background color; otherwise, false.

setDrawsBackground (page 1279)
Sets whether the receiver draws its background.

1266 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setBorderType (page 1278)
Sets the border type of the receiver to borderType.

borderType (page 1272)
Returns a value that represents the type of border surrounding the receiver; see the description of
setBorderType (page 1278) for a list of possible values.

setDocumentCursor (page 1279)
Sets the cursor used when the cursor is over the content view to aCursor, by sending
setDocumentCursor (page 1279) to the content view.

documentCursor (page 1272)
Returns the content view’s document cursor.

Managing the Scrolled Views

setContentView (page 1278)
Sets the receiver’s content view, the view that clips the document view, to aView.

contentView (page 1272)
Returns the receiver’s content view, the view that clips the document view.

setDocumentView (page 1279)
Sets the receiver’s document view to aView.

documentView (page 1273)
Returns the view the receiver scrolls within its content view.

Managing Scrollers

setHorizontalScroller (page 1282)
Sets the receiver’s horizontal scroller to aScroller, establishing the appropriate target-action
relationships between them.

horizontalScroller (page 1275)
Returns the receiver’s horizontal scroller, regardless of whether the receiver is currently displaying it,
or null if the receiver has none.

setHasHorizontalScroller (page 1280)
Determines whether the receiver keeps a horizontal scroller.

hasHorizontalScroller (page 1273)
Returns true if the receiver displays a horizontal scroller, false if it doesn’t.

setVerticalScroller (page 1285)
Sets the receiver’s vertical scroller to aScroller, establishing the appropriate target-action
relationships between them.

verticalScroller (page 1286)
Returns the receiver’s vertical scroller, regardless of whether the receiver is currently displaying it, or
null if the receiver has none.

setHasVerticalScroller (page 1280)
Determines whether the receiver keeps a vertical scroller.

hasVerticalScroller (page 1274)
Returns true if the receiver displays a vertical scroller, false if it doesn’t.

Tasks 1267
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setAutohidesScrollers (page 1277)
Determines whether the receiver automatically hides its scroll bars when they are not needed.

autohidesScrollers (page 1271)
Returns true when autohiding is set for scroll bars in the receiver.

Managing Rulers

setRulerViewClass (page 1271)
Sets the default class to be used for ruler objects in NSScrollViews to aClass.

rulerViewClass (page 1271)
Returns the default class to be used for ruler objects in NSScrollViews.

setHasHorizontalRuler (page 1279)
Determines whether the receiver keeps a horizontal ruler object.

hasHorizontalRuler (page 1273)
Returns true if the receiver maintains a horizontal ruler view, false if it doesn’t.

setHorizontalRulerView (page 1281)
Sets the receiver’s horizontal ruler view to aRulerView.

horizontalRulerView (page 1275)
Returns the receiver’s horizontal ruler view, regardless of whether the receiver is currently displaying
it, or null if the receiver has none.

setHasVerticalRuler (page 1280)
Determines whether the receiver keeps a vertical ruler object.

hasVerticalRuler (page 1274)
Returns true if the receiver maintains a vertical ruler view, false if it doesn’t.

setVerticalRulerView (page 1284)
Sets the receiver’s vertical ruler view to aRulerView.

verticalRulerView (page 1286)
Returns the receiver’s vertical ruler view, regardless of whether the receiver is currently displaying it,
or null if the receiver has none.

setRulersVisible (page 1283)
Determines whether the receiver displays its rulers.

rulersVisible (page 1277)
Returns true if the receiver was set to show rulers using setRulersVisible (page 1283) (whether
or not it has rulers at all), false if it was set to hide them.

Setting Scrolling Behavior

setLineScroll (page 1282)
Sets the horizontal and vertical line scroll amounts to aFloat.

lineScroll (page 1275)
Returns the vertical line scroll amount: the amount by which the receiver scrolls itself vertically when
scrolling line by line, expressed in the content view’s coordinate system.

1268 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setHorizontalLineScroll (page 1281)
Sets the amount by which the receiver scrolls itself horizontally when scrolling line by line to aFloat,
expressed in the content view’s coordinate system.

horizontalLineScroll (page 1274)
Returns the amount by which the receiver scrolls itself horizontally when scrolling line by line, expressed
in the content view’s coordinate system.

setVerticalLineScroll (page 1283)
Sets the amount by which the receiver scrolls itself vertically when scrolling line by line to aFloat,
expressed in the content view’s coordinate system.

verticalLineScroll (page 1285)
Returns the amount by which the receiver scrolls itself vertically when scrolling line by line, expressed
in the content view’s coordinate system.

setPageScroll (page 1282)
Sets the horizontal and vertical page scroll amounts to aFloat.

pageScroll (page 1276)
Returns the vertical page scroll amount: the amount of the document view kept visible when scrolling
vertically page by page, expressed in the content view’s coordinate system.

setHorizontalPageScroll (page 1281)
Sets the amount of the document view kept visible when scrolling horizontally page by page to
aFloat, expressed in the content view’s coordinate system.

horizontalPageScroll (page 1275)
Returns the amount of the document view kept visible when scrolling horizontally page by page,
expressed in the content view’s coordinate system.

setVerticalPageScroll (page 1284)
Sets the amount of the document view kept visible when scrolling vertically page by page to aFloat,
expressed in the content view’s coordinate system.

verticalPageScroll (page 1285)
Returns the amount of the document view kept visible when scrolling vertically page by page,
expressed in the content view’s coordinate system.

setScrollsDynamically (page 1283)
Determines whether the receiver redraws its document view while scrolling continuously.

scrollsDynamically (page 1277)
Returns true if the receiver redraws its document view while tracking the knob, false if it redraws
only when the scroller knob is released.

scrollWheel (page 1277)
Scrolls the receiver up or down, in response to the user moving the mouse’s scroll wheel specified
by theEvent.

Updating Display After Scrolling

reflectScrolledClipView (page 1276)

Tasks 1269
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

Arranging Components

tile (page 1285)
Lays out the components of the receiver: the content view, the scrollers, and the ruler views.

Constructors

NSScrollView
Creates an NSScrollView with a zero-sized frame rectangle.

public NSScrollView()

Creates an NSScrollView with frameRect as its frame rectangle.

public NSScrollView(NSRect frameRect)

Static Methods

contentSizeForFrameSize
Returns the size of a content view for an NSScrollView whose frame size is frameSize.

public static NSSize contentSizeForFrameSize(NSSize frameSize, boolean hFlag,
boolean vFlag, int borderType)

Discussion
hFlag and vFlag indicate whether a horizontal or vertical scroller, respectively, is present. If either flag is
true then the content size is reduced in the appropriate dimension by the width of an NSScroller. The
borderType argument indicates the appearance of the NSScrollView’s edge, which also affects the content
size; see the description of setBorderType (page 1278) for a list of possible values.

For an existing NSScrollView, you can simply use the contentSize (page 1272) method.

See Also
frameSizeForContentSize (page 1270)
scrollerWidth (page 1256) (NSScroller)

frameSizeForContentSize
Returns the frame size of an NSScrollView that contains a content view whose size is contentSize.

public static NSSize frameSizeForContentSize(NSSize contentSize, boolean hFlag,
boolean vFlag, int borderType)

1270 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

Discussion
The hFlag and vFlag arguments indicate whether a horizontal or vertical scroller, respectively, is present.
If either flag is true then the frame size is increased in the appropriate dimension by the width of an NSScroller.
borderType indicates the appearance of the NSScrollView’s edge, which also affects the frame size; see the
description of setBorderType (page 1278) for a list of possible values.

For an existing NSScrollView, you can simply use the frame method and extract its size.

See Also
contentSizeForFrameSize (page 1270)
scrollerWidth (page 1256) (NSScroller)

rulerViewClass
Returns the default class to be used for ruler objects in NSScrollViews.

public static Class rulerViewClass()

Discussion
This class is normally NSRulerView.

See Also
setRulerViewClass (page 1271)

setRulerViewClass
Sets the default class to be used for ruler objects in NSScrollViews to aClass.

public static void setRulerViewClass(Class aClass)

Discussion
This class is normally NSRulerView, but you can use this method to set it to a custom subclass of NSRulerView.

This method simply sets a global variable private to NSScrollView. Subclasses of NSScrollView should override
both this method and rulerViewClass (page 1271) to store their ruler view classes in private variables.

See Also
rulerViewClass (page 1271)

Instance Methods

autohidesScrollers
Returns true when autohiding is set for scroll bars in the receiver.

public boolean autohidesScrollers()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1271
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

See Also
setAutohidesScrollers (page 1277)

backgroundColor
Returns the content view’s background color.

public NSColor backgroundColor()

See Also
setBackgroundColor (page 1278)
backgroundColor (page 345) (NSClipView)

borderType
Returns a value that represents the type of border surrounding the receiver; see the description of
setBorderType (page 1278) for a list of possible values.

public int borderType()

contentSize
Returns the size of the receiver’s content view.

public NSSize contentSize()

See Also
contentSizeForFrameSize (page 1270)

contentView
Returns the receiver’s content view, the view that clips the document view.

public NSClipView contentView()

See Also
setContentView (page 1278)
documentView (page 1273)

documentCursor
Returns the content view’s document cursor.

public NSCursor documentCursor()

See Also
setDocumentCursor (page 1279)
documentCursor (page 345) (NSClipView)

1272 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

documentView
Returns the view the receiver scrolls within its content view.

public NSView documentView()

See Also
setDocumentView (page 1279)
documentView (page 346) (NSClipView)

documentVisibleRect
Returns the portion of the document view, in its own coordinate system, visible through the receiver’s content
view.

public NSRect documentVisibleRect()

See Also
documentVisibleRect (page 346) (NSClipView)
visibleRect (page 1786) (NSView)

drawsBackground
Returns true if the receiver cell fills the background with its background color; otherwise, false.

public boolean drawsBackground()

hasHorizontalRuler
Returns true if the receiver maintains a horizontal ruler view, false if it doesn’t.

public boolean hasHorizontalRuler()

Discussion
Display of rulers is controlled using the setRulersVisible (page 1283) method.

See Also
horizontalRulerView (page 1275)
setHasHorizontalRuler (page 1279)
hasVerticalRuler (page 1274)
rulerViewClass (page 1271)

hasHorizontalScroller
Returns true if the receiver displays a horizontal scroller, false if it doesn’t.

public boolean hasHorizontalScroller()

See Also
horizontalScroller (page 1275)

Instance Methods 1273
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setHasHorizontalScroller (page 1280)
hasVerticalScroller (page 1274)

hasVerticalRuler
Returns true if the receiver maintains a vertical ruler view, false if it doesn’t.

public boolean hasVerticalRuler()

Discussion
Display of rulers is controlled using the setRulersVisible (page 1283) method.

See Also
verticalRulerView (page 1286)
setHasVerticalRuler (page 1280)
hasHorizontalRuler (page 1273)
rulerViewClass (page 1271)

hasVerticalScroller
Returns true if the receiver displays a vertical scroller, false if it doesn’t.

public boolean hasVerticalScroller()

See Also
verticalScroller (page 1286)
setHasVerticalScroller (page 1280)
hasHorizontalScroller (page 1273)

horizontalLineScroll
Returns the amount by which the receiver scrolls itself horizontally when scrolling line by line, expressed in
the content view’s coordinate system.

public float horizontalLineScroll()

Discussion
This amount is used when the user clicks the scroll arrows on the horizontal scroll bar without holding down
a modifier key.

See Also
setHorizontalLineScroll (page 1281)
verticalLineScroll (page 1285)
setLineScroll (page 1282)
horizontalPageScroll (page 1275)

1274 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

horizontalPageScroll
Returns the amount of the document view kept visible when scrolling horizontally page by page, expressed
in the content view’s coordinate system.

public float horizontalPageScroll()

Discussion
This amount is used when the user clicks the scroll arrows on the horizontal scroll bar while holding down
the Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page.

See Also
setHorizontalPageScroll (page 1281)
verticalPageScroll (page 1285)
setPageScroll (page 1282)
horizontalLineScroll (page 1274)

horizontalRulerView
Returns the receiver’s horizontal ruler view, regardless of whether the receiver is currently displaying it, or
null if the receiver has none.

public NSRulerView horizontalRulerView()

Discussion
If the receiver is set to display a horizontal ruler view and doesn’t yet have one, this method creates an
instance of the ruler view class set using the class method setRulerViewClass (page 1271). Display of rulers
is controlled using the setRulersVisible (page 1283) method.

See Also
hasHorizontalRuler (page 1273)
verticalRulerView (page 1286)

horizontalScroller
Returns the receiver’s horizontal scroller, regardless of whether the receiver is currently displaying it, or null
if the receiver has none.

public NSScroller horizontalScroller()

lineScroll
Returns the vertical line scroll amount: the amount by which the receiver scrolls itself vertically when scrolling
line by line, expressed in the content view’s coordinate system.

public float lineScroll()

Instance Methods 1275
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar without holding down a
modifier key. As part of its implementation, this method calls verticalLineScroll (page 1285).

Note that a scroll view can have two different line scroll amounts: verticalLineScroll (page 1285) and
horizontalLineScroll (page 1274). Use this method only if you can be sure they’re both the same; for
example, you always use setLineScroll (page 1282), which sets both amounts to the same value.

See Also
setLineScroll (page 1282)
verticalPageScroll (page 1285)
horizontalPageScroll (page 1275)

pageScroll
Returns the vertical page scroll amount: the amount of the document view kept visible when scrolling
vertically page by page, expressed in the content view’s coordinate system.

public float pageScroll()

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar while holding down the
Option key. As part of its implementation, this method calls verticalPageScroll (page 1285).

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page.

Note that a scroll view can have two different page scroll amounts: verticalPageScroll (page 1285) and
horizontalPageScroll (page 1275). Use this method only if you can be sure they’re both the same; for
example, you always use setPageScroll (page 1282), which sets both amounts to the same value.

See Also
setPageScroll (page 1282)
verticalLineScroll (page 1285)
horizontalLineScroll (page 1274)

reflectScrolledClipView
public void reflectScrolledClipView(NSClipView aClipView)

Discussion
If aClipView is the receiver’s content view, adjusts the receiver’s scrollers to reflect the size and positioning
of its document view. Does nothing if aClipView is any other view object (in particular, if it’s an NSClipView
that isn’t the content view).

This method is invoked automatically during scrolling and when an NSClipView’s relationship to its document
view changes; you should rarely need to invoke it yourself, but may wish to override it for custom updating
or other behavior. If you override this method, be sure to call the superclass implementation. If you do not,
other controls (such as the current scrollers) may not be updated properly.

1276 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

See Also
contentView (page 1272)
documentView (page 1273)

rulersVisible
Returns true if the receiver was set to show rulers using setRulersVisible (page 1283) (whether or not it
has rulers at all), false if it was set to hide them.

public boolean rulersVisible()

See Also
hasHorizontalRuler (page 1273)
hasVerticalRuler (page 1274)

scrollsDynamically
Returns true if the receiver redraws its document view while tracking the knob, false if it redraws only
when the scroller knob is released.

public boolean scrollsDynamically()

Discussion
NSScrollView scrolls dynamically by default.

See Also
setScrollsDynamically (page 1283)

scrollWheel
Scrolls the receiver up or down, in response to the user moving the mouse’s scroll wheel specified by
theEvent.

public void scrollWheel(NSEvent theEvent)

setAutohidesScrollers
Determines whether the receiver automatically hides its scroll bars when they are not needed.

public void setAutohidesScrollers(boolean flag)

Discussion
The horizontal and vertical scroll bars are hidden independently of each other. When autohiding is on and
the content of the receiver doesn't extend beyond the size of the clip view on a given axis, the scroller on
that axis is removed to leave more room for the content.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1277
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

See Also
autohidesScrollers (page 1271)

setBackgroundColor
Sets the color of the content view’s background to aColor.

public void setBackgroundColor(NSColor aColor)

Discussion
This color is used to paint areas inside the content view that aren’t covered by the document view.

See Also
backgroundColor (page 1272)
setBackgroundColor (page 347) (NSClipView)

setBorderType
Sets the border type of the receiver to borderType.

public void setBorderType(int borderType)

Discussion
borderType may be one of:

NSView.NoBorder

NSView.LineBorder

NSView.BezelBorder

NSView.GrooveBorder

See Also
borderType (page 1272)

setContentView
Sets the receiver’s content view, the view that clips the document view, to aView.

public void setContentView(NSClipView aView)

Discussion
If aView has a document view, this method also sets the receiver’s document view to be the document view
of aView. The original content view retains its document view.

See Also
contentView (page 1272)
setDocumentView (page 1279)

1278 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setDocumentCursor
Sets the cursor used when the cursor is over the content view to aCursor, by sending
setDocumentCursor (page 1279) to the content view.

public void setDocumentCursor(NSCursor aCursor)

See Also
documentCursor (page 1272)

setDocumentView
Sets the receiver’s document view to aView.

public void setDocumentView(NSView aView)

See Also
documentView (page 1273)
setDocumentView (page 347) (NSClipView)

setDrawsBackground
Sets whether the receiver draws its background.

public void setDrawsBackground(boolean flag)

Discussion
If flag is false, copy-on-scroll is automatically disabled.

If your NSScrollView encloses an NSClipView sending a setDrawsBackground: message with a parameter
of false to the NSScrollView has the added effect of sending the NSClipView a setCopiesOnScroll:message
with a parameter of false. The side effect of sending the setDrawsBackground: message directly to the
NSClipView instead would be the appearance of “trails” (vestiges of previous drawing) in the document view
as it is scrolled.

See Also
drawsBackground (page 1273)
copiesOnScroll (page 345) (NSClipView)
setDrawsBackground (page 348) (NSClipView)

setHasHorizontalRuler
Determines whether the receiver keeps a horizontal ruler object.

public void setHasHorizontalRuler(boolean flag)

Discussion
If flag is true, the receiver allocates a horizontal ruler the first time it’s needed. Display of rulers is handled
independently with the setRulersVisible (page 1283) method.

See Also
hasHorizontalRuler (page 1273)

Instance Methods 1279
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

horizontalRulerView (page 1275)
setHasVerticalRuler (page 1280)

setHasHorizontalScroller
Determines whether the receiver keeps a horizontal scroller.

public void setHasHorizontalScroller(boolean flag)

Discussion
If flag is true, the receiver allocates and displays a horizontal scroller as needed. An NSScrollView by default
has neither a horizontal nor a vertical scroller.

See Also
hasHorizontalScroller (page 1273)
horizontalScroller (page 1275)
setHasVerticalScroller (page 1280)

setHasVerticalRuler
Determines whether the receiver keeps a vertical ruler object.

public void setHasVerticalRuler(boolean flag)

Discussion
If flag is true, the receiver allocates a vertical ruler the first time it’s needed. Display of rulers is handled
independently with the setRulersVisible (page 1283) method.

See Also
hasVerticalRuler (page 1274)
verticalRulerView (page 1286)
setHasHorizontalRuler (page 1279)
setRulersVisible (page 1283)

setHasVerticalScroller
Determines whether the receiver keeps a vertical scroller.

public void setHasVerticalScroller(boolean flag)

Discussion
If flag is true, the receiver allocates and displays a vertical scroller as needed. An NSScrollView by default
has neither a vertical nor a horizontal scroller.

See Also
hasVerticalScroller (page 1274)
verticalScroller (page 1286)
setHasHorizontalScroller (page 1280)

1280 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setHorizontalLineScroll
Sets the amount by which the receiver scrolls itself horizontally when scrolling line by line to aFloat,
expressed in the content view’s coordinate system.

public void setHorizontalLineScroll(float aFloat)

Discussion
This amount is the amount used when the user clicks the scroll arrows on the horizontal scroll bar without
holding down a modifier key. When displaying text in an NSScrollView, for example, you might set this
amount to the height of a single line of text in the default font.

See Also
lineScroll (page 1275)
setPageScroll (page 1282)

setHorizontalPageScroll
Sets the amount of the document view kept visible when scrolling horizontally page by page to aFloat,
expressed in the content view’s coordinate system.

public void setHorizontalPageScroll(float aFloat)

Discussion
This amount is used when the user clicks the scroll arrows on the horizontal scroll bar while holding down
the Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page. Thus, setting the page scroll amount to 0.0 implies that the entire visible portion
of the document view is replaced when a page scroll occurs.

See Also
pageScroll (page 1276)
setLineScroll (page 1282)

setHorizontalRulerView
Sets the receiver’s horizontal ruler view to aRulerView.

public void setHorizontalRulerView(NSRulerView aRulerView)

Discussion
You can use this method to override the default ruler class set using the class method
setRulerViewClass (page 1271). Display of rulers is controlled using the setRulersVisible (page 1283)
method.

See Also
horizontalRulerView (page 1275)
setHasHorizontalRuler (page 1279)
setVerticalRulerView (page 1284)

Instance Methods 1281
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setRulersVisible (page 1283)

setHorizontalScroller
Sets the receiver’s horizontal scroller to aScroller, establishing the appropriate target-action relationships
between them.

public void setHorizontalScroller(NSScroller aScroller)

Discussion
To make sure the scroller is visible, invoke the setHasHorizontalScroller (page 1280) method with an
argument of true.

See Also
horizontalScroller (page 1275)
setVerticalScroller (page 1285)

setLineScroll
Sets the horizontal and vertical line scroll amounts to aFloat.

public void setLineScroll(float aFloat)

Discussion
The line scroll is the amount by which the receiver scrolls itself when scrolling line by line, expressed in the
content view’s coordinate system. It’s used when the user clicks the scroll arrows without holding down a
modifier key. When displaying text in an NSScrollView, for example, you might set this value to the height
of a single line of text in the default font.

As part of its implementation, this method calls setVerticalLineScroll (page 1283) and
setHorizontalLineScroll (page 1281).

See Also
verticalLineScroll (page 1285)
horizontalLineScroll (page 1274)

setPageScroll
Sets the horizontal and vertical page scroll amounts to aFloat.

public void setPageScroll(float aFloat)

Discussion
The page scroll is the amount of the document view kept visible when scrolling page by page to aFloat,
expressed in the content view’s coordinate system. It’s used when the user clicks the scroll arrows while
holding down the Option key.

1282 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page. Thus, setting the page scroll amount to 0.0 implies that the entire visible portion
of the document view is replaced when a page scroll occurs.

As part of its implementation, this method calls setVerticalPageScroll (page 1284) and
setHorizontalPageScroll (page 1281).

See Also
verticalPageScroll (page 1285)
verticalLineScroll (page 1285)

setRulersVisible
Determines whether the receiver displays its rulers.

public void setRulersVisible(boolean flag)

Discussion
If flag is true, the receiver displays its rulers (creating them if needed). If flag is false, the receiver doesn’t
display its rulers.

See Also
rulersVisible (page 1277)
hasHorizontalRuler (page 1273)
hasVerticalRuler (page 1274)

setScrollsDynamically
Determines whether the receiver redraws its document view while scrolling continuously.

public void setScrollsDynamically(boolean flag)

Discussion
If flag is true it does; if flag is false it redraws only when the scroller knob is released. NSScrollView
scrolls dynamically by default.

See Also
scrollsDynamically (page 1277)

setVerticalLineScroll
Sets the amount by which the receiver scrolls itself vertically when scrolling line by line to aFloat, expressed
in the content view’s coordinate system.

public void setVerticalLineScroll(float aFloat)

Instance Methods 1283
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

Discussion
This value is the amount used when the user clicks the scroll arrows on the vertical scroll bar without holding
down a modifier key. When displaying text in an NSScrollView, for example, you might set this value to the
height of a single line of text in the default font.

See Also
verticalLineScroll (page 1285)
setHorizontalLineScroll (page 1281)
lineScroll (page 1275)
setVerticalPageScroll (page 1284)

setVerticalPageScroll
Sets the amount of the document view kept visible when scrolling vertically page by page to aFloat,
expressed in the content view’s coordinate system.

public void setVerticalPageScroll(float aFloat)

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar while holding down the
Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page. Thus, setting the page scroll amount to 0.0 implies that the entire visible portion
of the document view is replaced when a page scroll occurs.

See Also
verticalPageScroll (page 1285)
setHorizontalPageScroll (page 1281)
pageScroll (page 1276)
setVerticalLineScroll (page 1283)

setVerticalRulerView
Sets the receiver’s vertical ruler view to aRulerView.

public void setVerticalRulerView(NSRulerView aRulerView)

Discussion
You can use this method to override the default ruler class set using the class method
setRulerViewClass (page 1271). Display of rulers is controlled using the setRulersVisible (page 1283)
method.

See Also
verticalRulerView (page 1286)
setHasVerticalRuler (page 1280)
setHorizontalRulerView (page 1281)
setRulersVisible (page 1283)

1284 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

setVerticalScroller
Sets the receiver’s vertical scroller to aScroller, establishing the appropriate target-action relationships
between them.

public void setVerticalScroller(NSScroller aScroller)

Discussion
To make sure the scroller is visible, invoke the setHasVerticalScroller (page 1280) method with an
argument of true.

See Also
verticalScroller (page 1286)
setHorizontalScroller (page 1282)

tile
Lays out the components of the receiver: the content view, the scrollers, and the ruler views.

public void tile()

Discussion
You rarely need to invoke this method, but subclasses may override it to manage additional components.

verticalLineScroll
Returns the amount by which the receiver scrolls itself vertically when scrolling line by line, expressed in the
content view’s coordinate system.

public float verticalLineScroll()

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar without holding down a
modifier key.

See Also
setVerticalLineScroll (page 1283)
horizontalLineScroll (page 1274)
setLineScroll (page 1282)
verticalPageScroll (page 1285)

verticalPageScroll
Returns the amount of the document view kept visible when scrolling vertically page by page, expressed in
the content view’s coordinate system.

public float verticalPageScroll()

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar while holding down the
Option key.

Instance Methods 1285
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page.

See Also
setVerticalPageScroll (page 1284)
horizontalPageScroll (page 1275)
setPageScroll (page 1282)
verticalLineScroll (page 1285)

verticalRulerView
Returns the receiver’s vertical ruler view, regardless of whether the receiver is currently displaying it, or null
if the receiver has none.

public NSRulerView verticalRulerView()

Discussion
If the receiver is set to display a vertical ruler view and doesn’t yet have one, this method creates an instance
of the ruler view class set using the class method setRulerViewClass (page 1271). Display of rulers is
controlled using the setRulersVisible (page 1283) method.

See Also
hasVerticalRuler (page 1274)
horizontalRulerView (page 1275)

verticalScroller
Returns the receiver’s vertical scroller, regardless of whether the receiver is currently displaying it, or null
if the receiver has none.

public NSScroller verticalScroller()

See Also
hasVerticalScroller (page 1274)
setVerticalScroller (page 1285)
horizontalScroller (page 1275)

1286 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 95

NSScrollView

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Search Fields

Overview

Instances of the NSSearchField class are control objects that specifically designed to “wrap” NSSearchFieldCell
instances. NSSearchField exposes only a small part of the programmatic interface presented by
NSSearchFieldCell.

For a fuller description of search fields and the API for accessing and managing them, see the class specification
of NSSearchFieldCell (page 1291).

Tasks

Constructors

NSSearchField (page 1288)
Creates an NSSearchField with a zero-sized frame rectangle.

Managing Recent Searches

setRecentSearches (page 1289)
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

recentSearches (page 1288)
Returns the list of recent search strings, as displayed in the search menu, or a list of recent search
strings archived under an autosave name.

Overview 1287
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 96

NSSearchField

Managing Autosave Name

setRecentsAutosaveName (page 1289)
Sets an autosave name under which the receiver automatically archives the list of recent search strings.

recentsAutosaveName (page 1288)
Returns the key under which the prior list of recent search strings has been archived.

Constructors

NSSearchField
Creates an NSSearchField with a zero-sized frame rectangle.

public NSSearchField()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSSearchField with frameRect as its frame rectangle.

public NSSearchField(NSRect frameRect)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

recentsAutosaveName
Returns the key under which the prior list of recent search strings has been archived.

public String recentsAutosaveName()

Discussion
NSSearchField implements this method by invoking the same method in its NSSearchFieldCell object.

Availability
Available in Mac OS X v10.3 and later.

See Also
setRecentsAutosaveName (page 1289)

recentSearches
Returns the list of recent search strings, as displayed in the search menu, or a list of recent search strings
archived under an autosave name.

1288 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 96

NSSearchField

public NSArray recentSearches()

Discussion
Returns an empty array if there have been no recent searches and no prior searches have been saved under
an autosave name. NSSearchField implements this method by invoking the same method in its
NSSearchFieldCell object.

Availability
Available in Mac OS X v10.3 and later.

See Also
setRecentSearches (page 1289)

setRecentsAutosaveName
Sets an autosave name under which the receiver automatically archives the list of recent search strings.

public void setRecentsAutosaveName(String name)

Discussion
If name is null (the default) or is an empty string, no autosave name is set. NSSearchField implements this
method by invoking the same method in its NSSearchFieldCell object.

Availability
Available in Mac OS X v10.3 and later.

See Also
recentsAutosaveName (page 1288)

setRecentSearches
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

public void setRecentSearches(NSArray searches)

Discussion
You might use this method to set the recent list from an archived copy. NSSearchField implements this
method by invoking the same method in its NSSearchFieldCell object.

Availability
Available in Mac OS X v10.3 and later.

See Also
recentSearches (page 1288)

Instance Methods 1289
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 96

NSSearchField

1290 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 96

NSSearchField

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Search Fields

Overview

The NSSearchFieldCell class defines the programmatic interface for text fields that are optimized for text-based
searches. An NSSearchFieldCell object is “wrapped” by an NSSearchField (page 1287) control object, which
directly inherits from the NSTextField class. The search field implemented by these classes presents a standard
user interface for searches, including a search button, a cancel button, and a pop-up icon menu for listing
recent search strings and custom search categories.

When the user types and then pauses, the cell’s action message is sent to its target. You can query the cell’s
string value for the current text to search for. Do not rely on the sender of the action to be an NSMenu object
because the menu may change. If you need to change the menu, modify the search menu template and call
the setSearchMenuTemplate: method to update.

Tasks

Constructors

NSSearchFieldCell (page 1293)
Creates an empty NSSearchFieldCell.

Managing Buttons

setSearchButtonCell (page 1299)
Sets the button cell used to display the search-button image to cell.

searchButtonCell (page 1296)
Returns the button cell used for the receiver’s search button.

Overview 1291
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

resetSearchButtonCell (page 1295)
Resets the search button cell to its default attributes, including target, action, and regular and pressed
images.

setCancelButtonCell (page 1298)
Sets the button cell used to display the cancel-button image to cell.

cancelButtonCell (page 1294)
Returns the cell object currently used as the receiver’s cancel button.

resetCancelButtonCell (page 1295)
Resets the cancel button cell to its default attributes, including target, action, and regular and pressed
images.

Custom Layout

searchTextRectForBounds (page 1297)
Passes in the current bounding rectangle (rect) for the search text field and allows subclasses to
return a new bounding rectangle for the text-field cell object.

searchButtonRectForBounds (page 1296)
Passes in the current bounding rectangle (rect) for the search button and allows subclasses to return
a new bounding rectangle for the button cell.

cancelButtonRectForBounds (page 1294)
Passes in the current bounding rectangle (rect) for the cancel button and allows subclasses to return
a new bounding rectangle for the button cell.

Managing Menu Template

setSearchMenuTemplate (page 1299)
Sets to menu the menu template the receiver uses to dynamically construct its pop-up icon menu.

searchMenuTemplate (page 1296)
Returns the menu object used by NSSearchFieldCell to construct the search pop-up icon menu
dynamically.

Managing Search Mode

setSendsWholeSearchString (page 1300)
Sets whether the receiver sends the search action message when the user clicks the search button
or presses return (true) or sends the action message at each keystroke (false).

sendsWholeSearchString (page 1297)
Returns whether the receiver sends the search action message when the user clicks the search button
or clicks return (true) or sends the action message at each keystroke (false).

sendsSearchStringImmediately (page 1297)
Returns true if the cell sends its action message to the target immediately upon notification of any
changes to the search field text; otherwise, returns false.

setSendsSearchStringImmediately (page 1299)
If flag is true, the cell sends its action message to the target immediately upon notification of any
changes to the search field text.

1292 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

Managing Recent Search Strings

setMaximumRecents (page 1298)
Sets the maximum number of search strings that can appear in the search menu to maxRecents.

maximumRecents (page 1294)
Returns the maximum number of recent search strings to display in the custom search menu.

setRecentSearches (page 1298)
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

recentSearches (page 1295)
Returns the list of recent search strings, as displayed in the search menu, or a list of recent search
strings archived under an autosave name.

setRecentsAutosaveName (page 1298)
Sets an autosave name under which the receiver automatically archives the list of recent search strings.

recentsAutosaveName (page 1294)
Returns the key under which the prior list of recent search strings has been archived.

Constructors

NSSearchFieldCell
Creates an empty NSSearchFieldCell.

public NSSearchFieldCell()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSSearchFieldCell initialized with aString and set to have the cell’s default menu.

public NSSearchFieldCell(String aString)

Discussion
If no field editor has been created, one is created.

Availability
Available in Mac OS X v10.3 and later.

Creates an NSSearchFieldCell initialized with anImage and set to have the cell’s default menu.

public NSSearchFieldCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Availability
Available in Mac OS X v10.3 and later.

Constructors 1293
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

Instance Methods

cancelButtonCell
Returns the cell object currently used as the receiver’s cancel button.

public NSButtonCell cancelButtonCell()

Availability
Available in Mac OS X v10.3 and later.

See Also
setCancelButtonCell (page 1298)
resetCancelButtonCell (page 1295)

cancelButtonRectForBounds
Passes in the current bounding rectangle (rect) for the cancel button and allows subclasses to return a new
bounding rectangle for the button cell.

public NSRect cancelButtonRectForBounds(NSRect rect)

Discussion
Subclasses of NSSearchFieldCell can override this method to get the current size of the cancel button and
to specify a custom layout for it.

Availability
Available in Mac OS X v10.3 and later.

See Also
searchButtonRectForBounds (page 1296)
searchTextRectForBounds (page 1297)

maximumRecents
Returns the maximum number of recent search strings to display in the custom search menu.

public int maximumRecents()

Availability
Available in Mac OS X v10.3 and later.

See Also
setMaximumRecents (page 1298)

recentsAutosaveName
Returns the key under which the prior list of recent search strings has been archived.

1294 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

public String recentsAutosaveName()

Availability
Available in Mac OS X v10.3 and later.

See Also
setRecentsAutosaveName (page 1298)

recentSearches
Returns the list of recent search strings, as displayed in the search menu, or a list of recent search strings
archived under an autosave name.

public NSArray recentSearches()

Discussion
Returns an empty array if there have been no recent searches and no prior searches have been saved under
an autosave name.

Availability
Available in Mac OS X v10.3 and later.

See Also
setRecentsAutosaveName (page 1298)
setRecentSearches (page 1298)

resetCancelButtonCell
Resets the cancel button cell to its default attributes, including target, action, and regular and pressed images.

public native void resetCancelButtonCell()

Discussion
By default, when users click the cancel button, the delete action message is sent up the responder chain
to the first NSText object that can handle it. This method gives you a way to customize the cancel button for
specific situations and then reset the button defaults without having to know what they are.

Availability
Available in Mac OS X v10.3 and later.

See Also
setCancelButtonCell (page 1298)
cancelButtonCell (page 1294)

resetSearchButtonCell
Resets the search button cell to its default attributes, including target, action, and regular and pressed images.

public void resetSearchButtonCell()

Instance Methods 1295
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

Discussion
By default, when users click the search button or press the Return key, the action defined for the receiver is
sent to its designated target. This method gives you a way to customize the search button for specific
situations and then reset the button defaults without having to know what they are.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSearchButtonCell (page 1299)
searchButtonCell (page 1296)

searchButtonCell
Returns the button cell used for the receiver’s search button.

public NSButtonCell searchButtonCell()

Availability
Available in Mac OS X v10.3 and later.

See Also
setSearchButtonCell (page 1299)
resetSearchButtonCell (page 1295)

searchButtonRectForBounds
Passes in the current bounding rectangle (rect) for the search button and allows subclasses to return a new
bounding rectangle for the button cell.

public NSRect searchButtonRectForBounds(NSRect rect)

Discussion
Subclasses of NSSearchFieldCell can override this method to get the current size of the search button and
to specify a custom layout for it.

Availability
Available in Mac OS X v10.3 and later.

See Also
cancelButtonRectForBounds (page 1294)
searchTextRectForBounds (page 1297)

searchMenuTemplate
Returns the menu object used by NSSearchFieldCell to construct the search pop-up icon menu dynamically.

public NSMenu searchMenuTemplate()

Availability
Available in Mac OS X v10.3 and later.

1296 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

See Also
setSearchMenuTemplate (page 1299)

searchTextRectForBounds
Passes in the current bounding rectangle (rect) for the search text field and allows subclasses to return a
new bounding rectangle for the text-field cell object.

public NSRect searchTextRectForBounds(NSRect rect)

Discussion
Subclasses of NSSearchFieldCell can override this method to get the current size of the search text field and
to specify a custom layout for it.

Availability
Available in Mac OS X v10.3 and later.

See Also
cancelButtonRectForBounds (page 1294)
searchButtonRectForBounds (page 1296)

sendsSearchStringImmediately
Returns true if the cell sends its action message to the target immediately upon notification of any changes
to the search field text; otherwise, returns false.

public boolean sendsSearchStringImmediately()

Discussion

Availability
Available in Mac OS X v10.4 and later.

See Also
setSendsSearchStringImmediately (page 1299)

sendsWholeSearchString
Returns whether the receiver sends the search action message when the user clicks the search button or
clicks return (true) or sends the action message at each keystroke (false).

public boolean sendsWholeSearchString()

Discussion
The default is false.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSendsWholeSearchString (page 1300)

Instance Methods 1297
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

setCancelButtonCell
Sets the button cell used to display the cancel-button image to cell.

public void setCancelButtonCell(NSButtonCell cell)

Availability
Available in Mac OS X v10.3 and later.

See Also
cancelButtonCell (page 1294)
resetCancelButtonCell (page 1295)

setMaximumRecents
Sets the maximum number of search strings that can appear in the search menu to maxRecents.

public void setMaximumRecents(int maxRecents)

Discussion
When the limit is exceeded, the oldest search string on the menu is dropped. maxRecents can be any integer
between zero and 254. Specifying any integer less than zero requests the default, which is ten. Specifying
any integer greater than 254 sets the maximum to 254.

Availability
Available in Mac OS X v10.3 and later.

See Also
maximumRecents (page 1294)

setRecentsAutosaveName
Sets an autosave name under which the receiver automatically archives the list of recent search strings.

public void setRecentsAutosaveName(String name)

Discussion
If name is null (the default) or an empty string, no autosave name is set.

Availability
Available in Mac OS X v10.3 and later.

See Also
recentsAutosaveName (page 1294)
setRecentSearches (page 1298)

setRecentSearches
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

public void setRecentSearches(NSArray searches)

1298 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

Discussion
You might use this method to set the recent list from an archived copy.

Availability
Available in Mac OS X v10.3 and later.

See Also
recentSearches (page 1295)

setSearchButtonCell
Sets the button cell used to display the search-button image to cell.

public void setSearchButtonCell(NSButtonCell cell)

Availability
Available in Mac OS X v10.3 and later.

See Also
searchButtonCell (page 1296)
resetSearchButtonCell (page 1295)

setSearchMenuTemplate
Sets to menu the menu template the receiver uses to dynamically construct its pop-up icon menu.

public void setSearchMenuTemplate(NSMenu menu)

Discussion
The receiver looks for the tag constants described in “Constants” (page 1300) to determine how to populate
the menu with items related to recent searches. See “Configuring a Search Menu” for a sample of how you
might set up the search menu template.

Availability
Available in Mac OS X v10.3 and later.

See Also
searchMenuTemplate (page 1296)

setSendsSearchStringImmediately
If flag is true, the cell sends its action message to the target immediately upon notification of any changes
to the search field text.

public void setSendsSearchStringImmediately(boolean flag)

Discussion
If flag is false, the cell pauses briefly before sending its action message to give the user the opportunity
to type more text into the search field.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1299
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

See Also
sendsSearchStringImmediately (page 1297)

setSendsWholeSearchString
Sets whether the receiver sends the search action message when the user clicks the search button or presses
return (true) or sends the action message at each keystroke (false).

public void setSendsWholeSearchString(boolean flag)

Availability
Available in Mac OS X v10.3 and later.

See Also
sendsWholeSearchString (page 1297)

Constants

NSSearchFieldCell defines the following tag constants for identifying special menu items in the search-menu
template set by setSearchMenuTemplate (page 1299). When NSSearchFieldCell dynamically constructs the
actual search menu from this template, it shows or hides the tagged items as directed.

DescriptionConstant

Identifies the menu item that is the title of the menu group for recent
search strings. It is hidden if there are no recent strings. You may use
this tagged item for separator characters that also do not appear if
there are no recent strings to display.

SearchFieldRecents-
TitleMenuItemTag

Identifies where recent search strings should appear in the “recents”
menu group.

SearchFieldRecents-
MenuItemTag

Identifies the menu item for clearing the current set of recent string
searches in the menu. This item is hidden if there are no recent strings.

SearchFieldClear-
RecentsMenuItemTag

Identifies the menu item that describes a lack of recent search strings
(for example, “No recent searches”). It is hidden if there have been
recent searches.

SearchFieldNoRecents-
MenuItemTag

1300 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 97

NSSearchFieldCell

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Text Fields

Overview

NSSecureTextField is a subclass of NSTextField that hides its text from display or other access via the user
interface. It’s suitable for use as a password-entry object or for any item in which a secure value must be
kept.

NSSecureTextField uses NSSecureTextFieldCell (page 1303) to implement its user interface.

Tasks

Constructors

NSSecureTextField (page 1301)
Creates an NSSecureTextField with a zero-sized frame rectangle.

Constructors

NSSecureTextField
Creates an NSSecureTextField with a zero-sized frame rectangle.

public NSSecureTextField()

Creates an NSSecureTextField with frameRect as its frame rectangle.

public NSSecureTextField(NSRect frameRect)

Overview 1301
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 98

NSSecureTextField

1302 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 98

NSSecureTextField

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Text Fields

Overview

NSSecureTextFieldCell works with NSSecureTextField (page 1301) to provide a text field whose value is guarded
from user examination. It overrides the general cell use of the field editor to provide its own field editor,
which doesn’t display text or allow the user to cut, copy, or paste its value.

Tasks

Constructors

NSSecureTextFieldCell (page 1303)
Creates an empty NSSecureTextFieldCell.

Working with Character Echo

echosBullets (page 1304)
Returns whether the receiver echoes a bullet character rather than each character typed.

setEchosBullets (page 1304)
Sets whether the receiver echoes bullets for each character typed.

Constructors

NSSecureTextFieldCell
Creates an empty NSSecureTextFieldCell.

public NSSecureTextFieldCell()

Overview 1303
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 99

NSSecureTextFieldCell

Creates an NSSecureTextFieldCell initialized with aString and set to have the cell’s default menu.

public NSSecureTextFieldCell(String aString)

Discussion
If no field editor has been created, one is created.

Creates an NSSecureTextFieldCell initialized with anImage and set to have the cell’s default menu.

public NSSecureTextFieldCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

echosBullets
Returns whether the receiver echoes a bullet character rather than each character typed.

public boolean echosBullets()

Discussion
Default is true.

See Also
setEchosBullets (page 1304)

setEchosBullets
Sets whether the receiver echoes bullets for each character typed.

public void setEchosBullets(boolean flag)

Discussion
If true, bullets are echoed. If false, the cursor is moved for each character typed, but nothing is displayed.

See Also
echosBullets (page 1304)

1304 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 99

NSSecureTextFieldCell

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Segmented Controls Programming Guide for Cocoa

Overview

NSSegmentedCell implements the appearance and behavior of a horizontal button divided into multiple
segments. NSSegmentedControl uses a single NSSegmentedCell. For more information on NSSegmentedCell’s
behavior, see the NSSegmentedControl (page 1317) class specification.

You can customize an NSSegmentedCell using its set… methods; for greater flexibility you can create a
subclass and override drawSegment (page 1308).

Tasks

Constructors

NSSegmentedCell (page 1307)
Creates an empty NSSegmentedCell.

Specifying Number of Segments

setSegmentCount (page 1312)
Sets the number of segments in the receiver.

segmentCount (page 1310)
Returns the number of segments in the receiver.

Overview 1305
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

Specifying Selected Segment

setSelected (page 1312)
Sets the selected state of the specified segment to flag.

selectedSegment (page 1310)
Returns the index of the currently selected segment, or –1 if no segment is selected.

selectSegmentWithTag (page 1310)
Selects the segment with the specified tag.

makeNextSegmentKey (page 1309)
Selects the next segment.

makePreviousSegmentKey (page 1309)
Selects the previous segment.

Specifying Tracking Mode

setTrackingMode (page 1313)
Sets the receiver’s tracking mode.

trackingMode (page 1314)
Returns the receiver’s tracking mode.

Working with Individual Segments

setWidth (page 1314)
Sets the width, in points, for the specified segment.

width (page 1315)
Returns the width, in points, of the specified segment.

setImage (page 1311)
Sets the image for the specified segment.

image (page 1308)
Returns the image for the specified segment, or null if the segment has no image.

setLabel (page 1311)
Sets the label for the specified segment.

label (page 1309)
Returns the label for the specified segment, or null if the segment has no label.

isSelected (page 1308)
Returns true if the specified segment for the receiver is selected, false otherwise.

setEnabled (page 1311)
Sets the enabled state of the specified segment to flag.

isEnabled (page 1308)
Returns true if the specified segment for the receiver is enabled, false otherwise.

setMenu (page 1312)
Sets the menu for the specified segment.

1306 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

menu (page 1310)
Returns the menu for the specified segment, or null if the segment has no menu.

setToolTip (page 1313)
Sets the tool tip for the specified segment.

toolTip (page 1314)
Returns the tool tip for the specified segment, or null if the segment has no tool tip.

setTag (page 1313)
Sets the tag for the specified segment.

tag (page 1314)
Returns the tag for the specified segment.

Drawing Custom Content

drawSegment (page 1308)
Draws the specified segment in controlView.

Constructors

NSSegmentedCell
Creates an empty NSSegmentedCell.

public NSSegmentedCell()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSSegmentedCell initialized with aString and set to have the cell’s default menu

public NSSegmentedCell(String aString)

Discussion
.

Availability
Available in Mac OS X v10.3 and later.

Creates an NSSegmentedCell initialized with anImage and set to have the cell’s default menu.

public NSSegmentedCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Availability
Available in Mac OS X v10.3 and later.

Constructors 1307
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

Instance Methods

drawSegment
Draws the specified segment in controlView.

public void drawSegment(int segment, NSRect frame, NSView controlView)

Discussion
The content area of the segment is defined by frame.

Availability
Available in Mac OS X v10.3 and later.

See Also
drawWithFrameInView (page 310) (NSCell)

image
Returns the image for the specified segment, or null if the segment has no image.

public NSImage image(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setImage (page 1311)

isEnabled
Returns true if the specified segment for the receiver is enabled, false otherwise.

public boolean isEnabled(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setEnabled (page 1311)

isSelected
Returns true if the specified segment for the receiver is selected, false otherwise.

1308 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

public boolean isSelected(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

label
Returns the label for the specified segment, or null if the segment has no label.

public String label(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setLabel (page 1311)

makeNextSegmentKey
Selects the next segment.

public void makeNextSegmentKey()

Discussion
The last segment wraps to the first segment.

Availability
Available in Mac OS X v10.3 and later.

See Also
makePreviousSegmentKey (page 1309)

makePreviousSegmentKey
Selects the previous segment.

public void makePreviousSegmentKey()

Discussion
The first segment wraps to the last segment.

Availability
Available in Mac OS X v10.3 and later.

See Also
makeNextSegmentKey (page 1309)

Instance Methods 1309
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

menu
Returns the menu for the specified segment, or null if the segment has no menu.

public NSMenu menu(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setMenu (page 1312)

segmentCount
Returns the number of segments in the receiver.

public int segmentCount()

Availability
Available in Mac OS X v10.3 and later.

See Also
setSegmentCount (page 1312)

selectedSegment
Returns the index of the currently selected segment, or –1 if no segment is selected.

public int selectedSegment()

Discussion
If the receiver allows multiple selections, this method returns the last clicked segment.

Availability
Available in Mac OS X v10.3 and later.

selectSegmentWithTag
Selects the segment with the specified tag.

public boolean selectSegmentWithTag(int tag)

Discussion
Returns true if successful; otherwise, returns false.

Typically, you use Interface Builder to specify the tag for each segment. You may also set this value
programmatically using setTag (page 1313).

Availability
Available in Mac OS X v10.4 and later.

1310 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

See Also
setTag (page 1313)

setEnabled
Sets the enabled state of the specified segment to flag.

public void setEnabled(boolean flag, int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
isEnabled (page 1308)

setImage
Sets the image for the specified segment.

public void setImage(NSImage image, int segment)

Discussion
Images are clipped if they do not fit within the space available in segment. Throws a RangeException if
segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
image (page 1308)

setLabel
Sets the label for the specified segment.

public void setLabel(String label, int segment)

Discussion
If label is too long to fit in the segment’s width, the text is truncated using an ellipsis. Throws a
RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
label (page 1309)

Instance Methods 1311
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

setMenu
Sets the menu for the specified segment.

public void setMenu(NSMenu menu, int segment)

Discussion
This allows the segment to be used as a pop-up button. If a menu is set, the segment acts as a momentary
control and cannot be toggled on by the user. Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
menu (page 1310)

setSegmentCount
Sets the number of segments in the receiver.

public void setSegmentCount(int count)

Discussion
If count is less than the current segment count, segments are removed from the right. If count is greater
than the current segment count, empty segments are added to the right. The segment count must be between
0 and 2049.

Availability
Available in Mac OS X v10.3 and later.

See Also
segmentCount (page 1310)

setSelected
Sets the selected state of the specified segment to flag.

public void setSelected(boolean flag, int segment)

Discussion
If the receiver only allows a single selection, this method unselects any other selected segments. Throws a
RangeException if segment is out of bounds.

Sets the receiver’s selected segment to selectedSegment.

public void setSelected(int selectedSegment)

Discussion
If the receiver allows multiple selections, this method selects the specified segment using the variant form
of the method. Throws a RangeException if selectedSegment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

1312 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

See Also
isSelected (page 1308)
selectedSegment (page 1310)

setTag
Sets the tag for the specified segment.

public void setTag(int tag, int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
tag (page 1314)

setToolTip
Sets the tool tip for the specified segment.

public void setToolTip(String toolTip, int segment)

Discussion
Throws a RangeException if segment is out of bounds. Tool tips are currently not displayed.

Availability
Available in Mac OS X v10.3 and later.

See Also
toolTip (page 1314)

setTrackingMode
Sets the receiver’s tracking mode.

public void setTrackingMode(int trackingMode)

Discussion
Possible values for trackingMode are described in “Constants” (page 1315). The default tracking mode is
NSSegmentSwitchTrackingSelectOne.

Availability
Available in Mac OS X v10.3 and later.

See Also
trackingMode (page 1314)

Instance Methods 1313
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

setWidth
Sets the width, in points, for the specified segment.

public void setWidth(float width, int segment)

Discussion
Specifying width of 0 means autosize to fit. If you set a non-zero width no padding is added to the left or
right of text, so you should ensure there is enough space for content. Throws a RangeException if segment
is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
width (page 1315)

tag
Returns the tag for the specified segment.

public int tag(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setTag (page 1313)

toolTip
Returns the tool tip for the specified segment, or null if the segment has no tool tip.

public String toolTip(int segment)

Discussion
Throws a RangeException if segment is out of bounds. Tool tips are currently not displayed.

Availability
Available in Mac OS X v10.3 and later.

See Also
setToolTip (page 1313)

trackingMode
Returns the receiver’s tracking mode.

public int trackingMode()

1314 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

Discussion
Possible return values are described in “Constants” (page 1315). The default tracking mode is
NSSegmentSwitchTrackingSelectOne.

Availability
Available in Mac OS X v10.3 and later.

See Also
setTrackingMode (page 1313)

width
Returns the width, in points, of the specified segment.

public float width(int segment)

Discussion
Returns 0 if the segment should autofit. Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setWidth (page 1314)

Constants

NSSegmentedCell defines the following constants that are used to describe the various tracking modes for
a cell. You access these values using setTrackingMode (page 1313) and trackingMode (page 1314).

DescriptionConstant

Only one segment may be selected.NSSegmentSwitchTrackingSelectOne

Any segment can be selected.NSSegmentSwitchTrackingSelectAny

A segment is selected only when tracking.NSSegmentSwitchTrackingMomentary

Constants 1315
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

1316 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 100

NSSegmentedCell

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Segmented Controls Programming Guide for Cocoa

Overview

NSSegmentedControl is a subclass of NSControl that implements a horizontal control made of multiple
segments.

NSSegmentedControl uses an NSSegmentedCell (page 1305) to implement much of the control's functionality.
NSSegmentedControl provides "cover methods” for most of NSSegmentedCell’s methods, which invoke the
corresponding cell method. NSSegmentedCell methods that don’t have covers relate to accessing and setting
values for tags and tool tips; programatically setting the key segment; and establishing the mode of the
control.

NSSegmentedControl’s features include:

 ■ Each segment can have an image, text (label), menu, tooltip, and tag

 ■ Either the whole control or individual segments can be enabled or disabled

 ■ There are three modes: radio button (as illustrated by Finder’s view mode selection control), momentary
(as illustrated by Safari’s toolbar buttons), or any on/off

 ■ Each segment can be either a fixed width or autosized to fit the contents

 ■ If a segment has text and is marked as autosizing, then the text may be truncated so that the control
completely fits

 ■ If an image is too large to fit in a segment, it will be clipped

 ■ Full keyboard control of the user interface

Overview 1317
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

Tasks

Constructors

NSSegmentedControl (page 1319)
Creates an NSSegmentedControl with a zero-sized frame rectangle.

Specifying Number of Segments

setSegmentCount (page 1322)
Sets the number of segments in the receiver.

segmentCount (page 1321)
Returns the number of segments in the receiver.

Specifying Selected Segment

setSelected (page 1323)
Sets the receiver’s selected segment to selectedSegment.

selectedSegment (page 1321)
Returns the index of the currently selected segment, or –1 if no segment is selected.

isSelected (page 1320)
Returns true if the specified segment for the receiver is selected, false otherwise.

Working with Individual Segments

setWidth (page 1323)
Sets the width, in points, for the specified segment.

width (page 1323)
Returns the width, in points, of the specified segment.

setImage (page 1321)
Sets the image for the specified segment.

imageForSegment (page 1319)
Returns the image for the specified segment, or null if the segment has no image.

setLabel (page 1322)
Sets the label for the specified segment.

label (page 1320)
Returns the label for the specified segment, or null if the segment has no label.

setMenu (page 1322)
Sets the menu for the specified segment.

menu (page 1320)
Returns the menu for the specified segment, or null if the segment has no menu.

1318 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

setEnabled (page 1321)
Sets the enabled state of the specified segment to flag.

isEnabled (page 1319)
Returns true if the specified segment for the receiver is enabled, false otherwise.

Constructors

NSSegmentedControl
Creates an NSSegmentedControl with a zero-sized frame rectangle.

public NSSegmentedControl()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSSegmentedControl with frameRect as its frame rectangle.

public NSSegmentedControl(NSRect frameRect)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

imageForSegment
Returns the image for the specified segment, or null if the segment has no image.

public NSImage image(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setImage (page 1321)

isEnabled
Returns true if the specified segment for the receiver is enabled, false otherwise.

public boolean isEnabled(int segment)

Constructors 1319
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setEnabled (page 1321)

isSelected
Returns true if the specified segment for the receiver is selected, false otherwise.

public boolean isSelected(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelected (page 1323)

label
Returns the label for the specified segment, or null if the segment has no label.

public String label(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setLabel (page 1322)

menu
Returns the menu for the specified segment, or null if the segment has no menu.

public NSMenu menu(int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

1320 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

See Also
setMenu (page 1322)

segmentCount
Returns the number of segments in the receiver.

public int segmentCount()

Availability
Available in Mac OS X v10.3 and later.

See Also
setSegmentCount (page 1322)

selectedSegment
Returns the index of the currently selected segment, or –1 if no segment is selected.

public int selectedSegment()

Discussion
If the receiver allows multiple selections, this method returns the last clicked segment.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelected (page 1323)

setEnabled
Sets the enabled state of the specified segment to flag.

public void setEnabled(boolean flag, int segment)

Discussion
Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
isEnabled (page 1319)

setImage
Sets the image for the specified segment.

public void setImage(NSImage image, int segment)

Instance Methods 1321
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

Discussion
Images are clipped if they do not fit within the space available in the segment. Throws a RangeException
if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
imageForSegment (page 1319)

setLabel
Sets the label for the specified segment.

public void setLabel(String label, int segment)

Discussion
If label is too long to fit in the segment’s width, the text is truncated. Throws a RangeException if segment
is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
label (page 1320)

setMenu
Sets the menu for the specified segment.

public void setMenu(NSMenu menu, int segment)

Discussion
This allows the segment to be used as a pop-up button. Throws a RangeException if segment is out of
bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
menu (page 1320)

setSegmentCount
Sets the number of segments in the receiver.

public void setSegmentCount(int count)

Discussion
If count is less than the current segment count, segments are removed from the right. If count is greater
than the current segment count, empty segments are added to the right. The segment count must be between
0 and 2049.

1322 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

Availability
Available in Mac OS X v10.3 and later.

See Also
segmentCount (page 1321)

setSelected
Sets the receiver’s selected segment to selectedSegment.

public void setSelected(int selectedSegment)

Discussion
If the receiver allows multiple selections, this method selects the specified segment. Throws a
RangeException if selectedSegment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

Sets the selected state of the specified segment to flag.

public void setSelected(boolean flag, int segment)

Discussion
If the receiver only allows a single selection, this method unselects any other selected segments. Throws a
RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectedSegment (page 1321)
isSelected (page 1320)

setWidth
Sets the width, in points, for the specified segment.

public void setWidth(float width, int segment)

Discussion
Specifying width of 0 means autosize to fit. Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
width (page 1323)

width
Returns the width, in points, of the specified segment.

Instance Methods 1323
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

public float width(int segment)

Discussion
Returns 0 if the segment should autofit. Throws a RangeException if segment is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
setWidth (page 1323)

1324 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 101

NSSegmentedControl

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Basic Drawing

Overview

An NSShadow object encapsulates the attributes of a drop shadow to be used in drawing operations.

Shadows are always drawn in default user space (also known as base space). This means that rotations,
translations and so on of the current transformation matrix (the CTM) don't affect the resulting shadow.
Another way to think about this is that changes to the CTM don't move or change the shadow’s light source.

There are two positional parameters for a shadow, an x-offset and a y-offset of the shadow, expressed as a
single NSSize, in default user space units, with positive values being up and to the right. There is one additional
parameter, the blur radius, which specifies how much an object's image mask is blurred before it is composited
onto the destination. A 0 value means no blur, and larger values give correspondingly larger blurs, again in
default user space units.

An NSShadow may be used in one of two ways. First, it may be set, like a color or a font, in which case it is
applied to all drawing until another shadow is applied or until the next graphics state is restored. It may also
be used as the value for the NSShadowAttributeName text attribute, in which case it will be applied to the
glyphs corresponding to the characters bearing this attribute.

Tasks

Constructors

NSShadow (page 1326)
Creates an NSShadow object.

Overview 1325
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 102

NSShadow

Managing a Shadow

setShadowOffset (page 1327)
Sets the offset, in default user space units, of the receiver from the original drawing where positive
values are up and to the right to offset.

shadowOffset (page 1328)
Returns the offset, in default user space units, of the receiver from the original drawing where positive
values are up and to the right.

setShadowBlurRadius (page 1327)
Sets the blur radius, in default user space units, of the receiver to val. A 0 value indicates no blur,
and larger values give correspondingly larger blurs.

shadowBlurRadius (page 1328)
Returns the blur radius of the receiver in default user space units.

setShadowColor: (page 1327)
Sets the color for the receiver.

shadowColor (page 1328)
Returns the color for the receiver.

Setting the Shadow

set (page 1326)
Sets the shadow of subsequent drawing operations to the shadow represented by the receiver.

Constructors

NSShadow
Creates an NSShadow object.

public NSShadow()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

set
Sets the shadow of subsequent drawing operations to the shadow represented by the receiver.

public void set()

1326 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 102

NSShadow

Discussion
The shadow attributes of the receiver are used until another shadow is set or until the graphics state is
restored.

Availability
Available in Mac OS X v10.3 and later.

setShadowBlurRadius
Sets the blur radius, in default user space units, of the receiver to val. A 0 value indicates no blur, and larger
values give correspondingly larger blurs.

public void setShadowBlurRadius(float val)

Availability
Available in Mac OS X v10.3 and later.

See Also
shadowBlurRadius (page 1328)

setShadowColor:
Sets the color for the receiver.

public void setShadowColor(NSColor color)

Discussion
The default shadow color is black with an alpha of 1/3. A null color indicates the shadow is not to be
drawn. Currently only colors convertible to RGBA are supported.

Availability
Available in Mac OS X v10.3 and later.

See Also
shadowColor (page 1328)

setShadowOffset
Sets the offset, in default user space units, of the receiver from the original drawing where positive values
are up and to the right to offset.

public void setShadowOffset(NSSize offset)

Availability
Available in Mac OS X v10.3 and later.

See Also
shadowOffset (page 1328)

Instance Methods 1327
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 102

NSShadow

shadowBlurRadius
Returns the blur radius of the receiver in default user space units.

public float shadowBlurRadius()

Availability
Available in Mac OS X v10.3 and later.

See Also
setShadowBlurRadius (page 1327)

shadowColor
Returns the color for the receiver.

public NSColor shadowColor()

Discussion
The default shadow color is black with an alpha of 1/3. A null shadow color indicates the shadow is not to
be drawn.

Availability
Available in Mac OS X v10.3 and later.

See Also
setShadowColor: (page 1327)

shadowOffset
Returns the offset, in default user space units, of the receiver from the original drawing where positive values
are up and to the right.

public NSSize shadowOffset()

Availability
Available in Mac OS X v10.3 and later.

See Also
setShadowOffset (page 1327)

1328 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 102

NSShadow

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Slider Programming Topics for Cocoa

Overview

An NSSlider displays a range of values for something in the application. Sliders can be vertical or horizontal
bars or circular dials. An indicator, or knob, notes the current setting. The user can move the knob in the
slider’s bar—or rotate the knob in a circular slider—to change the setting.

NSSlider uses NSSliderCell (page 1341) to implement its user interface.

Tasks

Constructors

NSSlider (page 1331)
Creates an NSSlider with a zero-sized frame rectangle.

Asking About the Slider’s Appearance

altIncrementValue (page 1332)
Returns the amount the receiver will change its value when the user drags the knob with the Option
key held down.

image (page 1333)
This method has been deprecated. Returns null.

knobThickness (page 1333)
Returns the knob’s thickness, in pixels.

isVertical (page 1333)
Returns 1 if the receiver is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined
(for example, if the slider hasn’t been displayed yet).

Overview 1329
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Changing the Slider’s Appearance

setAltIncrementValue (page 1335)
Sets the amount by which the NSSliderCell modifies its value when the user Option-drags the knob.

setImage (page 1335)
This method has been deprecated. Sets the image the receiver displays in the bar behind its knob.

setKnobThickness (page 1336)
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

Asking About the Slider’s Title

title (page 1338)
Returns the receiver’s title.

titleCell (page 1339)
This method has been deprecated. Returns null.

titleColor (page 1339)
This method has been deprecated. Returns null.

titleFont (page 1339)
This method has been deprecated. Returns null.

Changing the Slider’s Title

setTitle (page 1337)
This method has been deprecated. Sets the title the receiver displays in the bar behind its knob.

setTitleCell (page 1337)
This method has been deprecated. Sets the cell used to draw the receiver’s title.

setTitleColor (page 1338)
This method has been deprecated. Sets the color used to draw the receiver’s title to color.

setTitleFont (page 1338)
This method has been deprecated. Sets the font used to draw the receiver’s title.

Asking About the Value Limits

maxValue (page 1334)
Returns the maximum value the receiver can send to its target.

minValue (page 1334)
Returns the minimum value the receiver can send to its target.

Changing the Value Limits

setMaxValue (page 1336)
Sets the maximum value the receiver can send to its target to maxValue.

1330 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

setMinValue (page 1336)
Sets the minimum value the receiver can send to its target to minValue.

Handling Mouse-down Events

acceptsFirstMouse (page 1332)
Returns true by default, so a single mouse-down event mouseDownEvent can simultaneously activate
the window and take hold of the slider’s knob.

Managing Tick Marks

allowsTickMarkValuesOnly (page 1332)
Returns whether the receiver fixes its values to those values represented by its tick marks.

closestTickMarkValueToValue (page 1332)
Returns the value of the tick mark closest to aValue.

indexOfTickMarkAtPoint (page 1333)
Returns the index of the tick mark closest to the location of the receiver represented by point.

numberOfTickMarks (page 1334)
Returns the number of tick marks associated with the receiver.

rectOfTickMarkAtIndex (page 1334)
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark
is at index 0).

setAllowsTickMarkValuesOnly (page 1335)
Sets whether the receiver’s values are fixed to the values represented by the tick marks to flag.

setNumberOfTickMarks (page 1336)
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum
and maximum values) to numberOfTickMarks.

setTickMarkPosition (page 1337)
Sets where tick marks appear relative to the receiver.

tickMarkPosition (page 1338)
Returns how the receiver’s tick marks are aligned with it.

tickMarkValueAtIndex (page 1338)
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has
an index of 0).

Constructors

NSSlider
Creates an NSSlider with a zero-sized frame rectangle.

public NSSlider()

Constructors 1331
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Creates an NSSlider with frameRect as its frame rectangle.

public NSSlider(NSRect frameRect)

Instance Methods

acceptsFirstMouse
Returns true by default, so a single mouse-down event mouseDownEvent can simultaneously activate the
window and take hold of the slider’s knob.

public boolean acceptsFirstMouse(NSEvent mouseDownEvent)

Discussion
If you want the receiver to wait for its own mouse-down event, you must override this method.

allowsTickMarkValuesOnly
Returns whether the receiver fixes its values to those values represented by its tick marks.

public boolean allowsTickMarkValuesOnly()

Discussion
In its implementation of this method, the receiving NSSlider simply invokes the method of the same name
of its NSSliderCell.

See Also
setAllowsTickMarkValuesOnly (page 1335)

altIncrementValue
Returns the amount the receiver will change its value when the user drags the knob with the Option key
held down.

public double altIncrementValue()

Discussion
Unless you call setAltIncrementValue (page 1335), altIncrementValue (page 1332) returns –1.0, and the
receiver behaves no differently with the Option key down than with it up.

See Also
setAltIncrementValue (page 1335)

closestTickMarkValueToValue
Returns the value of the tick mark closest to aValue.

public double closestTickMarkValueToValue(double aValue)

1332 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Discussion
In its implementation of this method, the receiver simply invokes the method of the same name of its
NSSliderCell.

See Also
indexOfTickMarkAtPoint (page 1333)

image
This method has been deprecated. Returns null.

public NSImage image()

See Also
setImage (page 1335)

indexOfTickMarkAtPoint
Returns the index of the tick mark closest to the location of the receiver represented by point.

public int indexOfTickMarkAtPoint(NSPoint point)

Discussion
If point is not within the bounding rectangle (plus an extra pixel of space) of any tick mark, the method
returns NSArray.NotFound. In its implementation of this method, the receiving NSSlider simply invokes
the method of the same name of its NSSliderCell. This method invokes rectOfTickMarkAtIndex (page
1334) for each tick mark on the slider until it finds a tick mark containing the point.

See Also
closestTickMarkValueToValue (page 1332)

isVertical
Returns 1 if the receiver is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for
example, if the slider hasn’t been displayed yet).

public int isVertical()

Discussion
A slider is defined as vertical if its height is greater than its width.

knobThickness
Returns the knob’s thickness, in pixels.

public float knobThickness()

Discussion
The thickness is defined to be the extent of the knob along the long dimension of the bar. In a vertical slider,
then, a knob’s thickness is its height; in a horizontal slider, a knob’s thickness is its width.

Instance Methods 1333
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

See Also
setKnobThickness (page 1336)

maxValue
Returns the maximum value the receiver can send to its target.

public double maxValue()

Discussion
A horizontal slider sends its maximum value when the knob is at the right end of the bar; a vertical slider
sends it when the knob is at the top.

See Also
setMaxValue (page 1336)

minValue
Returns the minimum value the receiver can send to its target.

public double minValue()

Discussion
A vertical slider sends its minimum value when its knob is at the bottom; a horizontal slider, when its knob
is all the way to the left.

See Also
setMinValue (page 1336)

numberOfTickMarks
Returns the number of tick marks associated with the receiver.

public int numberOfTickMarks()

Discussion
The tick marks assigned to the minimum and maximum values are included. In its implementation of this
method, the receiving NSSlider simply invokes the method of the same name of its NSSliderCell.

See Also
setNumberOfTickMarks (page 1336)

rectOfTickMarkAtIndex
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0).

public NSRect rectOfTickMarkAtIndex(int index)

1334 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Discussion
If no tick mark is associated with index, the method throws RangeException. In its implementation of this
method, the receiving NSSlider simply invokes the method of the same name of its NSSliderCell.

See Also
indexOfTickMarkAtPoint (page 1333)

setAllowsTickMarkValuesOnly
Sets whether the receiver’s values are fixed to the values represented by the tick marks to flag.

public void setAllowsTickMarkValuesOnly(boolean flag)

Discussion
For example, if a slider has a minimum value of 0, a maximum value of 100, and five markers, the allowable
values are 0, 25, 50, 75, and 100. When users move the slider’s knob, it jumps to the tick mark nearest the
cursor when the mouse button is released. This method has no effect if the slider has no tick marks. In its
implementation of this method, the receiving NSSlider simply invokes the method of the same name of its
NSSliderCell.

See Also
allowsTickMarkValuesOnly (page 1332)

setAltIncrementValue
Sets the amount by which the NSSliderCell modifies its value when the user Option-drags the knob.

public void setAltIncrementValue(double increment)

Discussion
increment must fit the range of values the slider can represent—for example, if the slider has a minimum
value of 5 and a maximum value of 10, increment should be between 0 and 5. If increment is outside that
range, the value is unchanged.

If you don’t call this method, the slider behaves the same with the Option key down as with it up. This is also
the result when you call setAltIncrementValue with an increment of –1.

See Also
maxValue (page 1334)
minValue (page 1334)

setImage
This method has been deprecated. Sets the image the receiver displays in the bar behind its knob.

public void setImage(NSImage barImage)

Discussion
The slider may scale and distort barImage to fit inside the bar.

The knob may cover part of the image. If you want the image to be visible all the time, you’re better off
placing it near the slider.

Instance Methods 1335
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

See Also
setImage (page 1335)

setKnobThickness
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

public void setKnobThickness(float thickness)

Discussion
The thickness is defined to be the extent of the knob along the long dimension of the bar. In a vertical slider,
a knob’s thickness is its height; in a horizontal slider, a knob’s thickness is its width.

See Also
knobThickness (page 1333)

setMaxValue
Sets the maximum value the receiver can send to its target to maxValue.

public void setMaxValue(double maxValue)

Discussion
A horizontal slider sends its maximum value when its knob is all the way to the right; a vertical slider sends
its maximum value when its knob is at the top.

See Also
maxValue (page 1334)

setMinValue
Sets the minimum value the receiver can send to its target to minValue.

public void setMinValue(double minValue)

Discussion
A horizontal slider sends its minimum value when its knob is all the way to the left; a vertical slider sends its
minimum value when its knob is at the bottom.

See Also
minValue (page 1334)

setNumberOfTickMarks
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximum values) to numberOfTickMarks.

public void setNumberOfTickMarks(int numberOfTickMarks)

1336 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Discussion
By default, this value is 0, and no tick marks appear. The number of tick marks assigned to a slider, along
with the slider’s minimum and maximum values, determines the values associated with the tick marks. In its
implementation of this method, the receiving NSSlider simply invokes the method of the same name of its
NSSliderCell.

See Also
numberOfTickMarks (page 1334)

setTickMarkPosition
Sets where tick marks appear relative to the receiver.

public void setTickMarkPosition(int position)

Discussion
For horizontal sliders, position can be NSSliderCell.TickMarkBelow (the default) or
NSSliderCell.TickMarkAbove; for vertical sliders, position can be NSSliderCell.TickMarkLeft
(the default) or NSSliderCell.TickMarkRight. This method has no effect if no tick marks have been
assigned (that is, numberOfTickMarks (page 1334) returns 0). In its implementation of this method, the
receiving NSSlider simply invokes the method of the same name of its NSSliderCell.

See Also
tickMarkPosition (page 1338)

setTitle
This method has been deprecated. Sets the title the receiver displays in the bar behind its knob.

public void setTitle(String barTitle)

Discussion
The knob may cover part or all of the title. If you want the title to be visible all the time, you’re better off
placing a label near the slider.

See Also
title (page 1338)

setTitleCell
This method has been deprecated. Sets the cell used to draw the receiver’s title.

public void setTitleCell(NSCell titleCell)

Discussion
You only need to invoke this method if the default title cell, NSTextFieldCell, doesn’t suit your needs—that
is, you want to display the title in a manner that NSTextFieldCell doesn’t permit. When you do choose to
override the default, titleCell should be an instance of a subclass of NSTextFieldCell.

See Also
titleCell (page 1339)

Instance Methods 1337
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

setTitleColor
This method has been deprecated. Sets the color used to draw the receiver’s title to color.

public void setTitleColor(NSColor color)

See Also
titleColor (page 1339)

setTitleFont
This method has been deprecated. Sets the font used to draw the receiver’s title.

public void setTitleFont(NSFont font)

See Also
titleFont (page 1339)

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

public int tickMarkPosition()

Discussion
Possible values are NSSliderCell.TickMarkBelow, NSSliderCell.TickMarkAbove,
NSSliderCell.TickMarkLeft, and NSSliderCell.TickMarkRight (the last two are for vertical sliders).
The default alignments are NSSliderCell.TickMarkBelow and NSSliderCell.TickMarkLeft. In its
implementation of this method, the receiving NSSlider simply invokes the method of the same name of its
NSSliderCell.

See Also
setTickMarkPosition (page 1337)

tickMarkValueAtIndex
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an
index of 0).

public double tickMarkValueAtIndex(int index)

Discussion
In its implementation of this method, the receiving NSSlider simply invokes the method of the same name
of its NSSliderCell.

title
Returns the receiver’s title.

public String title()

1338 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Discussion
The default title is the empty string ("").

See Also
setTitle (page 1337)

titleCell
This method has been deprecated. Returns null.

public NSCell titleCell()

See Also
setTitleCell (page 1337)

titleColor
This method has been deprecated. Returns null.

public NSColor titleColor()

See Also
setTitleColor (page 1338)

titleFont
This method has been deprecated. Returns null.

public NSFont titleFont()

See Also
setTitleFont (page 1338)

Instance Methods 1339
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

1340 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 103

NSSlider

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Slider Programming Topics for Cocoa

Overview

An NSSliderCell controls the appearance and behavior of an NSSlider (page 1329), or of a single slider in an
NSMatrix.

You can customize an NSSliderCell to a certain degree, using its set... methods. If these methods do not
allow you sufficient flexibility, you can create a subclass. In that subclass, you can override any of the following
methods: knobRectFlipped (page 1346), drawBarInside (page 1345), drawKnob (page 1346), and
prefersTrackingUntilMouseUp (page 1344).

Tasks

Constructors

NSSliderCell (page 1344)
Creates an empty NSSliderCell.

Asking About the Cell’s Behavior

altIncrementValue (page 1345)
Returns the amount the slider will change its value when the user drags the knob with the Option
key held down.

prefersTrackingUntilMouseUp (page 1344)
By default, this method returns true, so an NSSliderCell continues to track the cursor even after the
cursor leaves the cell’s tracking rectangle.

trackRect (page 1353)
Returns the rectangle within which the cell tracks the cursor while the mouse button is down.

Overview 1341
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

Setting the Slider Type

setSliderType (page 1350)
Sets the type of slider to a bar or a dial.

sliderType (page 1351)
Returns the slider type; either a bar or a dial.

Changing the Cell’s Behavior

setAltIncrementValue (page 1348)
Sets the amount by which the receiver modifies its value when the knob is Option-dragged.

Displaying the Cell

knobRectFlipped (page 1346)
Returns the rectangle in which the knob will be drawn, specified in the coordinate system of the
NSSlider or NSMatrix with which the receiver is associated.

drawBarInside (page 1345)
Draws the slider’s bar—but not its bezel or knob—inside aRect.

drawKnob (page 1346)
Calculates the rectangle in which the knob should be drawn, then invokes drawKnobInRect (page
1346) to actually draw the knob.

drawKnobInRect (page 1346)
Draws the knob in knobRect.

Asking About the Cell’s Appearance

knobThickness (page 1347)
Returns the knob’s thickness, in pixels.

isVertical (page 1346)
Returns 1 if the slider is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for
example, if the slider hasn’t been displayed yet).

title (page 1352)
This method has been deprecated. Returns the slider’s title.

titleCell (page 1352)
This method has been deprecated. Returns null.

titleFont (page 1352)
This method has been deprecated. Returns null.

titleColor (page 1352)
This method has been deprecated. Returns null.

1342 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

Changing the Cell’s Appearance

setKnobThickness (page 1349)
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

setTitle (page 1350)
This method has been deprecated. Sets the title in the bar behind the slider’s knob to title.

setTitleCell (page 1351)
This method has been deprecated. Sets the cell used to draw the slider’s title.

setTitleColor (page 1351)
This method has been deprecated. Sets the color used to draw the slider’s title.

setTitleFont (page 1351)
This method has been deprecated. Sets the font used to draw the slider’s title.

Asking About the Value Limits

maxValue (page 1347)
Returns the maximum value the slider can send to its target.

minValue (page 1347)
Returns the minimum value the slider can send to its target.

Changing the Value Limits

setMaxValue (page 1349)
Sets the maximum value the slider can send to its target to aDouble.

setMinValue (page 1349)
Sets the minimum value the slider can send to its target to aDouble.

Managing Tick Marks

allowsTickMarkValuesOnly (page 1345)
Returns whether the receiver fixes its values to those values represented by its tick marks.

closestTickMarkValueToValue (page 1345)
Returns the value of the tick mark closest to aValue.

indexOfTickMarkAtPoint (page 1346)
Returns the index of the tick mark closest to the location of the slider represented by point.

numberOfTickMarks (page 1347)
Returns the number of tick marks associated with the slider.

rectOfTickMarkAtIndex (page 1348)
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark
is at index 0).

setAllowsTickMarkValuesOnly (page 1348)
Sets whether the receiver’s values are fixed to the values represented by the tick marks to flag.

Tasks 1343
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

setNumberOfTickMarks (page 1349)
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum
and maximum values) to numberOfTickMarks.

setTickMarkPosition (page 1350)
Sets where tick marks appear relative to the receiver.

tickMarkPosition (page 1351)
Returns how the receiver’s tick marks are aligned with it.

tickMarkValueAtIndex (page 1352)
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has
an index of 0).

Constructors

NSSliderCell
Creates an empty NSSliderCell.

public NSSliderCell()

Creates an NSSliderCell initialized with aString.

public NSSliderCell(String aString)

Creates an NSSliderCell initialized with anImage.

public NSSliderCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Static Methods

prefersTrackingUntilMouseUp
By default, this method returns true, so an NSSliderCell continues to track the cursor even after the cursor
leaves the cell’s tracking rectangle.

public static boolean prefersTrackingUntilMouseUp()

Discussion
This means that, once you take hold of a slider’s knob (by putting the cursor inside the cell’s frame rectangle
and pressing the mouse button), you retain control of the knob until you release the mouse button, even if
you drag the cursor clear to the other side of the screen.

Never call this method explicitly. Override it if you create a subclass of NSSliderCell that you want to track
the mouse differently.

1344 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

Instance Methods

allowsTickMarkValuesOnly
Returns whether the receiver fixes its values to those values represented by its tick marks.

public boolean allowsTickMarkValuesOnly()

See Also
setAllowsTickMarkValuesOnly (page 1348)

altIncrementValue
Returns the amount the slider will change its value when the user drags the knob with the Option key held
down.

public double altIncrementValue()

Discussion
Unless you call setAltIncrementValue (page 1348), altIncrementValue (page 1345) returns –1.0, and the
slider behaves no differently with the Option key down than with it up.

See Also
setAltIncrementValue (page 1348)

closestTickMarkValueToValue
Returns the value of the tick mark closest to aValue.

public double closestTickMarkValueToValue(double aValue)

See Also
indexOfTickMarkAtPoint (page 1346)

drawBarInside
Draws the slider’s bar—but not its bezel or knob—inside aRect.

public void drawBarInside(NSRect aRect, boolean flipped)

Discussion
aRect is the bounds of the bar, not its interior rect.

The flipped argument indicates whether the cell’s control view—that is, the NSSlider or NSMatrix associated
with the NSSliderCell—has a flipped coordinate system.

You should never invoke this method explicitly. It’s included so you can override it in a subclass.

See Also
drawKnobInRect (page 1346)

Instance Methods 1345
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

drawKnob
Calculates the rectangle in which the knob should be drawn, then invokes drawKnobInRect (page 1346) to
actually draw the knob.

public void drawKnob()

Discussion
Before this message is sent, a lockFocus method must be sent to the cell’s control view.

You might invoke this method if you override one of the display methods belonging to NSControl or NSCell.

If you create a subclass of NSSliderCell, don’t override this method. Override drawKnobInRect (page 1346)
instead.

drawKnobInRect
Draws the knob in knobRect.

public void drawKnobInRect(NSRect knobRect)

Discussion
Before this message is sent, a lockFocus (page 1759) message must be sent to the cell’s control view.

You should never invoke this method explicitly. It’s included so you can override it in a subclass.

indexOfTickMarkAtPoint
Returns the index of the tick mark closest to the location of the slider represented by point.

public int indexOfTickMarkAtPoint(NSPoint point)

Discussion
If point is not within the bounding rectangle (plus an extra pixel of space) of any tick mark, the method
returns NSArray.NotFound. This method invokes rectOfTickMarkAtIndex (page 1348) for each tick mark
on the slider until it finds a tick mark containing point.

isVertical
Returns 1 if the slider is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for example,
if the slider hasn’t been displayed yet).

public int isVertical()

Discussion
A slider is defined as vertical if its height is greater than its width.

knobRectFlipped
Returns the rectangle in which the knob will be drawn, specified in the coordinate system of the NSSlider or
NSMatrix with which the receiver is associated.

1346 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

public NSRect knobRectFlipped(boolean flipped)

Discussion
flipped indicates whether that coordinate system is flipped, a question you can answer by sending NSView’s
isFlipped (page 1756) message to the NSMatrix or NSSlider.

The knob rectangle depends on where in the slider the knob belongs—that is, it depends on the receiver’s
minimum and maximum values and on the value the position of the knob will represent.

You should never invoke this method explicitly. It’s included so you can override it in a subclass.

knobThickness
Returns the knob’s thickness, in pixels.

public float knobThickness()

Discussion
The thickness is defined to be the extent of the knob along the long dimension of the bar. In a vertical slider,
then, a knob’s thickness is its height; in a horizontal slider, its thickness is its width.

See Also
setKnobThickness (page 1349)

maxValue
Returns the maximum value the slider can send to its target.

public double maxValue()

Discussion
A horizontal slider sends its maximum value when the knob is at the right end of the slider; a vertical slider
sends it when the knob is at the top. The maximum selectable value for a circular slider is just below maxValue;
for example, if maxValue is 360, you can set the dial up to 359.999.

See Also
setMaxValue (page 1349)

minValue
Returns the minimum value the slider can send to its target.

public double minValue()

Discussion
A vertical slider sends this value when its knob is at the bottom; a horizontal slider sends it when its knob is
all the way to the left; a circular slider sends it when its knob is at the top.

numberOfTickMarks
Returns the number of tick marks associated with the slider.

Instance Methods 1347
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

public int numberOfTickMarks()

Discussion
The tick marks assigned to the minimum and maximum values are included.

See Also
setNumberOfTickMarks (page 1349)

rectOfTickMarkAtIndex
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0).

public NSRect rectOfTickMarkAtIndex(int index)

Discussion
If no tick mark is associated with index, the method throws RangeException.

See Also
indexOfTickMarkAtPoint (page 1346)

setAllowsTickMarkValuesOnly
Sets whether the receiver’s values are fixed to the values represented by the tick marks to flag.

public void setAllowsTickMarkValuesOnly(boolean flag)

Discussion
For example, if a slider has a minimum value of 0, a maximum value of 100, and five markers, the allowable
values are 0, 25, 50, 75, and 100. When users move the slider’s knob, it jumps to the tick mark nearest the
cursor when the mouse button is released. This method has no effect if the slider has no tick marks.

See Also
allowsTickMarkValuesOnly (page 1345)

setAltIncrementValue
Sets the amount by which the receiver modifies its value when the knob is Option-dragged.

public void setAltIncrementValue(double increment)

Discussion
increment should fit the range of values the slider can represent—for example, if the slider has a minimum
value of 5 and a maximum value of 10, increment should be between 0 and 5.

If you don’t call this method, the slider behaves the same with the Option key down as with it up. This is also
the result when you call setAltIncrementValue (page 1348) with an increment of –1.

See Also
maxValue (page 1347)
minValue (page 1347)

1348 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

setKnobThickness
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

public void setKnobThickness(float thickness)

Discussion
The thickness is defined to be the extent of the knob along the long dimension of the bar. In a vertical slider,
then, a knob’s thickness is its height; in a horizontal slider, its thickness is its width.

See Also
knobThickness (page 1347)

setMaxValue
Sets the maximum value the slider can send to its target to aDouble.

public void setMaxValue(double aDouble)

Discussion
A horizontal slider sends its maximum value when its knob is all the way to the right; a vertical slider sends
its maximum value when its knob is at the top. The maximum selectable value for a circular slider is just
below maxValue; for example, if maxValue is 360, you can set the dial up to 359.999.

See Also
maxValue (page 1347)

setMinValue
Sets the minimum value the slider can send to its target to aDouble.

public void setMinValue(double aDouble)

Discussion
A horizontal slider sends its minimum value when its knob is all the way to the left; a vertical slider sends its
minimum value when its knob is at the bottom; a circular slider sends it when its knob is at the top.

See Also
minValue (page 1347)

setNumberOfTickMarks
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximum values) to numberOfTickMarks.

public void setNumberOfTickMarks(int numberOfTickMarks)

Discussion
By default, this value is 0, and no tick marks appear. The number of tick marks assigned to a slider, along
with the slider’s minimum and maximum values, determines the values associated with the tick marks.

Instance Methods 1349
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

See Also
numberOfTickMarks (page 1347)

setSliderType
Sets the type of slider to a bar or a dial.

public void setSliderType(int sliderType)

Discussion
Possible values for sliderType are described in “Constants” (page 1353). If you select CircularSlider, then
you get a fixed-size round slider. The minimum value (minValue) is at the top, and the value increases as you
go clockwise around the dial. The maximum selectable value is just below maxValue; for example, if maxValue
is 360, you can set the dial up to 359.999. You can use the setNumberOfTickMarks (page 1349) method to
display tick marks, and you can use the setAllowsTickMarkValuesOnly (page 1348) method to specify
that values are limited to those values represented by tick marks. You can set this control to regular or small
sizes; the mini size is not supported.

Availability
Available in Mac OS X v10.3 and later.

See Also
sliderType (page 1351)
setNumberOfTickMarks (page 1349)
setAllowsTickMarkValuesOnly (page 1348)

setTickMarkPosition
Sets where tick marks appear relative to the receiver.

public void setTickMarkPosition(int position)

Discussion
Possible values for position are described in “Constants” (page 1353). This method has no effect if no tick
marks have been assigned (that is, numberOfTickMarks (page 1347) returns 0).

See Also
tickMarkPosition (page 1351)

setTitle
This method has been deprecated. Sets the title in the bar behind the slider’s knob to title.

public void setTitle(String title)

See Also
title (page 1352)

1350 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

setTitleCell
This method has been deprecated. Sets the cell used to draw the slider’s title.

public void setTitleCell(NSCell aCell)

Discussion
You only need to invoke this method if the default title cell, NSTextFieldCell, doesn’t suit your needs—that
is, if you want to display the title in a manner that NSTextFieldCell doesn’t permit. When you do choose to
override the default, aCell should be an instance of a subclass of NSTextFieldCell.

See Also
titleCell (page 1352)

setTitleColor
This method has been deprecated. Sets the color used to draw the slider’s title.

public void setTitleColor(NSColor color)

See Also
titleColor (page 1352)

setTitleFont
This method has been deprecated. Sets the font used to draw the slider’s title.

public void setTitleFont(NSFont font)

See Also
titleFont (page 1352)

sliderType
Returns the slider type; either a bar or a dial.

public int sliderType()

Discussion
Possible return values are described in “Constants” (page 1353).

Availability
Available in Mac OS X v10.3 and later.

See Also
setSliderType (page 1350)

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

Instance Methods 1351
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

public int tickMarkPosition()

Discussion
Possible return values are described in “Constants” (page 1353). The default alignments are TickMarkBelow
and TickMarkLeft.

See Also
setTickMarkPosition (page 1350)

tickMarkValueAtIndex
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an
index of 0).

public double tickMarkValueAtIndex(int index)

title
This method has been deprecated. Returns the slider’s title.

public String title()

Discussion
The default title is the empty string ("").

See Also
setTitle (page 1350)

titleCell
This method has been deprecated. Returns null.

public NSCell titleCell()

See Also
setTitleCell (page 1351)

titleColor
This method has been deprecated. Returns null.

public NSColor titleColor()

See Also
setTitleColor (page 1351)

titleFont
This method has been deprecated. Returns null.

1352 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

public NSFont titleFont()

See Also
setTitleFont (page 1351)

trackRect
Returns the rectangle within which the cell tracks the cursor while the mouse button is down.

public NSRect trackRect()

Discussion
This rectangle includes the slider bar, but not the bezel.

Constants

NSSliderCell defines the following constants to specify where the tick marks appear; they are used in
setTickMarkPosition (page 1350) and tickMarkPosition (page 1351):

DescriptionConstant

Tick marks below (for horizontal sliders); the default for horizontal sliders.TickMarkBelow

Tick marks above (for horizontal sliders).TickMarkAbove

Tick marks to the left (for vertical sliders); the default. for vertical slidersTickMarkLeft

Tick marks to the right (for vertical sliders).TickMarkRight

NSSliderCell defines the following slider types, used by setSliderType (page 1350) and sliderType (page
1351):

DescriptionConstant

A bar-shaped slider.LinearSlider

A circular slider; that is, a dial.CircularSlider

Constants 1353
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

1354 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 104

NSSliderCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Sound Programming Topics for Cocoa

Overview

The NSSound class provides a simple interface for loading and playing AIFF, WAV, and NeXT “.snd” files.
NSSound supports 16-bit, mono and stereo, 44.1KHz and 22.05KHz data.

Tasks

Constructors

NSSound (page 1356)
Creates an empty NSSound.

Playing

isPlaying (page 1358)
Returns true if the receiver is currently playing its audio data; otherwise it returns false.

pause (page 1358)
Pauses audio playback. Returns true if successful, otherwise false.

play (page 1359)
Initiates audio playback. Returns true if successful, otherwise false.

resume (page 1359)
Resumes audio playback; assumes the receiver has been previously paused by sending it pause (page
1358). Returns true if successful, otherwise false.

stop (page 1359)
Halts audio playback. Returns true if successful, otherwise false.

Overview 1355
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 105

NSSound

Working with Pasteboards

canInitWithPasteboard (page 1357)
Tests whether the receiver can create an instance of itself from the data represented by pasteboard.
Returns true if the receiver can handle the data represented by pasteboard.
soundUnfilteredPasteboardTypes (page 1358) is used to find out if the class can handle the data
in pasteboard.

soundUnfilteredPasteboardTypes (page 1358)
Returns an array of pasteboard types that NSSound can accept.

writeToPasteboard (page 1359)
Writes the receiver’s data to pasteboard.

Working with Delegates

delegate (page 1358)
Returns the receiver’s delegate.

setDelegate (page 1359)
Set the receiver’s delegate to be aDelegate.

Naming Sounds

soundNamed (page 1357)
Returns the NSSound instance associated with name.

soundUnfilteredFileTypes (page 1358)
Returns an array of strings representing those file types that NSSound understands. The array returned
by this method may be passed directly to NSOpenPanel’s runModalForTypes (page 1024).

name (page 1358)
Returns the name assigned to the receiver, or null if no name has been assigned.

setName (page 1359)
Registers the receiver under the name specified by string, provided that no other NSSound is
registered using that name. If the receiver is already registered under another name, setName first
unregisters the prior name. setName returns true unless another NSSound is registered using the
name specified by string, in which case setName does nothing and returns false.

Constructors

NSSound
Creates an empty NSSound.

public NSSound()

Creates an NSSound instance using the data on aPasteboard. NSSound expects the data to have a proper
magic number, sound header, and data for the formats it supports.

1356 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 105

NSSound

public NSSound(NSPasteboard aPasteboard)

Creates an NSSound instance with the contents of the file at aString. If byRef is true, only the name of
the sound is stored with the NSSound instance when archived; otherwise the audio data is archived along
with the instance.

public NSSound(String aString, boolean byRef)

Creates an NSSound instance with the audio data at aURL. If byRef is true, only the name of the sound is
stored with the NSSound instance when archived; otherwise the audio data is archived along with the instance.

public NSSound(java.net.URL aURL, boolean flag)

Creates an NSSound instance and initializes it with the contents of data.

public NSSound(NSData data)

Discussion
NSSound expects the data to have a proper magic number, sound header, and data for the formats it supports.

Static Methods

canInitWithPasteboard
Tests whether the receiver can create an instance of itself from the data represented by pasteboard. Returns
true if the receiver can handle the data represented by pasteboard.
soundUnfilteredPasteboardTypes (page 1358) is used to find out if the class can handle the data in
pasteboard.

public static boolean canInitWithPasteboard(NSPasteboard pasteboard)

soundNamed
Returns the NSSound instance associated with name.

public static NSSound soundNamed(String name)

Discussion
The returned object can be one of the following:

 ■ One that’s been assigned a name with setName (page 1359)

 ■ One of the named system sounds provided by the Application Kit

If there’s no known NSSound with name, this method tries to create one by searching for sound files in the
application’s main bundle (see NSBundle for a description of how the bundle’s contents are searched). If no
sound file can be located in the application main bundle, the /Library/Sounds and ~/Library/Sounds
directories are searched. If no data can be found for name, no object is created, and null is returned.

The preferred way to locate a sound is to pass a name without the file extension.

Static Methods 1357
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 105

NSSound

Note: AIFF files stored on disk must use the .aiff file extension (not .aif) in order to be located by
soundNamed.

soundUnfilteredFileTypes
Returns an array of strings representing those file types that NSSound understands. The array returned by
this method may be passed directly to NSOpenPanel’s runModalForTypes (page 1024).

public static NSArray soundUnfilteredFileTypes()

soundUnfilteredPasteboardTypes
Returns an array of pasteboard types that NSSound can accept.

public static NSArray soundUnfilteredPasteboardTypes()

Instance Methods

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 1359)

isPlaying
Returns true if the receiver is currently playing its audio data; otherwise it returns false.

public boolean isPlaying()

name
Returns the name assigned to the receiver, or null if no name has been assigned.

public String name()

See Also
setName (page 1359)

pause
Pauses audio playback. Returns true if successful, otherwise false.

1358 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 105

NSSound

public boolean pause()

play
Initiates audio playback. Returns true if successful, otherwise false.

public boolean play()

resume
Resumes audio playback; assumes the receiver has been previously paused by sending it pause (page 1358).
Returns true if successful, otherwise false.

public boolean resume()

setDelegate
Set the receiver’s delegate to be aDelegate.

public void setDelegate(Object aDelegate)

See Also
delegate (page 1358)

setName
Registers the receiver under the name specified by string, provided that no other NSSound is registered
using that name. If the receiver is already registered under another name, setName first unregisters the prior
name. setName returns true unless another NSSound is registered using the name specified by string, in
which case setName does nothing and returns false.

public void setName(String string)

See Also
name (page 1358)
soundNamed (page 1357)

stop
Halts audio playback. Returns true if successful, otherwise false.

public boolean stop()

writeToPasteboard
Writes the receiver’s data to pasteboard.

public void writeToPasteboard(NSPasteboard pasteboard)

Instance Methods 1359
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 105

NSSound

1360 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 105

NSSound

Inherits from NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Speech

Overview

The NSSpeechRecognizer class is the Cocoa interface to Speech Recognition on Mac OS X. Speech Recognition
is architected as a “command and control” voice recognition system. It uses a finite state grammar and listens
for phrases in that grammar. When it recognizes a phrase, it notifies the client process. This architecture is
different from that used to support dictation.

Through an NSSpeechRecognizer instance, Cocoa applications can use the speech recognition engine built
into Mac OS X to recognize spoken commands. With speech recognition, users can accomplish complex,
multi-step tasks with one spoken command—for example, “schedule a meeting with Adam and John tomorrow
at ten o’clock.”

The NSSpeechRecognizer class has methods that let you specify which spoken words should be recognized
as commands (setCommands (page 1365)) and to start and stop listening (startListening (page 1366) and
stopListening (page 1366)). When the Speech Recognition facility recognizes one of the designated
commands, NSSpeechRecognizer invokes the delegation method
speechRecognizerDidRecognizeCommand (page 1367), allowing the delegate to perform the command.

Speech Recognition is just one of the Mac OS X speech technologies. The Speech Synthesis technology allows
applications to “pronounce” written text in U.S. English; the NSSpeechSynthesizer class is the Cocoa interface
to this technology. These technologies provide benefits for all users, and are particularly useful to those users
who have difficulties seeing the screen or using the mouse and keyboard. By incorporating speech into your
application, you can provide a concurrent mode of interaction for your users: In Mac OS X, your software can
accept input and provide output without requiring users to change their working context.

Tasks

Constructors

NSSpeechRecognizer (page 1363)
Creates and returns an NSSpeechRecognizer.

Overview 1361
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

Listening

startListening (page 1366)
Tells the speech recognition engine to begin listening for commands.

stopListening (page 1366)
Tells the speech recognition engine to suspend listening for commands.

Managing Delegates

setDelegate (page 1365)
Sets the receiver’s delegate.

delegate (page 1363)
Returns the receiver’s delegate.

Managing Recognizer Attributes

setCommands (page 1365)
Sets the list of commands for which the receiver should listen to commands.

commands (page 1363)
Returns an array of strings defining the commands for which the receiver should listen.

setDisplayedCommandsTitle (page 1365)
Sets whether the speech-recognition commands should be displayed indented under a section title
in the Speech Commands window, and if so, sets the title string to display.

displayedCommandsTitle (page 1364)
Returns the title of the commands section or null if there is no title.

setListensInForegroundOnly (page 1366)
Sets whether the receiver should only enable its commands when the receiver’s application is the
frontmost one.

listensInForegroundOnly (page 1364)
Returns whether the receiver should only enable its commands when the receiver’s application is the
frontmost one.

setBlocksOtherRecognizers (page 1364)
Sets whether the receiver’s commands should be the only enabled commands on the system.

blocksOtherRecognizers (page 1363)
Returns whether the receiver should block all other recognizers (that is, other applications attempting
to understand spoken commands) when listening.

Recognizing speech

speechRecognizerDidRecognizeCommand (page 1367) delegate method
Invoked when the recognition engine has recognized the application command command.

1362 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

Constructors

NSSpeechRecognizer
Creates and returns an NSSpeechRecognizer.

public NSSpeechRecognizer()

Discussion
Returns null if creation did not succeed.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

blocksOtherRecognizers
Returns whether the receiver should block all other recognizers (that is, other applications attempting to
understand spoken commands) when listening.

public boolean blocksOtherRecognizers()

Availability
Available in Mac OS X v10.3 and later.

See Also
setBlocksOtherRecognizers (page 1364)

commands
Returns an array of strings defining the commands for which the receiver should listen.

public NSArray commands()

Availability
Available in Mac OS X v10.3 and later.

See Also
setCommands (page 1365)

delegate
Returns the receiver’s delegate.

public Object delegate()

Constructors 1363
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 1365)

displayedCommandsTitle
Returns the title of the commands section or null if there is no title.

public String displayedCommandsTitle()

Discussion
Commands are displayed in the Speech Commands window indented under a section with this title.

Availability
Available in Mac OS X v10.3 and later.

See Also
setDisplayedCommandsTitle (page 1365)

listensInForegroundOnly
Returns whether the receiver should only enable its commands when the receiver’s application is the frontmost
one.

public boolean listensInForegroundOnly()

Availability
Available in Mac OS X v10.3 and later.

See Also
setListensInForegroundOnly (page 1366)

setBlocksOtherRecognizers
Sets whether the receiver’s commands should be the only enabled commands on the system.

public void setBlocksOtherRecognizers(boolean flag)

Discussion
If flag is true, all other speech recognition commands on the system are disabled until the receiver object
is released, listening is stopped, or this method is called again with flag as false. Because this option
effectively takes over the computer at the expense of other applications using speech recognition, you should
use it only in circumstances that warrant it, such as when listening for a response important to overall system
operation or when an application is running in full-screen mode (such as games and presentation software).
The default is false.

Availability
Available in Mac OS X v10.3 and later.

1364 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

See Also
blocksOtherRecognizers (page 1363)

setCommands
Sets the list of commands for which the receiver should listen to commands.

public void setCommands(NSArray commands)

Discussion
If the receiver is already listening, the current command list is updated and listening continues. commands
should be an array of String objects. The commands must be in U.S. English.

Availability
Available in Mac OS X v10.3 and later.

See Also
commands (page 1363)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object anObject)

Availability
Available in Mac OS X v10.3 and later.

See Also
delegate (page 1363)

setDisplayedCommandsTitle
Sets whether the speech-recognition commands should be displayed indented under a section title in the
Speech Commands window, and if so, sets the title string to display.

public void setDisplayedCommandsTitle(String title)

Discussion
When title is a non-empty string, the receiver’s commands are displayed under a section with title. If
title is null or an empty string, the commands are displayed at the top level of the Speech Commands
window. This default is not to display the commands under a section title.

Availability
Available in Mac OS X v10.3 and later.

See Also
displayedCommandsTitle (page 1364)

Instance Methods 1365
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

setListensInForegroundOnly
Sets whether the receiver should only enable its commands when the receiver’s application is the frontmost
one.

public void setListensInForegroundOnly(boolean flag)

Discussion
If flag is true, the receiver’s commands are only recognized when the receiver’s application is the frontmost
application—normally the application displaying the menu bar. If flag is false, the commands are recognized
regardless of the visibility of applications, including agent applications (agent applications, which have the
LSUIElement property set, do not appear in the Dock or Force Quit window). The default is true.

Availability
Available in Mac OS X v10.3 and later.

See Also
listensInForegroundOnly (page 1364)

startListening
Tells the speech recognition engine to begin listening for commands.

public void startListening()

Discussion
When a command is recognized the message speechRecognizerDidRecognizeCommand (page 1367) is
sent to the delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
stopListening (page 1366)

stopListening
Tells the speech recognition engine to suspend listening for commands.

public void stopListening()

Availability
Available in Mac OS X v10.3 and later.

See Also
startListening (page 1366)

1366 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

Delegate Methods

speechRecognizerDidRecognizeCommand
Invoked when the recognition engine has recognized the application command command.

public abstract void speechRecognizerDidRecognizeCommand(NSSpeechRecognizer sender,
Object command)

Discussion
command is one of the strings from the array passed to setCommands (page 1365). The delegate typically
evaluates which command was recognized and performs the related action.

Availability
Available in Mac OS X v10.3 and later.

Delegate Methods 1367
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

1368 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 106

NSSpeechRecognizer

Inherits from NSObject

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Speech

Overview

The NSSpeechSynthesizer class is the Cocoa interface to Speech Synthesis on Mac OS X.

Speech Synthesis, also called text-to-speech (TTS), parses text and converts it into audible speech. It offers a
concurrent feedback mode that can be used in concert with or in place of traditional visual and aural
notifications. For example, your application can use an NSSpeechSynthesizer object to “pronounce” the text
of important alert dialogs. Synthesized speech has several advantages. It can provide urgent information to
users without forcing them to shift attention from their current task. And because speech doesn’t rely on
visual elements for meaning, it is a crucial technology for users with vision or attention disabilities.

In addition, synthesized speech can help save system resources. Because sound samples can take up large
amounts of room on disk, using text in place of sampled sound is extremely efficient, and so a multimedia
application might use an NSSpeechSynthesizer object to provide a narration of a QuickTime movie instead
of including sampled-sound data on a movie track.

When you create an NSSpeechSynthesizer, the class uses the default voice selected in Speech preferences
pane of System Preferences. Alternatively, you can select a specific voice for an NSSpeechSynthesis instance
. To begin speaking, send startSpeakingString (page 1375) to the instance. The message generates speech
through the computer’s default sound output deviceor saves the generated speech to a file. If you wish to
be notified when the current speech concludes, set a delegate object using setDelegate (page 1373) and
implement the delegate method speechSynthesizerDidFinishSpeaking (page 1377).

Speech Synthesis is just one of the Mac OS X speech technologies. The Speech Recognizer technology allows
applications to “listen to” text spoken in U.S. English; the NSSpeechRecognizer class is the Cocoa interface
to this technology. Both technologies provide benefits for all users, and are particularly useful to those users
who have difficulties seeing the screen or using the mouse and keyboard.

Overview 1369
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Tasks

Constructors

NSSpeechSynthesizer (page 1371)
Creates and returns and NSSpeechSynthesizer with the default voice.

Testing for Speaking

isAnyApplicationSpeaking (page 1373)
Returns whether any other application is currently synthesizing speech.

Obtaining Voice Information

availableVoices (page 1372)
Returns an array of identifiers for each available voice on the system.

attributesForVoice (page 1372)
Returns a dictionary object whose elements describe the attributes of the voice specified by voice
(a VoiceIdentifier attribute).

defaultVoice (page 1372)
Returns the VoiceIdentifier string identifying the current default voice.

Speaking

isSpeaking (page 1373)
Returns whether the receiver is currently generating synthesized speech.

startSpeakingString (page 1375)
Begins synthesizing the text in string through the computer's default sound output device.

stopSpeaking (page 1376)
If the receiver is currently generating speech, synthesis is halted, and the message
speechSynthesizerDidFinishSpeaking (page 1377) is sent to the delegate.

Managing Delegates

setDelegate (page 1373)
Sets the receiver’s delegate.

delegate (page 1373)
Returns the receiver’s delegate.

1370 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Managing Synthesizer Attributes

setUsesFeedbackWindow (page 1374)
Sets whether the receiver displays the text and appropriate animation in the speech-feedback window
while the user is speaking.

usesFeedbackWindow (page 1376)
Returns whether spoken text should be displayed in the speech-feedback window when that window
is visible.

setVoice (page 1374)
Set the current voice of the receiver to the voice specified by the identifier voice, a VoiceIdentifier
attribute.

voice (page 1376)
Returns the string identifier for the receiver's current voice (VoiceIdentfier).

Speaking

speechSynthesizerWillSpeakWord (page 1378) delegate method
Invoked just before the synthesized word, defined by the character range characterRange in string,
is sent to the default sound output device (or to the AIFF file if saving to file)

speechSynthesizerWillSpeakPhoneme (page 1377) delegate method
Invoked just before the synthesized phoneme phonemeOpcode is sent to the default sound output
device (or AIFF file if saving to file).

speechSynthesizerDidFinishSpeaking (page 1377) delegate method
Invoked when an NSSpeechSynthesizer object has finished speaking.

Constructors

NSSpeechSynthesizer
Creates and returns and NSSpeechSynthesizer with the default voice.

public NSSpeechSynthesizer()

Discussion
Users can change the default voice in the Speech pane of System Preferences. If there is an error, creation
fails and the constructor returns null.

Availability
Available in Mac OS X v10.3 and later.

Creates and returns and NSSpeechSynthesizer with the voice having the identifier string voice, a
VoiceIdentifier attribute.

public NSSpeechSynthesizer(String voice)

Constructors 1371
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Discussion
If voice is null, this constructor uses the default voice. Users can change the default voice in the Speech
pane of System Preferences. If voice is not an available voice or if there is an error, creation fails and the
constructor returns null.

Availability
Available in Mac OS X v10.3 and later.

Static Methods

attributesForVoice
Returns a dictionary object whose elements describe the attributes of the voice specified by voice (a
VoiceIdentifier attribute).

public static NSDictionary attributesForVoice(String voice)

Discussion
Dictionary keys and values are described in “Constants” (page 1376).

Availability
Available in Mac OS X v10.3 and later.

availableVoices
Returns an array of identifiers for each available voice on the system.

public static NSArray availableVoices()

Discussion
The identifier objects are VoiceIdentifier attributes (see “Constants” (page 1376)). You can use the
voice-identifier string to find out about the attributes of the voice and to specify the voice to use for synthesis.

Availability
Available in Mac OS X v10.3 and later.

See Also
attributesForVoice (page 1372)
setVoice (page 1374)

defaultVoice
Returns the VoiceIdentifier string identifying the current default voice.

public static String defaultVoice()

Discussion
The user can change the default voice in the Speech pane in System Preferences.

1372 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Availability
Available in Mac OS X v10.3 and later.

isAnyApplicationSpeaking
Returns whether any other application is currently synthesizing speech.

public static boolean isAnyApplicationSpeaking()

Discussion
You usually invoke this method to prevent your application from speaking over speech being generated by
another application or system component.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.3 and later.

See Also
setDelegate (page 1373)

isSpeaking
Returns whether the receiver is currently generating synthesized speech.

public boolean isSpeaking()

Availability
Available in Mac OS X v10.3 and later.

See Also
startSpeakingString (page 1375)
stopSpeaking (page 1376)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object anObject)

Instance Methods 1373
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Availability
Available in Mac OS X v10.3 and later.

See Also
delegate (page 1373)

setUsesFeedbackWindow
Sets whether the receiver displays the text and appropriate animation in the speech-feedback window while
the user is speaking.

public void setUsesFeedbackWindow(boolean flag)

Discussion
If flag is true, the receiver uses the speech-feedback window if it is visible to the user when he or she
begins speaking. If flag is false, the speech-feedback window is not used. The default is true.

Using the speech-feedback window to display the synthesized text allows for integration with the
NSSpeechRecognizer class to create interactive spoken dialogues. For example, your application might use
an NSSpeechRecognizer object to listen for the command “Play some music.” When it recognizes this
command, your application might then respond by speaking “Which artist?” using an NSSpeechSynthesizer
object. Then your application can listen for a list of artist names, and so on until the user is listening to the
desired song. Having the synthesized text displayed in the speech-feedback window makes the spoken
exchange more natural and helps the user understand the synthesized speech.

Note: The delegate does not receive speechSynthesizerWillSpeakWord (page 1378) and
speechSynthesizerWillSpeakPhoneme (page 1377) messages when speaking occurs through the feedback
window.

Availability
Available in Mac OS X v10.3 and later.

See Also
usesFeedbackWindow (page 1376)

setVoice
Set the current voice of the receiver to the voice specified by the identifier voice, a VoiceIdentifier
attribute.

public boolean setVoice(String voice)

Discussion
If voice is null, receiver uses the default voice. The method returns true if the voice was successfully set;
otherwise, it returns false.

1374 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Note: An attempt to set the voice of a receiver that is currently synthesizing speech always fails and returns
false.

Availability
Available in Mac OS X v10.3 and later.

See Also
voice (page 1376)
defaultVoice (page 1372)

startSpeakingString
Begins synthesizing the text in string through the computer's default sound output device.

public boolean startSpeakingString(String string)

Discussion
Returns true if synthesis successfully starts; otherwise, it returns false (as when string is null or an
empty string). When synthesis of string finishes normally or is stopped, the message
speechSynthesizerDidFinishSpeaking (page 1377) is sent to the delegate.

Note: If the receiver is currently synthesizing speech when startSpeakingString is called, the currently
generated speech is stopped and synthesis of the text in string begins.

Availability
Available in Mac OS X v10.3 and later.

Begins synthesizing the text in string, but instead of speaking the text through the computer's default
sound output device, the receiver saves the sound data in an AIFF file at url, which identifies a local or
remote file-system location.

public boolean startSpeakingString(String string, java.net.URL url)

Discussion
Returns true if synthesis successfully starts; otherwise, it returns false (as when string is null or an
empty string). When synthesis of string finishes normally or is stopped, the message
speechSynthesizerDidFinishSpeaking (page 1377) is sent to the delegate. One example of how you
might use this method is in an email program that automatically converts new messages into sound files
that can be stored on an iPod for later listening.

Note: The delegate does not receive speechSynthesizerWillSpeakWord (page 1378) and
speechSynthesizerWillSpeakPhoneme (page 1377) messages when text is being synthesized to a file.

See Also
isSpeaking (page 1373)
stopSpeaking (page 1376)

Instance Methods 1375
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

stopSpeaking
If the receiver is currently generating speech, synthesis is halted, and the message
speechSynthesizerDidFinishSpeaking (page 1377) is sent to the delegate.

public void stopSpeaking()

Availability
Available in Mac OS X v10.3 and later.

See Also
isSpeaking (page 1373)
startSpeakingString (page 1375)

usesFeedbackWindow
Returns whether spoken text should be displayed in the speech-feedback window when that window is
visible.

public boolean usesFeedbackWindow()

Availability
Available in Mac OS X v10.3 and later.

See Also
setUsesFeedbackWindow (page 1374)

voice
Returns the string identifier for the receiver's current voice (VoiceIdentfier).

public String voice()

Availability
Available in Mac OS X v10.3 and later.

See Also
setVoice (page 1374)

Constants

The following voice attributes are defined by the NSSpeechSynthesizer class for the dictionary returned by
attributesForVoice (page 1372) (the values are all String objects):

DescriptionConstant

The name of the voice suitable for displayVoiceName

A unique string identifying the voiceVoiceIdentifier

1376 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

DescriptionConstant

The perceived age (in years) of the voiceVoiceAge

The perceived gender of the voice. May be either VoiceGenderNeuter,
VoiceGenderFemale, or VoiceGenderMale

VoiceGender

A demonstration string to speakVoiceDemoText

The language of the voice (currently US English only)VoiceLanguage

NSSpeechSynthesizer defines the following voice gender attributes, which are the allowable values of the
VoiceGender key:

DescriptionConstant

A neutral voice (neither male or female)VoiceGenderNeuter

A male voiceVoiceGenderMale

A female voiceVoiceGenderFemale

Delegate Methods

speechSynthesizerDidFinishSpeaking
Invoked when an NSSpeechSynthesizer object has finished speaking.

public abstract void speechSynthesizerDidFinishSpeaking(NSSpeechSynthesizer sender,
boolean finishedSpeaking)

Discussion
finishedSpeaking is true if speaking completed normally; otherwise, it is false if speaking was
prematurely stopped for any reason.

Availability
Available in Mac OS X v10.3 and later.

See Also
startSpeakingString (page 1375)
stopSpeaking (page 1376)

speechSynthesizerWillSpeakPhoneme
Invoked just before the synthesized phoneme phonemeOpcode is sent to the default sound output device
(or AIFF file if saving to file).

public abstract void speechSynthesizerWillSpeakPhoneme(NSSpeechSynthesizer sender,
short phonemeOpcode)

Delegate Methods 1377
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Discussion
One use of this method might be to animate a mouth on screen to match the generated speech.

Note: The delegate is not sent this message when the NSSpeechSynthesizer object is synthesizing speech
to a file (startSpeakingString (page 1375) with two parameters).

Availability
Available in Mac OS X v10.3 and later.

See Also
startSpeakingString (page 1375)

speechSynthesizerWillSpeakWord
Invoked just before the synthesized word, defined by the character range characterRange in string, is
sent to the default sound output device (or to the AIFF file if saving to file)

public abstract void speechSynthesizerWillSpeakWord(NSSpeechSynthesizer sender,
NSRange characterRange, String string)

Discussion
. One use of this method might be to visually highlight the word being spoken.

Note: The delegate is not sent this message when the NSSpeechSynthesizer object is synthesizing speech
to a file (startSpeakingString (page 1375) with two parameters).

Availability
Available in Mac OS X v10.3 and later.

See Also
startSpeakingString (page 1375)

1378 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 107

NSSpeechSynthesizer

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Spell Checking

Overview

The NSSpellChecker class gives any application an interface to the Cocoa spell-checking service. To handle
all its spell checking, an application needs only one instance of NSSpellChecker. It provides a panel in which
the user can specify decisions about words that are suspect.

The spell checker also offers the ability to provide word completions to augment the text completion system
in Mac OS X version 10.3.

Tasks

Constructors

NSSpellChecker (page 1381)
Creates an empty NSSpellChecker.

Getting the Spell Checker

sharedSpellChecker (page 1381)
Returns the NSSpellChecker (one per application).

sharedSpellCheckerExists (page 1381)
Returns whether the application’s NSSpellChecker has already been created.

Managing the Spelling Panel

setAccessoryView (page 1383)
Makes an NSView object an accessory of the Spelling panel by making it a subview of the panel’s
content view.

accessoryView (page 1381)
Returns the Spelling panel’s accessory NSView object.

Overview 1379
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 108

NSSpellChecker

spellingPanel (page 1384)
Returns the spell checker’s panel.

Checking Spelling

countWordsInString (page 1382)
Returns the number of words in stringToCount.

checkSpellingOfString (page 1382)
Starts the search for a misspelled word in stringToCheck starting at startingOffset within the
string object.

guessesForWord (page 1382)
Returns an array of suggested spellings for the misspelled word word.

Setting the Language

setLanguage (page 1384)
Sets the language to use in spell checking to language.

language (page 1383)
Returns the current language used in spell checking.

Managing the Spelling Process

uniqueSpellDocumentTag (page 1381)
Returns a guaranteed unique tag to use as the spell-document tag for a document.

closeSpellDocumentWithTag (page 1382)
Notifies the receiver that the user has finished with the ignored-word document identified by tag,
causing it to throw that dictionary away.

ignoreWord (page 1383)
Instructs the spell checker to ignore all future occurrences of wordToIgnore in the document identified
by tag.

setIgnoredWords (page 1384)
Initializes the ignored-words document (a dictionary identified by tag with someWords), an array of
words to ignore.

ignoredWords (page 1383)
Returns the array of ignored words for a document identified by tag.

setWordFieldStringValue (page 1384)
Sets the string that appears in the misspelled word field, using the string object aString.

updateSpellingPanelWithMisspelledWord (page 1384)
Causes the spell checker to update the Spelling panel’s misspelled-word field to reflect word.

completionsForPartialWordRange (page 1382)

1380 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 108

NSSpellChecker

Constructors

NSSpellChecker
Creates an empty NSSpellChecker.

public NSSpellChecker()

Static Methods

sharedSpellChecker
Returns the NSSpellChecker (one per application).

public static NSSpellChecker sharedSpellChecker()

See Also
sharedSpellCheckerExists (page 1381)

sharedSpellCheckerExists
Returns whether the application’s NSSpellChecker has already been created.

public static boolean sharedSpellCheckerExists()

See Also
sharedSpellChecker (page 1381)

uniqueSpellDocumentTag
Returns a guaranteed unique tag to use as the spell-document tag for a document.

public static int uniqueSpellDocumentTag()

Discussion
Use this method to generate tags to avoid collisions with other objects that can be spell checked.

Instance Methods

accessoryView
Returns the Spelling panel’s accessory NSView object.

public NSView accessoryView()

Constructors 1381
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 108

NSSpellChecker

See Also
setAccessoryView (page 1383)

checkSpellingOfString
Starts the search for a misspelled word in stringToCheck starting at startingOffset within the string
object.

public NSRange checkSpellingOfString(String stringToCheck, int startingOffset)

Discussion
Returns the range of the first misspelled word. Wrapping occurs, but no ignored-words dictionary is used.

closeSpellDocumentWithTag
Notifies the receiver that the user has finished with the ignored-word document identified by tag, causing
it to throw that dictionary away.

public void closeSpellDocumentWithTag(int tag)

completionsForPartialWordRange
public NSArray completionsForPartialWordRange(NSRange range, String string, String

language, int tag)

Discussion
Returns an array of strings from the spell checker dictionary representing complete words that the user might
be trying to type, based off a partial word at the given range. Strings are returned in the order they should
be presented. The language argument specifies the language used in the string. If language is null, the
current selection in the Spelling panel’s pop-up menu is used.

Availability
Available in Mac OS X v10.3 and later.

countWordsInString
Returns the number of words in stringToCount.

public int countWordsInString(String stringToCount, String language)

Discussion
The language argument specifies the language used in the string. If language is null, the current selection
in the Spelling panel’s pop-up menu is used.

guessesForWord
Returns an array of suggested spellings for the misspelled word word.

public NSArray guessesForWord(String word)

1382 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 108

NSSpellChecker

Discussion
If word contains all capital letters, or its first letter is capitalized, the suggested words are capitalized in the
same way.

ignoredWords
Returns the array of ignored words for a document identified by tag.

public NSArray ignoredWords(int tag)

Discussion
Invoke this method beforecloseSpellDocumentWithTag (page 1382) if you want to store the ignored words.

See Also
setIgnoredWords (page 1384)

ignoreWord
Instructs the spell checker to ignore all future occurrences of wordToIgnore in the document identified by
tag.

public void ignoreWord(String wordToIgnore, int tag)

Discussion
You should invoke this method from within your implementation of the NSIgnoreMisspelledWords interface’s
ignoreSpelling (page 1974) method.

language
Returns the current language used in spell checking.

public String language()

See Also
setLanguage (page 1384)

setAccessoryView
Makes an NSView object an accessory of the Spelling panel by making it a subview of the panel’s content
view.

public void setAccessoryView(NSView aView)

Discussion
This method posts a WindowDidResizeNotification (page 1885) with the Spelling panel object to the
default notification center.

See Also
accessoryView (page 1381)

Instance Methods 1383
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 108

NSSpellChecker

setIgnoredWords
Initializes the ignored-words document (a dictionary identified by tag with someWords), an array of words
to ignore.

public void setIgnoredWords(NSArray someWords, int tag)

See Also
ignoredWords (page 1383)

setLanguage
Sets the language to use in spell checking to language.

public boolean setLanguage(String language)

Discussion
Returns whether the Language pop-up list in the Spelling panel lists language.

See Also
language (page 1383)

setWordFieldStringValue
Sets the string that appears in the misspelled word field, using the string object aString.

public void setWordFieldStringValue(String aString)

spellingPanel
Returns the spell checker’s panel.

public NSPanel spellingPanel()

updateSpellingPanelWithMisspelledWord
Causes the spell checker to update the Spelling panel’s misspelled-word field to reflect word.

public void updateSpellingPanelWithMisspelledWord(String word)

Discussion
You are responsible for highlighting word in the document and for extracting it from the document using
the range returned by checkSpellingOfString (page 1382). Pass the empty string as word to have the
system beep, indicating no misspelled words were found.

1384 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 108

NSSpellChecker

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Drawing and Views

Overview

An NSSplitView object stacks several subviews within one view so that the user can change their relative
sizes. By default, the split bars between the views are horizontal, so the views are one on top of the other.

Tasks

Constructors

NSSplitView (page 1387)
Creates an NSSplitView with a zero-sized frame rectangle.

Managing Component Views

adjustSubviews (page 1387)
Adjusts the sizes of the receiver’s subviews so they (plus the dividers) fill the receiver.

dividerThickness (page 1387)
Returns the thickness of the divider.

drawDividerInRect (page 1388)
Draws the divider between two of the receiver’s subviews.

isSubviewCollapsed (page 1388)
Returns true if subview is in a collapsed state, false otherwise.

Overview 1385
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

Managing Orientation

isVertical (page 1388)
Returns true if the split bars are vertical (subviews are side by side), false if they are horizontal
(views are one on top of the other).

setVertical (page 1389)
Sets whether the split bars are vertical.

Assigning a Delegate

delegate (page 1387)
Returns the receiver’s delegate.

setDelegate (page 1389)
Makes anObject the receiver’s delegate.

Managing Pane Splitters

isPaneSplitter (page 1388)
Returns true if the receiver’s splitter is a bar that goes across the split view. Returns false if the
splitter is a thumb on the regular background pattern.

setIsPaneSplitter (page 1389)
Sets the type of splitter.

Resizing subviews

splitViewResizeSubviews (page 1391) delegate method
Allows the delegate to specify custom sizing behavior for the subviews of the NSSplitView sender.

splitViewWillResizeSubviews (page 1391) delegate method

splitViewDidResizeSubviews (page 1391) delegate method

Constraining split position

splitViewConstrainMaxSplitPosition (page 1390) delegate method
Allows the delegate for sender to constrain the maximum coordinate limit of a divider when the
user drags it.

splitViewConstrainMinSplitPosition (page 1390) delegate method
Allows the delegate for sender to constrain the minimum coordinate limit of a divider when the user
drags it.

splitViewConstrainSplitPosition (page 1391) delegate method
Allows the delegate for sender to constrain the divider to certain positions.

1386 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

Collapsing subview

splitViewCanCollapseSubview (page 1389) delegate method
Allows the delegate to determine whether the user can collapse and uncollapse subview.

Constructors

NSSplitView
Creates an NSSplitView with a zero-sized frame rectangle.

public NSSplitView()

Creates an NSSplitView with frameRect as its frame rectangle.

public NSSplitView(NSRect frameRect)

Instance Methods

adjustSubviews
Adjusts the sizes of the receiver’s subviews so they (plus the dividers) fill the receiver.

public void adjustSubviews()

Discussion
The subviews are resized proportionally; the size of a subview relative to the other subviews doesn’t change.

See Also
setDelegate (page 1389)
setFrame (page 1776) (NSView)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 1389)

dividerThickness
Returns the thickness of the divider.

public float dividerThickness()

Constructors 1387
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

Discussion
You can subclass NSSplitView and override this method to change the divider’s size, if necessary.

See Also
drawDividerInRect (page 1388)

drawDividerInRect
Draws the divider between two of the receiver’s subviews.

public void drawDividerInRect(NSRect aRect)

Discussion
aRect describes the entire divider rectangle in the receiver’s coordinates, which are flipped. If you override
this method and use a custom icon to identify the divider, you may need to change the size of the divider.

See Also
dividerThickness (page 1387)
compositeToPoint (page 756) (NSImage)

isPaneSplitter
Returns true if the receiver’s splitter is a bar that goes across the split view. Returns false if the splitter is
a thumb on the regular background pattern.

public boolean isPaneSplitter()

See Also
setIsPaneSplitter (page 1389)

isSubviewCollapsed
Returns true if subview is in a collapsed state, false otherwise.

public boolean isSubviewCollapsed(NSView subview)

isVertical
Returns true if the split bars are vertical (subviews are side by side), false if they are horizontal (views are
one on top of the other).

public boolean isVertical()

Discussion
By default, split bars are vertical.

See Also
setVertical (page 1389)

1388 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

setDelegate
Makes anObject the receiver’s delegate.

public void setDelegate(Object anObject)

Discussion
The notification messages the delegate can expect to receive are listed in “Notifications” (page 1392). The
delegate doesn’t need to implement all of the delegate methods.

See Also
delegate (page 1387)

setIsPaneSplitter
Sets the type of splitter.

public void setIsPaneSplitter(boolean flag)

Discussion
If flag is true, the receiver’s splitter is a bar that goes across the split view. If flag is false, the splitter is
a thumb on the regular background pattern.

See Also
isPaneSplitter (page 1388)

setVertical
Sets whether the split bars are vertical.

public void setVertical(boolean flag)

Discussion
If flag is true, they’re vertical (views are side by side); if it’s false, they’re horizontal (views are one on top
of the other). Split bars are horizontal by default.

See Also
isVertical (page 1388)

Delegate Methods

splitViewCanCollapseSubview
Allows the delegate to determine whether the user can collapse and uncollapse subview.

public abstract boolean splitViewCanCollapseSubview(NSSplitView sender, NSView
subview)

Delegate Methods 1389
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

Discussion
If this method returns false or is undefined, subview can’t be collapsed. If this method returns true,
subview collapses when the user drags a divider beyond the halfway mark between its minimum size and
its edge. subview uncollapses when the user drags the divider back beyond that point. To specify the
minimum size, define the methods splitViewConstrainMaxSplitPosition (page 1390) and
splitViewConstrainMinSplitPosition (page 1390). Note that a subview can collapse only if you also
define splitViewConstrainMinSplitPosition (page 1390).

A collapsed subview is hidden by the NSSplitView object, with the same size it had before it was collapsed.

splitViewConstrainMaxSplitPosition
Allows the delegate for sender to constrain the maximum coordinate limit of a divider when the user drags
it.

public abstract float splitViewConstrainMaxSplitPosition(NSSplitView sender, float
proposedMax, int offset)

Discussion
This method is invoked before the NSSplitView begins tracking the mouse to position a divider. You may
further constrain the limits that have been already set, but you cannot extend the divider limits. proposedMax
is specified in the NSSplitView’s flipped coordinate system. If the split bars are horizontal (views are one on
top of the other), proposedMax is the bottom limit. If the split bars are vertical (views are side by side),
proposedMax is the right limit. The initial value of proposedMax is the bottom (or right side) of the subview
after the divider. offset specifies the divider the user is moving, with the first divider being 0 and going up
from top to bottom (or left to right).

See Also
isVertical (page 1388)

splitViewConstrainMinSplitPosition
Allows the delegate for sender to constrain the minimum coordinate limit of a divider when the user drags
it.

public abstract float splitViewConstrainMinSplitPosition(NSSplitView sender, float
proposedMin, int offset)

Discussion
This method is invoked before the NSSplitView begins tracking the cursor to position a divider. You may
further constrain the limits that have been already set, but you cannot extend the divider limits. proposedMin
is specified in the NSSplitView’s flipped coordinate system. If the split bars are horizontal (views are one on
top of the other), proposedMin is the top limit. If the split bars are vertical (views are side by side),
proposedMin is the left limit. The initial value of proposedMin is the top (or left side) of the subview before
the divider. offset specifies the divider the user is moving, with the first divider being 0 and going up from
top to bottom (or left to right).

See Also
isVertical (page 1388)

1390 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

splitViewConstrainSplitPosition
Allows the delegate for sender to constrain the divider to certain positions.

public abstract float splitViewConstrainSplitPosition(NSSplitView sender, float
proposedPosition, int offset)

Discussion
If the delegate implements this method, the NSSplitView calls it repeatedly as the user moves the divider.
This method returns where you want the divider to be, given proposedPosition, the cursor’s current
position. offset is the divider the user is moving, with the first divider being 0 and going up from top to
bottom (or from left to right).

For example, if a subview’s height must be a multiple of a certain number, use this method to return the
multiple nearest to proposedPosition.

splitViewDidResizeSubviews
public abstract void splitViewDidResizeSubviews(NSNotification aNotification)

Discussion
Sent by the default notification center to the delegate; aNotification is always a
SplitViewDidResizeSubviewsNotification (page 1392). If the delegate implements this method, the
delegate is automatically registered to receive this notification. This method is invoked after the NSSplitView
resizes two of its subviews in response to the repositioning of a divider.

splitViewResizeSubviews
Allows the delegate to specify custom sizing behavior for the subviews of the NSSplitView sender.

public abstract void splitViewResizeSubviews(NSSplitView sender, NSSize oldSize)

Discussion
If the delegate implements this method, splitViewResizeSubviews is invoked after the NSSplitView is
resized. The size of the NSSplitView before the user resized it is indicated by oldSize; the subviews should
be resized such that the sum of the sizes of the subviews plus the sum of the thickness of the dividers equals
the size of the NSSplitView’s new frame. You can get the thickness of a divider through the dividerThickness
method.

Note that if you implement this delegate method to resize subviews on your own, the NSSplitView does not
perform any error checking for you. However, you can invoke adjustSubviews (page 1387) to perform the
default sizing behavior.

See Also
adjustSubviews (page 1387)
setFrame (page 1776) (NSView)

splitViewWillResizeSubviews
public abstract void splitViewWillResizeSubviews(NSNotification aNotification)

Delegate Methods 1391
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

Discussion
Sent by the default notification center to the delegate; aNotification is always a
SplitViewWillResizeSubviewsNotification (page 1392). If the delegate implements this method, the
delegate is automatically registered to receive this notification. This method is invoked before the NSSplitView
resizes two of its subviews in response to the repositioning of a divider.

Notifications

NSSplitView declares and posts the following notifications. In addition, it posts notifications declared by its
superclass, NSView. See the NSView (page 1725) class specification for more information.

SplitViewDidResizeSubviewsNotification
Posted after an NSSplitView changes the sizes of some or all of its subviews. The notification object is the
NSSplitView that resized its subviews. This notification does not contain a userInfo dictionary.

See Also
splitViewDidResizeSubviews (page 1391)

SplitViewWillResizeSubviewsNotification
Posted before an NSSplitView changes the sizes of some or all of its subviews. The notification object is the
NSSplitView object that is about to resize its subviews. This notification does not contain a userInfo
dictionary.

See Also
splitViewWillResizeSubviews (page 1391)

1392 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 109

NSSplitView

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Status Bars

Overview

The NSStatusBar class defines an object that manages a collection of NSStatusItems displayed within the
system-wide menu bar. A status item can be displayed with text or an icon, can provide a menu and a
target-action message when clicked, or can be a fully customized view that you create.

Use status items sparingly and only if the alternatives (such as a Dock menu, preference pane, or status
window) are not suitable. Because there is limited space in which to display status items, status items are
not guaranteed to be available at all times. For this reason, do not rely on them being available and always
provide a user preference for hiding your application’s status items to free up space in the menu bar.

Tasks

Constructors

NSStatusBar (page 1394)
Creates an empty NSStatusBar.

Accessing the System-wide Instance

systemStatusBar (page 1394)
Returns the system-wide status bar located in the menu bar.

Getting the Orientation

isVertical (page 1394)
Returns true if the receiver has a vertical orientation.

thickness (page 1395)
Returns the thickness of the status bar.

Overview 1393
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 110

NSStatusBar

Creating and Removing Items

removeStatusItem (page 1395)
Removes item from the receiver.

statusItem (page 1395)
Returns a newly created NSStatusItem object that has been allotted length pixels of space within
the status bar.

Constructors

NSStatusBar
Creates an empty NSStatusBar.

public NSStatusBar()

Discussion
Use systemStatusBar (page 1394) to obtain the system-wide status bar in the menu bar.

Static Methods

systemStatusBar
Returns the system-wide status bar located in the menu bar.

public static NSStatusBar systemStatusBar()

Discussion
The status bar begins at the right side of the menu bar (to the left of Menu Extras and the menu bar clock)
and grows to the left as NSStatusItems are added to it.

Instance Methods

isVertical
Returns true if the receiver has a vertical orientation.

public boolean isVertical()

Discussion
The status bar returned by systemStatusBar (page 1394) is horizontal, so it always returns false.

1394 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 110

NSStatusBar

removeStatusItem
Removes item from the receiver.

public void removeStatusItem(NSStatusItem item)

Discussion
Status items to the left of it in the status bar shift to the right to reclaim its space.

See Also
statusItem (page 1395)

statusItem
Returns a newly created NSStatusItem object that has been allotted length pixels of space within the status
bar.

public NSStatusItem statusItem(float length)

See Also
removeStatusItem (page 1395)

thickness
Returns the thickness of the status bar.

public float thickness()

Discussion
The status bar returned by systemStatusBar (page 1394) has a thickness of 22 pixels, the thickness of the
menu bar.

Constants

The following constants are defined as a convenience by NSStatusBar:

DescriptionConstant

Sets the status item length to the status bar thickness.SquareStatusItemLength

Makes the status item length dynamic, adjusting to the width of its
contents.

VariableStatusItemLength

Constants 1395
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 110

NSStatusBar

1396 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 110

NSStatusBar

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Status Bars

Overview

The NSStatusItem class represents the individual elements displayed within an NSStatusBar object.
Instances are created by the NSStatusBar method statusItem (page 1395), which automatically adds the
new status item to the status bar. The appearance and behavior of the status item are then set using the
various NSStatusItem methods, such as setTitle (page 1405) and setAction (page 1402).

Tasks

Constructors

NSStatusItem (page 1399)
Creates an empty NSStatusItem.

Getting the Item’s Status Bar

statusBar (page 1406)
Returns the status bar in which the receiver is displayed.

Setting the Status Item’s Appearance

setAlternateImage (page 1403)
Sets an alternate image to be displayed when a status bar item is highlighted.

setAttributedTitle (page 1403)
Sets the attributed string that is displayed at the receiver’s position in the status bar.

setHighlightMode (page 1404)
Sets whether the receiver is highlighted when it is clicked to flag.

setImage (page 1404)
Sets the image that is displayed at the receiver’s position in the status bar to image.

Overview 1397
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

setLength (page 1404)
Sets the amount of space in the status bar that should be allocated to the receiver.

setTitle (page 1405)
Sets the string that is displayed at the receiver’s position in the status bar to title.

setToolTip (page 1406)
Sets the tool tip string that is displayed when the cursor pauses over the receiver to toolTip.

Getting the Status Item’s Appearance

alternateImage (page 1400)
Returns the alternate image that is displayed when a status bar item is highlighted.

attributedTitle (page 1400)
Returns the attributed string that is displayed at the receiver’s position in the status bar

highlightMode (page 1401)
Returns whether the receiver is highlighted when clicked.

image (page 1401)
Returns the image that is displayed at the receiver’s position in the status bar.

length (page 1401)
Returns the amount of space allocated to the receiver within its status bar.

title (page 1406)
Returns the string that is displayed at the receiver’s position in the status bar.

toolTip (page 1407)
Returns the tool tip string that is displayed when the cursor pauses over the receiver.

Setting the Status Item’s Behavior

popUpStatusItemMenu (page 1402)
Displays a menu under a custom status bar item.

setAction (page 1402)
Sets the selector that is sent to the receiver’s target when the receiver is clicked.

setDoubleAction (page 1403)
Sets the selector that is sent to the receiver’s target when the receiver is double-clicked.

setEnabled (page 1403)
Sets whether the receiver is enabled to respond to clicks to flag.

setEventMaskForSendingAction (page 1404)
Sets the conditions on which the receiver sends action messages to its target.

setMenu (page 1405)
Sets the pull-down menu that is displayed when the receiver is clicked.

setTarget (page 1405)
Sets the target object to which the receiver’s action message is sent when the receiver is clicked.

1398 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

Getting Status Item Behavior

action (page 1399)
Returns the selector that is sent to the receiver’s target when the user clicks the receiver.

doubleAction (page 1400)
Returns the selector that is sent to the receiver’s target when the user double-clicks the receiver.

isEnabled (page 1401)
Returns whether the receiver is enabled and responding to clicks.

menu (page 1402)
Returns the drop-down menu that is displayed when the receiver is clicked.

target (page 1406)
Returns the target to which the receiver’s action message is sent when the user clicks the receiver.

Using a Custom View

setView (page 1406)
Sets the custom view that is displayed at the receiver’s position in the status bar to view.

view (page 1407)
Returns the custom view that is displayed at the receiver’s position in the status bar.

Drawing

drawStatusBarBackgroundInRect (page 1400)
Draws the menu background pattern for a custom status bar item in regular or highlight pattern.

Constructors

NSStatusItem
Creates an empty NSStatusItem.

public NSStatusItem()

Discussion
Use the NSStatusBar instance method statusItem (page 1395) to create an NSStatusItem object within a
status bar.

Instance Methods

action
Returns the selector that is sent to the receiver’s target when the user clicks the receiver.

Constructors 1399
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

public NSSelector action()

See Also
setAction (page 1402)
target (page 1406)

alternateImage
Returns the alternate image that is displayed when a status bar item is highlighted.

public NSImage alternateImage()

Availability
Available in Mac OS X v10.3 and later.

See Also
setAlternateImage (page 1403)
image (page 1401)

attributedTitle
Returns the attributed string that is displayed at the receiver’s position in the status bar

public NSAttributedString attributedTitle()

Discussion
.

See Also
setAttributedTitle (page 1403)
setTitle (page 1405)
title (page 1406)

doubleAction
Returns the selector that is sent to the receiver’s target when the user double-clicks the receiver.

public NSSelector doubleAction()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDoubleAction (page 1403)
target (page 1406)

drawStatusBarBackgroundInRect
Draws the menu background pattern for a custom status bar item in regular or highlight pattern.

1400 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

public void drawStatusBarBackgroundInRect(NSRect rect, boolean highlight)

Discussion
You can use this method to help a custom status bar item emulate the behavior of a standard item. Set
highlight to true to draw the background pattern in the standard highlight pattern.

Availability
Available in Mac OS X v10.3 and later.

See Also
setView (page 1406)

highlightMode
Returns whether the receiver is highlighted when clicked.

public boolean highlightMode()

See Also
setHighlightMode (page 1404)

image
Returns the image that is displayed at the receiver’s position in the status bar.

public NSImage image()

Discussion
Returns null if an image has not been set.

See Also
setImage (page 1404)

isEnabled
Returns whether the receiver is enabled and responding to clicks.

public boolean isEnabled()

See Also
setEnabled (page 1403)

length
Returns the amount of space allocated to the receiver within its status bar.

public float length()

Instance Methods 1401
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

Discussion
If the status bar is horizontal, the return value is the width of the status item. Besides a physical length, the
return value may be NSStatusBar.SquareStatusItemLength or
NSStatusBar.VariableStatusItemLength (see NSStatusBar “Constants” (page 1395)), if the status item
size is either determined by the status bar thickness or allowed to vary according to the status item’s true
size, respectively.

See Also
setLength (page 1404)
statusItem (page 1395) (NSStatusBar)

menu
Returns the drop-down menu that is displayed when the receiver is clicked.

public NSMenu menu()

See Also
setMenu (page 1405)

popUpStatusItemMenu
Displays a menu under a custom status bar item.

public void popUpStatusItemMenu(NSMenu menu)

Discussion
You can use this method to cause a popup menu to appear under a custom status bar item when the user
clicks the item. Note that [self view] must exist (that is, it must not be nil).

Availability
Available in Mac OS X v10.3 and later.

See Also
setMenu (page 1405)
setView (page 1406)

setAction
Sets the selector that is sent to the receiver’s target when the receiver is clicked.

public void setAction(NSSelector action)

Discussion
If the receiver has a menu set, action is not sent to the target when the receiver is clicked; instead, the click
causes the menu to appear.

See Action Messages for additional information on action messages.

See Also
action (page 1399)

1402 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

setMenu (page 1405)

setAlternateImage
Sets an alternate image to be displayed when a status bar item is highlighted.

public void setAlternateImage(NSImage image)

Availability
Available in Mac OS X v10.3 and later.

See Also
alternateImage (page 1400)
setImage (page 1404)

setAttributedTitle
Sets the attributed string that is displayed at the receiver’s position in the status bar.

public void setAttributedTitle(NSAttributedString title)

Discussion
If an image is also set, the title appears to the right of the image.

See Also
attributedTitle (page 1400)
setImage (page 1404)
setTitle (page 1405)

setDoubleAction
Sets the selector that is sent to the receiver’s target when the receiver is double-clicked.

public void setDoubleAction(NSSelector action)

Discussion
For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.4 and later.

See Also
doubleAction (page 1400)

setEnabled
Sets whether the receiver is enabled to respond to clicks to flag.

public void setEnabled(boolean flag)

Instance Methods 1403
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

See Also
isEnabled (page 1401)

setEventMaskForSendingAction
Sets the conditions on which the receiver sends action messages to its target.

public void setEventMaskForSendingAction(int mask)

Discussion
mask is set with one or more of the following bit masks described in NSEvent “Constants” (page 623):
NSEvent.LeftMouseUpMask, NSEvent.LeftMouseDownMask, NSEvent.LeftMouseDraggedMask, and
NSEvent.PeriodicMask. The default is NSEvent.LeftMouseUpMask.

setHighlightMode
Sets whether the receiver is highlighted when it is clicked to flag.

public void setHighlightMode(boolean flag)

Discussion
The default is false.

See Also
highlightMode (page 1401)

setImage
Sets the image that is displayed at the receiver’s position in the status bar to image.

public void setImage(NSImage image)

Discussion
If a title is also set, the image appears to the left of the title.

See Also
image (page 1401)
setAttributedTitle (page 1403)
setTitle (page 1405)

setLength
Sets the amount of space in the status bar that should be allocated to the receiver.

public void setLength(float len)

1404 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

Discussion
If the status bar is horizontal, len is the horizontal space to allocate. In addition to a fixed length, len can
be NSStatusBar.SquareStatusItemLength or NSStatusBar.VariableStatusItemLength (see
NSStatusBar “Constants” (page 1395)) to allow the status bar to allocate (and adjust) the space according to
either the status bar’s thickness or the status item’s true size.

See Also
length (page 1401)
statusItem (page 1395) (NSStatusBar)

setMenu
Sets the pull-down menu that is displayed when the receiver is clicked.

public void setMenu(NSMenu menu)

Discussion
When set, the receiver’s single click action behavior is not used. The menu can be removed by setting menu
to null.

See Also
menu (page 1402)
setAction (page 1402)
setTarget (page 1405)

setTarget
Sets the target object to which the receiver’s action message is sent when the receiver is clicked.

public void setTarget(Object target)

Discussion
If the receiver has a menu set, the action is not sent to target when the receiver is clicked; instead, the click
causes the menu to appear.

See Also
target (page 1406)
setMenu (page 1405)

setTitle
Sets the string that is displayed at the receiver’s position in the status bar to title.

public void setTitle(String title)

Discussion
If an image is also set, the title appears to the right of the image.

See Also
title (page 1406)
setAttributedTitle (page 1403)

Instance Methods 1405
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

setImage (page 1404)

setToolTip
Sets the tool tip string that is displayed when the cursor pauses over the receiver to toolTip.

public void setToolTip(String toolTip)

See Also
toolTip (page 1407)

setView
Sets the custom view that is displayed at the receiver’s position in the status bar to view.

public void setView(NSView view)

Discussion
Setting a custom view overrides all the other appearance and behavior settings defined by NSStatusItem.
The custom view is responsible for drawing itself and providing its own behaviors, such as processing mouse
clicks and sending action messages.

See Also
view (page 1407)

statusBar
Returns the status bar in which the receiver is displayed.

public NSStatusBar statusBar()

target
Returns the target to which the receiver’s action message is sent when the user clicks the receiver.

public Object target()

See Also
setTarget (page 1405)
action (page 1399)

title
Returns the string that is displayed at the receiver’s position in the status bar.

public String title()

See Also
setAttributedTitle (page 1403)

1406 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

setTitle (page 1405)

toolTip
Returns the tool tip string that is displayed when the cursor pauses over the receiver.

public String toolTip()

See Also
setToolTip (page 1406)

view
Returns the custom view that is displayed at the receiver’s position in the status bar.

public NSView view()

See Also
setView (page 1406)

Instance Methods 1407
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

1408 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 111

NSStatusItem

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Steppers

Overview

A stepper consists of two small arrows that can increment and decrement a value that appears beside it,
such as a date or time. The illustration below shows an NSStepper to the right of a text field, which would
show the stepper’s value.

NSStepper uses NSStepperCell (page 1415) to implement its user interface.

Tasks

Constructors

NSStepper (page 1410)
Creates an NSStepper with a zero-sized frame rectangle.

Specifying Value Range

maxValue (page 1411)
Returns the maximum value for the receiver.

setMaxValue (page 1412)
Sets the maximum value for the receiver to maxValue.

minValue (page 1411)
Returns the minimum value for the receiver.

setMinValue (page 1412)
Specifies the minimum value for the receiver to minValue.

Overview 1409
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 112

NSStepper

increment (page 1411)
Returns the amount by which the receiver will change per increment (decrement).

setIncrement (page 1412)
Sets the amount by which the receiver will change per increment (decrement) to increment.

Specifying How Stepper Responds

autorepeat (page 1410)
Returns how the receiver responds to mouse events.

setAutorepeat (page 1411)
Sets how the receiver responds to mouse events.

valueWraps (page 1412)
Returns whether the receiver wraps around the minimum and maximum values.

setValueWraps (page 1412)
Sets whether the receiver wraps around the minimum and maximum values.

Constructors

NSStepper
Creates an NSStepper with a zero-sized frame rectangle.

public NSStepper()

Creates an NSStepper with frameRect as its frame rectangle.

public NSStepper(NSRect frameRect)

Instance Methods

autorepeat
Returns how the receiver responds to mouse events.

public boolean autorepeat()

Discussion
If true, the first mouse down will do one increment (decrement) and, after a delay of 0.5 seconds, will
increment (decrement) at a rate of ten times per second. If false, the receiver will do one increment
(decrement) on a mouse up. The default is true.

See Also
setAutorepeat (page 1411)

1410 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 112

NSStepper

increment
Returns the amount by which the receiver will change per increment (decrement).

public double increment()

Discussion
The default is 1.

See Also
setIncrement (page 1412)

maxValue
Returns the maximum value for the receiver.

public double maxValue()

Discussion
The default is 59.

See Also
setMaxValue (page 1412)

minValue
Returns the minimum value for the receiver.

public double minValue()

Discussion
The default is 0.

See Also
setMinValue (page 1412)

setAutorepeat
Sets how the receiver responds to mouse events.

public void setAutorepeat(boolean autorepeat)

Discussion
If autorepeat is true, the first mouse down will do one increment (decrement) and, after a delay of 0.5
seconds, will increment (decrement) at a rate of ten times per second. If autorepeat is false, the receiver
will do one increment (decrement) on a mouse up.

See Also
autorepeat (page 1410)

Instance Methods 1411
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 112

NSStepper

setIncrement
Sets the amount by which the receiver will change per increment (decrement) to increment.

public void setIncrement(double increment)

See Also
increment (page 1411)

setMaxValue
Sets the maximum value for the receiver to maxValue.

public void setMaxValue(double maxValue)

See Also
maxValue (page 1411)

setMinValue
Specifies the minimum value for the receiver to minValue.

public void setMinValue(double minValue)

See Also
minValue (page 1411)

setValueWraps
Sets whether the receiver wraps around the minimum and maximum values.

public void setValueWraps(boolean valueWraps)

Discussion
If valueWraps is true, then when incrementing or decrementing, the value will wrap around to the minimum
or maximum. If valueWraps is false, the value will stay pinned at the minimum or maximum.

See Also
valueWraps (page 1412)

valueWraps
Returns whether the receiver wraps around the minimum and maximum values.

public boolean valueWraps()

Discussion
If true, then when incrementing or decrementing, the value will wrap around to the minimum or maximum.
If false, the value will stay pinned at the minimum or maximum. The default is true.

1412 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 112

NSStepper

See Also
setValueWraps (page 1412)

Instance Methods 1413
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 112

NSStepper

1414 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 112

NSStepper

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Steppers

Overview

An NSStepperCell controls the appearance and behavior of an NSStepper (page 1409).

Tasks

Constructors

NSStepperCell (page 1416)
Creates an empty NSStepperCell.

Specifying Value Range

maxValue (page 1417)
Returns the maximum value for the receiver.

setMaxValue (page 1418)
Sets the maximum value for the receiver to maxValue.

minValue (page 1417)
Returns the minimum value for the receiver.

setMinValue (page 1418)
Specifies the minimum value for the receiver to minValue.

increment (page 1417)
Returns the amount by which the receiver will change per increment (decrement).

setIncrement (page 1418)
Sets the amount by which the receiver will change per increment (decrement) to increment.

Overview 1415
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 113

NSStepperCell

Specifying How Stepper Cell Responds

autorepeat (page 1416)
Returns how the receiver responds to mouse events.

setAutorepeat (page 1417)
Sets how the receiver responds to mouse events.

valueWraps (page 1418)
Returns whether the receiver wraps around the minimum and maximum values.

setValueWraps (page 1418)
Sets whether the receiver wraps around the minimum and maximum values.

Constructors

NSStepperCell
Creates an empty NSStepperCell.

public NSStepperCell()

Creates an NSStepperCell initialized with aString.

public NSStepperCell(String aString)

Creates an NSStepperCell initialized with anImage.

public NSStepperCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

autorepeat
Returns how the receiver responds to mouse events.

public boolean autorepeat()

Discussion
If true, the first mouse down will do one increment (decrement), and, after a delay of 0.5 seconds, will
increment (decrement) at a rate of ten times per second. If false, the receiver will do one increment
(decrement) on a mouse up. The default is true.

See Also
setAutorepeat (page 1417)

1416 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 113

NSStepperCell

increment
Returns the amount by which the receiver will change per increment (decrement).

public double increment()

Discussion
The default is 1.

See Also
setIncrement (page 1418)

maxValue
Returns the maximum value for the receiver.

public double maxValue()

Discussion
The default is 59.

See Also
setMaxValue (page 1418)

minValue
Returns the minimum value for the receiver.

public double minValue()

Discussion
The default is 0.

See Also
setMinValue (page 1418)

setAutorepeat
Sets how the receiver responds to mouse events.

public void setAutorepeat(boolean autorepeat)

Discussion
If autorepeat is true, the first mouse down will do one increment (decrement) and, after a delay of 0.5
seconds, will increment (decrement) at a rate of ten times per second. If autorepeat is false, the receiver
will do one increment (decrement) on a mouse up.

See Also
autorepeat (page 1416)

Instance Methods 1417
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 113

NSStepperCell

setIncrement
Sets the amount by which the receiver will change per increment (decrement) to increment.

public void setIncrement(double increment)

See Also
increment (page 1417)

setMaxValue
Sets the maximum value for the receiver to maxValue.

public void setMaxValue(double maxValue)

See Also
maxValue (page 1417)

setMinValue
Specifies the minimum value for the receiver to minValue.

public void setMinValue(double minValue)

See Also
minValue (page 1417)

setValueWraps
Sets whether the receiver wraps around the minimum and maximum values.

public void setValueWraps(boolean valueWraps)

Discussion
If valueWraps is true, then when incrementing or decrementing, the value will wrap around to the minimum
or maximum. If valueWraps is false, the value will stay pinned at the minimum or maximum.

See Also
valueWraps (page 1418)

valueWraps
Returns whether the receiver wraps around the minimum and maximum values.

public boolean valueWraps()

Discussion
If true, then when incrementing or decrementing, the value will wrap around to the minimum or maximum.
If false, the value will stay pinned at the minimum or maximum. The default is true.

1418 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 113

NSStepperCell

See Also
setValueWraps (page 1418)

Instance Methods 1419
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 113

NSStepperCell

1420 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 113

NSStepperCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Table View Programming Guide

Overview

An NSTableColumn stores the display characteristics and attribute identifier for a column in an NSTableView.
The NSTableColumn determines the width and width limits, resizability, and editability of its column in the
NSTableView. It also stores two NSCell objects: the header cell, which is used to draw the column header,
and the data cell, used to draw the values for each row. You can control the display of the column by setting
the subclasses of NSCell used and by setting the font and other display characteristics for these NSCells. For
example, you can use the default NSTextFieldCell for displaying string values or substitute an NSImageCell
to display pictures.

Tasks

Constructors

NSTableColumn (page 1423)
Creates an empty NSTableColumn.

Setting the Identifier

setIdentifier (page 1427)
Sets the receiver’s identifier to anObject.

identifier (page 1424)
Returns the object used by the data source to identify the attribute corresponding to the receiver.

Setting the NSTableView

setTableView (page 1428)
Sets aTableView as the receiver’s NSTableView.

Overview 1421
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

tableView (page 1430)
Returns the NSTableView the receiver belongs to.

Controlling Size

setWidth (page 1429)
Sets the receiver’s width to newWidth.

width (page 1430)
Returns the width of the receiver.

setMinWidth (page 1427)
Sets the receiver’s minimum width to minWidth, also adjusting the current width if it’s less than this
value.

minWidth (page 1425)
Returns the minimum width for the receiver.

setMaxWidth (page 1427)
Sets the receiver’s maximum width to maxWidth, also adjusting the current width if it’s greater than
this value.

maxWidth (page 1425)
Returns the maximum width of the receiver.

setResizingMask (page 1428)
Sets the resizing mask for the receiver to resizingMask.

resizingMask (page 1426)
Returns the receiver’s resizing mask.

sizeToFit (page 1429)
Resizes the receiver to fit the width of its header cell.

Controlling Editability

setEditable (page 1426)
Controls whether the user can edit cells in the receiver by double-clicking them.

isEditable (page 1424)
Returns true if the user can edit cells associated with the receiver by double-clicking the column in
the NSTableView, false otherwise.

Setting Component Cells

setHeaderCell (page 1426)
Sets the NSCell used to draw the receiver’s header to aCell.

headerCell (page 1424)
Returns the NSTableHeaderCell object used to draw the header of the receiver.

setDataCell (page 1426)
Sets the NSCell used by the NSTableView to draw individual values for the receiver to aCell.

1422 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

dataCell (page 1423)
Returns the NSCell object used by the NSTableView to draw values for the receiver.

dataCellForRow (page 1424)
Returns the NSCell object used by the NSTableView to draw values for the receiver.

Sorting

setSortDescriptorPrototype (page 1428)
Sets the receiver’s sort descriptor prototype.

sortDescriptorPrototype (page 1429)
Returns the receiver’s sort descriptor prototype.

Deprecated Methods

isResizable (page 1425)
Returns true if the user is allowed to resize the receiver in its NSTableView, false otherwise.

setResizable (page 1427)
Sets whether the user can resize the receiver in its NSTableView.

Constructors

NSTableColumn
Creates an empty NSTableColumn.

public NSTableColumn()

Creates an NSTableColumn with anObject as its identifier and with an NSTextFieldCell as its data cell.

public NSTableColumn(Object anObject)

Discussion
Send setStringValue (page 331) to the header cell to set the column title.

See the NSTableView (page 1437) class specification for information on identifiers.

Instance Methods

dataCell
Returns the NSCell object used by the NSTableView to draw values for the receiver.

public NSCell dataCell()

Constructors 1423
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

See Also
setDataCell (page 1426)

dataCellForRow
Returns the NSCell object used by the NSTableView to draw values for the receiver.

public NSCell dataCellForRow(int row)

Discussion
NSTableView always calls this method. By default, this method just calls dataCell (page 1423). Subclassers
can override if they need to potentially use different cells for different rows. Subclasses should expect this
method to be invoked with row equal to –1 in cases where no actual row is involved but the table view needs
to get some generic cell info.

headerCell
Returns the NSTableHeaderCell object used to draw the header of the receiver.

public NSCell headerCell()

Discussion
You can set the column title by sending setStringValue (page 331) to this object.

See Also
setHeaderCell (page 1426)

identifier
Returns the object used by the data source to identify the attribute corresponding to the receiver.

public Object identifier()

See Also
setIdentifier (page 1427)

isEditable
Returns true if the user can edit cells associated with the receiver by double-clicking the column in the
NSTableView, false otherwise.

public boolean isEditable()

Discussion
You can initiate editing programmatically regardless of this setting with NSTableView’s editLocation (page
1456) method.

See Also
setEditable (page 1426)

1424 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

isResizable
Returns true if the user is allowed to resize the receiver in its NSTableView, false otherwise.

public boolean isResizable()

Discussion
You can change the size programmatically regardless of this setting.

This method is deprecated. You should use resizingMask (page 1426) instead.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
setWidth (page 1429)
setMinWidth (page 1427)
setMaxWidth (page 1427)
setResizable (page 1427)

maxWidth
Returns the maximum width of the receiver.

public float maxWidth()

Discussion
The receiver’s width can’t be made larger than this size either by the user or programmatically.

See Also
minWidth (page 1425)
width (page 1430)
setMaxWidth (page 1427)
autoresizesAllColumnsToFit (page 1449) (NSTableView)

minWidth
Returns the minimum width for the receiver.

public float minWidth()

Discussion
The receiver’s width can’t be made less than this size either by the user or programmatically.

See Also
maxWidth (page 1425)
width (page 1430)
setMinWidth (page 1427)
autoresizesAllColumnsToFit (page 1449) (NSTableView)

Instance Methods 1425
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

resizingMask
Returns the receiver’s resizing mask.

public int resizingMask()

Discussion
See “Constants” (page 1430) for a description of the resizing mask constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
setResizingMask (page 1428)

setDataCell
Sets the NSCell used by the NSTableView to draw individual values for the receiver to aCell.

public void setDataCell(NSCell aCell)

Discussion
You can use this method to control the font, alignment, and other text attributes for an NSTableColumn. You
can also assign a cell to display things other than text—for example, an NSImageCell to display images.

See Also
dataCell (page 1423)

setEditable
Controls whether the user can edit cells in the receiver by double-clicking them.

public void setEditable(boolean flag)

Discussion
If flag is true a double click initiates editing; if flag is false it merely sends the double-click action to
the NSTableView’s target. You can initiate editing programmatically regardless of this setting with
NSTableView’s editLocation (page 1456) method.

See Also
isEditable (page 1424)

setHeaderCell
Sets the NSCell used to draw the receiver’s header to aCell.

public void setHeaderCell(NSCell aCell)

Discussion
aCell should never be null.

See Also
headerCell (page 1424)

1426 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

setIdentifier
Sets the receiver’s identifier to anObject.

public void setIdentifier(Object anObject)

Discussion
This object is used by the data source to identify the attribute corresponding to the NSTableColumn.

See Also
identifier (page 1424)

setMaxWidth
Sets the receiver’s maximum width to maxWidth, also adjusting the current width if it’s greater than this
value.

public void setMaxWidth(float maxWidth)

Discussion
The NSTableView can be made no wider than this size, either by the user or programmatically.

See Also
setMinWidth (page 1427)
setWidth (page 1429)
maxWidth (page 1425)
autoresizesAllColumnsToFit (page 1449) (NSTableView)

setMinWidth
Sets the receiver’s minimum width to minWidth, also adjusting the current width if it’s less than this value.

public void setMinWidth(float minWidth)

Discussion
The NSTableView can be made no less wide than this size, either by the user or programmatically.

See Also
setMaxWidth (page 1427)
setWidth (page 1429)
minWidth (page 1425)
autoresizesAllColumnsToFit (page 1449) (NSTableView)

setResizable
Sets whether the user can resize the receiver in its NSTableView.

public void setResizable(boolean flag)

Instance Methods 1427
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

Discussion
If flag is true the user can resize the receiver; if flag is false the user can’t resize it. You can always set
the size programmatically.

This method is deprecated. You should use setResizingMask (page 1428) instead.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
isResizable (page 1425)
setWidth (page 1429)
setMinWidth (page 1427)
setMaxWidth (page 1427)

setResizingMask
Sets the resizing mask for the receiver to resizingMask.

public void setResizingMask(int resizingMask)

Discussion
If resizingMask is 0, the column is not resizable. See “Constants” (page 1430) for the appropriate mask values.

Availability
Available in Mac OS X v10.4 and later.

See Also
resizingMask (page 1426)

setSortDescriptorPrototype
Sets the receiver’s sort descriptor prototype.

public void setSortDescriptorPrototype(NSSortDescriptor sortDescriptor)

Discussion
A table column is considered sortable if it has a sort descriptor that specifies the sorting direction, a key to
sort by, and a selector defining how to sort.

Availability
Available in Mac OS X v10.3 and later.

See Also
sortDescriptorPrototype (page 1429)

setTableView
Sets aTableView as the receiver’s NSTableView.

public void setTableView(NSTableView aTableView)

1428 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

Discussion
You should never need to invoke this method; it’s invoked automatically when you add an NSTableColumn
to an NSTableView.

See Also
tableView (page 1430)
addTableColumn (page 1447) (NSTableView)

setWidth
Sets the receiver’s width to newWidth.

public void setWidth(float newWidth)

Discussion
If newWidth exceeds the minimum or maximum width, it’s adjusted to the appropriate limiting value. Marks
the NSTableView as needing display.

This method posts TableViewColumnDidResizeNotification (page 1482) on behalf of the receiver’s
NSTableView.

See Also
width (page 1430)
setMinWidth (page 1427)
setMaxWidth (page 1427)
autoresizesAllColumnsToFit (page 1449) (NSTableView)

sizeToFit
Resizes the receiver to fit the width of its header cell.

public void sizeToFit()

Discussion
If the maximum width is less than the width of the header, the maximum is increased to the header’s width.
Similarly, if the minimum width is greater than the width of the header, the minimum is reduced to the
header’s width. Marks the NSTableView as needing display if the width actually changes.

See Also
width (page 1430)
minWidth (page 1425)
maxWidth (page 1425)
autoresizesAllColumnsToFit (page 1449) (NSTableView)

sortDescriptorPrototype
Returns the receiver’s sort descriptor prototype.

public NSSortDescriptor sortDescriptorPrototype()

Instance Methods 1429
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

Availability
Available in Mac OS X v10.3 and later.

See Also
setSortDescriptorPrototype (page 1428)

tableView
Returns the NSTableView the receiver belongs to.

public NSTableView tableView()

See Also
setTableView (page 1428)

width
Returns the width of the receiver.

public float width()

Constants

These constants specify the resizing modes available for the table column. You specify either
NSTableColumnNoResizing or a resizing a mask created using the C bitwise OR operator. These values are
then used by the setResizingMask (page 1428) method:

DescriptionKey

Prevents the table column from resizing. Available in Mac OS X v10.4 and later.NoResizing

Allows the table column to resize automatically in response to resizing the tableview.
Available in Mac OS X v10.4 and later.

AutoresizingMask

Allows the table column to be resized explicitly by the user. Available in Mac OS X v10.4
and later.

UserResizingMask

1430 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 114

NSTableColumn

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Table View Programming Guide

Overview

An NSTableHeaderCell is used by an NSTableHeaderView (page 1433) to draw its column headers. See the
NSTableView (page 1437) class specification for more information on how it’s used.

Subclasses of NSTableHeaderCell can override drawInteriorWithFrameInView (page 309),
editWithFrameInView (page 310), andhighlightWithFrameInView (page 312) to change the way headers
appear. See the NSCell (page 295) class specification, and the following description, for information on these
methods.

Tasks

Constructors

NSTableHeaderCell (page 1432)
Creates an empty NSTableHeaderCell.

Sorting

drawSortIndicatorWithFrameInView (page 1432)
Draws a sorting indicator given a cellFrame contained inside controlView.

sortIndicatorRectForBounds (page 1432)
Returns the location to display the sorting indicator given theRect.

Overview 1431
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 115

NSTableHeaderCell

Constructors

NSTableHeaderCell
Creates an empty NSTableHeaderCell.

public NSTableHeaderCell()

Creates an NSTableHeaderCell initialized with aString and set to have the cell’s default menu.

public NSTableHeaderCell(String aString)

Discussion
If no field editor has been created, one is created.

Creates an NSTableHeaderCell initialized with anImage and set to have the cell’s default menu.

public NSTableHeaderCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

drawSortIndicatorWithFrameInView
Draws a sorting indicator given a cellFrame contained inside controlView.

public void drawSortIndicatorWithFrameInView(NSRect cellFrame, NSView controlView,
boolean ascending, int priority)

Discussion
If priority is 0, this is the primary sort indicator. If ascending is true, a "^" indicator will be drawn. Override
this method to customize the sorting user interface.

Availability
Available in Mac OS X v10.3 and later.

sortIndicatorRectForBounds
Returns the location to display the sorting indicator given theRect.

public NSRect sortIndicatorRectForBounds(NSRect theRect)

Availability
Available in Mac OS X v10.3 and later.

1432 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 115

NSTableHeaderCell

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Table View Programming Guide

Overview

An NSTableHeaderView is used by an NSTableView to draw headers over its columns and to handle mouse
events in those headers.

NSTableHeaderView uses NSTableHeaderCell (page 1431) to implement its user interface.

Tasks

Constructors

NSTableHeaderView (page 1434)
Creates an NSTableHeaderView with a zero-sized frame rectangle.

Setting the Table View

setTableView (page 1435)
Sets aTableView as the receiver’s NSTableView.

tableView (page 1435)
Returns the NSTableView the receiver belongs to.

Checking Altered Columns

draggedColumn (page 1434)
If the user is dragging a column in the receiver, returns the index of that column.

draggedDistance (page 1435)
If the user is dragging a column in the receiver, returns the column’s horizontal distance from its
original position.

Overview 1433
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 116

NSTableHeaderView

resizedColumn (page 1435)
If the user is resizing a column in the receiver, returns the index of that column.

Utility Methods

columnAtPoint (page 1434)
Returns the index of the column whose header lies under aPoint in the receiver, or –1 if no such
column is found.

headerRectOfColumn (page 1435)
Returns the rectangle containing the header tile for the column at columnIndex.

Constructors

NSTableHeaderView
Creates an NSTableHeaderView with a zero-sized frame rectangle.

public NSTableHeaderView()

Creates an NSTableHeaderView with frameRect as its frame rectangle.

public NSTableHeaderView(NSRect frameRect)

Instance Methods

columnAtPoint
Returns the index of the column whose header lies under aPoint in the receiver, or –1 if no such column is
found.

public int columnAtPoint(NSPoint aPoint)

Discussion
aPoint is expressed in the receiver’s coordinate system.

draggedColumn
If the user is dragging a column in the receiver, returns the index of that column.

public int draggedColumn()

Discussion
Otherwise returns –1.

See Also
draggedDistance (page 1435)

1434 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 116

NSTableHeaderView

draggedDistance
If the user is dragging a column in the receiver, returns the column’s horizontal distance from its original
position.

public float draggedDistance()

Discussion
Otherwise the return value is meaningless.

See Also
draggedColumn (page 1434)

headerRectOfColumn
Returns the rectangle containing the header tile for the column at columnIndex.

public NSRect headerRectOfColumn(int columnIndex)

Discussion
Throws an InternalInconsistencyException if columnIndex is out of bounds.

See Also
rectOfColumn (page 1461) (NSTableView)

resizedColumn
If the user is resizing a column in the receiver, returns the index of that column.

public int resizedColumn()

Discussion
Otherwise returns –1.

setTableView
Sets aTableView as the receiver’s NSTableView.

public void setTableView(NSTableView aTableView)

Discussion
You should never need to invoke this method; it’s invoked automatically when you set the header view for
an NSTableView.

See Also
setHeaderView (page 1472) (NSTableView)

tableView
Returns the NSTableView the receiver belongs to.

Instance Methods 1435
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 116

NSTableHeaderView

public NSTableView tableView()

1436 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 116

NSTableHeaderView

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Table View Programming Guide
Drag and Drop Programming Topics for Cocoa

Class at a Glance

An NSTableView object displays record-oriented data in a table and allows the user to edit values and resize
and rearrange columns.

Principal Attributes

 ■ A data source

 ■ Table columns

Commonly Used Methods

dataSource (page 1452)
Returns the object providing the data that the NSTableView displays.

tableColumns (page 1475)
Returns the NSTableColumn objects representing attributes for the NSTableView.

selectedColumn (page 1464)
Returns the index of the selected column.

selectedRow (page 1465)
Returns the index of the selected row.

numberOfRows (page 1460)
Returns the number of rows in the NSTableView.

reloadData (page 1462)
Informs the NSTableView that data has changed and needs to be retrieved and displayed again.

Class at a Glance 1437
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Overview

An NSTableView displays data for a set of related records, with rows representing individual records and
columns representing the attributes of those records. An NSTableView is usually displayed in an NSScrollView,
like this:

Also see the NSTableView.DataSource (page 2019) interface, which declares the methods that an NSTableView
uses to access the contents of its data source object.

Tasks

Constructors

NSTableView (page 1447)
Creates an NSTableView with a zero-sized frame rectangle.

Setting the Data Source

setDataSource (page 1470)
Sets the receiver’s data source to anObject and invokes tile (page 1476).

dataSource (page 1452)
Returns the object that provides the data displayed by the receiver.

Loading Data

reloadData (page 1462)
Marks the receiver as needing redisplay, so it will reload the data for visible cells and draw the new
values.

1438 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Target-action Behavior

setDoubleAction (page 1470)
Sets the message sent to the target when the user double-clicks an uneditable cell or a column header
to aSelector.

doubleAction (page 1454)
Returns the message sent to the target when the user double-clicks a column header or an uneditable
cell.

clickedColumn (page 1451)
Returns the index of the column the user clicked to trigger an action message.

clickedRow (page 1451)
Returns the index of the row the user clicked to trigger an action message.

Configuring Behavior

setAllowsColumnReordering (page 1467)
Controls whether the user can drag column headers to reorder columns.

allowsColumnReordering (page 1448)
Returns true if the receiver allows the user to rearrange columns by dragging their headers, false
otherwise.

setAllowsColumnResizing (page 1467)
Controls whether the user can resize columns by dragging between headers.

allowsColumnResizing (page 1448)
Returns true if the receiver allows the user to resize columns by dragging between their headers,
false otherwise.

setAllowsMultipleSelection (page 1468)
Controls whether the user can select more than one row or column at a time.

allowsMultipleSelection (page 1449)
Returns true if the receiver allows the user to select more than one column or row at a time, false
otherwise.

setAllowsEmptySelection (page 1467)
Controls whether the receiver allows zero rows or columns to be selected.

allowsEmptySelection (page 1449)
Returns true if the receiver allows the user to select zero columns or rows, false otherwise.

setAllowsColumnSelection (page 1467)
Controls whether the user can select an entire column by clicking its header.

allowsColumnSelection (page 1448)
Returns true if the receiver allows the user to select columns by clicking their headers, false
otherwise.

Setting Display Attributes

setIntercellSpacing (page 1473)
Sets the width and height between cells to those in aSize and redisplays the receiver.

Tasks 1439
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

intercellSpacing (page 1459)
Returns the horizontal and vertical spacing between cells.

setRowHeight (page 1473)
Sets the height for rows to rowHeight and invokes tile (page 1476).

rowHeight (page 1462)
Returns the height of each row in the receiver.

setBackgroundColor (page 1469)
Sets the receiver’s background color to aColor.

backgroundColor (page 1450)
Returns the color used to draw the background of the receiver.

setUsesAlternatingRowBackgroundColors (page 1474)
Sets whether the receiver uses the standard alternating row colors, or a solid color, for its background.

usesAlternatingRowBackgroundColors (page 1477)
Returns whether the receiver uses the standard alternating row colors, or a solid color, for its
background.

Manipulating Columns

addTableColumn (page 1447)
Adds aColumn as the last column of the receiver.

removeTableColumn (page 1462)
Removes aTableColumn from the receiver.

moveColumnToColumn (page 1459)
Moves the column and heading at columnIndex to newIndex.

tableColumns (page 1475)
Returns the NSTableColumns in the receiver.

columnWithIdentifier (page 1452)
Returns the index of the first column in the receiver whose identifier is equal to anObject, when
compared using equals, or –1 if no columns are found with the specified identifier.

tableColumnWithIdentifier (page 1475)
Returns the NSTableColumn object for the first column whose identifier is equal to anObject, as
compared using equals, or null if no columns are found with the specified identifier.

Selecting Columns and Rows

selectColumn (page 1464)
This method has been deprecated. Use selectColumnIndexes (page 1464) instead.

selectRow (page 1466)
This method has been deprecated. Use selectRowIndexes (page 1466) instead.

selectColumnIndexes (page 1464)
Sets the column selection using indexes.

selectRowIndexes (page 1466)
Sets the row selection using indexes.

1440 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

selectedColumnIndexes (page 1465)
Returns the selected columns.

selectedRowIndexes (page 1466)
Returns the selected rows.

deselectColumn (page 1453)
Deselects the column at columnIndex if it’s selected, regardless of whether empty selection is allowed.

deselectRow (page 1454)
Deselects the row at rowIndex if it’s selected, regardless of whether empty selection is allowed.

numberOfSelectedColumns (page 1461)
Returns the number of selected columns.

numberOfSelectedRows (page 1461)
Returns the number of selected rows.

selectedColumn (page 1464)
Returns the index of the last column selected or added to the selection, or –1 if no column is selected.

selectedRow (page 1465)
Returns the index of the last row selected or added to the selection, or –1 if no row is selected.

isColumnSelected (page 1459)
Returns true if the column at columnIndex is selected, false otherwise.

isRowSelected (page 1459)
Returns true if the row at rowIndex is selected, false otherwise.

selectedColumnEnumerator (page 1465)
This method has been deprecated. Use selectedColumnIndexes (page 1465) instead.

selectedRowEnumerator (page 1465)
This method has been deprecated. Use selectedRowIndexes (page 1466) instead.

selectAll (page 1463)

deselectAll (page 1453)
Deselects all selected rows or columns if empty selection is allowed; otherwise does nothing.

Getting the Dimensions of the Table

numberOfColumns (page 1460)
Returns the number of columns in the receiver.

numberOfRows (page 1460)
Returns the number of rows in the receiver.

Setting Grid Attributes

setDrawsGrid (page 1471)

drawsGrid (page 1456)

Tasks 1441
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

setGridColor (page 1472)
Sets the color used to draw grid lines to aColor.

gridColor (page 1457)
Returns the color used to draw grid lines.

setGridStyleMask (page 1472)
Sets the grid style mask to specify if no grid lines, vertical grid lines, or horizontal grid lines should be
displayed.

gridStyleMask (page 1457)
Returns the receiver’s grid style mask.

Editing Cells

editLocation (page 1456)
Edits the cell at columnIndex and rowIndex, selecting its entire contents if flag is true.

editedRow (page 1456)
If sent during editLocation (page 1456), returns the index of the row being edited; otherwise returns
–1.

editedColumn (page 1456)
If sent during editLocation (page 1456), returns the index of the column being edited; otherwise
returns –1.

Setting Auxiliary Views

setHeaderView (page 1472)
Sets the receiver’s header view to aHeaderView.

headerView (page 1458)
Returns the NSTableHeaderView used to draw headers over columns, or null if the receiver has no
header view.

setCornerView (page 1470)
Sets the receiver’s corner view to aView.

cornerView (page 1452)
Returns the NSView used to draw the area to the right of the column headers and above the vertical
scroller of the enclosing NSScrollView.

Layout Support

rectOfColumn (page 1461)
Returns the rectangle containing the column at columnIndex.

rectOfRow (page 1461)
Returns the rectangle containing the row at rowIndex.

columnsInRect (page 1452)
Returns a range of indices for the receiver’s columns that lie wholly or partially within the horizontal
boundaries of aRect.

1442 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

rowsInRect (page 1462)
Returns a range of indices for the rows that lie wholly or partially within the vertical boundaries of
aRect.

columnAtPoint (page 1451)
Returns the index of the column aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

rowAtPoint (page 1462)
Returns the index of the row aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

frameOfCellAtLocation (page 1457)
Returns a rectangle locating the cell that lies at the intersection of columnIndex and rowIndex.

setColumnAutoresizingStyle (page 1469)
Sets the column autoresizing style of the receiver to style.

columnAutoresizingStyle (page 1451)
Returns the receiver’s column autoresizing style.

sizeLastColumnToFit (page 1474)
Resizes the last column if there’s room so the receiver fits exactly within its enclosing NSClipView.

noteNumberOfRowsChanged (page 1460)
Informs the receiver that the number of records in its data source has changed, allowing the receiver
to update the scrollers in its NSScrollView without actually reloading data into the receiver.

noteHeightOfRowsWithIndexesChanged (page 1460)
Informs the receiver that the rows specified in indexSet have changed height.

tile (page 1476)
Properly sizes the receiver and its header view and marks it as needing display.

sizeToFit (page 1474)
Changes the width of columns in the receiver so all columns are visible.

Drawing

drawRow (page 1456)
Draws the cells for the row at rowIndex in the columns that intersect clipRect.

drawGridInClipRect (page 1455)
Draws the grid lines within aRect, using the grid color set with setGridColor (page 1472).

highlightSelectionInClipRect (page 1458)
Highlights the region of the receiver in clipRect.

drawBackgroundInClipRect (page 1455)
Draws the background in the clip rect specified by clipRect.

Scrolling

scrollRowToVisible (page 1463)
Scrolls the receiver vertically in an enclosing NSClipView so the row specified by rowIndex is visible.

scrollColumnToVisible (page 1463)
Scrolls the receiver and header view horizontally in an enclosing NSClipView so the column specified
by columnIndex is visible.

Tasks 1443
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Text Delegate Methods

textShouldBeginEditing (page 1476)
Queries the delegate using controlTextShouldBeginEditing (page 465), returning the delegate’s
response, or simply returning true to allow editing of textObject if the delegate doesn’t respond
to that method.

textDidBeginEditing (page 1475)
Posts a ControlTextDidBeginEditingNotification (page 466) to the default notification center,
as described in the NSControl class specification.

textDidChange (page 1475)
Sends textDidChange (page 1475) to the edited cell and posts a
ControlTextDidChangeNotification (page 467) to the default notification center, as described
in the NSControl class specification.

textShouldEndEditing (page 1476)
Validates the textObject cell being edited and queries the delegate using
controlTextShouldEndEditing (page 465), returning the delegate’s response if it responds to
that method.

textDidEndEditing (page 1476)
Updates the data source based on the newly edited value and selects another cell for editing if possible
according to the character that ended editing (Return, Tab, Backtab).

Persistence

autosaveName (page 1449)
Returns the name under which table information is automatically saved.

autosaveTableColumns (page 1450)
Returns whether the order and width of the receiver’s columns are automatically saved.

setAutosaveName (page 1469)
Sets the name under which table information is automatically saved to name.

setAutosaveTableColumns (page 1469)
Sets whether the order and width of this table view’s columns are automatically saved.

Setting the Delegate

setDelegate (page 1470)
Sets the receiver’s delegate to anObject.

delegate (page 1453)
Returns the receiver’s delegate.

Setting the Indicator Image

indicatorImage (page 1458)
Returns the indicator image of aTableColumn.

1444 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

setIndicatorImage (page 1473)
Sets the indicator image of aTableColumn to anImage.

Supporting Highlightable Column Headers

highlightedTableColumn (page 1458)
Returns the table column highlighted in the receiver.

setHighlightedTableColumn (page 1472)
Sets aTableColumn to be the currently highlighted column header.

Dragging

dragImageForRowsWithIndexes (page 1455)
Computes and returns an image to use for dragging.

canDragRowsWithIndexes (page 1450)
Returns whether the receiver allows dragging the rows at rowIndexes with a drag initiated at
mousedDownPoint.

setDraggingSourceOperationMask (page 1471)
Sets the default operation mask returned by draggingSourceOperationMaskForLocal: to mask

setDropRowAndDropOperation (page 1471)
Used if you wish to “retarget” the proposed drop.

setVerticalMotionCanBeginDrag (page 1474)
Sets whether vertical motion is treated as a drag or selection change to flag.

verticalMotionCanBeginDrag (page 1477)
Returns whether vertical motion is treated as a drag or selection change.

Sorting

setSortDescriptors (page 1473)
Sets the receiver’s sort descriptors to the NSSortDescriptor objects in array.

sortDescriptors (page 1475)
Returns the receiver’s sort descriptors.

Deprecated Methods

dragImageForRows (page 1454)
Computes and returns an image to use for dragging.

setAutoresizesAllColumnsToFit (page 1468)
Controls whether the receiver proportionally resizes its columns to fit when its superview’s frame
changes.

autoresizesAllColumnsToFit (page 1449)
Returns true if the receiver proportionally resizes its columns to fit when its superview’s frame
changes, false if it only resizes the last column.

Tasks 1445
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Moving and resizing columns

tableViewDidDragTableColumn (page 1479) delegate method
Sent at the time the mouse button goes up in tableView and tableColumn has been dragged
during the time the mouse button was down.

tableViewColumnDidMove (page 1479) delegate method
Informs the delegate that a column was moved by user action in the NSTableView.

tableViewColumnDidResize (page 1479) delegate method
Informs the delegate that a column was resized in the NSTableView.

Selecting in table

selectionShouldChangeInTableView (page 1478) delegate method
Returns true to permit aTableView to change its selection (typically a row being edited), false to
deny permission.

tableViewShouldSelectRow (page 1480) delegate method
Returns true to permit aTableView to select the row at rowIndex, false to deny permission.

tableViewShouldSelectTableColumn (page 1481) delegate method
Returns true to permit aTableView to select aTableColumn, false to deny permission.

tableViewSelectionIsChanging (page 1480) delegate method
Informs the delegate that the NSTableView’s selection is in the process of changing (typically because
the user is dragging the cursor across a number of rows).

tableViewSelectionDidChange (page 1480) delegate method
Informs the delegate that the NSTableView’s selection has changed.

Responding to mouse events

tableViewDidClickTableColumn (page 1479) delegate method
Sent at the time the mouse button subsequently goes up in tableView and tableColumn has been
“clicked” without having been dragged anywhere.

tableViewMouseDownInHeaderOfTableColumn (page 1480) delegate method
Sent to the delegate whenever the mouse button is clicked in tableView while the cursor is in a
column header tableColumn.

Editing a cell

tableViewShouldEditLocation (page 1480) delegate method
Returns true to permit aTableView to edit the cell at rowIndex in aTableColumn, false to deny
permission.

1446 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Displaying a cell

tableViewWillDisplayCell (page 1481) delegate method
Informs the delegate that aTableView will display the cell at rowIndex in aTableColumn using
aCell.

Displaying tooltips

tableViewToolTipForCell (page 1481) delegate method
Returns a string that is displayed as a tooltip for aCell in aTableColumn of aTableView.

Allowing variable height rows

tableViewHeightOfRow (page 1479) delegate method
Returns the height of row in tableView.

Constructors

NSTableView
Creates an NSTableView with a zero-sized frame rectangle.

public NSTableView()

Creates a new NSTableView with frameRect as its frame rectangle.

public NSTableView(NSRect frameRect)

Discussion
In both constructors, the new NSTableView has a header view but has no columns; you can create
NSTableColumn objects, set their titles and attributes, and add them to the new NSTableView with
addTableColumn (page 1447). You must also set the NSTableView up in an NSScrollView with NSScrollView’s
setDocumentView (page 1279) method.

It’s usually more convenient to create an NSTableView using Interface Builder. Interface Builder lets you create
an NSTableView already embedded in an NSScrollView, add and name the columns, and set up a data source.

Instance Methods

addTableColumn
Adds aColumn as the last column of the receiver.

public void addTableColumn(NSTableColumn aColumn)

Constructors 1447
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
The column is retained by the receiver.

See Also
sizeLastColumnToFit (page 1474)
removeTableColumn (page 1462)

allowsColumnReordering
Returns true if the receiver allows the user to rearrange columns by dragging their headers, false otherwise.

public boolean allowsColumnReordering()

Discussion
The default is true. You can rearrange columns programmatically regardless of this setting.

See Also
moveColumnToColumn (page 1459)
setAllowsColumnReordering (page 1467)

allowsColumnResizing
Returns true if the receiver allows the user to resize columns by dragging between their headers, false
otherwise.

public boolean allowsColumnResizing()

Discussion
The default is true. You can resize columns programmatically regardless of this setting.

See Also
setWidth (page 1429) (NSTableColumn)
setAllowsColumnResizing (page 1467)

allowsColumnSelection
Returns true if the receiver allows the user to select columns by clicking their headers, false otherwise.

public boolean allowsColumnSelection()

Discussion
The default is true. You can select columns programmatically regardless of this setting.

See Also
selectColumn (page 1464)
allowsColumnReordering (page 1448)
setAllowsColumnSelection (page 1467)

1448 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

allowsEmptySelection
Returns true if the receiver allows the user to select zero columns or rows, false otherwise.

public boolean allowsEmptySelection()

Discussion
The default is true.

You cannot set an empty selection programmatically if this setting is false, unlike with the other settings
that affect selection behavior.

See Also
deselectAll (page 1453)
deselectColumn (page 1453)
deselectRow (page 1454)
setAllowsEmptySelection (page 1467)

allowsMultipleSelection
Returns true if the receiver allows the user to select more than one column or row at a time, false otherwise.

public boolean allowsMultipleSelection()

Discussion
The default is false. You can select multiple columns or rows programmatically regardless of this setting.

See Also
selectColumn (page 1464)
selectRow (page 1466)
setAllowsMultipleSelection (page 1468)

autoresizesAllColumnsToFit
Returns true if the receiver proportionally resizes its columns to fit when its superview’s frame changes,
false if it only resizes the last column.

public boolean autoresizesAllColumnsToFit()

Discussion
This method is deprecated. You should use columnAutoresizingStyle (page 1451) instead.

See Also
columnAutoresizingStyle (page 1451)
setColumnAutoresizingStyle (page 1469)

autosaveName
Returns the name under which table information is automatically saved.

public String autosaveName()

Instance Methods 1449
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
If no name has been set, this method returns null. The table information is saved separately for each user
and for each application that user uses.

Note that even when a table view has an autosave name, it may not be saving table information automatically.
To check whether table information is being saved automatically, use autosaveTableColumns (page 1450).

See Also
autosaveTableColumns (page 1450)
setAutosaveName (page 1469)

autosaveTableColumns
Returns whether the order and width of the receiver’s columns are automatically saved.

public boolean autosaveTableColumns()

Discussion
The table information is saved separately for each user and for each application that user uses. Note that if
autosaveName (page 1449) returns null, this setting is ignored and table information isn’t saved.

See Also
autosaveName (page 1449)
setAutosaveTableColumns (page 1469)
setAutosaveName (page 1469)

backgroundColor
Returns the color used to draw the background of the receiver.

public NSColor backgroundColor()

Discussion
The default background color is light gray.

See Also
setBackgroundColor (page 1469)

canDragRowsWithIndexes
Returns whether the receiver allows dragging the rows at rowIndexes with a drag initiated at
mousedDownPoint.

public boolean canDragRowsWithIndexes(NSIndexSet rowIndexes, NSPoint mouseDownPoint)

Discussion
Return false to disallow the drag.

Availability
Available in Mac OS X v10.4 and later.

1450 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

clickedColumn
Returns the index of the column the user clicked to trigger an action message.

public int clickedColumn()

Discussion
The return value of this method is meaningful only in the target’s implementation of the action or
double-action method. Returns -1 if the user clicked in an area of the table view not occupied by columns.

See Also
clickedRow (page 1451)
setAction (page 455) (NSControl)
setDoubleAction (page 1470)

clickedRow
Returns the index of the row the user clicked to trigger an action message.

public int clickedRow()

Discussion
The return value of this method is meaningful only in the target’s implementation of the action or
double-action method. Returns -1 if the user clicked in an area of the table view not occupied by table rows.

See Also
clickedColumn (page 1451)
setAction (page 455) (NSControl)
setDoubleAction (page 1470)

columnAtPoint
Returns the index of the column aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

public int columnAtPoint(NSPoint aPoint)

Discussion
aPoint is in the coordinate system of the receiver.

See Also
rowAtPoint (page 1462)

columnAutoresizingStyle
Returns the receiver’s column autoresizing style.

public int columnAutoresizingStyle()

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1451
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

See Also
setColumnAutoresizingStyle (page 1469)

columnsInRect
Returns a range of indices for the receiver’s columns that lie wholly or partially within the horizontal boundaries
of aRect.

public NSRange columnsInRect(NSRect aRect)

Discussion
The location of the range is the first such column’s index, and the length is the number of columns that lie
in aRect. Both the width and height of aRectmust be nonzero values, or columnsInRect (page 1452) returns
an NSRange whose length is 0.

See Also
rowsInRect (page 1462)

columnWithIdentifier
Returns the index of the first column in the receiver whose identifier is equal to anObject, when compared
using equals, or –1 if no columns are found with the specified identifier.

public int columnWithIdentifier(Object anObject)

See Also
tableColumnWithIdentifier (page 1475)

cornerView
Returns the NSView used to draw the area to the right of the column headers and above the vertical scroller
of the enclosing NSScrollView.

public NSView cornerView()

Discussion
This is by default a simple view that merely fills in its frame, but you can replace it with a custom view using
setCornerView (page 1470).

See Also
headerView (page 1458)

dataSource
Returns the object that provides the data displayed by the receiver.

public Object dataSource()

1452 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
See “Using a Table Data Source” and the NSTableView.DataSource (page 2019) interface specification for
more information.

See Also
setDataSource (page 1470)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 1470)

deselectAll
Deselects all selected rows or columns if empty selection is allowed; otherwise does nothing.

public void deselectAll(Object sender)

Discussion
Posts TableViewSelectionDidChangeNotification (page 1482) to the default notification center if the
selection does in fact change.

As a target-action method, deselectAll checks with the delegate before changing the selection, using
selectionShouldChangeInTableView (page 1478).

See Also
allowsEmptySelection (page 1449)
selectAll (page 1463)
selectColumn (page 1464)

deselectColumn
Deselects the column at columnIndex if it’s selected, regardless of whether empty selection is allowed.

public void deselectColumn(int columnIndex)

Discussion
If the selection does in fact change, posts TableViewSelectionDidChangeNotification (page 1482) to
the default notification center.

If the indicated column was the last column selected by the user, the column nearest it effectively becomes
the last selected column. In case of a tie, priority is given to the column on the left.

This method doesn’t check with the delegate before changing the selection.

See Also
selectedColumn (page 1464)

Instance Methods 1453
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

allowsEmptySelection (page 1449)
selectRow (page 1466)

deselectRow
Deselects the row at rowIndex if it’s selected, regardless of whether empty selection is allowed.

public void deselectRow(int rowIndex)

Discussion
If the selection does in fact change, posts TableViewSelectionDidChangeNotification (page 1482) to
the default notification center.

If the indicated row was the last row selected by the user, the row nearest it effectively becomes the last
selected row. In case of a tie, priority is given to the row above.

This method doesn’t check with the delegate before changing the selection.

See Also
selectedRow (page 1465)
allowsEmptySelection (page 1449)

doubleAction
Returns the message sent to the target when the user double-clicks a column header or an uneditable cell.

public NSSelector doubleAction()

See Also
action (page 448) (NSControl)
target (page 463) (NSControl)
setDoubleAction (page 1470)

dragImageForRows
Computes and returns an image to use for dragging.

public NSImage dragImageForRows(NSArray dragRows, NSEvent dragEvent, NSMutablePoint
dragImageOffset)

Discussion
Override this to return a custom image. dragRows represents the rows participating in the drag. dragEvent
is a reference to the mouse-down event that began the drag. dragImageOffset is an in/out parameter.

This method is called with dragImageOffset set to NSPoint.ZeroPoint, but it can be modified to
reposition the returned image. A dragImageOffset of NSPoint.ZeroPoint will cause the image to be
centered under the cursor.

This method is deprecated. You should use dragImageForRowsWithIndexes (page 1455) instead.

1454 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Availability
Deprecated in Mac OS X v10.4 and later.

dragImageForRowsWithIndexes
Computes and returns an image to use for dragging.

public NSImage dragImageForRowsWithIndexes(NSIndexSet dragRows, NSArray tableColumns,
NSEvent dragEvent, NSMutablePoint dragImageOffset)

Discussion
Override this to return a custom image. dragRows represents the rows participating in the drag.
tableColumns represents the table columsn that should be in the output image. dragEvent is a reference
to the mouse-down event that began the drag. dragImageOffset is an in/out parameter.

This method is called with dragImageOffset set to NSPoint.ZeroPoint, but it can be modified to
reposition the returned image. A dragImageOffset of NSPoint.ZeroPoint will cause the image to be
centered under the cursor.

Availability
Available in Mac OS X v10.4 and later.

drawBackgroundInClipRect
Draws the background in the clip rect specified by clipRect.

public void drawBackgroundInClipRect(NSRect clipRect)

Availability
Available in Mac OS X v10.3 and later

drawGridInClipRect
Draws the grid lines within aRect, using the grid color set with setGridColor (page 1472).

public void drawGridInClipRect(NSRect aRect)

Discussion
This method draws a grid regardless of whether the receiver is set to draw one automatically.

Subclasses can override this method to draw grid lines other than the standard ones.

See Also
gridColor (page 1457)
setIntercellSpacing (page 1473)
drawsGrid (page 1456)
drawRow (page 1456)
highlightSelectionInClipRect (page 1458)

Instance Methods 1455
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

drawRow
Draws the cells for the row at rowIndex in the columns that intersect clipRect.

public void drawRow(int rowIndex, NSRect clipRect)

Discussion
Sends tableViewWillDisplayCell (page 1481) to the delegate before drawing each cell.

Subclasses can override this method to customize their appearance.

See Also
columnsInRect (page 1452)
highlightSelectionInClipRect (page 1458)
drawGridInClipRect (page 1455)

drawsGrid
public boolean drawsGrid()

Discussion
This method has been deprecated. Use gridStyleMask (page 1457) instead.

Availability
Deprecated in Mac OS X v10.3.

editedColumn
If sent during editLocation (page 1456), returns the index of the column being edited; otherwise returns
–1.

public int editedColumn()

editedRow
If sent during editLocation (page 1456), returns the index of the row being edited; otherwise returns –1.

public int editedRow()

editLocation
Edits the cell at columnIndex and rowIndex, selecting its entire contents if flag is true.

public void editLocation(int columnIndex, int rowIndex, NSEvent theEvent, boolean
flag)

Discussion
This method is invoked automatically in response to user actions; you should rarely need to invoke it directly.
theEvent is usually the mouse event that triggered editing; it can be null when starting an edit
programmatically.

1456 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

This method scrolls the receiver so that the cell is visible, sets up the field editor, and sends
selectAndEditWithFrameInView (page 319) and editWithFrameInView (page 310) to the field editor’s
NSCell object with the NSTableView as the text delegate.

The row at rowIndex must be selected prior to calling editLocation, or an exception will be thrown.

See Also
editedColumn (page 1456)
editedRow (page 1456)

frameOfCellAtLocation
Returns a rectangle locating the cell that lies at the intersection of columnIndex and rowIndex.

public NSRect frameOfCellAtLocation(int columnIndex, int rowIndex)

Discussion
Returns NSRect.ZeroRect if columnIndex or rowIndex is greater than the number of columns or rows
in the NSTableView.

The result of this method is used in a drawWithFrameInView (page 310) message to the NSTableColumn’s
data cell.

See Also
rectOfColumn (page 1461)
rectOfRow (page 1461)

gridColor
Returns the color used to draw grid lines.

public NSColor gridColor()

Discussion
The default color is gray.

See Also
drawsGrid (page 1456)
drawGridInClipRect (page 1455)
setGridColor (page 1472)

gridStyleMask
Returns the receiver’s grid style mask.

public int gridStyleMask()

Discussion
Possible return values are described in “Constants” (page 1477).

Instance Methods 1457
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Availability
Available in Mac OS X v10.3 and later.

See Also
setGridStyleMask (page 1472)

headerView
Returns the NSTableHeaderView used to draw headers over columns, or null if the receiver has no header
view.

public NSTableHeaderView headerView()

Discussion
See “The Parts of a Table” and the NSTableHeaderView (page 1433) class specification for more information.

See Also
setHeaderView (page 1472)

highlightedTableColumn
Returns the table column highlighted in the receiver.

public NSTableColumn highlightedTableColumn()

Discussion
A highlightable column header can be used in conjunction with row selection to highlight a particular column
of the table. An example of this is how Mail indicates the currently sorted column.

See Also
setHighlightedTableColumn (page 1472)

highlightSelectionInClipRect
Highlights the region of the receiver in clipRect.

public void highlightSelectionInClipRect(NSRect clipRect)

Discussion
This method is invoked before drawRow (page 1456).

Subclasses can override this method to change the manner in which they highlight selections.

See Also
drawGridInClipRect (page 1455)

indicatorImage
Returns the indicator image of aTableColumn.

public NSImage indicatorImage(NSTableColumn aTableColumn)

1458 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
An indicator image is an arbitrary (small) image that is rendered on the right side of the column header. An
example of its use is in Mail to indicate the sorting direction of the currently sorted column in a mailbox.

See Also
setIndicatorImage (page 1473)

intercellSpacing
Returns the horizontal and vertical spacing between cells.

public NSSize intercellSpacing()

Discussion
The default spacing is (3.0, 2.0).

See Also
setDrawsGrid (page 1471)
setIntercellSpacing (page 1473)

isColumnSelected
Returns true if the column at columnIndex is selected, false otherwise.

public boolean isColumnSelected(int columnIndex)

See Also
selectedColumn (page 1464)
selectedColumnEnumerator (page 1465)
selectColumn (page 1464)

isRowSelected
Returns true if the row at rowIndex is selected, false otherwise.

public boolean isRowSelected(int rowIndex)

See Also
selectedRow (page 1465)
selectedRowEnumerator (page 1465)
selectRow (page 1466)

moveColumnToColumn
Moves the column and heading at columnIndex to newIndex.

public void moveColumnToColumn(int columnIndex, int newIndex)

Instance Methods 1459
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
This method posts TableViewColumnDidMoveNotification (page 1482) to the default notification center.

noteHeightOfRowsWithIndexesChanged
Informs the receiver that the rows specified in indexSet have changed height.

public void noteHeightOfRowsWithIndexesChanged(NSIndexSet indexSet)

Discussion
If the delegate implementstableViewHeightOfRow (page 1479) this method immediately re-tiles the tableview
using the row heights the delegate provides.

Availability
Available in Mac OS X v10.4 and later.

noteNumberOfRowsChanged
Informs the receiver that the number of records in its data source has changed, allowing the receiver to
update the scrollers in its NSScrollView without actually reloading data into the receiver.

public void noteNumberOfRowsChanged()

Discussion
It’s useful for a data source that continually receives data in the background over a period of time, in which
case the NSTableView can remain responsive to the user while the data is received.

See the NSTableView.DataSource (page 2019) interface specification for information on the messages an
NSTableView sends to its data source.

See Also
reloadData (page 1462)
numberOfRowsInTableView (page 2020) (NSTableView.DataSource interface)

numberOfColumns
Returns the number of columns in the receiver.

public int numberOfColumns()

See Also
numberOfRows (page 1460)

numberOfRows
Returns the number of rows in the receiver.

public int numberOfRows()

See Also
numberOfColumns (page 1460)

1460 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

numberOfRowsInTableView (page 2020) (NSTableView.DataSource interface)

numberOfSelectedColumns
Returns the number of selected columns.

public int numberOfSelectedColumns()

See Also
numberOfSelectedRows (page 1461)
selectedColumnEnumerator (page 1465)

numberOfSelectedRows
Returns the number of selected rows.

public int numberOfSelectedRows()

See Also
numberOfSelectedColumns (page 1461)
selectedRowEnumerator (page 1465)

rectOfColumn
Returns the rectangle containing the column at columnIndex.

public NSRect rectOfColumn(int columnIndex)

Discussion
Returns NSRect.ZeroRect if columnIndex lies outside the range of valid column indices for the receiver.

See Also
frameOfCellAtLocation (page 1457)
rectOfRow (page 1461)
headerRectOfColumn (page 1435) (NSTableHeaderView)

rectOfRow
Returns the rectangle containing the row at rowIndex.

public NSRect rectOfRow(int rowIndex)

Discussion
Returns NSRect.ZeroRect if rowIndex lies outside the range of valid row indices for the receiver.

See Also
frameOfCellAtLocation (page 1457)
rectOfColumn (page 1461)

Instance Methods 1461
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

reloadData
Marks the receiver as needing redisplay, so it will reload the data for visible cells and draw the new values.

public void reloadData()

See Also
noteNumberOfRowsChanged (page 1460)

removeTableColumn
Removes aTableColumn from the receiver.

public void removeTableColumn(NSTableColumn aTableColumn)

See Also
sizeLastColumnToFit (page 1474)
addTableColumn (page 1447)

rowAtPoint
Returns the index of the row aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

public int rowAtPoint(NSPoint aPoint)

Discussion
aPoint is in the coordinate system of the receiver.

See Also
columnAtPoint (page 1451)

rowHeight
Returns the height of each row in the receiver.

public float rowHeight()

Discussion
The default row height is 16.0.

See Also
setRowHeight (page 1473)

rowsInRect
Returns a range of indices for the rows that lie wholly or partially within the vertical boundaries of aRect.

public NSRange rowsInRect(NSRect aRect)

1462 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
The location of the range is the first such row’s index, and the length is the number of rows that lie in aRect.
Both the width and height of aRect must be nonzero values, or this method returns an NSRange whose
length is 0.

See Also
columnsInRect (page 1452)

scrollColumnToVisible
Scrolls the receiver and header view horizontally in an enclosing NSClipView so the column specified by
columnIndex is visible.

public void scrollColumnToVisible(int columnIndex)

See Also
scrollRowToVisible (page 1463)
scrollToPoint (page 347) (NSClipView)

scrollRowToVisible
Scrolls the receiver vertically in an enclosing NSClipView so the row specified by rowIndex is visible.

public void scrollRowToVisible(int rowIndex)

See Also
scrollColumnToVisible (page 1463)
scrollToPoint (page 347) (NSClipView)

selectAll
public void selectAll(Object sender)

Discussion
If the table allows multiple selection, this action method selects all rows or all columns, according to whether
rows or columns were most recently selected. If nothing has been recently selected, this method selects all
rows. If this table doesn’t allow multiple selection, this method does nothing.

If the selection does change, this method posts TableViewSelectionDidChangeNotification (page
1482) to the default notification center.

As a target-action method, selectAll checks with the delegate before changing the selection.

See Also
allowsMultipleSelection (page 1449)
deselectAll (page 1453)
selectColumn (page 1464)

Instance Methods 1463
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

selectColumn
This method has been deprecated. Use selectColumnIndexes (page 1464) instead.

public void selectColumn(int columnIndex, boolean flag)

Availability
Deprecated in Mac OS X v10.3.

See Also
allowsMultipleSelection (page 1449)
allowsColumnSelection (page 1448)
deselectColumn (page 1453)
selectedColumn (page 1464)
selectRow (page 1466)

selectColumnIndexes
Sets the column selection using indexes.

public void selectColumnIndexes(NSIndexSet indexes, boolean extend)

Discussion
If the extend flag is false the selected columns are specified by indexes. If extend is true, the columns
indicated by indexes are added to the collection of already selected columns, providing multiple selection.

If a subclass implements only the deprecated selectColumn (page 1464) method, then this method will be
invoked in a loop. If a subclass implements this method, then selectColumn is not used. This allows subclasses
that already implement selectColumn to still receive all selection messages. To avoid cycles, implementations
of this method and selectColumn should not invoke each other.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectRowIndexes (page 1466)

selectedColumn
Returns the index of the last column selected or added to the selection, or –1 if no column is selected.

public int selectedColumn()

See Also
selectedColumnEnumerator (page 1465)
numberOfSelectedColumns (page 1461)
selectColumn (page 1464)
deselectColumn (page 1453)

1464 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

selectedColumnEnumerator
This method has been deprecated. Use selectedColumnIndexes (page 1465) instead.

public NSEnumerator selectedColumnEnumerator()

Availability
Deprecated in Mac OS X v10.3.

See Also
numberOfSelectedColumns (page 1461)
selectedColumn (page 1464)
selectedRowEnumerator (page 1465)

selectedColumnIndexes
Returns the selected columns.

public NSIndexSet selectedColumnIndexes()

Availability
Available in Mac OS X v10.3 and later.

See Also
selectedRowIndexes (page 1466)
selectColumnIndexes (page 1464)

selectedRow
Returns the index of the last row selected or added to the selection, or –1 if no row is selected.

public int selectedRow()

See Also
selectedRowEnumerator (page 1465)
numberOfSelectedRows (page 1461)
selectRow (page 1466)
deselectRow (page 1454)

selectedRowEnumerator
This method has been deprecated. Use selectedRowIndexes (page 1466) instead.

public NSEnumerator selectedRowEnumerator()

Availability
Deprecated in Mac OS X v10.3.

See Also
numberOfSelectedRows (page 1461)

Instance Methods 1465
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

selectedRow (page 1465)
selectedColumnEnumerator (page 1465)

selectedRowIndexes
Returns the selected rows.

public NSIndexSet selectedRowIndexes()

Availability
Available in Mac OS X v10.3 and later.

See Also
selectedColumnIndexes (page 1465)
selectRowIndexes (page 1466)

selectRow
This method has been deprecated. Use selectRowIndexes (page 1466) instead.

public void selectRow(int rowIndex, boolean flag)

Availability
Deprecated in Mac OS X v10.3.

See Also
allowsMultipleSelection (page 1449)
deselectRow (page 1454)
selectedRow (page 1465)
selectColumn (page 1464)

selectRowIndexes
Sets the row selection using indexes.

public void selectRowIndexes(NSIndexSet indexes, boolean extend)

Discussion
If the extend flag is false the selected rows are specified by indexes. If extend is true, the rows indicated
by indexes are added to the collection of already selected rows, providing multiple selection.

If a subclass implements only the deprecated selectRow (page 1466) method, then that method will be
invoked in a loop. This allows subclasses that already implement selectRow to still receive all selection
messages. If a subclass implements selectRowIndexes, then selectRow is not used. Note that to avoid
cycles, implementations of this method and selectRow should not invoke each other.

Availability
Available in Mac OS X v10.3 and later.

1466 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

See Also
selectColumnIndexes (page 1464)

setAllowsColumnReordering
Controls whether the user can drag column headers to reorder columns.

public void setAllowsColumnReordering(boolean flag)

Discussion
If flag is true the user can reorder columns; if flag is false the user can’t. The default is true. You can
rearrange columns programmatically regardless of this setting.

See Also
moveColumnToColumn (page 1459)
allowsColumnReordering (page 1448)

setAllowsColumnResizing
Controls whether the user can resize columns by dragging between headers.

public void setAllowsColumnResizing(boolean flag)

Discussion
If flag is true the user can resize columns; if flag is false the user can’t. The default is true. You can
resize columns programmatically regardless of this setting.

See Also
setWidth (page 1429) (NSTableColumn)
allowsColumnResizing (page 1448)

setAllowsColumnSelection
Controls whether the user can select an entire column by clicking its header.

public void setAllowsColumnSelection(boolean flag)

Discussion
If flag is true the user can select columns; if flag is false the user can’t. The default is true. You can
select columns programmatically regardless of this setting.

See Also
selectColumn (page 1464)
setAllowsColumnReordering (page 1467)
allowsColumnSelection (page 1448)

setAllowsEmptySelection
Controls whether the receiver allows zero rows or columns to be selected.

Instance Methods 1467
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

public void setAllowsEmptySelection(boolean flag)

Discussion
If flag is true empty selection is allowed; if flag is false it isn’t. The default is true.

You cannot set an empty selection programmatically if empty selection is disallowed, unlike with the other
settings that affect selection behavior.

See Also
deselectAll (page 1453)
deselectColumn (page 1453)
deselectRow (page 1454)
allowsEmptySelection (page 1449)

setAllowsMultipleSelection
Controls whether the user can select more than one row or column at a time.

public void setAllowsMultipleSelection(boolean flag)

Discussion
If flag is true the user can select multiple rows or columns; if flag is false the user can’t. The default is
false. You can select multiple columns or rows programmatically regardless of this setting.

See Also
selectColumn (page 1464)
selectRow (page 1466)
allowsMultipleSelection (page 1449)

setAutoresizesAllColumnsToFit
Controls whether the receiver proportionally resizes its columns to fit when its superview’s frame changes.

public void setAutoresizesAllColumnsToFit(boolean flag)

Discussion
If flag is true, the difference in width is distributed among the receiver’s table columns; if flag is false,
only the last column is resized to fit.

This method is deprecated. You should use setColumnAutoresizingStyle (page 1469) instead. To preserve
compatibility this method sets the autoresizing style to NSTableViewUniformColumnAutoresizingStyle
, if flag is true. Otherwise the autoresizing style is set to
NSTableViewLastColumnOnlyAutoresizingStyle.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
setColumnAutoresizingStyle (page 1469)

1468 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

setAutosaveName
Sets the name under which table information is automatically saved to name.

public void setAutosaveName(String name)

Discussion
If name is different from the current name, this method also reads in the saved information and sets the order
and width of this table view’s columns to match.

The table information is saved separately for each user and for each application that user uses. Note that
even though a table view has an autosave name, it may not be saving table information automatically. To
set whether table information is being saved automatically, use setAutosaveTableColumns (page 1469).

See Also
autosaveName (page 1449)
setAutosaveTableColumns (page 1469)

setAutosaveTableColumns
Sets whether the order and width of this table view’s columns are automatically saved.

public void setAutosaveTableColumns(boolean flag)

Discussion
If flag is different from the current value, this method also reads in the saved information and sets the table
options to match.

The table information is saved separately for each user and for each application that user uses. Note that if
autosaveName (page 1449) returns null, this setting is ignored and table information isn’t saved.

See Also
autosaveTableColumns (page 1450)
setAutosaveName (page 1469)

setBackgroundColor
Sets the receiver’s background color to aColor.

public void setBackgroundColor(NSColor aColor)

See Also
setNeedsDisplay (page 1779) (NSView)
backgroundColor (page 1450)

setColumnAutoresizingStyle
Sets the column autoresizing style of the receiver to style.

public void setColumnAutoresizingStyle(int style)

Instance Methods 1469
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Availability
Available in Mac OS X v10.4 and later.

See Also
columnAutoresizingStyle (page 1451)

setCornerView
Sets the receiver’s corner view to aView.

public void setCornerView(NSView aView)

Discussion
The default corner view merely draws a bezeled rectangle using a blank NSTableHeaderCell, but you can
replace it with a custom view that displays an image or with a control that can handle mouse events, such
as a select all button. Your custom corner view should be as wide as a vertical NSScroller and as tall as the
receiver’s header view.

See Also
setHeaderView (page 1472)
cornerView (page 1452)

setDataSource
Sets the receiver’s data source to anObject and invokes tile (page 1476).

public void setDataSource(Object anObject)

Discussion
anObject should implement the appropriate methods of the NSTableView.DataSource (page 2019) interface.

This method throws an InternalInconsistencyException if anObject doesn’t respond to either
numberOfRowsInTableView (page 2020) or tableViewObjectValueForLocation (page 2021).

See Also
dataSource (page 1452)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

See Also
delegate (page 1453)

setDoubleAction
Sets the message sent to the target when the user double-clicks an uneditable cell or a column header to
aSelector.

1470 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

public void setDoubleAction(NSSelector aSelector)

Discussion
If the double-clicked cell is editable, this message isn’t sent and the cell is edited instead. You can use this
method to implement features such as sorting records according to the column that was double-clicked.

For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

See Also
setAction (page 455) (NSControl)
setTarget (page 460) (NSControl)
doubleAction (page 1454)

setDraggingSourceOperationMask
Sets the default operation mask returned by draggingSourceOperationMaskForLocal: to mask

public void setDraggingSourceOperationMask(int mask, boolean isLocal)

Discussion
If isLocal is true then mask applies when the destination object is in the same application. If isLocal is
false then mask applies when the destination object in an application outside the receiver's application.
NSTableView will archive the operation mask you set for each isLocal setting.

Availability
Available in Mac OS X v10.4 and later.

setDrawsGrid
public void setDrawsGrid(boolean flag)

Discussion
This method has been deprecated. Use setGridStyleMask (page 1472) instead.

Availability
Deprecated in Mac OS X v10.3.

setDropRowAndDropOperation
Used if you wish to “retarget” the proposed drop.

public void setDropRowAndDropOperation(int row, int operation)

Discussion
To specify a drop on the second row, one would specify row as 2, and operation as DropOn. To specify a
drop below the last row, one would specify row as [tv.numberOfRows()] and operation as DropAbove.

Instance Methods 1471
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

setGridColor
Sets the color used to draw grid lines to aColor.

public void setGridColor(NSColor aColor)

Discussion
The default color is gray.

See Also
setDrawsGrid (page 1471)
drawGridInClipRect (page 1455)
gridColor (page 1457)

setGridStyleMask
Sets the grid style mask to specify if no grid lines, vertical grid lines, or horizontal grid lines should be displayed.

public void setGridStyleMask(int gridType)

Discussion
Possible values for gridType are described in “Constants” (page 1477).

Availability
Available in Mac OS X v10.3 and later.

See Also
gridStyleMask (page 1457)

setHeaderView
Sets the receiver’s header view to aHeaderView.

public void setHeaderView(NSTableHeaderView aHeaderView)

Discussion
If aHeaderView is null, the current header view is removed.

See Also
setCornerView (page 1470)
headerView (page 1458)

setHighlightedTableColumn
Sets aTableColumn to be the currently highlighted column header.

public void setHighlightedTableColumn(NSTableColumn aTableColumn)

See Also
highlightedTableColumn (page 1458)

1472 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

setIndicatorImage
Sets the indicator image of aTableColumn to anImage.

public void setIndicatorImage(NSImage anImage, NSTableColumn aTableColumn)

See Also
indicatorImage (page 1458)

setIntercellSpacing
Sets the width and height between cells to those in aSize and redisplays the receiver.

public void setIntercellSpacing(NSSize aSize)

Discussion
The default intercell spacing is (3.0, 2.0).

Table views normally have a 1 pixel separation between consecutively selected rows or columns. An intercell
spacing of (1.0, 1.0) or greater is required if you want this separation. An intercell spacing of (0.0, 0.0) will
force there to be no separation between consecutive selections.

See Also
intercellSpacing (page 1459)

setRowHeight
Sets the height for rows to rowHeight and invokes tile (page 1476).

public void setRowHeight(float rowHeight)

See Also
rowHeight (page 1462)

setSortDescriptors
Sets the receiver’s sort descriptors to the NSSortDescriptor objects in array.

public void setSortDescriptors(NSArray array)

Discussion
A table column is considered sortable if it has a sort descriptor that specifies the sorting direction, a key to
sort by, and a selector defining how to sort. The array of sort descriptors is archived. Sort descriptors persist
along with other column information if an autosave name is set.

Availability
Available in Mac OS X v10.3 and later.

See Also
sortDescriptors (page 1475)

Instance Methods 1473
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

setUsesAlternatingRowBackgroundColors
Sets whether the receiver uses the standard alternating row colors, or a solid color, for its background.

public void setUsesAlternatingRowBackgroundColors(boolean useAlternatingRowColors)

Availability
Available in Mac OS X v10.3 and later.

See Also
usesAlternatingRowBackgroundColors (page 1477)

setVerticalMotionCanBeginDrag
Sets whether vertical motion is treated as a drag or selection change to flag.

public void setVerticalMotionCanBeginDrag(boolean flag)

Discussion
If flag is false then vertical motion will not start a drag. The default is true.

Note that horizontal motion is always a valid motion to begin a drag. Most often, you would want to disable
vertical dragging when it’s expected that horizontal dragging is the natural motion.

See Also
verticalMotionCanBeginDrag (page 1477)

sizeLastColumnToFit
Resizes the last column if there’s room so the receiver fits exactly within its enclosing NSClipView.

public void sizeLastColumnToFit()

See Also
setAutoresizesAllColumnsToFit (page 1468)
minWidth (page 1425) (NSTableColumn)
maxWidth (page 1425) (NSTableColumn)

sizeToFit
Changes the width of columns in the receiver so all columns are visible.

public void sizeToFit()

Discussion
All columns are resized to the same size, up to a column's maximum size. This method then invokes tile (page
1476).

1474 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

sortDescriptors
Returns the receiver’s sort descriptors.

public NSArray sortDescriptors()

Availability
Available in Mac OS X v10.3 and later.

See Also
setSortDescriptors (page 1473)

tableColumns
Returns the NSTableColumns in the receiver.

public NSArray tableColumns()

tableColumnWithIdentifier
Returns the NSTableColumn object for the first column whose identifier is equal to anObject, as compared
using equals, or null if no columns are found with the specified identifier.

public NSTableColumn tableColumnWithIdentifier(Object anObject)

See Also
columnWithIdentifier (page 1452)

textDidBeginEditing
Posts a ControlTextDidBeginEditingNotification (page 466) to the default notification center, as
described in the NSControl class specification.

public void textDidBeginEditing(NSNotification aNotification)

Discussion
aNotification is the NSNotification posted by the field editor; see the NSText (page 1505) class specifications
for more information on this text delegate method.

See Also
textShouldBeginEditing (page 1476)

textDidChange
Sends textDidChange (page 1475) to the edited cell and posts a
ControlTextDidChangeNotification (page 467) to the default notification center, as described in the
NSControl class specification.

public void textDidChange(NSNotification aNotification)

Instance Methods 1475
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
aNotification is the NSNotification posted by the field editor; see the NSText (page 1505) class specification
for more information on this text delegate method.

textDidEndEditing
Updates the data source based on the newly edited value and selects another cell for editing if possible
according to the character that ended editing (Return, Tab, Backtab).

public void textDidEndEditing(NSNotification aNotification)

Discussion
aNotification is the NSNotification posted by the field editor; see the NSText (page 1505) class specification
for more information on this text delegate method.

See Also
textShouldEndEditing (page 1476)

textShouldBeginEditing
Queries the delegate usingcontrolTextShouldBeginEditing (page 465), returning the delegate’s response,
or simply returning true to allow editing of textObject if the delegate doesn’t respond to that method.

public boolean textShouldBeginEditing(NSText textObject)

Discussion
See the NSText (page 1505) class specification for more information on this text delegate method.

See Also
textDidBeginEditing (page 1475)

textShouldEndEditing
Validates the textObject cell being edited and queries the delegate using
controlTextShouldEndEditing (page 465), returning the delegate’s response if it responds to that method.

public boolean textShouldEndEditing(NSText textObject)

Discussion
If it doesn’t, it returns true if the cell’s new value is valid and false if it isn’t. See the NSText (page 1505) class
specification for more information on this text delegate method.

See Also
textDidEndEditing (page 1476)

tile
Properly sizes the receiver and its header view and marks it as needing display.

public void tile()

1476 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
Also resets cursor rectangles for the header view and line scroll amounts for the NSScrollView.

See Also
setNeedsDisplay (page 1779) (NSView)

usesAlternatingRowBackgroundColors
Returns whether the receiver uses the standard alternating row colors, or a solid color, for its background.

public boolean usesAlternatingRowBackgroundColors()

Availability
Available in Mac OS X v10.3 and later.

See Also
setUsesAlternatingRowBackgroundColors (page 1474)

verticalMotionCanBeginDrag
Returns whether vertical motion is treated as a drag or selection change.

public boolean verticalMotionCanBeginDrag()

Discussion
false means that vertical motion will not start a drag. Note that horizontal motion is always a valid motion
to begin a drag.

See Also
setVerticalMotionCanBeginDrag (page 1474)

Constants

NSTableView defines the following constants to specify drop operations. For example, given a table with n
rows (numbered with row 0 at the top visually), a row of n–1 and operation of DropOn would specify a drop
on the last row. To specify a drop below the last row, one would use a row of n and DropAbove for the
operation.

DescriptionConstant

Specifies that the drop should occur on the specified row.DropOn

Specifies that the drop should occur above the specified row.DropAbove

NSTableView defines the following constants to specify grid styles. Either it can be GridNone (page 1478) or
it can contain any of the following options, combined using the C bitwise OR operator. These constants are
used by gridStyleMask (page 1457) and setGridStyleMask (page 1472).

Constants 1477
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

DescriptionConstant

Specifies that no grid lines should be displayed.GridNone

Specifies that vertical grid lines should be displayed.SolidVerticalGridLineMask

Specifies that horizontal grid lines should be displayed.SolidHorizontalGridLineMask

The following constants specify the autoresizing styles. These constants are used by
columnAutoresizingStyle (page 1451) and setColumnAutoresizingStyle (page 1469).

DescriptionConstant

Disable table column autoresizing.
Available in Mac OS X v10.4 and later.

NoColumnAutoresizinge

Autoresize all columns by distributing space equally, simultaeously.
Available in Mac OS X v10.4 and later.

UniformColumn-
AutoresizingStyle

Autoresize each table column sequentially, from left to right. Proceed
to the next column when the current column has reached its minimum
or maximum size.
Available in Mac OS X v10.4 and later.

SequentialColumn-
AutoresizingStyle

Autoresize each table column sequentially, from right to left. Proceed
to the next column when the current column has reached its minimum
or maximum size.
Available in Mac OS X v10.4 and later.

ReverseSequential-
ColumnAutoresizingStyle

Autoresize only the last table colum. When that table column can no
longer be resized, stop autoresizing. Normally you should use one of
the sequential autoresizing modes instead.
Available in Mac OS X v10.4 and later.

LastColumnOnly-
AutoresizingStyle

Autoresize only the first table colum. When that table column can no
longer be resized, stop autoresizing. Normally you should use one of
the sequential autoresizing modes instead.
Available in Mac OS X v10.4 and later.

FirstColumnOnly-
AutoresizingStyle

Delegate Methods

selectionShouldChangeInTableView
Returns true to permit aTableView to change its selection (typically a row being edited), false to deny
permission.

public abstract boolean selectionShouldChangeInTableView(NSTableView aTableView)

1478 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Discussion
The user can select and edit different cells within the same row, but can’t select another row unless the
delegate approves. The delegate can implement this method for complex validation of edited rows based
on the values of any of their cells.

tableViewColumnDidMove
Informs the delegate that a column was moved by user action in the NSTableView.

public abstract void tableViewColumnDidMove(NSNotification aNotification)

Discussion
aNotification is a TableViewColumnDidMoveNotification (page 1482).

tableViewColumnDidResize
Informs the delegate that a column was resized in the NSTableView.

public abstract void tableViewColumnDidResize(NSNotification aNotification)

Discussion
aNotification is a TableViewColumnDidResizeNotification (page 1482).

tableViewDidClickTableColumn
Sent at the time the mouse button subsequently goes up in tableView and tableColumn has been “clicked”
without having been dragged anywhere.

public abstract void tableViewDidClickTableColumn(NSTableView tableView,
NSTableColumn tableColumn)

tableViewDidDragTableColumn
Sent at the time the mouse button goes up in tableView and tableColumn has been dragged during the
time the mouse button was down.

public abstract void tableViewDidDragTableColumn(NSTableView tableView, NSTableColumn
tableColumn)

tableViewHeightOfRow
Returns the height of row in tableView.

public abstract float tableViewHeightOfRow(NSTableView tableView, int row)

Discussion
You should implement this method if your table supports varying row heights. The height returned should
not include intercell spacing and must be greater than zero.

Delegate Methods 1479
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Although NSTableViews may cache the returned values, you should ensure that this method is efficient.
When you change a row's height you must invalidate the existing row height by calling
noteHeightOfRowsWithIndexesChanged (page 1460). NSTableView automatically invalidates its entire row
height cache when reloadData (page 1462) and noteNumberOfRowsChanged (page 1460) are called.

Availability
Available in Mac OS X v10.4 and later.

tableViewMouseDownInHeaderOfTableColumn
Sent to the delegate whenever the mouse button is clicked in tableView while the cursor is in a column
header tableColumn.

public abstract void tableViewMouseDownInHeaderOfTableColumn(NSTableView tableView,
NSTableColumn tableColumn)

tableViewSelectionDidChange
Informs the delegate that the NSTableView’s selection has changed.

public abstract void tableViewSelectionDidChange(NSNotification aNotification)

Discussion
aNotification is a TableViewSelectionDidChangeNotification (page 1482).

tableViewSelectionIsChanging
Informs the delegate that the NSTableView’s selection is in the process of changing (typically because the
user is dragging the cursor across a number of rows).

public abstract void tableViewSelectionIsChanging(NSNotification aNotification)

Discussion
aNotification is a TableViewSelectionIsChangingNotification (page 1482).

tableViewShouldEditLocation
Returns true to permit aTableView to edit the cell at rowIndex in aTableColumn, false to deny
permission.

public abstract boolean tableViewShouldEditLocation(NSTableView aTableView,
NSTableColumn aTableColumn, int rowIndex)

Discussion
The delegate can implement this method to disallow editing of specific cells.

tableViewShouldSelectRow
Returns true to permit aTableView to select the row at rowIndex, false to deny permission.

1480 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

public abstract boolean tableViewShouldSelectRow(NSTableView aTableView, int
rowIndex)

Discussion
The delegate can implement this method to disallow selection of particular rows.

tableViewShouldSelectTableColumn
Returns true to permit aTableView to select aTableColumn, false to deny permission.

public abstract boolean tableViewShouldSelectTableColumn(NSTableView aTableView,
NSTableColumn aTableColumn)

Discussion
The delegate can implement this method to disallow selection of particular columns.

tableViewToolTipForCell
Returns a string that is displayed as a tooltip for aCell in aTableColumn of aTableView.

public abstract String tableViewToolTipForCell(NSTableView aTableView, NSCell aCell,
NSMutableRect rect, NSTableColumn aTableColumn, int row, NSPoint mouseLocation)

Discussion
The mouseLocation is the current mouse location in view coordinates. The row is the row of the cell and
aTableColumn is the NSTableColumn that contains the cell. The rect represents the proposed active area
of the tooltip. By default, rect is computed as [cell drawingRectForBounds:cellFrame]. You can
modify rect to provide an alternative active area. Return null or the empty string if no tooltip is desired.

Availability
Available in Mac OS X v10.4 and later.

tableViewWillDisplayCell
Informs the delegate that aTableView will display the cell at rowIndex in aTableColumn using aCell.

public abstract void tableViewWillDisplayCell(NSTableView aTableView, Object aCell,
NSTableColumn aTableColumn, int rowIndex)

Discussion
The delegate can modify the display attributes of aCell to alter the appearance of the cell. Because aCell
is reused for every row in aTableColumn, the delegate must set the display attributes both when drawing
special cells and when drawing normal cells.

Delegate Methods 1481
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Notifications

TableViewColumnDidMoveNotification
Posted whenever a column is moved by user action in an NSTableView. The notification object is the
NSTableView in which a column moved. The userInfo dictionary contains the following information:

ValueKey

The integer value of the column’s original index."NSOldColumn"

The integer value of the column’s present index."NSNewColumn"

See Also
moveColumnToColumn (page 1459)

TableViewColumnDidResizeNotification
Posted whenever a column is resized in an NSTableView. The notification object is the NSTableView in which
a column was resized. The userInfo dictionary contains the following information:

ValueKey

The column that was resized."NSTableColumn"

The integer value of the column’s original width."NSOldWidth"

TableViewSelectionDidChangeNotification
Posted after an NSTableView’s selection changes. The notification object is the NSTableView whose selection
changed. This notification does not contain a userInfo dictionary.

TableViewSelectionIsChangingNotification
Posted as an NSTableView’s selection changes (while the mouse button is still down). The notification object
is the NSTableView whose selection is changing. This notification does not contain a userInfo dictionary.

1482 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 117

NSTableView

Inherits from NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Tab Views

Overview

An NSTabView is a convenient way to present information in multiple pages. The view contains a row of tabs
that give the appearance of folder tabs, as shown in the following figure. The user selects the desired page
by clicking the appropriate tab or using the arrow keys to move between pages. Each page displays a view
hierarchy provided by your application.

Tasks

Constructors

NSTabView (page 1487)
Creates an NSTabView with a zero-sized frame rectangle.

Overview 1483
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

Adding and Removing Tabs

addTabViewItem (page 1487)
Adds the tab item specified by tabViewItem.

insertTabViewItem (page 1489)
Inserts tabViewItem into the receiver’s array of tab view items at index.

removeTabViewItem (page 1490)
Removes the item specified by tabViewItem from the receiver’s array of tab view items.

Accessing Tabs

indexOfTabViewItem (page 1489)
Returns the index of the item that matches tabViewItem, or NSArray.NotFound if the item is not
found.

indexOfTabViewItemWithIdentifier (page 1489)
Returns the index of the item that matches identifier, or NSArray.NotFound if the item is not
found.

numberOfTabViewItems (page 1490)
Returns the number of items in the receiver’s array of tab view items.

tabViewItemAtIndex (page 1494)
Returns the tab view item at index in the tab view’s array of items.

tabViewItems (page 1495)
Returns the receiver’s array of tab view items.

Selecting a Tab

selectFirstTabViewItem (page 1491)
This action method selects the first tab view item.

selectLastTabViewItem (page 1491)
This action method selects the last tab view item.

selectNextTabViewItem (page 1491)
This action method selects the next tab view item in the sequence.

selectPreviousTabViewItem (page 1491)
This action method selects the previous tab view item in the sequence.

selectTabViewItem (page 1492)
Selects the tab view item specified by tabViewItem.

selectTabViewItemAtIndex (page 1492)
Selects the tab view item specified by index.

selectTabViewItemWithIdentifier (page 1492)
Selects the tab view item specified by identifier.

selectedTabViewItem (page 1491)
Returns the tab view item for the currently selected tab, or null if no item is selected.

takeSelectedTabViewItemFromSender (page 1495)

1484 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

Modifying the Font

font (page 1489)
Returns the font for tab label text.

setFont (page 1494)
Sets the font for tab label text to font.

Modifying the Tab Type

setTabViewType (page 1494)
Sets the tab type to tabViewType.

tabViewType (page 1495)
Returns the tab type for the receiver.

Modifying Controls Tint

controlTint (page 1488)
Returns the receiver’s control tint.

setControlTint (page 1493)
Sets the receiver’s control tint to controlTint.

Manipulating the Background

drawsBackground (page 1488)
Returns true if the receiver draws a background color when the tab view type is NoTabsNoBorder.
If the receiver uses bezeled edges or a line border, the appropriate background color for that border
is used.

setDrawsBackground (page 1493)

Determining the Size

minimumSize (page 1490)
Returns the minimum size necessary for the receiver to display tabs in a useful way.

contentRect (page 1488)
Returns the rectangle describing the content area of the receiver.

controlSize (page 1488)
Returns the size of the receiver.

setControlSize (page 1493)
Sets the size of the receiver to controlSize.

Tasks 1485
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

Truncating Tab Labels

allowsTruncatedLabels (page 1487)
Returns true if the receiver allows truncating for labels that don’t fit on a tab.

setAllowsTruncatedLabels (page 1492)
Sets whether the receiver allows truncating for names that don’t fit on a tab to
allowTruncatedLabels.

Assigning a Delegate

setDelegate (page 1493)
Sets the receiver’s delegate to anObject.

delegate (page 1488)
Returns the receiver’s delegate.

Event Handling

tabViewItemAtPoint (page 1494)
Returns the tab view item identified by point.

View’s Window

window (page 1495)

Selecting an item

tabViewShouldSelectTabViewItem (page 1497) delegate method
Invoked just before tabViewItem in tabView is selected.

tabViewWillSelectTabViewItem (page 1497) delegate method
Informs the delegate that tabView is about to select tabViewItem.

tabViewDidSelectTabViewItem (page 1497) delegate method
Informs the delegate that tabView has selected tabViewItem.

Changing number of items in view

tabViewDidChangeNumberOfTabViewItems (page 1497) delegate method
Informs the delegate that the number of tab view items in tabView has changed.

1486 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

Constructors

NSTabView
Creates an NSTabView with a zero-sized frame rectangle.

public NSTabView()

Creates an NSTabView with frameRect as its frame rectangle.

public NSTabView(NSRect frameRect)

Instance Methods

addTabViewItem
Adds the tab item specified by tabViewItem.

public void addTabViewItem(NSTabViewItem tabViewItem)

Discussion
The item is added at the end of the array of tab items, so the new tab appears on the right side of the view.
If the delegate supports it, invokes the delegate’s tabViewDidChangeNumberOfTabViewItems (page 1497)
method.

See Also
insertTabViewItem (page 1489)
numberOfTabViewItems (page 1490)
removeTabViewItem (page 1490)
tabViewItemAtIndex (page 1494)
tabViewItems (page 1495)

allowsTruncatedLabels
Returns true if the receiver allows truncating for labels that don’t fit on a tab.

public boolean allowsTruncatedLabels()

Discussion
The default is false. When truncating is allowed, the tab view inserts an ellipsis, if necessary, to fit a label
in the tab.

See Also
setAllowsTruncatedLabels (page 1492)

Constructors 1487
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

contentRect
Returns the rectangle describing the content area of the receiver.

public NSRect contentRect()

Discussion
This area does not include the space required for the receiver’s tabs or borders (if any).

controlSize
Returns the size of the receiver.

public int controlSize()

Discussion
Valid return values are described in “Constants” (page 1495).

See Also
setControlSize (page 1493)

controlTint
Returns the receiver’s control tint.

public int controlTint()

Discussion
Valid return values are described in “Constants” (page 1495).

See Also
setControlTint (page 1493)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 1493)

drawsBackground
Returns true if the receiver draws a background color when the tab view type is NoTabsNoBorder. If the
receiver uses bezeled edges or a line border, the appropriate background color for that border is used.

public boolean drawsBackground()

See Also
setTabViewType (page 1494)

1488 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

setDrawsBackground (page 1493)

font
Returns the font for tab label text.

public NSFont font()

See Also
setFont (page 1494)

indexOfTabViewItem
Returns the index of the item that matches tabViewItem, or NSArray.NotFound if the item is not found.

public int indexOfTabViewItem(NSTabViewItem tabViewItem)

Discussion
A tab view keeps an array containing one tab view item for each tab in the view—this array is the one that
is searched. The returned index is base 0.

See Also
indexOfTabViewItemWithIdentifier (page 1489)
insertTabViewItem (page 1489)
numberOfTabViewItems (page 1490)
tabViewItemAtIndex (page 1494)

indexOfTabViewItemWithIdentifier
Returns the index of the item that matches identifier, or NSArray.NotFound if the item is not found.

public int indexOfTabViewItemWithIdentifier(Object identifier)

Discussion
A tab view keeps an array containing one tab view item for each tab in the view—this array is the one that
is searched. The returned index is base 0.

See Also
indexOfTabViewItem (page 1489)
insertTabViewItem (page 1489)
numberOfTabViewItems (page 1490)
tabViewItemAtIndex (page 1494)

insertTabViewItem
Inserts tabViewItem into the receiver’s array of tab view items at index.

public void insertTabViewItem(NSTabViewItem tabViewItem, int index)

Instance Methods 1489
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

Discussion
The index parameter is base 0. If there is a delegate and the delegate supports it, sends the delegate the
tabViewDidChangeNumberOfTabViewItems (page 1497) message.

See Also
indexOfTabViewItem (page 1489)
indexOfTabViewItemWithIdentifier (page 1489)
numberOfTabViewItems (page 1490)
tabViewItemAtIndex (page 1494)

minimumSize
Returns the minimum size necessary for the receiver to display tabs in a useful way.

public NSSize minimumSize()

Discussion
You can use the value returned by this method to limit how much a user can resize a tab view.

See Also
setTabViewType (page 1494)

numberOfTabViewItems
Returns the number of items in the receiver’s array of tab view items.

public int numberOfTabViewItems()

Discussion
Because there is one item in the array for each tab in the view, this number is equivalent to the number of
tabs in the view.

See Also
indexOfTabViewItem (page 1489)
tabViewItems (page 1495)

removeTabViewItem
Removes the item specified by tabViewItem from the receiver’s array of tab view items.

public void removeTabViewItem(NSTabViewItem tabViewItem)

Discussion
If there is a delegate and the delegate supports it, sends the delegate the
tabViewDidChangeNumberOfTabViewItems (page 1497) message.

See Also
addTabViewItem (page 1487)
insertTabViewItem (page 1489)
tabViewItems (page 1495)

1490 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

selectedTabViewItem
Returns the tab view item for the currently selected tab, or null if no item is selected.

public NSTabViewItem selectedTabViewItem()

See Also
selectTabViewItemAtIndex (page 1492)

selectFirstTabViewItem
This action method selects the first tab view item.

public void selectFirstTabViewItem(Object sender)

See Also
selectTabViewItem (page 1492)

selectLastTabViewItem
This action method selects the last tab view item.

public void selectLastTabViewItem(Object sender)

See Also
selectTabViewItem (page 1492)

selectNextTabViewItem
This action method selects the next tab view item in the sequence.

public void selectNextTabViewItem(Object sender)

Discussion
If the currently visible item is the last item in the sequence, this method does nothing, and the last page
remains displayed.

See Also
selectTabViewItem (page 1492)

selectPreviousTabViewItem
This action method selects the previous tab view item in the sequence.

public void selectPreviousTabViewItem(Object sender)

Discussion
If the currently visible item is the first item in the sequence, this method does nothing, and the first page
remains displayed.

Instance Methods 1491
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

See Also
selectTabViewItem (page 1492)

selectTabViewItem
Selects the tab view item specified by tabViewItem.

public void selectTabViewItem(NSTabViewItem tabViewItem)

Discussion
If there is a delegate and the delegate supports it, sends the delegate the
tabViewShouldSelectTabViewItem (page 1497) message.

See Also
insertTabViewItem (page 1489)
selectedTabViewItem (page 1491)

selectTabViewItemAtIndex
Selects the tab view item specified by index.

public void selectTabViewItemAtIndex(int index)

Discussion
The index parameter is base 0. If there is a delegate and the delegate supports it, sends the delegate the
tabViewShouldSelectTabViewItem (page 1497) message.

See Also
insertTabViewItem (page 1489)
selectedTabViewItem (page 1491)

selectTabViewItemWithIdentifier
Selects the tab view item specified by identifier.

public void selectTabViewItemWithIdentifier(Object identifier)

See Also
setIdentifier (page 1502) (NSTabViewItem)
identifier (page 1501) (NSTabViewItem)
selectTabViewItemAtIndex (page 1492)
selectedTabViewItem (page 1491)

setAllowsTruncatedLabels
Sets whether the receiver allows truncating for names that don’t fit on a tab to allowTruncatedLabels.

public void setAllowsTruncatedLabels(boolean allowTruncatedLabels)

1492 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

See Also
allowsTruncatedLabels (page 1487)

setControlSize
Sets the size of the receiver to controlSize.

public void setControlSize(int controlSize)

Discussion
Valid values for controlSize are described in “Constants” (page 1495).

See Also
controlSize (page 1488)

setControlTint
Sets the receiver’s control tint to controlTint.

public void setControlTint(int controlTint)

Discussion
Valid values for controlTint are described in “Constants” (page 1495).

See Also
controlTint (page 1488)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

See Also
delegate (page 1488)

setDrawsBackground
public void setDrawsBackground(boolean flag)

Discussion
Sets whether a background is drawn when the view type is NoTabsNoBorder to flag. If the receiver has a
bezeled border or a line border, the appropriate background for that border is used.

See Also
setTabViewType (page 1494)
drawsBackground (page 1488)

Instance Methods 1493
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

setFont
Sets the font for tab label text to font.

public void setFont(NSFont font)

Discussion
Tab height is adjusted automatically to accommodate a new font size. If the view allows truncating, tab labels
are truncated as needed.

See Also
allowsTruncatedLabels (page 1487)
font (page 1489)
setAllowsTruncatedLabels (page 1492)

setTabViewType
Sets the tab type to tabViewType.

public void setTabViewType(int tabViewType)

Discussion
The available types are described in “Constants” (page 1495).

See Also
tabViewType (page 1495)

tabViewItemAtIndex
Returns the tab view item at index in the tab view’s array of items.

public NSTabViewItem tabViewItemAtIndex(int index)

Discussion
The index parameter is base 0.

See Also
indexOfTabViewItem (page 1489)
insertTabViewItem (page 1489)
tabViewItems (page 1495)

tabViewItemAtPoint
Returns the tab view item identified by point.

public NSTabViewItem tabViewItemAtPoint(NSPoint point)

Discussion
You can use this method to find a tab view item based on a user’s mouse click.

1494 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

tabViewItems
Returns the receiver’s array of tab view items.

public NSArray tabViewItems()

Discussion
A tab view keeps an array containing one tab view item for each tab in the view.

See Also
numberOfTabViewItems (page 1490)
tabViewItemAtIndex (page 1494)

tabViewType
Returns the tab type for the receiver.

public int tabViewType()

Discussion
The available types are described in “Constants” (page 1495).

takeSelectedTabViewItemFromSender
public void takeSelectedTabViewItemFromSender(Object sender)

Discussion
If sender responds to the indexOfSelectedItem method, this method invokes that method and selects
the tab view item at the specified index. If sender does not respond to indexOfSelectedItem but is an
instance of NSMatrix, this method uses the index of the matrix’s currently selected cell.

The location of the selected cell is a zero-based number, obtained by counting the number of cells up to and
including the selected cell. Cells are counted from left to right and from top to bottom. For example in a
5-by-5 matrix, if the selected cell is three rows down in column five (location [2,4] in the matrix), the
corresponding index would be 14.

window
public NSWindow window()

Discussion
Returns the receiver’s window object, or null if there is none. If the receiver is not the currently visible tab
view this method returns null.

Constants

These constants specify the tab view’s type:

Constants 1495
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

DescriptionConstant

The view includes tabs on the top of the view and has a bezeled border (the
default).

TopTabsBezelBorder

The view does not include tabs and has a bezeled border.NoTabsBezelBorder

The view does not include tabs and has a lined border.NoTabsLineBorder

The view does not include tabs and has no border.NoTabsNoBorder

Tabs are on the bottom of the view with a bezeled border.BottomTabsBezelBorder

Tabs are on the left of the view with a bezeled border.LeftTabsBezelBorder

Tabs are on the right of the view with a bezeled border.RightTabsBezelBorder

These constants describe the current display state of a tab:

DescriptionConstant

A tab that’s not being displayed.BackgroundTab

A tab that the user is in the process of clicking. That is, the user has pressed the mouse
button while the cursor is over the tab, but has not released the mouse button.

PressedTab

The tab that’s being displayed.SelectedTab

These constants specify a view’s tint. They’re used by controlTint (page 1488) and setControlTint (page
1493).

DescriptionConstant

The current default tint setting.DefaultControlTint

Clear control tint.ClearControlTint

Aqua control tintBlueControlTint

Graphite control tintGraphiteControlTint

These constants specify a view’s size. They’re used by controlSize (page 1488) and setControlSize (page
1493).

DescriptionConstant

The control is sized as regular.RegularControlSize

The control has a smaller size. This constant is for controls that cannot be resized
in one direction, such as push buttons, radio buttons, checkboxes, sliders, scroll
bars, pop-up buttons, tabs, and progress indicators. You should use a small system
font when using with a small control.

SmallControlSize

1496 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

DescriptionConstant

The control has a smaller size than SmallControlSize.MiniControlSize

Delegate Methods

tabViewDidChangeNumberOfTabViewItems
Informs the delegate that the number of tab view items in tabView has changed.

public abstract void tabViewDidChangeNumberOfTabViewItems(NSTabView tabView)

See Also
numberOfTabViewItems (page 1490)

tabViewDidSelectTabViewItem
Informs the delegate that tabView has selected tabViewItem.

public abstract void tabViewDidSelectTabViewItem(NSTabView tabView, NSTabViewItem
tabViewItem)

tabViewShouldSelectTabViewItem
Invoked just before tabViewItem in tabView is selected.

public abstract boolean tabViewShouldSelectTabViewItem(NSTabView tabView,
NSTabViewItem tabViewItem)

Discussion
The delegate can return false to prevent selection of specific tabs.

tabViewWillSelectTabViewItem
Informs the delegate that tabView is about to select tabViewItem.

public abstract void tabViewWillSelectTabViewItem(NSTabView tabView, NSTabViewItem
tabViewItem)

Delegate Methods 1497
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

1498 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 118

NSTabView

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Tab Views

Overview

An NSTabViewItem is a convenient way for presenting information in multiple pages. A tab view is usually
distinguished by a row of tabs that give the visual appearance of folder tabs. When the user clicks a tab, the
tab view displays a view page provided by your application. A tab view keeps a zero-based array of
NSTabViewItems, one for each tab in the view.

Tasks

Constructors

NSTabViewItem (page 1501)
Creates an empty NSTabViewItem.

Working with Labels

drawLabel (page 1501)
Draws the receiver’s label in tabRect, which is the area between the curved end caps.

label (page 1502)
Returns the label text for the receiver.

setLabel (page 1503)
Sets the label text for the receiver to label.

sizeOfLabel (page 1503)
Calculates the size of the receiver’s label.

Overview 1499
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 119

NSTabViewItem

Checking the Tab Display State

tabState (page 1503)
Returns the current display state of the tab associated with the receiver.

Assigning an Identifier Object

identifier (page 1501)
Returns the receiver’s optional identifier object.

setIdentifier (page 1502)
Sets the receiver’s optional identifier object to identifier.

Setting the Color

color (page 1501)
Returns the color for the receiver.

setColor (page 1502)
Deprecated. NSTabViewItems use a color supplied by the current theme.

Assigning a View

view (page 1504)
Returns the view associated with the receiver.

setView (page 1503)
Sets the view associated with the receiver to view.

Setting the Initial First Responder

initialFirstResponder (page 1502)
Returns the initial first responder for the view associated with the receiver.

setInitialFirstResponder (page 1503)
Sets the initial first responder for the view associated with the receiver (the view that is displayed
when a user clicks on the tab) to view.

Accessing the Parent Tab View

tabView (page 1504)
Returns the parent tab view for the receiver.

1500 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 119

NSTabViewItem

Constructors

NSTabViewItem
Creates an empty NSTabViewItem.

public NSTabViewItem()

Creates a new NSTabViewItem. Sets the item’s identifier object to identifier, if it is not null. Use this
constructor when creating tab view items programmatically.

public NSTabViewItem(Object identifier)

Instance Methods

color
Returns the color for the receiver.

public NSColor color()

Discussion
The color is specified by the current theme.

See Also
setColor (page 1502)

drawLabel
Draws the receiver’s label in tabRect, which is the area between the curved end caps.

public void drawLabel(boolean shouldTruncateLabel, NSRect tabRect)

Discussion
If shouldTruncateLabel is false, draws the full label in the rectangle specified by tabRect. If
shouldTruncateLabel is true, draws the truncated label. You can override this method to perform
customized label drawing. For example, you might want to add an icon to each tab in the view.

See Also
sizeOfLabel (page 1503)

identifier
Returns the receiver’s optional identifier object.

public Object identifier()

Constructors 1501
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 119

NSTabViewItem

Discussion
To customize how your application works with tabs, you can initialize each tab view item with an identifier
object.

See Also
setIdentifier (page 1502)

initialFirstResponder
Returns the initial first responder for the view associated with the receiver.

public Object initialFirstResponder()

See Also
setInitialFirstResponder (page 1503)

label
Returns the label text for the receiver.

public String label()

See Also
setLabel (page 1503)

setColor
Deprecated. NSTabViewItems use a color supplied by the current theme.

public void setColor(NSColor color)

See Also
color (page 1501)

setIdentifier
Sets the receiver’s optional identifier object to identifier.

public void setIdentifier(Object identifier)

Discussion
To customize how your application works with tabs, you can specify an identifier object for each tab view
item.

See Also
identifier (page 1501)

1502 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 119

NSTabViewItem

setInitialFirstResponder
Sets the initial first responder for the view associated with the receiver (the view that is displayed when a
user clicks on the tab) to view.

public void setInitialFirstResponder(NSView view)

See Also
initialFirstResponder (page 1502)

setLabel
Sets the label text for the receiver to label.

public void setLabel(String label)

See Also
label (page 1502)

setView
Sets the view associated with the receiver to view.

public void setView(NSView view)

Discussion
This is the view displayed when a user clicks the tab.

See Also
view (page 1504)

sizeOfLabel
Calculates the size of the receiver’s label.

public NSSize sizeOfLabel(boolean shouldTruncateLabel)

Discussion
If shouldTruncateLabel is false, returns the size of the receiver’s full label. If shouldTruncateLabel
is true, returns the truncated size. If your application does anything to change the size of tab labels, such
as overriding the drawLabel (page 1501) method to add an icon to each tab, you should override
sizeOfLabel (page 1503) too so the NSTabView knows the correct size for the tab label.

See Also
drawLabel (page 1501)
setFont (page 1494) (NSTabView)

tabState
Returns the current display state of the tab associated with the receiver.

Instance Methods 1503
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 119

NSTabViewItem

public int tabState()

Discussion
The possible values are NSTabView.SelectedTab, NSTabView.BackgroundTab, or
NSTabView.PressedTab. Your application does not directly set the tab state.

tabView
Returns the parent tab view for the receiver.

public NSTabView tabView()

Discussion
Note that this is the tab view itself, not the view displayed when a user clicks the tab.

A tab view item normally learns about its parent tab view when it is inserted into the view’s array of items.
The NSTabView methodsaddTabViewItem (page 1487) andinsertTabViewItem (page 1489) set the tab view
for the added or inserted item.

See Also
setView (page 1503)
view (page 1504)

view
Returns the view associated with the receiver.

public NSView view()

Discussion
This is the view displayed when a user clicks the tab.

See Also
setView (page 1503)

1504 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 119

NSTabViewItem

Inherits from NSView : NSResponder : NSObject

Implements NSChangeSpelling
NSIgnoreMisspelledWords
NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Text System Overview

Class at a Glance

NSText declares the most general programmatic interface for objects that manage text. You usually use
instances of its subclass, NSTextView.

Commonly Used Methods

readRTFDFromFile (page 1519)
Reads an .rtf or .rtfd file.

writeRTFDToFile (page 1529)
Writes the receiver’s text to a file.

string (page 1528)
Returns the receiver’s text without attributes.

RTFFromRange (page 1521)
Returns the receiver’s text with attributes.

RTFDFromRange (page 1521)
Returns the receiver’s text with attributes and attachments.

Overview

The NSText class declares the most general programmatic interface to objects that manage text. Cocoa offers
a subclass of NSText, NSTextView, that extends the interface declared by NSText and provides much more
sophisticated functionality than that declared in NSText.

NSText’s constructor creates an instance of a concrete subclass, such as NSTextView. Instances of any of these
classes are generically called text objects.

Class at a Glance 1505
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Text objects are used by the Application Kit wherever text appears in interface objects: A text object draws
the title of a window, the commands in a menu, the title of a button, and the items in a browser. Your
application can also create text objects for its own purposes.

Interfaces Implemented

NSChangeSpelling
changeSpelling (page 1941)

NSIgnoreMisspelledWords
ignoreSpelling (page 1974)

Tasks

Constructors

NSText (page 1512)
Creates an NSText with a zero-sized frame rectangle.

Getting the Characters

string (page 1528)
Returns the characters of the receiver’s text.

Setting Graphics Attributes

setBackgroundColor (page 1522)
Sets the receiver’s background color to aColor.

backgroundColor (page 1513)
Returns the receiver’s background color.

setDrawsBackground (page 1523)
Controls whether the receiver draws its background.

drawsBackground (page 1516)
Returns true if the receiver draws its background, false if it doesn’t.

Setting Behavioral Attributes

setEditable (page 1523)
Controls whether the receiver allows the user to edit its text.

isEditable (page 1516)
Returns true if the receiver allows the user to edit text, false if it doesn’t.

1506 Interfaces Implemented
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

setSelectable (page 1525)
Controls whether the receiver allows the user to select its text.

isSelectable (page 1518)
Returns true if the receiver allows the user to select text, false if it doesn’t.

setFieldEditor (page 1523)
Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and
possibly to change the first responder.

isFieldEditor (page 1517)
Returns true if the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and
possibly to change the first responder; false if it accepts them as text input.

setRichText (page 1525)
Controls whether the receiver allows the user to apply attributes to specific ranges of the text.

isRichText (page 1517)
Returns true if the receiver allows the user to apply attributes to specific ranges of the text, false
if it doesn’t.

setImportsGraphics (page 1524)
Controls whether the receiver allows the user to import files by dragging.

importsGraphics (page 1516)
Returns true if the receiver allows the user to import files by dragging, false if it doesn’t.

Using the Font Panel and Menu

setUsesFontPanel (page 1527)
Controls whether the receiver uses the Font panel and Font menu.

usesFontPanel (page 1529)
Returns true if the receiver uses the Font panel, false otherwise.

Using the Ruler

toggleRuler (page 1529)
This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

isRulerVisible (page 1518)
Returns true if the receiver’s enclosing scroll view shows its ruler, false otherwise.

Changing the Selection

setSelectedRange (page 1526)
Selects the receiver’s characters within aRange.

selectedRange (page 1522)
Returns the range of selected characters.

Tasks 1507
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Replacing Text

replaceCharactersInRangeWithRTF (page 1520)
Replaces the characters in aRange with RTF text interpreted from rtfData.

replaceCharactersInRangeWithRTFD (page 1520)
Replaces the characters in aRange with RTFD text interpreted from rtfdData.

replaceCharactersInRange (page 1520)
Replaces the characters in aRange with aString.

setString (page 1526)
Replaces the receiver’s entire text with aString, applying the formatting attributes of the old first
character to its new contents.

Action Methods for Editing

selectAll (page 1521)
This action method selects all of the receiver’s text.

copy (page 1514)
This action method copies the selected text onto the general pasteboard, in as many formats as the
receiver supports.

cut (page 1515)
This action method deletes the selected text and places it onto the general pasteboard, in as many
formats as the receiver supports.

paste (page 1519)
This action method pastes text from the general pasteboard at the insertion point or over the selection.

copyFont (page 1514)
This action method copies the font information for the first character of the selection (or for the
insertion point) onto the font pasteboard, as NSPasteboard.FontPboardType.

pasteFont (page 1519)
This action method pastes font information from the font pasteboard onto the selected text or insertion
point of a rich text object, or over all text of a plain text object.

copyRuler (page 1515)
This action method copies the paragraph style information for first selected paragraph onto the ruler
pasteboard, as NSPasteboard.RulerPboardType, and expands the selection to paragraph
boundaries.

pasteRuler (page 1519)
This action method pastes paragraph style information from the ruler pasteboard onto the selected
paragraphs of a rich text object.

delete (page 1515)
This action method deletes the selected text.

Changing the Font

changeFont (page 1513)
This action method changes the font of the selection for a rich text object, or of all text for a plain
text object.

1508 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

setFont (page 1524)
Sets the font of all the receiver’s text to aFont.

setFontInRange (page 1524)
Sets the font of characters within aRange to aFont.

font (page 1516)
Returns the font of the first character in the receiver’s text, or of the insertion point if there’s no text.

Setting Text Alignment

setAlignment (page 1522)
Sets the alignment of all the receiver’s text to mode.

alignCenter (page 1512)
This action method applies center alignment to selected paragraphs (or all text if the receiver is a
plain text object).

alignLeft (page 1512)
This action method applies left alignment to selected paragraphs (or all text if the receiver is a plain
text object).

alignRight (page 1513)
This action method applies right alignment to selected paragraphs (or all text if the receiver is a plain
text object).

alignment (page 1513)
Returns the alignment of the first selected paragraph, or of all text for a plain text object.

Setting Text Color

setTextColor (page 1526)
Sets the text color of all characters in the receiver to aColor.

setTextColorInRange (page 1526)
Sets the text color of characters within aRange to aColor.

textColor (page 1529)
Returns the color of the receiver’s first character, or for the insertion point if there’s no text.

Setting Superscripting and Subscripting

superscript (page 1528)
This action method applies a superscript attribute to selected text (or all text if the receiver is a plain
text object), raising its baseline offset by a predefined amount.

subscript (page 1528)
This action method applies a subscript attribute to selected text (or all text if the receiver is a plain
text object), lowering its baseline offset by a predefined amount.

unscript (page 1529)
This action method removes any superscripting or subscripting from selected text (or all text if the
receiver is a plain text object).

Tasks 1509
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Underlining Text

underline (page 1529)
This action method underlines selected text for a rich text object, or all text for a plain text object.

Reading and Writing RTF Files

readRTFDFromFile (page 1519)
Attempts to read the RTFD file at path, returning true if successful and false if not.

writeRTFDToFile (page 1529)
Writes the receiver’s text as RTF with attachments to a file or directory at path.

RTFDFromRange (page 1521)
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange.

RTFFromRange (page 1521)
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes
within aRange, omitting any attachment characters and attributes.

Checking Spelling

checkSpelling (page 1514)
This action method searches for a misspelled word in the receiver’s text.

changeSpelling (page 1514)
Replaces the selected word in the receiver with a corrected version from the Spelling panel.

ignoreSpelling (page 1516)
This action method informs the receiver to ignore misspelled words on a document-by-document
basis. This method is sent by the NSSpellChecker instance.

showGuessPanel (page 1527)
This action method opens the Spelling panel, allowing the user to make a correction during spell
checking.

Constraining Size

setMaxSize (page 1525)
Sets the receiver’s maximum size to aSize.

maxSize (page 1518)
Returns the receiver’s maximum size.

setMinSize (page 1525)
Sets the receiver’s minimum size to aSize.

minSize (page 1518)
Returns the receiver’s minimum size.

setVerticallyResizable (page 1527)
Controls whether the receiver changes its height to fit the height of its text.

1510 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

isVerticallyResizable (page 1518)
Returns true if the receiver automatically changes its height to accommodate the height of its text,
false if it doesn’t.

setHorizontallyResizable (page 1524)
Controls whether the receiver changes its width to fit the width of its text.

isHorizontallyResizable (page 1517)
Returns true if the receiver automatically changes its width to accommodate the width of its text,
false if it doesn’t.

sizeToFit (page 1528)
Resizes the receiver to fit its text.

Scrolling

scrollRangeToVisible (page 1521)
Scrolls the receiver in its enclosing scroll view so the first characters of aRange are visible.

Setting the Delegate

setDelegate (page 1523)
Sets the receiver’s delegate to anObject, without retaining it.

delegate (page 1515)
Returns the receiver’s delegate, or null if it has none.

Editing text

textShouldBeginEditing (page 1532) delegate method
Invoked from a text object’s implementation of becomeFirstResponder (page 1190), this method
requests permission for aTextObject to begin editing.

textDidBeginEditing (page 1531) delegate method
Informs the delegate that the text object has begun editing (that the user has begun changing it).

textShouldEndEditing (page 1532) delegate method
Invoked from a text object’s implementation of resignFirstResponder (page 1196), this method
requests permission for aTextObject to end editing.

textDidEndEditing (page 1532) delegate method
Informs the delegate that the text object has finished editing (that it has resigned first responder
status).

Changing text formatting

textDidChange (page 1531) delegate method
Informs the delegate that the text object has changed its characters or formatting attributes.

Tasks 1511
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Constructors

NSText
Creates an NSText with a zero-sized frame rectangle.

public NSText()

Creates a text object with frameRect as its frame rectangle.

public NSText(NSRect frameRect)

Discussion
This method actually substitutes an instance of a concrete subclass of NSText, such as NSTextView, and
configures that instance to archive itself.

Instance Methods

alignCenter
This action method applies center alignment to selected paragraphs (or all text if the receiver is a plain text
object).

public void alignCenter(Object sender)

See Also
alignLeft (page 1512)
alignRight (page 1513)
alignment (page 1513)
setAlignment (page 1522)

alignLeft
This action method applies left alignment to selected paragraphs (or all text if the receiver is a plain text
object).

public void alignLeft(Object sender)

See Also
alignCenter (page 1512)
alignRight (page 1513)
alignment (page 1513)
setAlignment (page 1522)

1512 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

alignment
Returns the alignment of the first selected paragraph, or of all text for a plain text object.

public int alignment()

Discussion
This value is one of the alignments described in “Constants” (page 1530).

Text using NaturalTextAlignment is actually displayed using one of the other alignments, depending on
the natural alignment of the text’s script.

alignRight
This action method applies right alignment to selected paragraphs (or all text if the receiver is a plain text
object).

public void alignRight(Object sender)

See Also
alignLeft (page 1512)
alignCenter (page 1512)
alignment (page 1513)
setAlignment (page 1522)

backgroundColor
Returns the receiver’s background color.

public NSColor backgroundColor()

See Also
drawsBackground (page 1516)
setBackgroundColor (page 1522)

changeFont
This action method changes the font of the selection for a rich text object, or of all text for a plain text object.

public void changeFont(Object sender)

Discussion
If the receiver doesn’t use the Font panel, this method does nothing.

This method changes the font by sending a convertFont (page 674) message to the shared NSFontManager
and applying each NSFont returned to the appropriate text. See the NSFontManager (page 667) class
specification for more information on font conversion.

See Also
usesFontPanel (page 1529)

Instance Methods 1513
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

changeSpelling
Replaces the selected word in the receiver with a corrected version from the Spelling panel.

public void changeSpelling(Object sender)

Discussion
This message is sent by the NSSpellChecker to the object whose text is being checked. To get the corrected
spelling, ask sender for the string value of its selected cell (visible to the user as the text field in the Spelling
panel). This method should replace the selected portion of the text with the string that it gets from the
NSSpellChecker.

checkSpelling
This action method searches for a misspelled word in the receiver’s text.

public void checkSpelling(Object sender)

Discussion
The search starts at the end of the selection and continues until it reaches a word suspected of being misspelled
or the end of the text. If a word isn’t recognized by the spelling server, a showGuessPanel (page 1527) message
then opens the Guess panel and allows the user to make a correction or add the word to the local dictionary.

See Also
showGuessPanel (page 1527)

copy
This action method copies the selected text onto the general pasteboard, in as many formats as the receiver
supports.

public void copy(Object sender)

Discussion
A plain text object uses NSPasteboard.StringPboardType for plain text, and a rich text object also uses
NSPasteboard.RTFPboardType.

See Also
copyFont (page 1514)
copyRuler (page 1515)
cut (page 1515)
paste (page 1519)

copyFont
This action method copies the font information for the first character of the selection (or for the insertion
point) onto the font pasteboard, as NSPasteboard.FontPboardType.

public void copyFont(Object sender)

See Also
copy (page 1514)

1514 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

copyRuler (page 1515)
cut (page 1515)
paste (page 1519)

copyRuler
This action method copies the paragraph style information for first selected paragraph onto the ruler
pasteboard, as NSPasteboard.RulerPboardType, and expands the selection to paragraph boundaries.

public void copyRuler(Object sender)

See Also
copy (page 1514)
copyFont (page 1514)
cut (page 1515)
paste (page 1519)

cut
This action method deletes the selected text and places it onto the general pasteboard, in as many formats
as the receiver supports.

public void cut(Object sender)

Discussion
A plain text object uses NSPasteboard.StringPboardType for plain text, and a rich text object also uses
NSPasteboard.RTFPboardType.

See Also
delete (page 1515)
copy (page 1514)
copyFont (page 1514)
copyRuler (page 1515)
paste (page 1519)

delegate
Returns the receiver’s delegate, or null if it has none.

public Object delegate()

See Also
setDelegate (page 1523)

delete
This action method deletes the selected text.

Instance Methods 1515
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

public void delete(Object sender)

See Also
cut (page 1515)

drawsBackground
Returns true if the receiver draws its background, false if it doesn’t.

public boolean drawsBackground()

See Also
backgroundColor (page 1513)
setDrawsBackground (page 1523)

font
Returns the font of the first character in the receiver’s text, or of the insertion point if there’s no text.

public NSFont font()

See Also
setFont (page 1524)
setFontInRange (page 1524)

ignoreSpelling
This action method informs the receiver to ignore misspelled words on a document-by-document basis. This
method is sent by the NSSpellChecker instance.

public void ignoreSpelling(Object sender)

importsGraphics
Returns true if the receiver allows the user to import files by dragging, false if it doesn’t.

public boolean importsGraphics()

Discussion
A text object that accepts dragged files is also a rich text object.

See Also
isRichText (page 1517)
setImportsGraphics (page 1524)

isEditable
Returns true if the receiver allows the user to edit text, false if it doesn’t.

1516 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

public boolean isEditable()

Discussion
You can change the receiver’s text programmatically regardless of this setting.

If the receiver is editable, it’s also selectable.

See Also
isSelectable (page 1518)
setEditable (page 1523)

isFieldEditor
Returns true if the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and possibly
to change the first responder; false if it accepts them as text input.

public boolean isFieldEditor()

Discussion
See the NSWindow (page 1795) class specification for more information on field editors. By default, NSText
objects don’t behave as field editors.

See Also
setFieldEditor (page 1523)

isHorizontallyResizable
Returns true if the receiver automatically changes its width to accommodate the width of its text, false if
it doesn’t.

public boolean isHorizontallyResizable()

Discussion
By default, an NSText object is not horizontally resizable.

See Also
isVerticallyResizable (page 1518)
setHorizontallyResizable (page 1524)

isRichText
Returns true if the receiver allows the user to apply attributes to specific ranges of the text, false if it
doesn’t.

public boolean isRichText()

See Also
importsGraphics (page 1516)
setRichText (page 1525)

Instance Methods 1517
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

isRulerVisible
Returns true if the receiver’s enclosing scroll view shows its ruler, false otherwise.

public boolean isRulerVisible()

See Also
toggleRuler (page 1529)

isSelectable
Returns true if the receiver allows the user to select text, false if it doesn’t.

public boolean isSelectable()

See Also
isEditable (page 1516)
setSelectable (page 1525)

isVerticallyResizable
Returns true if the receiver automatically changes its height to accommodate the height of its text, false
if it doesn’t.

public boolean isVerticallyResizable()

Discussion
By default, an NSText object is vertically resizable.

See Also
isHorizontallyResizable (page 1517)
setVerticallyResizable (page 1527)

maxSize
Returns the receiver’s maximum size.

public NSSize maxSize()

See Also
minSize (page 1518)
setMaxSize (page 1525)

minSize
Returns the receiver’s minimum size.

public NSSize minSize()

1518 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

See Also
maxSize (page 1518)
setMinSize (page 1525)

paste
This action method pastes text from the general pasteboard at the insertion point or over the selection.

public void paste(Object sender)

See Also
copy (page 1514)
cut (page 1515)
pasteFont (page 1519)
pasteRuler (page 1519)

pasteFont
This action method pastes font information from the font pasteboard onto the selected text or insertion
point of a rich text object, or over all text of a plain text object.

public void pasteFont(Object sender)

See Also
copyFont (page 1514)
pasteRuler (page 1519)

pasteRuler
This action method pastes paragraph style information from the ruler pasteboard onto the selected paragraphs
of a rich text object.

public void pasteRuler(Object sender)

Discussion
It doesn’t apply to a plain text object.

See Also
copyFont (page 1514)
pasteRuler (page 1519)

readRTFDFromFile
Attempts to read the RTFD file at path, returning true if successful and false if not.

public boolean readRTFDFromFile(String path)

Instance Methods 1519
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Discussion
path should be the path for an .rtf file or an .rtfd file wrapper, not for the RTF file within an .rtfd file
wrapper.

See Also
writeRTFDToFile (page 1529)

replaceCharactersInRange
Replaces the characters in aRange with aString.

public void replaceCharactersInRange(NSRange aRange, String aString)

Discussion
For a rich text object, the text of aString is assigned the formatting attributes of the first character of the
text it replaces, or of the character immediately before aRange if the range’s length is 0. If the range’s location
is 0, the formatting attributes of the first character in the receiver are used.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
replaceCharactersInRangeWithRTF (page 1520)
replaceCharactersInRangeWithRTFD (page 1520)

replaceCharactersInRangeWithRTF
Replaces the characters in aRange with RTF text interpreted from rtfData.

public void replaceCharactersInRangeWithRTF(NSRange aRange, NSData rtfData)

Discussion
This method applies only to rich text objects.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
replaceCharactersInRangeWithRTFD (page 1520)
replaceCharactersInRange (page 1520)

replaceCharactersInRangeWithRTFD
Replaces the characters in aRange with RTFD text interpreted from rtfdData.

public void replaceCharactersInRangeWithRTFD(NSRange aRange, NSData rtfdData)

Discussion
This method applies only to rich text objects.

1520 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
replaceCharactersInRangeWithRTF (page 1520)
replaceCharactersInRange (page 1520)

RTFDFromRange
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes within
aRange.

public NSData RTFDFromRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setDataForType (page 1077) method, with a second argument of NSPasteboard.RTFDPboardType.

See Also
RTFFromRange (page 1521)

RTFFromRange
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting any attachment characters and attributes.

public NSData RTFFromRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setDataForType (page 1077) method, with a second argument of NSPasteboard.RTFPboardType.

See Also
RTFDFromRange (page 1521)

scrollRangeToVisible
Scrolls the receiver in its enclosing scroll view so the first characters of aRange are visible.

public void scrollRangeToVisible(NSRange aRange)

selectAll
This action method selects all of the receiver’s text.

Instance Methods 1521
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

public void selectAll(Object sender)

selectedRange
Returns the range of selected characters.

public NSRange selectedRange()

See Also
setSelectedRange (page 1526)

setAlignment
Sets the alignment of all the receiver’s text to mode.

public void setAlignment(int mode)

Discussion
mode may be one of the alignments described in “Constants” (page 1530).

Text using NaturalTextAlignment is actually displayed using one of the other alignments, depending on
the natural alignment of the text’s script.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
alignment (page 1513)
alignLeft (page 1512)
alignCenter (page 1512)
alignRight (page 1513)

setBackgroundColor
Sets the receiver’s background color to aColor.

public void setBackgroundColor(NSColor aColor)

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
setDrawsBackground (page 1523)
backgroundColor (page 1513)

1522 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

setDelegate
Sets the receiver’s delegate to anObject, without retaining it.

public void setDelegate(Object anObject)

See Also
delegate (page 1515)

setDrawsBackground
Controls whether the receiver draws its background.

public void setDrawsBackground(boolean flag)

Discussion
If flag is true, the receiver fills its background with the background color; if flag is false, it doesn’t.

See Also
setBackgroundColor (page 1522)
drawsBackground (page 1516)

setEditable
Controls whether the receiver allows the user to edit its text.

public void setEditable(boolean flag)

Discussion
If flag is true, the receiver allows the user to edit text and attributes; if flag is false, it doesn’t. You can
change the receiver’s text programmatically regardless of this setting. If the receiver is made editable, it’s
also made selectable. NSText objects are by default editable.

See Also
setSelectable (page 1525)
isEditable (page 1516)

setFieldEditor
Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and possibly
to change the first responder.

public void setFieldEditor(boolean flag)

Discussion
If flag is true, it does; if flag is false, it doesn’t, instead accepting these characters as text input. See the
NSWindow (page 1795) class specification for more information on field editors. By default, NSText objects
don’t behave as field editors.

See Also
isFieldEditor (page 1517)

Instance Methods 1523
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

setFont
Sets the font of all the receiver’s text to aFont.

public void setFont(NSFont aFont)

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
setFontInRange (page 1524)
font (page 1516)

setFontInRange
Sets the font of characters within aRange to aFont.

public void setFontInRange(NSFont aFont, NSRange aRange)

Discussion
This method applies only to a rich text object.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
setFont (page 1524)
font (page 1516)

setHorizontallyResizable
Controls whether the receiver changes its width to fit the width of its text.

public void setHorizontallyResizable(boolean flag)

Discussion
If flag is true it does; if flag is false it doesn’t.

See Also
setVerticallyResizable (page 1527)
isHorizontallyResizable (page 1517)

setImportsGraphics
Controls whether the receiver allows the user to import files by dragging.

public void setImportsGraphics(boolean flag)

1524 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Discussion
If flag is true, it does; if flag is false, it doesn’t. If the receiver is set to accept dragged files, it’s also made
a rich text object. Subclasses may or may not accept dragged files by default.

See Also
setRichText (page 1525)
importsGraphics (page 1516)

setMaxSize
Sets the receiver’s maximum size to aSize.

public void setMaxSize(NSSize aSize)

See Also
setMinSize (page 1525)
maxSize (page 1518)

setMinSize
Sets the receiver’s minimum size to aSize.

public void setMinSize(NSSize aSize)

See Also
setMaxSize (page 1525)
minSize (page 1518)

setRichText
Controls whether the receiver allows the user to apply attributes to specific ranges of the text.

public void setRichText(boolean flag)

Discussion
If flag is true it does; if flag is false it doesn’t. If flag is false, the receiver is also set not to accept
dragged files. Subclasses may or may not let the user apply multiple attributes to the text and accept drag
files by default.

See Also
isRichText (page 1517)
setImportsGraphics (page 1524)

setSelectable
Controls whether the receiver allows the user to select its text.

public void setSelectable(boolean flag)

Instance Methods 1525
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Discussion
If flag is true, the receiver allows the user to select text; if flag is false, it doesn’t. You can set selections
programmatically regardless of this setting. If the receiver is made not selectable, it’s also made not editable.
NSText objects are by default editable and selectable.

See Also
setEditable (page 1523)
isSelectable (page 1518)

setSelectedRange
Selects the receiver’s characters within aRange.

public void setSelectedRange(NSRange aRange)

See Also
selectedRange (page 1522)

setString
Replaces the receiver’s entire text with aString, applying the formatting attributes of the old first character
to its new contents.

public void setString(String aString)

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

setTextColor
Sets the text color of all characters in the receiver to aColor.

public void setTextColor(NSColor aColor)

Discussion
Removes the text color attribute if aColor is null.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
setTextColorInRange (page 1526)
textColor (page 1529)

setTextColorInRange
Sets the text color of characters within aRange to aColor.

1526 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

public void setTextColorInRange(NSColor aColor, NSRange aRange)

Discussion
Removes the text color attribute if aColor is null. This method applies only to rich text objects.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
setTextColor (page 1526)
textColor (page 1529)

setUsesFontPanel
Controls whether the receiver uses the Font panel and Font menu.

public void setUsesFontPanel(boolean flag)

Discussion
If flag is true, the receiver responds to messages from the Font panel and from the Font menu and updates
the Font panel with the selection font whenever it changes. If flag is false the receiver doesn’t do any of
these actions. By default, an NSText object uses the Font panel and menu.

See Also
usesFontPanel (page 1529)

setVerticallyResizable
Controls whether the receiver changes its height to fit the height of its text.

public void setVerticallyResizable(boolean flag)

Discussion
If flag is true it does; if flag is false it doesn’t.

See Also
setHorizontallyResizable (page 1524)
isVerticallyResizable (page 1518)

showGuessPanel
This action method opens the Spelling panel, allowing the user to make a correction during spell checking.

public void showGuessPanel(Object sender)

See Also
checkSpelling (page 1514)

Instance Methods 1527
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

sizeToFit
Resizes the receiver to fit its text.

public void sizeToFit()

Discussion
The text view will not be sized any smaller than its minimum size, however.

See Also
isHorizontallyResizable (page 1517)
isVerticallyResizable (page 1518)

string
Returns the characters of the receiver’s text.

public String string()

Discussion
For performance reasons, this method returns the current backing store of the text object. If you want to
maintain a snapshot of this as you manipulate the text storage, you should make a copy of the appropriate
substring.

See Also
setString (page 1526)

subscript
This action method applies a subscript attribute to selected text (or all text if the receiver is a plain text object),
lowering its baseline offset by a predefined amount.

public void subscript(Object sender)

See Also
subscript (page 1528)
unscript (page 1529)
lowerBaseline (page 1633) (NSTextView)

superscript
This action method applies a superscript attribute to selected text (or all text if the receiver is a plain text
object), raising its baseline offset by a predefined amount.

public void superscript(Object sender)

See Also
subscript (page 1528)
unscript (page 1529)
raiseBaseline (page 1636) (NSTextView)

1528 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

textColor
Returns the color of the receiver’s first character, or for the insertion point if there’s no text.

public NSColor textColor()

See Also
setTextColor (page 1526)
setTextColorInRange (page 1526)

toggleRuler
This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

public void toggleRuler(Object sender)

underline
This action method underlines selected text for a rich text object, or all text for a plain text object.

public void underline(Object sender)

unscript
This action method removes any superscripting or subscripting from selected text (or all text if the receiver
is a plain text object).

public void unscript(Object sender)

See Also
subscript (page 1528)
superscript (page 1528)
raiseBaseline (page 1636) (NSTextView)
lowerBaseline (page 1633) (NSTextView)

usesFontPanel
Returns true if the receiver uses the Font panel, false otherwise.

public boolean usesFontPanel()

See Also
setUsesFontPanel (page 1527)

writeRTFDToFile
Writes the receiver’s text as RTF with attachments to a file or directory at path.

public boolean writeRTFDToFile(String path, boolean atomicFlag)

Instance Methods 1529
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Discussion
Returns true on success and false on failure. If atomicFlag is true, attempts to write the file safely so
that an existing file at path is not overwritten, nor does a new file at path actually get created, unless the
write is successful.

See Also
RTFFromRange (page 1521)
RTFDFromRange (page 1521)
readRTFDFromFile (page 1519)

Constants

These constants specify text alignment:

DescriptionConstant

Text is visually left aligned.LeftTextAlignment

Text is visually right aligned.RightTextAlignment

Text is visually center aligned.CenterTextAlignment

Text is justified.JustifiedTextAlignment

Use the natural alignment of the text’s script.NaturalTextAlignment

These constants specify the reason for a change of editing focus among text fields, in essence answering the
question “why am I leaving the field?” They are the possible values for the TextMovement key of the
TextDidEndEditingNotification (page 1533) userInfodictionary. The field editor makes sure that these
are the values sent when the user presses the Tab, Backtab, or Return key while editing. The control then
uses this information to decide where to send focus next.

DescriptionConstant

Currently unused.IllegalTextMovement

The Return key was pressed.ReturnTextMovement

The Tab key was pressed.TabTextMovement

The Backtab (Shift-Tab) key was pressed.BacktabTextMovement

The left arrow key was pressed.LeftTextMovement

The right arrow key was pressed.RightTextMovement

The up arrow key was pressed.UpTextMovement

The down arrow key was pressed.DownTextMovement

The user cancelled the completion.CancelTextMovement

1530 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

DescriptionConstant

The user performed some undefined action.OtherTextMovement

These constants specify several commonly used Unicode characters.

DescriptionConstant

The paragraph separator character: 0x2029ParagraphSeparatorCharacter

The line separator character: 0x2028LineSeparatorCharacter

The tab character: 0x0009TabCharacter

The back tab character: 0x0019BackTabCharacter

The form feed character: 0x000cFormFeedCharacter

The newline character: 0x000aNewlineCharacter

The carriage return character: 0x000dCarriageReturnCharacter

The enter character: 0x0003EnterCharacter

The backspace character: 0x0008BackspaceCharacter

The delete character: 0x007fDeleteCharacter

Delegate Methods

textDidBeginEditing
Informs the delegate that the text object has begun editing (that the user has begun changing it).

public abstract void textDidBeginEditing(NSNotification aNotification)

Discussion
The name of aNotification is TextDidBeginEditingNotification (page 1532).

textDidChange
Informs the delegate that the text object has changed its characters or formatting attributes.

public abstract void textDidChange(NSNotification aNotification)

Discussion
The name of aNotification is TextDidChangeNotification (page 1532).

Delegate Methods 1531
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

textDidEndEditing
Informs the delegate that the text object has finished editing (that it has resigned first responder status).

public abstract void textDidEndEditing(NSNotification aNotification)

Discussion
The name of aNotification is TextDidEndEditingNotification (page 1533).

textShouldBeginEditing
Invoked from a text object’s implementation of becomeFirstResponder (page 1190), this method requests
permission for aTextObject to begin editing.

public abstract boolean textShouldBeginEditing(NSText aTextObject)

Discussion
If the delegate returns true, the text object proceeds to make changes. If the delegate returns false, the
text object abandons the editing operation. This method is invoked whenever aTextObject attempts to
become first responder. It is also invoked when the user drags and drops a file onto the text object.

See Also
makeFirstResponder (page 1841) (NSWindow)
becomeFirstResponder (page 1190) (NSResponder)

textShouldEndEditing
Invoked from a text object’s implementation of resignFirstResponder (page 1196), this method requests
permission for aTextObject to end editing.

public abstract boolean textShouldEndEditing(NSText aTextObject)

Discussion
If the delegate returns true, the text object proceeds to finish editing and resign first responder status. If
the delegate returns false, the text object selects all of its text and remains the first responder.

See Also
resignFirstResponder (page 1196) (NSResponder)

Notifications

TextDidBeginEditingNotification
Posted when an NSText object begins any operation that changes characters or formatting attributes.

The notification object is the notifying NSText object. This notification does not contain a userInfo dictionary.

TextDidChangeNotification
Posted after an NSText object performs any operation that changes characters or formatting attributes.

1532 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

The notification object is the notifying NSText object. This notification does not contain a userInfo dictionary.

TextDidEndEditingNotification
Posted when an NSText object completes any operation that changes characters or formatting attributes.

The notification object is the notifying NSText object. The userInfo dictionary contains the following
information:

ValueKey

Possible movement code values are described in
“Constants” (page 1530).

"NSTextMovement"

Notifications 1533
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

1534 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 120

NSText

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text Attachment Programming Topics for Cocoa

Overview

NSTextAttachment objects are used by the NSAttributedString class as the values for attachment attributes
(stored in the attributed string under the key named AttachmentAttributeName). The objects you create
with this class are referred to as text attachment objects, or when no confusion will result, as text attachments
or merely attachments. See the NSAttributedString and NSTextView (page 1609) class specifications for general
information on text attachments.

A text attachment object contains an NSFileWrapper (page 631), which in turn holds the contents of the
attached file. It also uses a cell object conforming to the NSCellForTextAttachment (page 1935) interface to
draw and handle mouse events. Most of the behavior of a text attachment is relegated to the file wrapper
and the attachment cell. See the corresponding class and interface specifications for more information.

Tasks

Constructors

NSTextAttachment (page 1536)
Creates an empty NSTextAttachment.

Setting the File Wrapper

setFileWrapper (page 1537)
Sets the receiver’s file wrapper, which holds the contents of the attached file, to aWrapper.

fileWrapper (page 1537)
Returns the receiver’s file wrapper, which holds the contents of the attached file.

Overview 1535
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 121

NSTextAttachment

Setting the Attachment Cell

setAttachmentCell (page 1537)
Sets the object used to draw the icon for the receiver and to handle mouse events to aCell.

attachmentCell (page 1536)
Returns the object used to draw the icon for the receiver and to handle mouse events.

Constructors

NSTextAttachment
Creates an empty NSTextAttachment.

public NSTextAttachment()

Creates an NSTextAttachment to contain aWrapper and use an NSTextAttachmentCell as its attachment cell.

public NSTextAttachment(NSFileWrapper aWrapper)

Discussion
If aWrapper contains an image file that the receiver can interpret as an NSImage object, sets the attachment
cell’s image to the NSImage rather than to the icon of aWrapper.

See Also
setFileWrapper (page 1537)
setAttachmentCell (page 1537)

Instance Methods

attachmentCell
Returns the object used to draw the icon for the receiver and to handle mouse events.

public NSCellForTextAttachment attachmentCell()

Discussion
An NSTextAttachment by default uses an NSTextAttachmentCell that displays the attached file’s icon, or its
contents if the file contains an image.

See Also
fileWrapper (page 1537)
image (page 313) (NSCell)
icon (page 636) (NSFileWrapper)
setAttachmentCell (page 1537)

1536 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 121

NSTextAttachment

fileWrapper
Returns the receiver’s file wrapper, which holds the contents of the attached file.

public NSFileWrapper fileWrapper()

See Also
setFileWrapper (page 1537)

setAttachmentCell
Sets the object used to draw the icon for the receiver and to handle mouse events to aCell.

public void setAttachmentCell(NSCellForTextAttachment aCell)

See Also
setFileWrapper (page 1537)
setImage (page 327) (NSCell)
icon (page 636) (NSFileWrapper)
attachmentCell (page 1536)

setFileWrapper
Sets the receiver’s file wrapper, which holds the contents of the attached file, to aWrapper.

public void setFileWrapper(NSFileWrapper aWrapper)

See Also
fileWrapper (page 1537)

Constants

The following constant is provided by NSTextAttachment:

DescriptionConstant

Denotes attachments.AttachmentCharacter

Constants 1537
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 121

NSTextAttachment

1538 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 121

NSTextAttachment

Inherits from NSCell : NSObject

Implements NSCellForTextAttachment
NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text Attachment Programming Topics for Cocoa

Overview

NSTextAttachmentCell implements the functionality of the NSCellForTextAttachment interface.

Interfaces Implemented

NSCellForTextAttachment
attachment (page 1936)
cellBaselineOffset (page 1936)
cellFrame (page 1936)
cellSize (page 1937)
drawWithFrameInView (page 1937)
highlightWithFrameInView (page 1937)
setAttachment (page 1938)
trackMouse (page 1938)
wantsToTrackMouse (page 1939)
wantsToTrackMouseForEvent (page 1939)

Tasks

Constructors

NSTextAttachmentCell (page 1540)
Creates an empty NSTextAttachmentCell.

Overview 1539
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 122

NSTextAttachmentCell

Drawing

drawWithFrameInView (page 1542)
Draws the receiver’s image within cellFrame in aView, which should be the focus view.

highlightWithFrameInView (page 1542)
Draws the receiver’s image—with highlighting if flag is true—within cellFrame in aView, which
should be the focus view.

Cell Size and Position

cellSize (page 1541)
Returns the size of the attachment’s icon.

cellBaselineOffset (page 1541)
Returns the position where the attachment cell’s image should be drawn in text, relative to the current
point established in the glyph layout.

cellFrame (page 1541)
Returns the frame of the cell as it would be drawn at position as the character at charIndex in the
specified textContainer within the region of lineFrag.

Event Handling

trackMouse (page 1543)
Handles a mouse-down event on the receiver’s image.

wantsToTrackMouse (page 1543)
Returns true.

wantsToTrackMouseForEvent (page 1544)
Allows an attachment to specify what events it would want to track the cursor for.

Setting the Attachment

attachment (page 1541)
Returns the text attachment object that owns the receiver.

setAttachment (page 1542)
Sets the text attachment object that owns the receiver to anAttachment.

Constructors

NSTextAttachmentCell
Creates an empty NSTextAttachmentCell.

public NSTextAttachmentCell()

1540 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 122

NSTextAttachmentCell

Creates an NSAttachmentCell initialized with aString and set to have the cell’s default menu.

public NSTextAttachmentCell(String aString)

Discussion
If no field editor has been created for all NSTextAttachmentCells, one is created.

Creates an NSTextAttachmentCell initialized with anImage and set to have the cell’s default menu.

public NSTextAttachmentCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

attachment
Returns the text attachment object that owns the receiver.

public NSTextAttachment attachment()

See Also
setAttachment (page 1542)

cellBaselineOffset
Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout.

public NSPoint cellBaselineOffset()

Discussion
The image should be drawn so its lower-left corner lies on this point.

See Also
icon (page 636) (NSFileWrapper)

cellFrame
Returns the frame of the cell as it would be drawn at position as the character at charIndex in the specified
textContainer within the region of lineFrag.

public NSRect cellFrame(NSTextContainer textContainer, NSRect lineFrag, NSPoint
position, int charIndex)

cellSize
Returns the size of the attachment’s icon.

Instance Methods 1541
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 122

NSTextAttachmentCell

public NSSize cellSize()

See Also
icon (page 636) (NSFileWrapper)
fileWrapper (page 1537) (NSTextAttachment)

drawWithFrameInView
Draws the receiver’s image within cellFrame in aView, which should be the focus view.

public void drawWithFrameInView(NSRect cellFrame, NSView aView)

See Also
drawWithFrameInView (page 310) (NSCell)
lockFocus (page 1759) (NSView)

Draws the receiver’s image within cellFrame in aView, which is the view currently focused.

public void drawWithFrameInView(NSRect cellFrame, NSView aView, int charIndex)

Discussion
charIndex is the index of the attachment character within the text. The default implementation simply calls
drawWithFrameInView(cellFrame, aView).

Draws the receiver’s image within cellFrame in aView, which is the view currently focused.

public void drawWithFrameInView(NSRect cellFrame, NSView aView, int charIndex,
NSLayoutManager layoutManager)

Discussion
charIndex is the index of the attachment character within the text. layoutManager is the layout manager
for the text. The default implementation simply callsdrawWithFrameInView(cellFrame,aView,charIndex).

highlightWithFrameInView
Draws the receiver’s image—with highlighting if flag is true—within cellFrame in aView, which should
be the focus view.

public void highlightWithFrameInView(boolean flag, NSRect cellFrame, NSView aView)

See Also
highlightWithFrameInView (page 312) (NSCell)
lockFocus (page 1759) (NSView)

setAttachment
Sets the text attachment object that owns the receiver to anAttachment.

public void setAttachment(NSTextAttachment anAttachment)

See Also
attachment (page 1541)

1542 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 122

NSTextAttachmentCell

setAttachmentCell (page 1537) (NSTextAttachment)

trackMouse
Handles a mouse-down event on the receiver’s image.

public boolean trackMouse(NSEvent theEvent, NSRect cellFrame, NSView aTextView,
int charIndex, boolean flag)

Discussion
theEvent is the mouse-down event. cellFrame is the region of aTextView in which further mouse events
should be tracked. charIndex is the position in the text at which this attachment appears. aTextView is
the view that received the event. It’s assumed to be an NSTextView and should be the focus view. If flag is
true, the receiver tracks the cursor until a mouse-up event occurs; if flag is false, it stops tracking when
a mouse-dragged event occurs outside of cellFrame. Returns true if the receiver successfully finished
tracking the cursor (typically through a mouse-up event), false otherwise (such as when the cursor is
dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon the delegate of aTextView to handle
the event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate
a textViewDoubleClickedCell (page 1669) message and returns true. Otherwise, depending on whether
the user clicks or drags the cell, it sends the delegate a textViewClickedCell (page 1667) or a
textViewDraggedCell (page 1669) message and returns true. NSTextAttachmentCell’s implementation
returns false only if flag is false and the cursor is dragged outside of cellFrame. The delegate methods
are invoked only if the delegate responds.

Handles a mouse-down event on the receiver’s image.

public boolean trackMouse(NSEvent theEvent, NSRect cellFrame, NSView aTextView,
boolean flag)

Discussion
NSTextAttachmentCell’s implementation of this method calls upon the delegate of aTextView to handle
the event. If theEvent concludes as a double click, the text attachment cell sends the delegate a
textViewDoubleClickedCell (page 1669) message and returns true. Otherwise, depending on whether
the user clicks or drags the cell, it sends the delegate a textViewClickedCell (page 1667) or a
textViewDraggedCell (page 1669) message and returns true. NSTextAttachmentCell’s implementation
returns false only if flag is false and the cursor is dragged outside of cellFrame. The delegate methods
are invoked only if the delegate can respond to them.

See Also
wantsToTrackMouse (page 1543)
trackMouse (page 336) (NSCell)
lockFocus (page 1759) (NSView)

wantsToTrackMouse
Returns true.

public boolean wantsToTrackMouse()

Instance Methods 1543
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 122

NSTextAttachmentCell

Discussion
NSTextAttachmentCell objects support dragging. An NSTextView invokes this method before sending
trackMouse (page 336) to the text attachment cell.

A more static subclass might override this method to return false, which results in the attachment image
behaving as any other glyph in the text and not allowing itself to be dragged or to perform a method on
being clicked.

wantsToTrackMouseForEvent
Allows an attachment to specify what events it would want to track the cursor for.

public boolean wantsToTrackMouseForEvent(NSEvent theEvent, NSRect cellFrame, NSView
aTextView, int flag)

Discussion
If wantsToTrackMouse (page 1543) returns true, this method allows the attachment to decide whether it
wishes to do so for particular events. See trackMouse (page 1543) for a description of the arguments to this
method.

1544 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 122

NSTextAttachmentCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Companion guides Text System Overview
Text Layout Programming Guide for Cocoa

Overview

NSTextBlock represents a block of text laid out in a subregion of the text container. Text blocks appear as
attributes on paragraphs, as part of the paragraph style.

The most important subclass is NSTextTableBlock, which represents a block of text that appears as a cell in
a table. The table itself is represented by a separate class, NSTextTable, which is referenced by all of its
NSTextTableBlocks and which controls their sizing and positioning.

Tasks

Constructors

NSTextBlock (page 1547)

Working with Dimensions of Content

setValue (page 1550)
Sets the value type for a dimension of the text block.

valueForDimension (page 1551)
Returns the value of the text block dimension specified by dimension.

valueTypeForDimension (page 1551)
Returns the value type of the text block dimension specified by dimension.

setContentWidth (page 1550)
Sets the width of the text block.

Overview 1545
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

contentWidth (page 1548)
Returns the width of the text block in points.

contentWidthValueType (page 1548)
Returns the type of value stored for the text block width.

Getting and Setting Margins, Borders, and Padding

setWidthForLayer (page 1551)
Sets the width of one or more edges of a specified layer of the text block.

widthForLayer (page 1552)
Returns the width of a layer for a given edge of the text block in points.

widthValueTypeForLayer (page 1552)
Returns the value type of a layer for a given edge of the text block.

Getting and Setting Alignment

setVerticalAlignment (page 1550)
Sets the vertical alignment of the text block to alignment.

verticalAlignment (page 1552)
Returns the vertical alignment of the text block.

Working with Color

setBackgroundColor (page 1549)
Sets the background color of the text block.

backgroundColor (page 1547)
Returns the background color of the text block.

setBorderColor (page 1549)
Sets the color of one or more borders of the text block.

borderColorForEdge (page 1547)
Returns the border color of the text block edge specified by edge.

Determining Size and Position of Text Block

rectForLayoutAtPoint (page 1549)
Called by the typesetter before the text block is laid out to return the rectangle within which glyphs
should be laid out.

boundsRectForContentRect (page 1547)
Called by the typesetter after the text block is laid out to return the rectangle the text in the block
actually occupies, including padding, borders, and margins.

1546 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Drawing Colors and Decorations

drawBackgroundWithFrame (page 1548)
Called by the layout manager to draw any colors and other decorations before the text is drawn.

Constructors

NSTextBlock
public NSTextBlock()

Discussion
The constructor for the NSTextBlock object.

Instance Methods

backgroundColor
Returns the background color of the text block.

public NSColor backgroundColor()

Availability
Available in Mac OS X v10.4 and later.

See Also
setBackgroundColor (page 1549)

borderColorForEdge
Returns the border color of the text block edge specified by edge.

public NSColor borderColorForEdge(int edge)

Availability
Available in Mac OS X v10.4 and later.

See Also
setBorderColor (page 1549)

boundsRectForContentRect
Called by the typesetter after the text block is laid out to return the rectangle the text in the block actually
occupies, including padding, borders, and margins.

Constructors 1547
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

public NSRect boundsRectForContentRect(NSRect contentRect, NSRect rect,
NSTextContainer textContainer, NSRange charRange)

Discussion
The contentRect is the actual rectangle in which the text was laid out, as determined by
rectForLayoutAtPoint (page 1549). The rect is the initial rectangle in textContainer proposed by the
typesetter in which to lay out the glyphs for the characters in charRange.

Availability
Available in Mac OS X v10.4 and later.

See Also
rectForLayoutAtPoint (page 1549)

contentWidth
Returns the width of the text block in points.

public float contentWidth()

Discussion
This is a convenience method that invokes valueForDimension:Width.

Availability
Available in Mac OS X v10.4 and later.

See Also
setContentWidth (page 1550)
contentWidthValueType (page 1548)

contentWidthValueType
Returns the type of value stored for the text block width.

public int contentWidthValueType()

Discussion
The value type is either an absolute value in points or a percentage.

Availability
Available in Mac OS X v10.4 and later.

See Also
setContentWidth (page 1550)
contentWidth (page 1548)

drawBackgroundWithFrame
Called by the layout manager to draw any colors and other decorations before the text is drawn.

public void drawBackgroundWithFrame(NSRect frameRect, NSView controlView, NSRange
charRange, NSLayoutManager layoutManager)

1548 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Discussion
The frameRect is the bounds rectangle in view coordinates. The controlView is the view in which drawing
occurs. The charRange describes the characters whose glyphs are to be drawn, and the layoutManager
is the layout manager controlling the typesetting.

Availability
Available in Mac OS X v10.4 and later.

rectForLayoutAtPoint
Called by the typesetter before the text block is laid out to return the rectangle within which glyphs should
be laid out.

public NSRect rectForLayoutAtPoint(NSPoint startingPoint, NSRect rect,
NSTextContainer textContainer, NSRange charRange)

Discussion
The startingPoint argument specifies the location, in container coordinates, where layout begins. The
rect is the rectangle in which the block is constrained to lie: for top-level blocks, the container rectangle of
textContainer; for nested blocks, the layout rectangle of the enclosing block. The charRange argument
is the range of the characters to be laid out.

Availability
Available in Mac OS X v10.4 and later.

See Also
boundsRectForContentRect (page 1547)

setBackgroundColor
Sets the background color of the text block.

public void setBackgroundColor(NSColor color)

Availability
Available in Mac OS X v10.4 and later.

See Also
backgroundColor (page 1547)

setBorderColor
Sets the color of one or more borders of the text block.

public void setBorderColor(NSColor color)

Sets the color of one or more borders of the text block.

public void setBorderColor(NSColor color, int edge)

Instance Methods 1549
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Discussion
If you specify an edge parameter, the color is applied to the specified edge; otherwise, it is applied to all
edges. This setting has no visible effect unless the border width is larger than the default, which is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
borderColorForEdge (page 1547)
setWidthForLayer (page 1551)

setContentWidth
Sets the width of the text block.

public void setContentWidth(float val, int type)

Discussion
The value val is either an absolute value in points or a percentage of the enclosing block, as specified by
type.

Availability
Available in Mac OS X v10.4 and later.

See Also
contentWidth (page 1548)
contentWidthValueType (page 1548)

setValue
Sets the value type for a dimension of the text block.

public void setValue(float val, int type, int dimension)

Discussion
The value val is either an absolute value in points or a percentage of the enclosing block, as specified by
type. The dimension argument specifies which dimension’s value to set.

Availability
Available in Mac OS X v10.4 and later.

See Also
valueForDimension (page 1551)
valueTypeForDimension (page 1551)

setVerticalAlignment
Sets the vertical alignment of the text block to alignment.

public void setVerticalAlignment(int alignment)

1550 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Availability
Available in Mac OS X v10.4 and later.

See Also
verticalAlignment (page 1552)

setWidthForLayer
Sets the width of one or more edges of a specified layer of the text block.

public void setWidthForLayer(float val, int type, int layer)

Discussion
The width is specified by val, which is interpreted as points or a percentage according to type, and the
layer—border, padding, or margin—is specified by layer.

Sets the width of one or more edges of a specified layer of the text block.

public void setWidthForLayer(float val, int type, int layer, int edge)

Discussion
The edge is specified by edge. If you do not specify an edge parameter, the width is applied to all edges.

Availability
Available in Mac OS X v10.4 and later.

See Also
widthForLayer (page 1552)

valueForDimension
Returns the value of the text block dimension specified by dimension.

public float valueForDimension(int dimension)

Availability
Available in Mac OS X v10.4 and later.

See Also
setValue (page 1550)

valueTypeForDimension
Returns the value type of the text block dimension specified by dimension.

public int valueTypeForDimension(int dimension)

Discussion
The value type determines whether the value is interpreted as an absolute value in points or a percentage
of the enclosing block.

Instance Methods 1551
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Availability
Available in Mac OS X v10.4 and later.

See Also
setValue (page 1550)

verticalAlignment
Returns the vertical alignment of the text block.

public int verticalAlignment()

Availability
Available in Mac OS X v10.4 and later.

See Also
setVerticalAlignment (page 1550)

widthForLayer
Returns the width of a layer for a given edge of the text block in points.

public float widthForLayer(int layer, int edge)

Discussion
The text block layer can be its border, padding, or margin.

Availability
Available in Mac OS X v10.4 and later.

See Also
setWidthForLayer (page 1551)

widthValueTypeForLayer
Returns the value type of a layer for a given edge of the text block.

public int widthValueTypeForLayer(int layer, int edge)

Discussion
The text block layer can be its border, padding, or margin.

Availability
Available in Mac OS X v10.4 and later.

See Also
setWidthForLayer (page 1551)

1552 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Constants

The following constants specify values used with method parameters used for specifying width types.

DescriptionConstant

Absolute value in pointsAbsoluteValueType

Percentage value (out of 100)PercentageValueType

The following constants specify values used with method parameters used for specifying dimensions.

DescriptionConstant

Width of the text blockWidth

Minimum width of the text blockMinimumWidth

Maximum width of the text blockMaximumWidth

Height of the text blockHeight

Minimum height of the text blockMinimumHeight

Maximum height of the text blockMaximumHeight

The following constants specify values used with method parameters used for specifying layer information.

DescriptionConstant

Padding of the text block: space surrounding the content area extending to the borderPadding

Border of the text block: space between padding and margin, typically colored to present a
visible boundary

Border

Margin of the text block: space surrounding the borderMargin

The following constants specify values used with method parameters used for specifying alignment.

DescriptionConstant

Aligns adjacent blocks at their topTopAlignment

Aligns adjacent blocks at their middleMiddleAlignment

Aligns adjacent blocks at their bottomBottomAlignment

Aligns adjacent blocks at the baseline of the first line of text in the blockBaselineAlignment

Constants 1553
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

1554 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 123

NSTextBlock

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Text System Overview

Overview

An NSTextContainer defines a region where text is laid out. An NSLayoutManager uses NSTextContainers to
determine where to break lines, lay out portions of text, and so on. NSTextContainer defines rectangular
regions, but you can create subclasses that define regions of other shapes, such as circular regions, regions
with holes in them, or regions that flow alongside graphics.

Tasks

Constructors

NSTextContainer (page 1557)
Creates an NSTextContainer with a zero-sized bounding rectangle.

Managing Text Components

setLayoutManager (page 1560)
Sets the receiver’s NSLayoutManager to aLayoutManager.

layoutManager (page 1558)
Returns the receiver’s NSLayoutManager.

replaceLayoutManager (page 1559)
Replaces the NSLayoutManager for the group of text system objects containing the receiver with
aLayoutManager.

setTextView (page 1561)
Sets the receiver’s NSTextView toaTextView and sendssetTextContainer (page 1653) toaTextView
to complete the association of the text container and text view.

textView (page 1561)
Returns the receiver’s NSTextView, or null if it has none.

Overview 1555
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

Controlling Size

setContainerSize (page 1559)
Sets the size of the receiver’s bounding rectangle to aSize and sends
textContainerChangedGeometry (page 852) to the NSLayoutManager.

containerSize (page 1557)
Returns the size of the receiver’s bounding rectangle, regardless of the size of its region.

setWidthTracksTextView (page 1561)
Controls whether the receiver adjusts the width of its bounding rectangle when its NSTextView is
resized.

widthTracksTextView (page 1561)
Returns true if the receiver adjusts the width of its bounding rectangle when its NSTextView is resized,
false otherwise.

setHeightTracksTextView (page 1560)
Controls whether the receiver adjusts the height of its bounding rectangle when its NSTextView is
resized.

heightTracksTextView (page 1558)
Returns true if the receiver adjusts the height of its bounding rectangle when its NSTextView is
resized, false otherwise.

Setting Line Fragment Padding

setLineFragmentPadding (page 1560)
Sets the amount (in points) by which text is inset within line fragment rectangles to aFloat.

lineFragmentPadding (page 1558)
Returns the amount (in points) by which text is inset within line fragment rectangles.

Calculating Text Layout

lineFragmentRectForProposedRect (page 1559)
Overridden by subclasses to calculate and return the longest rectangle available for proposedRect
for displaying text, or NSRect.ZeroRect if there is none according to the receiver’s region definition.

isSimpleRectangularTextContainer (page 1558)
Overridden by subclasses to return true if the receiver’s region is a rectangle with no holes or gaps
and whose edges are parallel to the NSTextView’s coordinate system axes; returns false otherwise.

Mouse Hit Testing

containsPoint (page 1557)
Overridden by subclasses to return true if aPoint lies within the receiver’s region or on the region’s
edge—not simply within its bounding rectangle—false otherwise.

1556 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

Constructors

NSTextContainer
Creates an NSTextContainer with a zero-sized bounding rectangle.

public NSTextContainer()

Creates an NSTextContainer, with aSize as the size of its bounding rectangle.

public NSTextContainer(NSSize aSize)

Discussion
For both constructors, the new NSTextContainer must be added to an NSLayoutManager before it can be
used; it must also have an NSTextView set for text to be displayed.

See Also
addTextContainer (page 827) (NSLayoutManager)
setTextView (page 1561)

Instance Methods

containerSize
Returns the size of the receiver’s bounding rectangle, regardless of the size of its region.

public NSSize containerSize()

See Also
textContainerInset (page 1659) (NSTextView)
setContainerSize (page 1559)

containsPoint
Overridden by subclasses to return true if aPoint lies within the receiver’s region or on the region’s
edge—not simply within its bounding rectangle—false otherwise.

public boolean containsPoint(NSPoint aPoint)

Discussion
For example, if the receiver defines a donut shape and aPoint lies in the hole, this method returns false.
This method can be used for hit testing of mouse events.

NSTextContainer’s implementation merely checks that aPoint lies within its bounding rectangle.

Constructors 1557
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

heightTracksTextView
Returns true if the receiver adjusts the height of its bounding rectangle when its NSTextView is resized,
false otherwise.

public boolean heightTracksTextView()

Discussion
The height is adjusted to the height of the NSTextView minus twice the inset height (as given by NSTextView’s
textContainerInset (page 1659) method).

See Text System Storage Layer Overview for more information on size tracking.

See Also
widthTracksTextView (page 1561)
setHeightTracksTextView (page 1560)

isSimpleRectangularTextContainer
Overridden by subclasses to return true if the receiver’s region is a rectangle with no holes or gaps and
whose edges are parallel to the NSTextView’s coordinate system axes; returns false otherwise.

public boolean isSimpleRectangularTextContainer()

Discussion
An NSTextContainer whose shape changes can return true if its region is currently a simple rectangle, but
when its shape does change it must send textContainerChangedGeometry (page 852) to its
NSLayoutManager so the layout can be recalculated.

NSTextContainer’s implementation of this method returns true.

layoutManager
Returns the receiver’s NSLayoutManager.

public NSLayoutManager layoutManager()

See Also
setLayoutManager (page 1560)
replaceLayoutManager (page 1559)

lineFragmentPadding
Returns the amount (in points) by which text is inset within line fragment rectangles.

public float lineFragmentPadding()

See Also
lineFragmentRectForProposedRect (page 1559)
setLineFragmentPadding (page 1560)

1558 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

lineFragmentRectForProposedRect
Overridden by subclasses to calculate and return the longest rectangle available for proposedRect for
displaying text, or NSRect.ZeroRect if there is none according to the receiver’s region definition.

public NSRect lineFragmentRectForProposedRect(NSRect proposedRect, int
sweepDirection, int movementDirection, NSMutableRect remainingRect)

Discussion
There is no guarantee as to the width of the proposed rectangle or to its location. For example, the proposed
rectangle is likely to be much wider than the width of the receiver. The receiver should examine proposedRect
to see that it intersects its bounding rectangle and should return a modified rectangle based on
sweepDirection and movementDirection, whose possible values are listed in the class description. If
sweepDirection is LineSweepRight, for example, the receiver uses this information to trim the right end
of proposedRect as needed rather than the left end.

If proposedRect doesn’t completely overlap the region along the axis of movementDirection and
movementDirection isn’t LineDoesntMove, this method can either shift the rectangle in that direction as
much as needed so that it does completely overlap, or return NSRect.ZeroRect to indicate that the proposed
rectangle simply doesn’t fit.

Upon returning, remainingRect contains the unused, possibly shifted, portion of proposedRect that’s
available for further text, or NSRect.ZeroRect if there is no remainder.

See the class description for more information on overriding this method.

replaceLayoutManager
Replaces the NSLayoutManager for the group of text system objects containing the receiver with
aLayoutManager.

public void replaceLayoutManager(NSLayoutManager aLayoutManager)

Discussion
All NSTextContainers and NSTextViews sharing the original NSLayoutManager then share the new one. This
method makes all the adjustments necessary to keep these relationships intact, unlike
setLayoutManager (page 1560).

See Also
layoutManager (page 1558)

setContainerSize
Sets the size of the receiver’s bounding rectangle to aSize and sends
textContainerChangedGeometry (page 852) to the NSLayoutManager.

public void setContainerSize(NSSize aSize)

See Also
setTextContainerInset (page 1654) (NSTextView)
containerSize (page 1557)

Instance Methods 1559
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

setHeightTracksTextView
Controls whether the receiver adjusts the height of its bounding rectangle when its NSTextView is resized.

public void setHeightTracksTextView(boolean flag)

Discussion
If flag is true, the receiver follows changes to the height of its text view; if flag is false, it doesn’t.

See Text System Storage Layer Overview for more information on size tracking.

See Also
setContainerSize (page 1559)
setWidthTracksTextView (page 1561)
heightTracksTextView (page 1558)

setLayoutManager
Sets the receiver’s NSLayoutManager to aLayoutManager.

public void setLayoutManager(NSLayoutManager aLayoutManager)

Discussion
This method is invoked automatically when you add an NSTextContainer to an NSLayoutManager; you should
never need to invoke it directly, but might want to override it. If you want to replace the NSLayoutManager
for an established group of text system objects, use replaceLayoutManager (page 1559).

See Also
addTextContainer (page 827) (NSLayoutManager)
layoutManager (page 1558)

setLineFragmentPadding
Sets the amount (in points) by which text is inset within line fragment rectangles to aFloat.

public void setLineFragmentPadding(float aFloat)

Discussion
Also sends textContainerChangedGeometry (page 852) to the receiver’s NSLayoutManager to inform it
of the change.

Line fragment padding is not designed to express text margins. Instead, use the NSTextView method
setTextContainerInset (page 1654), paragraph margin attributes, or the position of the text view within
a superview.

See Also
lineFragmentRectForProposedRect (page 1559)
lineFragmentPadding (page 1558)

1560 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

setTextView
Sets the receiver’s NSTextView to aTextView and sends setTextContainer (page 1653) to aTextView to
complete the association of the text container and text view.

public void setTextView(NSTextView aTextView)

Discussion
Because you usually specify an NSTextContainer when you create an NSTextView, you should rarely need to
invoke this method. An NSTextContainer doesn’t need an NSTextView to calculate line fragment rectangles,
but must have one to display text.

You can use this method to disconnect an NSTextView from a group of text system objects by sending this
message to its text container and passing null as aTextView.

See Also
replaceTextContainer (page 1640) (NSTextView)

setWidthTracksTextView
Controls whether the receiver adjusts the width of its bounding rectangle when its NSTextView is resized.

public void setWidthTracksTextView(boolean flag)

Discussion
If flag is true, the receiver follows changes to the width of its text view; if flag is false, it doesn’t.

See Text System Storage Layer Overview for more information on size tracking.

See Also
setContainerSize (page 1559)
setHeightTracksTextView (page 1560)
widthTracksTextView (page 1561)

textView
Returns the receiver’s NSTextView, or null if it has none.

public NSTextView textView()

See Also
setTextView (page 1561)

widthTracksTextView
Returns true if the receiver adjusts the width of its bounding rectangle when its NSTextView is resized,
false otherwise.

public boolean widthTracksTextView()

Instance Methods 1561
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

Discussion
The width is adjusted to the width of the NSTextView minus twice the inset width (as given by NSTextView’s
textContainerInset (page 1659) method).

See Text System Storage Layer Overview for more information on size tracking.

See Also
heightTracksTextView (page 1558)
setWidthTracksTextView (page 1561)

Constants

These constants describe the progression of text on a page. The typesetter decides which way text is supposed
to flow and passes these values as arguments to the text container, which uses them to calculate the next
line rectangle.

The only values currently used by the supplied typesetters are LineSweepRight and LineMovesDown. An
NSTextContainer subclass should be prepared to deal with any value, and an NSTypesetter subclass should
be able to use any of them.

Line sweep is the direction text progresses within a line. See Text System Storage Layer Overview.

DescriptionConstant

Characters move from right to left.LineSweepLeft

Characters move from left to right.LineSweepRight

Characters move from top to bottom.LineSweepDown

Characters move from bottom to top.LineSweepUp

Line movement is the direction in which lines move. See Text System Storage Layer Overview.

DescriptionConstant

Lines move from right to left.LineMovesLeft

Lines move from left to right.LineMovesRight

Lines move from top to bottom.LineMovesDown

Lines move from bottom to top.LineMovesUp

Line has no movement.LineDoesntMove

1562 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 124

NSTextContainer

Inherits from NSControl : NSView : NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Text Fields

Overview

An NSTextField is a kind of NSControl that displays text that the user can select or edit and that sends its
action message to its target when the user presses the Return key while editing.

NSTextField uses NSTextFieldCell (page 1575) to implement its user interface.

Tasks

Constructors

NSTextField (page 1566)
Creates an NSTextField with a zero-sized frame rectangle.

Controlling Editability and Selectability

setEditable (page 1571)
Controls whether the user can edit the receiver’s text.

isEditable (page 1568)
Returns true if the user is allowed to select and edit the receiver’s text, false if the user isn’t allowed
to edit it (though the user may be able to select it).

setSelectable (page 1571)

isSelectable (page 1568)
Returns true if the user is allowed to select the receiver’s text, false if the user isn’t allowed to select
it.

Overview 1563
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

Controlling Rich Text Behavior

setAllowsEditingTextAttributes (page 1569)
Controls whether the receiver allows the user to change font attributes of the receiver’s text.

allowsEditingTextAttributes (page 1566)
Returns true if the receiver allows the user to change font attributes of the receiver’s text, false if
the user isn’t permitted to do so.

setImportsGraphics (page 1571)
Controls whether the receiver allows the user to drag image files into it.

importsGraphics (page 1567)
Returns true if the receiver allows the user to drag image files into it, false if it doesn’t accept
dragged images.

Setting the Text Color

setTextColor (page 1572)
Sets the color used to draw the receiver’s text to aColor.

textColor (page 1572)
Returns the color used to draw the receiver’s text.

Controlling the Background

setBackgroundColor (page 1569)
Sets the color of the background that the receiver draws behind the text to aColor.

backgroundColor (page 1566)
Returns the color of the background that the receiver draws behind the text.

setDrawsBackground (page 1570)
Controls whether the receiver draws its background color behind its text.

drawsBackground (page 1567)
Returns true if the receiver’s cell draws its background color behind its text, false if it draws no
background.

Setting a Border

setBezeled (page 1569)
Controls whether the receiver draws a bezeled border around its contents.

isBezeled (page 1568)
Returns true if the receiver draws a bezeled frame around its contents, false if it doesn’t.

setBezelStyle (page 1570)
Sets the receiver’s bezel style to be style.

bezelStyle (page 1567)
Returns the receiver’s bezel style.

1564 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

setBordered (page 1570)
Controls whether the receiver draws a solid black border around its contents.

isBordered (page 1568)
Returns true if the receiver draws a solid black border around its contents, false if it doesn’t.

Selecting the Text

selectText (page 1569)
This action method ends editing and selects the entire contents of the receiver if it’s selectable.

Working with the Responder Chain

acceptsFirstResponder (page 1566)
Returns true if the receiver is editable, false otherwise.

Using Keyboard Interface Control

setTitleWithMnemonic (page 1572)
Sets the receiver’s string value to aString, using the first character preceded by an ampersand (‘&’)
as the mnemonic and stripping out that first ampersand character.

Setting the Delegate

setDelegate (page 1570)
Sets the receiver’s delegate to anObject.

delegate (page 1567)
Returns the receiver’s delegate.

Text Delegate Methods

textShouldBeginEditing (page 1573)

textDidBeginEditing (page 1572)
Posts a ControlTextDidBeginEditingNotification (page 466) to the default notification center.

textDidChange (page 1573)
Forwards this message to the receiver’s cell if it responds and posts a
ControlTextDidChangeNotification (page 467) to the default notification center.

textShouldEndEditing (page 1574)
Performs validation on the receiver’s new value using NSCell’s isEntryAcceptable (page 314),
sending the receiver’s error action to its target if validation fails.

textDidEndEditing (page 1573)
Handles an end of editing NSNotification aNotification.

Tasks 1565
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

Constructors

NSTextField
Creates an NSTextField with a zero-sized frame rectangle.

public NSTextField()

Creates an NSTextField with frameRect as its frame rectangle.

public NSTextField(NSRect frameRect)

Instance Methods

acceptsFirstResponder
Returns true if the receiver is editable, false otherwise.

public boolean acceptsFirstResponder()

allowsEditingTextAttributes
Returns true if the receiver allows the user to change font attributes of the receiver’s text, false if the user
isn’t permitted to do so.

public boolean allowsEditingTextAttributes()

Discussion
You can change text attributes programmatically regardless of this setting.

See Also
importsGraphics (page 1567)
setAllowsEditingTextAttributes (page 1569)

backgroundColor
Returns the color of the background that the receiver draws behind the text.

public NSColor backgroundColor()

See Also
drawsBackground (page 1567)
setBackgroundColor (page 1569)

1566 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

bezelStyle
Returns the receiver’s bezel style.

public int bezelStyle()

Discussion
Possible return values are described in NSTextFieldCell’s “Constants” (page 1580).

Availability
Available in Mac OS X v10.2 and later.

See Also
setBezelStyle (page 1570)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
textShouldBeginEditing (page 1573)
textShouldEndEditing (page 1574)
textDidBeginEditing (page 1572)
textDidEndEditing (page 1573)
textDidChange (page 1573)
setDelegate (page 1570)

drawsBackground
Returns true if the receiver’s cell draws its background color behind its text, false if it draws no background.

public boolean drawsBackground()

See Also
backgroundColor (page 1566)
drawsBackground (page 1577) (NSTextFieldCell)
setDrawsBackground (page 1570)

importsGraphics
Returns true if the receiver allows the user to drag image files into it, false if it doesn’t accept dragged
images.

public boolean importsGraphics()

Discussion
You can add images programmatically regardless of this setting.

Instance Methods 1567
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

See Also
allowsEditingTextAttributes (page 1566)
importsGraphics (page 1629) (NSTextView)
setImportsGraphics (page 1571)

isBezeled
Returns true if the receiver draws a bezeled frame around its contents, false if it doesn’t.

public boolean isBezeled()

See Also
isBordered (page 1568)
setBezeled (page 1569)

isBordered
Returns true if the receiver draws a solid black border around its contents, false if it doesn’t.

public boolean isBordered()

See Also
isBezeled (page 1568)
setBordered (page 1570)

isEditable
Returns true if the user is allowed to select and edit the receiver’s text, false if the user isn’t allowed to
edit it (though the user may be able to select it).

public boolean isEditable()

See Also
isSelectable (page 1568)
setEditable (page 1571)

isSelectable
Returns true if the user is allowed to select the receiver’s text, false if the user isn’t allowed to select it.

public boolean isSelectable()

Discussion
Selectable text isn’t necessarily editable; use isEditable (page 1568) to check for editability.

See Also
setSelectable (page 1571)

1568 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

selectText
This action method ends editing and selects the entire contents of the receiver if it’s selectable.

public void selectText(Object sender)

Discussion
However, if the receiver isn’t in some window’s view hierarchy, this method has no effect.

See Also
isSelectable (page 1568)

setAllowsEditingTextAttributes
Controls whether the receiver allows the user to change font attributes of the receiver’s text.

public void setAllowsEditingTextAttributes(boolean flag)

Discussion
If flag is true, the user is permitted to make such changes; if flag is false, the user isn’t so permitted.
You can change text attributes programmatically regardless of this setting.

See Also
setImportsGraphics (page 1571)
allowsEditingTextAttributes (page 1566)

setBackgroundColor
Sets the color of the background that the receiver draws behind the text to aColor.

public void setBackgroundColor(NSColor aColor)

See Also
setDrawsBackground (page 1570)
backgroundColor (page 1566)

setBezeled
Controls whether the receiver draws a bezeled border around its contents.

public void setBezeled(boolean flag)

Discussion
If flag is false, it draws no border; if flag is true, it draws a bezeled border and invokes
setDrawsBackground (page 1570) with an argument of false.

See Also
isBezeled (page 1568)
setBordered (page 1570)

Instance Methods 1569
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

setBezelStyle
Sets the receiver’s bezel style to be style.

public void setBezelStyle(int style)

Discussion
Possible values for style are described in NSTextFieldCell’s “Constants” (page 1580). You must have already
sent the receiver setBezeled (page 1569) with an argument of true.

Availability
Available in Mac OS X v10.2 and later.

See Also
bezelStyle (page 1567)

setBordered
Controls whether the receiver draws a solid black border around its contents.

public void setBordered(boolean flag)

Discussion
If flag is true, then it draws a border; if flag is false, it draws no border.

See Also
isBordered (page 1568)
setBezeled (page 1569)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

See Also
textShouldBeginEditing (page 1573)
textShouldEndEditing (page 1574)
textDidBeginEditing (page 1572)
textDidEndEditing (page 1573)
textDidChange (page 1573)
delegate (page 1567)

setDrawsBackground
Controls whether the receiver draws its background color behind its text.

public void setDrawsBackground(boolean flag)

Discussion
If flag is true, then it does; if flag is false, then it draws nothing behind its text.

1570 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

See Also
setBackgroundColor (page 1569)
setDrawsBackground (page 1579) (NSTextFieldCell)
drawsBackground (page 1567)

setEditable
Controls whether the user can edit the receiver’s text.

public void setEditable(boolean flag)

Discussion
If flag is true, then the user is allowed to both select and edit text. If flag is false, then the user isn’t
permitted to edit text, and the receiver’s selectability is restored to its previous value. For example, if an
NSTextField is selectable but not editable, then made editable for a time, then made not editable, it remains
selectable. To guarantee that text is neither editable nor selectable, simply use setSelectable (page 1571)
to turn off selectability.

See Also
isEditable (page 1568)

setImportsGraphics
Controls whether the receiver allows the user to drag image files into it.

public void setImportsGraphics(boolean flag)

Discussion
If flag is true, the receiver accepts dragged images; if flag is false, it doesn’t. You can add images
programmatically regardless of this setting.

See Also
setAllowsEditingTextAttributes (page 1569)
setImportsGraphics (page 1649) (NSTextView)
importsGraphics (page 1567)

setSelectable
public void setSelectable(boolean flag)

Discussion
If flag is true, the receiver is made selectable but not editable (use setEditable (page 1571) to make text
both selectable and editable). If false, then the text is made neither editable nor selectable.

See Also
setEditable (page 1571)

Instance Methods 1571
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

setTextColor
Sets the color used to draw the receiver’s text to aColor.

public void setTextColor(NSColor aColor)

See Also
setBackgroundColor (page 1569)
setTextColor (page 1580) (NSTextFieldCell)
textColor (page 1572)

setTitleWithMnemonic
Sets the receiver’s string value to aString, using the first character preceded by an ampersand (‘&’) as the
mnemonic and stripping out that first ampersand character.

public void setTitleWithMnemonic(String aString)

Discussion
Mnemonics are not supported in Mac OS X.

textColor
Returns the color used to draw the receiver’s text.

public NSColor textColor()

See Also
backgroundColor (page 1566)
textColor (page 1580) (NSTextFieldCell)
setTextColor (page 1572)

textDidBeginEditing
Posts a ControlTextDidBeginEditingNotification (page 466) to the default notification center.

public void textDidBeginEditing(NSNotification aNotification)

Discussion
This action causes the receiver’s delegate to receive a controlTextDidBeginEditing (page 464) message.
See the NSControl (page 441) class specification for more information on the text delegate method.

See Also
textDidBeginEditing (page 1572)
textDidChange (page 1573)
textShouldEndEditing (page 1574)
textDidEndEditing (page 1573)

1572 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

textDidChange
Forwards this message to the receiver’s cell if it responds and posts a
ControlTextDidChangeNotification (page 467) to the default notification center.

public void textDidChange(NSNotification aNotification)

Discussion
This method causes the receiver’s delegate to receive a controlTextDidChange (page 465) message. See
the NSControl (page 441) class specification for more information on the text delegate method.

See Also
textShouldBeginEditing (page 1573)
textDidBeginEditing (page 1572)
textShouldEndEditing (page 1574)
textDidEndEditing (page 1573)

textDidEndEditing
Handles an end of editing NSNotification aNotification.

public void textDidEndEditing(NSNotification aNotification)

Discussion
After validating the new value, posts a ControlTextDidEndEditingNotification (page 467) to the
default notification center. This posting causes the receiver’s delegate to receive a
controlTextDidEndEditing (page 465) message. After this message, sends endEditing (page 310) to
the receiver’ cell and handles the key that caused editing to end:

 ■ If the user ended editing by pressing Return, this method tries to send the receiver’s action to its target;
if unsuccessful, it sends performKeyEquivalent (page 1763) to its NSView (for example, to handle the
default button on a panel); if that also fails, the receiver simply selects its text.

 ■ If the user ended editing by pressing Tab or Shift-Tab, the receiver tries to have its NSWindow select its
next or previous key view, using the NSWindow method selectKeyViewFollowingView (page 1852)
or selectKeyViewPrecedingView (page 1852). If unsuccessful in doing this, the receiver simply selects
its text.

See the NSControl (page 441) class specification for more information on the text delegate method.

See Also
textShouldBeginEditing (page 1573)
textDidBeginEditing (page 1572)
textDidChange (page 1573)
textShouldEndEditing (page 1574)

textShouldBeginEditing
public boolean textShouldBeginEditing(NSText textObject)

Instance Methods 1573
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

Discussion
If the receiver isn’t editable, returns false immediately. If it is editable and its delegate responds to
controlTextShouldBeginEditing (page 465), invokes that method and returns the result. Otherwise
simply returns true to allow editing to occur. The textObject argument is the NSText object that invoked
this method. See the NSControl (page 441) class specification for more information on the text delegate
method.

See Also
textDidBeginEditing (page 1572)
textDidChange (page 1573)
textShouldEndEditing (page 1574)
textDidEndEditing (page 1573)

textShouldEndEditing
Performs validation on the receiver’s new value using NSCell’s isEntryAcceptable (page 314), sending the
receiver’s error action to its target if validation fails.

public boolean textShouldEndEditing(NSText textObject)

Discussion
If the new value is valid and the delegate responds to controlTextShouldEndEditing (page 465), invokes
that method and returns the result, in addition beeping if the delegate returns false. The textObject
argument is the NSText object that invoked this method. See the NSControl (page 441) class specification for
more information on the text delegate method.

See Also
textShouldBeginEditing (page 1573)
textDidBeginEditing (page 1572)
textDidChange (page 1573)
textDidEndEditing (page 1573)

1574 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 125

NSTextField

Inherits from NSActionCell : NSCell : NSObject

Implements NSCoding (NSCell)

Package: com.apple.cocoa.application

Companion guide Text Fields

Overview

NSTextFieldCell adds to NSCell’s text display capabilities by allowing you to set the color of both the text
and its background. You can also specify whether the cell draws its background at all. All of the methods
declared by this class are also declared by NSTextField (page 1563), which uses NSTextFieldCells to draw and
edit text.

Placeholder strings, set using setPlaceholderString (page 1579) or
setPlaceholderAttributedString (page 1579), now appear in the text field cell if the actual string is null
or "". They are drawn in grey on the cell and are not archived in the “pre-10.2” nib format.

Tasks

Constructors

NSTextFieldCell (page 1576)
Creates an empty NSTextFieldCell.

Setting the Text Color

setTextColor (page 1580)
Sets the color used to draw the receiver’s text to aColor.

textColor (page 1580)
Returns the color used to draw the receiver’s text.

Overview 1575
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 126

NSTextFieldCell

Setting the Bezel Style

setBezelStyle (page 1578)
Sets the receiver’s bezel style to be style.

bezelStyle (page 1577)
Returns the receiver’s bezel style.

Controlling the Background

setBackgroundColor (page 1578)
Sets the color of the background that the receiver draws behind the text to aColor.

backgroundColor (page 1577)
Returns the color of the background the receiver draws behind the text.

setDrawsBackground (page 1579)
Controls whether the receiver draws its background color behind its text.

drawsBackground (page 1577)
Returns true if the receiver’s cell draws its background color behind its text, false if it draws no
background.

Changing the Field Editor

setUpFieldEditorAttributes (page 1580)

Managing Placeholder Strings

setPlaceholderString (page 1579)
Sets the placeholder of the cell as a plain text string.

placeholderString (page 1578)
Returns the cell’s plain text placeholder string.

setPlaceholderAttributedString (page 1579)
Sets the placeholder of the cell as an attributed string.

placeholderAttributedString (page 1578)
Returns the cell’s attributed placeholder string.

Constructors

NSTextFieldCell
Creates an empty NSTextFieldCell.

public NSTextFieldCell()

1576 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 126

NSTextFieldCell

Creates an NSTextFieldCell initialized with aString and set to have the cell’s default menu.

public NSTextFieldCell(String aString)

Discussion
If no field editor has been created, one is created.

Creates an NSTextFieldCell initialized with anImage and set to have the cell’s default menu.

public NSTextFieldCell(NSImage anImage)

Discussion
If anImage is null, no image is set.

Instance Methods

backgroundColor
Returns the color of the background the receiver draws behind the text.

public NSColor backgroundColor()

See Also
drawsBackground (page 1577)
backgroundColor (page 1566) (NSTextField)
setBackgroundColor (page 1578)

bezelStyle
Returns the receiver’s bezel style.

public int bezelStyle()

Discussion
Possible return values are described in “Constants” (page 1580).

Availability
Available in Mac OS X v10.2 and later.

See Also
setBezelStyle (page 1578)

drawsBackground
Returns true if the receiver’s cell draws its background color behind its text, false if it draws no background.

public boolean drawsBackground()

See Also
backgroundColor (page 1577)

Instance Methods 1577
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 126

NSTextFieldCell

drawsBackground (page 1567) (NSTextField)
setDrawsBackground (page 1579)

placeholderAttributedString
Returns the cell’s attributed placeholder string.

public NSAttributedString placeholderAttributedString()

Availability
Available in Mac OS X v10.3 and later.

See Also
setPlaceholderAttributedString (page 1579)
placeholderString (page 1578)

placeholderString
Returns the cell’s plain text placeholder string.

public String placeholderString()

Availability
Available in Mac OS X v10.3 and later.

See Also
setPlaceholderString (page 1579)
placeholderAttributedString (page 1578)

setBackgroundColor
Sets the color of the background that the receiver draws behind the text to aColor.

public void setBackgroundColor(NSColor aColor)

See Also
setDrawsBackground (page 1579)
setBackgroundColor (page 1569) (NSTextField)
backgroundColor (page 1577)

setBezelStyle
Sets the receiver’s bezel style to be style.

public void setBezelStyle(int style)

Discussion
Possible values for style are described in “Constants” (page 1580). You must have already sent
setBezeled (page 1569) with an argument of true.

1578 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 126

NSTextFieldCell

Availability
Available in Mac OS X v10.2 and later.

See Also
bezelStyle (page 1577)

setDrawsBackground
Controls whether the receiver draws its background color behind its text.

public void setDrawsBackground(boolean flag)

Discussion
If flag is true, then it does; if flag is false, then it draws nothing behind its text.

See Also
setBackgroundColor (page 1578)
setDrawsBackground (page 1570) (NSTextField)
drawsBackground (page 1577)

setPlaceholderAttributedString
Sets the placeholder of the cell as an attributed string.

public void setPlaceholderAttributedString(NSAttributedString string)

Discussion
Note that invoking this successfully will clear out the plain text string set by setPlaceholderString (page
1579).

Availability
Available in Mac OS X v10.3 and later.

See Also
placeholderAttributedString (page 1578)
setPlaceholderString (page 1579)

setPlaceholderString
Sets the placeholder of the cell as a plain text string.

public void setPlaceholderString(String string)

Discussion
Note that invoking this successfully will clear out the attributed string set by
setPlaceholderAttributedString (page 1579).

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1579
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 126

NSTextFieldCell

See Also
placeholderString (page 1578)
setPlaceholderAttributedString (page 1579)

setTextColor
Sets the color used to draw the receiver’s text to aColor.

public void setTextColor(NSColor aColor)

See Also
setBackgroundColor (page 1578)
setTextColor (page 1572) (NSTextField)
textColor (page 1580)

setUpFieldEditorAttributes
public NSText setUpFieldEditorAttributes(NSText textObj)

Discussion
You never invoke this method directly; by overriding it, however, you can customize or replace the field
editor. When you override this method, you should generally invoke the implementation of super and return
the textObj argument. For information on field editors, see “Using the Window’s Field Editor”.

textColor
Returns the color used to draw the receiver’s text.

public NSColor textColor()

See Also
backgroundColor (page 1577)
textColor (page 1572) (NSTextField)
setTextColor (page 1580)

Constants

The following constants are specify the bezel style of the text field, and are set using bezelStyle (page 1577)
and setBezelStyle (page 1578).

DescriptionConstant

Corners are square.TextFieldSquareBezel

Corners are rounded.TextFieldRoundedBezel

1580 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 126

NSTextFieldCell

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Availability Availabile in Mac OS X v10.4 and later.

Overview

NSTextList represents a section of text that forms a single list. The visible elements of the list, including list
markers, appear in the text as they do for lists created by hand. The list object, however, allows the list to be
recognized as such by the text system. This enables automatic creation of markers and spacing. Text lists are
used in HTML import and export.

Text lists appear as attributes on paragraphs, as part of the paragraph style. An NSParagraphStyle may have
an array of text lists, representing the nested lists containing the paragraph, in order from outermost to
innermost. For example, if list1 contains four paragraphs, the middle two of which are also in the inner list2,
then the text lists array for the first and fourth paragraphs is (list1), while the text lists array for the second
and third paragraphs is (list1, list2).

The methods implementing this are textLists (page 1065) on NSParagraphStyle, and setTextLists (page
1001) on NSMutableParagraphStyle.

Tasks

Constructors

NSTextList (page 1582)

Working with Markers

markerFormat (page 1582)
Returns the marker format string used by the receiver.

markerForItemNumber (page 1582)
Returns the computed value for a specific ordinal position in the list specified by itemNum.

Overview 1581
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 127

NSTextList

Getting List Options

listOptions (page 1582)
Returns the list options mask value of the receiver.

Constructors

NSTextList
public NSTextList()

Discussion
Creates an NSTextList object.

public NSTextList(String format, int mask)

Discussion
Creates an NSTextList object with a marker format specified by format and the marker options specified in
mask. Values for mask are listed in “Constants” (page 1583).

Instance Methods

listOptions
Returns the list options mask value of the receiver.

public int listOptions()

Availability
Available in Mac OS X v10.4 and later.

markerForItemNumber
Returns the computed value for a specific ordinal position in the list specified by itemNum.

public String markerForItemNumber(int itemNum)

Availability
Available in Mac OS X v10.4 and later.

markerFormat
Returns the marker format string used by the receiver.

public String markerFormat()

1582 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 127

NSTextList

Availability
Available in Mac OS X v10.4 and later.

See Also
NSTextList (page 1582)

Constants

The following constant specifies an option mask used with NSTextList (page 1582).

DescriptionConstant

Specifies that a nested list should include the marker for its enclosing
superlist before its own marker.

PrependEnclosingMarker

Constants 1583
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 127

NSTextList

1584 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 127

NSTextList

Inherits from NSMutableAttributedString : NSAttributedString : NSObject

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text System Storage Layer Overview

Overview

NSTextStorage is a semiconcrete subclass of NSMutableAttributedString that manages a set of client
NSLayoutManagers, notifying them of any changes to its characters or attributes so that they can relay and
redisplay the text as needed. NSTextStorage defines the fundamental storage mechanism of the Application
Kit’s extended text-handling system.

Tasks

Constructors

NSTextStorage (page 1587)
Creates an empty NSTextStorage.

Managing NSLayoutManagers

addLayoutManager (page 1588)
Adds aLayoutManager to the receiver’s set of NSLayoutManagers.

removeLayoutManager (page 1591)
Removes aLayoutManager from the receiver’s set of NSLayoutManagers.

layoutManagers (page 1591)
Returns the receiver’s NSLayoutManagers.

Handling Text Edited Messages

editedInRange (page 1589)
Tracks changes made to the receiver, allowing the NSTextStorage to record the full extent of changes
made.

Overview 1585
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

ensureAttributesAreFixedInRange (page 1590)
An NSTextStorage using lazy attribute fixing is required to call this method before accessing any
attributes within range.

fixesAttributesLazily (page 1590)
Returns whether the receiver fixes attributes lazily.

invalidateAttributesInRange (page 1590)
Invalidates attributes in range.

processEditing (page 1591)
Cleans up changes made to the receiver and notifies its delegate and layout managers of changes.

replaceCharactersInRange (page 1591)
Replaces the characters in aRange with the characters of aString.

setAttributesInRange (page 1592)
Sets the attributes for the characters in aRange to the attributes listed in attributes.

Determining the Nature of Changes

editedMask (page 1589)
Returns the kinds of edits pending for the receiver, as a mask containing either or both of
TextStorageEditedAttributes and TextStorageEditedCharacters.

Determining the Extent of Changes

editedRange (page 1589)
Returns the range of the receiver to which pending changes have been made, whether of characters
or of attributes.

changeInLength (page 1588)
Returns the difference between the current length of the edited range and its length before editing
began (that is, before the receiver was sent the first beginEditing message or a single
editedInRange (page 1589) message).

Setting the Delegate

setDelegate (page 1592)
Sets the receiver’s delegate to anObject.

delegate (page 1588)
Returns the receiver’s delegate.

Processing edit

textStorageWillProcessEditing (page 1592) delegate method
Informs the delegate that an NSTextStorage object is about to process edits.

textStorageDidProcessEditing (page 1592) delegate method
Informs the delegate that an NSTextStorage object has finished processing edits.

1586 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

Constructors

NSTextStorage
Creates an empty NSTextStorage.

public NSTextStorage()

Creates an NSTextStorage with the characters of string

public NSTextStorage(String aString)

Discussion
and no attribute information.

Creates an NSTextStorage with the characters of aString and the attributes of attributes.

public NSTextStorage(String aString, NSDictionary attributes)

Creates an NSTextStorage with the characters and attributes of attributedString.

public NSTextStorage(NSAttributedString attributedString)

Creates an NSTextStorage with the contents of aURL, returning document properties, which are described
in NSAttributedString, in attributes.

public NSTextStorage(java.net.URL aURL, NSMutableDictionary attributes)

Creates an NSTextStorage with the contents of data, returning document properties, which are described
in NSAttributedString, in attributes.

public NSTextStorage(NSData data, NSMutableDictionary attributes)

Creates an NSTextStorage from wrapper, an NSFileWrapper object containing an RTFD document.

public NSTextStorage(NSFileWrapper wrapper, NSMutableDictionary attributes)

Discussion
Also returns in attributes a dictionary containing document-level attributes described in NSAttributedString.
Returns null if wrapper can’t be interpreted as an RTFD document.

Creates an NSTextStorage from the HTML contained in data and base URL aURL.

public NSTextStorage(NSData data, java.net.URL aURL, NSMutableDictionary attributes)

Discussion
Also returns attributes, a dictionary containing document-level attributes described in NSAttributedString.
Returns null if the file at aURL can’t be decoded.

Creates an NSTextStorage with the contents of aString, returning document properties, which are described
in NSAttributedString, in attributes.

public NSTextStorage(String aString, NSMutableDictionary attributes)

Constructors 1587
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

Creates an NSTextStorage with the contents of aURL, returning document properties, which are described
in NSAttributedString, in attributes.

public NSTextStorage(NSData aURL, NSDictionary options, NSMutableDictionary
attributes)

Discussion
options can contain one of the values described in readFromURL.

Instance Methods

addLayoutManager
Adds aLayoutManager to the receiver’s set of NSLayoutManagers.

public void addLayoutManager(NSLayoutManager aLayoutManager)

See Also
removeLayoutManager (page 1591)
layoutManagers (page 1591)

changeInLength
Returns the difference between the current length of the edited range and its length before editing began
(that is, before the receiver was sent the first beginEditing message or a single editedInRange (page
1589) message).

public int changeInLength()

Discussion
This difference is accumulated with each invocation of editedInRange (page 1589), until a final message
processes the changes.

The receiver’s delegate and layout managers can use this information to determine the nature of edits in
their respective notification methods.

See Also
editedRange (page 1589)
editedMask (page 1589)

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 1592)

1588 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

editedInRange
Tracks changes made to the receiver, allowing the NSTextStorage to record the full extent of changes made.

public void editedInRange(int mask, NSRange oldRange, int lengthChange)

Discussion
This method invokes processEditing (page 1591). NSTextStorage invokes this method automatically each
time it makes a change to its attributed string. Subclasses that override or add methods that alter their
attributed strings directly should invoke this method after making those changes; otherwise you should not
invoke this method. The information accumulated with this method is then used in an invocation of
processEditing (page 1591) to report the affected portion of the receiver.

The mask argument specifies the nature of the changes. Its value is made by combining these options with
the C bitwise OR operator:

MeaningOption

Attributes were added, removed, or changed.TextStorageEditedAttributes

Characters were added, removed, or replaced.TextStorageEditedCharacters

The oldRange argument indicates the extent of characters affected before the change took place. If the
TextStorageEditedCharacters bit of mask is set, lengthChange gives the number of characters added
to or removed from oldRange (otherwise its value is irrelevant). For example, when replacing “The” with
“Several” in the string “The files couldn’t be saved”, oldRange is {0, 3} and lengthChange is 4.

The methods for querying changes,editedRange (page 1589) andchangeInLength (page 1588), indicate the
extent of characters affected after the change. This method expects the characters before the change because
that information is readily available as the argument to whatever method performs the change (such as
replaceCharactersInRange).

editedMask
Returns the kinds of edits pending for the receiver, as a mask containing either or both of
TextStorageEditedAttributes and TextStorageEditedCharacters.

public int editedMask()

Discussion
Use the C bitwise AND operator to test the mask; testing for equality will fail if additional mask flags are
added later. The receiver’s delegate and layout managers can use this information to determine the nature
of edits in their respective notification methods.

See Also
editedRange (page 1589)
changeInLength (page 1588)

editedRange
Returns the range of the receiver to which pending changes have been made, whether of characters or of
attributes.

Instance Methods 1589
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

public NSRange editedRange()

Discussion
The receiver’s delegate and layout managers can use this information to determine the nature of edits in
their respective notification methods.

See Also
changeInLength (page 1588)
editedMask (page 1589)

ensureAttributesAreFixedInRange
An NSTextStorage using lazy attribute fixing is required to call this method before accessing any attributes
within range.

public void ensureAttributesAreFixedInRange(NSRange range)

Discussion
This method gives attribute fixing a chance to occur if necessary. NSTextStorage subclasses wishing to support
laziness must call this method from all attribute accessors they implement.

See Also
fixesAttributesLazily (page 1590)
invalidateAttributesInRange (page 1590)

fixesAttributesLazily
Returns whether the receiver fixes attributes lazily.

public boolean fixesAttributesLazily()

Discussion
This method can control whether an instance fixes attributes lazily by returning true. By default, custom
NSTextStorage subclasses are not lazy, but the provided concrete subclass is lazy by default.

invalidateAttributesInRange
Invalidates attributes in range.

public void invalidateAttributesInRange(NSRange range)

Discussion
Called fromprocessEditing (page 1591) to invalidate attributes when the text storage changes. If the receiver
is not lazy, this method simply calls fixAttributesInRange. If lazy attribute fixing is in effect, this method
instead records the range needing fixing.

See Also
ensureAttributesAreFixedInRange (page 1590)
fixesAttributesLazily (page 1590)

1590 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

layoutManagers
Returns the receiver’s NSLayoutManagers.

public NSArray layoutManagers()

See Also
addLayoutManager (page 1588)
removeLayoutManager (page 1591)

processEditing
Cleans up changes made to the receiver and notifies its delegate and layout managers of changes.

public void processEditing()

Discussion
This method is automatically invoked in response to an editedInRange (page 1589) message. You should
never need to invoke it directly.

This method begins by posting a TextStorageWillProcessEditingNotification (page 1593) to the
default notification center (which results in the delegate receiving a
textStorageWillProcessEditing (page 1592) message). It then invokes the inherited
fixAttributesInRange method to fix up attributes after a batch of editing changes. After this, it posts a
TextStorageDidProcessEditingNotification (page 1593) to the default notification center (which
results in the delegate receiving a textStorageDidProcessEditing (page 1592) message). Finally, it sends
a textStorageChanged (page 854) message to each of the receiver’s NSLayoutManagers using the argument
values provided.

removeLayoutManager
Removes aLayoutManager from the receiver’s set of NSLayoutManagers.

public void removeLayoutManager(NSLayoutManager aLayoutManager)

See Also
addLayoutManager (page 1588)
layoutManagers (page 1591)

replaceCharactersInRange
Replaces the characters in aRange with the characters of aString.

public void replaceCharactersInRange(NSRange aRange, String aString)

Discussion
The new characters inherit the attributes of the first replaced character from aRange. Where the length of
aRange is 0, the new characters inherit the attributes of the character preceding aRange if it has any, otherwise
of the character following aRange.

Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

Instance Methods 1591
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

See Also
deleteCharactersInRange (NSMutableAttributedString)

setAttributesInRange
Sets the attributes for the characters in aRange to the attributes listed in attributes.

public void setAttributesInRange(NSDictionary attributes, NSRange aRange)

Discussion
These new attributes replace any attributes previously associated with the characters in aRange. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
addAttributesInRange (NSMutableAttributedString)
removeAttributeInRange (NSMutableAttributedString)

setDelegate
Sets the receiver’s delegate to anObject.

public void setDelegate(Object anObject)

See Also
delegate (page 1588)

Delegate Methods

textStorageDidProcessEditing
Informs the delegate that an NSTextStorage object has finished processing edits.

public abstract void textStorageDidProcessEditing(NSNotification aNotification)

Discussion
The text storage object is available by sending object to aNotification, which is always a
TextStorageDidProcessEditingNotification (page 1593). The delegate can use this notification to
verify the final state of the text storage object; it can’t change the text storage object’s characters without
leaving it in an inconsistent state, but if necessary it can change attributes. Note that even in this case it’s
possible to put a text storage object into an inconsistent state—for example, by changing the font of a range
to one that doesn’t support the characters in that range (such as using a Latin font for Kanji text).

textStorageWillProcessEditing
Informs the delegate that an NSTextStorage object is about to process edits.

public abstract void textStorageWillProcessEditing(NSNotification aNotification)

1592 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

Discussion
The text storage object is available by sending object to aNotification, which is always a
TextStorageWillProcessEditingNotification (page 1593). The delegate can use this notification to
verify the changed state of the text storage object and to make changes to the text storage object’s characters
or attributes to enforce whatever constraints it establishes (which doesn’t result in this message being sent
again, however).

Notifications

TextStorageDidProcessEditingNotification
Posted after an NSTextStorage finishes processing edits in processEditing (page 1591).

Observers other than the delegate shouldn’t make further changes to the NSTextStorage. The notification
object is the NSTextStorage object that processed the edits. This notification does not contain a userInfo
dictionary.

TextStorageWillProcessEditingNotification
Posted before an NSTextStorage finishes processing edits in processEditing (page 1591).

Observers other than the delegate shouldn’t make further changes to the NSTextStorage. The notification
object is the NSTextStorage object that is about to process the edits. This notification does not contain a
userInfo dictionary.

Notifications 1593
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

1594 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 128

NSTextStorage

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Text System Overview

Overview

An NSTextTab represents a tab in an NSParagraphStyle object, storing an alignment type and location.
NSTextTabs are most frequently used with the Application Kit’s text system and with NSRulerView (page 1209)
and NSRulerMarker (page 1201) objects. See the appropriate class specifications for more information on these
uses.

The text system supports four alignment types: left, center, right, and decimal (based on the decimal separator
character of the locale in effect). These alignment types are absolute, not based on the line sweep direction
of text. For example, tabbed text is always positioned to the left of a right-aligned tab, whether the line sweep
direction is left to right or right to left. A tab’s location, on the other hand, is relative to the back margin. A
tab set at 1.5”, for example, is at 1.5” from the right in right to left text.

Tasks

Constructors

NSTextTab (page 1596)
Creates an empty NSTextTab.

Getting Tab Stop Information

location (page 1597)
Returns the receiver’s ruler location relative to the back margin.

tabStopType (page 1597)
Returns the receiver’s tab stop type.

Overview 1595
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 129

NSTextTab

Getting Text Tab Information

alignment (page 1596)

options (page 1597)
Returns the dictionary of attributes associated with the tab.

Constructors

NSTextTab
Creates an empty NSTextTab.

public NSTextTab()

Creates an NSTextTab with an alignment of type at location on the paragraph.

public NSTextTab(int type, float location)

Discussion
The location is relative to the back margin, based on the line sweep direction of the paragraph. type can be
any of the values described in “Constants” (page 1597).

Creates an NSTextTab with the text alignment, location, and options.

public NSTextTab(int alignment, float loc, NSDictionary options)

Discussion
The text alignment is used to determine the position of text inside the tab column. See the “Constants” (page
1597) section for a mapping between alignments and tab stop types.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

alignment
public int alignment()

Discussion
Returns the text alignment of the tab, as defined by the “Constants” (page 1530) of NSText.

Availability
Available in Mac OS X v10.3 and later.

1596 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 129

NSTextTab

location
Returns the receiver’s ruler location relative to the back margin.

public float location()

options
Returns the dictionary of attributes associated with the tab.

public NSDictionary options()

Availability
Available in Mac OS X v10.3 and later.

tabStopType
Returns the receiver’s tab stop type.

public int tabStopType()

Discussion
The possible values are listed in “Constants” (page 1597).

Constants

These constants describe the various type of tab stops:

DescriptionConstant

A left-aligned tab stop.LeftTabStopType

A right-aligned tab stop.RightTabStopType

A center-aligned tab stop.CenterTabStopType

Aligns columns of numbers by the decimal point.DecimalTabStopType

The following constant specifies the terminating character for a tab column:

DescriptionConstant

The value is an NSCharacterSet. The character set is used to determine
the terminating character for a tab column. The tab and newline
characters are implied even if they don’t exist in the character set. This
attribute is optional.

TabColumnTerminators-
AttributeName

The following mappings define the conversions between text alignment in NSTextTab and tab stop types
defined by NSTextTab:

Constants 1597
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 129

NSTextTab

To tab stop type:

Tab Stop TypeAlignment

LeftTabStopTypeLeftTextAlignment

RightTabStopTypeRightTextAlignment

CenterTabStopTypeCenterTextAlignment

LeftTabStopTypeJustifiedTextAlignment

LeftTabStopType or RightTabStopType, depending on the
user setting

NaturalTextAlignment

DecimalTabStopTypeRightTextAlignment with terminator

From tab stop type:

AlignmentTab Stop Type

LeftTextAlignmentLeftTabStopType

RightTextAlignmentRightTabStopType

CenterTextAlignmentCenterTabStopType

RightTextAlignment with the decimal character for the user settingDecimalTabStopType

1598 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 129

NSTextTab

Inherits from NSTextBlock

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Companion guides Text System Overview
Text Layout Programming Guide for Cocoa

Overview

NSTextTable represents a text table as a whole. It is responsible for laying out and drawing the text table
blocks it contains, and it maintains the basic parameters of the table.

Tasks

Constructors

NSTextTable (page 1600)

Getting and Setting Number of Columns

numberOfColumns (page 1602)
Returns the number of columns in the text table.

setNumberOfColumns (page 1604)
Sets the number of columns in the text table.

Getting and Setting Layout Algorithm

layoutAlgorithm (page 1602)
Returns the text table layout algorithm.

setLayoutAlgorithm (page 1603)
Sets the text table layout algorithm.

Overview 1599
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 130

NSTextTable

Collapsing Borders

collapsesBorders (page 1601)
Returns a Boolean value indicating whether or not the text table borders are collapsible.

setCollapsesBorders (page 1603)
Sets whether or not the text table borders are collapsible.

Hiding Empty Cells

hidesEmptyCells (page 1602)
Returns a Boolean value indicating whether or not the text table hides empty cells, allowing the
background of the enclosing block orr text container to show through.

setHidesEmptyCells (page 1603)
Sets whether or not the text table hides empty cells, allowing the background of the enclosing block
orr text container to show through.

Determining Layout Rectangles

rectForBlockLayoutAtPoint (page 1602)
Called by the text table block block to determine the rectangle within which glyphs should be laid
out for the text table block.

boundsRectForBlock (page 1601)
Called by the text table block block after it is laid out to determine the rectangle the text table block
actually occupies, including padding, borders, and margins.

Drawing the Table

drawBackgroundForBlock (page 1601)
Called by the text table block block to draw any colors and other decorations before the text is
drawn.

Constructors

NSTextTable
public NSTextTable()

Discussion
The constructor for the NSTextTable object.

1600 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 130

NSTextTable

Instance Methods

boundsRectForBlock
Called by the text table block block after it is laid out to determine the rectangle the text table block actually
occupies, including padding, borders, and margins.

public NSRect boundsRectForBlock(NSTextTableBlock block, NSRect contentRect, NSRect
rect, NSTextContainer textContainer, NSRange charRange)

Discussion
The contentRect is the rectangle in which the text was laid out. The rect is the initial rectangle in
textContainer proposed by the typesetter in which to lay out the characters in charRange.

Availability
Available in Mac OS X v10.4 and later.

See Also
rectForBlockLayoutAtPoint (page 1602)

collapsesBorders
Returns a Boolean value indicating whether or not the text table borders are collapsible.

public boolean collapsesBorders()

Availability
Available in Mac OS X v10.4 and later.

See Also
setCollapsesBorders (page 1603)

drawBackgroundForBlock
Called by the text table block block to draw any colors and other decorations before the text is drawn.

public void drawBackgroundForBlock(NSTextTableBlock block, NSRect frameRect, NSView
controlView, NSRange charRange, NSLayoutManager layoutManager)

Discussion
The frameRect describes the area in which drawing occurs. The controlView is the view controlling the
drawing. The charRange describes the characters whose glyphs are to be drawn, and the layoutManager
is the layout manager controlling the typesetting.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1601
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 130

NSTextTable

hidesEmptyCells
Returns a Boolean value indicating whether or not the text table hides empty cells, allowing the background
of the enclosing block orr text container to show through.

public boolean hidesEmptyCells()

Availability
Available in Mac OS X v10.4 and later.

See Also
setHidesEmptyCells (page 1603)

layoutAlgorithm
Returns the text table layout algorithm.

public int layoutAlgorithm()

Discussion
The method returns one of the values listed in “Constants” (page 1604).

Availability
Available in Mac OS X v10.4 and later.

See Also
setLayoutAlgorithm (page 1603)

numberOfColumns
Returns the number of columns in the text table.

public int numberOfColumns()

Availability
Available in Mac OS X v10.4 and later.

See Also
setNumberOfColumns (page 1604)

rectForBlockLayoutAtPoint
Called by the text table block block to determine the rectangle within which glyphs should be laid out for
the text table block.

public NSRect rectForBlockLayoutAtPoint(NSTextTableBlock block, NSPoint
startingPoint, NSRect rect, NSTextContainer textContainer, NSRange charRange)

1602 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 130

NSTextTable

Discussion
The startingPoint argument specifies the location, in container coordinates, where layout begins. The
rect is the rectangle in which the block is constrained to lie: for top-level blocks, the container rectangle of
textContainer; for nested blocks, the layout rectangle of the enclosing block. The charRange argument
is the range of the characters to be laid out.

Availability
Available in Mac OS X v10.4 and later.

See Also
boundsRectForBlock (page 1601)

setCollapsesBorders
Sets whether or not the text table borders are collapsible.

public void setCollapsesBorders(boolean flag)

Discussion
If flag is true, the borders are collapsible.

Availability
Available in Mac OS X v10.4 and later.

See Also
collapsesBorders (page 1601)

setHidesEmptyCells
Sets whether or not the text table hides empty cells, allowing the background of the enclosing block orr text
container to show through.

public void setHidesEmptyCells(boolean flag)

Discussion
If flag is true, empty cells are hidden.

Availability
Available in Mac OS X v10.4 and later.

See Also
hidesEmptyCells (page 1602)

setLayoutAlgorithm
Sets the text table layout algorithm.

public void setLayoutAlgorithm(int algorithm)

Discussion
The algorithm argument can be one of the values listed in “Constants” (page 1604).

Instance Methods 1603
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 130

NSTextTable

Availability
Available in Mac OS X v10.4 and later.

See Also
layoutAlgorithm (page 1602)

setNumberOfColumns
Sets the number of columns in the text table.

public void setNumberOfColumns(int numCols)

Availability
Available in Mac OS X v10.4 and later.

See Also
numberOfColumns (page 1602)

Constants

The following constants specify values used with method parameters used for specifying the layout algorithm.

DescriptionConstant

Specifies automatic layout algorithmAutomaticLayoutAlgorithm

Specifies fixed layout algorithmFixedLayoutAlgorithm

1604 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 130

NSTextTable

Inherits from NSTextBlock

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Companion guides Text System Overview
Text Layout Programming Guide for Cocoa

Overview

NSTextTableBlock represents a text block that appears as a cell in a text table.

Tasks

Constructors

NSTextTableBlock (page 1606)

Getting the Block’s Enclosing Table

table (page 1607)
Returns a pointer to the table containing this text table block.

Getting Information About the Block’s Position in Its Enclosing Table

startingRow (page 1607)
Returns the table row at which this text table block starts.

rowSpan (page 1606)
Returns the number of table rows spanned by this text table block.

startingColumn (page 1606)
Returns the table column at which this text table block starts.

columnSpan (page 1606)
Returns the number of table columns spanned by this text table block.

Overview 1605
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 131

NSTextTableBlock

Constructors

NSTextTableBlock
public NSTextTableBlock()

Discussion
Creates a new NSTextTableBlock object.

public NSTextTableBlock(NSTextTable table, int row, int rowSpan, int col, int
colSpan)

Discussion
Creates a new NSTextTableBlock object from an existing object. The table argument points to the text table
containing this text table block. The row argument specifies the table row at which the text table block starts,
and the rowSpan argument specifies how many rows it covers. The col argument specifies the table column
at which the text table block starts, and the colSpan argument specifies how many columns it covers.

Instance Methods

columnSpan
Returns the number of table columns spanned by this text table block.

public int columnSpan()

Availability
Available in Mac OS X v10.4 and later.

rowSpan
Returns the number of table rows spanned by this text table block.

public int rowSpan()

Availability
Available in Mac OS X v10.4 and later.

startingColumn
Returns the table column at which this text table block starts.

public int startingColumn()

Availability
Available in Mac OS X v10.4 and later.

1606 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 131

NSTextTableBlock

startingRow
Returns the table row at which this text table block starts.

public int startingRow()

Availability
Available in Mac OS X v10.4 and later.

table
Returns a pointer to the table containing this text table block.

public NSTextTable table()

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1607
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 131

NSTextTableBlock

1608 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 131

NSTextTableBlock

Inherits from NSText : NSView : NSResponder : NSObject

Implements NSTextInput
NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text System User Interface Layer Programming Guide for Cocoa

Class at a Glance

NSTextView is the front-end component of the Application Kit’s text system. It displays and manipulates text
laid out in an area defined by an NSTextContainer and adds many features to those defined by its superclass,
NSText. Many of the methods that you’ll use most frequently are declared by the superclass; see the
NSText (page 1505) class specification for details.

Instances of this class can be created using Interface Builder or using one of its constructors.

Commonly Used Methods

The methods most commonly used with NSTextView objects are declared in NSText, the superclass. These
methods provide access to the other major components of the text system:

textStorage (page 1659)
Returns the associated NSTextStorage object.

textContainer (page 1659)
Returns the associated NSTextContainer object.

layoutManager (page 1632)
Returns the associated NSLayoutManager object.

Overview

NSTextView is the front-end class to the Application Kit’s text-handling system. It draws the text managed
by the back-end components and handles user events to select and modify its text. NSTextView is the principal
means to obtain a text object that caters to almost all needs for displaying and managing text at the user
interface level. While NSTextView is a subclass of NSText—which declares the most general Cocoa interface
to the text system—NSTextView adds major features beyond the capabilities of NSText.

Class at a Glance 1609
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

NSTextView communicates with its delegate through methods declared both by NSTextView and by its
superclass, NSText. See the NSText (page 1505) class specification for those other delegate methods. Note that
all delegation messages come from the first text view.

Interfaces Implemented

NSTextInput
attributedSubstringWithRange (page 2026)
characterIndexForPoint (page 2026)
conversationIdentifier (page 2027)
doCommandBySelector (page 2027)
firstRectForCharacterRange (page 2027)
hasMarkedText (page 2027)
insertText (page 2028)
markedRange (page 2028)
selectedRange (page 2028)
setMarkedTextAndSelectedRange (page 2028)
unmarkText (page 2029)
validAttributesForMarkedText (page 2029)

Tasks

Constructors

NSTextView (page 1622)
Creates an NSTextView with a zero-sized frame rectangle.

Registering Services Information

registerForServices (page 1623)
Registers send and return types for the Services facility.

Accessing Related Text System Objects

characterIndexForPoint (page 1626)
Returns the index for the character that is nearest to thePoint.

conversationIdentifier (page 1627)
Returns a number used to identify the receiver’s input management session to the input server.

firstRectForCharacterRange (page 1629)

1610 Interfaces Implemented
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

setTextContainer (page 1653)
Sets the receiver’s text container to aTextContainer.

replaceTextContainer (page 1640)
Replaces the NSTextContainer for the group of text system objects containing the receiver with
aTextContainer, keeping the association between the receiver and its layout manager intact, unlike
setTextContainer (page 1653).

textContainer (page 1659)
Returns the receiver’s text container.

setTextContainerInset (page 1654)
Sets the empty space the receiver leaves around its associated text container to inset.

textContainerInset (page 1659)
Returns the empty space the receiver leaves around its text container.

textContainerOrigin (page 1659)
Returns the origin of the receiver’s text container, which is calculated from the receiver’s bounds
rectangle, container inset, and the container’s used rect.

invalidateTextContainerOrigin (page 1631)
Informs the receiver that it needs to recalculate the origin of its text container, usually because it’s
been resized or the contents of the text container have changed.

layoutManager (page 1632)
Returns the NSLayoutManager that lays out text for the receiver’s text container, or null if there’s
no such object (which is the case when a text view isn’t linked into a group of text objects).

textStorage (page 1659)
Returns the receiver’s text storage object.

Setting Graphics Attributes

setBackgroundColor (page 1646)
Sets the receiver’s background color to aColor.

backgroundColor (page 1624)

setDrawsBackground (page 1648)
Controls whether the receiver draws its background.

drawsBackground (page 1629)
Returns true if the receiver draws its background, false if it doesn’t.

setAllowsDocumentBackgroundColorChange (page 1646)
Sets whether or not the receiver allows its background color to change.

allowsDocumentBackgroundColorChange (page 1624)
Returns true if the receiver allows the its background color to change, otherwise false.

changeDocumentBackgroundColor (page 1626)

Tasks 1611
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Controlling Display

setNeedsDisplay (page 1650)
Marks the receiver as requiring display within aRect.

shouldDrawInsertionPoint (page 1656)
Returns true if the receiver should draw its insertion point, false if the insertion point can’t or
shouldn’t be drawn.

drawInsertionPointInRect (page 1628)

drawViewBackgroundInRect (page 1629)
Called when the text view intends to draw its background

setConstrainedFrameSize (page 1647)
Attempts to set the frame size for the receiver to desiredSize, constrained by the receiver’s existing
minimum and maximum sizes and by whether resizing is permitted.

cleanUpAfterDragOperation (page 1626)
Releases the drag information still existing after the dragging session has completed.

Inserting Text

insertText (page 1630)
Inserts aString into the receiver’s text at the insertion point if there is one, otherwise replacing the
selection.

Setting Behavioral Attributes

allowsUndo (page 1624)
Returns true if the receiver allows undo, otherwise false.

setAllowsUndo (page 1646)
If flag is true enables undo support; otherwise disables it.

setEditable (page 1648)
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to edit text.

isEditable (page 1631)
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to edit text,
false if they don’t.

setSelectable (page 1651)
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to select text.

isSelectable (page 1632)
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to select text,
false if they don’t.

setFieldEditor (page 1648)
Controls whether the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and
Return (Enter) as cues to end editing and possibly to change the first responder.

1612 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

isFieldEditor (page 1631)
Returns true if the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and
Return (Enter) as cues to end editing and possibly to change the first responder; false if they accept
them as text input.

setRichText (page 1650)
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to apply
attributes to specific ranges of the text.

isRichText (page 1632)
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes
to specific ranges of the text, false if they don’t.

setImportsGraphics (page 1649)
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to import
files by dragging.

importsGraphics (page 1629)
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to import files
by dragging, false if they don’t.

setBaseWritingDirection (page 1647)
Sets the base writing direction of the text in range to writingDirection.

setDefaultParagraphStyle (page 1647)
Sets the receiver’s default paragraph style.

defaultParagraphStyle (page 1627)
Returns the receiver’s default paragraph style.

outline (page 1635)
Adds the outline attribute to the selected text attributes if absent; removes the attribute if not.

underline (page 1661)

Using the Ruler

setUsesRuler (page 1655)
Controls whether the text views sharing the receiver’s NSLayoutManager use an NSRulerView and
respond to Format menu commands.

usesRuler (page 1663)
Returns true if the text views sharing the receiver’s NSLayoutManager use a ruler view, false
otherwise.

setRulerVisible (page 1651)
Controls whether the scroll view enclosing text views sharing the receiver’s NSLayoutManager displays
the ruler.

isRulerVisible (page 1632)
Returns true if the scroll view enclosing the text views sharing the receiver’s NSLayoutManager shows
its ruler, false otherwise.

Tasks 1613
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Managing the Selection

attributedSubstringWithRange (page 1624)
Returns attributed string at theRange.

selectedRange (page 1644)
Returns the range of characters selected in the receiver’s layout manager.

selectedRanges (page 1644)
Returns an array containing the ranges of characters selected in the receiver’s layout manager.

setSelectedRange (page 1651)

setSelectedRanges (page 1652)

selectionAffinity (page 1644)
Returns the preferred direction of selection, either SelectionAffinityUpstream or
SelectionAffinityDownstream.

setMarkedTextAndSelectedRange (page 1650)
Replaces text in aRange within receiver’s text storage with the contents of aString, which the
receiver must display distinctively to indicate that it is marked text.

setSelectionGranularity (page 1653)
Sets the selection granularity for subsequent extension of a selection to granularity.

selectionGranularity (page 1645)
Returns the current selection granularity, used during mouse tracking to modify the range of the
selection.

setInsertionPointColor (page 1649)
Sets the color of the insertion point to aColor.

insertionPointColor (page 1630)
Returns the color used to draw the insertion point.

updateInsertionPointStateAndRestartTimer (page 1662)
Updates the insertion point’s location and, if flag is true, restarts the blinking cursor timer.

hasMarkedText (page 1629)
Returns true if the receiver has text that’s still being interpreted by the input manager, false if it
doesn’t.

setSelectedTextAttributes (page 1652)
Sets the attributes used to indicate the selection to attributes.

selectedTextAttributes (page 1644)
Returns the attributes used to indicate the selection.

markedRange (page 1633)
Returns the range of marked text.

setMarkedTextAttributes (page 1650)
Sets the attributes used to draw marked text to attributes.

markedTextAttributes (page 1634)
Returns the attributes used to draw marked text.

unmarkText (page 1661)
Removes any marking from pending input text and accepts the text in its current state.

1614 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

validAttributesForMarkedText (page 1664)
Returns an array of NSString names for the attributes supported by the receiver.

setLinkTextAttributes (page 1649)
Sets the attributes corresponding to the onscreen generation of link text.

linkTextAttributes (page 1633)
Returns the attributes corresponding to the onscreen generation of link text.

Managing the Pasteboard

preferredPasteboardTypeFromArray (page 1636)
Returns whatever type on the pasteboard would be most preferred for copying data.

readSelectionFromPasteboard (page 1640)
Reads the text view’s preferred type of data from the pasteboard specified by the pboard parameter.

readSelectionFromPasteboardOfType (page 1640)
Reads data of the given type from pboard.

readablePasteboardTypes (page 1639)
Returns an array of strings describing the types this text view can read immediately from the
pasteboard.

writablePasteboardTypes (page 1664)

writeSelectionToPasteboardOfType (page 1664)
Writes the current selection to pboard using the given type.

writeSelectionToPasteboardOfTypes (page 1665)
Writes the current selection to pboard under each type in the types array.

Setting Text Attributes

alignJustified (page 1623)
This action method applies full justification to selected paragraphs (or all text, if the receiver is a plain
text object).

changeAttributes (page 1625)
This action method changes the attributes of the current selection.

changeColor (page 1625)
Invoked by the NSColorPanel sender to set the color of the selected text.

setAlignmentInRange (page 1645)
Sets the alignment of the paragraphs containing characters in aRange to alignment.

setTypingAttributes (page 1654)
Sets the receiver’s typing attributes to attributes.

typingAttributes (page 1660)
Returns the current typing attributes.

useStandardKerning (page 1663)
This action method causes the receiver to use pair kerning data for the glyphs in its selection, or for
all glyphs if the receiver is a plain text view.

Tasks 1615
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

lowerBaseline (page 1633)
This action method lowers the baseline offset of selected text by 1 point, or of all text if the receiver
is a plain text view.

raiseBaseline (page 1636)
This action method raises the baseline offset of selected text by 1 point, or of all text if the receiver
is a plain text view.

turnOffKerning (page 1660)
This action method causes the receiver to use nominal glyph spacing for the glyphs in its selection,
or for all glyphs if the receiver is a plain text view.

loosenKerning (page 1633)
This action method increases the space between glyphs in the receiver’s selection, or in all text if the
receiver is a plain text view.

tightenKerning (page 1659)
This action method decreases the space between glyphs in the receiver’s selection, or for all glyphs
if the receiver is a plain text view.

useStandardLigatures (page 1663)
This action method causes the receiver to use the standard ligatures available for the fonts and
languages used when setting text, for the glyphs in the selection if the receiver is a rich text view, or
for all glyphs if it’s a plain text view.

turnOffLigatures (page 1660)
This action method causes the receiver to use only required ligatures when setting text, for the glyphs
in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

useAllLigatures (page 1662)
This action method causes the receiver to use all ligatures available for the fonts and languages used
when setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if
it’s a plain text view.

toggleTraditionalCharacterShape (page 1660)
This action method toggles the NSCharacterShapeAttibuteName attribute at the current selection.

Other Action Methods

clickedOnLinkAtIndex (page 1626)
Notifies the delegate that the user clicked a link at the specified charIndex.

doCommandBySelector (page 1627)
Attempts to invoke aSelector or pass the message up the responder chain.

pasteAsPlainText (page 1635)
This action method inserts the contents of the pasteboard into the receiver’s text as plain text, in the
manner of insertText (page 1630).

pasteAsRichText (page 1635)
This action method inserts the contents of the pasteboard into the receiver’s text as rich text,
maintaining its attributes.

1616 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Undo Support

breakUndoCoalescing (page 1625)

Methods That Subclasses Should Use or Override

updateFontPanel (page 1661)
Updates the Font panel to contain the font attributes of the selection.

updateRuler (page 1662)
Updates the NSRulerView in the receiver’s enclosing scroll view to reflect the selection’s paragraph
and marker attributes.

acceptableDragTypes (page 1623)
Returns the data types that the receiver accepts as the destination view of a dragging operation.

updateDragTypeRegistration (page 1661)

selectionRangeForProposedRange (page 1645)
Adjusts the proposedSelRange if necessary, based on granularity.

rangeForUserCharacterAttributeChange (page 1636)
Returns the range of characters affected by an action method that changes character (not paragraph)
attributes, such as the NSText action method changeFont (page 1513).

rangesForUserCharacterAttributeChange (page 1638)
Returns an array containing the ranges of characters affected by an action method that changes
character (not paragraph) attributes, such as the NSText action method changeFont (page 1513).

rangeForUserParagraphAttributeChange (page 1637)
Returns the range of characters affected by a method that changes paragraph (not character) attributes,
such as the NSText action method alignLeft (page 1512).

rangesForUserParagraphAttributeChange (page 1638)
Returns an array containing the ranges of characters affected by a method that changes paragraph
(not character) attributes, such as the NSText action method alignLeft (page 1512).

rangeForUserTextChange (page 1638)
Returns the range of characters affected by a method that changes characters (as opposed to
attributes), such as insertText (page 1630).

rangesForUserTextChange (page 1639)
Returns an array containing the ranges of characters affected by a method that changes characters
(as opposed to attributes), such as insertText (page 1630).

shouldChangeTextInRange (page 1655)
Initiates a series of delegate messages (and general notifications) to determine whether modifications
can be made to the receiver’s text.

shouldChangeTextInRanges (page 1656)
Initiates a series of delegate messages (and general notifications) to determine whether modifications
can be made to the receiver’s text.

didChangeText (page 1627)
Invoked automatically at the end of a series of changes, this method posts
aTextDidChangeNotification (page 1532) to the default notification center, which also results in
the delegate receiving an NSText delegate textDidChange (page 1531) message.

Tasks 1617
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

setSmartInsertDeleteEnabled (page 1653)
Controls whether the receiver inserts or deletes space around selected words so as to preserve proper
spacing and punctuation.

smartInsertDeleteEnabled (page 1658)
Returns true if the receiver inserts or deletes space around selected words so as to preserve proper
spacing and punctuation, false if it inserts and deletes exactly what’s selected.

smartDeleteRangeForProposedRange (page 1657)
Given proposedCharRange, returns an extended range that includes adjacent whitespace that
should be deleted along with the proposed range in order to preserve proper spacing and punctuation
of the text surrounding the deletion.

smartInsertAfterStringForString (page 1657)
Returns any whitespace that needs to be added after aString to preserve proper spacing and
punctuation when aString is inserted into the receiver’s text over charRange.

smartInsertBeforeStringForString (page 1657)
Returns any whitespace that needs to be added before aString to preserve proper spacing and
punctuation when aString is inserted into the receiver’s text over charRange.

Changing First Responder Status

becomeFirstResponder (page 1625)
Informs the receiver that it’s becoming the first responder.

resignFirstResponder (page 1641)
Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow.

validRequestorForTypes (page 1664)
Returns this if sendType specifies a type of data the text view can put on the pasteboard and
returnType contains a type of data the text view can read from the pasteboard; otherwise returns
null.

Working with the Spelling Checker

isContinuousSpellCheckingEnabled (page 1631)
Returns true if the object has continuous spell checking enabled, otherwise false.

setContinuousSpellCheckingEnabled (page 1647)
If flag is true enables continuous spell checking; otherwise disables it.

spellCheckerDocumentTag (page 1658)
Returns a tag identifying the NSTextView text as a document for the spell checker server.

toggleContinuousSpellChecking (page 1660)
This action method toggles whether continuous spell checking is enabled for the receiver.

NSRulerView Client Methods

rulerViewDidMoveMarker (page 1641)

1618 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

rulerViewDidRemoveMarker (page 1642)

rulerViewDidAddMarker (page 1641)

rulerViewShouldMoveMarker (page 1643)

rulerViewShouldAddMarker (page 1642)

rulerViewWillMoveMarker (page 1643)

rulerViewShouldRemoveMarker (page 1643)

rulerViewWillAddMarker (page 1643)

rulerViewHandleMouseDown (page 1642)

Assigning a Delegate

setDelegate (page 1648)
Sets the delegate for all NSTextViews sharing the receiver’s NSLayoutManager to anObject, without
retaining it.

delegate (page 1627)
Returns the delegate used by the receiver (and by all other NSTextViews sharing the receiver’s
NSLayoutManager), or null if there is none.

Dragging

dragOperationForDraggingInfo (page 1628)
Returns the type of drag operation that should be performed if the image were released now.

Speech Support

startSpeaking (page 1658)
This action method speaks the selected text, or all text if no selection.

stopSpeaking (page 1658)
This action method stops the speaking of text.

Working with Panels

setUsesFontPanel (page 1655)
Controls whether the text views sharing the receiver’s NSLayoutManager use the Font panel and Font
menu.

Tasks 1619
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

usesFontPanel (page 1663)
Returns true if the text views sharing the receiver’s NSLayoutManager use the Font panel, false
otherwise.

setUsesFindPanel (page 1654)
Specifies whether the receiver allows for a find panel.

usesFindPanel (page 1662)
Returns whether the receiver allows for a find panel.

performFindPanelAction (page 1635)
This is the generic action method for the find menu and find panel, and can be overridden to provide
a custom find panel

orderFrontLinkPanel (page 1634)
Brings forward a panel allowing the user to manipulate links in the text view.

orderFrontListPanel (page 1634)
Brings forward a panel allowing the user to manipulate text lists in the text view.

orderFrontSpacingPanel (page 1634)
Brings forward a panel allowing the user to manipulate text line heights, interline spacing, and
paragraph spacing, in the text view.

orderFrontTablePanel (page 1634)
Brings forward a panel allowing the user to manipulate text tables in the text view.

Text Completion

insertCompletion (page 1630)

rangeForUserCompletion (page 1637)
Returns the partial range from the most recent beginning of a word up to the insertion point.

Clicking cells and links

textViewClickedCell (page 1667) delegate method
Invoked after the user clicks on attachmentCell within cellFrame in aTextView and the cell
wants to track the mouse.

textViewClickedCellAtIndex (page 1667) delegate method
Invoked after the user clicks on cell within cellFrame at the specified charIndex in an NSTextView
and the cell wants to track the mouse.

textViewDoubleClickedCell (page 1669) delegate method
Invoked when the user double-clicks attachmentCell within cellFrame in aTextView and the
cell wants to track the mouse.

textViewDoubleClickedCellAtIndex (page 1669) delegate method
Invoked when the user double-clicks cell within cellFrame at the specified charIndex in an
NSTextView and the cell wants to track the mouse.

textViewClickedOnLink (page 1667) delegate method
Invoked after the user clicks link in aTextView if the delegate does not respond to the
textViewClickedOnLinkAtIndex (page 1668) message.

1620 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

textViewClickedOnLinkAtIndex (page 1668) delegate method
Invoked after the user clicks link at the specified charIndex in an NSTextView.

Selecting

textViewWillChangeSelection (page 1671) delegate method
Invoked before an NSTextView finishes changing the selection—that is, when the last argument to
a setSelectedRange (page 1651) message is false.

textViewDidChangeSelection (page 1668) delegate method
Invoked when the selection changes in the NSTextView.

Dragging cells

textViewDraggedCell (page 1669) delegate method
Invoked when the user attempts to drag cell from aRect within aTextView and cell wants to
track the mouse.

textViewDraggedCellAtIndex (page 1670) delegate method
Invoked when the user attempts to drag cell from aRect within aTextView and the cell wants to
track the mouse.

Editing text and attributes

textViewShouldChangeTextInRange (page 1670) delegate method
Invoked when an NSTextView needs to determine if text in the range affectedCharRange should
be changed.

textViewShouldChangeTextInRanges (page 1670) delegate method
Invoked when an NSTextView needs to determine if text in the range affectedRanges should be
changed.

textViewShouldChangeTypingAttributes (page 1671) delegate method
Allows the delegate to intervene to allow, prevent, or modify changes to the typing attributes in
textView from those contained in oldTypingAttributes to those contained in
newTypingAttributes.

textViewDidChangeTypingAttributes (page 1668) delegate method
Delegate method invoked when text view’s typing attributes change.

Obtaining undo manager

undoManagerForTextView (page 1672) delegate method
Returns the undo manager instance for the text view specified by aTextView.

Tasks 1621
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Performing commands

textViewDoCommandBySelector (page 1668) delegate method
Sent from NSTextView’s doCommandBySelector (page 1627), this method allows the delegate to
perform the command for the text view.

Working with pasteboards

textView (page 1666) delegate method

Working with tool tips

textViewWillDisplayToolTip (page 1672) delegate method
Allows the delegate to modify the tool tip that will be displayed from that specified by
NSToolTipAttributeName, or to suppress display of the tooltip (by returning null).

Text completion

textView:completionsForPartialWordRange (page 1666) delegate method
Allows the delegate to modify the list of completions that will be presented for the partial word at
the given range

Constructors

NSTextView
Creates an NSTextView with a zero-sized frame rectangle.

public NSTextView()

Creates an NSTextView object with frameRect as its frame rectangle.

public NSTextView(NSRect frameRect)

Discussion
This method creates the entire collection of objects associated with an NSTextView—its NSTextContainer,
NSLayoutManager, and NSTextStorage—and invokes the following constructor that takes a frameRect and
aTextContainer.

This method creates the text web in such a manner that the NSTextView object is the principal owner of the
objects in the web.

Creates an NSTextView object with frameRect as its frame rectangle and aTextContainer as its text
container.

public NSTextView(NSRect frameRect, NSTextContainer aTextContainer)

1622 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
Unlike the constructor that takes only a frameRect, which builds up an entire group of text-handling objects,
you use this constructor after you’ve created the other components of the text-handling system—an
NSTextStorage object, an NSLayoutManager object, and an NSTextContainer object. Assembling the
components in this fashion means that the NSTextStorage, not the NSTextView, is the principal owner of the
component objects.

Static Methods

registerForServices
Registers send and return types for the Services facility.

public static void registerForServices()

Discussion
This method is invoked automatically when the first instance of an NSTextView is created; you should never
need to invoke it directly.

Subclassing NSTextView is necessary to add support for new service types (in addition to actually supporting
writing or reading the types, of course). Override "registerForServices" to call super and then register
your own new types.

Instance Methods

acceptableDragTypes
Returns the data types that the receiver accepts as the destination view of a dragging operation.

public NSArray acceptableDragTypes()

Discussion
These types are automatically registered as necessary by the NSTextView. Subclasses should override this
method as necessary to add their own types to those returned by NSTextView’s implementation. They must
then also override the appropriate methods of the "NSDraggingDestination" (page 1955) interface to support
import of those types. See that interface’s specification for more information.

See Also
updateDragTypeRegistration (page 1661)

alignJustified
This action method applies full justification to selected paragraphs (or all text, if the receiver is a plain text
object).

public void alignJustified(Object sender)

Static Methods 1623
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
alignCenter (page 1512) (NSText)
alignLeft (page 1512) (NSText)
alignRight (page 1513) (NSText)
alignment (page 1513) (NSText)
setAlignment (page 1522) (NSText)

allowsDocumentBackgroundColorChange
Returns true if the receiver allows the its background color to change, otherwise false.

public boolean allowsDocumentBackgroundColorChange()

Discussion
This corresponds to the background color of the entirety of the text view, not just to a selected range of text.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAllowsDocumentBackgroundColorChange (page 1646)
changeDocumentBackgroundColor (page 1626)

allowsUndo
Returns true if the receiver allows undo, otherwise false.

public boolean allowsUndo()

See Also
setAllowsUndo (page 1646)

attributedSubstringWithRange
Returns attributed string at theRange.

public NSAttributedString attributedSubstringWithRange(NSRange theRange)

Discussion
This allows input mangers to query any range in backing store.

backgroundColor
public NSColor backgroundColor()

Discussion
Returns the receiver’s background color.

1624 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
drawsBackground (page 1629)
setBackgroundColor (page 1646)

becomeFirstResponder
Informs the receiver that it’s becoming the first responder.

public boolean becomeFirstResponder()

Discussion
If the previous first responder was not an NSTextView on the same NSLayoutManager as the receiving
NSTextView, this method draws the selection and updates the insertion point if necessary. Returns true.

Use NSWindow’s makeFirstResponder (page 1841), not this method, to make an NSTextView the first
responder. Never invoke this method directly.

See Also
resignFirstResponder (page 1641)

breakUndoCoalescing
public void breakUndoCoalescing()

Discussion
Informs the receiver that it should begin coalescing sucessive typing operations in a new undo grouping.
Typically this is invoked when saving the receiver’s contents.

Availability
Available in Mac OS X v10.4 and later.

changeAttributes
This action method changes the attributes of the current selection.

public void changeAttributes(Object sender)

Discussion
This method changes the attributes by invoking convertAttributes (page 674) on sender and applying
the returned attributes to the appropriate text. See the "NSFontManager" (page 667) class reference for more
information on attribute conversion.

Availability
Available in Mac OS X v10.3 and later.

changeColor
Invoked by the NSColorPanel sender to set the color of the selected text.

public void changeColor(Object sender)

Instance Methods 1625
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
NSTextView’s implementation queries sender for the color by sending it a color (page 390) message.

changeDocumentBackgroundColor
public void changeDocumentBackgroundColor(Object sender)

Discussion
Invoked by the NSColorPanel sender to set the background color of the selected text. NSTextView’s
implementation queries sender by sending it a color (page 390) message.

This will only set the background color if allowsDocumentBackgroundColorChange (page 1624) returns
true.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAllowsDocumentBackgroundColorChange (page 1646)
allowsDocumentBackgroundColorChange (page 1624)

characterIndexForPoint
Returns the index for the character that is nearest to thePoint.

public int characterIndexForPoint(NSPoint thePoint)

Discussion
thePoint is in the screen coordinate system.

cleanUpAfterDragOperation
Releases the drag information still existing after the dragging session has completed.

public void cleanUpAfterDragOperation()

Discussion
Subclasses may override this method to clean up any additional data structures used for dragging. In your
overridden method, be sure to invoke the super’s implementation of this method.

clickedOnLinkAtIndex
Notifies the delegate that the user clicked a link at the specified charIndex.

public void clickedOnLinkAtIndex(Object link, int charIndex)

Discussion
The delegate may take any appropriate actions to handle the click in its
textViewClickedOnLinkAtIndex (page 1668) method.

1626 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
textViewClickedOnLinkAtIndex (page 1668) (delegate method)

conversationIdentifier
Returns a number used to identify the receiver’s input management session to the input server.

public int conversationIdentifier()

defaultParagraphStyle
Returns the receiver’s default paragraph style.

public NSParagraphStyle defaultParagraphStyle()

Availability
Available in Mac OS X v10.3 and later.

See Also
setDefaultParagraphStyle (page 1647)

delegate
Returns the delegate used by the receiver (and by all other NSTextViews sharing the receiver’s
NSLayoutManager), or null if there is none.

public Object delegate()

See Also
setDelegate (page 1648)

didChangeText
Invoked automatically at the end of a series of changes, this method posts
aTextDidChangeNotification (page 1532) to the default notification center, which also results in the
delegate receiving an NSText delegate textDidChange (page 1531) message.

public void didChangeText()

Discussion
Subclasses implementing methods that change their text should invoke this method at the end of those
methods. See the “Class Description” (page 1609) for more information.

See Also
shouldChangeTextInRange (page 1655)

doCommandBySelector
Attempts to invoke aSelector or pass the message up the responder chain.

Instance Methods 1627
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

public void doCommandBySelector(NSSelector aSelector)

Discussion
This method is invoked by an input manager in response to an interpretKeyEvents (page 1191) message.

See Also
interpretKeyEvents (page 1191) (NSResponder)

dragOperationForDraggingInfo
Returns the type of drag operation that should be performed if the image were released now.

public int dragOperationForDraggingInfo(NSDraggingInfo dragInfo, String type)

Discussion
type is the pasteboard type that will be read from the dragging pasteboard, and dragInfo is an object the
Application Kit creates that holds information about the dragging session. The returned value should be one
of the following:

MeaningOption

The data represented by the image will be copied.NSDraggingInfo.DragOperationCopy

The data will be shared.NSDraggingInfo.DragOperationLink

The operation will be defined by the destination.NSDraggingInfo.DragOperationGeneric

The operation is negotiated privately between the source
and the destination.

NSDraggingInfo.DragOperationPrivate

If none of the operations is appropriate, this method should return NSDraggingInfo.DragOperationNone.

This method is called repeatedly from draggingEntered (page 1956) and draggingUpdated (page 1957) as
the user drags the image.

See Also
draggingEntered (page 1956) (NSDraggingDestination)
draggingUpdated (page 1957) (NSDraggingDestination)

drawInsertionPointInRect
public void drawInsertionPointInRect(NSRect aRect, NSColor aColor, boolean flag)

Discussion
If flag is true, draws the insertion point in aRect using aColor. If flag is false, this method erases the
insertion point. The focus must be locked on the receiver when this method is invoked.

See Also
insertionPointColor (page 1630)
shouldDrawInsertionPoint (page 1656)
backgroundColor (page 1624)

1628 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

lockFocus (page 1759) (NSView)

drawsBackground
Returns true if the receiver draws its background, false if it doesn’t.

public boolean drawsBackground()

See Also
backgroundColor (page 1624)
setDrawsBackground (page 1648)

drawViewBackgroundInRect
Called when the text view intends to draw its background

public void drawViewBackgroundInRect(NSRect rect)

Discussion
. Subclasses can override this method to perform additional drawing behind the text of an NSTextView.

Availability
Available in Mac OS X v10.3 and later.

firstRectForCharacterRange
public NSRect firstRectForCharacterRange(NSRange theRange)

Discussion
Returns the first frame of rectangles for theRange in the screen coordinate system.

hasMarkedText
Returns true if the receiver has text that’s still being interpreted by the input manager, false if it doesn’t.

public boolean hasMarkedText()

importsGraphics
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to import files by
dragging, false if they don’t.

public boolean importsGraphics()

Discussion
A text view that accepts dragged files is also a rich text view.

See Also
isRichText (page 1632)

Instance Methods 1629
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

textStorage (page 1659)
insertAttributedStringAtIndex (NSMutableAttributedString)
setImportsGraphics (page 1649)

insertCompletion
public void insertCompletion(String word, NSRange charRange, int movement, boolean

flag)

Discussion
Called with flag set to false as the user moves through the potential text completions, then with flag
set to true when a completion is definitively selected or cancelled and the original value is reinserted.

The default implementation inserts the selected completion into the text at the appropriate location. movement
takes its values from the movement codes defined in the NSText “Constants” (page 1530) section, and allows
subclassers to distinguish between cancelling completion and selection by arrow keys, by return, by tab, or
by other means such as clicking.

Availability
Available in Mac OS X v10.3 and later.

insertionPointColor
Returns the color used to draw the insertion point.

public NSColor insertionPointColor()

See Also
drawInsertionPointInRect (page 1628)
shouldDrawInsertionPoint (page 1656)
setInsertionPointColor (page 1649)

insertText
Inserts aString into the receiver’s text at the insertion point if there is one, otherwise replacing the selection.

public void insertText(Object aString)

Discussion
The inserted text is assigned the current typing attributes.

This method is the means by which text typed by the user enters an NSTextView. See the
NSInputManager (page 801) class and "NSTextInput" (page 2025) interface specifications for more information.

This method is the entry point for inserting text typed by the user and is generally not suitable for other
purposes. Programmatic modification of the text is best done by operating on the NSTextStorage. Because
this method pertains to the actions of the user, the text view must be editable for the insertion to work.

See Also
typingAttributes (page 1660)

1630 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

invalidateTextContainerOrigin
Informs the receiver that it needs to recalculate the origin of its text container, usually because it’s been
resized or the contents of the text container have changed.

public void invalidateTextContainerOrigin()

Discussion
This method is invoked automatically; you should never need to invoke it directly.

See Also
textContainer (page 1659)
textContainerOrigin (page 1659)

isContinuousSpellCheckingEnabled
Returns true if the object has continuous spell checking enabled, otherwise false.

public boolean isContinuousSpellCheckingEnabled()

See Also
setContinuousSpellCheckingEnabled (page 1647)
toggleContinuousSpellChecking (page 1660)

isEditable
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to edit text, false if
they don’t.

public boolean isEditable()

Discussion
If a text view is editable, it’s also selectable.

See Also
isSelectable (page 1632)
setEditable (page 1648)

isFieldEditor
Returns true if the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and Return
(Enter) as cues to end editing and possibly to change the first responder; false if they accept them as text
input.

public boolean isFieldEditor()

Discussion
See the NSWindow (page 1795) class specification for more information on field editors. By default, NSTextViews
don’t behave as field editors.

See Also
setFieldEditor (page 1648)

Instance Methods 1631
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

isRichText
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes to
specific ranges of the text, false if they don’t.

public boolean isRichText()

See Also
importsGraphics (page 1629)
textStorage (page 1659)
setRichText (page 1650)

isRulerVisible
Returns true if the scroll view enclosing the text views sharing the receiver’s NSLayoutManager shows its
ruler, false otherwise.

public boolean isRulerVisible()

See Also
usesRuler (page 1663)
setRulerVisible (page 1651)
toggleRuler (page 1529) (NSText)

isSelectable
Returns true if the text views sharing the receiver’s NSLayoutManager allow the user to select text, false
if they don’t.

public boolean isSelectable()

See Also
isEditable (page 1631)
setSelectable (page 1651)

layoutManager
Returns the NSLayoutManager that lays out text for the receiver’s text container, or null if there’s no such
object (which is the case when a text view isn’t linked into a group of text objects).

public NSLayoutManager layoutManager()

See Also
textContainer (page 1659)
setLayoutManager (page 1560) (NSTextContainer)
replaceLayoutManager (page 1559) (NSTextContainer)

1632 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

linkTextAttributes
Returns the attributes corresponding to the onscreen generation of link text.

public native NSDictionary linkTextAttributes()

Discussion
In applications created prior to Mac OS X v10.3, the default value is an empty dictionary. In applications
created with Mac OS X v10.3 or greater, the default attributes specify blue text with an underline.

Availability
Available in Mac OS X v10.3 and later.

See Also
setLinkTextAttributes (page 1649)

loosenKerning
This action method increases the space between glyphs in the receiver’s selection, or in all text if the receiver
is a plain text view.

public void loosenKerning(Object sender)

Discussion
Kerning values are determined by the point size of the fonts in the selection.

See Also
tightenKerning (page 1659)
turnOffKerning (page 1660)
useStandardKerning (page 1663)

lowerBaseline
This action method lowers the baseline offset of selected text by 1 point, or of all text if the receiver is a plain
text view.

public void lowerBaseline(Object sender)

Discussion
As such, this method defines a more primitive operation than subscripting.

See Also
raiseBaseline (page 1636)
subscript (page 1528) (NSText)
unscript (page 1529) (NSText)

markedRange
Returns the range of marked text.

public NSRange markedRange()

Instance Methods 1633
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
If there’s no marked text, returns a range whose location is NSArray.NotFound.

See Also
setMarkedTextAttributes (page 1650)

markedTextAttributes
Returns the attributes used to draw marked text.

public NSDictionary markedTextAttributes()

See Also
setMarkedTextAttributes (page 1650)

orderFrontLinkPanel
Brings forward a panel allowing the user to manipulate links in the text view.

public void orderFrontLinkPanel(Object sender)

Availability
Available in Mac OS X v10.4 and later.

orderFrontListPanel
Brings forward a panel allowing the user to manipulate text lists in the text view.

public void orderFrontListPanel(Object sender)

Availability
Available in Mac OS X v10.4 and later.

orderFrontSpacingPanel
Brings forward a panel allowing the user to manipulate text line heights, interline spacing, and paragraph
spacing, in the text view.

public void orderFrontSpacingPanel(Object sender)

Availability
Available in Mac OS X v10.4 and later.

orderFrontTablePanel
Brings forward a panel allowing the user to manipulate text tables in the text view.

public void orderFrontTablePanel(Object sender)

1634 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Availability
Available in Mac OS X v10.4 and later.

outline
Adds the outline attribute to the selected text attributes if absent; removes the attribute if not.

public void outline(Object sender)

Discussion
Uses NSStrokeWidthAttributeName with a default value of 3.0.

Availability
Available in Mac OS X v10.3 and later.

pasteAsPlainText
This action method inserts the contents of the pasteboard into the receiver’s text as plain text, in the manner
of insertText (page 1630).

public void pasteAsPlainText(Object sender)

See Also
pasteAsRichText (page 1635)
insertText (page 1630)

pasteAsRichText
This action method inserts the contents of the pasteboard into the receiver’s text as rich text, maintaining
its attributes.

public void pasteAsRichText(Object sender)

Discussion
The text is inserted at the insertion point if there is one, otherwise replacing the selection.

See Also
pasteAsRichText (page 1635)
insertText (page 1630)

performFindPanelAction
This is the generic action method for the find menu and find panel, and can be overridden to provide a
custom find panel

public void performFindPanelAction(Object sender)

Discussion
. The actual operation is determined by the tag of the sender, corresponding to the list of tags in
“Constants” (page 1665).

Instance Methods 1635
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Availability
Available in Mac OS X v10.3 and later.

preferredPasteboardTypeFromArray
Returns whatever type on the pasteboard would be most preferred for copying data.

public String preferredPasteboardTypeFromArray(NSArray availableTypes, NSArray
allowedTypes)

Discussion
The availableTypes parameter lists the types that are currently available on the pasteboard. If the
allowedTypes parameter is not null, then only types in that array may be returned; otherwise, if
allowedTypes is null, any of the available pasteboard types may be returned.

You should not need to override this method. You should also not need to invoke it unless you are
implementing a new type of pasteboard to handle services other than copy/paste or dragging.

See Also
pasteAsPlainText (page 1635)
pasteAsRichText (page 1635)

raiseBaseline
This action method raises the baseline offset of selected text by 1 point, or of all text if the receiver is a plain
text view.

public void raiseBaseline(Object sender)

Discussion
As such, this method defines a more primitive operation than superscripting.

See Also
lowerBaseline (page 1633)
superscript (page 1528) (NSText)
unscript (page 1529) (NSText)

rangeForUserCharacterAttributeChange
Returns the range of characters affected by an action method that changes character (not paragraph)
attributes, such as the NSText action method changeFont (page 1513).

public NSRange rangeForUserCharacterAttributeChange()

Discussion
For rich text this range is typically the range of the selection. For plain text this range is the entire contents
of the receiver. In Mac OS X v10.4 and later, returns the first subrange where there is a multiple-range selection.

If the receiver isn’t editable or doesn’t use the Font panel, the range returned has a location of
NSArray.NotFound.

1636 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
rangesForUserCharacterAttributeChange (page 1638)
rangeForUserParagraphAttributeChange (page 1637)
rangeForUserTextChange (page 1638)
isEditable (page 1631)
usesFontPanel (page 1663)

rangeForUserCompletion
Returns the partial range from the most recent beginning of a word up to the insertion point.

public NSRange rangeForUserCompletion()

Discussion
May be overridden by subclassers to alter the range to be completed. Returning (NSRange.NotFound, 0)
suppresses completion.

The resulting value from this method is intended to be used for the range argument in the text completion
methods.

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.3 and later.

rangeForUserParagraphAttributeChange
Returns the range of characters affected by a method that changes paragraph (not character) attributes, such
as the NSText action method alignLeft (page 1512).

public NSRange rangeForUserParagraphAttributeChange()

Discussion
For rich text this range is typically calculated by extending the range of the selection to paragraph boundaries.
For plain text this range is the entire contents of the receiver.

If the receiver isn’t editable, the range returned has a location of NSArray.NotFound.

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

See Also
rangesForUserParagraphAttributeChange (page 1638)
rangeForUserCharacterAttributeChange (page 1636)
rangeForUserTextChange (page 1638)
isEditable (page 1631)
usesRuler (page 1663)

Instance Methods 1637
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

rangeForUserTextChange
Returns the range of characters affected by a method that changes characters (as opposed to attributes),
such as insertText (page 1630).

public NSRange rangeForUserTextChange()

Discussion
This is typically the range of the selection.

If the receiver isn’t editable or doesn’t use a ruler, the range returned has a location of NSArray.NotFound.

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

See Also
rangesForUserTextChange (page 1639)
rangeForUserParagraphAttributeChange (page 1637)
rangeForUserCharacterAttributeChange (page 1636)
isEditable (page 1631)
usesRuler (page 1663)

rangesForUserCharacterAttributeChange
Returns an array containing the ranges of characters affected by an action method that changes character
(not paragraph) attributes, such as the NSText action method changeFont (page 1513).

public NSArray rangesForUserCharacterAttributeChange()

Discussion
For rich text these ranges are typically the ranges of the selections. For plain text the range is the entire
contents of the receiver.

Returns null if the receiver isn’t editable or doesn’t use the Font panel.

Availability
Available in Mac OS X v10.4 and later.

See Also
rangesForUserParagraphAttributeChange (page 1638)
rangesForUserTextChange (page 1639)
isEditable (page 1631)
usesFontPanel (page 1663)

rangesForUserParagraphAttributeChange
Returns an array containing the ranges of characters affected by a method that changes paragraph (not
character) attributes, such as the NSText action method alignLeft (page 1512).

public NSArray rangesForUserParagraphAttributeChange()

1638 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
For rich text these ranges are typically calculated by extending the range of the current selections to paragraph
boundaries. For plain text the range is the entire contents of the receiver.

Returns null if the receiver isn’t editable or doesn’t use the Font panel.

Availability
Available in Mac OS X v10.4 and later.

See Also
rangesForUserCharacterAttributeChange (page 1638)
rangesForUserTextChange (page 1639)
isEditable (page 1631)
usesRuler (page 1663)

rangesForUserTextChange
Returns an array containing the ranges of characters affected by a method that changes characters (as
opposed to attributes), such as insertText (page 1630).

public NSArray rangesForUserTextChange()

Discussion
These are typically the ranges of the selections.

Returns null if the receiver isn’t editable or doesn’t use a ruler.

Availability
Available in Mac OS X v10.4 and later.

See Also
rangesForUserCharacterAttributeChange (page 1638)
rangesForUserParagraphAttributeChange (page 1638)
isEditable (page 1631)
usesRuler (page 1663)

readablePasteboardTypes
Returns an array of strings describing the types this text view can read immediately from the pasteboard.

public NSArray readablePasteboardTypes()

Discussion
The strings are ordered by the default preferences.

You can override this method to provide support for new types of data. If you want to add support for the
default types, you can invoke the superclass version of this method or add the types directly in your overridden
version.

See Also
preferredPasteboardTypeFromArray (page 1636)
writablePasteboardTypes (page 1664)

Instance Methods 1639
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

readSelectionFromPasteboard
Reads the text view’s preferred type of data from the pasteboard specified by the pboard parameter.

public boolean readSelectionFromPasteboard(NSPasteboard pboard)

Discussion
This method invokes the preferredPasteboardTypeFromArray (page 1636) method to determine the text
view’s preferred type of data and then reads the data using the
readSelectionFromPasteboardOfType (page 1640) method. Returns true if the data was successfully
read.

You should not need to override this method. You might need to invoke this method if you are implementing
a new type of pasteboard to handle services other than copy/paste or dragging.

See Also
preferredPasteboardTypeFromArray (page 1636)
readSelectionFromPasteboardOfType (page 1640)

readSelectionFromPasteboardOfType
Reads data of the given type from pboard.

public boolean readSelectionFromPasteboardOfType(NSPasteboard pboard, String type)

Discussion
The new data is placed at the current insertion point, replacing the current selection if one exists. Returns
true if the data was successfully read.

You should override this method to read pasteboard types other than the default types. Use the
rangeForUserTextChange (page 1638) method to obtain the range of characters (if any) to be replaced by
the new data.

See Also
rangeForUserTextChange (page 1638)

replaceTextContainer
Replaces the NSTextContainer for the group of text system objects containing the receiver with
aTextContainer, keeping the association between the receiver and its layout manager intact, unlike
setTextContainer (page 1653).

public void replaceTextContainer(NSTextContainer aTextContainer)

Discussion
Throws InvalidArgumentException if aTextContainer is null.

See Also
setTextContainer (page 1653)

1640 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

resignFirstResponder
Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow.

public boolean resignFirstResponder()

Discussion
If the object that will become the new first responder is an NSTextView attached to the same NSLayoutManager
as the receiver, this method returns true with no further action. Otherwise, this method sends a
textShouldEndEditing (page 1532) message to its delegate (if any). If the delegate returns false, this
method returns false. If the delegate returns true, this method hides the selection highlighting and posts
a TextDidEndEditingNotification (page 1533) to the default notification center.

Use NSWindow’s makeFirstResponder (page 1841), not this method, to make an NSTextView the first
responder. Never invoke this method directly.

See Also
breakUndoCoalescing (page 1625)

rulerViewDidAddMarker
public void rulerViewDidAddMarker(NSRulerView aRulerView, NSRulerMarker aMarker)

Discussion
This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection to
accommodate a new NSTextTab represented by aMarker. It then records the change by invoking
didChangeText (page 1627).

NSTextView checks for permission to make the change in its rulerViewShouldAddMarker (page 1642)
method, which invokes shouldChangeTextInRange (page 1655) to send out the proper request and
notifications, and only invokes this method if permission is granted.

See Also
representedObject (page 1205) (NSRulerMarker)
rulerViewDidMoveMarker (page 1641)
rulerViewDidRemoveMarker (page 1642)

rulerViewDidMoveMarker
public void rulerViewDidMoveMarker(NSRulerView aRulerView, NSRulerMarker aMarker)

Discussion
This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection to
record the new location of the NSTextTab represented by aMarker. It then records the change by invoking
didChangeText (page 1627).

NSTextView checks for permission to make the change in its rulerViewShouldMoveMarker (page 1643)
method, which invokes shouldChangeTextInRange (page 1655) to send out the proper request and
notifications, and only invokes this method if permission is granted.

See Also
representedObject (page 1205) (NSRulerMarker)

Instance Methods 1641
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

rulerViewDidAddMarker (page 1641)
rulerViewDidRemoveMarker (page 1642)

rulerViewDidRemoveMarker
public void rulerViewDidRemoveMarker(NSRulerView aRulerView, NSRulerMarker aMarker)

Discussion
This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection—if
possible—by removing the NSTextTab represented by aMarker. It then records the change by invoking
didChangeText (page 1627).

NSTextView checks for permission to move or remove a tab stop in its rulerViewShouldMoveMarker (page
1643) method, which invokes shouldChangeTextInRange (page 1655) to send out the proper request and
notifications, and only invokes this method if permission is granted.

See Also
representedObject (page 1205) (NSRulerMarker)
shouldChangeTextInRange (page 1655)
rulerViewDidAddMarker (page 1641)
rulerViewDidMoveMarker (page 1641)

rulerViewHandleMouseDown
public void rulerViewHandleMouseDown(NSRulerView aRulerView, NSEvent theEvent)

Discussion
This NSRulerView client method adds a left tab marker to the ruler, but a subclass can override this method
to provide other behavior, such as creating guidelines. This method is invoked once with theEvent when
the user first clicks the ruler area of aRulerView, as described in the NSRulerView class specification.

rulerViewShouldAddMarker
public boolean rulerViewShouldAddMarker(NSRulerView aRulerView, NSRulerMarker

aMarker)

Discussion
This NSRulerView client method controls whether a new tab stop aMarker can be added. The receiver checks
for permission to make the change by invoking shouldChangeTextInRange (page 1655) and returning the
return value of that message. If the change is allowed, the receiver is then sent a
rulerViewDidAddMarker (page 1641) message.

See Also
rulerViewShouldMoveMarker (page 1643)
rulerViewShouldRemoveMarker (page 1643)

1642 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

rulerViewShouldMoveMarker
public boolean rulerViewShouldMoveMarker(NSRulerView aRulerView, NSRulerMarker

aMarker)

Discussion
This NSRulerView client method controls whether an existing tab stop aMarker can be moved. The receiver
checks for permission to make the change by invokingshouldChangeTextInRange (page 1655) and returning
the return value of that message. If the change is allowed, the receiver is then sent a
rulerViewDidAddMarker (page 1641) message.

See Also
rulerViewShouldAddMarker (page 1642)
rulerViewShouldRemoveMarker (page 1643)

rulerViewShouldRemoveMarker
public boolean rulerViewShouldRemoveMarker(NSRulerView aRulerView, NSRulerMarker

aMarker)

Discussion
This NSRulerView client method controls whether an existing tab stop aMarker can be removed. Returns
true if aMarker represents an NSTextTab, false otherwise. Because this method can be invoked repeatedly
as the user drags a ruler marker, it returns that value immediately. If the change is allows and the user actually
removes the marker, the receiver is also sent a rulerViewDidRemoveMarker (page 1642) message.

See Also
rulerViewShouldAddMarker (page 1642)
rulerViewShouldMoveMarker (page 1643)

rulerViewWillAddMarker
public float rulerViewWillAddMarker(NSRulerView aRulerView, NSRulerMarker aMarker,

float location)

Discussion
This NSRulerView client method ensures that the proposed location of aMarker lies within the appropriate
bounds for the receiver’s text container, returning the modified location.

See Also
rulerViewDidAddMarker (page 1641)

rulerViewWillMoveMarker
public float rulerViewWillMoveMarker(NSRulerView aRulerView, NSRulerMarker aMarker,

float location)

Discussion
This NSRulerView client method ensures that the proposed location of aMarker lies within the appropriate
bounds for the receiver’s text container, returning the modified location.

Instance Methods 1643
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
rulerViewDidMoveMarker (page 1641)

selectedRange
Returns the range of characters selected in the receiver’s layout manager.

public NSRange selectedRange()

See Also
selectedTextAttributes (page 1644)
selectionRangeForProposedRange (page 1645)
setSelectedRange (page 1651)

selectedRanges
Returns an array containing the ranges of characters selected in the receiver’s layout manager.

public NSArray selectedRanges()

Discussion
The return value is a non-null, non-empty array of objects responding to the NSValue rangeValue method,
and in addition its elements are sorted, non-overlapping, non-contiguous, and (except for the case of a single
range) have non-zero-length.

Availability
Available in Mac OS X v10.4 and later.

See Also
setSelectedRanges (page 1652)

selectedTextAttributes
Returns the attributes used to indicate the selection.

public NSDictionary selectedTextAttributes()

Discussion
This attribute is typically just the text background color.

See Also
selectedRange (page 1644)
setSelectedTextAttributes (page 1652)

selectionAffinity
Returns the preferred direction of selection, either SelectionAffinityUpstream or
SelectionAffinityDownstream.

public int selectionAffinity()

1644 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
Selection affinity determines whether, for example, the insertion point appears after the last character on a
line or before the first character on the following line in cases where text wraps across line boundaries.

selectionGranularity
Returns the current selection granularity, used during mouse tracking to modify the range of the selection.

public int selectionGranularity()

Discussion
This is one of:

SelectByCharacter

SelectByWord

SelectByParagraph

See Also
selectionRangeForProposedRange (page 1645)
setSelectionGranularity (page 1653)

selectionRangeForProposedRange
Adjusts the proposedSelRange if necessary, based on granularity.

public NSRange selectionRangeForProposedRange(NSRange proposedSelRange, int
granularity)

Discussion
granularity is one of:

SelectByCharacter

SelectByWord

SelectByParagraph

Returns the adjusted range. This method is invoked repeatedly during mouse tracking to modify the range
of the selection. Override this method to specialize selection behavior.

See Also
setSelectionGranularity (page 1653)

setAlignmentInRange
Sets the alignment of the paragraphs containing characters in aRange to alignment.

public void setAlignmentInRange(int alignment, NSRange aRange)

Discussion
alignment is one of:

NSText.LeftTextAlignment

Instance Methods 1645
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

NSText.RightTextAlignment

NSText.CenterTextAlignment

NSText.JustifiedTextAlignment

NSText.NaturalTextAlignment

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
rangeForUserParagraphAttributeChange (page 1637)

setAllowsDocumentBackgroundColorChange
Sets whether or not the receiver allows its background color to change.

public void setAllowsDocumentBackgroundColorChange(boolean flag)

Discussion
flag should be set to true if the receiver allows the change, otherwise false. This corresponds to the
background color of the entirety of the text view, not just to a selected range of text.

Availability
Available in Mac OS X v10.3 and later.

See Also
allowsDocumentBackgroundColorChange (page 1624)
changeDocumentBackgroundColor (page 1626)

setAllowsUndo
If flag is true enables undo support; otherwise disables it.

public void setAllowsUndo(boolean flag)

See Also
allowsUndo (page 1624)

setBackgroundColor
Sets the receiver’s background color to aColor.

public void setBackgroundColor(NSColor aColor)

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

See Also
setDrawsBackground (page 1648)

1646 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

backgroundColor (page 1624)

setBaseWritingDirection
Sets the base writing direction of the text in range to writingDirection.

public void setBaseWritingDirection(int writingDirection, NSRange range)

Discussion
Invoke this method to change the base writing direction from left-to-right to right-to-left for languages like
Hebrew and Arabic, for example.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges (page 1656) orshouldChangeTextInRange (page 1655) to include this method
in an undoable action.

Availability
Available in Mac OS X v10.4 and later.

setConstrainedFrameSize
Attempts to set the frame size for the receiver to desiredSize, constrained by the receiver’s existing
minimum and maximum sizes and by whether resizing is permitted.

public void setConstrainedFrameSize(NSSize desiredSize)

See Also
minSize (page 1518) (NSText)
maxSize (page 1518) (NSText)
isHorizontallyResizable (page 1517) (NSText)
isVerticallyResizable (page 1518) (NSText)

setContinuousSpellCheckingEnabled
If flag is true enables continuous spell checking; otherwise disables it.

public void setContinuousSpellCheckingEnabled(boolean flag)

See Also
isContinuousSpellCheckingEnabled (page 1631)
toggleContinuousSpellChecking (page 1660)

setDefaultParagraphStyle
Sets the receiver’s default paragraph style.

public void setDefaultParagraphStyle(NSParagraphStyle paragraphStyle)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1647
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
defaultParagraphStyle (page 1627)

setDelegate
Sets the delegate for all NSTextViews sharing the receiver’s NSLayoutManager to anObject, without retaining
it.

public void setDelegate(Object anObject)

See Also
delegate (page 1627)

setDrawsBackground
Controls whether the receiver draws its background.

public void setDrawsBackground(boolean flag)

Discussion
If flag is true, the receiver fills its background with the background color; if flag is false, it doesn’t.

See Also
setBackgroundColor (page 1646)
drawsBackground (page 1629)

setEditable
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to edit text.

public void setEditable(boolean flag)

Discussion
If flag is true, they allow the user to edit text and attributes; if flag is false, they don’t. If an NSTextView
is made editable, it’s also made selectable. NSTextViews are by default editable.

See Also
setSelectable (page 1651)
isEditable (page 1631)

setFieldEditor
Controls whether the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and Return
(Enter) as cues to end editing and possibly to change the first responder.

public void setFieldEditor(boolean flag)

1648 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
If flag is true, they do; if flag is false, they don’t, instead accepting these characters as text input. See
the NSWindow (page 1795) class specification for more information on field editors. By default, NSTextViews
don’t behave as field editors.

See Also
isFieldEditor (page 1631)

setImportsGraphics
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to import files by
dragging.

public void setImportsGraphics(boolean flag)

Discussion
If flag is true, they do; if flag is false, they don’t. If an NSTextView is set to accept dragged files, it’s also
set for rich text. By default, NSTextViews don’t accept dragged files.

See Also
textStorage (page 1659)
setRichText (page 1650)
importsGraphics (page 1629)

setInsertionPointColor
Sets the color of the insertion point to aColor.

public void setInsertionPointColor(NSColor aColor)

See Also
drawInsertionPointInRect (page 1628)
shouldDrawInsertionPoint (page 1656)
insertionPointColor (page 1630)

setLinkTextAttributes
Sets the attributes corresponding to the onscreen generation of link text.

public void setLinkTextAttributes(NSDictionary attributeDictionary)

Availability
Available in Mac OS X v10.3 and later.

See Also
linkTextAttributes (page 1633)

Instance Methods 1649
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

setMarkedTextAndSelectedRange
Replaces text in aRangewithin receiver’s text storage with the contents of aString, which the receiver must
display distinctively to indicate that it is marked text.

public void setMarkedTextAndSelectedRange(Object aString, NSRange aRange)

Discussion
aString must be either a String or an NSAttributedString, and not null.

See Also
selectedRange (page 1644)
unmarkText (page 1661)

setMarkedTextAttributes
Sets the attributes used to draw marked text to attributes.

public void setMarkedTextAttributes(NSDictionary attributes)

Discussion
Text color, background color, and underline are the only supported attributes for marked text.

See Also
markedTextAttributes (page 1634)
markedRange (page 1633)

setNeedsDisplay
Marks the receiver as requiring display within aRect.

public void setNeedsDisplay(NSRect aRect, boolean flag)

Discussion
If flag is true, the receiver won’t perform any layout that might be required to complete the display, even
if this means that portions of the NSTextView remain empty. If flag is false, the receiver performs at least
as much layout as needed to display aRect.

NSTextView overrides the NSView setNeedsDisplay (page 1779) method such that it invokes this method
with a flag argument of false.

setRichText
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes
to specific ranges of the text.

public void setRichText(boolean flag)

Discussion
If flag is true they do; if flag is false they don’t. If flag is false, they’re also set not to accept dragged
files. By default, NSTextViews let the user apply multiple attributes to text, but don’t accept dragged files.

1650 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
textStorage (page 1659)
isRichText (page 1632)
setImportsGraphics (page 1649)

setRulerVisible
Controls whether the scroll view enclosing text views sharing the receiver’s NSLayoutManager displays the
ruler.

public void setRulerVisible(boolean flag)

Discussion
If flag is true it shows the ruler; if flag is false it hides the ruler. By default, the ruler is not visible.

See Also
setUsesRuler (page 1655)
isRulerVisible (page 1632)
toggleRuler (page 1529) (NSText)

setSelectable
Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to select text.

public void setSelectable(boolean flag)

Discussion
If flag is true, users are allowed to select text; if flag is false, users are not allowed to select text. If an
NSTextView is made not selectable, it’s also made not editable. NSTextViews are by default both editable
and selectable.

See Also
setEditable (page 1648)
isSelectable (page 1632)

setSelectedRange
public void setSelectedRange(NSRange charRange, int affinity, boolean flag)

Discussion
Sets the selection to the characters in charRange, using affinity if needed to determine how to display
the selection or insertion point (see the description forselectionAffinity (page 1644) for more information).
flag indicates whether this method is being invoked during mouse dragging or after the user releases the
mouse button. If flag is true the receiver doesn’t send notifications or remove the marking from its marked
text; if flag is false it does as appropriate. This method also resets the selection granularity to
SelectByCharacter.

The charRange argument must begin and end on glyph boundaries and not split base glyphs and their
nonspacing marks.

Instance Methods 1651
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

public void setSelectedRange(NSRange charRange)

Discussion
Sets the selection to the characters in charRange, resets the selection granularity to SelectByCharacter,
and posts an TextViewDidChangeSelectionNotification (page 1672) to the default notification center.
Also removes the marking from marked text if the new selection is greater than the marked region.

The charRange argument must begin and end on glyph boundaries and not split base glyphs and their
nonspacing marks.

See Also
selectionAffinity (page 1644)
selectionGranularity (page 1645)
selectedRange (page 1644)

setSelectedRanges
public void setSelectedRanges(NSArray ranges)

Discussion
Sets the selection to the characters in the ranges array, resets the selection granularity to
NSSelectByCharacter, and posts an TextViewDidChangeSelectionNotification (page 1672) to the
default notification center. Also removes the marking from marked text if the new selection is greater than
the marked region.

The ranges argument must be a non-nil, non-empty array of objects responding to the NSValue rangeValue
method. The ranges in the ranges array must begin and end on glyph boundaries and not split base glyphs
and their nonspacing marks.

public void setSelectedRanges(NSArray ranges, int affinity, boolean
stillSelectingFlag)

Discussion
The method variant with three arguments uses affinity if needed to determine how to display the selection
or insertion point (see the description for selectionAffinity (page 1644) for more information).
stillSelectingFlag indicates whether this method is being invoked during mouse dragging or after the
user releases the mouse button. If stillSelectingFlag is true the receiver doesn’t send notifications or
remove the marking from its marked text; if stillSelectingFlag is false it does as appropriate.

Availability
Available in Mac OS X v10.4 and later.

See Also
selectedRanges (page 1644),
selectionAffinity (page 1644)
selectionGranularity (page 1645)

setSelectedTextAttributes
Sets the attributes used to indicate the selection to attributes.

public void setSelectedTextAttributes(NSDictionary attributes)

1652 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
Text color, background color, and underline are the only supported attributes for selected text.

See Also
selectedRange (page 1644)
selectedTextAttributes (page 1644)

setSelectionGranularity
Sets the selection granularity for subsequent extension of a selection to granularity.

public void setSelectionGranularity(int granularity)

Discussion
granularity may be one of:

SelectByCharacter

SelectByWord

SelectByParagraph

Selection granularity is used to determine how the selection is modified when the user Shift-clicks or drags
the mouse after a double or triple click. For example, if the user selects a word by double-clicking, the selection
granularity is set to SelectByWord. Subsequent Shift-clicks then extend the selection by words.

Selection granularity is reset to SelectByCharacter whenever the selection is set. You should always set
the selection granularity after setting the selection.

See Also
selectionGranularity (page 1645)
setSelectedRange (page 1651)

setSmartInsertDeleteEnabled
Controls whether the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation.

public void setSmartInsertDeleteEnabled(boolean flag)

Discussion
If flag is true it does; if flag is false it inserts and deletes exactly what’s selected.

See Also
smartDeleteRangeForProposedRange (page 1657)
smartInsertDeleteEnabled (page 1658)

setTextContainer
Sets the receiver’s text container to aTextContainer.

public void setTextContainer(NSTextContainer aTextContainer)

Instance Methods 1653
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
The receiver then uses the layout manager and text storage of aTextContainer. This method is invoked
automatically when you create an NSTextView; you should never invoke it directly, but might want to override
it. To change the text view for an established group of text system objects, send setTextView (page 1561)
to the text container. To replace the text container for a text view and maintain the view’s association with
the existing layout manager and text storage, use replaceTextContainer (page 1640).

See Also
textContainer (page 1659)

setTextContainerInset
Sets the empty space the receiver leaves around its associated text container to inset.

public void setTextContainerInset(NSSize inset)

Discussion
It is possible to set the text container and view sizes and resizing behavior so that the inset cannot be
maintained exactly, although the text system tries to maintain the inset wherever possible. In any case, the
textContainerOrigin (page 1659) and size of the text container are authoritative as to the location of the
text container within the view.

The text itself can have an additional inset, inside the text container, specified by the
setLineFragmentPadding (page 1560) method of NSTextContainer.

See Also
textContainerOrigin (page 1659)
invalidateTextContainerOrigin (page 1631)
textContainerInset (page 1659)

setTypingAttributes
Sets the receiver’s typing attributes to attributes.

public void setTypingAttributes(NSDictionary attributes)

Discussion
Typing attributes are reset automatically whenever the selection changes. If you add any user actions that
change text attributes, you should use this method to apply those attributes to a zero-length selection.

See Also
typingAttributes (page 1660)

setUsesFindPanel
Specifies whether the receiver allows for a find panel.

public void setUsesFindPanel(boolean flag)

Availability
Available in Mac OS X v10.3 and later.

1654 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
usesFindPanel (page 1662)

setUsesFontPanel
Controls whether the text views sharing the receiver’s NSLayoutManager use the Font panel and Font menu.

public void setUsesFontPanel(boolean flag)

Discussion
If flag is true, they respond to messages from the Font panel and from the Font menu, and update the
Font panel with the selection font whenever it changes. If flag is false they disallow character attribute
changes. By default, NSTextView objects use the Font panel and menu.

See Also
rangeForUserCharacterAttributeChange (page 1636)
usesFontPanel (page 1663)

setUsesRuler
Controls whether the text views sharing the receiver’s NSLayoutManager use an NSRulerView and respond
to Format menu commands.

public void setUsesRuler(boolean flag)

Discussion
If flag is true, they respond to NSRulerView client messages and to paragraph-related menu actions, and
update the ruler (when visible) as the selection changes with its paragraph and tab attributes. If flag is
false, the ruler is hidden, and the text views disallow paragraph attribute changes. By default, NSTextView
objects use the ruler.

See Also
setRulerVisible (page 1651)
rangeForUserParagraphAttributeChange (page 1637)
usesRuler (page 1663)

shouldChangeTextInRange
Initiates a series of delegate messages (and general notifications) to determine whether modifications can
be made to the receiver’s text.

public boolean shouldChangeTextInRange(NSRange affectedCharRange, String
replacementString)

Discussion
If characters in the text string are being changed, replacementString contains the characters that will
replace the characters inaffectedCharRange. If only text attributes are being changed,replacementString
is null. This method checks with the delegate as needed using textShouldBeginEditing (page 1532) and
textViewShouldChangeTextInRange (page 1670), returning true to allow the change, and false to
prohibit it.

Instance Methods 1655
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

This method must be invoked at the start of any sequence of user-initiated editing changes. If your subclass
of NSTextView implements new methods that modify the text, make sure to invoke this method to determine
whether the change should be made. If the change is allowed, complete the change by invoking the
didChangeText (page 1627) method. If you can’t determine the affected range or replacement string before
beginning changes, pass (NSArray.NotFound, 0) and null for these values.

If the receiver is not editable, this method automatically returns false. This result prevents instances in
which a text view could be changed by user actions even though it had been set to be noneditable. In Mac
OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected subrange.

See Also
isEditable (page 1631)
shouldChangeTextInRanges (page 1656)

shouldChangeTextInRanges
Initiates a series of delegate messages (and general notifications) to determine whether modifications can
be made to the receiver’s text.

public boolean shouldChangeTextInRanges(NSArray affectedRanges, NSArray
replacementStrings)

Discussion
The replacementStrings array should either be null or else contain one element for each range in
affectedRanges. If characters in the text string are being changed, the replacementStrings array
contains the characters that replace the characters in affectedRanges. If only text attributes are being
changed, replacementStrings is null. This method checks with the delegate as needed using
textShouldBeginEditing (page 1532) andtextViewShouldChangeTextInRanges (page 1670), returning
true to allow the change, and false to prohibit it.

This method must be invoked at the start of any sequence of user-initiated editing changes. If your subclass
of NSTextView implements new methods that modify the text, make sure to invoke this method to determine
whether the change should be made. If the change is allowed, complete the change by invoking the
didChangeText (page 1627) method. If you can’t determine the affected range or replacement string before
beginning changes, pass null for these values.

If the receiver is not editable, this method automatically returns false. This result prevents instances in
which a text view could be changed by user actions even though it had been set to be noneditable.

Availability
Available in Mac OS X v10.4 and later.

See Also
isEditable (page 1631)

shouldDrawInsertionPoint
Returns true if the receiver should draw its insertion point, false if the insertion point can’t or shouldn’t
be drawn.

public boolean shouldDrawInsertionPoint()

1656 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
For example, you might not want to draw the insertion point if the receiver’s window isn’t key.)

See Also
drawInsertionPointInRect (page 1628)

smartDeleteRangeForProposedRange
Given proposedCharRange, returns an extended range that includes adjacent whitespace that should be
deleted along with the proposed range in order to preserve proper spacing and punctuation of the text
surrounding the deletion.

public NSRange smartDeleteRangeForProposedRange(NSRange proposedCharRange)

Discussion
NSTextView uses this method as necessary; you can also use it in implementing your own methods that
delete text, typically when the selection granularity is SelectByWord. To do so, invoke this method with
the proposed range to delete, then actually delete the range returned. If placing text on the pasteboard,
however, you should put only the characters from the proposed range onto the pasteboard.

See Also
selectionGranularity (page 1645)
smartInsertDeleteEnabled (page 1658)

smartInsertAfterStringForString
Returns any whitespace that needs to be added after aString to preserve proper spacing and punctuation
when aString is inserted into the receiver’s text over charRange.

public String smartInsertAfterStringForString(String aString, NSRange charRange)

Discussion
If aString is null or if smart insertion and deletion are disabled, this method returns null.

When inserting text, insert the following over charRange:

 ■ The results of smartInsertBeforeStringForString (page 1657)

 ■ aString

 ■ The results of this method

smartInsertBeforeStringForString
Returns any whitespace that needs to be added before aString to preserve proper spacing and punctuation
when aString is inserted into the receiver’s text over charRange.

public String smartInsertBeforeStringForString(String aString, NSRange charRange)

Discussion
If aString is null or if smart insertion and deletion are disabled, this method returns null.

Instance Methods 1657
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

When inserting text, insert the following over charRange:

 ■ The results of this method

 ■ aString

 ■ The results of smartInsertAfterStringForString (page 1657)

smartInsertDeleteEnabled
Returns true if the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation, false if it inserts and deletes exactly what’s selected.

public boolean smartInsertDeleteEnabled()

See Also
smartDeleteRangeForProposedRange (page 1657)
setSmartInsertDeleteEnabled (page 1653)

spellCheckerDocumentTag
Returns a tag identifying the NSTextView text as a document for the spell checker server.

public int spellCheckerDocumentTag()

Discussion
The document tag is obtained by sending a "uniqueSpellDocumentTag" (page 1381) message to the spell
server the first time this method is invoked for a particular group of NSTextViews. See the NSSpellChecker (page
1379) and NSSpellServer class specifications for more information on how this tag is used.

startSpeaking
This action method speaks the selected text, or all text if no selection.

public void startSpeaking(Object sender)

See Also
stopSpeaking (page 1658)

stopSpeaking
This action method stops the speaking of text.

public void stopSpeaking(Object sender)

See Also
startSpeaking (page 1658)

1658 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

textContainer
Returns the receiver’s text container.

public NSTextContainer textContainer()

See Also
setTextContainer (page 1653)

textContainerInset
Returns the empty space the receiver leaves around its text container.

public NSSize textContainerInset()

See Also
textContainerOrigin (page 1659)
invalidateTextContainerOrigin (page 1631)
setTextContainerInset (page 1654)

textContainerOrigin
Returns the origin of the receiver’s text container, which is calculated from the receiver’s bounds rectangle,
container inset, and the container’s used rect.

public NSPoint textContainerOrigin()

See Also
invalidateTextContainerOrigin (page 1631)
textContainerInset (page 1659)
usedRectForTextContainer (page 855) (NSLayoutManager)

textStorage
Returns the receiver’s text storage object.

public NSTextStorage textStorage()

tightenKerning
This action method decreases the space between glyphs in the receiver’s selection, or for all glyphs if the
receiver is a plain text view.

public void tightenKerning(Object sender)

Discussion
Kerning values are determined by the point size of the fonts in the selection.

See Also
loosenKerning (page 1633)

Instance Methods 1659
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

useStandardKerning (page 1663)
turnOffKerning (page 1660)

toggleContinuousSpellChecking
This action method toggles whether continuous spell checking is enabled for the receiver.

public void toggleContinuousSpellChecking(Object sender)

See Also
isContinuousSpellCheckingEnabled (page 1631)
setContinuousSpellCheckingEnabled (page 1647)

toggleTraditionalCharacterShape
This action method toggles the NSCharacterShapeAttibuteName attribute at the current selection.

public void toggleTraditionalCharacterShape(Object sender)

turnOffKerning
This action method causes the receiver to use nominal glyph spacing for the glyphs in its selection, or for all
glyphs if the receiver is a plain text view.

public void turnOffKerning(Object sender)

See Also
useStandardKerning (page 1663)
loosenKerning (page 1633)
tightenKerning (page 1659)
isRichText (page 1632)

turnOffLigatures
This action method causes the receiver to use only required ligatures when setting text, for the glyphs in the
selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

public void turnOffLigatures(Object sender)

See Also
useAllLigatures (page 1662)
isRichText (page 1632)
useStandardLigatures (page 1663)

typingAttributes
Returns the current typing attributes.

1660 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

public NSDictionary typingAttributes()

See Also
setTypingAttributes (page 1654)

underline
public void underline(Object sender)

Discussion
Adds the underline attribute to the selected text attributes if absent; removes the attribute if not. Uses
NSUnderlineStyleAttribute with a default value of 1.

unmarkText
Removes any marking from pending input text and accepts the text in its current state.

public void unmarkText()

updateDragTypeRegistration
public void updateDragTypeRegistration()

Discussion
If the receiver is editable and is a rich text view, causes all NSTextViews associated with the receiver’s
NSLayoutManager to register their acceptable drag types. If the NSTextView isn’t editable or isn’t rich text,
causes those NSTextViews to unregister their dragged types.

Subclasses can override this method to change the conditions for registering and unregistering drag types,
whether as a group or individually based on the current state of the NSTextView. They can then invoke this
method when that state changes to perform that reregistration.

See Also
acceptableDragTypes (page 1623)
registerForDraggedTypes (page 1768) (NSView)
unregisterDraggedTypes (page 1784) (NSView)
isEditable (page 1631)
importsGraphics (page 1629)
isRichText (page 1632)

updateFontPanel
Updates the Font panel to contain the font attributes of the selection.

public void updateFontPanel()

Discussion
Does nothing if the receiver doesn’t use the Font panel. You should never need to invoke this method directly,
but you can override it if needed to handle additional font attributes.

Instance Methods 1661
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

See Also
usesFontPanel (page 1663)

updateInsertionPointStateAndRestartTimer
Updates the insertion point’s location and, if flag is true, restarts the blinking cursor timer.

public void updateInsertionPointStateAndRestartTimer(boolean flag)

Discussion
This method is invoked automatically whenever the insertion point needs to be moved; you should never
need to invoke it directly, but you can override it to add different insertion point behavior.

See Also
shouldDrawInsertionPoint (page 1656)
drawInsertionPointInRect (page 1628)

updateRuler
Updates the NSRulerView in the receiver’s enclosing scroll view to reflect the selection’s paragraph and
marker attributes.

public void updateRuler()

Discussion
Does nothing if the ruler isn’t visible or if the receiver doesn’t use the ruler. You should never need to invoke
this method directly, but you can override this method if needed to handle additional ruler attributes.

See Also
usesRuler (page 1663)

useAllLigatures
This action method causes the receiver to use all ligatures available for the fonts and languages used when
setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain text
view.

public void useAllLigatures(Object sender)

See Also
turnOffLigatures (page 1660)
useStandardLigatures (page 1663)

usesFindPanel
Returns whether the receiver allows for a find panel.

public boolean usesFindPanel()

1662 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Availability
Available in Mac OS X v10.3 and later.

See Also
setUsesFindPanel (page 1654)

usesFontPanel
Returns true if the text views sharing the receiver’s NSLayoutManager use the Font panel, false otherwise.

public boolean usesFontPanel()

Discussion
See setUsesFontPanel (page 1655) and rangeForUserCharacterAttributeChange (page 1636) for the
effect this method has on an NSTextView’s behavior.

usesRuler
Returns true if the text views sharing the receiver’s NSLayoutManager use a ruler view, false otherwise.

public boolean usesRuler()

Discussion
SeesetUsesRuler (page 1655) andrangeForUserParagraphAttributeChange (page 1637) for the effect
this has on an NSTextView’s behavior

See Also
setUsesRuler (page 1655)

useStandardKerning
This action method causes the receiver to use pair kerning data for the glyphs in its selection, or for all glyphs
if the receiver is a plain text view.

public void useStandardKerning(Object sender)

Discussion
This data is taken from a font’s AFM file

See Also
isRichText (page 1632)
loosenKerning (page 1633)
tightenKerning (page 1659)
turnOffKerning (page 1660)

useStandardLigatures
This action method causes the receiver to use the standard ligatures available for the fonts and languages
used when setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s
a plain text view.

Instance Methods 1663
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

public void useStandardLigatures(Object sender)

See Also
turnOffLigatures (page 1660)
useAllLigatures (page 1662)

validAttributesForMarkedText
Returns an array of NSString names for the attributes supported by the receiver.

public NSArray validAttributesForMarkedText()

Discussion
The input server may choose to use some of these attributes in the text it inserts or in marked text. Returns
an empty array if no attributes are supported. See NSAttributedString for the set of string constants that you
could return in the array.

validRequestorForTypes
Returns this if sendType specifies a type of data the text view can put on the pasteboard and returnType
contains a type of data the text view can read from the pasteboard; otherwise returns null.

public Object validRequestorForTypes(String sendType, String returnType)

See Also
validRequestorForTypes (page 1200) (NSResponder)

writablePasteboardTypes
public NSArray writablePasteboardTypes()

Discussion
If the text view contains some selected data, this method returns an array of strings describing the types that
can be written to the pasteboard immediately. You can override this method to add new supported types
to the array of strings.

See Also
readablePasteboardTypes (page 1639)

writeSelectionToPasteboardOfType
Writes the current selection to pboard using the given type.

public boolean writeSelectionToPasteboardOfType(NSPasteboard pboard, String type)

Discussion
The complete set of data types being written to pboard should be declared before invoking this method.
Returns true if the data was successfully written.

1664 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

This method should be invoked only from writeSelectionToPasteboardOfTypes (page 1665). You can
override this method to add support for writing new types of data to the pasteboard. You should invoke
super’s implementation of the method to handle any types of data your overridden version does not.

See Also
readSelectionFromPasteboardOfType (page 1640)

writeSelectionToPasteboardOfTypes
Writes the current selection to pboard under each type in the types array.

public boolean writeSelectionToPasteboardOfTypes(NSPasteboard pboard, NSArray types)

Discussion
This method declares the data types on pboard and then invokes
writeSelectionToPasteboardOfType (page 1664) for each type in the types array. Returns true if the
data for any single type was written successfully.

You should not need to override this method. You might need to invoke this method if you are implementing
a new type of pasteboard to handle services other than copy/paste or dragging.

Constants

These constants specify how much the text view extends the selection when the user drags the mouse.
They’re used by selectionGranularity (page 1645), setSelectionGranularity (page 1653), and
selectionRangeForProposedRange (page 1645):

DescriptionConstant

Extends the selection character by character.SelectByCharacter

Extends the selection word by word.SelectByWord

Extends the selection paragraph by paragraph.SelectByParagraph

These constants specify the preferred direction of selection. They’re used by selectionAffinity (page
1644) and setSelectedRange (page 1651):

DescriptionConstant

The selection is moving toward the top of the document.SelectionAffinityUpstream

The selection is moving toward the bottom of the document.SelectionAffinityDownstream

These constants define the tags for performFindPanelAction (page 1635):

DescriptionConstant

Displays the find panel.FindPanelActionShowFindPanel

Constants 1665
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

DescriptionConstant

Finds the next instance of the queried text.FindPanelActionNext

Finds the previous instance of the queried text.FindPanelActionPrevious

Replaces all query instances within the text view.FindPanelActionReplaceAll

Replaces a single query instance within the text view.FindPanelActionReplace

Replaces a single query instance and finds the next.FindPanelActionReplaceAndFind

Sets the query string to the current selection.FindPanelActionSetFindString

Replaces all query instances within the selection.FindPanelActionReplaceAllInSelection

Selects all query instances in the text view.
Available in Mac OS X v10.4 and later.

FindPanelActionSelectAll

Selects all query instances within the selection.
Available in Mac OS X v10.4 and later.

FindPanelActionSelectAllInSelection

Delegate Methods

textView

public NSArray textView(NSTextView aTextView, NSCellForTextAttachment cell, int
charIndex)

Discussion
Invoked after the user clicks on cell at the specified charIndex location in aTextView. If
textViewDraggedCellAtIndex (page 1670) is not used, both variations of this method allows aTextView
to take care of dragging and pasting attachment cell, with the delegate responsible only for writing the
attachment to the pasteboard. An array of types that can be written to the pasteboard for the given attachment
should be returned.

The receiver should attempt to write the given attachment to pasteboard with the given type and return
success or failure.

public boolean textView(NSTextView aTextView, NSCellForTextAttachment cell, int
charIndex, NSPasteboard pasteboard, String type)

textView:completionsForPartialWordRange
Allows the delegate to modify the list of completions that will be presented for the partial word at the given
range

public abstract NSArray textViewCompletionsForPartialWordRange(NSTextView textView,
NSArray words, NSRange charRange)

1666 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Discussion
. Returning null or a zero-length array suppresses completion.

Availability
Available in Mac OS X v10.3 and later.

textViewClickedCell
Invoked after the user clicks on attachmentCell within cellFrame in aTextView and the cell wants to
track the mouse.

public abstract void textViewClickedCell(NSTextView aTextView,
NSCellForTextAttachment attachmentCell, NSRect cellFrame)

Discussion
This method has been deprecated in favor of textViewClickedCellAtIndex (page 1667).

See Also
wantsToTrackMouse (page 1939) (NSTextAttachmentCell)

textViewClickedCellAtIndex
Invoked after the user clicks on cell within cellFrame at the specified charIndex in an NSTextView and
the cell wants to track the mouse.

public abstract void textViewClickedCellAtIndex(NSTextView aTextView,
NSCellForTextAttachment cell, NSRect cellFrame, int charIndex)

Discussion
The delegate can use this message as its cue to perform an action or select the attachment cell’s character.
aTextView is the first NSTextView in a series shared by an NSLayoutManager, not necessarily the one that
draws cell.

The delegate may subsequently receive a textViewDoubleClickedCellAtIndex (page 1669) message if
the user continues to perform a double click.

See Also
textViewDoubleClickedCellAtIndex (page 1669)

textViewClickedOnLink
Invoked after the user clicks link in aTextView if the delegate does not respond to the
textViewClickedOnLinkAtIndex (page 1668) message.

public abstract boolean textViewClickedOnLink(NSTextView aTextView, Object link)

Discussion
This method has been deprecated in favor of textViewClickedOnLinkAtIndex (page 1668).

See Also
clickedOnLinkAtIndex (page 1626) (NSTextView)
textViewClickedOnLinkAtIndex (page 1668)

Delegate Methods 1667
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

textViewClickedOnLinkAtIndex
Invoked after the user clicks link at the specified charIndex in an NSTextView.

public abstract boolean textViewClickedOnLinkAtIndex(NSTextView aTextView, Object
link, int charIndex)

Discussion
The delegate can use this method to handle the click on the link. Returns true to indicate that the click was
handled; otherwise returns false to allow the next responder to handle it.

See Also
clickedOnLinkAtIndex (page 1626) (NSTextView)

textViewDidChangeSelection
Invoked when the selection changes in the NSTextView.

public abstract void textViewDidChangeSelection(NSNotification aNotification)

Discussion
The name of aNotification is TextViewDidChangeSelectionNotification (page 1672).

textViewDidChangeTypingAttributes
Delegate method invoked when text view’s typing attributes change.

public abstract void textViewDidChangeTypingAttributes(NSNotification aNotification)

Discussion
The default name of aNotification is TextViewDidChangeTypingAttributesNotification (page
1673).

Allows the delegate to modify the notification sent when the typing attributes of the text view change.

Availability
Available in Mac OS X v10.3 and later.

textViewDoCommandBySelector
Sent from NSTextView’s doCommandBySelector (page 1627), this method allows the delegate to perform the
command for the text view.

public abstract boolean textViewDoCommandBySelector(NSTextView aTextView, NSSelector
aSelector)

Discussion
If the delegate returns true, the text view doesn’t perform aSelector; if the delegate returns false, the
text view attempts to perform it. aTextView is the first NSTextView in a series shared by an NSLayoutManager.

1668 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

textViewDoubleClickedCell
Invoked when the user double-clicks attachmentCellwithin cellFrame in aTextView and the cell wants
to track the mouse.

public abstract void textViewDoubleClickedCell(NSTextView aTextView,
NSCellForTextAttachment attachmentCell, NSRect cellFrame)

Discussion
This method has been deprecated in favor of textViewDoubleClickedCellAtIndex (page 1669).

See Also
wantsToTrackMouse (page 1939) (NSTextAttachmentCell)
textViewDoubleClickedCellAtIndex (page 1669)

textViewDoubleClickedCellAtIndex
Invoked when the user double-clicks cell within cellFrame at the specified charIndex in an NSTextView
and the cell wants to track the mouse.

public abstract void textViewDoubleClickedCellAtIndex(NSTextView aTextView,
NSCellForTextAttachment cell, NSRect cellFrame, int charIndex)

Discussion
The delegate can use this message as its cue to perform an action, such as opening the file represented by
the attachment. aTextView is the first NSTextView in a series shared by an NSLayoutManager, not necessarily
the one that draws cell.

See Also
wantsToTrackMouse (page 1939) (NSTextAttachmentCell)

textViewDraggedCell
Invoked when the user attempts to drag cell from aRect within aTextView and cell wants to track the
mouse.

public abstract void textViewDraggedCell(NSTextView aTextView,
NSCellForTextAttachment cell, NSRect aRect, NSEvent theEvent)

Discussion
theEvent is the mouse-down event that preceded the mouse-dragged event.

This method has been deprecated in favor of textViewDraggedCellAtIndex (page 1670).

See Also
wantsToTrackMouse (page 1939) (NSTextAttachmentCell)
dragImage (page 1751) (NSView)
dragFile (page 1749) (NSView)

Delegate Methods 1669
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

textViewDraggedCellAtIndex
Invoked when the user attempts to drag cell from aRect within aTextView and the cell wants to track
the mouse.

public abstract void textViewDraggedCellAtIndex(NSTextView aTextView,
NSCellForTextAttachment cell, NSRect aRect, NSEvent theEvent, int charIndex)

Discussion
theEvent is the mouse-down event that preceded the mouse-dragged event. The charIndex parameter
indicates the character position where the mouse button was clicked. The delegate can use this message as
its cue to initiate a dragging operation.

See Also
wantsToTrackMouse (page 1939) (NSTextAttachmentCell)
dragImage (page 1751) (NSView)
dragFile (page 1749) (NSView)

textViewShouldChangeTextInRange
Invoked when an NSTextView needs to determine if text in the range affectedCharRange should be
changed.

public abstract boolean textViewShouldChangeTextInRange(NSTextView aTextView,
NSRange affectedCharRange, String replacementString)

Discussion
If characters in the text string are being changed, replacementString contains the characters that will
replace the characters inaffectedCharRange. If only text attributes are being changed,replacementString
is null. The delegate can return true to allow the replacement, or false to reject the change.

The aTextView argument is the first NSTextView in a series shared by an NSLayoutManager.

If a delegate implements this method and not its multiple-selection replacement,
textViewShouldChangeTextInRanges (page 1670), it is called with an appropriate range and string. If a
delegate implements the new method, then this one is ignored.

textViewShouldChangeTextInRanges
Invoked when an NSTextView needs to determine if text in the range affectedRanges should be changed.

public abstract boolean textViewShouldChangeTextInRanges(NSTextView textView,
NSArray affectedRanges, NSArray replacementStrings)

Discussion
If characters in the text string are being changed, replacementStrings contains an array of elements
indicating the characters that will replace the characters in affectedRanges. The replacementStrings
array must either be null or else contain one element for each range in affectedRanges. If only text attributes
are being changed, replacementStrings is null. The delegate can return true to allow the replacement,
or false to reject the change.

1670 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

The affectedRanges argument must be a non-null, non-empty array of objects responding to the NSValue
rangeValue method, and in addition its elements must be sorted, non-overlapping, non-contiguous, and
(except for the case of a single range) have non-zero-length.

The textView argument is the first NSTextView in a series shared by an NSLayoutManager.

Availability
Available in Mac OS X v10.4 and later.

textViewShouldChangeTypingAttributes
Allows the delegate to intervene to allow, prevent, or modify changes to the typing attributes in textView
from those contained in oldTypingAttributes to those contained in newTypingAttributes.

public abstract NSDictionary textViewShouldChangeTypingAttributes(NSTextView
textView, NSDictionary oldTypingAttributes, NSDictionary newTypingAttributes)

Availability
Available in Mac OS X v10.4 and later.

textViewWillChangeSelection
Invoked before an NSTextView finishes changing the selection—that is, when the last argument to a
setSelectedRange (page 1651) message is false.

public abstract NSRange textViewWillChangeSelection(NSTextView aTextView, NSRange
oldSelectedCharRange, NSRange newSelectedCharRange)

Discussion
oldSelectedCharRange is the original range of the selection. newSelectedCharRange is the proposed
character range for the new selection. The delegate can return an adjusted range or return
newSelectedCharRange unmodified.

The aTextView argument is the first NSTextView in a series shared by an NSLayoutManager.

This is a multiple-selection variant of the method.

public abstract NSArray textViewWillChangeSelection(NSTextView aTextView, NSArray
oldSelectedCharRanges, NSArray newSelectedCharRanges)

Discussion
The oldSelectedCharRanges argument is an array containing the original ranges of the selection. The
newSelectedCharRanges argument is and array containing the proposed character ranges for the new
selection. The delegate can return an array containing the adjusted ranges or returnnewSelectedCharRanges
unmodified.

The oldSelectedCharRanges and newSelectedCharRanges arguments must be non-null, non-empty
arrays of objects responding to the NSValue rangeValue method, and in addition their elements must be
sorted, non-overlapping, non-contiguous, and (except for the case of a single range) have non-zero-length.

Delegate Methods 1671
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

In Mac OS X version 10.4 and later, if a delegate implements the old single-selection variant of this delegate
method and not its multiple-selection replacement, then multiple selection is effectively disallowed; attempts
to set the selected ranges call the old delegate method with the first subrange, and afterwards only a single
selected range is set.

If a delegate implements both the multiple-selection variant and the single-selection variant, then the latter
is ignored.

Availability
Multiple-selection variant available in Mac OS X v10.4 and later.

textViewWillDisplayToolTip
Allows the delegate to modify the tool tip that will be displayed from that specified by
NSToolTipAttributeName, or to suppress display of the tooltip (by returning null).

public abstract String textViewWillDisplayToolTip(NSTextView textView, String
tooltip, int characterIndex)

Availability
Available in Mac OS X v10.3 and later.

undoManagerForTextView
Returns the undo manager instance for the text view specified by aTextView.

public abstract NSUndoManager undoManagerForTextView(NSTextView aTextView)

Discussion
This method provides the flexibility to return a custom undo manager for the text view. Although NSTextView
implements undo and redo for changes to text, applications may need a custom undo manager to handle
interactions between changes to text and changes to other items in the application.

Notifications

NSTextView posts the following notifications as well as those declared by its superclasses, particularly NSText.
See the “Notifications” (page 1532) section in the NSText class specification for those other notifications.

TextViewDidChangeSelectionNotification
Posted when the selected range of characters changes.

NSTextView posts this notification whenever setSelectedRange (page 1651) is invoked, either directly or
through the many methods (mouseDown (page 1192),selectAll (page 1521), and so on) that invoke it indirectly.
When the user is selecting text, this notification is posted only once, at the end of the selection operation.
The NSTextView’s delegate receives a textViewDidChangeSelection (page 1668) message when this
notification is posted.

1672 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

ValueKey

An NSRange with the originally selected range."NSOldSelectedCharacterRange"

The notification object is the notifying NSTextView. The userInfo dictionary contains the following
information:

TextViewWillChangeNotifyingTextViewNotification
Posted when a new NSTextView is established as the NSTextView that sends notifications.

This notification allows observers to reregister themselves for the new NSTextView. Methods such as
removeTextContainerAtIndex (page 843), textContainerChangedTextView (page 853), and
insertTextContainerAtIndex (page 837) cause this notification to be posted.

ValueKey

The old NSTextView, if one exists, otherwise null."NSOldNotifyingTextView"

The new NSTextView, if one exists, otherwise null."NSNewNotifyingTextView"

The notification object is the old notifying NSTextView, or null. The userInfo dictionary contains the
following information:

There’s no delegate method associated with this notification. The text-handling system ensures that when
a new NSTextView replaces an old one as the notifying NSTextView, the existing delegate becomes the
delegate of the new NSTextView, and the delegate is registered to receive NSTextView notifications from
the new notifying NSTextView. All other observers are responsible for registering themselves on receiving
this notification.

See Also
removeObserver (NSNotificationCenter)
addObserver (NSNotificationCenter)

TextViewDidChangeTypingAttributesNotification
Posted when there is a change in the typing attributes within an NSTextView. This notification is posted, via
thetextViewDidChangeTypingAttributes (page 1668) delegate method, whether or not text has changed
as a result of the attribute change.

Availability
Available in Mac OS X v10.3 and later.

Notifications 1673
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

1674 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 132

NSTextView

Inherits from NSTextField

Package: com.apple.cocoa.application

Availability Availabile in Mac OS X v10.4 and later.

Overview

NSTokenField is a subclass of NSTextField that provides tokenized editing similar to the address field in
Mail.app.

NSTokenField uses an NSTokenFieldCell to implement much of the control’s functionality. NSTokenField
provides cover methods for most of NSTokenFieldCell’s methods, which invoke the corresponding cell method.

Tasks

Constructors

NSTokenField (page 1677)

Setting the Completion Delay

completionDelay (page 1677)
Returns the receiver’s completion delay.

defaultCompletionDelay (page 1677)
Returns the default completion delay.

setCompletionDelay (page 1678)
Sets the receiver’s completion delay to delay.

Setting the Token Field Appearance

setTokenStyle (page 1678)
Returns the token style of the receiver.

tokenStyle (page 1679)
Returns the receiver’s token style.

Overview 1675
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

Setting the Tokenizing Character Set

defaultTokenizingCharacterSet (page 1677)
Returns the default tokenizing character set.

tokenizingCharacterSet (page 1678)
Returns the receiver’s tokenizing character set.

setTokenizingCharacterSet (page 1678)
Sets the recevier’s tokenizing character set to characterSet.

Display

tokenFieldDisplayStringForRepresentedObject (page 1679) delegate method
Allows the delegate to provide a string to be displayed as a proxy for the representedObject.

tokenFieldStyleForRepresentedObject (page 1681) delegate method
Allows the delegate to return the token style for editing the specified representedObject.

Editing

tokenFieldCompletionsForSubstring (page 1679) delegate method
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

tokenFieldEditingStringForRepresentedObject (page 1680) delegate method
Allows the delegate to provide a string to be edited as a proxy for the representedObject.

tokenFieldRepresentedObjectForEditingString (page 1681) delegate method
Allows the delegate to provide a represented object for editingString.

tokenFieldShouldAddObjects (page 1681) delegate method
Allows the delegate to validate the tokens to be added to the receiver at index.

Pasteboard

tokenFieldReadFromPasteboard (page 1680) delegate method
Allows the delegate to return an array of objects representing the data read from pboard.

tokenFieldWriteRepresentedObjectsToPasteboard (page 1681) delegate method
Allows the delegate the opportunity to write custom pasteboard types to the pasteboard for the
represented objects in objects.

Menu

tokenFieldHasMenuForRepresentedObject (page 1680) delegate method
Allows the delegate to specify whether the representedObject provides a menu.

tokenFieldMenuForRepresentedObject (page 1680) delegate method
Allows the delegate to provide a menu for the specified representedObject.

1676 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

Constructors

NSTokenField
public NSTokenField()

Discussion
Creates an NSTokenField object.

public NSTokenField(NSRect frame)

Discussion
Creates an NSTokenField object with the specified frame rectangle.

Static Methods

defaultCompletionDelay
Returns the default completion delay.

public static double defaultCompletionDelay()

Discussion
The default completion delay is 0.

Availability
Available in Mac OS X v10.4 and later.

defaultTokenizingCharacterSet
Returns the default tokenizing character set.

public static NSCharacterSet defaultTokenizingCharacterSet()

Discussion
The default tokenizing character set is “,”.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

completionDelay
Returns the receiver’s completion delay.

Constructors 1677
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

public double completionDelay()

Availability
Available in Mac OS X v10.4 and later.

See Also
setCompletionDelay (page 1678)
defaultCompletionDelay (page 1677)

setCompletionDelay
Sets the receiver’s completion delay to delay.

public void setCompletionDelay(double delay)

Availability
Available in Mac OS X v10.4 and later.

See Also
completionDelay (page 1677)

setTokenizingCharacterSet
Sets the recevier’s tokenizing character set to characterSet.

public void setTokenizingCharacterSet(NSCharacterSet characterSet)

Availability
Available in Mac OS X v10.4 and later.

See Also
tokenizingCharacterSet (page 1678)

setTokenStyle
Returns the token style of the receiver.

public void setTokenStyle(int style)

Availability
Available in Mac OS X v10.4 and later.

See Also
tokenStyle (page 1679)

tokenizingCharacterSet
Returns the receiver’s tokenizing character set.

public NSCharacterSet tokenizingCharacterSet()

1678 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

Availability
Available in Mac OS X v10.4 and later.

See Also
setTokenizingCharacterSet (page 1678)
defaultTokenizingCharacterSet (page 1677)

tokenStyle
Returns the receiver’s token style.

public int tokenStyle()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTokenStyle (page 1678)

Delegate Methods

tokenFieldCompletionsForSubstring
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

public abstract NSArray tokenFieldCompletionsForSubstring(NSTokenField tokenField,
String substring, int tokenIndex)

Discussion
The substring is the partial string that to be completed. The tokenIndex is the index of the token being
edited.

The default behavior provides no completions.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldDisplayStringForRepresentedObject
Allows the delegate to provide a string to be displayed as a proxy for the representedObject.

public abstract String tokenFieldDisplayStringForRepresentedObject(NSTokenField
tokenField, Object representedObject)

Discussion
If you return null or do not implement this method, then representedObject is displayed as the string.
The represented object must implement the NSCoding interface.

Availability
Available in Mac OS X v10.4 and later.

Delegate Methods 1679
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

tokenFieldEditingStringForRepresentedObject
Allows the delegate to provide a string to be edited as a proxy for the representedObject.

public abstract String tokenFieldEditingStringForRepresentedObject(NSTokenField
tokenField, Object representedObject)

Discussion
If you return null or do not implement this method, then the value returned by
tokenFieldDisplayStringForRepresentedObject (page 1679) is used for editing. The represented object
must implement the NSCoding interface.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldHasMenuForRepresentedObject
Allows the delegate to specify whether the representedObject provides a menu.

public abstract boolean tokenFieldHasMenuForRepresentedObject(NSTokenField
tokenField, Object representedObject)

Discussion
By default tokens have no menus.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldMenuForRepresentedObject
Allows the delegate to provide a menu for the specified representedObject.

public abstract NSMenu tokenFieldMenuForRepresentedObject(NSTokenField tokenField,
Object representedObject)

Discussion
The returned menu should be autoreleased. By default tokens do not return menus.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldReadFromPasteboard
Allows the delegate to return an array of objects representing the data read from pboard.

public abstract NSArray tokenFieldReadFromPasteboard(NSTokenField tokenField,
NSPasteboard pboard)

Availability
Available in Mac OS X v10.4 and later.

1680 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

tokenFieldRepresentedObjectForEditingString
Allows the delegate to provide a represented object for editingString.

public abstract Object tokenFieldRepresentedObjectForEditingString(NSTokenField
tokenField, String editingString)

Discussion
The represented object must implement the NSCoding interface. If your application uses some object other
than an NSString for their represented objects, you should return a new, autoreleased instance of that object
from this method.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldShouldAddObjects
Allows the delegate to validate the tokens to be added to the receiver at index.

public abstract NSArray tokenFieldShouldAddObjects(NSTokenField tokenField, NSArray
tokens, int index)

Discussion
The delegate can return the array unchanged or return a modified array of tokens. To reject the add completely,
return an empty array. Returning null causes an error.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldStyleForRepresentedObject
Allows the delegate to return the token style for editing the specified representedObject.

public abstract int tokenFieldStyleForRepresentedObject(NSTokenField tokenField,
Object representedObject)

Discussion
The delegate should return NSDefaultTokenStyle, NSPlainTextTokenStyle or NSRoundedTokenStyle.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldWriteRepresentedObjectsToPasteboard
Allows the delegate the opportunity to write custom pasteboard types to the pasteboard for the represented
objects in objects.

public abstract boolean tokenFieldWriteRepresentedObjectsToPasteboard(NSTokenField
tokenField, NSArray objects, NSPasteboard pboard)

Discussion
The display strings for the represented objects have already been placed on the pasteboard as both
NSStringPboardType and an array of NSStrings.

Delegate Methods 1681
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

Availability
Available in Mac OS X v10.4 and later.

1682 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 133

NSTokenField

Inherits from NSTextFieldCell

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Overview

NSTokenFieldCell is a subclass of NSTextFieldCell that provides tokenized editing of an array of objects similar
to the address field in Mail.app. The objects may be strings or objects that can be represented as strings.

Tasks

Constructors

NSTokenFieldCell (page 1685)

Setting the Completion Delay

completionDelay (page 1686)
Returns the receiver’s completion delay.

defaultCompletionDelay (page 1685)
Returns the default completion delay.

setCompletionDelay (page 1686)
Sets the receiver’s completion delay to delay.

Setting the Token Style

setTokenStyle (page 1687)
Returns the token style of the receiver.

tokenStyle (page 1687)
Returns the receiver’s token style.

Overview 1683
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

Setting the Tokenizing Character Set

defaultTokenizingCharacterSet (page 1685)
Returns the default tokenizing character set.

tokenizingCharacterSet (page 1687)
Returns the receiver’s tokenizing character set.

setTokenizingCharacterSet (page 1687)
Sets the recevier’s tokenizing character set to characterSet.

Getting and Setting the Delegate

delegate (page 1686)
Returns the receiver’s delegate.

setDelegate (page 1686)
Sets the receiver’s delegate to anObject.

Display

tokenFieldCellDisplayStringForRepresentedObject (page 1688) delegate method
Allows the delegate to provide a string to be displayed as a proxy for the representedObject.

tokenFieldCellStyleForRepresentedObject (page 1690) delegate method
Allows the delegate to return the token style for editing the specified representedObject.

Editing

tokenFieldCellCompletionsForSubstring (page 1688) delegate method
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

tokenFieldCellEditingStringForRepresentedObject (page 1689) delegate method
Allows the delegate to provide a string to be edited as a proxy for the representedObject.

tokenFieldCellRepresentedObjectForEditingString (page 1690) delegate method
Allows the delegate to provide a represented object for editingString.

tokenFieldCellShouldAddObjects (page 1690) delegate method
Allows the delegate to validate the tokens to be added to the receiver at index.

Pasteboard

tokenFieldCellReadFromPasteboard (page 1690) delegate method
Allows the delegate to return an array of objects representing the data read from pboard.

tokenFieldCellWriteRepresentedObjectsToPasteboard (page 1691) delegate method
Allows the delegate the opportunity to write custom pasteboard types to the pasteboard for the
represented objects in objects.

1684 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

Menu

tokenFieldCellHasMenuForRepresentedObject (page 1689) delegate method
Allows the delegate to specify whether the representedObject provides a menu.

tokenFieldCellMenuForRepresentedObject (page 1689) delegate method
Allows the delegate to provide a menu for the specified representedObject.

Constructors

NSTokenFieldCell
public NSTokenFieldCell()

Discussion
Creates an empty NSTokenFieldCell.

public NSTokenFieldCell(String aString)

Discussion
Creates an NSTokenFieldCell initialized with aString and set to have the cell’s default menu. If no field editor
(a shared NSText object) has been created for all cells, one is created.

public NSTokenFieldCell(NSImage anImage)

Discussion
Creates an NSTokenFieldCell initialized with anImage and set to have the cell’s default menu. If anImage is
null, no image is set.

Static Methods

defaultCompletionDelay
Returns the default completion delay.

public static double defaultCompletionDelay()

Discussion
The default completion delay is 0.

Availability
Available in Mac OS X v10.4 and later.

defaultTokenizingCharacterSet
Returns the default tokenizing character set.

public static NSCharacterSet defaultTokenizingCharacterSet()

Constructors 1685
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

Discussion
The default tokenizing character set is “,”.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

completionDelay
Returns the receiver’s completion delay.

public double completionDelay()

Availability
Available in Mac OS X v10.4 and later.

See Also
setCompletionDelay (page 1686)
defaultCompletionDelay (page 1685)

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 1686)

setCompletionDelay
Sets the receiver’s completion delay to delay.

public void setCompletionDelay(double delay)

Availability
Available in Mac OS X v10.4 and later.

See Also
completionDelay (page 1686)

setDelegate
Sets the receiver’s delegate to anObject.

1686 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

public void setDelegate(Object anObject)

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 1686)

setTokenizingCharacterSet
Sets the recevier’s tokenizing character set to characterSet.

public void setTokenizingCharacterSet(NSCharacterSet characterSet)

Availability
Available in Mac OS X v10.4 and later.

See Also
tokenizingCharacterSet (page 1687)

setTokenStyle
Returns the token style of the receiver.

public void setTokenStyle(int style)

Availability
Available in Mac OS X v10.4 and later.

See Also
tokenStyle (page 1687)

tokenizingCharacterSet
Returns the receiver’s tokenizing character set.

public NSCharacterSet tokenizingCharacterSet()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTokenizingCharacterSet (page 1687)
defaultTokenizingCharacterSet (page 1685)

tokenStyle
Returns the receiver’s token style.

public int tokenStyle()

Instance Methods 1687
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

Availability
Available in Mac OS X v10.4 and later.

See Also
setTokenStyle (page 1687)

Constants

The NSTokenStyle constants define how tokens are displayed and editable in the NSTokenFieldCell. These
values are used by tokenStyle (page 1687), setTokenStyle (page 1687) and the delegate method
tokenFieldCellStyleForRepresentedObject (page 1690)

DescriptionConstant

Use the specified token style for the receiver.
Available in Mac OS X v10.4 and later.

DefaultTokenStyle

Plain text tokens.
Available in Mac OS X v10.4 and later.

PlainTextTokenStyle

Rounded token style.
Available in Mac OS X v10.4 and later.

RoundedTokenStyle

Delegate Methods

tokenFieldCellCompletionsForSubstring
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

public abstract NSArray tokenFieldCellCompletionsForSubstring(NSTokenFieldCell
tokenFieldCell, String substring, int tokenIndex)

Discussion
The substring is the partial string that to be completed. The tokenIndex is the index of the token being
edited. The selectedIndex allows you to return by-reference an index in the array specifying which of the
completions should be initially selected.

The default behavior provides no completions.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellDisplayStringForRepresentedObject
Allows the delegate to provide a string to be displayed as a proxy for the representedObject.

1688 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

public abstract String
tokenFieldCellDisplayStringForRepresentedObject(NSTokenFieldCell tokenFieldCell,
Object representedObject)

Discussion
If you return null or do not implement this method, then representedObject is displayed as the string.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellEditingStringForRepresentedObject
Allows the delegate to provide a string to be edited as a proxy for the representedObject.

public abstract String
tokenFieldCellEditingStringForRepresentedObject(NSTokenFieldCell tokenFieldCell,
Object representedObject)

Discussion
If you return null or do not implement this method, then the value returned by
tokenFieldCellDisplayStringForRepresentedObject (page 1688) is used for editing.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellHasMenuForRepresentedObject
Allows the delegate to specify whether the representedObject provides a menu.

public abstract boolean tokenFieldCellHasMenuForRepresentedObject(NSTokenFieldCell
tokenFieldCell, Object representedObject)

Discussion
By default tokens have no menus.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellMenuForRepresentedObject
Allows the delegate to provide a menu for the specified representedObject.

public abstract NSMenu tokenFieldCellMenuForRepresentedObject(NSTokenFieldCell
tokenFieldCell, Object representedObject)

Discussion
The returned menu should be autoreleased. By default tokens do not return menus.

Availability
Available in Mac OS X v10.4 and later.

Delegate Methods 1689
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

tokenFieldCellReadFromPasteboard
Allows the delegate to return an array of objects representing the data read from pboard.

public abstract NSArray tokenFieldCellReadFromPasteboard(NSTokenFieldCell
tokenFieldCell, NSPasteboard pboard)

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellRepresentedObjectForEditingString
Allows the delegate to provide a represented object for editingString.

public abstract Object
tokenFieldCellRepresentedObjectForEditingString(NSTokenFieldCell tokenFieldCell,
String editingString)

Discussion
If your application uses some object other than an NSString for their represented objects, you should return
a new, autoreleased instance of that object from this method.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellShouldAddObjects
Allows the delegate to validate the tokens to be added to the receiver at index.

public abstract NSArray tokenFieldCellShouldAddObjects(NSTokenFieldCell
tokenFieldCell, NSArray tokens, int index)

Discussion
The delegate can return the array unchanged or return a modified array of tokens. To reject the add completely,
return an empty array. Returning null causes an error.

Availability
Available in Mac OS X v10.4 and later.

tokenFieldCellStyleForRepresentedObject
Allows the delegate to return the token style for editing the specified representedObject.

public abstract int tokenFieldCellStyleForRepresentedObject(NSTokenFieldCell
tokenFieldCell, Object representedObject)

Discussion
The delegate should return NSDefaultTokenStyle, NSPlainTextTokenStyle or NSRoundedTokenStyle.

Availability
Available in Mac OS X v10.4 and later.

1690 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

tokenFieldCellWriteRepresentedObjectsToPasteboard
Allows the delegate the opportunity to write custom pasteboard types to the pasteboard for the represented
objects in objects.

public abstract boolean
tokenFieldCellWriteRepresentedObjectsToPasteboard(NSTokenFieldCell
tokenFieldCell, NSArray objects, NSPasteboard pboard)

Discussion
The display strings for the represented objects have already been placed on the pasteboard as both
NSStringPboardType and an array of NSStrings.

Availability
Available in Mac OS X v10.4 and later.

Delegate Methods 1691
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

1692 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 134

NSTokenFieldCell

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Toolbar Programming Topics for Cocoa

Overview

NSToolbar and NSToolbarItem (page 1707) provide the mechanism for a titled window to display a toolbar
just below its title bar, as shown below:

Tasks

Constructors

NSToolbar (page 1696)
Creates and initializes an NSToolbar with identifier, which is used by the toolbar to identify the
kind of the toolbar.

Toolbar Attributes

displayMode (page 1697)
Returns the receiver’s display mode, which is one of the values described in “Constants” (page 1703).

setDisplayMode (page 1700)
Sets the receiver’s display mode.

showsBaselineSeparator (page 1702)
Returns whether the toolbar shows the separator between the toolbar and the main window contents.

Overview 1693
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

setShowsBaselineSeparator (page 1701)
Sets whether the toolbar shows the separator between the toolbar and the main window contents.

allowsUserCustomization (page 1696)
Answers whether or not users are allowed to modify the toolbar.

setAllowsUserCustomization (page 1699)
Sets whether or not users are allowed to modify the toolbar to allowsCustomization.

identifier (page 1698)
Returns the receiver’s identifier, which identifies the kind of the toolbar.

items (page 1698)
Returns all current items in the receiver, in order.

visibleItems (page 1703)
Returns the receiver’s currently visible items. An item can be invisible if it has spilled over into the
overflow menu.

sizeMode (page 1702)
Returns the receiver’s size mode, which is one of the values described in “Constants” (page 1703).

setSizeMode (page 1701)
Sets the receiver’s size mode.

Managing the Delegate

delegate (page 1697)
Returns the receiver’s delegate.

setDelegate (page 1700)
Sets the receiver’s delegate to delegate.

Managing Items on the Toolbar

insertItemWithItemIdentifierAtIndex (page 1698)
Inserts the item identified by itemIdentifier at index.

removeItemAtIndex (page 1698)
Removes the item at index.

setSelectedItemIdentifier (page 1701)
Sets the receiver's selected item to the toolbar item specified by identifier.

selectedItemIdentifier (page 1699)
Returns the identifier of the receiver’s currently selected item, or null

Displaying the Toolbar

isVisible (page 1698)
Returns whether the receiver is visible.

setVisible (page 1702)
Sets whether the receiver is visible or hidden to shown.

1694 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Toolbar Customization

runCustomizationPalette (page 1699)
Runs the receiver’s customization palette.

customizationPaletteIsRunning (page 1697)
Returns whether the receiver’s customization palette is running (in use).

Autosaving the Configuration

autosavesConfiguration (page 1696)
Returns whether the receiver autosaves its configuration.

setAutosavesConfiguration (page 1700)
Sets whether the receiver autosaves its configuration.

configurationDictionary (page 1697)
Returns the receiver’s configuration as a dictionary.

setConfigurationFromDictionary (page 1700)
Sets the receiver’s configuration using configDict.

Toolbar Item Validation

validateVisibleItems (page 1702)
Called on window updates with the purpose of validating each of the visible items.

Adding and removing items

toolbarWillAddItem (page 1705) delegate method
Posted just before a new item is added to the toolbar.

toolbarDidRemoveItem (page 1704) delegate method
Posted just after an item has been removed from toolbar.

Working with item identifiers

toolbarAllowedItemIdentifiers (page 1704) delegate method
Returns an array of toolbar item identifiers for toolbar, specifying the contents and the order of the
items in the configuration palette.

toolbarDefaultItemIdentifiers (page 1704) delegate method
Returns an array of toolbar item identifiers for toolbar, specifying the contents and the order of the
items in the default toolbar configuration.

toolbarItemForItemIdentifier (page 1704) delegate method
Returns a toolbar item of the kind identified by the given toolbar itemIdentifier.

toolbarSelectableItemIdentifiers (page 1705) delegate method
Returns an array of item identifiers that should indicate selection in the specified toolbar.

Tasks 1695
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Constructors

NSToolbar
Creates and initializes an NSToolbar with identifier, which is used by the toolbar to identify the kind of
the toolbar.

public NSToolbar(String identifier)

Discussion
identifier is never seen by users and should not be localized. See identifier (page 1698) for important
information.

See Also
identifier (page 1698)

Instance Methods

allowsUserCustomization
Answers whether or not users are allowed to modify the toolbar.

public boolean allowsUserCustomization()

Discussion
The default value is false. If the value is false, then the Customize Toolbar… menu item is disabled and
other modification is disabled. If the value is true, be sure to also set autosavesConfiguration to true,
so the user’s changes persist. This attribute does not affect the user’s ability to show or hide the toolbar.

See Also
setAllowsUserCustomization (page 1699)
autosavesConfiguration (page 1696)

autosavesConfiguration
Returns whether the receiver autosaves its configuration.

public boolean autosavesConfiguration()

Discussion
If true, the receiver will automatically write the toolbar settings to user defaults if the toolbar configuration
changes. The default is false.

The information about the toolbar configuration is identified in user defaults by the toolbar identifier. If there
are multiple toolbars active with the same identifier, then they all share the same configuration, so it is this
shared configuration that is saved.

See Also
setAutosavesConfiguration (page 1700)

1696 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

configurationDictionary (page 1697)

configurationDictionary
Returns the receiver’s configuration as a dictionary.

public NSDictionary configurationDictionary()

Discussion
Contains displayMode, isVisible, and a list of the item identifiers currently in the toolbar. You can add
your own items if you need to.

Do not depend on any details of the normal contents of a configuration dictionary.

See Also
setConfigurationFromDictionary (page 1700)

customizationPaletteIsRunning
Returns whether the receiver’s customization palette is running (in use).

public boolean customizationPaletteIsRunning()

See Also
runCustomizationPalette (page 1699)

delegate
Returns the receiver’s delegate.

public Object delegate()

Discussion
Every toolbar must have a delegate, which must implement the required delegate methods.

See Also
setDelegate (page 1700)

displayMode
Returns the receiver’s display mode, which is one of the values described in “Constants” (page 1703).

public int displayMode()

See Also
setDisplayMode (page 1700)

Instance Methods 1697
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

identifier
Returns the receiver’s identifier, which identifies the kind of the toolbar.

public String identifier()

Discussion
Within the application all toolbars with the same identifier are synchronized to maintain the same state,
including for example, the display mode and item order. Also, if a toolbar autosaves its configuration, the
item identifier is used as the autosave name.

insertItemWithItemIdentifierAtIndex
Inserts the item identified by itemIdentifier at index.

public void insertItemWithItemIdentifierAtIndex(String itemIdentifier, int index)

Discussion
If the toolbar needs a new instance, it will get it fromtoolbarItemForItemIdentifier (page 1704). Typically,
you should not call this method; you should let the user reconfigure the toolbar. See identifier (page 1698)
for important information.

See Also
removeItemAtIndex (page 1698)

isVisible
Returns whether the receiver is visible.

public boolean isVisible()

See Also
setVisible (page 1702)

items
Returns all current items in the receiver, in order.

public NSArray items()

See Also
visibleItems (page 1703)

removeItemAtIndex
Removes the item at index.

public void removeItemAtIndex(int index)

1698 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Discussion
Typically, you should not call this method; you should let the user reconfigure the toolbar. See
identifier (page 1698) for important information.

See Also
insertItemWithItemIdentifierAtIndex (page 1698)

runCustomizationPalette
Runs the receiver’s customization palette.

public void runCustomizationPalette(Object sender)

Discussion
When the user is done customizing, the palette will be dismissed.

See Also
customizationPaletteIsRunning (page 1697)

selectedItemIdentifier
Returns the identifier of the receiver’s currently selected item, or null

public String selectedItemIdentifier()

Discussion
if there is no selection.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectedItemIdentifier (page 1701)

setAllowsUserCustomization
Sets whether or not users are allowed to modify the toolbar to allowsCustomization.

public void setAllowsUserCustomization(boolean allowsCustomization)

Discussion
This value can be changed at any time. For instance, you may not want users to be able to customize the
toolbar while some event is being processed. This attribute does not affect the user’s ability to show or hide
the toolbar.

See Also
allowsUserCustomization (page 1696)

Instance Methods 1699
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

setAutosavesConfiguration
Sets whether the receiver autosaves its configuration.

public void setAutosavesConfiguration(boolean flag)

Discussion
If true, the receiver will automatically write changes the user makes to user defaults. Customizable toolbars
will want to set flag to true. Setting it to false means changes in configuration are not written
automatically; however you can use the configurationDictionary (page 1697) to do it yourself.

See Also
allowsUserCustomization (page 1696)
autosavesConfiguration (page 1696)

setConfigurationFromDictionary
Sets the receiver’s configuration using configDict.

public void setConfigurationFromDictionary(NSDictionary configDict)

Discussion
This method also immediately affects toolbars of the same kind in other windows.

See Also
configurationDictionary (page 1697)

setDelegate
Sets the receiver’s delegate to delegate.

public void setDelegate(Object delegate)

Discussion
Every toolbar must have a delegate, which must implement the required delegate methods.

See Also
delegate (page 1697)

setDisplayMode
Sets the receiver’s display mode.

public void setDisplayMode(int displayMode)

Discussion
displayMode is one of the values described in “Constants” (page 1703).

See Also
displayMode (page 1697)

1700 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

setSelectedItemIdentifier
Sets the receiver's selected item to the toolbar item specified by identifier.

public void setSelectedItemIdentifier(String itemIdentifier)

Discussion
Typically, a toolbar will manage the selection of items automatically. This method can be used to select
identifiers of custom view items, or to force a selection change. See
toolbarSelectableItemIdentifiers (page 1705) for more details. If itemIdentifier is not recognized
by the receiver, the current selected item identifier does not change.

itemIdentifier may be any identifier returned by toolbarSelectableItemIdentifiers, even if it is
not currently in the toolbar. If the selected item is removed from the toolbar, the selectedItemIdentifier
does not change.

Availability
Available in Mac OS X v10.3 and later.

See Also
selectedItemIdentifier (page 1699)
toolbarSelectableItemIdentifiers (page 1705)

setShowsBaselineSeparator
Sets whether the toolbar shows the separator between the toolbar and the main window contents.

public void setShowsBaselineSeparator(boolean flag)

Discussion
If flag is true the baseline is shown. The default is true.

Availability
Available in Mac OS X v10.4 and later.

See Also
showsBaselineSeparator (page 1702)

setSizeMode
Sets the receiver’s size mode.

public void setSizeMode(int sizeMode)

Discussion
The size can be:

 ■ SizeModeRegular.The toolbar uses regular-sized controls and 32 by 32 pixel icons.

 ■ SizeModeSmall. The toolbar uses small-sized controls and 24 by 24 pixel icons.

If there is no icon of the given size for a toolbar item, the toolbar item creates one by scaling another icon.

Instance Methods 1701
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Availability
Available in Mac OS X v10.2 and later.

See Also
sizeMode (page 1702)

setVisible
Sets whether the receiver is visible or hidden to shown.

public void setVisible(boolean shown)

See Also
isVisible (page 1698)

showsBaselineSeparator
Returns whether the toolbar shows the separator between the toolbar and the main window contents.

public boolean showsBaselineSeparator

Discussion
The default is true.

Availability
Available in Mac OS X v10.4 and later.

See Also
setShowsBaselineSeparator (page 1701)

sizeMode
Returns the receiver’s size mode, which is one of the values described in “Constants” (page 1703).

public int sizeMode()

Availability
Available in Mac OS X v10.2 and later.

See Also
setSizeMode (page 1701)

validateVisibleItems
Called on window updates with the purpose of validating each of the visible items.

public void validateVisibleItems()

1702 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Discussion
You use this method by overriding it in a subclass; you should not invoke this method. The toolbar calls this
method to iterate through the list of visible items, sending each a validate message. Override it and call
super if you want to know when this happens.

visibleItems
Returns the receiver’s currently visible items. An item can be invisible if it has spilled over into the overflow
menu.

public NSArray visibleItems()

See Also
items (page 1698)

Constants

The following constants toolbar display modes and are used by displayMode (page 1697) and
setDisplayMode (page 1700):

DescriptionConstant

The default display mode.DisplayModeDefault

The toolbar will display icons and labels.DisplayModeIconAndLabel

The toolbar will display only icons.DisplayModeIconOnly

The toolbar will display only labels.DisplayModeLabelOnly

The following constants specify toolbar sizes and are used by sizeMode (page 1702) and setSizeMode (page
1701):

DescriptionConstant

The toolbar uses the system-defined default size, which is SizeModeRegular.SizeModeDefault

The toolbar uses regular-sized controls and 32 by 32 pixel icons.SizeModeRegular

The toolbar uses small-sized controls and 24 by 24 pixel icons.SizeModeSmall

Constants 1703
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Delegate Methods

toolbarAllowedItemIdentifiers
Returns an array of toolbar item identifiers for toolbar, specifying the contents and the order of the items
in the configuration palette.

public abstract NSArray toolbarAllowedItemIdentifiers(NSToolbar toolbar)

Discussion
Every allowed item must be explicitly listed, even the standard ones. The identifiers returned should include
all of those returned by toolbarDefaultItemIdentifiers.

Implementation of this method is required.

toolbarDefaultItemIdentifiers
Returns an array of toolbar item identifiers for toolbar, specifying the contents and the order of the items
in the default toolbar configuration.

public abstract NSArray toolbarDefaultItemIdentifiers(NSToolbar toolbar)

Discussion
During initialization of toolbar, this method is called only if a toolbar configuration for the identifier of
toolbar is not found in the user preferences. This method is called during initialization of the toolbar
customization palette.

Implementation of this method is required.

toolbarDidRemoveItem
Posted just after an item has been removed from toolbar.

public abstract void toolbarDidRemoveItem(NSNotification notification)

Discussion
This method allows the chance to remove information related to the item that may have been cached. The
notification‘s object is the toolbar from which the item is being removed. The notification‘s userInfo
dictionary contains the item being removed under the key "item". If this method is implemented, then
when you set the toolbar’s delegate, the toolbar automatically registers this method for
DidRemoveItemNotification (page 1706).

Implementation of this method is optional.

toolbarItemForItemIdentifier
Returns a toolbar item of the kind identified by the given toolbar itemIdentifier.

public abstract NSToolbarItem toolbarItemForItemIdentifier(NSToolbar toolbar, String
itemIdentifier, boolean flag)

1704 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Discussion
This is where you create new toolbar item instances. This method is called lazily on behalf of a toolbar instance,
which must be the sole owner of the toolbar item. A toolbar may ask again for a kind of toolbar item already
supplied to it, in which case this method can and should return the same toolbar item it returned before.

If the item is a custom view item, the NSView must be fully-formed when the item is returned. Do not assume
that the returned item is going to be added as an active item in the toolbar, as it could be that it will be used
only in the customization palette. (The customization palette makes a copy of the returned item.)

A null return value tells the toolbar that the identified kind of toolbar item is not supported.

If flag is true, the returned item will be inserted into the toolbar, and you can expect that
toolbarWillAddItem (page 1705) is about to be called.

Implementation of this method is required.

toolbarSelectableItemIdentifiers
Returns an array of item identifiers that should indicate selection in the specified toolbar.

public abstract NSArray toolbarSelectableItemIdentifiers(NSToolbar toolbar)

Discussion
Toolbars that need to indicate item selection should return an array containing the identifiers of the selectable
toolbar items.

If implemented, toolbar will display the currently selected item with a visual highlight. Clicking on an item
whose identifier is selectable will automatically update the toolbars selected item identifier, when possible.

Implementation of this method is optional.

Availability
Available in Mac OS X v10.3 and later.

See Also
setSelectedItemIdentifier (page 1701)

toolbarWillAddItem
Posted just before a new item is added to the toolbar.

public abstract void toolbarWillAddItem(NSNotification notification)

Discussion
If you need to cache a reference to the toolbar item or need to set up some initial state, this is where to do
it. The object attribute of notification is the toolbar to which the item is being added. The notification‘s
userInfo dictionary contains the item being added under the key "item". If this method is implemented,
then when you set the toolbar’s delegate, the toolbar automatically registers this method for
WillAddItemNotification (page 1706).

Implementation of this method is optional.

Delegate Methods 1705
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Notifications

DidRemoveItemNotification
Posted after an item is removed from a toolbar. The notification item is the NSToolbar that had an item
removed from it. The userInfo dictionary contains the following information:

ValueKey

The NSToolbarItem that was removed."item"

See Also
toolbarDidRemoveItem (page 1704)

WillAddItemNotification
Posted before a new item is added to the toolbar. The notification item is the NSToolbar having an item
added to it. The userInfo dictionary contains the following information:

ValueKey

The NSToolbarItem being added."item"

See Also
toolbarWillAddItem (page 1705)

1706 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 135

NSToolbar

Inherits from NSObject

Implements NSValidatedUserInterfaceItem

Package: com.apple.cocoa.application

Companion guide Toolbar Programming Topics for Cocoa

Overview

Each item in an NSToolbar (page 1693) is an instance of NSToolbarItem.

Interfaces Implemented

NSValidatedUserInterfaceItem
action (page 2033)
tag (page 2033)

Tasks

Constructors

NSToolbarItem (page 1709)
Creates and initializes an NSToolbarItem with itemIdentifier, which is used by the toolbar and
its delegate to identify the kind of the toolbar item.

Managing Attributes

itemIdentifier (page 1711)
Returns the receiver’s identifier, which was provided in the constructor.

toolbar (page 1716)
Returns the toolbar that is using the receiver.

label (page 1711)
Returns the receiver’s label, which normally appears in the toolbar and in the overflow menu.

Overview 1707
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

setLabel (page 1713)
Sets the receiver’s label that appears in the toolbar to label.

paletteLabel (page 1712)
Returns the label that appears when the receiver is in the customization palette.

setPaletteLabel (page 1714)
Sets the receiver’s label that appears when it is in the customization palette to paletteLabel.

toolTip (page 1716)
Returns the tooltip used when the receiver is displayed in the toolbar.

setToolTip (page 1715)
Sets the tooltip to be used when the receiver is displayed in the toolbar to toolTip.

menuFormRepresentation (page 1711)
Returns the receiver’s menu form representation.

setMenuFormRepresentation (page 1714)
Sets the receiver’s menu form to menuItem.

tag (page 1716)
Returns the receiver’s tag, which can be used for your own custom purpose.

setTag (page 1715)
Sets the receiver’s tag to tag, which can be used for your own custom purpose.

target (page 1716)
Returns the receiver’s target.

setTarget (page 1715)
Sets the receiver’s target.

action (page 1709)
Returns the receiver’s action.

setAction (page 1712)
Sets the receiver’s action to action.

isEnabled (page 1710)
Returns the receiver’s enabled status.

setEnabled (page 1713)
Sets the receiver’s enabled flag to enabled.

image (page 1710)
Returns the image of the receiver.

setImage (page 1713)
Sets the image of the receiver or of the view to image, if the view has already been set.

view (page 1717)
Returns the receiver’s view.

setView (page 1715)
Use this method to make the receiver into a view item.

minSize (page 1712)
Returns the receiver’s minimum size.

setMinSize (page 1714)
Sets the receiver’s minimum size to size.

maxSize (page 1711)
Returns the receiver’s maximum size.

1708 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

setMaxSize (page 1714)
Sets the receiver’s maximum size to size.

Visibility Priority

visibilityPriority (page 1717)
Returns the receiver’s visibility priority.

setVisibilityPriority (page 1716)
Sets the receiver’s visibility priority to visibilityPriority.

Validation

validate (page 1717)
This method is called by the receiver’s toolbar during validation.

autovalidates (page 1710)
Returns whether the receiver is automatically validated by the toolbar.

setAutovalidates (page 1712)
Sets the receiver’s auto validation flag to enabled.

Controlling Duplicates

allowsDuplicatesInToolbar (page 1710)
Returns true to allow dragging the receiver into the toolbar at more than one position.

Constructors

NSToolbarItem
Creates and initializes an NSToolbarItem with itemIdentifier, which is used by the toolbar and its delegate
to identify the kind of the toolbar item.

public NSToolbarItem(String itemIdentifier)

Discussion
itemIdentifier is never seen by users and should not be localized.

Instance Methods

action
Returns the receiver’s action.

Constructors 1709
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

public NSSelector action()

Discussion
For custom view items, this method sends action to the view if it responds and returns the result.

See Also
setAction (page 1712)

allowsDuplicatesInToolbar
Returns true to allow dragging the receiver into the toolbar at more than one position.

public boolean allowsDuplicatesInToolbar()

Discussion
You use this method by overriding it in a subclass to always return true; typically, you wouldn’t call it. By
default, if an item with the same identifier is already in the toolbar, dragging it in again will effectively move
it to the new position.

autovalidates
Returns whether the receiver is automatically validated by the toolbar.

public boolean autovalidates()

Availability
Available in Mac OS X v10.4 and later.

See Also
setAutovalidates (page 1712)

image
Returns the image of the receiver.

public NSImage image()

Discussion
For an image item this method returns the result of the most recent setImage (page 1713). For view items,
this method calls image on the view if it responds and returns the result.

See Also
setImage (page 1713)

isEnabled
Returns the receiver’s enabled status.

public boolean isEnabled()

1710 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

Discussion
For a view item, this method calls isEnabled on the view if it responds and returns the result.

See Also
setEnabled (page 1713)
view (page 1717)

itemIdentifier
Returns the receiver’s identifier, which was provided in the constructor.

public String itemIdentifier()

See Also
NSToolbarItem (page 1709)

label
Returns the receiver’s label, which normally appears in the toolbar and in the overflow menu.

public String label()

Discussion
For a discussion on labels, see “Setting a Toolbar Item’s Representation”.

See Also
setLabel (page 1713)
menuFormRepresentation (page 1711)

maxSize
Returns the receiver’s maximum size.

public NSSize maxSize()

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

See Also
setMaxSize (page 1714)

menuFormRepresentation
Returns the receiver’s menu form representation.

public NSMenuItem menuFormRepresentation()

Discussion
For a discussion on menu forms, see “Setting a Toolbar Item’s Representation”.

Instance Methods 1711
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

By default, this method returns null, even though there is a default menu form representation.

See Also
setMenuFormRepresentation (page 1714)

minSize
Returns the receiver’s minimum size.

public NSSize minSize()

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

See Also
setMinSize (page 1714)

paletteLabel
Returns the label that appears when the receiver is in the customization palette.

public String paletteLabel()

Discussion
An item must have a palette label if the customization palette is to be used, and for most items it is reasonable
to setpaletteLabel to be the same value aslabel (page 1711). One reason forpaletteLabel to be different
from label (page 1711) would be if it’s more descriptive; another might be if there is no label (page 1711).

See Also
setPaletteLabel (page 1714)

setAction
Sets the receiver’s action to action.

public void setAction(NSSelector action)

Discussion
For a custom view item, this method calls setAction on the view if it responds.

See Action Messages for additional information on action messages.

See Also
action (page 1709)
setTarget (page 1715)

setAutovalidates
Sets the receiver’s auto validation flag to enabled.

public void setAutovalidates(boolean resistance)

1712 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

Discussion
By default NSToolbar automatically invokes the receiver’s validate method on a regular basis. If your validate
method is time consuming, you can disable auto validation on a per toolbar item basis.

Availability
Available in Mac OS X v10.4 and later.

See Also
autovalidates (page 1710)

setEnabled
Sets the receiver’s enabled flag to enabled.

public void setEnabled(boolean enabled)

Discussion
For a custom view item, this method calls setEnabled on the view if it responds.

See Also
isEnabled (page 1710)

setImage
Sets the image of the receiver or of the view to image, if the view has already been set.

public void setImage(NSImage image)

Discussion
For a custom view item (one whose view has already been set), this method calls setImage on the view if
it responds. If image contains multiple representations, NSToolbarItem chooses the most appropriately sized
representation when displaying.

See Also
image (page 1710)
view (page 1717)

setLabel
Sets the receiver’s label that appears in the toolbar to label.

public void setLabel(String label)

Discussion
The implication is that the toolbar will draw the label for the receiver, and a redraw is triggered by this
method. The toolbar is in charge of the label area. It’s OK for an item to have an empty label. You should
make sure the length of the label is appropriate and not too long. For a discussion on labels, see “Setting a
Toolbar Item’s Representation”.

See Also
label (page 1711)

Instance Methods 1713
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

paletteLabel (page 1712)

setMaxSize
Sets the receiver’s maximum size to size.

public void setMaxSize(NSSize size)

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

See Also
maxSize (page 1711)

setMenuFormRepresentation
Sets the receiver’s menu form to menuItem.

public void setMenuFormRepresentation(NSMenuItem menuItem)

Discussion
For a discussion on menu forms see “Setting a Toolbar Item’s Representation”.

See Also
menuFormRepresentation (page 1711)

setMinSize
Sets the receiver’s minimum size to size.

public void setMinSize(NSSize size)

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

See Also
minSize (page 1712)

setPaletteLabel
Sets the receiver’s label that appears when it is in the customization palette to paletteLabel.

public void setPaletteLabel(String paletteLabel)

Discussion
An item must have a palette label if the customization palette is to be used, and for most items it is reasonable
to set paletteLabel (page 1712) to be the same value as label (page 1711). One reason for
paletteLabel (page 1712) to be different from label (page 1711) would be if it’s more descriptive; another
might be if there is no label (page 1711).

1714 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

See Also
paletteLabel (page 1712)
setLabel (page 1713)

setTag
Sets the receiver’s tag to tag, which can be used for your own custom purpose.

public void setTag(int tag)

See Also
tag (page 1716)

setTarget
Sets the receiver’s target.

public void setTarget(Object target)

Discussion
If target is unset, the toolbar will call action on the first responder that implements it.

See Also
target (page 1716)
setAction (page 1712)
validateToolbarItem (page 2031) (NSToolbar.ItemValidation)

setToolTip
Sets the tooltip to be used when the receiver is displayed in the toolbar to toolTip.

public void setToolTip(String toolTip)

See Also
toolTip (page 1716)

setView
Use this method to make the receiver into a view item.

public void setView(NSView view)

Discussion
Note that many of the set/get methods are implemented by calls forwarded to view, if it responds to it. Also,
everything recursively contained in view must be archivable if the customization palette is used. For a view
item to be archivable, it and all of its contents must implement clone() correctly. This implementation is
not an issue for standard framework components, but you must be careful with subclasses of them.

See Also
view (page 1717)

Instance Methods 1715
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

setMaxSize (page 1714)
setMinSize (page 1714)

setVisibilityPriority
Sets the receiver’s visibility priority to visibilityPriority.

public void setVisibiltyPriority(int visibilityPriority)

Discussion
The values for visibilityPriority are described in “Constants” (page 1717).

Availability
Available in Mac OS X v10.4 and later.

See Also
visibilityPriority (page 1717)

tag
Returns the receiver’s tag, which can be used for your own custom purpose.

public int tag()

See Also
setTag (page 1715)

target
Returns the receiver’s target.

public Object target()

See Also
setTarget (page 1715)

toolbar
Returns the toolbar that is using the receiver.

public NSToolbar toolbar()

toolTip
Returns the tooltip used when the receiver is displayed in the toolbar.

public String toolTip()

1716 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

See Also
setToolTip (page 1715)

validate
This method is called by the receiver’s toolbar during validation.

public void validate()

Discussion
You use this method by overriding it in a subclass; typically, you wouldn’t call it. For further discussion, see
“Validating Toolbar Items”.

See Also
setEnabled (page 1713)

view
Returns the receiver’s view.

public NSView view()

Discussion
Note that many of the set/get methods are implemented by calls forwarded to the NSView object referenced
by this attribute, if the object responds to it.

See Also
setView (page 1715)

visibilityPriority
Returns the receiver’s visibility priority.

public int visibilityPriority()

See Also
setVisibilityPriority (page 1716)

Constants

NSToolbarItem defines the following standard toolbar item identifiers, which are described in the order they
are shown in the following figure:

Constants 1717
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

DescriptionConstant

The Separator item.SeparatorItemIdentifier

The Space item.SpaceItemIdentifier

The Flexible Space item.FlexibleSpaceItemIdentifier

The Colors item. Shows the color panel.ShowColorsItemIdentifier

The Fonts item. Shows the font panel.ShowFontsItemIdentifier

The Customize item. Shows the customization palette.CustomizeToolbarItemIdentifier

The Print item. Sends printDocument to firstResponder, but
you can change this in toolbarWillAddItem (page 1705) if you
need to do so.

PrintItemIdentifier

When a toolbar does not have enough space to fit all its items, it must push some items into the overflow
menu. These values allow you to suggest a priority for a toolbar item. To suggest that an item always remain
visible, give it a value greater than NSToolbarItemVisibilityPriorityStandard, but less than
NSToolbarItemVisibilityPriorityUser. In configurable toolbars, users can control the priority of an
item and the priority is autosaved by the NSToolbar. These values are used by the
setVisibilityPriority (page 1716) and visibilityPriority (page 1717) methods:

DescriptionConstant

The default visibility priority.
Available in Mac OS X v10.4 and later.

VisibilityPriorityStandard

Items with this priority will be the first items to be pushed to the
overflow menu.
Available in Mac OS X v10.4 and later.

VisibilityPriorityLow

Items with this priority are less inclined to be pushed to the overflow
menu.
Available in Mac OS X v10.4 and later.

VisibilityPriorityHigh

Items with this priority are the last to be pushed to the overflow menu.
Only the user should set items to this priority.
Available in Mac OS X v10.4 and later.

VisibilityPriorityUser

1718 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 136

NSToolbarItem

Inherits from NSController : NSObject

Implements NSCoding (NSController)

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

NSUserDefaultsController is a Cocoa bindings compatible controller class. Properties of the shared instance
of this class can be bound to user interface elements to access and modify values stored in NSUserDefaults.

Tasks

Constructors

NSUserDefaultsController (page 1720)
Creates and returns an empty NSUserDefaultsController.

Obtaining the Shared Instance

sharedUserDefaultsController (page 1720)
Returns the shared instance of NSUserDefaultsController, creating it if necessary.

Managing User Defaults Values

defaults (page 1721)
Returns the instance of NSUserDefaults in use by the receiver.

setInitialValues (page 1723)
Sets the receiver’s initial values to initialValues.

hasUnappliedChanges (page 1721)
Returns whether the receiver has user default values that have not been saved to NSUserDefaults.

Overview 1719
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 137

NSUserDefaultsController

initialValues (page 1722)
Returns a dictionary containing the receiver’s initial default values.

setAppliesImmediately (page 1723)
Sets whether any changes made to the receiver’s user default properties are saved immediately.

appliesImmediately (page 1721)
Returns whether any changes made to bound user default properties are saved immediately.

revert (page 1722)
Causes the receiver to discard any unsaved changes to bound user default properties, restoring their
previous values.

revertToInitialValues (page 1722)
Causes the receiver to discard all edits and replace the values of all the user default properties with
any corresponding values in the initialValues (page 1722) dictionary.

save (page 1723)
Saves the values of the receiver’s user default properties.

Constructors

NSUserDefaultsController
Creates and returns an empty NSUserDefaultsController.

public NSUserDefaultsController()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSUserDefaultsController using the NSUserDefaults instance specified in defaults
and the initial default values contained in the initialValues dictionary.

public NSUserDefaultsController(NSUserDefaults defaults, NSDictionary initialValues)

Discussion
If defaults is null, the receiver uses NSUserDefaults.standardUserDefaults().

Availability
Available in Mac OS X v10.3 and later.

Static Methods

sharedUserDefaultsController
Returns the shared instance of NSUserDefaultsController, creating it if necessary.

public static Object sharedUserDefaultsController()

1720 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 137

NSUserDefaultsController

Discussion
This instance has no initial values, and uses NSUserDefaults.standardUserDefaults() to create the
defaults. An application can get this object when an application launches and configure it as required.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

appliesImmediately
Returns whether any changes made to bound user default properties are saved immediately.

public boolean appliesImmediately()

Discussion
Default is true.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAppliesImmediately (page 1723)

defaults
Returns the instance of NSUserDefaults in use by the receiver.

public NSUserDefaults defaults()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

hasUnappliedChanges
Returns whether the receiver has user default values that have not been saved to NSUserDefaults.

public boolean hasUnappliedChanges()

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1721
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 137

NSUserDefaultsController

See Also
appliesImmediately (page 1721)
setAppliesImmediately (page 1723)

initialValues
Returns a dictionary containing the receiver’s initial default values.

public NSDictionary initialValues()

Discussion
These values are used when is no value found for the bound property in defaults (page 1721).

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
setInitialValues (page 1723)
revertToInitialValues (page 1722)

revert
Causes the receiver to discard any unsaved changes to bound user default properties, restoring their previous
values.

public void revert(Object sender)

Discussion
The sender is typically the object that invoked this method.

If appliesImmediately (page 1721) is true, this method only causes any bound editors with uncommitted
changes to discard their edits.

Availability
Available in Mac OS X v10.3 and later.

See Also
revertToInitialValues (page 1722)

revertToInitialValues
Causes the receiver to discard all edits and replace the values of all the user default properties with any
corresponding values in the initialValues (page 1722) dictionary.

public void revertToInitialValues(Object sender)

Discussion
This effectively sets the preferences that a user can change to their “out-of-the-box” values. This method has
no effect if initial values were not specified. The sender is typically the object that invoked this method.

1722 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 137

NSUserDefaultsController

Availability
Available in Mac OS X v10.3 and later.

See Also
initialValues (page 1722)
revert (page 1722)

save
Saves the values of the receiver’s user default properties.

public void save(Object sender)

Discussion
This method has no effect if appliesImmediately (page 1721) returns true.

Availability
Available in Mac OS X v10.3 and later.

setAppliesImmediately
Sets whether any changes made to the receiver’s user default properties are saved immediately.

public void setAppliesImmediately(boolean flag)

Discussion
The default is true.

Availability
Available in Mac OS X v10.3 and later.

See Also
appliesImmediately (page 1721)

setInitialValues
Sets the receiver’s initial values to initialValues.

public void setInitialValues(NSDictionary initialValues)

Discussion
These values are used when a user default properties has no value in NSUserDefaults and by
revertToInitialValues (page 1722).

The initial values must be set before loading a nib that uses the receiver, as those values may be referenced
at load time. It is good practice to set the initial values–along with registering any defaults for the
applications–in the initializing method of your preference dialog controller, or the application delegate.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1723
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 137

NSUserDefaultsController

See Also
defaults (page 1721)
initialValues (page 1722)

1724 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 137

NSUserDefaultsController

Inherits from NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guides Drawing and Views Programming Topics for Cocoa
Cocoa Event-Handling Guide
Drag and Drop Programming Topics for Cocoa
Printing Programming Topics for Cocoa

Class at a Glance

NSView is an abstract class that defines the basic drawing, event-handling, and printing architecture of an
application. You typically don’t interact with the NSView API directly; rather, your custom view classes inherit
from NSView and override many of its methods, which are invoked automatically by the Application Kit. If
you’re not creating a custom view class, there are few methods you need to use.

Principal Attributes

 ■ Event handling

 ■ Integrated display to screen and printer

 ■ Flexible coordinate systems

 ■ Icon dragging

Commonly Used Methods

frame (page 1754)
Returns the NSView’s location and size.

bounds (page 1743)
Returns the NSView’s internal origin and size.

setNeedsDisplay (page 1779)
Marks the NSView as needing to be redrawn.

window (page 1787)
Returns the NSWindow that contains the NSView.

Class at a Glance 1725
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

drawRect (page 1753)
Draws the NSView. (All subclasses must implement this method, but it’s rarely invoked explicitly.)

Overview

NSView is an abstract class that provides concrete subclasses with a structure for drawing, printing, and
handling events. NSViews are arranged within an NSWindow, in a nested hierarchy of subviews. A view object
claims a rectangular region of its enclosing superview, is responsible for all drawing within that region, and
is eligible to receive mouse events occurring in it as well. In addition to these major responsibilities, NSView
handles dragging of icons and works with the NSScrollView class to support efficient scrolling.

Most of the functionality of NSView either is automatically invoked by the Application Kit, or is available in
Interface Builder. Unless you’re implementing a concrete subclass of NSView or working intimately with the
content of the view hierarchy at runtime, you don’t need to know much about this class’s interface. See
“Commonly Used Methods” (page 1725) for methods you might use regardless.

For more information on how NSViews handle event and action messages, see “Handling Events in Views”,
“Handling Mouse Events in Views”, and “Handling Tracking-Rectangle and Cursor-Update Events in Views”.
For more information on displaying tooltips and contextual menus, see “How Contextual Menus Work” and
“Tooltips”.

Subclassing Notes

NSView is perhaps the most important class in the Application Kit when it comes to subclassing and inheritance.
Most user-interface objects you see in a Cocoa application are objects that inherit from NSView. If you want
to create an object that draws itself in a special way, or that responds to mouse clicks in a special way, you
would create a custom subclass of NSView (or of a class that inherits from NSView). Subclassing NSView is
such a common and important procedure that several technical documents describe how to both draw in
custom subclasses and respond to events in custom subclasses. See Drawing and Views Programming Topics
for Cocoa (especially “Drawing in a View”) and Cocoa Event-Handling Guide (especially “Handing Events in
View” and “Handling Mouse Events in Views”).

Tasks

Constructors

NSView (page 1737)
Creates an NSView with a zero-sized frame rectangle.

Managing the View Hierarchy

superview (page 1782)
Returns the receiver’s superview, or null if it has none.

1726 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

subviews (page 1782)
Return the receiver’s immediate subviews.

window (page 1787)
Returns the receiver’s window object, or null if it has none.

addSubview (page 1739)
Inserts aView among the receiver’s subviews so it’s displayed immediately above or below otherView
according to whether place is NSWindow.Above or NSWindow.Below.

didAddSubview (page 1747)
Overridden by subclasses to perform additional actions when subviews are added to the receiver.

removeFromSuperview (page 1768)
Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, and
invalidates its cursor rectangles.

removeFromSuperviewWithoutNeedingDisplay (page 1769)
Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, but
does not invalidate its cursor rectangles to cause redrawing.

replaceSubview (page 1769)
Replaces oldView with newView in the receiver’s subviews.

isDescendantOf (page 1756)
Returns true if the receiver is a subview, immediate or not, of aView, or if it’s identical to aView;
otherwise returns false.

opaqueAncestor (page 1762)
Returns the receiver’s closest opaque ancestor (including the receiver itself).

ancestorSharedWithView (page 1742)
Returns the closest ancestor shared by the receiver and aView, or null if there’s no such object.

viewDidMoveToSuperview (page 1784)
Informs the receiver that its superview has changed (possibly to null).

viewDidMoveToWindow (page 1785)
Informs the receiver that it has been added to a new view hierarchy.

viewWillMoveToSuperview (page 1785)
Informs the receiver that its superview is about to change to newSuperview (which may be null).

viewWillMoveToWindow (page 1785)
Informs the receiver that it’s being added to the view hierarchy of newWindow (which may be null).

willRemoveSubview (page 1787)
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

Searching by Tag

viewWithTag (page 1786)
Returns the receiver’s nearest descendant (including itself) whose tag is aTag, or null if no subview
has that tag.

tag (page 1782)
Returns the receiver’s tag, an integer that you can use to identify view objects in your application.

Tasks 1727
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Modifying the Frame Rectangle

setFrame (page 1776)
Sets the receiver’s frame rectangle to frameRect, thereby repositioning and resizing it within the
coordinate system of its superview.

frame (page 1754)
Returns the receiver’s frame rectangle, which defines its position in its superview.

setFrameOrigin (page 1777)
Sets the origin of the receiver’s frame rectangle to newOrigin, effectively repositioning it within its
superview.

setFrameSize (page 1777)
Sets the size of the receiver’s frame rectangle to newSize, resizing it within its superview without
affecting its coordinate system.

setFrameRotation (page 1777)
Sets the rotation of the receiver’s frame rectangle to angle degrees, rotating it within its superview
without affecting its coordinate system.

frameRotation (page 1755)
Returns the angle, in degrees, of the receiver’s frame relative to its superview’s coordinate system.

Modifying the Bounds Rectangle

setBounds (page 1773)
Sets the receiver’s bounds rectangle to boundsRect.

bounds (page 1743)
Returns the receiver’s bounds rectangle, which expresses its location and size in its own coordinate
system.

setBoundsOrigin (page 1774)
Sets the origin of the receiver’s bounds rectangle to newOrigin, effectively shifting its coordinate
system so newOrigin lies at the origin of the receiver’s frame rectangle.

setBoundsSize (page 1775)
Sets the size of the receiver’s bounds rectangle to newSize, inversely scaling its coordinate system
relative to its frame rectangle.

setBoundsRotation (page 1775)
Sets the rotation of the receiver’s bounds rectangle to angle degrees.

boundsRotation (page 1743)
Returns the angle, in degrees, of the receiver’s bounds rectangle relative to its frame rectangle.

Modifying the Coordinate System

translateOriginToPoint (page 1783)
Translates the receiver’s coordinate system so that its origin moves to newOrigin.

scaleUnitSquareToSize (page 1771)
Scales the receiver’s coordinate system so that the unit square scales to newUnitSize.

1728 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

rotateByAngle (page 1770)
Rotates the receiver’s bounds rectangle by angle degrees around the origin of the coordinate system,
(0.0, 0.0).

Examining Coordinate System Modifications

isFlipped (page 1756)
Returns true if the receiver uses flipped drawing coordinates or false if it uses native coordinates.

isRotatedFromBase (page 1758)
Returns true if the receiver or any of its ancestors has ever received a setFrameRotation (page
1777) or setBoundsRotation (page 1775) message; otherwise returns false.

isRotatedOrScaledFromBase (page 1758)
Returns true if the receiver or any of its ancestors has ever had a nonzero frame or bounds rotation,
or has been scaled from the window’s base coordinate system; otherwise returns false.

Converting Coordinates

convertPointFromView (page 1744)
Converts aPoint from the coordinate system of aView to that of the receiver.

convertPointToView (page 1745)
Converts aPoint from the receiver’s coordinate system to that of aView.

convertSizeFromView (page 1746)
Converts aSize from aView’s coordinate system to that of the receiver.

convertSizeToView (page 1746)
Converts aSize from the receiver’s coordinate system to that of aView.

convertRectFromView (page 1745)
Converts aRect from the coordinate system of aView to that of the receiver.

convertRectToView (page 1745)
Converts aRect from the receiver’s coordinate system to that of aView.

centerScanRect (page 1744)
Converts the corners of aRect to lie on the center of device pixels, which is useful in compensating
for rendering overscanning when the coordinate system has been scaled.

Controlling Notifications

setPostsFrameChangedNotifications (page 1780)
Controls whether the receiver informs observers when its frame rectangle changes.

postsFrameChangedNotifications (page 1763)
Returns true if the receiver posts notifications to the default notification center whenever its frame
rectangle changes; returns false otherwise.

setPostsBoundsChangedNotifications (page 1779)
Controls whether the receiver informs observers when its bounds rectangle changes.

Tasks 1729
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

postsBoundsChangedNotifications (page 1763)
Returns true if the receiver posts notifications to the default notification center whenever its bounds
rectangle changes; returns false otherwise.

Resizing Subviews

resizeSubviewsWithOldSize (page 1770)
Informs the receivers’s subviews that the receiver’s bounds rectangle size has changed from
oldBoundsSize.

resizeWithOldSuperviewSize (page 1770)
Informs the receiver that the bounds size of its superview has changed from oldBoundsSize.

setAutoresizesSubviews (page 1773)
Determines whether the receiver automatically resizes its subviews when its frame size changes.

autoresizesSubviews (page 1742)
Returns true if the receiver automatically resizes its subviews using
resizeSubviewsWithOldSize (page 1770) whenever its frame size changes, false otherwise.

setAutoresizingMask (page 1773)
Determines how the receiver’sresizeWithOldSuperviewSize (page 1770) method changes its frame
rectangle.

autoresizingMask (page 1742)
Returns the receiver’s autoresizing mask, which determines how it’s resized by the
resizeWithOldSuperviewSize (page 1770) method.

Focusing

lockFocus (page 1759)
Locks the focus on the receiver, so subsequent commands take effect in the receiver’s window and
coordinate system.

unlockFocus (page 1783)
Balances an earlier lockFocus (page 1759) message; restoring the focus to the previously focused view
is necessary.

focusView (page 1738)
Returns the currently focused NSView object, or null if there is none.

Displaying

setNeedsDisplay (page 1779)
If flag is true, marks the receiver’s entire bounds as needing display; if flag is false, marks it as
not needing display.

needsDisplay (page 1760)
Returns true if the receiver needs to be displayed, as indicated using setNeedsDisplay (page 1779);
returns false otherwise.

display (page 1747)
Displays the receiver and all its subviews if possible, invoking each NSView’s lockFocus (page 1759),
drawRect (page 1753), and unlockFocus (page 1783) methods as necessary.

1730 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

displayRect (page 1749)
Acts as display (page 1747), confining drawing to aRect.

displayRectIgnoringOpacity (page 1749)
Acts as display (page 1747), but confining drawing to aRect and not backing up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

displayIfNeeded (page 1748)
Displays the receiver and all its subviews if any part of the receiver has been marked as needing
display with a setNeedsDisplay (page 1779)message.

displayIfNeededInRect (page 1748)
Acts as displayIfNeeded (page 1748), confining drawing to aRect.

displayIfNeededIgnoringOpacity (page 1748)
Acts as displayIfNeeded (page 1748), except that this method doesn’t back up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

displayIfNeededInRectIgnoringOpacity (page 1748)
Acts as displayIfNeeded (page 1748), but confining drawing to aRect and not backing up to the
first opaque ancestor—it simply causes the receiver and its descendants to execute their drawing
code.

isOpaque (page 1758)
Overridden by subclasses to return true if the receiver is opaque, false otherwise.

setKeyboardFocusRingNeedsDisplayInRect (page 1778)
Invalidates the area around the focus ring.

defaultFocusRingType (page 1737)

setFocusRingType (page 1776)
Sets the type of focus ring to be drawn around the receiver.

focusRingType (page 1754)
Returns the type of focus ring drawn around the receiver.

Hiding Views

setHidden (page 1778)
Sets whether the receiver is hidden.

isHidden (page 1757)
Returns whether the receiver is marked as hidden.

isHiddenOrHasHiddenAncestor (page 1757)
Returns true if the receiver is marked as hidden or has an ancestor in the view hierarchy that is
marked as hidden; returns false otherwise.

Drawing

drawRect (page 1753)
Overridden by subclasses to draw the receiver’s image within aRect.

visibleRect (page 1786)
Returns the portion of the receiver not clipped by its superviews.

Tasks 1731
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

canDraw (page 1744)
Returns true if drawing commands will produce any result, false otherwise.

shouldDrawColor (page 1781)
Returns false if the receiver is being drawn in an NSWindow (as opposed, for example, to being
printed) and the NSWindow can’t store color; otherwise returns true.

needsToDrawRect (page 1761)
Returns whether rectangle aRect intersects any part of the area that the receiver is being asked to
draw.

rectsBeingDrawn (page 1766)
Returns a list of non-overlapping rectangles that define the area the receiver is being asked to draw
in drawRect (page 1753).

wantsDefaultClipping (page 1787)
Returns whether the Application Kit’s default clipping provided to drawRect (page 1753)
implementations is in effect.

Managing Live Resize

inLiveResize (page 1756)
A convenience method, expected to be called from drawRect (page 1753) to make decisions about
optimized drawing.

preservesContentDuringLiveResize (page 1764)
Returns true if the view supports the optimization of live resize operations by preserving content
that has not moved; otherwise, returns false.

rectsExposedDuringLiveResize (page 1767)
Returns a list of rectangles indicating the newly exposed areas of the receiver.

rectPreservedDuringLiveResize (page 1766)
Returns the rectangle identifying the portion of your view that did not change during a live resize
operation.

viewWillStartLiveResize (page 1785)
Informs the receiver of the start of a live resize.

viewDidEndLiveResize (page 1784)
Informs the receiver of the end of a live resize.

Managing a Graphics State

allocateGState (page 1741)
Causes the receiver to maintain a private graphics state object, which encapsulates all parameters of
the graphics environment.

gState (page 1755)
Returns the identifier for the receiver’s graphics state object, or 0 if the receiver doesn’t have a graphics
state object.

setUpGState (page 1781)
Overridden by subclasses to (re)initialize the receiver’s graphics state object.

1732 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

renewGState (page 1769)
Invalidates the receiver’s graphics state object, if it has one, so it will be regenerated using
setUpGState (page 1781) the next time the receiver is focused for drawing.

releaseGState (page 1768)
Frees the receiver’s graphics state object, if it has one.

Event Handling

acceptsFirstMouse (page 1738)
Overridden by subclasses to return true if the receiver should be sent a mouseDown (page 1192)
message for theEvent, an initial mouse-down event over the receiver in its window, false if not.

hitTest (page 1756)
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains
aPoint, or null if aPoint lies completely outside the receiver.

isMouseInRect (page 1757)
Returns true if aRect contains aPoint (which represents the hot spot of the mouse cursor),
accounting for whether the receiver is flipped or not.

performKeyEquivalent (page 1763)
Implemented by subclasses to respond to key equivalents (also known as shortcuts).

performMnemonic (page 1763)
Implemented by subclasses to respond to mnemonics.

mouseDownCanMoveWindow (page 1760)
Returns true if the receiver does not need to handle a mouse down and can pass it through to the
view; false if it needs to handle the mouse down.

Dragging Operations

concludeDragOperation (page 1744)

dragImage (page 1751)
Initiates a dragging operation from the receiver, allowing the user to drag arbitrary data with a specified
icon into any application that has window or view objects that accept dragged data.

dragFile (page 1749)
Initiates a dragging operation from the receiver, allowing the user to drag a file icon to any application
that has window or view objects that accept files.

registerForDraggedTypes (page 1768)
Registers pboardTypes as the pasteboard types that the receiver will accept as the destination of
an image-dragging session.

draggingEntered (page 1750)

draggingExited (page 1750)
Invoked when the dragged image exits the receiver’s bounds rectangle.

draggingUpdated (page 1750)

Tasks 1733
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

performDragOperation (page 1762)

prepareForDragOperation (page 1764)

unregisterDraggedTypes (page 1784)
Unregisters the receiver as a possible destination in a dragging session.

shouldDelayWindowOrderingForEvent (page 1781)
Overridden by subclasses to allow the user to drag images from the receiver without its window
moving forward and possibly obscuring the destination and without activating the application.

dragPromisedFilesOfTypes (page 1752)
Initiates a dragging operation from the receiver, allowing the user to drag one or more promised files
(or directories) into any application that has window or view objects that accept promised file data.

Managing Cursor Rectangles

addCursorRect (page 1739)
Establishes aCursor as the cursor to be used when the mouse pointer lies within aRect.

removeCursorRect (page 1768)
Completely removes a cursor rectangle from the receiver.

discardCursorRects (page 1747)
Invalidates all cursor rectangles set up using addCursorRect (page 1739).

resetCursorRects (page 1770)
Overridden by subclasses to define their default cursor rectangles.

Managing Tool Tips

setToolTip (page 1780)
Sets the tool tip text for the view to string.

toolTip (page 1783)
Returns the text for the view’s tool tip.

Managing Tracking Rectangles

addTrackingRect (page 1739)
Establishes aRect as an area for tracking mouse-entered and mouse-exited events within the receiver
and returns a tag that identifies the tracking rectangle in NSEvent objects and can be used to remove
the tracking rectangle.

removeTrackingRect (page 1769)
Removes the tracking rectangle identified by aTag, which is the value returned by a previous
addTrackingRect (page 1739) message.

1734 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Scrolling

scrollPoint (page 1772)
Scrolls the receiver’s closest ancestor NSClipView so aPoint in the receiver lies at the origin of the
NSClipView’s bounds rectangle.

scrollRectToVisible (page 1772)
Scrolls the receiver’s closest ancestor NSClipView the minimum distance needed so aRect in the
receiver becomes visible in the NSClipView.

autoscroll (page 1742)
Scrolls the receiver’s closest ancestor NSClipView proportionally to the distance of theEvent outside
of it.

adjustScroll (page 1741)
Overridden by subclasses to modify proposedVisibleRect, returning the altered rectangle.

scrollRect (page 1772)
Copies the visible portion of the receiver’s rendered image within aRect and lays that portion down
again at offset from aRect’s origin.

enclosingScrollView (page 1754)
Returns the nearest ancestor NSScrollView containing the receiver (not including the receiver itself);
otherwise returns null.

scrollClipViewToPoint (page 1771)
Notifies the superview of aClipView that aClipView needs to set its bounds rectangle origin to
newOrigin.

reflectScrolledClipView (page 1767)
Notifies aClipView’s superview that either aClipView’s bounds rectangle or the document view’s
frame rectangle has changed, and that any indicators of the scroll position need to be adjusted.

Context-sensitive Menus

menuForEvent (page 1760)
Overridden by subclasses to return a context-sensitive pop-up menu for the mouse-down event
theEvent.

defaultMenu (page 1738)
Overridden by subclasses to return the default pop-up menu for instances of the receiving class.

Managing the Key View Loop

canBecomeKeyView (page 1743)
Returns whether the receiver can become key view.

needsPanelToBecomeKey (page 1761)
Overridden by subclasses to return true if the receiver requires its panel, which might otherwise
avoid becoming key, to become the key window so that it can handle keyboard input.

setNextKeyView (page 1779)
Inserts aView after the receiver in the key view loop of the receiver’s NSWindow.

nextKeyView (page 1761)
Returns the view object following the receiver in the key view loop, or null if there is none.

Tasks 1735
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

nextValidKeyView (page 1762)
Returns the closest view object in the key view loop that follows the receiver and actually accepts
first responder status, or null if there is none.

previousKeyView (page 1764)
Returns the view object preceding the receiver in the key view loop, or null if there is none.

previousValidKeyView (page 1765)
Returns the closest view object in the key view loop that precedes the receiver and actually accepts
first responder status, or null if there is none.

Printing

print (page 1765)
This action method opens the Print panel, and if the user chooses an option other than canceling,
prints the receiver and all its subviews to the device specified in the Print panel.

dataWithEPSInsideRect (page 1746)
Returns EPS data that draws the region of the receiver within aRect.

dataWithPDFInsideRect (page 1747)
Returns PDF data that draws the region of the receiver within aRect.

writeEPSInsideRectToPasteboard (page 1788)
Writes EPS data that draws the region of the receiver within aRect onto pboard.

writePDFInsideRectToPasteboard (page 1788)
Writes PDF data that draws the region of the receiver within aRect onto pboard.

Pagination

heightAdjustLimit (page 1755)
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as lines of text from being divided across pages.

widthAdjustLimit (page 1787)
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as small images or text columns from being divided
across pages.

adjustPageWidth (page 1740)
Overridden by subclasses to adjust page width during automatic pagination.

adjustPageHeight (page 1740)
Overridden by subclasses to adjust page height during automatic pagination.

knowsPageRange (page 1759)
Returns true if the receiver handles page boundaries.

rectForPage (page 1765)
Implemented by subclasses to determine the portion of the receiver to be printed for the page number
page.

locationOfPrintRect (page 1759)
Invoked by print (page 1765) to determine the location of aRect, the rectangle being printed on the
physical page.

1736 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Adorning Pages in Printout

drawPageBorderWithSize (page 1753)
Allows applications that use the Application Kit pagination facility to draw additional marks on each
logical page, such as alignment marks or a virtual sheet border of size borderSize.

drawSheetBorderWithSize (page 1753)
Allows applications that use the Application Kit pagination facility to draw additional marks on each
printed sheet, such as crop marks or fold lines of size borderSize.

Writing Conforming Rendering Instructions

endPage (page 1754)
Writes the end of a conforming page.

Constructors

NSView
Creates an NSView with a zero-sized frame rectangle.

public NSView()

Creates an NSView with frameRect as its frame rectangle.

public NSView(NSRect frameRect)

Discussion
The new view object must be inserted into the view hierarchy of an NSWindow before it can be used.

See Also
addSubview (page 1739)
setFrame (page 1776)

Static Methods

defaultFocusRingType
public static int defaultFocusRingType()

Discussion
Returns the default type of focus ring for objects of the receiver’s class. If
NSGraphics.FocusRingTypeDefault is returned from the instance method focusRingType (page 1754),
the receiver can invoke this class method to find out what type of focus ring is the default. The receiver is
free to ignore the default setting.Possible return values are listed in the “Constants” (page 727) section of
NSGraphics.

Constructors 1737
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Availability
Available in Mac OS X v10.3 and later.

defaultMenu
Overridden by subclasses to return the default pop-up menu for instances of the receiving class.

public static NSMenu defaultMenu()

Discussion
NSView’s implementation returns null.

See Also
menuForEvent (page 1760)
menu (page 1192) (NSResponder)

focusView
Returns the currently focused NSView object, or null if there is none.

public static NSView focusView()

See Also
lockFocus (page 1759)
unlockFocus (page 1783)

Instance Methods

acceptsFirstMouse
Overridden by subclasses to return true if the receiver should be sent a mouseDown (page 1192) message for
theEvent, an initial mouse-down event over the receiver in its window, false if not.

public boolean acceptsFirstMouse(NSEvent theEvent)

Discussion
The receiver can either return a value unconditionally, or use the location of theEvent to determine whether
or not it wants the event. NSView’s implementation ignores theEvent and returns false.

Override this method in a subclass to allow instances to respond to click-through. This allows the user to
click on a view in an inactive window, activating the view with one click, instead of clicking first to make the
window active and then clicking the view. Most view objects refuse a click-through attempt, so the event
simply activates the window. Many control objects, however, such as NSButton and NSSlider, do accept them,
so the user can immediately manipulate the control without having to release the mouse button.

See Also
hitTest (page 1756)

1738 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

addCursorRect
Establishes aCursor as the cursor to be used when the mouse pointer lies within aRect.

public void addCursorRect(NSRect aRect, NSCursor aCursor)

Discussion
Cursor rectangles aren’t subject to clipping by superviews, nor are they intended for use with rotated NSViews.
You should explicitly confine a cursor rectangle to the NSView’s visible rectangle to prevent improper behavior.

This method is intended to be invoked only by the resetCursorRects (page 1770) method. If invoked in
any other way, the resulting cursor rectangle will be discarded the next time the NSView’s cursor rectangles
are rebuilt.

See Also
removeCursorRect (page 1768)
discardCursorRects (page 1747)
resetCursorRects (page 1770)
visibleRect (page 1786)

addSubview
Inserts aView among the receiver’s subviews so it’s displayed immediately above or below otherView
according to whether place is NSWindow.Above or NSWindow.Below.

public void addSubview(NSView aView, int place, NSView otherView)

Discussion
If otherView is null (or isn’t a subview of the receiver), aView is added above or below all of its new siblings.
Also sets the receiver as the next responder to aView.

Adds aView to the receiver’s subviews so it’s displayed above its siblings.

public void addSubview(NSView aView)

Discussion
Also sets the receiver as the next responder to aView.

See Also
subviews (page 1782)
removeFromSuperview (page 1768)
setNextResponder (page 1198) (NSResponder)
viewWillMoveToSuperview (page 1785)
viewWillMoveToWindow (page 1785)

addTrackingRect
Establishes aRect as an area for tracking mouse-entered and mouse-exited events within the receiver and
returns a tag that identifies the tracking rectangle in NSEvent objects and can be used to remove the tracking
rectangle.

Instance Methods 1739
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

public int addTrackingRect(NSRect aRect, Object userObject, Object userData, boolean
flag)

Discussion
userObject is the object that gets sent the event messages. It can be the receiver itself or some other object
(such as an NSCursor or a custom drawing tool object), as long as it responds to both mouseEntered (page
1192) and mouseExited (page 1193). Your application is responsible for making sure that userObject is
referenced elsewhere so it doesn't get garbage-collected. userData is supplied in the NSEvent object for
each tracking event. flag determines which event is sent first by indicating where the cursor is assumed to
be at the time this method is invoked. If flag is true, the first event will be generated when the cursor
leaves aRect; if flag is false the first event will be generated when the cursor enters it.

Tracking rectangles provide a general mechanism that can be used to trigger actions based on the cursor
location (for example, a status bar or hint field that provides information on the item the cursor lies over).
To simply change the cursor over a particular area, use addCursorRect (page 1739). If you must use tracking
rectangles to change the cursor, the NSCursor class specification describes the additional methods that must
be invoked to change cursors by using tracking rectangles.

Availability
Available in Mac OS X v10.3 and later.

See Also
removeTrackingRect (page 1769)

adjustPageHeight
Overridden by subclasses to adjust page height during automatic pagination.

public float adjustPageHeight(float top, float proposedBottom, float bottomLimit)

Discussion
This method is invoked by print (page 1765) with top and proposedBottom set to the top and bottom
edges of the pending page rectangle in the receiver’s coordinate system. The receiver can raise the bottom
edge and return the new value, allowing it to prevent items such as lines of text from being divided across
pages. bottomLimit is the topmost value the return value can be set to, as calculated using the return value
of heightAdjustLimit (page 1755). If this limit is exceeded, the pagination mechanism simply uses
bottomLimit for the bottom edge.

NSView’s implementation of this method propagates the message to its subviews, allowing nested views to
adjust page height for their drawing as well. An NSButton or other small view, for example, will nudge the
bottom edge up if necessary to prevent itself from being cut in two (thereby pushing it onto an adjacent
page). Subclasses should invoke super’s implementation, if desired, after first making their own adjustments.

Availability
Available in Mac OS X v10.3 and later.

See Also
adjustPageWidth (page 1740)

adjustPageWidth
Overridden by subclasses to adjust page width during automatic pagination.

1740 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

public native float adjustPageWidth(float left, float proposedRight, float
rightLimit)

Discussion
This method is invoked by print (page 1765), with left and proposedRight set to the side edges of the
pending page rectangle in the receiver’s coordinate system. The receiver can pull in the right edge and return
the new value, allowing it to prevent items such as small images or text columns from being divided across
pages. rightLimit is the leftmost value the return value can be set to, as calculated using the return value
ofwidthAdjustLimit (page 1787). If this limit is exceeded, the pagination mechanism simply usesrightLimit
for the right edge.

NSView’s implementation of this method propagates the message to its subviews, allowing nested views to
adjust page width for their drawing as well. An NSButton or other small view, for example, will nudge the
right edge out if necessary to prevent itself from being cut in two (thereby pushing it onto an adjacent page).
Subclasses should invoke super’s implementation, if desired, after first making their own adjustments.

Availability
Available in Mac OS X v10.3 and later.

See Also
adjustPageHeight (page 1740)

adjustScroll
Overridden by subclasses to modify proposedVisibleRect, returning the altered rectangle.

public NSRect adjustScroll(NSRect proposedVisibleRect)

Discussion
NSClipView invokes this method to allow its document view to adjust its position during scrolling. For example,
a custom view object that displays a table of data can adjust the origin of proposedVisibleRect so rows
or columns aren’t cut off by the edge of the enclosing NSClipView. NSView’s implementation simply returns
proposedVisibleRect.

NSClipView only invokes this method during automatic or user controlled scrolling. Its scrollToPoint (page
347) method doesn’t invoke this method, so you can still force a scroll to an arbitrary point.

allocateGState
Causes the receiver to maintain a private graphics state object, which encapsulates all parameters of the
graphics environment.

public void allocateGState()

Discussion
If you do not invoke allocateGState, a graphics state object is constructed from scratch each time the
NSView is focused.

The receiver builds the graphics state parameters using setUpGState (page 1781), then automatically
establishes this graphics state each time the focus is locked on it. A graphics state may improve performance
for view objects that are focused often and need to set many parameters, but use of standard rendering
operators is normally efficient enough.

Instance Methods 1741
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Because graphics states occupy a fair amount of memory, they can actually degrade performance. Be sure
to test application performance with and without the private graphics state before committing to its use.

See Also
setUpGState (page 1781)
gState (page 1755)
renewGState (page 1769)
releaseGState (page 1768)
lockFocus (page 1759)

ancestorSharedWithView
Returns the closest ancestor shared by the receiver and aView, or null if there’s no such object.

public NSView ancestorSharedWithView(NSView aView)

Discussion
Returns this if aView is identical to the receiver.

See Also
isDescendantOf (page 1756)

autoresizesSubviews
Returns true if the receiver automatically resizes its subviews using resizeSubviewsWithOldSize (page
1770) whenever its frame size changes, false otherwise.

public boolean autoresizesSubviews()

See Also
setAutoresizesSubviews (page 1773)

autoresizingMask
Returns the receiver’s autoresizing mask, which determines how it’s resized by the
resizeWithOldSuperviewSize (page 1770) method.

public int autoresizingMask()

Discussion
The autoresizing mask values are listed under the setAutoresizingMask (page 1773) method description.
If the autoresizing mask is equal to ViewNotSizable (that is, if none of the options are set), then the receiver
doesn’t resize at all in resizeWithOldSuperviewSize (page 1770).

autoscroll
Scrolls the receiver’s closest ancestor NSClipView proportionally to the distance of theEvent outside of it.

public boolean autoscroll(NSEvent theEvent)

1742 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
The location of theEvent should be expressed in the window’s base coordinate system (which it normally
is), not the receiving view object’s. Returns true if any scrolling is performed; otherwise returns false.

View objects that track mouse-dragged events can use this method to scroll automatically when the cursor
is dragged outside of the NSClipView. Repeated invocations of this method (with an appropriate delay) result
in continual scrolling, even when the mouse doesn’t move.

See Also
autoscroll (page 344) (NSClipView)
scrollPoint (page 1772)
isDescendantOf (page 1756)

bounds
Returns the receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

public NSRect bounds()

Discussion
The bounds rectangle may be rotated; use the boundsRotation (page 1743) method to check this.

See Also
frame (page 1754)
setBounds (page 1773)

boundsRotation
Returns the angle, in degrees, of the receiver’s bounds rectangle relative to its frame rectangle.

public float boundsRotation()

Discussion
See the setBoundsRotation (page 1775) method description for more information on bounds rotation.

See Also
rotateByAngle (page 1770)
setBoundsRotation (page 1775)

canBecomeKeyView
Returns whether the receiver can become key view.

public boolean canBecomeKeyView()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1743
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

canDraw
Returns true if drawing commands will produce any result, false otherwise.

public boolean canDraw()

Discussion
Use this method when invoking a draw method directly along with lockFocus (page 1759) and
unlockFocus (page 1783), bypassing the display... methods (which test drawing ability and perform
locking for you). If this method returns false, you shouldn’t invoke lockFocus (page 1759) or perform any
drawing.

An NSView can draw on-screen if it is not hidden, it is attached to a view hierarchy in an NSWindow, and the
NSWindow has a corresponding window device. An NSView can draw during printing if it is a descendant of
the view being printed.

See Also
setHidden (page 1778)

centerScanRect
Converts the corners of aRect to lie on the center of device pixels, which is useful in compensating for
rendering overscanning when the coordinate system has been scaled.

public NSRect centerScanRect(NSRect aRect)

Discussion
This method converts the given rectangle to device coordinates, adjusts the rectangle to lie in the center of
the pixels, and converts the resulting rectangle back to the receiver’s coordinate system. Returns the adjusted
rectangle. Note that this method does not take into account any transformations performed using
NSAffineTransform or Quartz 2D routines.

See Also
isRotatedOrScaledFromBase (page 1758)

concludeDragOperation
public void concludeDragOperation(NSDraggingInfo draggingInfo)

Discussion
Invoked when the dragging operation is complete and the previous performDragOperation (page 1762)
returned true. draggingInfo contains information about the operation. This method allows you to perform
any tidying up that is needed, such as updating the visual representation now the dragged data has been
incorporated. This message is the last message sent during a dragging session.

convertPointFromView
Converts aPoint from the coordinate system of aView to that of the receiver.

public NSPoint convertPointFromView(NSPoint aPoint, NSView aView)

1744 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
If aView is null, this method instead converts from window base coordinates. Both aView and the receiver
must belong to the same NSWindow. Returns the converted point.

See Also
convertRectFromView (page 1745)
convertSizeFromView (page 1746)
ancestorSharedWithView (page 1742)
contentView (page 1824) (NSWindow)

convertPointToView
Converts aPoint from the receiver’s coordinate system to that of aView.

public NSPoint convertPointToView(NSPoint aPoint, NSView aView)

Discussion
If aView is null, this method instead converts to window base coordinates. Both aView and the receiver
must belong to the same NSWindow. Returns the converted point.

See Also
convertRectToView (page 1745)
convertSizeToView (page 1746)
ancestorSharedWithView (page 1742)
contentView (page 1824) (NSWindow)

convertRectFromView
Converts aRect from the coordinate system of aView to that of the receiver.

public NSRect convertRectFromView(NSRect aRect, NSView aView)

Discussion
If aView is null, this method instead converts from window base coordinates. Both aView and the receiver
must belong to the same NSWindow. Returns the converted rectangle.

See Also
convertPointFromView (page 1744)
convertSizeFromView (page 1746)
ancestorSharedWithView (page 1742)
contentView (page 1824) (NSWindow)

convertRectToView
Converts aRect from the receiver’s coordinate system to that of aView.

public NSRect convertRectToView(NSRect aRect, NSView aView)

Instance Methods 1745
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
If aView is null, this method instead converts to window base coordinates. Both aView and the receiver
must belong to the same NSWindow. Returns the converted rectangle.

See Also
convertPointToView (page 1745)
convertSizeToView (page 1746)
ancestorSharedWithView (page 1742)
contentView (page 1824) (NSWindow)

convertSizeFromView
Converts aSize from aView’s coordinate system to that of the receiver.

public NSSize convertSizeFromView(NSSize aSize, NSView aView)

Discussion
If aView is null, this method instead converts from window base coordinates. Both aView and the receiver
must belong to the same NSWindow. Returns the converted size.

See Also
convertPointFromView (page 1744)
convertRectFromView (page 1745)
ancestorSharedWithView (page 1742)
contentView (page 1824) (NSWindow)

convertSizeToView
Converts aSize from the receiver’s coordinate system to that of aView.

public NSSize convertSizeToView(NSSize aSize, NSView aView)

Discussion
If aView is null, this method instead converts to window base coordinates. Both aView and the receiver
must belong to the same NSWindow. Returns the converted size.

See Also
convertPointToView (page 1745)
convertRectToView (page 1745)
ancestorSharedWithView (page 1742)
contentView (page 1824) (NSWindow)

dataWithEPSInsideRect
Returns EPS data that draws the region of the receiver within aRect.

public NSData dataWithEPSInsideRect(NSRect aRect)

Discussion
This data can be placed on an NSPasteboard, written to a file, or used to create an NSImage object.

1746 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
writeEPSInsideRectToPasteboard (page 1788)

dataWithPDFInsideRect
Returns PDF data that draws the region of the receiver within aRect.

public NSData dataWithPDFInsideRect(NSRect aRect)

Discussion
This data can be placed on an NSPasteboard, written to a file, or used to create an NSImage object.

See Also
writePDFInsideRectToPasteboard (page 1788)

didAddSubview
Overridden by subclasses to perform additional actions when subviews are added to the receiver.

public void didAddSubview(NSView subview)

Discussion
Invoked by addSubview (page 1739).

discardCursorRects
Invalidates all cursor rectangles set up using addCursorRect (page 1739).

public void discardCursorRects()

Discussion
You need never invoke this method directly; it’s invoked automatically before the NSView’s cursor rectangles
are reestablished using resetCursorRects (page 1770).

See Also
discardCursorRects (page 1828) (NSWindow)

display
Displays the receiver and all its subviews if possible, invoking each NSView’s lockFocus (page 1759),
drawRect (page 1753), and unlockFocus (page 1783) methods as necessary.

public void display()

Discussion
If the receiver isn’t opaque, this method backs up the view hierarchy to the first opaque ancestor, calculates
the portion of the opaque ancestor covered by the receiver, and begins displaying from there.

See Also
canDraw (page 1744)
opaqueAncestor (page 1762)

Instance Methods 1747
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

visibleRect (page 1786)
displayIfNeededIgnoringOpacity (page 1748)

displayIfNeeded
Displays the receiver and all its subviews if any part of the receiver has been marked as needing display with
a setNeedsDisplay (page 1779)message.

public void displayIfNeeded()

Discussion
This method invokes NSView’slockFocus (page 1759),drawRect (page 1753), andunlockFocus (page 1783)
methods as necessary. If the receiver isn’t opaque, this method backs up the view hierarchy to the first opaque
ancestor, calculates the portion of the opaque ancestor covered by the receiver, and begins displaying from
there.

See Also
display (page 1747)
needsDisplay (page 1760)
displayIfNeededIgnoringOpacity (page 1748)

displayIfNeededIgnoringOpacity
Acts asdisplayIfNeeded (page 1748), except that this method doesn’t back up to the first opaque ancestor—it
simply causes the receiver and its descendants to execute their drawing code.

public void displayIfNeededIgnoringOpacity()

displayIfNeededInRect
Acts as displayIfNeeded (page 1748), confining drawing to aRect.

public void displayIfNeededInRect(NSRect aRect)

Discussion
The argument you pass for aRect should be specified in the coordinate system of the receiver.

displayIfNeededInRectIgnoringOpacity
Acts asdisplayIfNeeded (page 1748), but confining drawing toaRect and not backing up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

public void displayIfNeededInRectIgnoringOpacity(NSRect aRect)

Discussion
The argument you pass for aRect should be specified in the coordinate system of the receiver.

1748 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

displayRect
Acts as display (page 1747), confining drawing to aRect.

public void displayRect(NSRect aRect)

Discussion
The argument you pass for aRect should be specified in the coordinate system of the receiver.

displayRectIgnoringOpacity
Acts as display (page 1747), but confining drawing to aRect and not backing up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

public void displayRectIgnoringOpacity(NSRect aRect)

Discussion
The argument you pass for aRect should be specified in the coordinate system of the receiver.

dragFile
Initiates a dragging operation from the receiver, allowing the user to drag a file icon to any application that
has window or view objects that accept files.

public boolean dragFile(String fullPath, NSRect aRect, boolean slideBack, NSEvent
theEvent)

Discussion
This method must be invoked only within an implementation of the mouseDown (page 1192) method. Returns
true if the receiver successfully initiates the dragging operation (which doesn’t necessarily mean the dragging
operation concluded successfully). Otherwise returns false.

The dragging operation uses these arguments:

 ■ The fullPath argument is the absolute path for the file to be dragged.

 ■ The aRect argument describes the position of the icon in the receiver’s coordinate system.

 ■ The slideBack argument indicates whether the icon being dragged should slide back to its position
in the receiver if the file isn’t accepted. The icon slides back to aRect if slideBack is true, the file is
not accepted by the dragging destination, and the user has not disabled icon animation; otherwise it
simply disappears.

 ■ The theEvent argument is the mouse-down event object from which to initiate the drag operation. In
particular, its mouse location is used for the offset of the icon being dragged.

See the NSDraggingSource (page 1965), NSDraggingInfo (page 1959), and NSDraggingDestination (page 1955)
interface specifications for more information on dragging operations.

See Also
dragImage (page 1751)
shouldDelayWindowOrderingForEvent (page 1781)

Instance Methods 1749
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

draggingEntered
public int draggingEntered(NSDraggingInfo draggingInfo)

Discussion
Invoked when a dragged image enters the receiver. Specifically, this method is invoked when the mouse
pointer enters the receiver’s bounds rectangle. draggingInfo contains information about the dragging
operation.

Returns a value indicating which dragging operation will be performed when the image is released. In deciding
which dragging operation to return, you should evaluate the overlap between both the dragging operations
allowed by the source and the dragging operations and pasteboard data types the receiver supports. The
returned value should be one of the following:

MeaningOption

The data represented by the image will be copied.NSDraggingInfo.DragOperationCopy

The data will be shared.NSDraggingInfo.DragOperationLink

The operation will be defined by the destination.NSDraggingInfo.DragOperationGeneric

The operation is negotiated privately between the source
and the destination.

NSDraggingInfo.DragOperationPrivate

Combines all the above.NSDraggingInfo.DragOperationEvery

If none of the operations is appropriate, returns NSDraggingInfo.DragOperationNone.

See Also
draggingUpdated (page 1750)
draggingExited (page 1750)

draggingExited
Invoked when the dragged image exits the receiver’s bounds rectangle.

public int draggingExited(NSDraggingInfo draggingInfo)

Discussion
draggingInfo contains information about the dragging operation.

draggingUpdated
public int draggingUpdated(NSDraggingInfo draggingInfo)

Discussion
Invoked periodically as the dragged image is held within the receiver. The messages continue until the image
is either released or dragged out of the receiver. draggingInfo contains information about the dragging
operation. Returns one of the dragging operation options listed under draggingEntered (page 1750).

1750 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

This method provides you with an opportunity to modify the dragging operation depending on the position
of the mouse pointer inside of the receiver. For example, you may have several graphics or areas of text
contained within the same view and wish to tailor the dragging operation, or to ignore the drag event
completely, depending upon which object is underneath the mouse pointer at the time when the user
releases the dragged image and performDragOperation (page 1762) is invoked.

You typically examine the contents of the pasteboard in draggingEntered (page 1750), as this method is
invoked only once, rather than in this method, which is invoked multiple times.

Only one view at a time receives a sequence of draggingUpdated messages. If the mouse pointer is within
the bounds of two overlapping views that are both valid destinations, the uppermost view receives these
messages until the image is either released or dragged out.

See Also
draggingExited (page 1750)
prepareForDragOperation (page 1764)

dragImage
Initiates a dragging operation from the receiver, allowing the user to drag arbitrary data with a specified icon
into any application that has window or view objects that accept dragged data.

public void dragImage(NSImage anImage, NSPoint imageLoc, NSSize mouseOffset, NSEvent
theEvent, NSPasteboard pboard, Object sourceObject, boolean slideBack)

Discussion
This method must be invoked only within an implementation of the mouseDown (page 1192) or
mouseDragged (page 1192) methods.

The dragging operation uses these arguments:

 ■ The anImage argument is the NSImage to be dragged.

 ■ The imageLoc argument is the location of the image’s lower-left corner, in the receiver’s coordinate
system. It determines the placement of the dragged image under the cursor.

 ■ The mouseOffset argument is the mouse’s current location relative to the mouse-down location. In
Mac OS X v10.4 and later, this parameter is ignored. In earlier versions of Mac OS X, this parameter is
ignored when positioning the dragged image on screen but not ignored when passing the drag location
to the source in draggedImage:endedAt:operation:.

The argument determines the initial location of the image when dragging commences. If you initiate a
dragging operation immediately on a mouse-down event, this location should be (0.0, 0.0). If you test
for a mouse-dragged event first, this location should be the difference between the mouse-dragged
event’s location and that of the mouse-down event.

 ■ The theEvent argument is the left mouse-down event that triggered the dragging operation (see below).

 ■ The pboard argument holds the data to be transferred to the destination (see below).

 ■ The sourceObject argument serves as the controller of the dragging operation. It must conform to
the NSDraggingSource interface and is typically the receiver itself or its NSWindow.

 ■ The slideBack argument determines whether the NSImage should slide back if it’s rejected. The image
slides back to aPoint if slideBack is true, the image isn’t accepted by the dragging destination, and
the user hasn’t disabled icon animation; otherwise it simply disappears.

Instance Methods 1751
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Before invoking this method, you must place the data to be transferred on pboard. To do this, get the drag
pasteboard object (NSPasteboard.DragPboard), declare the types of the data, and then put the data on
the pasteboard.

See the NSDraggingSource (page 1965), NSDraggingInfo (page 1959), and NSDraggingDestination (page 1955)
interface specifications for more information on dragging operations.

See Also
dragFile (page 1749)
shouldDelayWindowOrderingForEvent (page 1781)

dragPromisedFilesOfTypes
Initiates a dragging operation from the receiver, allowing the user to drag one or more promised files (or
directories) into any application that has window or view objects that accept promised file data.

public boolean dragPromisedFilesOfTypes(NSArray typeArray, NSRect aRect, Object
sourceObject, boolean slideBack, NSEvent theEvent)

Discussion
Returns true if the drag operation is initiated successfully. This method must be invoked only within an
implementation of the mouseDown (page 1192) method. As part of its implementation, this method invokes
dragImage (page 1751).

Promised files are files that do not exist, yet, but that the drag source, sourceObject, promises to create at
a file system location specified by the drag destination when the drag is successfully dropped.The dragging
operation uses these arguments:

 ■ The typeArray argument is the list of file types being promised. The array elements can consist of file
extensions and HFS types encoded with the NSHFSFileTypes method fileTypeForHFSTypeCode. If
promising a directory of files, only include the top directory in the array.

 ■ The aRect argument describes the position of the icon in the receiver’s coordinate system.

 ■ The sourceObject argument serves as the controller of the dragging operation. It must conform to
the NSDraggingSource interface, and is typically the receiver itself or its NSWindow.

 ■ The slideBack argument indicates whether the icon being dragged should slide back to its position
in the receiver if the file isn’t accepted. The icon slides back to aRect if slideBack is true, the promised
files are not accepted by the dragging destination, and the user has not disabled icon animation; otherwise
it simply disappears.

 ■ The theEvent argument is the mouse-down event object from which to initiate the drag operation. In
particular, its mouse location is used for the offset of the icon being dragged.

See “Drag and Drop” for more information on dragging operations.

Availability
Available in Mac OS X v10.2 and later.

See Also
dragImage (page 1751)
shouldDelayWindowOrderingForEvent (page 1781)

1752 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

drawPageBorderWithSize
Allows applications that use the Application Kit pagination facility to draw additional marks on each logical
page, such as alignment marks or a virtual sheet border of size borderSize.

public void drawPageBorderWithSize(NSSize borderSize)

Discussion
The default implementation doesn’t draw anything.

See Also
drawSheetBorderWithSize (page 1753)

drawRect
Overridden by subclasses to draw the receiver’s image within aRect.

public void drawRect(NSRect aRect)

Discussion
The receiver can assume the focus has been locked and the coordinate transformations of its frame and
bounds rectangles have been applied; all it needs to do is invoke rendering client functions. aRect is a
rectangle defining the area that the receiver is being asked to draw. On Mac OS X version 10.2 and earlier,
the Application Kit automatically clips any drawing you perform in this method to this rectangle. On Mac OS
X version 10.3 and later, the Application Kit automatically clips drawing to a list of non-overlapping rectangles
that more rigorously specify the area needing drawing. You can invoke the rectsBeingDrawn (page 1766)
method to retrieve this list of rectangles and use them to constrain your drawing more tightly, if you wish.
Moreover, the needsToDrawRect (page 1761) method gives you a convenient way to test individual objects
for intersection with the rectangles in the list. See “Drawing in a View” for information and references on
drawing.

The default NSView implementation does nothing. If your custom view is a direct NSView subclass you do
not need to call super's implementation. Note that it is the responsibility of each subclass to totally fill aRect
if its superclass’ implementation actually draws and returns false from isOpaque (page 1758).

See Also
display (page 1747)
rectsBeingDrawn (page 1766)
isFlipped (page 1756)
needsToDrawRect (page 1761)
shouldDrawColor (page 1781)

drawSheetBorderWithSize
Allows applications that use the Application Kit pagination facility to draw additional marks on each printed
sheet, such as crop marks or fold lines of size borderSize.

public void drawSheetBorderWithSize(NSSize borderSize)

Discussion
This method has been deprecated.

Instance Methods 1753
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
drawPageBorderWithSize (page 1753)

enclosingScrollView
Returns the nearest ancestor NSScrollView containing the receiver (not including the receiver itself); otherwise
returns null.

public NSScrollView enclosingScrollView()

endPage
Writes the end of a conforming page.

public void endPage()

Discussion
This method is invoked after each page is printed. It invokes unlockFocus (page 1783). This method also
generates comments for the bounding box and page fonts, if they were specified as being at the end of the
page.

focusRingType
Returns the type of focus ring drawn around the receiver.

public native int focusRingType()

Discussion
Possible values are listed in the “Constants” (page 727) section of NSGraphics.You can disable a view’s drawing
of its focus ring by overriding this method to return NSGraphics.FocusRingTypeNone, or by invoking
setFocusRingType (page 1776) with and argument of NSGraphics.FocusRingTypeNone. You should only
disable the default drawing of a view’s focus ring if you want it to draw its own focus ring (for example,
setting the background color of the view), or if the view does not have sufficient space to display a focus
ring.

Availability
Available in Mac OS X v10.3 and later.

See Also
setFocusRingType (page 1776)

frame
Returns the receiver’s frame rectangle, which defines its position in its superview.

public NSRect frame()

Discussion
The frame rectangle may be rotated; use the frameRotation (page 1755) method to check this.

1754 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
bounds (page 1743)
setFrame (page 1776)

frameRotation
Returns the angle, in degrees, of the receiver’s frame relative to its superview’s coordinate system.

public float frameRotation()

See Also
setFrameRotation (page 1777)
boundsRotation (page 1743)

gState
Returns the identifier for the receiver’s graphics state object, or 0 if the receiver doesn’t have a graphics state
object.

public int gState()

Discussion
A view object’s graphics state object is recreated from scratch whenever the view is focused, unless the
allocateGState (page 1741) method has been invoked. So if the receiver hasn’t been focused or hasn’t
received the allocateGState (page 1741) message, this method returns 0.

Although applications rarely need to use the value returned by gState (page 1755), it can be passed to the
few methods that take an object identifier as a parameter.

See Also
allocateGState (page 1741)
setUpGState (page 1781)
renewGState (page 1769)
releaseGState (page 1768)
lockFocus (page 1759)

heightAdjustLimit
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during automatic
pagination to prevent items such as lines of text from being divided across pages.

public float heightAdjustLimit()

Discussion
This fraction is used to calculate the bottom edge limit for an adjustPageHeight (page 1740) message.

See Also
widthAdjustLimit (page 1787)

Instance Methods 1755
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

hitTest
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains aPoint,
or null if aPoint lies completely outside the receiver.

public NSView hitTest(NSPoint aPoint)

Discussion
aPoint is in the coordinate system of the receiver’s superview, not of the receiver itself. This method ignores
hidden views.

This method is used primarily by an NSWindow to determine which NSView should receive a mouse-down
event. You’d rarely need invoke this method, but you might want to override it to have a view object hide
mouse-down events from its subviews.

See Also
isMouseInRect (page 1757)
convertPointToView (page 1745)
setHidden (page 1778)

inLiveResize
A convenience method, expected to be called from drawRect (page 1753) to make decisions about optimized
drawing.

public boolean inLiveResize()

See Also
viewDidEndLiveResize (page 1784)
viewWillStartLiveResize (page 1785)

isDescendantOf
Returns true if the receiver is a subview, immediate or not, of aView, or if it’s identical to aView; otherwise
returns false.

public boolean isDescendantOf(NSView aView)

See Also
superview (page 1782)
subviews (page 1782)
ancestorSharedWithView (page 1742)

isFlipped
Returns true if the receiver uses flipped drawing coordinates or false if it uses native coordinates.

public boolean isFlipped()

1756 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
NSView’s implementation returns false; subclasses that use flipped coordinates should override this method
to return true.

isHidden
Returns whether the receiver is marked as hidden.

public boolean isHidden()

Discussion
The return value reflects the state of the receiver only, as set in Interface Builder or through the most recent
setHidden (page 1778) message, and does not account for the state of the receiver’s ancestors in the view
hierarchy, Thus this method returns false when the receiver is effectively hidden because it has a hidden
ancestor. See setHidden for a discussion of the mechanics and implications of hidden views.

If you want to determine whether a view is effectively hidden, for whatever reason, send the
isHiddenOrHasHiddenAncestor (page 1757) to the view instead.

Availability
Available in Mac OS X v10.3 and later.

isHiddenOrHasHiddenAncestor
Returns true if the receiver is marked as hidden or has an ancestor in the view hierarchy that is marked as
hidden; returns false otherwise.

public boolean isHiddenOrHasHiddenAncestor()

Discussion
The return value reflects state set through the setHidden (page 1778) method in the receiver of one of its
ancestors in the view hierarchy. It does not account for other reasons why a view might be considered hidden,
such as being positioned outside its superview’s bounds, not having a window, or residing in a window that
is offscreen or overlapped by another window.

Availability
Available in Mac OS X v10.3 and later.

See Also
isHidden (page 1757)

isMouseInRect
Returns true if aRect contains aPoint (which represents the hot spot of the mouse cursor), accounting for
whether the receiver is flipped or not.

public boolean isMouseInRect(NSPoint aPoint, NSRect aRect)

Discussion
aPoint and aRect must be expressed in the receiver’s coordinate system.

Instance Methods 1757
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Point-in-rectangle functions generally assume that the bottom edge of a rectangle is outside of the rectangle
boundaries, while the upper edge is inside the boundaries. This method views aRect from the point of view
of the user—that is, this method always treats the bottom edge of the rectangle as the one closest to the
bottom edge of the user’s screen. By making this adjustment, this function ensures consistent mouse-detection
behavior from the user’s perspective.

See Also
hitTest (page 1756)
isFlipped (page 1756)
convertPointFromView (page 1744)

isOpaque
Overridden by subclasses to return true if the receiver is opaque, false otherwise.

public boolean isOpaque()

Discussion
A view object is opaque if it completely covers its frame rectangle when drawing itself. NSView, being an
abstract class, performs no drawing at all and so returns false.

See Also
opaqueAncestor (page 1762)
displayRectIgnoringOpacity (page 1749)
displayIfNeededIgnoringOpacity (page 1748)
displayIfNeededInRectIgnoringOpacity (page 1748)

isRotatedFromBase
Returns true if the receiver or any of its ancestors has ever received a setFrameRotation (page 1777) or
setBoundsRotation (page 1775) message; otherwise returns false.

public boolean isRotatedFromBase()

Discussion
The intent of this information is to optimize drawing and coordinate calculation, not necessarily to reflect
the exact state of the receiver’s coordinate system, so it may not reflect the actual rotation. For example, if
an NSView is rotated to 45 degrees and later back to 0, this method still returns true.

See Also
frameRotation (page 1755)
boundsRotation (page 1743)

isRotatedOrScaledFromBase
Returns true if the receiver or any of its ancestors has ever had a nonzero frame or bounds rotation, or has
been scaled from the window’s base coordinate system; otherwise returns false.

public boolean isRotatedOrScaledFromBase()

1758 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
The intent of this information is to optimize drawing and coordinate calculation, not necessarily to reflect
the exact state of the receiver’s coordinate system, so it may not reflect the actual rotation or scaling. For
example, if an NSView is rotated to 45 degrees and later back to 0, this method still returns true.

See Also
frameRotation (page 1755)
boundsRotation (page 1743)
centerScanRect (page 1744)
setBounds (page 1773)
setBoundsSize (page 1775)
scaleUnitSquareToSize (page 1771)

knowsPageRange
Returns true if the receiver handles page boundaries.

public boolean knowsPageRange(NSMutableRange aRange)

Discussion
Returns false if the receiver uses NSView’s default auto-pagination mechanism. If it returns true, the page
range is returned in aRange. Page numbers are one-based, that is pages run from one to N.

The default implementation returns false. Override this method if your class handles page boundaries.

locationOfPrintRect
Invoked by print (page 1765) to determine the location of aRect, the rectangle being printed on the physical
page.

public NSPoint locationOfPrintRect(NSRect aRect)

Discussion
The return value of this method is used to set the origin for aRect, whose size the receiver can examine in
order to properly place it. Both the rectangle and the returned location are expressed in the default coordinate
system of the page.

NSView’s implementation places aRect according to the status of the NSPrintInfo object for the print job.
By default it places the image in the upper-left corner of the page, but if NSPrintInfo’s
isHorizontallyCentered (page 1142) or isVerticallyCentered (page 1142) method returns true, it
centers a single-page image along the appropriate axis. A multiple-page document, however, is always placed
so the divided pieces can be assembled at their edges.

lockFocus
Locks the focus on the receiver, so subsequent commands take effect in the receiver’s window and coordinate
system.

public void lockFocus()

Instance Methods 1759
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
If you don’t use a display... method to draw an NSView, you must invoke lockFocus before invoking
methods that send commands to the window server, and must balance it with an unlockFocus (page 1783)
message when finished.

See Also
focusView (page 1738)
display (page 1747)
drawRect (page 1753)

menuForEvent
Overridden by subclasses to return a context-sensitive pop-up menu for the mouse-down event theEvent.

public NSMenu menuForEvent(NSEvent theEvent)

Discussion
The receiver can use information in the mouse event, such as its location over a particular element of the
receiver, to determine what kind of menu to return. For example, a text object might display a text-editing
menu when the cursor lies over text and a menu for changing graphics attributes when the cursor lies over
an embedded image.

NSView’s implementation returns the receiver’s normal menu.

See Also
defaultMenu (page 1738)
menu (page 1192) (NSResponder)

mouseDownCanMoveWindow
Returns true if the receiver does not need to handle a mouse down and can pass it through to the view;
false if it needs to handle the mouse down.

public boolean mouseDownCanMoveWindow()

Discussion
This allows iApp-type applications to properly determine the region by which a window can be moved. By
default, this method returns false if the view is opaque; otherwise, it returns true. Subclasses can override
this method to return a different value.

Availability
Available in Mac OS X v10.2 and later.

needsDisplay
Returns true if the receiver needs to be displayed, as indicated using setNeedsDisplay (page 1779); returns
false otherwise.

public boolean needsDisplay()

1760 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
The displayIfNeeded...methods check this status to avoid unnecessary drawing, and all display methods
clear this status to indicate that the view object is up to date.

needsPanelToBecomeKey
Overridden by subclasses to return true if the receiver requires its panel, which might otherwise avoid
becoming key, to become the key window so that it can handle keyboard input.

public boolean needsPanelToBecomeKey()

Discussion
Such a subclass should also override acceptsFirstResponder (page 1189) to return true. NSView’s
implementation returns false.

See Also
becomesKeyOnlyIfNeeded (page 1053) (NSPanel)

needsToDrawRect
Returns whether rectangle aRect intersects any part of the area that the receiver is being asked to draw.

public boolean needsToDrawRect(NSRect aRect)

Discussion
You typically send this message from within a drawRect (page 1753) implementation. It gives you a convenient
way to determine whether any part of a given graphical entity might need to be drawn. It is optimized to
efficiently reject any rectangle that lies outside the bounding box of the area the receiver is being asked to
draw in drawRect.

Availability
Available in Mac OS X v10.3 and later.

nextKeyView
Returns the view object following the receiver in the key view loop, or null if there is none.

public NSView nextKeyView()

Discussion
This view should, if possible, be made first responder when the user navigates forward from the receiver
using keyboard interface control.

See Also
nextValidKeyView (page 1762)
setNextKeyView (page 1779)
previousKeyView (page 1764)
previousValidKeyView (page 1765)
selectNextKeyView (page 1852) (NSWindow)
selectKeyViewFollowingView (page 1852) (NSWindow)
selectPreviousKeyView (page 1853) (NSWindow)

Instance Methods 1761
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

selectKeyViewPrecedingView (page 1852) (NSWindow)

nextValidKeyView
Returns the closest view object in the key view loop that follows the receiver and actually accepts first
responder status, or null if there is none.

public NSView nextValidKeyView()

Discussion
This method ignores hidden views when it determines the next valid key view.

See Also
nextKeyView (page 1761)
setNextKeyView (page 1779)
previousKeyView (page 1764)
previousValidKeyView (page 1765)
selectNextKeyView (page 1852) (NSWindow)
selectKeyViewFollowingView (page 1852) (NSWindow)
selectPreviousKeyView (page 1853) (NSWindow)
selectKeyViewPrecedingView (page 1852) (NSWindow)
setHidden (page 1778)

opaqueAncestor
Returns the receiver’s closest opaque ancestor (including the receiver itself).

public NSView opaqueAncestor()

See Also
isOpaque (page 1758)
displayRectIgnoringOpacity (page 1749)
displayIfNeededIgnoringOpacity (page 1748)
displayIfNeededInRectIgnoringOpacity (page 1748)

performDragOperation
public boolean performDragOperation(NSDraggingInfo draggingInfo)

Discussion
Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation (page 1764) message has returned true. draggingInfo contains information
about the dragging operation. This method should do the real work of importing the pasteboard data
represented by the image. If the receiver accepts the data, returns true, otherwise returns false.

See Also
concludeDragOperation (page 1744)

1762 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

performKeyEquivalent
Implemented by subclasses to respond to key equivalents (also known as shortcuts).

public boolean performKeyEquivalent(NSEvent theEvent)

Discussion
If the receiver’s key equivalent is the same as the characters of the key-down event theEvent, as returned
by charactersIgnoringModifiers (page 612), it should take the appropriate action and return true.
Otherwise, it should return the result of invoking super’s implementation. NSView’s implementation of this
method simply passes the message down the view hierarchy (from superviews to subviews) and returns
false if none of the receiver’s subviews responds true.

See Also
performMnemonic (page 1763)
keyDown (page 1840) (NSWindow)

performMnemonic
Implemented by subclasses to respond to mnemonics.

public boolean performMnemonic(String aString)

Discussion
If the receiver’s mnemonic is the same as the characters of the string aString, it should take the appropriate
action and return true. Otherwise, it should return the result of invoking super’s implementation. NSView’s
implementation of this method simply passes the message down the view hierarchy (from superviews to
subviews) and returns false if none of the receiver’s subviews responds true. Mnemonics are not supported
in Mac OS X.

See Also
performKeyEquivalent (page 1763)
keyDown (page 1840) (NSWindow)

postsBoundsChangedNotifications
Returns true if the receiver posts notifications to the default notification center whenever its bounds rectangle
changes; returns false otherwise.

public boolean postsBoundsChangedNotifications()

Discussion
See setPostsBoundsChangedNotifications (page 1779) for a list of methods that result in notifications.

postsFrameChangedNotifications
Returns true if the receiver posts notifications to the default notification center whenever its frame rectangle
changes; returns false otherwise.

public boolean postsFrameChangedNotifications()

Instance Methods 1763
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
See setPostsBoundsChangedNotifications (page 1779) for a list of methods that result in notifications.

prepareForDragOperation
public boolean prepareForDragOperation(NSDraggingInfo draggingInfo)

Discussion
Invoked when the image is released, if the most recent draggingEntered (page 1750) or
draggingUpdated (page 1750) message returned an acceptable drag-operation value.draggingInfo contains
information about the dragging operation. Returns true if the receiver agrees to perform the drag operation
and false if not.

See Also
performDragOperation (page 1762)

preservesContentDuringLiveResize
Returns true if the view supports the optimization of live resize operations by preserving content that has
not moved; otherwise, returns false.

public boolean preservesContentDuringLiveResize()

Discussion
The default is false. If your view supports the content preservation feature, you should override this method
and have your implementation return true.

Content preservation lets your view decide what to redraw during a live resize operation. If your view supports
this feature, you should also provide a custom implementation of setFrameSize (page 1777) that invalidates
the portions of your view that actually need to be redrawn.

For information on how to implement this feature in your views, see Cocoa Performance Guidelines.

Availability
Available in Mac OS X v10.4 and later.

See Also
setFrameSize (page 1777)

previousKeyView
Returns the view object preceding the receiver in the key view loop, or null if there is none.

public NSView previousKeyView()

Discussion
This view should, if possible, be made first responder when the user navigates backward from the receiver
using keyboard interface control.

See Also
previousValidKeyView (page 1765)

1764 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

nextKeyView (page 1761)
nextValidKeyView (page 1762)
setNextKeyView (page 1779)
selectNextKeyView (page 1852) (NSWindow)
selectKeyViewFollowingView (page 1852) (NSWindow)
selectPreviousKeyView (page 1853) (NSWindow)
selectKeyViewPrecedingView (page 1852) (NSWindow)

previousValidKeyView
Returns the closest view object in the key view loop that precedes the receiver and actually accepts first
responder status, or null if there is none.

public NSView previousValidKeyView()

Discussion
This method ignores hidden views when it determines the previous valid key view.

See Also
previousKeyView (page 1764)
nextValidKeyView (page 1762)
nextKeyView (page 1761)
setNextKeyView (page 1779)
selectNextKeyView (page 1852) (NSWindow)
selectKeyViewFollowingView (page 1852) (NSWindow)
selectPreviousKeyView (page 1853) (NSWindow)
selectKeyViewPrecedingView (page 1852) (NSWindow)
setHidden (page 1778)

print
This action method opens the Print panel, and if the user chooses an option other than canceling, prints the
receiver and all its subviews to the device specified in the Print panel.

public void print(Object sender)

See Also
dataWithEPSInsideRect (page 1746)
writeEPSInsideRectToPasteboard (page 1788)

rectForPage
Implemented by subclasses to determine the portion of the receiver to be printed for the page number page.

public NSRect rectForPage(int pageNumber)

Instance Methods 1765
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
If the receiver responded true to an earlier knowsPageRange (page 1759) message, this method is invoked
for each page it specified in the out parameters of that message. The receiver is later made to display this
rectangle in order to generate the image for this page. Page numbers are one-based, that is pages run from
one to N. This method returns NSRect.ZeroRect if pageNumber is outside the receiver’s bounds.

If an NSView responds false to knowsPageRange (page 1759), this method isn’t invoked by the printing
mechanism.

See Also
adjustPageHeight (page 1740)
adjustPageWidth (page 1740)

rectPreservedDuringLiveResize
Returns the rectangle identifying the portion of your view that did not change during a live resize operation.

public NSRect rectPreservedDuringLiveResize()

Discussion
The returned rectangle is in the coordinate system of your view and reflects the space your view previously
occupied. This rectangle may be smaller or the same size as your view’s current bounds, depending on
whether the view grew or shrunk.

If your view does not support content preservation during live resizing, the returned rectangle will be empty.
To support content preservation, override preservesContentDuringLiveResize (page 1764) in your view
and have your implementation return true.

Note: The window containing your view must also support content preservation. To enable support for this
feature in your window, use the setPreservesContentDuringLiveResize: method of NSWindow.

Availability
Available in Mac OS X v10.4 and later.

See Also
rectsExposedDuringLiveResize (page 1767)
preservesContentDuringLiveResize (page 1764)
setPreservesContentDuringLiveResize (page 1866) (NSWindow)

rectsBeingDrawn
Returns a list of non-overlapping rectangles that define the area the receiver is being asked to draw in
drawRect (page 1753).

public NSArray rectsBeingDrawn()

Discussion
An implementation of drawRect can use this information to test whether objects or regions within the view
intersect with the rectangles in the list, and thereby avoid unnecessary drawing that would be completely
clipped away.

1766 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

The needsToDrawRect (page 1761) method gives you a convenient way to test individual objects for
intersection with the area being drawn in drawRect (page 1753). However, you may want to retrieve and
directly inspect the rectangle list if this is a more efficient way to perform intersection testing.

You should send this message only from within adrawRect (page 1753) implementation. TheaRectparameter
of drawRect is the rectangle enclosing the returned list of rectangles; you can use it in an initial pass to
reject objects that are clearly outside the area to be drawn.

Availability
Available in Mac OS X v10.3 and later.

See Also
wantsDefaultClipping (page 1787)

rectsExposedDuringLiveResize
Returns a list of rectangles indicating the newly exposed areas of the receiver.

public NSArray rectsExposedDuringLiveResize()

Discussion
The returned rectangles are in the coordinate space of the receiver. If your view does not support content
preservation during live resizing, the entire area of your view is returned. To support content preservation,
override preservesContentDuringLiveResize (page 1764) in your view and have your implementation
return true.

Note: The window containing your view must also support content preservation. To enable support for this
feature in your window, use the setPreservesContentDuringLiveResize: method of NSWindow.

If the view decreased in both height and width, the list of returned rectangles will be empty. If the view
increased in both height and width and its upper-left corner stayed anchored in the same position, the list
of returned rectangles will contain a vertical and horizontal component indicating the exposed area.

Availability
Available in Mac OS X v10.4 and later.

See Also
preservesContentDuringLiveResize (page 1764)
rectPreservedDuringLiveResize (page 1766)
setPreservesContentDuringLiveResize (page 1866) (NSWindow)

reflectScrolledClipView
Notifies aClipView’s superview that either aClipView’s bounds rectangle or the document view’s frame
rectangle has changed, and that any indicators of the scroll position need to be adjusted.

public void reflectScrolledClipView(NSClipView aClipView)

Discussion
NSScrollView implements this method to update its NSScrollers.

Instance Methods 1767
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

registerForDraggedTypes
Registers pboardTypes as the pasteboard types that the receiver will accept as the destination of an
image-dragging session.

public void registerForDraggedTypes(NSArray pboardTypes)

Discussion
Registering an NSView for dragged types automatically makes it a candidate destination object for a dragging
session. As such, it must properly implement some or all of the NSDraggingDestination interface methods.
As a convenience, NSView provides default implementations of these methods. See the
NSDraggingDestination (page 1955) interface specification for details.

See Also
unregisterDraggedTypes (page 1784)

releaseGState
Frees the receiver’s graphics state object, if it has one.

public void releaseGState()

See Also
allocateGState (page 1741)

removeCursorRect
Completely removes a cursor rectangle from the receiver.

public void removeCursorRect(NSRect aRect, NSCursor aCursor)

Discussion
aRect and aCursor must match values previously specified using addCursorRect (page 1739).

You should rarely need to use this method. resetCursorRects (page 1770), which is invoked any time cursor
rectangles need to be rebuilt, should establish only the cursor rectangles needed. If you implement
resetCursorRects (page 1770) in this way, you can then simply modify the state that
resetCursorRects (page 1770) uses to build its cursor rectangles and then invoke NSWindow’s
invalidateCursorRectsForView (page 1836).

See Also
discardCursorRects (page 1747)

removeFromSuperview
Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, and invalidates
its cursor rectangles.

public void removeFromSuperview()

Discussion
Never invoke this method during display.

1768 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
addSubview (page 1739)
removeFromSuperviewWithoutNeedingDisplay (page 1769)

removeFromSuperviewWithoutNeedingDisplay
Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, but does
not invalidate its cursor rectangles to cause redrawing.

public void removeFromSuperviewWithoutNeedingDisplay()

Discussion
Unlike its counterpart, removeFromSuperview (page 1768), this method can be safely invoked during display.

See Also
addSubview (page 1739)

removeTrackingRect
Removes the tracking rectangle identified by aTag, which is the value returned by a previous
addTrackingRect (page 1739) message.

public void removeTrackingRect(int aTag)

renewGState
Invalidates the receiver’s graphics state object, if it has one, so it will be regenerated using setUpGState (page
1781) the next time the receiver is focused for drawing.

public void renewGState()

See Also
lockFocus (page 1759)

replaceSubview
Replaces oldView with newView in the receiver’s subviews.

public void replaceSubview(NSView oldView, NSView newView)

Discussion
Does nothing if oldView is not a subview of the receiver.

Neither oldView nor newView may be null, and the behavior is undefined if either of these parameters is
null.

See Also
addSubview (page 1739)

Instance Methods 1769
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

resetCursorRects
Overridden by subclasses to define their default cursor rectangles.

public void resetCursorRects()

Discussion
A subclass’s implementation must invoke addCursorRect (page 1739) for each cursor rectangle it wants to
establish. NSView’s implementation does nothing.

Application code should never invoke this method directly; it’s invoked automatically as described in “Handling
Tracking-Rectangle and Cursor-Update Events in Views”. Use the invalidateCursorRectsForView (page
1836) method instead to explicitly rebuild cursor rectangles.

See Also
visibleRect (page 1786)

resizeSubviewsWithOldSize
Informs the receivers’s subviews that the receiver’s bounds rectangle size has changed from oldBoundsSize.

public void resizeSubviewsWithOldSize(NSSize oldBoundsSize)

Discussion
If the receiver is configured to autoresize its subviews, this method is automatically invoked by any method
that changes the receiver’s frame size.

NSView’s implementation sends resizeWithOldSuperviewSize (page 1770) to the receiver’s subviews with
oldBoundsSize as the argument. You shouldn’t invoke this method directly, but you can override it to
define a specific retiling behavior.

See Also
setAutoresizesSubviews (page 1773)

resizeWithOldSuperviewSize
Informs the receiver that the bounds size of its superview has changed from oldBoundsSize.

public void resizeWithOldSuperviewSize(NSSize oldBoundsSize)

Discussion
This method is normally invoked automatically from resizeSubviewsWithOldSize (page 1770).

NSView’s implementation resizes the receiver according to the autoresizing options listed under the
setAutoresizingMask (page 1773) method description. You shouldn’t invoke this method directly, but you
can override it to define a specific resizing behavior.

rotateByAngle
Rotates the receiver’s bounds rectangle by angle degrees around the origin of the coordinate system, (0.0,
0.0).

1770 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

public void rotateByAngle(float angle)

Discussion
See the setBoundsRotation (page 1775) method description for more information. This method neither
redisplays the receiver nor marks it as needing display. You must do this yourself with display (page 1747)
or setNeedsDisplay (page 1779).

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

See Also
setFrameRotation (page 1777)
setPostsBoundsChangedNotifications (page 1779)

scaleUnitSquareToSize
Scales the receiver’s coordinate system so that the unit square scales to newUnitSize.

public void scaleUnitSquareToSize(NSSize newUnitSize)

Discussion
For example, a newUnitSize of (0.5, 1.0) causes the receiver’s horizontal coordinates to be halved, in turn
doubling the width of its bounds rectangle. Note that scaling is performed from the origin of the coordinate
system, (0.0, 0.0), not the origin of the bounds rectangle; as a result, both the origin and size of the bounds
rectangle are changed. The frame rectangle remains unchanged.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 1747) or setNeedsDisplay (page 1779).

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

See Also
setBoundsSize (page 1775)
setPostsBoundsChangedNotifications (page 1779)

scrollClipViewToPoint
Notifies the superview of aClipView that aClipView needs to set its bounds rectangle origin to newOrigin.

public void scrollClipViewToPoint(NSClipView aClipView, NSPoint newOrigin)

Discussion
The superview of aClipView should then send a scrollToPoint (page 347) message to aClipView with
newOrigin as the argument. This mechanism is provided so the NSClipView’s superview can coordinate
scrolling of multiple tiled NSClipViews.

See Also
scrollToPoint (page 347) (NSClipView)

Instance Methods 1771
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

scrollPoint
Scrolls the receiver’s closest ancestor NSClipView so aPoint in the receiver lies at the origin of the NSClipView’s
bounds rectangle.

public void scrollPoint(NSPoint aPoint)

See Also
autoscroll (page 1742)
scrollToPoint (page 347) (NSClipView)
isDescendantOf (page 1756)

scrollRect
Copies the visible portion of the receiver’s rendered image within aRect and lays that portion down again
at offset from aRect’s origin.

public void scrollRect(NSRect aRect, NSSize offset)

Discussion
This method is useful during scrolling or translation of the coordinate system to efficiently move as much of
the receiver’s rendered image as possible without requiring it to be redrawn, following these steps:

1. Invoke scrollRect (page 1772) to copy the rendered image.

2. Move the view object’s origin or scroll it within its superview.

3. Calculate the newly exposed rectangles and invoke setNeedsDisplay (page 1779) to draw them.

You should rarely need to use this method, however. The scrollPoint (page 1772),
scrollRectToVisible (page 1772), andautoscroll (page 1742) methods automatically perform optimized
scrolling.

See Also
setBoundsOrigin (page 1774)
translateOriginToPoint (page 1783)

scrollRectToVisible
Scrolls the receiver’s closest ancestor NSClipView the minimum distance needed so aRect in the receiver
becomes visible in the NSClipView.

public boolean scrollRectToVisible(NSRect aRect)

Discussion
Returns true if any scrolling is performed; otherwise returns false.

See Also
autoscroll (page 1742)
scrollToPoint (page 347) (NSClipView)
isDescendantOf (page 1756)

1772 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

setAutoresizesSubviews
Determines whether the receiver automatically resizes its subviews when its frame size changes.

public void setAutoresizesSubviews(boolean flag)

Discussion
If flag is true, the receiver invokes resizeSubviewsWithOldSize (page 1770) whenever its frame size
changes; if flag is false, it doesn’t. View objects do autoresize their subviews by default.

See Also
autoresizesSubviews (page 1742)

setAutoresizingMask
Determines how the receiver’s resizeWithOldSuperviewSize (page 1770) method changes its frame
rectangle.

public void setAutoresizingMask(int mask)

Discussion
mask can be specified by combining any of the following options using the C bitwise OR operator:

MeaningOption

The receiver cannot be resized.ViewNotSizable

The left margin between the receiver and its superview is flexible.ViewMinXMargin

The receiver’s width is flexible.ViewWidthSizable

The right margin between the receiver and its superview is flexible.ViewMaxXMargin

The bottom margin between the receiver and its superview is flexible.ViewMinYMargin

The receiver’s height is flexible.ViewHeightSizable

The top margin between the receiver and its superview is flexible.ViewMaxYMargin

Where more than one option along an axis is set, resizeWithOldSuperviewSize (page 1770) by default
distributes the size difference as evenly as possible among the flexible portions. For example, if
ViewWidthSizable and ViewMaxXMargin are set and the superview’s width has increased by 10.0 units,
the receiver’s frame and right margin are each widened by 5.0 units.

See Also
autoresizingMask (page 1742)
resizeSubviewsWithOldSize (page 1770)
setAutoresizesSubviews (page 1773)

setBounds
Sets the receiver’s bounds rectangle to boundsRect.

Instance Methods 1773
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

public void setBounds(NSRect boundsRect)

Discussion
The bounds rectangle determines the origin and scale of the receiver’s coordinate system within its frame
rectangle. This method neither redisplays the receiver nor marks it as needing display. You must do this
yourself with display (page 1747) or setNeedsDisplay (page 1779).

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

See Also
bounds (page 1743)
setBoundsRotation (page 1775)
setBoundsOrigin (page 1774)
setBoundsSize (page 1775)
setFrame (page 1776)
setPostsBoundsChangedNotifications (page 1779)

setBoundsOrigin
Sets the origin of the receiver’s bounds rectangle to newOrigin, effectively shifting its coordinate system
so newOrigin lies at the origin of the receiver’s frame rectangle.

public void setBoundsOrigin(NSPoint newOrigin)

Discussion
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display or setNeedsDisplay (page 1779).

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

See Also
translateOriginToPoint (page 1783)
bounds (page 1743)
setBoundsRotation (page 1775)
setBounds (page 1773)
setBoundsSize (page 1775)
setPostsBoundsChangedNotifications (page 1779)

1774 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

setBoundsRotation
Sets the rotation of the receiver’s bounds rectangle to angle degrees.

public void setBoundsRotation(float angle)

Discussion
Positive values indicate counterclockwise rotation, negative clockwise. Rotation is performed around the
coordinate system origin, (0.0, 0.0), which need not coincide with that of the frame rectangle or the bounds
rectangle. This method neither redisplays the receiver nor marks it as needing display. You must do this
yourself with display (page 1747) or setNeedsDisplay (page 1779).

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

Bounds rotation affects the orientation of the drawing within the view object’s frame rectangle, but not the
orientation of the frame rectangle itself. Also, for a rotated bounds rectangle to enclose all the visible areas
of its view object—that is, to guarantee coverage over the frame rectangle—it must also contain some areas
that aren’t visible. This can cause unnecessary drawing to be requested, which may affect performance. It
may be better in many cases to rotate the coordinate system in the drawRect (page 1753) method rather than
use this method.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

See Also
rotateByAngle (page 1770)
boundsRotation (page 1743)
setFrameRotation (page 1777)
setPostsBoundsChangedNotifications (page 1779)

setBoundsSize
Sets the size of the receiver’s bounds rectangle to newSize, inversely scaling its coordinate system relative
to its frame rectangle.

public void setBoundsSize(NSSize newSize)

Discussion
For example, a view object with a frame size of (100.0, 100.0) and a bounds size of (200.0, 100.0) draws half
as wide along the x axis. This method neither redisplays the receiver nor marks it as needing display. You
must do this yourself with display (page 1747) or setNeedsDisplay (page 1779).

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

Instance Methods 1775
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
bounds (page 1743)
setBoundsRotation (page 1775)
setBounds (page 1773)
setBoundsOrigin (page 1774)
setPostsBoundsChangedNotifications (page 1779)

setFocusRingType
Sets the type of focus ring to be drawn around the receiver.

public native void setFocusRingType(int focusRingType)

Discussion
Possible values are listed in the “Constants” (page 727) section of NSGraphics.You can specify
NSGraphics.FocusRingTypeNone to indicate you do not want your view to have a focus ring.

Note: This method only sets the desired focus ring type and does not cause the view to draw the actual
focus ring. You are responsible for drawing the focus ring in your view’s drawRect: method whenever your
view is made the first responder.

Availability
Available in Mac OS X v10.3 and later.

See Also
focusRingType (page 1754)

setFrame
Sets the receiver’s frame rectangle to frameRect, thereby repositioning and resizing it within the coordinate
system of its superview.

public void setFrame(NSRect frameRect)

Discussion
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 1747) or setNeedsDisplay (page 1779).

This method posts aViewFrameDidChangeNotification (page 1789) to the default notification center if
the receiver is configured to do so.

If your view does not use a custom bounds rectangle, this method also sets your view bounds to match the
size of the new frame. You specify a custom bounds rectangle by calling setBounds (page 1773),
setBoundsOrigin (page 1774),setBoundsRotation (page 1775), orsetBoundsSize (page 1775)explicitly.
Once set, NSView creates an internal transform to convert from frame coordinates to bounds coordinates.
As long as the width-to-height ratio of the two coordinate systems remains the same, your content appears
normal. If the ratios differ, your content may appear skewed.

See Also
frame (page 1754)

1776 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

setFrameRotation (page 1777)
setFrameOrigin (page 1777)
setFrameSize (page 1777)
setPostsFrameChangedNotifications (page 1780)

setFrameOrigin
Sets the origin of the receiver’s frame rectangle to newOrigin, effectively repositioning it within its superview.

public void setFrameOrigin(NSPoint newOrigin)

Discussion
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 1747) or setNeedsDisplay (page 1779).

This method posts aViewFrameDidChangeNotification (page 1789) to the default notification center if
the receiver is configured to do so.

See Also
frame (page 1754)
setFrameSize (page 1777)
setFrame (page 1776)
setFrameRotation (page 1777)
setPostsFrameChangedNotifications (page 1780)

setFrameRotation
Sets the rotation of the receiver’s frame rectangle to angle degrees, rotating it within its superview without
affecting its coordinate system.

public void setFrameRotation(float angle)

Discussion
Positive values indicate counterclockwise rotation, negative clockwise. Rotation is performed around the
origin of the frame rectangle.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 1747) or setNeedsDisplay (page 1779).

This method posts a ViewFrameDidChangeNotification (page 1789) to the default notification center if
the receiver is configured to do so.

See Also
frameRotation (page 1755)
setBoundsRotation (page 1775)

setFrameSize
Sets the size of the receiver’s frame rectangle to newSize, resizing it within its superview without affecting
its coordinate system.

Instance Methods 1777
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

public void setFrameSize(NSSize newSize)

Discussion
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 1747) or setNeedsDisplay (page 1779).

This method posts a ViewFrameDidChangeNotification (page 1789) to the default notification center if
the receiver is configured to do so.

In Mac OS X version 10.4 and later, you can override this method to support content preservation during live
resizing. In your overridden implementation, include some conditional code to be executed only during a
live resize operation. Your code must invalidate any portions of your view that need to be redrawn.

See Also
frame (page 1754)
setFrameOrigin (page 1777)
setFrame (page 1776)
setFrameRotation (page 1777)
setPostsFrameChangedNotifications (page 1780)

setHidden
Sets whether the receiver is hidden.

public void setHidden(boolean flag)

Discussion
A hidden view disappears from its window and does not receive input events. It remains in its superview’s
list of subviews, however, and participates in autoresizing as usual. The Application Kit also disables any
cursor rectangle, tool-tip rectangle, or tracking rectangle associated with a hidden view. Hiding a view with
subviews has the effect of hiding those subviews and any view descendents they might have. This effect is
implicit and does not alter the hidden state of the receiver’s descendents as reported by isHidden (page
1757).

Hiding the view that is the window’s current first responder causes the view’s next valid key view
(nextValidKeyView (page 1762)) to become the new first responder. A hidden view remains in the
nextKeyView (page 1761) chain of views it was previously part of, but is ignored during keyboard navigation.

Availability
Available in Mac OS X v10.3 and later.

See Also
isHidden (page 1757)
isHiddenOrHasHiddenAncestor (page 1757)

setKeyboardFocusRingNeedsDisplayInRect
Invalidates the area around the focus ring.

public void setKeyboardFocusRingNeedsDisplayInRect(NSRect rect)

1778 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
rect is the rectangle of the control or cell. rect will be expanded to include the focus ring for invalidation.

setNeedsDisplay
If flag is true, marks the receiver’s entire bounds as needing display; if flag is false, marks it as not
needing display.

public void setNeedsDisplay(boolean aFlag)

Discussion
Whenever the data or state used for drawing a view object changes, the view should be sent this message.
NSViews marked as needing display are automatically redisplayed on each pass through the application’s
event loop. (View objects that need to redisplay before the event loop comes around can of course immediately
be sent the appropriate display... method.)

Marks the region of the receiver within invalidRect as needing display, increasing the receiver’s existing
invalid region to include it.

public void setNeedsDisplay(NSRect invalidRect)

Discussion
A later displayIfNeeded... method will then perform drawing only within the invalid region. NSViews
marked as needing display are automatically redisplayed on each pass through the application’s event loop.
(View objects that need to redisplay before the event loop comes around can of course immediately be sent
the appropriate display... method.)

See Also
needsDisplay (page 1760)

setNextKeyView
Inserts aView after the receiver in the key view loop of the receiver’s NSWindow.

public void setNextKeyView(NSView aView)

See Also
nextKeyView (page 1761)
nextValidKeyView (page 1762)
previousKeyView (page 1764)
previousValidKeyView (page 1765)

setPostsBoundsChangedNotifications
Controls whether the receiver informs observers when its bounds rectangle changes.

public void setPostsBoundsChangedNotifications(boolean flag)

Instance Methods 1779
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
If flag is true, the receiver will post notifications to the default notification center whenever its bounds
rectangle changes; if flag is false it won’t. Note that if flag is true and bounds notifications are suppressed,
when the bounds change notification is reenabled the view will immediately post a single such notification
if its bounds changed during this time. This will happen even if there has been no net change in the view's
bounds.

The following methods can result in notification posting:

setBounds (page 1773)
setBoundsOrigin (page 1774)
setBoundsRotation (page 1775)
setBoundsSize (page 1775)
translateOriginToPoint (page 1783)
scaleUnitSquareToSize (page 1771)
rotateByAngle (page 1770)

See Also
postsBoundsChangedNotifications (page 1763)

setPostsFrameChangedNotifications
Controls whether the receiver informs observers when its frame rectangle changes.

public void setPostsFrameChangedNotifications(boolean flag)

Discussion
If flag is true, the receiver will post notifications to the default notification center whenever its frame
rectangle changes; if flag is false it won’t.Note that if flag is true and frame notifications are suppressed,
when the frame change notification is reenabled the view will immediately post a single such notification if
its frame changed during this time. This will happen even if there has been no net change in the view's frame.

The following methods can result in notification posting:

setFrame (page 1776)
setFrameOrigin (page 1777)
setFrameRotation (page 1777)
setFrameSize (page 1777)

See Also
postsFrameChangedNotifications (page 1763)

setToolTip
Sets the tool tip text for the view to string.

public void setToolTip(String string)

Discussion
If string is null, cancels tool tip display for the view.

1780 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
toolTip (page 1783)

setUpGState
Overridden by subclasses to (re)initialize the receiver’s graphics state object.

public void setUpGState()

Discussion
This method is automatically invoked when the graphics state object created using allocateGState (page
1741) needs to be initialized. NSView’s implementation does nothing. Your subclass can override it to set the
current font, line width, or any other graphics state parameter except coordinate transformations and the
clipping path—these are established by the frame and bounds rectangles and by methods such as
scaleUnitSquareToSize (page 1771) and translateOriginToPoint (page 1783). Note that drawRect:
can further transform the coordinate system and clipping path for whatever temporary effects it needs.

See Also
allocateGState (page 1741)
renewGState (page 1769)

shouldDelayWindowOrderingForEvent
Overridden by subclasses to allow the user to drag images from the receiver without its window moving
forward and possibly obscuring the destination and without activating the application.

public boolean shouldDelayWindowOrderingForEvent(NSEvent theEvent)

Discussion
If this method returns true, the normal window-ordering and activation mechanism is delayed (not necessarily
prevented) until the next mouse-up event. If it returns false, then normal ordering and activation occur.
Never invoke this method directly; it’s invoked automatically for each mouse-down event directed at the
NSView.

An NSView subclass that allows dragging should implement this method to return true if theEvent, an
initial mouse-down event, is potentially the beginning of a dragging session or of some other context where
window ordering isn’t appropriate. This method is invoked before a mouseDown (page 1192) message for
theEvent is sent. NSView’s implementation returns false.

If, after delaying window ordering, the receiver actually initiates a dragging session or similar operation, it
should also send a preventWindowOrdering (page 117) message to
NSApplication.sharedApplication(), which completely prevents the window from ordering forward
and the activation from becoming active. preventWindowOrdering (page 117) is sent automatically by
NSView’s dragImage... and dragFile... methods.

shouldDrawColor
Returns false if the receiver is being drawn in an NSWindow (as opposed, for example, to being printed)
and the NSWindow can’t store color; otherwise returns true.

public boolean shouldDrawColor()

Instance Methods 1781
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Discussion
An NSView can base its drawing behavior on the return value of this method to improve its appearance in
grayscale windows.

See Also
drawRect (page 1753)
canStoreColor (page 1820) (NSWindow)

subviews
Return the receiver’s immediate subviews.

public NSArray subviews()

Discussion
The order of the subviews may be considered as being back-to-front, but this does not imply invalidation
and drawing behavior. The order is based on the order of the receiver's subviews as specified in the nib file
from which they were unarchived or the programmatic interface for modifying the receiver's subview list.
This ordering is also the reverse of the order in which hit-testing is done.

See Also
superview (page 1782)
addSubview (page 1739)
removeFromSuperview (page 1768)

superview
Returns the receiver’s superview, or null if it has none.

public NSView superview()

Discussion
When applying this method iteratively or recursively, be sure to compare the returned NSView to the content
view of the NSWindow to avoid proceeding out of the view hierarchy.

See Also
window (page 1787)
subviews (page 1782)
removeFromSuperview (page 1768)

tag
Returns the receiver’s tag, an integer that you can use to identify view objects in your application.

public int tag()

Discussion
NSView’s implementation returns –1. Subclasses can override this method to provide individual tags, possibly
adding storage and a setTag method (which NSView doesn’t define).

1782 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

See Also
viewWithTag (page 1786)

toolTip
Returns the text for the view’s tool tip.

public String toolTip()

Discussion
Returns null if the view doesn’t currently display tool tip text.

See Also
setToolTip (page 1780)

translateOriginToPoint
Translates the receiver’s coordinate system so that its origin moves to newOrigin.

public void translateOriginToPoint(NSPoint newOrigin)

Discussion
In the process, the origin of the receiver’s bounds rectangle is shifted by (–newOrigin.x, –newOrigin.y).
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 1747) or setNeedsDisplay (page 1779).

Note the difference between this method and setting the bounds origin. Translation effectively moves the
image inside the bounds rectangle, while setting the bounds origin effectively moves the rectangle over the
image. The two are in a sense inverse, although translation is cumulative, and setting the bounds origin is
absolute.

This method posts a ViewBoundsDidChangeNotification (page 1788) to the default notification center if
the receiver is configured to do so.

See Also
setBoundsOrigin (page 1774)
setBounds (page 1773)
setPostsBoundsChangedNotifications (page 1779)

unlockFocus
Balances an earlier lockFocus (page 1759) message; restoring the focus to the previously focused view is
necessary.

public void unlockFocus()

Discussion
Throws an InvalidArgumentException if invoked on the wrong view.

See Also
allocateGState (page 1741)

Instance Methods 1783
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

unregisterDraggedTypes
Unregisters the receiver as a possible destination in a dragging session.

public void unregisterDraggedTypes()

See Also
registerForDraggedTypes (page 1768)

viewDidEndLiveResize
Informs the receiver of the end of a live resize.

public void viewDidEndLiveResize()

Discussion
In the simple case, a view is sent viewWillStartLiveResize (page 1785) before the first resize operation
on the containing window and viewDidEndLiveResize after the last resize operation. A view that is
repeatedly added and removed from a window during live resize will receive only one
viewWillStartLiveResize (on the first time it is added to the window) and one viewDidEndLiveResize
(when the window has completed the live resize operation). This allows a superview such as NSBrowser to
add and remove its NSMatrix subviews during live resize without the NSMatrix receiving multiple calls to
these methods.

A view might allocate data structures to cache-drawing information in viewWillStartLiveResize (page
1785) and should clean up these data structures in viewDidEndLiveResize. In addition, a view that does
optimized drawing during live resize might want to do full drawing after viewDidEndLiveResize, although
a view should not assume that it has a drawing context in viewDidEndLiveResize (since it may have been
removed from the window during live resize). A view that wants to redraw itself after live resize should call
setNeedsDisplay(true) in viewDidEndLiveResize.

A view subclass should call super from these methods.

See Also
viewWillStartLiveResize (page 1785)
inLiveResize (page 1756)

viewDidMoveToSuperview
Informs the receiver that its superview has changed (possibly to null).

public void viewDidMoveToSuperview()

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

See Also
viewDidMoveToWindow (page 1785)
viewWillMoveToSuperview (page 1785)
viewWillMoveToWindow (page 1785)

1784 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

viewDidMoveToWindow
Informs the receiver that it has been added to a new view hierarchy.

public void viewDidMoveToWindow()

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

window (page 1787) may return null when this method is invoked, indicating that the receiver does not
currently reside in any window. This occurs when the receiver has just been removed from its superview or
when the receiver has just been added to a superview that does not itself have a window. Overrides of this
method may choose to ignore such cases if they are not of interest.

See Also
viewDidMoveToSuperview (page 1784)
viewWillMoveToSuperview (page 1785)
viewWillMoveToWindow (page 1785)

viewWillMoveToSuperview
Informs the receiver that its superview is about to change to newSuperview (which may be null).

public void viewWillMoveToSuperview(NSView newSuperview)

Discussion
Subclasses can override this method to perform whatever actions are necessary.

See Also
viewDidMoveToSuperview (page 1784)
viewDidMoveToWindow (page 1785)
viewWillMoveToWindow (page 1785)

viewWillMoveToWindow
Informs the receiver that it’s being added to the view hierarchy of newWindow (which may be null).

public void viewWillMoveToWindow(NSWindow newWindow)

Discussion
Subclasses can override this method to perform whatever actions are necessary.

See Also
viewDidMoveToSuperview (page 1784)
viewDidMoveToWindow (page 1785)
viewWillMoveToSuperview (page 1785)

viewWillStartLiveResize
Informs the receiver of the start of a live resize.

Instance Methods 1785
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

public void viewWillStartLiveResize()

Discussion
In the simple case, a view is sent viewWillStartLiveResize before the first resize operation on the
containing window and viewDidEndLiveResize (page 1784) after the last resize operation. A view that is
repeatedly added and removed from a window during live resize will receive only one
viewWillStartLiveResize (on the first time it is added to the window) and one viewDidEndLiveResize
(when the window has completed the live resize operation). This allows a superview such as NSBrowser to
add and remove its NSMatrix subviews during live resize without the NSMatrix receiving multiple calls to
these methods.

A view might allocate data structures to cache-drawing information in viewWillStartLiveResize and
should clean up these data structures in viewDidEndLiveResize (page 1784). In addition, a view that does
optimized drawing during live resize might want to do full drawing after viewDidEndLiveResize, although
a view should not assume that it has a drawing context in viewDidEndLiveResize (since it may have been
removed from the window during live resize). A view that wants to redraw itself after live resize should call
setNeedsDisplay(true) in viewDidEndLiveResize.

A view subclass should call super from these methods.

See Also
viewDidEndLiveResize (page 1784)
inLiveResize (page 1756)

viewWithTag
Returns the receiver’s nearest descendant (including itself) whose tag is aTag, or null if no subview has that
tag.

public NSView viewWithTag(int aTag)

See Also
tag (page 1782)

visibleRect
Returns the portion of the receiver not clipped by its superviews.

public NSRect visibleRect()

Discussion
Visibility is therefore defined quite simply and doesn’t account for whether other NSViews (or windows)
overlap the receiver or whether the receiver has a window at all. This method returns NSRect.ZeroRect if
the receiver is effectively hidden.

During a printing operation the visible rectangle is further clipped to the page being imaged.

See Also
setHidden (page 1778)
isVisible (page 1840) (NSWindow)
documentVisibleRect (page 1273) (NSScrollView)
documentVisibleRect (page 346) (NSClipView)

1786 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

wantsDefaultClipping
Returns whether the Application Kit’s default clipping provided to drawRect (page 1753) implementations is
in effect.

public boolean wantsDefaultClipping()

Discussion
By default, this method returns true. Subclasses may override this method to return false if they want to
suppress the default clipping. They may want to do this in situations where drawing performance is critical
to avoid the cost of setting up, enforcing, and cleaning up the clip path

A view that overrides this method to refuse the default clipping must either set up whatever clipping it
requires or constrain its drawing exactly to the list of rectangles returned by rectsBeingDrawn (page 1766).
Failing to do so could result in corruption of other drawing in the view’s window.

Availability
Available in Mac OS X v10.3 and later.

widthAdjustLimit
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during automatic
pagination to prevent items such as small images or text columns from being divided across pages.

public float widthAdjustLimit()

Discussion
This fraction is used to calculate the right edge limit for a adjustPageWidth (page 1740) message.

See Also
heightAdjustLimit (page 1755)

willRemoveSubview
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

public void willRemoveSubview(NSView subview)

Discussion
Invoked when subview receives a removeFromSuperview (page 1768) message or subview is removed from
the receiver due to it being added to another view with addSubview (page 1739).

window
Returns the receiver’s window object, or null if it has none.

public NSWindow window()

See Also
superview (page 1782)

Instance Methods 1787
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

writeEPSInsideRectToPasteboard
Writes EPS data that draws the region of the receiver within aRect onto pboard.

public void writeEPSInsideRectToPasteboard(NSRect aRect, NSPasteboard pboard)

See Also
dataWithEPSInsideRect (page 1746)

writePDFInsideRectToPasteboard
Writes PDF data that draws the region of the receiver within aRect onto pboard.

public void writePDFInsideRectToPasteboard(NSRect aRect, NSPasteboard pboard)

See Also
dataWithPDFInsideRect (page 1747)

Constants

NSView defines the following constants to be used when specifying a view’s border:

DescriptionConstant

A concave border that makes the view look sunken.BezelBorder

A thin border that looks etched around the image.GrooveBorder

A black line border around the view.LineBorder

No border.NoBorder

Notifications

ViewBoundsDidChangeNotification
Posted whenever the NSView’s bounds rectangle changes independently of the frame rectangle, if the NSView
is configured using setPostsBoundsChangedNotifications (page 1779) to post such notifications.

The notification object is the NSView whose bounds rectangle has changed. This notification does not contain
a userInfo dictionary.

The following methods can result in notification posting:

setBounds (page 1773)
setBoundsOrigin (page 1774)
setBoundsRotation (page 1775)
setBoundsSize (page 1775)

1788 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

translateOriginToPoint (page 1783)
scaleUnitSquareToSize (page 1771)
rotateByAngle (page 1770)

Note that the bounds rectangle resizes automatically to track the frame rectangle. Because the primary
change is that of the frame rectangle, however, setFrame (page 1776) and setFrameSize (page 1777) don’t
result in a bounds-changed notification.

ViewFocusDidChangeNotification
Deprecated notification that was posted for an NSView and each of its descendents (recursively) whenever
the frame or bounds geometry of the view changed.

In Mac OS X v10.4 and later, this notification is no longer posted. In earlier version of Mac OS X, use
NSViewBoundsDidChangeNotification and NSViewFrameDidChangeNotification instead to get
the same information provided by this notification.

The notification object is the NSView whose geometry changed. This notification does not contain a userInfo
dictionary.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
ViewBoundsDidChangeNotification (page 1788)
ViewFrameDidChangeNotification (page 1789)

ViewFrameDidChangeNotification
Posted whenever the NSView’s frame rectangle changes, if the NSView is configured using
setPostsFrameChangedNotifications (page 1780) to post such notifications.

The notification object is the NSView whose frame rectangle has changed. This notification does not contain
a userInfo dictionary.

The following methods can result in notification posting:

setFrame (page 1776)
setFrameOrigin (page 1777)
setFrameRotation (page 1777)
setFrameSize (page 1777)

Notifications 1789
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

1790 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 138

NSView

Inherits from NSAnimation

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.4 and later.

Companion guide Drawing and Views

Overview

The NSViewAnimation class, a public subclass of NSAnimation, offers a convenient way to animate multiple
views and windows. The animation effects you can achieve are limited to changes in frame location and size,
and to fade-in and fade-out effects.

An NSViewAnimation object takes an array of dictionaries from which it determines the objects to animate
and the effects to apply to them. Each dictionary must have a target object and, optionally, properties that
specify beginning and ending frame and whether to fade in or fade out. (See “Constants” (page 1793) for
further information.) Animations with NSViewAnimation are, by default, in non-blocking mode over a duration
of 0.5 seconds using the ease in-out animation curve. But you can configure the animation to have any
duration, curve, frame rate, and blocking mode. You may also set progress marks, assign a delegate, and
implement delegation methods in order to animate view and windows concurrent with the ones specified
as targets in the view-animation dictionary.

Tasks

Constructors

NSViewAnimation (page 1792)

Getting and Setting View-animation Dictionaries

setViewAnimations (page 1792)
Sets the dictionaries defining the objects to animate to viewAnimations.

viewAnimations (page 1793)
Returns the list of dictionaries defining the objects to animate.

Overview 1791
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 139

NSViewAnimation

Constructors

NSViewAnimation
public NSViewAnimation()

Discussion
Creates a default NSViewAnimation object. You must use the methods of this class to set the animation and
view information.

public NSViewAnimation(double duration, int animationCurve)

Discussion
Creates an NSViewAnimation object and initializes it with the specified duration and animationCurve
values. The duration parameter specifies the number of seconds over which the animation occurs; specifying
a negative number raises an exception. You can change the duration later by calling the inherited
setDuration method. The animationCurve parameter is a constant that describes the relative speed of
the animation over its course; if it is zero, the default curve (AnimationEaseInOut) is used. See the constants
defined in NSAnimation for descriptions of the possible values.

public NSViewAnimation(NSArray viewAnimations)

Discussion
Creates the NSViewAnimation object initialized with the dictionaries in viewAnimations. Each dictionary
specifies a view or window to animate and the effect to apply. returns null if there was a problem initializing
the object. The viewAnimations parameter can be null but you must later set the required array of
dictionaries by calling setViewAnimations (page 1792) if you want to use the capabilities of the
NSViewAnimation class. See “Constants” (page 1793) for a description of valid keys and values for dictionaries
in viewAnimations.

Instance Methods

setViewAnimations
Sets the dictionaries defining the objects to animate to viewAnimations.

public void setViewAnimations(NSArray viewAnimations)

Discussion
Each dictionary in the passed-in array specifies a view or window to animate and the effect to apply. Pass in
null to remove the current list of dictionaries. See “Constants” (page 1793) for a description of valid keys and
values for dictionaries in viewAnimations.

Availability
Available in Mac OS X v10.4 and later.

See Also
viewAnimations (page 1793)

1792 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 139

NSViewAnimation

viewAnimations
Returns the list of dictionaries defining the objects to animate.

public NSArray viewAnimations()

Discussion
Each dictionary in the returned array specifies a view or window to animate and the effect to apply.

Availability
Available in Mac OS X v10.4 and later.

See Also
setViewAnimations (page 1792)

Constants

The following string constants are keys for the dictionaries in the array passed into NSViewAnimation (page
1792) and setViewAnimations (page 1792).

Description of valueConstant (Key)

A target of the animation, which can be either an NSView object or an
NSWindow object. This property is required.

ViewAnimationTargetKey

An NSRect structure encoded in an NSValue object that gives the size and
location of the window or view at the start of the animation. This property
is optional. If it is not specified, NSViewAnimation uses the frame of the
window or view at the start of the animation.

ViewAnimationStart-
FrameKey

An NSRect structure encoded in an NSValue object that gives the size and
location of the window or view at the end of the animation. This property
is optional. If it is not specified, NSViewAnimation uses the frame of the
window or view at the start of the animation. If the target is a view and the
end frame is empty, the view is hidden at the end.

ViewAnimation-
EndFrameKey

Takes one of two string constants specifying fade-in or fade-out effects for
the target: ViewAnimationFadeInEffect and ViewAnimationFade-
OutEffect. If the target is a view and the effect is to fade out, the view is
hidden at the end. If the effect is to fade in an initially hidden view and the
end frame is non-empty, the view is unhidden at the end. If the target is a
window, the window is ordered in or out as appropriate to the effect. This
property is optional.

ViewAnimationEffectKey

Specifies a fade-in type of effect.ViewAnimation-
FadeInEffect

Specifies a fade-out type of effect.ViewAnimationFade-
OutEffect

Constants 1793
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 139

NSViewAnimation

1794 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 139

NSViewAnimation

Inherits from NSResponder : NSObject

Implements NSCoding (NSResponder)

Package: com.apple.cocoa.application

Companion guide Window Programming Guide for Cocoa

Class at a Glance

An NSWindow manages an onscreen window, coordinating the display and event handling for its NSViews.
Interface Builder allows you to create and set up NSWindows, but there are many things you may wish to do
programmatically as well.

Principal Attributes

 ■ Manages a view hierarchy.

 ■ Uses a delegate.

 ■ Distributes events to view objects.

 ■ Provides a field editor to view objects.

Interface Builder
Constructor

"NSWindow" (page 1813)

Commonly Used Methods

makeKeyAndOrderFront (page 1841)
Moves the NSWindow to the front and makes it the key window.

makeFirstResponder (page 1841)
Sets the first responder in the NSWindow.

fieldEditorForObject (page 1832)
Returns the shared text object for the NSWindow.

setContentView (page 1858)
Sets the root-level NSView in the NSWindow.

Class at a Glance 1795
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

representedFilename (page 1849)
Returns the filename whose contents the NSWindow presents.

setDocumentEdited (page 1859)
Sets whether the NSWindow’s represented file needs to be saved.

setTitle (page 1868)
Sets the title of the NSWindow.

setTitleWithRepresentedFilename (page 1868)
Sets the title of the NSWindow in a readable format for filenames.

Overview

The NSWindow class defines objects that manage and coordinate the windows an application displays on
the screen. A single NSWindow object corresponds to at most one onscreen window. The two principal
functions of NSWindow are to provide an area in which NSViews can be placed and to accept and distribute,
to the appropriate NSViews, events the user instigates through actions with the mouse and keyboard.

Note: Although NSWindow inherits the NSCoding protocol from NSResponder, NSWindow does not support
coding. Legacy support for archivers exists but its use is deprecated and may not work. Any attempt to archive
or unarchive an NSWindow using a keyed coding object throws an InvalidArgumentException.

Tasks

Constructors

NSWindow (page 1813)
Creates a new NSWindow object, whose content rectangle is specified relative to the lower-left corner
of the main screen.

Calculating Layout

contentRectForFrameRect (page 1814)
Returns the content rectangle used by an NSWindow with a frame rectangle of frameRect and a
style mask of aStyle.

frameRectForContentRect (page 1814)
Returns the frame rectangle used by an NSWindow with a content rectangle of contentRect and a
style mask of aStyle.

minFrameWidthWithTitle (page 1815)
Returns the minimum width an NSWindow’s frame rectangle must have for it to display all of aTitle,
given aStyle as its style mask.

contentRectForFrameRect (page 1823)
Returns the rectangle bounding the receiver’s content view given the frame rectangle frameRect.

1796 Overview
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

frameRectForContentRect (page 1835)
Returns the receiver’s frame rectangle given the rectangle bounding the content view contentRect.

Converting Coordinates

convertBaseToScreen (page 1824)
Returns aPoint converted from the receiver’s base coordinate system to the screen coordinate
system.

convertScreenToBase (page 1824)
Returns aPoint converted from the screen coordinate system to the receiver’s base coordinate
system.

userSpaceScaleFactor (page 1872)
Returns the scale factor applied to the window.

Moving and Resizing

frame (page 1834)
Returns the receiver’s frame rectangle.

setFrame (page 1860)
Sets the origin and size of the receiver’s frame rectangle according to frameRect, thereby setting
its position and size onscreen, and passes adisplayIfNeeded (page 1829) message down the receiver’s
view hierarchy, thus redrawing all NSViews that need to be displayed, if flag is true.

animationResizeTime (page 1817)
Subclasses can override this method to control the total time for the frame change.

setFrameOrigin (page 1861)
Positions the lower-left corner of the receiver’s frame rectangle at aPoint in screen coordinates.

setFrameTopLeftPoint (page 1861)
Positions the top-left corner of the receiver’s frame rectangle at aPoint in screen coordinates.

setContentSize (page 1857)
Sets the size of the receiver’s content view to aSize, which is expressed in the receiver’s base
coordinate system.

cascadeTopLeftFromPoint (page 1821)
Positions the receiver's top left at topLeftPoint, unless topLeftPoint is NSPoint.ZeroPoint
in which case the receiver is not moved except as needed to constrain to the visible screen.

center (page 1821)
Sets the receiver’s location to the center of the screen.

resizeFlags (page 1850)
Valid only while the receiver is being resized, this method returns the flags field of the event record
for the mouse-down event that initiated the resizing session.

performZoom (page 1847)
This action method simulates the user clicking the zoom box by momentarily highlighting the button
and then zooming the window.

Tasks 1797
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

zoom (page 1874)
This action method toggles the size and location of the window between its standard state (provided
by the application as the “best” size to display the window’s data) and its user state (a new size and
location the user may have set by moving or resizing the window).

isZoomed (page 1840)
Returns whether the receiver is in a zoomed state.

showsResizeIndicator (page 1869)
Returns whether the receiver’s resize indicator is visible.

setShowsResizeIndicator (page 1868)
Sets whether the receiver’s resize indicator is visible to show.

isMovableByWindowBackground (page 1838)
Returns true if the receiver is movable by clicking and dragging anywhere in its background, false
if not.

setMovableByWindowBackground (page 1865)
Sets whether the receiver is movable by clicking and dragging anywhere in its background.

preservesContentDuringLiveResize (page 1848)
Returns true if the window tries to optimize live resize operations by preserving the content of views
that have not moved; otherwise, returns false.

setPreservesContentDuringLiveResize (page 1866)
If flag is true, the window optimizes live resize operations by invalidating only the view contents
that changed; this is the default setting.

Constraining Window Size

maxSize (page 1842)
Returns the maximum size to which the receiver’s frame (including its title bar) can be sized either
by the user or by the setFrame... methods other than setFrame (page 1860).

minSize (page 1843)
Returns the minimum size to which the receiver’s frame (including its title bar) can be sized either by
the user or by the setFrame... methods other than setFrame (page 1860).

setMaxSize (page 1864)
Sets the maximum size to which the receiver’s frame (including its title bar) can be sized to aSize.

setMinSize (page 1865)
Sets the minimum size to which the receiver’s frame (including its title bar) can be sized to aSize.

setAspectRatio (page 1854)
Sets the receiver’s size aspect ratio to ratio, constraining the size of its frame rectangle to integral
multiples of this size when the user resizes it.

aspectRatio (page 1817)
Returns the receiver’s size aspect ratio.

setResizeIncrements (page 1867)
Restricts the user’s ability to resize the receiver so the width and height change by multiples of
increments.width and increments.height as the user resizes the window.

1798 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

resizeIncrements (page 1851)
Returns the receiver’s resizing increments, which restrict the user’s ability to resize it so that its width
and height alter by integral multiples of increments.width and increments.height when the
user resizes it.

constrainFrameRectToScreen (page 1822)
Modifies and returns frameRect so that its top edge lies on aScreen.

Managing Content Size

setContentAspectRatio (page 1856)
Sets the aspect ratio of the receiver’s content view to ratio, constraining the dimensions of its content
rectangle to integral multiples of that ratio when the user resizes it.

contentAspectRatio (page 1822)
Returns the aspect ratio (height in relation to width) of the receiver’s content view.

setContentResizeIncrements (page 1857)
Sets the increments for both height and width by which the receiver’s content view can be resized
to increments.

contentResizeIncrements (page 1824)
Returns the size of increments used during resizing of the receiver’s content rectangle.

setContentMaxSize (page 1856)
Sets the maximum size of the receiver’s content view to size, which is expressed in the receiver’s
base coordinate system.

contentMaxSize (page 1823)
Returns the maximum size of the receiver’s content view.

setContentMinSize (page 1857)
Sets the minimum size of the receiver’s content view to size, which is expressed in the receiver’s
base coordinate system.

contentMinSize (page 1823)
Returns the minimum size of the receiver’s content view.

Saving the Frame to User Defaults

removeFrameUsingName (page 1815)
Removes the frame data stored under name from the application’s user defaults.

saveFrameUsingName (page 1851)
Saves the receiver’s frame rectangle in the user defaults system.

setFrameUsingName (page 1862)
Sets the receiver’s frame rectangle by reading the rectangle data stored in name from the defaults
system.

setFrameAutosaveName (page 1860)
Sets the name used to automatically save the receiver’s frame rectangle in the defaults system to
name.

frameAutosaveName (page 1834)
Returns the name used to automatically save the receiver’s frame rectangle data in the defaults system,
as set through setFrameAutosaveName (page 1860).

Tasks 1799
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

setFrameFromString (page 1861)
Sets the receiver’s frame rectangle from the string representation aString, a representation previously
creating using stringWithSavedFrame (page 1870).

stringWithSavedFrame (page 1870)
Returns a string that represents the receiver’s frame rectangle in a format that can be used with a
later setFrameFromString (page 1861) message.

Ordering Windows

orderBack (page 1844)
This action method moves the receiver to the back of its level in the screen list, without changing
either the key window or the main window.

orderFront (page 1844)
This action method moves the receiver to the front of its level in the screen list, without changing
either the key window or the main window.

orderFrontRegardless (page 1845)
Moves the receiver to the front of its level, even if its application isn’t active, but without changing
either the key window or the main window.

orderOut (page 1845)
This action method takes the receiver out of the screen list.

orderWindow (page 1845)
Repositions the receiver’s window device in the window server’s screen list.

setLevel (page 1863)
Sets the receiver’s window level to newLevel.

level (page 1841)
Returns the level of the receiver as set using setLevel (page 1863).

isVisible (page 1840)
Returns true if the receiver is onscreen (even if it’s obscured by other windows).

Attached Windows

addChildWindow (page 1816)
childWin is ordered either above (Above) or below (Below) the receiver, and maintained in that
relative place for subsequent ordering operations involving either window.

removeChildWindow (page 1849)
Detaches childWin from the receiver.

childWindows (page 1821)
Returns an array of the receiver’s attached child windows.

parentWindow (page 1846)
Returns the parent window to which the receiver is attached as a child.

setParentWindow (page 1866)
For use by subclasses when setting the parent window in the receiver.

1800 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Making Key and Main Windows

becomeKeyWindow (page 1819)
Invoked automatically to inform the receiver that it has become the key window; never invoke this
method directly.

canBecomeKeyWindow (page 1819)
Returns true if the receiver can become the key window, false if it can’t.

isKeyWindow (page 1838)
Returns true if the receiver is the key window for the application, false if it isn’t.

makeKeyAndOrderFront (page 1841)
This action method moves the receiver to the front of the screen list, within its level, and makes it the
key window.

makeKeyWindow (page 1842)
Makes the receiver the key window.

resignKeyWindow (page 1850)
Never invoke this method; it’s invoked automatically when the NSWindow resigns key window status.

becomeMainWindow (page 1819)
Invoked automatically to inform the receiver that it has become the main window; never invoke this
method directly.

canBecomeMainWindow (page 1820)
Returns true if the receiver can become the main window, false if it can’t.

isMainWindow (page 1838)
Returns true if the receiver is the main window for the application, false if it isn’t.

makeMainWindow (page 1842)

resignMainWindow (page 1850)
Never invoke this method; it’s invoked automatically when the NSWindow resigns main window
status.

autorecalculatesKeyViewLoop (page 1818)
Returns true if the window automatically recalculates the key view loop when views are added;
otherwise returns false.

recalculateKeyViewLoop (page 1848)
Marks the key view loop as dirty and in need of recalculation.

setAutorecalculatesKeyViewLoop (page 1855)
If flag is true, the window recalculates the key view loop automatically when views are added or
removed.

Working with the Default Button

defaultButtonCell (page 1825)
Returns the button cell that performs as if clicked when the NSWindow receives a Return (or Enter)
key event.

setDefaultButtonCell (page 1858)
Makes the key equivalent of aButtonCell the Return (or Enter) key, so when the user presses Return
that button performs as if clicked.

Tasks 1801
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

disableKeyEquivalentForDefaultButtonCell (page 1828)
Disables the default button cell’s key equivalent, so it doesn’t perform a click when the user presses
Return (or Enter).

enableKeyEquivalentForDefaultButtonCell (page 1832)
Reenables the default button cell’s key equivalent, so it performs a click when the user presses Return
(or Enter).

Display and Drawing

display (page 1829)
Passes a display message down the receiver’s view hierarchy, thus redrawing all NSViews within the
receiver, including the frame view that draws the border, title bar, and other peripheral elements.

displayIfNeeded (page 1829)
Passes a displayIfNeeded (page 1829) message down the receiver’s view hierarchy, thus redrawing
all NSViews that need to be displayed, including the frame view that draws the border, title bar, and
other peripheral elements.

setViewsNeedDisplay (page 1869)
Sets whether the receiver’s views need display (true) or do not need display (false) to flag.

viewsNeedDisplay (page 1873)
Returns true if any of the receiver’s NSView’s need to be displayed, false otherwise.

useOptimizedDrawing (page 1872)
Informs the receiver whether to optimize focusing and drawing when displaying its NSViews.

setAutodisplay (page 1855)
Sets whether the receiver automatically displays its views that are marked as needing it.

isAutodisplay (page 1837)
Returns true if the receiver automatically displays its views that are marked as needing it, false if
it doesn’t.

update (page 1871)
Updates the window.

graphicsContext (page 1835)
Returns the graphics context associated with the receiver for the current thread.

disableScreenUpdatesUntilFlush (page 1828)
Disables the receiver’s screen updates until the window is flushed.

Flushing Graphics

flushWindow (page 1833)
Flushes the receiver’s offscreen buffer to the screen if the receiver is buffered and flushing is enabled.

flushWindowIfNeeded (page 1834)
Flushes the receiver’s offscreen buffer to the screen if flushing is enabled and if the last
flushWindow (page 1833) message had no effect because flushing was disabled.

enableFlushWindow (page 1832)
Reenables the flushWindow (page 1833) method for the receiver after it was disabled through a
previous disableFlushWindow (page 1827) message.

1802 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

disableFlushWindow (page 1827)
Disables the flushWindow (page 1833) method for the receiver.

isFlushWindowDisabled (page 1838)
Returns true if the receiver’s flushing ability has been disabled; otherwise returns false.

Bracketing Temporary Drawing

cacheImageInRect (page 1819)
Stores the receiver’s raster image from aRect, which is expressed in the receiver’s base coordinate
system.

restoreCachedImage (page 1851)
Splices the receiver’s cached image rectangles, if any, back into its raster image (and buffer if it has
one), undoing the effect of any drawing performed within those areas since they were established
using cacheImageInRect (page 1819).

discardCachedImage (page 1828)
Discards all of the receiver’s cached image rectangles.

Window Server Information

windowNumber (page 1873)
Returns the window number of the receiver’s window device.

gState (page 1835)
Returns the graphics state object associated with the receiver.

deviceDescription (page 1826)
Returns a dictionary containing information about the receiver’s resolution, color depth, and so on.

setBackingType (page 1855)
Sets the receiver’s backing store type to backingType.

backingType (page 1818)
Returns the receiver’s backing store type.

setOneShot (page 1865)
Sets whether the window device that the receiver manages should be freed when it’s removed from
the screen list (and another one created if it’s returned to the screen) to flag.

isOneShot (page 1839)
Returns true if the window device the receiver manages is freed when it’s removed from the screen
list, false if not.

defaultDepthLimit (page 1814)
Returns the default depth limit for instances of NSWindow.

setDepthLimit (page 1858)
Sets the depth limit of the receiver to limit.

depthLimit (page 1826)
Returns the depth limit of the receiver.

setDynamicDepthLimit (page 1859)
Sets whether the receiver changes its depth to match the depth of the screen it’s on, or the depth of
the deepest screen when it spans multiple screens.

Tasks 1803
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

hasDynamicDepthLimit (page 1835)
Returns true if the receiver’s depth limit can change to match the depth of the screen it’s on, false
if it can’t.

canStoreColor (page 1820)
Returns true if the receiver has a depth limit that allows it to store color values, false if it doesn’t.

Screen Information

deepestScreen (page 1825)
Returns the deepest screen the receiver is on (it may be split over several screens), or null if the
receiver is offscreen.

screen (page 1852)
Returns the screen the receiver is on.

displaysWhenScreenProfileChanges (page 1829)
Returns true if the window context should be updated when the screen profile changes or when
the window moves to a different screen.

setDisplaysWhenScreenProfileChanges (page 1859)
Sets whether the window context should be updated when the screen profile changes.

Working with the Responder Chain

makeFirstResponder (page 1841)
Attempts to make aResponder the first responder for the receiver.

firstResponder (page 1833)
Returns the receiver’s first responder.

Event Handling

currentEvent (page 1824)
Returns the event currently being processed by the application, by invoking NSApplication’s
currentEvent (page 110) method.

nextEventMatchingMask (page 1844)
Invokes NSApplication’s nextEventMatchingMask (page 115) method, using mask as the first
argument, with an unlimited expiration, a mode of NSApplication.EventTrackingRunLoopMode,
and a dequeue flag of true.

discardEventsMatchingMask (page 1829)
Forwards the message to the NSApplication object, which handles it as described in the NSApplication
class specification.

postEvent (page 1847)
Forwards the message to the global NSApplication object, NSApplication.sharedApplication().

sendEvent (page 1853)
This action method dispatches mouse and keyboard events, specified by theEvent, sent to the
receiver by the NSApplication object.

1804 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

tryToPerform (page 1871)
Dispatches action messages with anObject as the argument.

keyDown (page 1840)
Handles theEvent keyboard event that may need to be interpreted as changing the key view or
triggering a keyboard equivalent.

mouseLocationOutsideOfEventStream (page 1843)
Returns the current location of the mouse reckoned in the receiver’s base coordinate system, regardless
of the current event being handled or of any events pending.

setAcceptsMouseMovedEvents (page 1853)
Sets whether the receiver accepts mouse-moved events and distributes them to its responders.

acceptsMouseMovedEvents (page 1816)
Returns true if the receiver accepts and distributes mouse-moved events, false if it doesn’t.

ignoresMouseEvents (page 1836)
Return whether the receiver is transparent to mouse events.

setIgnoresMouseEvents (page 1863)
Specifies whether the receiver is transparent to mouse clicks and other mouse events, allowing overlay
windows.

Working with the Field Editor

fieldEditorForObject (page 1832)
Returns the receiver’s field editor, creating it if needed if createFlag is true.

endEditingForObject (page 1832)
Forces the field editor, which anObject is assumed to be using, to give up its first responder status
and prepares it for its next assignment.

Keyboard Interface Control

setInitialFirstResponder (page 1863)
Sets aView as the NSView that’s made first responder (also called the key view) the first time the
receiver is placed onscreen.

initialFirstResponder (page 1836)
Returns the NSView that’s made first responder the first time the receiver is placed onscreen.

selectKeyViewFollowingView (page 1852)
Sends the NSView message nextValidKeyView (page 1762) to aView, and if that message returns
an NSView, invokes makeFirstResponder (page 1841) with the returned NSView.

selectKeyViewPrecedingView (page 1852)
Sends the NSView messagepreviousValidKeyView (page 1765) toaView, and if that message returns
an NSView, invokes makeFirstResponder (page 1841) with the returned NSView.

selectNextKeyView (page 1852)
This action method searches for a candidate key view and, if it finds one, invokes
makeFirstResponder (page 1841) to establish it as the first responder.

selectPreviousKeyView (page 1853)
This action method searches for a candidate key view and, if it finds one, invokes
makeFirstResponder (page 1841) to establish it as the first responder.

Tasks 1805
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

keyViewSelectionDirection (page 1840)
Returns the direction the receiver is currently using to change the key view.

Setting the Title and Filename

setTitle (page 1868)
Sets the string that appears in the receiver’s title bar (if it has one) to aString and displays the title.

setTitleWithRepresentedFilename (page 1868)
Sets path as the receiver’s title, formatting it as a file-system path, and records path as the receiver’s
associated filename using setRepresentedFilename (page 1867).

title (page 1870)
Returns either the string that appears in the title bar of the receiver, or the path to the represented
file.

setRepresentedFilename (page 1867)
Sets the name of the file the receiver represents to path.

representedFilename (page 1849)
Returns the name of the file the receiver represents.

Marking a Window Edited

setDocumentEdited (page 1859)
Sets whether the receiver’s document has been edited and not saved to flag.

isDocumentEdited (page 1837)
Returns true or false according to the argument supplied with the last setDocumentEdited (page
1859) message.

Closing the Window

close (page 1821)
Removes the receiver from the screen.

performClose (page 1846)
This action method simulates the user clicking the close button by momentarily highlighting the
button and then closing the window.

setReleasedWhenClosed (page 1867)
Sets whether the receiver is merely hidden (false) or hidden and then released (true) when it
receives a close message.

isReleasedWhenClosed (page 1839)
Returns true if the receiver is automatically released after being closed, false if it’s simply removed
from the screen.

1806 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Miniaturizing and Miniaturized Windows

miniaturize (page 1842)
This action method removes the receiver from the screen list and displays the miniaturized window
in the dock.

performMiniaturize (page 1847)
This action method simulates the user clicking the miniaturize button by momentarily highlighting
the button, then miniaturizing the window.

deminiaturize (page 1826)
This action method deminiaturizes the receiver.

isMiniaturized (page 1838)
Returns true if the receiver has been miniaturized, false if it hasn’t.

setMiniwindowImage (page 1864)
Sets the receiver’s custom miniaturized window image to anImage.

miniwindowImage (page 1842)
Returns the custom miniaturized window image of the receiver.

setMiniwindowTitle (page 1864)
Sets the title of the receiver’s miniaturized counterpart to aString and redisplays it.

miniwindowTitle (page 1843)
Returns the title displayed in the receiver’s miniaturized window.

Working with Menus

menuChanged (page 1815)
This method does nothing; it is here for backward compatibility.

Working with the Windows Menu

setExcludedFromWindowsMenu (page 1860)
Sets whether the receiver’s title is omitted from the application’s Windows menu.

isExcludedFromWindowsMenu (page 1837)
Returns true if the receiver’s title is omitted from the application’s Windows menu, false if it is
listed.

Working with Cursor Rectangles

areCursorRectsEnabled (page 1817)
Returns true if the receiver’s cursor rectangles are enabled, false if they’re not.

enableCursorRects (page 1831)
Reenables cursor rectangle management within the receiver after a disableCursorRects (page
1827) message.

disableCursorRects (page 1827)
Disables all cursor rectangle management within the receiver.

Tasks 1807
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

discardCursorRects (page 1828)
Invalidates all cursor rectangles in the receiver.

invalidateCursorRectsForView (page 1836)
Marks as invalid the cursor rectangles of aView, an NSView in the receiver’s view hierarchy, so they’ll
be set up again when the receiver becomes key (or immediately if the receiver is key).

resetCursorRects (page 1849)
Invokes discardCursorRects (page 1828) to clear the receiver’s cursor rectangles, then sends
resetCursorRects (page 1849) to every NSView in the receiver’s view hierarchy.

Dragging

concludeDragOperation (page 1822)

dragImage (page 1831)
Begins a dragging session.

draggingEntered (page 1830)

draggingExited (page 1830)
Invoked when the dragged image exits the receiver’s frame rectangle.

draggingUpdated (page 1831)

performDragOperation (page 1846)

prepareForDragOperation (page 1847)

registerForDraggedTypes (page 1849)
Registers pboardTypes as the pasteboard types the receiver will accept as the destination of an
image-dragging session.

unregisterDraggedTypes (page 1871)
Unregisters the receiver as a possible destination for dragging operations.

Controlling Behavior

setHidesOnDeactivate (page 1862)
Sets whether the receiver is removed from the screen when the application is inactive.

hidesOnDeactivate (page 1836)
Returns true if the receiver is removed from the screen when its application is deactivated, false
if it remains onscreen.

worksWhenModal (page 1874)
Returns true if the receiver is able to receive keyboard and mouse events even when some other
window is being run modally, false otherwise.

setCanHide (page 1856)
Sets whether the receiver can be hidden during NSApplication’s hide (page 112) to flag.

1808 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

canHide (page 1820)
Returns whether the receiver can be hidden during NSApplication’s hide (page 112).

Working with Display Characteristics

setContentView (page 1858)
Makes aView the receiver’s content view; the previous content view is removed from the receiver’s
view hierarchy.

contentView (page 1824)
Returns the receivers’s content view, the highest accessible NSView object in the receiver’s view
hierarchy.

setBackgroundColor (page 1855)
Sets the receiver’s background color to aColor.

backgroundColor (page 1818)
Returns the color of the receiver’s background.

styleMask (page 1870)
Returns the receiver’s style mask, indicating what kinds of control items it displays.

setHasShadow (page 1862)
Sets whether the receiver has a shadow to hasShadow.

hasShadow (page 1836)
Returns true if the window has a shadow; otherwise returns false.

invalidateShadow (page 1837)
Invalidates the window shadow so that it is recomputed based on the current window shape.

setAlphaValue (page 1854)
Applies windowAlpha to the entire window.

alphaValue (page 1817)
Returns the receiver’s alpha value.

setOpaque (page 1866)
Sets whether the receiver is opaque to isOpaque.

isOpaque (page 1839)
Returns whether the receiver is opaque.

Working with Services

validRequestorForTypes (page 1872)
Searches for an object that responds to a Services request by providing input of sendType and
accepting output of returnType.

Printing

print (page 1848)
This action method runs the Print panel, and if the user chooses an option other than canceling, prints
the receiver (its frame view and all subviews).

Tasks 1809
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

dataWithEPSInsideRect (page 1825)
Returns EPS data that draws the region of the receiver within aRect (expressed in the receiver’s base
coordinate system).

dataWithPDFInsideRect (page 1825)
Returns PDF data that draws the region of the receiver within aRect (expressed in the receiver’s base
coordinate system).

Setting the Delegate

setDelegate (page 1858)
Makes anObject the receiver’s delegate, without retaining it.

delegate (page 1826)
Returns the receiver’s delegate, or null if it doesn’t have a delegate.

Getting Associated Information

drawers (page 1831)
Returns the collection of drawers associated with the receiver.

setWindowController (page 1869)
Set’s the receiver’s window controller to be windowController.

windowController (page 1873)
Returns the receiver’s window controller.

Working with Sheets

attachedSheet (page 1818)
Returns the sheet attached to the receiver.

isSheet (page 1840)
Returns true if the receiver has ever run as a modal sheet.

Working with Toolbars

setToolbar (page 1869)
Sets the receiver’s toolbar to toolbar.

toolbar (page 1871)
Returns the receiver’s toolbar.

toggleToolbarShown (page 1871)
The action method for the “Hide Toolbar” menu item (which alternates with “Show Toolbar”).

runToolbarCustomizationPalette (page 1851)
The action method for the “Customize Toolbar…” menu item.

1810 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Working with Title Bar Widgets

standardWindowButtonForStyleMask (page 1815)
Returns a new instance of the given standard button, sized appropriately for the styleMask.

standardWindowButton (page 1870)
Return the given standard button if it is in the window view hierarchy.

setShowsToolbarButton (page 1868)
If flag is true, the window title bar is updated to display the standard toolbar button.

showsToolbarButton (page 1870)
Returns true if the standard toolbar button is currently displayed; otherwise, returns false.

Managing Tool Tips

setAllowsToolTipsWhenApplicationIsInactive (page 1854)
Sets whether the receiver can display tool tips even when the application is in the background.

allowsToolTipsWhenApplicationIsInactive (page 1816)
Returns whether the receiver can display tool tips even when the application is in the background.

Working with window status

windowDidBecomeKey (page 1877) delegate method
Sent by the default notification center immediately after an NSWindow has become key.

windowDidBecomeMain (page 1877) delegate method
Sent by the default notification center immediately after an NSWindow has become main.

windowDidResignKey (page 1879) delegate method
Sent by the default notification center immediately after an NSWindow has resigned its status as key
window.

windowDidResignMain (page 1879) delegate method
Sent by the default notification center immediately after an NSWindow has resigned its status as main
window.

Moving and resizing windows

windowDidChangeScreen (page 1877) delegate method
Sent by the default notification center immediately after an NSWindow has changed screens.

windowDidChangeScreenProfile (page 1878) delegate method
Sent by the default notification center immediately after an NSWindow has changed screen display
profiles.

windowWillMove (page 1881) delegate method
Sent by the default notification center immediately before an NSWindow is moved.

windowDidMove (page 1879) delegate method
Sent by the default notification center immediately after an NSWindow has been moved.

Tasks 1811
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

windowWillResize (page 1881) delegate method
Invoked when sender is being resized (whether by the user or through one of the setFrame...
methods other than setFrame (page 1860)).

windowDidResize (page 1879) delegate method
Sent by the default notification center immediately after an NSWindow has been resized.

windowShouldZoom (page 1880) delegate method
Invoked just before sender is zoomed.

windowWillUseStandardFrame (page 1882) delegate method
Invoked by the zoom (page 1874) method while determining a frame the sender may be zoomed to.

Miniaturizing and closing windows

windowWillMiniaturize (page 1880) delegate method
Sent by the default notification center immediately before an NSWindow is miniaturized.

windowDidMiniaturize (page 1878) delegate method
Sent by the default notification center immediately after an NSWindow has been miniaturized.

windowDidDeminiaturize (page 1878) delegate method
Sent by the default notification center immediately after an NSWindow has been deminiaturized.

windowShouldClose (page 1880) delegate method
Invoked when the user attempts to close the window or when the NSWindow receives a
performClose (page 1846) message.

windowWillClose (page 1880) delegate method
Sent by the default notification center immediately before an NSWindow closes.

Exposing and updating windows

windowDidExpose (page 1878) delegate method
Sent by the default notification center immediately after an NSWindow has been exposed.

windowDidUpdate (page 1879) delegate method
Sent by the default notification center immediately after an NSWindow receives an update (page
1871) message.

Displaying sheets

windowWillBeginSheet (page 1880) delegate method
Sent by the default notification center immediately before an NSWindow opens a sheet.

windowDidEndSheet (page 1878) delegate method
Sent by the default notification center immediately after an NSWindow closes a sheet.

windowWillPositionSheet (page 1881) delegate method
Sent to the delegate just before the animation of a sheet, giving it the opportunity to return a custom
location for the attachment of the sheet (sheet) to the window (window).

1812 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Obtaining information about a window

windowWillReturnFieldEditor (page 1882) delegate method
Invoked when the field editor of sender is requested by anObject.

windowWillReturnUndoManager (page 1882) delegate method
Invoked when the undo manager for sender is requested.

Constructors

NSWindow
Creates a new NSWindow object, whose content rectangle is specified relative to the lower-left corner of the
main screen.

public NSWindow()

Discussion
This constructor calls the following constructor with contentRect of (100.0, 100.0, 100.0, 100.0), styleMask
of TitledWindowMask, backingType of BackingStoreBuffered, and defer set to false.

Creates a new NSWindow object, whose content rectangle is specified relative to the lower-left corner of the
main screen.

public NSWindow(NSRect contentRect, int styleMask, int backingType, boolean defer)

Discussion
The contentRect argument specifies the location and size of the NSWindow’s content area in screen
coordinates. Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

The styleMask argument specifies the receiver’s style. Either it can be BorderlessWindowMask, or it can
contain any of the options described in the constants section, combined using the C bitwise OR operator.

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include TitledWindowMask if it includes any of the others.

The backingType argument specifies how the drawing done in the receiver is buffered by the object’s
window device, and possible values are described in the constants section.

The defer argument determines whether the window server creates a window device for the new object
immediately. If defer is true, it defers creating the window until the receiver is moved onscreen. All display
messages sent to the NSWindow or its NSViews are postponed until the window is created, just before it’s
moved onscreen. Deferring the creation of the window improves launch time and minimizes the virtual
memory load on the window server.

The new NSWindow creates an instance of NSView to be its default content view. You can replace it with
your own object by using the setContentView (page 1858) method.

Creates an NSWindow object, whose content rectangle is specified relative to the lower-left corner of aScreen.

public NSWindow(NSRect contentRect, int styleMask, int bufferingType, boolean defer,
NSScreen aScreen)

Constructors 1813
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Otherwise this method is equivalent to the preceding constructor.

If aScreen is null, the content rectangle is interpreted relative to the lower-left corner of the main screen.
The main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

See Also
orderFront (page 1844)
setTitle (page 1868)
setOneShot (page 1865)

Static Methods

contentRectForFrameRect
Returns the content rectangle used by an NSWindow with a frame rectangle of frameRect and a style mask
of aStyle.

public static NSRect contentRectForFrameRect(NSRect frameRect, int aStyle)

Discussion
Both frameRect and the returned content rectangle are expressed in screen coordinates. See the constants
section for a list of style mask values.

See Also
"frameRectForContentRect" (page 1814)
contentRectForFrameRect (page 1823)

defaultDepthLimit
Returns the default depth limit for instances of NSWindow.

public static int defaultDepthLimit()

Discussion
This limit is determined by the depth of the deepest screen level available to the window server.

See Also
setDepthLimit (page 1858)
setDynamicDepthLimit (page 1859)
canStoreColor (page 1820)

frameRectForContentRect
Returns the frame rectangle used by an NSWindow with a content rectangle of contentRect and a style
mask of aStyle.

1814 Static Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public static NSRect frameRectForContentRect(NSRect contentRect, int aStyle)

Discussion
Both contentRect and the returned frame rectangle are expressed in screen coordinates. See the constants
section for a list of style mask values.

See Also
contentRectForFrameRect (page 1814)
frameRectForContentRect (page 1835)

menuChanged
This method does nothing; it is here for backward compatibility.

public static void menuChanged(NSMenu aMenu)

See Also
menu (page 1192) (NSResponder)

minFrameWidthWithTitle
Returns the minimum width an NSWindow’s frame rectangle must have for it to display all of aTitle, given
aStyle as its style mask.

public static float minFrameWidthWithTitle(String aTitle, int aStyle)

Discussion
See the constants section for a list of acceptable style mask values.

removeFrameUsingName
Removes the frame data stored under name from the application’s user defaults.

public static void removeFrameUsingName(String name)

See Also
setFrameUsingName (page 1862)
setFrameAutosaveName (page 1860)

standardWindowButtonForStyleMask
Returns a new instance of the given standard button, sized appropriately for the styleMask.

public static NSButton standardWindowButtonForStyleMask(int button, int styleMask)

Discussion
The caller is responsible for adding the button to the view hierarchy and for setting the target to be the
window.

Static Methods 1815
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Availability
Available in Mac OS X v10.2 and later.

See Also
standardWindowButton (page 1870)

Instance Methods

acceptsMouseMovedEvents
Returns true if the receiver accepts and distributes mouse-moved events, false if it doesn’t.

public boolean acceptsMouseMovedEvents()

Discussion
NSWindows by default don’t accept mouse-moved events.

See Also
setAcceptsMouseMovedEvents (page 1853)

addChildWindow
childWin is ordered either above (Above) or below (Below) the receiver, and maintained in that relative
place for subsequent ordering operations involving either window.

public void addChildWindow(NSWindow childWin, int place)

Discussion
While this attachment is active, moving childWin will not cause the receiver to move (as in sliding a drawer
in or out), but moving the receiver will cause childWin to move.

Note that you should not create cycles between parent and child windows. For example, you should not add
window B as child of window A, then add window A as a child of window B.

Availability
Available in Mac OS X v10.2 and later.

See Also
removeChildWindow (page 1849)
childWindows (page 1821)
parentWindow (page 1846)
setParentWindow (page 1866)

allowsToolTipsWhenApplicationIsInactive
Returns whether the receiver can display tool tips even when the application is in the background.

public boolean allowsToolTipsWhenApplicationIsInactive()

1816 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Default is false.

Availability
Available in Mac OS X v10.3 and later.

See Also
setAllowsToolTipsWhenApplicationIsInactive (page 1854)

alphaValue
Returns the receiver’s alpha value.

public float alphaValue()

See Also
setAlphaValue (page 1854)

animationResizeTime
Subclasses can override this method to control the total time for the frame change.

public double animationResizeTime(NSRect newFrame)

Discussion
newFrame is the rect passed into setFrame (page 1860).

The default implementation uses the value from the NSWindowResizeTime user default as the time in
seconds to resize by 150 pixels. If this value is unspecified, NSWindowResizeTime is 0.20 seconds (this default
value may be differ in different releases of Mac OS X).

areCursorRectsEnabled
Returns true if the receiver’s cursor rectangles are enabled, false if they’re not.

public boolean areCursorRectsEnabled()

See Also
enableCursorRects (page 1831)
addCursorRect (page 1739) (NSView)

aspectRatio
Returns the receiver’s size aspect ratio.

public NSSize aspectRatio()

Discussion
The size of the receiver’s frame rectangle is constrained to integral multiples of this ratio when the user resizes
it. You can set an NSWindow’s size to any ratio programmatically.

Instance Methods 1817
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
resizeIncrements (page 1851)
setAspectRatio (page 1854)
setFrame (page 1860)

attachedSheet
Returns the sheet attached to the receiver.

public NSWindow attachedSheet()

Discussion
If the receiver does not have a sheet attached, this method returns null.

autorecalculatesKeyViewLoop
Returns true if the window automatically recalculates the key view loop when views are added; otherwise
returns false.

public boolean autorecalculatesKeyViewLoop()

Availability
Available in Mac OS X v10.4 and later.

See Also
recalculateKeyViewLoop (page 1848)
setAutorecalculatesKeyViewLoop (page 1855)

backgroundColor
Returns the color of the receiver’s background.

public NSColor backgroundColor()

See Also
setBackgroundColor (page 1855)

backingType
Returns the receiver’s backing store type.

public int backingType()

Discussion
The possible return values are described in the constants section.

See Also
setBackingType (page 1855)

1818 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

becomeKeyWindow
Invoked automatically to inform the receiver that it has become the key window; never invoke this method
directly.

public void becomeKeyWindow()

Discussion
This method reestablishes the receiver’s first responder, sends the becomeKeyWindowmessage to that object
if it responds, and posts a WindowDidBecomeKeyNotification (page 1883) to the default notification center.

See Also
makeKeyWindow (page 1842)
makeKeyAndOrderFront (page 1841)
becomeMainWindow (page 1819)

becomeMainWindow
Invoked automatically to inform the receiver that it has become the main window; never invoke this method
directly.

public void becomeMainWindow()

Discussion
This method posts a WindowDidBecomeMainNotification (page 1883) to the default notification center.

See Also
makeMainWindow (page 1842)
becomeKeyWindow (page 1819)

cacheImageInRect
Stores the receiver’s raster image from aRect, which is expressed in the receiver’s base coordinate system.

public void cacheImageInRect(NSRect aRect)

Discussion
This method allows the receiver to perform temporary drawing, such as a band around the selection as the
user drags the mouse, and to quickly restore the previous image by invoking restoreCachedImage (page
1851) andflushWindowIfNeeded (page 1834). The next time the window displays, it discards its cached image
rectangles. You can also explicitly use discardCachedImage (page 1828) to free the memory occupied by
cached image rectangles. aRect is made integral before caching the image to avoid antialiasing artifacts.

Only the last cached rectangle is remembered and can be restored.

See Also
display (page 1829)

canBecomeKeyWindow
Returns true if the receiver can become the key window, false if it can’t.

Instance Methods 1819
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public boolean canBecomeKeyWindow()

Discussion
Attempts to make the receiver the key window are abandoned if this method returns false. NSWindow’s
implementation returns true if the receiver has a title bar or a resize bar, false otherwise.

See Also
isKeyWindow (page 1838)
makeKeyWindow (page 1842)

canBecomeMainWindow
Returns true if the receiver can become the main window, false if it can’t.

public boolean canBecomeMainWindow()

Discussion
Attempts to make the receiver the main window are abandoned if this method returns false. NSWindow’s
implementation returns true if the receiver is visible, is not an NSPanel, and has a title bar or a resize
mechanism. Otherwise it returns false.

See Also
isMainWindow (page 1838)
makeMainWindow (page 1842)

canHide
Returns whether the receiver can be hidden during NSApplication’s hide (page 112).

public boolean canHide()

Discussion
The default is true.

See Also
setCanHide (page 1856)

canStoreColor
Returns true if the receiver has a depth limit that allows it to store color values, false if it doesn’t.

public boolean canStoreColor()

See Also
depthLimit (page 1826)
shouldDrawColor (page 1781) (NSView)

1820 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

cascadeTopLeftFromPoint
Positions the receiver's top left at topLeftPoint, unless topLeftPoint is NSPoint.ZeroPoint in which
case the receiver is not moved except as needed to constrain to the visible screen.

public NSPoint cascadeTopLeftFromPoint(NSPoint topLeftPoint)

Discussion
Returns a point shifted from top left of the receiver that can be passed to a subsequent invocation of
cascadeTopLeftFromPoint to position the next NSWindow so the title bars of both NSWindows are fully
visible.

Both topLeftPoint and the return value are expressed in screen coordinates.

See Also
setFrameTopLeftPoint (page 1861)

center
Sets the receiver’s location to the center of the screen.

public void center()

Discussion
The receiver is placed exactly in the center horizontally and somewhat above center vertically. Such a
placement carries a certain visual immediacy and importance. This method doesn’t put the receiver onscreen,
however; use makeKeyAndOrderFront (page 1841) to do that.

You typically use this method to place an NSWindow—most likely an alert dialog—where the user can’t miss
it. This method is invoked automatically when an NSPanel is placed on the screen by NSApplication’s
runModalForWindow (page 119) method.

childWindows
Returns an array of the receiver’s attached child windows.

public NSArray childWindows()

Availability
Available in Mac OS X v10.2 and later.

See Also
removeChildWindow (page 1849)
addChildWindow (page 1816)
parentWindow (page 1846)
setParentWindow (page 1866)

close
Removes the receiver from the screen.

public void close()

Instance Methods 1821
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
A window doesn’t have to be visible to receive the close message. For example, when the application
terminates, it sends the close message to all windows in its window list, even those that are not currently
visible.

The close method posts a WindowWillCloseNotification (page 1885) to the default notification center.

The close method differs in two important ways from the performClose (page 1846) method:

 ■ It does not attempt to send a windowShouldClose (page 1880) message to the receiver or its delegate.

 ■ It does not simulate the user clicking the close button by momentarily highlighting the button.

Use performClose (page 1846) if you need these features.

See Also
orderOut (page 1845)

concludeDragOperation
public void concludeDragOperation(NSDraggingInfo draggingInfo)

Discussion
Invoked when the dragging operation is complete and the previous performDragOperation (page 1846)
returned true. draggingInfo contains details about the dragging operation. This method allows you to
perform any tidying up that is needed, such as updating the visual representation now the dragged data
has been incorporated. This is the last message sent during a dragging session.

constrainFrameRectToScreen
Modifies and returns frameRect so that its top edge lies on aScreen.

public NSRect constrainFrameRectToScreen(NSRect frameRect, NSScreen aScreen)

Discussion
If the receiver is resizable and the receiver’s height is greater than the screen height, the rectangle’s height
is adjusted to fit within the screen as well. The rectangle’s width and horizontal location are unaffected. You
shouldn’t need to invoke this method yourself; it’s invoked automatically (and the modified frame is used to
locate and set the size of the receiver) whenever a titled NSWindow is placed onscreen and whenever its size
is changed.

Subclasses can override this method to prevent their instances from being constrained or to constrain them
differently.

contentAspectRatio
Returns the aspect ratio (height in relation to width) of the receiver’s content view.

public NSSize contentAspectRatio()

Availability
Available in Mac OS X v10.3 and later.

1822 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
setContentAspectRatio (page 1856)

contentMaxSize
Returns the maximum size of the receiver’s content view.

public NSSize contentMaxSize()

Availability
Available in Mac OS X v10.3 and later.

See Also
setContentMaxSize (page 1856)
contentMinSize (page 1823)

contentMinSize
Returns the minimum size of the receiver’s content view.

public NSSize contentMinSize()

Availability
Available in Mac OS X v10.3 and later.

See Also
setContentMinSize (page 1857)
contentMaxSize (page 1823)

contentRectForFrameRect
Returns the rectangle bounding the receiver’s content view given the frame rectangle frameRect.

public NSRect contentRectForFrameRect(NSRect frameRect)

Discussion
Both frameRect and the returned content rectangle are expressed in screen coordinates. The receiver uses
its current style mask in computing the content rectangle. See the constants sectionfor a list of style mask
values. The main advantage of this instance-method counterpart to contentRectForFrameRect (page
1814) is that it allows you to take toolbars into account when converting between content and frame rectangles.
(The toolbar is not included in the content rectangle.)

Availability
Available in Mac OS X v10.3 and later.

See Also
frameRectForContentRect (page 1835)
"contentRectForFrameRect" (page 1814)

Instance Methods 1823
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

contentResizeIncrements
Returns the size of increments used during resizing of the receiver’s content rectangle.

public NSSize contentResizeIncrements()

Discussion
Resizing of the content rectangle is constrained to integral multiples of the returned height and width.

Availability
Available in Mac OS X v10.3 and later.

See Also
setContentResizeIncrements (page 1857)

contentView
Returns the receivers’s content view, the highest accessible NSView object in the receiver’s view hierarchy.

public NSView contentView()

See Also
setContentView (page 1858)

convertBaseToScreen
Returns aPoint converted from the receiver’s base coordinate system to the screen coordinate system.

public NSPoint convertBaseToScreen(NSPoint aPoint)

See Also
convertScreenToBase (page 1824)
convertPointToView (page 1745) (NSView)

convertScreenToBase
Returns aPoint converted from the screen coordinate system to the receiver’s base coordinate system.

public NSPoint convertScreenToBase(NSPoint aPoint)

See Also
convertBaseToScreen (page 1824)
convertRectFromView (page 1745) (NSView)

currentEvent
Returns the event currently being processed by the application, by invoking NSApplication’s
currentEvent (page 110) method.

public NSEvent currentEvent()

1824 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

dataWithEPSInsideRect
Returns EPS data that draws the region of the receiver within aRect (expressed in the receiver’s base
coordinate system).

public NSData dataWithEPSInsideRect(NSRect aRect)

Discussion
This data can be placed on a pasteboard, written to a file, or used to create an NSImage object.

See Also
dataWithEPSInsideRect (page 1746) (NSView)
writeEPSInsideRectToPasteboard (page 1788) (NSView)

dataWithPDFInsideRect
Returns PDF data that draws the region of the receiver within aRect (expressed in the receiver’s base
coordinate system).

public NSData dataWithPDFInsideRect(NSRect aRect)

Discussion
This data can be placed on a pasteboard, written to a file, or used to create an NSImage object.

See Also
dataWithPDFInsideRect (page 1747) (NSView)
writePDFInsideRectToPasteboard (page 1788) (NSView)

deepestScreen
Returns the deepest screen the receiver is on (it may be split over several screens), or null if the receiver is
offscreen.

public NSScreen deepestScreen()

See Also
screen (page 1852)

defaultButtonCell
Returns the button cell that performs as if clicked when the NSWindow receives a Return (or Enter) key event.

public NSButtonCell defaultButtonCell()

Discussion
This cell draws itself as the focal element for keyboard interface control, unless another button cell is focused
on, in which case the default button cell temporarily draws itself as normal and disables its key equivalent.

The window receives a Return key event if no responder in its responder chain claims it, or if the user presses
the Control key along with the Return key.

Instance Methods 1825
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
setDefaultButtonCell (page 1858)
disableKeyEquivalentForDefaultButtonCell (page 1828)
enableKeyEquivalentForDefaultButtonCell (page 1832)

delegate
Returns the receiver’s delegate, or null if it doesn’t have a delegate.

public Object delegate()

See Also
setDelegate (page 1858)

deminiaturize
This action method deminiaturizes the receiver.

public void deminiaturize(Object sender)

Discussion
Invoke this method to programmatically deminiaturize a miniaturized window in the dock.

See Also
miniaturize (page 1842)
styleMask (page 1870)

depthLimit
Returns the depth limit of the receiver.

public int depthLimit()

See Also
"defaultDepthLimit" (page 1814)
setDepthLimit (page 1858)
setDynamicDepthLimit (page 1859)

deviceDescription
Returns a dictionary containing information about the receiver’s resolution, color depth, and so on.

public NSDictionary deviceDescription()

Discussion
This information is useful for tuning images and colors to the window’s display capabilities. The contents of
the dictionary are:

1826 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

ValueDictionary Key

An NSSize that describes the receiver’s raster resolution in dots
per inch (dpi).

NSGraphics.DeviceResolution

A String giving the name of the receiver’s color space. See the
constants section in NSGraphics for a list of possible values.

NSGraphics.DeviceColorSpaceName

A Number containing an integer that gives the bit depth of the
receiver’s raster image (2-bit, 8-bit, and so forth).

NSGraphics.DeviceBitsPerSample

A result of true, indicating that the receiver displays on the
screen.

NSGraphics.DeviceIsScreen

An NSSize that gives the size of the receiver’s frame rectangle.NSGraphics.DeviceSize

See Also
deviceDescription (page 1249) (NSScreen)
bestRepresentationForDevice (page 755) (NSImage)
colorUsingColorSpaceName (page 372) (NSColor)

disableCursorRects
Disables all cursor rectangle management within the receiver.

public void disableCursorRects()

Discussion
Use this method when you need to do some special cursor manipulation and you don’t want the Application
Kit interfering.

See Also
enableCursorRects (page 1831)

disableFlushWindow
Disables the flushWindow (page 1833) method for the receiver.

public void disableFlushWindow()

Discussion
If the receiver is buffered, disabling flushWindow (page 1833) prevents drawing from being automatically
flushed by NSView’s display... methods from the receiver’s backing store to the screen. This method
permits several NSViews to be drawn before the results are shown to the user.

Flushing should be disabled only temporarily, while the NSWindow’s display is being updated. Each
disableFlushWindow (page 1827) message must be paired with a subsequent enableFlushWindow (page
1832) message. Invocations of these methods can be nested; flushing isn’t reenabled until the last (unnested)
enableFlushWindow (page 1832) message is sent.

Instance Methods 1827
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

disableKeyEquivalentForDefaultButtonCell
Disables the default button cell’s key equivalent, so it doesn’t perform a click when the user presses Return
(or Enter).

public void disableKeyEquivalentForDefaultButtonCell()

Discussion
See the method description for defaultButtonCell (page 1825) for more information.

See Also
enableKeyEquivalentForDefaultButtonCell (page 1832)

disableScreenUpdatesUntilFlush
Disables the receiver’s screen updates until the window is flushed.

public void disableScreenUpdatesUntilFlush()

Discussion
This method can be invoked to synchronize hardware surface flushes with the window’s flushes. The receiver
immediately disables screen updates using the function NSDisableScreenUpdates and re-enables screen
updates when the window flushes. Sending this message multiple times during a window update cycle has
no effect.

Availability
Available in Mac OS X v10.4 and later.

discardCachedImage
Discards all of the receiver’s cached image rectangles.

public void discardCachedImage()

Discussion
An NSWindow automatically discards its cached image rectangles when it displays.

See Also
cacheImageInRect (page 1819)
restoreCachedImage (page 1851)
display (page 1829)

discardCursorRects
Invalidates all cursor rectangles in the receiver.

public void discardCursorRects()

Discussion
This method is invoked by resetCursorRects (page 1849) to clear out existing cursor rectangles before
resetting them. You shouldn’t invoke it in the code you write, but might want to override it to change its
behavior.

1828 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

discardEventsMatchingMask
Forwards the message to the NSApplication object, which handles it as described in the NSApplication class
specification.

public void discardEventsMatchingMask(int mask, NSEvent lastEvent)

display
Passes a display message down the receiver’s view hierarchy, thus redrawing all NSViews within the receiver,
including the frame view that draws the border, title bar, and other peripheral elements.

public void display()

Discussion
You rarely need to invoke this method. NSWindows normally record which of their NSViews need display
and display them automatically on each pass through the event loop.

See Also
display (page 1747) (NSView)
displayIfNeeded (page 1829)
isAutodisplay (page 1837)

displayIfNeeded
Passes a displayIfNeeded (page 1829) message down the receiver’s view hierarchy, thus redrawing all
NSViews that need to be displayed, including the frame view that draws the border, title bar, and other
peripheral elements.

public void displayIfNeeded()

Discussion
This method is useful when you want to modify some number of NSViews and then display only the ones
that were modified.

You rarely need to invoke this method. NSWindows normally record which of their NSViews need display
and display them automatically on each pass through the event loop.

See Also
display (page 1829)
displayIfNeeded (page 1748) (NSView)
setNeedsDisplay (page 1779) (NSView)
isAutodisplay (page 1837)

displaysWhenScreenProfileChanges
Returns true if the window context should be updated when the screen profile changes or when the window
moves to a different screen.

public boolean displaysWhenScreenProfileChanges()

Instance Methods 1829
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Returns false (the default value) if the window context should stay the same despite profile changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
setDisplaysWhenScreenProfileChanges (page 1859)

draggingEntered
public int draggingEntered(NSDraggingInfo draggingInfo)

Discussion
Invoked when a dragged image enters the receiver. Specifically, this method is invoked when the mouse
pointer enters the receiver’s frame rectangle. draggingInfo contains details about the dragging operation.

Returns a value indicating which dragging operation will be performed when the image is released. In deciding
which dragging operation to return, you should evaluate the overlap between both the dragging operations
allowed by the source and the dragging operations and pasteboard data types the receiver supports. The
returned value should be one of the following:

MeaningOption

The data represented by the image will be copied.NSDraggingInfo.DragOperationCopy

The data will be shared.NSDraggingInfo.DragOperationLink

The operation will be defined by the destination.NSDraggingInfo.DragOperationGeneric

The operation is negotiated privately between the source
and the destination.

NSDraggingInfo.DragOperationPrivate

Combines all the above.NSDraggingInfo.DragOperationEvery

If none of the operations is appropriate, returns NSDraggingInfo.DragOperationNone.

See Also
draggingUpdated (page 1831)
draggingExited (page 1830)

draggingExited
Invoked when the dragged image exits the receiver’s frame rectangle.

public void draggingExited(NSDraggingInfo draggingInfo)

Discussion
draggingInfo contains details about the dragging operation.

1830 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

draggingUpdated
public int draggingUpdated(NSDraggingInfo draggingInfo)

Discussion
Invoked periodically as the dragged image is held within the receiver. The messages continue until the image
is either released or dragged out of the receiver. draggingInfo contains details about the dragging operation.
Returns one of the dragging operation options listed under draggingEntered (page 1830).

This method provides you with an opportunity to modify the dragging operation depending on the position
of the mouse pointer inside of the receiver. For example, you may have several graphics or areas of text
contained within the same view and wish to tailor the dragging operation or to ignore the drag event
completely, depending upon which object is underneath the mouse pointer at the time when the user
releases the dragged image and performDragOperation (page 1846) is invoked.

You typically examine the contents of the pasteboard in draggingEntered (page 1830), as this method is
invoked only once, rather than in this method, which is invoked multiple times.

Only one window at a time receives a sequence of draggingUpdated messages. If the mouse pointer is
within the bounds of two overlapping windows that are both valid destinations, the uppermost window
receives these messages until the image is either released or dragged out.

See Also
draggingExited (page 1830)
prepareForDragOperation (page 1847)

dragImage
Begins a dragging session.

public void dragImage(NSImage anImage, NSPoint aPoint, NSSize initialOffset, NSEvent
theEvent, NSPasteboard pboard, Object sourceObject, boolean slideBack)

Discussion
This method should be invoked only from within a view’s implementation of the mouseDown (page 1192) or
mouseDragged (page 1192) methods (which overrides the version defined in NSResponder). Essentially the
same as NSView’s method of the same name, except that aPoint is given in the NSWindow’s base coordinate
system. See the description of NSView’s dragImage (page 1751) for more information.

drawers
Returns the collection of drawers associated with the receiver.

public NSArray drawers()

enableCursorRects
Reenables cursor rectangle management within the receiver after a disableCursorRects (page 1827)
message.

public void enableCursorRects()

Instance Methods 1831
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

enableFlushWindow
Reenables the flushWindow (page 1833) method for the receiver after it was disabled through a previous
disableFlushWindow (page 1827) message.

public void enableFlushWindow()

enableKeyEquivalentForDefaultButtonCell
Reenables the default button cell’s key equivalent, so it performs a click when the user presses Return (or
Enter).

public void enableKeyEquivalentForDefaultButtonCell()

Discussion
See the method description for defaultButtonCell (page 1825) for more information.

See Also
disableKeyEquivalentForDefaultButtonCell (page 1828)

endEditingForObject
Forces the field editor, which anObject is assumed to be using, to give up its first responder status and
prepares it for its next assignment.

public void endEditingForObject(Object anObject)

Discussion
If the field editor is the first responder, it’s made to resign that status even if its resignFirstResponder (page
1196) method returns false. This registration forces the field editor to send a textDidEndEditing (page
1532) message to its delegate. The field editor is then removed from the view hierarchy, its delegate is set to
null, and it’s emptied of any text it may contain.

This method is typically invoked by the object using the field editor when it’s finished. Other objects normally
change the first responder by simply using makeFirstResponder (page 1841), which allows a field editor or
other object to retain its first responder status if, for example, the user has entered an invalid value. The
endEditingForObject (page 1832) method should be used only as a last resort if the field editor refuses to
resign first responder status. Even in this case, you should always allow the field editor a chance to validate
its text and take whatever other action it needs first. You can do this by first trying to make the NSWindow
the first responder.

See Also
fieldEditorForObject (page 1832)
windowWillReturnFieldEditor (page 1882)

fieldEditorForObject
Returns the receiver’s field editor, creating it if needed if createFlag is true.

public NSText fieldEditorForObject(boolean createFlag, Object anObject)

1832 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Returns null if createFlag is false and the field editor doesn’t exist. anObject is used to allow the
receiver’s delegate to substitute another object in place of the field editor, as described below. The field
editor may be in use by some view object, so be sure to properly dissociate it from that object before actually
using it yourself (the appropriate way to do this is illustrated in the description of
endEditingForObject (page 1832)). Once you retrieve the field editor, you can insert it in the view hierarchy,
set a delegate to interpret text events, and have it perform whatever editing is needed. Then, when it sends
a textDidEndEditing (page 1532) message to the delegate, you can get its text to display or store and
remove the field editor using endEditingForObject (page 1832).

The field editor is a single NSTextView object that is shared among all the controls in a window for light
text-editing needs. It is automatically instantiated when needed, and it can be used however your application
sees fit. Typically, the field editor is used by simple text-bearing objects—for example, an NSTextField object
uses its window’s field editor to display and manipulate text. The field editor can be shared by any number
of objects, and so its state may be constantly changing. Therefore, it shouldn’t be used to display text that
demands sophisticated layout (for this you should create a dedicated NSTextView object).

A freshly created NSWindow doesn’t have a field editor. After a field editor has been created for an NSWindow,
the createFlag argument is ignored. By passing false for createFlag and testing the return value,
however, you can predicate an action on the existence of the field editor.

The receiver’s delegate can substitute a custom editor in place of the NSWindow’s field editor by implementing
windowWillReturnFieldEditor (page 1882). The receiver sends this message to its delegate with itself
and anObject as the arguments, and if the return value is not null the NSWindow returns that object
instead of its field editor. However, note the following:

 ■ If the NSWindow’s delegate is identical to anObject, windowWillReturnFieldEditor (page 1882) isn’t
sent.

 ■ The object returned by the delegate method, though it may become first responder, does not become
the NSWindow’s field editor. Other objects continue to use the NSWindow’s established field editor.

firstResponder
Returns the receiver’s first responder.

public NSResponder firstResponder()

See Also
makeFirstResponder (page 1841)
acceptsFirstResponder (page 1189) (NSResponder)

flushWindow
Flushes the receiver’s offscreen buffer to the screen if the receiver is buffered and flushing is enabled.

public void flushWindow()

Discussion
Does nothing for other display devices, such as a printer. This method is automatically invoked by NSWindow’s
and NSView’s display (page 1829) and displayIfNeeded (page 1829) methods.

Instance Methods 1833
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
flushWindowIfNeeded (page 1834)
disableFlushWindow (page 1827)
enableFlushWindow (page 1832)

flushWindowIfNeeded
Flushes the receiver’s offscreen buffer to the screen if flushing is enabled and if the last flushWindow (page
1833) message had no effect because flushing was disabled.

public void flushWindowIfNeeded()

Discussion
To avoid unnecessary flushing, use this method rather than flushWindow (page 1833) to flush an NSWindow
after flushing has been reenabled.

See Also
flushWindow (page 1833)
disableFlushWindow (page 1827)
enableFlushWindow (page 1832)

frame
Returns the receiver’s frame rectangle.

public NSRect frame()

Discussion
The frame rectangle is always reckoned in the screen coordinate system.

See Also
screen (page 1852)
deepestScreen (page 1825)

frameAutosaveName
Returns the name used to automatically save the receiver’s frame rectangle data in the defaults system, as
set through setFrameAutosaveName (page 1860).

public String frameAutosaveName()

Discussion
If the receiver has an autosave name, its frame data is written whenever the frame rectangle changes.

See Also
setFrameUsingName (page 1862)

1834 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

frameRectForContentRect
Returns the receiver’s frame rectangle given the rectangle bounding the content view contentRect.

public NSRect frameRectForContentRect(NSRect contentRect)

Discussion
Both contentRect and the returned frame rectangle are expressed in screen coordinates. The receiver uses
its current style mask in computing the frame rectangle. See the constants section for a list of style mask
values. The major advantage of this instance-method counterpart to frameRectForContentRect (page
1814) is that it allows you to take toolbars into account when converting between content and frame rectangles.
(The toolbar is included in the frame rectangle but not the content rectangle.)

Availability
Available in Mac OS X v10.3 and later.

See Also
contentRectForFrameRect (page 1823)
"frameRectForContentRect" (page 1814)

graphicsContext
Returns the graphics context associated with the receiver for the current thread.

public NSGraphicsContext graphicsContext()

Availability
Available in Mac OS X v10.4 and later.

gState
Returns the graphics state object associated with the receiver.

public int gState()

Discussion
This graphics state is used by default for all NSViews in the receiver’s view hierarchy, but individual NSViews
can be made to use their own with the NSView method allocateGState (page 1741).

hasDynamicDepthLimit
Returns true if the receiver’s depth limit can change to match the depth of the screen it’s on, false if it
can’t.

public boolean hasDynamicDepthLimit()

See Also
setDynamicDepthLimit (page 1859)

Instance Methods 1835
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

hasShadow
Returns true if the window has a shadow; otherwise returns false.

public boolean hasShadow()

See Also
setHasShadow (page 1862)
invalidateShadow (page 1837)

hidesOnDeactivate
Returns true if the receiver is removed from the screen when its application is deactivated, false if it remains
onscreen.

public boolean hidesOnDeactivate()

See Also
setHidesOnDeactivate (page 1862)

ignoresMouseEvents
Return whether the receiver is transparent to mouse events.

public boolean ignoresMouseEvents()

Availability
Available in Mac OS X v10.2 and later.

See Also
setIgnoresMouseEvents (page 1863)

initialFirstResponder
Returns the NSView that’s made first responder the first time the receiver is placed onscreen.

public NSView initialFirstResponder()

See Also
setInitialFirstResponder (page 1863)
setNextKeyView (page 1779) (NSView)

invalidateCursorRectsForView
Marks as invalid the cursor rectangles of aView, an NSView in the receiver’s view hierarchy, so they’ll be set
up again when the receiver becomes key (or immediately if the receiver is key).

public void invalidateCursorRectsForView(NSView aView)

1836 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
resetCursorRects (page 1849)
resetCursorRects (page 1770) (NSView)

invalidateShadow
Invalidates the window shadow so that it is recomputed based on the current window shape.

public void invalidateShadow()

Availability
Available in Mac OS X v10.2 and later.

See Also
hasShadow (page 1836)
setHasShadow (page 1862)

isAutodisplay
Returns true if the receiver automatically displays its views that are marked as needing it, false if it doesn’t.

public boolean isAutodisplay()

Discussion
Automatic display typically occurs on each pass through the event loop.

See Also
setAutodisplay (page 1855)
displayIfNeeded (page 1829)
setNeedsDisplay (page 1779) (NSView)

isDocumentEdited
Returns true or false according to the argument supplied with the last setDocumentEdited (page 1859)
message.

public boolean isDocumentEdited()

isExcludedFromWindowsMenu
Returns true if the receiver’s title is omitted from the application’s Windows menu, false if it is listed.

public boolean isExcludedFromWindowsMenu()

See Also
setExcludedFromWindowsMenu (page 1860)

Instance Methods 1837
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

isFlushWindowDisabled
Returns true if the receiver’s flushing ability has been disabled; otherwise returns false.

public boolean isFlushWindowDisabled()

See Also
disableFlushWindow (page 1827)
enableFlushWindow (page 1832)

isKeyWindow
Returns true if the receiver is the key window for the application, false if it isn’t.

public boolean isKeyWindow()

See Also
isMainWindow (page 1838)
makeKeyWindow (page 1842)

isMainWindow
Returns true if the receiver is the main window for the application, false if it isn’t.

public boolean isMainWindow()

See Also
isKeyWindow (page 1838)
makeMainWindow (page 1842)

isMiniaturized
Returns true if the receiver has been miniaturized, false if it hasn’t.

public boolean isMiniaturized()

Discussion
A miniaturized window is removed from the screen and replaced by a image, icon, or button that represents
it, called the counterpart.

See Also
miniaturize (page 1842)

isMovableByWindowBackground
Returns true if the receiver is movable by clicking and dragging anywhere in its background, false if not.

public boolean isMovableByWindowBackground()

1838 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
A window with a style mask of NSTexturedBackgroundWindowMask returns true by default. Sheets and
drawers cannot be movable by window background.

Availability
Available in Mac OS X v10.2 and later.

See Also
setMovableByWindowBackground (page 1865)

isOneShot
Returns true if the window device the receiver manages is freed when it’s removed from the screen list,
false if not.

public boolean isOneShot()

Discussion
The default is false.

See Also
setOneShot (page 1865)

isOpaque
Returns whether the receiver is opaque.

public boolean isOpaque()

Discussion
The default is true.

See Also
setOpaque (page 1866)

isReleasedWhenClosed
Returns true if the receiver is automatically released after being closed, false if it’s simply removed from
the screen.

public boolean isReleasedWhenClosed()

Discussion
The default for NSWindow is true; the default for NSPanel is false. Release when closed, however, is ignored
for windows owned by window controllers.

See Also
setReleasedWhenClosed (page 1867)

Instance Methods 1839
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

isSheet
Returns true if the receiver has ever run as a modal sheet.

public boolean isSheet()

Discussion
Sheets are created using the NSPanel subclass.

isVisible
Returns true if the receiver is onscreen (even if it’s obscured by other windows).

public boolean isVisible()

See Also
visibleRect (page 1786) (NSView)

isZoomed
Returns whether the receiver is in a zoomed state.

public boolean isZoomed()

See Also
zoom (page 1874)

keyDown
Handles theEvent keyboard event that may need to be interpreted as changing the key view or triggering
a keyboard equivalent.

public void keyDown(NSEvent theEvent)

See Also
selectNextKeyView (page 1852)
nextKeyView (page 1761) (NSView)
performMnemonic (page 1763) (NSView)

keyViewSelectionDirection
Returns the direction the receiver is currently using to change the key view.

public int keyViewSelectionDirection()

Discussion
This direction can be one of the values described in the constants section

See Also
selectNextKeyView (page 1852)
selectPreviousKeyView (page 1853)

1840 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

level
Returns the level of the receiver as set using setLevel (page 1863).

public int level()

makeFirstResponder
Attempts to make aResponder the first responder for the receiver.

public boolean makeFirstResponder(NSResponder aResponder)

Discussion
If aResponder isn’t already the first responder, this method first sends a resignFirstResponder (page
1196) message to the object that is. If that object refuses to resign, it remains the first responder, and this
method immediately returns false. If it returns true, this method sends a becomeFirstResponder (page
1190) message to aResponder. If aResponder accepts first responder status, this method returns true. If it
refuses, this method returns false, and the NSWindow becomes first responder.

If aResponder is null, this method still sends resignFirstResponder (page 1196) to the current first
responder. If the current first responder refuses to resign, it remains the first responder and this method
immediately returns false. If the current first responder returns true from resignFirstResponder, the
receiver is made its own first responder and this method returns true.

The Application Kit uses this method to alter the first responder in response to mouse-down events; you can
also use it to explicitly set the first responder from within your program. aResponder is typically an NSView
in the receiver’s view hierarchy. If this method is called explicitly, first send acceptsFirstResponder (page
1189) to aResponder, and do not call makeFirstResponder if acceptsFirstResponder returns false.

Use setInitialFirstResponder (page 1863) to the set the first responder to be used when the window is
brought onscreen for the first time.

See Also
becomeFirstResponder (page 1190) (NSResponder)
resignFirstResponder (page 1196) (NSResponder)

makeKeyAndOrderFront
This action method moves the receiver to the front of the screen list, within its level, and makes it the key
window.

public void makeKeyAndOrderFront(Object sender)

See Also
orderFront (page 1844)
orderBack (page 1844)
orderOut (page 1845)
orderWindow (page 1845)
setLevel (page 1863)

Instance Methods 1841
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

makeKeyWindow
Makes the receiver the key window.

public void makeKeyWindow()

See Also
makeMainWindow (page 1842)
becomeKeyWindow (page 1819)
isKeyWindow (page 1838)

makeMainWindow
public void makeMainWindow()

Discussion
Makes the receiver the main window.

See Also
makeKeyWindow (page 1842)
becomeMainWindow (page 1819)
isMainWindow (page 1838)

maxSize
Returns the maximum size to which the receiver’s frame (including its title bar) can be sized either by the
user or by the setFrame... methods other than setFrame (page 1860).

public NSSize maxSize()

See Also
setMaxSize (page 1864)
minSize (page 1843)
aspectRatio (page 1817)
resizeIncrements (page 1851)

miniaturize
This action method removes the receiver from the screen list and displays the miniaturized window in the
dock.

public void miniaturize(Object sender)

See Also
deminiaturize (page 1826)

miniwindowImage
Returns the custom miniaturized window image of the receiver.

1842 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public NSImage miniwindowImage()

Discussion
The miniaturized window image is the image displayed in the dock when the window is minimized. If you
did not assign a custom image to the window, this method returns null.

See Also
setMiniwindowImage (page 1864)
miniwindowTitle (page 1843)

miniwindowTitle
Returns the title displayed in the receiver’s miniaturized window.

public String miniwindowTitle()

See Also
setMiniwindowTitle (page 1864)
miniwindowImage (page 1842)

minSize
Returns the minimum size to which the receiver’s frame (including its title bar) can be sized either by the
user or by the setFrame... methods other than setFrame (page 1860).

public NSSize minSize()

See Also
setMinSize (page 1865)
maxSize (page 1842)
aspectRatio (page 1817)
resizeIncrements (page 1851)

mouseLocationOutsideOfEventStream
Returns the current location of the mouse reckoned in the receiver’s base coordinate system, regardless of
the current event being handled or of any events pending.

public NSPoint mouseLocationOutsideOfEventStream()

Discussion
For the same information in screen coordinates, use NSEvent's "mouseLocation" (page 609).

See Also
currentEvent (page 110) (NSApplication)

Instance Methods 1843
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

nextEventMatchingMask
Invokes NSApplication’s nextEventMatchingMask (page 115) method, using mask as the first argument,
with an unlimited expiration, a mode of NSApplication.EventTrackingRunLoopMode, and a dequeue
flag of true.

public NSEvent nextEventMatchingMask(int mask)

Discussion
See the method description in the NSApplication class specification for more information.

Forwards the message to the global NSApplication object, NSApplication.sharedApplication().

public NSEvent nextEventMatchingMask(int mask, NSDate expirationDate, String mode,
boolean dequeue)

Discussion
See the method description in the NSApplication class specification for more information.

orderBack
This action method moves the receiver to the back of its level in the screen list, without changing either the
key window or the main window.

public void orderBack(Object sender)

See Also
orderFront (page 1844)
orderOut (page 1845)
orderWindow (page 1845)
makeKeyAndOrderFront (page 1841)
level (page 1841)

orderFront
This action method moves the receiver to the front of its level in the screen list, without changing either the
key window or the main window.

public void orderFront(Object sender)

See Also
orderBack (page 1844)
orderOut (page 1845)
orderWindow (page 1845)
makeKeyAndOrderFront (page 1841)
level (page 1841)

1844 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

orderFrontRegardless
Moves the receiver to the front of its level, even if its application isn’t active, but without changing either
the key window or the main window.

public void orderFrontRegardless()

Discussion
Normally an NSWindow can’t be moved in front of the key window unless the NSWindow and the key window
are in the same application. You should rarely need to invoke this method; it’s designed to be used when
applications are cooperating in such a way that an active application (with the key window) is using another
application to display data.

See Also
orderFront (page 1844)
level (page 1841)

orderOut
This action method takes the receiver out of the screen list.

public void orderOut(Object sender)

Discussion
If the receiver is the key or main window, the NSWindow immediately behind it is made key or main in its
place. Calling the orderOut (page 1845) method causes the receiver to be removed from the screen, but does
not cause it to be released.

See Also
orderFront (page 1844)
orderBack (page 1844)
orderWindow (page 1845)
setReleasedWhenClosed (page 1867)

orderWindow
Repositions the receiver’s window device in the window server’s screen list.

public void orderWindow(int place, int otherWindowNumber)

Discussion
If place is Out, the receiver is removed from the screen list and otherWindowNumber is ignored. If it’s
Above, the receiver is ordered immediately in front of the window whose window number is
otherWindowNumber. Similarly, if place is Below, the receiver is placed immediately behind the window
represented by otherWindowNumber. If otherWindowNumber is 0, the receiver is placed in front of or behind
all other windows in its level.

See Also
orderFront (page 1844)
orderBack (page 1844)
orderOut (page 1845)
makeKeyAndOrderFront (page 1841)

Instance Methods 1845
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

level (page 1841)
windowNumber (page 1873)

parentWindow
Returns the parent window to which the receiver is attached as a child.

public NSWindow parentWindow()

Availability
Available in Mac OS X v10.2 and later.

See Also
removeChildWindow (page 1849)
childWindows (page 1821)
addChildWindow (page 1816)
setParentWindow (page 1866)

performClose
This action method simulates the user clicking the close button by momentarily highlighting the button and
then closing the window.

public void performClose(Object sender)

Discussion
If the receiver’s delegate or the receiver itself implementswindowShouldClose (page 1880), then that message
is sent with the receiver as the argument. (Only one such message is sent; if both the delegate and the
NSWindow implement the method, only the delegate receives the message.) If thewindowShouldClose (page
1880) method returns false, the window isn’t closed. If it returns true, or if it isn’t implemented,
performClose (page 1846) invokes the close (page 1821) method to close the window.

If the receiver doesn’t have a close button or can’t be closed (for example, if the delegate replies false to
a windowShouldClose (page 1880) message), the system beeps.

See Also
styleMask (page 1870)
performMiniaturize (page 1847)

performDragOperation
public boolean performDragOperation(NSDraggingInfo aDraggingInfo)

Discussion
Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation (page 1847) message has returned true. aDraggingInfo contains details
about the dragging operation. This method should do the real work of importing the pasteboard data
represented by the image. If the receiver accepts the data, return true, otherwise return false.

1846 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
concludeDragOperation (page 1822)

performMiniaturize
This action method simulates the user clicking the miniaturize button by momentarily highlighting the
button, then miniaturizing the window.

public void performMiniaturize(Object sender)

Discussion
If the receiver doesn’t have a miniaturize button or can’t be miniaturized for some reason, the system beeps.

See Also
close (page 1821)
styleMask (page 1870)
performClose (page 1846)

performZoom
This action method simulates the user clicking the zoom box by momentarily highlighting the button and
then zooming the window.

public void performZoom(Object sender)

Discussion
If the receiver doesn’t have a zoom box or can’t be zoomed for some reason, the system beeps.

See Also
styleMask (page 1870)
zoom (page 1874)

postEvent
Forwards the message to the global NSApplication object, NSApplication.sharedApplication().

public void postEvent(NSEvent anEvent, boolean flag)

Discussion
See "NSApplication" (page 93) for details.

prepareForDragOperation
public boolean prepareForDragOperation(NSDraggingInfo aDraggingInfo)

Discussion
Invoked when the image is released, if the most recent draggingEntered (page 1830) or
draggingUpdated (page 1831) message returned an acceptable drag-operation value. aDraggingInfo
contains details about the dragging operation. Returns true if the receiver agrees to perform the drag
operation and false if not.

Instance Methods 1847
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
performDragOperation (page 1846)

preservesContentDuringLiveResize
Returns true if the window tries to optimize live resize operations by preserving the content of views that
have not moved; otherwise, returns false.

public boolean preservesContentDuringLiveResize()

Discussion
When enabled, the window redraws only those views that moved (or do not support this optimization) during
a live resize operation.

See preservesContentDuringLiveResize (page 1848) in NSView for additional information on how to
support this optimization.

Availability
Available in Mac OS X v10.4 and later.

See Also
setPreservesContentDuringLiveResize (page 1866)
preservesContentDuringLiveResize (page 1764) (NSView)

print
This action method runs the Print panel, and if the user chooses an option other than canceling, prints the
receiver (its frame view and all subviews).

public void print(Object sender)

recalculateKeyViewLoop
Marks the key view loop as dirty and in need of recalculation.

public void recalculateKeyViewLoop()

Discussion
The key view loop is actually recalculated the next time someone requests the next or previous key view of
the window. The recalculated loop is based on the geometric order of the views in the window.

If you do not want to maintain the key view loop of your window manually, you can use this method to do
it for you. When it is first loaded, NSWindow calls this method automatically if your window does not have
a key view loop already established. If you add or remove views later, you can call this method manually
from your code to update the window’s key view loop. You can also call
setAutorecalculatesKeyViewLoop (page 1855) to have the window recalculate the loop automatically.

Availability
Available in Mac OS X v10.4 and later.

1848 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
selectKeyViewFollowingView (page 1852)
selectKeyViewPrecedingView (page 1852)
setAutorecalculatesKeyViewLoop (page 1855)

registerForDraggedTypes
Registers pboardTypes as the pasteboard types the receiver will accept as the destination of an
image-dragging session.

public void registerForDraggedTypes(NSArray pboardTypes)

Discussion
Registering an NSWindow for dragged types automatically makes it a candidate destination object for a
dragging session. As such, it must properly implement some or all of the NSDraggingDestination interface
methods. As a convenience, NSWindow provides default implementations of these methods. See the
"NSDraggingDestination" (page 1955) interface specification for details.

See Also
unregisterDraggedTypes (page 1871)

removeChildWindow
Detaches childWin from the receiver.

public void removeChildWindow(NSWindow childWin)

Availability
Available in Mac OS X v10.2 and later.

See Also
addChildWindow (page 1816)
childWindows (page 1821)
parentWindow (page 1846)
setParentWindow (page 1866)

representedFilename
Returns the name of the file the receiver represents.

public String representedFilename()

See Also
setRepresentedFilename (page 1867)

resetCursorRects
Invokes discardCursorRects (page 1828) to clear the receiver’s cursor rectangles, then sends
resetCursorRects (page 1849) to every NSView in the receiver’s view hierarchy.

Instance Methods 1849
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public void resetCursorRects()

Discussion
This method is typically invoked by the NSApplication object when it detects that the key window’s cursor
rectangles are invalid. In program code, it’s more efficient to invoke invalidateCursorRectsForView (page
1836).

resignKeyWindow
Never invoke this method; it’s invoked automatically when the NSWindow resigns key window status.

public void resignKeyWindow()

Discussion
This method sends resignKeyWindow (page 1850) to the receiver’s first responder, sends
windowDidResignKey (page 1879) to the receiver’s delegate, and posts a
WindowDidResignKeyNotification (page 1884) to the default notification center.

See Also
becomeKeyWindow (page 1819)
resignMainWindow (page 1850)

resignMainWindow
Never invoke this method; it’s invoked automatically when the NSWindow resigns main window status.

public void resignMainWindow()

Discussion
This method sends windowDidResignMain (page 1879) to the receiver’s delegate and posts a
WindowDidResignMainNotification (page 1884) to the default notification center.

See Also
becomeMainWindow (page 1819)
resignKeyWindow (page 1850)

resizeFlags
Valid only while the receiver is being resized, this method returns the flags field of the event record for the
mouse-down event that initiated the resizing session.

public int resizeFlags()

Discussion
The integer encodes, as a mask, which of the modifier keys was held down when the event occurred. The
flags are listed in NSEvent’s modifierFlags (page 616) method description. You can use this method to
constrain the direction or amount of resizing. Because of its limited validity, this method should only be
invoked from within an implementation of the delegate method windowWillResize (page 1881).

1850 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

resizeIncrements
Returns the receiver’s resizing increments, which restrict the user’s ability to resize it so that its width and
height alter by integral multiples of increments.width and increments.height when the user resizes
it.

public NSSize resizeIncrements()

Discussion
These amounts are whole number values, 1.0 or greater. You can set an NSWindow’s size to any value
programmatically.

See Also
setResizeIncrements (page 1867)
setAspectRatio (page 1854)
setFrame (page 1860)

restoreCachedImage
Splices the receiver’s cached image rectangles, if any, back into its raster image (and buffer if it has one),
undoing the effect of any drawing performed within those areas since they were established using
cacheImageInRect (page 1819).

public void restoreCachedImage()

Discussion
You must invoke flushWindow (page 1833) after this method to guarantee proper redisplay. An NSWindow
automatically discards its cached image rectangles when it displays.

See Also
discardCachedImage (page 1828)
display (page 1829)

runToolbarCustomizationPalette
The action method for the “Customize Toolbar…” menu item.

public void runToolbarCustomizationPalette(Object sender)

Discussion
See the NSToolbar (page 1693) class description for additional information.

saveFrameUsingName
Saves the receiver’s frame rectangle in the user defaults system.

public void saveFrameUsingName(String name)

Discussion
With the companion method setFrameUsingName (page 1862), you can save and reset an NSWindow’s frame
over various launchings of an application. The default is owned by the application and stored under the
name “NSWindow Frame name.” See the NSUserDefaults class specification for more information.

Instance Methods 1851
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
stringWithSavedFrame (page 1870)

screen
Returns the screen the receiver is on.

public NSScreen screen()

Discussion
If the receiver is partly on one screen and partly on another, the screen where most of it lies is returned.
Returns null if the receiver is completely offscreen.

See Also
deepestScreen (page 1825)

selectKeyViewFollowingView
Sends the NSView message nextValidKeyView (page 1762) to aView, and if that message returns an NSView,
invokes makeFirstResponder (page 1841) with the returned NSView.

public void selectKeyViewFollowingView(NSView aView)

See Also
selectKeyViewPrecedingView (page 1852)

selectKeyViewPrecedingView
Sends the NSView message previousValidKeyView (page 1765) to aView, and if that message returns an
NSView, invokes makeFirstResponder (page 1841) with the returned NSView.

public void selectKeyViewPrecedingView(NSView aView)

See Also
selectKeyViewFollowingView (page 1852)

selectNextKeyView
This action method searches for a candidate key view and, if it finds one, invokes makeFirstResponder (page
1841) to establish it as the first responder.

public void selectNextKeyView(Object sender)

Discussion
The candidate is one of the following (searched for in this order):

 ■ The current first responder’s next valid key view, as returned by NSView’s nextValidKeyView (page
1762) method

 ■ The object designated as the receiver’s initial first responder (using setInitialFirstResponder (page
1863)) if it returns true to an acceptsFirstResponder (page 1189) message

1852 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

 ■ Otherwise, the initial first responder’s next valid key view, which may end up being null

See Also
selectPreviousKeyView (page 1853)
selectKeyViewFollowingView (page 1852)

selectPreviousKeyView
This action method searches for a candidate key view and, if it finds one, invokes makeFirstResponder (page
1841) to establish it as the first responder.

public void selectPreviousKeyView(Object sender)

Discussion
The candidate is one of the following (searched for in this order):

 ■ The current first responder’s previous valid key view, as returned by NSView’s
previousValidKeyView (page 1765) method

 ■ The object designated as the receiver’s initial first responder (using setInitialFirstResponder (page
1863)) if it returns true to an acceptsFirstResponder (page 1189) message

 ■ Otherwise, the initial first responder’s previous valid key view, which may end up being null

See Also
selectNextKeyView (page 1852)
selectKeyViewPrecedingView (page 1852)

sendEvent
This action method dispatches mouse and keyboard events, specified by theEvent, sent to the receiver by
the NSApplication object.

public void sendEvent(NSEvent theEvent)

Discussion
Never invoke this method directly. A right mouse-down event in a window of an inactive application is not
delivered to NSWindow. It is instead delivered to NSApplications’s sendEvent (page 121) with a window
number of 0.

setAcceptsMouseMovedEvents
Sets whether the receiver accepts mouse-moved events and distributes them to its responders.

public void setAcceptsMouseMovedEvents(boolean flag)

Discussion
If flag is true it does accept them; if flag is false it doesn’t. NSWindows don’t accept mouse-moved
events by default.

Instance Methods 1853
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
acceptsMouseMovedEvents (page 1816)

setAllowsToolTipsWhenApplicationIsInactive
Sets whether the receiver can display tool tips even when the application is in the background.

public void setAllowsToolTipsWhenApplicationIsInactive(boolean allowWhenInactive)

Discussion
Default is false. The message does not take effect until the receiver changes to an active state. Note that
enabling tool tips in an inactive application will cause the application to do work any time the mouse passes
over the window, thus degrading system performance.

Availability
Available in Mac OS X v10.3 and later.

See Also
allowsToolTipsWhenApplicationIsInactive (page 1816)

setAlphaValue
Applies windowAlpha to the entire window.

public void setAlphaValue(float windowAlpha)

See Also
alphaValue (page 1817)

setAspectRatio
Sets the receiver’s size aspect ratio to ratio, constraining the size of its frame rectangle to integral multiples
of this size when the user resizes it.

public void setAspectRatio(NSSize ratio)

Discussion
An NSWindow’s aspect ratio and its resize increments are mutually exclusive attributes. In fact, setting one
attribute cancels the setting of the other. For example, to cancel an established aspect ratio setting for an
NSWindow, you send the NSWindow object a setResizeIncrements (page 1867) message with the width
and height set to 1.0.

The setContentAspectRatio (page 1856) method takes precedence over this method.

See Also
aspectRatio (page 1817)
setFrame (page 1860)

1854 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

setAutodisplay
Sets whether the receiver automatically displays its views that are marked as needing it.

public void setAutodisplay(boolean flag)

Discussion
If flag is true, views are automatically displayed as needed, typically on each pass through the event loop.
If flag is false, the receiver or its views must be explicitly displayed.

See Also
isAutodisplay (page 1837)
displayIfNeeded (page 1829)
displayIfNeeded (page 1748) (NSView)

setAutorecalculatesKeyViewLoop
If flag is true, the window recalculates the key view loop automatically when views are added or removed.

public void setAutorecalculatesKeyViewLoop(boolean flag)

Discussion
If flag is false, the client code must update the key view loop manually or call
recalculateKeyViewLoop (page 1848) to have the window recalculate it.

Availability
Available in Mac OS X v10.4 and later.

See Also
autorecalculatesKeyViewLoop (page 1818)
recalculateKeyViewLoop (page 1848)

setBackgroundColor
Sets the receiver’s background color to aColor.

public void setBackgroundColor(NSColor aColor)

See Also
backgroundColor (page 1818)

setBackingType
Sets the receiver’s backing store type to backingType.

public void setBackingType(int backingType)

Discussion
The valid backing store types are described in the constants section.

Instance Methods 1855
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

This method can only be used to switch a buffered NSWindow to retained or vice versa; you can’t change
the backing type to or from nonretained after initializing an NSWindow (an error is generated if you attempt
to do so).

See Also
backingType (page 1818)

setCanHide
Sets whether the receiver can be hidden during NSApplication’s hide (page 112) to flag.

public void setCanHide(boolean flag)

See Also
canHide (page 1820)

setContentAspectRatio
Sets the aspect ratio of the receiver’s content view to ratio, constraining the dimensions of its content
rectangle to integral multiples of that ratio when the user resizes it.

public void setContentAspectRatio(NSSize ratio)

Discussion
You can set a window’s content view to any size programmatically, regardless of its aspect ratio. This method
takes precedence over setAspectRatio (page 1854).

Availability
Available in Mac OS X v10.3 and later.

See Also
contentAspectRatio (page 1822)

setContentMaxSize
Sets the maximum size of the receiver’s content view to size, which is expressed in the receiver’s base
coordinate system.

public void setContentMaxSize(NSSize size)

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setContentSize (page
1857) method and thesetFrame...methods other thansetFrame (page 1860). This method takes precedence
over setMaxSize (page 1864).

Availability
Available in Mac OS X v10.3 and later.

See Also
contentMaxSize (page 1823)
setContentMinSize (page 1857)

1856 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

setContentMinSize
Sets the minimum size of the receiver’s content view to size, which is expressed in the receiver’s base
coordinate system.

public void setContentMinSize(NSSize size)

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setContentSize (page
1857) method and thesetFrame...methods other thansetFrame (page 1860). This method takes precedence
over setMinSize (page 1865).

Availability
Available in Mac OS X v10.3 and later.

See Also
contentMinSize (page 1823)
setContentMaxSize (page 1856)

setContentResizeIncrements
Sets the increments for both height and width by which the receiver’s content view can be resized to
increments.

public void setContentResizeIncrements(NSSize increments)

Discussion
The increments value constrains the width and height of the content rectangle to change by multiples of
increments.width and increments.height when the user resizes the window. You can set a window’s
size to any width and height programmatically. This method takes precedence over
setResizeIncrements (page 1867).

Availability
Available in Mac OS X v10.3 and later.

See Also
contentResizeIncrements (page 1824)

setContentSize
Sets the size of the receiver’s content view to aSize, which is expressed in the receiver’s base coordinate
system.

public void setContentSize(NSSize aSize)

Discussion
This size in turn alters the size of the NSWindow itself. Note that the window server limits window sizes to
10,000; if necessary, be sure to limit aSize relative to the frame rectangle.

See Also
setFrame (page 1860)
contentRectForFrameRect (page 1814)
"frameRectForContentRect" (page 1814)

Instance Methods 1857
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

setContentView
Makes aView the receiver’s content view; the previous content view is removed from the receiver’s view
hierarchy.

public void setContentView(NSView aView)

Discussion
The receiver retains the new content view and owns it thereafter. aView is resized to fit precisely within the
content area of the NSWindow. You can modify the content view’s coordinate system through its bounds
rectangle, but can’t alter its frame rectangle (that is, its size or location) directly.

See Also
contentView (page 1824)
setContentSize (page 1857)

setDefaultButtonCell
Makes the key equivalent of aButtonCell the Return (or Enter) key, so when the user presses Return that
button performs as if clicked.

public void setDefaultButtonCell(NSButtonCell aButtonCell)

Discussion
See the method description for defaultButtonCell (page 1825) for more information.

See Also
disableKeyEquivalentForDefaultButtonCell (page 1828)
enableKeyEquivalentForDefaultButtonCell (page 1832)

setDelegate
Makes anObject the receiver’s delegate, without retaining it.

public void setDelegate(Object anObject)

Discussion
An NSWindow’s delegate is inserted in the responder chain after the NSWindow itself and is informed of
various actions by the NSWindow through delegation messages.

See Also
delegate (page 1826)
tryToPerform (page 1871)
sendActionToTargetFromSender (page 121) (NSApplication)

setDepthLimit
Sets the depth limit of the receiver to limit.

public void setDepthLimit(int limit)

1858 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Passing a value of 0 for limit sets the depth limit to the receiver’s default depth limit; using a value of 0 can
be useful for reverting an NSWindow to its initial depth.

See Also
depthLimit (page 1826)
"defaultDepthLimit" (page 1814)
setDynamicDepthLimit (page 1859)

setDisplaysWhenScreenProfileChanges
Sets whether the window context should be updated when the screen profile changes.

public void setDisplaysWhenScreenProfileChanges(boolean flag)

Discussion
If flag is false, the screen profile information for the window context never changes. This is the default
setting. If flag is true, the window context may be changed in the following situations:

 ■ A majority of the window is moved to a different screen whose profile is different than the previous
screen.

 ■ The ColorSync profile of the current screen changes.

After the window context is updated, the window is told to display itself. If you need to update offscreen
caches for the window, you should register to receive the WindowDidChangeScreenProfileNotification.

Availability
Available in Mac OS X v10.4 and later.

See Also
displaysWhenScreenProfileChanges (page 1829)

setDocumentEdited
Sets whether the receiver’s document has been edited and not saved to flag.

public void setDocumentEdited(boolean flag)

Discussion
NSWindows are in the “not edited” state by default.

You should invoke this method with an argument of true every time the NSWindow’s document changes
in such a way that it needs to be saved and with an argument of false every time it gets saved. Then, before
closing the NSWindow you can use isDocumentEdited (page 1837) to determine whether to allow the user
a chance to save the document.

setDynamicDepthLimit
Sets whether the receiver changes its depth to match the depth of the screen it’s on, or the depth of the
deepest screen when it spans multiple screens.

Instance Methods 1859
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public void setDynamicDepthLimit(boolean flag)

Discussion
If flag is true, the depth limit depends on which screen the receiver is on. If flag is false, the receiver
uses either its preset depth limit or the default depth limit. A different, and nondynamic, depth limit can be
set with the setDepthLimit (page 1858) method.

See Also
hasDynamicDepthLimit (page 1835)
"defaultDepthLimit" (page 1814)

setExcludedFromWindowsMenu
Sets whether the receiver’s title is omitted from the application’s Windows menu.

public void setExcludedFromWindowsMenu(boolean flag)

Discussion
If flag is true it’s omitted; if flag is false, it’s listed when it or its miniaturized window is onscreen. The
default is false.

See Also
isExcludedFromWindowsMenu (page 1837)

setFrame
Sets the origin and size of the receiver’s frame rectangle according to frameRect, thereby setting its position
and size onscreen, and passes a displayIfNeeded (page 1829) message down the receiver’s view hierarchy,
thus redrawing all NSViews that need to be displayed, if flag is true.

public void setFrame(NSRect frameRect, boolean flag)

Discussion
Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

See Also
frame (page 1834)
setFrameFromString (page 1861)
setFrameOrigin (page 1861)
setFrameTopLeftPoint (page 1861)
setFrameUsingName (page 1862)

If animationFlag is false, equivalent to the preceding version of this method. Otherwise, if animationFlag
is true, this method performs a smooth resize of the window, where the total time for the resize is specified
by animationResizeTime (page 1817).

public void setFrame(NSRect frameRect, boolean displayFlag, boolean animationFlag)

setFrameAutosaveName
Sets the name used to automatically save the receiver’s frame rectangle in the defaults system to name.

1860 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public boolean setFrameAutosaveName(String name)

Discussion
If name isn’t the empty string (“”), the receiver’s frame is saved as a user default (as described in
saveFrameUsingName (page 1851)) each time the frame changes. Returns true if the name is set successfully,
false if it’s being used as an autosave name by another NSWindow in the application (in which case the
receiver’s old name remains in effect).

If there is a frame rectangle previously stored for name in the user defaults, the receiver’s frame is set to this
frame rectangle. That is, when you call setFrameAutosaveName with a previously used name, the window
picks up the previously saved setting.

Keep in mind that a window controller may change the window’s position when it displays it if window
cascading is turned on. To preclude the window controller from changing a window’s position from the one
saved in the defaults system, you must send setShouldCascadeWindows:NO to the window controller.

See Also
"removeFrameUsingName" (page 1815)
stringWithSavedFrame (page 1870)
setFrameFromString (page 1861)
setFrameUsingName (page 1862)

setFrameFromString
Sets the receiver’s frame rectangle from the string representation aString, a representation previously
creating using stringWithSavedFrame (page 1870).

public void setFrameFromString(String aString)

Discussion
The frame is constrained according to the receiver’s minimum and maximum size settings. This method
causes a windowWillResize (page 1881) message to be sent to the delegate.

setFrameOrigin
Positions the lower-left corner of the receiver’s frame rectangle at aPoint in screen coordinates.

public void setFrameOrigin(NSPoint aPoint)

Discussion
Note that the window server limits window position coordinates to ±16,000.

See Also
setFrame (page 1860)
setFrameTopLeftPoint (page 1861)

setFrameTopLeftPoint
Positions the top-left corner of the receiver’s frame rectangle at aPoint in screen coordinates.

public void setFrameTopLeftPoint(NSPoint aPoint)

Instance Methods 1861
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Note that the window server limits window position coordinates to ±16,000; if necessary, adjust aPoint
relative to the window’s lower-left corner to account for this limit.

See Also
cascadeTopLeftFromPoint (page 1821)
setFrame (page 1860)
setFrameOrigin (page 1861)

setFrameUsingName
Sets the receiver’s frame rectangle by reading the rectangle data stored in name from the defaults system.

public boolean setFrameUsingName(String name)

Discussion
The frame is constrained according to the receiver’s minimum and maximum size settings. This method
causes a windowWillResize (page 1881) message to be sent to the delegate. Returns true if name is read
and the frame is set successfully; otherwise returns false.

See Also
setFrameAutosaveName (page 1860)
"removeFrameUsingName" (page 1815)
stringWithSavedFrame (page 1870)
setFrameFromString (page 1861)

Sets the receiver’s frame rectangle by reading the rectangle data stored in name from the defaults system.
Send this method with force set to true to use the preceding version of this method on a nonresizable
window.

public boolean setFrameUsingName(String name, boolean force)

setHasShadow
Sets whether the receiver has a shadow to hasShadow.

public void setHasShadow(boolean hasShadow)

Discussion
If the shadow setting changes, the window shadow is invalidated, forcing the window shadow to be
recomputed.

See Also
hasShadow (page 1836)
invalidateShadow (page 1837)

setHidesOnDeactivate
Sets whether the receiver is removed from the screen when the application is inactive.

public void setHidesOnDeactivate(boolean flag)

1862 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
If flag is true, the receiver is hidden (taken out of the screen list) when the application stops being the
active application. If flag is false, the receiver stays onscreen. The default for NSWindow is false; the
default for NSPanel is true.

See Also
hidesOnDeactivate (page 1836)

setIgnoresMouseEvents
Specifies whether the receiver is transparent to mouse clicks and other mouse events, allowing overlay
windows.

public void setIgnoresMouseEvents(boolean flag)

Availability
Available in Mac OS X v10.2 and later.

See Also
ignoresMouseEvents (page 1836)

setInitialFirstResponder
Sets aView as the NSView that’s made first responder (also called the key view) the first time the receiver is
placed onscreen.

public void setInitialFirstResponder(NSView aView)

See Also
initialFirstResponder (page 1836)

setLevel
Sets the receiver’s window level to newLevel.

public void setLevel(int newLevel)

Discussion
Some useful predefined values, ordered from lowest to highest, are described in the constants section.

Each level in the list groups windows within it in front of those in all preceding groups. Floating windows,
for example, appear in front of all normal-level windows. When a window enters a new level, it’s ordered in
front of all its peers in that level.

The constant TornOffMenuWindowLevel is preferable to its synonym, SubmenuWindowLevel.

See Also
level (page 1841)
orderWindow (page 1845)
orderFront (page 1844)
orderBack (page 1844)

Instance Methods 1863
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

setMaxSize
Sets the maximum size to which the receiver’s frame (including its title bar) can be sized to aSize.

public void setMaxSize(NSSize aSize)

Discussion
The maximum size constraint is enforced for resizing by the user as well as for the setFrame... methods
other than setFrame (page 1860). Note that the window server limits window sizes to 10,000.

The default maximum size of a window is {FLT_MAX, FLT_MAX}. Once the maximum size of a window has
been set, there is no way to reset it other than specifying this default maximum size.

The setContentMaxSize (page 1856) method takes precedence over this method.

See Also
maxSize (page 1842)
setMinSize (page 1865)
setAspectRatio (page 1854)
setResizeIncrements (page 1867)

setMiniwindowImage
Sets the receiver’s custom miniaturized window image to anImage.

public void setMiniwindowImage(NSImage anImage)

Discussion
When the user minimizes the window, the dock displays anImage in the corresponding dock tile, scaling it
as needed to fit in the tile. If you do not specify a custom image using this method, the dock creates one for
you automatically.

You can also call this method as needed to change the miniaturized window image. Typically, you would
specify a custom image immediately prior to a window being minimized—when the system posts an
WindowWillMiniaturizeNotification (page 1885). You can call this method while the window is minimized
to update the current image in the dock. However, this method is not recommended for creating complex
animations in the dock.

Support for custom images is disabled by default. To enable support, set the AppleDockIconEnabled key
to true when first registering your application’s user defaults. You must set this key prior to calling the init
method of NSApplication, which reads the current value of the key.

See Also
miniwindowImage (page 1842)
isMiniaturized (page 1838)

setMiniwindowTitle
Sets the title of the receiver’s miniaturized counterpart to aString and redisplays it.

public void setMiniwindowTitle(String aString)

1864 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
A miniaturized window’s title normally reflects that of its full-size counterpart, abbreviated to fit if necessary.
Although this method allows you to set the miniaturized window’s title explicitly, changing the full-size
NSWindow’s title (through setTitle (page 1868) or setTitleWithRepresentedFilename (page 1868))
automatically changes the miniaturized window’s title as well.

See Also
miniwindowTitle (page 1843)

setMinSize
Sets the minimum size to which the receiver’s frame (including its title bar) can be sized to aSize.

public void setMinSize(NSSize aSize)

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setFrame... methods
other than setFrame (page 1860).

The setContentMinSize (page 1857) takes precedence over this method.

See Also
minSize (page 1843)
setMaxSize (page 1864)
setAspectRatio (page 1854)
setResizeIncrements (page 1867)

setMovableByWindowBackground
Sets whether the receiver is movable by clicking and dragging anywhere in its background.

public void setMovableByWindowBackground(boolean flag)

Discussion
A window with a style mask of TexturedBackgroundWindowMask get set to true by default. Sheets and
drawers cannot be movable by window background.

Availability
Available in Mac OS X v10.2 and later.

See Also
isMovableByWindowBackground (page 1838)

setOneShot
Sets whether the window device that the receiver manages should be freed when it’s removed from the
screen list (and another one created if it’s returned to the screen) to flag.

public void setOneShot(boolean flag)

Instance Methods 1865
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
Freeing the window device when it’s removed from the screen list can result in memory savings and
performance improvement for NSWindows that don’t take long to display. It’s particularly appropriate for
NSWindows the user might use once or twice but not display continually. The default is false.

See Also
isOneShot (page 1839)

setOpaque
Sets whether the receiver is opaque to isOpaque.

public void setOpaque(boolean isOpaque)

See Also
isOpaque (page 1839)

setParentWindow
For use by subclasses when setting the parent window in the receiver.

public void setParentWindow(NSWindow window)

Discussion
You should call super if overriding.

Availability
Available in Mac OS X v10.2 and later.

See Also
removeChildWindow (page 1849)
childWindows (page 1821)
parentWindow (page 1846)
addChildWindow (page 1816)

setPreservesContentDuringLiveResize
If flag is true, the window optimizes live resize operations by invalidating only the view contents that
changed; this is the default setting.

public void setPreservesContentDuringLiveResize(boolean flag)

Discussion
If flag is false, this optimization is disabled for the window and all of its contained views.

You might consider disabling this optimization for the window if none of the window’s contained views can
take advantage of it. Disabling the optimization for the window prevents it from checking each view to see
if the optimization is supported.

Availability
Available in Mac OS X v10.4 and later.

1866 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
preservesContentDuringLiveResize (page 1848)

setReleasedWhenClosed
Sets whether the receiver is merely hidden (false) or hidden and then released (true) when it receives a
close message.

public void setReleasedWhenClosed(boolean flag)

Discussion
The default for NSWindow is true; the default for NSPanel is false. Release when closed, however, is ignored
for windows owned by window controllers.

See Also
close (page 1821)
isReleasedWhenClosed (page 1839)

setRepresentedFilename
Sets the name of the file the receiver represents to path.

public void setRepresentedFilename(String path)

See Also
representedFilename (page 1849)
setTitleWithRepresentedFilename (page 1868)

setResizeIncrements
Restricts the user’s ability to resize the receiver so the width and height change by multiples of
increments.width and increments.height as the user resizes the window.

public void setResizeIncrements(NSSize increments)

Discussion
The width and height increments should be whole numbers, 1.0 or greater. Whatever the current resize
increments, you can set an NSWindow’s size to any height and width programmatically.

Resize increments and aspect ratio are mutually exclusive attributes. For more information, see
setAspectRatio (page 1854).

The setContentResizeIncrements (page 1857) method takes precedence over this method.

See Also
resizeIncrements (page 1851)
setFrame (page 1860)

Instance Methods 1867
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

setShowsResizeIndicator
Sets whether the receiver’s resize indicator is visible to show.

public void setShowsResizeIndicator(boolean show)

Discussion
This method does not affect whether the receiver is resizable.

See Also
showsResizeIndicator (page 1869)

setShowsToolbarButton
If flag is true, the window title bar is updated to display the standard toolbar button.

public void setShowsToolbarButton(boolean flag)

Discussion
If flag is false, the button is not displayed. If the window does not have a toolbar, this method has no
effect.

Availability
Available in Mac OS X v10.4 and later.

See Also
showsToolbarButton (page 1870)

setTitle
Sets the string that appears in the receiver’s title bar (if it has one) to aString and displays the title.

public void setTitle(String aString)

Discussion
Also sets the title of the receiver’s miniaturized window.

See Also
title (page 1870)
setTitleWithRepresentedFilename (page 1868)
setMiniwindowTitle (page 1864)

setTitleWithRepresentedFilename
Sets path as the receiver’s title, formatting it as a file-system path, and records path as the receiver’s associated
filename using setRepresentedFilename (page 1867).

public void setTitleWithRepresentedFilename(String path)

Discussion
The filename—not the pathname—is displayed in the receiver’s title bar.

1868 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

This method also sets the title bar of the receiver’s minimized window.

See Also
title (page 1870)
setTitle (page 1868)
setMiniwindowTitle (page 1864)

setToolbar
Sets the receiver’s toolbar to toolbar.

public void setToolbar(NSToolbar toolbar)

Discussion
See the NSToolbar (page 1693) class description for additional information.

See Also
toolbar (page 1871)

setViewsNeedDisplay
Sets whether the receiver’s views need display (true) or do not need display (false) to flag.

public void setViewsNeedDisplay(boolean flag)

Discussion
You should rarely need to invoke this method; NSView’s setNeedsDisplay (page 1779) and similar methods
invoke it automatically.

See Also
viewsNeedDisplay (page 1873)

setWindowController
Set’s the receiver’s window controller to be windowController.

public void setWindowController(NSWindowController windowController)

See Also
windowController (page 1873)

showsResizeIndicator
Returns whether the receiver’s resize indicator is visible.

public boolean showsResizeIndicator()

See Also
setShowsResizeIndicator (page 1868)

Instance Methods 1869
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

showsToolbarButton
Returns true if the standard toolbar button is currently displayed; otherwise, returns false.

public boolean showsToolbarButton()

Availability
Available in Mac OS X v10.4 and later.

See Also
setShowsToolbarButton (page 1868)

standardWindowButton
Return the given standard button if it is in the window view hierarchy.

public NSButton standardWindowButton(int button)

Availability
Available in Mac OS X v10.2 and later.

See Also
"standardWindowButtonForStyleMask" (page 1815)

stringWithSavedFrame
Returns a string that represents the receiver’s frame rectangle in a format that can be used with a later
setFrameFromString (page 1861) message.

public String stringWithSavedFrame()

styleMask
Returns the receiver’s style mask, indicating what kinds of control items it displays.

public int styleMask()

Discussion
See the information about the style mask in the constants section. An NSWindow’s style is set when the
object is initialized. Once set, it can’t be changed.

title
Returns either the string that appears in the title bar of the receiver, or the path to the represented file.

public String title()

Discussion
If the title has been set using setTitleWithRepresentedFilename (page 1868), then this method returns
the file’s path, as described in setTitleWithRepresentedFilename.

1870 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

See Also
setTitle (page 1868)
setTitleWithRepresentedFilename (page 1868)

toggleToolbarShown
The action method for the “Hide Toolbar” menu item (which alternates with “Show Toolbar”).

public void toggleToolbarShown(Object sender)

Discussion
See the NSToolbar (page 1693) class description for additional information.

toolbar
Returns the receiver’s toolbar.

public NSToolbar toolbar()

Discussion
See the NSToolbar (page 1693) class description for additional information.

See Also
setToolbar (page 1869)

tryToPerform
Dispatches action messages with anObject as the argument.

public boolean tryToPerform(NSSelector anAction, Object anObject)

Discussion
The receiver tries to perform the method anAction using its inherited NSResponder method
tryToPerform (page 1199). If the receiver doesn’t perform anAction, the delegate is given the opportunity
to perform it. If either the receiver or its delegate accepts anAction, this method returns true; otherwise
it returns false.

unregisterDraggedTypes
Unregisters the receiver as a possible destination for dragging operations.

public void unregisterDraggedTypes()

See Also
registerForDraggedTypes (page 1849)

update
Updates the window.

Instance Methods 1871
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

public void update()

Discussion
The default implementation of this method does nothing more than post a
WindowDidUpdateNotification (page 1885) to the default notification center. A subclass can override this
method to perform specialized operations, but should send an update message to super just before returning.
For example, the NSMenu class implements this method to disable and enable menu commands.

An NSWindow is automatically sent an update (page 1871) message on every pass through the event loop
and before it’s displayed onscreen. You can manually cause an update (page 1871) message to be sent to all
visible NSWindows through NSApplication’s updateWindows (page 127) method.

See Also
setWindowsNeedUpdate (page 123) (NSApplication)
updateWindows (page 127) (NSApplication)

useOptimizedDrawing
Informs the receiver whether to optimize focusing and drawing when displaying its NSViews.

public void useOptimizedDrawing(boolean flag)

Discussion
The optimizations may prevent sibling subviews from being displayed in the correct order—which matters
only if the subviews overlap. You should always set flag to true if there are no overlapping subviews within
the NSWindow. The default is false.

userSpaceScaleFactor
Returns the scale factor applied to the window.

public float userSpaceScaleFactor()

Discussion
Clients can multiply view coordinates by the returned scale factor to get a set of new coordinates that are
scaled to the resolution of the target screen. For example, if the scale factor is 1.25 and the view frame size
is 80 x 80, the actual size of the view frame is 100 x 100 pixels on the target screen.

Availability
Available in Mac OS X v10.4 and later.

validRequestorForTypes
Searches for an object that responds to a Services request by providing input of sendType and accepting
output of returnType.

public Object validRequestorForTypes(String sendType, String returnType)

Discussion
Returns that object, or null if none is found.

1872 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Messages to perform this method are initiated by the Services menu. It’s part of the mechanism that passes
validRequestorForTypes messages up the responder chain.

This method works by forwarding the message to the receiver’s delegate if it responds (and provided it isn’t
an NSResponder with its own next responder). If the delegate doesn’t respond to the message or returns
null when sent it, this method forwards the message to the NSApplication object. If the NSApplication
object returns null, this method also returns null. Otherwise this method returns the object returned by
the delegate or the NSApplication object.

See Also
validRequestorForTypes (page 1200) (NSResponder)
validRequestorForTypes (page 128) (NSApplication)

viewsNeedDisplay
Returns true if any of the receiver’s NSView’s need to be displayed, false otherwise.

public boolean viewsNeedDisplay()

See Also
setViewsNeedDisplay (page 1869)

windowController
Returns the receiver’s window controller.

public Object windowController()

See Also
setWindowController (page 1869)

windowNumber
Returns the window number of the receiver’s window device.

public int windowNumber()

Discussion
Each window device in an application is given a unique window number—note that this isn’t the same as
the global window number assigned by the window server. This number can be used to identify the window
device with the orderWindow (page 1845) method.

If the receiver doesn’t have a window device, the value returned will be equal to or less than 0.

See Also
setOneShot (page 1865)

Instance Methods 1873
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

worksWhenModal
Returns true if the receiver is able to receive keyboard and mouse events even when some other window
is being run modally, false otherwise.

public boolean worksWhenModal()

Discussion
NSWindow’s implementation of this method returns false. Only subclasses of NSPanel should override this
default.

See Also
setWorksWhenModal (page 1054) (NSPanel)

zoom
This action method toggles the size and location of the window between its standard state (provided by the
application as the “best” size to display the window’s data) and its user state (a new size and location the
user may have set by moving or resizing the window).

public void zoom(Object sender)

Discussion
For more information on the standard and user states, see windowWillUseStandardFrame (page 1882).

The zoom method is typically invoked after a user clicks the window’s zoom box but may also be invoked
programmatically from the performZoom (page 1847) method. It performs the following steps:

1. Invokes the windowWillUseStandardFrame (page 1882) method, if the delegate or the window class
implements it, to obtain a “best fit” frame for the window. If neither the delegate nor the window class
implements the method, uses a default frame that nearly fills the current screen, which is defined to be
the screen containing the largest part of the window’s current frame.

2. Adjusts the resulting frame, if necessary, to fit on the current screen.

3. Compares the resulting frame to the current frame to determine whether the window’s standard frame
is currently displayed. If the current frame is within a few pixels of the standard frame in size and location,
it is considered a match.

4. Determines a new frame. If the window is currently in the standard state, the new frame represents the
user state, saved during a previous zoom. If the window is currently in the user state, the new frame
represents the standard state, computed in step 1 above. If there is no saved user state because there
has been no previous zoom, the size and location of the window do not change.

5. Determines whether the window currently allows zooming. By default, zooming is allowed. If the window’s
delegate implements the windowShouldZoom (page 1880) method, zoom invokes that method. If the
delegate doesn’t implement the method but the window does, zoom invokes the window’s version.
windowShouldZoom returns false if zooming is not currently allowed.

6. If the window currently allows zooming, sets the new frame.

See Also
isZoomed (page 1840)

1874 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Constants

These constants specify the presence of a title and various buttons in an NSWindow’s border. Either it can
be BorderlessWindowMask, or it can contain any of the following options, combined using the C bitwise
OR operator:

DescriptionConstant

The NSWindow displays none of the usual peripheral elements.
Useful only for display or caching purposes.

BorderlessWindowMask

The NSWindow displays a title bar.TitledWindowMask

The NSWindow displays a close button.ClosableWindowMask

The NSWindow displays a miniaturize button.MiniaturizableWindowMask

The NSWindow displays a resize control.ResizableWindowMask

The NSWindow displays with a metal-textured background.
Additionally, the NSWindow may be moved by clicking and dragging
anywhere in the window background. A bordered window with this
mask gets rounded bottom corners.

TexturedBackgroundWindowMask

These constants specify how the drawing done in a window is buffered by the window device:

DescriptionConstant

The NSWindow renders all drawing into a display buffer and then flushes it to the screen.Buffered

The NSWindow uses a buffer, but draws directly to the screen where possible and to the
buffer for obscured portions.

Retained

The NSWindow draws directly to the screen without using any buffer.NonRetained

These constants specify the window’s level. The stacking of levels takes precedence over the stacking of
windows within each level. That is, even the bottom window in a level will obscure even the top window of
the next level down. Levels are listed in order from lowest to highest. These constants are mapped (using
#define) to corresponding elements in the window level enum in Core Graphics.

DescriptionConstant

The default level for NSWindow objects.NormalWindowLevel

Useful for floating palettes.FloatingWindowLevel

Reserved for submenus. Synonymous with TornOffMenuWindowLevel,
which is preferred.

SubmenuWindowLevel

The level for a torn-off menu. Synonymous with SubmenuWindowLevel.TornOffMenuWindowLevel

Constants 1875
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

DescriptionConstant

The level for a modal panel.ModalPanelWindowLevel

Reserved for the application’s main menu.MainMenuWindowLevel

The level for a status window.StatusWindowLevel

The level for a pop-up menu.PopUpMenuWindowLevel

The level for a screen saver.ScreenSaverWindowLevel

These constants let you specify how a window is ordered relative to another window. For more information,
see orderWindow (page 1845).

DescriptionConstant

Moves the window above the indicated window.Above

Moves the window below the indicated window.Below

Moves the window off the screen.Out

These constants specify the direction a window is currently using to change the key view. They’re used by
keyViewSelectionDirection (page 1840).

DescriptionConstant

The receiver isn’t traversing the key view loop.DirectSelection

The receiver is proceeding to the next valid key view.SelectingNext

The receiver is proceeding to the previous valid key view.SelectingPrevious

These constants provide a way to access standard title bar widgets:

DescriptionConstant

The close button.WindowCloseButton

The miniaturize button.WindowMiniaturizeButton

The zoom button.WindowZoomButton

The toolbar button.WindowToolbarButton

The document icon button.WindowDocumentIconButton

This constant provides a way to manage scaling factors:

1876 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

DescriptionConstant

Specifies that the window is created without any scaling factors applied. The
client is responsible for all scaling operations in the window. Such a window
returns 1.0 from its userSpaceScaleFactor method.
Available in Mac OS X v10.4 and later.

UnscaledWindowMask

This constant controls the look of a window and its toolbar:

DescriptionConstant

Specifies a window whose toolbar and titlebar are rendered on a
single continuous background.
Available in Mac OS X v10.4 and later.

UnifiedTitleAnd-
ToolbarWindowMask

Delegate Methods

windowDidBecomeKey
Sent by the default notification center immediately after an NSWindow has become key.

public abstract void windowDidBecomeKey(NSNotification aNotification)

Discussion
aNotification is alwaysWindowDidBecomeKeyNotification (page 1883). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidBecomeMain
Sent by the default notification center immediately after an NSWindow has become main.

public abstract void windowDidBecomeMain(NSNotification aNotification)

Discussion
aNotification is alwaysWindowDidBecomeMainNotification (page 1883). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidChangeScreen
Sent by the default notification center immediately after an NSWindow has changed screens.

public abstract void windowDidChangeScreen(NSNotification aNotification)

Discussion
aNotification is always WindowDidChangeScreenNotification (page 1883). You can retrieve the
NSWindow object in question by sending object to aNotification.

Delegate Methods 1877
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

windowDidChangeScreenProfile
Sent by the default notification center immediately after an NSWindow has changed screen display profiles.

public abstract void windowDidChangeScreenProfile(NSNotification aNotification)

Discussion
aNotification is always WindowDidChangeScreenProfileNotification (page 1883). You can retrieve
the NSWindow object in question by sending object to aNotification.

windowDidDeminiaturize
Sent by the default notification center immediately after an NSWindow has been deminiaturized.

public abstract void windowDidDeminiaturize(NSNotification aNotification)

Discussion
aNotification is always WindowDidDeminiaturizeNotification (page 1884). You can retrieve the
NSWindow object in question by sending object to aNotification.

windowDidEndSheet
Sent by the default notification center immediately after an NSWindow closes a sheet.

public abstract void windowDidEndSheet(NSNotification aNotification)

Discussion
aNotification is always WindowDidEndSheetNotification (page 1884). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidExpose
Sent by the default notification center immediately after an NSWindow has been exposed.

public abstract void windowDidExpose(NSNotification aNotification)

Discussion
aNotification is always WindowDidExposeNotification (page 1884). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidMiniaturize
Sent by the default notification center immediately after an NSWindow has been miniaturized.

public abstract void windowDidMiniaturize(NSNotification aNotification)

Discussion
aNotification is always WindowDidMiniaturizeNotification (page 1884). You can retrieve the
NSWindow object in question by sending object to aNotification.

1878 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

windowDidMove
Sent by the default notification center immediately after an NSWindow has been moved.

public abstract void windowDidMove(NSNotification aNotification)

Discussion
aNotification is always WindowDidMoveNotification (page 1884). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidResignKey
Sent by the default notification center immediately after an NSWindow has resigned its status as key window.

public abstract void windowDidResignKey(NSNotification)

Discussion
aNotification is alwaysWindowDidResignKeyNotification (page 1884). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidResignMain
Sent by the default notification center immediately after an NSWindow has resigned its status as main window.

public abstract void windowDidResignMain(NSNotification aNotification)

Discussion
aNotification is alwaysWindowDidResignMainNotification (page 1884). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidResize
Sent by the default notification center immediately after an NSWindow has been resized.

public abstract void windowDidResize(NSNotification aNotification)

Discussion
aNotification is always WindowDidResizeNotification (page 1885). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidUpdate
Sent by the default notification center immediately after an NSWindow receives an update (page 1871)
message.

public abstract void windowDidUpdate(NSNotification aNotification)

Discussion
aNotification is always WindowDidUpdateNotification (page 1885). You can retrieve the NSWindow
object in question by sending object to aNotification.

Delegate Methods 1879
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

windowShouldClose
Invoked when the user attempts to close the window or when the NSWindow receives a performClose (page
1846) message.

public abstract boolean windowShouldClose(Object sender)

Discussion
The delegate can return false to prevent sender from closing.

This method may not always be called. Specifically, this method is not called when a user quits an application.
Additional information on application termination can be found in Graceful Application Termination.

windowShouldZoom
Invoked just before sender is zoomed.

public abstract boolean windowShouldZoom(NSWindow sender, NSRect newFrame)

Discussion
Zooming will change the frame of sender to newFrame. The delegate can return false to prevent sender
from zooming.

See Also
windowWillUseStandardFrame (page 1882)

windowWillBeginSheet
Sent by the default notification center immediately before an NSWindow opens a sheet.

public abstract void windowWillBeginSheet(NSNotification aNotification)

Discussion
aNotification is always WindowWillBeginSheetNotification (page 1885). You can retrieve the
NSWindow object in question by sending object to aNotification.

windowWillClose
Sent by the default notification center immediately before an NSWindow closes.

public abstract void windowWillClose(NSNotification aNotification)

Discussion
aNotification is always WindowWillCloseNotification (page 1885). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowWillMiniaturize
Sent by the default notification center immediately before an NSWindow is miniaturized.

public abstract void windowWillMiniaturize(NSNotification aNotification)

1880 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
aNotification is always WindowWillMiniaturizeNotification (page 1885). You can retrieve the
NSWindow object in question by sending object to aNotification.

windowWillMove
Sent by the default notification center immediately before an NSWindow is moved.

public abstract void windowWillMove(NSNotification aNotification)

Discussion
aNotification is always WindowWillMoveNotification (page 1885). You can retrieve the NSWindow
object in question by sending object to aNotification.

windowWillPositionSheet
Sent to the delegate just before the animation of a sheet, giving it the opportunity to return a custom location
for the attachment of the sheet (sheet) to the window (window).

public abstract NSRect windowWillPositionSheet(NSWindow window, NSWindow sheet,
NSRect rect)

Discussion
This method is also invoked whenever the user resizes window while sheet is attached. The default sheet
location, passed in rect, is just under the title bar of the window, aligned with the left and right edges of
the window.

This method is useful in many situations. If your window has a toolbar, for example, you can specify a location
for the sheet that is just below it. If you want the sheet associated with a certain control or view, you could
position the sheet so that it appears to originate from the object (though genie animation) or is positioned
next to it.

Neither the rect parameter nor the returned NSRect define the boundary of the sheet. They indicate where
the top-left edge of the sheet is attached to the window. The origin is expressed in window coordinates; the
default origin.y value is the height of the content view and the default origin.x value is zero. The
size.width value indicates the width and behavior of the initial animation; if size.width is narrower than
the sheet, the sheet genies out from the specified location, and if size.width is wider than the sheet, the
sheet slides out. You cannot affect the size of the sheet through the size.width and size.height fields.
It is recommended that you specify zero for the size.height value as this field may have additional meaning
in a future release.

Availability
Available in Mac OS X v10.3 and later.

windowWillResize
Invoked when sender is being resized (whether by the user or through one of the setFrame... methods
other than setFrame (page 1860)).

public abstract NSSize windowWillResize(NSWindow sender, NSSize proposedFrameSize)

Delegate Methods 1881
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Discussion
proposedFrameSize contains the size (in screen coordinates) the sender will be resized to. To resize to a
different size, simply return the desired size from this method; to avoid resizing, return the current size. The
NSWindow’s minimum and maximum size constraints have already been applied when this method is invoked.

While the user is resizing an NSWindow, the delegate is sent a series of windowWillResize messages as
the NSWindow’s outline is dragged. The NSWindow’s outline is displayed at the constrained size as set by
this method.

windowWillReturnFieldEditor
Invoked when the field editor of sender is requested by anObject.

public abstract Object windowWillReturnFieldEditor(NSWindow sender, Object anObject)

Discussion
If the delegate’s implementation of this method returns an object other than null, the NSWindow substitutes
it for the field editor and returns it to anObject.

This method may be called multiple times while a control is first responder. Therefore, you must return the
same field editor object for the control while the control is being edited.

See Also
fieldEditorForObject (page 1832)

windowWillReturnUndoManager
Invoked when the undo manager for sender is requested.

public abstract NSUndoManager windowWillReturnUndoManager(NSWindow sender)

Discussion
Returns the appropriate undo manager. If this method is not implemented, the NSWindow creates an
NSUndoManager for the window.

windowWillUseStandardFrame
Invoked by the zoom (page 1874) method while determining a frame the sender may be zoomed to.

public abstract NSRect windowWillUseStandardFrame(NSWindow sender, NSRect
defaultFrame)

Discussion
Returns the standard frame (described below) for a window. The defaultFrame parameter passed in is the
size of the current screen, which is the screen containing the largest part of the window’s current frame,
possibly reduced on the top, bottom, left, or right, depending on the current interface style. The frame is
reduced on the top to leave room for the menu bar.

1882 Delegate Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

The standard frame for a window should supply the size and location that are “best” for the type of information
shown in the window, taking into account the available display or displays. For example, the best width for
a window that displays a word-processing document is the width of a page or the width of the display,
whichever is smaller. The best height can be determined similarly. On return from this method, the zoom (page
1874) method modifies the returned standard frame, if necessary, to fit on the current screen.

To customize the standard state, you implement windowWillUseStandardFrame in the class of the window’s
delegate or, if necessary, in a window subclass. Your version should return a suitable standard frame, based
on the currently displayed data or other factors.

See Also
windowShouldZoom (page 1880)
zoom (page 1874)

Notifications

WindowDidBecomeKeyNotification
Posted whenever an NSWindow becomes the key window.

The notification object is the NSWindow that has become key. This notification does not contain a userInfo
dictionary.

WindowDidBecomeMainNotification
Posted whenever an NSWindow becomes the main window.

The notification object is the NSWindow that has become main. This notification does not contain a userInfo
dictionary.

WindowDidChangeScreenNotification
Posted whenever a portion of an NSWindow’s frame moves onto or off of a screen.

The notification object is the NSWindow that has changed screens. This notification does not contain a
userInfo dictionary.

This notification is not sent in Mac OS X versions earlier than 10.4.

WindowDidChangeScreenProfileNotification
Posted whenever the display profile for the screen containing the window changes.

This notification is sent only if the window returns true from displaysWhenScreenProfileChanges (page
1829). This notification may be sent when a majority of the window is moved to a different screen (whose
profile is also different from the previous screen) or when the ColorSync profile for the current screen changes.

The notification object is the NSWindow whose profile changed. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.4 and later.

Notifications 1883
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

WindowDidDeminiaturizeNotification
Posted whenever an NSWindow is deminiaturized.

The notification object is the NSWindow that has been deminiaturized. This notification does not contain a
userInfo dictionary.

WindowDidEndSheetNotification
Posted whenever an NSWindow closes an attached sheet.

The notification object is the NSWindow that contained the sheet. This notification does not contain a
userInfo dictionary.

WindowDidExposeNotification
Posted whenever a portion of a nonretained NSWindow is exposed, whether by being ordered in front of
other windows or by other windows being removed from in front of it.

The notification object is the NSWindow that has been exposed. The userInfo dictionary contains the
following information:

ValueKey

The rectangle that has been exposed (NSRect)."NSExposedRect"

WindowDidMiniaturizeNotification
Posted whenever an NSWindow is miniaturized.

The notification object is the NSWindow that has been miniaturized. This notification does not contain a
userInfo dictionary.

WindowDidMoveNotification
Posted whenever an NSWindow is moved.

The notification object is the NSWindow that has moved. This notification does not contain a userInfo
dictionary.

WindowDidResignKeyNotification
Posted whenever an NSWindow resigns its status as key window.

The notification object is the NSWindow that has resigned its key window status. This notification does not
contain a userInfo dictionary.

WindowDidResignMainNotification
Posted whenever an NSWindow resigns its status as main window.

The notification object is the NSWindow that has resigned its main window status. This notification does not
contain a userInfo dictionary.

1884 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

WindowDidResizeNotification
Posted whenever an NSWindow’s size changes.

The notification object is the NSWindow whose size has changed. This notification does not contain a
userInfo dictionary.

WindowDidUpdateNotification
Posted whenever an NSWindow receives an update (page 1871) message.

The notification object is the NSWindow that received the update (page 1871) message. This notification does
not contain a userInfo dictionary.

WindowWillBeginSheetNotification
Posted whenever an NSWindow is about to open a sheet.

The notification object is the NSWindow that is about to open the sheet. This notification does not contain
a userInfo dictionary.

WindowWillCloseNotification
Posted whenever an NSWindow is about to close.

The notification object is the NSWindow that is about to close. This notification does not contain a userInfo
dictionary.

WindowWillMiniaturizeNotification
Posted whenever an NSWindow is about to be miniaturized.

The notification object is the NSWindow that is about to be miniaturized. This notification does not contain
a userInfo dictionary.

WindowWillMoveNotification
Posted whenever an NSWindow is about to move.

The notification object is the NSWindow that is about to move. This notification does not contain a userInfo
dictionary.

Notifications 1885
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

1886 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 140

NSWindow

Inherits from NSResponder : NSObject

Implements NSCoding

Package: com.apple.cocoa.application

Companion guide Document-Based Applications Overview

Overview

An NSWindowController object manages a window, usually a window stored in a nib file. This management
entails:

 ■ Loading and displaying the window

 ■ Closing the window when appropriate

 ■ Customizing the window’s title

 ■ Storing the window’s frame (size and location) in the defaults database

 ■ Cascading the window in relation to other document windows of the application

An NSWindowController can manage a window by itself or as a role player in the Application Kit’s
document-based architecture, which also includes NSDocument and NSDocumentController objects. In this
architecture, an NSWindowController is created and managed by a “document” (an instance of an NSDocument
subclass) and, in turn, keeps a reference to the document.

The relationship between an NSWindowController (or, simply, a window controller) and a nib file is important.
Although a window controller can manage a programmatically created window, it usually manages a window
in a nib file. The nib file can contain other top-level objects, including other windows, but the window
controller’s responsibility is this primary window. The window controller is usually the owner of the nib file,
even when it is part of a document-based application. Regardless of who is the file’s owner, the window
controller is responsible for freeing all top-level objects in the nib file it loads.

For simple documents—that is, documents with only one nib file containing a window—you need do little
directly with NSWindowController. The Application Kit will create one for you. However, if the default window
controller is not sufficient, you can create a custom subclass of NSWindowController. For documents with
multiple windows or panels, your document must create separate instances of NSWindowController (or of
custom subclasses of NSWindowController), one for each window or panel. An example is a CAD application
that has different windows for side, top, and front views of drawn objects. What you do in your NSDocument
subclass determines whether the default NSWindowController or separately created and configured
NSWindowController objects are used.

Overview 1887
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

Subclassing NSWindowController

You should create a subclass of NSWindowController when you want to augment the default behavior, such
as to give the window a custom title or to perform some setup tasks before the window is loaded. In your
class’s initialization method, be sure to invoke on super one of the constructors. Which one depends on
whether the window object originates in a nib file or is programmatically created.

Three NSWindowController methods are most commonly overridden:

DescriptionMethod Name

Override to perform tasks before the window nib file
is loaded.

windowWillLoad (page 1897)

Override to perform tasks after the window nib file is
loaded.

windowDidLoad (page 1895)

Override to customize the window title.windowTitleForDocumentDisplayName (page
1896)

You can also override loadWindow (page 1892) to get different nib-searching or nib-loading behavior, although
there is usually no need to do this.

Tasks

Constructors

NSWindowController (page 1890)
Creates an NSWindowController object with no window object to manage.

Loading and Display the Window

loadWindow (page 1892)
Loads the receiver’s window from the nib file.

showWindow (page 1894)
This action method displays the window associated with the receiver.

isWindowLoaded (page 1892)
Returns whether the nib file containing the receiver’s window has been loaded.

window (page 1895)
Returns the window owned by the receiver or null if there isn’t one.

setWindow (page 1893)
Sets the window controller’s window to aWindow.

windowDidLoad (page 1895)
Allows subclasses of NSWindowController to perform any required tasks after the window owned by
the receiver has been loaded.

1888 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

windowWillLoad (page 1897)
Allows subclasses of NSWindowController to perform any required tasks before the window owned
by the receiver is loaded.

Setting and Getting the Document

setDocument (page 1892)
Sets the document associated with the window managed by the receiver.

document (page 1891)
Returns the NSDocument object associated with the receiver or null if there is none.

setDocumentEdited (page 1893)
Sets the document edited flag for the window controller to flag.

Closing the Window

close (page 1891)
Closes the window if it was loaded.

shouldCloseDocument (page 1894)
Returns whether the receiver closes the associated document when the window it manages is closed
(true) or whether the document is closed only when the last remaining window of the document is
closed (false).

setShouldCloseDocument (page 1893)
Sets whether the receiver should close the associated document when the window it manages is
closed (flag is true) or whether to close the document only when the last document window has
been closed (flag is false).

Getting Nib File Information

owner (page 1892)
Returns the owner of the nib file containing the window managed by the receiver.

windowNibName (page 1896)
Returns the name of the nib file that stores the window associated with the receiver.

windowNibPath (page 1896)
Returns the full path of the nib file that stores the window associated with the receiver.

Setting and Getting Window Attributes

setShouldCascadeWindows (page 1893)
Sets whether the window, when it is displayed, should cascade in relation to other document windows
(that is, have a slightly offset location so that the title bars of previously displayed windows are still
visible) to flag.

shouldCascadeWindows (page 1894)
Returns whether the window will cascade in relation to other document windows when it is displayed.

Tasks 1889
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

setWindowFrameAutosaveName (page 1894)
Sets the name under which the window’s frame (its size and location on the screen) is saved in the
defaults database.

synchronizeWindowTitleWithDocumentName (page 1895)
Synchronizes the displayed window title and the represented filename with the information in the
associated document.

windowFrameAutosaveName (page 1896)
Returns the name under which the frame rectangle of the window owned by the receiver is stored
in the defaults database.

windowTitleForDocumentDisplayName (page 1896)
Returns displayName by default.

Constructors

NSWindowController
Creates an NSWindowController object with no window object to manage.

public NSWindowController()

Discussion
The default initialization turns on cascading, sets the shouldCloseDocument (page 1894) flag to false, and
sets the window frame autosave name to an empty string.

Creates an NSWindowController object initialized with window, the window object to manage.

public NSWindowController(NSWindow window)

Discussion
The window argument can be null. The default initialization turns on cascading, sets the
shouldCloseDocument (page 1894) flag to false, and sets the window frame autosave name to an empty
string. As a side effect, the created window controller is added as an observer of the
WindowWillCloseNotification (page 1885)s posted by that window object (which is handled by a private
method). If you make the window controller a delegate of the window, you can implement NSWindow’s
windowShouldClose (page 1880) delegate method.

Creates an NSWindowController object initialized with windowNibName, the name of the nib file (minus the
“.nib” extension) that archives the receiver’s window.

public NSWindowController(String windowNibName)

Discussion
The windowNibName argument cannot be null. The default initialization turns on cascading, sets the
shouldCloseDocument (page 1894) flag to false, and sets the autosave name for the window’s frame to
an empty string.

Creates an NSWindowController object initialized with windowNibName and owner.

public NSWindowController(String windowNibName, Object owner)

1890 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

Discussion
Neither windowNibName nor owner can be null. The windowNibName argument is the name of the nib file
(minus the “.nib” extension) that archives the receiver’s window. The owner argument is the nib file’s owner.
The default initialization turns on cascading, sets the shouldCloseDocument (page 1894) flag to false, and
sets the autosave name for the window’s frame to an empty string.

Returns an NSWindowController object initialized with windowNibNameOrPath and owner. Neither
windowNibName nor owner can be null

public NSWindowController(String windowNibNameOrPath, Object owner, boolean
isFullPath)

Discussion
If isFullPath is true, windowNibNameOrPath should be the full path to the nib file that archives the
receiver’s window. Use this option if your nib file is at a fixed location (which is not inside either the file’s
owner’s class’s bundle or in the application’s main bundle). If isFullPath is false, windowNibNameOrPath
is the name of the nib file (minus the “.nib” extension) that archives the receiver’s window.

The owner argument is the nib file’s owner. The default initialization turns on cascading, sets the
shouldCloseDocument (page 1894) flag to false, and sets the autosave name for the window’s frame to
an empty string.

Instance Methods

close
Closes the window if it was loaded.

public void close()

Discussion
Because this method closes the window without asking the user for confirmation, you usually do not invoke
it when the Close menu command is chosen. Instead invoke NSWindow’s performClose (page 1846) on the
receiver’s window. See “Window Closing Behavior” for an overview of deallocation behavior when a window
is closed.

See Also
shouldCloseDocument (page 1894)
setShouldCloseDocument (page 1893)

document
Returns the NSDocument object associated with the receiver or null if there is none.

public NSDocument document()

Discussion
When a window controller is added to an NSDocument’s list of window controllers, the document sets the
window controller’s document with setDocument. The Application Kit uses this outlet to access the document
for relevant next-responder messages.

Instance Methods 1891
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

See Also
setDocument (page 1892)

isWindowLoaded
Returns whether the nib file containing the receiver’s window has been loaded.

public boolean isWindowLoaded()

See Also
loadWindow (page 1892)
window (page 1895)
windowDidLoad (page 1895)
windowWillLoad (page 1897)

loadWindow
Loads the receiver’s window from the nib file.

public void loadWindow()

Discussion
You should never directly invoke this method. Instead, invokewindow (page 1895) so thewindowDidLoad (page
1895) and windowWillLoad (page 1897) methods are invoked. Subclasses can override this method if the way
it finds and loads the window is not adequate. It uses NSBundle’s bundleForClass method to get the
bundle, using the class of the nib file owner as argument. It then locates the nib file within the bundle and,
if successful, loads it; if unsuccessful, it tries to find the nib file in the main bundle.

See Also
isWindowLoaded (page 1892)

owner
Returns the owner of the nib file containing the window managed by the receiver.

public Object owner()

Discussion
This owner is usually this, but can be the receiver’s document (an instance of an NSDocument subclass) or
some other object.

See Also
windowNibName (page 1896)

setDocument
Sets the document associated with the window managed by the receiver.

public void setDocument(NSDocument document)

1892 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

Discussion
document is an instance of an NSDocument subclass that represents and manages the data displayed and
captured in the window. Documents automatically call this method when they add a window controller to
their list of window controllers; if you are using a subclass of NSDocument, you should not call it directly.

See Also
document (page 1891)

setDocumentEdited
Sets the document edited flag for the window controller to flag.

public void setDocumentEdited(boolean flag)

Discussion
The window controller uses this flag to control whether its associated window shows up as dirty. You should
not call this method directly for window controllers with an associated NSDocument; NSDocument calls this
method on its window controllers as needed.

setShouldCascadeWindows
Sets whether the window, when it is displayed, should cascade in relation to other document windows (that
is, have a slightly offset location so that the title bars of previously displayed windows are still visible) to
flag.

public void setShouldCascadeWindows(boolean flag)

Discussion
The default is true.

See Also
shouldCascadeWindows (page 1894)

setShouldCloseDocument
Sets whether the receiver should close the associated document when the window it manages is closed
(flag is true) or whether to close the document only when the last document window has been closed
(flag is false).

public void setShouldCloseDocument(boolean flag)

Discussion
The default is false.

See Also
shouldCloseDocument (page 1894)

setWindow
Sets the window controller’s window to aWindow.

Instance Methods 1893
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

public void setWindow(NSWindow aWindow)

Discussion
This method releases the old window and any associated top-level objects in its nib file and assumes ownership
of the new window. You should generally create a new window controller for a new window and release the
old window controller instead of using this method.

setWindowFrameAutosaveName
Sets the name under which the window’s frame (its size and location on the screen) is saved in the defaults
database.

public void setWindowFrameAutosaveName(String name)

Discussion
By default, name is an empty string, causing no information to be stored in the defaults database.

See Also
windowFrameAutosaveName (page 1896)
setFrameAutosaveName (page 1860) (NSWindow)

shouldCascadeWindows
Returns whether the window will cascade in relation to other document windows when it is displayed.

public boolean shouldCascadeWindows()

Discussion
The default is true.

See Also
setShouldCascadeWindows (page 1893)

shouldCloseDocument
Returns whether the receiver closes the associated document when the window it manages is closed (true)
or whether the document is closed only when the last remaining window of the document is closed (false).

public boolean shouldCloseDocument()

Discussion
The default is false.

See Also
setShouldCloseDocument (page 1893)

showWindow
This action method displays the window associated with the receiver.

public void showWindow(Object sender)

1894 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

Discussion
If the window is an NSPanel object and has its becomesKeyOnlyIfNeeded (page 1053) flag set to true, the
window is displayed in front of all other windows but is not made key; otherwise it is displayed in front and
is made key. This method is useful for menu actions.

See Also
makeKeyAndOrderFront (page 1841) (NSWindow)
orderFront (page 1844) (NSWindow)

synchronizeWindowTitleWithDocumentName
Synchronizes the displayed window title and the represented filename with the information in the associated
document.

public void synchronizeWindowTitleWithDocumentName()

Discussion
Does nothing if the window controller has no associated document or loaded window. This method queries
the window controller’s document to get the document’s display name and full filename path, then calls
windowTitleForDocumentDisplayName (page 1896) to get the display name to show in the window title.

window
Returns the window owned by the receiver or null if there isn’t one.

public NSWindow window()

Discussion
If the window has not yet been loaded, it attempts to load the window’s nib file using loadWindow (page
1892). Before it loads the window, it invokes windowWillLoad (page 1897) in subclass implementations, and if
the NSWindowController has a document, it invokes the NSDocument’s corresponding method
windowControllerWillLoadNib (if implemented). After loading the window, it invokes windowDidLoad (page
1895) and, if there is a document, the NSDocument method windowControllerDidLoadNib (if implemented).

See Also
windowControllerWillLoadNib (page 550) (NSDocument)

windowDidLoad
Allows subclasses of NSWindowController to perform any required tasks after the window owned by the
receiver has been loaded.

public void windowDidLoad()

Discussion
The default implementation does nothing.

See Also
loadWindow (page 1892)
window (page 1895)
windowWillLoad (page 1897)

Instance Methods 1895
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

windowFrameAutosaveName
Returns the name under which the frame rectangle of the window owned by the receiver is stored in the
defaults database.

public String windowFrameAutosaveName()

See Also
setWindowFrameAutosaveName (page 1894)

windowNibName
Returns the name of the nib file that stores the window associated with the receiver.

public String windowNibName()

Discussion
If the nib path was passed to the constructor, windowNibName returns the last path component with the
“.nib” extension stripped off. If the nib name was passed, windowNibName returns the name without the
“.nib” extension.

See Also
owner (page 1892)

windowNibPath
Returns the full path of the nib file that stores the window associated with the receiver.

public String windowNibPath()

Discussion
If the nib path was passed to the constructor, the path is just returned. If the nib name was passed,
windowNibPath locates the nib in the file’s owner’s class’ bundle or in the application’s main bundle and
returns the full path (or null if it cannot be located). Subclasses can override this to augment the search
behavior, but probably ought to call super first.

windowTitleForDocumentDisplayName
Returns displayName by default.

public String windowTitleForDocumentDisplayName(String displayName)

Discussion
The display name, which is generally maintained by the associated NSDocument, is the last path component
under which the document file is saved. Subclasses can override this method to customize the window title.
For example, a CAD application could append “-Top” or “-Side,” depending on the view displayed by the
window.

See Also
synchronizeWindowTitleWithDocumentName (page 1895)

1896 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

windowWillLoad
Allows subclasses of NSWindowController to perform any required tasks before the window owned by the
receiver is loaded.

public void windowWillLoad()

Discussion
The default implementation does nothing.

See Also
loadWindow (page 1892)
window (page 1895)
windowDidLoad (page 1895)

Instance Methods 1897
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

1898 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 141

NSWindowController

Inherits from NSObject

Package: com.apple.cocoa.application

Companion guide Workspace Services Programming Topics

Overview

An NSWorkspace object responds to application requests to perform a variety of services:

 ■ Opening, manipulating, and obtaining information about files and devices

 ■ Tracking changes to the file system, devices, and the user database

 ■ Launching applications

There is one shared NSWorkspace object per application. You use the static method sharedWorkspace (page
1902) to access it.

Tasks

Constructors

NSWorkspace (page 1902)
Creates an empty NSWorkspace.

Accessing the Shared NSWorkspace

sharedWorkspace (page 1902)
Returns the shared NSWorkspace instance.

Accessing the NSWorkspace Notification Center

notificationCenter (page 1908)
Returns the notification center for workspace notifications.

Overview 1899
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

Opening Files

openFile (page 1908)
Opens the file specified by fullPath using the appName application.

openTempFile (page 1909)
Opens the temporary file specified by fullPath using the default application for its type.

openURL (page 1909)
Opens the location specified by url; returns true if the location was successfully opened, false
otherwise.

Manipulating Applications

launchApplication (page 1905)
Launches the application appName.

hideOtherApplications (page 1904)
Hides all applications other than the sender.

Manipulating Files

applicationForFile (page 1903)
Returns the full path to the application that the system would use to open the document pathToFile.

performFileOperation (page 1910)
Performs a file operation on a set of files in a particular directory.

selectFile (page 1910)
Selects the file specified by fullPath.

Requesting Information

iconForFile (page 1904)
Returns an NSImage with the icon for the single file specified by fullPath, with an initial size of 32
pixels by 32 pixels.

iconForFileType (page 1905)
Returns an NSImage with the icon for the file type specified by fileType, with an initial size of 32
pixels by 32 pixels.

iconForFiles (page 1905)
Returns an NSImage with the icon for the files specified in fullPaths, an array of Strings.

fullPathForApplication (page 1904)
Returns the full path for the application appName, or null if appName isn’t in one of the normal places.

isFilePackageAtPath (page 1905)
Determines whether fullPath is a file package.

activeApplication (page 1903)
Returns a dictionary with information about the current active application.

1900 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

launchedApplications (page 1906)
Returns an array of dictionaries, one entry for each running application.

Requesting Additional Time Before Logout

extendPowerOffBy (page 1904)
Requests requested milliseconds more time before the power goes off or the user logs out.

Tracking Changes to the File System

noteFileSystemChanged (page 1907)
Informs NSWorkspace that the file system has changed.

noteFileSystemChangedAtPath (page 1907)
Informs NSWorkspace that the file system specified by path has changed.

fileSystemChanged (page 1904)
Returns true if a change to the file system has been registered with a noteFileSystemChanged (page
1907) message since the last fileSystemChanged (page 1904) message; false otherwise.

Updating Registered Services and File Types

findApplications (page 1904)
Examines all applications in the normal places (/Network/Applications, /Applications,
/Developer/Applications) and updates the records of registered services and file types.

Tracking Changes to the Defaults Database

noteUserDefaultsChanged (page 1908)
Informs NSWorkspace that the defaults database has changed.

userDefaultsChanged (page 1911)
Returns whether a change to the defaults database has been registered with a
noteUserDefaultsChanged (page 1908) message since the lastuserDefaultsChanged (page 1911)
message.

Tracking Status Changes for Applications and Devices

mountedRemovableMedia (page 1906)
Returns an NSArray of Strings containing the full pathnames of all currently mounted removable disks.

mountNewRemovableMedia (page 1907)
Polls the system’s drives for any disks that have been inserted but not yet mounted, waits until the
new disks have been mounted, and returns an NSArray of Strings containing full pathnames to all
newly mounted disks.

Tasks 1901
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

mountedLocalVolumePaths (page 1906)
Returns an array containing the mount points of all local volumes, not just the removable ones returned
by mountedRemovableMedia (page 1906).

checkForRemovableMedia (page 1903)
Polls the system’s drives for any disks that have been inserted but not yet mounted.

Unmounting a Device

unmountAndEjectDeviceAtPath (page 1910)
Unmounts and ejects the device at path.

Working with Bundles

absolutePathForAppBundleWithIdentifier (page 1902)
Returns the absolute file-system path of an application bundle.

openURLs (page 1909)
Opens one or more files from an array of URLs.

Constructors

NSWorkspace
Creates an empty NSWorkspace.

public NSWorkspace()

Static Methods

sharedWorkspace
Returns the shared NSWorkspace instance.

public static NSWorkspace sharedWorkspace()

Instance Methods

absolutePathForAppBundleWithIdentifier
Returns the absolute file-system path of an application bundle.

1902 Constructors
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

public String absolutePathForAppBundleWithIdentifier(String bundleIdentifier)

Discussion
The bundleIdentifier parameter identifies the desired application and corresponds to the value from
the CFBundleIdentifier key in the application’s Info.plist file. For example, the bundle identifier of
the TextEdit application is com.apple.TextEdit.

Availability
Available in Mac OS X v10.3 and later.

activeApplication
Returns a dictionary with information about the current active application.

public NSDictionary activeApplication()

Discussion
The dictionary contains as many of the keys described in the constants section as are available.

Availability
Available in Mac OS X v10.2 and later.

See Also
launchedApplications (page 1906)

applicationForFile
Returns the full path to the application that the system would use to open the document pathToFile.

public String applicationForFile(String pathToFile)

Discussion
Returns null if the file cannot be found or if the file is of an unknown type.

checkForRemovableMedia
Polls the system’s drives for any disks that have been inserted but not yet mounted.

public void checkForRemovableMedia()

Discussion
checkForRemovableMedia (page 1903) doesn’t wait until such disks are mounted; instead, it requests that
the disk be mounted asynchronously and returns immediately. Currently has no effect.

See Also
mountNewRemovableMedia (page 1907)
mountedRemovableMedia (page 1906)

Instance Methods 1903
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

extendPowerOffBy
Requests requested milliseconds more time before the power goes off or the user logs out.

public int extendPowerOffBy(int requested)

Discussion
Returns the number of additional milliseconds granted. Currently unimplemented.

fileSystemChanged
Returns true if a change to the file system has been registered with a noteFileSystemChanged (page 1907)
message since the last fileSystemChanged (page 1904) message; false otherwise.

public boolean fileSystemChanged()

Discussion
Currently always returns false.

findApplications
Examines all applications in the normal places (/Network/Applications, /Applications,
/Developer/Applications) and updates the records of registered services and file types.

public void findApplications()

fullPathForApplication
Returns the full path for the application appName, or null if appName isn’t in one of the normal places.

public String fullPathForApplication(String appName)

hideOtherApplications
Hides all applications other than the sender.

public void hideOtherApplications()

Discussion
The user can hide all applications except the current one by Command-Option-clicking on an application’s
Dock icon.

iconForFile
Returns an NSImage with the icon for the single file specified by fullPath, with an initial size of 32 pixels
by 32 pixels.

public NSImage iconForFile(String fullPath)

1904 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

See Also
iconForFileType (page 1905)
iconForFiles (page 1905)

iconForFiles
Returns an NSImage with the icon for the files specified in fullPaths, an array of Strings.

public NSImage iconForFiles(NSArray fullPaths)

Discussion
If fullPaths specifies one file, its icon is returned. If fullPaths specifies more than one file, an icon
representing the multiple selection is returned.

See Also
iconForFile (page 1904)
iconForFileType (page 1905)

iconForFileType
Returns an NSImage with the icon for the file type specified by fileType, with an initial size of 32 pixels by
32 pixels.

public NSImage iconForFileType(String fileType)

Discussion
fileType may be either a filename extension or an encoded HFS file type.

See Also
iconForFile (page 1904)
iconForFiles (page 1905)

isFilePackageAtPath
Determines whether fullPath is a file package.

public boolean isFilePackageAtPath(String fullPath)

Discussion
Returns false if fullPath does not exist or is not a directory.

launchApplication
Launches the application appName.

public boolean launchApplication(String appName, boolean showIcon, boolean
autoLaunch)

Instance Methods 1905
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

Discussion
If showIcon is false, the application’s icon won’t be placed on the screen. (The icon still exists, though.) If
autolaunch is true, the autolaunch default will be set as though the application were autolaunched at
startup. This method is provided to enable daemon-like applications that lack a normal user interface. Its use
is not generally encouraged.

Returns true if the application is successfully launched or already running, and false if it can’t be launched.

Before this method begins, it posts an WorkspaceWillLaunchApplicationNotification (page 1915) to
the NSWorkspace’s notification center. When the operation is complete, it posts an
WorkspaceDidLaunchApplicationNotification (page 1913).

Launches the application appName.

public boolean launchApplication(String appName)

Discussion
appName need not be specified with a full path and, in the case of an application wrapper, may be specified
with or without the .app extension, as described in “Use of .app Extension”. Returns true if the application
is successfully launched or already running, false if it can’t be launched.

Before this method begins, it posts an WorkspaceWillLaunchApplicationNotification (page 1915) to
the NSWorkspace’s notification center. When the operation is complete, it posts an
WorkspaceDidLaunchApplicationNotification (page 1913).

launchedApplications
Returns an array of dictionaries, one entry for each running application.

public NSArray launchedApplications()

Discussion
The dictionary contains as many of the keys described in the constants section as are available.

Availability
Available in Mac OS X v10.2 and later.

See Also
activeApplication (page 1903)

mountedLocalVolumePaths
Returns an array containing the mount points of all local volumes, not just the removable ones returned by
mountedRemovableMedia (page 1906).

public NSArray mountedLocalVolumePaths()

mountedRemovableMedia
Returns an NSArray of Strings containing the full pathnames of all currently mounted removable disks.

public NSArray mountedRemovableMedia()

1906 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

Discussion
If the computer provides an interrupt or other notification when the user inserts a disk into a drive, the Finder
will mount the disk immediately. However, if no notification is given, the Finder won’t be aware that a disk
needs to be mounted. On such systems, an application should invoke either mountNewRemovableMedia (page
1907) orcheckForRemovableMedia (page 1903) before invokingmountedRemovableMedia (page 1906). Either
of these methods cause the Finder to poll the drives to see if a disk is present. If a disk has been inserted but
not yet mounted, these methods will cause the Finder to mount it.

The Disk button in an Open or Save panel invokes mountedRemovableMedia (page 1906) and
mountNewRemovableMedia (page 1907) as part of its operation, so most applications won’t need to invoke
these methods directly.

See Also
checkForRemovableMedia (page 1903)
mountNewRemovableMedia (page 1907)

mountNewRemovableMedia
Polls the system’s drives for any disks that have been inserted but not yet mounted, waits until the new disks
have been mounted, and returns an NSArray of Strings containing full pathnames to all newly mounted disks.

public NSArray mountNewRemovableMedia()

Discussion
This method posts a WorkspaceDidMountNotification (page 1913) to the NSWorkspace’s notification
center when it is finished. Currently provides the same functionality as mountedRemovableMedia (page
1906).

See Also
checkForRemovableMedia (page 1903)
mountedRemovableMedia (page 1906)

noteFileSystemChanged
Informs NSWorkspace that the file system has changed.

public void noteFileSystemChanged()

Discussion
NSWorkspace then gets the status of all the files and directories it is interested in and updates itself
appropriately. This method is used by many objects that write or delete files.

NSDocument and NSSavePanel use this method when saving a file. If you create a file directly, you should
call noteFileSystemChanged (page 1907) so that the Finder can update the folder if it is open.

See Also
fileSystemChanged (page 1904)

noteFileSystemChangedAtPath
Informs NSWorkspace that the file system specified by path has changed.

Instance Methods 1907
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

public void noteFileSystemChangedAtPath(String path)

Discussion
NSWorkspace then gets the status of all the files and directories it is interested in and updates itself
appropriately. This method is used by many objects that write or delete files.

See Also
fileSystemChanged (page 1904)

noteUserDefaultsChanged
Informs NSWorkspace that the defaults database has changed.

public void noteUserDefaultsChanged()

Discussion
NSWorkspace then reads all the defaults it is interested in and reconfigures itself appropriately. For example,
this method is used by the Preferences application to notify the Finder whether the user prefers to see hidden
files. Currently has no effect.

See Also
userDefaultsChanged (page 1911)

notificationCenter
Returns the notification center for workspace notifications.

public NSNotificationCenter notificationCenter()

openFile
Opens the file specified by fullPath using the appName application.

public boolean openFile(String fullPath, String appName, boolean flag)

Discussion
appName need not be specified with a full path and, in the case of an application wrapper, may be specified
with or without the .app extension, as described in “Use of .app Extension”. If appName is null, the default
application for the file’s type is used. If flag is true, the sending application is deactivated before the request
is sent, allowing the opening application to become the active application. Returns true if the file is
successfully opened, false otherwise.

Opens the file specified by fullPath using the appName application.

public boolean openFile(String fullPath, String appName)

Discussion
appName need not be specified with a full path and, in the case of an application wrapper, may be specified
with or without the .app extension, as described in “Use of .app Extension”. The sending application is
deactivated before the request is sent. Returns true if the file is successfully opened, false otherwise.

Opens the file specified by fullPath using the default application for its type.

1908 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

public boolean openFile(String fullPath, NSImage anImage, NSPoint point, NSView
aView)

Discussion
The Finder provides animation before opening the file to give the user feedback that the file is to be opened.
To provide this animation, anImage should contain an icon for the file, and its image should be displayed
at point, specified in the coordinates of aView.

The sending application is deactivated before the request is sent. Returns true if the file is successfully
opened, false otherwise.

Opens the file specified by fullPath using the default application for its type; returns true if the file was
successfully opened, false otherwise.

public boolean openFile(String fullPath)

Discussion
The sending application is deactivated before the request is sent.

openTempFile
Opens the temporary file specified by fullPath using the default application for its type.

public boolean openTempFile(String fullPath)

Discussion
The sending application is deactivated before the request is sent. Using this method instead of openFile (page
1908) lets the receiving application know that it should delete the file when it no longer needs it. Returns true
if the file is successfully opened, false otherwise. Currently provides the same functionality as openFile (page
1908).

See Also
openFile (page 1908)

openURL
Opens the location specified by url; returns true if the location was successfully opened, false otherwise.

public boolean openURL(java.net.URL url)

openURLs
Opens one or more files from an array of URLs.

public boolean openURLs(NSArray urls, String bundleIdentifier, int options,
NSAppleEventDescriptor descriptor, NSMutableArray launchIdentifiers)

Instance Methods 1909
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

Discussion
The urls parameter contains an array of NSURL objects, each identifying one URL to open. The
bundleIdentifier parameter contains the bundle identifier of the application to use to open the URLs,
or NULL to use the default system bindings. Possible values for the options parameter are described in the
constants section. To specify additional options using an AppleEvent-style descriptor, specify a value for the
additionalEventParamDescriptor parameter.

If you specify a parameter for launchIdentifier, the method returns an array of unique identifiers (one
for each URL) for this launch attempt. You can use these values to distinguish individual launch requests.

Availability
Available in Mac OS X v10.3 and later.

performFileOperation
Performs a file operation on a set of files in a particular directory.

public int performFileOperation(String operation, String source, String destination,
NSArray files)

Discussion
operation is some file operation, such as compressing or moving files. files contains Strings specifying
the names of the files to be manipulated. The filenames are given relative to the source directory. The list
can contain both files and directories; all of them must be located directly within source (not in one of its
subdirectories).

Some operations—such as moving, copying, and linking files—require a destination directory to be specified.
If not, destination should be the empty string ("").

The possible values for operation are described in the "Constants" section.

This method returns a negative integer if the operation fails, 0 if the operation is performed synchronously
and succeeds, and a positive integer if the operation is performed asynchronously. The positive integer
identifies the requested file operation. Before this method returns, it posts a
WorkspaceDidPerformFileOperationNotification (page 1913) to NSWorkspace’s notification center.

selectFile
Selects the file specified by fullPath.

public boolean selectFile(String fullPath, String rootFullPath)

Discussion
If a path is specified by rootFullPath, a new file viewer is opened. If rootFullPath is an empty string
(""), the file is selected in the main viewer. Returns true if the file is successfully selected, false otherwise.

unmountAndEjectDeviceAtPath
Unmounts and ejects the device at path.

public boolean unmountAndEjectDeviceAtPath(String path)

1910 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

Discussion
Returns true if the unmount operation succeeded, false otherwise. When this method begins, it posts a
WorkspaceWillUnmountNotification (page 1915) to NSWorkspace’s notification center. When it is finished,
it posts a WorkspaceDidUnmountNotification (page 1914).

userDefaultsChanged
Returns whether a change to the defaults database has been registered with a
noteUserDefaultsChanged (page 1908) message since the lastuserDefaultsChanged (page 1911) message.

public boolean userDefaultsChanged()

Discussion
Currently always returns false.

Constants

These constants specify different types of files:

DescriptionConstant

Plain (untyped) filePlainFileType

DirectoryDirectoryFileType

Cocoa applicationApplicationFileType

File-system mount pointFilesystemFileType

Executable shell commandShellCommandFileType

The constants specify different types of file operations. They’re used by performFileOperation (page 1910).

DescriptionConstant

Move file to destination.MoveOperation

Copy file to destination.CopyOperation

Create hard link to file in destination.LinkOperation

Compress file. Currently unavailable.CompressOperation

Decompress file. Currently unavailable.DecompressOperation

Encrypt file. Currently unavailable.EncryptOperation

Decrypt file. Currently unavailable.DecryptOperation

Destroy file.DestroyOperation

Constants 1911
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

DescriptionConstant

Move file to recycler.RecycleOperation

Duplicate file in source directory.DuplicateOperation

The following describes keys for an NSDictionary containing information about an application. This dictionary
is returned byactiveApplication (page 1903) andlaunchedApplications (page 1906), and is also provided
in the userInfo of NSWorkspace notifications for application launch and termination.

ValueKey

The full path to the application, as a string."NSApplicationPath"

The application's name, as a string."NSApplicationName"

The application’s bundle identifier., as a string."NSApplicationBundleIdentifier"

The application's process id, as an integer."NSApplicationProcessIdentifier"

The high long of the process serial number (PSN), as an
integer.

"NSApplicationProcessSerialNumberHigh"

The low long of the process serial number (PSN), as an
integer.

"NSApplicationProcessSerialNumberLow"

The following table describes launch options you can pass to openURLs (page 1909).

DescriptionConstant

Print items instead of opening them.LaunchAndPrint

Causes launch to fail if the target is background-only.LaunchInhibitingBackgroundOnly

Do not add the application or documents to the Recents menu.LaunchWithoutAddingToRecents

Launch the application but do not bring it into the foreground.LaunchWithoutActivation

Launch the application and return the results asynchronously.LaunchAsync

Start up the Classic compatibility environment, if it is required by
the application.

LaunchAllowingClassicStartup

Force the application to launch in the Classic compatibility
environment.

LaunchPreferringClassic

Create a new instance of the application, even if one is already
running.

LaunchNewInstance

Tell the application to hide itself as soon as it has finished
launching.

LaunchAndHide

Hide all applications except the newly launched one.LaunchAndHideOthers

1912 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

DescriptionConstant

Launch the application asynchronously and launch it in the Classic
environment, if required.

LaunchDefault

The following table describes the NSWorkspaceIconCreationOptions values. These values are combined
using the C bitwise OR operator.

DescriptionConstant

Supress generation of the QuickDraw format icon representations
that are used Mac OS X v10.0 through v10.4.
Available in Mac OS X v10.4 and later.

NSExcludeQuickDraw-
ElementsIconCreationOption

Supress generation of the new higher resolution icon
representations that are supported in Mac OS X v10.4.
Available in Mac OS X v10.4 and later.

NSExclude10_-
4ElementsIconCreationOption

Notifications

All NSWorkspace notifications are posted to NSWorkspace’s own notification center, not the application’s
default notification center. Access this center using NSWorkspace’snotificationCenter (page 1908) method.

WorkspaceDidLaunchApplicationNotification
Posted when a new application has started up.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the keys and
values described in the constants section.

WorkspaceDidMountNotification
Posted when a new device has been mounted.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the following
information:

ValueKey

The path where the device was mounted, as a string."NSDevicePath"

WorkspaceDidPerformFileOperationNotification
Posted when a file operation has been performed in the receiving application.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the following
information:

Notifications 1913
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

ValueKey

An integer indicating the type of file operation
completed.

"NSOperationNumber"

WorkspaceDidTerminateApplicationNotification
Posted when an application finishes executing.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the keys and
values described in the constants section.

WorkspaceDidWakeNotification
Posted when the machine wakes from sleep.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

WorkspaceDidUnmountNotification
Posted when the Finder has unmounted a device.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the following
information:

ValueKey

The path where the device was previously mounted,
as a string.

"NSDevicePath"

WorkspaceSessionDidBecomeActiveNotification
Posted after a user session is switched in. This allows an application to reenable some processing when a
switched out session gets switched back in, for example.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

WorkspaceSessionDidResignActiveNotification
Posted before a user session is switched out. This allows an application to disable some processing when its
user session is switched out, and reenable when that session gets switched back in, for example.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

1914 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

If an application is launched in an inactive session, WorkspaceSessionDidResignActiveNotification
is sent after ApplicationWillFinishLaunchingNotification (page 141) and before sending
ApplicationDidFinishLaunchingNotification (page 140).

Availability
Available in Mac OS X v10.3 and later.

WorkspaceWillLaunchApplicationNotification
Posted when the Finder is about to launch an application.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the keys and
values described in the constants section.

WorkspaceWillPowerOffNotification
Posted when the user has requested a logout or that the machine be powered off.

The notification object is the shared NSWorkspace instance. This notification does not contain a userInfo
dictionary.

WorkspaceWillSleepNotification
Posted before the machine goes to sleep. An observer of this message can delay sleep for up to 30 seconds
while handling this notification.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

WorkspaceWillUnmountNotification
Posted when the Finder is about to unmount a device. This notification will not be delivered if a volume was
forcibly and immediately made unavailable, such as when a FireWire drive is simply unplugged, because
there is no chance to deliver it before the volume becomes unavailable.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains the following
information:

ValueKey

The path where the device is mounted, as a string."NSDevicePath"

Notifications 1915
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

1916 Notifications
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 142

NSWorkspace

1917
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

PART II

Interfaces

1918
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

PART II

Interfaces

Implements NSValidatedUserInterfaceItem
NSCoding

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

Warning: The NSMenuItem interface is being removed from the Application Kit; you must use the
NSMenuItem class instead. This change does not affect binary compatibility between different versions
of projects, but might cause failures in project builds. To adapt your projects to this change, alter all
references to the interface to references to the class.

Refer to the NSMenuItem (page 1919) class description, which replaces this interface.

Tasks

Enabling a Menu Item

setEnabled (page 1927)
Sets whether the receiver is enabled based on flag.

isEnabled (page 1924)
Returns true if the receiver is enabled, false if not.

Setting the Target and Action

setTarget (page 1932)
Sets the receiver’s target to anObject.

target (page 1933)
Returns the receiver’s target.

setAction (page 1926)
Sets the receiver’s action method to aSelector.

Overview 1919
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

Setting the Title

setTitle (page 1932)
Sets the receiver’s title to aString.

title (page 1933)
Returns the receiver’s title.

setAttributedTitle (page 1927)
Specifies a custom string for a menu item.

attributedTitle (page 1923)
Returns the custom title string for a menu item.

Setting the Tag

setTag (page 1931)
Sets the receiver’s tag to anInt.

Setting the State

setState (page 1931)
Sets the state of the receiver to itemState, which should be one of NSCell.OffState,
NSCell.OnState, or NSCell.MixedState.

state (page 1933)
Returns the state of the receiver, which is NSCell.OffState (the default), NSCell.OnState, or
NSCell.MixedState.

Setting the Image

setImage (page 1928)
Sets the receiver’s image to menuImage.

image (page 1923)
Returns the image displayed by the receiver, or null if it displays no image.

setOnStateImage (page 1930)
Sets the image of the receiver that indicates an “on” state.

onStateImage (page 1926)
Returns the image used to depict the receiver’s “on” state, or null if the image has not been set.

setOffStateImage (page 1930)
Sets the image of the receiver that indicates an “off” state.

offStateImage (page 1925)
Returns the image used to depict the receiver’s “off” state, or null if the image has not been set.

setMixedStateImage (page 1929)
Sets the image of the receiver that indicates a “mixed” state, that is, a state neither “on” nor “off.”

mixedStateImage (page 1925)
Returns the image used to depict a “mixed state.”

1920 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

Managing Submenus

setSubmenu (page 1931)
Sets the submenu of the receiver to aSubmenu.

submenu (page 1933)
Returns the submenu associated with the receiving menu item, or null if no submenu is associated
with it.

hasSubmenu (page 1923)
Returns true if the receiver has a submenu, false if it doesn’t.

Getting a Separator Item

isSeparatorItem (page 1924)
Returns whether the receiver is a separator item (that is, a menu item used to visually segregate
related menu items).

Setting the Owning Menu

setMenu (page 1929)
Sets the receiver’s menu to aMenu.

menu (page 1925)
Returns the menu to which the receiver belongs, or null if no menu has been set.

Managing Key Equivalents

setKeyEquivalent (page 1928)
Sets the receiver’s unmodified key equivalent to aKeyEquivalent.

keyEquivalent (page 1924)
Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined.

setKeyEquivalentModifierMask (page 1928)
Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Option
key) to those in mask.

keyEquivalentModifierMask (page 1924)
Returns the receiver’s keyboard equivalent modifier mask.

Managing Mnemonics

setMnemonicLocation (page 1930)
Sets the character of the menu item title at location that is to be underlined

mnemonicLocation (page 1925)
Returns the position of the underlined character in the menu item title used as a mnemonic.

setTitleWithMnemonic (page 1932)
Sets the title of a menu item with a character underlined to denote an access key.

Tasks 1921
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

mnemonic (page 1925)
Returns the character in the menu item title that appears underlined for use as a mnemonic.

Managing User Key Equivalents

userKeyEquivalent (page 1934)
Returns the user-assigned key equivalent for the receiver.

userKeyEquivalentModifierMask (page 1934)
Returns the modifier mask for the receiver’s user-assigned key equivalent.

Managing Alternates

setAlternate (page 1926)
Marks the receiver as an alternate to the previous menu item.

isAlternate (page 1924)
Returns whether the receiver is an alternate to the previous menu item.

Managing Indentation Levels

setIndentationLevel (page 1928)
Sets the menu item indentation level for the receiver.

indentationLevel (page 1923)
Returns the menu item indentation level for the receiver.

Managing Tool Tips

setToolTip (page 1932)
Sets a help tag for a menu item.

toolTip (page 1933)
Returns the help tag for a menu item.

Representing an Object

setRepresentedObject (page 1930)
Sets the object represented by the receiver to anObject.

representedObject (page 1926)
Returns the object that the receiving menu item represents.

1922 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

Instance Methods

attributedTitle
Returns the custom title string for a menu item.

public abstract NSAttributedString attributedTitle()

Availability
Available in Mac OS X v10.3 and later.

See Also
setAttributedTitle (page 1927)
title (page 1933)

hasSubmenu
Returns true if the receiver has a submenu, false if it doesn’t.

public abstract boolean hasSubmenu()

See Also
setSubmenuForItem (page 922) (NSMenu)

image
Returns the image displayed by the receiver, or null if it displays no image.

public abstract NSImage image()

See Also
setImage (page 1928)

indentationLevel
Returns the menu item indentation level for the receiver.

public abstract int indentationLevel()

Discussion
The return value will be from 0 to 15. The default indentation level is 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
setIndentationLevel (page 1928)

Instance Methods 1923
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

isAlternate
Returns whether the receiver is an alternate to the previous menu item.

public abstract boolean isAlternate()

Availability
Available in Mac OS X v10.3 and later.

See Also
setAlternate (page 1926)

isEnabled
Returns true if the receiver is enabled, false if not.

public abstract boolean isEnabled()

See Also
setEnabled (page 1927)

isSeparatorItem
Returns whether the receiver is a separator item (that is, a menu item used to visually segregate related menu
items).

public abstract boolean isSeparatorItem()

keyEquivalent
Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined.

public abstract String keyEquivalent()

Discussion
Use keyEquivalentModifierMask (page 1924) to determine the modifier mask for the key equivalent.

See Also
userKeyEquivalent (page 1934)
mnemonic (page 1925)
setKeyEquivalent (page 1928)

keyEquivalentModifierMask
Returns the receiver’s keyboard equivalent modifier mask.

public abstract int keyEquivalentModifierMask()

See Also
setKeyEquivalentModifierMask (page 1928)

1924 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

menu
Returns the menu to which the receiver belongs, or null if no menu has been set.

public abstract NSMenu menu()

See Also
setMenu (page 1929)

mixedStateImage
Returns the image used to depict a “mixed state.”

public abstract NSImage mixedStateImage()

Discussion
A mixed state is useful for indicating “off” and “on” attribute values in a group of selected objects, such as a
selection of text containing bold and plain (nonbolded) words.

See Also
setMixedStateImage (page 1929)

mnemonic
Returns the character in the menu item title that appears underlined for use as a mnemonic.

public abstract String mnemonic()

Discussion
If there is no mnemonic character, returns an empty string. Mnemonics are not supported in Mac OS X.

See Also
setTitleWithMnemonic (page 1932)

mnemonicLocation
Returns the position of the underlined character in the menu item title used as a mnemonic.

public abstract int mnemonicLocation()

Discussion
The position is the zero-based index of that character in the title string. If the receiver has no mnemonic
character, returns NSArray.NotFound. Mnemonics are not supported in Mac OS X.

See Also
setMnemonicLocation (page 1930)

offStateImage
Returns the image used to depict the receiver’s “off” state, or null if the image has not been set.

Instance Methods 1925
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

public abstract NSImage offStateImage()

Discussion
By default, there is no off state image.

See Also
setOffStateImage (page 1930)

onStateImage
Returns the image used to depict the receiver’s “on” state, or null if the image has not been set.

public abstract NSImage onStateImage()

Discussion
By default, the on state image is a checkmark.

See Also
setOnStateImage (page 1930)

representedObject
Returns the object that the receiving menu item represents.

public abstract Object representedObject()

Discussion
For example, you might have a menu list the names of views that are swapped into the same panel. The
represented objects would be the appropriate NSView objects. The user would then be able to switch back
and forth between the different views that are displayed by selecting the various menu items.

See Also
setRepresentedObject (page 1930)

setAction
Sets the receiver’s action method to aSelector.

public abstract void setAction(NSSelector aSelector)

Discussion
See Action Messages for additional information on action messages.

See Also
setTarget (page 1932)

setAlternate
Marks the receiver as an alternate to the previous menu item.

public abstract void setAlternate(boolean isAlternate)

1926 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

Discussion
If the receiver has the same key equivalent as the previous item, but has different key equivalent modifiers,
the items are folded into a single visible item and the appropriate item shows while tracking the menu. The
menu items may also have no key equivalent as long as the key equivalent modifiers are different.

If there are two or more items with no key equivalent but different modifiers, then the only way to get access
to the alternate items is with the mouse. If you mark items as alternates but their key equivalents don’t match,
they might be displayed as separate items. Marking the first item as an alternate has no effect.

The isAlternate value is archived.

Availability
Available in Mac OS X v10.3 and later.

See Also
isAlternate (page 1924)

setAttributedTitle
Specifies a custom string for a menu item.

public abstract void setAttributedTitle(NSAttributedString string)

Discussion
You can use this method to add styled text and embedded images to menu item strings. If you do not set a
text color for the attributed string, it is black when not selected, white when selected, and gray when disabled.
Colored text remains unchanged when selected.

When you call this method to set the menu title to an attributed string, the setTitle (page 1932) method is
also called to set the menu title with a plain string. If you clear the attributed title, the plain title remains
unchanged.

The attributed string is not archived in the old nib format.

Availability
Available in Mac OS X v10.3 and later.

See Also
attributedTitle (page 1923)
setTitle (page 1932)

setEnabled
Sets whether the receiver is enabled based on flag.

public abstract void setEnabled(boolean flag)

Discussion
If a menu item is disabled, its keyboard equivalent is also disabled. See the NSMenu.MenuValidation (page
2011) interface specification for cautions regarding this method.

See Also
isEnabled (page 1924)

Instance Methods 1927
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

setImage
Sets the receiver’s image to menuImage.

public abstract void setImage(NSImage menuImage)

Discussion
If menuImage is null, the current image (if any) is removed. This image is not affected by changes in
menu-item state.

See Also
image (page 1923)

setIndentationLevel
Sets the menu item indentation level for the receiver.

public abstract void setIndentationLevel(int indentationLevel)

Discussion
The value for indentationLevel may be from 0 to 15. If indentationLevel is greater than 15, the value
is pinned to the maximum. If indentationLevel is less than 0 an exception is thrown. The default indentation
level is 0.

indentationLevel is archived.

Availability
Available in Mac OS X v10.3 and later.

See Also
indentationLevel (page 1923)

setKeyEquivalent
Sets the receiver’s unmodified key equivalent to aKeyEquivalent.

public abstract void setKeyEquivalent(String aKeyEquivalent)

Discussion
If you want to remove the key equivalent from a menu item, pass an empty string (””) for aKeyEquivalent
(never pass null). Use setKeyEquivalentModifierMask (page 1928) to set the appropriate mask for the
modifier keys for the key equivalent.

See Also
setMnemonicLocation (page 1930)
keyEquivalent (page 1924)

setKeyEquivalentModifierMask
Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Option key) to
those in mask.

1928 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

public abstract void setKeyEquivalentModifierMask(int mask)

Discussion
mask is an integer bit field containing any of these modifier key masks, combined using the C bitwise OR
operator:

NSEvent.ShiftKeyMask

NSEvent.AlternateKeyMask

NSEvent.CommandKeyMask

You should always set NSEvent.CommandKeyMask in mask.

NSEvent.ShiftKeyMask is relevant only for function keys—that is, for key events whose modifier flags
include NSEvent.FunctionKeyMask. For all other key events NSEvent.ShiftKeyMask is ignored and
characters typed while the Shift key is pressed are interpreted as the shifted versions of those characters; for
example, Command-Shift-c is interpreted as Command-C.

See the NSEvent (page 603) class specification for more information about modifier mask values.

See Also
keyEquivalentModifierMask (page 1924)

setMenu
Sets the receiver’s menu to aMenu.

public abstract void setMenu(NSMenu aMenu)

Discussion
This method is invoked by the owning NSMenu when the receiver is added or removed. You shouldn’t have
to invoke this method in your own code, although it can be overridden to provide specialized behavior.

See Also
menu (page 1925)

setMixedStateImage
Sets the image of the receiver that indicates a “mixed” state, that is, a state neither “on” nor “off.”

public abstract void setMixedStateImage(NSImage itemImage)

Discussion
If itemImage is null, any current mixed-state image is removed.

See Also
mixedStateImage (page 1925)
setOffStateImage (page 1930)
setOnStateImage (page 1930)
setState (page 1931)

Instance Methods 1929
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

setMnemonicLocation
Sets the character of the menu item title at location that is to be underlined

public abstract void setMnemonicLocation(int location)

Discussion
. This character identifies the access key by which users can access the menu item. Mnemonics are not
supported in Mac OS X.

See Also
mnemonicLocation (page 1925)

setOffStateImage
Sets the image of the receiver that indicates an “off” state.

public abstract void setOffStateImage(NSImage itemImage)

Discussion
If itemImage is null, any current off-state image is removed.

See Also
offStateImage (page 1925)
setMixedStateImage (page 1929)
setOffStateImage (page 1930)
setState (page 1931)

setOnStateImage
Sets the image of the receiver that indicates an “on” state.

public abstract void setOnStateImage(NSImage itemImage)

Discussion
If itemImage is null, any current on-state image is removed.

See Also
onStateImage (page 1926)
setMixedStateImage (page 1929)
setOffStateImage (page 1930)
setState (page 1931)

setRepresentedObject
Sets the object represented by the receiver to anObject.

public abstract void setRepresentedObject(Object anObject)

1930 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

Discussion
By setting a represented object for a menu item, you make an association between the menu item and that
object. The represented object functions as a more specific form of tag that allows you to associate any
object, not just an int, with the items in a menu.

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the display
of multiple views in the same panel.

See Also
setTag (page 1931)
representedObject (page 1926)

setState
Sets the state of the receiver to itemState, which should be one of NSCell.OffState, NSCell.OnState,
or NSCell.MixedState.

public abstract void setState(int itemState)

Discussion
The image associated with the new state is displayed to the left of the menu item.

See Also
state (page 1933)
setMixedStateImage (page 1929)
setOffStateImage (page 1930)
setOnStateImage (page 1930)

setSubmenu
Sets the submenu of the receiver to aSubmenu.

public abstract void setSubmenu(NSMenu aSubmenu)

Discussion
The default implementation throws an exception if aSubmenu already has a supermenu.

See Also
submenu (page 1933)
hasSubmenu (page 1923)

setTag
Sets the receiver’s tag to anInt.

public abstract void setTag(int anInt)

See Also
setRepresentedObject (page 1930)

Instance Methods 1931
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

setTarget
Sets the receiver’s target to anObject.

public abstract void setTarget(Object anObject)

See Also
setAction (page 1926)
target (page 1933)

setTitle
Sets the receiver’s title to aString.

public abstract void setTitle(String aString)

See Also
title (page 1933)

setTitleWithMnemonic
Sets the title of a menu item with a character underlined to denote an access key.

public abstract void setTitleWithMnemonic(String aString)

Discussion
Mnemonics are not supported in Mac OS X.

See Also
mnemonic (page 1925)
setMnemonicLocation (page 1930)

setToolTip
Sets a help tag for a menu item.

public abstract void setToolTip(String toolTip)

Discussion
You can call this method for any menu item, including items in the main menu bar.

This string is not archived in the old nib format.

Availability
Available in Mac OS X v10.3 and later.

See Also
toolTip (page 1933)

1932 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

state
Returns the state of the receiver, which is NSCell.OffState (the default), NSCell.OnState, or
NSCell.MixedState.

public abstract int state()

See Also
setState (page 1931)

submenu
Returns the submenu associated with the receiving menu item, or null if no submenu is associated with it.

public abstract NSMenu submenu()

Discussion
If the receiver responds true to hasSubmenu (page 1923), the submenu is returned.

See Also
hasSubmenu (page 1923)
setSubmenu (page 1931)

target
Returns the receiver’s target.

public abstract Object target()

See Also
setTarget (page 1932)

title
Returns the receiver’s title.

public abstract String title()

See Also
setTitle (page 1932)

toolTip
Returns the help tag for a menu item.

public abstract String toolTip()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1933
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

See Also
setToolTip (page 1932)

userKeyEquivalent
Returns the user-assigned key equivalent for the receiver.

public abstract String userKeyEquivalent()

See Also
keyEquivalent (page 1924)

userKeyEquivalentModifierMask
Returns the modifier mask for the receiver’s user-assigned key equivalent.

public abstract int userKeyEquivalentModifierMask()

1934 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 143

_NSObsoleteMenuItemProtocol

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text Attachment Programming Topics for Cocoa

Overview

The NSCellForTextAttachment interface declares the interface for objects that draw text attachment icons
and handle mouse events on their icons. With the exceptions of cellBaselineOffset (page 1936),
setAttachment (page 1938), andattachment (page 1936), all of these methods are implemented by the NSCell
class and described in that class specification.

See the NSAttributedString and NSTextView (page 1609) class specifications for general information on text
attachments.

Tasks

Drawing

drawWithFrameInView (page 1937)
Draws the receiver’s image within cellFrame in aView, which should be the view currently focused.

highlightWithFrameInView (page 1937)
Draws the receiver’s image—with highlighting if flag is true—within cellFrame in aView, which
should be the focus view.

Cell Size and Position

cellSize (page 1937)
Returns the size of the attachment’s icon.

cellBaselineOffset (page 1936)
Returns the position where the attachment cell’s image should be drawn in text, relative to the current
point established in the glyph layout.

cellFrame (page 1936)
Returns the frame of the cell as it would be drawn as the character at the given glyph position, and
character index, charIndex, in textContainer.

Overview 1935
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 144

NSCellForTextAttachment

Event Handling

wantsToTrackMouse (page 1939)
Returns true if the receiver will handle a mouse event occurring over its image (to support dragging,
for example), false otherwise.

wantsToTrackMouseForEvent (page 1939)
Allows an attachment to specify what events it would want to track the mouse for.

trackMouse (page 1938)
Handles a mouse-down event on the receiver’s image.

Setting the Attachment

setAttachment (page 1938)
Sets the text attachment object that owns the receiver to anAttachment.

attachment (page 1936)
Returns the text attachment object that owns the receiver.

Instance Methods

attachment
Returns the text attachment object that owns the receiver.

public abstract NSTextAttachment attachment()

See Also
setAttachment (page 1938)

cellBaselineOffset
Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout.

public abstract NSPoint cellBaselineOffset()

Discussion
The image should be drawn so its lower-left corner lies on this point.

See Also
icon (page 636) (NSFileWrapper)

cellFrame
Returns the frame of the cell as it would be drawn as the character at the given glyph position, and character
index, charIndex, in textContainer.

1936 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 144

NSCellForTextAttachment

public abstract NSRect cellFrame(NSTextContainer textContainer, NSRect lineFrag,
NSPoint position, int charIndex)

Discussion
The proposed line fragment is specified by lineFrag.

cellSize
Returns the size of the attachment’s icon.

public abstract NSSize cellSize()

See Also
icon (page 636) (NSFileWrapper)
fileWrapper (page 1537) (NSTextAttachment)

drawWithFrameInView
Draws the receiver’s image within cellFrame in aView, which should be the view currently focused.

public abstract void drawWithFrameInView(NSRect cellFrame, NSView aView)

See Also
drawWithFrameInView (page 310) (NSCell)
lockFocus (page 1759) (NSView)

Draws the receiver’s image within cellFrame in aView, which is the view currently focused.

public abstract void drawWithFrameInView(NSRect cellFrame, NSView aView, int
charIndex)

Discussion
charIndex is the index of the attachment character within the text.

Draws the receiver’s image within cellFrame in aView, which is the view currently focused.

public abstract void drawWithFrameInView(NSRect cellFrame, NSView aView, int
charIndex, NSLayoutManager layoutManager)

Discussion
charIndex is the index of the attachment character within the text. layoutManager is the layout manager
for the text.

highlightWithFrameInView
Draws the receiver’s image—with highlighting if flag is true—within cellFrame in aView, which should
be the focus view.

public abstract void highlightWithFrameInView(boolean flag, NSRect cellFrame, NSView
aView)

Instance Methods 1937
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 144

NSCellForTextAttachment

See Also
highlightWithFrameInView (page 312) (NSCell)
lockFocus (page 1759) (NSView)

setAttachment
Sets the text attachment object that owns the receiver to anAttachment.

public abstract void setAttachment(NSTextAttachment anAttachment)

See Also
attachment (page 1936)
setAttachmentCell (page 1537) (NSTextAttachment)

trackMouse
Handles a mouse-down event on the receiver’s image.

public abstract boolean trackMouse(NSEvent theEvent, NSRect cellFrame, NSView
aTextView, int charIndex, boolean flag)

Discussion
theEvent is the mouse-down event. cellFrame is the region of aTextView in which further mouse events
should be tracked. charIndex is the position in the text at which this attachment appears. aTextView is
the view that received the event. It’s assumed to be an NSTextView and should be the focus view. If flag is
true, the receiver tracks the mouse until a mouse-up event occurs; if flag is false, it stops tracking when
a mouse-dragged event occurs outside of cellFrame. Returns true if the receiver successfully finished
tracking the mouse (typically through a mouse-up event), false otherwise (such as when the cursor is
dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon the delegate of aTextView to handle
the event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate
a textViewDoubleClickedCell (page 1669) message and returns true. Otherwise, depending on whether
the user clicks or drags the cell, it sends the delegate a textViewClickedCell (page 1667) or a
textViewDraggedCell (page 1669) message and returns true. NSTextAttachmentCell’s implementation
returns false only if flag is false and the cursor is dragged outside of cellFrame. The delegate methods
are invoked only if the delegate responds.

See Also
wantsToTrackMouse (page 1939)
trackMouse (page 336) (NSCell)
lockFocus (page 1759) (NSView)

Handles a mouse-down event on the receiver’s image.

public abstract boolean trackMouse(NSEvent theEvent, NSRect cellFrame, NSView
aTextView, boolean flag)

Discussion
theEvent is the mouse-down event. cellFrame is the region of aTextView in which further mouse events
should be tracked. aTextView is the view that received the event. It’s assumed to be an NSTextView and
should be the focus view. If flag is true, the receiver tracks the mouse until a mouse-up event occurs; if

1938 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 144

NSCellForTextAttachment

flag is false, it stops tracking when a mouse-dragged event occurs outside of cellFrame. Returns true
if the receiver successfully finished tracking the mouse (typically through a mouse-up event), false otherwise
(such as when the cursor is dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon the delegate of aTextView to handle
the event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate
a textViewDoubleClickedCell (page 1669) message and returns true. Otherwise, depending on whether
the user clicks or drags the cell, it sends the delegate a textViewClickedCell (page 1667) or a
textViewDraggedCell (page 1669) message and returns true. NSTextAttachmentCell’s implementation
returns false only if flag is false and the cursor is dragged outside of cellFrame. The delegate methods
are invoked only if the delegate responds.

See Also
wantsToTrackMouse (page 1939)
trackMouse (page 336) (NSCell)
lockFocus (page 1759) (NSView)

wantsToTrackMouse
Returns true if the receiver will handle a mouse event occurring over its image (to support dragging, for
example), false otherwise.

public abstract boolean wantsToTrackMouse()

Discussion
NSTextAttachmentCell’s implementation of this method returns true. The NSView containing the cell should
invoke this method before sending a trackMouse (page 1938) message.

For an attachment in an attributed string, if the attachment cell returns false its attachment character
should be selected rather than the cell being asked to track the mouse. This results in the attachment icon
behaving as any regular glyph in text.

wantsToTrackMouseForEvent
Allows an attachment to specify what events it would want to track the mouse for.

public abstract boolean wantsToTrackMouseForEvent(NSEvent theEvent, NSRect cellFrame,
NSView controlView, int charIndex)

Discussion
theEvent is the event in question that occurred in cellFrame inside controlView. charIndex is the
index of the attachment character within the text. If wantsToTrackMouse (page 1939) returns true, this
method allows the attachment to decide whether it wishes to do so for particular events.

Instance Methods 1939
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 144

NSCellForTextAttachment

1940 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 144

NSCellForTextAttachment

Package: com.apple.cocoa.application

Companion guide Spell Checking

Overview

This interface is implemented by objects in the responder chain that can correct a misspelled word. See the
NSSpellChecker (page 1379) class description for more information.

Tasks

Changing Spellings

changeSpelling (page 1941)
Replaces the selected word in the receiver with a corrected version from the Spelling panel.

Instance Methods

changeSpelling
Replaces the selected word in the receiver with a corrected version from the Spelling panel.

public abstract void changeSpelling(Object sender)

Discussion
This message is sent by the NSSpellChecker to the object whose text is being checked. To get the corrected
spelling, ask sender for the string value of its selected cell (visible to the user as the text field in the Spelling
panel). This method should replace the selected portion of the text with the string that it gets from the
NSSpellChecker.

Overview 1941
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 145

NSChangeSpelling

1942 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 145

NSChangeSpelling

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Overview

Together with the NSColorPickingDefault interface, NSColorPickingCustom provides a way to add color
pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault interface provides basic behavior for a color picker. The NSColorPicker class adopts
the NSColorPickingDefault interface.

Tasks

Setting the Current Color

setColor (page 1944)
Adjusts the receiver to make color the currently selected color.

Getting the Mode

currentMode (page 1944)
Returns the receiver’s current mode (or submode, if applicable).

supportsMode (page 1944)
Returns whether or not the receiver supports the specified picking mode.

Getting the View

provideNewView (page 1944)
Returns the view containing the receiver’s user interface.

Overview 1943
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 146

NSColorPickingCustom

Instance Methods

currentMode
Returns the receiver’s current mode (or submode, if applicable).

public abstract int currentMode()

Discussion
The returned value should be unique to your color picker. See this interface description’s list of the unique
values for the standard color pickers used by the Application Kit.

See Also
supportsMode (page 1944)

provideNewView
Returns the view containing the receiver’s user interface.

public abstract NSView provideNewView(boolean initialRequest)

Discussion
This message is sent to the color picker whenever the color panel attempts to display it. This may be when
the panel is first presented, when the user switches pickers, or when the picker is switched through an API.
The argument initialRequest is true only when this method is first invoked for your color picker. If
initialRequest is true, the method should perform any initialization required (such as lazily loading a
nib file, initializing the view, or performing any other custom initialization required for your picker). The
NSView returned by this method should be set to automatically resize both its width and height.

setColor
Adjusts the receiver to make color the currently selected color.

public abstract void setColor(NSColor color)

Discussion
This method is invoked on the current color picker each time NSColorPanel’s setColor (page 391) method
is invoked. If color is actually different from the color picker’s color (as it would be if, for example, the user
dragged a color into NSColorPanel’s color well), this method could be used to update the color picker’s color
to reflect the change.

supportsMode
Returns whether or not the receiver supports the specified picking mode.

public abstract boolean supportsMode(int mode)

1944 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 146

NSColorPickingCustom

Discussion
This method is invoked when the NSColorPanel is first initialized: It is used to attempt to restore the user’s
previously selected mode. It is also invoked by NSColorPanel’s setMode (page 392) method to find the color
picker that supports a particular mode. See this interface description’s list of the unique mode values for the
standard color pickers used by the Application Kit.

See Also
currentMode (page 1944)

Instance Methods 1945
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 146

NSColorPickingCustom

1946 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 146

NSColorPickingCustom

Package: com.apple.cocoa.application

Companion guide Color Programming Topics for Cocoa

Overview

The NSColorPickingDefault interface, together with the NSColorPickingCustom interface, provides an interface
for adding color pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault interface provides basic behavior for a color picker. The NSColorPickingCustom
interface provides implementation-specific behavior.

Tasks

Setting the Mode

setMode (page 1949)
Sets the color picker’s mode.

Using Color Lists

attachColorList (page 1948)
Tells the color picker to attach the given colorList, if it isn’t already displaying the list.

detachColorList (page 1948)
Tells the color picker to detach the given colorList, unless the receiver isn’t displaying the list.

Adding Button Images

insertNewButtonImage (page 1949)
Sets newButtonImage as the image of buttonCell.

provideNewButtonImage (page 1949)
Returns the image for the mode button the user uses to select this picker in the color panel, that is,
the color picker’s representation in the NSColorPanel’s picker NSMatrix.

Overview 1947
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 147

NSColorPickingDefault

Showing Opacity Controls

alphaControlAddedOrRemoved (page 1948)

Responding to a Resized View

viewSizeChanged (page 1950)
Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color
picker.

Instance Methods

alphaControlAddedOrRemoved
public abstract void alphaControlAddedOrRemoved(Object sender)

Discussion
Sent by the sender color panel when the opacity controls have been hidden or displayed. Invoked
automatically when the NSColorPanel’s opacity slider is added or removed; you never invoke this method
directly.

If the color picker has its own opacity controls, it should hide or display them, depending on whether the
sender’s showsAlpha (page 392) method returns false or true.

attachColorList
Tells the color picker to attach the given colorList, if it isn’t already displaying the list.

public abstract void attachColorList(NSColorList colorList)

Discussion
You never invoke this method; it’s invoked automatically by the NSColorPanel when its
attachColorList (page 389) method is invoked. Because NSColorPanel’s list mode manages NSColorLists,
this method need only be implemented by a custom color picker that manages NSColorLists itself.

See Also
detachColorList (page 1948)

detachColorList
Tells the color picker to detach the given colorList, unless the receiver isn’t displaying the list.

public abstract void detachColorList(NSColorList colorList)

1948 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 147

NSColorPickingDefault

Discussion
You never invoke this method; it’s invoked automatically by the NSColorPanel when its
detachColorList (page 390) method is invoked. Because NSColorPanel’s list mode manages NSColorLists,
this method need only be implemented by a custom color picker that manages NSColorLists itself.

See Also
attachColorList (page 1948)

insertNewButtonImage
Sets newButtonImage as the image of buttonCell.

public abstract void insertNewButtonImage(NSImage newButtonImage, NSButtonCell
buttonCell)

Discussion
buttonCell is the NSButtonCell object that lets the user choose the picker from the color panel—the color
picker’s representation in the NSColorPanel’s picker NSMatrix. This method should perform application-specific
manipulation of the image before it’s inserted and displayed by the button cell.

See Also
provideNewButtonImage (page 1949)

provideNewButtonImage
Returns the image for the mode button the user uses to select this picker in the color panel, that is, the color
picker’s representation in the NSColorPanel’s picker NSMatrix.

public abstract NSImage provideNewButtonImage()

Discussion
(This image is the same one the color panel uses as an argument when sending the
insertNewButtonImage (page 1949) message.)

setMode
Sets the color picker’s mode.

public abstract void setMode(int mode)

Discussion
This method is invoked by NSColorPanel’s setMode (page 392) method to ensure the color picker reflects
the current mode. For example, invoke this method during color picker initialization to ensure that all color
pickers are restored to the mode the user left them in the last time an NSColorPanel was used.

Most color pickers have only one mode and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode. The available modes are described in “Choosing the Color Pickers in a Color
Panel”.

Instance Methods 1949
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 147

NSColorPickingDefault

viewSizeChanged
Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color picker.

public abstract void viewSizeChanged(Object sender)

Discussion
sender is the NSColorPanel that contains the color picker. Use this method to perform special preparation
when resizing the color picker’s view. Because this method is invoked only as appropriate, it’s better to
implement this method than to override the method superviewSizeChanged for the NSView in which the
color picker’s user interface is contained.

See Also
provideNewView (page 1944) (NSColorPickingCustom interface)

1950 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 147

NSColorPickingDefault

Package: com.apple.cocoa.application

Overview

The NSComboBox.DataSource interface declares the methods that an NSComboBox (page 411) uses to access
the contents of its data source object. For more information, see “Providing Data for a Combo Box”.

Tasks

Returning Information About Combo Box Items

comboBoxValueForItemAtIndex (page 1952)

numberOfItemsInComboBox (page 1952)

Working with Entered Strings

comboBoxCompletedString (page 1951)

comboBoxIndexOfItem (page 1952)

Instance Methods

comboBoxCompletedString
public abstract String comboBoxCompletedString(NSComboBox aComboBox, String

uncompletedString)

Discussion
An NSComboBox, aComboBox, uses this method to perform incremental—or “smart”—searches when the
user types into the text field. Your implementation should return the first complete string that starts with
uncompletedString.

Overview 1951
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 148

NSComboBox.DataSource
(informal protocol)

As the user types in the text field, the receiver uses this method to search for items from the pop-up list that
start with what the user has typed. The receiver adds the new text to the end of the field and selects the new
text, so when the user types another character, it replaces the new text.

This method is optional. If you don’t implement it, the receiver does not perform incremental searches.

comboBoxIndexOfItem
public abstract int comboBoxIndexOfItem(NSComboBox aComboBox, String aString)

Discussion
An NSComboBox, aComboBox, uses this method to synchronize the pop-up list’s selected item with the text
field’s contents. Your implementation of this method should return the index for the item that matches
aString, or NSArray.NotFound if no item matches. If comboBoxCompletedString (page 1951) is
implemented, aString is the string returned by that method. Otherwise, aString is the text that the user
has typed.

This method is optional. If you don’t implement it, the receiver does not synchronize the pop-up list’s selected
item with the text field’s contents.

comboBoxValueForItemAtIndex
public abstract Object comboBoxObjectValueForItemAtIndex(NSComboBox aComboBox, int

index)

Discussion
Implement this method to return the object that corresponds to the item at index in aComboBox. Your data
source must implement this method.

numberOfItemsInComboBox
public abstract int numberOfItemsInComboBox(NSComboBox aComboBox)

Discussion
Implement this method to return the number of items managed for aComboBox by your data source object.
An NSComboBox uses this method to determine how many items it should display in its pop-up list. Your
data source must implement this method.

1952 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 148

NSComboBox.DataSource

Package: com.apple.cocoa.application

Overview

The NSComboBoxCell.DataSource interface declares the methods that an NSComboBoxCell (page 427) uses
to access the contents of its data source object. For more information, see “Providing Data for a Combo Box”.

Tasks

Returning Information About Combo Box Items

comboBoxCellObjectValueForItemAtIndex (page 1954)

numberOfItemsInComboBoxCell (page 1954)

Working with Entered Strings

comboBoxCellCompletedString (page 1953)

comboBoxCellIndexOfItem (page 1954)

Instance Methods

comboBoxCellCompletedString
public abstract String comboBoxCellCompletedString(NSComboBoxCell aComboBoxCell,

String uncompletedString)

Discussion
An NSComboBoxCell uses this method to perform incremental—or “smart”—searches when the user types
into the text field. Your implementation should return the first complete string that starts with
uncompletedString.

Overview 1953
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 149

NSComboBoxCell.DataSource
(informal protocol)

As the user types in the text field, the receiver uses this method to search for items from the pop-up list that
start with what the user has typed. The receiver adds the new text to the end of the field and selects the new
text, so when the user types another character, it replaces the new text.

This method is optional. If you don’t implement it, the receiver does not perform incremental searches.

comboBoxCellIndexOfItem
public abstract int comboBoxCellIndexOfItem(NSComboBoxCell aComboBoxCell, String

aString)

Discussion
An NSComboBoxCell, aComboBoxCell, uses this method to synchronize the pop-up list’s selected item with
the text field’s contents. Your implementation of this method should return the index for the item that
matches aString, or NSArray.NotFound if no item matches. If comboBoxCellCompletedString (page
1953) is implemented, aString is the string returned by that method. Otherwise, aString is the text that the
user has typed.

This method is optional. If you don’t implement it, the receiver does not synchronize the pop-up list’s selected
item with the text field’s contents.

comboBoxCellObjectValueForItemAtIndex
public abstract Object comboBoxCellObjectValueForItemAtIndex(NSComboBoxCell

aComboBoxCell, int index)

Discussion
Implement this method to return the object that corresponds to the item at index in aComboBoxCell. Your
data source must implement this method.

numberOfItemsInComboBoxCell
public abstract int numberOfItemsInComboBoxCell(NSComboBoxCell aComboBoxCell)

Discussion
Implement this method to return the number of items managed for aComboBoxCell by your data source
object. An NSComboBoxCell uses this method to determine how many items it should display in its pop-up
list. Your data source must implement this method.

1954 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 149

NSComboBoxCell.DataSource

Package: com.apple.cocoa.application

Companion guide Drag and Drop Programming Topics for Cocoa

Overview

The NSDraggingDestination interface declares methods that the destination object (or recipient) of a dragged
image must implement. The destination automatically receives NSDraggingDestination messages for
pasteboard data types it has registered for as an image enters, moves around inside, and then exits or is
released within the destination’s boundaries.

Tasks

Before the Image Is Released

draggingEntered (page 1956)

draggingUpdated (page 1957)

draggingEnded (page 1956)
Implement this method to be notified when a drag operation ends in some other destination.

draggingExited (page 1957)
Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view
object) or its frame rectangle (in the case of a window object).

wantsPeriodicDraggingUpdates (page 1958)
Requests the destination object whether it wants to receive periodic draggingUpdated (page 1957)
messages.

After the Image Is Released

prepareForDragOperation (page 1958)

performDragOperation (page 1957)

Overview 1955
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 150

NSDraggingDestination
(informal protocol)

concludeDragOperation (page 1956)

Instance Methods

concludeDragOperation
public abstract void concludeDragOperaton(NSDraggingInfo sender)

Discussion
Invoked when the dragging operation is complete and the previous performDragOperation (page 1957)
returned true. The destination implements this method to perform any tidying up that it needs to do, such
as updating its visual representation now that it has incorporated the dragged data. This message is the last
message sent from sender to the destination during a dragging session.

draggingEnded
Implement this method to be notified when a drag operation ends in some other destination.

public abstract void draggingEnded(NSDraggingInfo sender)

Discussion
This method might be used by a destination doing autoexpansion in order to collapse any autoexpands.
sender contains details about the dragging operation. This method has not yet been implemented.

draggingEntered
public abstract int draggingEntered(NSDraggingInfo sender)

Discussion
Invoked when a dragged image enters the destination but only if the destination has registered for the
pasteboard data type involved in the drag operation. Specifically, this method is invoked when the mouse
pointer enters the destination’s bounds rectangle (if it is a view object) or its frame rectangle (if it is a window
object).

This method must return a value that indicates which dragging operation the destination will perform when
the image is released. In deciding which dragging operation to return, the method should evaluate the
overlap between both the dragging operations allowed by the source (obtained from sender with the
draggingSourceOperationMask (page 1961) method) and the dragging operations and pasteboard data
types the destination itself supports. The returned value should be exactly one of the dragging operation
constants described in NSDraggingInfo’s "Constants" section.

If none of the operations is appropriate, this method should return NSDraggingInfo.DragOperationNone
(this is the default response if the method is not implemented by the destination). A destination will still
receive draggingUpdated (page 1957) and draggingExited (page 1957) even if
NSDraggingInfo.DragOperationNone is returned by this method.

See Also
draggingUpdated (page 1957)

1956 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 150

NSDraggingDestination

draggingExited (page 1957)
prepareForDragOperation (page 1958)

draggingExited
Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view object) or
its frame rectangle (in the case of a window object).

public abstract void draggingExited(NSDraggingInfo sender)

Discussion
sender contains details about the dragging operation.

draggingUpdated
public abstract int draggingUpdated(NSDraggingInfo sender)

Discussion
Invoked periodically as the image is held within the destination if the destination has registered for the
pasteboard data type involved in the drag operation. The messages continue until the image is either released
or dragged out of the window or view. The returned value should be exactly one of the dragging operation
constants described in NSDraggingInfo’s constants section. The default return value (if this method is not
implemented by the destination) is the value returned by the previousdraggingEntered (page 1956) message.

This method provides the destination with an opportunity to modify the dragging operation depending on
the position of the mouse pointer inside of the destination view or window object. For example, you may
have several graphics or areas of text contained within the same view and wish to tailor the dragging
operation, or to ignore the drag event completely, depending upon which object is underneath the mouse
pointer at the time when the user releases the dragged image and the performDragOperation (page 1957)
method is invoked. sender contains details about the dragging operation.

You typically examine the contents of the pasteboard in the draggingEntered (page 1956) method, where
this examination is performed only once, rather than in the draggingUpdated (page 1957) method, which is
invoked multiple times.

Only one destination at a time receives a sequence of draggingUpdated (page 1957) messages. If the mouse
pointer is within the bounds of two overlapping views that are both valid destinations, the uppermost view
receives these messages until the image is either released or dragged out.

See Also
draggingExited (page 1957)
prepareForDragOperation (page 1958)

performDragOperation
public abstract boolean performDragOperation(NSDraggingInfo sender)

Instance Methods 1957
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 150

NSDraggingDestination

Discussion
Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation (page 1958) message has returned true. The destination should implement
this method to do the real work of importing the pasteboard data represented by the image. If the destination
accepts the data, it returns true; otherwise it returns false. The default is to return false. Use sender to
obtain details about the dragging operation.

See Also
concludeDragOperation (page 1956)

prepareForDragOperation
public abstract boolean prepareForDragOperation(NSDraggingInfo sender)

Discussion
Invoked when the image is released, if the most recent draggingEntered (page 1956) or
draggingUpdated (page 1957) message returned an acceptable drag-operation value. Returns true if the
receiver agrees to perform the drag operation and false if not. Use sender to obtain details about the
dragging operation.

See Also
performDragOperation (page 1957)

wantsPeriodicDraggingUpdates
Requests the destination object whether it wants to receive periodicdraggingUpdated (page 1957) messages.

public abstract boolean wantsPeriodicDraggingUpdates()

Discussion
If the destination returns NO, these messages are sent only when the mouse moves or a modifier flag changes.
Otherwise the destination gets the default behavior, where it receives periodic dragging-updated messages
even if nothing changes.

Availability
Available in Mac OS X v10.4 and later.

1958 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 150

NSDraggingDestination

Package: com.apple.cocoa.application

Companion guide Drag and Drop Programming Topics for Cocoa

Overview

The NSDraggingInfo interface declares methods that supply information about a dragging session.
NSDraggingInfo methods are designed to be invoked from within a class’s implementation of
NSDraggingDestination interface methods. The Application Kit automatically passes an object that conforms
to the NSDraggingInfo interface as the argument to each of the methods defined by NSDraggingDestination.
NSDraggingInfo messages should be sent to this object; you never need to create a class that implements
the NSDraggingInfo interface.

Tasks

Dragging-session Information

draggingSource (page 1961)
Returns the source, or owner, of the dragged data or null if the source is not in the same application
as the destination.

draggingSourceOperationMask (page 1961)
Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal (page 1966) method).

draggingDestinationWindow (page 1960)
Returns the destination window for the dragging operation.

draggingPasteboard (page 1961)
Returns the pasteboard object that holds the data being dragged.

draggingSequenceNumber (page 1961)
Returns a number that uniquely identifies the dragging session.

draggingLocation (page 1961)
Returns the current location of the mouse pointer in the base coordinate system of the destination
object’s window.

namesOfPromisedFilesDroppedAtDestination (page 1962)
Sets the drop location for promised files to dropDestination and returns the names (not full paths)
of the files that the receiver promises to create there.

Overview 1959
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 151

NSDraggingInfo

Image Information

draggedImage (page 1960)
Returns the image being dragged.

draggedImageLocation (page 1960)
Returns the current location of the dragged image’s origin in the base coordinate system of the
destination object’s window.

Sliding the Image

slideDraggedImageTo (page 1962)
Slides the image to aPoint, a specified location in the screen coordinate system.

Instance Methods

draggedImage
Returns the image being dragged.

public abstract NSImage draggedImage()

Discussion
This image object visually represents the data put on the pasteboard during the drag operation; however,
it is the pasteboard data and not this image that is ultimately utilized in the dragging operation.

See Also
draggedImageLocation (page 1960)

draggedImageLocation
Returns the current location of the dragged image’s origin in the base coordinate system of the destination
object’s window.

public abstract NSPoint draggedImageLocation()

Discussion
The image moves along with the mouse pointer (the position of which is given by draggingLocation (page
1961)) but may be positioned at some offset.

See Also
draggedImage (page 1960)

draggingDestinationWindow
Returns the destination window for the dragging operation.

public abstract NSWindow draggingDestinationWindow()

1960 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 151

NSDraggingInfo

Discussion
Either this window is the destination itself, or it contains the view object that is the destination.

draggingLocation
Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

public abstract NSPoint draggingLocation()

See Also
draggedImageLocation (page 1960)

draggingPasteboard
Returns the pasteboard object that holds the data being dragged.

public abstract NSPasteboard draggingPasteboard()

Discussion
The dragging operation that is ultimately performed utilizes this pasteboard data and not the image returned
by the draggedImage (page 1960) method.

draggingSequenceNumber
Returns a number that uniquely identifies the dragging session.

public abstract int draggingSequenceNumber()

draggingSource
Returns the source, or owner, of the dragged data or null if the source is not in the same application as the
destination.

public abstract Object draggingSource()

Discussion
The dragging source implements methods from the NSDraggingSource (page 1965) interface.

draggingSourceOperationMask
Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal (page 1966) method).

public abstract int draggingSourceOperationMask()

Discussion
If the source permits dragging operations, the elements in the mask are one or more of the constants described
in the "Constants" section, combined using the C bitwise OR operator.

Instance Methods 1961
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 151

NSDraggingInfo

If the source does not permit any dragging operations, this method should return DragOperationNone.

If the user is holding down a modifier key during the dragging session and the source does not prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDragging (page
1966) method), then the operating system combines the dragging operation value that corresponds to the
modifier key (see the descriptions below) with the source’s mask using the C bitwise AND operator.

The modifier keys are associated with the dragging operation options shown below:

Dragging OperationModifier Key

DragOperationLinkControl

DragOperationCopyOption

DragOperationGenericCommand

namesOfPromisedFilesDroppedAtDestination
Sets the drop location for promised files to dropDestination and returns the names (not full paths) of the
files that the receiver promises to create there.

public abstract NSArray namesOfPromisedFilesDroppedAtDestination(java.net.URL
dropDestination)

Discussion
Drag destinations should invoke this method within their performDragOperation (page 1957) method. The
source may or may not have created the files by the time this method returns.

Availability
Available in Mac OS X v10.2 and later.

slideDraggedImageTo
Slides the image to aPoint, a specified location in the screen coordinate system.

public abstract void slideDraggedImageTo(NSPoint aPoint)

Discussion
This method can be used to snap the image down to a particular location. It should only be invoked from
within the destination’s implementation of prepareForDragOperation (page 1958)—in other words, after
the user has released the image but before it is removed from the screen.

Constants

The following constants are defined by NSDraggingInfo and are used by
draggingSourceOperationMask (page 1961):

1962 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 151

NSDraggingInfo

DescriptionConstant

The data represented by the image can be copied.DragOperationCopy

The data can be shared.DragOperationLink

The operation can be defined by the destination.DragOperationGeneric

The operation is negotiated privately between the source and the destination.DragOperationPrivate

The data can be moved.DragOperationMove

The data can be deleted.DragOperationDelete

All of the above.DragOperationEvery

Deprecated. Use DragOperationEvery instead.DragOperationAll

No drag operations are allowed.DragOperationNone

Constants 1963
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 151

NSDraggingInfo

1964 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 151

NSDraggingInfo

Package: com.apple.cocoa.application

Companion guide Drag and Drop Programming Topics for Cocoa

Overview

The NSDraggingSource interface declares methods that are implemented by the source object in a dragging
session. The dragging source is specified as an argument to the dragImage (page 1751) message, sent to a
window or view object to initiate the dragging session.

Of the methods declared below, only draggingSourceOperationMaskForLocal (page 1966) must be
implemented. The other methods are invoked only if the dragging source implements them. All methods
are invoked automatically during a dragging session—you never send an NSDraggingSource message directly
to an object.

Tasks

Specifying Dragging Options

draggingSourceOperationMaskForLocal (page 1966)

ignoreModifierKeysWhileDragging (page 1966)
Sets whether the use of modifier keys should have an effect on the type of operation performed.

Responding to Dragging Sessions

startedDraggingImage (page 1967)

finishedDraggingImage (page 1966)
Similar to the previous version of this method, but includes an indication of the operation performed
by the destination in operation, rather than a boolean indicating acceptance.

movedDraggingImage (page 1967)
Informs the dragging source about draggedImagemoving to a new screen coordinate, screenPoint,
similar to the dragging destination being sent draggingUpdated (page 1957) messages.

namesOfPromisedFilesDroppedAtDestination (page 1967)
Returns the names (not full paths) of the files that the receiver promises to create at dropDestination.

Overview 1965
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 152

NSDraggingSource
(informal protocol)

Instance Methods

draggingSourceOperationMaskForLocal
public abstract int draggingSourceOperationMaskForLocal(boolean isLocal)

Discussion
This method is the only NSDraggingSource method that must be implemented by the source object. It should
return a mask, built by combining the allowed dragging operations listed in NSDraggingInfo’s constants
section, using the C bitwise OR operator. You should use this mask to indicate which types of dragging
operations the source object will allow to be performed on the dragged image’s data. A true value for
isLocal indicates that the candidate destination object (the window or view over which the dragged image
is currently poised) is in the same application as the source, while a false value indicates that the destination
object is in a different application.

If the source does not permit any dragging operations, it should return
NSDraggingInfo.DragOperationNone.

finishedDraggingImage
public abstract void finishedDraggingImage(NSImage anImage, NSPoint aPoint, boolean

flag)

Discussion
Invoked after anImage has been released and the dragging destination has been given a chance to operate
on the data it represents. aPoint is the location of the image’s origin in the screen coordinate system when
it was released. A true value for flag indicates that the destination accepted the dragged data, while a
false value indicates that it was rejected.

This method provides the source object with an opportunity to respond to either a successful or a failed
dragging session. For example, if you are moving data from one location to another, you could use this
method to make the source data disappear from its previous location, if the dragging session is successful,
or reset itself to its previous state, in the event of a failure.

Similar to the previous version of this method, but includes an indication of the operation performed by the
destination in operation, rather than a boolean indicating acceptance.

public abstract void finishedDraggingImage(NSImage anImage, NSPoint aPoint, int
operation)

See Also
convertScreenToBase (page 1824) (NSWindow)
convertBaseToScreen (page 1824) (NSWindow)
convertPointFromView (page 1744) (NSView)
convertPointToView (page 1745) (NSView)

ignoreModifierKeysWhileDragging
Sets whether the use of modifier keys should have an effect on the type of operation performed.

1966 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 152

NSDraggingSource

public abstract boolean ignoreModifierKeysWhileDragging()

Discussion
If this method is not implemented or returns false, the user can tailor the drag operation by holding down
a modifier key during the drag. The dragging option that corresponds to the modifier key is combined with
the source’s mask (as set with the draggingSourceOperationMaskForLocal (page 1966) method) using
the C bitwise AND operator. See the description for thedraggingSourceOperationMask (page 1961) method
in the NSDraggingInfo interface specification for more information about dragging masks and modifier keys.

movedDraggingImage
Informs the dragging source about draggedImage moving to a new screen coordinate, screenPoint,
similar to the dragging destination being sent draggingUpdated (page 1957) messages.

public abstract void movedDraggingImage(NSImage draggedImage, NSPoint screenPoint)

namesOfPromisedFilesDroppedAtDestination
Returns the names (not full paths) of the files that the receiver promises to create at dropDestination.

public abstract NSArray namesOfPromisedFilesDroppedAtDestination(java.net.URL
dropDestination)

Discussion
This method is invoked when the drop has been accepted by the destination and the destination, in the case
of another Cocoa application, invokes the NSDraggingInfo method
namesOfPromisedFilesDroppedAtDestination (page 1962). For long operations, you can cache
dropDestination and defer the creation of the files until thefinishedDraggingImage (page 1966) method
to avoid blocking the destination application.

Availability
Available in Mac OS X v10.2 and later.

startedDraggingImage
public abstract void startedDraggingImage(NSImage anImage, NSPoint aPoint)

Discussion
Invoked when anImage is displayed but before it starts following the mouse. aPoint is the origin of the
image in screen coordinates. This method provides the source object with an opportunity to respond to the
initiation of a dragging session. For example, you might choose to have the source give a visual indication
to the user that data is being dragged from the source.

See Also
convertScreenToBase (page 1824) (NSWindow)
convertBaseToScreen (page 1824) (NSWindow)
convertPointFromView (page 1744) (NSView)
convertPointToView (page 1745) (NSView)

Instance Methods 1967
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 152

NSDraggingSource

1968 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 152

NSDraggingSource

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSEditor interface provides a means for requesting that the receiver commit or discard any pending
edits.

These methods are typically invoked on user interface elements by a controller. They can also be sent to a
controller in response to a user’s attempt to save a document or quit an application.

Tasks

Managing Editing

commitEditing (page 1969)
Returns whether the receiver was able to commit any pending edits.

discardEditing (page 1970)
Causes the receiver to discard any changes, restoring the previous values.

Instance Methods

commitEditing
Returns whether the receiver was able to commit any pending edits.

public abstract boolean commitEditing()

Discussion
Returns true if the changes were successfully applied to the model, false otherwise. A commit is denied
if the receiver fails to apply the changes to the model object, perhaps due to a validation error.

Overview 1969
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 153

NSEditor
(informal protocol)

Availability
Available in Mac OS X v10.3 and later.

See Also
discardEditing (page 1970)

discardEditing
Causes the receiver to discard any changes, restoring the previous values.

public abstract void discardEditing()

Availability
Available in Mac OS X v10.3 and later.

See Also
commitEditing (page 1969)

1970 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 153

NSEditor

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSEditorRegistration interface is implemented by controllers to provide an interface for a view, the editor,
to inform the controller when it has uncommitted changes.

An implementor is responsible for tracking which editors have uncommitted changes, and sending those
editors commitEditing (page 1969) and discardEditing (page 1970) messages, as appropriate, to force the
editor to submit, or discard, their values.

Tasks

Managing Editing

objectDidBeginEditing (page 1971)
This message should be sent to the receiver when editor has uncommitted changes that can affect
the receiver.

objectDidEndEditing (page 1972)
This message should be sent to the receiver when editor has finished editing a property belonging
to the receiver.

Instance Methods

objectDidBeginEditing
This message should be sent to the receiver when editor has uncommitted changes that can affect the
receiver.

public abstract void objectDidBeginEditing(Object editor)

Overview 1971
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 154

NSEditorRegistration
(informal protocol)

Availability
Available in Mac OS X v10.3 and later.

See Also
objectDidEndEditing (page 1972)

objectDidEndEditing
This message should be sent to the receiver when editor has finished editing a property belonging to the
receiver.

public abstract void objectDidEndEditing(Object editor)

Availability
Available in Mac OS X v10.3 and later.

See Also
objectDidBeginEditing (page 1971)

1972 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 154

NSEditorRegistration

Package: com.apple.cocoa.application

Companion guide Spell Checking

Overview

Implement this interface to have the Ignore button in the Spelling panel function properly. The Ignore button
allows the user to accept a word that the spelling checker believes is misspelled. In order for this action to
update the “ignored words” list for the document being checked, the NSIgnoreMisspelledWords interface
must be implemented.

This interface is necessary because a list of ignored words is useful only if it pertains to the entire document
being checked, but the spelling checker (NSSpellChecker object) does not check the entire document for
spelling at once. The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a
subset of the document at any one time. The user usually wants to check the entire document, so usually
several spelling checks are run in succession until no misspelled words are found. This interface allows the
list of ignored words to be maintained per document, even though the spelling checks are not run per
document.

The NSIgnoreMisspelledWords interface specifies a single method, ignoreSpelling (page 1974).

The second argument to the NSSpellChecker methodignoreWord (page 1383) is a tag that the NSSpellChecker
can use to distinguish the documents being checked. Once the NSSpellChecker has a way to distinguish the
various documents, it can append new ignored words to the appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with
the document. See the NSSpellChecker (page 1379) class description for more information.

Tasks

Ignoring Spellings

ignoreSpelling (page 1974)

Overview 1973
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 155

NSIgnoreMisspelledWords

Instance Methods

ignoreSpelling
public abstract void ignoreSpelling(Object sender)

Discussion
Implement this action method to allow an application to ignore misspelled words on a document-by-document
basis. This message is sent by the NSSpellChecker instance to the object whose text is being checked.

1974 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 155

NSIgnoreMisspelledWords

Package: com.apple.cocoa.application

Companion guide Text Input Management

Overview

An "NSInputServiceProvider" (page 1977) object (an "NSInputServer" (page 809) subclass object or a delegate
of an NSInputServer object) may need to implement this interface. See the "NSInputServiceProvider" (page
1977) interface description.

The methods in this interface differ from typical mouse events in that they have an additional argument
which is the index of the character within the text view’s text storage. When an text view object forwards a
mouse event to the input manager , the input manager calls the text view’s characterIndexForPoint (page
2026) method to get the index, which it then passes on to the appropriate method in this interface.

Tasks

Handling Mouse Events

mouseDownOnCharacterIndex (page 1975)
A mouse down event happened at given index within the sender text view’s text storage, at the
given point, with modifier keys identified in flags.

mouseDraggedOnCharacterIndex (page 1976)
A mouse dragged event happened at given index within the sender text view’s text storage, at the
given point, with modifier keys identified in flags.

mouseUpOnCharacterIndex (page 1976)
A mouse up event happened at given index within the sender text view’s text storage, at the given
point, with modifier keys identified in flags.

Instance Methods

mouseDownOnCharacterIndex
A mouse down event happened at given index within the sender text view’s text storage, at the given
point, with modifier keys identified in flags.

Overview 1975
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 156

NSInputServerMouseTracker

public abstract boolean mouseDownOnCharacterIndex(int index, NSPoint point, int
flags, Object sender)

Discussion
Returns true if it consumes the event; in that case, a mouse dragged or a mouse up message will follow. If
false is returned, then neither of the other two events will follow.

mouseDraggedOnCharacterIndex
A mouse dragged event happened at given index within the sender text view’s text storage, at the given
point, with modifier keys identified in flags.

public abstract boolean mouseDraggedOnCharacterIndex(int index, NSPoint point, int
flags, Object sender)

Discussion
Returns true if it consumes the event; in that case, either another mouse dragged or a mouse up message
will follow. If false is returned, then neither message will follow.

mouseUpOnCharacterIndex
A mouse up event happened at given index within the sender text view’s text storage, at the given point,
with modifier keys identified in flags.

public abstract boolean mouseUpOnCharacterIndex(int index, NSPoint point, int flags,
Object sender)

Discussion
This event is always consumed.

1976 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 156

NSInputServerMouseTracker

Package: com.apple.cocoa.application

Companion guide Text Input Management

Overview

The NSInputServiceProvider interface embodies most of the functionality of NSInputServer (page 809).

There are two ways you might use this interface:

 ■ You can subclass NSInputServer and create an instance of your subclass. Your subclass must override
most or all of the NSInputServiceProvider interface methods.

 ■ You can create an NSInputServer object and designate a delegate. The delegate must implement the
NSInputServiceProvider interface.

All messages in this interface are sent by the client text view except insertText (page 1980) and
doCommandBySelector (page 1979), which are sent by NSInputManager (page 801).

Tasks

Command Instance Methods Sent by Client

activeConversationChanged (page 1978)
Keyboard focus just switched from another text view to this one.

activeConversationWillChange (page 1978)
Keyboard focus is about to move away from this text view.

canBeDisabled (page 1979)
Returns true if the receiver can be disabled when the sender is not a text view, false

inputClientBecomeActive (page 1979)
The client, sender, has become active.

inputClientDisabled (page 1980)
A text view in the client, sender, has ceased to be the key-receiving first responder.

inputClientEnabled (page 1980)
A text view in the client, sender, has become the key-receiving first responder.

inputClientResignActive (page 1980)
The client, sender, is about to become inactive.

Overview 1977
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 157

NSInputServiceProvider

markedTextAbandoned (page 1981)
Abandon any marked text state that may be in process.

markedTextSelectionChanged (page 1981)

terminate (page 1981)
The client application is quitting.

Query Instance Methods Sent by Client

wantsToDelayTextChangeNotifications (page 1981)
A true return value tells the client that only a call to its insertText (page 1980) method constitutes
a modification to its text storage.

wantsToHandleMouseEvents (page 1982)
Returns true if the client should forward all mouse events within the text view to the input server.

wantsToInterpretAllKeystrokes (page 1982)
Returns true if the server wants all keystrokes to be sent to it as characters.

Instance Methods Sent by NSInputManager

doCommandBySelector (page 1979)
Handle the command identified by aSelector.

insertText (page 1980)
Interpret the characters in aString, which is actually always a String.

Instance Methods

activeConversationChanged
Keyboard focus just switched from another text view to this one.

public abstract void activeConversationChanged(Object sender, int newConversation)

Discussion
This is called only when switching within the same application. sender can be cast to NSTextInput.

See Also
activeConversationWillChange (page 1978)
conversationIdentifier (page 2027) (NSTextInput)

activeConversationWillChange
Keyboard focus is about to move away from this text view.

public abstract void activeConversationWillChange(Object sender, int oldConversation)

1978 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 157

NSInputServiceProvider

Discussion
This is called only when switching within the same application. sender can be cast to NSTextInput.

See Also
activeConversationChanged (page 1978)
conversationIdentifier (page 2027) (NSTextInput)

canBeDisabled
Returns true if the receiver can be disabled when the sender is not a text view, false

public abstract boolean canBeDisabled()

Discussion
otherwise.

doCommandBySelector
Handle the command identified by aSelector.

public abstract void doCommandBySelector(NSSelector aSelector, Object sender)

Discussion
The command can be from the set of NSResponder action methods or from the set of selector values in the
DefaultKeyBindings dictionary referenced in the input server’s “Info” file. sender can be cast to NSTextInput.

If you are subclassing NSInputServer (page 809), there is no need to override this method in the subclass. All
you have to do is implement in the subclass the command methods you want to handle. If you do need to
override this method, then you must call super for commands not handled.

If your NSInputServer (page 809) uses a delegate, the delegate’s implementation of this method must call
doCommandBySelector(sender, aSelector) for commands it does not handle.

See Also
doCommandBySelector (page 2027) (NSTextInput)

inputClientBecomeActive
The client, sender, has become active.

public abstract void inputClientBecomeActive(Object sender)

Discussion
This is called when the client application starts up and whenever it becomes active after being inactive.
sender can be cast to NSTextInput.

See Also
inputClientEnabled (page 1980)
inputClientResignActive (page 1980)

Instance Methods 1979
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 157

NSInputServiceProvider

inputClientDisabled
A text view in the client, sender, has ceased to be the key-receiving first responder.

public abstract void inputClientDisabled(Object sender)

Discussion
inputClientResignActive (page 1980) may also be called just after this is called. sender can be cast to
NSTextInput.

See Also
inputClientEnabled (page 1980)
inputClientResignActive (page 1980)

inputClientEnabled
A text view in the client, sender, has become the key-receiving first responder.

public abstract void inputClientEnabled(Object sender)

Discussion
This is called the first time any text view becomes enabled after client application activation and again
whenever focus switches to a text view. inputClientBecomeActive (page 1979) may have been called just
before this is called. sender can be cast to NSTextInput.

See Also
inputClientBecomeActive (page 1979)
inputClientDisabled (page 1980)

inputClientResignActive
The client, sender, is about to become inactive.

public abstract void inputClientResignActive(Object sender)

Discussion
This is called when the client application quits and whenever it is deactivated. sender can be cast to
NSTextInput.

See Also
inputClientBecomeActive (page 1979)
inputClientDisabled (page 1980)
terminate (page 1981)

insertText
Interpret the characters in aString, which is actually always a String.

public abstract void insertText(Object aString, Object sender)

1980 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 157

NSInputServiceProvider

Discussion
Here is where you do the interpreting of keyboard input. If your server’s interpretation is disabled or the
characters in aString are not of interest to the server, you can simply pass aString along to the sender’s
insertText (page 2028) method. sender can be cast to NSTextInput.

See Also
insertText (page 2028) (NSTextInput)

markedTextAbandoned
Abandon any marked text state that may be in process.

public abstract void markedTextAbandoned(Object sender)

Discussion
This can happen if the user clicks the mouse outside of the marked text area or if the window containing the
text view closes. The client can do what it wants with the marked text. NSTextView leaves it as inserted text.
sender can be cast to NSTextInput.

See Also
markedTextSelectionChanged (page 1981)

markedTextSelectionChanged
public abstract void markedTextSelectionChanged(NSRange newSelection, Object sender)

Discussion
The user selected a portion of the marked text or clicked at the beginning or end of marked text or somewhere
in between. sender can be cast to NSTextInput.

See Also
markedTextAbandoned (page 1981)

terminate
The client application is quitting.

public abstract void terminate(Object sender)

Discussion
This is called after inputClientResignActive (page 1980). sender can be cast to NSTextInput.

See Also
inputClientResignActive (page 1980)

wantsToDelayTextChangeNotifications
A true return value tells the client that only a call to its insertText (page 1980) method constitutes a
modification to its text storage.

Instance Methods 1981
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 157

NSInputServiceProvider

public abstract boolean wantsToDelayTextChangeNotifications()

Discussion
A false return value tells the client that all text given to it, whether marked text or not, should constitute
a modification to its text storage. A true return value tells the client that only unmarked text given to it
should constitute a modification to its text storage. The client may for example want to filter all text that is
part of a modification but leave marked text unfiltered.

See Also
wantsToDelayTextChangeNotifications (page 807) (NSInputManager)

wantsToHandleMouseEvents
Returns true if the client should forward all mouse events within the text view to the input server.

public abstract boolean wantsToHandleMouseEvents()

Discussion
If the server needs to implement the NSInputServerMouseTracker (page 1975) interface, return true.

See Also
wantsToHandleMouseEvents (page 808) (NSInputManager)

wantsToInterpretAllKeystrokes
Returns true if the server wants all keystrokes to be sent to it as characters.

public abstract boolean wantsToInterpretAllKeystrokes()

Discussion
If this method returns false, control key combinations and function keys (the arrow keys, PageDown, F5,
and so on) are delivered to the input server via the key binding mechanism and doCommandBySelector (page
1979).

The Unicode values for the characters representing keyboard function keys (the arrow keys, PageDown, F5,
and so on) names like NSEvent.UpArrowFunctionKey, and are documented in NSEvent (page 603).
Control-key combinations are the usual ASCII control character codes.

For more information on key bindings, see “About Key Bindings”.

See Also
wantsToInterpretAllKeystrokes (page 808) (NSInputManager)

1982 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 157

NSInputServiceProvider

Package: com.apple.cocoa.application

Companion guide Cocoa Event-Handling Guide

Overview

This interface is implemented by objects in the responder chain that manipulate selections and edit text.

Tasks

Action Methods

cancelOperation (page 1987)
Implemented by subclasses to cancel the current operation.

capitalizeWord (page 1987)
This action method capitalizes the word or words surrounding the insertion point or selection,
expanding the selection if necessary.

centerSelectionInVisibleArea (page 1988)
This action method scrolls the selection, whatever it is, inside its visible area.

changeCaseOfLetter (page 1988)
This action method changes the case of a letter or letters in the selection, perhaps by opening a panel
with capitalization options or by cycling through possible case combinations.

complete (page 1988)
This action method completes an operation in progress or a partially constructed element.

deleteBackward (page 1988)
This action method deletes the selection, if there is one, or a single element backward from the
insertion point (a letter or character in text, for example).

deleteBackwardByDecomposingPreviousCharacter (page 1989)

deleteForward (page 1989)
This action method deletes the selection, if there is one, or a single element forward from the insertion
point (a letter or character in text, for example).

deleteToBeginningOfLine (page 1989)
This action method deletes the selection, if there is one, or all text from the insertion point to the
beginning of a line (typically of text).

Overview 1983
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

deleteToBeginningOfParagraph (page 1989)
This action method deletes the selection, if there is one, or all text from the insertion point to the
beginning of a paragraph of text.

deleteToEndOfLine (page 1989)
This action method deletes the selection, if there is one, or all text from the insertion point to the end
of a line (typically of text).

deleteToEndOfParagraph (page 1990)
This action method deletes the selection, if there is one, or all text from the insertion point to the end
of a paragraph of text.

deleteToMark (page 1990)
This action method deletes the selection, if there is one, or all items from the insertion point to a
previously placed mark, including the selection itself if not empty.

deleteWordBackward (page 1990)
This action method deletes the selection, if there is one, or a single word backward from the insertion
point.

deleteWordForward (page 1990)
This action method deletes the selection, if there is one, or a single word forward from the insertion
point.

indent (page 1991)
This action method indents the selection or the insertion point if there is no selection.

insertBacktab (page 1991)
This action method handles a “backward tab.”

insertNewline (page 1991)
This action method inserts a line-break character at the insertion point or selection, deleting the
selection if there is one, or to end editing if the receiver is a text field or other field editor.

insertNewlineIgnoringFieldEditor (page 1991)
This action method inserts a line-break character at the insertion point or selection, deleting the
selection if there is one.

insertParagraphSeparator (page 1992)
This action method inserts a paragraph separator at the insertion point or selection, deleting the
selection if there is one.

insertTab (page 1992)
This action method inserts a tab character at the insertion point or selection, deleting the selection
if there is one, or to end editing if the receiver is a text field or other field editor.

insertTabIgnoringFieldEditor (page 1992)
This action method inserts a tab character at the insertion point or selection, deleting the selection
if there is one.

insertText (page 1992)
Inserts anObject at the insertion point or selection, deleting the selection if there is one.

lowercaseWord (page 1992)
This action method lowercases every letter in the word or words surrounding the insertion point or
selection, expanding the selection if necessary.

moveBackward (page 1992)
This action method moves the selection or insertion point one element or character backward.

1984 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

moveBackwardAndModifySelection (page 1993)
This action method expands or reduce either end of the selection backward by one element or
character.

moveDown (page 1993)
This action method moves the selection or insertion point one element or character down.

moveDownAndModifySelection (page 1993)
This action method expands or reduces the top or bottom end of the selection downward by one
element, character, or line (whichever is appropriate for text direction).

moveForward (page 1993)
This action method moves the selection or insertion point one element or character forward.

moveForwardAndModifySelection (page 1994)
This action method expands or reduces either end of the selection forward by one element or character.

moveLeft (page 1994)
This action method moves the selection or insertion point one element or character to the left.

moveLeftAndModifySelection (page 1994)
Implemented by subclasses to expand or reduce either end of the selection to the left (display order)
by one element or character.

moveRight (page 1995)
This action method moves the selection or insertion point one element or character to the right.

moveRightAndModifySelection (page 1995)
Implemented by subclasses to expand or reduce either end of the selection to the right (display order)
by one element or character.

moveToBeginningOfDocument (page 1995)
This action method moves the selection to the first element of the document, or the insertion point
to the beginning.

moveToBeginningOfLine (page 1995)
This action method moves the selection to the first element of the selected line, or the insertion point
to the beginning of the line.

moveToBeginningOfParagraph (page 1995)
This action method moves the insertion point to the beginning of the selected paragraph.

moveToEndOfDocument (page 1996)
This action method moves the selection to the last element of the document, or the insertion point
to the end.

moveToEndOfLine (page 1996)
This action method moves the selection to the last element of the selected line, or the insertion point
to the end of the line.

moveToEndOfParagraph (page 1996)
This action method moves the insertion point to the end of the selected paragraph.

moveUp (page 1996)
This action method moves the selection or insertion point one element or character up.

moveUpAndModifySelection (page 1996)
This action method expands or reduces the top or bottom end of the selection upward by one element,
character, or line (whichever is appropriate for text direction).

moveWordBackward (page 1996)
This action method moves the selection or insertion point one word backward.

Tasks 1985
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

moveWordBackwardAndModifySelection (page 1997)
This action method expands or reduces either end of the selection backward by one whole word.

moveWordForward (page 1997)
This action method moves the selection or insertion point one word forward.

moveWordForwardAndModifySelection (page 1997)
This action method expands or reduces either end of the selection forward by one whole word.

moveWordLeft (page 1998)
Implemented by subclasses to expand or reduce either end of the selection left by one whole word
in display order.

moveWordLeftAndModifySelection (page 1998)
Implemented by subclasses to expand or reduce either end of the selection left by one whole word
in display order.

moveWordRight (page 1998)
Implemented by subclasses to move the selection or insertion point one word right.

moveWordRightAndModifySelection (page 1999)
Implemented by subclasses to expand or reduce either end of the selection to the right by one whole
word.

pageDown (page 1999)
This action method scrolls the receiver down (or back) one page in its scroll view, also moving the
insertion point to the top of the newly displayed page.

pageUp (page 1999)
This action method scrolls the receiver up (or forward) one page in its scroll view, also moving the
insertion point to the top of the newly-displayed page.

scrollLineDown (page 2000)
This action method scrolls the receiver one line down in its scroll view, without changing the selection.

scrollLineUp (page 2000)
This action method scrolls the receiver one line up in its scroll view, without changing the selection.

scrollPageDown (page 2000)
This action method scrolls the receiver one page down in its scroll view, without changing the selection.

scrollPageUp (page 2000)
This action method scrolls the receiver one page up in its scroll view, without changing the selection.

selectAll (page 2000)
This action method selects all selectable elements.

selectLine (page 2001)
This action method selects all elements in the line or lines containing the selection or insertion point.

selectParagraph (page 2001)
This action method selects all paragraphs containing the selection or insertion point.

selectToMark (page 2001)
This action method selects all items from the insertion point or selection to a previously placed mark,
including the selection itself if not empty.

selectWord (page 2001)
This action method extends the selection to the nearest word boundaries outside it (up to, but not
including, word delimiters).

1986 Tasks
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

setMark (page 2001)
This action method sets a mark at the insertion point or selection, which is used by
deleteToMark (page 1990) and selectToMark (page 2001).

swapWithMark (page 2001)
This action method swaps the mark and the selection or insertion point, so that what was marked is
now the selection or insertion point, and what was the insertion point or selection is now the mark.

transpose (page 2002)
This action method transposes the characters to either side of the insertion point and advances the
insertion point past both of them. Does nothing to a selected range of text.

transposeWords (page 2002)
This action method transposes the two words prior to the insertion point and advances the insertion
point past both of them. Not currently implemented by NSTextView.

uppercaseWord (page 2002)
This action method makes uppercase every letter in the word or words surrounding the insertion
point or selection, expanding the selection if necessary.

yank (page 2002)
This action method replaces the insertion point or selection with text from the kill buffer.

Dispatch Methods

doCommandBySelector (page 1990)
Attempts to perform the method indicated by aSelector.

Instance Methods

cancelOperation
Implemented by subclasses to cancel the current operation.

public abstract void cancelOperation(Object sender)

Discussion
This method is bound to the Escape and Command-. (period) keys. The key window first propagates the key
equivalent down its view hierarchy. If none of these views handles the key equivalent, the window sends a
default action message of cancel to the first responder and from there the message travels up the responder
chain. The sender argument is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

capitalizeWord
This action method capitalizes the word or words surrounding the insertion point or selection, expanding
the selection if necessary.

public abstract void capitalizeWord(Object sender)

Instance Methods 1987
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

Discussion
If either end of the selection partially covers a word, that entire word is made lowercase.

See Also
lowercaseWord (page 1992)
uppercaseWord (page 2002)
changeCaseOfLetter (page 1988)

centerSelectionInVisibleArea
This action method scrolls the selection, whatever it is, inside its visible area.

public abstract void centerSelectionInVisibleArea(Object sender)

See Also
scrollLineDown (page 2000)
scrollLineUp (page 2000)
scrollPageDown (page 2000)
scrollPageUp (page 2000)

changeCaseOfLetter
This action method changes the case of a letter or letters in the selection, perhaps by opening a panel with
capitalization options or by cycling through possible case combinations.

public abstract void changeCaseOfLetter(Object sender)

See Also
lowercaseWord (page 1992)
uppercaseWord (page 2002)
capitalizeWord (page 1987)

complete
This action method completes an operation in progress or a partially constructed element.

public abstract void complete(Object sender)

Discussion
This method can be interpreted, for example, as a request to attempt expansion of a partial word, such as
for expanding a glossary shortcut, or to close a graphics item being drawn.

deleteBackward
This action method deletes the selection, if there is one, or a single element backward from the insertion
point (a letter or character in text, for example).

public abstract void deleteBackward(Object sender)

1988 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

deleteBackwardByDecomposingPreviousCharacter
public abstract void deleteBackwardByDecomposingPreviousCharacter(Object sender)

Discussion
Implemented by subclasses to delete the selection, if there is one, or a single character backward from the
insertion point. If the previous character is canonically decomposable, this method should try to delete only
the last character in the grapheme cluster (for example, deleting “a”+ “´” results in “a”). The sender argument
is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

deleteForward
This action method deletes the selection, if there is one, or a single element forward from the insertion point
(a letter or character in text, for example).

public abstract void deleteForward(Object sender)

deleteToBeginningOfLine
This action method deletes the selection, if there is one, or all text from the insertion point to the beginning
of a line (typically of text).

public abstract void deleteToBeginningOfLine(Object sender)

Discussion
Also places the deleted text into the kill buffer.

See Also
yank (page 2002)

deleteToBeginningOfParagraph
This action method deletes the selection, if there is one, or all text from the insertion point to the beginning
of a paragraph of text.

public abstract void deleteToBeginningOfParagraph(Object sender)

Discussion
Also places the deleted text into the kill buffer.

See Also
yank (page 2002)

deleteToEndOfLine
This action method deletes the selection, if there is one, or all text from the insertion point to the end of a
line (typically of text).

Instance Methods 1989
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

public abstract void deleteToEndOfLine(Object sender)

Discussion
Also places the deleted text into the kill buffer.

deleteToEndOfParagraph
This action method deletes the selection, if there is one, or all text from the insertion point to the end of a
paragraph of text.

public abstract void deleteToEndOfParagraph(Object sender)

Discussion
Also places the deleted text into the kill buffer.

See Also
yank (page 2002)

deleteToMark
This action method deletes the selection, if there is one, or all items from the insertion point to a previously
placed mark, including the selection itself if not empty.

public abstract void deleteToMark(Object sender)

Discussion
Also places the deleted text into the kill buffer.

See Also
setMark (page 2001)
selectToMark (page 2001)
yank (page 2002)

deleteWordBackward
This action method deletes the selection, if there is one, or a single word backward from the insertion point.

public abstract void deleteWordBackward(Object sender)

deleteWordForward
This action method deletes the selection, if there is one, or a single word forward from the insertion point.

public abstract void deleteWordForward(Object sender)

doCommandBySelector
Attempts to perform the method indicated by aSelector.

1990 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

public abstract void doCommandBySelector(NSSelector aSelector)

Discussion
The method should take a single argument of type Object and return void. If the receiver responds to
aSelector, it invokes the method with null as the argument. If the receiver doesn’t respond, it sends this
message to its next responder with the same selector. NSWindow and NSApplication also send the message
to their delegates. If the receiver has no next responder or delegate, it beeps.

See Also
tryToPerform (page 1199)
sendActionToTargetFromSender (page 121) (NSApplication)

indent
This action method indents the selection or the insertion point if there is no selection.

public abstract void indent(Object sender)

insertBacktab
This action method handles a “backward tab.”

public abstract void insertBacktab(Object sender)

Discussion
A field editor might respond to this method by selecting the field before it, while a regular text object either
doesn’t respond to or ignores such a message.

insertNewline
This action method inserts a line-break character at the insertion point or selection, deleting the selection if
there is one, or to end editing if the receiver is a text field or other field editor.

public abstract void insertNewline(Object sender)

insertNewlineIgnoringFieldEditor
This action method inserts a line-break character at the insertion point or selection, deleting the selection if
there is one.

public abstract void insertNewlineIgnoringFieldEditor(Object sender)

Discussion
Unlike insertNewline (page 1991), this method always inserts a line-break character and doesn’t cause the
receiver to end editing.

Instance Methods 1991
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

insertParagraphSeparator
This action method inserts a paragraph separator at the insertion point or selection, deleting the selection
if there is one.

public abstract void insertParagraphSeparator(Object sender)

insertTab
This action method inserts a tab character at the insertion point or selection, deleting the selection if there
is one, or to end editing if the receiver is a text field or other field editor.

public abstract void insertTab(Object sender)

insertTabIgnoringFieldEditor
This action method inserts a tab character at the insertion point or selection, deleting the selection if there
is one.

public abstract void insertTabIgnoringFieldEditor(Object sender)

Discussion
Unlike insertTab (page 1992), this method always inserts a tab character and doesn’t cause the receiver to
end editing.

insertText
Inserts anObject at the insertion point or selection, deleting the selection if there is one.

public abstract void insertText(Object anObject)

lowercaseWord
This action method lowercases every letter in the word or words surrounding the insertion point or selection,
expanding the selection if necessary.

public abstract void lowercaseWord(Object sender)

Discussion
If either end of the selection partially covers a word, that entire word is made lowercase.

See Also
uppercaseWord (page 2002)
capitalizeWord (page 1987)
changeCaseOfLetter (page 1988)

moveBackward
This action method moves the selection or insertion point one element or character backward.

1992 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

public abstract void moveBackward(Object sender)

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the beginning
of the former selection.

moveBackwardAndModifySelection
This action method expands or reduce either end of the selection backward by one element or character.

public abstract void moveBackwardAndModifySelection(Object sender)

Discussion
If the end being modified is the backward end, this method expands the selection; if the end being modified
is the forward end, it reduces the selection. The first moveBackwardAndModifySelection or
moveForwardAndModifySelection (page 1994) method in a series determines the end being modified by
always expanding. Hence, this method results in the backward end becoming the mobile one if invoked first.

See Also
moveLeftAndModifySelection (page 1994)

moveDown
This action method moves the selection or insertion point one element or character down.

public abstract void moveDown(Object sender)

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed below the
beginning of the former selection.

moveDownAndModifySelection
This action method expands or reduces the top or bottom end of the selection downward by one element,
character, or line (whichever is appropriate for text direction).

public abstract void moveDownAndModifySelection(Object sender)

Discussion
If the end being modified is the bottom, this method expands the selection; if the end being modified is the
top, it reduces the selection. The first moveDownAndModifySelection or
moveUpAndModifySelection (page 1996) method in a series determines the end being modified by always
expanding. Hence, this method results in the bottom end becoming the mobile one if invoked first.

moveForward
This action method moves the selection or insertion point one element or character forward.

public abstract void moveForward(Object sender)

Instance Methods 1993
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the end of
the former selection.

moveForwardAndModifySelection
This action method expands or reduces either end of the selection forward by one element or character.

public abstract void moveForwardAndModifySelection(Object sender)

Discussion
If the end being modified is the backward end, this method reduces the selection; if the end being modified
is the forward end, it expands the selection. The first moveBackwardAndModifySelection (page 1993) or
moveForwardAndModifySelection method in a series determines the end being modified by always
expanding. Hence, this method results in the forward end becoming the mobile one if invoked first.

See Also
moveRightAndModifySelection (page 1995)

moveLeft
This action method moves the selection or insertion point one element or character to the left.

public abstract void moveLeft(Object sender)

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the left end
of the former selection.

moveLeftAndModifySelection
Implemented by subclasses to expand or reduce either end of the selection to the left (display order) by one
element or character.

public abstract void moveLeftAndModifySelection(Object sender)

Discussion
If the end being modified is the left end, this method expands the selection; if the end being modified is the
right end, it reduces the selection. The first moveLeftAndModifySelection (page 1994) or
moveRightAndModifySelection (page 1995) method in a series determines the end being modified by
always expanding. Hence, this method results in the left end becoming the mobile one if invoked first.

The sender argument is typically the object that invoked this method.

The essential difference between this method and the corresponding
moveBackwardAndModifySelection (page 1993) is that the latter method moves in logical order, which
can differ in bidirectional text, whereas this method moves in display order.

Availability
Available in Mac OS X v10.3 and later.

1994 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

moveRight
This action method moves the selection or insertion point one element or character to the right.

public abstract void moveRight(Object sender)

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the right
end of the former selection.

moveRightAndModifySelection
Implemented by subclasses to expand or reduce either end of the selection to the right (display order) by
one element or character.

public abstract void moveRightAndModifySelection(Object sender)

Discussion
If the end being modified is the left end, this method reduces the selection; if the end being modified is the
right end, it expands the selection. The first moveLeftAndModifySelection (page 1994) or
moveRightAndModifySelection method in a series determines the end being modified by always
expanding. Hence, this method results in the right end becoming the mobile one if invoked first.

The sender argument is typically the object that invoked this method.

The essential difference between this method and the corresponding
moveForwardAndModifySelection (page 1994) is that the latter method moves in logical order, which can
differ in bidirectional text, whereas this method moves in display order.

Availability
Available in Mac OS X v10.3 and later.

moveToBeginningOfDocument
This action method moves the selection to the first element of the document, or the insertion point to the
beginning.

public abstract void moveToBeginningOfDocument(Object sender)

moveToBeginningOfLine
This action method moves the selection to the first element of the selected line, or the insertion point to the
beginning of the line.

public abstract void moveToBeginningOfLine(Object sender)

moveToBeginningOfParagraph
This action method moves the insertion point to the beginning of the selected paragraph.

public abstract void moveToBeginningOfParagraph(Object sender)

Instance Methods 1995
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

moveToEndOfDocument
This action method moves the selection to the last element of the document, or the insertion point to the
end.

public abstract void moveToEndOfDocument(Object sender)

moveToEndOfLine
This action method moves the selection to the last element of the selected line, or the insertion point to the
end of the line.

public abstract void moveToEndOfLine(Object sender)

moveToEndOfParagraph
This action method moves the insertion point to the end of the selected paragraph.

public abstract void moveToEndOfParagraph(Object sender)

moveUp
This action method moves the selection or insertion point one element or character up.

public abstract void moveUp(Object sender)

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed above the
beginning of the former selection.

moveUpAndModifySelection
This action method expands or reduces the top or bottom end of the selection upward by one element,
character, or line (whichever is appropriate for text direction).

public abstract void moveUpAndModifySelection(Object sender)

Discussion
If the end being modified is the bottom, this method reduces the selection; if the end being modified is the
top, it expands the selection. The first moveDownAndModifySelection (page 1993) or
moveUpAndModifySelectionmethod in a series determines the end being modified by always expanding.
Hence, this method results in the top end becoming the mobile one if invoked first.

moveWordBackward
This action method moves the selection or insertion point one word backward.

public abstract void moveWordBackward(Object sender)

1996 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the end of the first
word preceding the former selection.

See Also
moveWordLeft (page 1998)

moveWordBackwardAndModifySelection
This action method expands or reduces either end of the selection backward by one whole word.

public abstract void moveWordBackwardAndModifySelection(Object sender)

Discussion
If the end being modified is the backward end, this method expands the selection; if the end being modified
is the forward end, it reduces the selection. The first moveWordBackwardAndModifySelection or
moveWordForwardAndModifySelection (page 1997) method in a series determines the end being modified
by always expanding. Hence, this method results in the backward end becoming the mobile one if invoked
first.

See Also
moveWordLeftAndModifySelection (page 1998)

moveWordForward
This action method moves the selection or insertion point one word forward.

public abstract void moveWordForward(Object sender)

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the beginning of
the first word following the former selection.

See Also
moveWordRight (page 1998)

moveWordForwardAndModifySelection
This action method expands or reduces either end of the selection forward by one whole word.

public abstract void moveWordForwardAndModifySelection(Object sender)

Discussion
Implemented by subclasses to move the selection or insertion point one word to the left, in display order.

If the end being modified is the backward end, this method reduces the selection; if the end being modified
is the forward end, it expands the selection. The first moveWordBackwardAndModifySelection (page 1997)
or moveWordForwardAndModifySelection method in a series determines the end being modified by
always expanding. Hence, this method results in the forward end becoming the mobile one if invoked first.

See Also
moveWordRightAndModifySelection (page 1999)

Instance Methods 1997
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

moveWordLeft
Implemented by subclasses to expand or reduce either end of the selection left by one whole word in display
order.

public abstract void moveWordLeft(Object sender)

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the end of the first
word to the left of the former selection. The sender argument is typically the object that invoked this method.

The main difference between this method and the corresponding moveWordBackward (page 1996) method
is that the latter moves in logical order, which is important in bidirectional text, whereas this method moves
in display order.

Availability
Available in Mac OS X v10.3 and later.

moveWordLeftAndModifySelection
Implemented by subclasses to expand or reduce either end of the selection left by one whole word in display
order.

public abstract void moveWordLeftAndModifySelection(Object sender)

Discussion
If the end being modified is the left end, this method expands the selection; if the end being modified is the
right end, it reduces the selection. The first moveWordLeftAndModifySelection or
moveWordRightAndModifySelection (page 1999) method in a series determines the end being modified
by always expanding. Hence, this method results in the left end becoming the mobile one if invoked first.

The main difference between this method and the corresponding
moveWordBackwardAndModifySelection (page 1997) method is that the latter moves in logical order,
which is important in bidirectional text, whereas this method moves in display order.

The sender argument is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

moveWordRight
Implemented by subclasses to move the selection or insertion point one word right.

public abstract void moveWordRight(Object sender)

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the beginning of
the first word to the right of the former selection. The sender argument is typically the object that invoked
this method.

1998 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

The main difference between this method and the corresponding moveWordForward (page 1997) method is
that the latter moves in logical order, which is important in bidirectional text, whereas this method moves
in display order.

Availability
Available in Mac OS X v10.3 and later.

moveWordRightAndModifySelection
Implemented by subclasses to expand or reduce either end of the selection to the right by one whole word.

public abstract void moveWordRightAndModifySelection(Object sender)

Discussion
If the end being modified is the backward end, this method reduces the selection; if the end being modified
is the forward end, it expands the selection. The first moveWordBackwardAndModifySelection (page 1997)
or moveWordForwardAndModifySelection method in a series determines the end being modified by
always expanding. Hence, this method results in the forward end becoming the mobile one if invoked first.
The sender argument is typically the object that invoked this method.

The main difference between this method and the corresponding
moveWordForwardAndModifySelection (page 1997) method is that the latter moves in logical order, which
is important in bidirectional text, whereas this method moves in display order.

Availability
Available in Mac OS X v10.3 and later.

pageDown
This action method scrolls the receiver down (or back) one page in its scroll view, also moving the insertion
point to the top of the newly displayed page.

public abstract void pageDown(Object sender)

See Also
scrollPageDown (page 2000)
scrollPageUp (page 2000)

pageUp
This action method scrolls the receiver up (or forward) one page in its scroll view, also moving the insertion
point to the top of the newly-displayed page.

public abstract void pageUp(Object sender)

See Also
scrollPageDown (page 2000)
scrollPageUp (page 2000)

Instance Methods 1999
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

scrollLineDown
This action method scrolls the receiver one line down in its scroll view, without changing the selection.

public abstract void scrollLineDown(Object sender)

See Also
scrollLineUp (page 2000)
lineScroll (page 1275) (NSScrollView)

scrollLineUp
This action method scrolls the receiver one line up in its scroll view, without changing the selection.

public abstract void scrollLineUp(Object sender)

See Also
scrollLineDown (page 2000)
lineScroll (page 1275) (NSScrollView)

scrollPageDown
This action method scrolls the receiver one page down in its scroll view, without changing the selection.

public abstract void scrollPageDown(Object sender)

See Also
pageDown (page 1999)
pageUp (page 1999)
pageScroll (page 1276) (NSScrollView)

scrollPageUp
This action method scrolls the receiver one page up in its scroll view, without changing the selection.

public abstract void scrollPageUp(Object sender)

See Also
pageDown (page 1999)
pageUp (page 1999)
pageScroll (page 1276) (NSScrollView)

selectAll
This action method selects all selectable elements.

public abstract void selectAll(Object sender)

2000 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

selectLine
This action method selects all elements in the line or lines containing the selection or insertion point.

public abstract void selectLine(Object sender)

selectParagraph
This action method selects all paragraphs containing the selection or insertion point.

public abstract void selectParagraph(Object sender)

selectToMark
This action method selects all items from the insertion point or selection to a previously placed mark, including
the selection itself if not empty.

public abstract void selectToMark(Object sender)

See Also
setMark (page 2001)
deleteToMark (page 1990)

selectWord
This action method extends the selection to the nearest word boundaries outside it (up to, but not including,
word delimiters).

public abstract void selectWord(Object sender)

setMark
This action method sets a mark at the insertion point or selection, which is used by deleteToMark (page
1990) and selectToMark (page 2001).

public abstract void setMark(Object sender)

See Also
swapWithMark (page 2001)

swapWithMark
This action method swaps the mark and the selection or insertion point, so that what was marked is now the
selection or insertion point, and what was the insertion point or selection is now the mark.

public abstract void swapWithMark(Object sender)

See Also
setMark (page 2001)

Instance Methods 2001
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

transpose
This action method transposes the characters to either side of the insertion point and advances the insertion
point past both of them. Does nothing to a selected range of text.

public abstract void transpose(Object sender)

transposeWords
This action method transposes the two words prior to the insertion point and advances the insertion point
past both of them. Not currently implemented by NSTextView.

public abstract void transposeWords(Object sender)

uppercaseWord
This action method makes uppercase every letter in the word or words surrounding the insertion point or
selection, expanding the selection if necessary.

public abstract void uppercaseWord(Object sender)

Discussion
If either end of the selection partially covers a word, that entire word is made uppercase.

See Also
lowercaseWord (page 1992)
capitalizeWord (page 1987)
changeCaseOfLetter (page 1988)

yank
This action method replaces the insertion point or selection with text from the kill buffer.

public abstract void yank(Object sender)

Discussion
If invoked sequentially, cycles through the kill buffer in reverse order.

See Also
deleteToBeginningOfLine (page 1989)
deleteToEndOfLine (page 1989)
deleteToBeginningOfParagraph (page 1989)
deleteToEndOfParagraph (page 1990)
deleteToMark (page 1990)

2002 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 158

NSKeyBindingResponder

Package: com.apple.cocoa.application

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSKeyValueBindingCreation interface provides methods to create and remove bindings between view
objects and controllers or controllers and model objects. In addition, it provides a means for a view subclass
to advertise the bindings that it exposes.

When a new binding is created it relates the receiver’s binding (for example, a property of the view object)
to a property of the observable object specified by a key path. When the value of the specified property of
the observable object changes, the receiver is notified using the key-value observing mechanism. A binding
also specifes binding options that can further customize how the observing and the observed objects interact.

Bindings between objects are typically established in Interface Builder using the Bindings inspector. However,
there are times it must be done programmatically, such as when establishing a binding between objects in
different nib files.

Tasks

Managing Bindings

valueClassForBinding (page 2005)
Returns the class of the value that will be returned for the specified binding.

bind (page 2004)
Establishes a binding between the receiver’s binding property and the property of
observableController specified by keyPath.

infoForBinding (page 2004)
Returns a dictionary describing the receiver’s binding.

unbind (page 2004)
Removes the binding between the receiver and a controller.

exposedBindings (page 2004)
Returns an array containing the bindings exposed by the receiver.

Overview 2003
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation
(informal protocol)

Instance Methods

bind
Establishes a binding between the receiver’s binding property and the property of observableController
specified by keyPath.

public abstract void bind(String binding, Object observableController, String
keyPath, NSDictionary options)

Discussion
The binding is the key path for a property of the receiver previously exposed. The options dictionary is
optional. If present, it contains placeholder objects or an NSValueTransformer identifier as described in
“Constants” (page 2005).

Availability
Available in Mac OS X v10.3 and later.

See Also
unbind (page 2004)

exposedBindings
Returns an array containing the bindings exposed by the receiver.

public abstract NSArray exposedBindings()

Discussion
Override this method to remove bindings that are exposed by a superclass that are not appropriate for the
subclass.

Availability
Available in Mac OS X v10.3 and later.

infoForBinding
Returns a dictionary describing the receiver’s binding.

public abstract NSDictionary infoForBinding(NSString binding)

Discussion
The returned dictionary contains an NSObservedObjectKey, NSObservedKeyPathKey and NSOptionsKey.

Availability
Available in Mac OS X v10.4 and later.

unbind
Removes the binding between the receiver and a controller.

2004 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

public abstract void unbind(String binding)

Availability
Available in Mac OS X v10.3 and later.

See Also
bind (page 2004)

valueClassForBinding
Returns the class of the value that will be returned for the specified binding.

public abstract Class valueClassForBinding(String binding)

Discussion
This method is used by Interface Builder to determine the appropriate transformers for a binding.

Availability
Available in Mac OS X v10.3 and later.

Constants

The following values are used as keys in the options dictionary passed to the bind (page 2004) method. These
keys are also used in the dictionary returned as the NSOptionsKey value of infoForBinding (page 2004).
See the Cocoa Bindings Reference for more information

DescriptionKey

An NSNumber containing a Boolean value that
determines if the binding allows editing when
the value represents a multiple selection.
Available in Mac OS X v10.4 and later.

NSAllowsEditingMultipleValuesSelectionBindingOption

An NSNumber containing a Boolean value that
determines if the argument bindings allows
passing argument values of null. Available in
Mac OS X v10.4 and later.

NSAllowsNullArgumentBindingOption

An NSNumber containing a Boolean value that
determines if the editable state of the user
interface item is automatically configured based
on the controller's selection. Available in Mac OS
X v10.4 and later.

NSConditionallySetsEditableBindingOption

An NSNumber containing a Boolean value that
determines if the enabled state of the user
interface item is automatically configured based
on the controller's selection. Available in Mac OS
X v10.4 and later.

NSConditionallySetsEnabledBindingOption

Constants 2005
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

DescriptionKey

An NSNumber containing a Boolean value that
determines if the hidden state of the user
interface item is automatically configured based
on the controller's selection. Available in Mac OS
X v10.4 and later.

NSConditionallySetsHiddenBindingOption

An NSNumber containing a Boolean value that
determines whether the value of the binding is
updated as edits are made to the user interface
item or is updated only when the user interface
item resigns as the responder. Available in Mac
OS X v10.4 and later.

NSContinuouslyUpdatesValueBindingOption

An NSNumber containing a Boolean value that
determines if a sort descriptor is created for a
table column. If this value is false, then the table
column does not allow sorting. Available in Mac
OS X v10.4 and later.

NSCreatesSortDescriptorBindingOption

An NSNumber containing a Boolean value that
determines if an object is deleted from the
managed context immediately upon being
removed from a relationship. Available in Mac
OS X v10.4 and later.

NSDeletesObjectsOnRemoveBindingsOption

An NSString containing a human readable string
to be displayed for a predicate. Available in Mac
OS X v10.4 and later.

NSDisplayNameBindingOption

An NSString that specifies a format string used
to construct the final value of a string. Available
in Mac OS X v10.4 and later.

NSDisplayPatternBindingOption

An NSNumber containing a Boolean value that
determines if the content is treated as a
compound value. Available in Mac OS X v10.4
and later.

NSHandlesContentAsCompoundValueBindingOption

An NSNumber containing a Boolean value that
determines if an additional item which represents
null is inserted into a matrix or pop-up menu
before the items in the content array. Available
in Mac OS X v10.4 and later.

NSInsertsNullPlaceholderBindingOption

An NSNumber containing a Boolean value that
determines whether the specified selector is
invoked with the array as the argument or is
invoked repeatedly with each array item as an
argument. Available in Mac OS X v10.4 and later.

NSInvokesSeparatelyWithArrayObjectsBindingOption

2006 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

DescriptionKey

An object that is used as a placeholder when the
key path of the bound controller returns
multipleValuesMarker (page 475) for a
binding. Available in Mac OS X v10.4 and later.

NSMultipleValuesPlaceholderBindingOption

An object that is used as a placeholder when the
key path of the bound controller returns
noSelectionMarker (page 475) for a binding.
Available in Mac OS X v10.4 and later.

NSNoSelectionPlaceholderBindingOption

An object that is used as a placeholder when the
key path of the bound controller returns for a
binding. Available in Mac OS X v10.4 and later.

NSNotApplicablePlaceholderBindingOption

An object that is used as a placeholder when the
key path of the bound controller returns null
for a binding. Available in Mac OS X v10.4 and
later.

NSNullPlaceholderBindingOption

An NSNumber containing a Boolean value that
specifies if an exception is raised when the
binding is bound to a key that is not
applicable—for example when an object is not
key-value coding compliant for a key. Available
in Mac OS X v10.4 and later.

NSRaisesForNotApplicableKeysBindingOption

An NSString containing the predicate pattern
string for the predicate bindings. Use $value to
refer to the value in the search field. Available in
Mac OS X v10.4 and later.

NSPredicateFormatBindingOption

An NSString that specifies the method selector
invoked by the target binding when the user
interface item is clicked. Available in Mac OS X
v10.4 and later.

NSSelectorNameBindingOption

An NSNumber containing a Boolean value that
specifies if all the items in the array controller are
selected when the content is set. Available in Mac
OS X v10.4 and later.

NSSelectsAllWhenSettingContentBindingOption

An NSNumber containing a Boolean value that
determines if the contents of the binding are
validated immediately. Available in Mac OS X
v10.4 and later.

NSValidatesImmediatelyBindingOption

The value for this key is an identifier of a
registered NSValueTransformer instance that is
applied to the bound value. Available in Mac OS
X v10.4 and later.

NSValueTransformerNameBindingOption

Constants 2007
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

DescriptionKey

An NSValueTransformer instance that is applied
to the bound value. Available in Mac OS X v10.4
and later.

NSValueTransformerBindingOption

The following values are used as keys in the dictionary returned by infoForBinding (page 2004)

DescriptionKey

The object that is the observable controller of the binding . Available in Mac OS
X v10.4 and later.

NSObservedObjectKey

An NSString containing the key path of the binding. Available in Mac OS X v10.4
and later.

NSObservedKeyPathKey

An NSDictionary containing key value pairs as specified in the options dictionary
when the binding was created. Available in Mac OS X v10.4 and later.

NSOptionsKey

The following values are used to specify a binding to bind (page 2004), infoForBinding (page 2004),
unbind (page 2004) and valueClassForBinding (page 2005). See the Cocoa Bindings Reference for more
information.

DescriptionKey

Available in Mac OS X v10.4 and later.NSAlignmentBinding

Available in Mac OS X v10.4 and later.NSAlternateImageBinding

Available in Mac OS X v10.4 and later.NSAlternateTitleBinding

Available in Mac OS X v10.4 and later.NSAnimateBinding

Available in Mac OS X v10.4 and later.NSAnimationDelayBinding

Available in Mac OS X v10.4 and later.NSArgumentBinding

Available in Mac OS X v10.4 and later.NSAttributedStringBinding

Available in Mac OS X v10.4 and later.NSContentArrayBinding

Available in Mac OS X v10.4 and later.NSContentArrayForMultipleSelectionBinding

Available in Mac OS X v10.4 and later.NSContentBinding

Available in Mac OS X v10.4 and later.NSContentHeightBinding

Available in Mac OS X v10.4 and later.NSContentObjectBinding

Available in Mac OS X v10.4 and later.NSContentObjectsBinding

Available in Mac OS X v10.4 and later.NSContentSetBinding

2008 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

DescriptionKey

Available in Mac OS X v10.4 and later.NSContentValuesBinding

Available in Mac OS X v10.4 and later.NSContentWidthBinding

Available in Mac OS X v10.4 and later.NSCriticalValueBinding

Available in Mac OS X v10.4 and later.NSDataBinding

Available in Mac OS X v10.4 and later.NSObservedObjectKey

Available in Mac OS X v10.4 and later.NSDisplayPatternTitleBinding

Available in Mac OS X v10.4 and later.NSDisplayPatternValueBinding

Available in Mac OS X v10.4 and later.NSDocumentEditedBinding

Available in Mac OS X v10.4 and later.NSEditableBinding

Available in Mac OS X v10.4 and later.NSEnabledBinding

Available in Mac OS X v10.4 and later.NSFontBinding

Available in Mac OS X v10.4 and later.NSFontBoldBinding

Available in Mac OS X v10.4 and later.NSFontFamilyNameBinding

Available in Mac OS X v10.4 and later.NSFontItalicBinding

Available in Mac OS X v10.4 and later.NSFontNameBinding

Available in Mac OS X v10.4 and later.NSFontSizeBinding

Available in Mac OS X v10.4 and later.NSHeaderTitleBinding

Available in Mac OS X v10.4 and later.NSHiddenBinding

Available in Mac OS X v10.4 and later.NSImageBinding

Available in Mac OS X v10.4 and later.NSIsIndeterminateBinding

Available in Mac OS X v10.4 and later.NSLabelBinding

Available in Mac OS X v10.4 and later.NSManagedObjectContextBinding

Available in Mac OS X v10.4 and later.NSMaxValueBinding

Available in Mac OS X v10.4 and later.NSMaxWidthBinding

Available in Mac OS X v10.4 and later.NSMinValueBinding

Available in Mac OS X v10.4 and later.NSMinWidthBinding

Available in Mac OS X v10.4 and later.NSMixedStateImageBinding

Constants 2009
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

DescriptionKey

Available in Mac OS X v10.4 and later.NSOffStateImageBinding

Available in Mac OS X v10.4 and later.NSOnStateImageBinding

Available in Mac OS X v10.4 and later.NSPredicateBinding

Available in Mac OS X v10.4 and later.NSRecentSearchesBinding

Available in Mac OS X v10.4 and later.NSRepresentedFilenameBinding

Available in Mac OS X v10.4 and later.NSRowHeightBinding

Available in Mac OS X v10.4 and later.NSSelectedIdentifierBinding

Available in Mac OS X v10.4 and later.NSSelectedIndexBinding

Available in Mac OS X v10.4 and later.NSSelectedLabelBinding

Available in Mac OS X v10.4 and later.NSSelectedObjectBinding

Available in Mac OS X v10.4 and later.NSSelectedObjectsBinding

Available in Mac OS X v10.4 and later.NSSelectedTagBinding

Available in Mac OS X v10.4 and later.NSSelectedValueBinding

Available in Mac OS X v10.4 and later.NSSelectedValuesBinding

Available in Mac OS X v10.4 and later.NSSelectionIndexesBinding

Available in Mac OS X v10.4 and later.NSSelectionIndexPathsBinding

Available in Mac OS X v10.4 and later.NSSortDescriptorsBinding

Available in Mac OS X v10.4 and later.NSTargetBinding

Available in Mac OS X v10.4 and later.NSTextColorBinding

Available in Mac OS X v10.4 and later.NSTitleBinding

Available in Mac OS X v10.4 and later.NSToolTipBinding

Available in Mac OS X v10.4 and later.NSValueBinding

Available in Mac OS X v10.4 and later.NSValuePathBinding

Available in Mac OS X v10.4 and later.NSValueURLBinding

Available in Mac OS X v10.4 and later.NSVisibleBinding

Available in Mac OS X v10.4 and later.NSWarningValueBinding

Available in Mac OS X v10.4 and later.NSWidthBinding

2010 Constants
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 159

NSKeyValueBindingCreation

Package: com.apple.cocoa.application

Companion guide Application Menu and Pop-up List Programming Topics for Cocoa

Overview

This interface allows your application to update the enabled or disabled status of an NSMenuItem. It declares
only one method, validateMenuItem (page 2011).

Tasks

Validating Menu Items

validateMenuItem (page 2011)

Instance Methods

validateMenuItem
public abstract boolean validateMenuItem(_NSObsoleteMenuItemProtocol menuItem)

Discussion
Implemented to override the default action of enabling or disabling menuItem. The object implementing
this method must be the target of menuItem. It returns true to enable menuItem, false to disable it. You
can determine which menu item menuItem is by querying it for its tag or action.

Overview 2011
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 160

NSMenu.MenuValidation
(informal protocol)

2012 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 160

NSMenu.MenuValidation

Package: com.apple.cocoa.application

Companion guide Outline View Programming Topics for Cocoa

Overview

NSOutlineView (page 1027) objects support a data source delegate in addition to the regular delegate object.
The data source delegate provides data and information about that data to the outline view. The regular
delegate object handles all other delegate responsibilities for the outline view. Specifying null as the item
will refer to the “root” item. NSOutlineView requires that each item in the outline view be unique.

Note: Some of the methods in this interface, such as outlineViewChildOfItem (page 2015) and
outlineViewNumberOfChildrenOfItem (page 2016) along with other methods that return data, are called
very frequently, so they must be efficient.

Tasks

Working with Items in a View

outlineViewChildOfItem (page 2015)
Invoked by outlineView, and returns the child item at the specified index.

outlineViewIsItemExpandable (page 2015)
Invoked by outlineView. This method should return true if item can be expanded to display its
children.

outlineViewNumberOfChildrenOfItem (page 2016)
Invoked by outlineView to return the number of child items encompassed by item.

outlineViewObjectValueForItem (page 2016)
Invoked by outlineView to return the data object associated with the specified item.

outlineViewSetObjectValueForItem (page 2017)
Invoked by outlineView to set the data object for the specified item to

Overview 2013
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 161

NSOutlineView.DataSource
(informal protocol)

Dragging and Dropping

outlineViewAcceptDrop (page 2014)
Invoked by outlineView when the mouse button is released while the cursor is over item at the
child location specified by index. outlineView must have previously decided to allow a drop.

outlineViewValidateDrop (page 2017)
Used by outlineView to determine a valid drop target.

outlineViewNamesOfPromisedFilesDroppedAtDestination (page 2016)
Returns an array of filenames (not full paths) for the created files that the receiver promises to create.

Object Persistence

outlineViewItemForPersistentObject (page 2015)
Invoked by outlineView to return the item for the archived object.

outlineViewPersistentObjectForItem (page 2016)
Invoked by outlineView to return an archived object for item.

Working with a Pasteboard

outlineViewWriteItemsToPasteboard (page 2018)
Invoked by outlineView after it has been determined that a drag should begin, but before the drag
has been started.

Sorting

outlineViewSortDescriptorsDidChange (page 2017)
Invoked by outlineView to notify the data source that the descriptors changed and the data may
need to be resorted.

Instance Methods

outlineViewAcceptDrop
Invoked by outlineView when the mouse button is released while the cursor is over item at the child
location specified by index. outlineView must have previously decided to allow a drop.

public abstract boolean outlineViewAcceptDrop(NSOutlineView outlineView,
NSDraggingInfo info, Object item, int index)

Discussion
info contains more details on this dragging operation. The data source should incorporate the data from
the dragging pasteboard at this time.

2014 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 161

NSOutlineView.DataSource

The return value indicates success or failure of the drag operation to the system. Return true if the data was
used, and false if the data could not be deposited for some reason.

Implementation of this method is optional.

See Also
shouldCollapseAutoExpandedItemsForDeposited (page 1037)

outlineViewChildOfItem
Invoked by outlineView, and returns the child item at the specified index.

public abstract object outlineViewChildOfItem(NSOutlineView outlineView, int index,
Object item)

Discussion
Children of a given parent item are accessed sequentially. If item is null, this method should return the
appropriate child item of the root object.

Implementation of this method is required.

Note: outlineViewChildOfItem is called very frequently, so it must be efficient.

See Also
outlineViewNumberOfChildrenOfItem (page 2016)

outlineViewIsItemExpandable
Invoked by outlineView. This method should return true if item can be expanded to display its children.

public abstract boolean outlineViewIsItemExpandable(NSOutlineView outlineView,
Object item)

Discussion
Implementation of this method is required.

outlineViewItemForPersistentObject
Invoked by outlineView to return the item for the archived object.

public abstract Object outlineViewItemForPersistentObject(NSOutlineView outlineView,
Object object)

Discussion
If the item is an archived object, this method may return the object. You must implement this method if you
are automatically saving expanded items (that is, autosaveExpandedItems (page 1032) returns true). When
the outline view is restoring the saved expanded items, this method is called for each expanded item, to
translate the archived object to an outline view item.

Implementation of this method is optional.

Instance Methods 2015
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 161

NSOutlineView.DataSource

outlineViewNamesOfPromisedFilesDroppedAtDestination
Returns an array of filenames (not full paths) for the created files that the receiver promises to create.

public abstract NSArray
outlineViewNamesOfPromisedFilesDroppedAtDestination(NSOutlineView outlineView,
URL dropDestination, NSArray items)

Discussion
The URL dropDestination represents the drop location where the files are created. For more information
on file promise dragging, see documentation on the NSDraggingSource protocol and
namesOfPromisedFilesDroppedAtDestination (page 1967).

Availability
Available in Mac OS X v10.4 and later.

outlineViewNumberOfChildrenOfItem
Invoked by outlineView to return the number of child items encompassed by item.

public abstract int outlineViewNumberOfChildrenOfItem(NSOutlineView outlineView,
Object object)

Discussion
If item is null, this method should return the number of children for the top-level item.

Implementation of this method is required.

Note: outlineViewNumberOfChildrenOfItem is called very frequently, so it must be efficient.

outlineViewObjectValueForItem
Invoked by outlineView to return the data object associated with the specified item.

public abstract Object outlineViewObjectValueForItem(NSOutlineView outlineView,
NSTableColumn tableColumn, Object item)

Discussion
The item is located in the specified tableColumn of the view.

Note: NSOutlineView requires that each item in the outline view be unique.

Implementation of this method is required.

outlineViewPersistentObjectForItem
Invoked by outlineView to return an archived object for item.

public abstract Object outlineViewPersistentObjectForItem(NSOutlineView outlineView,
Object item)

2016 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 161

NSOutlineView.DataSource

Discussion
If the item is an archived object, this method may return the item. You must implement this method if you
are automatically saving expanded items (that is, autosaveExpandedItems (page 1032) returns true). When
the outline view is saving the expanded items, this method is called for each expanded item, to translate the
outline view item to an archived object.

Implementation of this method is optional.

outlineViewSetObjectValueForItem
Invoked by outlineView to set the data object for the specified item to

public abstract void outlineViewSetObjectValueForItem(NSOutlineView outlineView,
Object object, NSTableColumn tableColumn, Object item)

Discussion
object. The item is located in the specified tableColumn of the view.

Implementation of this method is optional.

outlineViewSortDescriptorsDidChange
Invoked by outlineView to notify the data source that the descriptors changed and the data may need to
be resorted.

public abstract void outlineViewSortDescriptorsDidChange(NSOutlineView outlineView,
NSArray oldDescriptors)

Discussion
The data source typically sorts and reloads the data, and adjusts the selections accordingly. The
oldDescriptors array contains the previous descriptors.

Implementation of this method is optional.

Availability
Available in Mac OS X v10.3 and later.

outlineViewValidateDrop
Used by outlineView to determine a valid drop target.

public abstract int outlineViewValidateDrop(NSOutlineView outlineView, NSDraggingInfo
info, Object item, int index)

Discussion
Based on the mouse position, the outline view will suggest a proposed drop location. The proposed parent
is item and the proposed child location is index. info contains more details on this dragging operation.
This method must return a value that indicates which dragging operation the data source will perform. The
data source may “retarget” a drop if desired by calling setDropItemAndDropChildIndex (page 1036) and
returning something other than NSDraggingInfo.DragOperationNone. You may choose to retarget for
various reasons (for example, for better visual feedback when inserting into a sorted position).

Instance Methods 2017
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 161

NSOutlineView.DataSource

Implementation of this method is optional.

outlineViewWriteItemsToPasteboard
Invoked by outlineView after it has been determined that a drag should begin, but before the drag has
been started.

public abstract boolean outlineViewWriteItemsToPasteboard(NSOutlineView outlineView,
NSArray items, NSPasteboard pboard)

Discussion
To refuse the drag, return false. To start a drag, return true and place the drag data onto the pboard (data,
owner, and so on). The drag image and other drag-related information will be set up and provided by the
outline view once this call returns with true. items is the list of items that will be participating in the drag.

Implementation of this method is optional.

2018 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 161

NSOutlineView.DataSource

Package: com.apple.cocoa.application

Companion guide Table View Programming Guide

Overview

The NSTableView.DataSource interface declares the methods that an NSTableView (page 1437) uses to access
the contents of its data source object.

Note: Some of the methods in this interface, such as tableViewObjectValueForLocation (page 2021)
and numberOfRowsInTableView (page 2020) along with other methods that return data, are called very
frequently, so they must be efficient.

Tasks

Getting Values

numberOfRowsInTableView (page 2020)
Returns the number of records managed for aTableView by the data source object.

tableViewObjectValueForLocation (page 2021)
Returns an attribute value for the record in aTableView at rowIndex.

Setting Values

tableViewSetObjectValueForLocation (page 2021)
Sets an attribute value for the record in aTableView at rowIndex.

Dragging

tableViewAcceptDrop (page 2020)
Invoked by tableView when the mouse button is released over a table view that previously decided
to allow a drop.

tableViewNamesOfPromisedFilesDroppedAtDestination (page 2021)
Returns an array of filenames that represent theindexSet rows for a drag to dropDestination.

Overview 2019
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTableView.DataSource
(informal protocol)

tableViewValidateDrop (page 2022)
Used by tableView to determine a valid drop target.

Sorting

tableViewSortDescriptorsDidChange (page 2021)
Invoked by tableView to indicate that sorting may need to be done.

Deprecated Methods

tableViewWriteRowsToPasteboard (page 2022)
This method has been deprecated. You should implement the variant including an NSIndexSet
parameter instead.

Instance Methods

numberOfRowsInTableView
Returns the number of records managed for aTableView by the data source object.

public abstract int numberOfRowsInTableView(NSTableView aTableView)

Discussion
An NSTableView uses this method to determine how many rows it should create and display.

Note: numberOfRowsInTableView is called very frequently, so it must be efficient.

tableViewAcceptDrop
Invoked by tableView when the mouse button is released over a table view that previously decided to
allow a drop.

public abstract boolean tableViewAcceptDrop(NSTableView tableView, NSDraggingInfo
info, int row, int operation)

Discussion
info contains details on this dragging operation. The proposed location is row and action is operation.
The data source should incorporate the data from the dragging pasteboard at this time.

To accept a drop on the second row, row would be 2 and operation would be NSTableView.DropOn. To
accept a drop below the last row, row would be [tableView.numberOfRows()] and operation would
be NSTableView.DropAbove.

Implementation of this method is optional.

2020 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTableView.DataSource

tableViewNamesOfPromisedFilesDroppedAtDestination
Returns an array of filenames that represent theindexSet rows for a drag to dropDestination.

public abstract NSArray tableViewNamesOfPromisedFilesDroppedAtDestination(NSTableView
tv, URL dropDestination, NSIndexSet indexSet)

Discussion
This method is called when a destination has accepted a promise drag. You should return an array containing
the filenames, not the full paths, for the files that you will provide.

Availability
Available in Mac OS X v10.4 and later.

tableViewObjectValueForLocation
Returns an attribute value for the record in aTableView at rowIndex.

public abstract Object tableViewObjectValueForLocation(NSTableView aTableView,
NSTableColumn aTableColumn, int rowIndex)

Discussion
aTableColumn contains the identifier for the attribute, which you get by using NSTableColumn’s
identifier (page 1424) method. For example, if aTableColumn stands for the city an employee lives in and
rowIndex specifies the record for an employee who lives in Portland, this method returns an object with a
string value of “Portland”.

Note: tableViewObjectValueForLocation is called each time the table cell needs to be redisplayed,
so it must be efficient.

tableViewSetObjectValueForLocation
Sets an attribute value for the record in aTableView at rowIndex.

public abstract void tableViewSetObjectValueForLocation(NSTableView aTableView,
Object anObject, NSTableColumn aTableColumn, int rowIndex)

Discussion
anObject is the new value, and aTableColumn contains the identifier for the attribute, which you get by
using NSTableColumn’s identifier (page 1424) method.

tableViewSortDescriptorsDidChange
Invoked by tableView to indicate that sorting may need to be done.

public abstract void tableViewSortDes��945 Tm
(tv)Tj
/F5 9 Tf
1 0 0 1 14�T(1 14�T�Q�T(1 14�. Tm

� 0 0 1 159.0tion� 0 0 1 197.4 134.m
(�+�P)Tj
1 0 1 0 06G925p050 1 159.0tion

�%tv�Tf
1 0 0 1 20G�M�tDes20GY00 0 1 159.0tion80 0 1 159.0tion�V�J�6258348.55 15W0T(1 14�.#jTm5 Tm
(�Tf
 TmU4843425rtDes8)Tj
1 0 0 1 102247Y1 305.4V0 1 325.34 15663 T6 2es8tv�
(�K�U)Tj
G6258348.55 15W45 Tm
(tv)T437 0.78430000008.55 15W45 Tm
Tm
(tv)T437 0.78�Tfj
1 0085 Tm
(�G)T25 Tme0K�E

�.0225 l
573.0G� 05275i0 0 06
1 0 0 1 290.48 42300 268.219 157�. Tm
8425 Tm
(�0
8425 Tm
(�0
8425 T0 1 110 295.5945 Tm
(�Tf
1)Tj
Y00 .51 441.0 Tm
(E1 34000K�P�x)Tj
/F0 10 Tf
G62524.4 134.585 T26.98 (�G)T25 Tme0K�E. 114.9 295.595Tj
/)Tj
1 0 0 1 273. 0.93025 104 354.15 l
h
f
556 354.15 m
556.0T)Tj
1 0 0 1 000 l
h
f
556 354.15Q.0T

Discussion
The tv parameter represents the table view. To refuse the drag, return false. To start a drag, return true
and place the drag data onto pboard (data, owner, and so on). The drag image and other drag-related
information will be set up and provided by the table view once this call returns with true. rowIndexes is
an index set of row numbers that will be participating in the drag.

Implementation of this method is optional.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 2023
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTableView.DataSource

2024 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTableView.DataSource

Package: com.apple.cocoa.application

Companion guides Text System Overview
Text Input Management

Overview

The NSTextInput interface defines the methods that Cocoa text views must implement in order to interact
properly with the text input management system. NSTextView and its abstract superclass NSText are the
only classes included in Cocoa that implement NSTextInput. To create another text view class, you can either
subclass NSTextView (and not NSText, for historical reasons), or subclass NSView and implement the
NSTextInput interface.

Tasks

Marked Text

hasMarkedText (page 2027)
Returns true if the receiver has marked text, false if it doesn’t.

markedRange (page 2028)
Returns the range of the marked text.

selectedRange (page 2028)
Returns the range of selected text.

setMarkedTextAndSelectedRange (page 2028)
Replaces text in selRange within receiver’s text storage with the contents of aString, which the
receiver must display distinctively to indicate that it is marked text.

unmarkText (page 2029)
Removes any marking from pending input text, and disposes of the marked text as it wishes. The text
view should accept the marked text as if it had been inserted normally.

validAttributesForMarkedText (page 2029)
Returns an array of String names for the attributes supported by the receiver.

Overview 2025
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTextInput

Text Storage

attributedSubstringWithRange (page 2026)
Returns attributed string at theRange.

insertText (page 2028)
Inserts aString into the receiver’s text storage.

Character Coordinates

characterIndexForPoint (page 2026)
Returns the index of the character whose frame rectangle includes thePoint.

firstRectForCharacterRange (page 2027)

Key Bindings

doCommandBySelector (page 2027)
Invokes aSelector if possible.

Other

conversationIdentifier (page 2027)
Returns a number used to identify the receiver’s context to the input server.

Instance Methods

attributedSubstringWithRange
Returns attributed string at theRange.

public abstract NSAttributedString attributedSubstringWithRange(NSRange theRange)

Discussion
This method allows input mangers to query any range in text storage.

An implementation of this method should be prepared theRange to be out-of-bounds. The InkWell text
input service can ask for the contents of the text input client that extends beyond the document’s range. In
this case, you should return the intersection of the document’s range and theRange. If the location of
theRange is completely outside of the document’s range, return null.

characterIndexForPoint
Returns the index of the character whose frame rectangle includes thePoint.

2026 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTextInput

public abstract int characterIndexForPoint(NSPoint thePoint)

Discussion
The returned index measures from the start of the receiver’s text storage. thePoint is in the screen coordinate
system. Returns NSArray.NotFound if the cursor is not within a character.

conversationIdentifier
Returns a number used to identify the receiver’s context to the input server.

public abstract int conversationIdentifier()

Discussion
Each text view within an application should return a unique identifier (typically its address). However, multiple
text views sharing the same text storage must all return the same identifier.

doCommandBySelector
Invokes aSelector if possible.

public abstract void doCommandBySelector(NSSelector aSelector)

Discussion
IfaSelector cannot be invoked, thendoCommandBySelector should not pass this message up the responder
chain. NSResponder also implements this method, and it does forward uninvokable commands up the
responder chain, but a text view should not. A text view implementing the NSTextInput interface will inherit
from NSView, which inherits from NSResponder, so your implementation of this method will override the
one in NSResponder. It should not call super.

See Also
interpretKeyEvents (page 1191) (NSResponder)
doCommandBySelector (page 1990) (NSKeyBindingResponder)

firstRectForCharacterRange
public abstract NSRect firstRectForCharacterRange(NSRange theRange)

Discussion
Returns the first frame rectangle for characters in theRange, in screen coordinates. If theRange spans
multiple lines of text in the text view, the rectangle returned is the one for the characters in the first line. If
the length of theRange is 0 (as it would be if there is nothing selected at the insertion point), the rectangle
will coincide with the insertion point, and its width will be 0.

hasMarkedText
Returns true if the receiver has marked text, false if it doesn’t.

public abstract boolean hasMarkedText()

Instance Methods 2027
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTextInput

Discussion
Unlike other methods in this protocol, this one is not called by an input server. The text view itself may call
this method to determine whether there currently is marked text. NSTextView, for example, disables the
Edit>Copy menu item when this method returns true.

See Also
markedRange (page 2028)

insertText
Inserts aString into the receiver’s text storage.

public abstract void insertText(Object aString)

Discussion
aString can be either a String or an NSAttributedString.

markedRange
Returns the range of the marked text.

public abstract NSRange markedRange()

Discussion
The returned range measures from the start of the receiver’s text storage. The return value’s location is
NSArray.NotFound, and its length is 0 if and only if hasMarkedText (page 2027) returns false.

See Also
setMarkedTextAndSelectedRange (page 2028)
unmarkText (page 2029)
hasMarkedText (page 2027)

selectedRange
Returns the range of selected text.

public abstract NSRange selectedRange()

Discussion
The returned range measures from the start of the receiver’s text storage. If there is no selection, the return
value’s location is NSArray.NotFound, and its length is 0.

See Also
setMarkedTextAndSelectedRange (page 2028)

setMarkedTextAndSelectedRange
Replaces text in selRange within receiver’s text storage with the contents of aString, which the receiver
must display distinctively to indicate that it is marked text.

2028 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTextInput

public abstract void setMarkedTextAndSelectedRange(Object aString, NSRange selRange)

Discussion
aString must be either a String or an NSAttributedString and not null.

See Also
selectedRange (page 2028)
unmarkText (page 2029)

unmarkText
Removes any marking from pending input text, and disposes of the marked text as it wishes. The text view
should accept the marked text as if it had been inserted normally.

public abstract void unmarkText()

See Also
selectedRange (page 2028)
setMarkedTextAndSelectedRange (page 2028)

validAttributesForMarkedText
Returns an array of String names for the attributes supported by the receiver.

public abstract NSArray validAttributesForMarkedText()

Discussion
The input server may choose to use some of these attributes in the text it inserts or in marked text. Returns
an empty array if no attributes are supported. See NSAttributedString for the set of string constants that you
could return in the array.

Instance Methods 2029
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTextInput

2030 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTextInput

Package: com.apple.cocoa.application

Companion guide Toolbar Programming Topics for Cocoa

Overview

A toolbar item with a valid target and action is enabled by default. To allow a toolbar item to be disabled in
certain situations, a toolbar item’s target can implement the validateToolbarItem (page 2031) method.

Note: NSToolbarItem’s validate (page 1717) method calls this method only if the item’s target has a valid
action defined on its target and if the item is not a custom view item. If you want to validate a custom view
item, then you have to subclass NSToolbarItem and override validate (page 1717).

Tasks

Validating Toolbar Items

validateToolbarItem (page 2031)
If this method is implemented and returns false, NSToolbar will disable theItem; returning true
causes theItem to be enabled.

Instance Methods

validateToolbarItem
If this method is implemented and returns false, NSToolbar will disable theItem; returning true causes
theItem to be enabled.

public abstract boolean validateToolbarItem(NSToolbarItem theItem)

Discussion
NSToolbar only calls this method for image items.

Overview 2031
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 164

NSToolbarItem.ItemValidation
(informal protocol)

Note: validateToolbarItem is called very frequently, so it must be efficient.

If the receiver is the target for the actions of multiple toolbar items, it’s necessary to determine which
toolbar item theItem refers to by testing the itemIdentifier.

public boolean validateToolbarItem (NSToolbarItem toolbarItem) {
 boolean enable = false;
 if (toolbarItem.itemIdentifier().equals(SaveDocToolbarItemIdentifier)) {
 // We will return true (save item is enabled)
 // only when the document is dirty and needs saving.
 enable = this.isDocumentEdited();
 } else if
(toolbarItem.itemIdentifier().equals(NSToolbarItem.PrintItemIdentifier)) {
 enable = true;
 }
 return enable;
}

See Also
validateVisibleItems (page 1702) (NSToolbar)
validate (page 1717) (NSToolbarItem)
target (page 1716) (NSToolbarItem)
action (page 1709) (NSToolbarItem)
name (NSSelector)

2032 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 164

NSToolbarItem.ItemValidation

Package: com.apple.cocoa.application

Companion guide User Interface Validation

Overview

NSValidatedUserInterfaceItem works with certain user interface items to enable or disable a control
automatically, depending on whether any responder in the responder chain can handle the control’s action
method. NSMenuItem and NSToolbarItem implement this protocol.

By conforming to this interface, your control can participate in this validation mechanism.

Tasks

Getting Information About a User Interface Item

action (page 2033)
Returns the selector of the receiver’s action method.

tag (page 2033)
Returns the receiver’s tag integer.

Instance Methods

action
Returns the selector of the receiver’s action method.

public abstract NSSelector action()

tag
Returns the receiver’s tag integer.

public abstract int tag()

Overview 2033
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 165

NSValidatedUserInterfaceItem

2034 Instance Methods
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

CHAPTER 165

NSValidatedUserInterfaceItem

A

abortEditing instance method 448
abortModal instance method 106
Above constant 1876
AboveBottom constant 211
AboveTop constant 211
absolutePathForAppBundleWithIdentifier instance

method 1902
AbsoluteValueType constant 1553
absoluteX instance method 610
absoluteY instance method 610
absoluteZ instance method 611
acceptableDragTypes instance method 1623
acceptsArrowKeys instance method 221
acceptsBinary instance method 1130
acceptsFirstMouse instance method 882, 1332, 1738
acceptsFirstResponder instance method 305, 1189,

1566
acceptsMouseMovedEvents instance method 1816
accessoryView instance method 389, 690, 1047, 1156,

1167, 1214, 1232, 1381
action instance method 47, 305, 448, 672, 935, 1399,

1709
action interface method 2033
activate instance method 408
activateContextHelpMode instance method 106
activateIgnoringOtherApps instance method 106
activeApplication instance method 1903
activeConversationChanged instance method 811
activeConversationChanged interface method 1978
activeConversationWillChange instance method

811
activeConversationWillChange interface method

1978
add instance method 1010
addButtonWithTitle instance method 58
addChildWindow instance method 1816
addClip instance method 172
addCollection instance method 672
addColumn instance method 221, 882

addColumnWithCells instance method 883
addCursorRect instance method 1739
addDocument instance method 561
addEntry instance method 695
addFileWithPath instance method 634
addFileWrapper instance method 634
addFontDescriptors instance method 672
addFontTrait instance method 672
addItem instance method 914, 1095, 1111
addItemsWithObjectValues instance method 415,

430
addItemsWithTitles instance method 1095, 1111
addItemWithObjectValue instance method 415, 430
addLayoutManager instance method 1588
addMarker instance method 1215
addObject instance method 147, 1010
addObjects instance method 147
addProgressMark instance method 78
addRegularFileWithContents instance method 635
addRepresentation instance method 754
addRepresentations instance method 754
addRow instance method 883
addRowWithCells instance method 884
addSelectedObjects instance method 147
addSelectionIndexes instance method 148
addSubview instance method 1739
addSymbolicLinkWithDestination instance method

635
addTableColumn instance method 1447
addTabStop instance method 995
addTabViewItem instance method 1487
addTemporaryAttributes instance method 827
addTextContainer instance method 827
addTrackingRect instance method 1739
addTypes instance method 1074
addWindowController instance method 523
addWindowsItem instance method 107
adjustPageHeight instance method 1740
adjustPageWidth instance method 1740
adjustScroll instance method 1741
adjustSubviews instance method 1387
AdobeCNS1CharacterCollection constant 712

2035
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

Index

AdobeGB1CharacterCollection constant 712
AdobeJapan1CharacterCollection constant 712
AdobeJapan2CharacterCollection constant 712
AdobeKorea1CharacterCollection constant 712
advancementForGlyph instance method 654
afmDictionary instance method 654
afmFileContents instance method 655
AlertInterfaceStyleDefault constant 816
alertPanel class method 68
alertShowHelp delegate method 65
alertStyle instance method 58
alertWithError class method 58
alignCenter instance method 1512
alignJustified instance method 1623
alignLeft instance method 1512
alignment instance method 305, 448, 1060, 1513, 1596
alignRight instance method 1513
allKeys instance method 381
AllModesMask constant 692
allocateGState instance method 1741
allowedFileTypes instance method 1022, 1233
allowsBranchSelection instance method 221
allowsColumnReordering instance method 1448
allowsColumnResizing instance method 1448
allowsColumnSelection instance method 1448
allowsCutCopyPaste instance method 797
allowsDocumentBackgroundColorChange instance

method 1624
allowsDuplicatesInToolbar instance method 1710
allowsEditingTextAttributes instance method 305,

1566
allowsEmptySelection instance method 221, 884,

1449
allowsMixedState instance method 255, 306
allowsMultipleSelection instance method 222,

1022, 1449
allowsOtherFileTypes instance method 1233
allowsTickMarkValuesOnly instance method 1332,

1345
allowsToolTipsWhenApplicationIsInactive

instance method 1816
allowsTruncatedLabels instance method 1487
allowsUndo instance method 306, 1624
allowsUserCustomization instance method 1696
AllParts constant 1262
alphaComponent instance method 370
alphaControlAddedOrRemoved instance method 397
alphaControlAddedOrRemoved interface method 1948
AlphaFirstBitmapFormat constant 201
AlphaNonpremultipliedBitmapFormat constant 201
AlphaShiftKeyMask constant 626
alphaValue instance method 1817
alternateImage instance method 247, 255, 274, 1400

AlternateKeyMask constant 626
alternateMnemonic instance method 274
alternateMnemonicLocation instance method 274
AlternateReturn constant 73
alternateSelectedControlColor class method 356
alternateSelectedControlTextColor class method

356
alternateTitle instance method 255, 275
altersStateOfSelectedItem instance method 1112
altIncrementValue instance method 1332, 1345
alwaysUsesMultipleValuesMarker instance method

148
ancestorSharedWithView instance method 1742
animate instance method 1173
animates instance method 797
AnimationBlocking constant 86
animationBlockingMode instance method 78
animationCurve instance method 79
animationDelay instance method 1174
animationDidEnd delegate method 87
animationDidReachProgressMark delegate method

87
animationDidStop delegate method 87
AnimationEaseIn constant 86
AnimationEaseInOut constant 86
AnimationEaseOut constant 86
AnimationLinear constant 86
AnimationNonblocking constant 86
AnimationNonblockingThreaded constant 87
AnimationProgressMarkNotification notification

88
animationResizeTime instance method 1817
animationShouldStart delegate method 88
animationValueForProgress delegate method 88
AnyEventMask constant 625
AnyType constant 337
appendBezierPath instance method 173
appendBezierPathWithArcFromPoint instance

method 173
appendBezierPathWithArcWithCenter instance

method 173
appendBezierPathWithGlyph instance method 173
appendBezierPathWithOvalInRect instance method

174
appendBezierPathWithRect instance method 174
AppKitDefined constant 624
AppKitDefinedMask constant 625
appkitVersionNumber class method 104
AppKitVersionNumber10_0 constant 130
AppKitVersionNumber10_1 constant 130
AppKitVersionNumber10_2 constant 130
AppKitVersionNumber10_2_3 constant 130
ApplicationDefined constant 624

2036
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

ApplicationDefinedMask constant 625
applicationDidBecomeActive delegate method 130
ApplicationDidBecomeActiveNotification

notification 140
applicationDidChangeScreenParameters delegate

method 131
ApplicationDidChangeScreenParametersNotification

notification 140
applicationDidFinishLaunching delegate method

131
ApplicationDidFinishLaunchingNotification

notification 140
applicationDidHide delegate method 131
ApplicationDidHideNotification notification 140
applicationDidResignActive delegate method 131
ApplicationDidResignActiveNotification

notification 140
applicationDidUnhide delegate method 132
ApplicationDidUnhideNotification notification

140
applicationDidUpdate delegate method 132
ApplicationDidUpdateNotification notification

140
applicationDockMenu delegate method 132
ApplicationFileType constant 1911
applicationForFile instance method 1903
applicationIconImage instance method 107
applicationOpenFile delegate method 133
applicationOpenFiles delegate method 133
applicationOpenFileWithoutUI delegate method

133
applicationOpenTempFile delegate method 134
applicationOpenUntitledFiledelegate method 134
applicationPrintFile delegate method 134
applicationPrintFiles delegate method 135
applicationShouldHandleReopen delegate method

136
applicationShouldOpenUntitledFile delegate

method 136
applicationShouldTerminate delegate method 136
applicationShouldTerminateAfterLastWindowClosed

delegate method 137
applicationWillBecomeActive delegate method 137
ApplicationWillBecomeActiveNotification

notification 140
applicationWillFinishLaunchingdelegate method

137
ApplicationWillFinishLaunchingNotification

notification 141
applicationWillHide delegate method 138
ApplicationWillHideNotificationnotification 141
applicationWillPresentErrordelegate method 138
applicationWillResignActivedelegate method 138

ApplicationWillResignActiveNotification
notification 141

applicationWillTerminate delegate method 139
ApplicationWillTerminateNotification

notification 141
applicationWillUnhide delegate method 139
ApplicationWillUnhideNotification notification

141
applicationWillUpdate delegate method 139
ApplicationWillUpdateNotification notification

141
appliesImmediately instance method 1721
areCursorRectsEnabled instance method 1817
arrangedObjects instance method 148
arrangeInFront instance method 107
arrangeObjects instance method 149
arrowCursor class method 480
arrowPosition instance method 1112
ArrowsDefaultSetting constant 1262
ArrowsMaxEnd constant 1262
ArrowsMinEnd constant 1262
ArrowsNone constant 1262
arrowsPosition instance method 1256
ascender instance method 655
AscendingPageOrder constant 1164
aspectRatio instance method 1817
AtBottom constant 211
attachColorList instance method 389, 397
attachColorList interface method 1948
attachedMenu instance method 915, 962
attachedMenuView instance method 963
attachedSheet instance method 1818
attachment instance method 1541
attachment interface method 1936
attachmentCell instance method 1536
AttachmentCharacter constant 1537
attachPopUpWithFrameInView instance method 1112
attachSubmenuForItemAtIndex instance method 963
AtTop constant 211
attributedAlternateTitle instance method 256,

275
attributedStringValue instance method 306, 448
attributedSubstringWithRange instance method

804, 1624
attributedSubstringWithRange interface method

2026
attributedTitle instance method 256, 275, 703, 935,

1400
attributedTitle interface method 1923
attributes instance method 733
attributesForVoice class method 1372
AutoColumnResizing constant 240
autoenablesItems instance method 915, 1096, 1112

2037
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

autohidesScrollers instance method 1271
automaticallyPreparesContent instance method

1010
AutomaticLayoutAlgorithm constant 1604
AutoPagination constant 1148
autorecalculatesKeyViewLoop instance method 1818
autorepeat instance method 1410, 1416
autoresizesAllColumnsToFit instance method 1449
autoresizesOutlineColumn instance method 1032
autoresizesSubviews instance method 1742
autoresizingMask instance method 1742
autosavedContentsFileURL instance method 523
autosaveDocument instance method 523
autosaveExpandedItems instance method 1032
autosaveName instance method 1449
AutosaveOperation constant 555
autosavesConfiguration instance method 1696
autosaveTableColumns instance method 1450
autosavingDelay instance method 562
autosavingFileType instance method 524
autoscroll instance method 344, 1742
autosizesCells instance method 884
autovalidates instance method 1710
availableColorLists class method 381
availableFontFamilies instance method 673
availableFontNamesWithTraits instance method

673
availableFonts instance method 673
availableTypeFromArray instance method 1074
availableVoices class method 1372
availableWindowDepths class method 716
avoidsEmptySelection instance method 149

B

backgroundColor instance method 276, 345, 493, 505,
755, 885, 1272, 1450, 1513, 1547, 1566, 1577, 1624,
1818

backgroundLayoutEnabled instance method 827
BackgroundTab constant 1496
backingType instance method 1818
BackspaceCharacter constant 1531
BackTabCharacter constant 1531
BacktabTextMovement constant 1530
BaselineAlignment constant 1553
baselineLocation instance method 1215
baseWritingDirection instance method 1060
becomeFirstResponder instance method 1190, 1625
becomeKeyWindow instance method 1819
becomeMainWindow instance method 1819
becomesKeyOnlyIfNeeded instance method 1053
beep class method 104

beginAlertSheet class method 69
beginCriticalAlertSheet class method 70
beginForDirectory instance method 1023
BeginFunctionKey constant 628
beginInformationalAlertSheet class method 70
beginModalSessionForWindow instance method 108
beginSheet instance method 59, 108
beginSheetForDirectory instance method 1023, 1234
beginSheetWithPrintInfo instance method 1047,

1167
Below constant 1876
BelowBottom constant 211
BelowTop constant 211
bestDepth class method 716
bestRepresentationForDevice instance method 755
BezelBorder constant 1788
bezelStyle instance method 256, 276, 1567, 1577
bezierPath class method 166
bezierPathByFlatteningPath instance method 174
bezierPathByReversingPath instance method 174
bezierPathWithOvalInRect class method 166
bezierPathWithRect class method 166
bind instance method 470, 1190
bind interface method 2004
bitmapData instance method 192
bitmapDataPlanes instance method 192
bitmapFormat instance method 192
bitsPerPixel instance method 193
bitsPerPixelFromDepth class method 717
bitsPerSample instance method 788
bitsPerSampleFromDepth class method 717
Black constant 727
blackColor class method 356
blackComponent instance method 370
blendedColorWithFractionOfColor instance method

370
blocksOtherRecognizers instance method 1363
blueColor class method 357
blueComponent instance method 370
BlueControlTint constant 339, 1181, 1262, 1496
BMPFileType constant 200
BoldMask constant 685
boldSystemFontOfSize class method 648
booleanForKeyInTable instance method 1130
Border constant 1553
borderColorForEdge instance method 1547
BorderlessWindowMask constant 1875
borderRect instance method 205
borderType instance method 205, 1272
BottomAlignment constant 1553
bottomMargin instance method 1141
BottomTabsBezelBorder constant 1496
boundingBox instance method 600, 1088

2038
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

boundingRectForFont instance method 655
boundingRectForGlyph instance method 655
boundingRectForGlyphRange instance method 828
bounds instance method 175, 1084, 1743
boundsRectForBlock instance method 1601
boundsRectForContentRect instance method 1547
boundsRectForTextBlock instance method 828
boundsRectForTextBlockAtIndex instance method

828
boundsRotation instance method 1743
boxType instance method 206
branchImage class method 247
BreakFunctionKey constant 629
breakUndoCoalescing instance method 1625
brightnessComponent instance method 370
brownColor class method 357
browserColumnConfigurationDidChange delegate

method 240
browserCreateRowsForColumn delegate method 240
browserDidScroll delegate method 241
BrowserInterfaceStyleDefault constant 816
browserIsColumnValid delegate method 241
browserNumberOfRowsInColumndelegate method 241
browserSelectCellWithStringInColumn delegate

method 241
browserSelectRowInColumn delegate method 241
browserShouldSizeColumnToWidthdelegate method

242
browserSizeToFitWidthOfColumn delegate method

242
browserTitleOfColumn delegate method 243
browserWillDisplayCell delegate method 243
browserWillScroll delegate method 243
Buffered constant 1875
buttonMask instance method 611
buttonNumber instance method 612
buttons instance method 59
bytesPerPlane instance method 193
bytesPerRow instance method 193

C

cacheDepthMatchesImageDepth instance method 755
cacheImageInRect instance method 1819
cacheMode instance method 756
cachesBezierPath instance method 175
calcDrawInfo instance method 306
calcSize instance method 449, 951
CalibratedBlackColorSpace constant 727
CalibratedRGBColorSpace constant 727
CalibratedWhiteColorSpace constant 727
canAdd instance method 1011

canBecomeKeyView instance method 1743
canBecomeKeyWindow instance method 1819
canBecomeMainWindow instance method 1820
canBeCompressedUsingType instance method 193
canBeDisabled instance method 812
canBeDisabled interface method 1979
cancel instance method 1234
CancelButton constant 1055
cancelButtonCell instance method 1294
cancelButtonRectForBounds instance method 1294
cancelIncrementalLoad instance method 756
cancelOperation interface method 1987
CancelTextMovement constant 1530
cancelUserAttentionRequest instance method 109
canChooseDirectories instance method 1024
canChooseFiles instance method 1024
canCloseDocument instance method 524
canCreateDirectories instance method 1234
canDragRowsWithIndexes instance method 1450
canDraw instance method 1744
canHide instance method 1820
canInitWithData class method 782
canInitWithPasteboard class method 752, 782, 978,

1357
canInsert instance method 149
canRemove instance method 1011
canSelectHiddenExtension instance method 1235
canSelectNext instance method 150
canSelectPrevious instance method 150
canSpawnSeparateThread instance method 1157
canStoreColor instance method 1820
capabilityMask instance method 612
capHeight instance method 656
capitalizeWord interface method 1987
CarriageReturnCharacter constant 1531
cascadeTopLeftFromPoint instance method 1821
catalogNameComponent instance method 371
cell instance method 449
cellAtIndex instance method 696
cellAtLocation instance method 885
cellAttribute instance method 307
cellBackgroundColor instance method 885
cellBaselineOffset instance method 1541
cellBaselineOffset interface method 1936
cellClass class method 220, 447
cellFrame instance method 1541
cellFrame interface method 1936
cellFrameAtLocation instance method 885
cellPrototype instance method 222
cells instance method 885
cellSize instance method 307, 886, 1541
cellSize interface method 1937
cellSizeForBounds instance method 307

2039
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

cellWithTag instance method 886
center instance method 1821
centerScanRect instance method 1744
centerSelectionInVisibleArea interface method

1988
CenterTabStopType constant 1597
CenterTextAlignment constant 1530
changeAttributes instance method 1625
ChangeAutosaved constant 555
ChangeBackground constant 338
ChangeBackgroundCellMask constant 339
changeCaseOfLetter interface method 1988
ChangeCleared constant 555
changeColor delegate method 394
changeColor instance method 1625
changeCount instance method 1075
changeDocumentBackgroundColor instance method

1626
ChangeDone constant 555
changeFont instance method 1513
ChangeGray constant 338
ChangeGrayCellMask constant 339
changeInLength instance method 1588
ChangeReadOtherContents constant 555
ChangesContents constant 338
changeSpelling instance method 1514
changeSpelling interface method 1941
ChangeUndone constant 555
changeWindowsItem instance method 109
characterCollection instance method 711
characterIdentifier instance method 711
characterIndexForGlyphAtIndex instance method

829
characterIndexForPoint instance method 805, 1626
characterIndexForPoint interface method 2026
characterRangeForGlyphRange instance method 829
characters instance method 612
charactersIgnoringModifiers instance method 612
checkForRemovableMedia instance method 1903
checkSpaceForParts instance method 1257
checkSpelling instance method 1514
checkSpellingOfString instance method 1382
childWindows instance method 1821
CircularBezelStyle constant 290
CircularSlider constant 1353
cleanUpAfterDragOperation instance method 1626
cleanUpOperation instance method 1157
clear instance method 984
clearColor class method 357
ClearControlTint constant 339, 1181, 1262, 1496
ClearDisplayFunctionKey constant 629
ClearLineFunctionKey constant 629
clearRecentDocuments instance method 562

clearsFilterPredicateOnInsertion instance
method 150

clearStartAnimation instance method 79
clearStopAnimation instance method 79
clickCount instance method 613
clickedColumn instance method 1451
clickedOnLinkAtIndex instance method 1626
clickedRow instance method 1451
clientView instance method 1215
ClipPagination constant 1148
clipRect class method 167
clipRectList class method 717
clipRectListInRange class method 718
ClockAndCalendarDatePickerStyle constant 511
ClosableWindowMask constant 1875
close instance method 525, 590, 1821, 1891
closeAllDocuments instance method 562
closedHandCursor class method 481
ClosedState constant 595
closePath instance method 175
closeSpellDocumentWithTag instance method 1382
closestTickMarkValueToValue instance method

1332, 1345
ClosingState constant 595
CMYKColorSpaceModel constant 406
CMYKModeColorPanel constant 393
collapseItem instance method 1032
collapseItemAndChildren instance method 1033
collapsesBorders instance method 1601
CollectionModeMask constant 691
collectionNames instance method 674
color instance method 194, 390, 409, 1501
colorForControlTint class method 357
colorFromPasteboard class method 357
colorizeByMappingGray instance method 194
ColorListDidChangeNotification notification 383
ColorListModeColorPanel constant 393
colorListNamed class method 381
colorNameComponent instance method 371
colorPanel instance method 397
ColorPanelAllModesMask constant 393
ColorPanelCMYKModeMask constant 393
ColorPanelColorDidChangeNotification

notification 394
ColorPanelColorListModeMask constant 393
ColorPanelCrayonModeMask constant 393
ColorPanelCustomPaletteModeMask constant 393
ColorPanelGrayModeMask constant 393
ColorPanelHSBModeMask constant 393
ColorPanelRGBModeMask constant 393
ColorPanelWheelModeMask constant 393
ColorPboardType constant 1080
colorSpace instance method 371

2040
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

colorSpaceFromDepth class method 718
colorSpaceModel instance method 404
colorSpaceName instance method 371, 788
colorUsingColorSpace instance method 372
colorUsingColorSpaceName instance method 372
colorUsingColorSpaceNameAndDevice instance

method 372
colorWithAlphaComponent instance method 373
colorWithCalibratedHSB class method 357
colorWithCalibratedRGB class method 358
colorWithCalibratedWhite class method 358
colorWithCatalogName class method 358
colorWithColorSpace class method 359
colorWithDeviceCMYK class method 359
colorWithDeviceHSB class method 359
colorWithDeviceRGB class method 359
colorWithDeviceWhite class method 360
colorWithKey instance method 382
colorWithPatternImage class method 360
columnAtPoint instance method 1434, 1451
columnAutoresizingStyle instance method 1451
ColumnConfigurationDidChangeNotification

notification 243
columnContentWidthForColumnWidth instance

method 222
columnForPoint instance method 886
columnOfCell instance method 886
columnOfMatrix instance method 222
columnResizingType instance method 222
columnsAutosaveName instance method 223
columnsInRect instance method 1452
columnSpan instance method 1606
columnWidthForColumnContentWidth instance

method 223
columnWithIdentifier instance method 1452
comboBoxCellCompletedString interface method

1953
comboBoxCellIndexOfItem interface method 1954
comboBoxCellObjectValueForItemAtIndex interface

method 1954
comboBoxCompletedString interface method 1951
comboBoxIndexOfItem interface method 1952
comboBoxSelectionDidChange delegate method 424
ComboBoxSelectionDidChangeNotification

notification 424
comboBoxSelectionIsChangingdelegate method 424
ComboBoxSelectionIsChangingNotification

notification 425
comboBoxValueForItemAtIndex interface method

1952
comboBoxWillDismiss delegate method 424
ComboBoxWillDismissNotification notification 425
comboBoxWillPopUp delegate method 424

ComboBoxWillPopUpNotification notification 425
CommandKeyMask constant 626
commands instance method 1363
commitEditing instance method 470
commitEditing interface method 1969
compare instance method 308
complete interface method 1988
completedString instance method 431
completes instance method 415, 431
completionDelay instance method 1677, 1686
completionsForPartialWordRange instance method

1382
components instance method 373
CompositeClear constant 769
CompositeCopy constant 769
CompositeDestinationAtop constant 769
CompositeDestinationIn constant 769
CompositeDestinationOut constant 769
CompositeDestinationOver constant 769
CompositeHighlight constant 769
CompositePlusDarker constant 769
CompositePlusLighter constant 769
CompositeSourceAtop constant 769
CompositeSourceIn constant 769
CompositeSourceOut constant 769
CompositeSourceOver constant 769
compositeToPoint instance method 756
compositeToPointFromRect instance method 757
compositeToPointFromRectWithFraction instance

method 757
compositeToPointWithFraction instance method

758
CompositeXOR constant 769
CompressedMask constant 685
compressionFactor instance method 194
compressionType instance method 194
CompressOperation constant 1911
concat instance method 54
concludeDragOperation instance method 1744, 1822
concludeDragOperation interface method 1956
CondensedMask constant 685
configurationDictionary instance method 1697
constrainFrameRectToScreen instance method 1822
constrainScrollPoint instance method 345
containerSize instance method 1557
containsPoint instance method 175, 1557
content instance method 1011
contentAspectRatio instance method 1822
contentMaxSize instance method 1823
contentMinSize instance method 1823
contentRect instance method 1488
contentRectForFrameRect class method 1814
contentRectForFrameRect instance method 1823

2041
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

contentResizeIncrements instance method 1824
ContentsCellMask constant 339
contentSize instance method 590, 1272
contentSizeForFrameSize class method 1270
contentView instance method 206, 590, 1272, 1824
contentViewMargins instance method 207
contentWidth instance method 1548
contentWidthValueType instance method 1548
context instance method 109, 613, 1157
contextHelpForObject instance method 741
ContextHelpModeDidActivateNotification

notification 743
ContextHelpModeDidDeactivateNotification

notification 743
contextMenuRepresentation instance method 915
continueTrackingMouse instance method 308
ContinuousCapacityLevelIndicatorStyle constant

874
controlAlternatingRowBackgroundColors class

method 360
controlBackgroundColor class method 360
controlColor class method 361
controlContentFontOfSize class method 648
controlDarkShadowColor class method 361
controlDidFailToFormatStringErrorDescription

delegate method 463
controlDidFailToValidatePartialStringdelegate

method 464
controlHighlightColor class method 361
ControlInterfaceStyleDefault constant 816
controlIsValidObject delegate method 464
ControlKeyMask constant 626
controlLightHighlightColor class method 361
controlPointBounds instance method 175
controlShadowColor class method 362
controlSize instance method 308, 1174, 1257, 1488
controlTextColor class method 362
controlTextDidBeginEditing delegate method 464
ControlTextDidBeginEditingNotification

notification 466
controlTextDidChange delegate method 465
ControlTextDidChangeNotification notification

467
controlTextDidEndEditing delegate method 465
ControlTextDidEndEditingNotification

notification 467
controlTextShouldBeginEditing delegate method

465
controlTextShouldEndEditingdelegate method 465
controlTextViewCompletionsForPartialWordRange

delegate method 465
controlTextViewDoCommandBySelector delegate

method 466

controlTint instance method 308, 1174, 1257, 1488
controlView instance method 47, 309
conversationIdentifier instance method 805, 1627
conversationIdentifier interface method 2027
convertAttributes instance method 674
convertBaseToScreen instance method 1824
convertFont instance method 674
convertFontToFace instance method 675
convertFontToFamily instance method 675
convertFontToHaveTrait instance method 675
convertFontToNotHaveTrait instance method 676
convertFontToSize instance method 676
convertGlobalToWindowNumber class method 718
convertPointFromView instance method 1744
convertPointToView instance method 1745
convertRectFromView instance method 1745
convertRectToView instance method 1745
convertScreenToBase instance method 1824
convertSizeFromView instance method 1746
convertSizeToView instance method 1746
convertWeight instance method 677
convertWindowNumberToGlobal class method 718
copiesOnScroll instance method 345
copy instance method 984, 1514
copyBitmapFromGState class method 719
copyBits class method 719
copyFont instance method 1514
CopyOperation constant 1911
copyRuler instance method 1515
cornerView instance method 1452
countWordsInString instance method 1382
coveredCharacterSet instance method 656
CrayonModeColorPanel constant 393
createContext instance method 1157
criticalAlertPanel class method 71
CriticalStyle constant 64
criticalValue instance method 861, 869
crosshairCursor class method 481
currentContext class method 580, 731
currentContextDrawingToScreen class method 732
currentControlTint class method 362
currentCursor class method 481
currentDirectory instance method 563
currentDocument instance method 563
currentEditor instance method 449
currentEvent instance method 110, 1824
currentInputManager class method 804
currentMode interface method 1944
currentOperation class method 1154
currentPage instance method 1085, 1158
currentPoint instance method 176
currentProgress instance method 80
currentValue instance method 80

2042
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

CursorPointingDevice constant 625
CursorUpdate constant 623
CursorUpdateMask constant 625
curveToPoint instance method 176
CustomColorSpace constant 727
customizationPaletteIsRunning instance method

1697
CustomizeToolbarItemIdentifier constant 1718
CustomPaletteModeColorPanel constant 393
cut instance method 984, 1515
cyanColor class method 362
cyanComponent instance method 373
cycleToNextInputLanguage class method 804
cycleToNextInputServerInLanguage class method

804

D

DarkGray constant 727
darkGrayColor class method 363
data1 instance method 613
data2 instance method 614
dataCell instance method 1423
dataCellForRow instance method 1424
dataForType instance method 1075
dataOfType instance method 525
dataRepresentationOfType instance method 525
dataSource instance method 415, 431, 1452
dataWithEPSInsideRect instance method 1746, 1825
dataWithPDFInsideRect instance method 1747, 1825
datePickerCellValidateProposedDateValue

delegate method 512
datePickerElements instance method 494, 505
datePickerMode instance method 494, 506
datePickerStyle instance method 494, 506
dateValue instance method 494, 506
deactivate instance method 110, 409
DecimalTabStopType constant 1597
declareTypes instance method 1075
DecompressOperation constant 1911
DecrementArrow constant 1262
DecrementLine constant 1261
DecrementPage constant 1261
DecryptOperation constant 1911
deepestScreen class method 1248
deepestScreen instance method 1825
defaultAttachmentScaling instance method 829
defaultButtonCell instance method 1825
defaultCompletionDelay class method 1677, 1685
DefaultControlTint constant 339, 1180, 1262, 1496
defaultDepthLimit class method 1814
defaultFlatness class method 167

defaultFocusRingType class method 304, 1737
defaultLineCapStyle class method 167
defaultLineHeightForFont instance method 830
defaultLineJoinStyle class method 168
defaultLineWidth class method 168
defaultMenu class method 304, 1738
defaultMiterLimit class method 168
defaultParagraphStyle class method 1059
defaultParagraphStyle instance method 1627
defaultPlaceholderForMarker class method 474
defaultPrinter class method 1140
DefaultReturn constant 73
defaults instance method 1721
defaultTabInterval instance method 1061
defaultTokenizingCharacterSet class method 1677,

1685
DefaultTokenStyle constant 1688
defaultType instance method 563
defaultVoice class method 1372
defaultWindingRule class method 168
defaultWritingDirectionForLanguage class method

1060
delegate instance method 60, 80, 110, 223, 490, 495,

507, 591, 678, 758, 830, 887, 915, 1235, 1358, 1363,
1373, 1387, 1453, 1488, 1515, 1567, 1588, 1627, 1686,
1697, 1826

DelegateReplyCancel constant 129
DelegateReplyFailure constant 129
DelegateReplySuccess constant 129
delete instance method 985, 1515
deleteBackward interface method 1988
deleteBackwardByDecomposingPreviousCharacter

interface method 1989
DeleteCharacter constant 1531
DeleteCharFunctionKey constant 629
deleteForward interface method 1989
DeleteFunctionKey constant 628
deleteGlyphsInRange instance method 830
DeleteLineFunctionKey constant 629
deleteToBeginningOfLine interface method 1989
deleteToBeginningOfParagraph interface method

1989
deleteToEndOfLine interface method 1989
deleteToEndOfParagraph interface method 1990
deleteToMark interface method 1990
deleteWordBackward interface method 1990
deleteWordForward interface method 1990
deliverResult instance method 1158
deltaX instance method 614
deltaY instance method 614
deltaZ instance method 614
deminiaturize instance method 1826
depth instance method 1249

2043
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

depthLimit instance method 1826
descender instance method 656
DescendingPageOrder constant 1164
deselectAll instance method 1453
deselectAllCells instance method 887
deselectColumn instance method 1453
deselectItemAtIndex instance method 416, 431
deselectRow instance method 1454
deselectSelectedCell instance method 887
destroyContext instance method 1158
DestroyOperation constant 1911
detachColorList instance method 390, 397
detachColorList interface method 1948
detachSubmenu instance method 963
DeviceBitsPerSample constant 727
DeviceBlackColorSpace constant 727
deviceCMYKColorSpace class method 402
DeviceCMYKColorSpace constant 727
DeviceColorSpaceName constant 727
deviceDescription instance method 1131, 1249, 1826
deviceGrayColorSpace class method 403
deviceID instance method 615
DeviceIndependentModifierFlagsMask constant

627
DeviceIsPrinter constant 727
DeviceIsScreen constant 727
DeviceNColorSpaceModel constant 406
DeviceResolution constant 727
deviceRGBColorSpace class method 403
DeviceRGBColorSpace constant 727
DeviceSize constant 727
DeviceWhiteColorSpace constant 727
dictionary instance method 1141
didAddSubview instance method 1747
didChangeText instance method 1627
DidRemoveItemNotification notification 1706
directory instance method 1235
DirectoryFileType constant 1911
DirectSelection constant 1876
disableCursorRects instance method 1827
Disabled constant 338
disabledControlTextColor class method 363
disableFlushWindow instance method 1827
disableKeyEquivalentForDefaultButtonCell

instance method 1828
disableScreenUpdates class method 719
disableScreenUpdatesUntilFlush instance method

1828
disappearingItemCursor class method 481
DisappearingItemDefault constant 92
discardCachedImage instance method 1828
discardCursorRects instance method 1747, 1828
discardEditing instance method 471

discardEditing interface method 1970
discardEventsMatchingMask instance method 110,

1829
DisclosureBezelStyle constant 290
DiscreteCapacityLevelIndicatorStyle constant

874
dismissPopUp instance method 1113
display instance method 1747, 1829
displayAllColumns instance method 224
displayColumn instance method 224
displayedCommandsTitle instance method 1364
displayIfNeeded instance method 1748, 1829
displayIfNeededIgnoringOpacity instance method

1748
displayIfNeededInRect instance method 1748
displayIfNeededInRectIgnoringOpacity instance

method 1748
displayMode instance method 1697
DisplayModeDefault constant 1703
DisplayModeIconAndLabel constant 1703
DisplayModeIconOnly constant 1703
DisplayModeLabelOnly constant 1703
displayName instance method 526, 656
displayNameForType instance method 564
displayRect instance method 1749
displayRectIgnoringOpacity instance method 1749
displaysWhenScreenProfileChanges instance

method 1829
dissolveToPoint instance method 758
dissolveToPointFromRect instance method 758
dividerThickness instance method 1387
doClick instance method 224
DocModalWindowMask constant 1055
doCommandBySelector instance method 805, 812, 1627
doCommandBySelector interface method 1979, 1990,

2027
document instance method 1891
documentClassForType instance method 564
documentClassNames instance method 564
documentCursor instance method 345, 1272
documentForFileName instance method 565
documentForURL instance method 565
documentForWindow instance method 565
documentRect instance method 346
documents instance method 566
documentView instance method 346, 1273
documentVisibleRect instance method 346, 1273
doDoubleClick instance method 224
domain instance method 1131
dottedFrameRect class method 719
doubleAction instance method 224, 888, 1400, 1454
DoubleType constant 337
doubleValue instance method 48, 309, 450, 1175

2044
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

DownArrowFunctionKey constant 627
DownTextMovement constant 1530
DPSRunLoopMode constant 580
dragColor class method 388
dragFile instance method 1749
draggedColumn instance method 1434
draggedDistance instance method 1435
draggedImage instance method 583
draggedImage interface method 1960
draggedImageLocation instance method 583
draggedImageLocation interface method 1960
draggingDestinationWindow instance method 583
draggingDestinationWindow interface method 1960
draggingEnded interface method 1956
draggingEntered instance method 1750, 1830
draggingEntered interface method 1956
draggingExited instance method 1750, 1830
draggingExited interface method 1957
draggingLocation instance method 583
draggingLocation interface method 1961
draggingPasteboard instance method 584
draggingPasteboard interface method 1961
draggingSequenceNumber instance method 584
draggingSequenceNumber interface method 1961
draggingSource instance method 584
draggingSource interface method 1961
draggingSourceOperationMask instance method 584
draggingSourceOperationMask interface method

1961
draggingSourceOperationMaskForLocal interface

method 1966
draggingUpdated instance method 1750, 1831
draggingUpdated interface method 1957
dragImage instance method 1751, 1831
dragImageForRows instance method 1454
dragImageForRowsWithIndexes instance method 1455
DragOperationAll constant 1963
DragOperationCopy constant 1963
DragOperationDelete constant 1963
DragOperationEvery constant 1963
dragOperationForDraggingInfo instance method

1628
DragOperationGeneric constant 1963
DragOperationLink constant 1963
DragOperationMove constant 1963
DragOperationNone constant 1963
DragOperationPrivate constant 1963
DragPboard constant 1080
dragPromisedFilesOfTypes instance method 1752
draw instance method 788
drawArrow instance method 1257
drawAtPoint instance method 759, 789
drawAttributedString class method 720

drawBackgroundForBlock instance method 1601
drawBackgroundForGlyphRange instance method 830
drawBackgroundInClipRect instance method 1455
drawBackgroundWithFrame instance method 1548
drawBarInside instance method 1345
drawBezel instance method 276
drawBitmap class method 720
drawBorderAndBackgroundWithFrameInView instance

method 952
drawButton class method 721
drawCell instance method 450
drawCellAtIndex instance method 696
drawCellAtLocation instance method 888
drawCellInside instance method 450
drawColorTiledRects class method 722
drawDarkBezel class method 722
drawDividerInRect instance method 1388
drawerDidClose delegate method 596
DrawerDidCloseNotification notification 597
drawerDidOpen delegate method 596
DrawerDidOpenNotification notification 597
drawers instance method 1831
drawerShouldClose delegate method 596
drawerShouldOpen delegate method 596
drawerWillClose delegate method 596
DrawerWillCloseNotification notification 597
drawerWillOpen delegate method 597
DrawerWillOpenNotification notification 597
drawerWillResizeContents delegate method 597
drawGlyphsForGlyphRange instance method 831
drawGrayBezel class method 722
drawGridInClipRect instance method 1455
drawGroove class method 723
drawHashMarksAndLabelsInRect instance method

1215
drawImage instance method 276
drawImageWithFrameInView instance method 952
drawingRectForBounds instance method 309
drawInRect instance method 759, 789
drawInsertionPointInRect instance method 1628
drawInteriorWithFrameInView instance method 309
drawKeyEquivalentWithFrameInView instance

method 952
drawKnob instance method 1258, 1346
drawKnobInRect instance method 1346
drawLabel instance method 1501
drawLightBezel class method 723
drawMarkersInRect instance method 1216
drawMethod instance method 490
drawPageBorderWithSize instance method 1753
drawParts instance method 1258
drawRect instance method 1203, 1753
drawRepresentationInRect instance method 759

2045
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

drawRow instance method 1456
drawsBackground instance method 346, 495, 888, 1273,

1488, 1516, 1567, 1577, 1629
drawsCellBackground instance method 888
drawSegment instance method 1308
drawSeparatorItemWithFrameInView instance

method 953
drawsGrid instance method 1456
drawSheetBorderWithSize instance method 1753
drawSortIndicatorWithFrameInView instance

method 1432
drawsOutsideLineFragmentForGlyphAtIndex

instance method 831
drawStateImageWithFrameInView instance method

953
drawStatusBarBackgroundInRect instance method

1400
drawStrikethroughForGlyphRange instance method

831
drawSwatchInRect instance method 373
drawTitle instance method 277
drawTitleOfColumn instance method 225
drawTitleWithFrameInView instance method 953
drawUnderlineForGlyphRange instance method 832
drawViewBackgroundInRect instance method 1629
drawWellInside instance method 409
drawWhiteBezel class method 723
drawWindowBackground class method 723
drawWithFrameInView instance method 310, 1542
drawWithFrameInView interface method 1937
DropAbove constant 1477
DropOn constant 1477
DropOnItemIndex constant 1038
DuplicateOperation constant 1912
duration instance method 81
DynamicSystemColorSpace constant 727

E

echosBullets instance method 1304
edge instance method 591
Editable constant 338
editedColumn instance method 1456
editedInRange instance method 1589
editedMask instance method 1589
editedRange instance method 1589
editedRow instance method 1456
editLocation instance method 1456
editWithFrameInView instance method 310
elementCount instance method 176
enableCursorRects instance method 1831
enableFlushWindow instance method 1832

enableKeyEquivalentForDefaultButtonCell
instance method 1832

enableScreenUpdates class method 723
enclosingScrollView instance method 1754
encodingScheme instance method 657
EncryptOperation constant 1911
endEditing instance method 310
endEditingForObject instance method 1832
EndFunctionKey constant 628
endModalSession instance method 111
endPage instance method 1754
endSheet instance method 111
ensureAttributesAreFixedInRange instance method

1590
EnterCharacter constant 1531
entityName instance method 1012
entryType instance method 310
EPSOperationWithViewInsideRect class method

1154
EPSRepresentation instance method 601
EraDatePickerElementFlag constant 512
eraseRect class method 724
EraserPointingDevice constant 625
ErrorReturn constant 73
eventMaskFromType class method 607
eventNumber instance method 615
EventTrackingRunLoopMode constant 130
ExecuteFunctionKey constant 629
ExpandedMask constant 685
expandItem instance method 1033
expandItemAndChildren instance method 1033
exposedBindings interface method 2004
extendPowerOffBy instance method 1904
extraLineFragmentRect instance method 832
extraLineFragmentTextContainer instance method

833
extraLineFragmentUsedRect instance method 833

F

F10FunctionKey constant 627
F11FunctionKey constant 627
F12FunctionKey constant 627
F13FunctionKey constant 627
F14FunctionKey constant 627
F15FunctionKey constant 627
F16FunctionKey constant 628
F17FunctionKey constant 628
F18FunctionKey constant 628
F19FunctionKey constant 628
F1FunctionKey constant 627
F20FunctionKey constant 628

2046
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

F21FunctionKey constant 628
F22FunctionKey constant 628
F23FunctionKey constant 628
F24FunctionKey constant 628
F25FunctionKey constant 628
F26FunctionKey constant 628
F27FunctionKey constant 628
F28FunctionKey constant 628
F29FunctionKey constant 628
F2FunctionKey constant 627
F30FunctionKey constant 628
F31FunctionKey constant 628
F32FunctionKey constant 628
F33FunctionKey constant 628
F34FunctionKey constant 628
F35FunctionKey constant 628
F3FunctionKey constant 627
F4FunctionKey constant 627
F5FunctionKey constant 627
F6FunctionKey constant 627
F7FunctionKey constant 627
F8FunctionKey constant 627
F9FunctionKey constant 627
FaceModeMask constant 691
familyName instance method 657
fetch instance method 1012
fieldEditorForObject instance method 1832
fileAttributes instance method 636
fileAttributesToWriteToFile instance method 526
fileAttributesToWriteToURLOfType instance

method 526
FileContentsPboardType constant 1080
fileExtensionsFromType instance method 566
fileModificationDate instance method 527
fileName instance method 527
filename instance method 636, 1235
fileNameExtensionWasHiddenInLastRunSavePanel

instance method 528
fileNameFromRunningSavePanelForSaveOperation

instance method 528
filenames instance method 1024
fileNamesFromRunningOpenPanel instance method

566
FilenamesPboardType constant 1080
FilesPromisePboardType constant 1081
fileSystemChanged instance method 1904
FilesystemFileType constant 1911
fileType instance method 528
fileTypeFromLastRunSavePanel instance method

528
fileURL instance method 529
fileWrapper instance method 1537
fileWrapperOfType instance method 529

fileWrapperRepresentationOfType instance method
529

fileWrappers instance method 636
fill instance method 177
fillRect class method 169
fillRectList class method 724
fillRectListInRange class method 724
fillRectListWithColors class method 724
fillRectListWithColorsInRange class method 724
filterPredicate instance method 151
finalWritePrintInfo instance method 1167
findApplications instance method 1904
FindFunctionKey constant 629
FindPanelActionNext constant 1666
FindPanelActionPrevious constant 1666
FindPanelActionReplace constant 1666
FindPanelActionReplaceAll constant 1666
FindPanelActionReplaceAllInSelection constant

1666
FindPanelActionReplaceAndFind constant 1666
FindPanelActionSelectAll constant 1666
FindPanelActionSelectAllInSelection constant

1666
FindPanelActionSetFindString constant 1666
FindPanelActionShowFindPanel constant 1665
FindPboard constant 1080
findString instance method 741
finishedDraggingImage interface method 1966
finishLaunching instance method 112
FirstButtonReturn constant 64
FirstColumnOnlyAutoresizingStyle constant 1478
firstLineHeadIndent instance method 1061
firstRectForCharacterRange instance method 805,

1629
firstRectForCharacterRange interface method 2027
firstResponder instance method 1833
firstTextView instance method 833
firstUnlaidCharacterIndex instance method 833
firstUnlaidGlyphIndex instance method 834
firstVisibleColumn instance method 225
FitPagination constant 1148
FixedLayoutAlgorithm constant 1604
FixedPitchMask constant 685
fixesAttributesLazily instance method 1590
FlagsChanged constant 624
flagsChanged instance method 1190
FlagsChangedMask constant 625
flatness instance method 177
FlexibleSpaceItemIdentifier constant 1718
floatForKeyInTable instance method 1131
FloatingPointSamplesBitmapFormat constant 201
FloatingWindowLevel constant 1875
FloatType constant 337

2047
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

floatValue instance method 48, 311, 451
flush instance method 733
flushBufferedKeyEvents instance method 1190
flushGraphics instance method 733
flushWindow instance method 1833
flushWindowIfNeeded instance method 1834
FocusRingAbove constant 728
FocusRingBelow constant 728
FocusRingOnly constant 728
focusRingType instance method 311, 1754
FocusRingTypeDefault constant 728
FocusRingTypeExterior constant 728
FocusRingTypeNone constant 728
focusView class method 1738
font instance method 311, 451, 964, 1489, 1516
fontAttributes instance method 666
FontCollectionApplicationOnlyMask constant 685
fontDescriptor instance method 657
fontDescriptorsInCollection instance method 678
FontFaceAttribute constant 666
FontFamilyAttribute constant 666
fontManagerWillIncludeFont delegate method 685
fontMenu instance method 678
fontName instance method 657
FontNameAttribute constant 666
fontPanel instance method 678
FontPboard constant 1080
FontPboardType constant 1080
FontSizeAttribute constant 666
FontVisibleNameAttribute constant 666
fontWithFamily instance method 679
fontWithNameAndMatrix class method 648
fontWithNameAndSize class method 648
fontWithNameHasTraits instance method 679
formatter instance method 311, 451
FormFeedCharacter constant 1531
FourByteGlyphPacking constant 663
fractionOfDistanceThroughGlyphForPoint instance

method 834
frame instance method 1250, 1754, 1834
frameAutosaveName instance method 1834
frameOfCellAtLocation instance method 1457
frameOfColumn instance method 225
frameOfInsideOfColumn instance method 225
frameRate instance method 81
frameRect class method 725
frameRectForContentRect class method 1814
frameRectForContentRect instance method 1835
frameRectWithWidth class method 725
frameRectWithWidthUsingOperation class method

725
frameRotation instance method 1755
frameSizeForContentSize class method 1270

fullPathForApplication instance method 1904
FunctionKeyMask constant 626

G

generalPasteboard class method 1072
GeneralPboard constant 1080
genericCMYKColorSpace class method 403
genericGrayColorSpace class method 404
genericRGBColorSpace class method 404
getPixel instance method 195
GIFFileType constant 200
glyphAtIndex instance method 834
glyphAttributeForGlyphAtIndex instance method

834
glyphIndexForPoint instance method 835
glyphInfoWithCharacterIdentifierInCollectionAnd-

BaseString class method 710
glyphInfoWithGlyphForFontAndBaseString class

method 710
glyphInfoWithGlyphNameForFontAndBaseString

class method 711
GlyphInscribeAbove constant 856
GlyphInscribeBase constant 856
GlyphInscribeBelow constant 856
GlyphInscribeOverBelow constant 856
GlyphInscribeOverstrike constant 856
glyphIsEncoded instance method 658
glyphName instance method 712
glyphPacking instance method 658
glyphRangeForBoundingRect instance method 835
glyphRangeForBoundingRectWithoutAdditionalLayout

instance method 835
glyphRangeForCharacterRange instance method 836
glyphRangeForTextContainer instance method 836
glyphsInRange instance method 836
glyphWithName instance method 658
gotoBeginning instance method 985
gotoEnd instance method 985
gotoPosterFrame instance method 985
gradientType instance method 277
graphicsContext instance method 1835
GraphicsContextDestinationAttributeName

constant 736
GraphicsContextPDFFormat constant 736
GraphicsContextPSFormat constant 736
GraphicsContextRepresentationFormatAttributeName

constant 736
graphicsContextWithAttributes class method 732
graphicsContextWithWindow class method 732
GraphiteControlTint constant 340, 1181, 1262, 1496
grayColor class method 363

2048
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

GrayColorSpaceModel constant 405
GrayModeColorPanel constant 393
greenColor class method 363
greenComponent instance method 374
gridColor class method 363
gridColor instance method 1457
GridNone constant 1478
gridStyleMask instance method 1457
GrooveBorder constant 1788
gState instance method 1755, 1835
guessesForWord instance method 1382

H

handleMouseEvent instance method 805
hasAlpha instance method 789
hasDynamicDepthLimit instance method 1835
hasEditedDocuments instance method 566
hasHorizontalRuler instance method 1273
hasHorizontalScroller instance method 225, 1273
HasImageHorizontal constant 338
HasImageOnLeftOrBottom constant 338
hasMarkedText instance method 805, 1629
hasMarkedText interface method 2027
HasOverlappingImage constant 338
hasShadow instance method 1836
hasSubmenu instance method 935
hasSubmenu interface method 1923
hasUnappliedChanges instance method 1721
hasUnautosavedChanges instance method 530
hasUndoManager instance method 530
hasValidObjectValue instance method 312
hasVerticalRuler instance method 1274
hasVerticalScroller instance method 416, 432, 1274
headerCell instance method 1424
headerLevel instance method 1061
headerRectOfColumn instance method 1435
headerView instance method 1458
headIndent instance method 1062
Height constant 1553
heightAdjustLimit instance method 1755
heightTracksTextView instance method 1558
helpAnchor instance method 60
HelpButtonBezelStyle constant 290
HelpFunctionKey constant 629
HelpKeyMask constant 626
helpRequested instance method 915, 1191
hide class method 481
hide instance method 112
hideOtherApplications instance method 112, 1904
hidesEmptyCells instance method 1602
hidesOnDeactivate instance method 1836

highlight instance method 256, 1258
highlightCellAtLocation instance method 889
highlightColor class method 364
highlightColorInView instance method 247
highlightColorWithFrameInView instance method

312
Highlighted constant 338
highlightedBranchImage class method 247
highlightedItemIndex instance method 964
highlightedTableColumn instance method 1458
highlightMode instance method 1401
highlightRect class method 725
highlightsBy instance method 277
highlightSelectionInClipRect instance method

1458
highlightWithFrameInView instance method 312,

1542
highlightWithFrameInView interface method 1937
highlightWithLevel instance method 374
hitPart instance method 1258
hitTest instance method 1756
HomeFunctionKey constant 628
horizontalEdgePadding instance method 964
horizontalLineScroll instance method 1274
horizontalPageScroll instance method 1275
horizontalPagination instance method 1141
HorizontalRuler constant 1223
horizontalRulerView instance method 1275
horizontalScroller instance method 1275
host instance method 1131
hotSpot instance method 484
HourMinuteDatePickerElementFlag constant 512
HourMinuteSecondDatePickerElementFlag constant

512
HSBModeColorPanel constant 393
HTMLPboardType constant 1080
hueComponent instance method 374
hyphenationFactor instance method 837, 1062

I

IBeamCursor class method 482
ICCProfileData instance method 405
icon instance method 60, 636
iconForFile instance method 1904
iconForFiles instance method 1905
iconForFileType instance method 1905
identifier instance method 1424, 1501, 1698
IdentityMappingCharacterCollection constant

712
ignoredWords instance method 1383

2049
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

ignoreModifierKeysWhileDragging interface method
1966

ignoresAlpha class method 364
ignoresMouseEvents instance method 1836
ignoresMultiClick instance method 451
ignoreSpelling instance method 1516
ignoreSpelling interface method 1974
ignoreWord instance method 1383
IllegalTextMovement constant 1530
image instance method 257, 313, 485, 797, 805, 935,

1204, 1308, 1333, 1401, 1710
image interface method 1923
imageablePageBounds instance method 1142
ImageAbove constant 339
ImageAlignBottom constant 776
ImageAlignBottomLeft constant 776
ImageAlignBottomRight constant 776
ImageAlignCenter constant 776
ImageAlignLeft constant 776
imageAlignment instance method 774, 797
ImageAlignRight constant 776
ImageAlignTop constant 776
ImageAlignTopLeft constant 776
ImageAlignTopRight constant 776
imageAndTitleOffset instance method 964
imageAndTitleWidth instance method 965
ImageBelow constant 339
ImageCacheAlways constant 770
ImageCacheBySize constant 770
ImageCacheDefault constant 770
ImageCacheNever constant 770
ImageCellType constant 338
ImageColorSyncProfileData constant 199
ImageCompressionFactor constant 199
ImageCompressionMethod constant 199
ImageCurrentFrame constant 200
ImageCurrentFrameDuration constant 200
imageDidLoadPartOfRepresentation delegate

method 771
imageDidLoadRepresentation delegate method 771
imageDidLoadRepresentationHeader delegate

method 771
imageDidNotDraw delegate method 772
imageDimsWhenDisabled instance method 278
ImageDitherTransparency constant 199
ImageEXIFData constant 200
imageFileTypes class method 752, 782
imageForSegment instance method 1319
ImageFrameButton constant 776
ImageFrameCount constant 200
ImageFrameGrayBezel constant 776
ImageFrameGroove constant 776
ImageFrameNone constant 776

ImageFramePhoto constant 776
imageFrameStyle instance method 774, 798
ImageGamma constant 200
ImageInterlaced constant 199
imageInterpolation instance method 733
ImageInterpolationDefault constant 737
ImageInterpolationHigh constant 737
ImageInterpolationLow constant 737
ImageInterpolationNone constant 737
ImageLeft constant 339
ImageLoadStatusCancelled constant 770
ImageLoadStatusCompleted constant 770
ImageLoadStatusInvalidData constant 770
ImageLoadStatusReadError constant 770
ImageLoadStatusUnexpectedEOF constant 770
ImageLoopCount constant 200
imageNamed class method 752
ImageOnly constant 339
imageOrigin instance method 1204
ImageOverlaps constant 339
imagePasteboardTypes class method 753, 783
imagePosition instance method 257, 278
ImageProgressive constant 200
imageRectForBounds instance method 313, 953
imageRectForPaper instance method 1131
imageRectInRuler instance method 1204
imageRep class method 190, 600, 1084, 1088
imageRepClassForData class method 783
imageRepClassForFileType class method 783
imageRepClassForPasteboardType class method 783
ImageRepLoadStatusCompleted constant 202
ImageRepLoadStatusInvalidData constant 202
ImageRepLoadStatusReadingHeader constant 201
ImageRepLoadStatusUnexpectedEOF constant 202
ImageRepLoadStatusUnknownType constant 201
ImageRepLoadStatusWillNeedAllData constant 201
ImageRepMatchesDevice constant 793
ImageRepRegistryDidChangeNotification

notification 793
imageRepsWithContentsOfFile class method 783
imageRepsWithContentsOfURL class method 784
imageRepsWithData class method 190
imageRepsWithPasteboard class method 784
imageRepWithContentsOfFile class method 785
imageRepWithContentsOfURL class method 786
imageRepWithPasteboard class method 786
ImageRGBColorTable constant 200
ImageRight constant 339
imageScaling instance method 775, 798
imageUnfilteredFileTypes class method 753, 786
imageUnfilteredPasteboardTypes class method 754,

787
imageWidth instance method 954

2050
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

imageWillLoadRepresentationdelegate method 772
importsGraphics instance method 313, 1516, 1567,

1629
increment instance method 1411, 1417
incrementalLoadFromData instance method 195
IncrementArrow constant 1262
incrementBy instance method 1175
IncrementLine constant 1261
IncrementPage constant 1261
indent interface method 1991
indentationLevel instance method 935
indentationLevel interface method 1923
indentationMarkerFollowsCell instance method

1033
indentationPerLevel instance method 1034
indexOfCellWithTag instance method 696
indexOfItem instance method 916, 1096, 1113
indexOfItemAtPoint instance method 965
indexOfItemWithObjectValue instance method 416,

432
indexOfItemWithRepresentedObject instance

method 916, 1096, 1113
indexOfItemWithSubmenu instance method 916
indexOfItemWithTag instance method 916, 1097, 1114
indexOfItemWithTargetAndAction instance method

917, 1097, 1114
indexOfItemWithTitle instance method 917, 1097,

1114
indexOfSelectedItem instance method 416, 432, 696,

1097, 1115
indexOfTabViewItem instance method 1489
indexOfTabViewItemWithIdentifier instance

method 1489
indexOfTickMarkAtPoint instance method 1333, 1346
indicatorImage instance method 1458
infoForBinding interface method 2004
informationalAlertPanel class method 71
InformationalStyle constant 64
informativeText instance method 60
initForURLWithContentsOfURLOfType instance

method 530
initialFirstResponder instance method 1502, 1836
initialValues instance method 1722
initWithContentsOfURLOfType instance method 531
initWithType instance method 531
inLiveResize instance method 1756
innerRect instance method 965
inputClientBecameActive instance method 812
inputClientBecomeActive interface method 1979
inputClientDisabled instance method 812
inputClientDisabled interface method 1980
inputClientEnabled instance method 812
inputClientEnabled interface method 1980

inputClientResignActive instance method 812
inputClientResignActive interface method 1980
insert instance method 151
insertBacktab interface method 1991
InsertCharFunctionKey constant 629
insertColorForKeyAtIndex instance method 382
insertColumn instance method 889
insertColumnWithCells instance method 889
insertCompletion instance method 1630
insertEntryAtIndex instance method 696
InsertFunctionKey constant 628
insertGlyphAtGlyphIndex instance method 837
insertionPointColor instance method 1630
insertItemAtIndex instance method 917, 1097, 1115
insertItemWithItemIdentifierAtIndex instance

method 1698
insertItemWithObjectValueAtIndex instance

method 417, 432
InsertLineFunctionKey constant 629
insertNewButtonImage instance method 397
insertNewButtonImage interface method 1949
insertNewline interface method 1991
insertNewlineIgnoringFieldEditor interface

method 1991
insertObject instance method 151
insertObjects instance method 152
insertParagraphSeparator interface method 1992
insertRow instance method 890
insertRowWithCells instance method 890
insertTab interface method 1992
insertTabIgnoringFieldEditor interface method

1992
insertTabViewItem instance method 1489
insertText instance method 806, 813, 1630
insertText interface method 1980, 1992, 2028
insertTextContainerAtIndex instance method 837
instantiateNibWithExternalNameTable instance

method 1005
instantiateNibWithOwner instance method 1005
intercellSpacing instance method 417, 433, 890, 1459
interfaceStyle instance method 1191
InterfaceStyleDefault constant 816
interfaceStyleForKey class method 816
interpretKeyEvents instance method 1191
interval instance method 257, 313
intForKeyInTable instance method 1132
IntType constant 337
intValue instance method 48, 313, 452
invalidateAttributesInRange instance method 1590
invalidateCursorRectsForView instance method

1836
invalidateDisplayForCharacterRange instance

method 837

2051
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

invalidateDisplayForGlyphRange instance method
838

invalidateGlyphsForCharacterRange instance
method 838

invalidateHashMarks instance method 1216
invalidateLayoutForCharacterRange instance

method 838
invalidateShadow instance method 1837
invalidateTextContainerOrigin instance method

1631
isActive instance method 112, 409
isAlternate instance method 936
isAlternate interface method 1924
isAnimating instance method 81
isAnyApplicationSpeaking class method 1373
isARepeat instance method 615
isAttached instance method 918, 965
isAutodisplay instance method 1837
isAutoscroll instance method 891
isBaseFont instance method 658
isBezeled instance method 314, 495, 1175, 1568
IsBordered constant 338
isBordered instance method 258, 314, 409, 495, 1568
isButtonBordered instance method 417, 433
isCachedSeparately instance method 760
isColor instance method 1132
isColumnSelected instance method 1459
isContextHelpModeActive class method 740
isContinuous instance method 314, 390, 452
isContinuousSpellCheckingEnabled instance

method 1631
isControllerMarker class method 475
isControllerVisible instance method 986
isCopyingOperation instance method 1158
isDataRetained instance method 760
isDescendantOf instance method 1756
isDirectory instance method 637
isDisplayedWhenStopped instance method 1175
isDocumentEdited instance method 531, 1837
isDragging instance method 1204
isDrawingToScreen instance method 734
isEditable instance method 314, 382, 798, 986, 1012,

1424, 1516, 1568, 1631
isEditing instance method 471
isEmpty instance method 177
isEnabled instance method 314, 452, 679, 690, 936,

1308, 1319, 1401, 1710
isEnabled interface method 1924
isEnteringProximity instance method 616
isEntryAcceptable instance method 314
isEPSOperation instance method 1158
isExcludedFromWindowsMenu instance method 1837
isExpandable instance method 1034

isExpanded instance method 1235
isExtensionHidden instance method 1236
isFieldEditor instance method 1517, 1631
isFilePackageAtPath instance method 1905
isFixedPitch instance method 659
isFlipped instance method 760, 1216, 1756
isFloatingPanel instance method 1053
isFlushWindowDisabled instance method 1838
isFontAvailable instance method 1132
isHidden instance method 113, 1757
isHiddenOrHasHiddenAncestor instance method 1757
isHighlighted instance method 315, 954
isHorizontal instance method 966
isHorizontallyCentered instance method 1142
isHorizontallyResizable instance method 1517
isIndeterminate instance method 1176
IsInsetButton constant 338
isItemExpanded instance method 1034
isKeyInTable instance method 1132
isKeyWindow instance method 1838
isLeaf instance method 248
isLoaded instance method 225, 248
isMainWindow instance method 1838
isMiniaturized instance method 1838
isMouseInRect instance method 1757
isMovable instance method 1204
isMovableByWindowBackground instance method 1838
isMultiple instance method 679
isMuted instance method 986
isNativeType class method 522
isOneShot instance method 1839
isOpaque instance method 278, 315, 703, 790, 1758, 1839
isOutputStackInReverseOrder instance method 1132
isPaneSplitter instance method 1388
isPlanar instance method 196
isPlaying instance method 986, 1358
isRegularFile instance method 637
isReleasedWhenClosed instance method 1839
isRemovable instance method 1205
isResizable instance method 1425
isRichText instance method 1517, 1632
isRotatedFromBase instance method 1758
isRotatedOrScaledFromBase instance method 1758
isRowSelected instance method 1459
isRulerVisible instance method 1518, 1632
isRunning instance method 113
isScrollable instance method 315
isSelectable instance method 315, 1518, 1568, 1632
isSelected instance method 1308, 1320
isSelectionByRect instance method 891
isSeparatorItem instance method 936
isSeparatorItem interface method 1924
isSetOnMouseEntered instance method 485

2052
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

isSetOnMouseExited instance method 485
isSheet instance method 1840
isSimpleRectangularTextContainer instance

method 1558
isSpeaking instance method 1373
isSubviewCollapsed instance method 1388
isSymbolicLink instance method 637
isTitled instance method 226
isTornOff instance method 918, 966
isTransparent instance method 258, 279
isValid instance method 761
isValidGlyphIndex instance method 839
isVertical instance method 1333, 1346, 1388, 1394
isVerticallyCentered instance method 1142
isVerticallyResizable instance method 1518
isVisible instance method 1698, 1840
isWindowLoaded instance method 1892
isZoomed instance method 1840
italicAngle instance method 659
ItalicMask constant 685
itemAdded instance method 966
itemArray instance method 918, 1098, 1115
itemAtIndex instance method 918, 1098, 1116
itemAtRow instance method 1034
itemChanged instance method 918, 966
itemHeight instance method 417, 433
itemIdentifier instance method 1711
itemObjectValueAtIndex instance method 418, 434
itemRemoved instance method 967
items instance method 1698
itemTitleAtIndex instance method 1098, 1116
itemTitles instance method 1099, 1116
itemWithTag instance method 919
itemWithTitle instance method 919, 1099, 1116

J

JapaneseEUCGlyphPacking constant 663
jobDisposition instance method 1142
jobStyleHint instance method 1159, 1168
JPEG2000FileType constant 200
JPEGFileType constant 200
JustifiedTextAlignment constant 1530

K

keepBackupFile instance method 532
keyboardFocusIndicatorColor class method 364
keyCell instance method 891
keyCode instance method 616

KeyDown constant 624
keyDown instance method 1191, 1840
KeyDownMask constant 625
keyEquivalent instance method 258, 279, 315, 936
keyEquivalent interface method 1924
keyEquivalentFont instance method 279
keyEquivalentModifierMask instance method 258,

279, 937
keyEquivalentModifierMask interface method 1924
keyEquivalentOffset instance method 967
keyEquivalentRectForBounds instance method 954
keyEquivalentWidth instance method 955, 967
keyEvent class method 607
keyForFileWrapper instance method 637
KeyUp constant 624
keyUp instance method 1192
KeyUpMask constant 625
keyViewSelectionDirection instance method 1840
keyWindow instance method 113
Knob constant 1261
knobColor class method 364
knobProportion instance method 1259
knobRectFlipped instance method 1346
KnobSlot constant 1261
knobThickness instance method 1333, 1347
knowsPageRange instance method 1759

L

LABColorSpaceModel constant 406
label instance method 1309, 1320, 1502, 1711
labelFontOfSize class method 649
labelFontSize class method 649
LandscapeOrientation constant 1148
language instance method 806, 1383
languageLevel instance method 1132
lastColumn instance method 226
LastColumnOnlyAutoresizingStyle constant 1478
lastError instance method 532, 567
lastItem instance method 1099, 1117
lastVisibleColumn instance method 226
LaunchAllowingClassicStartup constant 1912
LaunchAndHide constant 1912
LaunchAndHideOthers constant 1912
LaunchAndPrint constant 1912
launchApplication instance method 1905
LaunchAsync constant 1912
LaunchDefault constant 1913
launchedApplications instance method 1906
LaunchInhibitingBackgroundOnly constant 1912
LaunchNewInstance constant 1912
LaunchPreferringClassic constant 1912

2053
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

LaunchWithoutActivation constant 1912
LaunchWithoutAddingToRecents constant 1912
layoutAlgorithm instance method 1602
layoutManager instance method 1558, 1632
layoutManagerDidCompleteLayoutForTextContainer

delegate method 857
layoutManagerDidInvalidateLayout delegate

method 857
layoutManagerOwnsFirstResponderInWindow

instance method 839
layoutManagers instance method 1591
layoutRectForTextBlock instance method 839
layoutRectForTextBlockAtIndex instance method

839
leadingOffset instance method 591
LeftArrowFunctionKey constant 627
leftMargin instance method 1143
LeftMouseDown constant 623
LeftMouseDownMask constant 624
LeftMouseDragged constant 623
LeftMouseDraggedMask constant 624
LeftMouseUp constant 623
LeftMouseUpMask constant 624
LeftTabsBezelBorder constant 1496
LeftTabStopType constant 1597
LeftTextAlignment constant 1530
LeftTextMovement constant 1530
length instance method 1401
level instance method 1841
levelForItem instance method 1034
levelForRow instance method 1035
levelIndicatorStyle instance method 869
LightGray constant 727
lightGrayColor class method 365
LightsByBackground constant 338
LightsByContents constant 338
LightsByGray constant 338
LinearSlider constant 1353
LineBorder constant 1788
LineBreakByCharWrapping constant 1066
LineBreakByClipping constant 1066
LineBreakByTruncatingHead constant 1066
LineBreakByTruncatingMiddle constant 1066
LineBreakByTruncatingTail constant 1066
LineBreakByWordWrapping constant 1066
lineBreakMode instance method 316, 1062
lineCapStyle instance method 177
LineCapStyleButt constant 184
LineCapStyleProjectingSquare constant 184
LineCapStyleRound constant 184
lineDashPattern instance method 177
lineDashPhase instance method 178
LineDoesntMove constant 1562

lineFragmentPadding instance method 1558
lineFragmentRectForGlyphAtIndex instance method

840
lineFragmentRectForProposedRect instance method

1559
lineFragmentUsedRectForGlyphAtIndex instance

method 840
lineHeightMultiple instance method 1062
lineJoinStyle instance method 178
LineJoinStyleBevel constant 184
LineJoinStyleMiter constant 184
LineJoinStyleRound constant 184
LineMovesDown constant 1562
LineMovesLeft constant 1562
LineMovesRight constant 1562
LineMovesUp constant 1562
lineScroll instance method 1275
LineSeparatorCharacter constant 1531
lineSpacing instance method 1063
LineSweepDown constant 1562
LineSweepLeft constant 1562
LineSweepRight constant 1562
LineSweepUp constant 1562
lineToPoint instance method 178
lineWidth instance method 179
LinkOperation constant 1911
linkTextAttributes instance method 1633
listensInForegroundOnly instance method 1364
listOptions instance method 1582
loadColumnZero instance method 226
loadDataRepresentation instance method 532
loadedCellAtLocation instance method 226
loadFileWrapperRepresentation instance method

533
loadNibFromBundle class method 105
loadNibNamed class method 105
loadWindow instance method 1892
localizedCatalogNameComponent instance method

374
localizedColorNameComponent instance method 374
localizedInputManagerName instance method 806
localizedName instance method 405
localizedNameForFamily instance method 680
localizedNameForTIFFCompressionType class

method 190
localizedPaperName instance method 1143
location instance method 1597
locationForGlyphAtIndex instance method 841
locationForSubmenu instance method 919, 967
locationInWindow instance method 616
locationOfPrintRect instance method 1759
lockFocus instance method 761, 1759
lockFocusOnRepresentation instance method 761

2054
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

loopMode instance method 987
loosenKerning instance method 1633
lowerBaseline instance method 1633
lowercaseWord interface method 1992

M

MacintoshInterfaceStyle constant 817
MacintoshInterfaceStyleDefaultValue constant

816
magentaColor class method 365
magentaComponent instance method 375
main class method 1184
mainMenu instance method 113
MainMenuWindowLevel constant 1876
mainScreen class method 1248
mainWindow instance method 114
makeCellAtLocation instance method 891
makeDocumentForURLWithContentsOfURLOfType

instance method 567
makeDocumentWithContentsOfFile instance method

567
makeDocumentWithContentsOfURL instance method

568
makeDocumentWithContentsOfURLOfType instance

method 568
makeFirstResponder instance method 1841
makeKeyAndOrderFront instance method 1841
makeKeyWindow instance method 1842
makeMainWindow instance method 1842
makeNextSegmentKey instance method 1309
makePreviousSegmentKey instance method 1309
makeUntitledDocumentOfType instance method 568
makeWindowControllers instance method 533
makeWindowsPerform instance method 114
managedObjectContext instance method 1013
Margin constant 1553
markedRange instance method 806, 1633
markedRange interface method 2028
markedTextAbandoned instance method 806, 813
markedTextAbandoned interface method 1981
markedTextAttributes instance method 1634
markedTextSelectionChanged instance method 806,

813
markedTextSelectionChanged interface method 1981
markerForItemNumber instance method 1582
markerFormat instance method 1582
markerLocation instance method 1205
markers instance method 1216
matchesOnMultipleResolution instance method 762
matrixClass instance method 227
matrixInColumn instance method 227

maxContentSize instance method 591
maxDate instance method 496, 507
maximumAdvancement instance method 659
MaximumHeight constant 1553
maximumLineHeight instance method 1063
maximumRecentDocumentCount instance method 568
maximumRecents instance method 1294
MaximumWidth constant 1553
maxSize instance method 1518, 1711, 1842
maxValue instance method 861, 869, 1176, 1334, 1347,

1411, 1417
maxVisibleColumns instance method 227
maxWidth instance method 1425
measurementUnits instance method 1217
menu instance method 316, 937, 968, 1099, 1117, 1192,

1310, 1320, 1402
menu interface method 1925
menuBarFontOfSize class method 649
menuBarHeight class method 962
menuBarHeight instance method 919
menuBarVisible class method 913
menuChanged class method 1815
menuChangedMessagesEnabled instance method 919
MenuDidAddItemNotification notification 926
MenuDidChangeItemNotification notification 926
MenuDidEndTrackingNotification notification 926
MenuDidRemoveItemNotification notification 926
MenuDidSendActionNotification notification 927
menuFontOfSize class method 649
menuForEvent instance method 316, 1760
menuFormRepresentation instance method 1711
MenuFunctionKey constant 629
menuHasKeyEquivalent delegate method 923
MenuInterfaceStyleDefault constant 816
menuItem instance method 955
menuItemCellForItemAtIndex instance method 968
menuKeyEquivalentAction delegate method 924
menuKeyEquivalentTarget delegate method 924
menuNeedsUpdate delegate method 925
menuRepresentation instance method 920
menuUpdateItemAtIndex delegate method 925
menuView instance method 955
MenuWillSendActionNotification notification 927
message instance method 1236
messageFontOfSize class method 650
messageText instance method 61
MiddleAlignment constant 1553
minColumnWidth instance method 227
minContentSize instance method 591
minDate instance method 496, 507
minFrameWidthWithTitle class method 1815
MiniaturizableWindowMask constant 1875
miniaturize instance method 1842

2055
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

miniaturizeAll instance method 114
MiniControlSize constant 340, 1181, 1263, 1497
MinimumHeight constant 1553
minimumLineHeight instance method 1063
minimumSize instance method 1490
MinimumWidth constant 1553
miniwindowImage instance method 1842
MiniWindowStyleDefault constant 816
miniwindowTitle instance method 1843
minSize instance method 1518, 1712, 1843
minValue instance method 861, 870, 1176, 1334, 1347,

1411, 1417
minWidth instance method 1425
miterLimit instance method 179
MixedState constant 339
mixedStateImage instance method 937
mixedStateImage interface method 1925
mnemonic instance method 316, 937
mnemonic interface method 1925
mnemonicLocation instance method 317, 937
mnemonicLocation interface method 1925
ModalPanelRunLoopMode constant 130
ModalPanelWindowLevel constant 1876
modalWindow instance method 115
mode instance method 390, 892
ModeSwitchFunctionKey constant 629
modifierFlags instance method 616
modifyFont instance method 680
modifyFontViaPanel instance method 680
MomentaryChangeButton constant 290
MomentaryLight constant 267
MomentaryPush constant 267
mostCompatibleStringEncoding instance method

659
mountedLocalVolumePaths instance method 1906
mountedRemovableMedia instance method 1906
mountNewRemovableMedia instance method 1907
mouseDown instance method 452, 892, 1192
mouseDownCanMoveWindow instance method 1760
mouseDownFlags instance method 317, 892
mouseDownOnCharacterIndex instance method 813
mouseDownOnCharacterIndex interface method 1975
mouseDragged instance method 1192
mouseDraggedOnCharacterIndex instance method

813
mouseDraggedOnCharacterIndex interface method

1976
MouseEntered constant 623
mouseEntered instance method 280, 485, 1192
MouseEnteredMask constant 624
mouseEvent class method 608
MouseEventSubtype constant 626
MouseExited constant 623

mouseExited instance method 280, 486, 1193
MouseExitedMask constant 624
mouseLocation class method 609
mouseLocationOutsideOfEventStream instance

method 1843
MouseMoved constant 623
mouseMoved instance method 1193
MouseMovedMask constant 624
mouseUp instance method 1193
mouseUpOnCharacterIndex instance method 814
mouseUpOnCharacterIndex interface method 1976
moveBackward interface method 1992
moveBackwardAndModifySelection interface method

1993
moveColumnToColumn instance method 1459
movedDraggingImage interface method 1967
moveDown interface method 1993
moveDownAndModifySelection interface method 1993
moveForward interface method 1993
moveForwardAndModifySelection interface method

1994
moveLeft interface method 1994
moveLeftAndModifySelection interface method 1994
MoveOperation constant 1911
moveRight interface method 1995
moveRightAndModifySelection interface method

1995
moveRulerline instance method 1217
moveToBeginningOfDocument interface method 1995
moveToBeginningOfLine interface method 1995
moveToBeginningOfParagraph interface method 1995
moveToEndOfDocument interface method 1996
moveToEndOfLine interface method 1996
moveToEndOfParagraph interface method 1996
moveToPoint instance method 179
moveUp interface method 1996
moveUpAndModifySelection interface method 1996
moveWordBackward interface method 1996
moveWordBackwardAndModifySelection interface

method 1997
moveWordForward interface method 1997
moveWordForwardAndModifySelection interface

method 1997
moveWordLeft interface method 1998
moveWordLeftAndModifySelection interface method

1998
moveWordRight interface method 1998
moveWordRightAndModifySelection interface method

1999
movie instance method 987
movieRect instance method 987
movieUnfilteredFileTypes class method 978
movieUnfilteredPasteboardTypes class method 979

2056
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

multipleValuesMarker class method 475

N

name instance method 382, 762, 1076, 1133, 1358
NamedColorSpace constant 727
nameFieldLabel instance method 1236
namesOfPromisedFilesDroppedAtDestination

instance method 585
namesOfPromisedFilesDroppedAtDestination

interface method 1962, 1967
NarrowMask constant 685
NativeShortGlyphPacking constant 663
NaturalTextAlignment constant 1530
needsDisplay instance method 955, 1760
needsPanelToBecomeKey instance method 1761
needsSizing instance method 955, 968
needsToBeUpdatedFromPath instance method 638
needsToDrawRect instance method 1761
newCellClass instance method 892
newDocument instance method 569
NewlineCharacter constant 1531
newObject instance method 1013
nextEventMatchingMask instance method 115, 1844
NextFunctionKey constant 629
nextKeyView instance method 1761
nextResponder instance method 1193
nextState instance method 317
nextValidKeyView instance method 1762
NibOwner constant 1006
NoBorder constant 1788
NoCellMask constant 339
NoColumnAutoresizinge constant 1478
NoColumnResizing constant 240
NoImage constant 339
NoInterfaceStyle constant 817
NonactivatingPanelMask constant 1055
NonRetained constant 1875
NonstandardCharacterSetMask constant 685
NoPart constant 1261
NoParts constant 1262
noResponderForSelector instance method 1193
NormalWindowLevel constant 1875
noSelectionMarker class method 475
NoTabsBezelBorder constant 1496
NoTabsLineBorder constant 1496
NoTabsNoBorder constant 1496
notApplicableMarker class method 475
note instance method 1133
noteFileSystemChanged instance method 1907
noteFileSystemChangedAtPath instance method 1907

noteHeightOfRowsWithIndexesChanged instance
method 1460

noteNewRecentDocument instance method 569
noteNewRecentDocumentURL instance method 569
noteNumberOfItemsChanged instance method 418,

434
noteNumberOfRowsChanged instance method 1460
noteUserDefaultsChanged instance method 1908
notificationCenter instance method 1908
NoTitle constant 211
notShownAttributeForGlyphAtIndex instance

method 841
NSActionCell constructor method 47
NSAlert constructor method 57
NSAlertPanel constructor method 68
NSAnimation constructor method 78
NSAnimationEffect constructor method 91
NSApplication constructor method 104
NSArrayController constructor method 146
NSBezierPath constructor method 166
NSBitmapImageRep constructor method 188
NSBox constructor method 205
NSBrowser constructor method 220
NSBrowserCell constructor method 246
NSButton constructor method 254
NSButtonCell constructor method 273
NSCachedImageRep constructor method 294
NSCell constructor method 303
NSClipView constructor method 344
NSColor constructor method 356
NSColorList constructor method 380
NSColorPanel constructor method 387
NSColorPicker constructor method 396
NSColorSpace constructor method 402
NSColorWell constructor method 408
NSComboBox constructor method 414
NSComboBoxCell constructor method 430
NSControl constructor method 447
NSController constructor method 470
NSControllerPlaceholders constructor method 474
NSCursor constructor method 480
NSCustomImageRep constructor method 489
NSDatePicker constructor method 493
NSDatePickerCell constructor method 505
NSDocument constructor method 521
NSDocumentController constructor method 561
NSDPSContext constructor method 579
NSDragDestination constructor method 582
NSDrawer constructor method 589
NSEPSImageRep constructor method 600
NSEvent constructor method 607
NSExclude10_4ElementsIconCreationOption

constant 1913

2057
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

NSExcludeQuickDrawElementsIconCreationOption
constant 1913

NSFileWrapper constructor method 633
NSFont constructor method 647
NSFontDescriptor constructor method 665
NSFontManager constructor method 671
NSFontPanel constructor method 688
NSForm constructor method 695
NSFormCell constructor method 702
NSGlyphInfo constructor method 710
NSGraphics constructor method 716
NSGraphicsContext constructor method 731
NSHelpManager constructor method 740
NSImage constructor method 750
NSImageCell constructor method 774
NSImageRep constructor method 782
NSImageView constructor method 796
NSInputManager constructor method 804
NSInputServer constructor method 811
NSInterfaceStyle constructor method 815
NSLayoutManager constructor method 827
NSLevelIndicator constructor method 860
NSLevelIndicatorCell constructor method 868
NSMatrix constructor method 881
NSMenu constructor method 913
NSMenuItem constructor method 933
NSMenuItemCell constructor method 951
NSMenuView constructor method 962
NSModalSession constructor method 975
NSMovie constructor method 978
NSMovieView constructor method 983
NSMutableParagraphStyle constructor method 995
NSNib constructor method 1004
NSObjectController constructor method 1009
NSOpenPanel constructor method 1021
NSOptionsKey constant 2008
NSOutlineView constructor method 1032
NSPageLayout constructor method 1046
NSPanel constructor method 1052
NSParagraphStyle constructor method 1059
NSPasteboard constructor method 1072
NSPDFImageRep constructor method 1084
NSPICTImageRep constructor method 1088
NSPopUpButton constructor method 1095
NSPopUpButtonCell constructor method 1110
NSPrinter constructor method 1129
NSPrintInfo constructor method 1140
NSPrintOperation constructor method 1154
NSPrintPanel constructor method 1166
NSProgressIndicator constructor method 1173
NSPureApplication constructor method 1183
NSResponder constructor method 1189
NSRulerMarker constructor method 1203

NSRulerView constructor method 1213
NSSavePanel constructor method 1231
NSScreen constructor method 1248
NSScroller constructor method 1256
NSScrollView constructor method 1270
NSSearchField constructor method 1288
NSSearchFieldCell constructor method 1293
NSSecureTextField constructor method 1301
NSSecureTextFieldCell constructor method 1303
NSSegmentedCell constructor method 1307
NSSegmentedControl constructor method 1319
NSSegmentSwitchTrackingMomentary constant 1315
NSSegmentSwitchTrackingSelectAny constant 1315
NSSegmentSwitchTrackingSelectOne constant 1315
NSShadow constructor method 1326
NSSlider constructor method 1331
NSSliderCell constructor method 1344
NSSound constructor method 1356
NSSpeechRecognizer constructor method 1363
NSSpeechSynthesizer constructor method 1371
NSSpellChecker constructor method 1381
NSSplitView constructor method 1387
NSStatusBar constructor method 1394
NSStatusItem constructor method 1399
NSStepper constructor method 1410
NSStepperCell constructor method 1416
NSTableColumn constructor method 1423
NSTableHeaderCell constructor method 1432
NSTableHeaderView constructor method 1434
NSTableView constructor method 1447
NSTabView constructor method 1487
NSTabViewItem constructor method 1501
NSText constructor method 1512
NSTextAttachment constructor method 1536
NSTextAttachmentCell constructor method 1540
NSTextBlock constructor method 1547
NSTextContainer constructor method 1557
NSTextField constructor method 1566
NSTextFieldCell constructor method 1576
NSTextList constructor method 1582
NSTextStorage constructor method 1587
NSTextTab constructor method 1596
NSTextTable constructor method 1600
NSTextTableBlock constructor method 1606
NSTextView constructor method 1622
NSTokenField constructor method 1677
NSTokenFieldCell constructor method 1685
NSToolbar constructor method 1696
NSToolbarItem constructor method 1709
NSUserDefaultsController constructor method 1720
NSView constructor method 1737
NSViewAnimation constructor method 1792
NSWindow constructor method 1813

2058
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

NSWindowController constructor method 1890
NSWorkspace constructor method 1902
NullCellType constant 337
numberOfColorComponents class method 725
numberOfColorComponents instance method 405
numberOfColumns instance method 893, 1460, 1602
numberOfComponents instance method 375
numberOfGlyphs instance method 660, 841
numberOfItems instance method 418, 434, 920, 1100,

1117
numberOfItemsInComboBox interface method 1952
numberOfItemsInComboBoxCell interface method

1954
numberOfItemsInMenu delegate method 925
numberOfMajorTickMarks instance method 862, 870
numberOfPlanes instance method 196
numberOfRows instance method 893, 1460
numberOfRowsInTableView interface method 2020
numberOfSelectedColumns instance method 1461
numberOfSelectedRows instance method 1461
numberOfTabViewItems instance method 1490
numberOfTickMarks instance method 862, 870, 1334,

1347
numberOfVisibleColumns instance method 227
numberOfVisibleItems instance method 418, 434
NumericPadKeyMask constant 626

O

objectClass instance method 1013
objectDidBeginEditing instance method 471
objectDidBeginEditing interface method 1971
objectDidEndEditing instance method 471
objectDidEndEditing interface method 1972
objectValue instance method 317, 453, 1100, 1117
objectValueOfSelectedItem instance method 419,

435
objectValues instance method 419, 435
OffState constant 339
offStateImage instance method 938
offStateImage interface method 1925
ok instance method 1236
OKButton constant 1055
OneByteGlyphPacking constant 663
OnlyArrows constant 1262
OnOffButton constant 290
OnState constant 339
onStateImage instance method 938
onStateImage interface method 1926
opaqueAncestor instance method 1762
open instance method 592
openDocument instance method 570

openDocumentWithContentsOfFile instance method
570

openDocumentWithContentsOfURL instance method
570

openFile instance method 1908
openHandCursor class method 482
openHelpAnchor instance method 742
OpeningState constant 595
openOnEdge instance method 592
openPanel class method 1022
OpenState constant 595
openTempFile instance method 1909
openUntitledDocument instance method 571
openUntitledDocumentOfType instance method 571
openURL instance method 1909
openURLs instance method 1909
options instance method 1597
orangeColor class method 365
orderBack instance method 1844
orderFront instance method 1844
orderFrontCharacterPalette instance method 115
orderFrontColorPanel instance method 116
orderFrontFontPanel instance method 681
orderFrontLinkPanel instance method 1634
orderFrontListPanel instance method 1634
orderFrontRegardless instance method 1845
orderFrontSpacingPanel instance method 1634
orderFrontStandardAboutPanel instance method

116
orderFrontStandardAboutPanelWithOptions

instance method 116
orderFrontStylesPanel instance method 681
orderFrontTablePanel instance method 1634
orderOut instance method 1845
orderWindow instance method 1845
orientation instance method 1143, 1217
originOffset instance method 1217
otherEvent class method 609
OtherMouseDown constant 623
otherMouseDown instance method 1194
OtherMouseDownMask constant 624
OtherMouseDragged constant 623
otherMouseDragged instance method 1194
OtherMouseDraggedMask constant 624
OtherMouseUp constant 623
otherMouseUp instance method 1194
OtherMouseUpMask constant 624
OtherReturn constant 73
OtherTextMovement constant 1531
Out constant 1876
outline instance method 1635
outlineTableColumn instance method 1035
outlineViewAcceptDrop interface method 2014

2059
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

outlineViewChildOfItem interface method 2015
outlineViewColumnDidMove delegate method 1038
OutlineViewColumnDidMoveNotification

notification 1043
outlineViewColumnDidResize delegate method 1038
OutlineViewColumnDidResizeNotification

notification 1043
outlineViewDidClickTableColumndelegate method

1038
outlineViewDidDragTableColumn delegate method

1039
outlineViewHeightOfRowForItem delegate method

1039
outlineViewIsItemExpandable interface method

2015
outlineViewItemDidCollapse delegate method 1039
OutlineViewItemDidCollapseNotification

notification 1043
outlineViewItemDidExpand delegate method 1039
OutlineViewItemDidExpandNotification

notification 1043
outlineViewItemForPersistentObject interface

method 2015
outlineViewItemWillCollapse delegate method

1040
OutlineViewItemWillCollapseNotification

notification 1044
outlineViewItemWillExpand delegate method 1040
OutlineViewItemWillExpandNotification

notification 1044
outlineViewMouseDownInHeaderOfTableColumn

delegate method 1040
outlineViewNamesOfPromisedFilesDroppedAt-

Destination interface method 2016
outlineViewNumberOfChildrenOfItem interface

method 2016
outlineViewObjectValueForItem interface method

2016
outlineViewPersistentObjectForItem interface

method 2016
outlineViewSelectionDidChange delegate method

1040
OutlineViewSelectionDidChangeNotification

notification 1044
outlineViewSelectionIsChangingdelegate method

1040
OutlineViewSelectionIsChangingNotification

notification 1044
outlineViewSetObjectValueForItem interface

method 2017
outlineViewShouldCollapseItem delegate method

1041

outlineViewShouldEditTableColumn delegate
method 1041

outlineViewShouldExpandItem delegate method
1041

outlineViewShouldSelectItem delegate method
1041

outlineViewShouldSelectTableColumn delegate
method 1041

outlineViewSortDescriptorsDidChange interface
method 2017

outlineViewToolTipForCell delegate method 1042
outlineViewValidateDrop interface method 2017
outlineViewWillDisplayCelldelegate method 1042
outlineViewWillDisplayOutlineCellForTableColumn

delegate method 1042
outlineViewWriteItemsToPasteboard interface

method 2018
owner instance method 1892

P

Padding constant 1553
pageCount instance method 1085
pageDown interface method 1999
PageDownFunctionKey constant 628
pageLayout class method 1046
pageOrder instance method 1159
pageScroll instance method 1276
pageSizeForPaper instance method 1133
pageUp interface method 1999
PageUpFunctionKey constant 628
paletteFontOfSize class method 650
paletteLabel instance method 1712
panelCompareFilenames delegate method 1243
panelConvertFont instance method 690
panelDirectoryDidChange delegate method 1244
panelIsValidFilename delegate method 1244
panelSelectionDidChange delegate method 1244
panelShouldShowFilename delegate method 1244
panelUserEnteredFilename delegate method 1245
panelWillExpand delegate method 1245
paperName instance method 1143
paperSize instance method 1143
ParagraphSeparatorCharacter constant 1531
paragraphSpacing instance method 1064
paragraphSpacingBefore instance method 1064
parentWindow instance method 592, 1846
paste instance method 987, 1519
pasteAsPlainText instance method 1635
pasteAsRichText instance method 1635
pasteboardByFilteringData class method 1072
pasteboardByFilteringFile class method 1073

2060
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

pasteboardByFilteringTypesInPasteboard class
method 1073

pasteboardChangedOwner delegate method 1081
pasteboardProvideDataForType delegate method

1081
pasteboardWithName class method 1073
pasteboardWithUniqueName class method 1074
pasteFont instance method 1519
pasteRuler instance method 1519
path instance method 227
pathSeparator instance method 228
pathToColumn instance method 228
PatternColorSpace constant 727
patternImage instance method 375
patternPhase instance method 734
pause instance method 1358
PauseFunctionKey constant 629
PDFOperationWithViewInsideRect class method

1155
PDFPboardType constant 1080
PDFRepresentation instance method 1085
PenLowerSideMask constant 626
PenPointingDevice constant 625
PenTipMask constant 626
PenUpperSideMask constant 626
PercentageValueType constant 1553
performActionForItemAtIndex instance method 920
performActionWithHighlightingForItemAtIndex

instance method 968
performClick instance method 280, 318, 453
performClickWithFrameInView instance method 1117
performClose instance method 1846
performDragOperation instance method 1762, 1846
performDragOperation interface method 1957
performFileOperation instance method 1910
performFindPanelAction instance method 1635
performKeyEquivalent instance method 259, 893,

920, 1194, 1763
performMiniaturize instance method 1847
performMnemonic instance method 1195, 1763
performZoom instance method 1847
Periodic constant 624
periodicDelay instance method 259, 318
PeriodicMask constant 625
pickedAllPages instance method 1168
pickedButton instance method 1047, 1168
pickedLayoutList instance method 1168
pickedOrientation instance method 1047
pickedPaperSize instance method 1048
pickedUnits instance method 1048
PICTPboardType constant 1080
PICTRepresentation instance method 1089
pixelsHigh instance method 790

pixelsWide instance method 790
placeholderAttributedString instance method 703,

1578
placeholderString instance method 704, 1578
PlainFileType constant 1911
PlainTextTokenStyle constant 1688
planarFromDepth class method 725
play instance method 1359
playsEveryFrame instance method 987
playsSelectionOnly instance method 988
PNGFileType constant 200
pointingDeviceID instance method 617
pointingDeviceSerialNumber instance method 617
pointingDeviceType instance method 617
pointingHandCursor class method 482
pointSize instance method 660
Poof constant 92
pop instance method 486
popCursor class method 482
PopUpArrowAtBottom constant 1124
PopUpArrowAtCenter constant 1124
PopUpButtonCellWillPopUpNotification

notification 1125
PopUpButtonInterfaceStyleDefault constant 816
popUpContextMenu class method 914
PopUpMenuWindowLevel constant 1876
PopUpNoArrow constant 1124
popUpStatusItemMenu instance method 1402
PortraitOrientation constant 1148
positionOfGlyphForCharacterStruckOverRect

instance method 660
PositiveDoubleType constant 337
PositiveFloatType constant 337
PositiveIntType constant 337
PosterMask constant 685
postEvent instance method 117, 1847
postsBoundsChangedNotifications instance method

1763
PostScriptPboardType constant 1080
postsFrameChangedNotifications instance method

1763
preferredEdge instance method 592, 1100, 1117
preferredFilename instance method 638
preferredFontNames class method 650
preferredPasteboardTypeFromArray instance

method 1636
prefersAllColumnUserResizing instance method

228
prefersColorMatch instance method 762
prefersTrackingUntilMouseUp class method 304,

1344
prepareContent instance method 1014

2061
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

prepareForDragOperation instance method 1764,
1847

prepareForDragOperation interface method 1958
prepareGState instance method 601
preparePageLayout instance method 533
prepareSavePanel instance method 533
PrependEnclosingMarker constant 1583
presentError instance method 534, 572, 1195
presentErrorModalForWindow instance method 534,

572, 1195
preservesContentDuringLiveResize instance

method 1764, 1848
preservesSelection instance method 152
PressedTab constant 1496
pressure instance method 618
preventWindowOrdering instance method 117
PrevFunctionKey constant 629
previousKeyView instance method 1764
previousValidKeyView instance method 1765
print instance method 1765, 1848
PrintAllPages constant 1149
PrintBottomMargin constant 1149
PrintCancelJob constant 1149
PrintCopies constant 1149
PrintDetailedErrorReporting constant 1150
printDocument instance method 535
printDocumentWithSettings instance method 535
printer instance method 1144
printerFont instance method 661
printerNames class method 1129
PrinterTableError constant 1135
PrinterTableNotFound constant 1135
PrinterTableOK constant 1135
printerTypes class method 1129
printerWithName class method 1130
printerWithType class method 1130
PrintFaxNumber constant 1150
PrintFirstPage constant 1150
PrintFunctionKey constant 629
PrintHorizontallyCentered constant 1149
PrintHorizontalPagination constant 1149
printInfo instance method 536, 1048, 1159
PrintingCancelled constant 129
PrintingFailure constant 129
PrintingReplyLater constant 129
PrintingSuccess constant 129
PrintItemIdentifier constant 1718
PrintJobDisposition constant 1150
PrintLastPage constant 1150
PrintLeftMargin constant 1149
PrintMustCollate constant 1150
printOperationWithSettings instance method 536
printOperationWithView class method 1156

PrintOrientation constant 1149
PrintPagesAcross constant 1150
PrintPagesDown constant 1150
printPanel class method 1167
printPanel instance method 1159
PrintPaperName constant 1149
PrintPaperSize constant 1149
PrintPhotoJobStyleHint constant 1170
PrintPreviewJob constant 1148
PrintPrinter constant 1149
PrintPrinterName constant 1150
PrintReversePageOrder constant 1150
PrintRightMargin constant 1149
PrintSaveJob constant 1149
PrintSavePath constant 1150
PrintScalingFactor constant 1149
PrintScreenFunctionKey constant 628
printShowingPrintPanel instance method 536
PrintSpoolJob constant 1148
PrintTime constant 1150
PrintTopMargin constant 1149
PrintVerticallyCentered constant 1149
PrintVerticalPagination constant 1149
processEditing instance method 1591
ProgressIndicatorBarStyle constant 1181
ProgressIndicatorSpinningStyle constant 1181
progressMarks instance method 81
prompt instance method 1237
propertyListForType instance method 1076
protocolSeparatorItem class method 934
prototype instance method 893
provideNewButtonImage instance method 398
provideNewButtonImage interface method 1949
provideNewView interface method 1944
pullsDown instance method 1100, 1118
purpleColor class method 365
push instance method 486
PushIn constant 338
PushInCellMask constant 339
PushOnPushOffButton constant 290
putCellAtLocation instance method 893

R

RadioButton constant 291
raiseBaseline instance method 1636
RangeDateMode constant 511
rangeForUserCharacterAttributeChange instance

method 1636
rangeForUserCompletion instance method 1637
rangeForUserParagraphAttributeChange instance

method 1637

2062
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

rangeForUserTextChange instance method 1638
rangeOfNominallySpacedGlyphsContainingIndex

instance method 841
rangesForUserCharacterAttributeChange instance

method 1638
rangesForUserParagraphAttributeChange instance

method 1638
rangesForUserTextChange instance method 1639
rate instance method 988
RatingLevelIndicatorStyle constant 874
readablePasteboardTypes instance method 1639
readableTypes class method 522
readFileContentsTypeToFile instance method 1077
readFileWrapper instance method 1077
readFromDataOfType instance method 537
readFromFile instance method 537
readFromFileWrapperOfType instance method 537
readFromURL instance method 538
readFromURLOfType instance method 538
readPixel class method 726
readPrintInfo instance method 1048
readRTFDFromFile instance method 1519
readSelectionFromPasteboard instance method 1640
readSelectionFromPasteboardOfType instance

method 1640
recache instance method 762
recalculateKeyViewLoop instance method 1848
recentDocumentURLs instance method 573
recentsAutosaveName instance method 1288, 1294
recentSearches instance method 1288, 1295
rect instance method 294
rectArrayForCharacterRange instance method 842
rectArrayForGlyphRange instance method 842
rectForBlockLayoutAtPoint instance method 1602
rectForKeyInTable instance method 1133
rectForLayoutAtPoint instance method 1549
rectForPage instance method 1765
rectForPart instance method 1259
rectOfColumn instance method 1461
rectOfItemAtIndex instance method 969
rectOfRow instance method 1461
rectOfTickMarkAtIndex instance method 862, 870,

1334, 1348
rectPreservedDuringLiveResize instance method

1766
rectsBeingDrawn instance method 1766
rectsExposedDuringLiveResize instance method

1767
RecycleOperation constant 1912
redColor class method 365
redComponent instance method 375
RedoFunctionKey constant 629

reflectScrolledClipView instance method 1276,
1767

refusesFirstResponder instance method 318, 453
registeredImageRepClasses class method 787
registerForDraggedTypes instance method 1768,

1849
registerForServices class method 1623
registerImageRepClass class method 787
registerServicesMenuTypes instance method 117
registerUnit class method 1214
RegularControlSize constant 340, 1181, 1262, 1496
regularFileContents instance method 638
RegularSquareBezelStyle constant 289
relativeCurveToPoint instance method 179
relativeLineToPoint instance method 180
relativeMoveToPoint instance method 180
releaseAlert class method 71
releaseGlobally instance method 1077
releaseGState instance method 1768
RelevancyLevelIndicatorStyle constant 874
reloadColumn instance method 229
reloadData instance method 419, 435, 1462
reloadItem instance method 1035
reloadItemAndChildren instance method 1035
remove instance method 152, 1014
removeAllItems instance method 419, 435, 1100, 1118
removeAllPoints instance method 180
removeChildWindow instance method 1849
removeCollection instance method 681
removeColorWithKey instance method 382
removeColumn instance method 894
removeContextHelpForObject instance method 742
removeCursorRect instance method 1768
removeDocument instance method 573
removeEntryAtIndex instance method 697
removeFile instance method 383
removeFileWrapper instance method 638
removeFontDescriptor instance method 681
removeFontTrait instance method 682
removeFrameUsingName class method 1815
removeFromSuperview instance method 1768
removeFromSuperviewWithoutNeedingDisplay

instance method 1769
removeItem instance method 920
removeItemAtIndex instance method 420, 435, 920,

1101, 1118, 1698
removeItemWithObjectValue instance method 420,

436
removeItemWithTitle instance method 1101, 1118
removeLayoutManager instance method 1591
removeMarker instance method 1218
removeObject instance method 153, 1014
removeObjects instance method 153

2063
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

removeProgressMark instance method 82
removeRepresentation instance method 763
removeRow instance method 894
removeSavedColumnsWithAutosaveName class method

221
removeSelectedObjects instance method 154
removeSelectionIndexes instance method 154
removeStatusItem instance method 1395
removeTableColumn instance method 1462
removeTabStop instance method 995
removeTabViewItem instance method 1490
removeTemporaryAttribute instance method 843
removeTextContainerAtIndex instance method 843
removeTrackingRect instance method 1769
removeWindowController instance method 538
removeWindowsItem instance method 118
renewGState instance method 1769
renewRowsAndColumns instance method 894
reopenDocumentForURLWithContentsOfURL instance

method 573
replaceCharactersInRange instance method 1520,

1591
replaceCharactersInRangeWithRTF instance method

1520
replaceCharactersInRangeWithRTFD instance

method 1520
replaceGlyphAtIndex instance method 843
replaceLayoutManager instance method 1559
replaceSubview instance method 1769
replaceTextContainer instance method 1640
replaceTextStorage instance method 844
replyToApplicationShouldTerminate instance

method 118
replyToOpenOrPrint instance method 118
reportException instance method 118
representationOfImageRepsInArray class method

191
representations instance method 763
representationUsingType instance method 196
representedFilename instance method 1849
representedObject instance method 318, 938, 1205
representedObject interface method 1926
requestUserAttention instance method 118
requiredFileType instance method 1237
requiredThickness instance method 1218
reservedThicknessForAccessoryView instance

method 1218
reservedThicknessForMarkers instance method 1218
reset instance method 248
resetCancelButtonCell instance method 1295
resetCursorRect instance method 319
resetCursorRects instance method 895, 1770, 1849
ResetFunctionKey constant 629

resetSearchButtonCell instance method 1295
resignFirstResponder instance method 1196, 1641
resignKeyWindow instance method 1850
resignMainWindow instance method 1850
ResizableWindowMask constant 1875
resizedColumn instance method 1435
resizeDownCursor class method 483
resizeFlags instance method 1850
resizeIncrements instance method 1851
resizeLeftCursor class method 483
resizeLeftRightCursor class method 483
resizeRightCursor class method 483
resizeSubviewsWithOldSize instance method 1770
resizeUpCursor class method 483
resizeUpDownCursor class method 484
resizeWithMagnification instance method 988
resizeWithOldSuperviewSize instance method 1770
resizingMask instance method 1426
resolvesAliases instance method 1024
restoreCachedImage instance method 1851
restoreGraphicsContext class method 732
restoreGraphicsState instance method 734
resume instance method 1359
Retained constant 1875
ReturnTextMovement constant 1530
reusesColumns instance method 229
ReverseSequentialColumnAutoresizingStyle

constant 1478
revert instance method 1722
revertDocumentToSaved instance method 539
revertToContentsOfURLOfType instance method 539
revertToInitialValues instance method 1722
revertToSavedFromFile instance method 539
revertToSavedFromURL instance method 540
reviewUnsavedDocumentsWithAlertTitle instance

method 573
RGBColorSpaceModel constant 406
RGBModeColorPanel constant 393
RightArrowFunctionKey constant 627
rightMargin instance method 1144
RightMouseDown constant 623
rightMouseDown instance method 1196
RightMouseDownMask constant 624
RightMouseDragged constant 623
rightMouseDragged instance method 1197
RightMouseDraggedMask constant 624
RightMouseUp constant 623
rightMouseUp instance method 1197
RightMouseUpMask constant 624
RightTabsBezelBorder constant 1496
RightTabStopType constant 1597
RightTextAlignment constant 1530
RightTextMovement constant 1530

2064
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

rotateByAngle instance method 1770
rotation instance method 618
RoundedBezelStyle constant 289
RoundedTokenStyle constant 1688
rowAtPoint instance method 1462
rowForItem instance method 1036
rowForPoint instance method 895
rowHeight instance method 1462
rowOfCell instance method 895
rowsInRect instance method 1462
rowSpan instance method 1606
RTFDFromRange instance method 1521
RTFDPboardType constant 1080
RTFFromRange instance method 1521
RTFPboardType constant 1080
ruler instance method 1205
rulerAccessoryViewForTextView instance method

844
rulerMarkersForTextView instance method 844
RulerPboard constant 1080
RulerPboardType constant 1080
rulersVisible instance method 1277
rulerViewClass class method 1271
rulerViewDidAddMarker delegate method 1223
rulerViewDidAddMarker instance method 1641
rulerViewDidMoveMarker delegate method 1223
rulerViewDidMoveMarker instance method 1641
rulerViewDidRemoveMarker delegate method 1223
rulerViewDidRemoveMarker instance method 1642
rulerViewHandleMouseDown delegate method 1224
rulerViewHandleMouseDown instance method 1642
rulerViewShouldAddMarker delegate method 1224
rulerViewShouldAddMarker instance method 1642
rulerViewShouldMoveMarker delegate method 1224
rulerViewShouldMoveMarker instance method 1643
rulerViewShouldRemoveMarker delegate method

1225
rulerViewShouldRemoveMarker instance method 1643
rulerViewWillAddMarker delegate method 1225
rulerViewWillAddMarker instance method 1643
rulerViewWillMoveMarker delegate method 1225
rulerViewWillMoveMarker instance method 1643
rulerViewWillSetClientView delegate method 1225
ruleThickness instance method 1219
run instance method 119
RunAbortedResponse constant 129
runAlert class method 71
RunContinuesResponse constant 129
runCriticalAlert class method 72
runCustomizationPalette instance method 1699
runInformationalAlert class method 72
runLoopModesForAnimating instance method 82
runModal instance method 61, 1048, 1168, 1237

runModalForTypes instance method 1024
runModalForWindow instance method 119
runModalInDirectory instance method 1025, 1238
runModalOpenPanel instance method 574
runModalOperation instance method 1160
runModalPageLayout instance method 540
runModalPageLayoutWithPrintInfo instance method

540
runModalPrintOperation instance method 541
runModalSavePanel instance method 541
runModalSession instance method 120
runModalWithPrintInfo instance method 1049
runOperation instance method 1160
runPageLayout instance method 120, 541
RunStoppedResponse constant 129
runToolbarCustomizationPalette instance method

1851

S

samplesPerPixel instance method 197
saturationComponent instance method 376
save instance method 1723
saveAllDocuments instance method 574
SaveAsOperation constant 554
saveDocument instance method 542
saveDocumentAs instance method 542
saveDocumentTo instance method 543
saveFrameUsingName instance method 1851
saveGraphicsContext class method 732
saveGraphicsState instance method 735
SaveOperation constant 554
savePanel class method 1232
saveToFile instance method 543
SaveToOperation constant 554
saveToURLOfType instance method 543
ScaleNone constant 777
ScaleProportionally constant 777
scalesWhenResized instance method 763
ScaleToFit constant 777
scaleUnitSquareToSize instance method 1771
screen instance method 1852
screenFont instance method 661
screens class method 1249
ScreenSaverWindowLevel constant 1876
scrollBarColor class method 365
scrollCellAtLocationToVisible instance method

895
scrollClipViewToPoint instance method 1771
scrollColumnsLeftBy instance method 229
scrollColumnsRightBy instance method 229
scrollColumnToVisible instance method 229, 1463

2065
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

ScrollerArrowPositioningDefault constant 816
ScrollerInterfaceStyleDefault constant 816
ScrollerPagingBehaviorDefault constant 816
scrollerWidth class method 1256
scrollerWidthForControlSize class method 1256
scrollItemAtIndexToTop instance method 420, 436
scrollItemAtIndexToVisible instance method 420,

436
scrollLineDown interface method 2000
scrollLineUp interface method 2000
ScrollLockFunctionKey constant 629
scrollPageDown interface method 2000
scrollPageUp interface method 2000
scrollPoint instance method 1772
scrollRangeToVisible instance method 1521
scrollRect instance method 1772
scrollRectToVisible instance method 1772
scrollRowToVisible instance method 1463
scrollsDynamically instance method 1277
scrollToPoint instance method 347
scrollViaScroller instance method 230
scrollView instance method 1219
ScrollWheel constant 624
scrollWheel instance method 1197, 1277
ScrollWheelMask constant 625
searchButtonCell instance method 1296
searchButtonRectForBounds instance method 1296
SearchFieldClearRecentsMenuItemTag constant

1300
SearchFieldNoRecentsMenuItemTag constant 1300
SearchFieldRecentsMenuItemTag constant 1300
SearchFieldRecentsTitleMenuItemTag constant

1300
searchMenuTemplate instance method 1296
searchTextRectForBounds instance method 1297
secondarySelectedControlColor class method 366
SecondButtonReturn constant 64
segmentCount instance method 1310, 1321
selectAll instance method 230, 896, 988, 1463, 1521
selectAll interface method 2000
selectAndEditWithFrameInView instance method

319
SelectByCharacter constant 1665
SelectByParagraph constant 1665
SelectByWord constant 1665
selectCell instance method 453
selectCellAtLocation instance method 896
selectCellWithTag instance method 896
selectColumn instance method 1464
selectColumnIndexes instance method 1464
selectedCell instance method 230, 454, 896
selectedCellInColumn instance method 230
selectedCells instance method 231, 897

selectedColumn instance method 231, 897, 1464
selectedColumnEnumerator instance method 1465
selectedColumnIndexes instance method 1465
selectedControlColor class method 366
selectedControlTextColor class method 366
selectedFont instance method 682
selectedItem instance method 1101, 1119
selectedItemIdentifier instance method 1699
selectedKnobColor class method 366
selectedMenuItemColor class method 367
selectedMenuItemTextColor class method 367
selectedObjects instance method 154, 1015
selectedRange instance method 807, 1522, 1644
selectedRange interface method 2028
selectedRanges instance method 1644
selectedRow instance method 897, 1465
selectedRowEnumerator instance method 1465
selectedRowInColumn instance method 231
selectedRowIndexes instance method 1466
selectedSegment instance method 1310, 1321
SelectedTab constant 1496
selectedTabViewItem instance method 1491
selectedTag instance method 454
selectedTextAttributes instance method 1644
selectedTextBackgroundColor class method 367
selectedTextColor class method 367
selectFile instance method 1910
selectFirstTabViewItem instance method 1491
SelectFunctionKey constant 629
SelectingNext constant 1876
SelectingPrevious constant 1876
selection instance method 1015
selectionAffinity instance method 1644
SelectionAffinityDownstream constant 1665
SelectionAffinityUpstream constant 1665
selectionGranularity instance method 1645
selectionIndex instance method 154
selectionIndexes instance method 155
selectionRangeForProposedRange instance method

1645
selectionShouldChangeInOutlineView delegate

method 1042
selectionShouldChangeInTableView delegate

method 1478
selectItem instance method 1102, 1119
selectItemAtIndex instance method 420, 436, 1102,

1119
selectItemWithObjectValue instance method 421,

437
selectItemWithTag instance method 1102, 1120
selectItemWithTitle instance method 1102, 1120
selectKeyViewFollowingView instance method 1852
selectKeyViewPrecedingView instance method 1852

2066
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

selectLastTabViewItem instance method 1491
selectLine interface method 2001
selectNext instance method 155
selectNextKeyView instance method 1852
selectNextTabViewItem instance method 1491
selectParagraph interface method 2001
selectPrevious instance method 155
selectPreviousKeyView instance method 1853
selectPreviousTabViewItem instance method 1491
selectRow instance method 1466
selectRowInColumn instance method 231
selectRowIndexes instance method 1466
selectSegmentWithTag instance method 1310
selectsInsertedObjects instance method 156
selectTabViewItem instance method 1492
selectTabViewItemAtIndex instance method 1492
selectTabViewItemWithIdentifier instance method

1492
selectText instance method 897, 1238, 1569
selectTextAtIndex instance method 697
selectTextAtLocation instance method 898
selectToMark interface method 2001
selectWord interface method 2001
sendAction instance method 231, 682, 898
sendActionToTarget instance method 454
sendActionToTargetForAllCells instance method

898
sendActionToTargetFromSender instance method

121
sendDoubleAction instance method 899
sendEvent instance method 121, 1853
sendsActionOnArrowKeys instance method 232
sendsActionOnEndEditing instance method 319
sendsSearchStringImmediately instance method

1297
sendsWholeSearchString instance method 1297
separatesColumns instance method 232
separatorItem instance method 939
SeparatorItemIdentifier constant 1718
SequentialColumnAutoresizingStyle constant 1478
serializedRepresentation instance method 639
server instance method 807
servicesMenu instance method 121
servicesProvider instance method 122
set instance method 54, 248, 376, 486, 661, 1326
setAcceptsArrowKeys instance method 232
setAcceptsMouseMovedEvents instance method 1853
setAccessoryView instance method 390, 690, 1049,

1160, 1169, 1219, 1238, 1383
setAction instance method 48, 319, 391, 455, 683, 939,

1402, 1712
setAction interface method 1926
setAlertStyle instance method 61

setAlignment instance method 49, 320, 455, 995, 1522
setAlignmentInRange instance method 1645
setAllowedFileTypes instance method 1025, 1239
setAllowsBranchSelection instance method 232
setAllowsColumnReordering instance method 1467
setAllowsColumnResizing instance method 1467
setAllowsColumnSelection instance method 1467
setAllowsCutCopyPaste instance method 798
setAllowsDocumentBackgroundColorChange instance

method 1646
setAllowsEditingTextAttributes instance method

320, 1569
setAllowsEmptySelection instance method 232, 899,

1467
setAllowsMixedState instance method 259, 320
setAllowsMultipleSelection instance method 233,

1025, 1468
setAllowsOtherFileTypes instance method 1239
setAllowsTickMarkValuesOnly instance method

1335, 1348
setAllowsToolTipsWhenApplicationIsInactive

instance method 1854
setAllowsTruncatedLabels instance method 1492
setAllowsUndo instance method 321, 1646
setAllowsUserCustomization instance method 1699
setAlpha instance method 790
setAlphaValue instance method 1854
setAlternate instance method 939
setAlternate interface method 1926
setAlternateImage instance method 248, 260, 280,

1403
setAlternateMnemonicLocation instance method

281
setAlternateTitle instance method 260, 281
setAlternateTitleWithMnemonic instance method

281
setAltersStateOfSelectedItem instance method

1120
setAltIncrementValue instance method 1335, 1348
setAlwaysUsesMultipleValuesMarker instance

method 156
setAnimates instance method 798
setAnimationBlockingMode instance method 82
setAnimationCurve instance method 83
setAnimationDelay instance method 1176
setApplicationIconImage instance method 122
setAppliesImmediately instance method 1723
setArrowPosition instance method 1121
setArrowsPosition instance method 1259
setAspectRatio instance method 1854
setAttachment instance method 1542
setAttachment interface method 1938
setAttachmentCell instance method 1537

2067
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setAttributedAlternateTitle instance method 260,
282

setAttributedStringValue instance method 321,
455

setAttributedTitle instance method 260, 282, 704,
939, 1403

setAttributedTitle interface method 1927
setAttributesInRange instance method 1592
setAutodisplay instance method 1855
setAutoenablesItems instance method 921, 1103,

1121
setAutohidesScrollers instance method 1277
setAutomaticallyPreparesContent instance method

1015
setAutorecalculatesKeyViewLoop instance method

1855
setAutorepeat instance method 1411, 1417
setAutoresizesAllColumnsToFit instance method

1468
setAutoresizesOutlineColumn instance method 1036
setAutoresizesSubviews instance method 1773
setAutoresizingMask instance method 1773
setAutosavedContentsFileURL instance method 544
setAutosaveExpandedItems instance method 1036
setAutosaveName instance method 1469
setAutosavesConfiguration instance method 1700
setAutosaveTableColumns instance method 1469
setAutosavingDelay instance method 574
setAutoscroll instance method 899
setAutosizesCells instance method 899
setAutovalidates instance method 1712
setAvoidsEmptySelection instance method 156
setBackgroundColor instance method 282, 347, 496,

507, 763, 900, 1278, 1469, 1522, 1549, 1569, 1578,
1646, 1855

setBackgroundLayoutEnabled instance method 845
setBackingType instance method 1855
setBaseWritingDirection instance method 996, 1647
setBecomesKeyOnlyIfNeeded instance method 1053
setBezeled instance method 49, 321, 496, 697, 1177,

1569
setBezelStyle instance method 261, 283, 1570, 1578
setBitmapData instance method 197
setBitmapDataPlanes instance method 197
setBitsPerSample instance method 791
setBlocksOtherRecognizers instance method 1364
setBorderColor instance method 1549
setBordered instance method 49, 261, 321, 410, 497,

697, 1570
setBorderType instance method 207, 1278
setBottomMargin instance method 1144
setBounds instance method 1773
setBoundsOrigin instance method 1774

setBoundsRect instance method 845
setBoundsRotation instance method 1775
setBoundsSize instance method 1775
setBoxType instance method 207
setButtonBordered instance method 421, 437
setButtonType instance method 261, 283
setCacheDepthMatchesImageDepth instance method

764
setCachedSeparately instance method 764
setCacheMode instance method 764
setCachesBezierPath instance method 180
setCancelButtonCell instance method 1298
setCanChooseDirectories instance method 1026
setCanChooseFiles instance method 1026
setCanCreateDirectories instance method 1239
setCanHide instance method 1856
setCanSelectHiddenExtension instance method 1240
setCanSpawnSeparateThread instance method 1161
setCell instance method 455
setCellAttribute instance method 322
setCellBackgroundColor instance method 900
setCellClass class method 447
setCellPrototype instance method 233
setCellSize instance method 900
setCharacterIndexForGlyphAtIndex instance

method 845
setClearsFilterPredicateOnInsertion instance

method 157
setClientView instance method 1219
setClip instance method 181
setCollapsesBorders instance method 1603
setColor instance method 197, 391, 410, 1502
setColor interface method 1944
setColorForKey instance method 383
setColorSpaceName instance method 791
setColumnAutoresizingStyle instance method 1469
setColumnResizingType instance method 233
setColumnsAutosaveName instance method 233
setCommands instance method 1365
setCompletes instance method 421, 437
setCompletionDelay instance method 1678, 1686
setCompressionWithFactor instance method 198
setConfigurationFromDictionary instance method

1700
setConstrainedFrameSize instance method 1647
setContainerSize instance method 1559
setContent instance method 1016
setContentAspectRatio instance method 1856
setContentMaxSize instance method 1856
setContentMinSize instance method 1857
setContentResizeIncrements instance method 1857
setContentSize instance method 592, 1857
setContentView instance method 207, 593, 1278, 1858

2068
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setContentViewMargins instance method 208
setContentWidth instance method 1550
setContextHelpForObject instance method 742
setContextHelpModeActive class method 740
setContextMenuRepresentation instance method

921
setContinuous instance method 322, 391, 456
setContinuousSpellCheckingEnabled instance

method 1647
setControlSize instance method 322, 1177, 1259, 1493
setControlTint instance method 323, 1177, 1260, 1493
setControlView instance method 49, 323
setCopiesOnScroll instance method 347
setCornerView instance method 1470
setCriticalValue instance method 862, 871
setCurrentContext class method 732
setCurrentOperation class method 1156
setCurrentPage instance method 1085
setCurrentProgress instance method 83
setDataCell instance method 1426
setDataForType instance method 1077
setDataRetained instance method 765
setDataSource instance method 422, 437, 1470
setDatePickerElements instance method 497, 507
setDatePickerMode instance method 497, 508
setDatePickerStyle instance method 497, 508
setDateValue instance method 498, 508
setDefaultAttachmentScaling instance method 846
setDefaultButtonCell instance method 1858
setDefaultFlatness class method 169
setDefaultLineCapStyle class method 169
setDefaultLineJoinStyle class method 170
setDefaultLineWidth class method 171
setDefaultMiterLimit class method 171
setDefaultParagraphStyle instance method 1647
setDefaultPlaceholderForMarker class method 476
setDefaultPrinter class method 1140
setDefaultTabInterval instance method 996
setDefaultWindingRule class method 171
setDelegate instance method 62, 83, 122, 234, 498,

509, 593, 683, 765, 846, 900, 921, 1240, 1359, 1365,
1373, 1389, 1470, 1493, 1523, 1570, 1592, 1648, 1686,
1700, 1858

setDepthLimit instance method 1858
setDirectory instance method 1240
setDisplayedCommandsTitle instance method 1365
setDisplayedWhenStopped instance method 1177
setDisplayMode instance method 1700
setDisplaysWhenScreenProfileChanges instance

method 1859
setDocument instance method 1892
setDocumentCursor instance method 347, 1279
setDocumentEdited instance method 1859, 1893

setDocumentView instance method 347, 1279
setDoubleAction instance method 234, 901, 1403, 1470
setDoubleValue instance method 323, 456, 1178
setDraggingSourceOperationMask instance method

1471
setDrawsBackground instance method 348, 498, 901,

1279, 1493, 1523, 1570, 1579, 1648
setDrawsCellBackground instance method 901
setDrawsGrid instance method 1471
setDrawsOutsideLineFragmentForGlyphAtIndex

instance method 846
setDropItemAndDropChildIndex instance method

1036
setDropRowAndDropOperation instance method 1471
setDuration instance method 83
setDynamicDepthLimit instance method 1859
setEchosBullets instance method 1304
setEditable instance method 323, 799, 988, 1016, 1426,

1523, 1571, 1648
setEnabled instance method 49, 324, 456, 683, 691,

940, 1311, 1321, 1403, 1713
setEnabled interface method 1927
setEntityName instance method 1016
setEntryType instance method 324
setEntryWidth instance method 698
setEventMaskForSendingAction instance method

324, 457, 1404
setExcludedFromWindowsMenu instance method 1860
setExtensionHidden instance method 1240
setExtraLineFragmentRect instance method 846
setFetchPredicate instance method 1017
setFieldEditor instance method 1523, 1648
setFileAttributes instance method 639
setFileModificationDate instance method 544
setFileName instance method 545
setFilename instance method 639
setFileType instance method 545
setFileURL instance method 545
setFileWrapper instance method 1537
setFill instance method 376
setFilterPredicate instance method 157
setFirstLineHeadIndent instance method 997
setFlatness instance method 181
setFlipped instance method 765
setFloatingPanel instance method 1054
setFloatingPointFormat instance method 50, 325,

457
setFloatValue instance method 325, 457
setFloatValueAndKnobProportion instance method

1260
setFocusRingStyle class method 726
setFocusRingType instance method 325, 1776

2069
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setFont instance method 50, 283, 326, 458, 969, 1494,
1524

setFontInRange instance method 1524
setFontMenu instance method 683
setFormatter instance method 326, 458
setFrame instance method 1776, 1860
setFrameAutosaveName instance method 1860
setFrameFromContentFrame instance method 208
setFrameFromString instance method 1861
setFrameOrigin instance method 1777, 1861
setFrameRate instance method 84
setFrameRotation instance method 1777
setFrameSize instance method 698, 1777
setFrameTopLeftPoint instance method 1861
setFrameUsingName instance method 1862
setGlyphAttributeForGlyphAtIndex instance

method 847
setGradientType instance method 284
setGraphicsState class method 733
setGridColor instance method 1472
setGridStyleMask instance method 1472
setHasHorizontalRuler instance method 1279
setHasHorizontalScroller instance method 234,

1280
setHasShadow instance method 1862
setHasUndoManager instance method 546
setHasVerticalRuler instance method 1280
setHasVerticalScroller instance method 422, 438,

1280
setHeaderCell instance method 1426
setHeaderLevel instance method 997
setHeaderView instance method 1472
setHeadIndent instance method 997
setHeightTracksTextView instance method 1560
setHelpAnchor instance method 62
setHidden instance method 1778
setHiddenUntilMouseMoves class method 484
setHidesEmptyCells instance method 1603
setHidesOnDeactivate instance method 1862
setHighlighted instance method 326, 956
setHighlightedItemIndex instance method 969
setHighlightedTableColumn instance method 1472
setHighlightMode instance method 1404
setHighlightsBy instance method 284
setHorizontal instance method 970
setHorizontalEdgePadding instance method 970
setHorizontalLineScroll instance method 1281
setHorizontallyCentered instance method 1144
setHorizontallyResizable instance method 1524
setHorizontalPageScroll instance method 1281
setHorizontalPagination instance method 1144
setHorizontalRulerView instance method 1281
setHorizontalScroller instance method 1282

setHyphenationFactor instance method 847, 997
setIcon instance method 62, 640
setIdentifier instance method 1427, 1502
setIgnoredWords instance method 1384
setIgnoresAlpha class method 367
setIgnoresMouseEvents instance method 1863
setIgnoresMultiClick instance method 458
setImage instance method 50, 262, 327, 799, 940, 1103,

1121, 1206, 1311, 1321, 1335, 1404, 1713
setImage interface method 1928
setImageAlignment instance method 775, 799
setImageDimsWhenDisabled instance method 284
setImageFrameStyle instance method 775, 800
setImageInterpolation instance method 735
setImageOrigin instance method 1206
setImagePosition instance method 262, 285
setImageScaling instance method 775, 800
setImportsGraphics instance method 327, 1524, 1571,

1649
setIncrement instance method 1412, 1418
setIndentationLevel instance method 940
setIndentationLevel interface method 1928
setIndentationMarkerFollowsCell instance method

1037
setIndentationPerLevel instance method 1037
setIndeterminate instance method 1178
setIndicatorImage instance method 1473
setInformativeText instance method 62
setInitialFirstResponder instance method 1503,

1863
setInitialValues instance method 1723
setInsertionPointColor instance method 1649
setIntercellSpacing instance method 422, 438, 902,

1473
setInterfaceStyle instance method 1197
setInterlineSpacing instance method 698
setIntValue instance method 327, 458
setIsPaneSplitter instance method 1389
setItemHeight instance method 423, 438
setJobDisposition instance method 1145
setJobStyleHint instance method 1161, 1169
setKeyboardFocusRingNeedsDisplayInRect instance

method 1778
setKeyCell instance method 902
setKeyEquivalent instance method 262, 285, 941
setKeyEquivalent interface method 1928
setKeyEquivalentFont instance method 285
setKeyEquivalentFontAndSize instance method 286
setKeyEquivalentModifierMask instance method

263, 286, 941
setKeyEquivalentModifierMask interface method

1928
setKnobThickness instance method 1336, 1349

2070
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setLabel instance method 1311, 1322, 1503, 1713
setLanguage instance method 1384
setLastColumn instance method 234
setLastError instance method 546, 575
setLayoutAlgorithm instance method 1603
setLayoutManager instance method 1560
setLayoutRect instance method 847
setLeadingOffset instance method 593
setLeaf instance method 249
setLeftMargin instance method 1145
setLength instance method 1404
setLevel instance method 1863
setLevelIndicatorStyle instance method 871
setLineBreakMode instance method 327, 998
setLineCapStyle instance method 181
setLineDash instance method 182
setLineFragmentPadding instance method 1560
setLineFragmentRectForGlyphAtIndex instance

method 848
setLineHeightMultiple instance method 998
setLineJoinStyle instance method 182
setLineScroll instance method 1282
setLineSpacing instance method 998
setLineWidth instance method 182
setLinkTextAttributes instance method 1649
setListensInForegroundOnly instance method 1366
setLoaded instance method 249
setLocationForStartOfGlyphRange instance method

848
setLoopMode instance method 989
setMainMenu instance method 122
setManagedObjectContext instance method 1017
setMark interface method 2001
setMarkedTextAndSelectedRange instance method

807, 1650
setMarkedTextAndSelectedRange interface method

2028
setMarkedTextAttributes instance method 1650
setMarkerLocation instance method 1206
setMarkers instance method 1220
setMatchesOnMultipleResolution instance method

765
setMaxContentSize instance method 593
setMaxDate instance method 498, 509
setMaximumLineHeight instance method 999
setMaximumRecents instance method 1298
setMaxSize instance method 1525, 1714, 1864
setMaxValue instance method 863, 871, 1178, 1336,

1349, 1412, 1418
setMaxVisibleColumns instance method 235
setMaxWidth instance method 1427
setMeasurementUnits instance method 1220

setMenu instance method 328, 942, 970, 1103, 1122,
1197, 1312, 1322, 1405

setMenu interface method 1929
setMenuBarVisible class method 914
setMenuChangedMessagesEnabled instance method

921
setMenuFormRepresentation instance method 1714
setMenuItem instance method 956
setMenuItemCellForItemAtIndex instance method

970
setMenuRepresentation instance method 922
setMenuView instance method 956
setMessage instance method 1241
setMessageText instance method 63
setMinColumnWidth instance method 235
setMinContentSize instance method 594
setMinDate instance method 499, 509
setMinimumLineHeight instance method 999
setMiniwindowImage instance method 1864
setMiniwindowTitle instance method 1864
setMinSize instance method 1525, 1714, 1865
setMinValue instance method 863, 871, 1178, 1336,

1349, 1412, 1418
setMinWidth instance method 1427
setMiterLimit instance method 182
setMixedStateImage instance method 942
setMixedStateImage interface method 1929
setMnemonicLocation instance method 328, 942
setMnemonicLocation interface method 1930
setMode instance method 392, 398, 902
setMode interface method 1949
setMovable instance method 1206
setMovableByWindowBackground instance method

1865
setMovie instance method 989
setMuted instance method 989
setName instance method 766, 1359
setNameFieldLabel instance method 1241
setNeedsDisplay instance method 459, 956, 1650, 1779
setNeedsDisplayForItemAtIndex instance method

971
setNeedsSizing instance method 957, 971
setNewCellClass instance method 235, 902
setNewMatrixClass instance method 235
setNextKeyView instance method 1779
setNextResponder instance method 1198
setNextState instance method 263, 328
setNotShownForGlyphAtIndex instance method 848
setNumberOfColumns instance method 1604
setNumberOfMajorTickMarks instance method 863,

872
setNumberOfTickMarks instance method 864, 872,

1336, 1349

2071
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setNumberOfVisibleItems instance method 423, 439
setObjectClass instance method 1017
setObjectValue instance method 50, 328, 459, 1103,

1122
setOffStateImage instance method 943
setOffStateImage interface method 1930
setOneShot instance method 1865
setOnMouseEntered instance method 487
setOnMouseExited instance method 487
setOnStateImage instance method 943
setOnStateImage interface method 1930
setOpaque instance method 791, 1866
setOrientation instance method 1145, 1220
setOriginOffset instance method 1220
setOutlineTableColumn instance method 1037
setPageOrder instance method 1161
setPageScroll instance method 1282
setPaletteLabel instance method 1714
setPanelFont instance method 691
setPaperName instance method 1146
setPaperSize instance method 1146
setParagraphSpacing instance method 999
setParagraphSpacingBefore instance method 1000
setParagraphStyle instance method 1000
setParentWindow instance method 594, 1866
setPath instance method 235
setPathSeparator instance method 236
setPatternPhase instance method 735
setPeriodicDelayAndInterval instance method 263,

286
setPickerMask class method 388
setPickerMode class method 388
setPixel instance method 198
setPixelsHigh instance method 792
setPixelsWide instance method 792
setPlaceholderAttributedString instance method

704, 1579
setPlaceholderString instance method 704, 1579
setPlaysEveryFrame instance method 990
setPlaysSelectionOnly instance method 990
setPostsBoundsChangedNotifications instance

method 1779
setPostsFrameChangedNotifications instance

method 1780
setPreferredEdge instance method 594, 1103, 1122
setPreferredFilename instance method 640
setPreferredFontNames class method 650
setPrefersAllColumnUserResizing: instance

method 236
setPrefersColorMatch instance method 766
setPreservesContentDuringLiveResize instance

method 1866
setPreservesSelection instance method 157

setPrinter instance method 1146
setPrintInfo instance method 546, 1162
setPrintPanel instance method 1162
setProgressMarks instance method 84
setPrompt instance method 1241
setProperty instance method 198
setPropertyListForType instance method 1078
setPrototype instance method 903
setPullsDown instance method 1104, 1123
setRate instance method 990
setRecentsAutosaveName instance method 1289, 1298
setRecentSearches instance method 1289, 1298
setRefusesFirstResponder instance method 329,

459
setReleasedWhenClosed instance method 1867
setRemovable instance method 1207
setRepresentedFilename instance method 1867
setRepresentedObject instance method 329, 943,

1207
setRepresentedObject interface method 1930
setRequiredFileType instance method 1242
setReservedThicknessForAccessoryView instance

method 1221
setReservedThicknessForMarkers instance method

1221
setResizable instance method 1427
setResizeIncrements instance method 1867
setResizingMask instance method 1428
setResolvesAliases instance method 1026
setReusesColumns instance method 236
setRichText instance method 1525, 1650
setRightMargin instance method 1146
setRowHeight instance method 1473
setRulersVisible instance method 1283
setRulerViewClass class method 1271
setRulerVisible instance method 1651
setRuleThickness instance method 1221
setScalesWhenResized instance method 766
setScrollable instance method 329, 903
setScrollsDynamically instance method 1283
setScrollView instance method 1222
setSearchButtonCell instance method 1299
setSearchMenuTemplate instance method 1299
setSegmentCount instance method 1312, 1322
setSelectable instance method 329, 1525, 1571, 1651
setSelected instance method 1312, 1323
setSelectedAttributes instance method 683
setSelectedFont instance method 684
setSelectedItemIdentifier instance method 1701
setSelectedObjects instance method 158
setSelectedRange instance method 1526, 1651
setSelectedRanges instance method 1652
setSelectedTextAttributes instance method 1652

2072
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setSelectionByRect instance method 903
setSelectionGranularity instance method 1653
setSelectionIndex instance method 158
setSelectionIndexes instance method 158
setSelectionWithAnchor instance method 903
setSelectsInsertedObjects instance method 159
setSendsActionOnArrowKeys instance method 237
setSendsActionOnEndEditing instance method 330
setSendsSearchStringImmediately instance method

1299
setSendsWholeSearchString instance method 1300
setSeparatesColumns instance method 237
setServicesMenu instance method 123
setServicesProvider instance method 123
setShadowBlurRadius instance method 1327
setShadowColor: instance method 1327
setShadowOffset instance method 1327
setSharedPrintInfo class method 1140
setShouldAntialias instance method 735
setShouldCascadeWindows instance method 1893
setShouldCloseDocument instance method 1893
setShouldCreateUI instance method 575
setShowPanels instance method 1162
setShowsAlpha instance method 392
setShowsBaselineSeparator instance method 1701
setShowsBorderOnlyWhileMouseInside instance

method 264, 286
setShowsControlCharacters instance method 849
setShowsFirstResponder instance method 330
setShowsHelp instance method 63
setShowsInvisibleCharacters instance method 849
setShowsPrintPanel instance method 1162
setShowsProgressPanel instance method 1163
setShowsResizeIndicator instance method 1868
setShowsStateBy instance method 287
setShowsToolbarButton instance method 1868
setSize instance method 767, 792
setSizeMode instance method 1701
setSliderType instance method 1350
setSmartInsertDeleteEnabled instance method 1653
setSortDescriptorPrototype instance method 1428
setSortDescriptors instance method 159, 1473
setSound instance method 264, 287
setState instance method 264, 330, 944
setState interface method 1931
setStateAtLocation instance method 904
setString instance method 1526
setStringForType instance method 1078
setStringValue instance method 331, 460
setStroke instance method 376
setStyle instance method 1179
setSubmenu instance method 944
setSubmenu interface method 1931

setSubmenuForItem instance method 922
setSupermenu instance method 922
setTabKeyTraversesCells instance method 904
setTableView instance method 1428, 1435
setTabStops instance method 1000
setTabViewType instance method 1494
setTag instance method 51, 331, 460, 944, 1313, 1715
setTag interface method 1931
setTailIndent instance method 1000
setTakesTitleFromPreviousColumn instance method

237
setTarget instance method 51, 331, 392, 460, 944, 1405,

1715
setTarget interface method 1932
setTearOffMenuRepresentation instance method

922
setTemporaryAttributes instance method 849
setTextAlignment instance method 698
setTextBlocks instance method 1001
setTextColor instance method 499, 509, 1526, 1572,

1580
setTextColorInRange instance method 1526
setTextContainer instance method 1653
setTextContainerForGlyphRange instance method

850
setTextContainerInset instance method 1654
setTextFont instance method 698
setTextLists instance method 1001
setTextStorage instance method 850
setTextView instance method 1561
setTickMarkPosition instance method 864, 872, 1337,

1350
setTighteningFactorForTruncation instance

method 1001
setTimeInterval instance method 499, 510
setTimeZone instance method 500, 510
setTitle instance method 208, 265, 287, 332, 705, 922,

945, 1104, 1123, 1242, 1337, 1350, 1405, 1868
setTitle interface method 1932
setTitleAlignment instance method 698, 705
setTitleCell instance method 1337, 1351
setTitleColor instance method 1338, 1351
setTitled instance method 237
setTitleFont instance method 209, 699, 705, 1338,

1351
setTitleOfColumn instance method 237
setTitlePosition instance method 209
setTitleWidth instance method 705
setTitleWithMnemonic instance method 209, 265,

288, 332, 705, 945, 1572
setTitleWithMnemonic interface method 1932
setTitleWithRepresentedFilename instance method

1868

2073
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

setTokenizingCharacterSet instance method 1678,
1687

setTokenStyle instance method 1678, 1687
setToolbar instance method 1869
setToolTip instance method 905, 945, 1313, 1406, 1715,

1780
setToolTip interface method 1932
setTopMargin instance method 1147
setTrackingMode instance method 1313
setTrailingOffset instance method 594
setTransparent instance method 266, 288
setTreatsFilePackagesAsDirectories instance

method 1242
setType instance method 332
setTypesetterBehavior instance method 850
setTypingAttributes instance method 1654
setUndoManager instance method 547
setUpFieldEditorAttributes instance method 332,

1580
setUpGState instance method 1781
setUpPrintOperationDefaultValues instance

method 1147
setUserFixedPitchFont class method 651
setUserFont class method 651
setUsesAlternatingRowBackgroundColors instance

method 1474
setUsesDataSource instance method 423, 439
setUsesEPSOnResolutionMismatch instance method

767
setUsesFeedbackWindow instance method 1374
setUsesFindPanel instance method 1654
setUsesFontPanel instance method 1527, 1655
setUsesItemFromMenu instance method 1123
setUsesRuler instance method 1655
setUsesScreenFonts instance method 851
setUsesThreadedAnimation instance method 1179
setUsesUserKeyEquivalents class method 934
setValidateSize instance method 905
setValue instance method 1550
setValueWraps instance method 1412, 1418
setVertical instance method 1389
setVerticalAlignment instance method 1550
setVerticalLineScroll instance method 1283
setVerticallyCentered instance method 1147
setVerticallyResizable instance method 1527
setVerticalMotionCanBeginDrag instance method

1474
setVerticalPageScroll instance method 1284
setVerticalPagination instance method 1147
setVerticalRulerView instance method 1284
setVerticalScroller instance method 1285
setView instance method 1406, 1503, 1715
setViewAnimations instance method 1792

setViewsNeedDisplay instance method 1869
setVisibilityPriority instance method 1716
setVisible instance method 1702
setVoice instance method 1374
setVolume instance method 990
setWarningValue instance method 864, 872
setWidth instance method 1314, 1323, 1429
setWidthForLayer instance method 1551
setWidthOfColumn instance method 238
setWidthTracksTextView instance method 1561
setWindingRule instance method 183
setWindow instance method 547, 1893
setWindowController instance method 1869
setWindowFrameAutosaveName instance method 1894
setWindowFrameForAttachingToRect instance

method 971
setWindowsMenu instance method 123
setWindowsNeedUpdate instance method 123
setWordFieldStringValue instance method 1384
setWorksWhenModal instance method 1054
setWraps instance method 333
shadowBlurRadius instance method 1328
shadowColor class method 368
shadowColor instance method 1328
ShadowlessSquareBezelStyle constant 290
shadowOffset instance method 1328
shadowWithLevel instance method 377
sharedApplication class method 105
sharedColorPanel class method 389
sharedColorPanelExists class method 389
sharedDocumentController class method 561
sharedFontManager class method 671
sharedFontPanel class method 689
sharedFontPanelExists class method 689
sharedHelpManager class method 741
sharedPrintInfo class method 1141
sharedSpellChecker class method 1381
sharedSpellCheckerExists class method 1381
sharedUserDefaultsController class method 1720
sharedWorkspace class method 1902
ShellCommandFileType constant 1911
ShiftKeyMask constant 626
shouldAntialias instance method 736
shouldBeTreatedAsInkEvent instance method 1198
shouldCascadeWindows instance method 1894
shouldChangePrintInfo instance method 547
shouldChangeTextInRange instance method 1655
shouldChangeTextInRanges instance method 1656
shouldCloseDocument instance method 1894
shouldCloseWindowController instance method 547
shouldCollapseAutoExpandedItemsForDeposited

instance method 1037
shouldCreateUI instance method 575

2074
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

shouldDelayWindowOrderingForEvent instance
method 1781

shouldDrawColor instance method 1781
shouldDrawInsertionPoint instance method 1656
shouldRunSavePanelWithAccessoryView instance

method 548
showAttachmentCell instance method 851
ShowColorsItemIdentifier constant 1718
showContextHelp instance method 1198
showContextHelpForObject instance method 742
showController instance method 991
showEffect class method 92
ShowFontsItemIdentifier constant 1718
showGuessPanel instance method 1527
showHelp instance method 123
showPanels instance method 1163
showsAlpha instance method 392
showsBaselineSeparator instance method 1702
showsBorderOnlyWhileMouseInside instance method

266, 288
showsControlCharacters instance method 851
showsFirstResponder instance method 333
showsHelp instance method 63
showsInvisibleCharacters instance method 851
showsPrintPanel instance method 1163
showsProgressPanel instance method 1164
showsResizeIndicator instance method 1869
showsStateBy instance method 289
showsToolbarButton instance method 1870
showSystemInfoPanel class method 105
showWindow instance method 1894
showWindows instance method 548
SingleDateMode constant 511
size instance method 767, 792
sizeForKeyInTable instance method 1134
sizeForMagnification instance method 991
sizeForPaperName class method 1141
sizeLastColumnToFit instance method 1474
sizeMode instance method 1702
SizeModeDefault constant 1703
SizeModeMask constant 691
SizeModeRegular constant 1703
SizeModeSmall constant 1703
sizeOfAttributedString class method 726
sizeOfLabel instance method 1503
sizeToCells instance method 905
sizeToFit instance method 210, 461, 922, 972, 1179,

1429, 1474, 1528
slideDraggedImageTo instance method 585
slideDraggedImageTo interface method 1962
sliderType instance method 1351
SmallCapsMask constant 685
SmallControlSize constant 340, 1181, 1262, 1496

SmallSquareBezelStyle constant 290
smallSystemFontSize class method 651
smartDeleteRangeForProposedRange instance

method 1657
smartInsertAfterStringForString instance method

1657
smartInsertBeforeStringForString instance

method 1657
smartInsertDeleteEnabled instance method 1658
SolidHorizontalGridLineMask constant 1478
SolidVerticalGridLineMask constant 1478
sortDescriptorPrototype instance method 1429
sortDescriptors instance method 159, 1475
sortIndicatorRectForBounds instance method 1432
sortUsingMethod instance method 905
sound instance method 266, 289
soundNamed class method 1357
soundUnfilteredFileTypes class method 1358
soundUnfilteredPasteboardTypes class method

1358
SpaceItemIdentifier constant 1718
SpecialPageOrder constant 1164
speechRecognizerDidRecognizeCommand delegate

method 1367
speechSynthesizerDidFinishSpeaking delegate

method 1377
speechSynthesizerWillSpeakPhoneme delegate

method 1377
speechSynthesizerWillSpeakWorddelegate method

1378
spellCheckerDocumentTag instance method 1658
spellingPanel instance method 1384
splitViewCanCollapseSubview delegate method

1389
splitViewConstrainMaxSplitPosition delegate

method 1390
splitViewConstrainMinSplitPosition delegate

method 1390
splitViewConstrainSplitPositiondelegate method

1391
splitViewDidResizeSubviews delegate method 1391
SplitViewDidResizeSubviewsNotification

notification 1392
splitViewResizeSubviews delegate method 1391
splitViewWillResizeSubviews delegate method

1391
SplitViewWillResizeSubviewsNotification

notification 1392
SquareStatusItemLength constant 1395
StandardModesMask constant 692
standardWindowButton instance method 1870
standardWindowButtonForStyleMask class method

1815

2075
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

start instance method 991
startAnimation instance method 84, 1179
startedDraggingImage interface method 1967
startingColumn instance method 1606
startingRow instance method 1607
startListening instance method 1366
startPeriodicEvents class method 609
startSpeaking instance method 1658
startSpeakingString instance method 1375
startTrackingMouse instance method 333
startWhenAnimation instance method 85
State constant 338
state instance method 266, 333, 595, 945
state interface method 1933
stateImageOffset instance method 972
stateImageRectForBounds instance method 957
stateImageWidth instance method 957, 972
statusBar instance method 1406
statusForTable instance method 1134
statusItem instance method 1395
StatusWindowLevel constant 1876
stepBack instance method 991
stepForward instance method 992
stop instance method 124, 992, 1359
stopAnimation instance method 85, 1180
StopFunctionKey constant 629
stopListening instance method 1366
stopModal instance method 124
stopModalWithCode instance method 124
stopPeriodicEvents class method 610
stopSpeaking instance method 1376, 1658
stopTrackingMouse instance method 334
stopWhenAnimation instance method 86
strikethroughGlyphRange instance method 851
string instance method 1528
stringForKeyInTable instance method 1134
stringForType instance method 1078
stringListForKeyInTable instance method 1134
StringPboardType constant 1080
stringValue instance method 51, 334, 461
stringWithSavedFrame instance method 1870
stroke instance method 183
strokeLineFromPoint class method 172
strokeRect class method 172
style instance method 1180
styleMask instance method 1870
submenu instance method 946
submenu interface method 1933
submenuAction instance method 923
SubmenuWindowLevel constant 1875
subscript instance method 1528
substituteFontForFont instance method 852
subtype instance method 618

subviews instance method 1782
supermenu instance method 923
superscript instance method 1528
superview instance method 1782
supportedWindowDepths instance method 1250
supportsMode interface method 1944
swapWithMark interface method 2001
SwitchButton constant 291
symbolicLinkDestination instance method 640
synchronize instance method 736
synchronizeTitleAndSelectedItem instance method

1104, 1124
synchronizeWindowTitleWithDocumentName instance

method 1895
SysReqFunctionKey constant 629
SystemColorInterfaceStyleDefault constant 816
SystemColorsDidChangeNotification notification

378, 728
SystemDefined constant 624
SystemDefinedMask constant 625
systemFontOfSize class method 652
systemFontSize class method 652
systemFontSizeForControlSize class method 652
SystemFunctionKey constant 629
systemStatusBar class method 1394
systemTabletID instance method 619

T

TabCharacter constant 1531
TabColumnTerminatorsAttributeName constant 1597
tabKeyTraversesCells instance method 905
table instance method 1607
tableColumns instance method 1475
tableColumnWithIdentifier instance method 1475
tabletID instance method 619
TabletPoint constant 624
tabletPoint instance method 1198
TabletPointEventSubtype constant 626
TabletPointMask constant 625
TabletProximity constant 624
tabletProximity instance method 1199
TabletProximityEventSubtype constant 626
TabletProximityMask constant 625
tableView instance method 1430, 1435
tableViewAcceptDrop interface method 2020
tableViewColumnDidMove delegate method 1479
TableViewColumnDidMoveNotification notification

1482
tableViewColumnDidResize delegate method 1479
TableViewColumnDidResizeNotification

notification 1482

2076
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

tableViewDidClickTableColumn delegate method
1479

tableViewDidDragTableColumn delegate method
1479

tableViewHeightOfRow delegate method 1479
TableViewInterfaceStyleDefault constant 816
tableViewMouseDownInHeaderOfTableColumn

delegate method 1480
tableViewNamesOfPromisedFilesDroppedAtDestination

interface method 2021
tableViewObjectValueForLocation interface method

2021
tableViewSelectionDidChange delegate method

1480
TableViewSelectionDidChangeNotification

notification 1482
tableViewSelectionIsChanging delegate method

1480
TableViewSelectionIsChangingNotification

notification 1482
tableViewSetObjectValueForLocation interface

method 2021
tableViewShouldEditLocation delegate method

1480
tableViewShouldSelectRow delegate method 1480
tableViewShouldSelectTableColumn delegate

method 1481
tableViewSortDescriptorsDidChange interface

method 2021
tableViewToolTipForCell delegate method 1481
tableViewValidateDrop interface method 2022
tableViewWillDisplayCell delegate method 1481
tableViewWriteRowsToPasteboard interface method

2022
tabState instance method 1503
tabStops instance method 1064
tabStopType instance method 1597
TabTextMovement constant 1530
TabularTextPboardType constant 1080
tabView instance method 1504
tabViewDidChangeNumberOfTabViewItems delegate

method 1497
tabViewDidSelectTabViewItem delegate method

1497
tabViewItemAtIndex instance method 1494
tabViewItemAtPoint instance method 1494
tabViewItems instance method 1495
tabViewShouldSelectTabViewItemdelegate method

1497
tabViewType instance method 1495
tabViewWillSelectTabViewItem delegate method

1497

tag instance method 51, 334, 461, 946, 958, 1314, 1716,
1782

tag interface method 2033
tailIndent instance method 1065
takeColorFrom instance method 410
takeDoubleValue instance method 335, 461
takeFloatValue instance method 335, 462
takeIntValue instance method 335, 462
takeObjectValue instance method 335, 462
takeSelectedTabViewItemFromSender instance

method 1495
takesTitleFromPreviousColumn instance method

238
takeStringValue instance method 335, 462
tangentialPressure instance method 619
target instance method 51, 336, 463, 946, 1406, 1716
target interface method 1933
targetForAction instance method 125
targetForActionToFrom instance method 125
tearOffMenuRepresentation instance method 923
temporaryAttributesAtCharacterIndex instance

method 852
terminate instance method 125, 814
terminate interface method 1981
TerminateCancel constant 129
TerminateLater constant 129
TerminateNow constant 129
testPart instance method 1260
textBackgroundColor class method 368
textBlocks instance method 1065
TextCellType constant 337
textColor class method 368
textColor instance method 500, 510, 1529, 1572, 1580
textContainer instance method 1659
textContainerChangedGeometry instance method

852
textContainerChangedTextView instance method

853
textContainerForGlyphAtIndex instance method

853
textContainerInset instance method 1659
textContainerOrigin instance method 1659
textContainers instance method 853
textDidBeginEditing delegate method 1531
textDidBeginEditing instance method 906, 1475,

1572
TextDidBeginEditingNotificationnotification 1532
textDidChange delegate method 1531
textDidChange instance method 906, 1475, 1573
TextDidChangeNotification notification 1532
textDidEndEditing delegate method 1532
textDidEndEditing instance method 906, 1476, 1573
TextDidEndEditingNotification notification 1533

2077
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

TextFieldAndStepperDatePickerStyle constant
511

TextFieldRoundedBezel constant 1580
TextFieldSquareBezel constant 1580
textLists instance method 1065
textShouldBeginEditing delegate method 1532
textShouldBeginEditing instance method 907, 1476,

1573
textShouldEndEditing delegate method 1532
textShouldEndEditing instance method 907, 1476,

1574
textStorage instance method 853, 1659
textStorageChanged instance method 854
textStorageDidProcessEditing delegate method

1592
TextStorageDidProcessEditingNotification

notification 1593
TextStorageEditedAttributes constant 1589
TextStorageEditedCharacters constant 1589
textStorageWillProcessEditing delegate method

1592
TextStorageWillProcessEditingNotification

notification 1593
TexturedBackgroundWindowMask constant 1875
TexturedRoundedBezelStyle constant 290
TexturedSquareBezelStyle constant 290
textView delegate method 1666
textView instance method 1561
textViewClickedCell delegate method 1667
textViewClickedCellAtIndexdelegate method 1667
textViewClickedOnLink delegate method 1667
textViewClickedOnLinkAtIndex delegate method

1668
textView:completionsForPartialWordRange

delegate method 1666
textViewDidChangeSelectiondelegate method 1668
TextViewDidChangeSelectionNotification

notification 1672
textViewDidChangeTypingAttributes delegate

method 1668
TextViewDidChangeTypingAttributesNotification

notification 1673
textViewDoCommandBySelector delegate method

1668
textViewDoubleClickedCell delegate method 1669
textViewDoubleClickedCellAtIndex delegate

method 1669
textViewDraggedCell delegate method 1669
textViewDraggedCellAtIndexdelegate method 1670
textViewForBeginningOfSelection instance method

854
textViewShouldChangeTextInRangedelegate method

1670

textViewShouldChangeTextInRanges delegate
method 1670

textViewShouldChangeTypingAttributes delegate
method 1671

TextViewWillChangeNotifyingTextViewNotification
notification 1673

textViewWillChangeSelection delegate method
1671

textViewWillDisplayToolTip delegate method 1672
ThickerSquareBezelStyle constant 290
thickness instance method 1395
thicknessRequiredInRuler instance method 1207
ThickSquareBezelStyle constant 290
ThirdButtonReturn constant 64
TickMarkAbove constant 1353
TickMarkBelow constant 1353
TickMarkLeft constant 1353
tickMarkPosition instance method 864, 873, 1338,

1351
TickMarkRight constant 1353
tickMarkValueAtIndex instance method 865, 873,

1338, 1352
TIFFCompressionCCITTFAX3 constant 201
TIFFCompressionCCITTFAX4 constant 201
TIFFCompressionJPEG constant 201
TIFFCompressionLZW constant 201
TIFFCompressionNEXT constant 201
TIFFCompressionNone constant 201
TIFFCompressionOldJPEG constant 201
TIFFCompressionPackBits constant 201
TIFFCompressionTypes class method 191
TIFFFileType constant 200
TIFFPboardType constant 1080
TIFFRepresentation instance method 198, 768
TIFFRepresentationOfImageReps class method 191
tighteningFactorForTruncation instance method

1065
tightenKerning instance method 1659
tile instance method 238, 1285, 1476
tilt instance method 620
timeInterval instance method 500, 510
timestamp instance method 620
timeZone instance method 500, 511
TimeZoneDatePickerElementFlag constant 512
title instance method 210, 267, 289, 706, 923, 946,

1242, 1338, 1352, 1406, 1870
title interface method 1933
titleAlignment instance method 706
titleBarFontOfSize class method 652
titleCell instance method 210, 1339, 1352
titleColor instance method 1339, 1352
TitledWindowMask constant 1875
titleFont instance method 210, 706, 1339, 1352

2078
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

titleFrameOfColumn instance method 238
titleHeight instance method 239
titleOfColumn instance method 239
titleOfSelectedItem instance method 1104, 1124
titlePosition instance method 211
titleRect instance method 211
titleRectForBounds instance method 336, 958
titleWidth instance method 706, 958
titleWidthWithSize instance method 706
toggle instance method 595
ToggleButton constant 291
toggleContinuousSpellChecking instance method

1660
toggleRuler instance method 1529
toggleToolbarShown instance method 1871
toggleTraditionalCharacterShape instance method

1660
tokenFieldCellCompletionsForSubstringdelegate

method 1688
tokenFieldCellDisplayStringForRepresentedObject

delegate method 1688
tokenFieldCellEditingStringForRepresentedObject

delegate method 1689
tokenFieldCellHasMenuForRepresentedObject

delegate method 1689
tokenFieldCellMenuForRepresentedObject

delegate method 1689
tokenFieldCellReadFromPasteboard delegate

method 1690
tokenFieldCellRepresentedObjectForEditingString

delegate method 1690
tokenFieldCellShouldAddObjectsdelegate method

1690
tokenFieldCellStyleForRepresentedObject

delegate method 1690
tokenFieldCellWriteRepresentedObjectsToPasteboard

delegate method 1691
tokenFieldCompletionsForSubstring delegate

method 1679
tokenFieldDisplayStringForRepresentedObject

delegate method 1679
tokenFieldEditingStringForRepresentedObject

delegate method 1680
tokenFieldHasMenuForRepresentedObjectdelegate

method 1680
tokenFieldMenuForRepresentedObject delegate

method 1680
tokenFieldReadFromPasteboard delegate method

1680
tokenFieldRepresentedObjectForEditingString

delegate method 1681
tokenFieldShouldAddObjects delegate method 1681

tokenFieldStyleForRepresentedObject delegate
method 1681

tokenFieldWriteRepresentedObjectsToPasteboard
delegate method 1681

tokenizingCharacterSet instance method 1678, 1687
tokenStyle instance method 1679, 1687
toolbar instance method 1716, 1871
toolbarAllowedItemIdentifiers delegate method

1704
toolbarDefaultItemIdentifiers delegate method

1704
toolbarDidRemoveItem delegate method 1704
toolbarItemForItemIdentifier delegate method

1704
toolbarSelectableItemIdentifiers delegate

method 1705
toolbarWillAddItem delegate method 1705
toolTip instance method 907, 946, 1314, 1407, 1716,

1783
toolTip interface method 1933
toolTipsFontOfSize class method 653
TopAlignment constant 1553
TopLevelObjects constant 1006
topMargin instance method 1147
TopTabsBezelBorder constant 1496
TornOffMenuWindowLevel constant 1875
trackingMode instance method 1314
trackingNumber instance method 620
trackKnob instance method 1260
trackMarker instance method 1222
trackMouse instance method 336, 1543
trackMouse interface method 1938
trackMouseToAddMarker instance method 1207
trackRect instance method 1353
trackScrollButtons instance method 1261
trackWithEvent instance method 973
trailingOffset instance method 595
traitsOfFont instance method 684
transformBezierPath instance method 54
transformUsingAffineTransform instance method

183
translateOriginToPoint instance method 1783
transpose interface method 2002
transposeWords interface method 2002
treatsFilePackagesAsDirectories instance method

1243
tryToPerform instance method 126, 1199, 1871
turnOffKerning instance method 1660
turnOffLigatures instance method 1660
TwoByteGlyphPacking constant 663
type instance method 337, 621, 1135
typeForContentsOfURL instance method 576
typeFromFileExtension instance method 576

2079
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

types instance method 1079
typesetterBehavior instance method 854
TypesetterBehavior_10_2 constant 857
TypesetterBehavior_10_2_WithCompatibility

constant 857
TypesetterBehavior_10_3 constant 857
TypesetterBehavior_10_4 constant 857
TypesetterLatestBehavior constant 856
TypesetterOriginalBehavior constant 856
typesFilterableTo class method 1074
typingAttributes instance method 1660

U

unbind interface method 2004
UnboldMask constant 685
underline instance method 1529, 1661
underlineGlyphRange instance method 855
underlinePosition instance method 662
underlineThickness instance method 662
UndoFunctionKey constant 629
undoManager instance method 548, 1199
undoManagerForTextView delegate method 1672
unhide class method 484
unhide instance method 126
unhideAllApplications instance method 126
unhideWithoutActivation instance method 127
UnifiedTitleAndToolbarWindowMask constant 1877
UniformColumnAutoresizingStyle constant 1478
uniqueID instance method 621
uniqueSpellDocumentTag class method 1381
UnitalicMask constant 685
UnknownColorSpaceModel constant 405
UnknownPageOrder constant 1164
UnknownPointingDevice constant 625
unlockFocus instance method 768, 1783
unmarkText instance method 807, 1661
unmarkText interface method 2029
unmountAndEjectDeviceAtPath instance method 1910
unregisterDraggedTypes instance method 1784, 1871
unregisterImageRepClass class method 788
UnscaledWindowMask constant 1877
unscript instance method 1529
UpArrowFunctionKey constant 627
update instance method 923, 973, 1871
updateCell instance method 463
updateCellInside instance method 463
updateChangeCount instance method 549
updateDragTypeRegistration instance method 1661
updateFontPanel instance method 1661
updateFromPath instance method 640
updateFromPrintInfo instance method 1169

updateInsertionPointStateAndRestartTimer
instance method 1662

updateRuler instance method 1662
updateScroller instance method 239
updateSpellingPanelWithMisspelledWord instance

method 1384
updateWindows instance method 127
updateWindowsItem instance method 127
uppercaseWord interface method 2002
UpTextMovement constant 1530
URL instance method 979, 1243
URLPboardType constant 1080
URLs instance method 1026
URLsFromRunningOpenPanel instance method 576
usableParts instance method 1261
useAllLigatures instance method 1662
usedRectForTextContainer instance method 855
useFont class method 653
useOptimizedDrawing instance method 1872
UserAttentionRequestCritical constant 130
UserAttentionRequestInformational constant 130
UserColumnResizing constant 240
userDefaultsChanged instance method 1911
userFixedPitchFontOfSize class method 653
userFontOfSize class method 654
UserFunctionKey constant 629
userKeyEquivalent instance method 947
userKeyEquivalent interface method 1934
userKeyEquivalentModifierMask instance method

947
userKeyEquivalentModifierMask interface method

1934
userSpaceScaleFactor instance method 1250, 1872
usesAlternatingRowBackgroundColors instance

method 1477
usesDataSource instance method 423, 439
usesEPSOnResolutionMismatch instance method 768
usesFeedbackWindow instance method 1376
usesFindPanel instance method 1662
usesFontPanel instance method 1529, 1663
usesItemFromMenu instance method 1124
usesRuler instance method 1663
usesScreenFonts instance method 856
useStandardKerning instance method 1663
useStandardLigatures instance method 1663
usesThreadedAnimation instance method 1180
usesUserKeyEquivalents class method 934
UtilityWindowMask constant 1055

V

validate instance method 1717

2080
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

validateEditing instance method 463
validateMenuItem instance method 549, 576, 1017
validateMenuItem interface method 2011
validateToolbarItem interface method 2031
validateVisibleColumns instance method 239, 1243
validateVisibleItems instance method 1702
validAttributesForMarkedText instance method

807, 1664
validAttributesForMarkedText interface method

2029
validRequestorForTypes instance method 128, 1200,

1664, 1872
valueClassForBinding interface method 2005
valueForDimension instance method 1551
valueForProperty instance method 199
valueTypeForDimension instance method 1551
valueWraps instance method 1412, 1418
VariableStatusItemLength constant 1395
VCardPboardType constant 1080
vendorDefined instance method 622
vendorID instance method 622
vendorPointingDeviceType instance method 622
verticalAlignment instance method 1552
verticalLineScroll instance method 1285
verticalMotionCanBeginDrag instance method 1477
verticalPageScroll instance method 1285
verticalPagination instance method 1148
VerticalRuler constant 1223
verticalRulerView instance method 1286
verticalScroller instance method 1286
view instance method 1164, 1407, 1504, 1717
ViewAnimationEffectKey constant 1793
ViewAnimationEndFrameKey constant 1793
viewAnimations instance method 1793
ViewAnimationStartFrameKey constant 1793
ViewAnimationTargetKey constant 1793
viewBoundsChanged instance method 348
ViewBoundsDidChangeNotificationnotification 1788
viewDidEndLiveResize instance method 1784
viewDidMoveToSuperview instance method 1784
viewDidMoveToWindow instance method 1785
ViewFocusDidChangeNotification notification

(Deprecated in Mac OS X v10.4 and later.) 1789
viewFrameChanged instance method 348
ViewFrameDidChangeNotification notification 1789
viewSizeChanged instance method 399
viewSizeChanged interface method 1950
viewsNeedDisplay instance method 1873
viewWillMoveToSuperview instance method 1785
viewWillMoveToWindow instance method 1785
viewWillStartLiveResize instance method 1785
viewWithTag instance method 1786
visibilityPriority instance method 1717

VisibilityPriorityHigh constant 1718
VisibilityPriorityLow constant 1718
VisibilityPriorityStandard constant 1718
VisibilityPriorityUser constant 1718
visibleFrame instance method 1250
visibleItems instance method 1703
visibleRect instance method 1786
voice instance method 1376
VoiceAge constant 1377
VoiceDemoText constant 1377
VoiceGender constant 1377
VoiceGenderFemale constant 1377
VoiceGenderMale constant 1377
VoiceGenderNeuter constant 1377
VoiceIdentifier constant 1376
VoiceLanguage constant 1377
VoiceName constant 1376
volume instance method 992

W

wantsDefaultClipping instance method 1787
wantsPeriodicDraggingUpdates interface method

1958
wantsToDelayTextChangeNotifications instance

method 807, 814
wantsToDelayTextChangeNotifications interface

method 1981
wantsToHandleMouseEvents instance method 808,

814
wantsToHandleMouseEvents interface method 1982
wantsToInterpretAllKeystrokes instance method

808, 814
wantsToInterpretAllKeystrokes interface method

1982
wantsToTrackMouse instance method 1543
wantsToTrackMouse interface method 1939
wantsToTrackMouseForEvent instance method 1544
wantsToTrackMouseForEvent interface method 1939
WarningStyle constant 64
warningValue instance method 865, 873
weightOfFont instance method 684
WheelModeColorPanel constant 393
White constant 727
whiteColor class method 369
whiteComponent instance method 377
Width constant 1553
width instance method 1315, 1323, 1430
widthAdjustLimit instance method 1787
widthForLayer instance method 1552
widthOfColumn instance method 239
widthOfString instance method 662

2081
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

widthTracksTextView instance method 1561
widthValueTypeForLayer instance method 1552
WillAddItemNotification notification 1706
willPresentError instance method 549, 577, 1200
willRemoveSubview instance method 1787
windingRule instance method 184
window instance method 64, 294, 622, 1495, 1787, 1895
windowBackgroundColor class method 369
WindowCloseButton constant 1876
windowController instance method 1873
windowControllerDidLoadNib instance method 550
windowControllers instance method 550
windowControllerWillLoadNib instance method 550
windowCount class method 726
windowDidBecomeKey delegate method 1877
WindowDidBecomeKeyNotification notification 1883
windowDidBecomeMain delegate method 1877
WindowDidBecomeMainNotificationnotification 1883
windowDidChangeScreen delegate method 1877
WindowDidChangeScreenNotification notification

1883
windowDidChangeScreenProfile delegate method

1878
WindowDidChangeScreenProfileNotification

notification 1883
windowDidDeminiaturize delegate method 1878
WindowDidDeminiaturizeNotification notification

1884
windowDidEndSheet delegate method 1878
WindowDidEndSheetNotification notification 1884
windowDidExpose delegate method 1878
WindowDidExposeNotification notification 1884
windowDidLoad instance method 1895
windowDidMiniaturize delegate method 1878
WindowDidMiniaturizeNotification notification

1884
windowDidMove delegate method 1879
WindowDidMoveNotification notification 1884
windowDidResignKey delegate method 1879
WindowDidResignKeyNotification notification 1884
windowDidResignMain delegate method 1879
WindowDidResignMainNotificationnotification 1884
windowDidResize delegate method 1879
WindowDidResizeNotification notification 1885
windowDidUpdate delegate method 1879
WindowDidUpdateNotification notification 1885
WindowDocumentIconButton constant 1876
windowForSheet instance method 551
windowFrameAutosaveName instance method 1896
windowFrameColor class method 369
windowFrameTextColor class method 369
WindowInterfaceStyleDefault constant 816
windowList class method 726

WindowMiniaturizeButton constant 1876
windowNibName instance method 551, 1896
windowNibPath instance method 1896
windowNumber instance method 623, 1873
windows instance method 128
Windows95InterfaceStyle constant 817
Windows95InterfaceStyleDefaultValue constant

816
windowShouldClose delegate method 1880
windowShouldZoom delegate method 1880
windowsMenu instance method 128
windowTitleForDocumentDisplayName instance

method 1896
WindowToolbarButton constant 1876
windowWillBeginSheet delegate method 1880
WindowWillBeginSheetNotification notification

1885
windowWillClose delegate method 1880
WindowWillCloseNotification notification 1885
windowWillLoad instance method 1897
windowWillMiniaturize delegate method 1880
WindowWillMiniaturizeNotification notification

1885
windowWillMove delegate method 1881
WindowWillMoveNotification notification 1885
windowWillPositionSheet delegate method 1881
windowWillResize delegate method 1881
windowWillReturnFieldEditor delegate method

1882
windowWillReturnUndoManager delegate method

1882
windowWillUseStandardFramedelegate method 1882
windowWithWindowNumber instance method 128
WindowZoomButton constant 1876
WithDoubleByteEUCGlyphPacking constant 663
WorkspaceDidLaunchApplicationNotification

notification 1913
WorkspaceDidMountNotification notification 1913
WorkspaceDidPerformFileOperationNotification

notification 1913
WorkspaceDidTerminateApplicationNotification

notification 1914
WorkspaceDidUnmountNotificationnotification 1914
WorkspaceDidWakeNotification notification 1914
WorkspaceSessionDidBecomeActiveNotification

notification 1914
WorkspaceSessionDidResignActiveNotification

notification 1914
WorkspaceWillLaunchApplicationNotification

notification 1915
WorkspaceWillPowerOffNotification notification

1915
WorkspaceWillSleepNotification notification 1915

2082
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

WorkspaceWillUnmountNotification notification
1915

worksWhenModal instance method 691, 1054, 1874
wraps instance method 337
writablePasteboardTypes instance method 1664
writableTypes class method 522
writableTypesForSaveOperation instance method

551
writeEPSInsideRectToPasteboard instance method

1788
writeFileContents instance method 1079
writeFileWrapper instance method 1079
writePDFInsideRectToPasteboard instance method

1788
writePrintInfo instance method 1049
writeRTFDToFile instance method 1529
writeSafelyToURLOfType instance method 552
writeSelectionToPasteboardOfType instance

method 1664
writeSelectionToPasteboardOfTypes instance

method 1665
writeToFile instance method 383, 552, 641
writeToPasteboard instance method 377, 1359
writeToURL instance method 553
writeToURLOfType instance method 553
writeWithBackupToFile instance method 554
WritingDirectionLeftToRight constant 1067
WritingDirectionRightToLeft constant 1067

X

xHeight instance method 662

Y

yank interface method 2002
YearMonthDatePickerElementFlag constant 512
YearMonthDayDatePickerElementFlag constant 512
yellowColor class method 369
yellowComponent instance method 378

Z

zoom instance method 1874

2083
Legacy Document | 2007-02-01 | © 1997, 2007 Apple Inc. All Rights Reserved.

INDEX

	Application Kit Reference for Java
	Contents
	Figures
	Introduction
	Application Kit Classes and Interfaces
	Encapsulating an Application
	General Event Handling and Drawing
	Panels
	Menus and Cursors
	Grouping and Scrolling Views
	Controlling an Application
	Tables
	Text and Fonts
	Graphics and Color
	Dragging
	Printing
	Accessing the File System
	Sharing Data With Other Applications
	Checking Spelling
	Localization

	Part I: Classes
	NSActionCell
	Overview
	Tasks
	Constructors
	Configuring an NSActionCell
	Obtaining and Setting Cell Values
	Getting and Setting the Cell’s View
	Assigning Target and Action
	Assigning a Tag

	Constructors
	Instance Methods
	action
	controlView
	doubleValue
	floatValue
	intValue
	setAction
	setAlignment
	setBezeled
	setBordered
	setControlView
	setEnabled
	setFloatingPointFormat
	setFont
	setImage
	setObjectValue
	setTag
	setTarget
	stringValue
	tag
	target

	NSAffineTransform Additions
	Overview
	Tasks
	Setting the Current Transform in the Current Graphics State
	Transforming Data and Objects

	Instance Methods
	concat
	set
	transformBezierPath

	NSAlert
	Overview
	Subclassing Notes

	Tasks
	Constructors
	Creating an Alert
	Managing Alert Text
	Managing Alert Icon
	Managing Alert Buttons
	Managing Help Text
	Managing Alert Style
	Managing the Delegate
	Displaying the Alert
	Obtaining the Alert’s Window
	Showing help

	Constructors
	Static Methods
	alertWithError

	Instance Methods
	addButtonWithTitle
	alertStyle
	beginSheet
	buttons
	delegate
	helpAnchor
	icon
	informativeText
	messageText
	runModal
	setAlertStyle
	setDelegate
	setHelpAnchor
	setIcon
	setInformativeText
	setMessageText
	setShowsHelp
	showsHelp
	window

	Constants
	Delegate Methods
	alertShowHelp

	NSAlertPanel
	Overview
	Tasks
	Constructors
	Running an Alert Panel
	Getting an Alert Panel
	Starting Modal Sheets

	Constructors
	Static Methods
	alertPanel
	beginAlertSheet
	beginCriticalAlertSheet
	beginInformationalAlertSheet
	criticalAlertPanel
	informationalAlertPanel
	releaseAlert
	runAlert
	runCriticalAlert
	runInformationalAlert

	Constants

	NSAnimation
	Overview
	Subclassing Notes

	Tasks
	Constructors
	Configuring an Animation
	Controlling and Monitoring the Animation
	Managing Progress Marks
	Linking Animations Together
	Methods for the delegate

	Constructors
	Instance Methods
	addProgressMark
	animationBlockingMode
	animationCurve
	clearStartAnimation
	clearStopAnimation
	currentProgress
	currentValue
	delegate
	duration
	frameRate
	isAnimating
	progressMarks
	removeProgressMark
	runLoopModesForAnimating
	setAnimationBlockingMode
	setAnimationCurve
	setCurrentProgress
	setDelegate
	setDuration
	setFrameRate
	setProgressMarks
	startAnimation
	startWhenAnimation
	stopAnimation
	stopWhenAnimation

	Constants
	Delegate Methods
	animationDidEnd
	animationDidReachProgressMark
	animationDidStop
	animationShouldStart
	animationValueForProgress

	Notifications
	AnimationProgressMarkNotification

	NSAnimationEffect
	Overview
	Tasks
	Constructors
	Showing an Effect

	Constructors
	Static Methods
	showEffect

	Constants

	NSApplication
	Class at a Glance
	Overview
	The Delegate and Notifications
	System Services
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Tasks
	Constructors
	Creating and Initializing an NSApplication
	Getting Information About the Framework
	Changing the Active Application
	Running the Event Loop
	Getting, Removing, and Posting Events
	Managing Sheets
	Managing Windows
	Hiding All Windows
	Setting the Application’s Icon
	Getting the Main Menu
	Managing the Window Menu
	Managing the Services Menu
	Showing Standard Panels
	Displaying Help
	Sending Action Messages
	Getting the Display Context
	Reporting an Exception
	Terminating the Application
	Assigning a Delegate
	Handling User Attention Requests
	Loading Nib Files
	Opening files
	Printing
	Supplying a dock menu
	Activating, launching, and updating an application
	Hiding and unhiding an application
	Terminating an application
	Handling errors

	Constructors
	Static Methods
	appkitVersionNumber
	beep
	loadNibFromBundle
	loadNibNamed
	sharedApplication
	showSystemInfoPanel

	Instance Methods
	abortModal
	activateContextHelpMode
	activateIgnoringOtherApps
	addWindowsItem
	applicationIconImage
	arrangeInFront
	beginModalSessionForWindow
	beginSheet
	cancelUserAttentionRequest
	changeWindowsItem
	context
	currentEvent
	deactivate
	delegate
	discardEventsMatchingMask
	endModalSession
	endSheet
	finishLaunching
	hide
	hideOtherApplications
	isActive
	isHidden
	isRunning
	keyWindow
	mainMenu
	mainWindow
	makeWindowsPerform
	miniaturizeAll
	modalWindow
	nextEventMatchingMask
	orderFrontCharacterPalette
	orderFrontColorPanel
	orderFrontStandardAboutPanel
	orderFrontStandardAboutPanelWithOptions
	postEvent
	preventWindowOrdering
	registerServicesMenuTypes
	removeWindowsItem
	replyToApplicationShouldTerminate
	replyToOpenOrPrint
	reportException
	requestUserAttention
	run
	runModalForWindow
	runModalSession
	runPageLayout
	sendActionToTargetFromSender
	sendEvent
	servicesMenu
	servicesProvider
	setApplicationIconImage
	setDelegate
	setMainMenu
	setServicesMenu
	setServicesProvider
	setWindowsMenu
	setWindowsNeedUpdate
	showHelp
	stop
	stopModal
	stopModalWithCode
	targetForAction
	targetForActionToFrom
	terminate
	tryToPerform
	unhide
	unhideAllApplications
	unhideWithoutActivation
	updateWindows
	updateWindowsItem
	validRequestorForTypes
	windows
	windowsMenu
	windowWithWindowNumber

	Constants
	Delegate Methods
	applicationDidBecomeActive
	applicationDidChangeScreenParameters
	applicationDidFinishLaunching
	applicationDidHide
	applicationDidResignActive
	applicationDidUnhide
	applicationDidUpdate
	applicationDockMenu
	applicationOpenFile
	applicationOpenFiles
	applicationOpenFileWithoutUI
	applicationOpenTempFile
	applicationOpenUntitledFile
	applicationPrintFile
	applicationPrintFiles
	applicationPrintFiles
	applicationShouldHandleReopen
	applicationShouldOpenUntitledFile
	applicationShouldTerminate
	applicationShouldTerminateAfterLastWindowClosed
	applicationWillBecomeActive
	applicationWillFinishLaunching
	applicationWillHide
	applicationWillPresentError
	applicationWillResignActive
	applicationWillTerminate
	applicationWillUnhide
	applicationWillUpdate

	Notifications
	ApplicationDidBecomeActiveNotification
	ApplicationDidChangeScreenParametersNotification
	ApplicationDidFinishLaunchingNotification
	ApplicationDidHideNotification
	ApplicationDidResignActiveNotification
	ApplicationDidUnhideNotification
	ApplicationDidUpdateNotification
	ApplicationWillBecomeActiveNotification
	ApplicationWillFinishLaunchingNotification
	ApplicationWillHideNotification
	ApplicationWillResignActiveNotification
	ApplicationWillTerminateNotification
	ApplicationWillUnhideNotification
	ApplicationWillUpdateNotification

	NSArrayController
	Overview
	Tasks
	Constructors
	Managing Sort Descriptors
	Arranging Objects
	Setting Selection Attributes
	Getting the Current Selection
	Managing Selections
	Inserting
	Adding and Removing Objects
	Filtering Objects

	Constructors
	Instance Methods
	addObject
	addObjects
	addSelectedObjects
	addSelectionIndexes
	alwaysUsesMultipleValuesMarker
	arrangedObjects
	arrangeObjects
	avoidsEmptySelection
	canInsert
	canSelectNext
	canSelectPrevious
	clearsFilterPredicateOnInsertion
	filterPredicate
	insert
	insertObject
	insertObjects
	preservesSelection
	remove
	removeObject
	removeObjects
	removeSelectedObjects
	removeSelectionIndexes
	selectedObjects
	selectionIndex
	selectionIndexes
	selectNext
	selectPrevious
	selectsInsertedObjects
	setAlwaysUsesMultipleValuesMarker
	setAvoidsEmptySelection
	setClearsFilterPredicateOnInsertion
	setFilterPredicate
	setPreservesSelection
	setSelectedObjects
	setSelectionIndex
	setSelectionIndexes
	setSelectsInsertedObjects
	setSortDescriptors
	sortDescriptors

	NSBezierPath
	Overview
	Tasks
	Constructors
	Creating an NSBezierPath Object
	Constructing Paths
	Appending Paths and Some Common Shapes
	Accessing Attributes
	Drawing Paths
	Clipping Paths
	Hit Detection
	Querying Paths
	Applying Transformations
	Accessing Elements of a Path
	Caching Paths

	Constructors
	Static Methods
	bezierPath
	bezierPathWithOvalInRect
	bezierPathWithRect
	clipRect
	defaultFlatness
	defaultLineCapStyle
	defaultLineJoinStyle
	defaultLineWidth
	defaultMiterLimit
	defaultWindingRule
	fillRect
	setDefaultFlatness
	setDefaultLineCapStyle
	setDefaultLineJoinStyle
	setDefaultLineWidth
	setDefaultMiterLimit
	setDefaultWindingRule
	strokeLineFromPoint
	strokeRect

	Instance Methods
	addClip
	appendBezierPath
	appendBezierPathWithArcFromPoint
	appendBezierPathWithArcWithCenter
	appendBezierPathWithGlyph
	appendBezierPathWithOvalInRect
	appendBezierPathWithRect
	bezierPathByFlatteningPath
	bezierPathByReversingPath
	bounds
	cachesBezierPath
	closePath
	containsPoint
	controlPointBounds
	currentPoint
	curveToPoint
	elementCount
	fill
	flatness
	isEmpty
	lineCapStyle
	lineDashPattern
	lineDashPhase
	lineJoinStyle
	lineToPoint
	lineWidth
	miterLimit
	moveToPoint
	relativeCurveToPoint
	relativeLineToPoint
	relativeMoveToPoint
	removeAllPoints
	setCachesBezierPath
	setClip
	setFlatness
	setLineCapStyle
	setLineDash
	setLineJoinStyle
	setLineWidth
	setMiterLimit
	setWindingRule
	stroke
	transformUsingAffineTransform
	windingRule

	Constants

	NSBitmapImageRep
	Overview
	Alpha Premultiplication

	Tasks
	Constructors
	Creating an NSBitmapImageRep
	Getting Information About the Image
	Getting Image Data
	Producing a TIFF Representation of the Image
	Setting and Checking Compression Types
	Incremental Image Loading
	Getting and Setting Pixel Values

	Constructors
	Static Methods
	imageRep
	imageRepsWithData
	localizedNameForTIFFCompressionType
	representationOfImageRepsInArray
	TIFFCompressionTypes
	TIFFRepresentationOfImageReps

	Instance Methods
	bitmapData
	bitmapDataPlanes
	bitmapFormat
	bitsPerPixel
	bytesPerPlane
	bytesPerRow
	canBeCompressedUsingType
	color
	colorizeByMappingGray
	compressionFactor
	compressionType
	getPixel
	incrementalLoadFromData
	isPlanar
	numberOfPlanes
	representationUsingType
	samplesPerPixel
	setBitmapData
	setBitmapDataPlanes
	setColor
	setCompressionWithFactor
	setPixel
	setProperty
	TIFFRepresentation
	valueForProperty

	Constants

	NSBox
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Tasks
	Constructors
	Getting and Modifying the Border and Title
	Setting and Placing the Content View
	Resizing the Box

	Constructors
	Instance Methods
	borderRect
	borderType
	boxType
	contentView
	contentViewMargins
	setBorderType
	setBoxType
	setContentView
	setContentViewMargins
	setFrameFromContentFrame
	setTitle
	setTitleFont
	setTitlePosition
	setTitleWithMnemonic
	sizeToFit
	title
	titleCell
	titleFont
	titlePosition
	titleRect

	Constants

	NSBrowser
	Overview
	Tasks
	Constructors
	Setting Component Classes
	Getting Matrices, Cells, and Rows
	Getting and Setting Paths
	Manipulating Columns
	Loading Columns
	Setting Selection Characteristics
	Setting Column Characteristics
	Manipulating Column Titles
	Scrolling an NSBrowser
	Showing a Horizontal Scroller
	Setting the Behavior of Arrow Keys
	Getting Column Frames
	Arranging Browser Components
	Setting the Delegate
	Target and Action
	Event Handling
	Resizing Columns
	Creating rows
	Displaying a cell
	Getting information about a browser
	Selecting
	Scrolling
	Resizing columns

	Constructors
	Static Methods
	cellClass
	removeSavedColumnsWithAutosaveName

	Instance Methods
	acceptsArrowKeys
	addColumn
	allowsBranchSelection
	allowsEmptySelection
	allowsMultipleSelection
	cellPrototype
	columnContentWidthForColumnWidth
	columnOfMatrix
	columnResizingType
	columnsAutosaveName
	columnWidthForColumnContentWidth
	delegate
	displayAllColumns
	displayColumn
	doClick
	doDoubleClick
	doubleAction
	drawTitleOfColumn
	firstVisibleColumn
	frameOfColumn
	frameOfInsideOfColumn
	hasHorizontalScroller
	isLoaded
	isTitled
	lastColumn
	lastVisibleColumn
	loadColumnZero
	loadedCellAtLocation
	matrixClass
	matrixInColumn
	maxVisibleColumns
	minColumnWidth
	numberOfVisibleColumns
	path
	pathSeparator
	pathToColumn
	prefersAllColumnUserResizing
	reloadColumn
	reusesColumns
	scrollColumnsLeftBy
	scrollColumnsRightBy
	scrollColumnToVisible
	scrollViaScroller
	selectAll
	selectedCell
	selectedCellInColumn
	selectedCells
	selectedColumn
	selectedRowInColumn
	selectRowInColumn
	sendAction
	sendsActionOnArrowKeys
	separatesColumns
	setAcceptsArrowKeys
	setAllowsBranchSelection
	setAllowsEmptySelection
	setAllowsMultipleSelection
	setCellPrototype
	setColumnResizingType
	setColumnsAutosaveName
	setDelegate
	setDoubleAction
	setHasHorizontalScroller
	setLastColumn
	setMaxVisibleColumns
	setMinColumnWidth
	setNewCellClass
	setNewMatrixClass
	setPath
	setPathSeparator
	setPrefersAllColumnUserResizing:
	setReusesColumns
	setSendsActionOnArrowKeys
	setSeparatesColumns
	setTakesTitleFromPreviousColumn
	setTitled
	setTitleOfColumn
	setWidthOfColumn
	takesTitleFromPreviousColumn
	tile
	titleFrameOfColumn
	titleHeight
	titleOfColumn
	updateScroller
	validateVisibleColumns
	widthOfColumn

	Constants
	Delegate Methods
	browserColumnConfigurationDidChange
	browserCreateRowsForColumn
	browserDidScroll
	browserIsColumnValid
	browserNumberOfRowsInColumn
	browserSelectCellWithStringInColumn
	browserSelectRowInColumn
	browserShouldSizeColumnToWidth
	browserSizeToFitWidthOfColumn
	browserTitleOfColumn
	browserWillDisplayCell
	browserWillScroll

	Notifications
	ColumnConfigurationDidChangeNotification

	NSBrowserCell
	Overview
	Tasks
	Constructors
	Accessing Graphics Images
	Setting State
	Determining Cell Attributes

	Constructors
	Static Methods
	branchImage
	highlightedBranchImage

	Instance Methods
	alternateImage
	highlightColorInView
	isLeaf
	isLoaded
	reset
	set
	setAlternateImage
	setLeaf
	setLoaded

	NSButton
	Overview
	Tasks
	Constructors
	Setting the Button Type
	Setting the State
	Setting the Repeat Interval
	Setting the Titles
	Setting the Images
	Modifying Graphics Attributes
	Displaying
	Setting the Key Equivalent
	Handling Events and Action Messages
	Playing Sound

	Constructors
	Instance Methods
	allowsMixedState
	alternateImage
	alternateTitle
	attributedAlternateTitle
	attributedTitle
	bezelStyle
	highlight
	image
	imagePosition
	interval
	isBordered
	isTransparent
	keyEquivalent
	keyEquivalentModifierMask
	performKeyEquivalent
	periodicDelay
	setAllowsMixedState
	setAlternateImage
	setAlternateTitle
	setAttributedAlternateTitle
	setAttributedTitle
	setBezelStyle
	setBordered
	setButtonType
	setImage
	setImagePosition
	setKeyEquivalent
	setKeyEquivalentModifierMask
	setNextState
	setPeriodicDelayAndInterval
	setShowsBorderOnlyWhileMouseInside
	setSound
	setState
	setTitle
	setTitleWithMnemonic
	setTransparent
	showsBorderOnlyWhileMouseInside
	sound
	state
	title

	Constants

	NSButtonCell
	Overview
	Exceptions

	Tasks
	Constructors
	Setting the Titles
	Setting the Images
	Setting the Repeat Interval
	Setting the Key Equivalent
	Modifying Graphics Attributes
	Displaying
	Playing Sound
	Handling Events and Action Messages
	Drawing the Button Content

	Constructors
	Instance Methods
	alternateImage
	alternateMnemonic
	alternateMnemonicLocation
	alternateTitle
	attributedAlternateTitle
	attributedTitle
	backgroundColor
	bezelStyle
	drawBezel
	drawImage
	drawTitle
	gradientType
	highlightsBy
	imageDimsWhenDisabled
	imagePosition
	isOpaque
	isTransparent
	keyEquivalent
	keyEquivalentFont
	keyEquivalentModifierMask
	mouseEntered
	mouseExited
	performClick
	setAlternateImage
	setAlternateMnemonicLocation
	setAlternateTitle
	setAlternateTitleWithMnemonic
	setAttributedAlternateTitle
	setAttributedTitle
	setBackgroundColor
	setBezelStyle
	setButtonType
	setFont
	setGradientType
	setHighlightsBy
	setImageDimsWhenDisabled
	setImagePosition
	setKeyEquivalent
	setKeyEquivalentFont
	setKeyEquivalentFontAndSize
	setKeyEquivalentModifierMask
	setPeriodicDelayAndInterval
	setShowsBorderOnlyWhileMouseInside
	setShowsStateBy
	setSound
	setTitle
	setTitleWithMnemonic
	setTransparent
	showsBorderOnlyWhileMouseInside
	showsStateBy
	sound
	title

	Constants

	NSCachedImageRep
	Overview
	Tasks
	Constructors
	Getting the Representation

	Constructors
	Instance Methods
	rect
	window

	NSCell
	Overview
	Tasks
	Constructors
	Setting and Getting Cell Values
	Setting and Getting Cell Attributes
	Setting the State
	Modifying Textual Attributes of Cells
	Setting the Target and Action
	Setting and Getting an Image
	Assigning a Tag
	Formatting and Validating Data
	Managing Menus for Cells
	Comparing Cells
	Making Cells Respond to Keyboard Events
	Deriving Values from Other Cells
	Representing an Object with a Cell
	Tracking the Mouse
	Managing the Cursor
	Managing Cell Messaging
	Handling Keyboard Alternatives
	Managing Focus Rings
	Determining Cell Sizes
	Drawing and Highlighting Cells
	Editing and Selecting Cell Text

	Constructors
	Static Methods
	defaultFocusRingType
	defaultMenu
	prefersTrackingUntilMouseUp

	Instance Methods
	acceptsFirstResponder
	action
	alignment
	allowsEditingTextAttributes
	allowsMixedState
	allowsUndo
	attributedStringValue
	calcDrawInfo
	cellAttribute
	cellSize
	cellSizeForBounds
	compare
	continueTrackingMouse
	controlSize
	controlTint
	controlView
	doubleValue
	drawingRectForBounds
	drawInteriorWithFrameInView
	drawWithFrameInView
	editWithFrameInView
	endEditing
	entryType
	floatValue
	focusRingType
	font
	formatter
	hasValidObjectValue
	highlightColorWithFrameInView
	highlightWithFrameInView
	image
	imageRectForBounds
	importsGraphics
	interval
	intValue
	isBezeled
	isBordered
	isContinuous
	isEditable
	isEnabled
	isEntryAcceptable
	isHighlighted
	isOpaque
	isScrollable
	isSelectable
	keyEquivalent
	lineBreakMode
	menu
	menuForEvent
	mnemonic
	mnemonicLocation
	mouseDownFlags
	nextState
	objectValue
	performClick
	periodicDelay
	refusesFirstResponder
	representedObject
	resetCursorRect
	selectAndEditWithFrameInView
	sendsActionOnEndEditing
	setAction
	setAlignment
	setAllowsEditingTextAttributes
	setAllowsMixedState
	setAllowsUndo
	setAttributedStringValue
	setBezeled
	setBordered
	setCellAttribute
	setContinuous
	setControlSize
	setControlTint
	setControlView
	setDoubleValue
	setEditable
	setEnabled
	setEntryType
	setEventMaskForSendingAction
	setFloatingPointFormat
	setFloatValue
	setFocusRingType
	setFont
	setFormatter
	setHighlighted
	setImage
	setImportsGraphics
	setIntValue
	setLineBreakMode
	setMenu
	setMnemonicLocation
	setNextState
	setObjectValue
	setRefusesFirstResponder
	setRepresentedObject
	setScrollable
	setSelectable
	setSendsActionOnEndEditing
	setShowsFirstResponder
	setState
	setStringValue
	setTag
	setTarget
	setTitle
	setTitleWithMnemonic
	setType
	setUpFieldEditorAttributes
	setWraps
	showsFirstResponder
	startTrackingMouse
	state
	stopTrackingMouse
	stringValue
	tag
	takeDoubleValue
	takeFloatValue
	takeIntValue
	takeObjectValue
	takeStringValue
	target
	titleRectForBounds
	trackMouse
	type
	wraps

	Constants

	NSClipView
	Class at a Glance
	Overview
	Interaction With NSScrollView

	Tasks
	Constructors
	Setting the Document View
	Scrolling
	Determining Scrolling Efficiency
	Getting the Visible Portion
	Setting the Document Cursor
	Working with Background Color
	Overriding NSView Methods

	Constructors
	Instance Methods
	autoscroll
	backgroundColor
	constrainScrollPoint
	copiesOnScroll
	documentCursor
	documentRect
	documentView
	documentVisibleRect
	drawsBackground
	scrollToPoint
	setBackgroundColor
	setCopiesOnScroll
	setDocumentCursor
	setDocumentView
	setDrawsBackground
	viewBoundsChanged
	viewFrameChanged

	NSColor
	Class at a Glance
	Overview
	Tasks
	Constructors
	Creating an NSColor Object from Component Values
	Creating an NSColor with Preset Components
	Working with Pattern Images
	Creating a System Color—an NSColor Whose Value Is Specified by User Preferences
	Ignoring Alpha Components
	Copying and Pasting
	Retrieving a Set of Components
	Retrieving Individual Components
	Working with the Color Space
	Changing the Color
	Drawing

	Constructors
	Static Methods
	alternateSelectedControlColor
	alternateSelectedControlTextColor
	blackColor
	blueColor
	brownColor
	clearColor
	colorForControlTint
	colorFromPasteboard
	colorWithCalibratedHSB
	colorWithCalibratedRGB
	colorWithCalibratedWhite
	colorWithCatalogName
	colorWithColorSpace
	colorWithDeviceCMYK
	colorWithDeviceHSB
	colorWithDeviceRGB
	colorWithDeviceWhite
	colorWithPatternImage
	controlAlternatingRowBackgroundColors
	controlBackgroundColor
	controlColor
	controlDarkShadowColor
	controlHighlightColor
	controlLightHighlightColor
	controlShadowColor
	controlTextColor
	currentControlTint
	cyanColor
	darkGrayColor
	disabledControlTextColor
	grayColor
	greenColor
	gridColor
	highlightColor
	ignoresAlpha
	keyboardFocusIndicatorColor
	knobColor
	lightGrayColor
	magentaColor
	orangeColor
	purpleColor
	redColor
	scrollBarColor
	secondarySelectedControlColor
	selectedControlColor
	selectedControlTextColor
	selectedKnobColor
	selectedMenuItemColor
	selectedMenuItemTextColor
	selectedTextBackgroundColor
	selectedTextColor
	setIgnoresAlpha
	shadowColor
	textBackgroundColor
	textColor
	whiteColor
	windowBackgroundColor
	windowFrameColor
	windowFrameTextColor
	yellowColor

	Instance Methods
	alphaComponent
	blackComponent
	blendedColorWithFractionOfColor
	blueComponent
	brightnessComponent
	catalogNameComponent
	colorNameComponent
	colorSpace
	colorSpaceName
	colorUsingColorSpace
	colorUsingColorSpaceName
	colorUsingColorSpaceNameAndDevice
	colorWithAlphaComponent
	components
	cyanComponent
	drawSwatchInRect
	greenComponent
	highlightWithLevel
	hueComponent
	localizedCatalogNameComponent
	localizedColorNameComponent
	magentaComponent
	numberOfComponents
	patternImage
	redComponent
	saturationComponent
	set
	setFill
	setStroke
	shadowWithLevel
	whiteComponent
	writeToPasteboard
	yellowComponent

	Notifications
	SystemColorsDidChangeNotification

	NSColorList
	Overview
	Tasks
	Constructors
	Getting All Color Lists
	Getting a Color List by Name
	Managing Colors by Key
	Editing
	Writing and Removing Files

	Constructors
	Static Methods
	availableColorLists
	colorListNamed

	Instance Methods
	allKeys
	colorWithKey
	insertColorForKeyAtIndex
	isEditable
	name
	removeColorWithKey
	removeFile
	setColorForKey
	writeToFile

	Notifications
	ColorListDidChangeNotification

	NSColorPanel
	Overview
	Tasks
	Constructors
	Creating the NSColorPanel
	Setting Color Picker Modes
	Setting the NSColorPanel
	Attaching a Color List
	Setting Color
	Getting Color Information
	Responding to a color change

	Constructors
	Static Methods
	dragColor
	setPickerMask
	setPickerMode
	sharedColorPanel
	sharedColorPanelExists

	Instance Methods
	accessoryView
	attachColorList
	color
	detachColorList
	isContinuous
	mode
	setAccessoryView
	setAction
	setColor
	setContinuous
	setMode
	setShowsAlpha
	setTarget
	showsAlpha

	Constants
	Delegate Methods
	changeColor

	Notifications
	ColorPanelColorDidChangeNotification

	NSColorPicker
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Getting the Color Panel
	Adding Button Images
	Setting the Mode
	Using Color Lists
	Responding to View Changes

	Constructors
	Instance Methods
	alphaControlAddedOrRemoved
	attachColorList
	colorPanel
	detachColorList
	insertNewButtonImage
	provideNewButtonImage
	setMode
	viewSizeChanged

	NSColorSpace
	Overview
	Tasks
	Constructors
	Getting a Named NSColorSpace Object
	Accessing Color-space Data and Attributes

	Constructors
	Static Methods
	deviceCMYKColorSpace
	deviceGrayColorSpace
	deviceRGBColorSpace
	genericCMYKColorSpace
	genericGrayColorSpace
	genericRGBColorSpace

	Instance Methods
	colorSpaceModel
	ICCProfileData
	localizedName
	numberOfColorComponents

	Constants

	NSColorWell
	Overview
	Tasks
	Constructors
	Drawing
	Activating
	Managing Color
	Managing Borders

	Constructors
	Instance Methods
	activate
	color
	deactivate
	drawWellInside
	isActive
	isBordered
	setBordered
	setColor
	takeColorFrom

	NSComboBox
	Overview
	Tasks
	Constructors
	Setting Display Attributes
	Setting a Data Source
	Working with an Internal List
	Manipulating the Displayed List
	Manipulating the Selection
	Completing the Text Field
	Displaying and dismissing a combo box
	Changing selection

	Constructors
	Instance Methods
	addItemsWithObjectValues
	addItemWithObjectValue
	completes
	dataSource
	deselectItemAtIndex
	hasVerticalScroller
	indexOfItemWithObjectValue
	indexOfSelectedItem
	insertItemWithObjectValueAtIndex
	intercellSpacing
	isButtonBordered
	itemHeight
	itemObjectValueAtIndex
	noteNumberOfItemsChanged
	numberOfItems
	numberOfVisibleItems
	objectValueOfSelectedItem
	objectValues
	reloadData
	removeAllItems
	removeItemAtIndex
	removeItemWithObjectValue
	scrollItemAtIndexToTop
	scrollItemAtIndexToVisible
	selectItemAtIndex
	selectItemWithObjectValue
	setButtonBordered
	setCompletes
	setDataSource
	setHasVerticalScroller
	setIntercellSpacing
	setItemHeight
	setNumberOfVisibleItems
	setUsesDataSource
	usesDataSource

	Delegate Methods
	comboBoxSelectionDidChange
	comboBoxSelectionIsChanging
	comboBoxWillDismiss
	comboBoxWillPopUp

	Notifications
	ComboBoxSelectionDidChangeNotification
	ComboBoxSelectionIsChangingNotification
	ComboBoxWillDismissNotification
	ComboBoxWillPopUpNotification

	NSComboBoxCell
	Overview
	Tasks
	Constructors
	Setting Display Attributes
	Setting a Data Source
	Working with an Internal List
	Manipulating the Displayed List
	Manipulating the Selection
	Completing the Text Field

	Constructors
	Instance Methods
	addItemsWithObjectValues
	addItemWithObjectValue
	completedString
	completes
	dataSource
	deselectItemAtIndex
	hasVerticalScroller
	indexOfItemWithObjectValue
	indexOfSelectedItem
	insertItemWithObjectValueAtIndex
	intercellSpacing
	isButtonBordered
	itemHeight
	itemObjectValueAtIndex
	noteNumberOfItemsChanged
	numberOfItems
	numberOfVisibleItems
	objectValueOfSelectedItem
	objectValues
	reloadData
	removeAllItems
	removeItemAtIndex
	removeItemWithObjectValue
	scrollItemAtIndexToTop
	scrollItemAtIndexToVisible
	selectItemAtIndex
	selectItemWithObjectValue
	setButtonBordered
	setCompletes
	setDataSource
	setHasVerticalScroller
	setIntercellSpacing
	setItemHeight
	setNumberOfVisibleItems
	setUsesDataSource
	usesDataSource

	NSControl
	Overview
	Tasks
	Constructors
	Setting the Control’s Cell
	Enabling and Disabling the Control
	Identifying the Selected Cell
	Setting the Control’s Value
	Interacting with Other Controls
	Formatting Text
	Managing the Field Editor
	Resizing the Control
	Displaying a Cell
	Implementing the Target/action Mechanism
	Getting and Setting Tags
	Activating from the Keyboard
	Tracking the Mouse
	Validating the contents of a control
	Editing text in a control
	Getting error information from a formatter
	Working with key bindings
	Working with text completion

	Constructors
	Static Methods
	cellClass
	setCellClass

	Instance Methods
	abortEditing
	action
	alignment
	attributedStringValue
	calcSize
	cell
	currentEditor
	doubleValue
	drawCell
	drawCellInside
	floatValue
	font
	formatter
	ignoresMultiClick
	intValue
	isContinuous
	isEnabled
	mouseDown
	objectValue
	performClick
	refusesFirstResponder
	selectCell
	selectedCell
	selectedTag
	sendActionToTarget
	setAction
	setAlignment
	setAttributedStringValue
	setCell
	setContinuous
	setDoubleValue
	setEnabled
	setEventMaskForSendingAction
	setFloatingPointFormat
	setFloatValue
	setFont
	setFormatter
	setIgnoresMultiClick
	setIntValue
	setNeedsDisplay
	setObjectValue
	setRefusesFirstResponder
	setStringValue
	setTag
	setTarget
	sizeToFit
	stringValue
	tag
	takeDoubleValue
	takeFloatValue
	takeIntValue
	takeObjectValue
	takeStringValue
	target
	updateCell
	updateCellInside
	validateEditing

	Delegate Methods
	controlDidFailToFormatStringErrorDescription
	controlDidFailToValidatePartialString
	controlIsValidObject
	controlTextDidBeginEditing
	controlTextDidChange
	controlTextDidEndEditing
	controlTextShouldBeginEditing
	controlTextShouldEndEditing
	controlTextViewCompletionsForPartialWordRange
	controlTextViewDoCommandBySelector

	Notifications
	ControlTextDidBeginEditingNotification
	ControlTextDidChangeNotification
	ControlTextDidEndEditingNotification

	NSController
	Overview
	Tasks
	Constructors
	Managing Editing
	Binding

	Constructors
	Instance Methods
	bind
	commitEditing
	discardEditing
	isEditing
	objectDidBeginEditing
	objectDidEndEditing

	NSControllerPlaceholders
	Overview
	Tasks
	Constructors
	Managing Default Placeholders
	Obtaining Controller Markers
	Testing Markers

	Constructors
	Static Methods
	defaultPlaceholderForMarker
	isControllerMarker
	multipleValuesMarker
	noSelectionMarker
	notApplicableMarker
	setDefaultPlaceholderForMarker

	NSCursor
	Overview
	Tasks
	Constructors
	Setting Cursor Attributes
	Controlling Which Cursor Is Current
	Retrieving Cursor Instances

	Constructors
	Static Methods
	arrowCursor
	closedHandCursor
	crosshairCursor
	currentCursor
	disappearingItemCursor
	hide
	IBeamCursor
	openHandCursor
	pointingHandCursor
	popCursor
	resizeDownCursor
	resizeLeftCursor
	resizeLeftRightCursor
	resizeRightCursor
	resizeUpCursor
	resizeUpDownCursor
	setHiddenUntilMouseMoves
	unhide

	Instance Methods
	hotSpot
	image
	isSetOnMouseEntered
	isSetOnMouseExited
	mouseEntered
	mouseExited
	pop
	push
	set
	setOnMouseEntered
	setOnMouseExited

	NSCustomImageRep
	Overview
	Tasks
	Constructors
	Identifying the Object

	Constructors
	Instance Methods
	delegate
	drawMethod

	NSDatePicker
	Overview
	Tasks
	Constructors
	Appearance
	Range Mode Control
	Object Value Access
	Constraints on Displayable/selectable Range
	Getting and Setting the Delegate

	Constructors
	Instance Methods
	backgroundColor
	datePickerElements
	datePickerMode
	datePickerStyle
	dateValue
	delegate
	drawsBackground
	isBezeled
	isBordered
	maxDate
	minDate
	setBackgroundColor
	setBezeled
	setBordered
	setDatePickerElements
	setDatePickerMode
	setDatePickerStyle
	setDateValue
	setDelegate
	setDrawsBackground
	setMaxDate
	setMinDate
	setTextColor
	setTimeInterval
	setTimeZone
	textColor
	timeInterval
	timeZone

	NSDatePickerCell
	Overview
	Tasks
	Constructors
	Appearance
	Range Mode Control
	Object Value Access
	Constraints on the Minimum and Maximum Date Range
	Getting and Setting the Delegate
	Validation

	Constructors
	Instance Methods
	backgroundColor
	datePickerElements
	datePickerMode
	datePickerStyle
	dateValue
	delegate
	maxDate
	minDate
	setBackgroundColor
	setDatePickerElements
	setDatePickerMode
	setDatePickerStyle
	setDateValue
	setDelegate
	setMaxDate
	setMinDate
	setTextColor
	setTimeInterval
	setTimeZone
	textColor
	timeInterval
	timeZone

	Constants
	Delegate Methods
	datePickerCellValidateProposedDateValue

	NSDocument
	Class at a Glance
	Overview
	Writing of HFS Creator and File Type Codes
	NSDocument Saving Behavior

	Tasks
	Constructors
	Initializing an NSDocument
	Loading and Representing Document Data
	Creating and Managing Window Controllers
	Managing Document Windows
	Reading from and Writing to Files
	Reading from and Writing to URLs
	Autosaving
	Managing Document Status
	Responding to User Actions
	Closing Documents
	Reverting Documents
	Printing Documents
	Handling Errors
	Working with Undo Manager
	Managing File Types
	Managing Menu Commands
	Deprecated Methods

	Constructors
	Static Methods
	isNativeType
	readableTypes
	writableTypes

	Instance Methods
	addWindowController
	autosavedContentsFileURL
	autosaveDocument
	autosavingFileType
	canCloseDocument
	close
	dataOfType
	dataRepresentationOfType
	displayName
	fileAttributesToWriteToFile
	fileAttributesToWriteToURLOfType
	fileModificationDate
	fileName
	fileNameExtensionWasHiddenInLastRunSavePanel
	fileNameFromRunningSavePanelForSaveOperation
	fileType
	fileTypeFromLastRunSavePanel
	fileURL
	fileWrapperOfType
	fileWrapperRepresentationOfType
	hasUnautosavedChanges
	hasUndoManager
	initForURLWithContentsOfURLOfType
	initWithContentsOfURLOfType
	initWithType
	isDocumentEdited
	keepBackupFile
	lastError
	loadDataRepresentation
	loadFileWrapperRepresentation
	makeWindowControllers
	preparePageLayout
	prepareSavePanel
	presentError
	presentErrorModalForWindow
	printDocument
	printDocumentWithSettings
	printInfo
	printOperationWithSettings
	printShowingPrintPanel
	readFromDataOfType
	readFromFile
	readFromFileWrapperOfType
	readFromURL
	readFromURLOfType
	removeWindowController
	revertDocumentToSaved
	revertToContentsOfURLOfType
	revertToSavedFromFile
	revertToSavedFromURL
	runModalPageLayout
	runModalPageLayoutWithPrintInfo
	runModalPrintOperation
	runModalSavePanel
	runPageLayout
	saveDocument
	saveDocumentAs
	saveDocumentTo
	saveToFile
	saveToURLOfType
	setAutosavedContentsFileURL
	setFileModificationDate
	setFileName
	setFileType
	setFileURL
	setHasUndoManager
	setLastError
	setPrintInfo
	setUndoManager
	setWindow
	shouldChangePrintInfo
	shouldCloseWindowController
	shouldRunSavePanelWithAccessoryView
	showWindows
	undoManager
	updateChangeCount
	validateMenuItem
	willPresentError
	windowControllerDidLoadNib
	windowControllers
	windowControllerWillLoadNib
	windowForSheet
	windowNibName
	writableTypesForSaveOperation
	writeSafelyToURLOfType
	writeToFile
	writeToURL
	writeToURLOfType
	writeWithBackupToFile

	Constants

	NSDocumentController
	Overview
	Tasks
	Constructors
	Obtaining the Shared Document Controller
	Creating and Opening Documents
	Handling Errors
	Managing the Open Panel
	Autosaving
	Responding to Action Messages
	Managing Documents
	Managing the Open Recent Menu
	Managing Document Types
	Validating User Interface Items
	Deprecated Methods

	Constructors
	Static Methods
	sharedDocumentController

	Instance Methods
	addDocument
	autosavingDelay
	clearRecentDocuments
	closeAllDocuments
	currentDirectory
	currentDocument
	defaultType
	displayNameForType
	documentClassForType
	documentClassNames
	documentForFileName
	documentForURL
	documentForWindow
	documents
	fileExtensionsFromType
	fileNamesFromRunningOpenPanel
	hasEditedDocuments
	lastError
	makeDocumentForURLWithContentsOfURLOfType
	makeDocumentWithContentsOfFile
	makeDocumentWithContentsOfURL
	makeDocumentWithContentsOfURLOfType
	makeUntitledDocumentOfType
	maximumRecentDocumentCount
	newDocument
	noteNewRecentDocument
	noteNewRecentDocumentURL
	openDocument
	openDocumentWithContentsOfFile
	openDocumentWithContentsOfURL
	openUntitledDocument
	openUntitledDocumentOfType
	presentError
	presentErrorModalForWindow
	recentDocumentURLs
	removeDocument
	reopenDocumentForURLWithContentsOfURL
	reviewUnsavedDocumentsWithAlertTitle
	runModalOpenPanel
	saveAllDocuments
	setAutosavingDelay
	setLastError
	setShouldCreateUI
	shouldCreateUI
	typeForContentsOfURL
	typeFromFileExtension
	URLsFromRunningOpenPanel
	validateMenuItem
	willPresentError

	NSDPSContext
	Overview
	Tasks
	Constructors
	Getting Current Context

	Constructors
	Static Methods
	currentContext

	Constants

	NSDragDestination
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Dragging Session Information
	Image Information
	Sliding the Image

	Constructors
	Instance Methods
	draggedImage
	draggedImageLocation
	draggingDestinationWindow
	draggingLocation
	draggingPasteboard
	draggingSequenceNumber
	draggingSource
	draggingSourceOperationMask
	namesOfPromisedFilesDroppedAtDestination
	slideDraggedImageTo

	NSDrawer
	Overview
	Tasks
	Constructors
	Opening and Closing Drawers
	Managing Drawer Size
	Managing Drawer Edges
	Managing a Drawer’s Views
	Accessing Other Drawer Information
	Opening a drawer
	Resizing a drawer
	Closing a drawer

	Constructors
	Instance Methods
	close
	contentSize
	contentView
	delegate
	edge
	leadingOffset
	maxContentSize
	minContentSize
	open
	openOnEdge
	parentWindow
	preferredEdge
	setContentSize
	setContentView
	setDelegate
	setLeadingOffset
	setMaxContentSize
	setMinContentSize
	setParentWindow
	setPreferredEdge
	setTrailingOffset
	state
	toggle
	trailingOffset

	Constants
	Delegate Methods
	drawerDidClose
	drawerDidOpen
	drawerShouldClose
	drawerShouldOpen
	drawerWillClose
	drawerWillOpen
	drawerWillResizeContents

	Notifications
	DrawerDidCloseNotification
	DrawerDidOpenNotification
	DrawerWillCloseNotification
	DrawerWillOpenNotification

	NSEPSImageRep
	Overview
	Tasks
	Constructors
	Creating an NSEPSImageRep
	Getting Image Data
	Drawing the Image

	Constructors
	Static Methods
	imageRep

	Instance Methods
	boundingBox
	EPSRepresentation
	prepareGState

	NSEvent
	Overview
	Tasks
	Constructors
	Creating Events
	Requesting and Stopping Periodic Events
	Getting General Event Information
	Getting Key Event Information
	Getting Mouse Event Information
	Getting Tracking-rectangle Event Information
	Getting Custom Event Information
	Getting Scroll Wheel Event Information
	Getting Tablet Proximity Information
	Getting Tablet Pointing Information

	Constructors
	Static Methods
	eventMaskFromType
	keyEvent
	mouseEvent
	mouseLocation
	otherEvent
	startPeriodicEvents
	stopPeriodicEvents

	Instance Methods
	absoluteX
	absoluteY
	absoluteZ
	buttonMask
	buttonNumber
	capabilityMask
	characters
	charactersIgnoringModifiers
	clickCount
	context
	data1
	data2
	deltaX
	deltaY
	deltaZ
	deviceID
	eventNumber
	isARepeat
	isEnteringProximity
	keyCode
	locationInWindow
	modifierFlags
	pointingDeviceID
	pointingDeviceSerialNumber
	pointingDeviceType
	pressure
	rotation
	subtype
	systemTabletID
	tabletID
	tangentialPressure
	tilt
	timestamp
	trackingNumber
	type
	uniqueID
	vendorDefined
	vendorID
	vendorPointingDeviceType
	window
	windowNumber

	Constants

	NSFileWrapper
	Overview
	Tasks
	Constructors
	Writing to a File or Serializing
	Checking a File Wrapper’s Type
	Setting Attributes
	Updating
	Modifying a Directory Wrapper
	Inspecting a Regular File Wrapper
	Inspecting a Link Wrapper

	Constructors
	Instance Methods
	addFileWithPath
	addFileWrapper
	addRegularFileWithContents
	addSymbolicLinkWithDestination
	fileAttributes
	filename
	fileWrappers
	icon
	isDirectory
	isRegularFile
	isSymbolicLink
	keyForFileWrapper
	needsToBeUpdatedFromPath
	preferredFilename
	regularFileContents
	removeFileWrapper
	serializedRepresentation
	setFileAttributes
	setFilename
	setIcon
	setPreferredFilename
	symbolicLinkDestination
	updateFromPath
	writeToFile

	NSFont
	Overview
	Tasks
	Constructors
	Creating Arbitrary Fonts
	Creating User Fonts
	Creating System Fonts
	Getting Preferred Fonts
	Using a Font to Draw
	Getting General Font Information
	Getting Information About Glyphs
	Getting Metrics Information
	Getting Font Names
	Laying out Overstruck Glyphs
	Setting User Fonts
	Getting Corresponding Device Fonts
	Deprecated Methods

	Constructors
	Static Methods
	boldSystemFontOfSize
	controlContentFontOfSize
	fontWithNameAndMatrix
	fontWithNameAndSize
	labelFontOfSize
	labelFontSize
	menuBarFontOfSize
	menuFontOfSize
	messageFontOfSize
	paletteFontOfSize
	preferredFontNames
	setPreferredFontNames
	setUserFixedPitchFont
	setUserFont
	smallSystemFontSize
	systemFontOfSize
	systemFontSize
	systemFontSizeForControlSize
	titleBarFontOfSize
	toolTipsFontOfSize
	useFont
	userFixedPitchFontOfSize
	userFontOfSize

	Instance Methods
	advancementForGlyph
	afmDictionary
	afmFileContents
	ascender
	boundingRectForFont
	boundingRectForGlyph
	capHeight
	coveredCharacterSet
	descender
	displayName
	encodingScheme
	familyName
	fontDescriptor
	fontName
	glyphIsEncoded
	glyphPacking
	glyphWithName
	isBaseFont
	isFixedPitch
	italicAngle
	maximumAdvancement
	mostCompatibleStringEncoding
	numberOfGlyphs
	pointSize
	positionOfGlyphForCharacterStruckOverRect
	printerFont
	screenFont
	set
	underlinePosition
	underlineThickness
	widthOfString
	xHeight

	Constants

	NSFontDescriptor
	Overview
	Tasks
	Constructors
	Getting Information About a Font Descriptor

	Constructors
	Instance Methods
	fontAttributes

	Constants

	NSFontManager
	Overview
	Tasks
	Constructors
	Getting the Shared Font Manager
	Getting Available Fonts
	Setting and Examining the Selected Font
	Action Methods
	Converting Fonts Automatically
	Converting Fonts Manually
	Getting a Particular Font
	Examining Fonts
	Enabling the Font Panel and Font Menu
	Setting the Font Menu
	Getting the Font Panel
	Setting the Delegate
	Setting the Action Method
	Setting Attributes
	Working with Font Descriptors
	Implemented by responders

	Constructors
	Static Methods
	sharedFontManager

	Instance Methods
	action
	addCollection
	addFontDescriptors
	addFontTrait
	availableFontFamilies
	availableFontNamesWithTraits
	availableFonts
	collectionNames
	convertAttributes
	convertFont
	convertFontToFace
	convertFontToFamily
	convertFontToHaveTrait
	convertFontToNotHaveTrait
	convertFontToSize
	convertWeight
	delegate
	fontDescriptorsInCollection
	fontMenu
	fontPanel
	fontWithFamily
	fontWithNameHasTraits
	isEnabled
	isMultiple
	localizedNameForFamily
	modifyFont
	modifyFontViaPanel
	orderFrontFontPanel
	orderFrontStylesPanel
	removeCollection
	removeFontDescriptor
	removeFontTrait
	selectedFont
	sendAction
	setAction
	setDelegate
	setEnabled
	setFontMenu
	setSelectedAttributes
	setSelectedFont
	traitsOfFont
	weightOfFont

	Constants
	Delegate Methods
	fontManagerWillIncludeFont

	NSFontPanel
	Overview
	Tasks
	Constructors
	Getting the Font Panel
	Enabling Font Changes
	Updating the Font Panel
	Converting Fonts
	Working in Modal Loops
	Setting an Accessory View

	Constructors
	Static Methods
	sharedFontPanel
	sharedFontPanelExists

	Instance Methods
	accessoryView
	isEnabled
	panelConvertFont
	setAccessoryView
	setEnabled
	setPanelFont
	worksWhenModal

	Constants

	NSForm
	Overview
	Tasks
	Constructors
	Adding and Removing Entries
	Changing the Appearance of All the Entries
	Getting Cells and Indices
	Displaying a Cell
	Editing Text

	Constructors
	Instance Methods
	addEntry
	cellAtIndex
	drawCellAtIndex
	indexOfCellWithTag
	indexOfSelectedItem
	insertEntryAtIndex
	removeEntryAtIndex
	selectTextAtIndex
	setBezeled
	setBordered
	setEntryWidth
	setFrameSize
	setInterlineSpacing
	setTextAlignment
	setTextFont
	setTitleAlignment
	setTitleFont

	NSFormCell
	Overview
	Tasks
	Constructors
	Asking About a Cell’s Appearance
	Asking About a Cell’s Title
	Changing the Cell’s Title
	Setting a Keyboard Equivalent
	Asking About Placeholder Values

	Constructors
	Instance Methods
	attributedTitle
	isOpaque
	placeholderAttributedString
	placeholderString
	setAttributedTitle
	setPlaceholderAttributedString
	setPlaceholderString
	setTitle
	setTitleAlignment
	setTitleFont
	setTitleWidth
	setTitleWithMnemonic
	title
	titleAlignment
	titleFont
	titleWidth
	titleWidthWithSize

	NSGlyphInfo
	Overview
	Tasks
	Constructors
	Creating an NSGlyphInfo Object
	Getting Information About an NSGlyphInfo Object

	Constructors
	Static Methods
	glyphInfoWithCharacterIdentifierInCollectionAndBaseString
	glyphInfoWithGlyphForFontAndBaseString
	glyphInfoWithGlyphNameForFontAndBaseString

	Instance Methods
	characterCollection
	characterIdentifier
	glyphName

	Constants

	NSGraphics
	Overview
	Tasks
	Constructors
	Obtaining Device Information
	Working with NSAttributedStrings
	Working with Windows
	Working with Bitmap Images
	Filling a List of Rectangles
	Clipping a List of Rectangles
	Working with Frame Rects
	Drawing
	Focus Rings
	Updating Screen

	Constructors
	Static Methods
	availableWindowDepths
	bestDepth
	bitsPerPixelFromDepth
	bitsPerSampleFromDepth
	clipRectList
	clipRectListInRange
	colorSpaceFromDepth
	convertGlobalToWindowNumber
	convertWindowNumberToGlobal
	copyBitmapFromGState
	copyBits
	disableScreenUpdates
	dottedFrameRect
	drawAttributedString
	drawBitmap
	drawButton
	drawColorTiledRects
	drawDarkBezel
	drawGrayBezel
	drawGroove
	drawLightBezel
	drawWhiteBezel
	drawWindowBackground
	enableScreenUpdates
	eraseRect
	fillRectList
	fillRectListInRange
	fillRectListWithColors
	fillRectListWithColorsInRange
	frameRect
	frameRectWithWidth
	frameRectWithWidthUsingOperation
	highlightRect
	numberOfColorComponents
	planarFromDepth
	readPixel
	setFocusRingStyle
	sizeOfAttributedString
	windowCount
	windowList

	Constants
	Notifications
	SystemColorsDidChangeNotification

	NSGraphicsContext
	Overview
	Tasks
	Constructors
	Creating a Graphics Context
	Testing the Drawing Destination
	Setting and Identifying the Current Context
	Getting Information About a Context
	Controlling the Context Flush
	Rendering Options

	Constructors
	Static Methods
	currentContext
	currentContextDrawingToScreen
	graphicsContextWithAttributes
	graphicsContextWithWindow
	restoreGraphicsContext
	saveGraphicsContext
	setCurrentContext
	setGraphicsState

	Instance Methods
	attributes
	flush
	flushGraphics
	imageInterpolation
	isDrawingToScreen
	patternPhase
	restoreGraphicsState
	saveGraphicsState
	setImageInterpolation
	setPatternPhase
	setShouldAntialias
	shouldAntialias
	synchronize

	Constants

	NSHelpManager
	Overview
	Tasks
	Constructors
	Creating an NSHelpManager Instance
	Getting and Setting Context Help Mode
	Returning Context-sensitive Help
	Setting Up Context-sensitive Help
	Displaying Application Help

	Constructors
	Static Methods
	isContextHelpModeActive
	setContextHelpModeActive
	sharedHelpManager

	Instance Methods
	contextHelpForObject
	findString
	openHelpAnchor
	removeContextHelpForObject
	setContextHelpForObject
	showContextHelpForObject

	Notifications
	ContextHelpModeDidActivateNotification
	ContextHelpModeDidDeactivateNotification

	NSImage
	Overview
	Tasks
	Constructors
	Setting the Size of the Image
	Referring to Images by Name
	Specifying the Image
	Using the Image
	Choosing Which Image Representation to Use
	Getting the Representations
	Determining How the Image Is Stored
	Drawing the Image
	Determining How the Image Is Drawn
	Assigning a Delegate
	Producing TIFF Data for the Image
	Testing Image Data Sources
	Incremental Loading
	Loading an image
	Drawing an image

	Constructors
	Static Methods
	canInitWithPasteboard
	imageFileTypes
	imageNamed
	imagePasteboardTypes
	imageUnfilteredFileTypes
	imageUnfilteredPasteboardTypes

	Instance Methods
	addRepresentation
	addRepresentations
	backgroundColor
	bestRepresentationForDevice
	cacheDepthMatchesImageDepth
	cacheMode
	cancelIncrementalLoad
	compositeToPoint
	compositeToPointFromRect
	compositeToPointFromRectWithFraction
	compositeToPointWithFraction
	delegate
	dissolveToPoint
	dissolveToPointFromRect
	drawAtPoint
	drawInRect
	drawRepresentationInRect
	isCachedSeparately
	isDataRetained
	isFlipped
	isValid
	lockFocus
	lockFocusOnRepresentation
	matchesOnMultipleResolution
	name
	prefersColorMatch
	recache
	removeRepresentation
	representations
	scalesWhenResized
	setBackgroundColor
	setCacheDepthMatchesImageDepth
	setCachedSeparately
	setCacheMode
	setDataRetained
	setDelegate
	setFlipped
	setMatchesOnMultipleResolution
	setName
	setPrefersColorMatch
	setScalesWhenResized
	setSize
	setUsesEPSOnResolutionMismatch
	size
	TIFFRepresentation
	unlockFocus
	usesEPSOnResolutionMismatch

	Constants
	Delegate Methods
	imageDidLoadPartOfRepresentation
	imageDidLoadRepresentation
	imageDidLoadRepresentationHeader
	imageDidNotDraw
	imageWillLoadRepresentation

	NSImageCell
	Overview
	Tasks
	Constructors
	Aligning and Scaling the Image
	Choosing the Frame

	Constructors
	Instance Methods
	imageAlignment
	imageFrameStyle
	imageScaling
	setImageAlignment
	setImageFrameStyle
	setImageScaling

	Constants

	NSImageRep
	Overview
	Tasks
	Constructors
	Creating an NSImageRep
	Checking Data Types
	Setting the Size of the Image
	Specifying Information About the Representation
	Drawing the Image
	Managing NSImageRep Subclasses

	Constructors
	Static Methods
	canInitWithData
	canInitWithPasteboard
	imageFileTypes
	imagePasteboardTypes
	imageRepClassForData
	imageRepClassForFileType
	imageRepClassForPasteboardType
	imageRepsWithContentsOfFile
	imageRepsWithContentsOfURL
	imageRepsWithPasteboard
	imageRepWithContentsOfFile
	imageRepWithContentsOfURL
	imageRepWithPasteboard
	imageUnfilteredFileTypes
	imageUnfilteredPasteboardTypes
	registeredImageRepClasses
	registerImageRepClass
	unregisterImageRepClass

	Instance Methods
	bitsPerSample
	colorSpaceName
	draw
	drawAtPoint
	drawInRect
	hasAlpha
	isOpaque
	pixelsHigh
	pixelsWide
	setAlpha
	setBitsPerSample
	setColorSpaceName
	setOpaque
	setPixelsHigh
	setPixelsWide
	setSize
	size

	Constants
	Notifications
	ImageRepRegistryDidChangeNotification

	NSImageView
	Overview
	Tasks
	Constructors
	Choosing the Image
	Choosing the Frame
	Aligning and Scaling the Image
	Responding to User Events
	Animating Image Playback
	Pasteboard Support

	Constructors
	Instance Methods
	allowsCutCopyPaste
	animates
	image
	imageAlignment
	imageFrameStyle
	imageScaling
	isEditable
	setAllowsCutCopyPaste
	setAnimates
	setEditable
	setImage
	setImageAlignment
	setImageFrameStyle
	setImageScaling

	NSInputManager
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Input Server Selection
	Marked Text
	Event Handling
	Input Server Information
	Input Server Options
	NSTextInput Interface (used Internally Only)

	Constructors
	Static Methods
	currentInputManager
	cycleToNextInputLanguage
	cycleToNextInputServerInLanguage

	Instance Methods
	attributedSubstringWithRange
	characterIndexForPoint
	conversationIdentifier
	doCommandBySelector
	firstRectForCharacterRange
	handleMouseEvent
	hasMarkedText
	image
	insertText
	language
	localizedInputManagerName
	markedRange
	markedTextAbandoned
	markedTextSelectionChanged
	selectedRange
	server
	setMarkedTextAndSelectedRange
	unmarkText
	validAttributesForMarkedText
	wantsToDelayTextChangeNotifications
	wantsToHandleMouseEvents
	wantsToInterpretAllKeystrokes

	NSInputServer
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	NSInputServiceProvider Interface Implementations
	NSInputServerMouseTracker Interface Implementations

	Constructors
	Instance Methods
	activeConversationChanged
	activeConversationWillChange
	canBeDisabled
	doCommandBySelector
	inputClientBecameActive
	inputClientDisabled
	inputClientEnabled
	inputClientResignActive
	insertText
	markedTextAbandoned
	markedTextSelectionChanged
	mouseDownOnCharacterIndex
	mouseDraggedOnCharacterIndex
	mouseUpOnCharacterIndex
	terminate
	wantsToDelayTextChangeNotifications
	wantsToHandleMouseEvents
	wantsToInterpretAllKeystrokes

	NSInterfaceStyle
	Overview
	Tasks
	Constructors
	Getting an Interface Style

	Constructors
	Static Methods
	interfaceStyleForKey

	Constants

	NSLayoutManager
	Overview
	Tasks
	Constructors
	Setting the Text Storage
	Setting Text Containers
	Invalidating Glyphs and Layout
	Turning Background Layout On/off
	Accessing Glyphs
	Mapping Characters to Glyphs
	Setting Glyph Attributes
	Handling Layout for Text Containers
	Handling Line Fragment Rectangles
	Layout of Glyphs
	Handling Layout for Text Blocks
	Display of Special Glyphs
	Controlling Hyphenation
	Finding Unlaid Characters and Glyphs
	Using Screen Fonts
	Handling Rulers
	Managing the Responder Chain
	Drawing
	Setting the Delegate
	Typesetter Compatibility
	Temporary Attribute Support
	Laying out text

	Constructors
	Instance Methods
	addTemporaryAttributes
	addTextContainer
	backgroundLayoutEnabled
	boundingRectForGlyphRange
	boundsRectForTextBlock
	boundsRectForTextBlockAtIndex
	characterIndexForGlyphAtIndex
	characterRangeForGlyphRange
	defaultAttachmentScaling
	defaultLineHeightForFont
	delegate
	deleteGlyphsInRange
	drawBackgroundForGlyphRange
	drawGlyphsForGlyphRange
	drawsOutsideLineFragmentForGlyphAtIndex
	drawStrikethroughForGlyphRange
	drawUnderlineForGlyphRange
	extraLineFragmentRect
	extraLineFragmentTextContainer
	extraLineFragmentUsedRect
	firstTextView
	firstUnlaidCharacterIndex
	firstUnlaidGlyphIndex
	fractionOfDistanceThroughGlyphForPoint
	glyphAtIndex
	glyphAttributeForGlyphAtIndex
	glyphIndexForPoint
	glyphRangeForBoundingRect
	glyphRangeForBoundingRectWithoutAdditionalLayout
	glyphRangeForCharacterRange
	glyphRangeForTextContainer
	glyphsInRange
	hyphenationFactor
	insertGlyphAtGlyphIndex
	insertTextContainerAtIndex
	invalidateDisplayForCharacterRange
	invalidateDisplayForGlyphRange
	invalidateGlyphsForCharacterRange
	invalidateLayoutForCharacterRange
	isValidGlyphIndex
	layoutManagerOwnsFirstResponderInWindow
	layoutRectForTextBlock
	layoutRectForTextBlockAtIndex
	lineFragmentRectForGlyphAtIndex
	lineFragmentUsedRectForGlyphAtIndex
	locationForGlyphAtIndex
	notShownAttributeForGlyphAtIndex
	numberOfGlyphs
	rangeOfNominallySpacedGlyphsContainingIndex
	rectArrayForCharacterRange
	rectArrayForGlyphRange
	removeTemporaryAttribute
	removeTextContainerAtIndex
	replaceGlyphAtIndex
	replaceTextStorage
	rulerAccessoryViewForTextView
	rulerMarkersForTextView
	setBackgroundLayoutEnabled
	setBoundsRect
	setCharacterIndexForGlyphAtIndex
	setDefaultAttachmentScaling
	setDelegate
	setDrawsOutsideLineFragmentForGlyphAtIndex
	setExtraLineFragmentRect
	setGlyphAttributeForGlyphAtIndex
	setHyphenationFactor
	setLayoutRect
	setLineFragmentRectForGlyphAtIndex
	setLocationForStartOfGlyphRange
	setNotShownForGlyphAtIndex
	setShowsControlCharacters
	setShowsInvisibleCharacters
	setTemporaryAttributes
	setTextContainerForGlyphRange
	setTextStorage
	setTypesetterBehavior
	setUsesScreenFonts
	showAttachmentCell
	showsControlCharacters
	showsInvisibleCharacters
	strikethroughGlyphRange
	substituteFontForFont
	temporaryAttributesAtCharacterIndex
	textContainerChangedGeometry
	textContainerChangedTextView
	textContainerForGlyphAtIndex
	textContainers
	textStorage
	textStorageChanged
	textViewForBeginningOfSelection
	typesetterBehavior
	underlineGlyphRange
	usedRectForTextContainer
	usesScreenFonts

	Constants
	Delegate Methods
	layoutManagerDidCompleteLayoutForTextContainer
	layoutManagerDidInvalidateLayout

	NSLevelIndicator
	Overview
	Tasks
	Constructors
	Specifying Value Range
	Managing Tick Marks

	Constructors
	Instance Methods
	criticalValue
	maxValue
	minValue
	numberOfMajorTickMarks
	numberOfTickMarks
	rectOfTickMarkAtIndex
	setCriticalValue
	setMaxValue
	setMinValue
	setNumberOfMajorTickMarks
	setNumberOfTickMarks
	setTickMarkPosition
	setWarningValue
	tickMarkPosition
	tickMarkValueAtIndex
	warningValue

	NSLevelIndicatorCell
	Overview
	Tasks
	Constructors
	Specifying Value Range
	Managing Tick Marks

	Constructors
	Instance Methods
	criticalValue
	levelIndicatorStyle
	maxValue
	minValue
	numberOfMajorTickMarks
	numberOfTickMarks
	rectOfTickMarkAtIndex
	setCriticalValue
	setLevelIndicatorStyle
	setMaxValue
	setMinValue
	setNumberOfMajorTickMarks
	setNumberOfTickMarks
	setTickMarkPosition
	setWarningValue
	tickMarkPosition
	tickMarkValueAtIndex
	warningValue

	Constants

	NSMatrix
	Overview
	Tasks
	Constructors
	Setting the Selection Mode
	Configuring the NSMatrix
	Setting the Cell Class
	Laying out the NSMatrix
	Modifying Individual Cells
	Selecting Cells
	Finding Cells
	Modifying Graphics Attributes
	Editing Text in Cells
	Setting Tab Key Behavior
	Assigning a Delegate
	Resizing the Matrix and Its Cells
	Scrolling
	Displaying
	Target and Action
	Handling Event and Action Messages
	Managing the Cursor

	Constructors
	Instance Methods
	acceptsFirstMouse
	addColumn
	addColumnWithCells
	addRow
	addRowWithCells
	allowsEmptySelection
	autosizesCells
	backgroundColor
	cellAtLocation
	cellBackgroundColor
	cellFrameAtLocation
	cells
	cellSize
	cellWithTag
	columnForPoint
	columnOfCell
	delegate
	deselectAllCells
	deselectSelectedCell
	doubleAction
	drawCellAtLocation
	drawsBackground
	drawsCellBackground
	highlightCellAtLocation
	insertColumn
	insertColumnWithCells
	insertRow
	insertRowWithCells
	intercellSpacing
	isAutoscroll
	isSelectionByRect
	keyCell
	makeCellAtLocation
	mode
	mouseDown
	mouseDownFlags
	newCellClass
	numberOfColumns
	numberOfRows
	performKeyEquivalent
	prototype
	putCellAtLocation
	removeColumn
	removeRow
	renewRowsAndColumns
	resetCursorRects
	rowForPoint
	rowOfCell
	scrollCellAtLocationToVisible
	selectAll
	selectCellAtLocation
	selectCellWithTag
	selectedCell
	selectedCells
	selectedColumn
	selectedRow
	selectText
	selectTextAtLocation
	sendAction
	sendActionToTargetForAllCells
	sendDoubleAction
	setAllowsEmptySelection
	setAutoscroll
	setAutosizesCells
	setBackgroundColor
	setCellBackgroundColor
	setCellSize
	setDelegate
	setDoubleAction
	setDrawsBackground
	setDrawsCellBackground
	setIntercellSpacing
	setKeyCell
	setMode
	setNewCellClass
	setPrototype
	setScrollable
	setSelectionByRect
	setSelectionWithAnchor
	setStateAtLocation
	setTabKeyTraversesCells
	setToolTip
	setValidateSize
	sizeToCells
	sortUsingMethod
	tabKeyTraversesCells
	textDidBeginEditing
	textDidChange
	textDidEndEditing
	textShouldBeginEditing
	textShouldEndEditing
	toolTip

	Constants

	NSMenu
	Overview
	Tasks
	Constructors
	Managing Delegates
	Managing the Menu Bar
	Setting Up Menu Commands
	Finding Menu Items
	Finding Indices of Menu Items
	Managing Submenus
	Enabling and Disabling Menu Items
	Handling Keyboard Equivalents
	Simulating Mouse Clicks
	Setting the Title
	Setting the Representing Object
	Updating Menu Layout
	Displaying Context-sensitive Help
	Deprecated Methods
	Populating a menu
	Handling key equivalents

	Constructors
	Static Methods
	menuBarVisible
	popUpContextMenu
	setMenuBarVisible

	Instance Methods
	addItem
	attachedMenu
	autoenablesItems
	contextMenuRepresentation
	delegate
	helpRequested
	indexOfItem
	indexOfItemWithRepresentedObject
	indexOfItemWithSubmenu
	indexOfItemWithTag
	indexOfItemWithTargetAndAction
	indexOfItemWithTitle
	insertItemAtIndex
	isAttached
	isTornOff
	itemArray
	itemAtIndex
	itemChanged
	itemWithTag
	itemWithTitle
	locationForSubmenu
	menuBarHeight
	menuChangedMessagesEnabled
	menuRepresentation
	numberOfItems
	performActionForItemAtIndex
	performKeyEquivalent
	removeItem
	removeItemAtIndex
	setAutoenablesItems
	setContextMenuRepresentation
	setDelegate
	setMenuChangedMessagesEnabled
	setMenuRepresentation
	setSubmenuForItem
	setSupermenu
	setTearOffMenuRepresentation
	setTitle
	sizeToFit
	submenuAction
	supermenu
	tearOffMenuRepresentation
	title
	update

	Delegate Methods
	menuHasKeyEquivalent
	menuKeyEquivalentAction
	menuKeyEquivalentTarget
	menuNeedsUpdate
	menuUpdateItemAtIndex
	numberOfItemsInMenu

	Notifications
	MenuDidAddItemNotification
	MenuDidChangeItemNotification
	MenuDidEndTrackingNotification
	MenuDidRemoveItemNotification
	MenuDidSendActionNotification
	MenuWillSendActionNotification

	NSMenuItem
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Enabling a Menu Item
	Setting the Target and Action
	Setting the Title
	Setting the Tag
	Setting the State
	Setting the Image
	Managing Submenus
	Getting a Separator Item
	Setting the Owning Menu
	Managing Key Equivalents
	Managing Mnemonics
	Managing User Key Equivalents
	Managing Alternates
	Managing Indentation Levels
	Managing Tool Tips
	Representing an Object

	Constructors
	Static Methods
	protocolSeparatorItem
	setUsesUserKeyEquivalents
	usesUserKeyEquivalents

	Instance Methods
	action
	attributedTitle
	hasSubmenu
	image
	indentationLevel
	isAlternate
	isEnabled
	isSeparatorItem
	keyEquivalent
	keyEquivalentModifierMask
	menu
	mixedStateImage
	mnemonic
	mnemonicLocation
	offStateImage
	onStateImage
	representedObject
	separatorItem
	setAction
	setAlternate
	setAttributedTitle
	setEnabled
	setImage
	setIndentationLevel
	setKeyEquivalent
	setKeyEquivalentModifierMask
	setMenu
	setMixedStateImage
	setMnemonicLocation
	setOffStateImage
	setOnStateImage
	setRepresentedObject
	setState
	setSubmenu
	setTag
	setTarget
	setTitle
	setTitleWithMnemonic
	setToolTip
	state
	submenu
	tag
	target
	title
	toolTip
	userKeyEquivalent
	userKeyEquivalentModifierMask

	NSMenuItemCell
	Overview
	Tasks
	Constructors
	Getting and Setting Menu Item Attributes
	Calculating Menu Item Sizes
	Getting the Menu Item’s Drawing Rectangle
	Drawing the Menu Item
	Assigning a Tag

	Constructors
	Instance Methods
	calcSize
	drawBorderAndBackgroundWithFrameInView
	drawImageWithFrameInView
	drawKeyEquivalentWithFrameInView
	drawSeparatorItemWithFrameInView
	drawStateImageWithFrameInView
	drawTitleWithFrameInView
	imageRectForBounds
	imageWidth
	isHighlighted
	keyEquivalentRectForBounds
	keyEquivalentWidth
	menuItem
	menuView
	needsDisplay
	needsSizing
	setHighlighted
	setMenuItem
	setMenuView
	setNeedsDisplay
	setNeedsSizing
	stateImageRectForBounds
	stateImageWidth
	tag
	titleRectForBounds
	titleWidth

	NSMenuView
	Overview
	Tasks
	Constructors
	Getting and Setting Menu View Attributes
	Notification Methods
	Working with Submenus
	Calculating Menu Geometry
	Event Handling

	Constructors
	Static Methods
	menuBarHeight

	Instance Methods
	attachedMenu
	attachedMenuView
	attachSubmenuForItemAtIndex
	detachSubmenu
	font
	highlightedItemIndex
	horizontalEdgePadding
	imageAndTitleOffset
	imageAndTitleWidth
	indexOfItemAtPoint
	innerRect
	isAttached
	isHorizontal
	isTornOff
	itemAdded
	itemChanged
	itemRemoved
	keyEquivalentOffset
	keyEquivalentWidth
	locationForSubmenu
	menu
	menuItemCellForItemAtIndex
	needsSizing
	performActionWithHighlightingForItemAtIndex
	rectOfItemAtIndex
	setFont
	setHighlightedItemIndex
	setHorizontal
	setHorizontalEdgePadding
	setMenu
	setMenuItemCellForItemAtIndex
	setNeedsDisplayForItemAtIndex
	setNeedsSizing
	setWindowFrameForAttachingToRect
	sizeToFit
	stateImageOffset
	stateImageWidth
	trackWithEvent
	update

	NSModalSession
	Overview
	Tasks
	Constructors

	Constructors

	NSMovie
	Overview
	Tasks
	Constructors
	Checking Data Types
	Accessing Movie Information

	Constructors
	Static Methods
	canInitWithPasteboard
	movieUnfilteredFileTypes
	movieUnfilteredPasteboardTypes

	Instance Methods
	URL

	NSMovieView
	Overview
	Tasks
	Constructors
	Setting Movie
	Playing a Movie
	Sound
	Play Modes
	Setting Controller
	Sizing
	Editing

	Constructors
	Instance Methods
	clear
	copy
	cut
	delete
	gotoBeginning
	gotoEnd
	gotoPosterFrame
	isControllerVisible
	isEditable
	isMuted
	isPlaying
	loopMode
	movie
	movieRect
	paste
	playsEveryFrame
	playsSelectionOnly
	rate
	resizeWithMagnification
	selectAll
	setEditable
	setLoopMode
	setMovie
	setMuted
	setPlaysEveryFrame
	setPlaysSelectionOnly
	setRate
	setVolume
	showController
	sizeForMagnification
	start
	stepBack
	stepForward
	stop
	volume

	Constants

	NSMutableParagraphStyle
	Overview
	Tasks
	Constructors
	Setting Tab Stops
	Setting Other Style Information
	Setting Text Blocks and Lists
	Controlling Hyphenation and Truncation
	Setting HTML Header Level

	Constructors
	Instance Methods
	addTabStop
	removeTabStop
	setAlignment
	setBaseWritingDirection
	setDefaultTabInterval
	setFirstLineHeadIndent
	setHeaderLevel
	setHeadIndent
	setHyphenationFactor
	setLineBreakMode
	setLineHeightMultiple
	setLineSpacing
	setMaximumLineHeight
	setMinimumLineHeight
	setParagraphSpacing
	setParagraphSpacingBefore
	setParagraphStyle
	setTabStops
	setTailIndent
	setTextBlocks
	setTextLists
	setTighteningFactorForTruncation

	NSNib
	Overview
	Subclassing Notes

	Tasks
	Constructors
	Instantiating a Nib

	Constructors
	Instance Methods
	instantiateNibWithExternalNameTable
	instantiateNibWithOwner

	Constants

	NSObjectController
	Overview
	Tasks
	Constructors
	Managing Content
	Setting the Content Class
	Managing Objects
	Managing Entity Names
	Managing Editing
	Managing Fetch Predicates
	Core Data Object Contexts
	Obtaining Selections
	Validating Menu Items

	Constructors
	Instance Methods
	add
	addObject
	automaticallyPreparesContent
	canAdd
	canRemove
	content
	entityName
	fetch
	isEditable
	managedObjectContext
	newObject
	objectClass
	prepareContent
	remove
	removeObject
	selectedObjects
	selection
	setAutomaticallyPreparesContent
	setContent
	setEditable
	setEntityName
	setFetchPredicate
	setManagedObjectContext
	setObjectClass
	validateMenuItem

	NSOpenPanel
	Overview
	Tasks
	Constructors
	Obtaining
	Running the Panel
	Getting the User Selection
	Specifying the File Types
	Allowing Browser Selections
	Allowing Multiple Selections

	Constructors
	Static Methods
	openPanel

	Instance Methods
	allowedFileTypes
	allowsMultipleSelection
	beginForDirectory
	beginSheetForDirectory
	canChooseDirectories
	canChooseFiles
	filenames
	resolvesAliases
	runModalForTypes
	runModalInDirectory
	setAllowedFileTypes
	setAllowsMultipleSelection
	setCanChooseDirectories
	setCanChooseFiles
	setResolvesAliases
	URLs

	NSOutlineView
	Class at a Glance
	Overview
	Tasks
	Constructors
	Expanding and Collapsing the Outline
	Redisplaying Information
	Converting Between Items and Rows
	Setting the Outline Column
	Setting the Indentation
	Persistence
	Dragging and Dropping
	Collapsing and expanding items
	Selecting
	Displaying cells
	Moving and resizing columns
	Editing columns
	Working with table columns
	Returning row information

	Constructors
	Instance Methods
	autoresizesOutlineColumn
	autosaveExpandedItems
	collapseItem
	collapseItemAndChildren
	expandItem
	expandItemAndChildren
	indentationMarkerFollowsCell
	indentationPerLevel
	isExpandable
	isItemExpanded
	itemAtRow
	levelForItem
	levelForRow
	outlineTableColumn
	reloadItem
	reloadItemAndChildren
	rowForItem
	setAutoresizesOutlineColumn
	setAutosaveExpandedItems
	setDropItemAndDropChildIndex
	setIndentationMarkerFollowsCell
	setIndentationPerLevel
	setOutlineTableColumn
	shouldCollapseAutoExpandedItemsForDeposited

	Constants
	Delegate Methods
	outlineViewColumnDidMove
	outlineViewColumnDidResize
	outlineViewDidClickTableColumn
	outlineViewDidDragTableColumn
	outlineViewHeightOfRowForItem
	outlineViewItemDidCollapse
	outlineViewItemDidExpand
	outlineViewItemWillCollapse
	outlineViewItemWillExpand
	outlineViewMouseDownInHeaderOfTableColumn
	outlineViewSelectionDidChange
	outlineViewSelectionIsChanging
	outlineViewShouldCollapseItem
	outlineViewShouldEditTableColumn
	outlineViewShouldExpandItem
	outlineViewShouldSelectItem
	outlineViewShouldSelectTableColumn
	outlineViewToolTipForCell
	outlineViewWillDisplayCell
	outlineViewWillDisplayOutlineCellForTableColumn
	selectionShouldChangeInOutlineView

	Notifications
	OutlineViewColumnDidMoveNotification
	OutlineViewColumnDidResizeNotification
	OutlineViewItemDidCollapseNotification
	OutlineViewItemDidExpandNotification
	OutlineViewItemWillCollapseNotification
	OutlineViewItemWillExpandNotification
	OutlineViewSelectionDidChangeNotification
	OutlineViewSelectionIsChangingNotification

	NSPageLayout
	Overview
	Tasks
	Constructors
	Creating an NSPageLayout
	Running an NSPageLayout
	Customizing an NSPageLayout
	Accessing the NSPrintInfo
	Deprecated Methods

	Constructors
	Static Methods
	pageLayout

	Instance Methods
	accessoryView
	beginSheetWithPrintInfo
	pickedButton
	pickedOrientation
	pickedPaperSize
	pickedUnits
	printInfo
	readPrintInfo
	runModal
	runModalWithPrintInfo
	setAccessoryView
	writePrintInfo

	NSPanel
	Overview
	Tasks
	Constructors
	Configuring Panel Behavior

	Constructors
	Instance Methods
	becomesKeyOnlyIfNeeded
	isFloatingPanel
	setBecomesKeyOnlyIfNeeded
	setFloatingPanel
	setWorksWhenModal
	worksWhenModal

	Constants

	NSParagraphStyle
	Overview
	Tasks
	Constructors
	Creating an NSParagraphStyle
	Accessing Style Information
	Getting Text Block and List Information
	Getting Line Breaking Information
	Getting HTML Header Level
	Writing Direction

	Constructors
	Static Methods
	defaultParagraphStyle
	defaultWritingDirectionForLanguage

	Instance Methods
	alignment
	baseWritingDirection
	defaultTabInterval
	firstLineHeadIndent
	headerLevel
	headIndent
	hyphenationFactor
	lineBreakMode
	lineHeightMultiple
	lineSpacing
	maximumLineHeight
	minimumLineHeight
	paragraphSpacing
	paragraphSpacingBefore
	tabStops
	tailIndent
	textBlocks
	textLists
	tighteningFactorForTruncation

	Constants

	NSPasteboard
	Class at a Glance
	Overview
	Tasks
	Constructors
	Creating and Releasing an NSPasteboard Object
	Referring to a Pasteboard by Name
	Writing Data
	Determining Types
	Reading Data
	Methods implemented by the owner

	Constructors
	Static Methods
	generalPasteboard
	pasteboardByFilteringData
	pasteboardByFilteringFile
	pasteboardByFilteringTypesInPasteboard
	pasteboardWithName
	pasteboardWithUniqueName
	typesFilterableTo

	Instance Methods
	addTypes
	availableTypeFromArray
	changeCount
	dataForType
	declareTypes
	name
	propertyListForType
	readFileContentsTypeToFile
	readFileWrapper
	releaseGlobally
	setDataForType
	setPropertyListForType
	setStringForType
	stringForType
	types
	writeFileContents
	writeFileWrapper

	Constants
	Delegate Methods
	pasteboardChangedOwner
	pasteboardProvideDataForType

	NSPDFImageRep
	Overview
	Tasks
	Constructors
	Creating an NSPDFImageRep
	Getting Image Data

	Constructors
	Static Methods
	imageRep

	Instance Methods
	bounds
	currentPage
	pageCount
	PDFRepresentation
	setCurrentPage

	NSPICTImageRep
	Overview
	Tasks
	Constructors
	Creating an NSPICTImageRep
	Getting Image Data

	Constructors
	Static Methods
	imageRep

	Instance Methods
	boundingBox
	PICTRepresentation

	NSPopUpButton
	Class at a Glance
	Overview
	Tasks
	Constructors
	Setting the Type of Menu
	Inserting and Deleting Items
	Getting the User’s Selection
	Setting the Current Selection
	Getting Menu Items
	Getting the Indices of Menu Items
	Setting the Cell Edge to Pop out in Restricted Situations
	Setting the Title
	Setting the Image
	Setting the State

	Constructors
	Instance Methods
	addItem
	addItemsWithTitles
	autoenablesItems
	indexOfItem
	indexOfItemWithRepresentedObject
	indexOfItemWithTag
	indexOfItemWithTargetAndAction
	indexOfItemWithTitle
	indexOfSelectedItem
	insertItemAtIndex
	itemArray
	itemAtIndex
	itemTitleAtIndex
	itemTitles
	itemWithTitle
	lastItem
	menu
	numberOfItems
	objectValue
	preferredEdge
	pullsDown
	removeAllItems
	removeItemAtIndex
	removeItemWithTitle
	selectedItem
	selectItem
	selectItemAtIndex
	selectItemWithTag
	selectItemWithTitle
	setAutoenablesItems
	setImage
	setMenu
	setObjectValue
	setPreferredEdge
	setPullsDown
	setTitle
	synchronizeTitleAndSelectedItem
	titleOfSelectedItem

	NSPopUpButtonCell
	Overview
	Tasks
	Constructors
	Getting and Setting Attributes
	Adding and Removing Items
	Accessing the Items
	Dealing with Selection
	Title Conveniences
	Setting the Image
	Handling Events and Action Messages

	Constructors
	Instance Methods
	addItem
	addItemsWithTitles
	altersStateOfSelectedItem
	arrowPosition
	attachPopUpWithFrameInView
	autoenablesItems
	dismissPopUp
	indexOfItem
	indexOfItemWithRepresentedObject
	indexOfItemWithTag
	indexOfItemWithTargetAndAction
	indexOfItemWithTitle
	indexOfSelectedItem
	insertItemAtIndex
	itemArray
	itemAtIndex
	itemTitleAtIndex
	itemTitles
	itemWithTitle
	lastItem
	menu
	numberOfItems
	objectValue
	performClickWithFrameInView
	preferredEdge
	pullsDown
	removeAllItems
	removeItemAtIndex
	removeItemWithTitle
	selectedItem
	selectItem
	selectItemAtIndex
	selectItemWithTag
	selectItemWithTitle
	setAltersStateOfSelectedItem
	setArrowPosition
	setAutoenablesItems
	setImage
	setMenu
	setObjectValue
	setPreferredEdge
	setPullsDown
	setTitle
	setUsesItemFromMenu
	synchronizeTitleAndSelectedItem
	titleOfSelectedItem
	usesItemFromMenu

	Constants
	Notifications
	PopUpButtonCellWillPopUpNotification

	NSPrinter
	Overview
	Tasks
	Constructors
	Creating an NSPrinter
	Getting General Printer Information
	Getting Attributes
	Getting Specific Information
	Querying the Tables
	Deprecated Methods

	Constructors
	Static Methods
	printerNames
	printerTypes
	printerWithName
	printerWithType

	Instance Methods
	acceptsBinary
	booleanForKeyInTable
	deviceDescription
	domain
	floatForKeyInTable
	host
	imageRectForPaper
	intForKeyInTable
	isColor
	isFontAvailable
	isKeyInTable
	isOutputStackInReverseOrder
	languageLevel
	name
	note
	pageSizeForPaper
	rectForKeyInTable
	sizeForKeyInTable
	statusForTable
	stringForKeyInTable
	stringListForKeyInTable
	type

	Constants

	NSPrintInfo
	Overview
	Tasks
	Constructors
	Managing the Shared NSPrintInfo
	Managing the Printing Rectangle
	Pagination
	Positioning the Image on the Page
	Specifying the Printer
	Controlling Printing
	Accessing the Dictionary
	Deprecated Methods

	Constructors
	Static Methods
	defaultPrinter
	setDefaultPrinter
	setSharedPrintInfo
	sharedPrintInfo
	sizeForPaperName

	Instance Methods
	bottomMargin
	dictionary
	horizontalPagination
	imageablePageBounds
	isHorizontallyCentered
	isVerticallyCentered
	jobDisposition
	leftMargin
	localizedPaperName
	orientation
	paperName
	paperSize
	printer
	rightMargin
	setBottomMargin
	setHorizontallyCentered
	setHorizontalPagination
	setJobDisposition
	setLeftMargin
	setOrientation
	setPaperName
	setPaperSize
	setPrinter
	setRightMargin
	setTopMargin
	setUpPrintOperationDefaultValues
	setVerticallyCentered
	setVerticalPagination
	topMargin
	verticalPagination

	Constants

	NSPrintOperation
	Overview
	Tasks
	Constructors
	Creating an NSPrintOperation
	Setting the Current NSPrintOperation for This Thread
	Determining the Type of Operation
	Modifying the NSPrintInfo Object
	Getting the NSView Object
	Running a Print Operation
	Modifying the User Interface
	Managing the Drawing Context
	Modifying Page Information
	Managing Printing Threads

	Constructors
	Static Methods
	currentOperation
	EPSOperationWithViewInsideRect
	PDFOperationWithViewInsideRect
	printOperationWithView
	setCurrentOperation

	Instance Methods
	accessoryView
	canSpawnSeparateThread
	cleanUpOperation
	context
	createContext
	currentPage
	deliverResult
	destroyContext
	isCopyingOperation
	isEPSOperation
	jobStyleHint
	pageOrder
	printInfo
	printPanel
	runModalOperation
	runOperation
	setAccessoryView
	setCanSpawnSeparateThread
	setJobStyleHint
	setPageOrder
	setPrintInfo
	setPrintPanel
	setShowPanels
	setShowsPrintPanel
	setShowsProgressPanel
	showPanels
	showsPrintPanel
	showsProgressPanel
	view

	Constants

	NSPrintPanel
	Overview
	Tasks
	Constructors
	Creating an NSPrintPanel
	Customizing the Panel
	Running the Panel
	Communicating with the NSPrintInfo Object
	Deprecated Methods

	Constructors
	Static Methods
	printPanel

	Instance Methods
	accessoryView
	beginSheetWithPrintInfo
	finalWritePrintInfo
	jobStyleHint
	pickedAllPages
	pickedButton
	pickedLayoutList
	runModal
	setAccessoryView
	setJobStyleHint
	updateFromPrintInfo

	Constants

	NSProgressIndicator
	Overview
	Tasks
	Constructors
	Animating the Progress Indicator
	Advancing the Progress Bar
	Setting the Appearance

	Constructors
	Instance Methods
	animate
	animationDelay
	controlSize
	controlTint
	doubleValue
	incrementBy
	isBezeled
	isDisplayedWhenStopped
	isIndeterminate
	maxValue
	minValue
	setAnimationDelay
	setBezeled
	setControlSize
	setControlTint
	setDisplayedWhenStopped
	setDoubleValue
	setIndeterminate
	setMaxValue
	setMinValue
	setStyle
	setUsesThreadedAnimation
	sizeToFit
	startAnimation
	stopAnimation
	style
	usesThreadedAnimation

	Constants

	NSPureApplication
	Overview
	Tasks
	Constructors
	Starting a Java Application

	Constructors
	Static Methods
	main

	NSResponder
	Overview
	Tasks
	Constructors
	Changing the First Responder
	Setting the Next Responder
	Event Methods
	Special Key Event Methods
	Clearing Key Events
	Action Methods
	Dispatch Methods
	Terminating the Responder Chain
	Services Menu Updating
	Setting the Menu
	Setting the Interface Style
	Testing Events
	Getting the Undo Manager
	Presenting and Customizing Error Information
	Binding

	Constructors
	Instance Methods
	acceptsFirstResponder
	becomeFirstResponder
	bind
	flagsChanged
	flushBufferedKeyEvents
	helpRequested
	interfaceStyle
	interpretKeyEvents
	keyDown
	keyUp
	menu
	mouseDown
	mouseDragged
	mouseEntered
	mouseExited
	mouseMoved
	mouseUp
	nextResponder
	noResponderForSelector
	otherMouseDown
	otherMouseDragged
	otherMouseUp
	performKeyEquivalent
	performMnemonic
	presentError
	presentErrorModalForWindow
	resignFirstResponder
	rightMouseDown
	rightMouseDragged
	rightMouseUp
	scrollWheel
	setInterfaceStyle
	setMenu
	setNextResponder
	shouldBeTreatedAsInkEvent
	showContextHelp
	tabletPoint
	tabletProximity
	tryToPerform
	undoManager
	validRequestorForTypes
	willPresentError

	NSRulerMarker
	Overview
	Tasks
	Constructors
	Getting the Ruler View
	Setting the Image
	Setting Movability
	Setting the Location
	Setting the Represented Object
	Drawing and Event Handling

	Constructors
	Instance Methods
	drawRect
	image
	imageOrigin
	imageRectInRuler
	isDragging
	isMovable
	isRemovable
	markerLocation
	representedObject
	ruler
	setImage
	setImageOrigin
	setMarkerLocation
	setMovable
	setRemovable
	setRepresentedObject
	thicknessRequiredInRuler
	trackMouseToAddMarker

	NSRulerView
	Class at a Glance
	Overview
	Tasks
	Constructors
	Altering Measurement Units
	Setting the Client View
	Setting an Accessory View
	Setting the Zero Mark Position
	Adding and Removing Markers
	Drawing Temporary Ruler Lines
	Drawing
	Ruler Layout
	Adding markers
	Moving markers
	Removing markers
	Handling mouse events
	Changing client view

	Constructors
	Static Methods
	registerUnit

	Instance Methods
	accessoryView
	addMarker
	baselineLocation
	clientView
	drawHashMarksAndLabelsInRect
	drawMarkersInRect
	invalidateHashMarks
	isFlipped
	markers
	measurementUnits
	moveRulerline
	orientation
	originOffset
	removeMarker
	requiredThickness
	reservedThicknessForAccessoryView
	reservedThicknessForMarkers
	ruleThickness
	scrollView
	setAccessoryView
	setClientView
	setMarkers
	setMeasurementUnits
	setOrientation
	setOriginOffset
	setReservedThicknessForAccessoryView
	setReservedThicknessForMarkers
	setRuleThickness
	setScrollView
	trackMarker

	Constants
	Delegate Methods
	rulerViewDidAddMarker
	rulerViewDidMoveMarker
	rulerViewDidRemoveMarker
	rulerViewHandleMouseDown
	rulerViewShouldAddMarker
	rulerViewShouldMoveMarker
	rulerViewShouldRemoveMarker
	rulerViewWillAddMarker
	rulerViewWillMoveMarker
	rulerViewWillSetClientView

	NSSavePanel
	Class at a Glance
	Overview
	Tasks
	Constructors
	Obtaining
	Customizing the NSSavePanel
	Working with Extension Hiding
	Setting Directory and File Type
	Running the NSSavePanel
	Getting User Selections
	Action Methods
	Responding to User Input
	Setting the Delegate
	Working with filenames
	Expanding the panel
	Managing panel changes

	Constructors
	Static Methods
	savePanel

	Instance Methods
	accessoryView
	allowedFileTypes
	allowsOtherFileTypes
	beginSheetForDirectory
	cancel
	canCreateDirectories
	canSelectHiddenExtension
	delegate
	directory
	filename
	isExpanded
	isExtensionHidden
	message
	nameFieldLabel
	ok
	prompt
	requiredFileType
	runModal
	runModalInDirectory
	selectText
	setAccessoryView
	setAllowedFileTypes
	setAllowsOtherFileTypes
	setCanCreateDirectories
	setCanSelectHiddenExtension
	setDelegate
	setDirectory
	setExtensionHidden
	setMessage
	setNameFieldLabel
	setPrompt
	setRequiredFileType
	setTitle
	setTreatsFilePackagesAsDirectories
	title
	treatsFilePackagesAsDirectories
	URL
	validateVisibleColumns

	Delegate Methods
	panelCompareFilenames
	panelDirectoryDidChange
	panelIsValidFilename
	panelSelectionDidChange
	panelShouldShowFilename
	panelUserEnteredFilename
	panelWillExpand

	NSScreen
	Overview
	Tasks
	Constructors
	Getting NSScreens
	Reading Screen Information

	Constructors
	Static Methods
	deepestScreen
	mainScreen
	screens

	Instance Methods
	depth
	deviceDescription
	frame
	supportedWindowDepths
	userSpaceScaleFactor
	visibleFrame

	Constants

	NSScroller
	Class at a Glance
	Overview
	Tasks
	Constructors
	Determining NSScroller Size
	Laying out an NSScroller
	Setting the Knob Position
	Calculating Layout
	Drawing the Parts
	Event Handling
	Setting Control Tint

	Constructors
	Static Methods
	scrollerWidth
	scrollerWidthForControlSize

	Instance Methods
	arrowsPosition
	checkSpaceForParts
	controlSize
	controlTint
	drawArrow
	drawKnob
	drawParts
	highlight
	hitPart
	knobProportion
	rectForPart
	setArrowsPosition
	setControlSize
	setControlTint
	setFloatValueAndKnobProportion
	testPart
	trackKnob
	trackScrollButtons
	usableParts

	Constants

	NSScrollView
	Class at a Glance
	Overview
	Tasks
	Constructors
	Calculating Layout
	Determining Component Sizes
	Managing Graphics Attributes
	Managing the Scrolled Views
	Managing Scrollers
	Managing Rulers
	Setting Scrolling Behavior
	Updating Display After Scrolling
	Arranging Components

	Constructors
	Static Methods
	contentSizeForFrameSize
	frameSizeForContentSize
	rulerViewClass
	setRulerViewClass

	Instance Methods
	autohidesScrollers
	backgroundColor
	borderType
	contentSize
	contentView
	documentCursor
	documentView
	documentVisibleRect
	drawsBackground
	hasHorizontalRuler
	hasHorizontalScroller
	hasVerticalRuler
	hasVerticalScroller
	horizontalLineScroll
	horizontalPageScroll
	horizontalRulerView
	horizontalScroller
	lineScroll
	pageScroll
	reflectScrolledClipView
	rulersVisible
	scrollsDynamically
	scrollWheel
	setAutohidesScrollers
	setBackgroundColor
	setBorderType
	setContentView
	setDocumentCursor
	setDocumentView
	setDrawsBackground
	setHasHorizontalRuler
	setHasHorizontalScroller
	setHasVerticalRuler
	setHasVerticalScroller
	setHorizontalLineScroll
	setHorizontalPageScroll
	setHorizontalRulerView
	setHorizontalScroller
	setLineScroll
	setPageScroll
	setRulersVisible
	setScrollsDynamically
	setVerticalLineScroll
	setVerticalPageScroll
	setVerticalRulerView
	setVerticalScroller
	tile
	verticalLineScroll
	verticalPageScroll
	verticalRulerView
	verticalScroller

	NSSearchField
	Overview
	Tasks
	Constructors
	Managing Recent Searches
	Managing Autosave Name

	Constructors
	Instance Methods
	recentsAutosaveName
	recentSearches
	setRecentsAutosaveName
	setRecentSearches

	NSSearchFieldCell
	Overview
	Tasks
	Constructors
	Managing Buttons
	Custom Layout
	Managing Menu Template
	Managing Search Mode
	Managing Recent Search Strings

	Constructors
	Instance Methods
	cancelButtonCell
	cancelButtonRectForBounds
	maximumRecents
	recentsAutosaveName
	recentSearches
	resetCancelButtonCell
	resetSearchButtonCell
	searchButtonCell
	searchButtonRectForBounds
	searchMenuTemplate
	searchTextRectForBounds
	sendsSearchStringImmediately
	sendsWholeSearchString
	setCancelButtonCell
	setMaximumRecents
	setRecentsAutosaveName
	setRecentSearches
	setSearchButtonCell
	setSearchMenuTemplate
	setSendsSearchStringImmediately
	setSendsWholeSearchString

	Constants

	NSSecureTextField
	Overview
	Tasks
	Constructors

	Constructors

	NSSecureTextFieldCell
	Overview
	Tasks
	Constructors
	Working with Character Echo

	Constructors
	Instance Methods
	echosBullets
	setEchosBullets

	NSSegmentedCell
	Overview
	Tasks
	Constructors
	Specifying Number of Segments
	Specifying Selected Segment
	Specifying Tracking Mode
	Working with Individual Segments
	Drawing Custom Content

	Constructors
	Instance Methods
	drawSegment
	image
	isEnabled
	isSelected
	label
	makeNextSegmentKey
	makePreviousSegmentKey
	menu
	segmentCount
	selectedSegment
	selectSegmentWithTag
	setEnabled
	setImage
	setLabel
	setMenu
	setSegmentCount
	setSelected
	setTag
	setToolTip
	setTrackingMode
	setWidth
	tag
	toolTip
	trackingMode
	width

	Constants

	NSSegmentedControl
	Overview
	Tasks
	Constructors
	Specifying Number of Segments
	Specifying Selected Segment
	Working with Individual Segments

	Constructors
	Instance Methods
	imageForSegment
	isEnabled
	isSelected
	label
	menu
	segmentCount
	selectedSegment
	setEnabled
	setImage
	setLabel
	setMenu
	setSegmentCount
	setSelected
	setWidth
	width

	NSShadow
	Overview
	Tasks
	Constructors
	Managing a Shadow
	Setting the Shadow

	Constructors
	Instance Methods
	set
	setShadowBlurRadius
	setShadowColor:
	setShadowOffset
	shadowBlurRadius
	shadowColor
	shadowOffset

	NSSlider
	Overview
	Tasks
	Constructors
	Asking About the Slider’s Appearance
	Changing the Slider’s Appearance
	Asking About the Slider’s Title
	Changing the Slider’s Title
	Asking About the Value Limits
	Changing the Value Limits
	Handling Mouse-down Events
	Managing Tick Marks

	Constructors
	Instance Methods
	acceptsFirstMouse
	allowsTickMarkValuesOnly
	altIncrementValue
	closestTickMarkValueToValue
	image
	indexOfTickMarkAtPoint
	isVertical
	knobThickness
	maxValue
	minValue
	numberOfTickMarks
	rectOfTickMarkAtIndex
	setAllowsTickMarkValuesOnly
	setAltIncrementValue
	setImage
	setKnobThickness
	setMaxValue
	setMinValue
	setNumberOfTickMarks
	setTickMarkPosition
	setTitle
	setTitleCell
	setTitleColor
	setTitleFont
	tickMarkPosition
	tickMarkValueAtIndex
	title
	titleCell
	titleColor
	titleFont

	NSSliderCell
	Overview
	Tasks
	Constructors
	Asking About the Cell’s Behavior
	Setting the Slider Type
	Changing the Cell’s Behavior
	Displaying the Cell
	Asking About the Cell’s Appearance
	Changing the Cell’s Appearance
	Asking About the Value Limits
	Changing the Value Limits
	Managing Tick Marks

	Constructors
	Static Methods
	prefersTrackingUntilMouseUp

	Instance Methods
	allowsTickMarkValuesOnly
	altIncrementValue
	closestTickMarkValueToValue
	drawBarInside
	drawKnob
	drawKnobInRect
	indexOfTickMarkAtPoint
	isVertical
	knobRectFlipped
	knobThickness
	maxValue
	minValue
	numberOfTickMarks
	rectOfTickMarkAtIndex
	setAllowsTickMarkValuesOnly
	setAltIncrementValue
	setKnobThickness
	setMaxValue
	setMinValue
	setNumberOfTickMarks
	setSliderType
	setTickMarkPosition
	setTitle
	setTitleCell
	setTitleColor
	setTitleFont
	sliderType
	tickMarkPosition
	tickMarkValueAtIndex
	title
	titleCell
	titleColor
	titleFont
	trackRect

	Constants

	NSSound
	Overview
	Tasks
	Constructors
	Playing
	Working with Pasteboards
	Working with Delegates
	Naming Sounds

	Constructors
	Static Methods
	canInitWithPasteboard
	soundNamed
	soundUnfilteredFileTypes
	soundUnfilteredPasteboardTypes

	Instance Methods
	delegate
	isPlaying
	name
	pause
	play
	resume
	setDelegate
	setName
	stop
	writeToPasteboard

	NSSpeechRecognizer
	Overview
	Tasks
	Constructors
	Listening
	Managing Delegates
	Managing Recognizer Attributes
	Recognizing speech

	Constructors
	Instance Methods
	blocksOtherRecognizers
	commands
	delegate
	displayedCommandsTitle
	listensInForegroundOnly
	setBlocksOtherRecognizers
	setCommands
	setDelegate
	setDisplayedCommandsTitle
	setListensInForegroundOnly
	startListening
	stopListening

	Delegate Methods
	speechRecognizerDidRecognizeCommand

	NSSpeechSynthesizer
	Overview
	Tasks
	Constructors
	Testing for Speaking
	Obtaining Voice Information
	Speaking
	Managing Delegates
	Managing Synthesizer Attributes
	Speaking

	Constructors
	Static Methods
	attributesForVoice
	availableVoices
	defaultVoice
	isAnyApplicationSpeaking

	Instance Methods
	delegate
	isSpeaking
	setDelegate
	setUsesFeedbackWindow
	setVoice
	startSpeakingString
	stopSpeaking
	usesFeedbackWindow
	voice

	Constants
	Delegate Methods
	speechSynthesizerDidFinishSpeaking
	speechSynthesizerWillSpeakPhoneme
	speechSynthesizerWillSpeakWord

	NSSpellChecker
	Overview
	Tasks
	Constructors
	Getting the Spell Checker
	Managing the Spelling Panel
	Checking Spelling
	Setting the Language
	Managing the Spelling Process

	Constructors
	Static Methods
	sharedSpellChecker
	sharedSpellCheckerExists
	uniqueSpellDocumentTag

	Instance Methods
	accessoryView
	checkSpellingOfString
	closeSpellDocumentWithTag
	completionsForPartialWordRange
	countWordsInString
	guessesForWord
	ignoredWords
	ignoreWord
	language
	setAccessoryView
	setIgnoredWords
	setLanguage
	setWordFieldStringValue
	spellingPanel
	updateSpellingPanelWithMisspelledWord

	NSSplitView
	Overview
	Tasks
	Constructors
	Managing Component Views
	Managing Orientation
	Assigning a Delegate
	Managing Pane Splitters
	Resizing subviews
	Constraining split position
	Collapsing subview

	Constructors
	Instance Methods
	adjustSubviews
	delegate
	dividerThickness
	drawDividerInRect
	isPaneSplitter
	isSubviewCollapsed
	isVertical
	setDelegate
	setIsPaneSplitter
	setVertical

	Delegate Methods
	splitViewCanCollapseSubview
	splitViewConstrainMaxSplitPosition
	splitViewConstrainMinSplitPosition
	splitViewConstrainSplitPosition
	splitViewDidResizeSubviews
	splitViewResizeSubviews
	splitViewWillResizeSubviews

	Notifications
	SplitViewDidResizeSubviewsNotification
	SplitViewWillResizeSubviewsNotification

	NSStatusBar
	Overview
	Tasks
	Constructors
	Accessing the System-wide Instance
	Getting the Orientation
	Creating and Removing Items

	Constructors
	Static Methods
	systemStatusBar

	Instance Methods
	isVertical
	removeStatusItem
	statusItem
	thickness

	Constants

	NSStatusItem
	Overview
	Tasks
	Constructors
	Getting the Item’s Status Bar
	Setting the Status Item’s Appearance
	Getting the Status Item’s Appearance
	Setting the Status Item’s Behavior
	Getting Status Item Behavior
	Using a Custom View
	Drawing

	Constructors
	Instance Methods
	action
	alternateImage
	attributedTitle
	doubleAction
	drawStatusBarBackgroundInRect
	highlightMode
	image
	isEnabled
	length
	menu
	popUpStatusItemMenu
	setAction
	setAlternateImage
	setAttributedTitle
	setDoubleAction
	setEnabled
	setEventMaskForSendingAction
	setHighlightMode
	setImage
	setLength
	setMenu
	setTarget
	setTitle
	setToolTip
	setView
	statusBar
	target
	title
	toolTip
	view

	NSStepper
	Overview
	Tasks
	Constructors
	Specifying Value Range
	Specifying How Stepper Responds

	Constructors
	Instance Methods
	autorepeat
	increment
	maxValue
	minValue
	setAutorepeat
	setIncrement
	setMaxValue
	setMinValue
	setValueWraps
	valueWraps

	NSStepperCell
	Overview
	Tasks
	Constructors
	Specifying Value Range
	Specifying How Stepper Cell Responds

	Constructors
	Instance Methods
	autorepeat
	increment
	maxValue
	minValue
	setAutorepeat
	setIncrement
	setMaxValue
	setMinValue
	setValueWraps
	valueWraps

	NSTableColumn
	Overview
	Tasks
	Constructors
	Setting the Identifier
	Setting the NSTableView
	Controlling Size
	Controlling Editability
	Setting Component Cells
	Sorting
	Deprecated Methods

	Constructors
	Instance Methods
	dataCell
	dataCellForRow
	headerCell
	identifier
	isEditable
	isResizable
	maxWidth
	minWidth
	resizingMask
	setDataCell
	setEditable
	setHeaderCell
	setIdentifier
	setMaxWidth
	setMinWidth
	setResizable
	setResizingMask
	setSortDescriptorPrototype
	setTableView
	setWidth
	sizeToFit
	sortDescriptorPrototype
	tableView
	width

	Constants

	NSTableHeaderCell
	Overview
	Tasks
	Constructors
	Sorting

	Constructors
	Instance Methods
	drawSortIndicatorWithFrameInView
	sortIndicatorRectForBounds

	NSTableHeaderView
	Overview
	Tasks
	Constructors
	Setting the Table View
	Checking Altered Columns
	Utility Methods

	Constructors
	Instance Methods
	columnAtPoint
	draggedColumn
	draggedDistance
	headerRectOfColumn
	resizedColumn
	setTableView
	tableView

	NSTableView
	Class at a Glance
	Overview
	Tasks
	Constructors
	Setting the Data Source
	Loading Data
	Target-action Behavior
	Configuring Behavior
	Setting Display Attributes
	Manipulating Columns
	Selecting Columns and Rows
	Getting the Dimensions of the Table
	Setting Grid Attributes
	Editing Cells
	Setting Auxiliary Views
	Layout Support
	Drawing
	Scrolling
	Text Delegate Methods
	Persistence
	Setting the Delegate
	Setting the Indicator Image
	Supporting Highlightable Column Headers
	Dragging
	Sorting
	Deprecated Methods
	Moving and resizing columns
	Selecting in table
	Responding to mouse events
	Editing a cell
	Displaying a cell
	Displaying tooltips
	Allowing variable height rows

	Constructors
	Instance Methods
	addTableColumn
	allowsColumnReordering
	allowsColumnResizing
	allowsColumnSelection
	allowsEmptySelection
	allowsMultipleSelection
	autoresizesAllColumnsToFit
	autosaveName
	autosaveTableColumns
	backgroundColor
	canDragRowsWithIndexes
	clickedColumn
	clickedRow
	columnAtPoint
	columnAutoresizingStyle
	columnsInRect
	columnWithIdentifier
	cornerView
	dataSource
	delegate
	deselectAll
	deselectColumn
	deselectRow
	doubleAction
	dragImageForRows
	dragImageForRowsWithIndexes
	drawBackgroundInClipRect
	drawGridInClipRect
	drawRow
	drawsGrid
	editedColumn
	editedRow
	editLocation
	frameOfCellAtLocation
	gridColor
	gridStyleMask
	headerView
	highlightedTableColumn
	highlightSelectionInClipRect
	indicatorImage
	intercellSpacing
	isColumnSelected
	isRowSelected
	moveColumnToColumn
	noteHeightOfRowsWithIndexesChanged
	noteNumberOfRowsChanged
	numberOfColumns
	numberOfRows
	numberOfSelectedColumns
	numberOfSelectedRows
	rectOfColumn
	rectOfRow
	reloadData
	removeTableColumn
	rowAtPoint
	rowHeight
	rowsInRect
	scrollColumnToVisible
	scrollRowToVisible
	selectAll
	selectColumn
	selectColumnIndexes
	selectedColumn
	selectedColumnEnumerator
	selectedColumnIndexes
	selectedRow
	selectedRowEnumerator
	selectedRowIndexes
	selectRow
	selectRowIndexes
	setAllowsColumnReordering
	setAllowsColumnResizing
	setAllowsColumnSelection
	setAllowsEmptySelection
	setAllowsMultipleSelection
	setAutoresizesAllColumnsToFit
	setAutosaveName
	setAutosaveTableColumns
	setBackgroundColor
	setColumnAutoresizingStyle
	setCornerView
	setDataSource
	setDelegate
	setDoubleAction
	setDraggingSourceOperationMask
	setDrawsGrid
	setDropRowAndDropOperation
	setGridColor
	setGridStyleMask
	setHeaderView
	setHighlightedTableColumn
	setIndicatorImage
	setIntercellSpacing
	setRowHeight
	setSortDescriptors
	setUsesAlternatingRowBackgroundColors
	setVerticalMotionCanBeginDrag
	sizeLastColumnToFit
	sizeToFit
	sortDescriptors
	tableColumns
	tableColumnWithIdentifier
	textDidBeginEditing
	textDidChange
	textDidEndEditing
	textShouldBeginEditing
	textShouldEndEditing
	tile
	usesAlternatingRowBackgroundColors
	verticalMotionCanBeginDrag

	Constants
	Delegate Methods
	selectionShouldChangeInTableView
	tableViewColumnDidMove
	tableViewColumnDidResize
	tableViewDidClickTableColumn
	tableViewDidDragTableColumn
	tableViewHeightOfRow
	tableViewMouseDownInHeaderOfTableColumn
	tableViewSelectionDidChange
	tableViewSelectionIsChanging
	tableViewShouldEditLocation
	tableViewShouldSelectRow
	tableViewShouldSelectTableColumn
	tableViewToolTipForCell
	tableViewWillDisplayCell

	Notifications
	TableViewColumnDidMoveNotification
	TableViewColumnDidResizeNotification
	TableViewSelectionDidChangeNotification
	TableViewSelectionIsChangingNotification

	NSTabView
	Overview
	Tasks
	Constructors
	Adding and Removing Tabs
	Accessing Tabs
	Selecting a Tab
	Modifying the Font
	Modifying the Tab Type
	Modifying Controls Tint
	Manipulating the Background
	Determining the Size
	Truncating Tab Labels
	Assigning a Delegate
	Event Handling
	View’s Window
	Selecting an item
	Changing number of items in view

	Constructors
	Instance Methods
	addTabViewItem
	allowsTruncatedLabels
	contentRect
	controlSize
	controlTint
	delegate
	drawsBackground
	font
	indexOfTabViewItem
	indexOfTabViewItemWithIdentifier
	insertTabViewItem
	minimumSize
	numberOfTabViewItems
	removeTabViewItem
	selectedTabViewItem
	selectFirstTabViewItem
	selectLastTabViewItem
	selectNextTabViewItem
	selectPreviousTabViewItem
	selectTabViewItem
	selectTabViewItemAtIndex
	selectTabViewItemWithIdentifier
	setAllowsTruncatedLabels
	setControlSize
	setControlTint
	setDelegate
	setDrawsBackground
	setFont
	setTabViewType
	tabViewItemAtIndex
	tabViewItemAtPoint
	tabViewItems
	tabViewType
	takeSelectedTabViewItemFromSender
	window

	Constants
	Delegate Methods
	tabViewDidChangeNumberOfTabViewItems
	tabViewDidSelectTabViewItem
	tabViewShouldSelectTabViewItem
	tabViewWillSelectTabViewItem

	NSTabViewItem
	Overview
	Tasks
	Constructors
	Working with Labels
	Checking the Tab Display State
	Assigning an Identifier Object
	Setting the Color
	Assigning a View
	Setting the Initial First Responder
	Accessing the Parent Tab View

	Constructors
	Instance Methods
	color
	drawLabel
	identifier
	initialFirstResponder
	label
	setColor
	setIdentifier
	setInitialFirstResponder
	setLabel
	setView
	sizeOfLabel
	tabState
	tabView
	view

	NSText
	Class at a Glance
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Getting the Characters
	Setting Graphics Attributes
	Setting Behavioral Attributes
	Using the Font Panel and Menu
	Using the Ruler
	Changing the Selection
	Replacing Text
	Action Methods for Editing
	Changing the Font
	Setting Text Alignment
	Setting Text Color
	Setting Superscripting and Subscripting
	Underlining Text
	Reading and Writing RTF Files
	Checking Spelling
	Constraining Size
	Scrolling
	Setting the Delegate
	Editing text
	Changing text formatting

	Constructors
	Instance Methods
	alignCenter
	alignLeft
	alignment
	alignRight
	backgroundColor
	changeFont
	changeSpelling
	checkSpelling
	copy
	copyFont
	copyRuler
	cut
	delegate
	delete
	drawsBackground
	font
	ignoreSpelling
	importsGraphics
	isEditable
	isFieldEditor
	isHorizontallyResizable
	isRichText
	isRulerVisible
	isSelectable
	isVerticallyResizable
	maxSize
	minSize
	paste
	pasteFont
	pasteRuler
	readRTFDFromFile
	replaceCharactersInRange
	replaceCharactersInRangeWithRTF
	replaceCharactersInRangeWithRTFD
	RTFDFromRange
	RTFFromRange
	scrollRangeToVisible
	selectAll
	selectedRange
	setAlignment
	setBackgroundColor
	setDelegate
	setDrawsBackground
	setEditable
	setFieldEditor
	setFont
	setFontInRange
	setHorizontallyResizable
	setImportsGraphics
	setMaxSize
	setMinSize
	setRichText
	setSelectable
	setSelectedRange
	setString
	setTextColor
	setTextColorInRange
	setUsesFontPanel
	setVerticallyResizable
	showGuessPanel
	sizeToFit
	string
	subscript
	superscript
	textColor
	toggleRuler
	underline
	unscript
	usesFontPanel
	writeRTFDToFile

	Constants
	Delegate Methods
	textDidBeginEditing
	textDidChange
	textDidEndEditing
	textShouldBeginEditing
	textShouldEndEditing

	Notifications
	TextDidBeginEditingNotification
	TextDidChangeNotification
	TextDidEndEditingNotification

	NSTextAttachment
	Overview
	Tasks
	Constructors
	Setting the File Wrapper
	Setting the Attachment Cell

	Constructors
	Instance Methods
	attachmentCell
	fileWrapper
	setAttachmentCell
	setFileWrapper

	Constants

	NSTextAttachmentCell
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Drawing
	Cell Size and Position
	Event Handling
	Setting the Attachment

	Constructors
	Instance Methods
	attachment
	cellBaselineOffset
	cellFrame
	cellSize
	drawWithFrameInView
	highlightWithFrameInView
	setAttachment
	trackMouse
	wantsToTrackMouse
	wantsToTrackMouseForEvent

	NSTextBlock
	Overview
	Tasks
	Constructors
	Working with Dimensions of Content
	Getting and Setting Margins, Borders, and Padding
	Getting and Setting Alignment
	Working with Color
	Determining Size and Position of Text Block
	Drawing Colors and Decorations

	Constructors
	Instance Methods
	backgroundColor
	borderColorForEdge
	boundsRectForContentRect
	contentWidth
	contentWidthValueType
	drawBackgroundWithFrame
	rectForLayoutAtPoint
	setBackgroundColor
	setBorderColor
	setContentWidth
	setValue
	setVerticalAlignment
	setWidthForLayer
	valueForDimension
	valueTypeForDimension
	verticalAlignment
	widthForLayer
	widthValueTypeForLayer

	Constants

	NSTextContainer
	Overview
	Tasks
	Constructors
	Managing Text Components
	Controlling Size
	Setting Line Fragment Padding
	Calculating Text Layout
	Mouse Hit Testing

	Constructors
	Instance Methods
	containerSize
	containsPoint
	heightTracksTextView
	isSimpleRectangularTextContainer
	layoutManager
	lineFragmentPadding
	lineFragmentRectForProposedRect
	replaceLayoutManager
	setContainerSize
	setHeightTracksTextView
	setLayoutManager
	setLineFragmentPadding
	setTextView
	setWidthTracksTextView
	textView
	widthTracksTextView

	Constants

	NSTextField
	Overview
	Tasks
	Constructors
	Controlling Editability and Selectability
	Controlling Rich Text Behavior
	Setting the Text Color
	Controlling the Background
	Setting a Border
	Selecting the Text
	Working with the Responder Chain
	Using Keyboard Interface Control
	Setting the Delegate
	Text Delegate Methods

	Constructors
	Instance Methods
	acceptsFirstResponder
	allowsEditingTextAttributes
	backgroundColor
	bezelStyle
	delegate
	drawsBackground
	importsGraphics
	isBezeled
	isBordered
	isEditable
	isSelectable
	selectText
	setAllowsEditingTextAttributes
	setBackgroundColor
	setBezeled
	setBezelStyle
	setBordered
	setDelegate
	setDrawsBackground
	setEditable
	setImportsGraphics
	setSelectable
	setTextColor
	setTitleWithMnemonic
	textColor
	textDidBeginEditing
	textDidChange
	textDidEndEditing
	textShouldBeginEditing
	textShouldEndEditing

	NSTextFieldCell
	Overview
	Tasks
	Constructors
	Setting the Text Color
	Setting the Bezel Style
	Controlling the Background
	Changing the Field Editor
	Managing Placeholder Strings

	Constructors
	Instance Methods
	backgroundColor
	bezelStyle
	drawsBackground
	placeholderAttributedString
	placeholderString
	setBackgroundColor
	setBezelStyle
	setDrawsBackground
	setPlaceholderAttributedString
	setPlaceholderString
	setTextColor
	setUpFieldEditorAttributes
	textColor

	Constants

	NSTextList
	Overview
	Tasks
	Constructors
	Working with Markers
	Getting List Options

	Constructors
	Instance Methods
	listOptions
	markerForItemNumber
	markerFormat

	Constants

	NSTextStorage
	Overview
	Tasks
	Constructors
	Managing NSLayoutManagers
	Handling Text Edited Messages
	Determining the Nature of Changes
	Determining the Extent of Changes
	Setting the Delegate
	Processing edit

	Constructors
	Instance Methods
	addLayoutManager
	changeInLength
	delegate
	editedInRange
	editedMask
	editedRange
	ensureAttributesAreFixedInRange
	fixesAttributesLazily
	invalidateAttributesInRange
	layoutManagers
	processEditing
	removeLayoutManager
	replaceCharactersInRange
	setAttributesInRange
	setDelegate

	Delegate Methods
	textStorageDidProcessEditing
	textStorageWillProcessEditing

	Notifications
	TextStorageDidProcessEditingNotification
	TextStorageWillProcessEditingNotification

	NSTextTab
	Overview
	Tasks
	Constructors
	Getting Tab Stop Information
	Getting Text Tab Information

	Constructors
	Instance Methods
	alignment
	location
	options
	tabStopType

	Constants

	NSTextTable
	Overview
	Tasks
	Constructors
	Getting and Setting Number of Columns
	Getting and Setting Layout Algorithm
	Collapsing Borders
	Hiding Empty Cells
	Determining Layout Rectangles
	Drawing the Table

	Constructors
	Instance Methods
	boundsRectForBlock
	collapsesBorders
	drawBackgroundForBlock
	hidesEmptyCells
	layoutAlgorithm
	numberOfColumns
	rectForBlockLayoutAtPoint
	setCollapsesBorders
	setHidesEmptyCells
	setLayoutAlgorithm
	setNumberOfColumns

	Constants

	NSTextTableBlock
	Overview
	Tasks
	Constructors
	Getting the Block’s Enclosing Table
	Getting Information About the Block’s Position in Its Enclosing Table

	Constructors
	Instance Methods
	columnSpan
	rowSpan
	startingColumn
	startingRow
	table

	NSTextView
	Class at a Glance
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Registering Services Information
	Accessing Related Text System Objects
	Setting Graphics Attributes
	Controlling Display
	Inserting Text
	Setting Behavioral Attributes
	Using the Ruler
	Managing the Selection
	Managing the Pasteboard
	Setting Text Attributes
	Other Action Methods
	Undo Support
	Methods That Subclasses Should Use or Override
	Changing First Responder Status
	Working with the Spelling Checker
	NSRulerView Client Methods
	Assigning a Delegate
	Dragging
	Speech Support
	Working with Panels
	Text Completion
	Clicking cells and links
	Selecting
	Dragging cells
	Editing text and attributes
	Obtaining undo manager
	Performing commands
	Working with pasteboards
	Working with tool tips
	Text completion

	Constructors
	Static Methods
	registerForServices

	Instance Methods
	acceptableDragTypes
	alignJustified
	allowsDocumentBackgroundColorChange
	allowsUndo
	attributedSubstringWithRange
	backgroundColor
	becomeFirstResponder
	breakUndoCoalescing
	changeAttributes
	changeColor
	changeDocumentBackgroundColor
	characterIndexForPoint
	cleanUpAfterDragOperation
	clickedOnLinkAtIndex
	conversationIdentifier
	defaultParagraphStyle
	delegate
	didChangeText
	doCommandBySelector
	dragOperationForDraggingInfo
	drawInsertionPointInRect
	drawsBackground
	drawViewBackgroundInRect
	firstRectForCharacterRange
	hasMarkedText
	importsGraphics
	insertCompletion
	insertionPointColor
	insertText
	invalidateTextContainerOrigin
	isContinuousSpellCheckingEnabled
	isEditable
	isFieldEditor
	isRichText
	isRulerVisible
	isSelectable
	layoutManager
	linkTextAttributes
	loosenKerning
	lowerBaseline
	markedRange
	markedTextAttributes
	orderFrontLinkPanel
	orderFrontListPanel
	orderFrontSpacingPanel
	orderFrontTablePanel
	outline
	pasteAsPlainText
	pasteAsRichText
	performFindPanelAction
	preferredPasteboardTypeFromArray
	raiseBaseline
	rangeForUserCharacterAttributeChange
	rangeForUserCompletion
	rangeForUserParagraphAttributeChange
	rangeForUserTextChange
	rangesForUserCharacterAttributeChange
	rangesForUserParagraphAttributeChange
	rangesForUserTextChange
	readablePasteboardTypes
	readSelectionFromPasteboard
	readSelectionFromPasteboardOfType
	replaceTextContainer
	resignFirstResponder
	rulerViewDidAddMarker
	rulerViewDidMoveMarker
	rulerViewDidRemoveMarker
	rulerViewHandleMouseDown
	rulerViewShouldAddMarker
	rulerViewShouldMoveMarker
	rulerViewShouldRemoveMarker
	rulerViewWillAddMarker
	rulerViewWillMoveMarker
	selectedRange
	selectedRanges
	selectedTextAttributes
	selectionAffinity
	selectionGranularity
	selectionRangeForProposedRange
	setAlignmentInRange
	setAllowsDocumentBackgroundColorChange
	setAllowsUndo
	setBackgroundColor
	setBaseWritingDirection
	setConstrainedFrameSize
	setContinuousSpellCheckingEnabled
	setDefaultParagraphStyle
	setDelegate
	setDrawsBackground
	setEditable
	setFieldEditor
	setImportsGraphics
	setInsertionPointColor
	setLinkTextAttributes
	setMarkedTextAndSelectedRange
	setMarkedTextAttributes
	setNeedsDisplay
	setRichText
	setRulerVisible
	setSelectable
	setSelectedRange
	setSelectedRanges
	setSelectedTextAttributes
	setSelectionGranularity
	setSmartInsertDeleteEnabled
	setTextContainer
	setTextContainerInset
	setTypingAttributes
	setUsesFindPanel
	setUsesFontPanel
	setUsesRuler
	shouldChangeTextInRange
	shouldChangeTextInRanges
	shouldDrawInsertionPoint
	smartDeleteRangeForProposedRange
	smartInsertAfterStringForString
	smartInsertBeforeStringForString
	smartInsertDeleteEnabled
	spellCheckerDocumentTag
	startSpeaking
	stopSpeaking
	textContainer
	textContainerInset
	textContainerOrigin
	textStorage
	tightenKerning
	toggleContinuousSpellChecking
	toggleTraditionalCharacterShape
	turnOffKerning
	turnOffLigatures
	typingAttributes
	underline
	unmarkText
	updateDragTypeRegistration
	updateFontPanel
	updateInsertionPointStateAndRestartTimer
	updateRuler
	useAllLigatures
	usesFindPanel
	usesFontPanel
	usesRuler
	useStandardKerning
	useStandardLigatures
	validAttributesForMarkedText
	validRequestorForTypes
	writablePasteboardTypes
	writeSelectionToPasteboardOfType
	writeSelectionToPasteboardOfTypes

	Constants
	Delegate Methods
	textView
	textView:completionsForPartialWordRange
	textViewClickedCell
	textViewClickedCellAtIndex
	textViewClickedOnLink
	textViewClickedOnLinkAtIndex
	textViewDidChangeSelection
	textViewDidChangeTypingAttributes
	textViewDoCommandBySelector
	textViewDoubleClickedCell
	textViewDoubleClickedCellAtIndex
	textViewDraggedCell
	textViewDraggedCellAtIndex
	textViewShouldChangeTextInRange
	textViewShouldChangeTextInRanges
	textViewShouldChangeTypingAttributes
	textViewWillChangeSelection
	textViewWillDisplayToolTip
	undoManagerForTextView

	Notifications
	TextViewDidChangeSelectionNotification
	TextViewWillChangeNotifyingTextViewNotification
	TextViewDidChangeTypingAttributesNotification

	NSTokenField
	Overview
	Tasks
	Constructors
	Setting the Completion Delay
	Setting the Token Field Appearance
	Setting the Tokenizing Character Set
	Display
	Editing
	Pasteboard
	Menu

	Constructors
	Static Methods
	defaultCompletionDelay
	defaultTokenizingCharacterSet

	Instance Methods
	completionDelay
	setCompletionDelay
	setTokenizingCharacterSet
	setTokenStyle
	tokenizingCharacterSet
	tokenStyle

	Delegate Methods
	tokenFieldCompletionsForSubstring
	tokenFieldDisplayStringForRepresentedObject
	tokenFieldEditingStringForRepresentedObject
	tokenFieldHasMenuForRepresentedObject
	tokenFieldMenuForRepresentedObject
	tokenFieldReadFromPasteboard
	tokenFieldRepresentedObjectForEditingString
	tokenFieldShouldAddObjects
	tokenFieldStyleForRepresentedObject
	tokenFieldWriteRepresentedObjectsToPasteboard

	NSTokenFieldCell
	Overview
	Tasks
	Constructors
	Setting the Completion Delay
	Setting the Token Style
	Setting the Tokenizing Character Set
	Getting and Setting the Delegate
	Display
	Editing
	Pasteboard
	Menu

	Constructors
	Static Methods
	defaultCompletionDelay
	defaultTokenizingCharacterSet

	Instance Methods
	completionDelay
	delegate
	setCompletionDelay
	setDelegate
	setTokenizingCharacterSet
	setTokenStyle
	tokenizingCharacterSet
	tokenStyle

	Constants
	Delegate Methods
	tokenFieldCellCompletionsForSubstring
	tokenFieldCellDisplayStringForRepresentedObject
	tokenFieldCellEditingStringForRepresentedObject
	tokenFieldCellHasMenuForRepresentedObject
	tokenFieldCellMenuForRepresentedObject
	tokenFieldCellReadFromPasteboard
	tokenFieldCellRepresentedObjectForEditingString
	tokenFieldCellShouldAddObjects
	tokenFieldCellStyleForRepresentedObject
	tokenFieldCellWriteRepresentedObjectsToPasteboard

	NSToolbar
	Overview
	Tasks
	Constructors
	Toolbar Attributes
	Managing the Delegate
	Managing Items on the Toolbar
	Displaying the Toolbar
	Toolbar Customization
	Autosaving the Configuration
	Toolbar Item Validation
	Adding and removing items
	Working with item identifiers

	Constructors
	Instance Methods
	allowsUserCustomization
	autosavesConfiguration
	configurationDictionary
	customizationPaletteIsRunning
	delegate
	displayMode
	identifier
	insertItemWithItemIdentifierAtIndex
	isVisible
	items
	removeItemAtIndex
	runCustomizationPalette
	selectedItemIdentifier
	setAllowsUserCustomization
	setAutosavesConfiguration
	setConfigurationFromDictionary
	setDelegate
	setDisplayMode
	setSelectedItemIdentifier
	setShowsBaselineSeparator
	setSizeMode
	setVisible
	showsBaselineSeparator
	sizeMode
	validateVisibleItems
	visibleItems

	Constants
	Delegate Methods
	toolbarAllowedItemIdentifiers
	toolbarDefaultItemIdentifiers
	toolbarDidRemoveItem
	toolbarItemForItemIdentifier
	toolbarSelectableItemIdentifiers
	toolbarWillAddItem

	Notifications
	DidRemoveItemNotification
	WillAddItemNotification

	NSToolbarItem
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Managing Attributes
	Visibility Priority
	Validation
	Controlling Duplicates

	Constructors
	Instance Methods
	action
	allowsDuplicatesInToolbar
	autovalidates
	image
	isEnabled
	itemIdentifier
	label
	maxSize
	menuFormRepresentation
	minSize
	paletteLabel
	setAction
	setAutovalidates
	setEnabled
	setImage
	setLabel
	setMaxSize
	setMenuFormRepresentation
	setMinSize
	setPaletteLabel
	setTag
	setTarget
	setToolTip
	setView
	setVisibilityPriority
	tag
	target
	toolbar
	toolTip
	validate
	view
	visibilityPriority

	Constants

	NSUserDefaultsController
	Overview
	Tasks
	Constructors
	Obtaining the Shared Instance
	Managing User Defaults Values

	Constructors
	Static Methods
	sharedUserDefaultsController

	Instance Methods
	appliesImmediately
	defaults
	hasUnappliedChanges
	initialValues
	revert
	revertToInitialValues
	save
	setAppliesImmediately
	setInitialValues

	NSView
	Class at a Glance
	Overview
	Subclassing Notes

	Tasks
	Constructors
	Managing the View Hierarchy
	Searching by Tag
	Modifying the Frame Rectangle
	Modifying the Bounds Rectangle
	Modifying the Coordinate System
	Examining Coordinate System Modifications
	Converting Coordinates
	Controlling Notifications
	Resizing Subviews
	Focusing
	Displaying
	Hiding Views
	Drawing
	Managing Live Resize
	Managing a Graphics State
	Event Handling
	Dragging Operations
	Managing Cursor Rectangles
	Managing Tool Tips
	Managing Tracking Rectangles
	Scrolling
	Context-sensitive Menus
	Managing the Key View Loop
	Printing
	Pagination
	Adorning Pages in Printout
	Writing Conforming Rendering Instructions

	Constructors
	Static Methods
	defaultFocusRingType
	defaultMenu
	focusView

	Instance Methods
	acceptsFirstMouse
	addCursorRect
	addSubview
	addTrackingRect
	adjustPageHeight
	adjustPageWidth
	adjustScroll
	allocateGState
	ancestorSharedWithView
	autoresizesSubviews
	autoresizingMask
	autoscroll
	bounds
	boundsRotation
	canBecomeKeyView
	canDraw
	centerScanRect
	concludeDragOperation
	convertPointFromView
	convertPointToView
	convertRectFromView
	convertRectToView
	convertSizeFromView
	convertSizeToView
	dataWithEPSInsideRect
	dataWithPDFInsideRect
	didAddSubview
	discardCursorRects
	display
	displayIfNeeded
	displayIfNeededIgnoringOpacity
	displayIfNeededInRect
	displayIfNeededInRectIgnoringOpacity
	displayRect
	displayRectIgnoringOpacity
	dragFile
	draggingEntered
	draggingExited
	draggingUpdated
	dragImage
	dragPromisedFilesOfTypes
	drawPageBorderWithSize
	drawRect
	drawSheetBorderWithSize
	enclosingScrollView
	endPage
	focusRingType
	frame
	frameRotation
	gState
	heightAdjustLimit
	hitTest
	inLiveResize
	isDescendantOf
	isFlipped
	isHidden
	isHiddenOrHasHiddenAncestor
	isMouseInRect
	isOpaque
	isRotatedFromBase
	isRotatedOrScaledFromBase
	knowsPageRange
	locationOfPrintRect
	lockFocus
	menuForEvent
	mouseDownCanMoveWindow
	needsDisplay
	needsPanelToBecomeKey
	needsToDrawRect
	nextKeyView
	nextValidKeyView
	opaqueAncestor
	performDragOperation
	performKeyEquivalent
	performMnemonic
	postsBoundsChangedNotifications
	postsFrameChangedNotifications
	prepareForDragOperation
	preservesContentDuringLiveResize
	previousKeyView
	previousValidKeyView
	print
	rectForPage
	rectPreservedDuringLiveResize
	rectsBeingDrawn
	rectsExposedDuringLiveResize
	reflectScrolledClipView
	registerForDraggedTypes
	releaseGState
	removeCursorRect
	removeFromSuperview
	removeFromSuperviewWithoutNeedingDisplay
	removeTrackingRect
	renewGState
	replaceSubview
	resetCursorRects
	resizeSubviewsWithOldSize
	resizeWithOldSuperviewSize
	rotateByAngle
	scaleUnitSquareToSize
	scrollClipViewToPoint
	scrollPoint
	scrollRect
	scrollRectToVisible
	setAutoresizesSubviews
	setAutoresizingMask
	setBounds
	setBoundsOrigin
	setBoundsRotation
	setBoundsSize
	setFocusRingType
	setFrame
	setFrameOrigin
	setFrameRotation
	setFrameSize
	setHidden
	setKeyboardFocusRingNeedsDisplayInRect
	setNeedsDisplay
	setNextKeyView
	setPostsBoundsChangedNotifications
	setPostsFrameChangedNotifications
	setToolTip
	setUpGState
	shouldDelayWindowOrderingForEvent
	shouldDrawColor
	subviews
	superview
	tag
	toolTip
	translateOriginToPoint
	unlockFocus
	unregisterDraggedTypes
	viewDidEndLiveResize
	viewDidMoveToSuperview
	viewDidMoveToWindow
	viewWillMoveToSuperview
	viewWillMoveToWindow
	viewWillStartLiveResize
	viewWithTag
	visibleRect
	wantsDefaultClipping
	widthAdjustLimit
	willRemoveSubview
	window
	writeEPSInsideRectToPasteboard
	writePDFInsideRectToPasteboard

	Constants
	Notifications
	ViewBoundsDidChangeNotification
	ViewFocusDidChangeNotification
	ViewFrameDidChangeNotification

	NSViewAnimation
	Overview
	Tasks
	Constructors
	Getting and Setting View-animation Dictionaries

	Constructors
	Instance Methods
	setViewAnimations
	viewAnimations

	Constants

	NSWindow
	Class at a Glance
	Overview
	Tasks
	Constructors
	Calculating Layout
	Converting Coordinates
	Moving and Resizing
	Constraining Window Size
	Managing Content Size
	Saving the Frame to User Defaults
	Ordering Windows
	Attached Windows
	Making Key and Main Windows
	Working with the Default Button
	Display and Drawing
	Flushing Graphics
	Bracketing Temporary Drawing
	Window Server Information
	Screen Information
	Working with the Responder Chain
	Event Handling
	Working with the Field Editor
	Keyboard Interface Control
	Setting the Title and Filename
	Marking a Window Edited
	Closing the Window
	Miniaturizing and Miniaturized Windows
	Working with Menus
	Working with the Windows Menu
	Working with Cursor Rectangles
	Dragging
	Controlling Behavior
	Working with Display Characteristics
	Working with Services
	Printing
	Setting the Delegate
	Getting Associated Information
	Working with Sheets
	Working with Toolbars
	Working with Title Bar Widgets
	Managing Tool Tips
	Working with window status
	Moving and resizing windows
	Miniaturizing and closing windows
	Exposing and updating windows
	Displaying sheets
	Obtaining information about a window

	Constructors
	Static Methods
	contentRectForFrameRect
	defaultDepthLimit
	frameRectForContentRect
	menuChanged
	minFrameWidthWithTitle
	removeFrameUsingName
	standardWindowButtonForStyleMask

	Instance Methods
	acceptsMouseMovedEvents
	addChildWindow
	allowsToolTipsWhenApplicationIsInactive
	alphaValue
	animationResizeTime
	areCursorRectsEnabled
	aspectRatio
	attachedSheet
	autorecalculatesKeyViewLoop
	backgroundColor
	backingType
	becomeKeyWindow
	becomeMainWindow
	cacheImageInRect
	canBecomeKeyWindow
	canBecomeMainWindow
	canHide
	canStoreColor
	cascadeTopLeftFromPoint
	center
	childWindows
	close
	concludeDragOperation
	constrainFrameRectToScreen
	contentAspectRatio
	contentMaxSize
	contentMinSize
	contentRectForFrameRect
	contentResizeIncrements
	contentView
	convertBaseToScreen
	convertScreenToBase
	currentEvent
	dataWithEPSInsideRect
	dataWithPDFInsideRect
	deepestScreen
	defaultButtonCell
	delegate
	deminiaturize
	depthLimit
	deviceDescription
	disableCursorRects
	disableFlushWindow
	disableKeyEquivalentForDefaultButtonCell
	disableScreenUpdatesUntilFlush
	discardCachedImage
	discardCursorRects
	discardEventsMatchingMask
	display
	displayIfNeeded
	displaysWhenScreenProfileChanges
	draggingEntered
	draggingExited
	draggingUpdated
	dragImage
	drawers
	enableCursorRects
	enableFlushWindow
	enableKeyEquivalentForDefaultButtonCell
	endEditingForObject
	fieldEditorForObject
	firstResponder
	flushWindow
	flushWindowIfNeeded
	frame
	frameAutosaveName
	frameRectForContentRect
	graphicsContext
	gState
	hasDynamicDepthLimit
	hasShadow
	hidesOnDeactivate
	ignoresMouseEvents
	initialFirstResponder
	invalidateCursorRectsForView
	invalidateShadow
	isAutodisplay
	isDocumentEdited
	isExcludedFromWindowsMenu
	isFlushWindowDisabled
	isKeyWindow
	isMainWindow
	isMiniaturized
	isMovableByWindowBackground
	isOneShot
	isOpaque
	isReleasedWhenClosed
	isSheet
	isVisible
	isZoomed
	keyDown
	keyViewSelectionDirection
	level
	makeFirstResponder
	makeKeyAndOrderFront
	makeKeyWindow
	makeMainWindow
	maxSize
	miniaturize
	miniwindowImage
	miniwindowTitle
	minSize
	mouseLocationOutsideOfEventStream
	nextEventMatchingMask
	orderBack
	orderFront
	orderFrontRegardless
	orderOut
	orderWindow
	parentWindow
	performClose
	performDragOperation
	performMiniaturize
	performZoom
	postEvent
	prepareForDragOperation
	preservesContentDuringLiveResize
	print
	recalculateKeyViewLoop
	registerForDraggedTypes
	removeChildWindow
	representedFilename
	resetCursorRects
	resignKeyWindow
	resignMainWindow
	resizeFlags
	resizeIncrements
	restoreCachedImage
	runToolbarCustomizationPalette
	saveFrameUsingName
	screen
	selectKeyViewFollowingView
	selectKeyViewPrecedingView
	selectNextKeyView
	selectPreviousKeyView
	sendEvent
	setAcceptsMouseMovedEvents
	setAllowsToolTipsWhenApplicationIsInactive
	setAlphaValue
	setAspectRatio
	setAutodisplay
	setAutorecalculatesKeyViewLoop
	setBackgroundColor
	setBackingType
	setCanHide
	setContentAspectRatio
	setContentMaxSize
	setContentMinSize
	setContentResizeIncrements
	setContentSize
	setContentView
	setDefaultButtonCell
	setDelegate
	setDepthLimit
	setDisplaysWhenScreenProfileChanges
	setDocumentEdited
	setDynamicDepthLimit
	setExcludedFromWindowsMenu
	setFrame
	setFrameAutosaveName
	setFrameFromString
	setFrameOrigin
	setFrameTopLeftPoint
	setFrameUsingName
	setHasShadow
	setHidesOnDeactivate
	setIgnoresMouseEvents
	setInitialFirstResponder
	setLevel
	setMaxSize
	setMiniwindowImage
	setMiniwindowTitle
	setMinSize
	setMovableByWindowBackground
	setOneShot
	setOpaque
	setParentWindow
	setPreservesContentDuringLiveResize
	setReleasedWhenClosed
	setRepresentedFilename
	setResizeIncrements
	setShowsResizeIndicator
	setShowsToolbarButton
	setTitle
	setTitleWithRepresentedFilename
	setToolbar
	setViewsNeedDisplay
	setWindowController
	showsResizeIndicator
	showsToolbarButton
	standardWindowButton
	stringWithSavedFrame
	styleMask
	title
	toggleToolbarShown
	toolbar
	tryToPerform
	unregisterDraggedTypes
	update
	useOptimizedDrawing
	userSpaceScaleFactor
	validRequestorForTypes
	viewsNeedDisplay
	windowController
	windowNumber
	worksWhenModal
	zoom

	Constants
	Delegate Methods
	windowDidBecomeKey
	windowDidBecomeMain
	windowDidChangeScreen
	windowDidChangeScreenProfile
	windowDidDeminiaturize
	windowDidEndSheet
	windowDidExpose
	windowDidMiniaturize
	windowDidMove
	windowDidResignKey
	windowDidResignMain
	windowDidResize
	windowDidUpdate
	windowShouldClose
	windowShouldZoom
	windowWillBeginSheet
	windowWillClose
	windowWillMiniaturize
	windowWillMove
	windowWillPositionSheet
	windowWillResize
	windowWillReturnFieldEditor
	windowWillReturnUndoManager
	windowWillUseStandardFrame

	Notifications
	WindowDidBecomeKeyNotification
	WindowDidBecomeMainNotification
	WindowDidChangeScreenNotification
	WindowDidChangeScreenProfileNotification
	WindowDidDeminiaturizeNotification
	WindowDidEndSheetNotification
	WindowDidExposeNotification
	WindowDidMiniaturizeNotification
	WindowDidMoveNotification
	WindowDidResignKeyNotification
	WindowDidResignMainNotification
	WindowDidResizeNotification
	WindowDidUpdateNotification
	WindowWillBeginSheetNotification
	WindowWillCloseNotification
	WindowWillMiniaturizeNotification
	WindowWillMoveNotification

	NSWindowController
	Overview
	Subclassing NSWindowController

	Tasks
	Constructors
	Loading and Display the Window
	Setting and Getting the Document
	Closing the Window
	Getting Nib File Information
	Setting and Getting Window Attributes

	Constructors
	Instance Methods
	close
	document
	isWindowLoaded
	loadWindow
	owner
	setDocument
	setDocumentEdited
	setShouldCascadeWindows
	setShouldCloseDocument
	setWindow
	setWindowFrameAutosaveName
	shouldCascadeWindows
	shouldCloseDocument
	showWindow
	synchronizeWindowTitleWithDocumentName
	window
	windowDidLoad
	windowFrameAutosaveName
	windowNibName
	windowNibPath
	windowTitleForDocumentDisplayName
	windowWillLoad

	NSWorkspace
	Overview
	Tasks
	Constructors
	Accessing the Shared NSWorkspace
	Accessing the NSWorkspace Notification Center
	Opening Files
	Manipulating Applications
	Manipulating Files
	Requesting Information
	Requesting Additional Time Before Logout
	Tracking Changes to the File System
	Updating Registered Services and File Types
	Tracking Changes to the Defaults Database
	Tracking Status Changes for Applications and Devices
	Unmounting a Device
	Working with Bundles

	Constructors
	Static Methods
	sharedWorkspace

	Instance Methods
	absolutePathForAppBundleWithIdentifier
	activeApplication
	applicationForFile
	checkForRemovableMedia
	extendPowerOffBy
	fileSystemChanged
	findApplications
	fullPathForApplication
	hideOtherApplications
	iconForFile
	iconForFiles
	iconForFileType
	isFilePackageAtPath
	launchApplication
	launchedApplications
	mountedLocalVolumePaths
	mountedRemovableMedia
	mountNewRemovableMedia
	noteFileSystemChanged
	noteFileSystemChangedAtPath
	noteUserDefaultsChanged
	notificationCenter
	openFile
	openTempFile
	openURL
	openURLs
	performFileOperation
	selectFile
	unmountAndEjectDeviceAtPath
	userDefaultsChanged

	Constants
	Notifications
	WorkspaceDidLaunchApplicationNotification
	WorkspaceDidMountNotification
	WorkspaceDidPerformFileOperationNotification
	WorkspaceDidTerminateApplicationNotification
	WorkspaceDidWakeNotification
	WorkspaceDidUnmountNotification
	WorkspaceSessionDidBecomeActiveNotification
	WorkspaceSessionDidResignActiveNotification
	WorkspaceWillLaunchApplicationNotification
	WorkspaceWillPowerOffNotification
	WorkspaceWillSleepNotification
	WorkspaceWillUnmountNotification

	Part II: Interfaces
	_NSObsoleteMenuItemProtocol
	Overview
	Tasks
	Enabling a Menu Item
	Setting the Target and Action
	Setting the Title
	Setting the Tag
	Setting the State
	Setting the Image
	Managing Submenus
	Getting a Separator Item
	Setting the Owning Menu
	Managing Key Equivalents
	Managing Mnemonics
	Managing User Key Equivalents
	Managing Alternates
	Managing Indentation Levels
	Managing Tool Tips
	Representing an Object

	Instance Methods
	attributedTitle
	hasSubmenu
	image
	indentationLevel
	isAlternate
	isEnabled
	isSeparatorItem
	keyEquivalent
	keyEquivalentModifierMask
	menu
	mixedStateImage
	mnemonic
	mnemonicLocation
	offStateImage
	onStateImage
	representedObject
	setAction
	setAlternate
	setAttributedTitle
	setEnabled
	setImage
	setIndentationLevel
	setKeyEquivalent
	setKeyEquivalentModifierMask
	setMenu
	setMixedStateImage
	setMnemonicLocation
	setOffStateImage
	setOnStateImage
	setRepresentedObject
	setState
	setSubmenu
	setTag
	setTarget
	setTitle
	setTitleWithMnemonic
	setToolTip
	state
	submenu
	target
	title
	toolTip
	userKeyEquivalent
	userKeyEquivalentModifierMask

	NSCellForTextAttachment
	Overview
	Tasks
	Drawing
	Cell Size and Position
	Event Handling
	Setting the Attachment

	Instance Methods
	attachment
	cellBaselineOffset
	cellFrame
	cellSize
	drawWithFrameInView
	highlightWithFrameInView
	setAttachment
	trackMouse
	wantsToTrackMouse
	wantsToTrackMouseForEvent

	NSChangeSpelling
	Overview
	Tasks
	Changing Spellings

	Instance Methods
	changeSpelling

	NSColorPickingCustom
	Overview
	Tasks
	Setting the Current Color
	Getting the Mode
	Getting the View

	Instance Methods
	currentMode
	provideNewView
	setColor
	supportsMode

	NSColorPickingDefault
	Overview
	Tasks
	Setting the Mode
	Using Color Lists
	Adding Button Images
	Showing Opacity Controls
	Responding to a Resized View

	Instance Methods
	alphaControlAddedOrRemoved
	attachColorList
	detachColorList
	insertNewButtonImage
	provideNewButtonImage
	setMode
	viewSizeChanged

	NSComboBox.DataSource
	Overview
	Tasks
	Returning Information About Combo Box Items
	Working with Entered Strings

	Instance Methods
	comboBoxCompletedString
	comboBoxIndexOfItem
	comboBoxValueForItemAtIndex
	numberOfItemsInComboBox

	NSComboBoxCell.DataSource
	Overview
	Tasks
	Returning Information About Combo Box Items
	Working with Entered Strings

	Instance Methods
	comboBoxCellCompletedString
	comboBoxCellIndexOfItem
	comboBoxCellObjectValueForItemAtIndex
	numberOfItemsInComboBoxCell

	NSDraggingDestination
	Overview
	Tasks
	Before the Image Is Released
	After the Image Is Released

	Instance Methods
	concludeDragOperation
	draggingEnded
	draggingEntered
	draggingExited
	draggingUpdated
	performDragOperation
	prepareForDragOperation
	wantsPeriodicDraggingUpdates

	NSDraggingInfo
	Overview
	Tasks
	Dragging-session Information
	Image Information
	Sliding the Image

	Instance Methods
	draggedImage
	draggedImageLocation
	draggingDestinationWindow
	draggingLocation
	draggingPasteboard
	draggingSequenceNumber
	draggingSource
	draggingSourceOperationMask
	namesOfPromisedFilesDroppedAtDestination
	slideDraggedImageTo

	Constants

	NSDraggingSource
	Overview
	Tasks
	Specifying Dragging Options
	Responding to Dragging Sessions

	Instance Methods
	draggingSourceOperationMaskForLocal
	finishedDraggingImage
	ignoreModifierKeysWhileDragging
	movedDraggingImage
	namesOfPromisedFilesDroppedAtDestination
	startedDraggingImage

	NSEditor
	Overview
	Tasks
	Managing Editing

	Instance Methods
	commitEditing
	discardEditing

	NSEditorRegistration
	Overview
	Tasks
	Managing Editing

	Instance Methods
	objectDidBeginEditing
	objectDidEndEditing

	NSIgnoreMisspelledWords
	Overview
	Tasks
	Ignoring Spellings

	Instance Methods
	ignoreSpelling

	NSInputServerMouseTracker
	Overview
	Tasks
	Handling Mouse Events

	Instance Methods
	mouseDownOnCharacterIndex
	mouseDraggedOnCharacterIndex
	mouseUpOnCharacterIndex

	NSInputServiceProvider
	Overview
	Tasks
	Command Instance Methods Sent by Client
	Query Instance Methods Sent by Client
	Instance Methods Sent by NSInputManager

	Instance Methods
	activeConversationChanged
	activeConversationWillChange
	canBeDisabled
	doCommandBySelector
	inputClientBecomeActive
	inputClientDisabled
	inputClientEnabled
	inputClientResignActive
	insertText
	markedTextAbandoned
	markedTextSelectionChanged
	terminate
	wantsToDelayTextChangeNotifications
	wantsToHandleMouseEvents
	wantsToInterpretAllKeystrokes

	NSKeyBindingResponder
	Overview
	Tasks
	Action Methods
	Dispatch Methods

	Instance Methods
	cancelOperation
	capitalizeWord
	centerSelectionInVisibleArea
	changeCaseOfLetter
	complete
	deleteBackward
	deleteBackwardByDecomposingPreviousCharacter
	deleteForward
	deleteToBeginningOfLine
	deleteToBeginningOfParagraph
	deleteToEndOfLine
	deleteToEndOfParagraph
	deleteToMark
	deleteWordBackward
	deleteWordForward
	doCommandBySelector
	indent
	insertBacktab
	insertNewline
	insertNewlineIgnoringFieldEditor
	insertParagraphSeparator
	insertTab
	insertTabIgnoringFieldEditor
	insertText
	lowercaseWord
	moveBackward
	moveBackwardAndModifySelection
	moveDown
	moveDownAndModifySelection
	moveForward
	moveForwardAndModifySelection
	moveLeft
	moveLeftAndModifySelection
	moveRight
	moveRightAndModifySelection
	moveToBeginningOfDocument
	moveToBeginningOfLine
	moveToBeginningOfParagraph
	moveToEndOfDocument
	moveToEndOfLine
	moveToEndOfParagraph
	moveUp
	moveUpAndModifySelection
	moveWordBackward
	moveWordBackwardAndModifySelection
	moveWordForward
	moveWordForwardAndModifySelection
	moveWordLeft
	moveWordLeftAndModifySelection
	moveWordRight
	moveWordRightAndModifySelection
	pageDown
	pageUp
	scrollLineDown
	scrollLineUp
	scrollPageDown
	scrollPageUp
	selectAll
	selectLine
	selectParagraph
	selectToMark
	selectWord
	setMark
	swapWithMark
	transpose
	transposeWords
	uppercaseWord
	yank

	NSKeyValueBindingCreation
	Overview
	Tasks
	Managing Bindings

	Instance Methods
	bind
	exposedBindings
	infoForBinding
	unbind
	valueClassForBinding

	Constants

	NSMenu.MenuValidation
	Overview
	Tasks
	Validating Menu Items

	Instance Methods
	validateMenuItem

	NSOutlineView.DataSource
	Overview
	Tasks
	Working with Items in a View
	Dragging and Dropping
	Object Persistence
	Working with a Pasteboard
	Sorting

	Instance Methods
	outlineViewAcceptDrop
	outlineViewChildOfItem
	outlineViewIsItemExpandable
	outlineViewItemForPersistentObject
	outlineViewNamesOfPromisedFilesDroppedAtDestination
	outlineViewNumberOfChildrenOfItem
	outlineViewObjectValueForItem
	outlineViewPersistentObjectForItem
	outlineViewSetObjectValueForItem
	outlineViewSortDescriptorsDidChange
	outlineViewValidateDrop
	outlineViewWriteItemsToPasteboard

	NSTableView.DataSource
	Overview
	Tasks
	Getting Values
	Setting Values
	Dragging
	Sorting
	Deprecated Methods

	Instance Methods
	numberOfRowsInTableView
	tableViewAcceptDrop
	tableViewNamesOfPromisedFilesDroppedAtDestination
	tableViewObjectValueForLocation
	tableViewSetObjectValueForLocation
	tableViewSortDescriptorsDidChange
	tableViewValidateDrop
	tableViewWriteRowsToPasteboard

	NSTextInput
	Overview
	Tasks
	Marked Text
	Text Storage
	Character Coordinates
	Key Bindings
	Other

	Instance Methods
	attributedSubstringWithRange
	characterIndexForPoint
	conversationIdentifier
	doCommandBySelector
	firstRectForCharacterRange
	hasMarkedText
	insertText
	markedRange
	selectedRange
	setMarkedTextAndSelectedRange
	unmarkText
	validAttributesForMarkedText

	NSToolbarItem.ItemValidation
	Overview
	Tasks
	Validating Toolbar Items

	Instance Methods
	validateToolbarItem

	NSValidatedUserInterfaceItem
	Overview
	Tasks
	Getting Information About a User Interface Item

	Instance Methods
	action
	tag

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

