

1

WebObjects Extension Specifications

The WebObjects Extensions framework defines dynamic elements and components that you can use in any applica-
tion that links to the framework. By default, when you create a WebObjectsApplication or WebObjectsFramework
project in Project Builder, you are linked to the WOExtensions framework. In addition, WODefaultApp is already
linked to the WOExtensions framework. Thus, you can use the elements and components defined in this framework
in virtually all of your applications.

Here are the dynamic elements defined in the WOExtensions Framework:

WOCheckBoxList
WONestedList
WORadioButtonList

In addition to dynamic elements, the WebObjects Extensions framework defines shared components. WebObjects
has the ability to share components across applications. All you have to do is define a component, place it in a frame-
work, place the framework in

NeXT_ROOT

/NextLibrary/Frameworks

 and you can use that component in any WebOb-
jects application as long as it links to that framework.

Some shared components define attributes, similar to the way dynamic elements define attributes. To use such com-
ponents, you must bind their attributes to values and methods from your component’s script or code file.

Here are the shared components defined in the WOExtensions Framework:

WORedirect
WOSimpleArrayDisplay
WOSortOrder
WOStats
WOToManyRelationship
WOToOneRelationship

See the

WebObjects Developer’s Guide

 for a more complete introduction to shared components. See the

Dynamic Elements
Reference

 to learn how to use the specifications in this guide.

2

WOCheckBoxList

Synopsis

WOCheckBoxList

{

list

=

anObjectList

;

item

=

anIteratedObject

;

value

=

displayedValue

; [

index

=

aNumber

;

] [

prefix

=

prefixString

;

]
[

suffix

=

suffixString

;

] [

selections

=

selectedValues

;

] [

name

=

fieldName

;

] [

disabled

=YES|NO

;

] ...

 };

Description

WOCheckBoxList displays a list of check boxes. The user may select several of the objects in the list, and this sublist
is returned as

selections

.

list

Array of objects that the WOCheckBoxList will iterate through.

item

Current item in the list array. (This attribute’s value is updated with each iteration.)

value

String to display beside the check box for the current item.

index

Index of the current iteration of the WOCheckBoxList.

prefix

An arbitrary HTML string inserted before each value.

suffix

An arbitrary HTML string inserted after each value.

selections

An array of objects that the user chose from the list.

name

Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assign one at runtime.

disabled

If

disabled

 evaluates to YES, this element appears in the page but is not active.

3

WONestedList

Synopsis

WONestedList

{

list

=

anObjectList

;

item

=

anIteratedObject

;

value

=

displayedValue

;

sublist

 =

aSubarray

;

action

=

aMethod

;

selec-

tion

=

selectedValue

;

 [

index

=

aCurrentIndex

;

] [

level

=

aCurrentLevel

;

] [

isOrdered

=YES|NO

;

] [

prefix

=

prefixString

;

] [

suffix

=

suffix-
String

;

] ...

 };

Description

WONestedList recursively displays a hierarchical, ordered (numbered) or unordered (bulleted) list of hyperlinks.
This element is useful when you want to display hierarchical lists. When the user clicks one of the objects in the list,
it is returned in

selection

 and the

action

 method is invoked.

At any point during iteration of the list, the method specified by the

sublist

 attribute returns the current list’s sublist
(if any),

level

 specifies the current nesting level (where the topmost level is zero),

index

 gives index of the current item
within that nesting level (

item

 returns the actual item), and

isOrdered

 specifies whether the current sublist should be a
numbered list or a bulleted list.

list

Hierarchical array of objects that the WONestedList will iterate through.

item

Current item in the list array. (This attribute’s value is updated with each iteration.)

value

String to display as a hyperlink for the current item.

sublist

Method that returns the sublist of the current item or

nil

 if the current item is a leaf.

action

Action method to invoke when the element is activated. This method must return a WOElement.

selection

When the page is submitted,

selection

 contains the item that the user clicked.

index

Index of the current iteration of the WONestedList. The index is unique to each level—that is, it starts at 0
for each sublist.

level

Nesting level of the current iteration of the WONestedList. The topmost level is level 0.

isOrdered

If

isOrdered

 evaluates to YES, the current sublist is rendered as an ordered list. The default is to render as an
unordered list.

prefix

An arbitrary HTML string inserted before each value.

suffix

An arbitrary HTML string inserted after each value.

4

WORadioButtonList

Synopsis

WORadioButtonList

{

list

=

anObjectList

;

item

=

anIteratedObject

;

 value =displayedValue; [index =aNumber;] [prefix =prefixString;]
[suffix =suffixString;] [selection =selectedValue;] [name=fieldName;] [disabled =YES|NO;] ... };

Description

WORadioButtonList displays a list of radio buttons. The user may select one of the objects in the list, and this object
is returned as selection .

list
Array of objects that the WORadioButtonList will iterate through.

item
Current item in the list array. (This attribute’s value is updated with each iteration.)

value
String to display beside the radio button for the current item.

index
Index of the current iteration of the WORadioButtonList.

prefix
An arbitrary HTML string inserted before each value.

suffix
An arbitrary HTML string inserted after each value.

selection
An object that the user chose from the list.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, this element appears in the page but is not active.

5

WORedirect

Synopsis

WORedirect { url = aURL; };

Description

WORedirect is a component that may be returned to force the user's browser to redirect to another URL. You should
only return this component as a response to an action method and never use it in an declarations file directly. This
component can be useful, for example, if you have an image map with both static and dynamic actions.

- (WOComponent *)someAction

{

 WOComponent *aRedirect = [[self application] pageWithName:@"WORedirect"];

 [aRedirect setURL:@"http://enterprise.apple.com"];

 return aRedirect;

}

6

WOSimpleArrayDisplay

Synopsis

WOSimpleArrayDisplay { list = anObjectArray; [numberToDisplay = anInt;] [itemDisplayKey = aKey;] [listAction = methodName;]
[listActionString = actionString;]};

Description

The WOSimpleArrayDisplay component is intended to display a to-many relationship of an Enterprise Object. It
could also be used to display an array of objects.

The WOSimpleArrayDisplay is designed to only provide an idea of what is in the relationship (or list). It only displays
the first n items in the list, where n is specified by the numberToDisplay attribute. (The default is 5.) If you want, you
can have a hyperlink displayed at the bottom of the list by specifying the listAction and listString attributes. You could
use this hyperlink to provide more information about the relationship or, for example, to list all of the elements in the
relationship.

If you use Direct to Web to create your application, you may have a page that uses WOSimpleArrayDisplay.

list
Array of items to display.

numberToDisplay
The number of items to display at one time. The default is 5 items.

itemDisplayKey
Key to the value that should be displayed for each item. For example, if you were displaying a movies entity
object, you’d want to display the value of the movieName key.

listAction
Method to perform when the hyperlink is clicked.

listActionString
The string that should appear on the hyperlink. The default is “Inspect.”

7

WOSortOrder

Synopsis

WOSortOrder { displayGroup = aDisplayGroup; key = aKey; };

Description

The WOSortOrder component displays an active image that shows the current sort ordering for a WODisplayGroup
and allows the user to change it. A WODisplayGroup’s sort ordering specifies the order in which items it displays
should be displayed (ascending or descending).

If you use Direct to Web to create your application, you may have a page that uses WOSortOrder.

displayGroup
WODisplayGroup to be sorted.

key
Key on which the WODisplayGroup should be sorted.

8

WOStats

Synopsis

WOStats is a full-paged component. To access it, use a URL such as this one:

http://localhost/cgi-bin/WebObjects/ MyAppName.woa/-/WOStats

Description

The WOStats component is a page that displays statistics about the application. These statistics are recorded by all
WebObjects applications. If you need to find out about transaction processing times or how many users are accessing
your application, you can access WOStats while the application is running.

The statistics described here are actually recorded by a WOStatisticsStore object. You can use WOStatisticsStore to do
things like change the moving average sample size. For more information, see its class specification in the WebObjects
Class Reference.

The WOStats page provides this information:

Transactions
Total number of transactions processed by this application instance. A transaction is defined as one cycle of the
WebObjects request-response loop. That is, a transaction begins when the user sends an HTTP request and
ends when the user receives a response page. (Starting up the application is a transaction and accessing the
WOStats page is a transaction as well.)

Avg. Transaction Time
Average length of time it took to process a transaction.

Avg. Idle Time
Average length of time the application sat idle between transactions.

Moving Avg. Transaction Time
Average length of time it took to process the last n transactions, where n is the moving average sample size.

Move Avg. Idle Time
Average length of time the application sat idle between the last n transactions, where n is the moving average
sample size.

Sample Size for Moving Avg.
The number of transactions used to compute moving average statistics, such as the Moving Avg. Transaction
Time and the Moving Avg. Idle Time. (The sample size is set through the WOStatisticsStore class.)

Started at
Time at which this application instance started running.

Running time
Length of time this instance has been running.

Avg. Transactions Per Session
Average number of transactions each user performed in a session.

Total Sessions Created
The number of sessions this application has created in its lifetime. A session is created each time a new user
accesses an application.

Current Active Sessions
Number of the created sessions that are still alive.

Peak Active Sessions
The maximum number of sessions that have been active at the same time.

9

Avg. Session Life
Average length of time a session lasted.

Peak Concurrent Sessions At
The date and time at which the peak number of active sessions was reached.

Memory Usage
The amount of memory allocated to the application. Resident Set Size is the number of physical memory
pages. Virtual is the number of virtual memory pages.

Avg. Memory Usage Per Session
Average amount of memory each session took.
The memory display differs depending on the operating system. On Windows NT, you see the amount of
memory reserved for this application and the amount committed. On all other platforms, you see the Resi-
dent Set Size (the number of physical memory pages) and the Virtual memory size (number of virtual mem-
ory pages).

Response Description for Last User
A list of the pages accessed by the last session that timed out. The pages are listed from first accessed to last
accessed. This list is the same as the list that appears in the application log, if the application log is enabled.

Page Statistics
A table that shows page generation times for each component in the application. (Only parent components,
components that represent a full page, are listed; nested components that represent a portion of a page are not
listed.)
The page generation time is the amount of time it took for the request-response loop to receive the request
for that page, process the request, invoke the appropriate action in the request component, and generate the
page. Often, the bulk of the time it takes to generate a page happens in the action invocation and response
generation phases of the request-response loop. The initial processing of the request takes a minimal amount
of time.
For example, suppose the user clicks a button in Page A that fetches items from a database and displays those
items in Page B. The total amount of time it takes to handle the request on Page A, invoke the action, fetch
items from the database, and generate Page B is recorded as the amount of time it took to generate Page B.

Detailed Statistics
If the application supports more detailed statistics (which it does if you’ve overridden descriptionForRe-
sponse:inContext: in the application’s components), this table shows how many times a particular instance of a
component was accessed. (An instance of a component might have different values for the component’s
instance variables.)

10

WOToManyRelationship

Synopsis

WOToManyRelationship { sourceEntityName = anEntity; relationshipKey = aKey; sourceObject = anObject; [isMandatory =
YES|NO;] [destinationDisplayKey = aKey;] [dataSource = aDataSource;] [uiStyle = "browser" | "checkbox" ;] };

Description

The WOToManyRelationship component displays items from a to-many relationship in either a browser or a check-
box list. Users can select one or more items from this list to learn more about those items.

For example, suppose you have a database of Movies where each movie is a table (or entity). Each movie has one or
more roles, which means that the Movies table would have a to-many relationship with the MovieRoles table. You
could use this component on a page that displays information about a movie, using this component to display the roles
associated with this movie.

This component is used only in applications that access a database using the Enterprise Objects Framework. In partic-
ular, it is used if you use Direct to Web to create your application. Because WOToManyRelationship returns a form
element, it must be used within an HTML form.

sourceEntityName
The name of the entity that contains the relationship. In the Movies example, this would be “Movies.”

relationshipKey
The key for the relationship that you want to display. In the Movies example, you’d want to display the roles
key.

sourceObject
An object that contains the actual relationship value. This object can be an enterprise object, a mutable dictio-
nary, or anything else that can contain the relationship. Upon return, this object contains the user’s selection.

isMandatory
If YES, the relationship must exist. If the relationship must exist, the element must have at least one item
selected when the form is submitted, so the WOToManyRelationship selects the first item if the list if the user
has not selected any. If NO, the relationship is optional.

destinationDisplayKey
Property to display in the list. For example, with the MovieRoles entity, you would want to display the role-
Name property.

dataSource
EODatabaseDatasource containing the items in the to-many relationship.

uiStyle
If "browser" , displays as a browser. If "checkbox" , displays as a list of check boxes. The default depends on the
number of items in the list. If there are less than 5 items, the default is a check-box list. If there are 5 items or
more, the default is a browser.

11

WOToOneRelationship

Synopsis

WOToOneRelationship { sourceEntityName = anEntity; relationshipKey = aKey; sourceObject = anObject; [dataSource = aData-
Source;] [destinationDisplayKey = aKey;] [isMandatory = YES|NO;] [uiStyle = "radio" |"popup" |"browser";] };

Description

The WOToOneRelationship component displays items from a to-one relationship in a pop-up list, a radio button list,
or a browser. Users can select an item from this list to learn more about that item.

For example, suppose you have a database of Movies where each movie is a table (or entity). Each movie has only one
studio, which means that the Movies table would have a to-one relationship with the Studios table. You could use this
component on a page that displays information about a movie, using this component to display the studio associated
with the movie.

This component is used only in applications that access a database using the Enterprise Objects Framework. In par-
ticular, it is used if you use Direct to Web to create your application. Because WOToOneRelationship returns a form
element, it must be used within an HTML form.

sourceEntityName
The name of the entity that contains the relationship. In the Movies example, this would be “Movies.”

relationshipKey
The key for the relationship that you want to display. In the Movies example, you’d want to display the stu-
dios key.

sourceObject
An object that contains the actual relationship value. This object can be an enterprise object, a mutable dic-
tionary, or anything else that can contain the relationship. Upon return, this object contains the user’s selec-
tion.

dataSource
EODatabaseDataSource containing the items in the to-one relationship.

destinationDisplayKey
Property to display in the list. For example, with the Studio entity, you would want to display the name prop-
erty.

isMandatory
If YES, the relationship must exist. If NO, the relationship is optional.

uiStyle
Specifies how to display the list: as a browser, a radio button list, or a pop-up list. The default depends on the
number of items in the list. If there are less than 5 items, the default is a radio button list. If between 5 and 20
items, the default is a pop-up list. If there are more than 20 items, a browser is used.

