





EOInterface Framework

Objective–C API Reference

2

C O P Y R I G H T P A G E



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of Apple Computer,
Inc., except to make a backup copy of any documentation provided on CD-ROM.
The Apple logo is a trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple
may constitute trademark infringement and unfair competition in violation of federal and state laws.
No licenses, express or implied, are granted with respect to any of the technology described in this book. Apple retains
all intellectual property rights associated with the technology described in this book. This book is intended to assist
application developers to develop applications only for Apple-labeled or Apple-licensed computers.
Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh, and WebObjects are trademarks of Apple Computer, Inc., registered in the United
States and other countries.
Enterprise Objects is a trademark of Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP, Enterprise Objects Framework, Objective–C, and WEBSCRIPT are trademarks of
NeXT Software, Inc.
Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered
in certain jurisdictions.
Helvetica and Palatino are registered trademarks of Linotype-Hell AG and/or its subsidiaries.
ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
ORACLE is a registered trademark of Oracle Corporation, Inc.
SYBASE is a registered trademark of Sybase, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company
Limited.
Windows NT is a trademark of Microsoft Corporation.
All other trademarks mentioned belong to their respective owners.
Simultaneously published in the United States and Canada.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD “AS IS,” AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the
above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights
which vary from state to state.

3

F R A M E W O R K

The EOInterface Framework

Framework:

System/Library/Frameworks/EOInterface.framework

Header File Directories:

System/Library/Frameworks/EOInterface.framework/Headers

Introduction

The EOInterface framework defines one of the layers of the Enterprise Objects Framework
architecture—the interface layer.

The relationship between user interface objects and enterprise objects is managed by an instance
of the EODisplayGroup class. EODisplayGroups are used by EOAssociation objects to mediate
between enterprise objects and the user interface. EOAssociations link a single user interface
object to one ore more class properties (keys) of the objects managed by an EODisplayGroup.
The properties’ values are displayed in the association’s user interface object.

In the Interface layer, EOAssociation objects “observe” EODisplayGroups to make sure that the
data displayed in the user interface remains consistent with enterprise object data.
EODisplayGroups interact with a data source, which supplies them with enterprise objects.

The interface layer’s associations are listed in the following table:

Association Description

EOActionAssociation Allows you to set up an interface object, such as a button, to
send a message to the objects selected in the association’s
display group when the interface object is acted on

EOActionCellAssociation The default association class for use with NSActionCells

EOActionInsertionAssociation Inserts objects from one display group into another.

4

F R A M E W O R K T h e E O I n t e r f a c e F r a m e w o r k

EOAssociation Defines the mechanism that transfers values between
EODisplayGroups and the user interface of an application.

EOColumnAssociation Cooperates with an EOTableViewAssociation to display
values in a column of an NSTableView

EOComboBoxAssociation Displays an attribute or to-one relationship value in a combo
box

EOControlAssociation The default EOAssociation subclass for use with NSControl
objects

EODetailSelectionAssociation Binds two EODisplayGroups together through a
relationship, so that the destination display group acts as an
editor for that relationship.

EOGenericControlAssociation the abstract superclass of EOControlAssociation and
EOActionCellAssociation.

EOMasterCopyAssociation Synchronizes two EODisplayGroups that share the same
data source but have different qualifiers.

EOMasterDetailAssociation Binds one EODisplayGroup (the detail) to a relationship in
another (the master), so that the detail display group contains
the destination objects for the object selected in the master.

EOMasterPeerAssociation Binds two EODisplayGroups together in a master-detail
relationship, where the detail EODisplayGroup shows the
destination objects for the relationship of the master
EODisplayGroup.

EOMatrixAssociation Allows you to populate an NSMatrix’s cells.

EOPickTextAssociation Allows the user to perform a similarity search based on
whole or partial values.

EOPopUpAssociation Displays an attribute or to-one relationship value in an
NSPopUpButton

EORadioMatrixAssociation Displays a string or an integer in an NSMatrix.

Association Description

F R A M E W O R K T h e E O I n t e r f a c e F r a m e w o r k

5

EORecursiveBrowserAssociation The default association for use with a multi-column
NSBrowser.

EOTableViewAssociation Manages the individual EOColumnAssociations between an
NSTableView (Application Kit) and an EODisplayGroup.

EOTextAssociation Displays a plain or rich text attribute in an NSText object
(Application Kit) or an EOTextField, EOTextArea, or
EOFormCell (Java Client) by binding the text object to a
string or NSData attribute.

Association Description

6

F R A M E W O R K T h e E O I n t e r f a c e F r a m e w o r k

7

C L A S S

EOActionAssociation

Inherits from:

EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to:

NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in:

EOInterface/EOActionAssociation.h

Class Description

An EOActionAssociation object allows you to set up an interface object, such as a button, to send
a message to the objects selected in the association’s display group when the interface object is
acted on.

Usable With

Any control object (NSControl, NSActionCell, and their subclasses)

8

C L A S S E O A c t i o n A s s o c i a t i o n

Examples

Suppose you have an application that manages member accounts, each of which has a restriction
on the outstanding balance allowed. You want a user to be able to increase the restriction limit
by selecting one or more members and then clicking a button. To do this, you define a

boostRestrictions

 method in the Member class that increases the limit by 20%. In Interface
Builder, control-drag a connection from the button to the Member display group. Select
EOActionAssociation in the Connections inspector, and bind the association’s

action

 aspect to
the “boostRestrictions” key.

In another scenario, one EODisplayGroup shows Members, while another shows video tapes
available for rent. Here, you want a user to be able to select a member, select a video tape, and
then click a Rent button that checks the selected tape out to the selected member. To do this,
define a

rentVideoTape:

 method in the Member class that takes a VideoTape as an argument and
handles the accounting involved in a video rental. Then, in Interface Builder, control-drag a
connection from the button to the Members display group. Select EOActionAssociation in the
Connections inspector, and bind the association’s

action

 aspect to Member’s

rentVideoTape:

action. Similarly, control-drag a connection from the button to the VideoTape display group.
Select EOActionAssociation in the Connections inspector, and bind the association’s

argument

aspect to the VideoTape display group. Now, when the user selects a Member, selects a
VideoTape, and clicks the button, the selected Member is sent a

rentVideoTape:

 message with
the selected VideoTape.

Aspects

action Bound to a key that names the method to invoke on the selected objects. If the

argument

 aspect isn’t bound, the method must take no arguments. If the

argument

aspect is bound, then the method must take exactly one argument.

argument An object attribute or relationship of the selected object, passed as an argument to
the action method. (Usually bound to a different EODisplayGroup than the one
bound to

action

.)

enabled A boolean attribute of the selected object, which determines whether the display
object is enabled.

Object Keys Taken

target On receiving an action message from the display object, an EOActionAssocation
sends its action to the selected objects.

C L A S S E O A c t i o n A s s o c i a t i o n

9

Instance Methods

action:

– (void)action:(id)

sender

Invoked when the receiver’s display object is acted upon. Sends the method identified by the
receiver’s

action

 aspect (with an argument, if the

argument

 aspect is bound) to the selected
objects.

10

C L A S S E O A c t i o n A s s o c i a t i o n

11

C L A S S

EOActionCellAssociation

Inherits from:

EOGenericControlAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Conforms to:

NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in:

EOInterface/EOControlAssociation.h

Class Description

EOActionCellAssociation is the default association class for use with NSActionCells
(Application Kit).

An EOActionCellAssociation object displays the value of the selected object in its NSActionCell,
and updates the object when the NSActionCell’s value changes. A sibling class,
EOControlAssociation, can be used with independent controls such as NSButtons and
NSTextFields. Other associations, such as EOPopUpAssociation and EOColumnAssociation,
supersede these classes for more specialized behavior.

When multiple EOActionCellAssociations are bound to cells in the same control (such as in an
Application Kit NSMatrix), one of them becomes the delegate of the control and forwards
appropriate messages, such as

control:isValidObject:

, to the others. This eliminates the need
to add an EOControlAssociation just to handle delegate messages.

12

C L A S S E O A c t i o n C e l l A s s o c i a t i o n

EOActionCellAssociations access values using NSActionCell’s

setObjectValue:

 method, which
allows values with non-string representations to be displayed. An EOActionCellAssociation can
be bound to an NSImageCell, for example, with an attribute whose class is NSImage.

Examples

To display a movie’s budget in an NSTextFieldCell, in Interface Builder, control-drag a
connection from the text field to the Movie display group. Select EOActionCellAssociation in the
Connections inspector, and bind the

value

 aspect to the “budget” key. Then, if the
NSTextFieldCell is editable, when the user types a new value and presses Enter or Tab, the
selected movie’s

budget

 attribute is changed.

Assuming that Movie objects implement an

isBudgetNegotiable

 method, you can make the
NSTextFieldCell uneditable depending on the selected movie. To do so, bind the

enabled

 aspect
to the “isBudgetNegotiable” key.

Usable With

Any NSActionCell

Aspects

value An attribute of the selected object, displayed in the NSActionCell.

enabled A boolean attribute of the selected object, which determines whether the
NSActionCell is enabled.

Object Keys Taken

target On receiving an action message from the NSActionCell, an
EOActionCellAssociation sends the NSActionCell’s value to the
EODisplayGroup.

delegate See the class description.

C L A S S E O A c t i o n C e l l A s s o c i a t i o n

13

Instance Methods

control

– (NSControl *)control

Returns the NSControl that owns the receiver’s display object.

See Also:

– object

 (EOAssociation),

– controlView

(NSActionCell class of the Application
Kit)

editingAssociation

– (EOGenericControlAssociation *)editingAssociation

For EOActionCellAssociations in an NSMatrix (defined in the Application Kit) or other
multi-celled control, returns the selected EOActionCellAssociation (or the one that’s editing
text).

14

C L A S S E O A c t i o n C e l l A s s o c i a t i o n

15

C L A S S

EOActionInsertionAssociation

Inherits from:

EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to:

NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in:

EOInterface/EOActionInsertionAssociation.h

Class Description

An EOActionInsertionAssociation object inserts objects from one display group into another.

Usable With

Any object that responds to

setAction:

, typically an NSControl.

Aspects

source Bound to the EODisplayGroup containing objects to insert. This aspect doesn’t
use a key.

destination A relationship of the selected object into which objects from the source
EODisplayGroup are inserted. Usually bound to a different EODisplayGroup
than

source

.

enabled A boolean attribute of the selected object (usually in the destination
EODisplayGroup), which determines whether the NSControl is enabled.

16

C L A S S E O A c t i o n I n s e r t i o n A s s o c i a t i o n

Example

Suppose an application shows Talent in one display group and Movies in another. You want a
user to be able to select a talent, select a movie, and then click an Assign Director button that
assigns the selected talent as one of the movie’s directors. To do this, in Interface Builder,
control-drag a connection from the button to the Talent display group. Select
EOActionInsertionAssociation in the Connections inspector, and double-click the association’s

source

 aspect, binding it to the Talent display group. Similarly, control-drag a connection from
the button to the Movie display group. Select EOActionAssociation in the Connections
inspector, and bind the association’s

destination

aspect to the “directors” key. Now, when the
user clicks the button, the selected Talent is added to the

directors

 relationship of the selected
Movie. If more than one talent is selected, both are added to the relationship. If more than one
Movie is selected, the selected talent are added to the relationship of the first Movie in the
selection.

Object Keys Taken

target On receiving an action message from the display object, an
EOActionInsertionAssociation inserts objects from the source EODisplayGroup
into the destination EODisplayGroup.

17

C L A S S

EOAssociation

Inherits from:

EODelayedObserver (EOControl) : NSObject

Conforms to:

NSCoding
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in:

EOInterface/EOAssociation.h

Class at a Glance

An EOAssociation maintains a two-way binding between the properties of a display object, such
as a text field or combo box, and the properties of one or more enterprise objects contained in
one or more EODisplayGroups. You typically create and configure associations in Interface
Builder, using the programmatic interface only when you write your own EOAssociation
subclasses.

Principal Attributes

■

A display object (such as a text field or combo box)

■

Aspects that control different parameters of the display object (such as

value

 and

enabled

)

■

One or more EODisplayGroups (no more than one per aspect)

■

One or more keys (enteprise object properties) (as many as one key per aspect)

18

C L A S S E O A s s o c i a t i o n

Class Description

EOAssociation defines the mechanism that transfers values between EODisplayGroups and the
user interface of an application. An EOAssociation instance is tied to a single display object, a
user interface object or other kind of object that manages values intended for display. The
EOAssociation takes over certain outlets of the display object and sets its value according to the
selection in the EODisplayGroup. An EOAssociation also has various aspects, which define the
different parameters of the display object that it controls, such as the value or values displayed
and whether the display object is enabled or editable. Each aspect can be bound to an
EODisplayGroup with a key denoting a property of the enterprise objects in the
EODisplayGroup. The value or values of this property determine the value for the
EOAssociation’s aspect.

EOAssociation is an abstract class, defining only the general mechanism for binding display
objects to EODisplayGroups. You always create instances of its various subclasses, which define
behavior specific to different kinds of display objects. For information on the different
EOAssociation subclasses you can use, see the following subclass specifications:

You normally set up EOAssociations using Interface Builder; each of the class specifications for
EOAssociation’s subclasses provide an example using Interface Builder to set them up.
EOAssociation’s programmatic interface is more important when defining custom
EOAssociation subclasses. For more information on EOAssociations, see the sections:

■

“How EOAssociations Work” (page 31)

EOActionAssociation EOActionCellAssociation

EOActionInsertionAssociation EOColumnAssociation

EOComboBoxAssociation EOControlAssociation

EODetailSelectionAssociation EOGenericControlAssociation

EOMasterCopyAssociation EOMasterDetailAssociation

EOMasterPeerAssociation EOMatrixAssociation

EOPickTextAssociation EOPopUpAssociation

EORadioMatrixAssociation EORecursiveBrowserAssociation

EOTableViewAssociation EOTextAssociation

C L A S S E O A s s o c i a t i o n

19

■

“Setting up an EOAssociation Programmatically” (page 33)

■

“Creating a Subclass of EOAssociation” (page 34)

Adopted Protocols

NSCoding

– encodeWithCoder:

– initWithCoder:

Method Types

Declaring capabilities

+ aspects

+ aspectSignatures

+ objectKeysTaken

 (Yellow Box)

+ isUsableWithObject:

+ associationClassesSuperseded

+ displayName

+ primaryAspect

– canBindAspect:displayGroup:key:

Getting all possible EOAssociations for a display object

+ associationClassesForObject:

Creating and configuring instances

– initWithObject:

20

C L A S S E O A s s o c i a t i o n

– bindAspect:displayGroup:key:

– establishConnection

– breakConnection

– copyMatchingBindingsFromAssociation:

Getting the display object

– object

Examining bindings

– displayGroupForAspect:

– displayGroupKeyForAspect:

Updating values

– subjectChanged

– endEditing

Accessing enterprise object values

– setValue:forAspect:

– setValue:forAspect:atIndex:

– valueForAspect:

– valueForAspect:atIndex:

Handling validation errors

– shouldEndEditingForAspect:invalidInput:errorDescription:

– shouldEndEditingForAspect:invalidInput:errorDescription:index:

C L A S S E O A s s o c i a t i o n

21

Constructors

Class Methods

aspects

+ (NSArray *)aspects

Overridden by subclasses to return the names of the receiving class’s aspects as an array of string
objects. Subclasses should include their superclass’s aspects and add their own when overriding
this method.

aspectSignatures

+ (NSArray *)aspectSignatures

Overridden by subclasses to return the signatures of the receiver’s aspects, an array of string
objects matching its aspects array index for index. Each signature string can contain the
following characters:

An aspect signature string of “A1”, for example, means the corresponding aspect can be bound
to either attributes or to-one relationships. An empty signature indicates that the corresponding
aspect can be bound to an EODisplayGroup without a key (that is, the key is irrelevant). Interface
Builder uses aspect signatures to enable and disable keys in its Connections inspectors.

Signature Character Meaning

A The aspect can be bound to attributes.

1 (one) The aspect can be bound to to-one relationships.

M The aspect can be bound to to-many relationships.

22

C L A S S E O A s s o c i a t i o n

EOAssociation’s implementation of this method returns an array of “A1M” of the length of its
aspects array.

associationClassesForObject:

+ (NSArray *)associationClassesForObject:(id)

aDisplayObject

Returns the subclasses of EOAssociation usable with

aDisplayObject

. Sends

isUsableWithObject:

 to every loaded subclass of EOAssociation, adding those that respond

YES
to the array. Subclasses shouldn’t override this method; override isUsableWithObject: instead.

associationClassesSuperseded

+ (NSArray *)associationClassesSuperseded

Overridden by subclasses to return the other EOAssociation classes that the receiver supplants.
This allows a subclass to mask its superclasses from the Connection Inspector’s pop-up list in
Interface Builder, since the subclass always includes the aspects and functionality of its
superclasses. For example, EOPopUpAssociation supersedes EOControlAssociation, because
EOPopUpAssociation is always more appropriate to use with pop-up buttons.

displayName

+ (NSString *)displayName

Returns the name used by Interface Builder in the Connection Inspector’s pop-up list.
EOAssociation’s implementation simply returns the name of the receiving class.

isUsableWithObject:

+ (BOOL)isUsableWithObject:(id)aDisplayObject

Overridden by subclasses to return YES if instances of the receiving class are usable with
aDisplayObject, NO if they aren’t. The receiving class can examine any relevant characteristic
of aDisplayObject—its class, configuration (such as whether an NSMatrix operates in radio
mode), and so on.

C L A S S E O A s s o c i a t i o n

23

objectKeysTaken

+ (NSArray *)objectKeysTaken

Overridden by subclasses to return the names of display object outlets that instances assume
control of, such as “target” and “delegate”. Interface Builder uses this information to disable
connections from these outlets in its Connections Inspector.

primaryAspect

+ (NSString *)primaryAspect

Overridden by subclasses to return the default aspect, usually one denoting the displayed value,
which by convention is named “value”. EOAssociation’s implementation returns nil.

Instance Methods

bindAspect:displayGroup:key:

– (void)bindAspect:(NSString *)aspectName
displayGroup:(EODisplayGroup *)aDisplayGroup
key:(NSString *)key

Defines the receiver’s link between its display object and aDisplayGroup. aspectName is the name
of the aspect it observer in its display object, and key is the name of the property it observes in
aDisplayGroup. Invoke establishConnection after this method to finish setting up the binding.
See “Setting up an EOAssociation Programmatically” (page 33) in the class description for more
information.

See Also: – initWithObject:, – establishConnection

24

C L A S S E O A s s o c i a t i o n

breakConnection

– (void)breakConnection

Removes the receiver from its EODisplayGroup and display object. This causes it to be released,
so be sure to retain the EOAssociation before invoking this method if you want to keep it for
another use. Subclasses should override this method to remove the receiver from any outlets of
the display object, such as target or delegate, and invoke super’s implementation at the end.

See Also: – establishConnection

canBindAspect:displayGroup:key:

– (BOOL)canBindAspect:(NSString *)aspectName
displayGroup:(EODisplayGroup *)aDisplayGroup
key:(NSString *)key

Overridden by subclasses to return YES if the receiver can tie an aspect named aspectName from
its display object to the property identified by key in aDisplayGroup, NO if it can’t. aspectName
should name an aspect supported by the receiver’s class.

Interface Builder uses this information to disable aspects in its Connections Inspector. Subclasses
can override this method to base their answers on other binds already made, or on characteristics
of the receiver’s display object or of aDisplayGroup. EOAssociation’s implementation always
returns YES.

See Also: – localKeys (EODisplayGroup), – attributeKeys (EOClassDescription),
– toOneRelationshipKeys (EOClassDescription),
– toManyRelationshipKeys (EOClassDescription)

copyMatchingBindingsFromAssociation:

– (void)copyMatchingBindingsFromAssociation:(EOAssociation *)anAssociation

Duplicates the bindings of anAssociation in the receiver. For each aspect of anAssociation that
has an EODisplayGroup, invokes bindAspect:displayGroup:key: with the EODisplayGroup and
key for that aspect.

C L A S S E O A s s o c i a t i o n

25

displayGroupForAspect:

– (EODisplayGroup *)displayGroupForAspect:(NSString *)aspectName

Returns the EODisplayGroup bound to the receiver for aspectName, or nil if there’s no such
object.

See Also: – displayGroupKeyForAspect:

displayGroupKeyForAspect:

– (NSString *)displayGroupKeyForAspect:(NSString *)aspectName

Returns the EODisplayGroup key bound to the receiver for aspectName, or nil if there’s no
EODisplayGroup.

See Also: – displayGroupForAspect:

endEditing

– (BOOL)endEditing

Overridden by subclasses to pass the value of the receiver’s display object to the
EODisplayGroup, by invoking setValue:forAspect: with the display object’s value and the
appropriate aspect (typically “value”). Returns YES if successful, NO if not—specifically if
setValue:forAspect: returns NO. The receiver should also send an associationDidEndEditing:
message to its EODisplayGroup.

Subclasses whose display objects immediately pass their changes back to the EOAssociation—
such as a button or pop-up list—need not override this method. It’s only needed when the
display object’s value is edited rather than simply set.

EOAssociation’s implementation does nothing but return YES.

26

C L A S S E O A s s o c i a t i o n

establishConnection

– (void)establishConnection

Overridden by subclasses to attach the receiver to the outlets of its display object, and to
otherwise configure the display object (such as by setting its action method). EOAssociation’s
implementation subscribes the receiver as an observer of its EODisplayGroups and causes the
display object to retain the receiver. Subclasses should invoke super’s implementation after
establishing their own connections.

See “Setting up an EOAssociation Programmatically” (page 33) in the class description for more
information.

See Also: – breakConnection

initWithObject:

– (id)initWithObject:(id)aDisplayObject

Initializes the receiver to monitor and update the value in aDisplayObject, which is typically a
user-interface object or an EODisplayGroup. This is the designated initializer for the
EOAssociation class. Returns self.Because of the way that EOAssociations are set up, this
method doesn’t retain aDisplayObject. See “Setting up an EOAssociation Programmatically”
(page 33) in the class description for more information.

See Also: – bindAspect:displayGroup:key:, – establishConnection

object

– (id)object

Returns the receiver’s display object.

See Also: – initWithObject:

C L A S S E O A s s o c i a t i o n

27

setValue:forAspect:

– (BOOL)setValue:(id)value
forAspect:(NSString *)aspectName

Sets a value of the selected enterprise object in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
setSelectedObjectValue:forKey: message with value and the key as arguments. Returns YES if
successful, or if there’s no display group bound to aspectName. Returns NO if there’s an display
group and it doesn’t accept the new value.

See Also: – valueForAspect:

setValue:forAspect:atIndex:

– (BOOL)setValue:(id)value
forAspect:(NSString *)aspectName
atIndex:(unsigned int)index

Sets a value of the enterprise object at index in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
setValue:forObjectAtIndex:key: message with value, index, and the key as arguments. Returns
YES if successful, or if there’s no display group bound to aspectName. Returns NO if there’s a
display group and it doesn’t accept the new value.

See Also: – valueForAspect:atIndex:

shouldEndEditingForAspect:invalidInput:errorDescription:

– (BOOL)shouldEndEditingForAspect:(NSString *)aspectName
invalidInput:(NSString *)inputString
errorDescription:(NSString *)errorDescription

Invoked by subclasses when the display object fails to validate its input, this method informs the
EODisplayGroup bound to aspectName with an association:failedToValidateValue:forKey:
object:errorDescription: message, using the display group’s selected object. Returns the result
of that message, or YES if there’s no display group.

28

C L A S S E O A s s o c i a t i o n

For example, an association bound to an NSControl object (Application Kit) receives a control:
didFailToFormatString:errorDescription: delegate message when the control’s formatter fails to
format the input string. Its implementation of that method invokes shouldEndEditingForAspect:
invalidInput:errorDescription:.

See Also: – shouldEndEditingForAspect:invalidInput:errorDescription:index:

shouldEndEditingForAspect:invalidInput:errorDescription:index:

– (BOOL)shouldEndEditingForAspect:(NSString *)aspectName
invalidInput:(NSString *)inputString
errorDescription:(NSString *)errorDescription
index:(unsigned int)index

Works in the same manner as shouldEndEditingForAspect:invalidInput:errorDescription:, but
allows you to specify a particular object by index rather than implicitly specifying the selected
object.

subjectChanged

– (void)subjectChanged

Overridden by subclasses to update state based when an EODisplayGroup’s selection or
contents changes. This method is invoked automatically anytime a display group that’s bound
to the receiver changes. The receiver can query its display group with selectionChanged and
contentsChanged messages to determine how it needs to update.

valueForAspect:

– (id)valueForAspect:(NSString *)aspectName

Returns a value of the selected enterprise object in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
selectedObjectValueForKey: message with the key. Returns nil if there’s no display group or
key bound to aspectName.

See Also: – setValue:forAspect:

C L A S S E O A s s o c i a t i o n

29

valueForAspect:atIndex:

– (id)valueForAspect:(NSString *)aspectName
atIndex:(unsigned int)index

Returns a value of the enterprise object at index in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
valueForObjectAtIndex:key: message with index and the key. Returns nil if there’s no display
group or key bound to aspectName.

See Also: – setValue:forAspect:atIndex:

30

C L A S S E O A s s o c i a t i o n

31

O T H E R R E F E R E N C E

EOAssociation

How EOAssociations Work

An EOAssociation monitors its display object for user input or other events while also observing
changes in the selection or contents of its EODisplayGroups. The basic purpose of an
EOAssociation is to assure that changes at one end are reflected on the other. When the selection
in a display group changes, for example, the association updates the state of its display object to
reflect this new selection. The following sections describe this process in detail.

The Display Object
In the Yellow Box, an EOAssociation is tied to a single display object. Each EOAssociation
assumes the roles defined for one or more outlets of this object. An EOControlAssociation, for
example, appropriates the target and action outlets of the NSControl it is bound to. When the
user activates the control or changes its value, the action is fired and the EOAssociation
correspondingly updates a property of the display group's selected enterprise object. An
EOControlAssociation also sets itself as the control’s delegate in order to receive various editing
and validation messages.

In the Yellow Box, any outlets an association claims cannot be used for other purposes. The class
method objectKeysTaken returns the names of any outlets a given EOAssociation subclass
appropriates, and InterfaceBuilder disables them in its Connections Inspector if the inspected
object has been associated. A button acting as an EOControlAssociation's display object, for
example, has its target outlet dimmed.

32

O T H E R R E F E R E N C E E O A s s o c i a t i o n

Although display objects are typically user-interface controls such as text fields and pop-up
menus, they can be any kind of object. A notable example of this is an
EOMasterDetailAssociation, where the display object is a “detail” EODisplayGroup populated
with the destination enterprise objects of a relationship in the “master” display group. See the
EOMasterDetailAssociation class specification for more information on master-detail
configurations.

Bindings: Aspects, EODisplayGroups, and Keys
Although an EOAssociation has only one display object it may have any number of aspects.
Aspects define the EODisplayGroup characteristics that the association observes. Aspects are
bound to a display group by a key of the enterprise objects contained by the association.
Depending upon a given EOAssociation subclass, aspects may be optional or mandatory. They
might all have to be bound to a single EODisplayGroup or they may span several. Some aspects
can be mutually exclusive.

On the display side, aspects are typically bound to visible facets of the EOAssociation’s display
object, such as the value or values it displays and any interactive state. Each aspect’s value is
determined by the contents of the enterprise-object property in the EODisplayGroup that the
aspect is bound to. This value may be taken from all enterprise objects in the EODisplayGroup
or only those in the current selection. Some aspects are “read-only” in that they merely reflect
the contents of the display group, but others change enterprise-object values when the display
object is manipulated.

An EOControlAssociation, for example, defines “value” and “enabled” aspects. To configure a
text field to display the salary for the selected enterprise object you must create an
EOControlAssociation with the text field as its display object and bind the
EOControlAssociation’s “value” aspect to the appropriate display group’s “salary” key. You
might also bind the EOControlAssociation’s “enabled” aspect to some key such as
“eligibleForRaise” so that the text field is made editable if this property evaluates to non-zero.
When focus leaves the text field, the newly entered value is sent to the EODisplayGroup.

A multi-valued aspect can represent the destination of a to-many relationship or it can define a
range of possible values for an enterprise object’s property. EOComboBoxAssociation, for
example, has a “titles” aspect that defines all possible values for a key, and all these values then
appear in the pop-up menu. If, for example, you bind the “titles” aspect to the “name” key of an
EODisplayGroup containing Departments, you get a pop-up menu containing the names of all
departments. EOComboBoxAssociation also has a “selectedObject” aspect which, when bound
to a relationship property of an enterprise object, determines the selection in the “titles” display
group.

O T H E R R E F E R E N C E E O A s s o c i a t i o n

33

As EODelayedObservers, EOAssociations add themselves to the list of objects observing the
display groups they are bound to. When a display group changes its selection or contents,
observing EOAssociations are sent a subjectChanged message. This message does not indicate
which EODisplayGroup has changed, so the receiver must query each one. When an
EOAssociation wishes to modify the contents of a EODisplayGroup, it typically does so through
the setValue:forAspect:. This process and the querying of display groups are described under
“Monitoring Changes from the Display Object” (page 37).

Setting up an EOAssociation Programmatically

Although you normally use the Interface Builder application (and the EOPalette palette) to set
up EOAssociations, you can do so programmatically as well. Because EOAssociation
coordinates the actions of many objects, linking a display object to a display group is a multi-step
process, as shown by the following code fragment; this fragment assumes that salaryText and
employeeGroup already exist.

NSTextField *salaryText;
EODisplayGroup *employeeGroup;
EOControlAssociation *association;

association = [[EOControlAssociation alloc] initWithObject:salaryText];
[association bindAspect:@"value" displayGroup:employeeGroup key:@”salary”];
[association bindAspect:@"enabled" displayGroup:employeeGroup key:@”eligibleForRaise”];
[association establishConnection];
[association release];

Although an association is initialized with the display object it monitors, this really represents
only half of the required initialization; the association and therefore the display object have yet
to be bound to any display group. The two invocations of bindAspect:displayGroup:key: define
the specifics of the field’s interaction with employeeGroup. Once these aspects have been bound,
establishConnection causes the association to register as an observer of employeeGroup and
complete its internal initialization. Note that in the Yellow Box you can safely release a newly
instantiated association once you invoke establishConnection because this method retains the
association for the lifespan of the display object.

34

O T H E R R E F E R E N C E E O A s s o c i a t i o n

Creating a Subclass of EOAssociation

If none of the standard EOAssociation subclasses meets your needs, you can create a new one
without much effort. To do so, you need to define four areas of functionality:

■ What your subclass monitors and which display objects it can work with.

■ How your subclass establishes its connections with its display object and its
EODisplayGroups

■ How it updates the display object to reflect display group changes.

■ How it monitors the display object and updates the EODisplayGroups.

The following four sections describe how to do each of these.

Defining Capabilities
If you’re creating a Yellow Box subclass, a significant part of creating an EOAssociation subclass
is defining and advertising what the subclass works with. The characteristics that your subclass
should define are:

Aspects (required)
Your EOAssociation subclass must define an aspects class method that returns an
NSArray of aspect names, as NSStrings. Some standard aspects are:value, the value
of an attribute or relationship; enabled, whether the control should be enabled; titles,
all existing values for an attribute; and selectedTitle, the value of the selected attribute
(bound to the same key as “titles”).

What the subclass works with (required)
Interface Builder asks each EOAssociation subclass if it can work with a given object
when it displays its Connections Inspector. Your subclass should implement the
isUsableWithObject: class method to examine the object provided and return YES if
it can work with that object. This method can examine the class of the object
provided, or any of its attributes, to determine whether it can work with the object.
For example, EOPopUpAssociation verifies that the object is an NSPopUpButton,
while EOMasterDetailAssociation checks that the object is an EODisplayGroup
whose data source is an EODetailDataSource.

O T H E R R E F E R E N C E E O A s s o c i a t i o n

35

Aspect signatures (optional)
Aspects by default are made available for any kind of property—single-valued
attributes, to-one relationships, and to-many relationships. If your subclass has
aspects that only have meaning for one or two of these, it should define an
aspectSignatures class method that returns an NSArray of NSStrings corresponding
to the aspects defined for the class. Each string should contain a subset of the string
“A1M”, where “A” indicates that the aspect can be used with attributes (where the
value is a value-bearing object such as NSString or NSNumber), “1” that it can be
used with to-one relationships (where the value is an enterprise object), and “M”
indicates that the aspect can be used with to-many relationships (where the value is
an array of enterprise objects). EOControlAssociation only displays single attributes,
so its aspect signature for “value” and “enabled” is the array (“A”, “A”).
EOMasterDetailAssociation only works with relationships, so the aspect signature
for its aspect “parent” is the array (“1M”).

Which outlets it uses (optional)
Interface Builder disables connections to outlets used by an EOAssociation, so if your
subclass uses any it should advertise them by defining the objectKeysTaken class
method to return an NSArray containing the names of the outlets. These are typically
the standard “target”, “delegate”, “dataSource”, and so on.

EOAssociation classes superseded (optional)
If your EOAssociation subclass applies uniquely to display objects that other kinds
of EOAssociations simply happen to work with, it should implement the
associationClassesSuperseded class method to return an array of these classes.
EOPopUpAssociation, for example, works with EOPopUpButton, which as a
subclass of NSControl is also eligible for the EOControlAssociation. Since this isn’t a
meaningful or useful EOAssociation for a pop-up button, EOPopUpAssociation
supersedes it, and Interface Builder doesn’t present it in its Connections Inspector
when a pop-up button is selected.

Display name (optional)
If you want your subclass to be listed in Interface Builder’s Associations pop-up list
with a name other than that of its class, it can override the displayName to return that
name. This is often done to truncate long names so they fit in the pop-up button.

Primary aspect (optional)
If your subclass implements the primaryAspect class method, Interface Builder
automatically selects it the first time the user drags a connection from the display
object and chooses your EOAssociation subclass in the Connections Inspector.

36

O T H E R R E F E R E N C E E O A s s o c i a t i o n

Binding ability (optional)
 If your subclass defines aspects that are mutually exclusive, available only for a
particular kind of display object, or are otherwise not always available, you might
want to implement the instance method canBindAspect:displayGroup:key: to check
these types of conditions. Interface Builder uses this information to enable and
disable aspects, to guide the user in property setting up EOAssociations.

Priority (optional)
EOAssociation uses the default EODelayedObserver priority of
EODelayedObserverPriorityThird. If your subclass need a higher or lower priority,
it should override the priority method appropriately. EOMasterDetailAssociation,
for example, uses EODelayedObserverPrioritySecond to catch updates before other
EOAssociations based on it.

Setting Up
EOAssociation’s designated initializer is initWithObject:, but you rarely need to override this
method. Instead, you override establishConnection, which is where the real initialization takes
place, as described above in “Setting up an EOAssociation Programmatically” (page 33).

Your subclass’s implementation of establishConnection should first invoke the superclass
implementation to initialize the observation of bound EODisplayGroups and then establish their
notification relationship with the display object. Once the association has been bound to its
display groups and appropriately attached to its display object it is ready to perform real work.

Monitoring Changes from the EODisplayGroup
An EOAssociation is notified of changes in EODisplayGroup selections and changes through
EODelayedObserver’s subjectChanged method. An EOAssociation sublcass, in its
implementation of this method, propagates these changes to the display object. Because
subjectChanged provides no additional information about the change that triggered its
invocation, associations must query their bound display groups for details. The EOAssociation
method displayGroupForAspect:, in conjunction with EODisplayGroup’s contentsChanged and
selectionChanged, faciliate efficient aspect-by-aspect change analysis. Once you have
determined the set of affected aspects, your subclass must update its display object to reflect
their new values. How this is done is specific to the class of display object and to the aspects your
EOAssocation subclass supports.

O T H E R R E F E R E N C E E O A s s o c i a t i o n

37

Monitoring Changes from the Display Object
When an EOAssociation is notified of a change to the state of its display object, it must update
the affected display groups so that they reflect the new state. Updating can involve changing a
display-group value, sending messages to the display group, or sending messages to some set
of the enterprise objects the display group contains. As a simple example, an association with a
“value” aspect would update the value of the bound display group’s selected enterprise object
by invoking setValue:forAspect: with the display object's new contents. Complex associations
might set enterprise object values more directly via EODisplayGroup's setSelectedObjectValue:
forKey: , setValue:forObject:key:, or setValue:forObjectAtIndex:key: in conjunction with
EOAssocation”s displayGroupKeyForAspect:. An association with a button as its display object
might go even further, sending the message defined by its “action” aspect to the enterprise
objects selected in a display group whenever the button is clicked.

For display objects that support editing, such as text fields, an association must observe events
signifying the beginning or end of an editing operation and then inform the appropriate display
groups using EODisplayGroup's associationDidBeginEditing: and associationDidEndEditing:.
This operation is important because a display group requests an end to editing when it is asked
to perform tasks such as the insertion of a new enterprise object or a save. It requests and end to
editing by sending an endEditing message to the association it believes currently has an edit in
progress. Implementations of endEditing should attempt to propagate the current state of the
display object to the receiver’s display groups and return NO if this attempt fails, indicating that
the request has been disallowed. EOAssociations that support the display of multiple values and
the notion of a selection must also propagate changes in this selection to the appropriate display
groups using EODisplayGroup’s setSelectionIndexes:.

Validation
Although validation of values entered by the user can happen in several places, EOAssociations
generally concern themselves only with data entry errors. These errors are typically caught by
the display object or an NSFormatter, and result in a message to the delegate of the display
object. For example, an NSControl sends control:isValidObject: and control:
didFailToFormatString:errorDescription: to its delegate, allowing the delegate to validate
values itself or to handle errors caught by an NSFormatter. Your implementation of a method
such as control:isValidObject: should simply try to save the new value, using EOAssociation’s
setValue:forAspect: or setValue:forAspect:atIndex:, returning YES or NO as that message does.
For control:didFailToFormatString:errorDescription:, the typical response should be to
invoke shouldEndEditingForAspect:invalidInput:errorDescription: or
shouldEndEditingForAspect:invalidInput:errorDescription:index:.

38

O T H E R R E F E R E N C E E O A s s o c i a t i o n

39

C L A S S

EOColumnAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOColumnAssociation.h

Class Description

An EOColumnAssociation object cooperates with an EOTableViewAssociation to display values
in a column of an NSTableView (Application Kit).

A column association links an NSTableColumn (Application Kit) to a single attribute of all
displayed objects in an EODisplayGroup. The value of each object is displayed in its
corresponding row.

Column associations provide values for the cells of each NSTableColumn, and also accept edited
values to set in their display groups. The EOTableViewAssociation receives target, delegate, and
data source messages from the table view, and forwards them as needed to the appropriate
column association.

40

C L A S S E O C o l u m n A s s o c i a t i o n

EOColumnAssociations provide values using NSTableView’s DataSource methods tableView:
setObjectValue:forTableColumn:row: and tableView:objectValueForTableColumn:. This allows
values with non-string representations to be displayed. For example, if an NSImageCell
(Application Kit) is used as an NSTableColumn’s data cell, an EOColumnAssociation can be
used to display NSImages (Application Kit) in the NSTableView.

Example
To display the last and first names of objects in a Talent display group, in Interface Builder,
Control-drag a connection from the last name column to the display group. Select
EOColumnAssociation in the Connections inspector, and bind the value aspect to the
“lastName” key (this automatically creates an EOTableViewAssociation to manage the
individual columns). Repeat to set up a column association for the first name. Now when you
run the application, the last and first names of each Talent object in the display group’s
displayedObjects array are put in the corresponding row.

Usable With

NSTableColumn (Application Kit)

Aspects

value An attribute of the objects, displayed in each row of the NSTableColumn.

enabled A boolean attribute of the objects, which determines whether each object’s value
cell is editable. Note that because EOTableViewAssociation also uses this aspect,
you can use it with different keys to limit editability to the whole row or to an
individual cell (column) in that row.

Object Keys Taken

identifier An EOColumnAssociations sets itself as the identifier of its NSTableColumn.
(Note: This key isn’t formally reserved by the objectKeysTaken method, as
Interface Builder doesn’t treat it as an outlet.)

C L A S S E O C o l u m n A s s o c i a t i o n

41

Method Types

Sorting rows

– setSortingSelector:

– sortingSelector

Table view data source methods

– tableView:setObjectValue:forTableColumn:row:

– tableView:objectValueForTableColumn:row:

Table view delegate methods

– tableView:shouldEditTableColumn:row:

– tableView:willDisplayCell:forTableColumn:row:

Control delegate methods

– control:didFailToFormatString:errorDescription:

– control:isValidObject:

– control:textShouldBeginEditing:

Instance Methods

control:didFailToFormatString:errorDescription:

– (BOOL)control:(NSControl *)aTableView
didFailToFormatString:(NSString *)aString
errorDescription:(NSString *)errorDescription

Invokes shouldEndEditingForAspect:invalidInput:errorDescription: (defined by
EOAssociation) and returns the result.

42

C L A S S E O C o l u m n A s s o c i a t i o n

control:isValidObject:

– (BOOL)control:(NSControl *)aTableView
isValidObject:(id)anObject

Saves the value of any cell being edited using setValue:forAspect:, and if successful sends an
associationDidEndEditing: message to the receiver’s EODisplayGroup. Returns YES if successful
(or if no changes need be saved), NO if unsuccessful.

control:textShouldBeginEditing:

– (BOOL)control:(NSControl *)aTableView
textShouldBeginEditing:(NSText *)fieldEditor

Sends an associationDidBeginEditing: message to the receiver’s EODisplayGroup and returns
YES.

setSortingSelector:

– (void)setSortingSelector:(SEL)aSelector

Sets the method selector used to sort rows to aSelector, one of (defined in EOControl):

■ EOCompareAscending

■ EOCompareDescending

■ EOCompareCaseInsensitiveAscending

■ EOCompareCaseInsensitiveDescending

■ nil (to tell the receiver not to sort)

For more information on these selectors, see the section “Comparison Methods” in the
EOSortOrdering class specification (EOControl).

If the EOTableViewAssociation for the receiver’s NSTableView (Application Kit) sorts its rows,
it applies this method as needed to sort them. The default sorting selector is
EOCompareAscending.

C L A S S E O C o l u m n A s s o c i a t i o n

43

sortingSelector

– (SEL)sortingSelector

Returns the method selector used to sort rows, or nil if the column isn’t sorted.

tableView:objectValueForTableColumn:row:

– (id)tableView:(NSTableView *)aTableView
objectValueForTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Returns the value of the property of the object at rowIndex bound to the value aspect.

tableView:setObjectValue:forTableColumn:row:

– (void)tableView:(NSTableView *)aTableView
setObjectValue:(id)value
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Sets the property of the object at rowIndex bound to the value aspect to value.

tableView:shouldEditTableColumn:row:

– (BOOL)tableView:(NSTableView *)aTableView
shouldEditTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Returns NO if the enabled aspect is bound and its value for the object at rowIndex is NO. Otherwise
returns YES. Note that because the enabled aspects of EOTableViewAssociation and
EOColumnAssociation can be bound to different keys, you can limit editability to the whole row
or to an individual cell (column) in that row.

44

C L A S S E O C o l u m n A s s o c i a t i o n

tableView:willDisplayCell:forTableColumn:row:

– (void)tableView:(NSTableView *)aTableView
willDisplayCell:(id)aCell
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Alters the display characteristics for aCell according to the values for the enabled aspect of the
object at rowIndex.

45

C L A S S

EOComboBoxAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOComboBoxAssociation.h

Class Description

An EOComboBoxAssociation object displays an attribute or to-one relationship value in an
NSComboBox (Application Kit). The items in the combo box can be entered manually, or for a
relationship, constructed dynamically from values supplied by an EODisplayGroup.
EOComboBoxAssociation is very similar to the EOPopUpAssociation.

Usable With

NSComboBox (Application Kit)

46

C L A S S E O C o m b o B o x A s s o c i a t i o n

Examples
There are three basic ways to configure a combo box and it’s association. Each is described
below.

Aspects

titles Property of the enterprise objects in an EODisplayGroup that
supplies the titles for the items in the combo box list.

selectedTitle String property of the enterprise object supplying the title to
display in the combo box. When the value of the combo box
changes either because a new value is typed in or a selection
is made using the pop up menu, the new text value is
assigned to this property.

selectedObject Relationship property of the enterprise object containing the
enterprise object to select from the titles EODisplayGroup.
selectedObject is usually mutually exclusive with
selectedTitle. When the value of the combo box changes, the
association updates the relationship to point to the new
object.

enabled A boolean attribute of the selected object that determines
whether the combo box is enabled.

Object Keys Taken

target When the user chooses an item in the pop-up menu, the
EOComboBoxAssociation updates the selected object’s
property with the item’s title or object.

dataSource When the NSComboBox requests values for its list, the
EOComboBoxAssociation provides them by querying the
appropriate EODisplayGroup or groups.

delegate An EOComboBoxAssociation accepts the message
comboBoxSelectionDidChange.

C L A S S E O C o m b o B o x A s s o c i a t i o n

47

Selecting a String from a Static List

Suppose you have a Movie display group and you want to provide a combo box for setting the
rating from a static list of strings. In this example, a Movie object’s rating is a string property
rather than a relationship to a Rating object). To do this, in Interface Builder, type the list of
ratings into the combo box. Control-drag a connection from the combo box to the Movie display
group. Choose EOComboBoxAssociation in the Connections inspector, and bind the
selectedTitle aspect to the “rating” key.

Selecting a String from a Dynamic List

This example is similar to the previous one, except in this example, a Movie object’s rating is
chosen from strings in a Rating database table. There’s a Rating EODisplayGroup that fetches
the ratings into Rating objects, and the combo box is filled from the “ratingString” property of
the rating display group’s Rating objects. To do this, in Interface Builder, control-drag a
connection from the combo box to the Ratings display group. Choose EOComboBoxAssociation
in the Connections inspector, and bind the titles aspect to the “ratingString” key. Similarly,
control-drag a connection from the combo box to the Movie display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedTitle aspect to the
“rating” key.

Selecting the Destination of a To-One Relationship

Suppose you have a list of employees and want to assign each employee a department. In terms
of the object model, you want to assign a Department object as the destination of an Employee
object’s department relationship. To do this, in Interface Builder, control-drag a connection from
the combo box to a Department display group. Choose EOComboBoxAssociation in the
Connections inspector, and bind the titles aspect to the “name” key. Similarly, control-drag a
connection from the combo box to the Employee display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedObject to the
“department” key.

If the selectedObject aspect is bound and the user types a value that doesn’t match any of those
currently in the list, an error panel is displayed.

48

C L A S S E O C o m b o B o x A s s o c i a t i o n

49

C L A S S

EOControlAssociation

Inherits from: EOGenericControlAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOControlAssociation.h

Class Description

EOControlAssociation is the default EOAssociation subclass for use with NSControl objects
(Application Kit).

A control association displays the value of the selected object in its control, and updates the
object when the control’s value changes. A sibling class, EOActionCellAssociation, can be used
with individual cells in an NSMatrix or NSForm (both defined in the Application Kit). Some
other subclasses of EOAssociation, such as EOPopUpAssociation and EOColumnAssociation,
supersede these classes for more specialized behavior.

50

C L A S S E O C o n t r o l A s s o c i a t i o n

EOControlAssociations access values using NSControl’s setObjectValue: method, which allows
values with non-string representations to be displayed. An EOControlAssociation can be bound
to an NSImageView, for example, with an attribute whose class is NSImage (both NSImageView
and NSImage are defined in the Application Kit).

Examples
To display a movie’s budget in an NSTextField, in Interface Builder, control-drag a connection
from the text field and a Movie display group. In the Connections inspector, choose
EOControlAssociation, and bind the value aspect to the “budget” key. Then, if the NSTextField
is editable, when the user types a new value and presses Enter or Tab, the selected movie’s
budget attribute is changed.

Assuming that Movie objects implement an isBudgetNegotiable method, you can make the
NSTextField uneditable depending on the selected movie. To do so, bind the enabled aspect to
the “isBudgetNegotiable” key.

Usable With

Any NSControl (Application Kit)

Aspects

value An attribute of the selected object, displayed in the NSControl.

enabled A boolean attribute of the selected object, which determines whether the
NSControl is enabled.

Object Keys Taken

target On receiving an action message from the NSControl, an EOControlAssociation
sends the NSControl’s value to the EODisplayGroup.

delegate An EOControlAssociation accepts messages related to editing and validation of
text, such as control:textShouldBeginEditing: and control:
didFailToFormatString:errorDescription:.

C L A S S E O C o n t r o l A s s o c i a t i o n

51

Instance Methods

control

– (NSControl *)control

Returns the receiver’s control object. For EOControlAssociation, this method is equivalent to
EOAssociation’s object method.

editingAssociation

– (EOGenericControlAssociation *)editingAssociation

Returns self.

52

C L A S S E O C o n t r o l A s s o c i a t i o n

53

C L A S S

EODetailSelectionAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EODetailSelectionAssociation.h

Class Description

An EODetailSelectionAssociation binds two EODisplayGroups together through a relationship,
so that the destination display group acts as an editor for that relationship.

The destination display group shows all possible values for the relationship and indicates the
actual members of the relationship by selecting them. The user can change the objects included
in the relationship of the source by selecting and deselecting them in the destination.

EODetailSelectionAssociation is a useful alternative to EOMasterDetailAssociation and
EOMasterPeerAssociation when it’s more important to add and remove objects from a
relationship than it is to edit the attributes of those objects.

Usable With

EODisplayGroup

54

C L A S S E O D e t a i l S e l e c t i o n A s s o c i a t i o n

Example
Suppose that an employee can be assigned any number of projects. Your application displays
employees in one table view and projects in another. When an employee is selected in the first
table view, the employee’s assigned projects are selected in the other. To change the employee’s
project assignments, a user changes the selection in the project table view: to add a project to the
set, the user selects it, and to remove a project from the set, the user deselects it. To do this, in
Interface Builder control-drag a connection from the Projects display group to the Employee
display group. Choose EODetailSelectionAssociation in the Connections inspector, and bind the
selectedObjects aspect to the “projects” key.

Aspects

selectedObjects A relationship from objects in the source EODisplayGroup.

Object Keys Taken

None

55

C L A S S

EODisplayGroup

Inherits from: NSObject (Yellow Box)Object (Java Client)

Conforms to: NSCoding
NSObject (NSObject)

Declared in: EOInterface/EODisplayGroup.h

Class at a Glance

An EODisplayGroup collects an array of objects from an EODataSource, and works with a group
of EOAssociation objects to display and edit the properties of those objects.

Principal Attributes

■ Array of objects supplied by an EODataSource

■ EOQualifier and EOSortOrderings to filter the objects for display

■ Array of selection indexes

■ Delegate

56

C L A S S E O D i s p l a y G r o u p

Commonly Used Methods

Class Description

An EODisplayGroup is the basic user interface manager for an Enterprise Objects Framework or
Java Client application. It collects objects from an EODataSource, filters and sorts them, and
maintains a selection in the filtered subset. It interacts with user interface objects and other
display objects through EOAssociations, which bind the values of objects to various aspects of
the display objects.

An EODisplayGroup manipulates its EODataSource by sending it fetchObjects, insertObject:,
and other messages, and registers itself as an editor and message handler of the EODataSource’s
EOEditingContext. The EOEditingContext allows the EODisplayGroup to intercede in certain
operations, as described in the EOEditors and EOMessageHandlers informal protocol
specifications (both protocols are defined in EOControl). EODisplayGroup implements all the
methods of these informal protocols; see their specifications for more information.

Most of an EODisplayGroup’s interactions are with its associations, its EODataSource, and its
EOEditingContext. See the EOAssociation, EODataSource, and EOEditingContext class
specifications for more information on these interactions.

– allObjects Returns all objects in the EODisplayGroup.

– displayedObjects Returns the subset of all objects made available for
display.

– selectedObjects Returns the selected objects.

– setQualifier: Sets a filter that limits the objects displayed.

– setSortOrderings: Sets the ordering used to sort the objects.

– updateDisplayedObjects Filters, sorts, and redisplays the objects.

– insertObjectAtIndex: Creates a new object and inserts it into the
EODataSource.

C L A S S E O D i s p l a y G r o u p

57

Creating an EODisplayGroup
You create most EODisplayGroups in Interface Builder, by dragging an entity icon from the
EOModeler application, which creates an EODisplayGroup with an EODatabaseDataSource
(EODistributedDataSource, for Java Client applications), or by dragging an EODisplayGroup
with no EODataSource from the EOPalette. EODisplayGroups with EODataSources operate
independent of other EODisplayGroups, while those without EODataSources must be set up in
a master-detail association with another EODisplayGroup.

To create an EODisplayGroup programmatically, simply initialize it and set its EODataSource:

EODataSource *myDataSource; /* Assume this exists. */
EODisplayGroup *myDisplayGroup;

myDisplayGroup = [[EODisplayGroup alloc] init];
[myDisplayGroup setDataSource:myDataSource];

After creating the EODisplayGroup, you can add associations as described in the EOAssociation
class specification.

Getting Objects
Since an EODisplayGroup isn’t much use without objects to manage, the first thing you do with
an EODisplayGroup is send it a fetch message. You can use the basic fetch method; the fetch:
action method, which can be invoked by a control in the EODisplayGroup’s nib file; or you can
configure the EODisplayGroup in Interface Builder to fetch automatically when its nib file is
loaded. These methods all ask the EODisplayGroup’s EODataSource to fetch from its persistent
store with a fetchObjects message.

Filtering and Sorting

An EODisplayGroup’s fetched objects are available through its allObjects method. These
objects are treated only as candidates for display, however. The array of objects actually
displayed is filtered and sorted by the EODisplayGroup’s delegate, or by a qualifier and sort
ordering array. You set the qualifier and sort orderings using the setQualifier: and
setSortOrderings: methods. The displayedObjects method returns this filtered and sorted
array; index arguments to other EODisplayGroup methods are defined in terms of this array.

If the EODisplayGroup has a delegate that responds to displayGroup:displayArrayForObjects:,
it invokes this method rather than using its own qualifier and sort ordering array. The delegate
is then responsible for filtering the objects and returning a sorted array. If the delegate only

58

C L A S S E O D i s p l a y G r o u p

needs to perform one of these steps, it can get the qualifier or sort orderings from the
EODisplayGroup and apply either itself using the NSArray methods
filteredArrayUsingQualifier: and sortedArrayUsingKeyOrderArray:, which are added by the
control layer.

If you change the qualifier or sort ordering, or alter the delegate in a way that changes how it
filters and sorts the EODisplayGroup’s objects, you can send updateDisplayedObjects to the
EODisplayGroup to get it to refilter and resort its objects. Note that this doesn’t cause the
EODisplayGroup to refetch.

Changing and Examining the Selection
An EODisplayGroup keeps a selection in terms of indexes into the array of displayed objects.
EOAssociations that display values for multiple objects are responsible for updating the
selection in their EODisplayGroups according to user actions on their display objects. This is
typically done with the setSelectionIndexes: method. Other methods available for indirect
manipulation of the selection are the action methods selectNext and selectPrevious, as well as
selectObjectsIdenticalTo: and selectObjectsIdenticalTo:.

To get the selection, you can use the selectionIndexes method, which returns an array of
NSNumbers, or selectedObjects, which returns an array containing the selected objects
themselves. Another method, selectedObject, returns the first selected object if there is one.

The Delegate
EODisplayGroup offers a number of methods for its delegate to implement; if the delegate does,
it invokes them as appropriate. Besides the aforementioned displayGroup:
displayArrayForObjects:, there are methods that inform the delegate that the EODisplayGroup
has fetched, created an object (or failed to create one), inserted or deleted an object, changed the
selection, or set a value for a property. There are also methods that request permission from the
delegate to perform most of these same actions. The delegate can return YES to permit the action
or NO to deny it. For more information, see each method’s description in the EODisplayGroup
Delegate informal protocol specification.

C L A S S E O D i s p l a y G r o u p

59

Methods for Use by EOAssociations
While most of your application code interacts with objects directly, EODisplayGroup also
defines methods for its associations to access properties of individual objects without having to
know anything about which methods they implement. Accessing properties through the
EODisplayGroup offers associations the benefit of automatic validation, as well.

Associations access objects by index into the displayed objects array, or by object identifier.
valueForObjectAtIndex:key: returns the value of a named property for the object at a given
index, and setValue:forObjectAtIndex:key: sets it. Similarly, valueForObject:key: and
setValue:forObject:key:access the objects by object identifier. EOAssociations can also get and
set values for the first object in the selection using selectedObjectValueForKey: and
setSelectedObjectValue:forKey:.

Adopted Protocols

NSCoding

– encodeWithCoder:

– initWithCoder:

Method Types

Creating instances

– init

Configuring behavior

– defaultStringMatchFormat

– defaultStringMatchOperator

– fetchesOnLoad

– queryBindingValues

60

C L A S S E O D i s p l a y G r o u p

– queryOperatorValues

– selectsFirstObjectAfterFetch

– setDefaultStringMatchFormat:

– setDefaultStringMatchOperator:

– setFetchesOnLoad:

– setQueryBindingValues:

– setQueryOperatorValues:

– setSelectsFirstObjectAfterFetch:

– setUsesOptimisticRefresh:

– setValidatesChangesImmediately:

– usesOptimisticRefresh

– validatesChangesImmediately

Setting the data source

– setDataSource:

– dataSource

Setting the qualifier and sort ordering

– setQualifier:

– qualifier

– setSortOrderings:

– sortOrderings

Managing queries

– qualifierFromQueryValues

– setEqualToQueryValues:

– equalToQueryValues

– setGreaterThanQueryValues:

– greaterThanQueryValues

– setLessThanQueryValues:

C L A S S E O D i s p l a y G r o u p

61

– lessThanQueryValues

– qualifyDisplayGroup

– qualifyDisplayGroup:

– qualifyDataSource

– qualifyDataSource:

– enterQueryMode:

– inQueryMode

– setInQueryMode:

– enabledToSetSelectedObjectValueForKey:

Fetching objects from the data source

– fetch

– fetch:

Getting the objects

– allObjects

– displayedObjects

Updating display of values

– redisplay

– updateDisplayedObjects

Setting the objects

– setObjectArray:

Changing the selection

– setSelectionIndexes:

– selectObjectsIdenticalTo:

– selectObjectsIdenticalTo:selectFirstOnNoMatch:

– selectObject:

– clearSelection

– selectNext

62

C L A S S E O D i s p l a y G r o u p

– selectNext:

– selectPrevious

– selectPrevious:

Examining the selection

– selectionIndexes

– selectedObject

– selectedObjects

Inserting and deleting objects

– delete:

– deleteObjectAtIndex:

– deleteSelection

– insert:

– insertedObjectDefaultValues (Yellow Box applications only)

– insertObjectAtIndex:

– insertObject:atIndex:

– setInsertedObjectDefaultValues:(Yellow Box applications only)

Adding keys

– setLocalKeys:

– localKeys

Getting the associations

– observingAssociations

Setting the delegate

– setDelegate:

– delegate

Changing values from associations

– setSelectedObjectValue:forKey:

– selectedObjectValueForKey:

C L A S S E O D i s p l a y G r o u p

63

– setValue:forObject:key:

– valueForObject:key:

– setValue:forObjectAtIndex:key:

– valueForObjectAtIndex:key:

Editing by associations

– associationDidBeginEditing:

– association:failedToValidateValue:forKey:object:errorDescription:

– associationDidEndEditing:

– editingAssociation

– endEditing

Querying changes for associations

– contentsChanged

– selectionChanged

– updatedObjectIndex

Interacting with the EOEditingContext

– editorHasChangesForEditingContext:

– editingContextWillSaveChanges:

– editingContext:presentErrorMessage:

64

C L A S S E O D i s p l a y G r o u p

Class Methods

globalDefaultForValidatesChangesImmediately

+ (BOOL)globalDefaultForValidatesChangesImmediately

Returns YES if the default behavior for new display group instances is to immediately handle
validation errors, or NO if the default behavior leaves errors for the EOEditingContext to handle
when saving changes.

See Also: – validatesChangesImmediately

globalDefaultStringMatchFormat

+ (NSString *)globalDefaultStringMatchFormat

Returns the default string match format string used by display group instances.

See Also: – defaultStringMatchFormat

globalDefaultStringMatchOperator

+ (NSString *)globalDefaultStringMatchOperator

Returns the default string match operator used by display group instances.

See Also: – defaultStringMatchOperator

C L A S S E O D i s p l a y G r o u p

65

setGlobalDefaultForValidatesChangesImmediately:

+ (void)setGlobalDefaultForValidatesChangesImmediately:(BOOL)flag

Sets the default behavior display group instances use when they encounter a validation error. If
flag is YES, the default behavior is for display groups to immediately present an attention panel
indicating a validation error. If flag is NO, the default behavior if for display groups to leave
validation errors to be handled when changes are saved. By default, display groups don’t
validate changes immediately.

See Also: – saveChanges (EOEditingContext), – setValidatesChangesImmediately:

setGlobalDefaultStringMatchFormat:

+ (void)setGlobalDefaultStringMatchFormat:(NSString *)format

Sets the default string match format to be used by display group instances. The default format
string for pattern matching is “%@*”.

See Also: – setDefaultStringMatchFormat:

setGlobalDefaultStringMatchOperator:

+ (void)setGlobalDefaultStringMatchOperator:(NSString *)op

Sets the default string match operator to be used by display group instances. The default
operator is case insensitive like.

See Also: – setDefaultStringMatchOperator:

Instance Methods

allObjects

– (NSArray *)allObjects

Returns all of the objects collected by the receiver.

See Also: – displayedObjects, – fetch

66

C L A S S E O D i s p l a y G r o u p

associationDidBeginEditing:

– (void)associationDidBeginEditing:(EOAssociation *)anAssociation

Invoked by anAssociation when its display object begins editing to record that EOAssociation
as the editing association.

See Also: – editingAssociation, – endEditing, – association:failedToValidateValue:forKey:
object:errorDescription:

associationDidEndEditing:

– (void)associationDidEndEditing:(EOAssociation *)anAssociation

Invoked by anAssociation to clear the editing association. If anAssociation is the receiver’s
editing association, clears the editing association. Otherwise does nothing.

See Also: – editingAssociation, – endEditing, – association:failedToValidateValue:forKey:
object:errorDescription:

association:failedToValidateValue:forKey:object:errorDescription:

– (BOOL)association:(EOAssociation *)anAssociation
failedToValidateValue:(NSString *)value
forKey:(NSString *)key
object:(id)anObject
errorDescription:(NSString *)errorDescription

Invoked by anAssociation from its shouldEndEditingForAspect:invalidInput:
errorDescription:index: method to let the receiver handle a validation error. This method
opens an attention panel with errorDescription as the message and returns NO.

See Also: – displayGroup:shouldDisplayAlertWithTitle:message: (EODisplayGroup Delegate)

clearSelection

– (BOOL)clearSelection

Invokes setSelectionIndexes: to clear the selection, returning YES on success and NO on failure.

C L A S S E O D i s p l a y G r o u p

67

contentsChanged

– (BOOL)contentsChanged

Returns YES if the receiver’s array of objects has changed and not all observers have been
notified, NO otherwise. EOAssociations use this in their subjectChanged methods to determine
what they need to update.

See Also: – selectionChanged, – updatedObjectIndex

dataSource

– (EODataSource *)dataSource

Returns the receiver’s EODataSource.

See Also: – setDataSource:

defaultStringMatchFormat

– (NSString *)defaultStringMatchFormat

Returns the format string that specifies how pattern matching will be performed on string values
in the query dictionaries (equalToQueryValues, greaterThanQueryValues, and
lessThanQueryValues). If a key in the queryMatch dictionary does not have an associated operator
in the queryOperatorValues dictionary, then its value is matched using pattern matching, and the
format string returned by this method specifies how it will be matched.

See Also: – defaultStringMatchOperator, – setDefaultStringMatchFormat:

defaultStringMatchOperator

– (NSString *)defaultStringMatchOperator

Returns the operator used to perform pattern matching for string values in the query
dictionaries (equalToQueryValues, greaterThanQueryValues, and lessThanQueryValues). If a key in
one of the query dictionaries does not have an associated operator in the queryOperatorValues
dictionary, then the operator returned by this method is used to perform pattern matching.

See Also: – defaultStringMatchFormat, – setDefaultStringMatchOperator:

68

C L A S S E O D i s p l a y G r o u p

delegate

– (id)delegate

Returns the receiver’s delegate.

See Also: – setDelegate:

delete:

– (void)delete:(id)sender

This action method invokes deleteSelection.

deleteObjectAtIndex:

– (BOOL)deleteObjectAtIndex:(unsigned int)index

Attempts to delete the object at index, returning YES if successful and NO if not. Checks with the
delegate using displayGroup:shouldDeleteObject:. If the delegate returns NO, this method fails
and returns NO. If successful, sends the delegate a displayGroup:didDeleteObject: message.

This method performs the delete by sending deleteObject: to the EODataSource. If that message
raises an exception, this method fails and returns NO.

deleteSelection

– (BOOL)deleteSelection

Attempts to delete the selected objects, returning YES if successful and NO if not.

displayedObjects

– (NSArray *)displayedObjects

Returns the objects that should be displayed or otherwise made available to the user, as filtered
by the receiver’s delegate or by its qualifier and sort ordering.

See Also: – allObjects, – updateDisplayedObjects, – displayGroup:displayArrayForObjects:
 (EODisplayGroup Delegate), – qualifier, – sortOrderings

C L A S S E O D i s p l a y G r o u p

69

editingAssociation

– (EOAssociation *)editingAssociation

Returns the EOAssociation editing a value if there is one, NO if there isn’t.

See Also: – associationDidBeginEditing:, – associationDidEndEditing:

editingContext:presentErrorMessage:

– (void)editingContext:(EOEditingContext *)anEditingContext
presentErrorMessage:(NSString *)errorMessage

Invoked by anEditingContext as part of the EOMessageHandlers informal protocol, this method
presents an attention panel with errorMessage as the message to display.

editingContextWillSaveChanges:

– (void)editingContextWillSaveChanges:(EOEditingContext *)anEditingContext

Invoked by anEditingContext in its saveChanges method as part of the EOEditors informal
protocol, this method allows the EODisplayGroup to prohibit a save operation.
EODisplayGroup’s implementation of this method invokes endEditing, and raises an
NSInternalInconsistencyException if it returns NO. Thus, if there’s an association that refuses to
end editing, anEditingContext doesn’t save changes.

editorHasChangesForEditingContext:

– (BOOL)editorHasChangesForEditingContext:(EOEditingContext *)anEditingContext

Invoked by anEditingContext as part of the EOEditors informal protocol, this method returns NO
if any association is editing, YES otherwise.

See Also: – editingAssociation, – associationDidBeginEditing:, – associationDidEndEditing:

70

C L A S S E O D i s p l a y G r o u p

enabledToSetSelectedObjectValueForKey:

– (BOOL)enabledToSetSelectedObjectValueForKey:(NSString *)key

Returns YES to indicate that a single value association (such as an EOControlAssociation for a
NSTextField) should be enabled for setting key, NO otherwise. Normally this is the case if the
receiver has a selected object. However, if key is a special query key (for example,
“@query=.name”), then the control should be enabled even without a selected object.

endEditing

– (BOOL)endEditing

Attempts to end any editing taking place. If there’s no editing association or if the editing
association responds YES to an endEditing message, returns YES. Otherwise returns NO.

See Also: – editingAssociation

enterQueryMode:

– (void)enterQueryMode:(id)sender

This action method invokes setInQueryMode: with an argument of YES.

equalToQueryValues

– (NSDictionary *)equalToQueryValues

Returns the receiver’s dictionary of equalTo query values. This dictionary is typically
manipulated by associations bound to keys of the form @query=.propertyName. The
qualifierFromQueryValues method uses this dictionary along with the lessThan and greaterThan
dictionaries to construct qualifiers.

See Also: – setEqualToQueryValues:, – greaterThanQueryValues, – lessThanQueryValues,

fetch

– (BOOL)fetch

Attempts to fetch objects from the EODataSource, returning YES on success and NO on failure.

C L A S S E O D i s p l a y G r o u p

71

Before fetching, invokes endEditing and sends displayGroupShouldFetch: to the delegate,
returning NO if either of these methods does. If both return YES, sends a fetchObjects message to
the receiver’s EODataSource to replace the object array, and if successful sends the delegate a
displayGroup:didFetchObjects: message.

fetch:

– (void)fetch:(id)sender

This action method invokes fetch.

fetchesOnLoad

– (BOOL)fetchesOnLoad

Returns YES if the receiver fetches automatically after being loaded from a nib file, NO if it must
be told explicitly to fetch. The default is NO. You can set this behavior in Interface Builder using
the Inspector panel.

See Also: – fetch, – setFetchesOnLoad:

greaterThanQueryValues

– (NSDictionary *)greaterThanQueryValues

Returns the receiver’s dictionary of greaterThan query values. This dictionary is typically
manipulated by associations bound to keys of the form @query>.propertyName. The
qualifierFromQueryValues method uses this dictionary along with the lessThan and equalTo
dictionaries to construct qualifiers.

See Also: – setGreaterThanQueryValues:, – lessThanQueryValues, – equalToQueryValues

72

C L A S S E O D i s p l a y G r o u p

init

– (id)init

Initializes a newly allocated EODisplayGroup. The new display group then needs to have an
EODataSource set with setDataSource:. This is the designated initializer for the
EODisplayGroup class. Returns self.

See Also: – bindAspect:displayGroup:key: (EOAssociation)

inQueryMode

– (BOOL)inQueryMode

Returns YES to indicate that the receiver is in query mode, NO otherwise. In query mode, user
interface controls that normally display values become empty, allowing users to type queries
directly into them (this is also known as a “Query By Example” interface). In effect, the receiver’s
“displayedObjects” are replaced with an empty equalTo query values dictionary. When
qualifyDisplayGroup or qualifyDataSource is subsequently invoked, the query is performed and
the display reverts to displaying values—this time, the objects returned by the query.

See Also: – setInQueryMode:, – enterQueryMode:

insert:

– (void)insert:(id)sender

This action method invokes insertObjectAtIndex: with an index just past the first index in the
selection, or 0 if there’s no selection.

insertedObjectDefaultValues

– (NSDictionary *)insertedObjectDefaultValues

Returns the default values to be used for newly inserted objects. The keys into the dictionary are
the properties of the entity that the display group manages. If the dictionary returned by this
method is empty, the insert... method adds an object that is initially empty. Because the object
is empty, the display group has no value to display on the HTML page for that object, meaning
that there is nothing for the user to select and modify. Use the setInsertedObjectDefaultValues:
method to set up a default value so that there is something to display on the page.

C L A S S E O D i s p l a y G r o u p

73

insertObjectAtIndex:

– (id)insertObjectAtIndex:(unsigned int)anIndex

Asks the receiver’s EODataSource to create a new object by sending it a createObject message,
then inserts the new object using insertObject:atIndex:. The EODataSource createObject
method has the effect of inserting the object into the EOEditingContext.

If a new object can’t be created, this method sends the delegate a displayGroup:
createObjectFailedForDataSource: message or, if the delegate doesn’t respond, opens an
attention panel to inform the user of the error.

See Also: – insert:

insertObject:atIndex:

– (void)insertObject:(id)anObject
atIndex:(unsigned int)index

Inserts anObject into the receiver’s EODataSource and displayedObjects array at index, if
possible. This method checks with the delegate before actually inserting, using displayGroup:
shouldInsertObject:atIndex:. If the delegate refuses, anObject isn’t inserted. After successfully
inserting the object, this method informs the delegate with a displayGroup:didInsertObject:
message, and selects the newly inserted object. Raises an NSRangeException if index is out of
bounds.

Unlike the insertObjectAtIndex: method, this method does not insert the object into the
EOEditingContext. If you use this method, you’re responsible for inserting the object into the
EOEditingContext yourself.

lessThanQueryValues

– (NSDictionary *)lessThanQueryValues

Returns the receiver’s dictionary of lessThan query values. This dictionary is typically
manipulated by associations bound to keys of the form @query<.propertyName. The
qualifierFromQueryValues method uses this dictionary along with the greaterThan and equalTo
dictionaries to construct qualifiers.

See Also: – setLessThanQueryValues:, – greaterThanQueryValues, – equalToQueryValues

74

C L A S S E O D i s p l a y G r o u p

localKeys

– (NSArray *)localKeys

Returns the additional keys that EOAssociations can be bound to. An EODisplayGroup’s basic
keys are typically those of the attributes and relationships of its objects, as defined by their
EOClassDescription through an EOEntity in the model. Local keys are typically used to form
associations with key paths, with arbitrary methods of objects, or with properties of objects not
associated with an EOEntity. Interface Builder allows the user to add and remove local keys in
the EODisplayGroup Attributes Inspector panel.

See Also: – setLocalKeys:

observingAssociations

– (NSArray *)observingAssociations

Returns all EOAssociations that observe the receiver’s objects.

qualifier

– (EOQualifier *)qualifier

Returns the receiver’s qualifier, which it uses to filter its array of objects for display when the
delegate doesn’t do so itself.

See Also: – updateDisplayedObjects, – displayedObjects, – setQualifier:

qualifierFromQueryValues

– (EOQualifier *)qualifierFromQueryValues

Builds a qualifier constructed from entries in the three query dictionaries: equalTo, greaterThan,
and lessThan. These, in turn, are typically manipulated by associations bound to keys of the
form @query=.firstName, @query>.budget, @query<.budget.

See Also: – qualifyDisplayGroup, – qualifyDataSource

C L A S S E O D i s p l a y G r o u p

75

qualifyDataSource

– (void)qualifyDataSource

Takes the result of qualifierFromQueryValues and applies to the receiver's data source. The
receiver then sends itself a fetch message. If the receiver is in query mode, query mode is exited.
This method differs from qualifyDisplayGroup as follows: whereas qualifyDisplayGroup
performs in-memory filtering of already fetched objects, qualifyDataSource triggers a new
qualified fetch against the database.

qualifyDataSource:

– (void)qualifyDataSource:(id)sender

This action method invokes qualifyDataSource.

qualifyDisplayGroup

– (void)qualifyDisplayGroup

Takes the result of qualifierFromQueryValues and applies to the receiver using setQualifier:.
The method updateDisplayedObjects is invoked to refresh the display. If the receiver is in query
mode, query mode is exited.

qualifyDisplayGroup:

– (void)qualifyDisplayGroup:(id)sender

This action method invokes qualifyDisplayGroup:.

queryBindingValues

– (NSDictionary *)queryBindingValues

Returns a dictionary containing the actual values that the user wants to query upon. You use this
method to perform a query stored in the model file. Bind keys in this dictionary to elements on
your component that specify query values, then pass this dictionary to the fetch specification
that performs the fetch.

76

C L A S S E O D i s p l a y G r o u p

queryOperatorValues

– (NSDictionary *)queryOperatorValues

Returns a dictionary of operators to use on items in the query dictionaries (equalToQueryValues,
greaterThanQueryValues, and lessThanQueryValues). If a key in a query dictionary also exists in
queryOperatorValues, that operator for that key is used.

See Also: – qualifierFromQueryValues

redisplay

– (void)redisplay

Notifies all observing associations to redisplay their values.

See Also: – observingAssociations

selectedObject

– (id)selectedObject

Returns the first selected object in the displayed objects array, or nil if there’s no such object.

See Also: – displayedObjects, – selectionIndexes

selectedObjects

– (NSArray *)selectedObjects

Returns the objects selected in the receiver’s displayed objects array.

See Also: – displayedObjects, – selectionIndexes

C L A S S E O D i s p l a y G r o u p

77

selectedObjectValueForKey:

– (id)selectedObjectValueForKey:(NSString *)key

Returns the value corresponding to key for the first selected object in the receiver’s displayed
objects array, or nil if exactly one object isn’t selected.

See Also: – valueForObjectAtIndex:key:

selectionChanged

– (BOOL)selectionChanged

Returns YES if the selection has changed and not all observers have been notified, NO otherwise.
EOAssociations use this in their subjectChanged methods to determine what they need to
update.

See Also: – contentsChanged

selectionIndexes

– (NSArray *)selectionIndexes

Returns the indexes of the receiver’s selected objects as NSNumbers, in terms of its displayed
objects array.

See Also: – displayedObjects, – selectedObjects, – selectedObject, – setSelectionIndexes:

selectNext

– (BOOL)selectNext

Attempts to select the object just after the currently selected one, returning YES if successful and
NO if not. The selection is altered in this way:

■ If there are no objects, does nothing and returns NO.

■ If there’s no selection, selects the object at index zero and returns YES.

■ If the first selected object is the last object in the displayed objects array, selects the first object
and returns YES.

■ Otherwise selects the object after the first selected object.

78

C L A S S E O D i s p l a y G r o u p

selectNext:

– (void)selectNext:(id)sender

This action method invokes selectNext.

See Also: – selectPrevious:, – setSelectionIndexes:

selectObject:

– (BOOL)selectObject:(id)anObject

Returns YES to indicate that the receiver has found and selected anObject, NO if it can’t find a
match for anObject (in which case it clears the selection). The selection is performed on the
receiver’s displayedObjects, not on allObjects.

selectObjectsIdenticalTo:

– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects

Attempts to select the objects in the receiver’s displayed objects array whose ids are equal to
those of objects, returning YES if successful and NO otherwise.

selectObjectsIdenticalTo:selectFirstOnNoMatch:

– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects
selectFirstOnNoMatch:(BOOL)flag

Selects the objects in the receiver’s displayed objects array whose ids are equal to those of
objects, returning YES if successful and NO otherwise. If no objects in the displayed objects array
match objects and flag is YES, attempts to select the first object in the displayed objects array.

See Also: – setSelectionIndexes:

selectPrevious

– (BOOL)selectPrevious

Attempts to select the object just before the presently selected one, returning YES if successful and
NO if not. The selection is altered in this way:

C L A S S E O D i s p l a y G r o u p

79

■ If there are no objects, does nothing and returns NO.

■ If there’s no selection, selects the object at index zero and returns YES.

■ If the first selected object is at index zero, selects the last object and returns YES.

■ Otherwise selects the object before the first selected object.

selectPrevious:

– (void)selectPrevious:(id)sender

This action method invokes selectPrevious.

See Also: – selectNext:, – redisplay

selectsFirstObjectAfterFetch

– (BOOL)selectsFirstObjectAfterFetch

Returns YES if the receiver automatically selects its first displayed object after a fetch if there was
no selection, NO if it leaves an empty selection as-is.

See Also: – displayedObjects, – fetch, – setSelectsFirstObjectAfterFetch:

setDataSource:

– (void)setDataSource:(EODataSource *)aDataSource

Sets the receiver’s EODataSource to aDataSource. In the process, it performs these actions:

■ Unregisters self as an editor and message handler for the previous EODataSource’s
EOEditingContext, if necessary, and registers self with aDataSource’s editing context. If the
new editing context already has a message handler, however, the receiver doesn’t assume
that role.

■ Registers self for EOObjectsChangedInEditingContextNotification and
EOInvalidatedAllObjectsInStoreNotification from the new editing context.

■ Clears the receiver’s array of objects.

■ Sends displayGroupDidChangeDataSource: to the delegate if there is one.

See Also: – dataSource

80

C L A S S E O D i s p l a y G r o u p

setDefaultStringMatchFormat:

– (void)setDefaultStringMatchFormat:(NSString *)format

Sets how pattern matching will be performed on NSString values in the query dictionaries
(equalToQueryValues, greaterThanQueryValues, and lessThanQueryValues). This format is used for
query dictionary properties that have NSString values and that do not have an associated entry
in the queryOperatorValues dictionary. In these cases, the value is matched using pattern
matching and format specifies how it will be matched.

The default format string for pattern matching is “%@*” which means that the string value in the
queryMatch dictionary is used as a prefix. For example, if the query dictionary contains a value
“Jo” for the key “Name”, the query returns all records whose name values begin with “Jo”.

See Also: – defaultStringMatchFormat, – setDefaultStringMatchOperator:

setDefaultStringMatchOperator:

– (void)setDefaultStringMatchOperator:(NSString *)matchOperator

Sets the operator used to perform pattern matching for NSString values in the queryMatch
dictionary. This operator is used for properties listed in the query dictionaries
(equalToQueryValues, greaterThanQueryValues, and lessThanQueryValues) that have NSString
values and that do not have an associated entry in the queryOperatorValues dictionary. In these
cases, the operator matchOperator is used to perform pattern matching.

The default value for the query match operator is caseInsensitiveLike, which means that the
query does not consider case when matching letters. The other possible value for this operator
is like, which matches the case of the letters exactly.

See Also: – defaultStringMatchOperator, – setDefaultStringMatchFormat:

setDelegate:

– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See Also: – delegate

C L A S S E O D i s p l a y G r o u p

81

setEqualToQueryValues:

– (void)setEqualToQueryValues:(NSDictionary *)values

Sets to values the receiver’s dictionary of equalTo query values. The qualifierFromQueryValues
method uses this dictionary along with the lessThan and greaterThan dictionaries to construct
qualifiers.

See Also: – equalToQueryValues, – setLessThanQueryValues:, – setGreaterThanQueryValues:

setFetchesOnLoad:

– (void)setFetchesOnLoad:(BOOL)flag

Controls whether the receiver automatically fetches its objects after being loaded from a nib file.
If flag is YES it does; if flag is NO the receiver must be told explicitly to fetch. The default is NO.
You can also set this behavior in Interface Builder using the Inspector panel.

See Also: – fetch, – fetchesOnLoad

setGreaterThanQueryValues:

– (void)setGreaterThanQueryValues:(NSDictionary *)values

Sets to values the receiver’s dictionary of greaterThan query values. The
qualifierFromQueryValues method uses this dictionary along with the lessThan and equalTo
dictionaries to construct qualifiers.

See Also: – greaterThanQueryValues, – setLessThanQueryValues:, – setEqualToQueryValues:

setInQueryMode:

– (void)setInQueryMode:(BOOL)flag

Sets according to flag whether the receiver is in query mode.

See Also: – inQueryMode, – enterQueryMode:

82

C L A S S E O D i s p l a y G r o u p

setInsertedObjectDefaultValues:

– (void)setInsertedObjectDefaultValues:(NSDictionary *)defaultValues

Sets default values to be used for newly inserted objects. When you use the insert... method
to add an object, that object is initially empty. Because the object is empty, there is no value to be
displayed on the HTML page, meaning there is nothing for the user to select and modify. You
use this method to provide at least one field that can be displayed for the newly inserted object.
The possible keys into the dictionary are the properties of the entity managed by this display
group. For example, a component that displays a list of movie titles and allows the user to insert
new movie titles might contain these statements to ensure that all new objects have something
to display as a movie title:

[defaultValues setObject:@”New title” forKey:@”title”];
[movies setInsertedObjectDefaultValues:defaultValues];

See Also: – insertedObjectDefaultValues

setLessThanQueryValues:

– (void)setLessThanQueryValues:(NSDictionary *)values

Sets to values the receiver’s dictionary of lessThan query values. The qualifierFromQueryValues
method uses this dictionary along with the greaterThan and equalTo dictionaries to construct
qualifiers.

See Also: – lessThanQueryValues, – setGreaterThanQueryValues:, – setEqualToQueryValues:

setLocalKeys:

– (void)setLocalKeys:(NSArray *)keys

Sets the additional keys to which EOAssociations can be bound to the strings in keys. Instead of
invoking this method programmatically, you can use Interface Builder to add and remove local
keys in the EODisplayGroup Attributes Inspector panel.

See Also: – localKeys

C L A S S E O D i s p l a y G r o u p

83

setObjectArray:

– (void)setObjectArray:(NSArray *)objects

Sets the receiver’s objects to objects, regardless of what its EODataSource provides. This method
doesn’t affect the EODataSource’s objects at all; specifically, it results in neither inserts or deletes
of objects in the EODataSource. objects should contain objects with the same property names or
methods as those accessed by the receiver. This method is used by fetch to set the array of
fetched objects; you should rarely need to invoke it directly.

After setting the object array, this method restores as much of the original selection as possible
by invoking selectObjectsIdenticalTo:. If there’s no match and the receiver selects after
fetching, then the first object is selected.

See Also: – allObjects, – displayedObjects, – selectsFirstObjectAfterFetch

setQualifier:

– (void)setQualifier:(EOQualifier *)aQualifier

Sets the receiver’s qualifier to aQualifier. This qualifier is used to filter (in memory) the
receiver’s array of objects for display when the delegate doesn’t do so itself. Use
updateDisplayedObjects to apply the qualifier.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects:, that method is
used instead of the qualifier to filter the objects.

See Also: – displayedObjects, – qualifier, – qualifierFromQueryValues,
– setAuxil iaryQualif ier: (EODatabaseDataSource in EOAccess)

setQueryBindingValues:

– (void)setQueryBindingValues:(NSDictionary *)values

Sets the dictionary of values that a user wants to query on. You use this method to perform a
query stored in the model file. Bind keys in the queryBindingValues dictionary to elements of
your component that specify query values.

84

C L A S S E O D i s p l a y G r o u p

setQueryOperatorValues:

– (void)setQueryOperatorValues:(NSDictionary *)values

Sets the dictionary of operators to use on items in the query dictionaries (equalToQueryValues,
greaterThanQueryValues, and lessThanQueryValues). If a key in a query dictionary also exists in
queryOperatorValues, that operator for that key is used.

setSelectedObjectValue:forKey:

– (BOOL)setSelectedObjectValue:(id)value
forKey:(NSString *)key

Invokes setValue:forObject:key: with the first selected object, returning YES if successful and NO
otherwise. This method should be invoked only by EOAssociation objects to propagate changes
from display objects.

See Also: – setValue:forObjectAtIndex:key:, – valueForObject:key:

setSelectionIndexes:

– (BOOL)setSelectionIndexes:(NSArray *)indexes

Selects the objects at indexes in the receiver’s array if possible, returning YES if successful and NO
if not (in which case the selection remains unaltered). indexes is an array of NSNumbers. This
method is the primitive method for altering the selection; all other such methods invoke this one
to make the change.

This method invokes endEditing to wrap up any changes being made by the user. If endEditing
returns NO, this method fails and returns NO. This method then checks the delegate with a
displayGroup:shouldChangeSelectionToIndexes: message. If the delegate returns NO, this method
also fails and returns NO. If the receiver successfully changes the selection, its observers (typically
EOAssociations) each receive a subjectChanged message.

C L A S S E O D i s p l a y G r o u p

85

setSelectsFirstObjectAfterFetch:

– (void)setSelectsFirstObjectAfterFetch:(BOOL)flag

Controls whether the receiver automatically selects its first displayed object after a fetch when
there were no selected objects before the fetch. If flag is YES it does; if flag is NO then no objects
are selected. By default, display groups select the first object after a fetch when there was no
previous selection.

See Also: – displayedObjects, – fetch, – selectsFirstObjectAfterFetch

setSortOrderings:

– (void)setSortOrderings:(NSArray *)orderings

Sets the EOSortOrdering objects that updateDisplayedObjects uses to sort the displayed objects
to orderings. Use updateDisplayedObjects to apply the sort orderings.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects:, that method is
used instead of the sort orderings to order the objects.

See Also: – displayedObjects, – sortOrderings

setUsesOptimisticRefresh:

– (void)setUsesOptimisticRefresh:(BOOL)flag

Controls how the receiver redisplays on changes to objects. If flag is YES it redisplays only when
elements of its displayed objects array change; if flag is NO it redisplays on any change in its
EOEditingContext. Because changes to other objects can affect the displayed objects (through
flattened attributes or custom methods, for example), EODisplayGroups by default use the more
pessimistic refresh technique of redisplaying on any change in the EOEditingContext. If you
know that none of the EOAssociations for a particular EODisplayGroup display derived values,
you can turn on optimistic refresh to reduce redisplay time.

The default is NO. You can also change this setting in Interface Builder’s Inspector panel using the
Refresh All check box.

See Also: – usesOptimisticRefresh

86

C L A S S E O D i s p l a y G r o u p

setValidatesChangesImmediately:

– (void)setValidatesChangesImmediately:(BOOL)flag

Controls the receiver’s behavior on encountering a validation error. Whenever an
EODisplayGroup sets a value in an object, it sends the object a validateValue:forKey: message,
allowing the object to coerce the value’s type to a more appropriate one or to return an exception
indicating that the value isn’t valid. If this method is invoked with a flag of YES, the receiver
immediately presents an attention panel indicating the validation error. If this method is
invoked with a flag of NO, the receiver leaves validation errors to be handled when changes are
saved. By default, display groups don’t validate changes immediately.

See Also: – saveChanges (EOEditingContext), – validatesChangesImmediately

setValue:forObject:key:

– (BOOL)setValue:(id)value
forObject:(id)anObject
key:(NSString *)key

Sets a property of anObject, identified by key, to value. Returns YES if successful and NO
otherwise. If a new value is set, sends the delegate a displayGroup:didSetValue:forObject:key:
message.

This method should be invoked only by EOAssociation objects to propagate changes from
display objects. Other application code should interact with the objects directly.

If the receiver validates changes immediately, it sends anObject a validateValue:forKey:
message, returning NO if the object refuses to validate value. Otherwise, validation errors are
checked by the EOEditingContext when it attempts to save changes.

See Also: – setValue:forObjectAtIndex:key:, – setSelectedObjectValue:forKey:,
– valueForObject:key:, – validatesChangesImmediately

setValue:forObjectAtIndex:key:
whose ids

Invokes setValue:forObject:key: with the object at index, returning YES if successful and NO
otherwise. This method should be invoked only by EOAssociation objects to propagate changes
from display objects.

See Also: – setSelectedObjectValue:forKey:,– valueForObjectAtIndex:key:

C L A S S E O D i s p l a y G r o u p

87

sortOrderings

– (NSArray *)sortOrderings

Returns an array of EOSortOrdering objects that updateDisplayedObjects uses to sort the
displayed objects, as returned by the displayedObjects method.

See Also: – setSortOrderings:

updateDisplayedObjects

– (void)updateDisplayedObjects

Recalculates the receiver’s displayed objects array and redisplays. If the receiver’s delegate
responds to displayGroup:displayArrayForObjects:, it’s sent this message and the returned
array is set as the display group’s displayed object. Otherwise, the receiver applies its qualifier
and sort ordering to its array of objects. In either case, any objects that were selected before
remain selected in the new displayed objects array.

See Also: – redisplay, – displayedObjects, – selectedObjects, – qualifier, – sortOrderings

updatedObjectIndex

– (int)updatedObjectIndex

Returns the index in the displayed objects array of the most recently updated object, or –1 if more
than one object has changed. The return value is meaningful only when contentsChanged returns
YES. EOAssociations can use this method to optimize redisplay of their user interface objects.

usesOptimisticRefresh

– (BOOL)usesOptimisticRefresh

Returns YES if the receiver redisplays only when its displayed objects change, NO if it redisplays
on any change in its EOEditingContext.

See Also: – setUsesOptimisticRefresh:

88

C L A S S E O D i s p l a y G r o u p

validatesChangesImmediately

– (BOOL)validatesChangesImmediately

Returns YES if the receiver immediately handles validation errors, or NO if it leaves errors for the
EOEditingContext to handle when saving changes.

See Also: – setValidatesChangesImmediately:

valueForObject:key:

– (id)valueForObject:(id)anObject
key:(NSString *)key

Returns anObject’s value for the property identified by key.

valueForObjectAtIndex:key:

– (id)valueForObjectAtIndex:(unsigned int)index
key:(NSString *)key

Returns the value of the object at index for the property identified by key.

Notifications

EODisplayGroupWillFetchNotification
Posted whenever an EODisplayGroup receives a fetch message. The notification contains:

Notification Object The EODisplayGroup that received the fetch message.

Userinfo None

89

C L A S S

EOGenericControlAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOControlAssociation.h

Class Description

EOGenericControlAssociation is the abstract superclass of EOControlAssociation and
EOActionCellAssociation. You never use instances of this class directly; its isUsableWithObject:
method always returns NO. See the subclass specifications for more information.

Usable With Aspects Object Keys Taken

Nothing value target

enabled delegate

90

C L A S S E O G e n e r i c C o n t r o l A s s o c i a t i o n

Instance Methods

control

– (NSControl *)control

Overridden by subclasses to return the receiver’s display object—an NSControl (Application
Kit).

editingAssociation

– (EOGenericControlAssociation *)editingAssociation

Overridden by subclasses to return the association responsible for handling text delegation
messages. For example, if the display object is a NSMatrix or NSTableView (Application Kit),
this method returns the association for the cell being edited.

91

C L A S S

EOMasterCopyAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOMasterCopyAssociation.h

Class Description

An EOMasterCopyAssociation object synchronizes two EODisplayGroups that share the same
data source but have different qualifiers.

By binding two display groups with an EOMasterCopyAssociation, any changes performed in
one display group are immediately reflected in the other. Similarly, changing the selection in one
display group immediately changes it in the other one.

Usable With

EODisplayGroup

Aspects

parent An EODisplayGroup with which the association’s display group should be
synchronized.

92

C L A S S E O M a s t e r C o p y A s s o c i a t i o n

Examples
Suppose you have an EODisplayGroup for displaying Talent objects (actors and directors) and
another display group for displaying the pictures of the Talents who are actors. When a Talent
is selected in the first display group, you want the “actor” display group to select that Talent’s
picture if the selected Talent is an actor. Since both display groups manage Talent objects, they
can share the same EODataSource. However, the first display group is unqualified—it fetches
all Talent objects; the second display group is qualified to fetch only the Talents who are actors.

To do this, in Interface Builder, start with an unqualified display group for displaying all the
Talents. Drag a second display group from the Enterprise Objects palette into your nib.
Control-drag a connection from the new display group to the unqualified Talent display group.
In the Connections inspector, choose EOMasterCopyAssociation, select the parent aspect, and
click Connect. This action automatically sets the second display group’s data source. Initially,
the data source is set to an EODetailDataSource—that’s what you’ll see in Interface Builder.
However, at runtime, the association switches the second display group’s data source to that of
the parent display group.

Now when you run the application, the display groups will be synchronized with one another.
(You’ll programmatically assign a qualifier to the second display group so that it filters out
non-actor Talents.)

Object Keys Taken

None

93

C L A S S

EOMasterDetailAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOMasterDetailAssociation.h

Class Description

An EOMasterDetailAssociation object binds one EODisplayGroup (the detail) to a relationship
in another (the master), so that the detail display group contains the destination objects for the
object selected in the master. The display groups’ data sources also operate in a master-detail
arrangement, meaning changes to one are immediately reflected in the other. In this
arrangement, the detail EODisplayGroup’s data source must be an EODetailDataSource. The
detail objects are taken directly from the selected object in the master EODisplayGroup, so that
changes to the objects in one EODisplayGroup are instantly reflected in the other.

In Yellow Box, by contrast, with an EOMasterPeerAssociation, the two EODisplayGroups are
independent of each other (EOMasterPeerAssociation is not a Java Client class). In a master-peer
setup, insertions and deletions in the detail EODisplayGroup don’t affect the corresponding

94

C L A S S E O M a s t e r D e t a i l A s s o c i a t i o n

relationship property of the selected object in the master EODisplayGroup. Master-peer setups
are more appropriate when no insertions or deletions will be made in the detail
EODisplayGroup. See the EOMasterPeerAssociation class specification for more information.

Example
Suppose you have a master EODisplayGroup displaying Movie objects and a detail display
group displaying Talent objects. The two display groups are bound to one another through
Movie’s directors relationship—a to-many relationship from Movie to Talent. When a Movie is
selected, you want the Talent display group to display the Talents who directed the Movie.
Inserting a new director into the Talent display group should add the director to the selected
Movie’s directors relationship; and similarly, deleting a director from the Talent display group
should remove the director from the selected Movie’s directors relationship.

To do this, in Interface Builder, control-drag a connection from the Talent display group to the
Movie display group. In the Connections inspector, choose EOMasterDetailAssociation, and
bind parent aspect to the “directors” key.

Instance Methods

priority

– (EOObserverPriority)priority

Returns EOObserverPrioritySecond (one notch above the default priority). This guarantees that
changes in the master are propagated to the detail before any other updates are made.

Usable With

EODisplayGroups whose data sources are EODetailDataSources

Aspects

parent A relationship from the master EODisplayGroup.

95

C L A S S

EOMasterPeerAssociation

Inherits from: EOMasterDetailAssociation :EOAssociation :
EODelayedObserver (EOControl) :NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOMasterDetailAssociation.h

Class Description

An EOMasterPeerAssociation binds two EODisplayGroups together in a master-detail
relationship, where the detail EODisplayGroup shows the destination objects for the
relationship of the master EODisplayGroup.

In a master-peer arrangement, the detail display group’s data source is independent. Detail
objects are fetched independently from the detail’s data source, which means that changes to one
display group aren’t automatically reflected in the other. To update the other display group, it’s
necessary to save the changes made and then have the other display group fetch its objects anew.

Contrast this with a master-detail setup using an EOMasterDetailAssociation. With an
EOMasterDetailAssociation, the display groups’ data sources also operate in a master-detail
arrangement, meaning changes to one are immediately reflected in the other. The detail objects
are taken directly from the selected object in the master display group, so that changes to the
objects in one display group are instantly reflected in the other. Master-peer setups display these
advantages over master-detail setups:

96

C L A S S E O M a s t e r P e e r A s s o c i a t i o n

■ You can use them to display the destination objects for relationships that are defined in the
model but not declared as class properties. This is typically done for rarely accessed
information—or information that’s costly to access. By not defining the relationship as a class
property, the destination objects aren’t stored as instance variables in the source objects,
which saves memory and the cost of constructing faults for the relationship.

■ Because the detail display group fetches objects with its own data source, you can configure
the detail data source with an auxiliary EOQualifier to limit the objects fetched. This further
reduces the cost of fetching data.

■ You can use an EOMasterPeerAssociation to fetch detail information that may be updated in
another editing context or even in another application; thus this association helps you to
remain “up to date” with the database.

Generally, master-peer setups are only appropriate when no insertions or deletions will be made
in the detail display group. For a master-detail relationship that reflects changes between two
display groups, including insertions and deletions, use an EOMasterDetailAssociation.

Example
Suppose you have a database of salesmen and their associated sales. Each salesman has a city
ID. The sales are related to the salesmen by salesman ID, but also have a city ID. You want a list
of all the sales in a salesman’s city so you could evaluate it against other salesmen. For this, you
create a relationship between salesman and sales based on city ID (the relationship is not a class
property). You can then display that information using an EOMasterPeerAssociation.

Usable With

EODisplayGroups whose data sources are not EODetailDataSources

Aspects

parent A relationship from the master EODisplayGroup.

Object Keys Taken

None

97

C L A S S

EOMatrixAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOMatrixAssociation.h

Class Description

An EOMatrixAssociation allows you to populate an NSMatrix’s cells (Application Kit).
EOMatrixAssociation supports connections for both cell titles and icons, depending on the
matrix’s prototype cell. You define the prototype in Interface Builder (to display an icon only,
text only, or both).

Usable With

NSMatrix (Application Kit)

Aspects

enabled A boolean attribute of the objects, which determines whether the matrix is
enabled.

image An NSImage attribute of the objects to display in the cell.

title An attribute of the objects to display in the cell.

98

C L A S S E O M a t r i x A s s o c i a t i o n

Examples
Suppose that you want to display actors’ names and pictures in an NSMatrix. Start with a
TalentPhoto display group (where a TalentPhoto object has a relationship to its Talent object). In
interface builder, create a button containing both an image and text. Then, alternate-drag to
create a matrix of buttons. Control-drag from the matrix to the photo display group. In the
Connections inspector, choose EOMatrixAssociation, and bind the image aspect to the photo
attribute. Repeat, binding the title aspect to the talent.lastName attribute.

Note that you can group the matrix in a scroll view. An EOMatrixAssociation will automatically
manage the size of the matrix for this (for vertical scrolling only).

Object Keys Taken

target On receiving an action message from the matrix, an EOMatrixAssociation
updates its display group’s selection.

99

C L A S S

EOPickTextAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOPickTextAssociation.h

Class Description

An EOPickTextAssociation takes the value of its display object, an NSControl (Application Kit),
and uses it to form a qualifier with up to three LIKE operators, each compared to a different key
of the EODisplayGroup. This allows the user to perform a similarity search based on whole or
partial values.

EOPickTextAssociations are most often used with a table view to qualify a list of fetched objects
that is too long for convenient scrolling.

Usable With

Any NSControl

100

C L A S S E O P i c k Te x t A s s o c i a t i o n

Example
Make an EOPickTextAssociation between an NSTextField and an EODisplayGroup of People
objects. Bind the matchKey1 and matchKey2 aspects to the “lastName” and “firstName” keys. If the
user types “Bi” in the field, the EOPickTextAssociation applies the following qualifier to the
EODisplayGroup:

(lastName like “*Bi*“) OR (firstName like “*Bi*“)

which matches names like “Bill Smith” and “Joe Biggs”. The list of objects displayed in the
display group is restricted to those that match the qualifier.

Aspects

matchKey1 An attribute to match using a LIKE qualifier.

matchKey2 An attribute to match using a LIKE qualifier.

matchKey3 An attribute to match using a LIKE qualifier.

Object Keys Taken

target The EOPickTextAssociation applies its qualifier when sent an action message
from the NSControl.

delegate The EOPickTextAssociation applies its qualifier when sent a
controlTextDidChange: message, causing dynamic update as the user types.

101

C L A S S

EOPopUpAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOPopUpAssociation.h

Class Description

An EOPopUpAssociation object displays an attribute or to-one relationship value in an
NSPopUpButton (Application Kit).

The items in the NSPopUpButton can be entered manually, or for a relationship, constructed
dynamically from values supplied by the destination entity’s EODisplayGroup. The value
displayed by the NSPopUpButton can be bound by one of three aspects: selectedTitle, which
is useful for values representable as strings; selectedTag, for integer values; and selectedObject,
for the destination object of a relationship.

Usable With

NSPopUpButton (Application Kit)

102

C L A S S E O P o p U p A s s o c i a t i o n

Examples
There are several basic ways to configure a combo box and it’s association. They are described
below.

Selecting a String from a Static List

Suppose you have a Movie display group and you want to provide a pop-up list for setting the
rating from a static list of strings. In this example, a Movie object’s rating is a string property
rather than a relationship to a Rating object. To do this, in Interface Builder, type the list of
ratings into the pop-up list. Control-drag a connection from the pop-up list to the Movie display
group. Choose EOPopUpAssociation in the Connections inspector, and bind the selectedTitle
aspect to the “rating” key. With this configuration, if an object’s string attribute value isn’t in the
pop-up list, it’s temporarily added while the object is selected.

Selecting a String from a Dynamic List

This example is similar to the previous one, except in this example, a Movie object’s rating is
chosen from strings in a Rating database table. There’s a Rating EODisplayGroup that fetches
the ratings into Rating objects, and the pop-up list is filled from the “ratingString” property of

Aspects

titles An attribute of the objects in an EODisplayGroup whose values can be
represented as strings.

selectedTitle An attribute of the selected object whose values can be represented as
strings.

selectedTag An integer attribute of the selected object.

selectedObject A to-one relationship of the selected object; the value displayed is that for
the attribute bound to the titles aspect.

enabled A boolean attribute of the selected object, which determines whether the
NSPopUpButton is enabled.

Object Keys Taken

target When the user chooses an item in the pop-up list, the EOPopUpAssociation
updates the selected object’s property with the item’s title, tag, or object.

C L A S S E O P o p U p A s s o c i a t i o n

103

the rating display group’s Rating objects. To do this, in Interface Builder, control-drag a
connection from the pop-up list to the Ratings display group. Choose EOPopUpAssociation in
the Connections inspector, and bind the titles aspect to the “ratingString” key. Similarly,
control-drag a connection from the pop-up list to the Movie display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedTitle aspect to the
“rating” key.

Selecting an Integer Tag from a Static List

Suppose you have a Customer enterprise object whose credit card type (Visa, MasterCard, and
so on) is indicated by an integer tag. You want a user to be able to choose a customer’s card type
from a pop-up list. To do this, in Interface Builder, set the credit card names and tags for the
pop-up list. Control-drag a connection from the pop-up list to the Customer display group.
Choose EOPopUpAssociation in the Connections inspector, and bind the selectedTag aspect to
the “cardType” key. You can also allow for a general “other” value by defining a special tag and
setting it in the EOPopUpAssociation using setTagValueForOther:. Credit card tags from the
database not matching any in the pop-up list are then displayed as the “other” value. (It would
also make sense to disable the pop-up list in this case, to avoid writing the meaningless tag back
to the database.)

Selecting the Destination of a To-One Relationship

Suppose you have a list of employees and want to assign each employee a department. In terms
of the object model, you want to assign a Department object as the destination of an Employee
object’s department relationship. To do this, in Interface Builder, control-drag a connection from
the pop-up list to a Department display group. Choose EOComboBoxAssociation in the
Connections inspector, and bind the titles aspect to the “name” key. Similarly, control-drag a
connection from the pop-up list to the Employee display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedObject to the
“department” key. This fills the pop-up list with the names of departments, and causes the name
of the selected Employee’s Department to be selected in the pop-up list.

104

C L A S S E O P o p U p A s s o c i a t i o n

Instance Methods

setTagValueForOther:

– (void)setTagValueForOther:(int)tag

Records tag as the “unknown” tag. When a property value doesn’t match any other tag in the
pop-up list, the EOPopUpAssociation automatically selects the item for this tag. If there’s no
item for this tag, the pop-up list’s selection isn’t changed. This tag value is by default –1.

tagValueForOther

– (int)tagValueForOther

Returns the “unknown” tag.

105

C L A S S

EORadioMatrixAssociation

Inherits from: EOAssociation : EODelayedObserver : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EORadioMatrixAssociation.h

Class Description

EORadioMatrixAssociation displays a string or an integer in an NSMatrix.
EORadioMatrixAssociation includes three aspects: selectedTitle, which is useful for values
representable as strings; selectedTag, for integer values; and enabled for enabling and disabling
the NSMatrix.

Usable With

NSMatrix

Aspects

selectedTitle An attribute of the selected object whose values can be represented as strings.

selectedTag An integer attribute of the selected object.

enabled A boolean attribute of the selected object, which determines whether the matrix is
enabled.

106

C L A S S E O R a d i o M a t r i x A s s o c i a t i o n

Instance Methods

setTagValueForOther:

– (void)setTagValueForOther:(int)tag

Records tag as the “unknown” tag. When a property value doesn’t match any other tag in the
matrix, the EORadioMatrixAssociation automatically selects the item for this tag. If there’s no
item for this tag, the radio button selection isn’t changed. This tag value is by default –1.

tagValueForOther

– (int)tagValueForOther

Returns the “unknown” tag.

Object Keys Taken

target When the user chooses an item in the matrix, the EORadioMatrixAssociation
updates the selected object’s property with the item’s title or tag.

107

C L A S S

EORecursiveBrowserAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EORecursiveBrowserAssociation.h

Class Description

An EORecursiveBrowserAssociation is the default association for use with a multi-column
NSBrowser (Application Kit).

EORecursiveBrowserAssociation manages hierarchical structures, such as a company’s
management chain—the first column is filled with top-level managers, the second column is
filled with the employees who report directly to the selected top-level manager, and so on.

Usable With

NSBrowser (Application Kit)

108

C L A S S E O R e c u r s i v e B r o w s e r A s s o c i a t i o n

Example
Suppose you want to display a company’s management structure in a browser. Start with a
display group for Employee objects. Programmatically qualify this display group to fetch only
the top-level management (the Employees with which to fill the browser’s first column).

Drag a browser into a window. Be sure to set it to “Allow branch selection.” Control-drag from
the browser to your Employee display group. In the Interface Builder’s Connections Inspector
(EORecursiveBrowserAssociation—labeled EORecBrowser—is chosen by default), bind the
rootChildren aspect to Employee’s directReports relationship (a recursive, to-many
relationship). Making this binding has the effect of:

■ Creating a new display group named “LastEmployeeColumn.” More generally, the new
display group has a name of the form, “LastNameOfFirstDisplayGroupColumn.”

■ Preconnecting the new display group to a data source.

■ Binding the EORecursiveBrowserAssociation’s children aspect to the directReports
relationship—the same relationship used for the rootChildren aspect.

Now bind the title and isLeaf aspects. (Note that if you try to bind these aspects before you
bind the rootChildren aspect, you’ll bypass work that the association can do for you
automatically.) Control-drag from the browser to either of the display groups, and bind the

Aspects

rootChildren An array of objects with which to fill the browser’s first column.

title An attribute of objects to display in the browser’s cells.

isLeaf A boolean attribute of objects that determines whether the corresponding
browser cell is a leaf (YES) or a branch (NO).

children An NSArray attribute of the selected object, with which to fill the next column.
This aspect is only used when the selected object is a branch (responds NO to
isLeaf).

Object Keys Taken

target used to handle user click actions within the browser. The association sends the
proper synchronization msg to the DG.

delegate used to fill in the values of the browser

C L A S S E O R e c u r s i v e B r o w s e r A s s o c i a t i o n

109

association’s title aspect to the fullName key and the isLeaf aspect to the
isIndividualContributor key (a method that returns NO if the Employee is a manager with direct
reports). It doesn’t matter what display group you make these bindings to, because the
association expects rootChildren and children to reference the same kind of objects (have the
same keys).

Now the association populates the browser’s columns based on the selection in the previous
column. You might want to create a master-detail association between the LastColumn display
group and another display group. For example, the Employees application might display
information about the employee selected in the browser’s right-most column.

The rootChildren Aspect
When you bind an EORecursiveBrowserAssociation’s rootChildren aspect, the association
assumes that children will be bound to the same key. However, it’s possible for you to bind
these aspects to different keys. If you want to do this, you’ll have to disconnect the children
binding that the association creates automatically, and then rebind it to the key you want to use.
Note that you only have this freedom with the first column. Subsequent columns must all use
the same key to satisfy the children aspect.

110

C L A S S E O R e c u r s i v e B r o w s e r A s s o c i a t i o n

111

C L A S S

EOTableViewAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOColumnAssociation.h

Class Description

An EOTableViewAssociation object manages the individual EOColumnAssociations between
an NSTableView (Application Kit) and an EODisplayGroup.

An EOTableViewAssociation can sort the objects in the display group by the left-to-right order
of the table columns. The first EOColumnAssociation to be bound to a table view automatically
creates the EOTableViewAssociation; you should rarely need to do so yourself.

An EOTableViewAssociation receives data source and delegate messages from the table view,
some of which it handles itself, and some of which it forwards to the appropriate
EOColumnAssociations. For more information, see the EOColumnAssociation class
specification.

Usable With

NSTableView

112

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

Example
For an example of using an EOTableViewAssociation, see the EOColumnAssociation class
specification.

Method Types

Setting up a table view association

+ bindToTableView:displayGroup:

Aspects

source Bound to the EODisplayGroup providing objects. This aspect doesn’t use a key.

enabled A boolean attribute of the objects, which determines whether each object’s row is
editable. Note that because EOColumnAssociation also uses this aspect, you can
use it with different keys to limit editability to the whole row or to an individual
cell (column) in that row.

textColor An NSColor attribute of the objects, which determines the color of text for each
object’s row in the NSTableView.

bold A boolean attribute of the objects, which determines whether each objects row is
displayed in bold or regular weight text.

italic A boolean attribute of the objects, which determines whether each objects row is
displayed in italic or normal angle text.

Object Keys Taken

dataSource An EOTableViewAssociation responds to some data source messages and
forwards others to the appropriate EOColumnAssociation.

delegate An EOTableViewAssociation forwards delegate messages to the appropriate
EOColumnAssociations.

target Reserved, but not used.

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

113

Sorting

– setSortsByColumnOrder:

– sortsByColumnOrder

Accessing the active EOColumnAssociation

– editingAssociation

Table view data source methods

– numberOfRowsInTableView:

– tableView:setObjectValue:forTableColumn:row:

– tableView:objectValueForTableColumn:row:

Table view delegate methods

– tableView:shouldEditTableColumn:row:

– tableView:willDisplayCell:forTableColumn:row:

Table view notification methods

– tableViewSelectionDidChange:

Control delegate methods

– control:didFailToFormatString:errorDescription:

– control:isValidObject:

– control:textShouldBeginEditing:

114

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

Class Methods

bindToTableView:displayGroup:

+ (void)bindToTableView:(NSTableView *)aTableView
displayGroup:(EODisplayGroup *)aDisplayGroup

Creates an EOTableViewAssociation, binding aTableView to aDisplayGroup, if there isn’t already
a table view association for aTableView. EOColumnAssociation’s establishConnection invokes
this method to guarantee the presence of a coordinating EOTableViewAssociation.

Instance Methods

control:didFailToFormatString:errorDescription:

– (BOOL)control:(NSControl *)aTableView
didFailToFormatString:(NSString *)aString
errorDescription:(NSString *)errorDescription

Forwards the message to the receiver’s editing association.

See Also: – editingAssociation

control:isValidObject:

– (BOOL)control:(NSControl *)aTableView
isValidObject:(id)anObject

Forwards the message to the receiver’s editing association.

See Also: – editingAssociation

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

115

control:textShouldBeginEditing:

– (BOOL)control:(NSControl *)aTableView
textShouldBeginEditing:(NSText *)fieldEditor

Forwards the message to the receiver’s editing association.

See Also: – editingAssociation

editingAssociation

– (EOColumnAssociation *)editingAssociation

Returns the EOColumnAssociation for the NSTableView cell being edited, or nil if no cell is
being edited.

numberOfRowsInTableView:

– (int)numberOfRowsInTableView:(NSTableView *)aTableView

Returns the number of displayed objects in the receiver’s EODisplayGroup.

See Also: – displayedObjects (EODisplayGroup)

setSortsByColumnOrder:

– (void)setSortsByColumnOrder:(BOOL)flag

Controls whether the receiver applies a sort ordering to its EODisplayGroup. If flag is YES, it
builds EOSortOrderings (EOControl) for each of the EOColumnAssociations, collects them into
an NSArray based on the left-to-right order of the columns, and assigns them to the display
group with setSortOrderings:. If flag is NO, it doesn’t alter the sort ordering of the display group.

An EOTableViewAssociation assigns sort orderings based on the left to right order of the table
columns, and reassigns them whenever the user moves a column.

See Also: – sortingSelector (EOColumnAssociation)

116

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

sortsByColumnOrder

– (BOOL)sortsByColumnOrder

Returns YES if the receiver assigns EOSortOrderings (EOControl) to its EODisplayGroup based
on the sorting selectors of its EOColumnAssociations, NO if it doesn’t alter the display group’s
sort ordering.

tableView:objectValueForTableColumn:row:

– (id)tableView:(NSTableView *)aTableView
objectValueForTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation
bound to that column—so that it can provide the value.

tableViewSelectionDidChange:

– (void)tableViewSelectionDidChange:(NSNotification *)aNotification

Updates the receiver’s EODisplayGroup based on the new selection in the table view.

See Also: – setSelectionIndexes: (EODisplayGroup)

tableView:setObjectValue:forTableColumn:row:

– (void)tableView:(NSTableView *)aTableView
setObjectValue:(id)value
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation
bound to that column—so that it can set the value.

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

117

tableView:shouldEditTableColumn:row:

– (BOOL)tableView:(NSTableView *)aTableView
shouldEditTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Returns NO if the enabled aspect is bound and its value for the object at rowIndex is NO. Otherwise
forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation
bound to that column—and returns its response. Note that because the two associations’ enabled
aspects can be bound to different keys, you can limit editability to the whole row or to an
individual cell (column) in that row.

tableView:willDisplayCell:forTableColumn:row:

– (void)tableView:(NSTableView *)aTableView
willDisplayCell:(id)aCell
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Alters the display characteristics for aCell according to the values for the enabled, textColor,
bold, and italic aspects of the object at rowIndex. Then forwards the message to aTableColumn’s
identifier—assumed to be the EOColumnAssociation bound to that column—allowing it to
adjust aCell based on its own enabled aspect.

118

C L A S S E O Ta b l e V i e w A s s o c i a t i o n

119

C L A S S

EOTextAssociation

Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms to: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared in: EOInterface/EOTextAssociation.h

Class Description

An EOTextAssociation object displays a plain or rich text attribute in an NSText object
(Application Kit) by binding the text object to a string or NSData attribute. It determines the kind
of text received from an object by examining the beginning for signature codes specific to RTF
and RTFD. When writing text back to the object, the association examines the configuration of
the NSText object to determine the type to use according to the following table:

Multiple Fonts Allows Graphics Type Written to Object

NO NO NSString text

YES NO NSData containing RTF

YES YES NSData containing RTFD

120

C L A S S E O Te x t A s s o c i a t i o n

The following tables describe the display objects an EOTextAssociation can be used with, the
aspects of an EOTextAssociation, and the object keys it takes.

Usable With

NSText, NSTextView, NSCStringText

Aspects

value A text attribute of the selected object.

editable A boolean attribute of the selected object, which determines
whether the text object is editable.

Object Keys Taken

delegate An EOTextAssociation accepts delegate messages related to the
editing and validation of text; see the NSText, NSTextView, and
NSCStringText class specifications for more information.

121

C A T E G O R Y

NSImage Additions

Category of: NSImage

Declared in: EOInterface/EOControlAssociation.h

Category Description

Enterprise Objects Framework adds one method to NSImage to aid in conversion of image data
from databases. This method is used as a factory method for custom value archiving, as
described in the EOCustomClassArchiving informal protocol specification. See the NSImage
class specification in the Application Kit documentation for a list supported image file formats.

Static Methods (in Java) or Class Methods (in ObjC)

imageWithData:

+ imageWithData:(NSData *)imageData

Creates an NSImage from imageData and returns it.

See Also: – initWithData: (NSImage class of the Application Kit) ,
– TIFFRepresentation (NSImage class of the Application Kit)

122

C A T E G O R Y N S I m a g e A d d i t i o n s

123

P R O T O C O L

EODisplayGroup Delegate

(informal protocol)

Declared in: EOInterface/EODisplayGroup.h

Protocol Description

The EODisplayGroup Delegate informal protocol defines methods that an EODisplayGroup can
invoke in its delegate. Delegates are not required to provide implementations for all of the
methods in the informal protocol. Instead, declare and implement any subset of the methods
declared in the informal protocol that you need, and use the EODisplayGroup method
setDelegate: method to assign your object as the delegate. A display group can determine if the
delegate doesn’t implement a delegate method and only attempts to invoke the methods the
delegate actually implements.

Method Types

Fetching objects

– displayGroupShouldFetch:

– displayGroup:didFetchObjects:

– displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:

124

P R O T O C O L E O D i s p l a y G r o u p D e l e g a t e

Inserting, updating, and deleting objects

– displayGroup:shouldInsertObject:atIndex:

– displayGroup:didInsertObject:

– displayGroup:createObjectFailedForDataSource:

– displayGroup:didSetValue:forObject:key:

– displayGroup:shouldDeleteObject:

– displayGroup:didDeleteObject:

Managing the display

– displayGroup:shouldDisplayAlertWithTitle:message:

– displayGroup:shouldRedisplayForChangesInEditingContext:

– displayGroup:displayArrayForObjects:

Managing the selection

– displayGroup:shouldChangeSelectionToIndexes:

– displayGroupDidChangeSelection:

– displayGroupDidChangeSelectedObjects:

Changing the data source

– displayGroupDidChangeDataSource:

Instance Methods

displayGroup:createObjectFailedForDataSource:

– (void)displayGroup:(EODisplayGroup *)aDisplayGroup
createObjectFailedForDataSource:(EODataSource *)aDataSource

Invoked from insertObjectAtIndex: to inform the delegate that aDisplayGroup has failed to
create a new object for aDataSource. If the delegate doesn’t implement this method, the
EODisplayGroup instead runs an alert panel to inform the user of the failure.

P R O T O C O L E O D i s p l a y G r o u p D e l e g a t e

125

displayGroupDidChangeDataSource:

– (void)displayGroupDidChangeDataSource:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s EODataSource has changed.

displayGroupDidChangeSelectedObjects:

– (void)displayGroupDidChangeSelectedObjects:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s set of selected objects has changed, regardless of
whether the selection indexes have changed.

displayGroupDidChangeSelection:

– (void)displayGroupDidChangeSelection:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s selection has changed.

displayGroup:didDeleteObject:

– (void)displayGroup:(EODisplayGroup *)aDisplayGroup
didDeleteObject:(id)anObject

Informs the delegate that aDisplayGroup has deleted anObject.

displayGroup:didFetchObjects:

– (void)displayGroup:(EODisplayGroup *)aDisplayGroup
didFetchObjects:(NSArray *)objects

Informs the delegate that aDisplayGroup has fetched objects.

displayGroup:didInsertObject:

– (void)displayGroup:(EODisplayGroup *)aDisplayGroup
didInsertObject:(id)anObject

Informs the delegate that aDisplayGroup has inserted anObject.

126

P R O T O C O L E O D i s p l a y G r o u p D e l e g a t e

displayGroup:didSetValue:forObject:key:

– (void)displayGroup:(EODisplayGroup *)aDisplayGroup
didSetValue:(id)value
forObject:(id)anObject
key:(NSString *)key

Informs the delegate that aDisplayGroup has altered a property value of anObject. key identifies
the property, and value is its new value.

displayGroup:displayArrayForObjects:

– (NSArray *)displayGroup:(EODisplayGroup *)aDisplayGroup
displayArrayForObjects:(NSArray *)objects

Invoked from updateDisplayedObjects, this method allows the delegate to filter and sort
aDisplayGroup’s array of objects to limit which ones get displayed. objects contains all of
aDisplayGroup’s objects. The delegate should filter any objects that shouldn’t be shown and sort
the remainder, returning a new array containing this group of objects. You can use the NSArray
methods filteredArrayUsingQualifier: and sortedArrayUsingKeyOrderArray: added in
EOControl to create the new array.

If the delegate doesn’t implement this method, the EODisplayGroup uses its own qualifier and
sort ordering to update its displayed objects array.

See Also: – sortOrderings, – qualifier, – displayedObjects

displayGroup:shouldChangeSelectionToIndexes:

– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup
shouldChangeSelectionToIndexes:(NSArray *)newIndexes

Allows the delegate to prevent a change in selection by aDisplayGroup. newIndexes is the
proposed new selection, an array of NSNumbers. If the delegate returns YES, the selection
changes; if the delegate returns NO, the selection remains as it is.

P R O T O C O L E O D i s p l a y G r o u p D e l e g a t e

127

displayGroup:shouldDeleteObject:

– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup
shouldDeleteObject:(id)anObject

Allows the delegate to prevent aDisplayGroup from deleting anObject. If the delegate returns YES,
anObject is deleted; if the delegate returns NO, the deletion is abandoned.

displayGroup:shouldDisplayAlertWithTitle:message:

– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup
shouldDisplayAlertWithTitle:(NSString *)title
message:(NSString *)message

Allows the delegate to prevent aDisplayGroup from displaying an attention panel with title and
message. The delegate can return YES to allow aDisplayGroup to display the panel, or NO to prevent
it from doing so (perhaps displaying a different attention panel).

displayGroupShouldFetch:

– (BOOL)displayGroupShouldFetch:(EODisplayGroup *)aDisplayGroup

Allows the delegate to prevent aDisplayGroup from fetching. If the delegate returns YES,
aDisplayGroup performs the fetch; if the delegate returns NO, aDisplayGroup abandons the fetch.

displayGroup:shouldInsertObject:atIndex:

– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup
shouldInsertObject:(id)anObject
atIndex:(unsigned int)anIndex

Allows the delegate to prevent aDisplayGroup from inserting anObject at anIndex. If the delegate
returns YES, anObject is inserted; if the delegate returns NO, the insertion is abandoned.

128

P R O T O C O L E O D i s p l a y G r o u p D e l e g a t e

displayGroup:shouldRedisplayForChangesInEditingContext:

– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup
shouldRedisplayForEditingContextChangeNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOObjectsChangedInEditingContextNotification,
this method allows the delegate to suppress redisplay based on the nature of the change that has
occurred. If the delegate returns YES, aDisplayGroup redisplays; if it returns NO, aDisplayGroup
doesn’t. aNotification supplies the EOEditingContext that has changed, as well as which objects
have changed and how. See the EOEditingContext class specification for information on
EOObjectsChangedInEditingContextNotification.

See Also: – redisplay

displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:

– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup
shouldRefetchForInvalidatedAllObjectsNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOInvalidatedAllObjectsInStoreNotification,
this method allows the delegate to suppress refetching of the invalidated objects. If the delegate
returns YES, aDisplayGroup immediately refetches its objects. If the delegate returns NO,
aDisplayGroup doesn’t immediately fetch, instead delaying until absolutely necessary.
aNotification is an NSNotification. See the EOObjectStore and EOEditingContext class
specifications for information on this notification.

C O L O P H O N

129

This Apple manual was written, edited, and composed on a desktop publishing system using Apple
Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some elements,
such as program listings, are set in Adobe Letter Gothic.

130

C O L O P H O N

	SybaseAdaptor class:specification
	EOActionAssociation class:specification
	EOActionCellAssociation class:specification
	EOActionInsertionAssociation class:specification
	EOAssociation class:specification
	EOAssociation class:specification
	EOColumnAssociation class:specification
	EOComboBoxAssociation class:specification
	EOControlAssociation class:specification
	EODetailSelectionAssociation class:specification
	EODisplayGroup class:specification
	EOGenericControlAssociation class:specification
	EOMasterCopyAssociation
	EOMasterDetailAssociation class:specification
	EOMasterPeerAssociation class:specification
	EOMatrixAssociation
	EOPickTextAssociation class:specification
	EOPopUpAssociation class:specification
	EORadioMatrixAssociation class:specification
	EORecursiveBrowserAssociation
	EOTableViewAssociation class:specification
	EOTextAssociation class:specification
	NSImage Additions class:specification
	EODisplayGroup Delegate

