

I n s i d e W e b O b j e c t s

Java Client Desktop Applications

May 2002



 Apple Computer, Inc.
© 2000–2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac,
QuickTime, and
WebObjects are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

Enterprise Objects and Enterprise
Objects Framework are trademarks of
NeXT Software, Inc., registered in the
United States and other countries.
Java and all Java-based marks are
trademarks or registered trademarks
of Sun Microsystems, Inc. in the
United States and other countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3



 Apple Computer, Inc. May 2002

Contents

Figures, Listings, and Tables

11

Chapter 1

Introduction

19

Who Should Read This Book 20
Road Map 21
Related Documents 22
Java Client Features 22

Better User Experience 22
Object Distribution 23
The Best of WebObjects 23
Deployment Options 24
Rapid Application Development 24

When to Choose Java Client 24
Java Client Development 27
Database Access 32
Java Client and Other Multi-Tier Systems 32

Chapter 2

Java Client Concepts

35

Enterprise Objects 35
What Is an Enterprise Object? 36
Enterprise Object Models 37

Java Client Architecture 37
Business Logic 39
Foundation Framework 40
Access Layer 41

Essential EOAccess Classes 41
EOAdaptor 42
EODatabaseContext 42
EOModel 42
EOUtilities 42

4



 Apple Computer, Inc. May 2002

C O N T E N T S

Control Layer 43
Essential EOControl Classes 43

EOEnterpriseObject 43
EOEditingContext 44
EOFetchSpecification 46
EOGlobalID 46
EOObjectStoreCoordinator 46

Distribution Layer 46
Essential EODistribution Classes 47

Client Interface Layer 48
Display Groups 48
Associations 48

Application Layer 50
Generation Layer 50
Model-View-Controller Paradigm 52
Deploying and Using Java Client Applications 53

Server Requirements 54

Chapter 3

Basic Tutorial

55

Create the Database 56
Create an EOModel 57

Behind the Steps 59
Build the Model 61

Behind the Steps 63
Completing the Model 64

Behind the Steps 66
Generate SQL 67

Behind the Steps 68
Create the Project 69

Behind the Steps 71
More About The Java Client Class Loader 72

The Default Project 73
Groups 73
Targets 74
Client Files (Web Server Target) 75
Server Files (Application Server Target) 75

C O N T E N T S

5



 Apple Computer, Inc. May 2002

Add a Launch Argument 77
More About Session Time Outs 79

Build the Executable 79
Run the Client Application 80

Prepare to Run the Project 80
Client Launch Script 81

Behind the Steps 82
Java 82
JDK appletviewer 82
MRJ Application 83

Application Startup 83
Using the Application 84

Behind the Steps 88
Customizing the Application 88

Behind the Steps 94
Inside Assistant 95

Entities 95
Main Entities 95
Enumeration Entities 95
“Other” Entities 96

Properties 96
Task 96
Question 98
Property Keys 98

Widgets 99
Windows 99
Miscellaneous 99
XML 99

Add a Relationship 99
Add an Entity 99
Make the Relationship 101
The Enhanced Application 104

Where to Go From Here 106

6



 Apple Computer, Inc. May 2002

C O N T E N T S

Chapter 4

Distribution Layer

107

Business Logic Partitioning 107
Design Recommendations 108
Performance 109

Remote Method Invocations 110
On Business Logic 110
On Application Logic 111
Distributed Object Store 112

Custom Code in Business Logic 113
Distribution Layer Objects 114
Data Synchronization 116
Distribution Channels 117
Delegates 117

Chapter 5

Advanced Tutorial

119

Customization Techniques 119
Enhance the EOModel 122

Add an Entity 123
Make a Relationship 125

Add Custom Business Logic 128
Prepare the Project for Custom Logic 129
Generate Source Files 130

Behind the Steps 133
Prepare Application for Business Logic 134
Add Custom Code 138

Validation 140
Initial Values 142

Controller Hierarchy 144
Controllers 144
Creating the Controller Hierarchy 145

Using Rules in the Rule System 146
Additional Actions 148

Write the Action 148
Use Assistant 153
Extend a Controller Class 158
Additional Exercise 161

Debugging 165

C O N T E N T S

7



 Apple Computer, Inc. May 2002

Chapter 6

Nondirect Java Client Development

167

Building Custom Interfaces 167
Laying Out the User Interface 171

Prepare the Nib File 172
Integrate the Model 174
Add Formatters 177
Adding Action Methods 179
Create a Master-Detail Interface 181
Build and Run 185
Programmatic Access to Interface Components 185

Cocoa to Swing Translation 187

Chapter 7

Inside the Rule System

189

How It Works 189
Rule System Priorities 191
D2WComponents 191
Rule System Requests 191
Internal Rule System Requests 192
Generating the Student Form Window 193

EOSwitchComponent 196

Chapter 8

Task: Restricting Access to an Application

199

The Documents Menu 199
The Default Query Window 200
Restricting Tasks Within the Application 201

Chapter 9

Task: Using the Controller Factory Programmatically

205

Selecting Objects in an Entity 205
Triggering a Task 206
Inserting Objects 207

8



 Apple Computer, Inc. May 2002

C O N T E N T S

Chapter 10

Task: Adding Custom Actions to Controllers

209

Subclassing Controller Classes 209
Writing Custom Controller Classes 213

Chapter 11

Task: Adding Custom Menu Items

215

About Actions 215
New D2WComponent 216
Application-Wide Actions 217
Menu-Specific Actions 218
Controller-Specific Actions 219

Chapter 12

Task: Customizing With Common Rules

221

Confirmation Dialog 221
Window Size 222
Widget Alignment 223
Custom Controllers 223
Custom Class for Widgets 224
Custom Attributes for Controllers 225

Chapter 13

Task: Freezing XML User Interfaces

227

Freeze XML User Interfaces 227
Customize the XML 234

Adding Actions to Frozen XML 236
Edit XML by Hand 237
Using a Custom Controller Class in Frozen XML 237

Chapter 14

Task: Mixing Static and Dynamic User Interfaces

241

Preparing the Nib for Freezing 241
Integrating the Nib File 243

C O N T E N T S

9



 Apple Computer, Inc. May 2002

Chapter 15

Task: Using Custom Views in Interface Files

245

Custom Views 245
EOImageView 253

Chapter 16

Task: Localizing Dynamic Components

255

Localizing Property Labels 255
Localizing the Standard Strings and Frozen XML Components 262

Chapter 17

Task: Building Custom List Controllers

265

Chapter 18

Task: Using and Extending Image Views

267

Adding Outlets 267
Adding the Widget 268
Connecting the Outlet 270
Loading the Image 271

Chapter 19

Task: Using Pop-up Menus In Nib Files

275

Chapter 20

Task: Building a Login Window

285

Building the User Interface 285
Adding Logic to Authenticate Users 290
Restricting Access 294

Appendix A

XML Description of Classes and Actions

297

XML Value Types 297
Classes With XML Tags and XML Attributes 299
EOActions XML Descriptions 312

10



 Apple Computer, Inc. May 2002

C O N T E N T S

Glossary

315

Index

321

11



 Apple Computer, Inc. May 2002

Figures, Listings, and Tables

Chapter 1

Introduction

19

Figure 1-1 A custom Java Client interface 29
Figure 1-2 A typical Direct to Java Client application 29
Figure 1-3 Dynamically generated user interface 30
Table 1-1 Comparison of static and dynamic user interfaces 31

Chapter 2

Java Client Concepts

35

Figure 2-1 Java Client architecture 38
Figure 2-2 Editing contexts and object stores 45
Figure 2-3 The complete stack of WebObjects layers in Direct to Java

Client 51

Chapter 3

Basic Tutorial

55

Figure 3-1 Part of the completed application in this chapter 56
Figure 3-2 Configuring a new database 57
Figure 3-3 JDBC connection information 58
Figure 3-4 Deselect all options for this model 59
Figure 3-5 Entity Inspector 62
Figure 3-6 Name Attribute Inspector 63
Figure 3-7 The primary key attribute 65
Figure 3-8 The finished model 65
Figure 3-9 Generate SQL 67
Figure 3-10 Choose EOModel 70
Figure 3-11 Configure the class loader 71
Figure 3-12 Target pop-up menu 75
Figure 3-13 The default groups and files 77
Figure 3-14 Add session timeout launch argument 78
Figure 3-15 Default enumeration window 85
Figure 3-16 Revised model 86

12



 Apple Computer, Inc. May 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Figure 3-17 Schema Synchronization window 87
Figure 3-18 Revised enumeration window 88
Figure 3-19 Change entity type 89
Figure 3-20 Query window with data 90
Figure 3-21 Query window searching for names containing “e” 90
Figure 3-22 Properties tab in Assistant 91
Figure 3-23 Query on GPA 92
Figure 3-24 Left-hand side of rules 93
Figure 3-25 Right-hand side of rules 93
Figure 3-26 The application with simple customizations 94
Figure 3-27 Form window 97
Figure 3-28 Query window and list task 98
Figure 3-29 Activity entity 100
Figure 3-30 Relate Student and Activity 101
Figure 3-31 Relationship Inspector for Student’s activities relationship 102
Figure 3-32 Relationship Inspector for Activity’s student relationship 103
Figure 3-33 Make Student to Activity relationship a client-side class

property 104
Figure 3-34 Do not make Activity to Student relationship a client-side class

property 104
Figure 3-35 Add activities to new Student record 105

Chapter 4

Distribution Layer

107

Figure 4-1 Objects in the distribution layer 115

Chapter 5

Advanced Tutorial

119

Figure 5-1 The updated Student entity 123
Figure 5-2 Interview entity 124
Figure 5-3 Generate SQL for the Interview entity 125
Figure 5-4 The interviews relationship in the Student entity 126
Figure 5-5 The student relationship in the Interview entity 127
Figure 5-6 Student’s relationships 127
Figure 5-7 Interview’s relationship 128
Figure 5-8 Directory structure for custom business logic 130

F I G U R E S , L I S T I N G S , A N D T A B L E S

13



 Apple Computer, Inc. May 2002

Figure 5-9 Save Client Java files in BusinessLogic/Client 131
Figure 5-10 Import BusinessLogic directory 132
Figure 5-11 BusinessLogic group with imported files and associated

targets 133
Figure 5-12 Add a property key for the form task 134
Figure 5-13 Additional property key for list task 135
Figure 5-14 Change the widget type to make the association. 136
Figure 5-15 Change formatter for property in list view 137
Figure 5-16 The rating field in action 140
Figure 5-17 Initial values 143
Figure 5-18 Validation exception message 143
Figure 5-19 New key of type Student in the Report component 149
Figure 5-20 New key of type Interview in the Report component 150
Figure 5-21 New key of type Activity in the Report component 151
Figure 5-22 Dynamic elements for Student’s attributes 151
Figure 5-23 WORepetition for Student’s interviews 152
Figure 5-24 WORepetition for Student’s activities 152
Figure 5-25 Add property key for new action 154
Figure 5-26 Change the widget type of the new property key 155
Figure 5-27 The new property key as an EOActionController 156
Figure 5-28 Add launch argument for SMTP host 158
Figure 5-29 Image form window with new buttons 161
Figure 5-30 Choose email recipients 164
Listing 5-1 CustomFormController code 159
Table 5-1 Consequences of each customization technique 122
Table 5-2 A subset of the controllers available in Direct to Java Client 145

Chapter 6

Nondirect Java Client Development

167

Figure 6-1 Name the interface controller 168
Figure 6-2 Choose a template for the interface controller 169
Figure 6-3 Interface Builder palettes 170
Figure 6-4 Enterprise Objects palette 170
Figure 6-5 The Interface Builder environment 172
Figure 6-6 Classes pane in the nib file window 173
Figure 6-7 Assign the custom subclass to File’s Owner 174
Figure 6-8 The Student entity dragged into Interface Builder 175

14



 Apple Computer, Inc. May 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Figure 6-9 Display group and editing context 175
Figure 6-10 Display group options in Interface Builder 176
Figure 6-11 Choose a formatter for the Gpa column 177
Figure 6-12 Choose a formatter for the FirstContact column 178
Figure 6-13 Testing the application 179
Figure 6-14 Connect the Add button to the insert method of the Student

EODisplayGroup 180
Figure 6-15 Select the insert method 181
Figure 6-16 The activities relationship in the Student entity 182
Figure 6-17 A master-detail interface 183
Figure 6-18 Complete widget set for the master-detail interface 184
Figure 6-19 Connect widgets with associations 185
Figure 6-20 Add an outlet 186
Figure 6-21 Connect the new outlet 187

Chapter 8

Task: Restricting Access to an Application

199

Figure 8-1 Default actions in a form window 201
Figure 8-2 Disabled actions in a form window 203

Chapter 9

Task: Using the Controller Factory Programmatically

205

Figure 9-1 Select dialog 206
Figure 9-2 Form window from controller factory 208

Chapter 10

Task: Adding Custom Actions to Controllers

209

Figure 10-1 Image form window with new actions 212
Listing 10-1 Subclassing EOFormController 210
Listing 10-2 A custom controller class 213

Chapter 11

Task: Adding Custom Menu Items

215

Listing 11-1 Changing the superclass of UserActions 217

F I G U R E S , L I S T I N G S , A N D T A B L E S

15



 Apple Computer, Inc. May 2002

Chapter 12

Task: Customizing With Common Rules

221

Figure 12-1 Confirm dialog on unqualified queries 221

Chapter 13

Task: Freezing XML User Interfaces

227

Figure 13-1 Select Component as the file type 228
Figure 13-2 Name new component “StudentFormWindow” 229
Figure 13-3 XML description of Student entity, form window 231
Figure 13-4 Make a new rule file for custom rules 232
Figure 13-5 Add a rule to use frozen XML 233
Figure 13-6 Student form window with BOXCONTROLLER tag 236
Figure 13-7 Action in custom controller class 239
Listing 13-1 Change the superclass of StudentFormWindow to

D2WComponent 230
Listing 13-2 StudentFormWindow.html (frozen XML) 235

Chapter 14

Task: Mixing Static and Dynamic User Interfaces

241

Figure 14-1 Classes pane in the nib file window 242
Figure 14-2 Assign the custom subclass to File’s Owner 243

Chapter 15

Task: Using Custom Views in Interface Files

245

Figure 15-1 Custom view object in window 246
Figure 15-2 Find NSView in class hierarchy 246
Figure 15-3 Name the custom view class 247
Figure 15-4 Associate custom view with NSView subclass 248
Figure 15-5 Custom view as NSView subclass 249
Figure 15-6 File’s Owner’s class 249
Figure 15-7 Add outlet to interface file 250
Figure 15-8 Connect new outlet to custom view 251
Figure 15-9 File’s Owner’s attributes 252

16



 Apple Computer, Inc. May 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Chapter 16

Task: Localizing Dynamic Components

255

Figure 16-1 Right-hand side class of type Assignment 255
Figure 16-2 Right-hand class of type Custom 256
Figure 16-3 Add localized variant of Localizable.strings file 259
Figure 16-4 Add localized variant for German 260
Figure 16-5 Localized resources in project 260
Listing 16-1 LocalizedStringLookup class 256
Listing 16-2 German-localized variants of strings file 261

Chapter 18

Task: Using and Extending Image Views

267

Figure 18-1 Add a new outlet 268
Figure 18-2 Cocoa-Other palette 269
Figure 18-3 Place widget with guides 269
Figure 18-4 File’s Owner icon with exclamation point 270
Figure 18-5 Connect outlet to widget 271
Figure 18-6 Image in image view 273
Listing 18-1 Overriding controllerDidLoadArchive 273

Chapter 19

Task: Using Pop-up Menus In Nib Files 275

Figure 19-1 Illustrator entity in nib file 275
Figure 19-2 Cocoa-Other palette 276
Figure 19-3 Connect widget to display group 277
Figure 19-4 Bind the title aspect to the appropriate attribute 278
Figure 19-5 EODisplayGroup object in nib file 279
Figure 19-6 Bind File’s Owner’s controllerDisplayGroup outlet 279
Figure 19-7 Bind the outlet 280
Figure 19-8 Add a key to display group 281
Figure 19-9 Bind selectedIndex attribute of association to display group

key 282
Figure 19-10 A pop-up menu in action 283

F I G U R E S , L I S T I N G S , A N D T A B L E S

17
  Apple Computer, Inc. May 2002

Chapter 20 Task: Building a Login Window 285

Figure 20-1 Login window user interface 286
Figure 20-2 Add outlets named username and password 286
Figure 20-3 Add actions 287
Figure 20-4 File’s Owner with new connections 288
Figure 20-5 Select the WOJavaClientApplet dynamic element 289
Figure 20-6 Add value for interfaceControllerClassName binding 290
Figure 20-7 Login failed 293
Listing 20-1 Client-side login method 291
Listing 20-2 login method 292
Listing 20-3 Authentication in Session.java 292
Listing 20-4 Load a nib file programmatically 295

18
  Apple Computer, Inc. May 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

19
  Apple Computer, Inc. May 2002

C H A P T E R 1

1 Introduction

WebObjects recognizes the need for distributed, three-tier application solutions
with more complex, rich, and responsive user interfaces than HTML allows. So, in
addition to HTML-based WebObjects applications, you can also write Java-based
WebObjects desktop applications that use Swing for the user interface. The client
part of these applications run as real desktop applications in the client’s Java virtual
machine. This feature of WebObjects is called Java Client.

WebObjects Java Client is a three-tier network application solution that allows you
to develop platform-agnostic desktop applications with database access and rich
user interfaces. Java Client applications are WebObjects applications: They share
much of their API with traditional HTML-based WebObjects applications such as
the Enterprise Object technology for database access, the WebObjects framework
for session management, and the rule system, which enables rapid development
and provides a flexible rule-based approach to application development.

This book introduces you to Java Client by first presenting key concepts such as
architecture, enterprise objects, client-server communication, object distribution,
the Model-View-Controller paradigm, and rule-based application development.
Then, you are led through the development of simple yet practical tutorials that
introduce you to the WebObjects developer tools and the features of Java Client.
Finally, the book provides a number of task-specific chapters that teach you how to
add features to applications like access controls, custom menu items, and
sophisticated user interfaces.

Note: This book describes WebObjects 5.1. Future versions of WebObjects may
include API and other changes that affect the tutorials, sample code, and concepts
described herein.

20 Who Should Read This Book
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

There are two starting points in Java Client development—the Direct to Java Client
project type and the Java Client project type. This book teaches you how to build
Java Client applications starting with the Direct to Java Client approach. This
approach reduces the amount of code you need to write and lets you take advantage
of some of the best features of WebObjects such as the rule system and rule-based
rapid development. And you can easily integrate all aspects of the nondirect
approach (such as hand-built user interfaces) into the direct approach for maximum
flexibility.

Some of the customizations you’ll perform in the tutorials—such as building user
interfaces in Interface Builder—teach you just about everything you need to know
to build strictly nondirect Java Client applications. So if you’re an experienced Java
Client developer, don’t think that this book isn’t for you. By learning how to
leverage the features of the Direct to Java Client approach, you’ll learn how to build
better Java Client applications.

Who Should Read This Book

This book is intended for a wide variety of audiences, including

� new WebObjects developers

� new Web developers

� WebObjects HTML developers

� experienced WebObjects Java Client developers

This book assumes that you have some background in object-oriented
programming, specifically in Java. Since WebObjects is most valuable when used to
provide database connectivity to distributed applications, a basic understanding of
relational databases is assumed throughout the book.

The book, however, does not assume any prior knowledge of WebObjects.
Although you’ll better understand the advanced concepts in Java Client if you’ve
developed HTML-based WebObjects applications, this knowledge isn’t necessary
to be a successful Java Client developer.

C H A P T E R 1

Introduction

Road Map 21
  Apple Computer, Inc. May 2002

If you’re new to WebObjects development, you may find the book Inside WebObjects:
Discovering WebObjects for HTML useful when learning Java Client as it provides an
introduction to the WebObjects tools and to common WebObjects programming
techniques and concepts. Furthermore, the book Inside WebObjects: Developing
WebObjects Applications With Direct to Web helps you better understand the rule
system and the dynamic user-interface generation it provides. Familiarity with
these concepts will help you grasp the mechanics of Direct to Java Client.

Road Map

If you’re new to Java Client, start with the chapter “Java Client Concepts” (page 35)
to familiarize yourself with the Java Client architecture and to learn about the
fundamental objects used in a Java Client application, especially enterprise objects.
Then, move on to “Basic Tutorial” (page 55) to learn how to set up a simple database
and build a Direct to Java Client application that accesses it.

If you’ve had some experience with Java Client, you may want to start with the
chapter “Advanced Tutorial” (page 119), which covers topics like business logic
partitioning, user interface customization, and custom actions. Or, if you’re already
comfortable with these topics, you may want to consult the task chapters of the
book to learn how to change application flow, integrate Interface Builder files into
Direct to Java Client applications, write custom controller classes, and extend
applications in other ways.

This book approaches the topic of Java Client applications in a way different from
that of previous books and tutorials in the WebObjects documentation suite. In the
past, Direct to Java Client and Java Client were considered as two different
approaches to Java Client development. But it is more correct to simply understand
them as different starting points in Java Client development.

This book encourages you to begin development with the Direct to Java Client
project type, and it presents aspects of the nondirect approach as customization
techniques for applications developed from the Direct to Java Client starting point.
You are strongly encouraged to begin development with the direct approach and to
use nondirect interfaces within it to leverage the best of both worlds. See “Java
Client Development” (page 27) for more information on this topic.

22 Related Documents
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

Related Documents

You can find further documentation for WebObjects and Java Client in three places:

� Project Builder’s Developer Help Center, accessible through the Help menu

� Apple’s WebObjects documentation site: http://developer.apple.com/
techpubs/webobjects

� The WebObjects CD-ROM, which contains the WebObjects API reference,
various documents in HTML and PDF, examples, what’s new, and legacy
documentation

Java Client Features

If you’re looking for a three-tier Java application platform with robust data access,
rapid development tools, and powerful, innovative customization capabilities,
WebObjects Java Client is the perfect solution. Consider the features it offers.

Better User Experience
Java Client applications differ from HTML-based WebObjects applications in that
the user interface is built on Sun’s JFC/Swing classes, rather than on HTML. This
allows Java Client applications to take advantage of the rich user interface elements
the Swing toolkit offers. This is perhaps the primary reason why you’d choose to
build a WebObjects application using Java Client: the need for a rich, more
interactive user interface.

Rich user interfaces allow you to build more complex and interactive applications
than HTML allows. As the user interface becomes more robust, it is easier to display
and manipulate complex data. The more active feel of desktop applications gives
users the ability to work more efficiently: Desktop applications feel like they are
closer to the data store.

http://developer.apple.com/techpubs/webobjects
http://developer.apple.com/techpubs/webobjects

C H A P T E R 1

Introduction

Java Client Features 23
  Apple Computer, Inc. May 2002

Object Distribution
Java Client is built on the paradigm of object distribution. It distributes enterprise
objects between an application server and one or more clients—Java applications or
applets. It is up to the developer to control how this distribution occurs.

In all multi-tier network applications, it’s vitally important that the developer has
control over where the business logic sits. Some information such as credit card
numbers and passwords are important elements of business logic and should not
be sent to the client. Likewise, certain algorithms represent confidential business
logic and should live only on the application server. By partitioning your business
logic into client-side and server-side classes, you can improve performance and
secure business rules and legacy data.

In pure Java applications, object distribution is crucial in protecting business rules.
Since Java bytecode can quite easily be decompiled, it’s important that you have
control over the objects that live on the client. Object distribution, coupled with
remote method invocation, lets you build secure, high-performance applications.

The Best of WebObjects
As with any type of WebObjects application, Java Client gives you a lot for free. Its
tight integration with the Enterprise Object technology takes care of many basic
database access tasks for you. Without writing a single line of code, Java Client
allows you to connect user interface widgets to database actions such as saving,
retrieving, reverting, undoing, adding objects, and editing objects. Furthermore,
Java Client’s integration with Enterprise Objects abstracts development above the
need to ever write a line of SQL. And the development tools you use to build Java
Client applications let you build complex user interfaces in Swing without writing
any code.

It is the WebObjects philosophy that the technology should take care of all the tasks
fundamental to three-tier applications: database access, user interface coding,
deployment, and client-server communication. That way, you can focus on writing
business logic that best leverages the powerful data access mechanisms all
WebObjects applications offer.

24 When to Choose Java Client
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

Deployment Options
The client-side application of WebObjects Java Client applications runs on any JDK
1.3.1 or later system. The server-side application runs on any supported WebObjects
deployment server, which includes many J2EE servers. Since the Java Client
architecture isolates the application logic from any particular data access
mechanism, you have the flexibility to use many types of JDBC and JNDI data
sources regardless of the deployment platform.

Rapid Application Development
In addition to powerful data modeling, project development, and interface building
tools, Java Client includes a sophisticated rapid-development environment based
on the WebObjects rule system.

The Java Client rapid-development staring point, called Direct to Java Client,
generates application user interfaces by analyzing your application’s data model.
Direct to Java Client allows you to immediately see how changes in your data model
affect your application’s user interface.

Direct to Java Client lets you focus on writing custom business logic and provides
customization techniques that allow you to build sophisticated user interfaces
without writing any code. Best of all, Direct to Java Client applications are
completely integrated with the Enterprise Object technology, so they take full
advantage of the rich data access and persistence mechanisms that technology
offers. And applications built from the Direct to Java Client starting point can take
advantage of all aspects of applications built from the nondirect Java Client starting
point.

When to Choose Java Client

Java Client is a great technology for developing and deploying desktop applications
with powerful database access in controlled network environments where the end
users are known and are willing to install parts of the client application. It is not

C H A P T E R 1

Introduction

When to Choose Java Client 25
  Apple Computer, Inc. May 2002

ideal, however, for use in uncontrolled Internet environments or for high-traffic
websites. Typically, Java Client applications, when deployed as desktop
applications, are practical only in intranet environments.

Consider the case of a software company’s bug-tracking system. Perhaps the
company wants to give premium support customers access to the system through a
Java Client application. These customers are assumed to be knowledgeable users
and would have no problem downloading and installing certain parts of the client
application. However, providing the client application as a desktop application
from the company’s main website to a large number of novice end users would be
impractical due to the support those users would need installing and maintaining a
current version of the client application.

When deployed as desktop applications, Java Client applications have special
deployment requirements because part of the application runs on the user’s
computer. Unlike HTML-based applications, it is not enough to have a browser
application to run a Java Client application as a desktop application. You either
need to install the client-side application on user computers, which requires system
administration, or users need to download the client-side application every time
they want to use it. This makes Java Client applications too complex for the average
Internet application user who expects to type a URL in a browser and enter an
application within seconds of hitting the website.

However, you can also deploy Java Client applications as applets that run in
browsers. Deploying as applets alleviates many of the issues encountered when
running Java Client applications as desktop applications since users don’t need to
download or install the client application. However, applets introduce other
usability and deployment issues. See “Deploying and Using Java Client
Applications” (page 53) for a comparison of the two deployment methods.

Starting with WebObjects 5.1, the Java Client Class Loader eases deployment and
improves usability, thereby alleviating many of the issues regarding application
distribution and maintenance. See “More About The Java Client Class Loader”
(page 72) for more information.

Likewise, new features of the JDK such as Web Start ease application deployment
and usability by providing caching and other mechanisms to ease client-side class
management.

In deciding to use Java Client, you should evaluate the technology with these
criteria in mind: portability, performance, network environment, administration,
security, and user experience.

26 When to Choose Java Client
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

� Portability. Java Client applications are 100% Pure Java applications, requiring
a JRE (Java Runtime Environment) 1.3 or later system. Java Client applications
running in Mac OS X take advantage of platform-specific interface features such
as the global menu bar and the dirty window marker without compromising
platform independence.

� Performance. After the initial download of Java classes to the client, Java Client
applications don’t exchange large chunks of data between client and server.
Rather, compact business objects are exchanged over the network. Also, the Java
Client architecture separates the user interface layer from the data exchange
layer, so data flows across the network independent of user interface data. For
instance, in an HTML-based application, switching panes in a tab view requires
a round trip to the server to fetch more data or user interface information.
However, in Java Client, the client application usually has no need to contact the
server for simple user interface actions such as this. This allows Java Client
applications to scale well, and a WebObjects application server should scale just
as well serving Java Client applications or HTML-based applications.

� Network environment. Java Client applications can be deployed across the
Internet; they are not inherently constrained to intranet environments.
However, they are not appropriate for high-volume, high-visibility websites
because of the long initial download and other system administration
requirements (including the presence of JRE 1.3 or later).

� System administration. The presence of JRE 1.3 or later is not ubiquitous
amongst desktop operating systems. Mac OS X includes JRE 1.3 out of the box;
JRE 1.3 is not available for Mac OS 9 or earlier versions; Sun provides the JRE for
Windows platforms, but it does not ship in the box; JRE 1.3 is available for many
UNIX platforms. So, while the JRE is widely available, it must often be
downloaded and installed by the end user. You should evaluate your target
market, keeping in mind that some customers will be put off by the proposition
of installing the JRE.

� Security. If you take careful steps to partition your business logic and implement
the appropriate security mechanisms (delegates), Java Client applications offer
security equal to that of HTML-based applications. By default, Java Client uses
HTTP as the transport protocol between client and server, but it can be replaced
with another, more secure protocol such as SSL.

� Client-side processing. Web applications do the majority of their processing on
the server, while Java Client moves much of an application’s processing to the
client. This reduces the amount of client-server communication considerably,
making Java Client applications much snappier than their Web counterparts.

C H A P T E R 1

Introduction

Java Client Development 27
  Apple Computer, Inc. May 2002

� User experience. All the preceding criteria affect user experience in some way. If
your application demands a rich user interface, the manipulation of complex
data, and long sessions, Java Client is an excellent choice.

Java Client Development

There are two starting points in Java Client development represented by two Project
Builder project types: Direct to Java Client and Java Client. You should always start
with the Direct to Java Client project type. The nondirect project type gives you
almost no advantages—you write more code, the application is less dynamic, and
maintenance costs are much higher. And you can use all the features of nondirect
Java Client in Direct to Java Client applications, so you don’t lose anything by
starting with the Direct to Java Client project type. So unless you know that your
application will not gain anything from using the rule system and dynamic
user-interface generation, always choose the direct approach when building a Java
Client application.

Without customizations, the fundamental difference between the two project types
is that Direct to Java Client makes use of the rule system and nondirect Java Client
does not. In code-specific terms, Direct to Java Client applications are instances of
com.webobjects.eoapplication.EODynamicApplication whereas nondirect Java
Client applications are instances of com.webobjects.eoapplication.EOApplication.

You can think of the relationship this way: An uncustomized nondirect Java Client
application is a completely customized Direct to Java Client application that doesn’t
use the rule system for building user interfaces or managing the basic tasks of the
client application such as application startup. Whereas the user interface in
uncustomized Direct to Java Client applications is generated dynamically at
runtime and can include static, hand-built user interfaces, the user interface in
nondirect Java Client applications is always static and built by hand.

Perhaps the most significant difference between the two starting points is that
Direct to Java Client provides a rapid development environment that is useful both
for prototyping applications and for building full-featured, usable applications.
When you start with the nondirect approach, you get almost nothing for free—you

28 Java Client Development
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

have to build all the user interfaces for the application by hand. This book highly
recommends that you begin with the Direct to Java Client project type and use
elements of the nondirect project type within it if necessary.

If you need the precise user-interface customization that the nondirect approach
allows, it’s much easier to integrate a custom interface file in a Direct to Java Client
application than to develop a completely custom Java Client application (though
this is possible and supported). That way, you get the best of both worlds: the
advantages of Direct to Java Client and the advantages of custom interfaces built
with the nondirect approach.

The primary advantage of Direct to Java Client is that it’s not necessary to write
source code to generate or manage all of an application’s user interface. This allows
you to focus on writing business logic instead. The direct approach lets you manage
user interfaces without writing much source code and offers a number of alternative
mechanisms to customize user interfaces:

� Direct to Java Client Assistant (tool)

� custom rules (rule system)

� freezing XML (custom interface)

� freezing nib files (custom interface)

� using custom controller classes (custom code)

� using the controller factory programmatically

This book covers all of these customization methods.

The user interfaces for the two staring points to Java Client development each have
a particular character. However, keep in mind that it’s possible to customize each
type of interface to look like the other.

Typically, user interfaces built in Interface Builder for nondirect Java Client
applications or for use as frozen interface files in Direct to Java Client applications
resemble Figure 1-1.

C H A P T E R 1

Introduction

Java Client Development 29
  Apple Computer, Inc. May 2002

Figure 1-1 A custom Java Client interface

The dynamic user-interface generation provided in Direct to Java Client
applications yields interfaces that resemble Figure 1-2. However, advanced Direct
to Java Client applications are likely to include other, nondynamically generated
user interfaces such as custom controller classes or frozen interface files built in
Interface Builder.

Figure 1-2 A typical Direct to Java Client application

30 Java Client Development
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

Figure 1-3 shows dynamically-generated user interfaces that make use of custom
controller classes, custom rules, and programmatic invocations of the controller
factory.

Figure 1-3 Dynamically generated user interface

Direct to Java Client simplifies many parts of the development process and
facilitates the addition of features such as localization, data access, and data model
synchronization. The direct approach to Java Client is a great way to start
developing Java Client applications because it allows you to rely on the rule system

C H A P T E R 1

Introduction

Java Client Development 31
  Apple Computer, Inc. May 2002

to dynamically generate user interfaces. Dynamically generated user interfaces are
more flexible with regard to changes made in your data model than are static
interfaces and provide other advantages as shown in Table 1-1.

If you decide to start development with the nondirect Java Client approach, you
should keep in mind that your application will be harder to bring forward and
maintain than an application started with the Direct to Java Client approach. The
maintenance costs are higher for a number of reasons:

� you write more code

� you have more frozen interface pieces

� you need multiple versions of the same interface file for each language and
platform

� it’s harder to synchronize the user interface with changes in data models

Table 1-1 Comparison of static and dynamic user interfaces

Static Interfaces Dynamic Interfaces

Tools and
techniques used
to build

Interface Builder and raw
Swing.

Assistant, XML freezing,
Interface Builder files, custom
controller classes, controller
factory invocations.

Development
speed

Moderate to slow depending
on user interface design.

Rapid. User interfaces are
automatically generated but
are also easily customizable.

User interface
synchronization
with data
model

Difficult. User interface not
synchronized with data model
once user interface building
begins.

Synchronization happens
throughout much of the
customization process.

Localization Must use different interface
files.

Mostly automatic using the
rule system.

Maintenance More frozen code and frozen
interface elements to manually
maintain.

Applications are easier to
maintain and bring forward.

32 Database Access
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

So while you can write nondirect Java Client applications, the Direct to Java Client
approach helps you build applications that are far easier to bring forward and
maintain. You’ll also find that application development time is significantly
reduced with the direct approach.

Database Access

WebObjects applications gain much of their usefulness by interacting with data
stores, and the Enterprise Object technology is the mechanism by which
WebObjects applications interact with data stores.

The Enterprise Object technology is responsible for

� communicating with the data source

� representing data fetched from the data source in enterprise objects

� managing the graph of enterprise objects

� mediating between the object graph and user interfaces

� providing application utilities to Java Client applications

� managing object distribution across networks to Java clients

See “Related Documents” (page 22) to learn how to access the WebObjects API
reference and other documents on the Enterprise Object technology.

Java Client and Other Multi-Tier Systems

There are many distributed multi-tier Java-based architectures on the market today.
So how do they compare to WebObjects Java Client?

C H A P T E R 1

Introduction

Java Client and Other Multi-Tier Systems 33
  Apple Computer, Inc. May 2002

Client JDBC applications use a fat-client architecture. Custom code invokes JDBC
on the client, which in turn goes through a driver to communicate with a JDBC
proxy on the server. This proxy makes the necessary client-library calls on the
server.

The shortcomings of this architecture are typical of all fat-client architectures.
Security is a problem because the bytecodes on the client are easily decompiled,
leaving both sensitive data and business rules at risk. In addition, this architecture
doesn’t scale; it is expensive to move data over the channel to the client. Also, client
JDBC applications access the data source directly—there is no server layer to
validate data or control access to the data source.

JDBC three-tier applications (with CORBA as the transport) are a big improvement
over client JDBC applications. In this architecture, the client can be thin since all that
is required on the client side are the Java Foundation Classes (JFC), nonsensitive
custom code (usually for managing the user interface), and CORBA stubs for
communicating with the server. Sensitive business logic and database connection
logic are stored on the server. In addition, the server handles all data-intensive
computations.

The JDBC three-tier architecture has its own weaknesses. First, it results in too much
network traffic. Because this architecture uses proxy business objects on the client
as handles to real objects on the server, each client request for an attribute is
forwarded to the server, causing a separate round trip. Second, JDBC three-tier
requires developers to write much of the code themselves, from code for database
access and data packaging, to code for user interface synchronization and change
tracking. Finally JDBC three-tier does not provide much of the functionality
associated with application servers, such as application monitoring and load
balancing, nor does it provide HTML integration.

The Java Client architecture, however, scales well since real, fully functional data
objects are copied to the client and round trips are made to the server only for
database commits and new data fetches. Also, Java Client applications are designed
to leverage custom business logic that lets you control which business objects are
sent to the client and lets you validate data from the client before it’s committed to
the data store (the server has the last word on what data is committed).

34 Java Client and Other Multi-Tier Systems
  Apple Computer, Inc. May 2002

C H A P T E R 1

Introduction

Enterprise Objects 35
  Apple Computer, Inc. May 2002

C H A P T E R 2

2 Java Client Concepts

This chapter introduces you to the fundamental concepts of Java Client. It defines
the Enterprise Object technology and explains how it maps your database schema
into Java objects. It covers Java Client architecture and includes information on the
different framework layers and the functionality they provide. Chapter 3, “Basic
Tutorial,” links the concepts presented here to practical use in a sample application.

Enterprise Objects

To understand the Java Client architecture, you must first understand enterprise
objects. Like all WebObjects applications, Java Client applications gain much of
their usefulness by interacting with a persistent data store, usually a database. In
WebObjects, databases are represented as collections of objects called enterprise
objects that contain your application’s business logic.

The Enterprise Object technology maps your data to these enterprise objects, and
you work with the objects rather than directly with the data store. The Enterprise
Object technology handles all communication with the database, which frees you
from writing SQL and other database-specific code.

The Enterprise Object technology is composed of several specialized layers:

� com.webobjects.eoaccess.EOAdaptor subclasses use JDBC or JNDI to read and
write from data stores.

� com.webobjects.eoaccess manages interaction with a database; it is responsible
for object-relational mapping.

� com.webobjects.eocontrol manages a graph of enterprise objects.

36 Enterprise Objects
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

� com.webobjects.eointerface mediates between the control layer and an
application’s user interface; maps data to user interface elements.

� com.webobjects.eodistribution, com.webobjects.eodistribution.client
distributes enterprise objects across the network to the client; provides much of
the functionality of the EOAccess layer on the client.

� com.webobjects.eoapplication is a general user-interface utility layer specific to
both types of Java Client applications.

� com.webobjects.eogeneration, com.webobjects.eogeneration.client
dynamically generates the user interface for Direct to Java Client applications.

These layers are described in more detail later in this chapter.

What Is an Enterprise Object?
An enterprise object is like any other object in that it couples data with the methods
for operating on that data. However, an enterprise object class has certain
characteristics that distinguish it from other classes:

� It has properties that map to stored data; an enterprise object instance typically
corresponds to a single row or record in a database.

� It knows how to interact with other parts of the Enterprise Object technology to
give and receive values for its properties.

An enterprise object is made up of its class definition (such as
com.webobjects.eocontrol.EOGenericRecord) and the data values from the database
row or record with which the object is instantiated. An enterprise object has a
corresponding model that defines the mapping between the class’s object model
and the database schema. However, an enterprise object doesn’t explicitly “know”
about its model. Rather, it accesses its model through a
com.webobjects.eocontrol.EOClassDescription object.

C H A P T E R 2

Java Client Concepts

Java Client Architecture 37
  Apple Computer, Inc. May 2002

Enterprise Object Models
One of the fundamental features of the Enterprise Object technology is that it maps
the data in data stores (usually relational databases) to objects. The industry term
for this is object-relational mapping. The correspondence between an enterprise
object class and stored data is established and maintained by a model. A model
defines the mapping between enterprise object classes and a data store in
entity-relationship terms.

In addition to storing a mapping between the data store schema and enterprise
objects, a model file stores information needed to connect to the data store. This
connection information includes the name of an adaptor to load so that enterprise
objects can communicate with the data store. (WebObjects provides a JDBC adaptor
that allows you to connect to any JDBC Type 2 compliant or Type 4 compliant
database. It also provides a JNDI adaptor, and you can write your own adaptors to
connect to other types of data stores.)

Java Client Architecture

A Java Client application is essentially an Enterprise Objects application distributed
across an application server and one or more client applications or applets.

The design of Java Client breaks up some of the layers of the Enterprise Object
technology and distributes them across the client and the application server. Figure
2-1 (page 38) illustrates this architecture.

38 Java Client Architecture
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

Figure 2-1 Java Client architecture

Database

Server

Client

EOAccess

EOControl

Your Code

EOInterface

Application Kit

EODistribution

EOControl

Your client code

EOInterface

Swing

EOAccess

EOControl

Your Code

EOInterface

Application Kit

EOAccess

EOControl

Your server code

WebObjects

EODistribution

EOAccess

EOAccess

EOAdaptor

HTTP

EOApplication

...

C H A P T E R 2

Java Client Concepts

Business Logic 39
  Apple Computer, Inc. May 2002

The packages com.webobjects.foundation, com.webobjects.eocontrol, and
com.webobjects.eodistribution.client are provided on the client to allow real,
full-fledged, first-class enterprise objects to exist on the client side. Other
technologies similar to Java Client usually implement client stubs on the client side,
instead of creating real objects.

The client stub design requires a round trip to the server anytime the user does
anything with the business logic on the client. In the Java Client architecture, the
business logic (represented in real objects) can be queried and otherwise
manipulated without making a round trip to the server. Only when the user
explicitly executes a database action, such as saving or fetching, is a round trip to
the server made. This is made possible because the distribution layer uses a by-copy
distribution mechanism, which is described in more detail in “Java Client and Other
Multi-Tier Systems” (page 32).

Business Logic

The Enterprise Object architecture abstracts business logic from data stores and
from specific data-access mechanisms. This abstraction lets you build reusable
business objects that are independent of any data store or of the mechanisms for
accessing data. If you build well-behaving business objects, you can easily change
the data store your model accesses.

To achieve the goal of reusability, the Enterprise Object technology requires that
your business logic contains no data store schema information. Business objects
should not be identifiable as relating to any specific data store except by the data
they contain. That is, your business objects shouldn’t have any knowledge of
database primary and foreign keys, JDBC code, or data store connection dictionary
information. This allows you to use identical business logic classes on the client and
on the server.

In Java Client applications, you must take extra control of your business logic and
business objects. Unlike with HTML-based WebObjects applications, Java Client
applications pass Java business logic classes (business objects) across the network.
Clearly, you want to control which business logic and data each business object
contains.

40 Foundation Framework
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

For instance, the client should hardly ever need to know credit card information,
user passwords, algorithms specific to your business, or other sensitive business
logic. Java Client defines these parameters for business logic partitioning:

� Each business object can be represented by a different class on the client and on
the server.

� These different classes usually contain different sets of class properties.

� The goal in business logic partitioning is to pass as little data to the client as
possible.

� Since some computations require additional data, it makes sense to let certain
algorithms execute on the application server, which lives closer to the data store,
and to control if this data is sent to the client.

The most important aspect of business logic partitioning is finding the partitioning
scheme that minimizes the amount of data transferred from client to server. This
and other business logic partitioning issues are discussed in more programmatic
terms in “Business Logic Partitioning” (page 107).

Foundation Framework

The Foundation framework (com.webobjects.foundation) provides a set of robust
and mature core classes, including utility, collection, key-value coding, time and
date, notification, and debug logging classes.

Although you may choose to use the standard Java classes such as java.util.Vector
and java.util.HashTable, Foundation provides a rich set of classes that you may
find more flexible and robust than the standard Java foundation classes.

For historical reasons, the inner workings of WebObjects rely almost totally on
Foundation for collections and other low-level functionality. In your custom classes,
you are free to use the JDK foundation classes or the WebObjects Foundation
classes. However, you’ll find that your custom classes will be better integrated with
WebObjects if written with Foundation classes.

Listed here are classes that you may find especially useful in Foundation. Consult
the Foundation API reference for complete details.

C H A P T E R 2

Java Client Concepts

Access Layer 41
  Apple Computer, Inc. May 2002

� NSKeyValueCoding provides arbitrary access to data in objects; a
better-performing alternative to standard Java set and get methods.

� NSLog is the WebObjects debug logging system; allows you to easily control
debug logging for everything from SQL generation to user interface generation.

� NSBundle provides file system and archiving services (server-side only).

� NSDictionary and NSArray are common data structures used in
object-relational mapping.

Access Layer

The EOAccess layer (com.webobjects.eoaccess) is directly responsible for
communicating with the data store and for registering enterprise objects with the
EOControl layer. It exists only on the server and provides these functions:

� generates SQL to fetch data from and commit data to data stores

� manages the communication chain between the data store and the control layer

� manages model files, which define the object-relational mapping between data
stores and Java objects

� provides classes that represent various database elements, such as tables,
relationships, stored procedures, and joins

� maps raw data to business objects

EOAccess provides an elegant way to programmatically interact with data stores in
an abstract manner. It is designed to be data store-agnostic, so many of its objects
are reusable. Although EOAccess is an essential element of any WebObjects
application, you rarely need to use it programmatically.

Essential EOAccess Classes
The following sections introduce important EOAccess classes. For complete details,
see the EOAccess API reference.

42 Access Layer
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

EOAdaptor

EOAdaptor defines a server-independent interface for working with relational
database systems. This class is subclassed to communicate with specific data
sources. Server-specific subclasses encapsulate the behavior of a specific data
source.

EOAdaptor isolates your application from any particular data source. By switching
the EOAdaptor your application uses, you can change data sources without
changing any source code in your application.

EODatabaseContext

This class has many responsibilities, including fetching, faulting, saving, and
managing transactions and channels.

EOModel

EOModels establish and maintain the correspondence between an enterprise object
and stored data in entity-relationship terms. EOModels also store database
connection information, including the adaptor’s name.

EOUtilities

This class provides a collection of static convenience methods that make working
with enterprise objects easier. The methods allow you to query editing contexts for
information on the entities, objects, and relationships they manage. Convenience
methods are provided that allow you to more easily work with raw SQL, if
necessary.

Note: EOUtilities is not available on the client because it exists in the
com.webobjects.eoaccess package which is not provided on the client.
Furthermore, you should be careful when using EOUtilities in server-side
business logic classes as some of its methods reduce the reusability of those
classes.

C H A P T E R 2

Java Client Concepts

Control Layer 43
  Apple Computer, Inc. May 2002

Control Layer

The EOControl layer (com.webobjects.eocontrol) exists in identical form on both
the client side and the server side of Java Client applications. This layer manages the
object graph, implements faulting (on-demand fetching), and tracks editing
changes. The object store and data source used by the client control layer
communicate changes to the object graph across the channel to the server.

The control layer in Java Client applications maintains an object graph on the client
and on the server, but the set of objects in each object graph may differ depending
on how you partition your business logic. An object that exists in both client and
server object graphs is synchronized with the help of the distribution layer.

Essential EOControl Classes
The EOControl layer is very abstract, which allows it flexibility. Its abstract nature
allows EOControl objects to live independent of any persistence scheme, database,
or data source. The client and server parts of a Java Client application have the exact
same EOControl layer; it is the layer that plugs into EOControl that differs for the
client and the server. On the server side, EOControl objects talk to the database
using EOAccess; on the client side, EOControl objects talk to the server using
EODistribution. The EOControl classes you will encounter in development are
introduced here.

EOEnterpriseObject

An EOEnterpriseObject is a flexible representation of your business logic.
EOEnterpriseObjects are conceptually abstract—they are ignorant of specific data
stores and data-access mechanisms. All EOEnterpriseObjects conform to these
behaviors:

� Key-value coding is a mechanism that allows arbitrary access to data in objects
without requiring instance variables. The following are examples of key-value
coding accessors:
student.valueForKey("name")
student.takeValueForKey("name", "Ernest").

44 Control Layer
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

� Validation of data is done before saving, deleting, updating, and performing
other operations.

� Relationship manipulation provides methods to facilitate the management of
objects in a relationship.

� Faulting provides placeholders for data, rather than fetching all data at once.

These behaviors provide convenience and flexibility for your business objects,
while enhancing performance and offering important business functionality.

EOEnterpriseObject is an interface, so you never instantiate it. Rather, WebObjects
provides two classes that implement EOEnterpriseObject:

� EOCustomObject inherits from java.lang.Object, implements
com.webobjects.eocontrol.EOEnterpriseObject.

� EOGenericRecord inherits from EOCustomObject.

EOEditingContext

An EOEditingContext manages the graph of enterprise objects in your application.
The EOEditingContext is responsible for ensuring that all parts of your application
stay in sync with one another and with your data store—it is the WebObjects
change-tracking mechanism. When an enterprise object changes, the
EOEditingContext sends a notification so that other parts of the application, such as
the user interface, can update themselves accordingly.

The EOEditingContext also manages undo and revert and is the object through
which you save changes to the database. EOEditingContext is designed to abstract
these database operations from your business objects, which keeps any
database-specific information from living inside your business logic.

An EOEditingContext is always associated with an instance of a parent object store.
In Java Client applications, the client and server have separate editing contexts. The
client-side editing context is associated with a client-side object store,
com.webobjects.eodistribution.client.EODistributedObjectStore; the server-side
editing context is associated with a server-side object store,
com.webobjects.eoaccess.EODatabaseContext, as illustrated in Figure 2-2 (page 45).

You can think of an EOEditingContext object as a glorified database transaction
object. In WebObjects, a request to fetch data from a data store is usually done from
the control layer, and fetches done from the control layer almost always happen

C H A P T E R 2

Java Client Concepts

Control Layer 45
  Apple Computer, Inc. May 2002

from within an EOEditingContext. Once data is fetched into objects, an
EOEditingContext manages the graph of fetched objects, tracks changes to those
objects, and is the object through which you invoke data store commits.

Figure 2-2 Editing contexts and object stores

Database

Server

Client

Control

Distribution

EODistributed-
ObjectStore

WOSession

EODistribution-
Context

EOEditing-
Context

WOSession

EODistribution-
Context

EOEditing-
Context

WOApplication

EOObjectStore-
Coordinator

EODatabase-
Context

46 Distribution Layer
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

EOFetchSpecification

Because database fetches are expensive, you rarely ask for all the data at once.
Rather, you provide criteria for the data to be fetched with an EOFetchSpecification.
An EOFetchSpecification describes the objects to be retrieved using an EOQualifier
(an object that restricts the selection of database rows based on a specified criterion).

EOGlobalID

To maintain database independence, EOControl provides an internal mechanism to
identify objects. Other systems use database primary and foreign keys to identify
objects, but these keys don’t represent data (they represent locations in the data
store) and so shouldn’t be a part of your business logic. The algorithm used to
generate EOGlobalIDs is designed to guarantee completely unique identifiers.

A subclass of EOGlobalID, EOTemporaryGlobalID, identifies objects before they
are committed to the data store.

EOObjectStoreCoordinator

A single Java Client application can access data from different data stores. In this
case, each EOModel is usually associated with a different data store, and this added
complexity requires an object to manage it. Each EOModel in an application has a
corresponding EODatabaseContext object. The EOObjectStoreCoordinator sits
between the client’s editing contexts and the EODatabaseContext objects, and
isolates the editing contexts from the application’s data sources.

Distribution Layer

The distribution layer (com.webobjects.eodistribution and
com.webobjects.eodistribution.client) synchronizes the states of the object
graphs on the client and on the application server. This layer exists in part on both
the client and the server and moves business objects between the two. The
distribution layer on the server fetches objects and saves changes from the database
and communicates these actions to the distribution layer on the client.

C H A P T E R 2

Java Client Concepts

Distribution Layer 47
  Apple Computer, Inc. May 2002

The server-side distribution layer contains the EODistributionContext class. It
encodes data to send to the client and decodes data it receives from the client over
the distribution channel. (You can implement your own encoding and decoding
schemes to improve security.) It also synchronizes the server and client object
graphs by tracking the state of the server-side object graph and communicating any
changes to the client. EODistributionContext also validates remote invocations
originating from client objects to allow only authorized invocations.

Essential EODistribution Classes
Listed here are classes you are most likely to deal with programmatically. For
complete details, see the EODistribution API reference.

� EODistributionChannel, EOHTTPChannel. The distribution layer provides
classes for communication between the application server and client
applications. EOHTTPChannel is a subclass of EODistributionChannel and
implements an HTTP channel to communicate with clients. You can subclass
EODistributionChannel to use a different transport protocol such as CORBA.

� EODistributedObjectStore. This class mediates between the distribution layer’s
channel (an EODistributionChannel object) and the client’s editing contexts. It
sends messages to its child editing contexts from the server and sends messages
to the server from its editing contexts.

� EODistributedDataSource. Using an EOEditingContext, objects of this class
fetch, insert, and delete objects from the object store. This class implements all
the functionality of EODataSource, but it exists solely on the client side.

� EODistributionContext. This object exists on the server and is responsible for
communicating with its client-side counterpart EODistributionChannel. These
two objects mediate object transfer over the network and handle remote method
invocation.

� WOJavaClientApplet. This object sits on the server side and forwards requests
from the client’s EODistributionChannel to the server’s EODistributionContext.
It also plays a critical role in application initialization.

See Chapter 4, “Distribution Layer” (page 107), for more information on the
distribution layer and to better understand how these objects work together.

48 Client Interface Layer
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

Client Interface Layer

The EOInterface layer (com.webobjects.eointerface) displays to the user the
properties of the enterprise objects maintained in the client control layer. Changes
to the object graph are automatically synchronized with the user interface, and
user-entered data is automatically reflected in the object graph. The primary
mechanisms behind this synchronization are associations and display groups.

Display Groups
A display group coordinates the flow of data between the user interface and the
database. Display groups decide what data to allow associations to display. They
fetch data from either database contexts or other display groups through
com.webobjects.eocontrol.EODataSource objects.

Associations
As mentioned earlier, associations keep the user interface synchronized with
enterprise object values. Associations in Java Client derive from EOAssociation, an
object that maintains a two-way binding between the properties of a display object
and the properties of one or more enterprise objects contained in
EODisplayGroups.

An EOAssociation has aspects that define the different parameters of the display
object it controls. These parameters include the values displayed and whether the
display object is enabled or editable. Each aspect of a display object can be bound to
an EODisplayGroup object with a key denoting the property of its associated
enterprise object.

For instance, EOTableAssociation
(com.webobjects.eointerface.EOTableAssociation) defines these aspects:

� source—the object from which the table’s data is fetched, usually a display
group.

� bold—sets a flag to make the text in the table bold.

C H A P T E R 2

Java Client Concepts

Client Interface Layer 49
  Apple Computer, Inc. May 2002

� italic—sets a flag to make the text in the table italics.

� textColor—defines the color of the text in the table.

� enabled—a flag that controls editability, usually associated with an attribute in
a display group.

The EOInterface framework includes associations for different types of user
interface objects, such as table columns, text fields, and checkboxes. Each
association has multiple aspects. Associations are defined in the EOInterface
framework. See the EOInterface API reference for complete details.

Typically, you create and configure associations in Interface Builder when you
build user interfaces by hand. Associations are created and configured
automatically if you use the dynamic user interface generation of the Direct to Java
Client approach. See the EOInterface API reference for information on configuring
associations programmatically.

There are many different kinds of associations. These are some of the more common
ones:

� EOActionAssociation. Sits between an action widget (such as a button) and a
display group. Reacts to a mouse click or a keypress and invokes a particular
business method, based on the bound aspect.

� EOMasterDetailAssociation. These associations bind one display group (the
detail display group) to a relationship in another display group (the master
display group) so that the detail display group contains the destination objects
for the object selected in the master display group. Takes a relationship key
rather than an entity name and displays a subset of data in the master display
group.

� EOTableAssociation. Maps all the objects in a display group to a user interface
table view. This association takes no direct keys, but uses
TableColumnAssociations which take keys.

� EOTextFieldAssociation. Takes a value key that determines the property to be
displayed in or taken from the text field.

� EOValueAssociation. Associates a single property of the value display group’s
selected object with a widget.

50 Application Layer
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

Application Layer

The EOApplication layer, defined in com.webobjects.eoapplication, isolates the
developer from the idiosyncrasies of each execution environment. It provides the
classes that are used to manage application-level data and resources, including
transient and persistent defaults, localization information, menu operations like
save and quit, documents, user interface controls, and so on.

JFC/Swing does not provide a full suite of application logic utility classes, so the
Java Client application layer steps in and provides other basic services as well, such
as application startup and shutdown.

Generation Layer

The EOGeneration layer, defined in com.webobjects.eogeneration and
com.webobjects.eogeneration.client, dynamically generates user interfaces in Java
Client applications which use the rule system. It is not used in nondirect Java Client
applications. This layer analyzes your application’s business model (defined in an
EOModel) and, using a sophisticated set of rules, generates a user interface. The
user interface description is then sent to the client where it is executed. You can alter
the rules in a number of ways for customization purposes.

The generation layer, along with the WebObjects rule system, are the elements that
make a Direct to Java Client application different from a nondirect Java Client
application. They are illustrated in Figure 2-3 (page 51).

C H A P T E R 2

Java Client Concepts

Generation Layer 51
  Apple Computer, Inc. May 2002

Figure 2-3 The complete stack of WebObjects layers in Direct to Java Client

Database

EODistribution

EOGeneration

Rule System

WebObjects

EOControl

EOAccess

JDBC Adaptor

HTTP...

EOGeneration

EOApplication

EOInterfaceSwing (plug-ins)

EOInterface

EOControl

EODistributionJFC/Swing

52 Model-View-Controller Paradigm
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

Model-View-Controller Paradigm

A common and useful paradigm for object-oriented applications, particularly
business applications, is Model-View-Controller (MVC). Derived from
Smalltalk-80, MVC proposes three types of objects in an application, separated by
abstract boundaries and communicating with each other across those boundaries.

Model objects represent special knowledge and expertise, such as a company’s data
and business logic. Model objects are not directly displayed. They often are
reusable, distributed, persistent, and portable to a variety of platforms.

View objects represent things visible on the user interface such as windows, table
views, and buttons. A View object is “ignorant” of the data it displays, as it relies
exclusively on the Controller object for data. View objects tend to be very reusable
and so provide consistency between applications.

The Controller object acts as a mediator between Model objects and View objects.
Usually there is one Controller per application or per window. Controller objects
communicate data back and forth between the Model objects and the View objects.
A Controller’s function is usually very specific to an application, so it is generally
not reusable like View and Model objects are.

Because of the Controller’s central mediating role, Model objects need not know
about the state and events of the user interface, and View objects need not know
about the programmatic interfaces of Model objects.

Within the MVC paradigm, enterprise objects are Model objects. By definition,
Model objects represent data and business logic. The Enterprise Object technology
extends the MVC paradigm so enterprise objects are independent of their persistent

Note: “Model” does not have the same meaning in WebObjects as it does in the
MVC paradigm. In WebObjects, a model (short for “EOModel”) establishes and
maintains correspondance between an enterprise object class and data stored in
a relational database. In MVC, model objects represent the special knowledge of
the application.

C H A P T E R 2

Java Client Concepts

Deploying and Using Java Client Applications 53
  Apple Computer, Inc. May 2002

storage mechanism. Enterprise objects do not need to know about the database that
holds their data, and the database doesn’t need to know about the enterprise object
formed from its data.

Deploying and Using Java Client Applications

HTML-based WebObjects applications require only a Web browser on the client.
The client requirements for Java Client desktop applications, however, are
considerably more demanding.

Java Client applications can be deployed as either applets running within a browser
or as real desktop applications. Either deployment option is feasible, but you should
carefully evaluate both options after understanding their respective strengths and
weaknesses.

Installation
Applets require no installation of the Java Client application on the
user’s part, since the Web browser handles the downloading of classes.
Applications, however, need to be installed on the client.

Upgrades
Using applets, the upgrade process is invisible to the user. Using
applications, the user must perform upgrades manually, and a
versioning scheme must be devised to ensure compatibility between
client and server.

Platform support
Both applications and applets require the presence of JRE 1.3 or later on
the client. Mac OS X provides out-of-the-box support for JRE 1.3. On
other platforms, the JRE must be downloaded and installed. Internet
Explorer for Mac OS X 10.1 supports embedded applets as well, and
Sun’s Java plugin for Web browsers provides support for running
applets on other platforms. So, in terms of portability, systems with the
correct JRE can run Java Client applications as either applets or as full
desktop applications.

54 Deploying and Using Java Client Applications
  Apple Computer, Inc. May 2002

C H A P T E R 2

Java Client Concepts

User experience
Running Java Client applications as desktop applications always
provides a better user experience than running as applets. Applets can
take down the Java virtual machine and other applets, and applets
generally don’t have the fit and finish of Java desktop applications. Java
Client applications running as desktop applications in Mac OS X take
advantage of platform-specific features such as the global menu bar and
the dirty window marker.

Performance
Generally, applications perform better than applets, since Web browsers
provide more security checks than applications and perform other
operations that degrade performance. But even so, the performance
difference between applets and applications should be an insignificant
factor in choosing a deployment method.

Security
From the user’s perspective, running as applets is inherently more
secure, since applets prevent the JVM from accessing the file system or
other parts of the user’s system. Developers usually prefer applications
over applets because they don’t have to worry about the security
restrictions inherent to Web browsers.

Server Requirements
Serving Java Client applications requires just a WebObjects application server. You
use the standard WebObjects deployment tools and techniques. See the book Inside
WebObjects: Deploying WebObjects Applications for complete documentation.

Note: A new technology in the JDK, Web Start, alleviates the issues with
application installation and upgrades. It allows users to access applications from
hyperlinks in Web browsers. The hyperlink invokes Web Start on the client,
which takes care of downloading all the classes needed for the client-side
application.

55
  Apple Computer, Inc. May 2002

C H A P T E R 3

3 Basic Tutorial

This chapter leads you through the creation of a Java Client application starting
with the Direct to Java Client project type. You’ll learn how to

� create a simple database using OpenBase Manager

� create tables in that database using EOModeler

� build a Direct to Java Client application using Project Builder

� perform simple customizations of the application using the Direct to Java Client
Assistant

You’ll create a simple college admissions application with a rich user interface and
database access. The application stores records of prospective students, which
allows you to track students throughout the admissions process. Figure 3-1
(page 56) shows a sample student record from this application.

Note: Projects for the tutorials in this book are available on the WebObjects
documentation home page: http://developer.apple.com/techpubs/
webobjects/.

http://developer.apple.com/techpubs/webobjects/
http://developer.apple.com/techpubs/webobjects/

56 Create the Database
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-1 Part of the completed application in this chapter

Create the Database

The WebObjects developer software package includes a limited-use version of
OpenBase, a SQL database server. Follow these steps to configure a new OpenBase
database:

1. In Mac OS X, navigate to /Applications/OpenBase and launch OpenBase
Manager.

2. Choose New from the Database menu.

3. Name the database “Admissions.” Select the Start Database at Boot option.
Choose ASCII for the Internal Encoding pop-up menu. The Configure Database
dialog should appear as shown in Figure 3-2 (page 57).

C H A P T E R 3

Basic Tutorial

Create an EOModel 57
  Apple Computer, Inc. May 2002

Figure 3-2 Configuring a new database

4. Click Set.

5. You may have to select the new database in the database list under localhost and
start it manually. Make sure the database is started (denoted by the green icon)
before moving to the next step.

6. Quit OpenBase Manager.

Create an EOModel

EOModeler is a powerful application that provides tools to build and manage your
business logic. Its product is an EOModel, which contains database connection
information, such as the database adaptor, version number, and login information.
EOModels also form the foundation of your business logic—they offer an
object-oriented view of the tables and relationships in your database. You use
EOModeler to

� create tables and relationships in a database

58 Create an EOModel
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

� generate SQL

� generate client and server Java files based on EOModels

� build fetch specifications

A good model is important because Direct to Java Client’s generation layer analyzes
EOModels to generate user interfaces. In fact, a Direct to Java Client application is a
great way to test the integrity of EOModels.

Follow these steps to create an EOModel:

1. In Mac OS X, navigate to /Developer/Applications and launch EOModeler.

2. Choose New from the Model menu.

3. Select JDBC as the adaptor.

4. In the JDBC Connection window, enter the following in the URL field:
jdbc:openbase://localhost/Admissions, as shown in Figure 3-3. Click OK.

Figure 3-3 JDBC connection information

5. Since the database is empty, deselect the four options in the next window and
click Next. See Figure 3-4 (page 59).

C H A P T E R 3

Basic Tutorial

Create an EOModel 59
  Apple Computer, Inc. May 2002

Figure 3-4 Deselect all options for this model

6. There are currently no tables in the database, so click Finish in the Choose Tables
to Include dialog.

Behind the Steps
Step 3: WebObjects 5 supports databases with JDBC Type 2 and Type 4 connectivity.
Oracle, OpenBase, MSSQL 2000, and MySQL are qualified for WebObjects 5.1. See
the document Post-Installation Guide for more exact specifications. Third parties
have developed JDBC adaptors for other JDBC-compliant databases. See the Apple
Support Knowledge Base for information on creating custom JDBC adaptors.

WebObjects database connectivity is not limited to JDBC-compliant databases. In
principle, you can also write adaptors for ERP systems and even flat file systems.
WebObjects 5.1 also supports data stores with JNDI connectivity.

Step 5: EOModeler works by reverse-engineering your database. So, if your
database is already populated with tables, primary keys, relationships, and stored
procedures, you can tell EOModeler to consider these attributes when building a
model.

60 Create an EOModel
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

� “Assign primary keys to all entities”—When reading and writing to databases,
the EOAccess layer of Enterprise Objects uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row. Therefore,
each entity in your model needs a primary key. The EOModeler Wizard
automatically assigns primary keys to the model if it finds primary key
information in the database.

However, if primary keys aren’t defined in the database schema information,
the wizard prompts you to choose primary keys.

� “Ask about relationships”—If the Wizard finds foreign key definitions in the
database schema information, it includes the corresponding relationships in the
model. However, foreign key definitions in the schema don’t provide enough
information for the Wizard to set all of a relationship’s options. If you select this
option you will be prompted to provide additional information, such as the join
type, delete rule, batch faulting batch size, and more.

� “Ask about stored procedures”—Selecting this option causes the Wizard to
display the stored procedures it finds in the schema and allows you to choose
which to include in your model.

� “Use Custom Enterprise objects”—Each entity in the model corresponds to a
table in the database and each has a corresponding Java class. This Java class can
be an instance of com.webobjects.eocontrol.EOGenericRecord or a custom
subclass of EOGenericRecord.

If you deselect this option, the Wizard maps all database tables to
EOGenericRecord classes. Otherwise, it maps each entity to a subclass of
EOGenericRecord of the same name (a table named “STUDENT” corresponds to
an entity named “Student” which corresponds to a Java class named
“Student.java.”)

You use custom enterprise object classes to add custom business logic to your
application (which is quite common).

Note: Although Enterprise Objects uses primary keys when reading and writing
to the database, it assigns an identifier (an EOGlobalID) to each enterprise object.
This allows business logic to be independent of database primary and foreign
keys, which makes your business objects reusable. To reiterate, although
Enterprise Objects needs to know about database primary keys, your business
logic should never explicitly reference database primary or foreign keys.

C H A P T E R 3

Basic Tutorial

Build the Model 61
  Apple Computer, Inc. May 2002

Build the Model

EOModeler creates an empty model containing just a database connection
dictionary, which specifies the adaptor type, database URL, and other basic
information. Click the root of the object tree (probably titled “UNTITLED0”), and
then choose Inspector from the Tools menu to see the database connection
dictionary.

Follow these steps to add a table with attributes to the model:

1. Create a new entity by selecting Add Entity from the Property menu.

2. Select Inspector from the Tools menu.

3. In the Entity Inspector, change the Name field to “Student” and the Table Name
field to “STUDENT.” Leave the Class field “EOGenericRecord.” See Figure 3-5
(page 62).

Note: The model you’ll create will initially be suboptimal so that the tutorial can
demonstrate some features of Java Client you wouldn’t otherwise see with a
perfect model.

62 Build the Model
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-5 Entity Inspector

4. Add a new attribute by selecting Add Attribute from the Property menu. The
title of the Inspector window changes to “Attribute Inspector.”

5. In the Attribute Inspector, change the Name field to “name” and the Column
name to “NAME.”

6. In the External Type field, enter “char.”

7. Choose String from the Internal Data Type pop-up menu, and enter “50” in the
External Width field, as shown in Figure 3-6 (page 63).

C H A P T E R 3

Basic Tutorial

Build the Model 63
  Apple Computer, Inc. May 2002

Figure 3-6 Name Attribute Inspector

8. Add a second attribute named “gpa” with Column name “GPA.” Enter “int” in
the External Type field and choose Integer for Internal Data Type. The types
selected here are the suboptimal part of the model that will be corrected in a later
step.

Behind the Steps
Step 3: In this book, the naming conventions for entities and attributes follow
standard Java naming conventions and common relational database conventions.

Entities adhere to the naming convention for Java classes: The name begins with a
capital letter, and the first letter of inner words is capitalized, such as
“NewStudent.”

64 Completing the Model
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Table names adhere to the common relational database convention of capitalizing
every letter, and separating inner words with the underscore (_) character, such as
“NEW_STUDENT.”

Attribute names follow the Java convention for methods: The name begins with a
lowercase letter, and the first letter of inner words is capitalized, such as
“firstName.”

Column names adhere to the same database conventions that tables do.

Step 6: When adding attributes, you can choose the external type from a pop-up
menu in EOModeler’s table view, rather than type it in. Simply click the downward
pointing arrow to the right of a row in the External Type column. Doing this will
also familiarize you with the different external types for the database you are using.

Completing the Model

Simply creating entities with attributes does not make a complete model. You must
also assign a primary key to the entity and select certain properties to send to the
client. Follow these steps to complete the basic model:

1. Add a third attribute to the Student entity named “studentID.” The column
name is “STUDENT_ID.” Give it an external type of int and an internal data
type of Integer. This attribute will be the entity’s primary key. See Figure 3-7
(page 65).

C H A P T E R 3

Basic Tutorial

Completing the Model 65
  Apple Computer, Inc. May 2002

Figure 3-7 The primary key attribute

2. In table mode (Tools > Table Mode), you’ll notice three icon fields next to each
attribute. The key icon denotes a primary key, the diamond denotes a
server-side class property, and the lock denotes the attribute is used for locking.
Make the studentID attribute the primary key by clicking in the key field next to
it.

3. Unmark the primary key (studentID) as a server-side class property by clicking
the diamond icon to its left.

Figure 3-8 The finished model

66 Completing the Model
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

4. To select which attributes are sent to the client, you need to add a view column
in EOModeler. Click the Add Column pop-up menu and select Client-Side Class
Property. This adds a column with two opposing arrows to the icon fields. Make
sure that only the gpa and name attributes are selected as client-side class
properties, as shown in Figure 3-8.

5. Save the model as “Admissions.eomodeld.”

Behind the Steps
Step 2: Each of the records in a table must be unique—no two records can contain
exactly the same values. To ensure this, each entity must contain an attribute that’s
guaranteed to represent a unique value for each record, and this value is called the
entity’s primary key.

By default, EOModeler makes all of an entity’s attributes class properties. When an
attribute is a class property, it means that the property is included in your class
definition and that it can be fetched from the database. To put it another way, only
attributes that are marked as class properties become part of your enterprise objects.

You should mark as class properties only those attributes whose values are
meaningful in the objects that are created when you fetch from the database.
Attributes that are essentially database artifacts, such as primary and foreign keys,
shouldn’t be marked as class properties unless the key has meaning to the user and
must be displayed in the user interface.

There are two types of class properties: client-side class properties and server-side
class properties. EOModeler indicates that an attribute is a server-side class
property with the diamond icon. Client-side class properties are represented by the
double-arrow icon.

Step 3: Primary keys are of no use to client-side classes, so they need to be unmarked
as client-side class properties.

Step 4: Likewise, primary keys are of no use to server-side classes, so they need to
be unmarked as server-side class properties.

C H A P T E R 3

Basic Tutorial

Generate SQL 67
  Apple Computer, Inc. May 2002

Generate SQL

Now that you’ve built an EOModel, you need to write the table information to the
database. Fortunately, EOModeler generates SQL for you, just follow these steps:

1. Select the Student entity in the entities list.

2. Choose Generate SQL from the Property menu.

3. Deselect all options except Create Tables, Primary Key Constraints, and Create
Primary Key Support, as shown in Figure 3-9 (page 67).

4. Click Execute SQL.

Figure 3-9 Generate SQL

68 Generate SQL
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

5. To verify the table was written to the database, in OpenBase Manager, select
Schema from the Database menu. You should see two tables: EO_PK_TABLE
and STUDENT. Select the Student table and verify that the attributes you added
to the model were written to the database.

Behind the Steps
Step 3: EOModeler’s SQL generation feature generates database-specific SQL based
on the EOAdaptor chosen for the model. These are the eight SQL generation
options:

� Drop Database deletes all entity tables, key constraints, and primary key
support tables. This option may not be available for some data stores.

� Drop Tables deletes only the entity tables selected in EOModeler’s main
window.

� Drop Primary Key Support deletes primary key support from the database; for
OpenBase databases, this option deletes the EO_PK_TABLE.

� Create Database generates tables in the database for all entities in the EOModel.

� Create Tables generates tables in the database only for the models selected in
EOModeler’s main window.

� Primary Key Constraints generates database-specific key constraints.

� Foreign Key Constraints generates database-specific key constraints.

� Create Primary Key Support generates the EO_PK_TABLE for OpenBase
databases.

C H A P T E R 3

Basic Tutorial

Create the Project 69
  Apple Computer, Inc. May 2002

Create the Project

Project Builder is the WebObjects integrated development environment. Its many
functions include these:

� creating working projects from project templates

� organizing project files and resources

� source-code editing

� compiling and debugging projects

� running projects

� communicating with other WebObjects development tools

Project Builder provides an assistant to help you build a Java Client application
starting with the Direct to Java Client project type. Follow these steps to create a
new project:

1. In Mac OS X, navigate to /Developer/Applications and launch Project Builder.

2. Choose New Project from the File menu.

3. Select Direct to Java Client Application under the WebObjects group as the new
project type.

4. Name the project “Admissions” and choose a location in the file system that has
no spaces in the complete pathname. Click Next.

5. In the Enable J2EE Integration pane, make sure neither option is selected, and
click Next.

6. In the Choose Adaptors pane, select JavaJDBCAdaptor.framework and click
Next.

7. In the Choose Frameworks pane, click Next.

8. In the Choose EOModels pane, click Add and select the EOModel you just
created. See Figure 3-10 (page 70).

70 Create the Project
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-10 Choose EOModel

9. In the Choose Download Classes pane, select the option “Download main
bundle and custom framework classes” and click Next. See Figure 3-11
(page 71).

C H A P T E R 3

Basic Tutorial

Create the Project 71
  Apple Computer, Inc. May 2002

Figure 3-11 Configure the class loader

10. In the Build and Launch Project pane, make sure “Build and launch project
now” is selected and click Finish. Project Builder sets up the project, builds it,
and runs it. If you’re developing in Mac OS X, the client application is
automatically launched. If you’re developing in Windows, however, you must
manually launch the client application. See “Add a Launch Argument”
(page 77) to learn how to manually build and run the application.

If you’re developing in Mac OS X, you can skip to “Using the Application”
(page 84). Or, if you want to learn more about the default project, Project
Builder, launch arguments, and manually running the client application,
continue with the next section.

Behind the Steps
Step 7: It is common to build a custom framework to contain your EOModels and
other custom business logic. You add custom frameworks to your project in this
step.

72 Create the Project
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Step 8: The EOModel you select is copied into your project’s directory. From this
point on, open the model from within the project to edit it.

Step 9: This step configures the Java Client Class Loader feature that first shipped
with WebObjects 5.1. It facilitates the download of classes to the client for Java
Client applications that are deployed as desktop applications. There are four
options:

� Do not download classes suppresses the class loader.

� Download main bundle class downloads the .woa build product that includes
custom Java classes defined in your project (but not classes defined in custom
frameworks).

� Download custom framework classes downloads custom frameworks that
your project links against, including custom Java classes in these frameworks.

� Download main bundle and custom framework classes downloads the .woa
build product and custom frameworks your project links against.

More About The Java Client Class Loader
Unlike applets running in browsers, Java desktop applications do not have an
automatic mechanism to download classes. This usually requires you to install the
complete application manually, which can be inconvenient and makes updating the
software complicated.

But with the new Java Client Class Loader feature you need only install a Java Client
base system (including Foundation, EOControl, and EOAccess) on the client and
download all classes specific to your application (business logic, interface
controllers, user interface code, and so forth) at startup time. You configure whether
and which classes should be downloaded through bindings of the
WOJavaClientApplet component of your WebObjects server-side application (the
Project Builder Assistant for Java Client projects configures these bindings for you
based on the selection you make in the Choose Download Classes pane). All you
have to supply on the client is the base Enterprise Objects stack which is contained
in the wojavaclient.jar file.

The four possible bindings for the Java Client Class Loader are

� noDownloadClientClasses

� mainBundleClientClasses

C H A P T E R 3

Basic Tutorial

The Default Project 73
  Apple Computer, Inc. May 2002

� customFrameworksClientClasses

� customBundlesClientClasses

This feature is useful for deployment (since installing an update of the client
desktop application is only necessary when you switch the version of WebObjects
you use, but not when you update your own custom classes) and for development
(since you can create generic launch programs or scripts without worrying about
the classpath).

The Default Project

For Direct to Java Client projects, the Project Builder Assistant creates a fully
functional application. Take a moment to examine the default project.

As in all WebObjects applications, Application.java, Session.java,
DirectAction.java, and Main.java are present, along with Main.wo. In the Resources
group, notice that there is no interface file (no nib file), only the EOModel and an
empty Direct to Web model (the user.d2wmodel file) to store rules generated by the
Direct to Java Client Assistant.

Project Builder offers several tools that allow you to visually organize all the files in
a project. This allows you to easily locate a project’s files in a central repository. It
also lets you assign files to specific targets to facilitate the building process.

Groups
A group is a collection of related files, similar to folders or directories in a file
system. They allow you to collect all of your project’s components, resources,
classes, frameworks, and other groups under general categories. There is no
restriction on the type of file you can put in a group.

When you create a Direct to Java Client application, Project Builder creates a default
hierarchy with eight major groups. You can modify this organization by adding,
removing, or deleting groups, and by moving files between groups. Keep in mind
that groups are only useful for organizational purposes: they have no effect on how
their content or the application behaves.

74 The Default Project
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

These are the eight major groups in a Direct to Java Client application:

� Classes stores the core Java files (.java) in the project such as Application.java,
Session.java, and DirectAction.java. The Java files related to components, such
as Main.java, are by default organized in subgroups of the Web Components
group.

� Web Components stores the WebObjects components used in your project. By
default, Java Client applications have a single WebObjects component, Main.wo.
Later on, you’ll put frozen XML user-interface components in this group.

� Resources stores the model files (.eomodeld) used in the project as well as
custom rule files (d2w.d2wmodel) and Direct to Java Client Assistant’s
user.d2wmodel file.

� Web Server Resources contains image files (GIF, JPEG) and localizable string
tables.

� Interfaces contains Interface Builder files (nib) for Java Client applications or for
Direct to Java Client applications using frozen interface files.

� Frameworks is a visual representation of the frameworks your project links
against at compile and runtime.

� Documentation contains documentation for your application.

� Products contains the build application as well as intermediate build files.

You can freely move files to different groups, rename groups, and remove groups.
The only attribute of a project file that really matters is the target with which each
file is associated.

Targets
When built, Java Client applications include two products: the client product and
the server product. The client product is the client-side application and the server
product is the server-side application. The client product is the result of the files
built for the Web Server target. The server product is the result of the files built for
the Application Server target.

The Web Server and Application Server targets are build targets and the
Admissions target (or the target named after your application) is the root or
aggregate target.

C H A P T E R 3

Basic Tutorial

The Default Project 75
  Apple Computer, Inc. May 2002

� Build targets are used to configure the settings for a particular target, either the
client application or the server application. When you define a build target, you
tell Project Builder which files are a part of the target and how to build the
target’s product.

� Root targets or aggregate targets are used to group two or more build targets
into a single unit. No files are associated with root targets except through their
association with build targets. When an aggregate target is built, the build
targets it contains are built in turn. The root target is the target you compile on.

Use the Target pop-up menu to switch between a project’s targets, as Figure 3-12
shows.

Figure 3-12 Target pop-up menu

Client Files (Web Server Target)
For Java Client applications, the files associated with the Web Server target are
Interface Builder archive files (.nib), interface controller classes (.java), custom
controller classes (.java), client-side image resources (.gif, .jpg, .png), client-side
business logic classes (.java), and client-side localized string tables
(Localizable.strings).

Server Files (Application Server Target)
The server-side project files created by Project Builder are distributed across several
groups. Most notable of these is the Main component (Main.wo) in the Main
subgroup located in the Web Components group.

The Main.html file in Main.wo contains this code:

<HTML>
<HEAD>
 <TITLE>Main</TITLE>
</HEAD>

76 The Default Project
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

<BODY>
 <CENTER>Please wait for the application to open other windows (please note:
it is better to start the application from the command line, as
a java application).<WEBOBJECT NAME=Applet></WEBOBJECT></CENTER>
</BODY>
</HTML>

The Main.wod file contains this code:

Applet: WOJavaClientApplet {
 applicationClassName =
 "com.webobjects.eogeneration.client.EODynamicApplication";
 height = 0;
 width = 0;
 useJavaPlugin = true;
 downloadClientClasses = "customBundlesClientClasses";
}

The <WEBOBJECT NAME=Applet> tag in Main.html is bound to the definition of Applet
in Main.wod, which specifies that Applet represents a WOJavaClientApplet
component. In Main.wod, some bindings for WOJavaClientApplet are specified.

The most important of these is the applicationClassName binding. This binding is
the switch that determines if a Java Client application is of the direct type or
nondirect type. As the project type in this tutorial is of the direct type, the binding
specifies com.webobjects.eoapplication.EODynamicApplication. The default
binding is com.webobjects.eoapplication.EOApplication, so if the binding is not
present in Main.wod, the default is assumed (this is the case for projects begun with
the nondirect project type). See “Distribution Layer Objects” (page 114) for more
information on the bindings for WOJavaClientApplet.

Other server files include

� the Application.java, Session.java, and DirectAction.java class files.

� any EOModels your application uses.

� the exported bindings for the Main component (Main.api).

Figure 3-13 (page 77) shows the default groups and files.

C H A P T E R 3

Basic Tutorial

Add a Launch Argument 77
  Apple Computer, Inc. May 2002

Figure 3-13 The default groups and files

The next section continues building the tutorial project.

Add a Launch Argument

Java Client applications have usability patterns different from those of HTML
applications—their usage patterns resemble those of desktop applications. Desktop
applications are often left open for hours at a time, with only intermittent usage.
Users expect to return to desktop applications after hours of no use and start
working again.

The default session timeout (60 minutes) is too short, so you need to set the timeout
higher. Setting the timeout to 24 hours (86400 seconds) will better match the usage
pattern of Java Client applications.

78 Add a Launch Argument
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Follow these steps to change the session timeout:

1. Click the Targets tab (one of the vertical tabs).

2. Select the Admissions target.

3. Click the Executables tab.

4. Click the Add button and enter -WOSessionTimeOut 86400 as a launch argument
as shown in Figure 3-14.

Figure 3-14 Add session timeout launch argument

C H A P T E R 3

Basic Tutorial

Build the Executable 79
  Apple Computer, Inc. May 2002

More About Session Time Outs
What happens when the session times out and a client application is still running?
The next time the client tries to connect to the server (either to save or retrieve data
or when a request is made to the rule system), an error dialog appears noting that
the session timed out and that any data not saved before the timeout was lost.

The dialog is modal, so the user has no choice but to quit the client application, and
there is no way to reconnect except by restarting the client application.

You could implement an auto-save feature whereby the client application would
display a warning panel shortly before the session times out. Or, the client could just
automatically save changes shortly before timeout. You would have to write code
to poll for the timeout and implement EOEditingContext.saveChanges()
accordingly.

Build the Executable

You build a Java Client application using Project Builder. It handles everything for
you, including specifying the correct Java classpath, configuring makefiles, creating
directories, setting permissions, and so on.

1. Make sure that the Admissions target is selected in the Target’s list as shown in
Figure 3-14 (page 78).

2. Click the hammer icon in the toolbar to build the application. The Build pane
slides down and displays all console messages during the build, including any
errors.

Note: When you deploy a Java Client application, you must set the session
timeout in Monitor. Launch arguments set in Project Builder apply only to
projects in development mode.

80 Run the Client Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Run the Client Application

A Java Client application is made up of two parts: a server-side application and a
client-side applet or application. You start the server application as you do any
WebObjects application using either of these techniques:

� using Project Builder (during development)

� from the command line

� using Monitor (the preferred deployment mechanism)

The book Inside WebObjects: Deploying WebObjects Applications covers the second and
third options. You can run the server application from Project Builder by clicking
the Launch icon or selecting Run Executable from the Debug menu.

By default, Project Builder in Mac OS X runs the client application as a Java desktop
application. However, there are many other ways to run the client application. You
can run it in a Web browser, start it from the command line, run it using Sun’s
appletviewer, or use the client launch script as described later in this section.

Prepare to Run the Project
In Mac OS X with WebObjects 5.1, the client application is automatically started
once the server application is up and running. So if you are developing with
WebObjects 5.1 or later in Mac OS X, you can skip this section and continue with
“Application Startup” (page 83).

The -WOAutoOpenClientApplication flag (which, if not present in the launch
arguments assumes the YES flag on development systems only) tells Project Builder
to run the client launch script, which opens the client application as a Java desktop
application.

The other methods of running the client application require some tweaks to the
project. Add these launch arguments to make running the project manually a bit
easier (add them to the same line as the WOSessionTimeOut argument):

-WOAutoOpenClientApplication NO -WOAutoOpenInBrowser NO -WOPort 8888

C H A P T E R 3

Basic Tutorial

Run the Client Application 81
  Apple Computer, Inc. May 2002

-WOAutoOpenClientApplication NO tells Project Builder to not automatically start the
client application as a Java desktop application. Add this flag only if you always
want to start the client application manually. When this feature is disabled, Project
Builder automatically starts the client application as an applet in a Web browser
unless it finds the -WOAutoOpenInBrowser NO launch argument. Although you can
deploy Java Client application as applets, it’s easier and often faster to deploy them
as desktop applications during the development process.

By default, WebObjects runs applications on different ports each time they are run.
This can be inconvenient during development, and setting a fixed port number
using WOPort will make your life easier. Any arbitrarily high number (8888) is valid,
but avoid common ports like 23 (telnet) and 80 (HTTP).

Client Launch Script
The client launch script is available only in Mac OS X. On WebObjects 5.1 running
in Mac OS X, the -WOAutoOpenClientApplication flag invokes the client launch script
automatically.

On Mac OS X Project Builder creates a client launch script that includes all the
classpath and executable information. All you need to feed it is the application URL.
The launch script is named after your project, with a _Client suffix. It’s located in
your application’s .woa in Contents/MacOS. By default, an application’s .woa file is in
the build directory in the project’s root directory.

To run the application:

1. Open a Terminal shell and cd to that directory (Admissions.woa/Contents/MacOS).

2. Copy the application URL from the Run pane in Project Builder.

3. At the shell prompt, paste the URL after entering the following:

./Admissions_Client

The complete shell command to run the script is: ./Admissions_Client http://
localhost:8888/cgi-bin/WebObjects/Admissions. Alternatively, you can enter
the command with the full path name from any directory in the shell: ~/
Projects/Admissions/build/Admissions.woa/Contents/MacOS./
Admissions_Client http://localhost:8888/cgi-bin/WebObjects/Admissions

82 Run the Client Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

The Java virtual machine starts up, and in a few moments, the Direct to Java Client
application is ready to use.

Behind the Steps

Step 3. For developers new to UNIX, the “./” command followed by a script name
tells the shell to look for the script name starting in the current directory. The client
launch script is simply a shell script, and you may want to open it in a text editor to
see exactly what it does.

Java
To start the client as a stand-alone Java application outside a browser, use the java
command-line tool. The syntax for starting a Java Client application is

java -classpath path
com.webobjects.eoapplication.EOApplication
-applicationURL url
-page pageName

The classpath argument must specify all the Enterprise Object classes and your
custom classes. Fortunately, the wojavaclient.jar file includes all the Enterprise
Object classes the client needs, so you simply need to specify its location in the
classpath argument.

The applicationURL argument specifies the URL to connect to, which is displayed in
the server application’s console after initialization. The page argument specifies the
name of the page that contains the WOJavaClientApplet component. If it is not
specified, “Main” is assumed, which is the default. Here’s an example:

[trivium] brent% java -classpath /System/Library/Java/wojavaclient.jar
com.webobjects.eoapplication.EOApplication -applicationURL http://
trivium.apple.com:8888/cgi-bin/WebObjects/Admissions

JDK appletviewer
The JDK’s appletviewer is a useful tool during development because it allows you
to test applets without needing to launch a Web browser. It downloads all the
necessary classes automatically, just like a Web browser. The tool takes the URL of
the server application as an argument, as shown here:

C H A P T E R 3

Basic Tutorial

Application Startup 83
  Apple Computer, Inc. May 2002

[trivium] brent% appletviewer http://trivium.apple.com:8888/cgi-bin/
WebObjects/Admissions

MRJ Application
In Mac OS X, you can package Java Cilent applications as real double-clickable
desktop applications. See the Java Client Launcher example in /Developer/
Examples/JavaWebObjects/JavaClientLauncher for instructions.

Application Startup

It’s important to understand how Java Client applications start up. With a few
minor exceptions, applets and applications share the same startup process.

For both types of Java Client applications, the bindings in WOJavaClientApplet are
sent to the client. If the client is an applet, the bindings are sent in HTML. If the client
is an application, a WebObjects Direct Action creates an applet that sends the
bindings to the client.

For applets, the main entry point is an instance of EOApplet that contains an init()
method that accepts HTML arguments as parameters. For applications, the main
entry point is an instance of EOApplication that contains a main() method that
accepts command line arguments.

After one of the two entry point objects is created, the startup process is the same
for both applets and applications. A method in EOApplication,
startApplication([args[]), is invoked, and performs these operations:

1. If configured to do so, runs a URL dialog to ask for the application URL. This is
necessary to get more information from the server, such as where the classes are
located.

2. Instantiates the distribution channel (by default, this is
com.webobjects.eodistribution.client.EOHTTPChannel) and establishes a
connection to the server.

84 Using the Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

3. For applications only, reads the arguments from the WOJavaClientApplet. This
step doesn’t happen for applets, since the arguments are read directly from the
HTML file in which the applet is embedded.

4. Downloads classes to client (only if deployed as a desktop application).

5. Instantiates the application object,
com.webobjects.eoapplication.EOApplication, for nondirect Java Client
applications or com.webobjects.eoapplication.EODynamicApplication (or
custom subclasses of) for Direct to Java Client applications. This step occurs after
the classes are downloaded to the client.

6. Configures things such as user language and platform, performs some Swing
initialization, including plugging into MRJ on Mac OS X, and loads user
preferences.

7. Switches thread to continue execution in the main Swing event thread.

No user interface code or initialization should take place in these steps. After the last
step, however, a method in EOApplication, finishInitialization() provides a
place to initialize the interface controller (Java Client), warmup the controller
factory (Direct to Java Client only), or perform other user interface-related
operations.

Using the Application

When you launch a Direct to Java Client application, the generation layer analyzes
your EOModel and generates the user interface accordingly. Currently, your model
and database have only a single table, and by default, Direct to Java Client displays
a window to enumerate that table, as shown in Figure 3-15.

C H A P T E R 3

Basic Tutorial

Using the Application 85
  Apple Computer, Inc. May 2002

Figure 3-15 Default enumeration window

You can add, delete, and save records, as well as revert changes made since the last
save. You can also rearrange the columns.

So far, you haven’t written a single line of code, yet the Enterprise Object technology
has provided the following for you:

� automatic primary-key generation when you insert new objects

� communication between client and server

� coordination between user interface and data store

Notice that only the attributes you marked as client-side class properties are
displayed in the client. studentID, the entity’s primary key, isn’t displayed since it
wasn’t marked as a client-side class property in the EOModel.

There is a significant problem with the GPA field. You’ll notice that decimal points
are automatically truncated, which is unacceptable when recording GPAs. This is
due to that field’s data type: int (external) and Integer (internal).

Since uncustomized Direct to Java Client user interfaces are contingent on the
contents of their corresponding EOModels, you need to edit the EOModel to correct
this problem.

Follow these steps to edit the EOModel:

1. First, quit the client application by choosing Quit from the File menu, and quit
the server application by clicking the Stop button in the Project Builder toolbar.

86 Using the Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

2. When you created the project, Project Builder made a copy of the EOModel and
put it in the project directory. So, you must edit that copy. Double-click
Admissions.eomodeld which is in the Resources group.

3. Change the external type for the gpa attribute to float. You can do this with the
Inspector or in the table view. In the Inspector, change the internal data type to
Double. The model should now resemble Figure 3-16 (page 86).

Figure 3-16 Revised model

4. External types are database-specific, so you need to synchronize the model with
the database. Save the model, then select the root of the entity tree (Admissions)
and choose Synchronize Schema from the Model menu. Deselect all three
options in the Schema Synchronization window as shown in Figure 3-17
(page 87).

C H A P T E R 3

Basic Tutorial

Using the Application 87
  Apple Computer, Inc. May 2002

Figure 3-17 Schema Synchronization window

5. In OpenBase Manager, verify that the data type for the gpa attribute changed. Do
this by choosing the Admissions database and clicking the Schema Design
button to view the database’s tables.

6. Save the model, build the project, and run both the client and server
applications.

7. Enter a few new records, and save changes. Notice how decimals are now
preserved as shown in Figure 3-18 (page 88).

88 Customizing the Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-18 Revised enumeration window

Behind the Steps
Step 4: Many model modifications do not require you to synchronize the schema.
However, anytime you add, remove, or change the name or type of an attribute,
synchronization is necessary.

Customizing the Application

There are many ways to customize Direct to Java Client applications, including a
tool called Assistant. Assistant is a Java application included in every Direct to Java
Client application, and it provides an easy way to perform simple customizations.
The following steps introduce you to Assistant:

1. While the Direct to Java Client application is running, select Assistant from the
Tools menu.

2. Change the Student entity from an Enumeration entity to a Main entity as shown
in Figure 3-19 (page 89).

C H A P T E R 3

Basic Tutorial

Customizing the Application 89
  Apple Computer, Inc. May 2002

Figure 3-19 Change entity type

3. Click Save, then Restart to see how the window type changes. You can now
search the database using a query string. Alternatively, you can fetch all records
in the database by clicking the Find button without entering a query string, as
shown in Figure 3-20 (page 90).

90 Customizing the Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-20 Query window with data

4. Click New to add records; then enter different query strings to test the
application. Figure 3-21 illustrates a query for names starting with “C.”

Figure 3-21 Query window searching for names containing “e”

C H A P T E R 3

Basic Tutorial

Customizing the Application 91
  Apple Computer, Inc. May 2002

5. It would be nice to also query on the gpa attribute. In Assistant, switch to the
Properties pane, and select “query” in the Task pop-up menu. You’ll notice that
the “gpa” property key is listed in the Other Property Keys list. As shown in
Figure 3-22 (page 91), move it to the Property Keys list, save, and restart the
application. You can now query on the gpa field also, as illustrated in Figure 3-23
(page 92). By default, the application provides two fields so you can search for a
range of GPAs.

Figure 3-22 Properties tab in Assistant

92 Customizing the Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-23 Query on GPA

6. You should probably beautify the label for the gpa field. It should be all capitals.
In Assistant, switch to the Widgets pane. Make sure the Property Key pop-up
menu reads “gpa.” Under Customize Widget Parameters, change the Label field
to “GPA.” Save and restart the application. Notice how the widget label
changed.

7. In Assistant, switch to the Windows tab and change the window label to
“Admissions.” Save and restart to see the changes.

8. Direct to Java Client user interfaces are defined in XML descriptions. The XML
pane in Assistant displays the XML descriptions for the various specifications in
an application.

The changes you made in Assistant are stored in the project’s user.d2wmodel file.
Open this file in Rule Editor to see the rules that were created when you made
changes using Assistant.

Figure 3-24 (page 93) shows the left-hand side or conditional of each rule that
Assistant created as you customized the application. It says “if the application is in
this state, fire the rule and resolve the rule’s right-hand side.”

C H A P T E R 3

Basic Tutorial

Customizing the Application 93
  Apple Computer, Inc. May 2002

Figure 3-24 Left-hand side of rules

Figure 3-25 (page 93) shows the right-hand side of each rule. The first rule says that
none of the entities in the application are considered enumeration entities. The
second rule says to provide fields in query windows for both the name and gpa
properties of the Student entity. The third rule says to use the label “Admissions”
for query windows for the Student entity. The fourth rule says to use the label
“GPA” for the property key label for the “gpa” attribute of the entity “Student.” The
fifth rules says that the Student entity is a main entity.

Figure 3-25 Right-hand side of rules

At this point, your application should resemble Figure 3-26 (page 94).

94 Customizing the Application
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-26 The application with simple customizations

Behind the Steps
Step 1: To disable Assistant in the client application, pass -EOAssistantEnabled NO
as a launch argument for the server application.

Assistant is available only when rapid turnaround mode is enabled (it is enabled by
default on development systems). Rapid turnaround mode allows the application
to access resources from the project directory rather than from the .woa bundle,
which eases development and testing. Also, in Mac OS X, Assistant runs only if the
project is open in Project Builder. Assistant needs access to write out the
user.d2wmodel file, and it can do this only while the project is open.

Step 2: The Entities pane is selected by default. The entity type determines the
window type. That is, each entity type has a default window type. Enumeration
entities are represented by Enumeration windows; Main entities are represented by
Query windows; Other entities are not represented by any particular window type.
The rule system, which will be discussed later on at length, determines these rules.

C H A P T E R 3

Basic Tutorial

Inside Assistant 95
  Apple Computer, Inc. May 2002

Inside Assistant

This section gives more details about Assistant, the first tool for customizing Direct
to Java Client Applications.

Entities
Direct to Java Client defines three entity types: main, enumeration, and other. An
entity can only be one of these types. The Entities pane provides an easy way for you
to change entities from one type to another.

Main Entities

A main entity is generally a top-level entity that users work with most frequently.
Consequently, Direct to Java Client creates a tab for each main entity in the Query
Window and provides form windows for editing each of the main entities.

Direct to Java Client by default defines a main entity as one that is not the
destination of any relationships that have the following characteristics:

� propagate primary key

� own destination

� use the cascade delete rule

Enumeration Entities

By default, an enumeration entity conforms to the conditions for main entities and
additionally conforms to these conditions:

� the entity has fewer than five attributes

� the entity has no relationships that are mandatory

� all the entity’s relationships use the deny delete rule

96 Inside Assistant
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

In practice, enumeration entities should define a collection of values that represent
a list of choices. The values in enumeration entities are usually fairly static, and you
usually don’t want a complex user interface for changing them. Enumeration
entities exist to provide a simple user interface for a list of choices.

An enumeration window contains a tab view for each of the application’s
enumeration entities. The tab for a particular entity shows the complete set of values
in that entity. You can add a new value to the enumeration’s collection (Add), delete
a value from the collection (Remove), and modify a value (make changes and click
Save).

“Other” Entities

Entities that aren’t main or enumeration entities are simply other entities. Other
entities can be manipulated through the master-detail user interfaces of main
entities.

Properties
The Properties pane lets you see how the EOGeneration layer interpreted the
entities and their attributes in your EOModel.

Task

The Task pop-up menu identifies the properties that are displayed for each entity.
That is, you can choose which properties (attributes) are displayed in forms, modal
dialogs, query windows, and data lists. The different tasks correspond to different
window types:

form
Used to enter new records or edit existing records. Contains a property
key for each attribute of an entity that is a form property key. Each
property key is associated with a widget such as a text field or checkbox.
Figure 3-27 (page 97) shows a form window.

C H A P T E R 3

Basic Tutorial

Inside Assistant 97
  Apple Computer, Inc. May 2002

Figure 3-27 Form window

identify
Used whenever an object is simply referenced in the user interface, such
as in a master-detail interface or an error dialog.

list
Displays the results of a query in a table view for attributes that are main
property keys.

query
Provides a text field to query on for each property key.
Figure 3-28 (page 98) shows a query window.

98 Inside Assistant
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-28 Query window and list task

Question

This menu allows you to change task behavior depending on the window type. By
default, all changes to tasks affect both windows and modal dialogs. But if you want
different behavior or a different look in one of the window types, select it in the
Question menu before making changes to the task and property keys.

Property Keys

The property keys displayed in Assistant are all the attributes of an entity that are
client-side class properties.

Additional Property Key Path

You can add property keys for methods in your business logic classes using this
field.

List

Query

C H A P T E R 3

Basic Tutorial

Add a Relationship 99
  Apple Computer, Inc. May 2002

Widgets
This pane lets you tweak user interface elements by adjusting their editability, label,
format, alignment, size, and more. You can make adjustments on a per-task basis.
By assigning new property keys a particular widget type, you can easily add custom
actions, QuickTime movies, and other user interface features to your application.

Windows
You use the options in this pane to change the controller class for windows in your
application, such as the title aspect of query and enumeration windows.

Miscellaneous
This pane contains some additional options for tweaking widgets.

XML
You use the information in this pane when freezing XML files. It contains the XML
description of the dynamically generated user interface. The Save button creates a
text file of the XML description.

Add a Relationship

Now that you’re familiar with Direct to Java Client, you need to expand your
EOModel so you can use more of its features. You’ll add a new relationship
representing a student’s extracurricular activities.

Add an Entity
To create a new relationship, you need more than one entity. Quit the client
application, stop the server application, and open the Admissions.eomodeld file from
within Project Builder. In EOModeler, complete the following steps to enhance the
model:

100 Add a Relationship
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

1. Add a new entity named “Activity” with table name “ACTIVITY”. Its class is
EOGenericRecord.

2. Add new attributes:

� Name: activityID; Column: ACTIVITY_ID; External Type: int; Internal Data
Type: Integer. Do not make this a client-side class property or a server-side
class property.

� Name: name; Column: NAME; External Type: char; Internal Data Type:
String, width 50. Make this a client-side class property. Verify that this
attribute is also marked as a server-side class property.

� Name: achievements; Column: ACHIEVEMENTS; External Type: char;
Internal Data Type: String, width 150. Make this a client-side class property.
Verify that this attribute is also marked as a server-side class property.

� Name: since; Column: SINCE; External Type: date; Internal Data Type: Date;
Make this a client-side class property. Verify that this attribute is also marked
as a server-side class property. Don’t lock on this attribute: Deselect the lock
icon to the left of the attribute to do this.

3. Add a foreign key by copying Student’s primary key (studentID) into the
Activity table. In diagram view, do this by selecting studentID in the Student
table, then choose Copy from the Edit menu, then click in the Activity table, and
choose Paste from the Edit menu. Verify that Activity.studentID is not marked
as a primary key or as a server-side class property in the Activity entity.

4. Make activityID the primary key in the Activity entity by clicking in the key
column. The new entity should look as shown in Figure 3-29.

Figure 3-29 Activity entity

C H A P T E R 3

Basic Tutorial

Add a Relationship 101
  Apple Computer, Inc. May 2002

5. Select the Activity entity in the entities list and choose Generate SQL from the
Tools menu. Since you already generated primary key support the first time you
generated SQL, make sure to deselect the option Create Primary Key Support.
Primary Key Constraints should be selected so Activity’s primary key is
correctly marked in the database. Don’t select Foreign Key Constraints.

Make the Relationship
The relationship you’ll add to the model is a one-to-many relationship. That is, one
Student object can be related to many Activity objects. In most cases, to-many
relationships need at least a foreign key and a primary key. These keys are the
attributes on which the relationship joins. Follow these steps to form a relationship
between Student and Activity:

1. In diagram view (Tools > Diagram View), Control-drag from Student’s primary
key (studentID) to Activity’s foreign key (studentID) as shown in Figure 3-30.

Figure 3-30 Relate Student and Activity

This action creates a relationship in both entities: a to-many relationship from
Student to Activity and a to-one relationship from Activity to Student.

2. The Relationship Inspector allows you to customize the relationship. If it is not
visible on the screen, select Inspector from the Tools menu.

102 Add a Relationship
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Change the relationship name to “activities.”

Figure 3-31 Relationship Inspector for Student’s activities relationship

3. Since each student can have multiple activities, the relationship from the
Student entity to the Activity entity is a to-many relationship. Select the Student
entity and make sure To Many is selected and that studentID is selected in
both the Source Attributes list and the Destination Attributes list, as shown in
Figure 3-31.

4. Each activity and its attributes are unique to a single student, so the relationship
from Activity to Student is a to-one relationship. Select the Activity entity and
make sure To One is selected. Also verify that studentID is selected in both
attributes lists as shown in Figure 3-32 (page 103).

C H A P T E R 3

Basic Tutorial

Add a Relationship 103
  Apple Computer, Inc. May 2002

Figure 3-32 Relationship Inspector for Activity’s student relationship

5. As with entity attributes, you can choose to pass relationships to the client. You
need to add the new relationships as client-side class properties. Switch to table
mode (Tools > Table Mode). Below the attributes pane is a pane for
relationships. You may need to add the client-side class properties column to the
relationship view.

If the Student entity is selected in the entity list, its relationship (activities) is
shown in this pane, as Figure 3-33 (page 104) illustrates. Selecting the Activity
entity displays its relationship (student), as Figure 3-34 (page 104) illustrates.
Make the activities relationship in the Student entity a client-side class
property by clicking in the double-arrow column to the left of it, as shown in
Figure 3-33 (page 104). However, do not make the student relationship in the
Activity entity a client-side class property, as shown in Figure 3-34 (page 104).

104 Add a Relationship
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Figure 3-33 Make Student to Activity relationship a client-side class property

Figure 3-34 Do not make Activity to Student relationship a client-side class property

You do not need to synchronize the schema as the Enterprise Object technology
manages the relationships for you. This helps you build reusable enterprise object
models since the relationship is not database-specific.

The Enhanced Application
Build the project and run both the client and server applications. Direct to Java
Client analyzes the altered EOModel file and generates the user interface based on
the new relationship. Now, when you make a new Student record you can also add
activities for that student as shown in Figure 3-35 (page 105).

C H A P T E R 3

Basic Tutorial

Add a Relationship 105
  Apple Computer, Inc. May 2002

Figure 3-35 Add activities to new Student record

The rule system considers the Activity entity to be of the entity type “other.”
““Other” Entities” (page 96) describes why, when analyzing the enterprise object
model containing the Activity entity, the rule system considers Activity an “other”
entity. This allows you to add activities to a Student record by clicking the Add
button in form windows for the Student entity.

If you make Activity an enumeration or a main entity using Assistant, the
application provides different mechanisms to add activities to student records.
Experiment with this by changing Activity’s entity type in Assistant and restarting
the client application.

Make sure to change the Activity entity back to an “other” entity to successfully
complete the other tutorials.

106 Where to Go From Here
  Apple Computer, Inc. May 2002

C H A P T E R 3

Basic Tutorial

Where to Go From Here

Chapter 4, “Distribution Layer” (page 107), provides an important overview of how
client-server communication in Java Client applications works. Some of the
concepts in that chapter are put into practice in Chapter 5, “Advanced Tutorial.”
However, you may want to continue with the second tutorial and then read the
chapter on the distribution layer as it assumes a deeper understanding of Java
Client concepts that you’ll learn in Chapter 5 (page 119).

Business Logic Partitioning 107
  Apple Computer, Inc. May 2002

C H A P T E R 4

4 Distribution Layer

The distribution layer (com.webobjects.eodistribution and
com.webobjects.eodistribution.client) consists of the objects that make
client-server communication in Java Client applications different from client-server
communication in HTML-based WebObjects applications. Understanding its
details will help you write better behaving, more advanced, and more secure Java
Client applications.

This chapter covers the following topics as they relate to the distribution layer:

� business logic partitioning

� distribution layer objects and intra-layer communication

� remote method invocations

� distribution channels

� distribution layer delegates

Business Logic Partitioning

In HTML-based WebObjects applications, all business logic (and the business
objects that use that logic) lives on the server. Business objects are never sent to the
client (the Web browser). Rather, selected data from those business objects is sent
along with HTML user interface data.

108 Business Logic Partitioning
  Apple Computer, Inc. May 2002

C H A P T E R 4

Distribution Layer

In Java Client, however, business objects are sent to the client application. This is
done for performance reasons. Java Client applications generally access more data
than do distributed HTML applications, and to limit the number of round trips to
the server, copies of the business objects containing the data live on the client.

While this helps performance, it also presents security issues. In Java Client,
business objects are Java objects, and Java objects can quite easily be decompiled
and analyzed. So, you never want to send sensitive business objects (objects
containing private algorithms or data) to the client.

To control which business objects are sent to the client, you use business logic
partitioning. As well as securing business data, business logic partitioning can also
improve performance. The key to business logic partitioning is to minimize the
amount of data sent from server to client while at the same time minimizing the
number of round trips over the network.

Design Recommendations
There are many ways to perform business logic partitioning. Often, you create a
business logic class for the server and one for the client. These classes can be
identical or their implementations can differ, depending on what data you want
sent to the client.

Alternatively, you can create a common superclass from which the client and server
subclasses inherit. In the common superclass, provide abstract declarations of the
methods you want to be different in the two subclasses. In the client subclass, the
methods should simply invoke remote methods of which concrete implementations
exist in the server subclass.

For example, a common superclass might resemble:

package example.common;
import com.webobjects.eocontrol.*;
public abstract class Foo extends EOGenericRecord {

public abstract String bar();
}

C H A P T E R 4

Distribution Layer

Business Logic Partitioning 109
  Apple Computer, Inc. May 2002

The client class (with a remote method invocation) would then resemble:

package example.client;
import com.webobjects.eocontrol.*;
public class Foo extends example.common.Foo {

public String bar() {
 return (String) invokeRemoteMethod("clientSideRequestBar", null, null);
}

}

The server-side class would then resemble:

package example.server;
import com.webobjects.eocontrol.*;
public class Foo extends example.common.Foo {

public String bar() {
return "secret string";

}
public String clientSideRequestBar() {

return bar();
}

}

The actual partitioning of your business logic begins in your EOModel. In
EOModeler, you can assign custom classes to each entity in the model. See “Add
Custom Business Logic” (page 128) in the advanced tutorial for an example.

Performance
As well as providing security for your business logic, partitioning can also confer
performance improvements, depending on where computations take place. For
instance, if a particular computation requires a lot of data, and the client does not
already have the data, it makes sense for that computation to occur on the server,
since the server is closer to the data store.

Likewise, since Java Client requires rather robust clients, nonsensitive
computations can occur on the client, which relieves the server from expending
more cycles.

110 Remote Method Invocations
  Apple Computer, Inc. May 2002

C H A P T E R 4

Distribution Layer

Remote Method Invocations

In Java Client applications you may want some methods to execute only on the
server. This is particularly the case when security is an issue, but performance can
be a reason as well (as when the method consumes a lot of system resources). Java
Client defines two categories of remote method invocations: those that apply to
business logic and those that apply to application logic.

On Business Logic
If you partition your business logic in the recommended way, your client business
logic classes shouldn’t include any sensitive algorithms or computations. Rather,
they should simply use remote method invocations to invoke concrete
implementations of custom methods on the server that perform the sensitive
computations. However, since remote method invocations require a round trip to
the server, you should put nonsensitive algorithms in client-side business logic
classes to reduce network traffic.

There are many methods defined throughout the Enterprise Object technology to
perform remote method invocations. Client-side business logic classes that inherit
from com.webobjects.eocontrol.EOCustomObject can use invokeRemoteMethod to
invoke a method in the corresponding enterprise object on the server. The method
takes three arguments: 1) the method to invoke in the server-side class; 2) a
java.lang.Class object representing the argument types; 3) an object containing the
arguments. Here’s an example:

public void calculateRating() {
invokeRemoteMethod("clientSideRequestCalculateRating", new Class[]

 {NSArray.class}, new Object[] {globalIDs});
}

This code invokes a method called clientSideRequestCalculateRating on the
server, which takes an NSArray as an argument. You can pass null for both the
second and third arguments if the remote method takes no arguments.

C H A P T E R 4

Distribution Layer

Remote Method Invocations 111
  Apple Computer, Inc. May 2002

When you invoke a remote method on an enterprise object, the state of the
client-side editing context is pushed to the server side. This guarantees that the
business objects in the server-side computations are up to date with their client-side
counterparts. Keep in mind that if you nest editing contexts on the client, all the
editing contexts are pushed to the server side upon remote method invocation.

Note that com.webobjects.eodistribution.client.EODistributedObjectStore has
remote method invocation methods (invokeRemoteMethod and
invokeRemoteMethodWithKeyPath) that include a Boolean flag to control the pushing
of the client-side editing context to the server. Setting this flag to false prevents the
client from pushing its editing context state to the server. Since these methods are
defined in EODistributedObjectStore, you must call them on an object store object
if you invoke them from business logic classes.

Remote method invocations raise some security concerns since the client is assumed
to be trusted. However WebObjects Java Client is well-prepared to handle these
concerns. It includes built-in security features that prevent unauthorized remote
method invocations. By default, remote method names must be prefixed with
clientSideRequest, otherwise the EODistributionContext object on the server will
not allow the remote method invocation. You can use delegates on the distribution
context to implement your own security mechanisms for remote method
invocations, as described in “Delegates” (page 117).

On Application Logic
Not all remote method invocations relate directly to business logic. Sometimes,
you’d like to get information from the server that is specific to your application, but
not particular to your application’s business logic. This may include knowing what
resources are available and how to handle user defaults.

Application-level remote methods are called with invokeRemoteMethodWithKeyPath
and invokeStatelessRemoteMethodWithKeyPath which are defined in
EODistributedObjectStore. These methods are similar to invokeRemoteMethod except
for two things. The receiver of the invocation can be any object (not just an
enterprise object) that can be specified with a key path. The keyPath argument has
special semantics:

� If keyPath is a fully qualified key path (for example, session.editingContext) the
key path is followed starting from the invocation target of the
EODistributionContext, which by default is the WOJavaClientApplet object.

112 Remote Method Invocations
  Apple Computer, Inc. May 2002

C H A P T E R 4

Distribution Layer

� If keyPath is an empty string, the method is invoked on the WOComponent that
is the invocation target of the EODistributionContext (typically a subclass of
WOJavaClientApplet).

� If keyPath is null, the method is invoked on the server-side
EODistributionContext.

The same security mechanism applies to these types of remote method invocations.
That is, if an actual key path is specified, the EODistributionContext on the server
blocks all invocations sent with this method unless the methodName argument is
prefixed with clientSideRequest or unless the EODistributionContext’s delegate
(on the server) implements distributionContextShouldAllowInvocation and
distributionContextShouldFollowKeyPath. For security reasons, the delegate must
authorize the invocation and the key path in these methods.

You can also invoke application-specific remote methods with
invokeStatelessRemoteMethodWithKeyPath. Unlike invokeRemoteMethodWithKeyPath,
it does not synchronize the client and server editing contexts. It is useful if you want
to do something that has nothing to do with business logic, such as loading
resources, running checks in background threads, and so on. It is much faster than
invokeRemoteMethodWithKeyPath since it doesn’t affect the object graph or editing
contexts and avoids synchronization issues with client-side editing contexts in
multithreaded applications.

In short, application logic remote method invocations usually originate in custom
Java Client controller classes, while business logic remote method invocations
usually originate from enterprise object classes (classes implementing the
com.webobjects.eocontrol.EOEnterpriseObject interface).

Distributed Object Store
To perform remote method invocation on application logic, you invoke the methods
on the client’s distributed object store. The WebObjects API reference describes the
distributed object store as follows:

“An EODistributedObjectStore functions as the parent object store on the client side
of Java Client applications. It handles interaction with the distribution layer’s
channel (an EODistributionChannel object), incorporating knowledge of that
channel so it can forward messages it receives from the server to its editing contexts
and forward messages from its editing contexts to the server.”

C H A P T E R 4

Distribution Layer

Custom Code in Business Logic 113
  Apple Computer, Inc. May 2002

You can get the distributed object store object with this code (assuming you haven’t
done anything special in the distribution layer with regard to the
EODistributedObjectStore):

private EODistributedObjectStore _distributedObjectStore() {
 EOObjectStore objectStore = EOEditingContext.defaultParentObjectStore();
 if ((objectStore == null) || (!(objectStore instanceof EODistributedObjectStore))) {
 throw new IllegalStateException("Default parent object store needs to be an
 EODistributedObjectStore");
 }
 return (EODistributedObjectStore)objectStore;
}

Then you invoke the remote method on the object returned by the above method:

_distributedObjectStore().invokeRemoteMethodWithKeyPath(<arguments>);

Custom Code in Business Logic

There are a few things you need to know about using custom code in business logic
classes. If you write methods that perform computations that require values in the
enterprise object, two methods are provided to help you know when to invoke the
custom computations: awakeFromClientUpdate and prepareValuesForClient.

awakeFromClientUpdate is invoked after the EOGenericRecord subclass on the server
receives a notification that all the business objects have been received from the
client. If you try to invoke a method from one of the class’s set methods that
performs a computation using values of attributes in your business logic, there is no
guarantee that the server-side object has received all the values from the client you
use in that calculation. However, if you invoke the method with said calculation in
awakeFromClientUpdate, you are a guaranteed to have all the business data from the
client.

prepareValuesForClient is invoked in the EOGenericRecord subclass right before
the business objects are sent back to the client (it is actually invoked right before the
objects are encoded). You can override it to set a value before it is sent to the client
if the value is only a client-side class property.

114 Distribution Layer Objects
  Apple Computer, Inc. May 2002

C H A P T E R 4

Distribution Layer

Distribution Layer Objects

The distribution layer’s client-server communication mechanism relies on four
objects: com.webobjects.eodistribution.WOJavaClientApplet,
com.webobjects.eodistribution.EODistributionContext,
com.webobjects.eodistribution.client.EODistributedObjectStore, and
com.webobjects.eodistribution.client.EODistributionChannel.

The flow of information works like this: The client editing contexts talk to the
EODistributedObjectStore (client side), which uses a EODistributionChannel to
transfer objects across the network to the WOJavaClientApplet, which uses an
EODistributionContext to talk to the server-side editing context and to take care of
generating responses to client requests. This flow is illustrated in Figure 4-1.

C H A P T E R 4

Distribution Layer

Distribution Layer Objects 115
  Apple Computer, Inc. May 2002

Figure 4-1 Objects in the distribution layer

Let’s examine each of these objects.

EODistributedObjectStore is the parent object store for all the editing contexts on
the client. It makes the client editing contexts behave like a nested editing context to
the server-side editing context. Its function is similar to that of the
EODatabaseContext object, which lives on the server.

EODistributionChannel is responsible for sending data from the client to the server
(it actually encodes the data).

The WOJavaClientApplet object is the target of the data sent by
EODistributionChannel. It forwards data from the client’s EODistributionChannel
to the server’s EODistributionContext. It is provided to isolate the application from
either deployment environment, and it also plays a large role in application startup.
See “Application Startup” (page 83) for more information on this object. It is also the
object which embeds Java Client in a WebObjects application.

Java Client

WebObjects Server

Application

EOEditing-
Context

HTTP...

EODistribution-
Channel

EODistributed-
ObjectStore

EOEditing-
Context

EOEditing-
Context

EODistribution-
Context

WOJavaClient-
Applet

116 Data Synchronization
  Apple Computer, Inc. May 2002

C H A P T E R 4

Distribution Layer

EODistributionContext has many functions: It keeps track of the state of the
enterprise objects graph; it tracks which objects the client has fetched; and perhaps
most importantly, it synchronizes business objects on the client and server
applications.

Data Synchronization

The distribution layer is responsible for synchronizing the client and server object
stores. The data flow in a Java Client application occurs like this:

� The user makes a query and the fetch specification is forwarded by the client’s
EODistribution layer to the server’s EODistribution layer.

� The normal WebObjects mechanisms take over, and a SQL call is eventually
made to the database server.

� The database server returns rows of requested data that is mapped to enterprise
objects.

� The server’s EODistribution layer sends copies of the requested data to the
client.

� The client’s EODistribution layer receives the objects and registers them with the
client’s editing context (the data is cached in the client’s object graph).

� Through the client’s display group and association mechanisms, the user
interface is populated.

As users modify the data (or delete or add rows of data), the client’s object graph is
updated to reflect the new state. When users request that this data be saved, the
changed object graph is pushed to the server. If the business logic on the server
validates these changes, the changes are committed to the database.

C H A P T E R 4

Distribution Layer

Distribution Channels 117
  Apple Computer, Inc. May 2002

Synchronization of the client and server’s object graphs occurs automatically: Java
Client automatically pushes updates from the server to the client.

Distribution Channels

The distribution channel in Java Client (EODistributionChannel) distributes data
between the client and server applications. By default, Java Client uses HTTP as the
transport mechanism (EOHTTPChannel), but you can subclass EOHTTPChannel to
provide a custom mechanism such as SSL.

See the EODistribution API reference for more details.

Delegates

You can set delegates for EODistributionContext and EODistributionChannel to

� change the security mechanism for validating remote method invocations

� implement a custom encryption and decryption scheme for data transfer over
the network

� control access to business objects

� handle client-side I/O exceptions

� handle server-side exceptions such as validation, null pointer exceptions, and
session timeouts

Note: Although requested objects are copied from the server to the client, and
these objects exist in parallel object graphs on both server and client, the object
graphs on the client are usually a subset of those on the server. You can partition
your application’s enterprise objects so that the objects that exist on the client (or
the server) have a restricted set of data and behaviors.

118 Delegates
  Apple Computer, Inc. May 2002

C H A P T E R 4

Distribution Layer

You set custom delegates with the setDelegate method in EODistributionChannel
and EODistributionContext. If you use custom encyrption and decryption, you
must be aware of the timing issues involved. To be effective, the delegates for doing
these things must be in place before the first byte of data is transferred, which
requires you to subclass EOApplication. You then must add code on the server-side
to get the timing right, like registering for the
EODistributionContextInstantiatedNotification.

Refer to the EODistribution API reference for detailed information.

Customization Techniques 119
  Apple Computer, Inc. May 2002

C H A P T E R 5

5 Advanced Tutorial

In this chapter you’ll further customize the application you created in the basic
tutorial. You’ll learn how to

� add custom business logic to your application

� use NSValidation to validate data

� use remote method invocations

� subclass controller classes to customize applications

� use rules to change application behavior

� add custom actions to the client application

Customization Techniques

This tutorial uses some of the Direct to Java Client customization techniques. Before
teaching you how to implement them, however, this section provides a summary of
all the customization techniques available in Direct to Java Client, including their
costs and appropriate usage.

The first customization tool is the Direct to Java Client Assistant, which you’ve
already used in Chapter 3, “Basic Tutorial.” It allows you to

� change an entity’s type (main, enumeration, or other)

� change the properties that are displayed in any of the four tasks (form, query,
list, and identify)

� add new property keys

120 Customization Techniques
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

� change the widget type of property keys

� make basic customizations to the client application, such as changing the
window titles and setting window sizes

The costs of using Assistant are very low: if you make changes to your data model,
in most cases the rule system picks them up. (Some changes you make in Assistant,
such as changing entity types, may not guarantee that changes in your model are
picked up by the rule system.) For this reason, you should do as much
customization as possible within Assistant before moving on to more advanced
customization techniques, which make synchronizing the user interface with the
data model more complicated.

The second customization tool is writing custom rules. You do this in the Rule
Editor application. The look and behavior of Direct to Java Client applications is
defined by rules that work with the WebObjects rule system. The rule system is an
integral part of the two WebObjects rapid development solutions, Direct to Web
and Direct to Java Client. You can learn more about it in Chapter 7, “Inside the Rule
System.”

Using custom rules is more difficult than just using Assistant, but the costs of using
the rules are no higher than using Assistant (Assistant simply writes rules based on
the customizations you make within it.) Many custom rules apply to specific
entities, so if you change the entities in your model, you may invalidate some rules.
But this is easily fixed by changing the argument in the rule that references a
particular entity.

A simple rule is to specify the minimum width for all windows in an application:

Left-Hand Side: (controllerType='windowController')
Key: minimumWidth

Value: 512

Priority: 50

You can define this characteristic for windows throughout your application
programmatically, but it’s much easier and more maintainable to just write a rule.
Rules are very abstract, and once you learn their syntax and semantics, you’ll find
them to be a powerful customization technique.

C H A P T E R 5

Advanced Tutorial

Customization Techniques 121
  Apple Computer, Inc. May 2002

The next customization technique is freezing XML which allows you to explicitly
state the result of a rule system request. The dynamically generated user interfaces
Direct to Java Client produces are described in XML. In Assistant, the XML pane
shows the XML description for each task for each entity for each window type in
your application. Usually you start with this generated XML and customize it to suit
your needs. This technique is fully explained in the chapter “Task: Freezing XML
User Interfaces” (page 227).

Freezing XML incurs more costs than writing custom rules or using Assistant since
the user interface description is static. If you make changes to your data model,
you’ll have to manually find and update any specific references to the entities and
attributes in the user interface description. Since the XML descriptions are very
abstract, this task is not too difficult. But, you should use Assistant as much as
possible to customize your application before moving on to frozen XML.

In addition to using frozen XML, you can use frozen interface files created in
Interface Builder. Although this gives you more control over the user interface, it
makes maintenance more difficult, it makes platform-specific layout and
localization much harder, and it makes data model synchronization more
challenging. Chapter 14, “Task: Mixing Static and Dynamic User Interfaces”
(page 241), teaches you to how freeze interface files and integrate them in
dynamically generated user interfaces.

Among the most advanced techniques is writing custom controller classes. These
are usually subclasses of EOController, and they can include any Swing component
or any component written in Java. For instance, if you’d like a JPasswordField
widget somewhere in your application, you’d have to write a custom controller
class since this widget isn’t provided for you by default. Then, in the XML
description for the window or modal dialog, you’d specify the custom controller
class using the className attribute.

Using custom controller classes provides you with total control over the user
interface, but it incurs high costs. It requires you to write source code (an inherently
buggy process), which makes data model synchronization quite difficult, especially
if you use the custom controller class with frozen XML.

122 Enhance the EOModel
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Table 5-1 compares the five customization techniques using several criteria.

Enhance the EOModel

The application in the basic tutorial uses a rather simple data model that offers little
opportunity to customize applications that use it. A more advanced model will
better demonstrate the customization features of Direct to Java Client. Since you’ll
be modifying the model, however, it’s kept rather simple so you won’t have to
spend too much time editing it.

Open the Admissions.eomodeld file from within the Admissions project. Add these
attributes to the Student entity:

� Name: act; Column: ACT; External Type: int; Internal Data Type: Integer.

� Name: sat; Column: SAT; External Type: int; Internal Data Type: Integer.

Table 5-1 Consequences of each customization technique

Synchronization
with data model Maintainability

Source code
writing Localization

Assistant Mostly
automatic

Easy None Easy

Custom rules Easy Easy None Easy

Freezing XML More difficult Moderate Minimal More difficult

Freezing
interface files

More difficult Moderate to
difficult

Minimal Moderately easy,
using rule
system

Custom
controller
classes

Not applicable Difficult Much Easy, using
EOUserDefaults

C H A P T E R 5

Advanced Tutorial

Enhance the EOModel 123
  Apple Computer, Inc. May 2002

� Name: firstContact; Column: FIRST_CONTACT; External Type: date; Internal
Data Type: Date. Don’t lock on this attribute: Deselect the lock icon in the
attribute’s row.

Make all the new attributes client-side class properties. By default, they should also
be set as server-side class properties, so make sure the diamond icon is present for
all the new attributes.

Since you added attributes to the entity, you must synchronize the model and the
database schema that generates the appropriate SQL for the updated entity. Refer
to “Using the Application” (page 84) and Figure 3-17 (page 87) for a reminder.

The Student entity should now resemble Figure 5-1.

Figure 5-1 The updated Student entity

Add an Entity
Each student record can be associated with one or many interviews, so you need a
new entity to hold the interview records. In EOModeler, complete the following
steps to enhance the model:

1. Add a new entity named “Interview” with table name “INTERVIEW.” Its class
is EOGenericRecord.

2. Add attributes to the new entity:

� Name: interviewID; Column: INTERVIEW_ID; External Type: int; Internal
Data Type: Integer. Do not make this a client-side class property or a
server-side class property.

124 Enhance the EOModel
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

� Name: interviewDate; Column: INTERVIEW_DATE; External Type:
datetime; Internal Data Type: Date. Make this a client-side class property.
Verify that it is also marked as a server-side class property. Don’t lock on this
attribute: Deselect the lock icon in the attribute’s row.

� Name: interviewNotes; Column: INTERVIEW_NOTES; External Type: char;
Internal Data Type: String, width 4096. Make this a client-side class
property. Verify that it is also marked as a server-side class property.

3. Add a foreign key to the entity by copying Student’s primary key (studentID) in
the Student table, choose Copy from the Edit menu, click in the Interview table,
and choose Paste from the Edit menu. Verify that Interview.studentID is not
marked as a primary key or as a server-side class property in the Activity entity.

4. Make interviewID the primary key in the Interview entity by clicking the key
field. The new entity should look as shown in Figure 5-2 (page 124).

Figure 5-2 Interview entity

5. Select the Interview entity and choose Generate SQL from the Tools menu. Since
you already generated primary key support the first time you generated SQL,
make sure to deselect the option Create Primary Key Support. As shown in
Figure 5-3 (page 125), Primary Key Constraints should be selected so Interview’s
primary key is correctly marked in the database. Don’t select Foreign Key
Constraints.

C H A P T E R 5

Advanced Tutorial

Enhance the EOModel 125
  Apple Computer, Inc. May 2002

Figure 5-3 Generate SQL for the Interview entity

Make a Relationship
Follow these steps to relate Student and Interview in a to-many relationship:

1. In a diagram view (Tools > Diagram View), Control-drag from Student’s
primary key (studentID) to Interview’s foreign key (studentID). This action
creates a relationship in both entities: a to-many relationship from Student to
Interview and a to-one relationship from Interview to Student.

2. The Relationship Inspector allows you to customize the relationship. In table
mode, select the Student entity and then select its interviews relationship. Then,
if it is not visible on the screen, select Inspector from the Tools menu. Verify that
the relationship to Interview in the Student entity is named “interviews.”

126 Enhance the EOModel
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

3. Since each student can have multiple interviews, the relationship from Student
to Interview is a to-many relationship. To-many relationships join on the origin’s
primary key and on the destination’s foreign key. Select the Student entity in the
Relationship Inspector and verify that To Many is selected and that studentID is
selected in both the Source Attributes list and the Destination Attributes list as
shown in Figure 5-4 (page 126).

Figure 5-4 The interviews relationship in the Student entity

4. Each interview is specific to a single student, so the relationship from Interview
to Student is a to-one relationship. The inverse relationship of a bidirectional
to-many relationship joins on the origin’s foreign key (Interview.studentID) and
on the destination’s primary key (Student.studentID). To verify this, first select
the Interview entity in table mode. Then in the Relationship Inspector, verify
that To One is selected and that studentID is selected in both the Source
Attributes list and the Destination Attributes list.

C H A P T E R 5

Advanced Tutorial

Enhance the EOModel 127
  Apple Computer, Inc. May 2002

Figure 5-5 The student relationship in the Interview entity

5. As with attributes in entities, you can choose to pass relationships to the client.
You need to add the new relationships as client-side class properties. Just as you
did with the activities relationship for the Student entity in the basic tutorial,
make the interviews relationship in the Student entity a client-side class
property. However, don’t make the inverse relationship (the student
relationship in the Interview entity) a client-side class property. See “Make the
Relationship” (page 101) for a refresher and refer to Figure 5-6 (page 127) and
Figure 5-7 (page 128) to see how the final result should look.

Figure 5-6 Student’s relationships

128 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-7 Interview’s relationship

Add Custom Business Logic

As the basic tutorial illustrates, you can go far in a Direct to Java Client application
without writing any code. However, the real power of a Java Client application is in
the enterprise objects you create and customize. The behavior or business logic you
add to your enterprise objects brings your stored data to life.

By default, EOModeler assigns new entities the class EOGenericRecord.
EOGenericRecord is sufficient when all you want the entity to do is get and set
properties. However, when you want to add custom behavior to a class (for
example, to assign default values when you create new objects or to perform
validation), you need to implement a custom enterprise objects class. This class
includes the default behavior provided by EOGenericRecord as well as the custom
behavior you implement.

To use custom business logic in your application, you assign custom classes to the
entities in your model.

1. In EOModeler, select the Admissions model root (top of the tree). Make sure
you’re in table mode. If the Client-Side Class Name column is not visible, choose
Client-Side Class Name from the Add Column pop-up menu at the bottom of
the window.

2. Double-click the Class Name cell for Student in the table and enter
businesslogic.server.Student.

3. Double-click the Client-Side Class Name cell for Student and change server to
client so it reads businesslogic.client.Student.

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 129
  Apple Computer, Inc. May 2002

4. Repeat these steps for the Activity entity, substituting Activity for Student in the
package name.

5. Save the model.

The recommended naming convention of custom class names is to adhere to Java
package syntax.

By giving both the Class Name (server) attribute and the Client-Side Class Name
(client) attribute custom class names, you are telling the model to use custom classes
on both the client and the server. But this isn’t required—you can implement a class
only on the server or only the client, depending on your needs. See “Design
Recommendations” (page 108) for more information.

Once you specify a custom class for an entity in EOModeler, you can generate Java
source files for that entity. Before doing that, however, you should prepare your
project to handle the new files.

Prepare the Project for Custom Logic
Project Builder stores most of a project’s files at the top level of the project directory
in the file system even though it organizes files in logical groupings inside the
project itself. It’s a good idea to separate your business logic files from other
WebObjects files both in the project directory in the file system and in logical
groupings inside the Project Builder project.

Follow this step to create a BusinessLogic directory with subdirectories in the file
system, and to create a BusinessLogic group in the project:

Create the following directories at the top level of your project directory (do this in
the file system, not in Project Builder):
BusinessLogic
BusinessLogic/Client
BusinessLogic/Server

The directory structure should look like Figure 5-8.

130 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-8 Directory structure for custom business logic

Generate Source Files
EOModeler can generate Java files for your model. You’ll use these source files to
add custom business logic to your enterprise objects.

Follow these steps to generate Java files for the client:

1. In EOModeler, select the Student entity.

2. Choose Property > Generate Client Java Files.

3. Select the Client directory inside the BusinessLogic directory in the project, as
shown in Figure 5-9.

Note: In WebObjects 5.1 with certain versions of Mac OS X and the developer
tools, EOModeler does not prompt you for a location for the class files it
generates. Rather, it attempts to save files in the model’s directory. To work
around this bug, you’ll have to manually move the generated class files to the
correct directories.

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 131
  Apple Computer, Inc. May 2002

4. Click Save.

5. Repeat the process for the Activity entity.

Figure 5-9 Save Client Java files in BusinessLogic/Client

Follow these steps to generate Java files for the server:

1. In EOModeler, select the Student entity.

2. Choose Property > Generate Java Files.

3. Select the Server directory inside the BusinessLogic directory in the project.

4. Click Save.

5. Repeat the process for the Activity entity.

The Java class files generated by EOModeler include the necessary import
declarations as well as constructors and accessor methods derived from the
properties of the entity defined in the model file.

132 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Although you told EOModeler where to put the generated files, Project Builder did
not automatically add them to the project.

Follow these steps to import the generated files into Project Builder:

1. Select the Classes group in the Groups & Files pane of Project Builder.

2. Choose Project > Add Files.

3. Select the BusinessLogic directory and click Open. This creates a new group and
imports the BusinessLogic directory and its subdirectories into the group.

4. Select Application Server as the target as shown in Figure 5-10 (page 132). Also
make sure that “Recursively create groups for any added folders” is selected.

Figure 5-10 Import BusinessLogic directory

5. Click Add. The new files should appear in the Groups & Files pane as illustrated
in Figure 5-11.

6. After the import, change the target for the files in BusinessLogic/Client to Web
Server. Make sure you also disassociate the files in BusinessLogic/Client from
the Application Server target by switching to that target and deselecting the

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 133
  Apple Computer, Inc. May 2002

checkbox to the left of each file in that group. The client Java files must be built
as part of the Web Server target rather than as part of the Application Server
target.

Make sure that Admissions is the target selected in the targets pop-up menu
after you’ve correctly associated the imported files with their targets.

Figure 5-11 BusinessLogic group with imported files and associated targets

Now the project uses custom classes for the Student and Activity enterprise objects
instead of EOGenericRecord. These class files can be edited to implement custom
behavior.

If you examine the code in any of the imported classes, you’ll notice that the class
generated by EOModeler does not have actual instance variables or fields. Rather,
the methods to access the attributes of the custom enterprise objects are
implemented using key-value coding.

Behind the Steps

Step 6: As an alternative to importing all the custom Java classes at once and then
changing the target accordingly, you can also import the server and client classes
separately and assign them to the appropriate target at that time.

134 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Prepare Application for Business Logic
The business logic you’ll add is quite simple: It calculates a rating for a student by
aggregating the three scores in the database: ACT, SAT, and GPA. You can use
Assistant to prepare the application for this new business logic.

Here’s how:

1. Build and run the application and open Assistant. You have to build the
application again since you changed the model.

2. In the Properties pane, add a new property key path called “rating” for
Task=form, Entity=Student using the Additional Property Key Path text field
and the Add button as shown in Figure 5-12.

Figure 5-12 Add a property key for the form task

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 135
  Apple Computer, Inc. May 2002

3. Since you’d like to see the rating displayed in the list view of a query window,
you also need to add the additional property for the list task. Switch Task to list
and click Add, as shown in Figure 5-13.

Figure 5-13 Additional property key for list task

4. The new property will be associated (via an EOAssociation, see “Associations”
(page 48)) with a method of the same name in a client-side business logic class
for the entity (businesslogic.client.Student in this case). To make this
association, switch to the Widgets pane and select Task=form, Entity=Student,
Property Key=rating. From the Widget Type pop-up menu, select
EOTextFieldController if it is not already selected. Doing this binds the
association aspect of the EOTextFieldController widget (rating) with the rating
method, which you’ll define in a few steps.

136 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-14 Change the widget type to make the association.

5. Since the rating is calculated on the server side, the text field should be marked
as not editable by the user. So, while in the Widgets pane, select Never in the
Editability pop-up menu.

6. Finally, you should apply a number formatter to the widget so the number
displayed is more meaningful. Change the Format Class field to read
“com.webobjects.foundation.NSNumberFormatter”. Formatters need a pattern,
and since the rating is a decimal number, the Format Pattern field should be
“#,##0.00” as shown in Figure 5-14. See the class reference documentation for
NSNumberFormatter for more information on format patterns.

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 137
  Apple Computer, Inc. May 2002

7. Since the rating also appears as a column in list views, switch the task to list and
set the format options for the EOTableColumnController as shown in Figure
5-15.

Figure 5-15 Change formatter for property in list view

8. Save changes and quit the client and server applications.

138 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Add Custom Code
You now need to add a method for the new property you added in Assistant. The
new rating attribute in the Student entity is designed to aggregate ACT and SAT
scores and GPAs into a numeric rating based on how each of those attributes is
weighted. You need to add a method to perform the calculation, a method to invoke
the calculation, and class constants to define the weighting.

The algorithm used to calculate the rating is “sensitive” business logic, so it should
exist only on the server side. The client business logic class simply invokes the
concrete implementations of the rating methods on the server side.

Add these class constants to the server-side Student.java file:

private static final double ACT_WEIGHT = 0.30;
private static final double SAT_WEIGHT = 0.30;
private static final double GPA_WEIGHT = 0.40;

Add this method to the server-side Student.java file:

public Number rating() {
 float aggregate = 0;
 float satTemp;
 float actTemp;
 float gpaTemp;

 if (sat() != null && act() != null && gpa() !=null) {
 satTemp = sat().floatValue() / 1600;
 actTemp = act().floatValue() / 36;
 gpaTemp = gpa().floatValue() / 4;

 aggregate = (float)(((gpaTemp * GPA_WEIGHT) + (actTemp + ACT_WEIGHT)
 + (satTemp + SAT_WEIGHT)) * 10);
 }

 return (new Float(aggregate));
 }

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 139
  Apple Computer, Inc. May 2002

Add a method called clientSideRequestRating in the server-side Student.java file
that invokes the rating method, as shown:

public Number clientSideRequestRating() {
 return rating();
}

Add this code to client-side Student.java file to invoke the remote method:

 public Number rating() {
 return (Number)(invokeRemoteMethod("clientSideRequestRating", null,
 null));
 }

In the last section, you bound the association aspect of the EOTextFieldController
(rating) to a method called rating in the client-side business logic class. You’ve just
defined this method, so now whenever the rating property needs a value, the rating
method is invoked. It’s that easy—Java Client handles all the communication
between the business logic and the user interface for you.

There is more going on behind the scenes, though. The rating in the client-side
business logic class invokes a remote method called clientSideRequestRating in the
server-side business logic class. This method in turn invokes a method called
rating, which actually performs the calculation.

Rebuild and run the application. Make a new student record and see how the rating
field is populated upon saving as shown in Figure 5-16 (page 140).

Note: Whenever rating is requested, a round trip to the server is made to perform
the remote method invocation. To lessen network traffic, you should consider
caching the value in the client-side enterprise object.

140 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-16 The rating field in action

Validation

WebObjects provides some useful classes and methods to validate user input. You
should validate the entered data for each of the three score fields. To do this, add
the following code in the server-side Student.java class:

public Number validateSat(Number score) throws NSValidation.ValidationException {
 if ((score.intValue() > 1600) || (score.intValue() < 0)) {
 throw new NSValidation.ValidationException("Invalid SAT score.");

}
else

return score;
}

public Number validateAct(Number score) throws NSValidation.ValidationException {
 if ((score.intValue() > 36) || (score.intValue() < 0)) {

throw new NSValidation.ValidationException("Invalid ACT score.");
}
else

return score;
}

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 141
  Apple Computer, Inc. May 2002

public Number validateGpa(Number score) throws NSValidation.ValidationException {
 if ((score.floatValue() > 4.0) || (score.floatValue() < 0.0)) {

throw new NSValidation.ValidationException("Invalid GPA.");
}

 else
return score;

}

The code you added is rather trivial, but it demonstrates a particularly powerful
feature of WebObjects—validation. The NSValidation class in the Foundation
framework provides this functionality. By throwing an
NSValidation.ValidationException, a method tells Enterprise Objects that the
current object graph is not cleared to be saved to the database.

In this case, if one of the attributes fails to validate, the object graph is not cleared
by NSValidation and the current record won’t be committed to the data store until
a valid value is entered.

You were instructed to put all the validation methods in the server-side business
logic class, but this is not necessary. In fact, it often makes more sense to validate
some values on the client. This reduces network traffic (there is no round-trip to the
server to perform the validation) and increases overall application performance.
Experiment with this by moving one of the validation methods to the client-side
business logic class.

Validation methods are of the form validateAttribute. In this example, be sure that
validateGpa is capitalized correctly—validateGPA will not invoke validation on the
gpa attribute.

If you write validation methods, they are invoked in the framework by various
classes and interfaces such as EOValidation, EODisplayGroup, and
EOEditingContext. Validation is performed for these activities:

� updating the client-side database context (validateForUpdate)

� saving to the database (validateForSave)

� deleting from the database (validateForDelete)

� inserting a new record (validateForInsert)

� updating the server-side database context (validateForUpdate)

142 Add Custom Business Logic
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Initial Values

When you create a new record, it would be nice to supply some default values for
the fields in that record. Although none of the fields in the Student record really
need a default value, you’ll override awakeFromInsertion in order to learn how to
give a field a default value.

Add this code in the server-side Student.java file:

public void awakeFromInsertion(EOEditingContext context) {
 super.awakeFromInsertion(context);
 if (gpa() == null) {
 setGpa(new BigDecimal("0"));
 }
 if (sat() == null) {
 setSat(new BigDecimal("0"));
 }
 if (act() == null) {
 setAct(new BigDecimal("0"));
 }
 if (name() == null) {
 setName("");
 }
 }

Build and run the application and create a new student record. You’ll notice that
some of the fields are populated in the new record as shown in Figure 5-17
(page 143).

C H A P T E R 5

Advanced Tutorial

Add Custom Business Logic 143
  Apple Computer, Inc. May 2002

Figure 5-17 Initial values

Also try entering some invalid data to see how the validation you implemented
works. If you enter an invalid score, you should get a validation exception message
when saving, as shown in Figure 5-18 (page 143).

Figure 5-18 Validation exception message

144 Controller Hierarchy
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Controller Hierarchy

Before you learn more about customizing Direct to Java Client applications, you
should know what’s going on behind the scenes.

In nondirect Java Client applications, user interfaces are stored in Interface Builder
nib files. In Direct to Java Client applications, user interfaces are dynamically
generated by the EOGeneration layer, which produces XML descriptions of the
controllers in a user interface. Each user interface element in a Direct to Java Client
application is managed by a controller. Multiple controllers are organized in a
controller hierarchy which defines the complete functionality of the application.

There is an application-wide controller hierarchy with an EOApplication object at
its root. Each window or modal dialog in an application is defined by a more
granular controller hierarchy. The controller hierarchies for windows or modal
dialogs are referred to as the application’s subcontrollers. Window controllers and
modal dialog controllers have subcontrollers of their own such as text fields, table
views, and check-boxes.

Controllers
The objects in the controller hierarchy are instances of EOController subclasses. The
EOController class defines basic controller behavior. Collectively, controllers are
responsible for managing the controller hierarchy (which includes building,
connecting, and traversing the hierarchy) and handling actions. Controllers define
and know how to respond to the actions users can perform.

The EOController subclasses fall into the following categories:

� Application level controllers define application-level functionality. They define
actions such as Quit and Save. Additionally they provide document
management support such as tracking documents with unsaved changes. An
application level controller (such as EOApplication or EODynamicApplication) is
the root of an application’s controller hierarchy.

C H A P T E R 5

Advanced Tutorial

Controller Hierarchy 145
  Apple Computer, Inc. May 2002

� User interface level controllers manage portions of an application’s user
interface, such as windows (EOWindowController) and tab views
(EOTabViewController). They determine the layout of their subcontrollers,
resizing behavior, and so on.

� Entity level controllers specify the user interface for performing a particular
task on an entity. Entity level controllers determine the functionality for
querying, listing, and editing objects. They include EOQueryController and
EOListController.

� Property level controllers manage widgets for displaying properties. They
provide widgets for entering text, displaying properties in a table, and so on.
They include EOTextFieldController and EOTableColumnController.

Creating the Controller Hierarchy
The process for creating the controller hierarchy involves a
com.webobjects.eogeneration.client.EOControllerFactory object, the rule system,
and D2WComponent objects.

An EOControllerFactory is created on the server during the server application’s
initialization, and this object creates the controller hierarchy. It does this using the
rule system, which provides XML descriptions of controller hierarchies. The
controller factory then parses the XML (using a
com.webobjects.eoapplication.EOXMLUnarchiver object) and generates the specified
controllers.

The EOXMLUnarchiver maps XML tags to EOController classes, as illustrated in
Table 5-2.

Table 5-2 A subset of the controllers available in Direct to Java Client

XML tag Controller class

MODALDIALOGCONTROLLER EOModalDialogController

ACTIONBUTTONSCONTROLLER EOActionButtonsController

QUERYCONTROLLER EOQueryController

TEXTFIELDCONTROLLER EOTextFieldController

146 Using Rules in the Rule System
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

As an XML unarchiver creates the controller hierarchy, it configures the controllers
according to the specified XML attribute values. For example, two of the XML
attributes for EOTextField are valueKey and isQueryWidget:

<TEXTFIELDCONTROLLER valueKey="name" isQueryWidget="true"/>

These attributes correspond to the EOTextField methods setValueKey and
setIsQueryWidget. The valueKey="name" attribute specifies that the text field
controller corresponds to a property named “name.” The isQueryWidget="true"
attribute specifies that the text field is used to get search criteria from the user and
is not to display and edit a property’s value.

For more information on the XML tags and attributes for controller classes, see
Appendix A (page 297).

Using Rules in the Rule System

As well as understanding the role of controllers in Direct to Java Client applications,
you need to know a bit more about the rule system. The default rule system in Direct
to Java Client applications includes over one hundred rules. You can customize
these rules and write new rules, too. So you need to know both how to leverage the
default rules in your application and how to write custom rules.

Every Java Client class that can exist as part of an XML description for Direct to Java
Client user interfaces includes XML identifiers. These identifiers come in the form
of a single XML tag and one or more XML attributes.

LISTCONTROLLER EOListController

TABLECONTROLLER EOTableController

TABLECOLUMNCONTROLLER EOTableColumnController

Table 5-2 A subset of the controllers available in Direct to Java Client (continued)

XML tag Controller class

C H A P T E R 5

Advanced Tutorial

Using Rules in the Rule System 147
  Apple Computer, Inc. May 2002

For instance, EOComponentController’s XML tag is COMPONENTCONTROLLER, and its
XML attributes include alignmentWidth, iconName, and verticallyResizable. This
book includes a complete list of Java Client classes that have XML tags and XML
attributes in Appendix A (page 297).

For example, when using a Direct to Java Client application, you may want to
change the behavior of the query window. It’s not uncommon to want to query for
all records in a particular entity, and the dialog asking if you want to search for all
records can become repetitive. To see if the query window has any options for
controlling its behavior, you’d first consult its XML attributes as found in “XML
Description of Classes and Actions” (page 297).

You’d find that the EOQueryController class includes an XML attribute called
runsConfirmDialogForEmptyQualifiers. This attribute controls the confirmation
dialog when you click Find in a query window without qualifying the search
criteria. runsConfirmDialogForEmptyQualifiers is a Boolean attribute, so setting it to
false disables the confirmation dialog.

You add this rule to your application’s d2w.d2wmodel using Rule Editor. You add the
d2w.d2wmodel file to a project by making a new file of type “Empty File,” naming it
“d2w.d2wmodel,” and associating it with the Application Server target.

Open your application’s d2w.d2wmodel file and add a rule with these attributes:

Left-Hand Side: (true)
Key: runsConfirmDialogForEmptyQualifiers

Value: "false"

Priority: 50

In this case, you don’t need to specify the qualifier since only one controller has the
runsConfirmDialogForEmptyQualifiers value. If you want to disable the
confirmation dialog just for a specific entity, you can add this argument to the
left-hand side: entity.name="<entityName>".

Note: Be careful about using this rule without specifying an entity. The
confirmation dialog is intended to avoid unqualified fetches on entities with a
large number of records. Disabling the confirmation dialog for all entities in an
application runs the risk of severely degrading your database’s performance and
in turn your application’s usability as users are more likely to invoke unqualified
searches.

148 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

See “Inside the Rule System” (page 189) for an explanation of rule priorities and for
more general information on the rule system. Also see “Task: Customizing With
Common Rules” (page 221) for examples of custom rules.

Additional Actions

Adding actions to Direct to Java Client applications is rather easy. There are four
recommended procedures:

� use Assistant to specify a new property with an EOActionController widget (for
actions on enterprise objects; action method is in client-side business logic)

� subclass a controller class and write a rule to use it in the application (action
method is in subclass)

� write a custom controller class and include it in an XML description (for actions
on user interface; action method is in custom controller class)

� edit XML by hand to include an EOActionController with an actionKey tag
specifying the action method (for actions on enterprise objects; action method is
in client-side business logic)

Write the Action
Before you take steps to customize the application to invoke a new action, you need
to write the code for the action. The action you’ll add here sends the contents of a
Student record to a specified email address. The code that constructs the email
exists in your application’s Session.java class. Rather than send a plain text email,
the email sent is a WebObjects component email. This means that you can use a
dynamic WOComponent object to populate the contents of the email.

Note: You’ll better understand this part of the tutorial if you’re familiar with the
concepts involved in an HTML WebObjects application. The book Inside
WebObjects: Discovering WebObjects for HTML is a great place to start learning.

C H A P T E R 5

Advanced Tutorial

Additional Actions 149
  Apple Computer, Inc. May 2002

Follow these steps to make the new WOComponent:

1. Make a new WOComponent in Project Builder. Choose New File from the File
menu and select Component from the WebObjects list. Name the component
“Report” and add it the Application Server target.

2. Open the component in WebObjects Builder and add a new key called “student”
of type Student, as shown in Figure 5-19. Select the checkboxes to generate
source code for an instance variable and a method setting the value.

Figure 5-19 New key of type Student in the Report component

3. Add another new key called “interview” of type Interview, as shown in Figure
5-20. Select the checkbox to generate source code for an instance variable.

150 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-20 New key of type Interview in the Report component

4. Add another new key called “activities” of type Activity, as shown in Figure
5-21. Select the checkbox to generate source code for an instance variable.

C H A P T E R 5

Advanced Tutorial

Additional Actions 151
  Apple Computer, Inc. May 2002

Figure 5-21 New key of type Activity in the Report component

5. Add dynamic elements for Student’s attributes. Add WOStrings for the gpa, act,
sat, and name attributes as shown in Figure 5-22. They are shown here in a table,
but that is optional.

Figure 5-22 Dynamic elements for Student’s attributes

6. Add dynamic elements for Student’s interviews relationship. Add a
WORepetition with list = student.interviews and item = interview. Add a
WOString for interview.interviewDate and a WOString for
interview.interviewNotes within the repetition as shown in Figure 5-23.

152 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-23 WORepetition for Student’s interviews

7. Add dynamic elements for Student’s activities relationship. Add a
WORepetition with list=student.activities and item = activities. Add
WOStrings for activities.name, activities.achievements, and
activities.since as shown in Figure 5-24.

Figure 5-24 WORepetition for Student’s activities

8. Add this method to Session.java to compose and send the message:

public void clientSideRequestSendRecordViaEmail(EOEnterpriseObject record) {
 String messageSubject, messageBody, message;
 NSMutableArray recipients = new NSMutableArray();
 recipients.addObject("person@foo.com");

 Report report = new Report(context());
 report.setStudent(record);

 messageSubject = "Student report for " + record.valueForKey("name");
 message =
 WOMailDelivery.sharedInstance().composeComponentEmail("sender@foo.com",
 recipients, null, messageSubject, report, true);
}

C H A P T E R 5

Advanced Tutorial

Additional Actions 153
  Apple Computer, Inc. May 2002

This method uses the com.webobjects.appserver.WOMailDelivery class to send
an email message containing information from a student record. You’ll notice
that the method is named clientSideRequestSendRecordViaEmail to conform to
the default rules for remote method invocation.

9. Since the email is sent via remote method invocation, you need to provide a
distribution layer delegate method in Session.java to allow the invocation. In
Session.java, add an import statement for the com.webobjects.eodistribution
package and then add the distribution layer delegate method:

public boolean distributionContextShouldFollowKeyPath(EODistributionContext
 distributionContext, String path) {
 return (path.equals("session"));
}

You can now add custom actions to invoke the email composition. How the
clientSideRequestSendRecordViaEmail method in Session.java is invoked depends
on how you add the custom action. The following four sections describe the
possibilities, in order of recommendation.

Use Assistant
Using Assistant is the easiest, fastest, but least flexible way to add an action to an
application. Follow these steps to do it:

1. Build and run the Admissions application and open Assistant.

2. Switch to the Properties pane and add a new property key called
“sendRecordViaEmail” for Question=window, Task=form, Entity=Student. Do
this using the Additional Property Key Path field. See Figure 5-25.

154 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-25 Add property key for new action

3. Switch to the Widgets pane, select Task=form, Entity=Student, and Property
key=sendRecordViaEmail. In the Widget Type pop-up menu, select
EOActionController as shown in Figure 5-26.

C H A P T E R 5

Advanced Tutorial

Additional Actions 155
  Apple Computer, Inc. May 2002

Figure 5-26 Change the widget type of the new property key

4. Save the changes and restart the client application from Assistant and you’ll see
a new button called Send Record Via Email in form windows for the Student
entity as shown in Figure 5-27. Since it’s an EOActionController defined in the
Student entity, it invokes a method of the same name, sendRecordViaEmail, in the
client-side business logic class for that entity (businesslogic.client.Student in
this case).

156 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-27 The new property key as an EOActionController

Make a new student record or open an existing record and click the new button. If
you started the client application from the command line, you see an
IllegalArugmentException is thrown, stating that the method sendRecordViaEmail
can’t be found. (In Mac OS X, client applications started automatically by the
WOAutoOpenClientApplication mechanism send exceptions to the console.) So, you
need to add it to your client-side business logic class.

Add this method in the client-side Student.java file:

public void sendRecordViaEmail() {
 _distributedObjectStore().invokeRemoteMethodWithKeyPath(new
 EOEditingContext(), "session", "clientSideRequestSendRecordViaEmail", new
 Class[] {EOEnterpriseObject.class}, new Object[] {this}, true);
}

This method invokes the method you added to your Session.java class. It sends the
enterprise object from which the action originated (the this parameter) and pushes
the state of the client-side editing context to the server-side editing context (the true
parameter). See the API reference documentation for
invokeRemoteMethodWithKeyPath for detailed descriptions of each parameter.

C H A P T E R 5

Advanced Tutorial

Additional Actions 157
  Apple Computer, Inc. May 2002

In the code listing above, you’ll notice that the remote method invocation is made
on an object returned from the method _distributedObjectStore(). You need to
add this method to the client-side Student.java class:

private EODistributedObjectStore _distributedObjectStore() {
 EOObjectStore objectStore = EOEditingContext.defaultParentObjectStore();
 if ((objectStore == null) || (!(objectStore instanceof EODistributedObjectStore)))
 {
 throw new IllegalStateException("Default parent object store needs to be an
 EODistributedObjectStore");
 }
 return (EODistributedObjectStore)objectStore;
}

Client-side remote methods that are not invoked on business logic classes (on
subclasses of EOCustomObject) are invoked on the client’s distributed object store.
For instance, in an EOGenericRecord subclass, you can use the method
invokeRemoteMethod(String methodName, Class[] argumentTypes, Object[]
arguments), which invokes a method named methodName in the server-side
EOGenericRecord subclass of the same name.

But, if you want to invoke a remote method that is not in the server-side business
logic class corresponding to the client-side business logic class from where the
remote method invocation originates, you need to invoke the remote method on the
client’s distributed object store, as the example above shows.

See the WebObjects API reference documentation for the
com.webobjects.eodistribution.client package for more information on the
distributed object store and the different varieties of remote method invocations.
Also see the chapter Chapter 4, “Distribution Layer” (page 107),for an introduction
to the distribution layer and remote method invocation.

Next, you need to add the import statement for the client-side EODistribution layer
to the Student.java class:

import com.webobjects.eodistribution.client.*;

Finally, you need to add a launch argument to the application representing the
email server through which to send the message. Add -WOSMTPHost to your launch
arguments with the name of a mail server on your network, as shown in Figure 5-28
(page 158). Refer to “Add a Launch Argument” (page 77) if you’ve forgotten how
to add a launch argument.

158 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Figure 5-28 Add launch argument for SMTP host

Build and run the application, open a Student record, and click the Send Record Via
Email button. If you added your email address to the recipients in the code you
added to Session.java, you should see an email in your in box with the information
in the selected record.

Extend a Controller Class
Using Assistant to add an action may not provide you with the flexibility you need.
Furthermore, the methods you added in the last section are not really appropriate
in business logic classes. They are better suited to a dedicated controller class.

Extending a controller class and writing a rule to use it is the best way to provide
custom actions in your application. It is much more flexible than just using Assistant
and it’s much better than the next two options, which both require freezing XML.
Anytime you freeze XML, you lose a lot of the dynamism of the rule system. This
means, for instance, that you are not as able to use the rule system to localize your
application or provide access controls via rules. Also, subclassing controller classes
doesn’t incur the costs associated with writing completely custom controllers.

The dynamically generated user interfaces in Java Client rely on a core set of classes:
EOFormController; EOQueryController; EOListController. You can take real
advantage of WebObjects’ excellent object-oriented design to extend these classes to
provide custom behavior.

Add a new file to your application called “CustomFormController.java.” Add it to
the Web Server target. Copy and paste the code for it, shown in Listing 5-1.

C H A P T E R 5

Advanced Tutorial

Additional Actions 159
  Apple Computer, Inc. May 2002

Listing 5-1 CustomFormController code

package admissions.client;

import java.io.*;
import javax.swing.*;
import java.awt.*;
import com.webobjects.foundation.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eointerface.*;
import com.webobjects.eoapplication.*;
import com.webobjects.eogeneration.client.*;
import com.webobjects.eodistribution.client.*;

public class CustomFormController extends EOFormController {

 public CustomFormController(EOXMLUnarchiver unarchiver) {
 super(unarchiver);
 }

 protected NSArray defaultActions() {
 Icon icon = EOUserInterfaceParameters.localizedIcon("ActionIconOk");
 NSMutableArray actions = new NSMutableArray();

 actions.addObject(EOAction.actionForControllerHierarchy("sendRecordViaEmail",
 "Send Record Via Email", "Send Record Via Email", icon, null, null, 300, 50,
 false));
 return EOAction.mergedActions(actions, super.defaultActions());
 }

 public boolean canPerformActionNamed(String actionName) {
 return actionName.equals("sendRecordViaEmail") ||
 super.canPerformActionNamed(actionName);
 }

 public void sendRecordViaEmail() {
 _distributedObjectStore().invokeRemoteMethodWithKeyPath(new EOEditingContext(),
 "session","clientSideRequestSendRecordViaEmail", new Class[]
 {EOEnterpriseObject.class}, new Object[] { selectedObject()}, true);
 }

160 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

 private EODistributedObjectStore _distributedObjectStore() {
 EOObjectStore objectStore = EOEditingContext.defaultParentObjectStore();
 if ((objectStore == null) || (!(objectStore instanceof EODistributedObjectStore)))
 {
 throw new IllegalStateException("Default parent object store needs to be an
 EODistributedObjectStore");
 }
 return (EODistributedObjectStore)objectStore;
 }

}

When you examine this code, you’ll notice that two of its methods are those you
added in the last section. So you can remove both sendRecordViaEmail and
_distributedObjectStore from the client-side Student.java class. The
defaultActions method adds to the application’s actions and
canPerformActionNamed authorizes the invocation of the sendRecordViaEmail
method.

To use this class in form windows for the Student entity, you need to add a rule to
the project’s d2w.d2wmodel file:

Left-Hand Side: ((task='form') and (controllerType='entityController') and
(entity.name='Student'))

Key: className

Value: "admissions.client.CustomFormController"

Priority: 50

You add the d2w.d2wmodel file to a project by making a new file of type “Empty File,”
naming it “d2w.d2wmodel,” and associating it with the Application Server target.

Build and run the application and remove the action you added with Assistant (you
can either make this an “Other Property Key” in Assistant or find the rule in the
user.d2wmodel file and delete it by hand). If successful, form windows for the
Student entity should look like Figure 5-29.

C H A P T E R 5

Advanced Tutorial

Additional Actions 161
  Apple Computer, Inc. May 2002

Figure 5-29 Image form window with new buttons

Clicking the Send Record Via Email button should send an email with the current
record’s information to the recipients you declared in the method in Session.java,
which constructs and sends the email.

Additional Exercise
For the custom action that sends a record via email, you may find that hard-coding
the email recipients is not ideal. Rather, you might want the flexibility of choosing
the recipients on a per-record basis. By using the controller factory
programmatically, this is actually quite simple.

First, in respect of the Model-View-Controller paradigm, you need to write a new
class to display a dialog in which the user can select the email recipients. Although
you could save a few lines of code by putting the controller factory invocation in the
business logic class, this is bad design. Business logic classes (enterprise objects) are
controller classes and should not include any user interface code. So, add a new
client-side class to your project called SelectEmail:

162 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

package admissions.client;

import com.webobjects.foundation.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eogeneration.client.*;

public class SelectEmail extends Object{

 public SelectEmail() {
 super();
 }

 public NSArray selectEmailAddresses() {
 return
 EOControllerFactory.sharedControllerFactory().selectWithEntityName
 ("Email", true, false);
 }
}

The class is rather simple and contains a single method that invokes a method on
the controller factory. This displays a selection dialog for the Email entity as shown
in Figure 5-30 (page 164).

The second argument in the selectWithEntityName method (true) allows multiple
selection in the select dialog so you can choose multiple email addresses. The
method returns the objects that are selected in the selection dialog.

Before you see any email addresses in that dialog, however, you have to add an
entity to your EOModel called “Email”, generate SQL for it, and add entries to it.
The Email entity is considered an Enumeration entity by the rule system, so you can
add data to it by selecting Enumeration Window from the Tools menu in the client
application.

Next, you need to modify the sendRecordViaEmail action method in
CustomFormController.java as shown:

 public void sendRecordViaEmail() {
SelectEmail select = new SelectEmail();

 NSArray globalIDs = select.selectEmailAddresses();

C H A P T E R 5

Advanced Tutorial

Additional Actions 163
  Apple Computer, Inc. May 2002

 _distributedObjectStore().invokeRemoteMethodWithKeyPath(new
 EOEditingContext(),"session", "clientSideRequestSendRecordViaEmail", new
 Class[] {EOEnterpriseObject.class, NSArray.class}, new Object[]
 {selectedObject(), globalIDs}, true);
 }

These modifications to CustomFormController.java instantiate a new SelectEmail
object and invoke the method to display the dialog that allows users to select the
email addresses to send the current report to.

The remote method invocation now sends the selected email address (represented
by the globalIDs object) and the report from which the sendRecordViaEmail action
was invoked (represented by the objects returned from the selectedObject()
method in the remote method invocation) to the method
clientSideRequestSendRecordViaEmail in the Session.java class on the server.

Next, you need to modify the clientSideRequestSendRecordViaEmail method in the
server-side Session.java class to accept the new globalIDs argument:

public void clientSideRequestSendRecordViaEmail(EOEnterpriseObject record, NSArray
 sendTo) {
 String messageSubject, messageBody, message;
 NSMutableArray recipients = new NSMutableArray();
 //recipients.addObject("person@foo.com");

 java.util.Enumeration e = sendTo.objectEnumerator();
 while (e.hasMoreElements()) {
 EOEnterpriseObject email =
 defaultEditingContext().objectForGlobalID((EOGlobalID)e.nextElement());
 String emailAddress = (String)email.valueForKey("email");
 recipients.addObject(emailAddress);
 }

 Report report = new Report(context());
 report.setStudent(record);

 messageSubject = "Student report for " + record.valueForKey("name");
 message =
 WOMailDelivery.sharedInstance().composeComponentEmail("sender@foo.com",
 recipients, null, messageSubject, report, true);
}

164 Additional Actions
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Instead of statically setting the array recipients, the array is set dynamically to the
email addresses passed in by the sendTo array.

Build and run the application. Open a student record and click Send Record Via
Email. A dialog like the that shown in Figure 5-30 should appear. Select some email
addresses and click Ok. Check your email to see if you are successful.

Figure 5-30 Choose email recipients

C H A P T E R 5

Advanced Tutorial

Debugging 165
  Apple Computer, Inc. May 2002

Debugging

As you use more difficult customization techniques, you’ll need more debugging
information. Direct to Java Client applications consist of much more than Java code.
So, you need tools to help you debug the other main aspects: database access and
the rule system.

You can see the SQL messages passed to the database by adding
-EOAdaptorDebugEnabled YES to your launch arguments on the server application. By
adding -D2WTraceRuleFiringEnabled YES to your launch arguments, you can see all
the rule system rules and your custom rules as they are fired.

If those two flags don’t provide you with enough information, you can add
-NSDebugGroups -1 and -NSDebugLevel 3 , which activate logging for the internal
workings of WebObjects. Using -NSDebugGroups -1 gives you debug logging
information for all aspects of the system. By specifying specific debug groups, you
can narrow down the amount of information logged. See the Javadoc API reference
for NSLog for more information on how to use NSLog.

166 Debugging
  Apple Computer, Inc. May 2002

C H A P T E R 5

Advanced Tutorial

Building Custom Interfaces 167
  Apple Computer, Inc. May 2002

C H A P T E R 6

6 Nondirect Java Client
Development

The direct approach to building Java Client applications and its customization
techniques should allow you to sufficiently customize your application’s user
interface. However, it is possible and often useful to build completely customized
Java Client user interfaces in Interface Builder. This chapter teaches you how to
build custom user interfaces.

Building Custom Interfaces

You create nondirect Java Client applications in Project Builder using the Java
Client Application project type.

Make a new Java Client project called “AdmissionsStatic.” Add the EOModel file
from the last tutorial.

In the Interface Controller Class Name pane, the interface controller class name
should be StudentFormInterfaceController as shown in Figure 6-1. Make sure the
package name is admissions.client. When creating Java Cilent interfaces, you must
always specify the correct package name.

168 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-1 Name the interface controller

Add the Admissions.eomodeld file when prompted.

Choose the fourth option in the Choose Download Classes dialog
(Download main bundle and custom framework classes).

In the Select a Template pane, select EOF Application Skeleton as shown in
Figure 6-2.

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 169
  Apple Computer, Inc. May 2002

Figure 6-2 Choose a template for the interface controller

For Java Client applications, Project Builder creates an Interface Builder file (nib)
and its associated Java class. By default, it’s grouped in the Interfaces group.
Double-click StudentFormInterfaceController.nib to open the file in Interface
Builder.

Interface Builder needs a special palette to work with Java Client user interfaces.
The EnterpriseObjects palette should load by default and appear in the Palettes
pane of Interface Builder’s preferences window as shown in Figure 6-3 (page 170).

170 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-3 Interface Builder palettes

If it does not appear, click the Add button, navigate to /Developer/Palettes and
double-click EnterpriseObjects palette. The palette should then appear in Interface
Builder’s palettes window as shown in Figure 6-4.

Figure 6-4 Enterprise Objects palette

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 171
  Apple Computer, Inc. May 2002

Laying Out the User Interface
To create custom interfaces, you use Interface Builder, the same application used to
build Cocoa desktop applications in Mac OS X. This tool gives you a wide variety
of widgets to choose from, and most importantly, allows you to connect the user
interface to objects in your data model.

The associations and connections you can make in Interface Builder make it the best
tool for developing completely custom user interfaces for Java Client applications.
You can write completely custom Java Client user interfaces in raw Swing or by
using other third-party tools, but then you’ll have to make all the associations and
connections programmatically.

Interface Builder’s integration with EOModeler allows you to easily build a user
interface that is tightly coupled to your data model. It’s as simple as dragging model
elements from EOModeler into the content window in Interface Builder.

A blank window (which corresponds to the MainWindow object), a nib file
window, and a palette window appear when Interface Builder launches, as shown
in Figure 6-5 (page 172).

172 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-5 The Interface Builder environment

Prepare the Nib File

Before adding to the nib file, you may need to associate it with its controller class.
This should happen for you but if it’s not, you must make the association manually.

Open the nib file from within Project Builder and click the Classes tab of the nib file
window. View the classes in inheritance mode (the vertical list), and click the
disclosure triangle next to java.lang.Object to reveal the Java Client classes.
Continue clicking disclosure triangles up through
com.webobjects.eoapplication.EOInterfaceController as shown in Figure 6-6.

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 173
  Apple Computer, Inc. May 2002

Figure 6-6 Classes pane in the nib file window

Click com.webobjects.eoapplication.EOInterfaceController in the classes list and
press Return. This subclasses EOInterfaceController and thus the new class inherits
its targets and outlets. The name of the new subclass is the fully qualified name of
the nib file, admissions.client.StudentFormController, as shown in Figure 6-6.

Now that you’ve created a new class, you must associate the nib file with it. To do
this, switch to the Instances pane of the nib file window and click File’s Owner.
Choose Show Info from the Tools menu and choose Attributes from the pop-up
menu. In the list of classes, select admissions.client.StudentFormController as
shown in Figure 6-7.

174 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-7 Assign the custom subclass to File’s Owner

Integrate the Model
Open the Admissions.eomodeld from within the Admissions project to launch
EOModeler. Then drag the Student entity from EOModeler into the main window
in Interface Builder. The main window should then appear as in Figure 6-8
(page 175).

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 175
  Apple Computer, Inc. May 2002

Figure 6-8 The Student entity dragged into Interface Builder

In the nib file window, there’s now an EODisplayGroup object named “Student.”
The first display group you add to the model also adds an EOEditingContext object
to the nib file window. The nib file window should appear as in Figure 6-9.

Figure 6-9 Display group and editing context

176 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

You can set options for the Student display group by selecting it in the nib file
window and choosing Show Info from the Tools menu. In the Attributes pane, make
sure “Fetch on load” is selected as shown in Figure 6-10. This option is important
because it allows data to be fetched from the database when the application
starts up.

Figure 6-10 Display group options in Interface Builder

The keys listed in the EODisplayGroup Info window correspond to the class
properties specified for the entity in EOModeler. You can add other keys that are
not class properties such as methods you define in the associated Enterprise Objects
class, as is done in “Task: Using Pop-up Menus In Nib Files” (page 275).

By dragging an entity from EOModeler into Interface Builder, you created a
functional yet simple application. However, you should make some simple changes
to improve it.

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 177
  Apple Computer, Inc. May 2002

Add Formatters
The columns for gpa and firstContact are numeric, and you can set the numeric
format style for column data directly in Interface Builder. If you don’t, the gpa
column defaults to an integer format, so the values will be rounded, making that
data less relevant. The firstContact column defaults to a date format that includes
the day of the week, information that is not particularly useful for that attribute in
this application.

To change the formatters, double-click one of the columns and bring up the Info
window. Choose Formatters from the pop-up menu and select a formatter with a
decimal point for the Gpa column as shown in Figure 6-11.

Figure 6-11 Choose a formatter for the Gpa column

For the FirstContact column, select a simple date format as shown in Figure 6-12
(page 178).

178 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-12 Choose a formatter for the FirstContact column

Finally, capitalize the column names so that they’re as shown in Figure 6-13.

Interface Builder provides the ability to test the application. It actually connects to
the database and fetches data. You can test it by choosing File > Test Interface.

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 179
  Apple Computer, Inc. May 2002

Figure 6-13 Testing the application

Note that because “Fetch on load” is enabled for the Student EODisplayGroup, the
data is automatically fetched when you test the interface.

Adding Action Methods
You can add basic behavior to your application, such as adding, deleting, and
saving objects, without writing a line of code. This is possible because the
EODisplayGroup, EOEditingContext, and EOInterfaceController objects in
Interface Builder have predefined action methods that you can use to trigger
operations in your application. An action method is a method that’s invoked when
a user clicks a button or another control object.

Add a button to the interface by dragging a button from the Cocoa-Views palette.
Make three buttons named “Add,” “Remove,” and “Save.” These buttons will be
used to insert new Student records, delete Student records, and save changes,
respectively.

Connect the Add button to the EODisplayGroup’s insert method by
Control-dragging from the Add button to the Student EODisplayGroup. Choose
Outlets in the pop-up menu in the NSButton Info window. Select target in the left
column and double-click the insert: outlet in the right column. See Figure 6-14
(page 180) and Figure 6-15 (page 181).

180 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-14 Connect the Add button to the insert method of the Student
EODisplayGroup

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 181
  Apple Computer, Inc. May 2002

Figure 6-15 Select the insert method

Using the same process, connect the Remove button to the deleteSelection:
method. Finally, connect the Save button to the saveChanges: method in the
EditingContext object.

Save the nib file. Build and run the project. You have a fully functional application
with the capability to add, remove, and save records to the database.

Create a Master-Detail Interface
To express the relationships in your EOModel, you use a master-detail interface.
This interface includes a master table that holds records for the source of the
relationship and a detail table that holds records for the destination. As individual
records in the master table are selected, the contents of the detail table change to
show the records that correspond to the selection in the master table.

182 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Before adding a master-detail interface, delete the table view from the nib file’s
main window and delete the Student EODisplayGroup and the EOEditingContext
object from the nib file window.

You create a master-detail interface by simply dragging a relationship from
EOModeler into a nib file window. Drag the Student entity’s activities
relationship from EOModeler onto the main window in Interface Builder. This
creates a master-detail relationship. The icon you drag is found under the Student
entity in the entity list pane of EOModeler. You may have to click the plus icon to
show the relationship.

Figure 6-16 The activities relationship in the Student entity

Reconnect the Add and Remove buttons to the Student EODisplayGroup. Add two
buttons for detail part of the relationship to add and remove activities. Connect
them to the activities display group. Add the formatters for the columns as you did
earlier.

Test the master-detail interface by choosing Test Interface from the File menu.
Figure 6-17 shows the master-detail interface.

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 183
  Apple Computer, Inc. May 2002

Figure 6-17 A master-detail interface

The master-detail interface you just created can be improved. Although you can
add new records by entering text directly in the table columns, it would be nice to
provide text fields for doing the same thing. Also, you should take advantage of
more built-in features of the technology, such as reversion, undo, and redo.

It’s easy to add widgets in Interface Builder. Simply drag widgets from the Interface
Builder palette onto the window. Figure 6-18 illustrates the complete widget set of
text fields, text areas, and buttons for the master-detail interface.

184 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Figure 6-18 Complete widget set for the master-detail interface

Once you drag a widget into a window, you must connect it to the application.
Consider the Achievements text field for the Activities entity. Once it’s placed in the
interface, Control-drag from the text field to the Activities entity in nib file window.
In the Info window, choose EOTextAssociation from the pop-up menu and
double-click “achievements” in the scrolling list, as shown in Figure 6-19. This
creates an association between the widget and the attribute in the entity. So, when
you select a record, the value of the achievements attribute for that record is also
displayed in the text field. This also allows you to edit the value of the attribute with
which a text field is associated.

C H A P T E R 6

Nondirect Java Client Development

Building Custom Interfaces 185
  Apple Computer, Inc. May 2002

Figure 6-19 Connect widgets with associations

Associate each widget appropriately. Save the nib file.

Build and Run
In Project Builder, build and run the application just as you would for a Direct to
Java Client application.

Programmatic Access to Interface Components
It’s common to want programmatic access to user interface components in nib files.
In the Cocoa world, outlets for all appropriate user interface components are added
to the corresponding Java file for that interface upon adding a component.
However, this doesn’t happen when building Java Client interfaces in Interface
Builder. Fortunately, it’s easy to add this functionality to your application.

186 Building Custom Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

In a nib file, select File’s Owner in the nib file window, switch to the Classes pane,
and select Add Outlet from the Classes menu. If the widget in question is a text field,
for instance, name the outlet “textField” as shown in Figure 6-20.

Figure 6-20 Add an outlet

Connect the new outlet to a text field by Control-dragging from the File’s Owner
icon to the text field and double-clicking textField in the Outlets column of the
Connections pane of the File’s Owner Info window, as shown in Figure 6-21.

C H A P T E R 6

Nondirect Java Client Development

Cocoa to Swing Translation 187
  Apple Computer, Inc. May 2002

Figure 6-21 Connect the new outlet

In the Java class file for the nib file, add a public variable called textField. You now
have programmatic access to the value and attributes of that widget. This is useful,
for instance, if you want to manipulate or extract the values of a particular widget.

Cocoa to Swing Translation

In nondirect Java Client applications, you use Interface Builder to construct user
interfaces. This application was intended to build Mac OS X Cocoa or Carbon
applications. It was not designed to build Swing-based applications, and in fact, it
does not build them directly. Rather, technology in Java Client translates Interface
Builder Cocoa nib files to Swing for you.

188 Cocoa to Swing Translation
  Apple Computer, Inc. May 2002

C H A P T E R 6

Nondirect Java Client Development

Cocoa offers many user interface widgets, and Java Client supports most of them.
Certain widgets are not supported because there is no Swing equivalent. Java Client
translates the following user interface elements:

Cocoa widgets
NSWindow, NSButton, NSTextField, NSTextView, NSTableView,
NSTableColumn, NSComboBox, NSPopUpButton, NSMatrix, NSForm,
NSBox, NSImageView, NSTabView, NSCustomView; the
corresponding cells for these widgets are also translated

Formatters
NSNumberFormatter, NSTimestampFormatter

Enterprise objects
EOEditingContext, EODisplayGroup, EODataSource, EOAssociation

Interface Builder connections
Outlets, target-action, nextKeyView

Style attributes
Font sizes and some font styles (font styles depend on Swing’s ability to
find and load fonts)

Java Client interface translation does not support: colors, menus, scroll views
(except when in text or table views), NSBrowsers, NSOutlineViews,
NSProgressIndicators.

How It Works 189
  Apple Computer, Inc. May 2002

C H A P T E R 7

7 Inside the Rule System

The rule system is responsible for analyzing EOModels and from them, generating
the XML for dynamic user interfaces. It answers the following questions:

� What kind of windows are available?

� Which of these windows should open at application startup?

� What kind of actions should be presented to the user?

� What should happen when a particular condition in an application occurs?

How It Works

From these questions, the rule system builds a detailed description of the user
interface. When the controller factory sends a request to the server application, the
rule system works with a set of com.webobjects.directtoweb.D2WComponent classes
and WebObjects dynamic elements to generate the XML. The rule system receives
the controller factory’s requests and evaluates rules to determine which
D2WComponent subclasses should generate the XML for the current request. The
D2WComponent subclasses (using WOXMLNode dynamic elements internally) do
the actual XML generation.

All the information about how to configure a Direct to Java Client application is
stored in rule system rules. A rule has a key, a value, and a priority. A key is a
condition that must be true for the rule to fire. The rule system evaluates requests
as follows:

190 How It Works
  Apple Computer, Inc. May 2002

C H A P T E R 7

Inside the Rule System

1. The controller factory makes a request to the rule system by specifying a key.

2. The rule system identifies the rules whose key is the same as the request key.

3. It then evaluates the conditions of the matching rules to see which can fire.

4. Of the rules that can fire, the rule system fires the one with the highest priority,
returning the value for the rule’s key.

By specifying -D2WTraceRuleFiringEnabled YES as a launch argument on the server
application, you can see all the rules fire in a Direct to Java Client application.

To evaluate requests, the rule system needs information about the state of the client
application. In addition to specifying a key, the controller factory also provides
key-value pairs of state information that the rule system can use to evaluate the
conditions of rules. For example, the rule system might need to know what task the
client application is attempting to perform (query, list, or form) and the entity on
which the client application is operating.

The controller factory packages all rule system input—the request key and the
key-value pairs of state information—into a dictionary known as a specification.
The following are examples of specifications:

� question = window, task = query

� question = window, entity.name = Student, task = form

� question = modalDialog, entity.name = Activity, task = select

A specification always contains a question, which is the request key. The request
keys in the above examples are window and modalDialog.

In the rule system, you have access to the user’s language and platform, so you can
write rules to provide application behavior based on those attributes of the client.
This allows for mostly automatic localization of rule-generated components (as
described in “Task: Localizing Dynamic Components” (page 255)) and provides
automatic platform-specific user interface layout.

The rule system stores the key-value pairs of state information in a
com.webobjects.directtoweb.D2WContext object. The D2WContext’s whole purpose
is to keep track of state as a response is generated. Initially the D2WContext
contains state information provided by the controller factory. As the rule system
processes requests, the system adds more state information to the D2WContext.

C H A P T E R 7

Inside the Rule System

How It Works 191
  Apple Computer, Inc. May 2002

Rule System Priorities
Each rule system rule has a priority, which is a mechanism to manage conflicting
rules. It is possible to have two rules with the same condition (left-hand side), the
same key (right-hand side), but a different value (right-hand side). To deal with this
conflict, the rule with the higher priority is fired.

The default rules provided by the com.webobjects.eogeneration package have a
priority of 0. The Direct to Java Client Assistant gives its rules a priority of 100. You
should never change the priority of rules generated by Assistant (this would
involve editing the user.d2wmodel , file which is never a good idea since Assistant
writes it out each time it saves). Also, the rules you create by hand should not have
a priority of 100, since this will confuse Assistant. If you want the rules created by
Assistant to be preferred over your own rules, use a lower priority like 50.
Otherwise, give your rules a higher priority.

D2WComponents
There is a one-to-one correspondence between Direct to Java Client
D2WComponent subclasses (server side) and EOController subclasses (client side).
For example, an EOTextFieldController (inheriting from EOController) on the
client has a corresponding D2WComponent class on the server also named
EOTextFieldController (inheriting from D2WComponent). The client-side class
displays and manages user interface widgets while the server-side class generates
XML to describe the client-side user interface.

The server-side D2WComponents for Direct to Java Client applications can be
found in /System/Library/Frameworks/JavaEOGeneration.framework/Resources.
You can open the components in WebObjects Builder to learn more about them.

Rule System Requests
The user interface components of a Direct to Java Client application are generated
by the rule system when needed. The controller factory makes rule system requests
as each new window in the client application is activated.

192 How It Works
  Apple Computer, Inc. May 2002

C H A P T E R 7

Inside the Rule System

When an application starts up, the controller factory makes requests for the
following keys:

� availableSpecifications, which tells the controller factory all the specifications
(request keys such as window, modalDialog, and potentially any custom request
keys)

� defaultSpecifications, which tells the controller factory which windows to
open automatically once the application is finished initializing

� actions, which tells the controller factory what actions to add to the main menu
along with standard menu items such as Quit

Then, to generate the controller hierarchy for a window or modal dialog, the
controller factory makes requests for the following keys:

� window, which returns the controller hierarchy XML for a window the
application will open; the request from the controller hierarchy must also
provide state information such as a task and, optionally, an entity name so
the rule system can determine what window is being generated

� modalDialog , which returns the controller hierarchy XML for a modal dialog the
application will open; again, the request from the controller hierarchy must also
provide state information such as a task and, optionally, an entity name

Internal Rule System Requests
When the rule system evaluates a request from the controller factory, the actual
returned value is the name of a D2WComponent, not the controller hierarchy XML.
The D2WComponent identified by the fired rule is responsible for generating the
controller hierarchy XML that the controller factory receives.

In the process of generating XML, the D2WComponent objects might require the
rule system to evaluate additional requests, the most significant of which are these
two:

� controller, which identifies a controller (a D2WComponent) for a task
identified in the request’s specification; the entity-level controller defines the
part of a window or dialog user interface for performing the specified task on
the specified entity

C H A P T E R 7

Inside the Rule System

How It Works 193
  Apple Computer, Inc. May 2002

� propertyKeys, which identifies the property keys for a task and an entity
identified in the request’s specification; the property keys are needed to identify
the additional controllers needed to display and manipulate an object’s
attributes and relationships

Sometimes it is necessary to know what kind of controller the rule system asks for.
All the default rules therefore put additional information on the D2WContext (and
you should maintain this information if you customize rules). This information can
be used as additional criteria in the rule qualifiers. The two categories of controllers
are:

� controllerType , (possible values: actionWidgetController, dividingController,
groupingController, entityController, modalDialogController,
tableController, widgetController, windowController)

� isRootController, (false if not, nil otherwise)

Generating the Student Form Window
As an example of how the Direct to Java Client D2WComponent classes work,
consider the form window for the Student entity in the tutorials. Suppose a user
clicks the New button in a Query window for the Student entity. The controller
factory then makes a request to the rule system with the following specification:

question = window, entity.name = Student, task = form

This specification tells the rule system that for the form task for the Student entity to
evaluate the window key and return a controller hierarchy based on what the window
key evaluates to in the rule system.

The default rule fired to satisfy this request is as follows:

Left-Hand Side: true
Key: window

Value: "EOWindow"

Priority: 0

You could write a custom rule (and give it a higher priority) to, for example,
associate an EOModalDialog with the window key rather than the default
EOWindow. Since in this case the default rule is not overridden, the
D2WComponent that generates the XML for the form task for the Student entity
is EOWindow (a WebObjects component).

194 How It Works
  Apple Computer, Inc. May 2002

C H A P T E R 7

Inside the Rule System

Open EOWindow.wo in WebObjects Builder. (You can find it in /System/Library/
Frameworks/JavaEOGeneration.framework/Resources).

EOWindow.wo contains an .html file (containing XML) and a .wod file.

Here’s an excerpt from EOWindow.html:

 <WEBOBJECT name=windowController>
 <WEBOBJECT name=actionWidgetController>
 <WEBOBJECT name=taskController>
 </WEBOBJECT>
 </WEBOBJECT>
 <WEBOBJECT name=content>
 </WEBOBJECT>
 </WEBOBJECT>

And here’s an excerpt from EOModalDialog.wod:

windowController: EOSwitchComponent {
 componentNameKey = "windowController";
 d2wContext = localContext;
 controllerType = "windowController";
}

The EOSwitchComponent in the .wod file is a dynamic element that makes a new
rule system request using the componentNameKey as the request key. So in the case of
windowController, the switch component makes a new rule system request with the
key windowController, the name of the componentNameKey binding.

Before making the request, however, the switch component updates the rule
system’s state information. Generally it creates a new D2WContext based on the
state information in the old D2WContext. That’s what the d2wcontext binding
specifies. Bindings other than componentNameKey and d2wcontext identify additional
state that the switch component adds to the new D2WContext. For
windowController, the additional state is simply that the controllerType is
windowController.

In this manner, the XML controller hierarchy is built recursively using switch
components.

C H A P T E R 7

Inside the Rule System

How It Works 195
  Apple Computer, Inc. May 2002

One of the leaf nodes in the Student form window is for an EOFormController
whose .wod file looks like this:

content: WOComponentContent {
}

controller: WOXMLNode {
 elementName = "FORMCONTROLLER";
 alignmentWidth = d2wContext.alignmentWidth;
 alignsComponents = d2wContext.alignsComponents;
 archive = d2wContext.archive;
 className = d2wContext.className;
 displayGroupProviderMethodName =
 d2wContext.displayGroupProviderMethodName;
 editability = d2wContext.editability;
 editingContextProviderMethodName =
 d2wContext.editingContextProviderMethodName;
 entity = controllerEntityName;
 horizontallyResizable = d2wContext.horizontallyResizable;
 iconName = d2wContext.iconName;
 iconURL = d2wContext.iconURL;
 label = d2wContext.label;
 minimumHeight = d2wContext.minimumHeight;
 minimumWidth = d2wContext.minimumWidth;
 path = controllerRelationshipPath;
 prefersIconOnly = d2wContext.prefersIconOnly;
 transient = d2wContext.transient;
 usesHorizontalLayout = d2wContext.usesHorizontalLayout;
 verticallyResizable = d2wContext.verticallyResizable;
}
disabledActionNamesArray: EOSwitchComponent {
 componentName = "EOStringArray";
 array = d2wContext.disabledActionNames;
 name = "disabledActionNames";
}
mandatoryRelationshipPathsArray: EOSwitchComponent {
 componentName = "EOStringArray";
 array = d2wContext.mandatoryRelationshipPaths;
 name = "mandatoryRelationshipPaths";
}

196 EOSwitchComponent
  Apple Computer, Inc. May 2002

C H A P T E R 7

Inside the Rule System

A WOXMLNode is a component that generates XML for a node in the controller
hierarchy. Its bindings tell the server-side D2WComponent how to configure its
client-side counterpart. For example, the binding names in the EOFormController
.wod file correspond to XML attributes understood by the client-side
EOFormController. Correspondingly, the binding values are the values assigned to
those XML attributes. Most of the bindings are set to a key path starting with
“d2wContext”. These key paths refer to the state information stored in the
D2WContext.

EOSwitchComponent

EOSwitchComponent is a special dynamic element that takes a D2WContext and
passes it as a copy with additional arguments to a D2WComponent. Usually it is
used to pass a D2WContext to a subcomponent, but since the context is copied first,
the context of the parent component is not modified and can be passed to other
subcomponents without risk.

There are three bindings on EOSwitchComponent:

� componentName—name of the D2WComponent to evaluate

� componentNameKey—gets the name of the D2WComponent from a key

� d2wContext—the D2WContext to copy

componentName and componentNameKey are mutually exclusive (only one of them can
be used). d2wContext is usually "localContext" (usually the EOSwitchComponent is
used inside a D2WComponent and localContext returns the D2WContext of it
then).

All other bindings on the EOSwitchComponent are considered additional
parameters for the newly created D2WContext.

C H A P T E R 7

Inside the Rule System

EOSwitchComponent 197
  Apple Computer, Inc. May 2002

Example:

queryListController: EOSwitchComponent {
 componentNameKey = "controller";
 d2wContext = localContext;
 controllerType = noValue;
 forceHorizontallyNotResizable = noValue;
 forceVerticallyNotResizable = noValue;
 forceEntityReadOnly = "true";
 forceWidgetReadOnly = "true";
 isRootController = "false";
 propertyKey = noValue;
 task = "list";
}

This creates a D2WContext with the local context of the component using this entry
in the .wod file, gets the name of the contained component from controller and adds
all the other values to the D2WContext passed to that component.

198 EOSwitchComponent
  Apple Computer, Inc. May 2002

C H A P T E R 7

Inside the Rule System

The Documents Menu 199
  Apple Computer, Inc. May 2002

C H A P T E R 8

8 Task: Restricting Access to an
Application

In a real world application, you’ll likely need to restrict access to the application and
to functions within the application. In a Java Client application which uses the rule
system, you can use rules to accomplish this.

The Documents Menu

Problem: The Documents menu in Direct to Java Client applications offers
unrestricted access to the entities in the enterprise object models of the application.
You want to restrict access to this menu.

Solution: Use the rule system to override the default behavior.

The actions in the Documents menu are defined by the actions key in the rule
system. You can write a rule overriding actions to point to a D2WComponent:

Left-Hand Side: *true*
Key: actions

Value: "UserActions"

Priority: 50

Note: Restricting access to an application’s user interface doesn’t necessarily
restrict access to an application’s data. To secure an application’s data, you
should implement security mechanisms on the distribution layer. See
“Distribution Layer” (page 107) for more information.

200 The Default Query Window
  Apple Computer, Inc. May 2002

C H A P T E R 8

Task: Restricting Access to an Application

See “New D2WComponent” (page 216) to learn how to add a D2WComponent to a
project.

The HTML file of the UserActions component is simply an empty array:

<ARRAY></ARRAY>

If you override actions like this, however, your application is unusable since you’ve
locked down all access to it. So you need to provide a custom mechanism to access
its functionality. A common mechanism is to use an interface built in Interface
Builder. That interface provides buttons or other widgets, which when clicked
invoke actions in the application. See “Building the User Interface” (page 285) to
learn how to load a nib file when an application starts up. See “Task: Adding
Custom Menu Items” (page 215) to learn how to add custom menu items to an
application.

The Default Query Window

Problem: When a Direct to Java Client application starts up, the default behavior is
to display a query window. From this window users can query on all entities in the
application’s enterprise object model. You want to change this behavior.

Solution: Use the rule system to override the default behavior.

When an application starts up, the rule system asks for all the available
specifications in the application. These specifications are defined in .d2wmodel files
in the project and in the project’s frameworks. Then, the rule system asks for all the
default specifications. The default specifications are fired first when the application
launches. So, by overriding the default specifications, you control what the user sees
when the application launches.

You can override the default specifications with a rule like this:

Left-Hand Side: *true*
Key: defaultSpecifications

Value: "BlankSpecifications"

Priority: 50

C H A P T E R 8

Task: Restricting Access to an Application

Restricting Tasks Within the Application 201
  Apple Computer, Inc. May 2002

This rule points the default specifications to a D2WComponent called
“BlankSpecifications.” The HTML file of the BlankSpecifications component is
simply an empty array:

<ARRAY></ARRAY>

Now, when the application starts up, no windows are displayed on the screen and
no menu items appear. So, you have to provide other mechanisms to allow users
access to the application’s user interface. See “Task: Building a Login Window”
(page 285) for some suggestions.

Restricting Tasks Within the Application

Problem: In form windows in Direct to Java Client applications, a number of actions
are available to the user by default as shown in Figure 8-1. These actions are: insert,
open, delete, save, and revert.You want to disable the buttons that invoke some of
these actions.

Figure 8-1 Default actions in a form window

202 Restricting Tasks Within the Application
  Apple Computer, Inc. May 2002

C H A P T E R 8

Task: Restricting Access to an Application

Solution: Use the rule system to override the default behavior.

The rule system provides a key to disable certain actions. By providing the names
of the actions you wish to disable as the right-hand side value of this rule, those
actions are disabled in all dynamically generated controllers. This and many other
rules have no effect on frozen XML or frozen interface files.

Left-Hand Side: *true*
Key: disabledActionNames

Value: (insertWithTask, delete)

Priority: 50

This rule disables the insert and delete actions, which is appropriate for the
application whose form window is shown in Figure 8-2.

C H A P T E R 8

Task: Restricting Access to an Application

Restricting Tasks Within the Application 203
  Apple Computer, Inc. May 2002

Figure 8-2 Disabled actions in a form window

To understand how the additional buttons Download Image and Update Image are
added, refer to “Task: Adding Custom Actions to Controllers” (page 209).

If you’re working with frozen XML components, you can remove the
ACTIONSBUTTONCONTROLLER tags to disable the action buttons in that window. This
may be too drastic a measure for your needs, but frozen XML is by definition less
flexible than dynamically generated components, and this is one of its costs. If you
do remove the ACTIONSBUTTONCONTROLLER tags, you can still specify custom action
buttons by writing custom controller classes and specifying them with CONTROLLER
tags in the XML. See “Using a Custom Controller Class in Frozen XML” (page 237)
to learn how to write and use custom controller classes.

204 Restricting Tasks Within the Application
  Apple Computer, Inc. May 2002

C H A P T E R 8

Task: Restricting Access to an Application

Selecting Objects in an Entity 205
  Apple Computer, Inc. May 2002

C H A P T E R 9

9 Task: Using the Controller
Factory Programmatically

Much of the magic behind Direct to Java Client applications happens in the
controller factory, the class
com.webobjects.eogeneration.client.EOControllerFactory. The purpose of the
class is to produce controllers—windows, dialogs, list controllers, select controllers,
controllers for particular tasks, and so on. By learning how to use the controller
factory programmatically, you can take greater control of Direct to Java Client
applications—you can learn to be the magician.

Selecting Objects in an Entity

Problem: You need user interface and logic to provide a way for users to select an
object or objects from a particular table in the data store.

Solution: Use the controller factory to get a select controller for a particular entity.

If you tackle this task without using the rule system, you could spend a good hour
in Interface Builder building the user interface and connecting it to a custom
controller class to get the selected objects and pass them on to the requesting object.
But by using the rule system and the controller factory, a single method invocation
does all of this for you.

In a client-side view class (such as the CustomFormController class in “Extend a
Controller Class” (page 158) or a subclass of another core controller class), add the
import statement for com.webobjects.eogeneration.client. This package contains
the controller factory. Then, in the action method that triggers the selection, add this
invocation on the controller factory:

206 Triggering a Task
  Apple Computer, Inc. May 2002

C H A P T E R 9

Task: Using the Controller Factory Programmatically

EOControllerFactory.sharedControllerFactory().selectWithEntityName("<entity
name>", true, false);

The method takes three arguments: the entity to select from; a Boolean value
determining whether multiple selections are allowed; and a Boolean value
representing whether the insertion of new records is allowed (if the dialog provides
an action to add new records). When invoked, the method presents a select dialog
like that shown in Figure 9-1.

Figure 9-1 Select dialog

The method returns an array of EOGlobalID objects representing the selected
objects. To get enterprise objects from EOGlobalID objects, you can use the method
objectForGlobalID defined in com.webobjects.eocontrol.EOEditingContext. See the
API reference for more information.

Triggering a Task

Problem: You need to provide a custom task to perform some function in the
application. You need a way to trigger this task.

Solution: Write a task using a rule and trigger it with an invocation on the controller
factory.

C H A P T E R 9

Task: Using the Controller Factory Programmatically

Inserting Objects 207
  Apple Computer, Inc. May 2002

Suppose that you have a frozen XML interface in your application. There is no
method in the controller factory to simply invoke this frozen interface. But you can
easily define a task to do this.

If the frozen XML component is called ImageQueryController you would define the
new task like this:

Left-Hand Side: (task ='imageQuery')
Key: window

Value: "ImageQueryController"

Priority: 50

In a client-side view class (not a model class or a controller class), add the import
statement for com.webobjects.eogeneration.client. This package contains the
controller factory. Then, in the action method that triggers the selection, add this
invocation on the controller factory:

EOControllerFactory.sharedControllerFactory().openWindowForTaskName("imageQ
uery");

Inserting Objects

Problem: You need to provide a form window for a particular task so a user can
insert new records into a table.

Solution: Use the controller factory to get a form controller for a particular entity.

Were you to implement this feature without using the controller factory or the rule
system, you could spend a good hour in Interface Builder building the interface,
connecting the controller, and then writing code to invoke the interface. But by
using the rule system and the controller factory, a single method invocation does all
of this for you.

In a client-side view class (not a model class or a controller class), add the import
statement for com.webobjects.eogeneration.client. This package contains the
controller factory. Then, in the action method that triggers the selection, add this
invocation on the controller factory:

208 Inserting Objects
  Apple Computer, Inc. May 2002

C H A P T E R 9

Task: Using the Controller Factory Programmatically

EOControllerFactory.sharedControllerFactory().insertWithEntityName("Documen
t");

This method simply takes the name of an entity in the enterprise object model group
of your application. It results in a form window like that shown in Figure 9-2.

Figure 9-2 Form window from controller factory

Subclassing Controller Classes 209
  Apple Computer, Inc. May 2002

C H A P T E R 1 0

10 Task: Adding Custom Actions
to Controllers

When building Direct to Java Client applications, it’s common to want to add
actions to the application’s controllers. The default actions in a form controller are
insert, delete, revert, save, and open. There are many ways to add actions to
controllers and still preserve the dynamism of the application. This topic describes
all the possibilities.

Subclassing Controller Classes

Problem: You need to add actions to a controller yet still preserve the dynamic
character of the controller.

Solution: Subclass the controller class and use the rule system to use it throughout
the application.

This technique is used in “Extend a Controller Class” (page 158) in the chapter
“Advanced Tutorial” (page 119).

Subclassing a controller class and writing a rule to use it is the best way to add
custom actions to your application’s controllers. As well as taking real advantage of
object-oriented programming, it preserves the dynamism of Direct to Java Client
applications. The other mechanisms to add actions require freezing XML, and
anytime you freeze XML, you lose a lot of the dynamism of the rule system.

The dynamically generated user interfaces in Java Client rely on a core set of
controller classes: EOFormController, EOQueryController, and EOListController.
In an application that, for example, stores images in records, you need custom

210 Subclassing Controller Classes
  Apple Computer, Inc. May 2002

C H A P T E R 1 0

Task: Adding Custom Actions to Controllers

actions to both select images from the file system and download them to the file
system. This requires two additional action buttons in a form window, Download
Image and Update Image.

To add these actions, create a new class called FormController, as shown in Listing
10-1 (page 210).

Listing 10-1 Subclassing EOFormController

package assetmanager.client;

import javax.swing.*;
import com.webobjects.foundation.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoapplication.*;
import com.webobjects.eogeneration.client.*;
import com.webobjects.eodistribution.client.*;

public class FormController extends EOFormController {

 public FormController(EOXMLUnarchiver unarchiver) {
 super(unarchiver);
 }

 public NSArray defaultActions() {
 Icon icon =
 EOUserInterfaceParameters.localizedIcon("ActionIconInspect");
 NSMutableArray actions = new NSMutableArray();
 actions.addObject(EOAction.actionForControllerHierarchy("saveImageToDisk",
 "Download Image", "Download Image", icon, null, null, 300, 50, false));

 icon = EOUserInterfaceParameters.localizedIcon("ActionIconOk");
 actions.addObject(EOAction.actionForControllerHierarchy("updateImageInRecord",

"Update Image", "Update Image", icon, null, null, 300, 50, false));
 return EOAction.mergedActions(actions, super.defaultActions());
 }

 public boolean canPerformActionNamed(String actionName) {
 return actionName.equals("saveImageToDisk") ||
 super.canPerformActionNamed(actionName));

C H A P T E R 1 0

Task: Adding Custom Actions to Controllers

Subclassing Controller Classes 211
  Apple Computer, Inc. May 2002

 }

 public void saveImageToDisk() {
 //some code
 }

 public void updateImageInRecord() {
 //some code
 }
}

Subclasses of the core controller classes must contain these methods: a method
overriding defaultActions, a method overriding canPerformActionNamed, and a
method for each action defined in defaultActions. By overriding defaultActions,
you are adding to the controller’s actions, and by overriding
canPerformActionNamed, you are authorizing the additional actions.

To use this class in all form windows throughout the application, you need only
write a simple rule:

Left-Hand Side: ((task='form') and (controllerType='entityController'))
Key: className

Value: "assetmanager.client.FormController"

Priority: 50

So, without needing to freeze XML, these customizations change the default form
window to include new actions, as shown in Figure 10-1.

212 Subclassing Controller Classes
  Apple Computer, Inc. May 2002

C H A P T E R 1 0

Task: Adding Custom Actions to Controllers

Figure 10-1 Image form window with new actions

The standard actions delete and insert are disabled by another rule:

Left-Hand Side: *true*
Key: disabledActionNames

Value: (insertWithTask, delete)

Priority: 50

This rule is described in “Task: Restricting Access to an Application” (page 199).

C H A P T E R 1 0

Task: Adding Custom Actions to Controllers

Writing Custom Controller Classes 213
  Apple Computer, Inc. May 2002

Writing Custom Controller Classes

Problem: For any number of reasons, subclassing the core controller classes to
provide custom actions doesn’t meet your needs.

Solution: Subclass EOController and write a rule or XML to use it.

This mechanism of writing a custom action is very similar to that described in
“Subclassing Controller Classes” (page 209), except that you subclass EOController.
Listing 10-2 shows the code for the class that adds an action that displays a simple
information dialog.

Listing 10-2 A custom controller class

package businesslogic.client;
import java.awt.event.*;
import javax.swing.*;
import com.webobjects.foundation.*;
import com.webobjects.eoapplication.*;
import com.webobjects.eogeneration.client.*;

public class NewController extends EOController {

public NewController(EOXMLUnarchiver unarchiver) {
 super(unarchiver);
 }

 protected NSArray defaultActions() {
 Icon icon =
 EOUserInterfaceParameters.localizedIcon("ActionIconInspect");
 NSMutableArray actions = new NSMutableArray();
 actions.addObject(EOAction.actionForControllerHierarchy("runInfoDialog", "Run
 Info Dialog", "Run Info Dialog", icon, null, null, 300, 50, false));

 return EOAction.mergedActions(actions, super.defaultActions());
 }

214 Writing Custom Controller Classes
  Apple Computer, Inc. May 2002

C H A P T E R 1 0

Task: Adding Custom Actions to Controllers

 public boolean canPerformActionNamed(String actionName) {
 return actionName.equals("runInfoDialog") ||
 super.canPerformActionNamed(actionName);
 }

public void runInfoDialog() {
EODialogs.runInformationDialog("Hello World!", "Hello World!");

}

The most common way to use this custom controller in an application is in a frozen
XML component. You can add a CONTROLLER tag specifying the fully qualified class
name of the new class:

CONTROLLER className=”businesslogic.client.NewController”/>

You can also write a rule to use the custom controller:

Left-Hand Side: ((task='query') and (controllerType='entityController'))
Key: className

Value: "businesslogic.client.NewController"

Priority: 50

About Actions 215
  Apple Computer, Inc. May 2002

C H A P T E R 1 1

11 Task: Adding Custom
Menu Items

There are many ways to add custom menu items to a Direct to Java Client
application. This topic describes the most common mechanisms.

About Actions

Before learning how to add actions to your application, you should understand the
different kinds of actions in Direct to Java Client applications. If you consult
Appendix , "EOActions XML Descriptions", you’ll find a number of types of
available actions. Whereas the Appendix simply lists the XML tags and attributes of
each action, this section describes the differences between each type of action and
what each attribute represents.

APPLICATIONACTION

These actions are added to the menu specified by the descriptionPath
parameter. These actions invoke a method in the application object
specified by the actionName parameter.

CONTROLLERHIERARCHYACTION

These actions are added to the menu specified by the descriptionPath
parameter. These actions invoke a method in the controller hierarchy
specified by the actionName parameter. This means that the menu items
for these types of actions are available only if the action method is
defined in the controller hierarchy whose top level controller is active in
the application.

216 New D2WComponent
  Apple Computer, Inc. May 2002

C H A P T E R 1 1

Task: Adding Custom Menu Items

HELPWINDOWACTION

These actions are added to the Help menu. They invoke rule system
tasks specified by the task parameter.

TOOLWINDOWACTION

These actions are added to the Tools menu. They invoke rule system
tasks specified by the task parameter.

WINDOWACTION

These actions are added to the menu specified by the descriptionPath
parameter. They invoke rule system tasks specified by the task
parameter.

The default actions in a Direct to Java Client application are defined in the
com.webobjects.eoapplication package. As described in “Task: Restricting Access
to an Application” (page 199) you can take control of the actions in menus by
overriding the actions key in the rule system.

You write a rule whose right-hand side key is actions and right-hand side value is
the name of a D2WComponent in the application that specifies the custom actions.

The following sections describe how to add the different types of actions to your
application. Since they all require a D2WComponent, the topic for adding one to
your application is given first.

New D2WComponent

Problem: You want to add a D2WComponent to your project to hold custom actions
(or for other customization purposes).

Solution: Add a WOComponent to your project and make it a D2WComponent.

The first step in adding custom actions is to create a new D2WComponent in which
to define them. In a Direct to Java Client project, add a new WebObjects Component
to the Application Server target. Call it UserActions. This creates a new component

Note: If you want to use the default actions in a Direct to Java Client application,
you specify additional actions with the additionalActions key, which also points
to a D2WComponent defining the actions.

C H A P T E R 1 1

Task: Adding Custom Menu Items

Application-Wide Actions 217
  Apple Computer, Inc. May 2002

of type com.webobjects.appserver.WOComponent. However, you need a
D2WComponent, so add an import statement for the com.webobjects.directtoweb
package and change the superclass of UserActions to D2WComponent, as shown in
Listing 11-1.

Listing 11-1 Changing the superclass of UserActions

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;
import com.webobjects.directtoweb.*; // add this

public class UserActions extends D2WComponent { //change superclass to this

 public UserActions(WOContext context) {
 super(context);
 }
}

Now you can add actions to this component to provide custom menu items to your
application as described in the following sections.

Application-Wide Actions

Problem: You want to add a new menu item that is always available in the client
application. The menu item invokes an action method.

Solution: Use APPLICATIONACTION.

Suppose your application has a main window that provides access to the
application’s primary functions. It’s conceivable that this window might become
hidden underneath other windows as users use the application. So, you can provide
a custom menu item that brings this window forward.

218 Menu-Specific Actions
  Apple Computer, Inc. May 2002

C H A P T E R 1 1

Task: Adding Custom Menu Items

You specify the method an APPLICATIONACTION object invokes with the actionName
parameter. The rule system looks for the method in subclasses of the client’s
principal class, EODynamicApplication (direct project types) or EOApplication
(nondirect project types). If the method cannot be found, the menu item is still
displayed but it is disabled (grayed out).

In the HTML file of the D2WComponent that contains your application’s custom
menu items (UserActions.html in the UserActions component created with the steps
described in “New D2WComponent” (page 216)), the XML description for an
APPLICATIONACTION that invokes a method called bringForwardMainWindow looks like
this:

<APPLICATIONACTION actionName="bringForwardMainWindow"
menuAccelerator="shift B" descriptionPath="Window/Main Window"/>

This description specifies a custom action that is displayed in the Window menu as
the menu item Main Window with the keyboard equivalent Shift B and that invokes
a method called bringForwardMainWindow on the client application’s principal class.
APPLICATIONACTION XML descriptions can include other parameters. The possible
parameters for XML descriptions of actions are listed in “EOActions XML
Descriptions” (page 312).

Menu-Specific Actions

Problem: You want to add a new menu item that is always available in the client
application and that invokes a task defined in the rule system. The menu item
appears in either the Help menu or the Tools menu.

Solution: Use HELPWINDOWACTION or TOOLWINDOWACTION.

Suppose your application includes a frozen XML component containing help for the
application. The HTML file of the D2WComponent containing your custom rules
would include this XML description:

<HELPWINDOWACTION task="help" menuAccelerator="shift T"
descriptionPath="Window/Main Window"/>

If the frozen XML component containing the help file is named HelpWindow, the
rule to load it is as follows:

C H A P T E R 1 1

Task: Adding Custom Menu Items

Controller-Specific Actions 219
  Apple Computer, Inc. May 2002

Left-Hand Side: (task='help')
Key: window

Value: "HelpWindow"

Priority: 50

This defines a new task that opens the frozen XML component specified in the
right-hand side value.

To add a menu item to the Tools menu, follow the steps for adding an item to the
Help menu, changing HELPWINDOWACTION to TOOLWINDOWACTION in the XML
description.

Controller-Specific Actions

Problem: You want to add a new menu item that is available only in the client
application for a particular controller hierarchy. The menu item invokes an action
in a particular controller hierarchy.

Solution: Use a CONTROLLERHIERARCHYACTION.

Sometimes you want a menu item to be available only while a particular task or user
interface component is active. For example, in “Advanced Tutorial” (page 119), a
custom action is added to the application to send a report of a student’s information.
In the tutorial, the custom action is added only to form windows for the Student
entity, but this would also be a good action to add as a menu item.

However, this menu item should be available only if a student record is in the
frontmost window. So CONTROLLERHIERARCHYACTION is the appropriate type of action.
These actions are enabled only if the action method is in a class that is part of the
controller hierarchy represented in the frontmost window of an application.The
HTML file of the D2WComponent containing your custom rules would include this
XML description:

<CONTROLLERHIERARCHYACTION actionName="activateMainWindow"
menuAccelerator="shift A" descriptionPath="Window/Main Window"/>

This invokes a method called activateMainWindow in a class that is part of the
frontmost controller hierarchy.

220 Controller-Specific Actions
  Apple Computer, Inc. May 2002

C H A P T E R 1 1

Task: Adding Custom Menu Items

Confirmation Dialog 221
  Apple Computer, Inc. May 2002

C H A P T E R 1 2

12 Task: Customizing With
Common Rules

This chapter provides examples of some common rules you can use to customize
applications.

Confirmation Dialog

Problem: By default when you query on an entity without supplying a qualifier,
you are presented with a dialog to confirm the action, as shown in Figure 12-1. This
behavior is intended to warn users about performing unqualified queries of the
data store, which could fetch hundreds or thousands of records.

Figure 12-1 Confirm dialog on unqualified queries

Solution: Use the rule system to override the default behavior.

222 Window Size
  Apple Computer, Inc. May 2002

C H A P T E R 1 2

Task: Customizing With Common Rules

The confirmation dialog results from user actions in query controllers. Whenever
you want to modify the behavior of a controller in a Direct to Java Client
application, you should first consult Appendix A, "XML Description of Classes and
Actions". If you look for EOQueryController, you’ll find an XML attribute called
runsConfirmDialogForEmptyQualifiers. This is the switch you’re looking for. So to
disable the confirmation dialog, add this rule to your application’s d2w.d2wmodel
file:

Left-Hand Side: *true*
Key: runsConfirmDialogForEmptyQualifiers

Value: "false"

Priority: 50

Window Size

Problem: You want to specify a minimum width and height for all windows in your
application.

Solution: Use the rule system.

To set the minimum width of all windows in your application to 512 pixels, use this
rule:

Left-Hand Side: (controllerType='windowController'))
Key: minimumWidth

Value: 512

Priority: 50

To set the minimum height of all windows in your application to 350 pixels, use this
rule:

Left-Hand Side: (controllerType='windowController'))
Key: minimumHeight

Value: 350

Priority: 50

C H A P T E R 1 2

Task: Customizing With Common Rules

Widget Alignment 223
  Apple Computer, Inc. May 2002

Widget Alignment

Problem: You want to right-align all widgets that contain numbers.

Solution: Write a rule.

To right-align all widgets in your application whose attribute’s value class is a
number type, use this rule:

Left-Hand Side: ((not (attribute= nil)) and
(attribute.valueClassName='NSNumber') or
(attribute.valueClassName='NSDecimalNumber')))

Key: alignment

Value: "Right"

Priority: 50

Custom Controllers

Problem: You’ve subclassed one of the core controller classes (EOFormController,
EOListController, EOQueryController) and you want to use it in place of the default
controller throughout the application.

Solution: Write a rule.

To use a custom subclass of EOQueryController called QueryController in the
package com.mypackage, use this rule:

Left-Hand Side: ((task='query')and (controllerType='entityController'))
Key: className

Value: "com.mypackage.QueryController"

Priority: 50

224 Custom Class for Widgets
  Apple Computer, Inc. May 2002

C H A P T E R 1 2

Task: Customizing With Common Rules

To use the custom subclass only for a specific entity, use this rule:

Left-Hand Side: ((task='query') and (entity.name="<entity name>"))
Key: className

Value: "com.package.CustomQueryController"

Priority: 50

Custom Class for Widgets

Problem: You want to use a custom widget class for a particular widget in your
application.

Solution: Write a rule.

To use a custom widget class for the creditCardNumber attribute of a Person entity,
use this rule:

Left-Hand Side: ((entity.name='Person') and
(attribute.name="creditCardNumber"))

Key: widgetController

Value: "com.client.CustomController"

Priority: 50

CustomController is a subclass of EOWidgetController.

package com.client;

import javax.swing.*;
import com.webobjects.foundation.*;
import com.webobjects.eogeneration.client.*;
import com.webobjects.eointerface.swing.*;

public class CustomController extends EOWidgetController {

 public CustomController(EOXMLUnarchiver unarchiver) {
 super(unarchiver);
 }

C H A P T E R 1 2

Task: Customizing With Common Rules

Custom Attributes for Controllers 225
  Apple Computer, Inc. May 2002

 protected JComponent newWidget() {
 return new JPasswordField("");
 }
}

Custom Attributes for Controllers

Problem: You want to set custom attributes for a particular type of controller
throughout your application.

Solution: Write a rule.

The Direct to Java Client Assistant allows you to set attributes for controllers such
as horizontallyResizable, editability, and label. The attributes for each controller
are listed in “XML Description of Classes and Actions” (page 297). To disable
horizontal resizing for all modal dialogs in an application, use this rule:

Left-Hand Side: (controllerType = "modalDialogController")
Key: horizontallyResizable

Value: false

Priority: 50

226 Custom Attributes for Controllers
  Apple Computer, Inc. May 2002

C H A P T E R 1 2

Task: Customizing With Common Rules

Freeze XML User Interfaces 227
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

13 Task: Freezing XML User
Interfaces

You can use the tutorial project you created earlier in Chapter 5, “Advanced
Tutorial” (page 119), as the basis for the exercises in this chapter.

Freeze XML User Interfaces

Problem: You need more finely grained control over the user interface than the
Direct to Java Client Assistant allows.

Solution: Use the XML generated by Assistant as a starting point, then edit it by
hand to suit your needs.

Freezing XML is another way to customize Direct to Java Client applications. While
Assistant allows you to make basic user interface customizations to your
application, it is necessarily limited. Freezing XML, however, gives you finer
control over your application’s user interface. With that said, you should use
Assistant as much as you can since freezing XML makes your application more
complex and less flexible than just using Assistant.

Freezing XML involves these steps:

� making a new D2WComponent

� copying an XML description from Assistant and editing it in the new
component’s .html file

� writing a rule to tell the rule system to use the XML component

228 Freeze XML User Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Follow these steps to customize the user interface of the Admissions application
using frozen XML:

1. In Project Builder, select the Web Components group, choose File > New File,
and select Component from the WebObjects list, as shown in Figure 13-1. Do not
select Display Group Component or Java Client Component.

Figure 13-1 Select Component as the file type

2. Name the new component “StudentFormWindow” and make sure Application
Server is the selected target, as shown in Figure 13-2.

Note: Before freezing XML, your data model should be as complete as possible.
When just using Assistant to customize applications, changes to data models are
automatically picked up in most cases. However, the more advanced
customization techniques, starting with XML freezing, make data model–user
interface synchronization more difficult.

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Freeze XML User Interfaces 229
  Apple Computer, Inc. May 2002

The recommend convention for naming frozen XML components is
EntityNameTaskNameWindowType. So, if the entity in question is Student, and the
task is query, the frozen XML component should be named
“StudentQueryWindow.”

Click Finish.

Figure 13-2 Name new component “StudentFormWindow”

3. The Project Builder assistant for new component files creates a standard
WebObjects component, so you need to change it to a D2WComponent. Add the
import statement for com.webobjects.directtoweb and change the superclass of
StudentFormWindow to D2WComponent, as shown in Listing 13-1.

230 Freeze XML User Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Listing 13-1 Change the superclass of StudentFormWindow to D2WComponent

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*;
import com.webobjects.directtoweb.*;

public class StudentFormWindow extends D2WComponent {
public StudentFormWindow(WOContext context) {

super(context);
}

}

4. Build and run the application and start the client application.

5. Switch to the XML pane in Assistant.

6. Under Specification, select entity=Student, question=window, task=form. This
puts the XML description for that selection in the XML window as shown in
Figure 13-3.

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Freeze XML User Interfaces 231
  Apple Computer, Inc. May 2002

Figure 13-3 XML description of Student entity, form window

7. Copy the whole XML specification and paste it into the StudentFormWindow.html
file in Project Builder. StudentFormWindow.html is in the StudentFormWindow
component.

8. In Project Builder, select the Resources group and choose File > New File and
select Empty File. Name the file “d2w.d2wmodel” and make sure Application
Server is the selected target, as shown in Figure 13-4 (page 232). This file will
hold custom rules you write. Skip this step if your project already has a
d2w.d2wmodel file.

You need to make a new .d2wmodel file for a few reasons. First, Assistant stores
its rules in the user.d2wmodel file and writes out this file whenever it saves. So,
any rules you add or change manually in the user.d2wmodel file is wiped out by
Assistant.

232 Freeze XML User Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

By writing rules in a separate file, you can maintain a custom set of rules and still
use Assistant for basic customizations. At runtime, all the user.d2wmodel files in
the frameworks and all the d2w.d2wmodel files in your project and in your
project’s frameworks are merged, so the rule system picks up your custom rules
and the rules you specified with Assistant, along with all the default rules.

Figure 13-4 Make a new rule file for custom rules

9. Put the Rule Editor application (found in /Developer/Applications/) in the
Dock. Drag the d2w.d2wmodel file to the Rule Editor icon in the Dock to open it.

10. Click New to make a new rule and add these arguments to the left-hand side:
(task = 'form') and (entity.name = 'Student').

Collectively, the left-hand side arguments constitute the rule’s condition. If the
condition exists (that is, the user or application performs some action that
triggers the condition), the rule fires and the right-hand side of the rule is
evaluated.

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Freeze XML User Interfaces 233
  Apple Computer, Inc. May 2002

In this case, if the query task is triggered (usually by a user action) on the Student
entity, the condition of this rule is true, so the rule fires. Collectively, the
left-hand side arguments ask “how should this part of the application behave?”
And since the condition has been triggered, the behavior of this part of the
application is changed per the right-hand side arguments.

As mentioned earlier, Direct to Java Client applications have four basic tasks:
query, form, list, and identify. (The rule system defines other tasks with which
you usually do not need to interact). In this step, specifying task=form tells the
rule system that this rule pertains to the form task. By specifying the entity with
entity.name=Student, the rule system knows that this rule pertains to the form
task for the Student entity. However, if you want to use the frozen XML window
for the query task, you would instead specify task=query.

11. Set the right-hand side key to “window” and the value to
“StudentFormWindow”. Set the priority to 50. Refer to Figure 13-5 for clarity.
For an explanation of rule system priorities, see “Rule System Priorities”
(page 191).

Figure 13-5 Add a rule to use frozen XML

234 Freeze XML User Interfaces
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

The right-hand side arguments constitute the answer to the question posed in
the left-hand side arguments. The answer is made up of a key and a value for
that key. In this case, the key is “window” and the value is
“StudentFormWindow.” So in this case, the answer is “use the
StudentFormWindow as the window for form tasks for the Student entity.”

For high-level questions like controller, window, and modalDialog, the rule
system expects the value to be the name of a D2WComponent, like
StudentFormWindow or any of the default D2WComponent classes defined in
com.webobjects.eogeneration.*; (see /System/Library/Frameworks/
JavaEOGeneration.framework/Resources/).

12. Save the .d2wmodel file.

Customize the XML
Now that you’ve successfully frozen XML, you need to customize it to see any
benefit. The default Student form window generated by the EOGeneration
framework isn’t too bad, but you might want to group Student’s attributes in a box
controller for a cleaner look. Assistant doesn’t give you this level of control of the
user interface, so you need to edit the XML by hand.

If you closely examine the XML, you’ll notice that the widgets are organized in a
hierarchy of controllers. The window is defined by a FRAMECONTROLLER tag, the action
buttons by an ACTIONSBUTTONCONTROLLER tag, the form elements by a FORMCONTROLLER
tag, and the components of the form by COMPONENTCONTROLLER tags.

You’ll notice that the COMPONENTCONTROLLER tag for the form that contains the
attributes of the Student entity includes two nested COMPONENTCONTROLLER tags. You
can group Student’s attributes into a box by adding a BOXCONTROLLER tag between
Student’s outermost COMPONENTCONTROLLER tag and its first inner
COMPONENTCONTROLLER tag. Add a BOXCONTROLLER tag with the following XML (also see
code line 1 in Listing 13-2):

<BOXCONTROLLER usesTitleBorder="false" highlight="true"
border="RaisedBezel">

The beginning of the StudentFormWindow.html file should look like Listing 13-2.
Make sure to also add a closing tag for the box controller </BOXCONTROLLER> before
the closing tag of Student’s outermost COMPONENTCONTROLLER tag, as shown in code
line 2 in Listing 13-2.

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Freeze XML User Interfaces 235
  Apple Computer, Inc. May 2002

Listing 13-2 StudentFormWindow.html (frozen XML)

<FRAMECONTROLLER disposeIfDeactivated="true" typeName="question = window, task = form,
 entity = Student" reuseMode="NeverReuse">
 <ACTIONBUTTONSCONTROLLER widgetPosition="Top">
 <FORMCONTROLLER className="admissions.client.CustomFormController"
 alignsComponents="true" entity="Student" minimumWidth="256">
 <COMPONENTCONTROLLER minimumWidth="256" usesHorizontalLayout="true"
 alignsComponents="true">
 <BOXCONTROLLER usesTitleBorder="false" highlight="true"
 border="RaisedBezel"> //1
 <COMPONENTCONTROLLER minimumWidth="256" alignsComponents="true">
 <TEXTFIELDCONTROLLER valueKey="name"/>
 <TEXTFIELDCONTROLLER
 formatClass="com.webobjects.foundation.NSNumberFormatter"
 formatPattern="0;-0" valueKey="act"/>
 <TEXTFIELDCONTROLLER
 formatClass="com.webobjects.foundation.NSTimestampFormatter"
 formatPattern="MM/dd/yyyy" valueKey="firstContact"/>
 </COMPONENTCONTROLLER>
 <COMPONENTCONTROLLER minimumWidth="256" alignsComponents="true">
 <TEXTFIELDCONTROLLER
 formatClass="com.webobjects.foundation.NSNumberFormatter"
 label="GPA" formatPattern="#,##0.00;-#,##0.00" valueKey="gpa"/>
 <TEXTFIELDCONTROLLER
 formatClass="com.webobjects.foundation.NSNumberFormatter"
 formatPattern="0;-0" valueKey="sat"/>
 <TEXTFIELDCONTROLLER editability="Never"
 formatClass="com.webobjects.foundation.NSNumberFormatter"
 formatPattern="#,##0.00" valueKey="rating"/>
 </COMPONENTCONTROLLER>
 </BOXCONTROLLER> //2

Figure 13-6 shows an example of a Student form window with the new
BOXCONTROLLER.

236 Adding Actions to Frozen XML
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Figure 13-6 Student form window with BOXCONTROLLER tag

Adding Actions to Frozen XML

Problem: You need to add custom actions to a frozen XML component.

Solution: Specify an action method in a business logic class or write a custom
controller class.

Note: You can also use most of the WebObjects dynamic elements in frozen XML
components such as WOConditional, WORepetition, and WOString.

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Adding Actions to Frozen XML 237
  Apple Computer, Inc. May 2002

Edit XML by Hand
To add an action to a frozen XML component, you embed an ACTIONCONTROLLER tag
inside an ACTIONBUTTONSCONTROLLER block (or elsewhere, depending on where you
want the button) in a frozen XML file :

<ACTIONCONTROLLER label="Send Record Via Email" usesButton="false"
usesAction="true" iconName="ActionIconOk" actionKey="sendRecordViaEmail">
</ACTIONCONTROLLER>

Implement the custom action method in the client-side business logic class.

Using a Custom Controller Class in Frozen XML
You can also add actions to frozen XML components by using a custom controller
class.

To do this, create an empty Java class file (File > New File, then select “Java class”
in the Pure Java group) in Project Builder. Name the new file “NewController” and
add it to the Web Server target. Add the import statements and methods shown in
the code listing here:

package businesslogic.client;
import java.awt.event.*;
import javax.swing.*;
import com.webobjects.foundation.*;
import com.webobjects.eoapplication.*;
import com.webobjects.eogeneration.client.*;

public class NewController extends EOController {

public NewController(EOXMLUnarchiver unarchiver) {
 super(unarchiver);
 }

 protected NSArray defaultActions() {
 Icon icon =
 EOUserInterfaceParameters.localizedIcon("ActionIconInspect");
 NSMutableArray actions = new NSMutableArray();

238 Adding Actions to Frozen XML
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

actions.addObject(EOAction.actionForControllerHierarchy("runInfoDialog",
"Run Info Dialog", "Run Info Dialog", icon, null, null, 300, 50, false));
 return EOAction.mergedActions(actions, super.defaultActions());
 }

 public boolean canPerformActionNamed(String actionName) {
 return actionName.equals("sendRecordViaEmail") ||
 super.canPerformActionNamed("actionName");
 }

public void runInfoDialog() {
EODialogs.runInformationDialog("Hello World!", "Hello World!");

}
}

By overriding defaultActions, you are adding to the actions that are displayed in
the user interface by the ACTIONBUTTONSCONTROLLER tags. See the API reference for
EOApplication.defaultActions for a description of the parameters.

Notice in the defaultActions method that a custom icon is specified using
EOUserInterfaceParameters.localizedIcon. The method takes a string that is the
name of an icon in the Web Server target. You should group all resources such as
images in the Web Resources group in your project.

After writing the custom controller class, you must include it in a frozen XML
component:

<CONTROLLER className="businesslogic.client.NewController">

The implementation of the action method in this example simply puts up a dialog
as shown in Figure 13-7.

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Adding Actions to Frozen XML 239
  Apple Computer, Inc. May 2002

Figure 13-7 Action in custom controller class

240 Adding Actions to Frozen XML
  Apple Computer, Inc. May 2002

C H A P T E R 1 3

Task: Freezing XML User Interfaces

Preparing the Nib for Freezing 241
  Apple Computer, Inc. May 2002

C H A P T E R 1 4

14 Task: Mixing Static and Dynamic
User Interfaces

In this chapter, you’ll learn how to integrate static interfaces made in Interface
Builder within dynamically generated user interfaces.

For this chapter you need a nib file. Any one will do, so you can use one from one
of the WebObjects example projects or one you’ve created. It’s also sufficient to just
add a Java Client Interface file to your project and add some widgets to it. Whatever
nib file you use, make sure to first add it to your project and associate it with the
Web Server target.

Preparing the Nib for Freezing

You must do a few things to make interface files created with the nondirect Java
Client technique work within dynamically generated user interfaces.

Open the nib file from within Project Builder and click the Classes tab of the nib file
window. View the classes in inheritance mode (the vertical list), and click the
disclosure triangle next to java.lang.Object to reveal the Java Client classes.
Continue clicking disclosure triangles up through
com.webobjects.eoapplication.EOInterfaceController as shown in Figure 14-1.

242 Preparing the Nib for Freezing
  Apple Computer, Inc. May 2002

C H A P T E R 1 4

Task: Mixing Static and Dynamic User Interfaces

Figure 14-1 Classes pane in the nib file window

To use a nib file in a Direct to Java Client application, the class must be the exact
class you use to load the interface. So, if you want to use the nib file in a form
controller, you’ll use EOFormController. To use it in a query controller, use
EOQueryController. These classes are not automatically defined in the
EnterpriseObjects palette in Interface Builder, so you need to add them.

Select com.webobjects.eoapplication.EOInterfaceController in the classes list and
press Return. This subclasses EOInterfaceController and thus inherits the targets
and outlets you need for the new class. Name the new subclass
com.webobjects.eogeneration.client.EOFormController as shown in Figure 14-1.

Now that you’ve created a new class, you must associate the nib file with it. To do
this, go back to the Instances pane of the nib file window and click File’s Owner.
Choose Show Info from the Tools menu and choose Custom Class from the pop-up
menu. In the list of classes, select
com.webobjects.eogeneration.client.EOFormController as shown in Figure 14-2.

C H A P T E R 1 4

Task: Mixing Static and Dynamic User Interfaces

Integrating the Nib File 243
  Apple Computer, Inc. May 2002

Figure 14-2 Assign the custom subclass to File’s Owner

Finally, associate the nib file’s controller class (it’s associated .java class) with the
same package with which other client-side classes in your application are
associated:

package edu.admissions.client;

Save the nib file.

Integrating the Nib File

The nib file is now ready to be integrated into a dynamically generated Java Client
user interface. To load it in an application, you need to write a rule.

244 Integrating the Nib File
  Apple Computer, Inc. May 2002

C H A P T E R 1 4

Task: Mixing Static and Dynamic User Interfaces

Open the d2w.d2wmodel file from within the your project. The rule shown here
assumes that you want to use the nib file in a form controller for an entity named
“Student,” that the nib file is named “StudentFormInterfaceController,” and that
it’s in the package “edu.admissions.client”.

Left-Hand Side: ((task = 'form') and (entity.name = 'Student') and
(controllerType = 'entityController'))

Key: archive

Value: "edu.admissions.client.StudentFormInterfaceController"

Priority: 50

This rule says that for the form task for the Student entity, use an archive (a nib file)
with the name StudentFormController. So, when you make a new Student record,
the nib file is loaded.

However, at this point the XML-based interface generated by the rule system is
loaded. Just because you’re loading a nib file does not suppress the mechanism for
generating the interface’s subcontrollers. But, it’s easy to write a rule to fix this:

Left-Hand Side: ((task = 'form') and (entity.name = 'Student') and
(controllerType = 'entityController'))

Key: generateSubcontrollers

Value: "false"

Priority: 50

Now when you open a form window for the Student entity, the custom interface is
loaded and the XML generation is suppressed in certain parts of the window.

Custom Views 245
  Apple Computer, Inc. May 2002

C H A P T E R 1 5

15 Task: Using Custom Views in
Interface Files

The Java Client interfaces you can build in Interface Builder support only a subset
of all the standard Swing components. However, by using custom views in interface
files, you can use any Swing component or custom components you write. This
chapter describes how to use custom views in interface files and then provides some
examples of custom view components.

Custom Views

Problem: You want to add an unsupported view in an interface file such as
javax.swing.JProgressBar.

Solution: Place a custom view object and connect it to an outlet in File’s Owner.

In an Interface Builder file, place a custom view object in the main window. You can
find this object in the Cocoa-Containers palette. Figure 15-1shows this palette and a
custom view placed in the main window.

246 Custom Views
  Apple Computer, Inc. May 2002

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Figure 15-1 Custom view object in window

Next, you need to assign the custom view to an NSView subclass. Before you can
do this, you need to create an NSView subclass. Switch to the Classes pane in the
nib file window and enter “NSView” in the Search field as shown in Figure 15-2.

Figure 15-2 Find NSView in class hierarchy

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Custom Views 247
  Apple Computer, Inc. May 2002

Select NSView if it is not already selected and press Return to subclass it. In the Info
window, select Java as the language for the subclass. Then, provide a fully qualified
name for the subclass. If the view represents a Swing class such as JProgressBar, use
“javax.swing.JProgressBar” as shown in Figure 15-3. If the view represents a custom
Swing subclass, specify the fully-qualified name of that subclass.

Figure 15-3 Name the custom view class

Next, you need to associate the custom view you placed in the window with the
new NSView subclass. Select the custom view widget in the main window and
bring up the Attributes pane of the Info window. Select javax.swing.JProgressBar,
as shown in Figure 15-4.

248 Custom Views
  Apple Computer, Inc. May 2002

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Figure 15-4 Associate custom view with NSView subclass

The name in the custom view should then change to the name of the new class, as
shown in Figure 15-5.

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Custom Views 249
  Apple Computer, Inc. May 2002

Figure 15-5 Custom view as NSView subclass

Now you need to add an outlet to the interface file’s File’s Owner object for the
custom view. This gives you programmatic access to the widget in the nib file’s
controller class, which allows you to query and change the widget’s attributes. In
the Classes pane of the nib file window, view the class hierarchy vertically and
disclose the list starting with java.lang.Object as far as you can, as shown in Figure
15-6.

Figure 15-6 File’s Owner’s class

250 Custom Views
  Apple Computer, Inc. May 2002

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Select the last class in the hierarchy and bring up the Info window. Add an outlet to
the class called “customViewOutlet,” as shown in Figure 15-7.

Figure 15-7 Add outlet to interface file

Next, you need to connect the custom view to the outlet you just created. Switch to
the Instances pane of the nib file window and Control-drag from File’s Owner to the
custom view in the main window as shown in Figure 15-8.

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Custom Views 251
  Apple Computer, Inc. May 2002

Figure 15-8 Connect new outlet to custom view

Then in the Connections Pane of the Info window, select customViewOutlet and click
Connect. The Connections pane of the Info window for File’s Owner should now
appear as shown in Figure 15-9.

252 Custom Views
  Apple Computer, Inc. May 2002

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

Figure 15-9 File’s Owner’s attributes

Save the interface file and open its controller class (.java file) in Project Builder.
Add an instance variable for the outlet you added:

public JProgressBar customViewOutlet;

You now have a JProgressBar widget in your interface file. You can set its value by
invoking customViewOutlet.setValue(int value) in the controller class. However,
don’t attempt to invoke methods on the widget in the interface controller’s
constructors as it may not be initialized at that point. Rather, override
controllerDidLoadArchive as described in “Loading the Image” (page 271) or check
to see if the component is initialized by invoking isComponentPrepared.

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

EOImageView 253
  Apple Computer, Inc. May 2002

EOImageView

You can apply what you learned in the last section to extend the power of the user
interface components supplied by the com.webobjects.eointerface.swing package.
This section describes how to extend the EOImageView class to support mouse
clicks.

Problem: The class com.webobjects.eointerface.swing.EOImageView does not
support mouse clicks.

Solution: Subclass EOImageView and provide custom view outlets in an Interface
Builder nib file or write a rule to use the subclass in certain controllers.

To make an EOImageView object respond to mouse clicks, you need to subclass
MouseAdaptor within an EOImageView subclass. Add a file to your project named
“CustomImageViewController.” Paste this code into it:

package com.mycompany.myapp;

import java.awt.*;
import java.awt.event.*;
import com.webobjects.foundation.*;
import com.webobjects.eointerface.swing.*;
import com.webobjects.eogeneration.client.*;

public class CustomImageViewController extends EOImageView {

 public CustomImageViewController() {
 super();
 this.addMouseListener(new OpenRecord());
 }

 class OpenRecord extends MouseAdaptor {

 public void mouseClicked(MouseEvent e) {
 NSLog.out.appendln("image clicked");
 }

 }

}

254 EOImageView
  Apple Computer, Inc. May 2002

C H A P T E R 1 5

Task: Using Custom Views in Interface Files

To use this custom class in an interface file, you subclass NSView as described in
“Custom Views” (page 245) and name the subclass
“com.mycompany.myapp.CustomImageViewController.”

Localizing Property Labels 255
  Apple Computer, Inc. May 2002

C H A P T E R 1 6

16 Task: Localizing Dynamic
Components

Localization can be a tedious and time-consuming part of application development.
However, using the rule system in Java Client applications, localization is quite
simple. You supply a Java class containing the localized strings and you write a rule
to use the class for labels in dynamically generated user interfaces.

Localizing Property Labels

Problem: You want to localize the labels of properties in your application.

Solution: Write a Java class to perform the localized string lookup, get the user’s
preferred languages, and write a rule to get the localized strings.

Most of the rules you write and use in the rule system have a right-hand side class
of type Assignment as shown in Figure 16-1.

Figure 16-1 Right-hand side class of type Assignment

256 Localizing Property Labels
  Apple Computer, Inc. May 2002

C H A P T E R 1 6

Task: Localizing Dynamic Components

The rule you’ll write to localize dynamic components uses the type Custom. By
specifying a class name in the Custom field and a method name in the Value field,
the key specified in the Key field is assigned to the return value of the specified
method in the specified class. In Figure 16-2, the key label is resolved to the result
of the method named localizedPropertyValue in the class LocalizedStringLookup.

Figure 16-2 Right-hand class of type Custom

Before writing the rule, however, write the class that does the localized string
lookup.

Add a class to your project called “LocalizedStringLookup.” Add it to the
Application Server target. Copy and paste this code into it:

Listing 16-1 LocalizedStringLookup class

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.directtoweb.*;

public class LocalizedStringLookup extends DefaultAssignment {

 D2WContext d2wcontext;

 public LocalizedStringLookup(EOKeyValueUnarchiver unarchiver) {
 super(unarchiver);
 }
 public LocalizedStringLookup(String key, String value) { super(key,value); }

C H A P T E R 1 6

Task: Localizing Dynamic Components

Localizing Property Labels 257
  Apple Computer, Inc. May 2002

 public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver
 eokeyvalueunarchiver) {
 return new LocalizedStringLookup(eokeyvalueunarchiver);
 }

 public synchronized Object fire(D2WContext context) {
 d2wcontext = context;
 Object result = KeyValuePath.valueForKeyOnObject((String) value(), this);
 return result;
 }

 public String localizedPropertyValue() {
 String displayName = (String) d2wcontext.valueForKey(D2WModel.PropertyKeyKey); //1

 NSArray languages = (NSArray)d2wcontext.valueForKey("languages");

 String returnstr =
 WOApplication.application().resourceManager().stringForKey(displayName,
 "Localizable", displayName, null, languages); //2

 return returnstr;

 }

}

Remember to change the package statement to the package your server-side
(Application Server target) classes are in.

The most interesting part of the class is the localizedPropertyValue method. The
rule you’ll write invokes this method to get the localized string for a particular
property. First, the method gets the display name for the receiver’s property (code
line 1). That is, if the property name is “date” (which corresponds to an attribute
named “date” in an entity in one of the application’s EOModels) the display name
is the label that appears next to the widget representing the “date” property in the
application.

Code line 2 is the most important part of the method. It looks for a localized string
in a string table called “Localizable” for the display name specified by displayName.
Since a localized application usually contains Localizable.strings files for multiple
languages, the stringForKey method looks first for a Localizable.strings file for the

258 Localizing Property Labels
  Apple Computer, Inc. May 2002

C H A P T E R 1 6

Task: Localizing Dynamic Components

user’s first preferred language. If it finds a Localizable.strings file for that
language, it returns the localized strings. If it does not, however, it continues
through the user’s preferred languages (returned by
d2wcontext.valueForKey("languages")), defaulting to nonlocalized strings if it can’t
find a Localizable.strings file matching one of the user’s preferred languages.

Now that you have the method to look up localized strings, you need to add
localized string tables to your project.

First, add a new file to the Resources group of your project called
“Localizable.strings.” Add it to the Application Server target. The syntax of a
Localizable.strings file is rather simple:

{
"<propertyName>" = "<localizedString>";

}

A Localizable.strings table for the property name “date” for Spanish would be

{
"date" = "Fecha";

}

In the Localizable.strings table you just added to the project, add string pairs for
the property keys in your application in English. You can find the names of the
property keys in a few ways: in the Direct to Java Client Assistant’s Properties pane;
the output of the LocalizedStringLookup (which contains the log statement
“NSLog.out.appendln("displayName: " + displayName);”); or by invoking
attributeKeys on an enterprise object’s class description and printing the result.

When you’re done adding English-localized strings, you can add localized variants
of the file to your project. Select the Localizable.strings file and choose Show Info
from Project Builder’s Project menu. From the Localization and Platforms pop-up
menu, choose “Add Localized Variant” as shown in Figure 16-3.

C H A P T E R 1 6

Task: Localizing Dynamic Components

Localizing Property Labels 259
  Apple Computer, Inc. May 2002

Figure 16-3 Add localized variant of Localizable.strings file

Add a localized variant for the language of your choice as shown in Figure 16-4. If
the language is not listed, you can type it in the field underneath “Enter the name
of the new locale.”

260 Localizing Property Labels
  Apple Computer, Inc. May 2002

C H A P T E R 1 6

Task: Localizing Dynamic Components

Figure 16-4 Add localized variant for German

This action creates a directory called German.lproj (or whatever language you
chose) in your project and puts a copy of the Localizable.strings file in it. Figure
16-5 shows German and Spanish localized variants in the Groups & Files list.

Figure 16-5 Localized resources in project

Now that you’ve created localized variants, you need to edit the variant to provide
the language-specific strings for each property key. The German-localized variant
might look like Listing 16-2.

C H A P T E R 1 6

Task: Localizing Dynamic Components

Localizing Property Labels 261
  Apple Computer, Inc. May 2002

Listing 16-2 German-localized variants of strings file

{
 "modified" = "Geändert";
 "documents" = "Dokumente";
 "release" = "Freigeben";
 "keywords" = "Schlüsselwörter";
 "date" = "Datum";
 "notes" = "Anmerkungen";
 "illustrator" = "Illustrator";
}

There is just one more thing you need to do to complete localization. Although the
current process may seem tedious, think of the time it will save you: It saves you
from needing to build localized variants of Interface Builder files by hand, or worse
yet, from building localized versions of raw Swing components.

The final step is to write a rule to use everything you’ve just added to the
application.

Left-Hand Side: *true*
Key: label

Class: Custom

Custom: LocalizedStringLookup

Value: "localizedPropertyValue"

Priority: 50

The key label is assigned to the return value of the method localizedPropertyValue
in the class LocalizedStringLookup. In Rule Editor, this rule appears as in
Figure 16-2 (page 256).

Note: Make sure that the encoding for all Localizable.strings files in your
project is Unicode. You can change the encoding of a file by choosing an encoding
from the File Encodings submenu of Project Builder’s Format menu.

262 Localizing the Standard Strings and Frozen XML Components
  Apple Computer, Inc. May 2002

C H A P T E R 1 6

Task: Localizing Dynamic Components

Localizing the Standard Strings and Frozen XML
Components

Problem: You want to localize all the standard strings in an application such as
action button labels and standard error message strings. You also want to localize
the property labels for frozen XML components.

Solution: Use the same localization techniques described in “Localizing Property
Labels” (page 255), adding string pairs for each string you want localized.

By adding localized strings to the Localizable.strings files in each of your
application’s language .lproj directories, you can easily localize all the standard
application strings. To find out what all these strings are, find the
Localizable.strings file in /System/Library/Frameworks/
JavaEOApplication.framework/WebServerResources/English.lproj/.

The string table begins with these string pairs:

"About Web Objects" = "About Web Objects";
"Actions" = "Actions";
"Activate Previous Window" = "Activate Previous Window";
"Add" = "Add";
"Add failed" = "Add failed";
"Append" = "Append";
"Append failed" = "Append failed";
"Alert" = "Alert";
"Available" = "Available";
"Cancel" = "Cancel";
"Change Pane" = "Change Pane";
"Clear" = "Clear";
"Close" = "Close";

C H A P T E R 1 6

Task: Localizing Dynamic Components

Localizing the Standard Strings and Frozen XML Components 263
  Apple Computer, Inc. May 2002

Then, look in the German.lproj directory in the same framework. Its string table
begins with these string pairs:

"About Web Objects" = "Kurzinformation";
"Actions" = "Aktionen";
"Activate Previous Window" = "Fenster wechseln";
"Add" = "Anfügen";
"Add failed" = "Anfügen fehlgeschlagen";
"Append" = "Anhängen";
"Append failed" = "Anhängen fehlgeschlagen";
"Alert" = "Achtung";
"Available" = "Verfügbar";
"Cancel" = "Abbrechen";
"Change Pane" = "Ansicht wechseln";
"Clear" = "Leeren";
"Close" = "Schließen";

You can see that the strings are localized for German. Simply copy the string pairs
you want to provided localization for into your Localizable.strings tables and
localize them accordingly.

264 Localizing the Standard Strings and Frozen XML Components
  Apple Computer, Inc. May 2002

C H A P T E R 1 6

Task: Localizing Dynamic Components

265
  Apple Computer, Inc. May 2002

C H A P T E R 1 7

17 Task: Building Custom List
Controllers

The public methods provided by the controller factory
(com.webobjects.eogeneration.client.EOControllerFactory) allow you to
dynamically generate user interfaces for many types of tasks throughout your
application. However, it doesn’t provide methods for all types of tasks, such as list
controllers. This topic describes how to programmatically create a list controller.

Problem: You want to display a list controller containing the enterprise objects
returned by a fetch.

Solution: Programmatically create a list controller.

The following method constructs a list controller by first creating a generic
controller, then by asking the controller factory for a list controller based on the
generic controller and an entity name, and then by invoking
listObjectsWithFetchSpecification to fetch enterprise objects into the list
controller.

public void listWithEntityName(String entityName, EOFetchSpecification fs) {
EOControllerFactory f = EOControllerFactory.sharedControllerFactory();

EOController controller = f.controllerWithSpecification(new NSDictionary (new
 Object[] {entityName, EOControllerFactory.ListTask,
 EOControllerFactory.TopLevelWindowQuestion}, new Object[]
 {EOControllerFactory.EntitySpecification, EOControllerFactory.TaskSpecification,
 EOControllerFactory.QuestionSpecification}), true);

266
  Apple Computer, Inc. May 2002

C H A P T E R 1 7

Task: Building Custom List Controllers

if (controller != null) {
EOListController listController =

 (EOListController)f.controllerWithEntityName(controller,
 EOControllerFactory.List.class, entityName);

listController.listObjectsWithFetchSpecification(fs);
listController.setEditability(EOEditable.NeverEditable);
listController.makeVisible();

 }
}

Adding Outlets 267
  Apple Computer, Inc. May 2002

C H A P T E R 1 8

18 Task: Using and Extending
Image Views

It’s common to want to display images in the user interfaces of Java Client
applications. Although you can use Interface Builder to place the view area for an
image, you must retrieve and load the image programmatically. This task describes
the steps necessary to use an image view in an Interface Builder file.

Problem: You want to display an image in an Interface Builder file.

Solution: Place an image view in a nib file, add an outlet, and load the image
programmatically.

Adding Outlets

To set the image in an image view, you need access to the widget in the controller
class. This is described in “Programmatic Access to Interface Components”
(page 185). To review, to get programmatic access to user interface elements,
you need to add outlets to File’s Owner, associate user interface widgets with
those outlets, and add instance variables for the outlets to which you want
programmatic access.

To add an outlet, switch to the Classes pane in the nib file window and select the
class with which File’s Owner is associated. Bring up the Info window and choose
Attributes from its pop-up list. Switch to the Outlets pane and click Add to add a
new outlet. Name the new outlet “imageview.” Refer to Figure 18-1.

268 Adding the Widget
  Apple Computer, Inc. May 2002

C H A P T E R 1 8

Task: Using and Extending Image Views

Figure 18-1 Add a new outlet

Now you’re ready to add the image view widget to the interface.

Adding the Widget

You now need to add a widget to represent the image you want to display. The
Cocoa-Other palette includes an image view widget that works for these purposes.
If the widget palette isn’t visible, choose Tools >Palettes > Show Palettes. Find the
Cocoa-Other palette by clicking different buttons in the palettes toolbar. It is shown
in Figure 18-2.

C H A P T E R 1 8

Task: Using and Extending Image Views

Adding the Widget 269
  Apple Computer, Inc. May 2002

Figure 18-2 Cocoa-Other palette

Drag the image view widget (the one in the upper-left corner of the Cocoa-Other
palette with the picture of a mountain in it) onto the main window. If the main
window isn’t visible, switch to the Instances pane of the nib file window and
double-click the MainWindow object. Place the widget in the upper-left corner of
the window and use the guides Interface Builder provides to size and place it, as
shown in Figure 18-3.

Figure 18-3 Place widget with guides

Now you need to connect the widget to the outlet you added to File’s Owner.

270 Connecting the Outlet
  Apple Computer, Inc. May 2002

C H A P T E R 1 8

Task: Using and Extending Image Views

Connecting the Outlet

Interface Builder is the best tool for building Java Client user interfaces as it allows
you to visually associate user interface widgets with outlets and actions in the class
file. When you associated File’s Owner with the custom subclass of
EOInterfaceController, the icon for File’s Owner changed to include an exclamation
point, as shown in Figure 18-4.

Figure 18-4 File’s Owner icon with exclamation point

The exclamation point icon indicates that File’s Owner’s connections are broken or
incomplete. In this case, the imageview outlet you added is not connected (it is not
associated with anything). To make the connection, Control-drag from File’s Owner
to the image view widget you placed in the main window as shown in Figure 18-5.

C H A P T E R 1 8

Task: Using and Extending Image Views

Loading the Image 271
  Apple Computer, Inc. May 2002

Figure 18-5 Connect outlet to widget

In the File’s Owner Info window, select the imageview outlet and click Connect. The
File’s Owner Info window should then appear as in Figure 18-5.

Save the interface file. It is now prepared to display an image in the client
application.

Loading the Image

The image view widget you placed in the interface file did not specify a particular
image. Rather, it specified an area in the window where an image can be displayed.
You now need to add some code to retrieve the image and load it in the image view
widget.

272 Loading the Image
  Apple Computer, Inc. May 2002

C H A P T E R 1 8

Task: Using and Extending Image Views

In Project Builder, open the Java class for the interface file you just edited. Before
modifications, it should look something like this:

package mycompany.client;

import com.webobjects.foundation.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoapplication.*;

public class MyInterfaceController extends EOInterfaceController {

 public MyInterfaceController() {
 super();
 }

 public MyInterfaceController(EOEditingContext substitutionEditingContext) {
 super(substitutionEditingContext);
 }
}

To load and place the image, you’ll use the EOInterface Swing package
(com.webobjects.eointerface.swing.*). So, add the import statement:

import com.webobjects.eointerface.swing.*;

Next, you need to add an instance variable to get access to the outlet you
defined in the interface file. The variable’s type is EOImageView, defined in
com.webobjects.eointerface.swing.*. You named the outlet “imageview” so
add an instance variable of the same name:

public EOImageView imageview;

To load an image into the EOImageView object, you need to make sure that the
interface controller has finished loading. The method controllerDidLoadArchive
is invoked when the controller is finished loading. You can override it to perform
certain initializations, such as loading an image into an image view. Add the method
as shown in Listing 18-1 (page 273).

C H A P T E R 1 8

Task: Using and Extending Image Views

Loading the Image 273
  Apple Computer, Inc. May 2002

Listing 18-1 Overriding controllerDidLoadArchive

protected void controllerDidLoadArchive(NSDictionary namedObjects) {

ImageIcon iIcon =
 (ImageIcon)EOUserInterfaceParameters.localizedIcon("iMac"); //1

Image newImage = iIcon.getImage(); //2

imageview.setImage(newImage); //3
}

Code line 1 attempts to retrieve an image that is associated with the Web Server
target. Specify the image name without including the suffix.

Code line 1 casts the retrieved object into an object of type ImageIcon. localizedIcon
returns an object of type Icon, so casting the retrieved object into an ImageIcon
allows you to retrieve the image data in the form of an Image object that the
setImage method on EOImageView accepts. Code line 2 retrieves the image’s data
from the ImageIcon object and code line 3 sets the image in the image view object to
the image retrieved in codeline 1.

If successful, your interface file should load and display the specified image as
shown in Figure 18-6.

Figure 18-6 Image in image view

Note: As of WebObjects 5.1, EOUserInterfaceParameters.localizedIcon retrieves
images with extensions gif, jpeg, and png only.

274 Loading the Image
  Apple Computer, Inc. May 2002

C H A P T E R 1 8

Task: Using and Extending Image Views

275
  Apple Computer, Inc. May 2002

C H A P T E R 1 9

19 Task: Using Pop-up Menus
In Nib Files

It’s common to want to display pop-up menus in interface files that display a short
list of enumeration values. This chapter describes how to connect a pop-up menu
widget (javax.swing.JComboBox) to a display group and how to get the value of the
selected object in the interface file’s controller class.

Problem: You want to display a pop-up menu (JComboBox) and extract the selected
value.

Solution: Place a pop-up menu widget in an interface file and use a controller
display group to extract the value.

In a nib file, add the entity that contains the enumeration values to the nib file by
dragging the entity from EOModeler into the nib file window. Figure 19-1
(page 275) shows an entity called “Illustrator” as a display group in a nib file.

Figure 19-1 Illustrator entity in nib file

276
  Apple Computer, Inc. May 2002

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

When you drag an entity from EOModeler into a nib file, an EOEditingContext
object is also added if one is not already in the nib file.

Now add a widget for the pop-up menu. You can find it in the Cocoa-Other palette,
as shown in Figure 19-2. It’s the widget that includes the text “Item1”.

Figure 19-2 Cocoa-Other palette

Then, Control-drag from the widget to the display group for the entity containing
the enumeration values, as shown in Figure 19-3.

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

277
  Apple Computer, Inc. May 2002

Figure 19-3 Connect widget to display group

This action displays the Info window so you can set the binding for the titles
aspect of the EOValueSelectionAssociation. As shown in Figure 19-4, bind the
titles aspect to the attribute of the entity that represents the enumeration value,
name in the example shown here.

278
  Apple Computer, Inc. May 2002

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

Figure 19-4 Bind the title aspect to the appropriate attribute

Save the nib and choose Test Interface from the File menu. You should see the
values of the attribute bound to the titles aspect of the pop-up menu as items in
that menu.

To get the value of the selected object in the controller class for the interface file,
there is more work to do. Add a new EODisplayGroup object to the interface file by
dragging one out from the EnterpriseObjects palette into the nib file window. The
nib file window should then appear as shown in Figure 19-5.

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

279
  Apple Computer, Inc. May 2002

Figure 19-5 EODisplayGroup object in nib file

Then, bind the new EODisplayGroup object to the controllerDisplayGroup outlet of
File’s Owner. Do this by Control-dragging from File’s Owner to the new display
group as shown in Figure 19-6.

Figure 19-6 Bind File’s Owner’s controllerDisplayGroup outlet

Then, in the Info window, select controllerDisplayGroup and click Connect, as
shown in Figure 19-7.

280
  Apple Computer, Inc. May 2002

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

Figure 19-7 Bind the outlet

Now, add a key to the controller display group object called “key”. This represents
the name of the action method that is invoked in the nib file’s controller class when
a user chooses an object in the pop-up menu. To add a key, select the display group
object in the nib file window and choose Show Info from the Tools menu. In the
Attributes pane, add the key named “key” as shown in Figure 19-8 (page 281).

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

281
  Apple Computer, Inc. May 2002

Figure 19-8 Add a key to display group

Then, bind the selectedIndex attribute of the EOValueSelectionAssociation to the
key named “key” in the controller display group. Control-drag from the pop-up
menu to the display group bound to the controllerDisplayGroup outlet of File’s
Owner and in the Info window, connect the binding as shown in Figure 19-9.

282
  Apple Computer, Inc. May 2002

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

Figure 19-9 Bind selectedIndex attribute of association to display group key

Save the nib file.

In the nib file’s controller class, add a method called setKey. This is invoked when
an object in the pop-up menu is selected.

public void setKey(int illustrator) {
 _illustrator =
 (String)controllerDisplayGroup().valueForObjectAtIndex(illustrator,
 "name");
}

It sets an instance variable in the class (_illustrator) to the String value of the object
selected in the menu.

Figure 19-10 shows a pop-up menu in action.

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

283
  Apple Computer, Inc. May 2002

Figure 19-10 A pop-up menu in action

284
  Apple Computer, Inc. May 2002

C H A P T E R 1 9

Task: Using Pop-up Menus In Nib Files

Building the User Interface 285
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

20 Task: Building a Login Window

Whether you know it or not, after reading through the other tasks, you know all you
need to know to implement a login window in a Direct to Java Client application.
This task provides a road map and some helpful hints to successfully implement a
login window in your application.

The DiscussionBoard application that’s included with WebObjects 5.1 provides a
login window based solely on rules and custom controller classes. It is a fine
example but there are easier ways to accomplish the same thing, as this chapter
describes.

First, you’ll build the login window’s user interface. Then, you’ll provide logic for
authenticating users to a data store. Finally, you’ll intercept the default startup
sequence for Direct to Java Client applications to disable certain menu items and
windows.

Building the User Interface

The first step in building a login window is to build the user interface for it. Add a
nib file to your project and open it in Interface Builder. Add two text fields with
labels and two buttons. A suggestion appears in Figure 20-1.

286 Building the User Interface
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

Task: Building a Login Window

Figure 20-1 Login window user interface

If you want to make the password text field secure (so that typing in it produces
asterisks rather than characters), see “Custom Views” (page 245) to learn how to
add custom view widgets to a nib file. Substitute javax.swing.JPasswordField in
place of the custom view widget used in that section.

Then, add outlets to File’s Owner for each text field, naming them “username” and
“password.” See “Custom Views” (page 245) or “Programmatic Access to Interface
Components” (page 185) to learn how to add outlets. The outlets pane should then
appear as shown in Figure 20-2.

Figure 20-2 Add outlets named username and password

C H A P T E R 2 0

Task: Building a Login Window

Building the User Interface 287
  Apple Computer, Inc. May 2002

Also add two new actions called “login” and “clear.” You add actions the same way
as you add outlets except you add them in the Actions pane rather than in the
Outlets pane. The Actions pane should then appear as in Figure 20-3.

Figure 20-3 Add actions

Finally, connect the outlets and the actions to the widgets you added. Control-drag
from File’s Owner to the User Name text field and bind it to the username outlet.
Control-drag from File’s Owner to the Password text field and bind it to the
password outlet. Control-drag from the Log In button to File’s Owner and bind its
target aspect to the login action. Control-drag from the Clear button to File’s Owner
and bind its target aspect to the clear action. File’s Owner’s connections should
then appear as shown in Figure 20-4.

288 Building the User Interface
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

Task: Building a Login Window

Figure 20-4 File’s Owner with new connections

Save the nib file.

To load this interface when the application launches, you use a binding provided
on the Main component. Open Main.wo in WebObjects Builder and select the
WOJavaClientApplet dynamic element, as shown in Figure 20-5.

C H A P T E R 2 0

Task: Building a Login Window

Building the User Interface 289
  Apple Computer, Inc. May 2002

Figure 20-5 Select the WOJavaClientApplet dynamic element

Then, open the WOJavaClientApplet Binding Inspector by choosing Inspector from
the Window menu. This shows you all the possible bindings for the
WOJavaClientApplet dynamic element. For the interfaceControllerClassName
binding, enter the fully qualified name of the login nib file you created in this
chapter, making sure to put it in quotation marks. An example appears in Figure
20-6.

290 Adding Logic to Authenticate Users
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

Task: Building a Login Window

Figure 20-6 Add value for interfaceControllerClassName binding

The nib file specified as the value for this binding is loaded when the application
starts up. Save the Main component and build and run the project and the login nib
file should appear.

Adding Logic to Authenticate Users

Now that you have a user interface for the login window, you need to add logic to
authenticate users. The first step is to extract the values of the two text fields in the
nib file. To do this, you need access to the text fields in the nib file’s controller class,
as described in “Programmatic Access to Interface Components” (page 185). Add
an instance variable of type EOTextField for both of the text fields in the nib file. The
instance variable’s names must correspond to the name of the outlets with which
the text fields are connected.

public EOTextField username, password;

Now, add methods for the actions you added to the nib file. You added two actions,
clear and login, so add two methods with those names to the nib file’s controller
class.

public void login() {}
public void clear() {}

C H A P T E R 2 0

Task: Building a Login Window

Adding Logic to Authenticate Users 291
  Apple Computer, Inc. May 2002

The clear method simply clears the values of the text fields. Add this code to it:

username.setText("");
password.setText("");

The login method authenticates users by sending the user-entered values from the
User Name and Password text fields to remote methods on the server-side
application, which query a data store to perform the authentication. If a user
successfully authenticates, the client-side method that invoked the server-side
method receives an object (an EOGlobalID) representing the user who
authenticated.

Add the method in Listing 20-1 to the nib file’s controller class to perform the
remote method invocation. If the user successfully authenticates, the method
returns true.

Listing 20-1 Client-side login method

public boolean clientSideRequestLogin() {
 EOGlobalID person =
 (EOGlobalID)(_distributedObjectStore().invokeStatelessRemoteMethodWithKeyPath(
 "session", "clientSideRequestLogin", new Class[] {String.class, String.class},
 new Object[] {username.getText(), password.getText()}));
 if (person != null) {
 EOEditingContext ec = new EOEditingContext();
 _user = (Person)(ec.faultForGlobalID(person, ec));
 return true;
 }
 else
 return false;
}

Remember to also add the method that returns the client’s parent object store, as
described in “Distributed Object Store” (page 112) since the remote method
invocation is invoked on the client’s parent object store.

Now, invoke the client-side method clientSideRequestLogin in the login method,
adding a conditional based on the response, as shown in Listing 20-2 (page 292).

292 Adding Logic to Authenticate Users
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

Task: Building a Login Window

Listing 20-2 login method

public void login() {
 if (this.clientSideRequestLogin()) {

 //allow user into application
 }
 else {
 EODialogs.runErrorDialog("Login failed", "Login failed. Please try
 again.");
 }
 }

This is all you need to do on the client side. Now, you need to add the method on
the server-side that actually performs the authentication. The remote method
invocation specifies the keypath “session” and the method clientSideRequestLogin,
so add a method in Session.java with that name, as shown in Listing 20-3.

Listing 20-3 Authentication in Session.java

public EOGlobalID clientSideRequestLogin(String username, String password) {
EOGenericRecord user;
EOEditingContext editingContext = new EOEditingContext();

 NSMutableDictionary userCredentials = new NSMutableDictionary();
 userCredentials.setObjectForKey(username, "username");
 userCredentials.setObjectForKey(password, "userPassword");

 NSArray foundObjects = EOUtilities.objectsMatchingValues(editingContext, "Person",
 userCredentials);
 if (foundObjects.count() == 1) {

 user = (EOGenericRecord)foundObjects.objectAtIndex(0);

 return(editingContext.globalIDForObject(user));
 }
 else {
 return null;
 }
 }

C H A P T E R 2 0

Task: Building a Login Window

Adding Logic to Authenticate Users 293
  Apple Computer, Inc. May 2002

This method constructs a dictionary based on the values passed in from the client
side (the user-entered name and password). Then, using the class
com.webobjects.eoaccess.EOUtilities, the method performs a fetch against the
data store in the Person entity. If a record matching the user’s credentials is found,
the method returns the EOGlobalID for that user.

The client-side method clientSideRequestLogin receives the result of this method,
and if it is not null, allows the user into the application. If it receives null, however,
it displays a dialog with an error message, as shown in Figure 20-7.

Figure 20-7 Login failed

Of course, authentication fails if you don’t add users to the entity in the data store
on which you perform the fetch specification, so remember to add users.

294 Restricting Access
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

Task: Building a Login Window

Restricting Access

The login window you added won’t be of much use until you change the default
startup sequence to remove the Documents menu and the default query window.
Otherwise, users can simply ignore the login window and start using the
application.

To learn how to remove the Documents menu, see “The Documents Menu”
(page 199). To learn how to suppress the default query window, see “The Default
Query Window” (page 200).

Finally, now that you’ve disabled all the default mechanisms for users to use the
application, you need to provide custom access. In Listing 20-2 (page 292), currently
nothing happens if the user successfully authenticates—except that they don’t see
the error dialog stating that authentication failed.

However, there are many things you can do, such as using the controller factory
programmatically (“Task: Using the Controller Factory Programmatically”
(page 205)) or loading another nib file that provides a menu of the application’s
primary tasks. You can display the default query window after the user
authenticates by adding this code in the if part of the conditional in the login
method in Listing 20-2 (page 292):

EOControllerFactory.sharedControllerFactory().queryControllerWithEntity
(<entity name>)

Make sure to add the import statement for the
com.webobjects.eogeneration.client package to the nib file.

To load a nib file programmatically, change the login method in Listing 20-2
(page 292) to Listing 20-4.

C H A P T E R 2 0

Task: Building a Login Window

Restricting Access 295
  Apple Computer, Inc. May 2002

Listing 20-4 Load a nib file programmatically

public void login() {
 if (this.clientSideRequestLogin()) {
 MainMenuInterfaceController mainMenu = new
 MainMenuInterfaceController(); //1
 EOFrameController.runControllerInNewFrame(mainMenu, null); //2
 }
 else {
 EODialogs.runErrorDialog("Login failed", "Login failed. Please try
 again.");
 }
}

Code line 1 instantiates a new instance of the nib file named
“MainMenuInterfaceController” and code line 2 displays the nib file.

296 Restricting Access
  Apple Computer, Inc. May 2002

C H A P T E R 2 0

Task: Building a Login Window

XML Value Types 297
  Apple Computer, Inc. May 2002

A P P E N D I X A

A XML Description of Classes and
Actions

This appendix provides an overview of the classes used in Java Client applications,
including the XML descriptions, tags, and attributes they use. Refer to “XML Value
Types” (page 297) for complete information on the proprietary value types such as
editability and alignment.

XML Value Types

The XML attributes for Java Client classes include standard Java value types and
these other value types:

position
Center

Top

Bottom

Left

Right

TopLeft

TopRight

BottomLeft

BottomRight

border
None

Etched

298 XML Value Types
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

RaisedBezel

LoweredBezel

LineBorder

editability
Never

Always

IfSuperController

alignment
Center

Left

Right

resizing
NoResizing

AspectResizing

FreeResizing

IntegralResizing

PerformanceResizing

HorizontalResizing

VerticalResizing

scaling
ScaleNone

ScaleProportionally

ScaleToFit

ScaleProportionallyIfTooLarge

scaling hint
ScaleDefault

ScaleFast

ScaleSmooth

color
Specify by three integers each in the range 0 to 255: “integerRed, integerGreen,

integerBlue”, or specify by hex: “#FFFFFF”.

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 299
  Apple Computer, Inc. May 2002

font
Size

Style

Font

The format for this value type is “size, style:fontName”. Specify Size as “+integer”
or “-integer”. Specify Style as Plain, Bold, Italic, or BoldItalic.

Example: <CONTROLLER className="com.myapp.TextFieldController" font="+2,
Bold: Arial"/>

provider method
ClassName

MethodName

The format for this value type is “className:methodName”.

Classes With XML Tags and XML Attributes

Direct to Java Client user interfaces are defined in XML descriptions. This section
lists all the classes in the Java Client frameworks that have at least one XML tag or
one XML attribute. Classes (controllers) inherit XML attributes, but inherited XML
attributes may not always be appropriate for the inheriting controller.

The following list is alphabetical by controller name, without regard to a controller’s
package.

com.webobjects.eoapplication.EOActionButtonsController

Superclass: com.webobjects.eoapplication.EOActionWidgetController

Description: Handles toolbars with multiple action buttons.

XML Tag: ACTIONBUTTONSCONTROLLER

XML Attributes: usesLargeButtonRepresentation (boolean)

300 Classes With XML Tags and XML Attributes
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

com.webobjects.eogeneration.client.EOActionController

Superclass: com.webobjects.eogeneration.client.EOTitlesController

Description: Handles invoking actions and action keys.

XML Tag: ACTIONCONTROLLER

XML Attributes: actionKey (String representing the key path for the action
aspect of the association).
buttonPosition (position)
titlesEntity (String representing the names of the titles
entity)
usesAction (boolean)
usesButton (boolean)

com.webobjects.eoapplication.EOActionMenuController

Superclass: com.webobjects.eoapplication.EOActionWidgetController

Description: Handles pop-up menus with multiple action items.

XML Tag: ACTIONMENUCONTROLLER

com.webobjects.eoapplication.EOActionWidgetController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles toolbars and other action controls.

XML Tag: None (abstract class)

XML Attributes: widgetPosition (position)

com.webobjects.eoapplication.EOAppletController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Represents applets like a window in an application; use only if
running as an applet or in a browser.

XML Tag: None (never created from XML description)

XML Attributes: None

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 301
  Apple Computer, Inc. May 2002

com.webobjects.eoapplication.EOApplication

Superclass: com.webobjects.eoapplication.EOController

Description: A shared instance, manages global actions such as Quit and
Save; includes API to work with documents.

XML Tag: None (never created from XML description)

XML Attributes: None

com.webobjects.eogeneration.client.EOAssociationController

Superclass: com.webobjects.eogeneration.client.EOWidgetController

Description: Handles associations for widgets, including the editable state
and enabled key.

XML Tag: None (abstract class)

XML Attributes: displayGroupProviderMethodName (method name)
editability (editability)
enabledDisplayGroupProviderMethodName (method name)
enabledKey (String representing the key path for the enabled
aspect of the association)

com.webobjects.eoapplication.EOBoxController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Displays bordered and titled boxes.

XML Tag: BOXCONTROLLER

XML Attributes: borderType (border)
color (color)
font (font)
highlight (boolean)
horizontalBorder (int)
titlePosition (position)
usesTitledBorder (boolean)
verticalBorder (int)

302 Classes With XML Tags and XML Attributes
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

com.webobjects.eogeneration.client.EOCheckBoxController

Superclass: com.webobjects.eogeneration.client.EOValueController

Description: Handles checkboxes.

XML Tag: CHECKBOXCONTROLLER

XML Attributes: displaysLabelInWidget (boolean)

com.webobjects.eogeneration.client.EOComboBoxController

Superclass: com.webobjects.eogeneration.client.EOTitlesController

Description: Handles combo boxes with fixed values.

XML Tag: COMBOBOXCONTROLLER

XML Attributes: isQueryWidget (boolean)
titlesEntity (String representing the names of the titles
entity)
valueKey (String representing the key path for the value aspect
of the association)

com.webobjects.eoapplication.EOComponentController

Superclass: com.webobjects.eoapplication.EOController

Description: Handles user interface issues such as visibility state, labels,
icons, size information, subcontroller layout; default
component controller is an empty box.

XML Tag: COMPONENTCONTROLLER

XML Attributes: alignmentWidth (int)
alignsComponents (boolean)
horizontallyResizable (boolean)
iconName (String)
iconURL (String)
label (String)
minimumHeight (int)
minimumWidth (int)
prefersIconOnly (boolean)
usesHorizontalLayout (boolean)
verticallyResizable (boolean)

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 303
  Apple Computer, Inc. May 2002

com.webobjects.eoapplication.EOController

Superclass: java.lang.Object

Description: An abstract definition of controllers; handles supercontrollers,
subcontrollers, key-value coding for the controller hierarchy,
messages in the controller hierarchy, establishing and breaking
connections to other controllers.

XML Tag: None (abstract class)

XML Attributes: className (String)
disabledActionNames(array of strings with names of methods to
be disabled)
transient (boolean)
typeName (String)

com.webobjects.eoapplication.EODialogController

Superclass: com.webobjects.eoapplication.EOSimpleWindowController

Description: Handles dialogs (such as error messages).

XML Tag: DIALOGCONTROLLER

com.webobjects.eoapplication.EODocumentController

Superclass: com.webobjects.eoapplication.EOEntityController

Description: Handles editable documents.

XML Tag: DOCUMENTCONTROLLER

XML Attributes: editability (editability)

com.webobjects.eogeneration.client.EODynamicApplication

Superclass: com.webobjects.eogeneration.client.EOApplication

Description: Warms up controller factory and manages special entry
actions.

XML Tag: None (never created from XML description)

XML Attributes: None

304 Classes With XML Tags and XML Attributes
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

com.webobjects.eogeneration.client.EOEditingController

Superclass: com.webobjects.eoapplication.EODocumentController

Description: Handles master-detail associations.

XML Tag: None

XML Attributes: None

com.webobjects.eoapplication.EOEntityController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles business data on the level of entities: entity names,
editing context, display group, controller display group,
loading archives (Interface Builder files).

XML Tag: ENTITYCONTROLLER

XML Attributes: entity (String representing the entity)
archive (String representing the name of the interface file to be
used)
displayGroupProviderMethodName (method name)
editingContextProviderMethodName (method name)

com.webobjects.eogeneration.client.EOEnumerationController

Superclass: com.webobjects.eogeneration.client.EOTitlesController

Description: Handles enumeration widgets.

XML Tag: None (abstract class)

XML Attributes: path (String representing the detail relationship path to title
objects)

com.webobjects.eogeneration.client.EOFormatValueController

Superclass: com.webobjects.eogeneration.client.EOValueController

Description: Handles the formatting and value aspect of widgets with
associations.

XML Tag: None (abstract class)

XML Attributes: formatAllowed (boolean)
formatClass (String of the class name of the formatter object)
formatPattern (String representing the pattern string of the
formatter object)

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 305
  Apple Computer, Inc. May 2002

com.webobjects.eogeneration.client.EOFormController

Superclass: com.webobjects.eogeneration.client.EOEditingController

Description: Handles editable forms.

XML Tag: FORMCONTROLLER

com.webobjects.eoapplication.EOFrameController

Superclass: com.webobjects.eoapplication.EOSimpleWindowController

Description: Handles frames.

XML Tag: FRAMECONTROLLER

com.webobjects.eogeneration.client.EOImageViewController

Superclass: com.webobjects.eogeneration.client.
EOValueAndURLController

Description: Handles image views.

XML Tag: IMAGEVIEWCONTROLLER

XML Attributes: imageScaling (scaling)
scalingHints (scaling hint)

com.webobjects.eoapplication.EOInspectorController

Superclass: com.webobjects.eoapplication.EOWindowController

Description: Handles inspector windows.

XML Tag: INSPECTORCONTROLLER

XML Attributes: sharedIdentifier (String)

com.webobjects.eoapplication.EOInterfaceController

Superclass: com.webobjects.eoapplication.EODocumentController

Description: Handles documents that always use an interface file.

XML Tag: INTERFACECONTROLLER

306 Classes With XML Tags and XML Attributes
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

com.webobjects.eogeneration.client.EOListController

Superclass: com.webobjects.eogeneration.client.EOEditingController

Description: Handles editable lists.

XML Tag: LISTCONTROLLER

com.webobjects.eoapplication.EOMenuSwitchController

Superclass: com.webobjects.eoapplication.EOSwitchController

Description: Handles switch panes that have a pop-up menu.

XML Tag: MENUSWITCHCONTROLLER

com.webobjects.eoapplication.EOModalDialogController

Superclass: com.webobjects.eoapplication.EODialogController

Description: Handles modal dialog controllers.

XML Tag: MODALDIALOGCONTROLLER

com.webobjects.eogeneration.client.EOMultipleValuesEnumerationController

Superclass: com.webobjects.eogeneration.client.
EOEnumerationController

Description: Handles to-many relationships to enumeration entities.

XML Tag: MULTIPLEVALUESENUMERATIONCONTROLLER

XML Attributes: usesTableLabels (boolean)

com.webobjects.eogeneration.client.EOOneValueEnumerationController

Superclass: com.webobjects.eogeneration.client.
EOEnumerationController

Description: Handles to-one relationships to enumeration entities.

XML Tag: ONEVALUEENUMERATIONCONTROLLER

XML Attributes: isQueryWidget (boolean)

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 307
  Apple Computer, Inc. May 2002

com.webobjects.eoapplication.EOProgrammaticSwitchController

Superclass: com.webobjects.eoapplication.EOSwitchController

Description: Handles switch views that can only be changed
programmatically.

XML Tag: PROGRAMMATICSWITCHCONTROLLER

com.webobjects.eogeneration.client.EOQueryController

Superclass: com.webobjects.eoapplication.EOEntityController

Description: Handles query interfaces.

XML Tag: QUERYCONTROLLER

XML Attributes: editability (editability)
runsConfirmDialogForEmptyQualifiers (boolean)

com.webobjects.eogeneration.client.EOQuickTimeViewController

Superclass: com.webobjects.eogeneration.client.
EOAssociationController

Description: Handles QuickTime views.

XML Tag: QUICKTIMEVIEWCONTROLLER

XML Attributes: quickTimeCanvasResizing (resizing)
URLKey (String representing the key path for the URL aspect of
the association)

com.webobjects.eogeneration.client.EORangeTextFieldController

Superclass: com.webobjects.eogeneration.client.EORangeValueController

Description: Handles range text fields with optional formatters.

XML Tag: RANGETEXTFIELDCONTROLLER

XML Attributes: formatAllowed (boolean)
formatClass (String of the class name of the format object)
formatPattern (String representing the pattern of the format
object)
isQueryWidget (boolean)

308 Classes With XML Tags and XML Attributes
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

com.webobjects.eogeneration.client.EORangeValueController

Superclass: com.webobjects.eogeneration.client.
EORangeWidgetController

Description: Handles the value aspect, enabled key aspect, and editable
state of range widgets.

XML Tag: None (abstract class)

XML Attributes: displayGroupProviderMethodName (method name)
editability (editability)
enabledDisplayGroupProviderMethodName (method name)
enabledKey (String representing the key path for the enabled
aspect of the association).
maximumValueKey (String representing the key path for the
value aspect of the maximum association).
minimumValueKey(String representing the key path for the value
aspect of the minimum association).
valueKey (String representing the key path for the value aspect
of both the minimum and maximum associations).

com.webobjects.eogeneration.client.EORangeWidgetController

Superclass: com.webobjects.eogeneration.client.EOWidgetController

Description: Handles range widgets—two widgets for the minimum and
maximum value of the same value.

XML Tag: None (abstract class)

com.webobjects.eoapplication.EOSimpleWindowController

Superclass: com.webobjects.eoapplication.EOWindowController

Description: Handles standalone windows.

XML Tag: None (abstract class)

XML Attributes: disposeIfDeactivated (boolean)

com.webobjects.eogeneration.client.EOStaticIconController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles the display of static icons.

XML Tag: STATICICONCONTROLLER

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 309
  Apple Computer, Inc. May 2002

com.webobjects.eogeneration.client.EOStaticLabelController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles the display of static messages.

XML Tag: STATICLABELCONTROLLER

XML Attributes: alignment (alignment)
color (color)
font (font)

com.webobjects.eogeneration.client.EOStaticTextFieldController

Superclass: com.webobjects.eogeneration.client.EOTextFieldController

Description: Handles uneditable table columns.

XML Tag: STATICTEXTFIELDCONTROLLER

XML Attributes: color (color)
font (font)

com.webobjects.eoapplication.EOSwitchController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles switch views, which only display one view out of
many at one time.

XML Tag: None (abstract class)

com.webobjects.eogeneration.client.EOTableColumnController

Superclass: com.webobjects.eogeneration.client.
EOFormatValueController

Description: Handles table columns.

XML Tag: TABLECOLUMNCONTROLLER

com.webobjects.eogeneration.client.EOTableController

Superclass: com.webobjects.eogeneration.client.
EOAssociationController

Description: Handles table views.

310 Classes With XML Tags and XML Attributes
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

XML Tag: TABLECONTROLLER

XML Attributes: allowsMultipleSelection (boolean)
sortsByColumnOrder (boolean)

com.webobjects.eoapplication.EOTabSwitchController

Superclass: com.webobjects.eoapplication.EOSwitchController

Description: Handles tabbed panes.

XML Tag: TABSWITCHCONTROLLER

com.webobjects.eogeneration.client.EOTextAreaController

Superclass: com.webobjects.eogeneration.client.
EOValueAndURLController

Description: Handles scrollable text areas.

XML Tag: TEXTAREACONTROLLER

com.webobjects.eogeneration.client.EOTextFieldController

Superclass: com.webobjects.eogeneration.client.
EOFormatValueController

Description: Handles editable text fields.

XML Tag: TEXTFIELDCONTROLLER

XML Attributes: isQueryWidget (boolean)

com.webobjects.eogeneration.client.EOTitlesController

Superclass: com.webobjects.eogeneration.client.
EOAssociationController

Description: Handles the attributes of enumeration widgets such as titles,
title keys, title display groups, and editable state.

XML Tag: None (abstract class)

XML Attributes: titleKeys (array of strings represent the key paths to be
displayed for title objects)
titlesDisplayGroupProviderMethodName (method name)

A P P E N D I X A

XML Description of Classes and Actions

Classes With XML Tags and XML Attributes 311
  Apple Computer, Inc. May 2002

com.webobjects.eogeneration.client.EOValueAndURLController

Superclass: com.webobjects.eogeneration.client.EOValueController

Description: Handles the value or URL aspects of widgets with associations.

XML Tag: None (abstract class)

XML Attributes: URLKey (String representing the key path for the URL aspect of
the association)

com.webobjects.eogeneration.client.EOValueController

Superclass: com.webobjects.eogeneration.client.
EOAssociationController

Description: Handles the value aspect of widgets with associations.

XML Tag: None (abstract class)

XML Attributes: valueKey (String representing key path for value aspect of
association)

com.webobjects.eogeneration.client.EOWidgetController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles individual widgets, including their label and
alignment.

XML Tag: None (abstract class)

XML Attributes: alignment (alignment)
highlight (boolean)
labelAlignment (alignment)
labelComponentPosition (position)
usesLabelComponent (boolean)

com.webobjects.eoapplication.EOWindowController

Superclass: com.webobjects.eoapplication.EOComponentController

Description: Handles windows and user defaults for window size and
position.

XML Tag: None (abstract class)

312 EOActions XML Descriptions
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

XML Attributes: windowPosition (position)
usesAction (boolean)
usesButton (boolean)
usesUserDefaultsWindowLocation (boolean)
usesUserDefaultsWindowSize (boolean)

EOActions XML Descriptions

APPLICATIONACTION

XML Attributes: actionName (String)
actionPriority (int)
categoryPriority (int)
descriptionPath (String)
iconName (String)
iconURL (String)
menuAccelerator (String—example “shift P”)
shortDescription (String)
smallIconName (String)
smallIconURL (String)

CONTROLLERHIERARCHYACTION

XML Attributes: actionName (String)
actionPriority (int)
categoryPriority (int)
descriptionPath (String)
iconName (String)
iconURL (String)
menuAccelerator (String—example “shift P”)
shortDescription (String)
smallIconName (String)
smallIconURL (String)

A P P E N D I X A

XML Description of Classes and Actions

EOActions XML Descriptions 313
  Apple Computer, Inc. May 2002

HELPWINDOWACTION

XML Attributes: shortDescription (String)
menuAccelerator (String—example “shift P”)
multipleWindowsAvailable (boolean)
task (String)

INSERTACTION

XML Attributes: entity (String)

OPENACTION

XML Attributes: entity (String)

QUERYACTION

XML Attributes: entity (String)

STANDARDACTION

XML Attributes: entity (String)

TOOLWINDOWACTION

XML Attributes: shortDescription (String)
menuAccelerator (String—example “shift P”)
multipleWindowsAvailable (boolean)
task (String)

WINDOWACTION

XML Attributes: actionPriority (int)
categoryPriority (int)
categoryName (String)
descriptionPath (String)
iconName (String)
iconURL (String)
menuAccelerator (String—example “shift P”)
multipleWindowsAvailable (boolean)

314 EOActions XML Descriptions
  Apple Computer, Inc. May 2002

A P P E N D I X A

XML Description of Classes and Actions

shortDescription (String)
smallIconName (String)
smallIconURL (String)
task (String)

315
  Apple Computer, Inc. May 2002

21 Glossary

adaptor, database A mechanism that
connects your application to a particular
database server. For each type of server you
use, you need a separate adaptor.
WebObjects provides an adaptor for
databases conforming to JDBC.

adaptor, WebObjects A process (or a part
of one) that connects WebObjects
applications to an HTTP server.

application object An object (of the
WOApplication class) that represents a
single instance of a WebObjects application.
The application object’s main role is to
coordinate the handling of HTTP requests,
but it can also maintain application-wide
state information.

attribute In Entity-Relationship modeling,
an identifiable characteristic of an entity. For
example, lastName can be an attribute of an
Employee entity. An attribute typically
corresponds to a column in a database table.
See also entity; relationship.

business logic The rules associated with
the data in a database that typically encode
business policies. An example is
automatically adding late fees for overdue
items.

CGI A standard for interfacing external
applications with information servers, such
as HTTP or Web servers. Short for Common
Gateway Interface.

class In object-oriented languages such as
Java, a prototype for a particular kind of
object. A class definition declares instance
variables and defines methods for all
members of the class. Objects that have the
same types of instance variables and have
access to the same methods belong to the
same class.

class property An instance variable in an
enterprise object that meets two criteria: It’s
based on an attribute in your model, and it
can be fetched from the database. “Class
property” can either refer to an attribute or to
a relationship.

Cocoa A framework containing all the
objects you need to implement your
graphical, event-driven user interface:
windows, dialogs, buttons, menus, scroll
bars, and text fields. Cocoa handles all the
details for you as it efficiently draws on the
screen, communicates with hardware
devices and screen buffers, clears areas of the
screen before drawing, and clips views.

column In a relational database, the
dimension of a table that holds values for a
particular attribute. For example, a table that
contains employee records might have a
column titled “LAST_NAME” that contains
the values for each employee’s last name. See
also attribute.

G L O S S A R Y

316
  Apple Computer, Inc. May 2002

component An object (of the
WOComponent class) that represents a Web
page or a reusable portion of one.

database server A data storage and
retrieval system. Database servers typically
run on a dedicated computer and are
accessed by client applications over a
network.

Direct to Java Client A WebObjects
development approach that can generate a
Java Client application from a model.

Direct to Java Client Assistant A tool used
to customize a Direct to Java Client
application.

Direct to Web A WebObjects development
approach that can generate a HTML-based
Web application from a model.

Direct to Web Assistant A tool used to
customize a Direct to Web application.

Direct to Web template A component used
in Direct to Web applications that can
generate a Web page for a particular task (for
example, a list page) for any entity.

dynamic element A dynamic version of an
HTML element. WebObjects includes a list of
dynamic elements with which you can build
your component.

enterprise object A Java object that
conforms to the key-value coding protocol
and whose properties (instance data) can
map to stored data. An enterprise object
brings together stored data with methods for
operating on that data. See also key-value
coding; property.

entity In Entity-Relationship modeling, a
distinguishable object about which data is
kept. For example, you can have an
Employee entity with attributes such as
lastName, firstName, address, and so on. An
entity typically corresponds to a table in a
relational database; an entity’s attributes, in
turn, correspond to a table’s columns. See
also attribute; table.

Entity-Relationship modeling A
discipline for examining and representing
the components and interrelationships in a
database system. Also known as E-R
modeling, this discipline factors a database
system into entities, attributes, and
relationships.

EOModeler A tool used to create and edit
models.

faulting A mechanism used by WebObjects
to increase performance whereby destination
objects of relationships are not fetched until
they are explicitly accessed.

fetch In Enterprise Objects Framework
applications, to retrieve data from the
database server into the client application,
usually into enterprise objects.

foreign key An attribute in an entity that
gives it access to rows in another entity. This
attribute must be the primary key of the
related entity. For example, an Employee
entity can contain the foreign key deptID,
which matches the primary key in the entity
Department. You can then use deptID as the
source attribute in Employee and as the
destination attribute in Department to form a
relationship between the entities. See also
primary key; relationship.

G L O S S A R Y

317
  Apple Computer, Inc. May 2002

HTML-based application approach A
WebObjects development approach that
allows you to create HTML-based Web
applications.

inheritance In object-oriented
programming, the ability of a superclass to
pass its characteristics (methods and instance
variables) on to its subclasses.

instance In object-oriented languages such
as Java, an object that belongs to (is a member
of) a particular class. Instances are created at
runtime according to the specification in the
class definition.

Interface Builder A tool used to create and
edit graphical user interfaces like those used
in Java Client applications.

Java Browser A tool used to peruse Java
APIs and class hierarchies.

Java Client A WebObjects development
approach that allows you to create graphical
user interface applications that run on the
user’s computer and communicate with a
WebObjects server.

Java Foundation Classes A set of graphical
user interface components and services
written in Java. The component set is known
as Swing.

JDBC Stands for “Java Database
Connectivity.” An interface between Java
platforms and databases.

join An operation that provides access to
data from two tables at the same time, based
on values contained in related columns.

key An arbitrary value (usually a string)
used to locate a datum in a data structure
such as a dictionary.

key-value coding The mechanism that
allows the properties in enterprise objects to
be accessed by name (that is, as key-value
pairs) by other parts of the application.

key-value pair See key-value coding.

locking A mechanism to ensure that data
isn’t modified by more than one user at a
time and that data isn’t read as it is being
modified.

look In Direct to Web applications, one of
three user interface styles. The looks differ in
both layout and appearance.

many-to-many relationship A relationship
in which each record in the source entity may
correspond to more than one record in the
destination entity, and each record in the
destination may correspond to more than
one record in the source. For example, an
employee can work on many projects, and a
project can be staffed by many employees.
See also relationship.

method In object-oriented programming, a
procedure that can be executed by an object.

model An object (of the EOModel class)
that defines, in Entity-Relationship terms, the
mapping between enterprise object classes
and the database schema. This definition is
typically stored in a file created with the
EOModeler application. A model also
includes the information needed to connect
to a particular database server.

G L O S S A R Y

318
  Apple Computer, Inc. May 2002

Model-View-Controller An
object-oriented programming paradigm in
which the functions of an application are
separated into the special knowledge (Model
objects), user interface elements (View
objects), and the interface that connects them
(the Controller object).

Monitor A tool used to configure and
maintain deployed WebObjects applications
capable of handling multiple applications,
instances, and application servers at the same
time.

object A programming unit that groups
together a data structure (instance variables)
and the operations (methods) that can use or
affect that data. Objects are the principal
building blocks of object-oriented programs.

primary key An attribute in an entity that
uniquely identifies rows of that entity. For
example, the Employee entity can contain an
EmpID attribute that uniquely identifies each
employee.

Project Builder A tool used to manage the
development of a WebObjects application or
framework.

property In Entity-Relationship modeling,
an attribute or relationship. See also attribute;
relationship.

record The set of values that describes a
single instance of an entity; in a relational
database, a record is equivalent to a row.

referential integrity The rules governing
the consistency of relationships.

relational database A database designed
according to the relational model, which uses
the discipline of Entity-Relationship
modeling and the data design standards
called normal forms.

relationship A link between two entities
that’s based on attributes of the entities. For
example, the Department and Employee
entities can have a relationship based on the
deptID attribute as a foreign key in
Employee, and as the primary key in
Department (note that although the join
attribute deptID is the same for the source
and destination entities in this example, it
doesn’t have to be). This relationship would
make it possible to find the employees for a
given department. See also to-one
relationship; to-many relationship;
many-to-many relationship; primary key;
foreign key.

reusable component A component that can
be nested within other components and acts
like a dynamic element. Reusable
components allow you to extend the
WebObject’s selection of dynamically
generated HTML elements.

request A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the user’s Web browser to a Web server
that asks for a resource like a Web page. See
also response.

request-response loop The main loop of a
WebObjects application that receives a
request, responds to it, and awaits the next
request.

G L O S S A R Y

319
  Apple Computer, Inc. May 2002

response A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the Web server to the user’s Web
browser that contains the resource specified
by the corresponding request. The response
is typically a Web page. See also request.

row In a relational database, the dimension
of a table that groups attributes into records.

rule In the Direct to Web and Direct to Java
Client approaches, a specification used to
customize the user interfaces of applications
developed with these approaches.

Rule Editor A tool used to edit the rules in
Direct to Web and Direct to Java Client
applications.

session A period during which access to a
WebObjects application and its resources is
granted to a particular client (typically a
browser). Also an object (of the WOSession
class) representing a session.

table A two-dimensional set of values
corresponding to an entity. The columns of a
table represent characteristics of the entity
and the rows represent instances of the
entity.

target A blueprint for building a product
from specified files in your project. It consists
of a list of the necessary files and
specifications on how to build them. Some
common types of targets build frameworks,
libraries, applications, and command-line
tools.

template In a WebObjects component, a file
containing HTML that specifies the overall
appearance of a Web page generated from
the component.

to-many relationship A relationship in
which each source record has zero to many
corresponding destination records. For
example, a department has many employees.

to-one relationship A relationship in
which each source record has exactly one
corresponding destination record. For
example, each employee has one job title.

transaction A set of actions that is treated
as a single operation.

uniquing A mechanism to ensure that,
within a given context, only one object is
associated with each row in the database.

validation A mechanism to ensure that
user-entered data lies within specified limits.

WebObjects Builder A tool used to
graphically edit WebObjects components.

G L O S S A R Y

320
  Apple Computer, Inc. May 2002

321
© Apple Computer, Inc. May 2002

Index

A

access layer
abstract nature 41
essential classes 41
overview 41
primary keys 60
responsibilities 41

access layer classes
EOAdaptor 42

isolation from any particular data store 42
EODatabaseContext 42
EOModel 42
EOUtilities 42

appropriate usage 42
actions

adding to Direct to Java Client applications
148

adding with Assistant 153
adding with custom controller class 237
adding with XML tags 237

additionalAvailableSpecifications 199
appletviewer 80
application layer

overview 50
Assistant

additional property key path 98
available in rapid turnaround mode 94
customization costs 120
disabling 94
entities 94
inside view 95
miscellaneous tab 99
properties tab 91, 96
widgets tab 92, 99
windows tab 92, 99
XML tab 92, 99

associations
examples 49

in interface layer 48
overview 48
types 49

audience 20
awakeFromClientUpdate 113
awakeFromInsertion

implementation 142

B

business logic 39
abstraction from data stores 39
adding to model 128
adding to project 129
custom classes 60
custom classes and targets 132
custom code 113, 138

awakeFromClientUpdate 113
invocations 139
prepareValuesForClient 113

initial values 142
reusability 39
schema information guidelines 39
targets for custom classes 132
validation 140
values in enterprise objects 113

business logic partitioning
common superclass 108
design recommendations 108
introduction to 107
key to 40
objects in 114
or object distribution 23
parameters of 40
performance considerations 109
remote method invocations 110

by-copy distribution mechanism 39

I N D E X

322
© Apple Computer, Inc. May 2002

C

class properties
client-side 66

display in client application 85
relationships 103

in EOModeler 66
client application

application startup 83
running 80

applicationURL argument 82
classpath argument 82
client launch script 81
from command line 82
java command 82
WOAutoOpenClientApplication 81
wojavaclient.jar file 82

using 84
client interface layer

overview 48
client JDBC

architectural comparison 33
client-side class properties 85

display in client application 85
comparison of the two development approaches

31
confirmation dialog

in query windows 147
considerations when choosing Java Client 25

client-side processing 26
network environment 26
performance 26
portability 26
security 26
system administration 26
user experience 27

control layer
essential classes 43
overview 43
same on client and server 43

control layer classes
EOCustomObject 44
EOEditingContext 44
EOEnterpriseObject 43
EOFetchSpecification 46
EOGenericRecord 44

EOGlobalID 46
EOQualifier 46
EOTemporaryGlobalID 46

controller factory
using programmatically 161

controller hierarchy
creation of 145
overview 144

controllers
application level 144
entity level 145
overview 144
property level 145
user interface level 145

CORBA
as a distribution channel protocol 47

custom controller class
writing 237

custom interfaces
adding actions 179
Cocoa to Swing translation 187
integrating

class association 173, 242
integrating in Direct applications

rule to integrate 243
integrating into Direct applications 217, 253

suppress subcontroller generation 244
master-detail interface 181
programmatic access to 185
typical 29

custom rule
for confirmation dialog 147

customization
costs

Assistant 120
controller classes 121
freezing interface files 121
freezing XML 121
rules 120

tools
Assistant 88, 119
controller classes 121
freezing XML 121
frozen interface files 121
rules 120

customizing client application 88
customizing frozen XML 234

I N D E X

323
© Apple Computer, Inc. May 2002

D

D2WComponents
in the rule system 191

d2wmodels 231
merged at run time 231

data stores
connectivity options 37, 59

debugging
D2WTraceRuleFiringEnabled 165
how to 165

defaultAvailableSpecifications 199
Direct to Java Client applications

adding actions 148
Assistant 153
custom controller class 237
edit XML 237

customization techniques 28
customizing 119

Assistant 119
controller class 121
freezing XML 121
frozen interface files 121
rules 120

integrating custom interfaces 217, 253
display groups

in interface layer 48
overview 48

distribution layer
data synchronization 116
delegates 117

for encryption and decryption 118
distribution channels 117
essential classes 47
flow 114
objects 114
overview 46
server-side 47
transport protocol 117

distribution layer classes
EODistributedDataSource 47
EODistributedObjectStore 47, 115
EODistributionChannel 47, 115
EODistributionContext 47, 116
EOHTTPChannel 47

WOJavaClientApplet 115
documentation

reader road map 21
related documents 22

dynamically-generated interface
typical 29

E

editing contexts
synchronization 116

Enterprise Object
definition 36

enterprise object
class implementation 44

Enterprise Objects
built-in features 85
concrete implementation 44
custom classes 60
data access technology 32
encyrption of 118
layers 35
models 37
object graph

synchronization 116
responsibilities 32
role in WebObjects 35

EnterpriseObjects palette 169
loading 170

entities
enumeration 95
in rule system 95
main 95
other 96
rule system definition 94

entity-relationship 37
EOAdaptorDebugEnabled 165
EOClassDescription, role with enterprise objects

36
EODatabaseContext

role on server 44
EODistributedObjectStore

role on client 44

I N D E X

324
© Apple Computer, Inc. May 2002

EODistributionContext 47
EOModel

synchronizing with schema 86
updating 86

EOModeler
attribute properties 65
business logic 128
class properties

client-side 66
generate Java business logic classes 130
model from data store

"Ask about relationships" 60
"Ask about stored procedures" 60
"Assign primary keys to all entities" 60
"Use Custom Enterprise objects" 60

overview 57
reverse-engineering schema 59
SQL generation 67
SQL generation options

Create Database 68
Create Primary Key Support 68
Create Tables 68
Drop Database 68
Drop Primary Key Support 68
Drop Tables 68
Foreign Key Constraints 68
Primary Key Constraints 68

EOObjectStoreCoordinator, overview of 46
EOSwitchComponent 196

F

faulting
overview 44

File’s Owner
class association for integrated custom

interfaces 173, 242
foreign key

adding to entity 100
formatters

apply to widgets 136
in custom interfaces 177

Foundation classes
NSArray 41
NSBundle 41
NSDictionary 41
NSKeyValueCoding 41
NSLog 41

Foundation framework
essential classes 40
in WebObjects 40
overview 40
versus JDK foundation classes 40

freezing XML
customization costs 121
customizing XML 234
how to 227
when to 228

G, H

generateSubcontrollers 244
generation layer

overview 50
using API programmatically 161

I

Inside WebObjects: Deploying WebObjects
Applications 80

integrate custom interfaces into Direct
applications 28

Interface Builder
and EOModeler 174
Cocoa to Swing translation 187
EnterpriseObjects palette 169
formatters 177
laying out user interface 171

interface layer
associations 48
display groups 48
overview 48

invokeRemoteMethod
on EOCustomObject 110

I N D E X

325
© Apple Computer, Inc. May 2002

invokeRemoteMethodOnKeyPath
on EODistributedObjectStore 111

invokeStatelessRemoteMethodWithKeyPath
business logic 112
editing contexts 112
on EODistributedObjectStore 111

J

Java Client
considerations when choosing 25
definition 19
deployment options 24
features 22
rapid application development 24
rich user interface 22
when to use 24

Java Client applications
client-server synchronization 116
customizing 88
debugging 165
deploying

appletviewer 80
mixing interface types 217, 253
nondirect development 167
running 80

Java Client architecture
advantages 33
compare to others 32
compared to client JDBC 33
compared to JDBC three-tier 33
overview 37
versus client stub design 39

Java Client Class Loader
bindings on WOJavaClientApplet 72
configurating 72
options 72
to ease deployment 25

Java Client deployment
application upgrades 53
installation 53
issues 53
performance 54

platform support 53
security 54
server requirements 54
user experience 54

Java Client development
choosing an approach 30
mixing the two approaches 28
suggested approach 28
suggested approach to 21
two approaches to 27

Java Foundation Classes 22
Java Runtime Environment

client requirement 26
Java Virtual Machine 19
JDBC

compatibility 37
connectivity

compatibility 59
three-tier

architectural comparison 33
JNDI

as a data access mechanism 35
connectivity in WebObjects 5.1 59

K

key-value coding
access mechanism for enterprise objects 43

L

launch arguments
server

for development 80
WOAutoOpenClientApplication 80
WOAutoOpenInBrowser 81
WOPort 81

session timeout 77

I N D E X

326
© Apple Computer, Inc. May 2002

M

model
adding custom business logic 128
attributes

naming conventions 63
entities

naming conventions 63
files 37

model files
schema information stored in 37

Model-View-Controller paradigm
overview 52
use of "model" 52

N

nondirect development
disadvantages 31
how to 167

O

object distribution 23
object-relational mapping 37

model files 37
OpenBase

included database software 56
OpenBase Manager

verifying schema synchronization 87

P

prepareValuesForClient 113
primary keys

appropriate usage 60
in access layer 60
purporse 66

Project Builder
classes 74
Developer Help Center 22

project
default 73

Project Builder project
adding business logic 129
client files 75
documentation 74
frameworks 74
groups 73
interfaces 74
products 74
resources 74
server files 75
targets 74, 133

build-style 75
root-style 75

web components 74
web server resources 74

property keys 98
adding with Assistant 98

Q

query windows
confirmation dialog 147

questions
in rule system 98

R

rapid application development 24
rapid turnaround mode 94
relationship manipulation

in enterprise objects 44
relationships

adding to model 99
as client-side class properties 103
making in EOModeler 101

remote method invocation
"clientSideRequest" 111
editing contexts 111

controlling push to server 111
synchronization 111

I N D E X

327
© Apple Computer, Inc. May 2002

remote method invocation (continued)
on application logic 111
on business logic 110
on EODistributedObjectStore 111
overview 110
security considerations 111, 112

reverse-engineering
in EOModeler 59

rule system
custom rules 146
d2wmodel files 231
debugging 165
flow 191
how it works 189
priorities 191
requests 191
trace firing of rules

debugging 165
rules

customization costs 120
priorities 191

running applications
as applets

considerations 25
client application 80

running as desktop application
special requirements 25

S

schema synchronization 86
when it’s necessary 88

session timeout
adjusting for Java Client applications 77
in deployment environment 79
in Java Client applications 79

specifications in the rule system
definition 199

SQL generation
after adding entity 101
EOModeler 67

Swing 19
Swing toolkit 22

T, U

targets
definition 74
pop-up menu 75
three types 133

tasks
defined by rule system 96
form 96
identify 97
list 97
query 97

transport protocol
HTTP 26
others 26

V

validation
implementations 140
in client classes 141
in server classes 141
overview 44
where to validate 141

W

WebObjects
basic features 23

WebObjects CD-ROM 22
WOJavaClientApplet

bindings
Java Client Class Loader 72

WOJavaClientApplet, overview 47
WOXMLNode 196

X, Y, Z

XML tab in Assistant 92

I N D E X

328
© Apple Computer, Inc. May 2002

	Java Client Desktop Applications
	Contents
	Figures, Listings, and Tables
	Introduction
	Who Should Read This Book
	Road Map
	Related Documents
	Java Client Features
	Better User Experience
	Object Distribution
	The Best of WebObjects
	Deployment Options
	Rapid Application Development

	When to Choose Java Client
	Java Client Development
	Database Access
	Java Client and Other Multi-Tier Systems

	Java Client Concepts
	Enterprise Objects
	What Is an Enterprise Object?
	Enterprise Object Models

	Java Client Architecture
	Business Logic
	Foundation Framework
	Access Layer
	Essential EOAccess Classes
	EOAdaptor
	EODatabaseContext
	EOModel
	EOUtilities

	Control Layer
	Essential EOControl Classes
	EOEnterpriseObject
	EOEditingContext
	EOFetchSpecification
	EOGlobalID
	EOObjectStoreCoordinator

	Distribution Layer
	Essential EODistribution Classes

	Client Interface Layer
	Display Groups
	Associations

	Application Layer
	Generation Layer
	Model-View-Controller Paradigm
	Deploying and Using Java Client Applications
	Server Requirements

	Basic Tutorial
	Create the Database
	Create an EOModel
	Behind the Steps

	Build the Model
	Behind the Steps

	Completing the Model
	Behind the Steps

	Generate SQL
	Behind the Steps

	Create the Project
	Behind the Steps
	More About The Java Client Class Loader

	The Default Project
	Groups
	Targets
	Client Files
	Server Files

	Add a Launch Argument
	More About Session Time Outs

	Build the Executable
	Run the Client Application
	Prepare to Run the Project
	Client Launch Script
	Behind the Steps

	Java
	JDK appletviewer
	MRJ Application

	Application Startup
	Using the Application
	Behind the Steps

	Customizing the Application
	Behind the Steps

	Inside Assistant
	Entities
	Main Entities
	Enumeration Entities
	“Other” Entities

	Properties
	Task
	Question
	Property Keys

	Widgets
	Windows
	Miscellaneous
	XML

	Add a Relationship
	Add an Entity
	Make the Relationship
	The Enhanced Application

	Where to Go From Here

	Distribution Layer
	Business Logic Partitioning
	Design Recommendations
	Performance

	Remote Method Invocations
	On Business Logic
	On Application Logic
	Distributed Object Store

	Custom Code in Business Logic
	Distribution Layer Objects
	Data Synchronization
	Distribution Channels
	Delegates

	Advanced Tutorial
	Customization Techniques
	Enhance the EOModel
	Add an Entity
	Make a Relationship

	Add Custom Business Logic
	Prepare the Project for Custom Logic
	Generate Source Files
	Behind the Steps

	Prepare Application for Business Logic
	Add Custom Code
	Validation
	Initial Values

	Controller Hierarchy
	Controllers
	Creating the Controller Hierarchy

	Using Rules in the Rule System
	Additional Actions
	Write the Action
	Use Assistant
	Extend a Controller Class
	Additional Exercise

	Debugging

	Nondirect Java Client Development
	Building Custom Interfaces
	Laying Out the User Interface
	Prepare the Nib File

	Integrate the Model
	Add Formatters
	Adding Action Methods
	Create a Master-Detail Interface
	Build and Run
	Programmatic Access to Interface Components

	Cocoa to Swing Translation

	Inside the Rule System
	How It Works
	Rule System Priorities
	D2WComponents
	Rule System Requests
	Internal Rule System Requests
	Generating the Student Form Window

	EOSwitchComponent

	Task: Restricting Access to an Application
	The Documents Menu
	The Default Query Window
	Restricting Tasks Within the Application

	Task: Using the Controller Factory Programmatically
	Selecting Objects in an Entity
	Triggering a Task
	Inserting Objects

	Task: Adding Custom Actions to Controllers
	Subclassing Controller Classes
	Writing Custom Controller Classes

	Task: Adding Custom Menu Items
	About Actions
	New D2WComponent
	Application-Wide Actions
	Menu-Specific Actions
	Controller-Specific Actions

	Task: Customizing With Common Rules
	Confirmation Dialog
	Window Size
	Widget Alignment
	Custom Controllers
	Custom Class for Widgets
	Custom Attributes for Controllers

	Task: Freezing XML User Interfaces
	Freeze XML User Interfaces
	Customize the XML

	Adding Actions to Frozen XML
	Edit XML by Hand
	Using a Custom Controller Class

	Task: Mixing Static and Dynamic User Interfaces
	Preparing the Nib for Freezing
	Integrating the Nib File

	Task: Using Custom Views in Interface Files
	Custom Views
	EOImageView

	Task: Localizing Dynamic Components
	Localizing Property Labels
	Localizing the Standard Strings and Frozen XML Components

	Task: Building Custom List Controllers
	Task: Using and Extending Image Views
	Adding Outlets
	Adding the Widget
	Connecting the Outlet
	Loading the Image

	Task: Using Pop-up Menus In Nib Files
	Task: Building a Login Window
	Building the User Interface
	Adding Logic to Authenticate Users
	Restricting Access

	XML Description of Classes and Actions
	XML Value Types
	Classes With XML Tags and XML Attributes
	EOActions XML Descriptions

	Glossary
	Index

