
 





 

EOControl Framework

 

API Reference



 

2

 

T I T L E P A G E  



 

3

 

C L A S S  

 

EOQualifier.QualifierVariableSubstitu
tionException

 

Inherits from:

 

RuntimeException

 

Package:

 

com.webobjects.eocontrol

 

Class Description

 

Documentation for this class is forthcoming.

 

Method Types

 

All methods

 

EOQualifier.QualifierVariableSubstitutionException



 

4

 

C L A S S  E O Q u a l i fi e r . Q u a l i fi e r Va r i a b l e S u b s t i t u t i o n E x c e p t i o n

 

Constructors

 

EOQualifier.QualifierVariableSubstitutionException

 

public EOQualifier.QualifierVariableSubstitutionException(
EOQualifier 

 

anEOQualifier

 

,
String 

 

aString

 

)



 

5

 

I N T E R F A C E  

 

EOKeyValueUnarchiver.Delegate

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

unarchiverObjectForReference



 

6

 

I N T E R F A C E  E O K e y Va l u e U n a r c h i v e r . D e l e g a t e

 

Instance Methods

 

unarchiverObjectForReference

 

public abstract Object unarchiverObjectForReference(
EOKeyValueUnarchiver 

 

anEOKeyValueUnarchiver

 

,
Object 

 

anObject

 

)



 

7

 

I N T E R F A C E  

 

EOKeyValueArchiving.FinishInitializa
tion

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

finishInitializationWithKeyValueUnarchiver



 

8

 

I N T E R F A C E  E O K e y Va l u e A r c h i v i n g . F i n i s h I n i t i a l i z a t i o n

 

Instance Methods

 

finishInitializationWithKeyValueUnarchiver

 

public abstract void 
finishInitializationWithKeyValueUnarchiver(EOKeyValueUnarchiver 

 

anEOKeyValueUnarchiv
er

 

)



 

9

 

I N T E R F A C E  

 

EOKeyValueArchiving.Awaking

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

awakeFromKeyValueUnarchiver



 

10

 

I N T E R F A C E  E O K e y Va l u e A r c h i v i n g . A w a k i n g

 

Instance Methods

 

awakeFromKeyValueUnarchiver

 

public abstract void 
awakeFromKeyValueUnarchiver(EOKeyValueUnarchiver 

 

anEOKeyValueUnarchiver

 

)



 

11

 

I N T E R F A C E  

 

EOKeyValueArchiving

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

encodeWithKeyValueArchiver

 

Instance Methods

 

encodeWithKeyValueArchiver

 

public abstract void encodeWithKeyValueArchiver(EOKeyValueArchiver 

 

anEOKeyValueArchiver

 

)



 

12

 

I N T E R F A C E  E O K e y Va l u e A r c h i v i n g



 

13

 

I N T E R F A C E  

 

EOKeyValueArchiver.Delegate

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

referenceToEncodeForObject



 

14

 

I N T E R F A C E  E O K e y Va l u e A r c h i v e r . D e l e g a t e

 

Instance Methods

 

referenceToEncodeForObject

 

public abstract Object referenceToEncodeForObject(
EOKeyValueArchiver 

 

anEOKeyValueArchiver

 

,
Object 

 

anObject

 

)



 

15

 

I N T E R F A C E  

 

EOEditingContext.MessageHandler

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

editingContextPresentErrorMessage

editingContextShouldContinueFetching



 

16

 

I N T E R F A C E  E O E d i t i n g C o n t e x t . M e s s a g e H a n d l e r

 

Instance Methods

 

editingContextPresentErrorMessage

 

public abstract void editingContextPresentErrorMessage(
EOEditingContext 

 

anEOEditingContext

 

,
String 

 

aString

 

)

 

editingContextShouldContinueFetching

 

public abstract boolean editingContextShouldContinueFetching(
EOEditingContext 

 

anEOEditingContext

 

,
int 

 

anInt

 

,
int 

 

anInt

 

,
EOObjectStore 

 

anEOObjectStore

 

)



 

17

 

I N T E R F A C E  

 

EOEditingContext.Editor

 

Package:

 

com.webobjects.eocontrol

 

Interface Description

 

Documentation for this interface is forthcoming. 

 

Method Types

 

All methods

 

editingContextWillSaveChanges

editorHasChangesForEditingContext



 

18

 

I N T E R F A C E  E O E d i t i n g C o n t e x t . E d i t o r

 

Instance Methods

 

editingContextWillSaveChanges

 

public abstract void editingContextWillSaveChanges(EOEditingContext 

 

anEOEditingContext

 

)

 

editorHasChangesForEditingContext

 

public abstract boolean 
editorHasChangesForEditingContext(EOEditingContext 

 

anEOEditingContext

 

)



 



 

Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved. 
No part of this publication may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form or 
by any means, mechanical, electronic, 
photocopying, recording, or 
otherwise, without prior written 
permission of Apple Computer, Inc., 
except to make a backup copy of any 
documentation provided on 
CD-ROM. 
The Apple logo is a trademark of 
Apple Computer, Inc. 
Use of the “keyboard” Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal 
and state laws. 
No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual property 
rights associated with the technology 
described in this book. This book is 
intended to assist application 
developers to develop applications 
only for Apple-labeled or 
Apple-licensed computers.
Every effort has been made to ensure 
that the information in this manual is 
accurate. Apple is not responsible for 
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh, 
and WebObjects are trademarks of 
Apple Computer, Inc., registered in 
the United States and other countries.
Enterprise Objects is a trademark of 
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP, 
Enterprise Objects Framework, 
Objective–C, and WEBSCRIPT are 
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are 
trademarks of Adobe Systems 
Incorporated or its subsidiaries and 
may be registered in certain 
jurisdictions.
Helvetica and Palatino are registered 
trademarks of Linotype-Hell AG 
and/or its subsidiaries.
ITC Zapf Dingbats is a registered 
trademark of International Typeface 
Corporation.
ORACLE is a registered trademark of 
Oracle Corporation, Inc.
SYBASE is a registered trademark of 
Sybase, Inc.
UNIX is a registered trademark in the 
United States and other countries, 
licensed exclusively through X/Open 
Company Limited.
Windows NT is a trademark of 
Microsoft Corporation.
All other trademarks mentioned 
belong to their respective owners.
Simultaneously published in the 
United States and Canada.

 

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS MANUAL, ITS 
QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. AS A 
RESULT, THIS MANUAL IS SOLD “AS 
IS,” AND YOU, THE PURCHASER, ARE 
ASSUMING THE ENTIRE RISK AS TO 
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE 
FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES RESULTING FROM ANY 
DEFECT OR INACCURACY IN THIS 
MANUAL, even if advised of the 
possibility of such damages.

THE WARRANTY AND REMEDIES SET 
FORTH ABOVE ARE EXCLUSIVE AND 
IN LIEU OF ALL OTHERS, ORAL OR 
WRITTEN, EXPRESS OR IMPLIED. No 
Apple dealer, agent, or employee is 
authorized to make any modification, 
extension, or addition to this warranty.

Some states do not allow the exclusion or 
limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you specific legal rights, 
and you may also have other rights which 
vary from state to state.



 

20

 

C O P Y R I G H T  P A G E  



 

21

 

F R A M E W O R K  

 

The EOControl Framework

 

Package:

 

com.webobjects.eocontrol

 

Introduction

 

The EOControl framework defines one of the layers of the Enterprise Objects Framework 
architecture—the control layer. It provides an infrastructure for enterprise objects that is 
independent of your application’s user interface and its storage mechanism. The control layer 
dynamically manages the interaction between enterprise objects, the access layer, and the 
interface layer by:

 

■

 

Tracking changes to enterprise objects

 

■

 

Prompting the user interface to change when object values change

 

■

 

Prompting the database to change when changes to objects are committed

 

■

 

Managing undo in the object graph

 

■

 

Managing uniquing (the mechanism by which Enterprise Objects Framework uniquely 
identifies enterprise objects and maintains their mapping to stored data in the database)



 

22

 

F R A M E W O R K  T h e  E O C o n t r o l  F r a m e w o r k

 

The control layer’s major areas of responsibility and the key classes involved are described in the 
following table:

The following sections describe each responsibility in greater detail.

 

Responsibility Classes

 

“Tracking Enterprise Objects 
Changes”

EOObserverCenter

EODelayedObserverQueue

EODelayedObserver

EOObserverProxy

EOObserving (interface)

“Object Storage Abstraction” EOObjectStore

EOCooperatingObjectStore

EOObjectStoreCoordinator

EOGlobalID

EOKeyGlobalID

EOTemporaryGlobalID

Query specification EOFetchSpecification

EOQualifier

EOSortOrdering

Interaction with enterprise 
objects

EOEnterpriseObject (basic enterprise object behavior)

EOClassDescription (validation support)

EOGenericRecord

EOCustomObject

Simple source of objects (for 
display groups)

EODataSource

EODetailDataSource



 

F R A M E W O R K  T h e  E O C o n t r o l  F r a m e w o r k

 

23

 

Tracking Enterprise Objects Changes

 

EOControl provides four classes and an interface that form an efficient, specialized mechanism 
for tracking changes to enterprise objects and for managing the notification of those changes to 
interested observers. EOObserverCenter is the central manager of change notification. It records 
observers and the objects they observe, and it distributes notifications when the observable 
objects change. Observers implement the EOObserving interface, which defines one method, 

 

objectWillChange

 

. Observable objects (generally enterprise objects) invoke their 

 

willChange

 

 method 
before altering their state, which causes all observers to receive an 

 

objectWillChange

 

 message.

The other three classes add to the basic observation mechanism. EODelayedObserverQueue 
alters the basic, synchronous change notification mechanism by offering different priority levels, 
which allows observers to specify the order in which they’re notified of changes. 
EODelayedObserver is an abstract superclass for objects that observe other objects (such as the 
EOInterface layer’s EOAssociation classes). Finally, EOObserverProxy is a subclass of 
EODelayedObserver that forwards change messages to a target object, allowing objects that 
don’t inherit from EODelayedObserver to take advantage of this mechanism. 

The major observer in Enterprise Objects Framework is EOEditingContext, which implements 
its 

 

objectWillChange

 

 method to record a snapshot for the object about to change, register undo 
operations in an NSUndoManager, and record the changes needed to update objects in its 
EOObjectStore. Because some of these actions—such as examining the object’s new state—can 
only be performed after the object has changed, an EOEditingContext sets up a delayed message 
to itself, which it gets at the end of the run loop. Observers that only need to examine an object 
after it has changed can use the delayed observer mechanism, described in the 
EODelayedObserver and EODelayedObserverQueue class specifications.

 

Object Storage Abstraction

 

The control layer provides an infrastructure that’s independent of your application’s storage 
mechanism (typically a database) by defining an API for an “intelligent” repository of objects, 
whether it’s based on external data or whether it manages objects entirely in memory. 
EOObjectStore is an abstract class that defines that basic API, setting up the framework for 
constructing and registering enterprise objects, servicing object faults, and committing changes 
made in an EOEditingContext. Subclasses of EOObjectStore implement the API in terms of their 
specific storage mechanism.



 

24

 

F R A M E W O R K  T h e  E O C o n t r o l  F r a m e w o r k

 

Subclasses of EOObjectStore

 

EOEditingContext is the principal subclass of EOObjectStore and is used for managing objects 
in memory. For stores based on external data, there are several subclasses. 
EOCooperatingObjectStore defines stores that work together to manage data from several 
distinct sources (such as different databases). The access layer’s EODatabaseContext is actually 
a subclass of this class. A group of cooperating stores is managed by another subclass of 
EOObjectStore, EOObjectStoreCoordinator. If you’re defining a subclass of EOObjectStore, it’s 
probably one based on an external data repository, and it should therefore inherit from 
EOCooperatingObjectStore so as to work well with an EOObjectStoreCoordinator—though this 
isn’t required.

EODatabaseContext provides objects from relational databases and is therefore provided by 
Enterprise Objects Framework’s access layer. It is the class that defines the interaction between 
the control and access layers. Database contexts and other object stores based on external data 
are often shared by several editing contexts to conserve database connections.

Object store subclasses cooperate with one another as illustrated in the following:

 

Note:  

 

Note that EOCooperatingObjectStore, EOObjectStoreCoordinator, and 
EODatabaseContext are not provided by Java Client

EODatabase 
Context 

EOObjectStore 
Coordinator 

EODatabase 
Context 

EOEditing 
Context 

EOEditing 
Context 

EOEditing 
Context 



 

F R A M E W O R K  T h e  E O C o n t r o l  F r a m e w o r k

 

25

 

Registering Enterprise Objects

 

An object store identifies its objects in two ways:

 

■

 

By reference for identification within a specific editing context

 

■

 

By global ID for universal identification of the same record among multiple stores.

A global ID is defined by three classes: EOGlobalID, EOKeyGlobalID, and 
EOTemporaryGlobalID. EOGlobalID is an abstract class that forms the basis for uniquing in 
Enterprise Objects Framework. EOKeyGlobalID is a concrete subclass of EOGlobalID whose 
instances represent persistent IDs based on the access layer’s EOModel information: an entity 
and the primary key values for the object being identified. An EOTemporaryGlobalID object is 
used to identify a newly created enterprise object before it’s saved to an external store. For more 
information, see the EOGlobalID class specification.

 

Servicing Faults

 

For external repositories, an object store might delay fetching an object’s data, instead creating 
an empty enterprise object (called a fault). When a fault is accessed (sent a message), it triggers 
its object store to fetch its data and fill the fault with its data. This preserves both the object’s 
reference and its EOGlobalID, while saving the cost of fetching data that might not be used. 
Faults are typically created for the destinations of relationships for objects that are explicitly 
fetched. See the EOFaultHandler class specification for more information.



 

26

 

F R A M E W O R K  T h e  E O C o n t r o l  F r a m e w o r k



 

27

 

C L A S S  

 

EOAggregateEvent

 

Inherits from:

 

EOEvent

 

Package:

 

com.webobjects.eocontrol

 

Class Description

 

An instance of the EOAggregateEvent class is used to aggregate into one event multiple 
EOEvent objects that have the same aggregate signature. This one aggregate event is typically 
used in a WOEventDisplay page in a WebObjects application to display the sum of all of the 
aggregated events’ durations.

 

Instance Methods

 

addEvent

 

public void addEvent(EOEvent 

 

event

 

)

 

Adds 

 

event

 

 to the set of events that the receiver aggregates.



 

28

C L A S S  E O A g g r e g a t e E v e n t

comment

public String comment()

Description forthcoming.

description

public String description()

Description forthcoming.

displayComponentName

public String displayComponentName()

Description forthcoming.

duration

public long duration()

Description forthcoming.

durationWithoutSubevents

public long durationWithoutSubevents()

Description forthcoming.

events

public NSArray events()

Returns the set of events that the receiver aggregates. In the typical scenario, an 
EOAggregateEvent always has at least one event—the event for which the event logging system 
created the aggregate event.



C L A S S  E O A g g r e g a t e E v e n t

29

Instance Methods

addEvent

public void addEvent(EOEvent anEOEvent)

Description forthcoming.

comment

public String comment()

Description forthcoming.

description

public String description()

Description forthcoming.

displayComponentName

public String displayComponentName()

Description forthcoming.

duration

public long duration()

Description forthcoming.



30

C L A S S  E O A g g r e g a t e E v e n t

durationWithoutSubevents

public long durationWithoutSubevents()

Description forthcoming.

events

public NSArray events()

Description forthcoming.

info

public Object info()

Description forthcoming.

signatureOfType

public String signatureOfType(int anInt)

Description forthcoming.

subevents

public NSArray subevents()

Description forthcoming.

title

public String title()

Description forthcoming.



31

C L A S S  

EOAndQualifier

Inherits from: EOQualifier

Implements: NSCoding, EOKeyValueArchiving

Package: com.webobjects.eocontrol

Class Description

EOAndQualifier is a subclass of EOQualifier that contains multiple qualifiers. EOAndQualifier 
implements the EOQualifierEvaluation interface, which defines the method evaluateWithObject for 
in-memory evaluation. When an EOAndQualifier object receives an evaluateWithObject message, 
it evaluates each of its qualifiers until one of them returns false. If one of its qualifiers returns 
false, the EOAndQualifier object returns false immediately. If all of its qualifiers return true, the 
EOAndQualifier object returns true.



32

C L A S S  E O A n d Q u a l i fi e r

Interfaces Implemented

EOQualifierEvaluation 

evaluateWithObject

NSCoding

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Constructors

EOAndQualifier

public EOAndQualifier(NSArray qualifiers)

Creates a new EOAndQualifier. If qualifiers is provided, the new EOAndQualifier is initialized 
with the EOQualifier objects in qualifiers.



C L A S S  E O A n d Q u a l i fi e r

33

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

Instance Methods

addQualifierKeysToSet

public void addQualifierKeysToSet(NSMutableSet aSet)

Description forthcoming.

classForCoder

public Class classForCoder()

Conformance to NSCoding.



encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

evaluateWithObject

public boolean evaluateWithObject(NSKeyValueCodingAdditions anObject)

Returns true if anObject satisfies the qualifier, false otherwise. When an EOAndQualifier object 
receives an evaluateWithObject message, it evaluates each of its qualifiers until one of them returns 
false. If any of its qualifiers returns false, the EOAndQualifier object returns false immediately. 
If all of its qualifiers return true, the object returns true. This method can throw one of several 
possible exceptions if an error occurs. If your application allows users to construct arbitrary 
qualifiers (such as through a user interface), you may want to write code to catch any exceptions 
and properly respond to errors (for example, by displaying a panel saying that the user typed a 
poorly formed qualifier).

qualifiers

public NSArray qualifiers()

Returns the receiver’s qualifiers.

qualifierWithBindings

public EOQualifier qualifierWithBindings(
NSDictionary,
boolean)

Description forthcoming.



C L A S S  E O A n d Q u a l i fi e r

35

toString

public String toString()

Returns a String representation of the receiver.

validateKeysWithRootClassDescription

public void validateKeysWithRootClassDescription(
EOClassDescription classDesc)

Description forthcoming.



36

C L A S S  E O A n d Q u a l i fi e r



37

C L A S S  

EOArrayDataSource

Inherits from: EODataSource

Implements: Serializable

Package: com.webobjects.eocontrol

Class Description

EOArrayDataSource is a concrete subclass of EODataSource that can be used to provide 
enterprise objects to a display group (EODisplayGroup from EOInterface or WODisplayGroup 
from WebObjects) without having to fetch them from the database. In an EOArrayDataSource, 
objects are maintained in an in-memory NSArray.

EOArrayDataSource can fetch, insert, and delete objects—operations it performs directly with 
its array. It can also provide a detail data source.



38

C L A S S  E O A r r a y D a t a S o u r c e

Constructors

EOArrayDataSource

public EOArrayDataSource(
EOClassDescription classDescription,
EOEditingContext editingContext)

Creates and returns an EOArrayDataSource object where classDescription contains information 
about the objects provided by the EOArrayDataSource and editingContext is the 
EOArrayDataSource’s editing context. Either argument may be null.

Instance Methods

classDescriptionForObjects

public EOClassDescription classDescriptionForObjects()

Description forthcoming.

createObject

public Object createObject()

Description forthcoming.

dataSourceQualifiedByKey

public EODataSource dataSourceQualifiedByKey(String aString)

Description forthcoming.



C L A S S  E O A r r a y D a t a S o u r c e

39

deleteObject

public void deleteObject(Object anObject)

Description forthcoming.

editingContext

public EOEditingContext editingContext()

Description forthcoming.

fetchObjects

public NSArray fetchObjects()

Description forthcoming.

insertObject

public void insertObject(Object anObject)

Description forthcoming.

qualifyWithRelationshipKey

public void qualifyWithRelationshipKey(
String aString,
Object anObject)

Description forthcoming.

setArray

public void setArray(foundation.NSArray array)

Sets the receiver’s array of objects to array.



40

C L A S S  E O A r r a y D a t a S o u r c e



41

C L A S S  

EOClassDescription

Inherits from: Object

Implements: Serializable

Package: com.webobjects.eocontrol

Class Description

The EOClassDescription class provides a mechanism for extending classes by giving them access 
to metadata not available in the run-time system. This is achieved as follows:

■ EOClassDescription provides a bridge between enterprise objects and the metadata 
contained in an external source of information, such as an EOModel (EOAccess). It defines a 
standard API for accessing the information in an external source. It also manages the 
registration of EOClassDescription objects in your application.

■ The EOEnterpriseObject interface declares several EOClassDescription-related methods that 
define basic enterprise objects behavior, such as undo and validation. The EOCustomObject 
and EOGenericRecord classes implement the EOEnterpriseObject interface. An enterprise 
object class can either accept the default implementations by subclassing from 
EOCustomObject or it can provide its own implementation by overriding. This is discussed 
in more detail in the section “EOClassDescription.Concepts” (page 57).

Enterprise Objects Framework implements a default subclass of EOClassDescription in 
EOAccess, EOEntityClassDescription. EOEntityClassDescription extends the behavior of 
enterprise objects by deriving information about them (such as NULL constraints and referential 
integrity rules) from an associated EOModel.



42

C L A S S  E O C l a s s D e s c r i p t i o n

For more information on using EOClassDescription, see the sections

■ “How Does It Work?” (page 57)

■ “Using EOClassDescription” (page 58)

■ “EOEntityClassDescription” (page 60)

■ “The EOClassDescription’s Delegate” (page 61)

Constants

EOClassDescription defines the following int constants:

Constant Description

DeleteRuleNullify When the source object is deleted, any references a destination object 
has to the source are removed or “nullified.” For example, suppose a 
department has a to-many relationship to multiple employees. When 
the department is deleted, any back references an employee has to the 
department are set to null.



C L A S S  E O C l a s s D e s c r i p t i o n

43

EOClassDescription also defines string constants for the names of the notifications it posts. For 
more information, see the section “Notifications” (page 54).

Method Types

Managing EOClassDescriptions

invalidateClassDescriptionCache

registerClassDescription

Getting EOClassDescriptions

classDescriptionForClass

classDescriptionForEntityName

DeleteRuleCascade When the source object (department) is deleted, any destination 
objects (employees) are also deleted.

DeleteRuleDeny If the source object (department) has any destination objects 
(employees), a delete operation is refused.

DeleteRuleNoAction When the source object is deleted, its relationship is ignored and no 
action is taken to propagate the deletion to destination objects.

This rule is useful for tuning performance.To perform a deletion, 
Enterprise Objects Framework fires all the faults of the deleted object 
and then fires any to-many faults that point back to the deleted object. 
For example, suppose you have a simple application based on the 
sample Movies database. Deleting a Movie object has the effect of 
firing a to-one fault for the Movie’s studio relationship, and then 
firing the to-many movies fault for that studio. In this scenario, it 
would make sense to set the delete rule DeleteRuleNoAction for Movie’s 
studio relationship. However, you should use this delete rule with 
great caution since it can result in dangling references in your object 
graph.

Constant Description



44

C L A S S  E O C l a s s D e s c r i p t i o n

Creating new object instances

createInstanceWithEditingContext

Propagating delete

propagateDeleteForObject

Returning information from the EOClassDescription

entityName

attributeKeys

classDescriptionForDestinationKey

toManyRelationshipKeys

toOneRelationshipKeys

inverseForRelationshipKey

ownsDestinationObjectsForRelationshipKey

deleteRuleForRelationshipKey

Performing validation

validateObjectForDelete

validateObjectForSave

validateValueForKey

Providing default characteristics for key display

defaultFormatterForKey

defaultFormatterForKeyPath

displayNameForKey

Handling newly inserted and newly fetched objects

awakeObjectFromFetch

awakeObjectFromInsertion

Setting the delegate

classDelegate

setClassDelegate



C L A S S  E O C l a s s D e s c r i p t i o n

45

Getting an object’s description

userPresentableDescriptionForObject

Getting fetch specifications

fetchSpecificationNamed

Static Methods

classDelegate

public static Object classDelegate()

Returns the delegate for the EOClassDescription class (as opposed to EOClassDescription 
instances).

See Also: setClassDelegate

classDescriptionForClass

public static EOClassDescription classDescriptionForClass(Class aClass)

Invoked by the default implementations of the EOEnterpriseObject interface method 
classDescription to return the EOClassDescription for aClass. It’s generally not safe to use this 
method directly—for example, individual EOGenericRecord instances can have different class 
descriptions. If a class description for aClass isn’t found, this method posts an 
ClassDescriptionNeededForClassNotification on behalf of the receiver’s class, allowing an observer to 
register a an EOClassDescription.

classDescriptionForEntityName

public static EOClassDescription classDescriptionForEntityName(String entityName)

Returns the EOClassDescription registered under entityName.



46

C L A S S  E O C l a s s D e s c r i p t i o n

invalidateClassDescriptionCache

public static void invalidateClassDescriptionCache()

Flushes the EOClassDescription cache. Because the EOModel objects in an application supply 
and register EOClassDescriptions on demand, the cache continues to be repopulated as needed 
after you invalidate it. (The EOModel class is defined in EOAccess.)

You’d use this method when a provider of EOClassDescriptions (such as an EOModel) has 
newly become available, or is about to go away. However, you should rarely need to directly 
invoke this method unless you’re using an external source of information other than an 
EOModel.

registerClassDescription

public static void registerClassDescription(
EOClassDescription description,
Class class)

Registers an EOClassDescription object for class in the EOClassDescription cache. You should 
rarely need to directly invoke this method unless you’re using an external source of information 
other than an EOModel (EOAccess).

setClassDelegate

public static void setClassDelegate(Object delegate)

Sets the delegate for the EOClassDescription class (as opposed to EOClassDescription instances) 
to delegate. For more information on the class delegate, see the 
EOClassDescription.ClassDelegate interface specification.

See Also: classDelegate



C L A S S  E O C l a s s D e s c r i p t i o n

47

Instance Methods

attributeKeys

public NSArray attributeKeys()

Overridden by subclasses to return an array of attribute keys (Strings) for objects described by 
the receiver. “Attributes” contain immutable data (such as Numbers and Strings), as opposed to 
“relationships” that are references to other enterprise objects. For example, a class description 
that describes Movie objects could return the attribute keys “title,” “dateReleased,” and 
“rating.”

EOClassDescription’s implementation of this method simply returns.

See Also: entityName, toOneRelationshipKeys, toManyRelationshipKeys

awakeObjectFromFetch

public void awakeObjectFromFetch(
EOEnterpriseObject object,
EOEditingContext anEditingContext)

Overridden by subclasses to perform standard post-fetch initialization for object in 
anEditingContext. EOClassDescription’s implementation of this method does nothing. 

awakeObjectFromInsertion

public void awakeObjectFromInsertion(
EOEnterpriseObject object,
EOEditingContext anEditingContext)

Assigns empty arrays to to-many relationship properties of newly inserted enterprise objects. 
Can be overridden by subclasses to propagate inserts for the newly inserted object in 
anEditingContext. More specifically, if object has a relationship (or relationships) that propagates 
the object’s primary key and if no object yet exists at the destination of that relationship, 
subclasses should create the new object at the destination of the relationship. Use this method to 
put default values in your enterprise object.



48

C L A S S  E O C l a s s D e s c r i p t i o n

classDescriptionForDestinationKey

public EOClassDescription classDescriptionForDestinationKey(String detailKey)

Overridden by subclasses to return the class description for objects at the destination of the 
to-one relationship identified by detailKey. For example, the statement:

movie.classDescriptionForDestinationKey(“studio“)

might return the class description for the Studio class. EOClassDescription’s implementation of 
this method returns null.

clientAttributeKeys

public NSArray clientAttributeKeys()

Returns an array containing the names of the attributes that are bound to the client-side class that 
corresponds to the receiver’s entity.

clientToManyRelationshipKeys

public NSArray clientToManyRelationshipKeys()

Returns an array containing the names of the to-many relationships that are bound to the 
client-side class that corresponds to the receiver’s entity.

clientToOneRelationshipKeys

public NSArray clientToOneRelationshipKeys()

Returns an array containing the names of the to-one relationships that are bound to the 
client-side class that corresponds to the receiver’s entity.



C L A S S  E O C l a s s D e s c r i p t i o n

49

createInstanceWithEditingContext

public EOEnterpriseObject createInstanceWithEditingContext(
EOEditingContext anEditingContext,
EOGlobalID globalID)

Overridden by subclasses to create an object of the appropriate class in anEditingContext with 
globalID. In typical usage, both of the method’s arguments are null. To create the object, the 
subclass should pass anEditingContext, itself, and globalID to the appropriate constructor. 
Implementations of this method should return an autoreleased object. Enterprise Objects 
Framework uses this method to create new instances of objects when fetching existing enterprise 
objects or inserting new ones in an interface layer EODisplayGroup. EOClassDescription’s 
implementation of this method returns null.

defaultFormatterForKey

public java.text.Format defaultFormatterForKey(String key)

Returns the default NSFormatter to use when parsing values for assignment to key. 
EOClassDescription’s implementation returns null. The access layer’s 
EOEntityClassDescription’s implementation returns an NSFormatter based on the Java value 
class specified for key in the associated model file. Code that creates a user interface, like a 
wizard, can use this method to assign formatters to user interface elements.

defaultFormatterForKeyPath

public java.text.Format defaultFormatterForKeyPath(String key)

Similar to defaultFormatterForKey, except this method traverses keyPath and returns the formatter for 
the key at the end of the path (using defaultFormatterForKey).

deleteRuleForRelationshipKey

public int deleteRuleForRelationshipKey(String relationshipKey)

Overridden by subclasses to return a delete rule indicating how to treat the destination of the 
given relationship when the receiving object is deleted. The delete rule is one of:

■ DeleteRuleCascade

■ DeleteRuleDeny



50

C L A S S  E O C l a s s D e s c r i p t i o n

■ DeleteRuleNullify

■ DeleteRuleNoAction

EOClassDescription’s implementation of this method returns the delete rule 
EODeleteRuleNullify. In the common case, the delete rule for an enterprise object is defined in 
its EOModel. (The EOModel class is defined in EOAccess.)

See Also: propagateDeleteWithEditingContext (EOEnterpriseObject)

displayNameForKey

public String displayNameForKey(String key)

Returns the default string to use in the user interface when displaying key. By convention, 
lowercase words are capitalized (for example, “revenue” becomes “Revenue”), and spaces are 
inserted into words with mixed case (for example, “firstName” becomes “First Name”). This 
method is useful if you’re creating a user interface from only a class description, such as with a 
wizard or a Direct To Web application.

entityName

public String entityName()

Overridden by subclasses to return a unique type name for objects of this class. For example, the 
access layer’s EOEntityClassDescription returns its EOEntity’s name. EOClassDescription’s 
implementation of this method returns null.

See Also: attributeKeys, toOneRelationshipKeys, toManyRelationshipKeys

fetchSpecificationNamed

public EOFetchSpecification fetchSpecificationNamed(String name)

Overridden by subclasses to return the fetch specification associated with name. For example, the 
access layer’s EOEntityClassDescription returns the fetch specification in its EOEntity named 
name (if any). EOClassDescription’s implementation returns nil.



C L A S S  E O C l a s s D e s c r i p t i o n

51

finalize

public void finalize() throws Throwable

Description forthcoming.

inverseForRelationshipKey

public String inverseForRelationshipKey(String relationshipKey)

Overridden by subclasses to return the name of the relationship pointing back at the receiver 
from the destination of the relationship specified by relationshipKey. For example, suppose an 
Employee object has a relationship called department to a Department object, and Department 
has a relationship called employees back to Employee. The statement: 

employee.inverseForRelationshipKey(“department”);

returns the string “employees”. 

EOClassDescription’s implementation of this method returns null.

ownsDestinationObjectsForRelationshipKey

public boolean ownsDestinationObjectsForRelationshipKey(String relationshipKey)

Overridden by subclasses to return true or false to indicate whether the objects at the destination 
of the relationship specified by relationshipKey should be deleted if they are removed from the 
relationship (and not transferred to the corresponding relationship of another object). For 
example, an Invoice object owns its line items. If a LineItem object is removed from an Invoice it 
should be deleted since it can’t exist outside of an Invoice. EOClassDescription’s implementation 
of this method returns false.In the common case, this behavior for an enterprise object is defined 
in its EOModel. (The EOModel class is defined in EOAccess.)



52

C L A S S  E O C l a s s D e s c r i p t i o n

propagateDeleteForObject

public void propagateDeleteForObject(
EOEnterpriseObject object,
EOEditingContext anEditingContext)

Propagates a delete operation for object in anEditingContext, according to the delete rules specified 
in the EOModel. This method is invoked whenever a delete operation needs to be propagated, 
as indicated by the delete rule specified for the corresponding EOEntity’s relationship key. (The 
EOModel and EOEntity classes are defined in EOAccess.) For more discussion of delete rules, 
see the EOEnterpriseObject interface specification.

See Also: deleteRuleForRelationshipKey

superClassDescription

public EOClassDescription superClassDescription()

Description forthcoming.

toManyRelationshipKeys

public NSArray toManyRelationshipKeys()

Overridden by subclasses to return the keys for the to-many relationship properties of the 
receiver. To-many relationship properties contain arrays of enterprise objects. 
EOClassDescription’s implementation of this method returns null.

See Also: entityName,  toOneRelationshipKeys,  attributeKeys

toOneRelationshipKeys

public NSArray toOneRelationshipKeys()

Overridden by subclasses to return the keys for the to-one relationship properties of the receiver. 
To-one relationship properties are other enterprise objects. EOClassDescription’s 
implementation of this method returns null.

See Also: entityName, toManyRelationshipKeys, attributeKeys



C L A S S  E O C l a s s D e s c r i p t i o n

53

toString

public String toString()

Returns a String representation of the receiver.

userPresentableDescriptionForObject

public String userPresentableDescriptionForObject(EOEnterpriseObject anObject)

Returns a short (no longer than 60 characters) description of anObject based on its data. This 
method enumerates anObject’s attributeKeys and returns each attribute’s value, separated by 
commas and with the default formatter applied for numbers and dates.

validateObjectForDelete

public void validateObjectForDelete(EOEnterpriseObject object) 
throws NSValidation.ValidationException

Overridden by subclasses to determine whether it’s permissible to delete object. Subclasses 
should complete normally if the delete operation should proceed, or throw an exception 
containing a user-presentable (localized) error message if not. EOClassDescription’s 
implementation of this method completes normally.

validateObjectForSave

public void validateObjectForSave(EOEnterpriseObject object)
throws NSValidation.ValidationException

Overridden by subclasses to determine whether the values being saved for object are acceptable. 
Subclasses should complete normally if the values are acceptable and the save operation should 
proceed, or throw exception containing a user-presentable (localized) error message if not. 
EOClassDescription’s implementation of this method completes normally.



54

C L A S S  E O C l a s s D e s c r i p t i o n

validateValueForKey

public Object validateValueForKey(
Object value,
String key)
throws NSValidation.ValidationException

Overridden by subclasses to validate value. Subclasses should return null if the value is 
acceptable, or throw an exception containing a user-presentable (localized) error message if not. 
Implementations can replace value by returning a new value. EOClassDescription’s 
implementation of this method returns null.

An enterprise object performs custom attribute specific validation with a method of the form 
validateKey. See the EOValidation interface specification for more information.

Notifications

The following notifications are declared by EOClassDescription and posted by enterprise objects 
in your application. 

ClassDescriptionNeededForClassNotification

public static final String ClassDescriptionNeededForClassNotification

One of the EOClassDescription-related methods in the EOEnterpriseObject interface to extend 
the behavior of enterprise objects is classDescription. The first time an enterprise object receives a 
classDescription message (for example, when changes to the object are being saved to the 
database), it posts ClassDescriptionNeededForClassNotification to notify observers that a class 
description is needed. The observer then locates the appropriate class description and registers 
it in the application. By default, EOModel objects are registered as observers for this notification 
and register EOClassDescriptions on demand.

Notification Object Enterprise object class

userInfo Dictionary None



C L A S S  E O C l a s s D e s c r i p t i o n

55

ClassDescriptionNeededForEntityNameNotification

public static final String ClassDescriptionNeededForEntityNameNotification

When classDescriptionForEntityName is invoked for a previously unregistered entity name, this 
notification is broadcast with the requested entity name as the object of the notification. By 
default, EOModel objects are registered as observers for this notification and register 
EOClassDescriptions on demand.

Notification Object Entity name (String)

userInfo Dictionary None    



56

C L A S S  E O C l a s s D e s c r i p t i o n



57

O T H E R  R E F E R E N C E  

EOClassDescription.Concepts

How Does It Work?

As noted above, Enterprise Objects Framework implements a default subclass of 
EOClassDescription in EOAccess, EOEntityClassDescription. In the typical scenario in which an 
enterprise object has a corresponding model file, a particular operation (such as validating a 
value) results in the broadcast of an EOClassDescriptionNeeded... notification (an 
ClassDescriptionNeededForClassNotification or an ClassDescriptionNeededForEntityNameNotification). When 
an EOModel object receives such a notification, it registers the metadata (class description) for 
the EOEntity on which the enterprise object is based. (EOModel and EOEntity are defined in 
EOAccess.)

An enterprise object takes advantage of the metadata registered for it by using the 
EOClassDescription-related methods defined in the EOEnterpriseObject interface (and 
implemented in EOCustomObject and EOGenericRecord). Primary among these methods is 
classDescription, which returns the class description associated with the enterprise object. 
Through this class description the enterprise object has access to all of the information relating 
to its entity in a model file.

In addition to methods that return information based on an enterprise object’s class description, 
the EOClassDescription-related methods the EOEnterpriseObject interface defines include 
methods that are automatically invoked when a particular operation occurs. These include 
validation methods and methods that are invoked whenever an enterprise object is inserted or 
fetched.



58

O T H E R  R E F E R E N C E  E O C l a s s D e s c r i p t i o n . C o n c e p t s

All of this comes together in your running application. When a user tries to perform a particular 
operation on an enterprise object (such as attempting to delete it), the EOEditingContext sends 
these validation messages to your enterprise object, which in turn (by default) forwards them to 
its EOClassDescription. Based on the result, the operation is either accepted or refused. For 
example, referential integrity constraints in your model might state that you can’t delete a 
department object that has employees. If a user attempts to delete a department that has 
employees, an exception is returned and the deletion is refused.

Using EOClassDescription

For the most part, you don’t need to programmatically interact with EOClassDescription. It 
extends the behavior of your enterprise objects transparently. However, there are two cases in 
which you do need to programmatically interact with it: 

■ When you override EOClassDescription-related EOEnterpriseObject methods in an 
enterprise object class. These methods are used to perform validation and to intervene when 
enterprise objects based on EOModels are created and fetched. (The EOModel class is 
defined in EOAccess.) For objects that don’t have EOModels, you can override a different set 
of EOEnterpriseObject methods; this is described in more detail in the section “Working with 
Objects That Don’t Have EOModels” on page 59.

■ When you create a subclass of EOClassDescription

Overriding Methods in an Enterprise Object
As described above, EOEnterpriseObject defines several EOClassDescription-related methods. 
It’s common for enterprise object classes to override the following methods to either perform 
validation, to assign default values (awakeFromInsertion), or to provide additional initialization to 
newly fetched objects (awakeFromFetch):

■ validateForSave

■ validateForDelete

■ validateForInsert

■ validateForUpdate

■ awakeFromInsertion:



O T H E R  R E F E R E N C E  E O C l a s s D e s c r i p t i o n . C o n c e p t s

59

■ awakeFromFetch

■ userPresentableDescription

For example, an enterprise object class can implement a validateForSave method that checks the 
values of salary and jobLevel properties before allowing the values to be saved to the database:

public void validateForSave() throw EOValidation.Exception {
if (salary > 1500 && jobLevel < 2) {

throw new EOValidation.Exception(
“The salary is too high for that position!”);

}
// pass the check on to the EOClassDescription
super.validateForSave();

}

For more discussion of this subject, see the chapter “Designing Enterprise Objects” in the 
Enterprise Objects Framework Developer’s Guide, and the EOEnterpriseObject interface 
specification.

Working with Objects That Don’t Have EOModels
Although an EOModel is the most common source of an EOClassDescription for a class, it isn’t 
the only one. Objects that don’t have an EOModel can implement EOClassDescription methods 
directly as instance methods, and the rest of the Framework will treat them just as it does 
enterprise objects that have this information provided by an external EOModel.

There are a few reasons you might want to do this. First of all, if your object implements the 
methods entityName, attributeKeys, toOneRelationshipKeys, and toOneRelationshipKeys, 
EOEditingContexts can snapshot the object and thereby provide undo for it.

Secondly, you might want to implement EOClassDescription’s validation or referential integrity 
methods to add these features to your classes.

Implementing EOClassDescription methods on a per-class basis in this way is a good alternative 
to creating a subclass of EOClassDescription. 



60

O T H E R  R E F E R E N C E  E O C l a s s D e s c r i p t i o n . C o n c e p t s

Creating a Subclass of EOClassDescription
You create a subclass of EOClassDescription when you want to use an external source of 
information other than an EOModel to extend your objects. Another possible scenario is if 
you’ve added information to an EOModel (such as in its user dictionary) and you want that 
information to become part of your class description—in that case, you’d probably want to 
create a subclass of the access layer’s EOEntityClassDescription.

When you create a subclass of EOClassDescription, you only need to implement the methods 
that have significance for your subclass.

If you’re using an external source of information other than an EOModel, you need to decide 
when to register class descriptions, which you do by invoking the method 
registerClassDescription. You can either register class descriptions in response to a 
EOClassDescriptionNeeded... notification (an ClassDescriptionNeededForClassNotification or an 
ClassDescriptionNeededForEntityNameNotification), or you can register class descriptions at the time 
you initialize your application (in other words, you can register all potential class descriptions 
ahead of time). The default implementation in Enterprise Objects Framework is based on 
responding to the EOClassDescriptionNeeded... notifications. When an EOModel receives one 
of these notifications, it supplies a class description for the specified class or entity name by 
invoking registerClassDescription

EOEntityClassDescription

There are only three methods in EOClassDescription that have meaningful implementations 
(that is, that don’t either return null or simply return without doing anything): 
invalidateClassDescriptionCache, registerClassDescription, and propagateDeleteForObject. The default 
behavior of the rest of the methods in Enterprise Objects Framework comes from the 
implementation in the access layer’s EOClassDescription subclass EOEntityClassDescription. 
For more information, see the EOEntityClassDescription class specification.



The EOClassDescription’s Delegate

You can assign a delegate to the EOClassDescription class. EOClassDescription sends the 
message shouldPropagateDeleteForObject to its delegate when delete propagation is about to take 
place for a particular object. The delegate can either allow or deny the operation for a specified 
relationship key. For more information, see the method description for 
shouldPropagateDeleteForObject.



62

O T H E R  R E F E R E N C E  E O C l a s s D e s c r i p t i o n . C o n c e p t s



63

O T H E R  R E F E R E N C E  

EODataSource.Concepts

Creating a Subclass

The job of an EODataSource is to provide objects that share a set of properties so that they can 
be managed uniformly by its client, such as an EODisplayGroup (defined in EOInterface) or a 
WODisplayGroup (defined in WebObjects). Typically, these objects are all of the same class or 
share a superclass that defines the common properties managed by the client. All that’s needed, 
however, is that every object have the properties expected by the client. For example, if an 
EODataSource provides Member and Guest objects, they can be implemented as subclasses of a 
more general Customer class, or they can be independent classes defining the same properties 
(lastName, firstName, and address, for example). You typically specify the kind of objects an 
EODataSource provides when you initialize it. Subclasses usually define a constructor whose 
arguments describe the objects. The EODatabaseDataSource constructor, for example, uses an 
EOEntity to describe the set of objects. Another subclass might use an EOClassDescription, a 
class or superclass for the objects, or even a collection of existing instances.

A subclass can provide two other pieces of information about its objects, using methods declared 
by EODataSource. First, if your subclass keeps its objects in an EOEditingContext, it should 
override the editingContext method to return that EOEditingContext. It doesn’t have to use an 
EOEditingContext, though, in which case it can just use the default implementation of 
editingContext, which returns null. Keep in mind, however, the amount of work 
EOEditingContexts do for you, especially when you use EODisplayGroups. For example, 
EODisplayGroups depend on change notifications from EOEditingContexts to update changes 
in the objects displayed. If your subclass or its clients depend on change notification, you should 
use an EOEditingContext for object storage and change notification. If you don’t use one, you’ll 
have to implement that functionality yourself. For more information, see these class 
specifications:



64

O T H E R  R E F E R E N C E  E O D a t a S o u r c e . C o n c e p t s

■ EOObjectStore

■ EOEditingContext

■ EODisplayGroup (EOInterface)

■ EODelayedObserverQueue

■ EODelayedObserver

The other piece of information—also optional—is an EOClassDescription for the objects. 
EODataSource uses an EOClassDescription by default when creating new objects. Your subclass 
should override classDescriptionForObjects to return the class description if it uses one and if it’s 
providing objects of a single superclass. Your subclass can either record an EOClassDescription 
itself, or get it from some other object, such as an EOEntity or from the objects it provides 
(through the EOEnterpriseObject method classDescription, which is implemented by 
EOCustomObject and EOGenericRecord). If your EODataSource subclass doesn’t use an 
EOClassDescription at all it, can use the default implementation of classDescriptionForObjects, 
which returns null.

Manipulating Objects
A concrete subclass of EODataSource must at least provide objects by implementing fetchObjects. 
If it supports insertion of new objects, it should implement insertObject, and if it supports deletion 
it should also implement deleteObject. An EODataSource that implements its own store must 
define these methods from scratch. An EODataSource that uses another object as a store can 
forward these messages to that store. For example, an EODatabaseDataSource turns these three 
requests into objectsWithFetchSpecification, insertObject, and deleteObject messages to its 
EOEditingContext.

Implementing Master-Detail Data Sources
An EODataSource subclass can also implement a pair of methods that allow it to be used in 
master-detail configurations. The first method, dataSourceQualifiedByKey, should create and return 
a new data source, set up to provide objects of the destination class for a relationship in a 
master-detail setup. In a master-detail setup, changes to the detail apply to the objects in the 
master; for example, adding an object to the detail also adds it to the relationship of the master 
object. The standard EODetailDataSource class works well for this purpose, so you can simply 
implement dataSourceQualifiedByKey to create and return one of these. Once you have a detail 
EODataSource, you can set the master object by sending the detail a qualifyWithRelationshipKey 
message. The detail then uses the master object in evaluating the relationship and applies inserts 
and deletes to that master object.



Another kind of paired EODataSource setup, called master-peer, is exemplified by the 
EODatabaseDataSource class. In a master-peer setup, the two EODataSources are independent, 
so that changes to one don’t affect the other. Inserting into the “peer,” for example, does not 
update the relationship property of the master object. See that class description for more 
information.



66

O T H E R  R E F E R E N C E  E O D a t a S o u r c e . C o n c e p t s



67

O T H E R  R E F E R E N C E  

EODelayedObserver.Concepts

Creating a Subclass of EODelayedObserver

EODelayedObserver implements the basic objectWillChange method to simply enqueue the 
receiver on an EODelayedObserverQueue. Regardless of how many of these messages the 
receiver gets during the run loop, it receives a single subjectChanged message from the queue—at 
the end of the run loop. In this method the delayed observer can check for changes and take 
whatever action is necessary. Subclasses should record objects they’re interested in and examine 
them in subjectChanged. An EOAssociation.(EOInterface) for example, examines each of the 
EODisplayGroups (EOInterface) it’s bound to in order to find out what has changed. Another 
kind of subclass might record each changed object for later examination by overriding 
objectWillChange, but it must be sure to invoke super’s implementation when doing so.

The rest of EODelayedObserver’s methods have meaningful, if static, default implementations. 
EODelayedObserverQueue sends change notifications according to the priority of each 
enqueued observer. EODelayedObserver’s implementation of the priority method returns 
ObserverPriorityThird. Your subclass can override it to return a higher or lower priority, or to 
have a settable priority. The other method a subclass might override is observerQueue, which 
returns a default EODelayedObserverQueue normally shared by all EODelayedObservers. 
Because sharing a single queue keeps all EODelayedObserver’s synchronized according to their 
priority, you should rarely override this method, doing so only if your subclass is involved in a 
completely independent system.

A final method, discardPendingNotification, need never be overridden by subclasses, but must be 
invoked when a delayed observer is done observing changes. This prevents observers from 
being sent change notifications after they’ve been finalized.



68

O T H E R  R E F E R E N C E  E O D e l a y e d O b s e r v e r . C o n c e p t s



69

O T H E R  R E F E R E N C E  

EODelayedObserverQueue.Concepts

Enqueuing a Delayed Observer

The enqueueObserver method records an EODelayedObserver for later change notification. 
However, enqueuing is usually performed automatically by an EODelayedObserver in its 
objectWillChange method. Hence, it’s typically enough that an object being observed invoke 
willChange as needed. For example, in Java Client and Application Kit applications, an 
EODisplayGroup (EOInterface) does this (among many other things) on receiving an 
ObjectsChangedInEditingContextNotification from its EOEditingContext.

Although you can create individual EODelayedObserverQueues, you typically use the single 
instance provided by the static method defaultObserverQueue. Using separate queues bypasses the 
prioritization mechanism, which may cause problems between the objects using the separate 
queues. If you do use separate queues, your EODelayedObserver subclasses should record a 
designated EODelayedObserverQueue that they always use, and implement observerQueue to 
return that object.

If you need to remove an enqueued observer, you can do so using the dequeueObserver method. 
EODelayedObserver also defines the discardPendingNotification method, which removes the 
receiver from its designated queue.



70

O T H E R  R E F E R E N C E  E O D e l a y e d O b s e r v e r Q u e u e . C o n c e p t s

Change Notification

The actual process of change notification is initiated by the enqueueObserver messages that line 
observers up to receive notifications. Regardless of how many times enqueueObserver is invoked for 
a particular observer, that observer is only put in the queue once. The first observer enqueued 
during the run loop also sets up the EODelayedObserverQueue to receive a message at the end 
of the run loop. EODelayedObserver sets up this delayed invocation in 
NSRunLoop.DefaultRunLoopMode, but you can change the mode or add additional modes in 
which delayed invocation occurs using.

notifyObserversUpToPriority cycles through the queue of EODelayedObservers in priority order, 
from ObserverPriorityFirst to the priority given, sending each observer a subjectChanged message. 
Each time, it returns to the earliest priority (rather than continuing through the queue) in case 
the message resulted in another EODelayedObserver with a earlier priority being enqueued. 
This guarantees an optimal delivery of change notifications.

Observer Proxies

It may not always be possible for a custom observer class to inherit from EODelayedObserver. 
To aid such objects in participating in delayed change notifications, the Framework defines a 
subclass of EODelayedObserver, EOObserverProxy, which implements its subjectChanged method 
to invoke an action method of your custom object. You create an EOObserverProxy, providing 
the “real” observer, the action method to invoke, and the priority at which the EOObserverProxy 
should be enqueued. Then, instead of registering the custom object as an observer of objects, you 
register the proxy (using EOObserverCenter’s addObserver). When the proxy receives an 
objectWillChange message, it enqueues itself for delayed change notification, receives the 
subjectChanged message from the EODelayedObserverQueue, and then sends the action message 
to the “real” observer.



71

O T H E R  R E F E R E N C E  

EOEditingContext.Concepts

Other Classes That Participate in Object Graph 
Management

EOEditingContexts work in conjunction with instances of other classes to manage the object 
graph. Two other classes that play a significant role in object graph management are 
NSUndoManager and EOObserverCenter. NSUndoManager objects provide a general-purpose 
undo stack. As a client of NSUndoManager, EOEditingContext registers undo events for all 
changes made the enterprise objects that it watches.

EOObserverCenter provides a notification mechanism for an observing object to find out when 
another object is about to change its state. “Observable” objects (typically all enterprise objects) 
are responsible for invoking their willChange method prior to altering their state (in a “set” 
method, for instance). Objects (such as instances of EOEditingContext) can add themselves as 
observers to the objects they care about in the EOObserverCenter. They then receive a 
notification (as an objectWillChange message) whenever an observed object invokes willChange.

The objectWillChange method is defined in the EOObserving interface. EOEditingContext 
implements the EOObserving interface. For more information about the object change 
notification mechanism, see the EOObserving interface specification.



72

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

Programmatically Creating an EOEditingContext

Typically, an EOEditingContext is created automatically for your application as a by product of 
some other operation. For example, the following operations result in the creation of network of 
objects that include an EOEditingContext:

■ Running the EOF Wizard in Project Builder to create an OpenStep application with a 
graphical user interface

■ Dragging an entity from EOModeler into a nib file in Interface Builder

■ Accessing the default editing context of a WebObjects WOSession in a WebObjects 
application

Under certain circumstances, however, you may need to create an EOEditingContext 
programmatically—for example, if you’re writing an application that doesn’t include a 
graphical interface. To create an EOEditingContext, do this:

EOEditingContext editingContext = new EOEditingContext();

This creates an editing context that’s connected to the default EOObjectStoreCoordinator. You 
can change this default setting by initializing an EOEditingContext with a particular parent 
EOObjectStore. This is useful if you want your EOEditingContext to use a different 
EOObjectStoreCoordinator than the default, or if your EOEditingContext is nested. For example, 
the following code excerpt initializes childEditingContext with a parent object store 
parentEditingContext:

EOEditingContext parentEditingContext;     // Assume this exists.
EOEditingContext childEditingContext = new EOEditingContext(parentEditingContext);

For more discussion of working programmatically with EOEditingContexts, see the chapter 
“Application Configurations” in the Enterprise Objects Framework Developer’s Guide.

Accessing An Editing Context’s Adaptor Level Objects
You can use an EOEditingContext with any EOObjectStore. However, in a typical configuration, 
you use an EOEditingContext with the objects in the access layer. To access an 
EOEditingContext’s adaptor level objects, you get the editing context’s 



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

73

EOObjectStoreCoordinator from the editing context, you get an EODatabaseContext (EOAccess) 
from the object store coordinator, and you get the adaptor level objects from there. The following 
code demonstrates the process.

EOEditingContext editingContext;  // Assume this exists.
String entityName;                // Assume this exists. 
EOFetchSpecification fspec;
EOObjectStoreCoordinator rootStore;
com.webobjects.eoaccess.EODatabaseContext dbContext;
com.webobjects.eoaccess.EOAdaptor adaptor;
com.webobjects.eoaccess.EOAdaptorContext adContext;

fspec = new EOFetchSpecification(entityName, null, null);
rootStore = (EOObjectStoreCoordinator)editingContext.rootObjectStore();
dbContext = (EODatabaseContext)rootStore.objectStoreForFetchSpecification(fspec);
adaptor = dbContext.database().adaptor();
adContext = dbContext.adaptorContext();

This example first creates a fetch specification, providing just the entity name as an argument. 
Of course, you can use a fetch specification that has non-null values for all of its arguments, but 
only the entity name is used by the EOObjectStore objectStoreForFetchSpecification method. Next, 
the example gets the editing context’s EOObjectStoreCoordinator using the EOEditingContext 
method rootObjectStore. rootObjectStore returns an EOObjectStore and not an 
EOObjectStoreCoordinator, because it’s possible to substitute a custom object store in place of 
an object store coordinator. Similarly, the EOObjectStoreCoordinator method 
objectStoreForFetchSpecification returns an EOCooperatingObjectStore instead of an access layer 
EODatabaseContext because it’s possible to substitute a custom cooperating object store in place 
of a database context. If your code performs any such substitutions, you should alter the above 
code example to match your custom object store’s API. See the class specifications for 
EOObjectStore, EOObjectStoreCoordinator, and EOCooperatingObjectStore for more 
information.

An EOEditingContext’s EOObjectStoreCoordinator can have more than one set of database and 
adaptor level objects. Consequently, to get a database context from the object store coordinator, 
you have to provide information that the coordinator can use to choose the correct database 



74

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

context. The code example above provides an EOFetchSpecification using the method 
objectStoreForFetchSpecification, but you could specify different criteria by using one of the 
following EOObjectStoreCoordinator methods instead:

After you have the EODatabaseContext, you can get the corresponding EOAdaptor and 
EOAdaptorContext as shown above. (EODatabaseContext, EOAdaptor, and EOAdaptorContext 
are all defined in EOAccess.)

Using EOEditingContexts in Different Configurations

The fundamental relationship an EOEditingContext has is to its parent EOObjectStore, which 
creates the object graph the EOEditingContext monitors. EOObjectStore is an abstract class that 
defines a source and sink of objects for an EOEditingContext. The EOObjectStore is responsible 
for constructing and registering objects, servicing object faults, and committing changes made 
in an EOEditingContext.

You can augment the basic configuration of an EOEditingContext and its parent EOObjectStore 
in several different ways. For example, multiple EOEditingContexts can share the same 
EOObjectStore, one EOEditingContext can act as an EOObjectStore for another, and so on. The 
most commonly used scenarios are described in the following sections.

Peer EOEditingContexts
One or more “peer” EOEditingContexts can share a single EOObjectStore (Figure 0-1). Each 
EOEditingContext has its own object graph—so, for example, a given Employee row in a 
database can have separate object instances in each EOEditingContext. Changes to an object in 

Method Description

cooperatingObjectStores Returns an array of the EOObjectStoreCoordinator’s cooperating 
object stores.

objectStoreForGlobalID Returns the cooperating object store for the enterprise object 
identified by the provided EOGlobalID.

objectStoreForObject Returns the cooperating object store for the provided enterprise 
object.



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

75

one EOEditingContext don’t affect the corresponding object in another EOEditingContext until 
all changes are successfully committed to the shared object store. At that time the objects in all 
EOEditingContexts are synchronized with the committed changes. This arrangement is useful 
when an application allows the user to edit multiple independent “documents.”

Figure 0-1 Peer EOEditingContexts

Nested EOEditingContexts
EOEditingContext is a subclass of EOObjectStore, which gives its instances the ability to act as 
EOObjectStores for other EOEditingContexts. In other words, EOEditingContexts can be nested 
(Figure 0-2), thereby allowing a user to make edits to an object graph in one EOEditingContext 
and then discard or commit those changes to another object graph (which, in turn, may commit 
them to an external store). This is useful in a “drill down” style of user interface where changes 
in a nested dialog can be okayed (committed) or canceled (rolled back) to the previous panel.

EOEditing 
Context 

EOEditing 
Context 

object store object store 

EOObjectStore 



76

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

Figure 0-2 Nested EOEditingContexts

When an object is fetched into a nested EOEditingContext, it incorporates any uncommitted 
changes that were made to it in its parent EOEditingContext. For example, suppose that in one 
panel you have a list of employees that allows you to edit salaries, and that the panel includes a 
button to display a nested panel where you can edit detail information. If you edit the salary in 
the parent panel, you see the modified salary in the nested panel, not the old (committed) salary 
from the database. Thus, conceptually, nested EOEditingContexts fetch through their parents.

EOEditingContext overrides several of EOObjectStore’s methods:

■ arrayFaultWithSourceGlobalID

■ faultForGlobalID

■ invalidateAllObjects

■ invalidateObjectsWithGlobalIDs

■ objectsForSourceGlobalID

■ objectsWithFetchSpecification

■ refaultObject

■ saveChangesInEditingContext

EOObjectStore 

object store 

EOEditing 
Context 

EOEditing 
Context 

object store 



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

77

These methods are generally used when an EOEditingContext acts as an EOObjectStore for 
another EOEditingContext. For more information, see the individual method descriptions. For 
information on setting up this configuration for interfaces loaded from nib files, see the method 
description for setDefaultParentObjectStore.

For a description of how to implement nested EOEditingContexts, see the chapter “Application 
Configurations” in the Enterprise Objects Framework Developer’s Guide.

Getting Data from Multiple Sources
An EOEditingContext’s object graph can contain objects from more than one external store 
(Figure 0-3). In this scenario, the object store is an EOObjectStoreCoordinator, which provides 
the abstraction of a single object store by redirecting operations to one or more 
EOCooperatingObjectStores.

Figure 0-3 An EOEditingContext Containing Objects from Multiple Sources

In writing an application, it’s likely that you’ll use combinations of the different scenarios 
described in the above sections. 

EODatabase 
Context 

EODatabase 
Context 

EOObjectStore 
Coordinator 

EOEditing 
Context 

object store 



78

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

Fetching Objects

The most common way to explicitly fetch objects from an external store in an Enterprise Objects 
Framework application is to use EOEditingContext’s objectsWithFetchSpecification method. This 
method takes a fetch specification and returns an array of objects. A fetch specification includes 
the name of the entity for which you want to fetch objects, the qualifier (query) you want to use 
in the fetch, and the sort order in which you want the objects returned (if any).

Managing Changes in Your Application

EOEditingContext provides several methods for managing the changes made to objects in your 
application. You can use these methods to get information about objects that have changed, to 
selectively undo and redo changes, and to discard all changes made to objects before these 
changes are committed to the database. These methods are described in the following sections.

Getting Information About Changed Objects
An EOEditingContext maintains information about three different kinds of changes to objects in 
its object graph: insertions, deletions, and updates. After these changes have been made and 
before they’re committed to the database, you can find out which objects have changes in each 
of these categories by using the insertedObjects, deletedObjects, and updatedObjects methods. Each 
method returns an array containing the objects that have been inserted, deleted, and updated, 
respectively. The hasChanges method returns true or false to indicate whether any of the objects in 
the object graph have been inserted, deleted, or updated.



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

79

Undo and Redo
EOEditingContext includes the undo, redo, and revert methods for managing changes to objects in 
the object graph. undo asks the EOEditingContext’s NSUndoManager to reverse the latest 
changes to objects in the object graph. redo asks the NSUndoManager to reverse the latest undo 
operation. revert clears the undo stack, discards all insertions and deletions, and restores 
updated objects to their last committed (saved) values.

EOEditingContext’s undo support is arbitrarily deep; you can undo an object repeatedly until 
you restore it to the state it was in when it was first created or fetched into its editing context. 
Even after saving, you can undo a change. To support this feature, the NSUndoManager can 
keep a lot of data in memory.

For example, whenever an object is removed from a relationship, the corresponding editing 
context creates a snapshot of the modified, source object. The snapshot, which has a reference to 
the removed object, is referenced by the editing context and by the undo manager. The editing 
context releases the reference to the snapshot when the change is saved, but the undo manager 
doesn’t. It continues holding the snapshot, so it can undo the deletion if requested.

If the typical usage patterns for your application generate a lot of change processing, you might 
want to limit the undo feature to keep its memory usage in check. For example, you could clear 
an undo manager whenever its editing context saves. To do so, simply send the undo manager 
a removeAllActions message (or a removeAllActionsWithTarget message with the editing context 
as the argument). If your application doesn’t need undo at all, you can avoid any undo overhead 
by setting the editing context’s undo manager to null with setUndoManager.

Saving Changes
The saveChanges method commits changes made to objects in the object graph to an external store. 
When you save changes, EOEditingContext’s lists of inserted, updated, and deleted objects are 
flushed.

Upon a successful save operation, the EOEditingContext’s parent EOObjectStore broadcasts an 
ObjectsChangedInStoreNotification. Peers of the saved EOEditingContext receive this 
notification and respond by synchronizing their objects with the committed versions. See also 



80

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

Methods for Managing the Object Graph

EOEditingContext provides methods for managing the enterprise objects in the context’s object 
graph. This section describes these methods, as well as other techniques you can use to manage 
the object graph.

At different points in your application, you might want to do the following:

■ Break reference cycles between enterprise objects

■ Discard changes that have been made to enterprise objects 

■ Make sure that when you refetch objects from the database, any changed database values are 
used instead of the original values

■ Discard the view of objects cached in memory

■ Work with objects across multiple editing contexts

These scenarios are discussed in the following sections.

Breaking Reference Cycles
When you are using Java APIs to access Objective-C Enterprise Objects Framework classes, you 
have to take into consideration the way objects are deallocated on the Objective-C side of the 
Java Bridge. This means that you might still need to break reference cycles to help keep your 
application’s memory usage in check.

You use the EOEditingContext methods refaultObjects and refaultObject to break reference cycles 
between your enterprise objects. For example, suppose you have an Employee object that has a 
to-one relationship to its Department, and the Department object in turn has an array of 
Employee objects. This circular reference constitutes a reference cycle, which you can break 
using the refault... methods. Note that reference cycles are automatically broken if the 
EOEditingContext is finalized. 

You should use the refault... methods with caution, since refaulting an object doesn’t remove the 
object snapshot from the undo stack. Objects that have been newly inserted or deleted should 
not be refaulted. In general, it’s safer to use refaultObjects than it is to use refaultObject since 



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

81

refaultObjects only refaults objects that haven’t been inserted, deleted or updated. The method 
refaultObject doesn’t make this distinction, so you should only use it when you’re sure you know 
what you’re doing.

If you want to reset your EOEditingContext and free all of its objects, do the following:

EOEditingContext editingContext;     // Assume this exists.
EOEditingContext.revert();           // Discard uncommitted changes.
EOEditingContext.refaultObjects();

Note that you must remove any other references to enterprise objects in the EOEditingContext 
for them to actually be freed. For example, to clear a display group that references a list of 
enterprise objects, you’d do something like the following:

displayGroup.setObjectArray(null);

Using the invalidate... methods (described below) also has the effect of breaking reference cycles, 
but these methods have a more far-reaching effect. It’s not recommended that you use them 
simply to break reference cycles.

Discarding Changes to Enterprise Objects
EOEditingContext provides different techniques for discarding changes to enterprise objects. 
These techniques are as follows:

■ Perform a simple undo, which reverses the latest uncommitted changes applied to objects in 
the object graph.

■ Invoke the EOEditingContext method revert, which removes everything from the undo stack, 
discards all insertions and deletions, and restores updated objects to their last committed 
values. If you just want to discard uncommitted changes but you don’t want to sacrifice the 
original values from the database cached in memory, use the revert method.

A different approach is to use the invalidate... methods, described in “Discarding the View of 
Objects Cached in Memory” (page 82).

Refreshing Objects 
One characteristic of an object graph is that it represents an internally consistent view of your 
application’s data. By default, when you refetch data, Enterprise Objects Framework maintains 
the integrity of your object graph by not overwriting your object values with database values 



82

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

that have been changed by someone else. But what if you want your application to see those 
changes? You can accomplish this by using the EOFetchSpecification method 
setRefreshesRefetchedObjects. Invoking setRefreshesRefetchedObjects with the argument true causes 
existing objects to be overwritten with fetched values that have been changed. Alternatively, you 
can use the EODatabaseContext (EOAccess) delegate method 
databaseContextShouldUpdateCurrentSnapshot.

Normally, when you set an EOFetchSpecification to refresh using setRefreshesRefetchedObjects, it 
only refreshes the objects you’re fetching. For example, if you refetch employees, you don’t also 
refetch the employees’ departments. However, if you also set the fetch specification to prefetch 
relationships, the refetch is propagated for all of the fetched objects’ relationships that are 
specified with setPrefetchingRelationshipKeyPaths.

Refreshing refetched objects only affects the objects you specify. If you want to refetch your 
entire object graph, you can use the EOEditingContext invalidate... methods, described below.

Discarding the View of Objects Cached in Memory
As described in the section “Discarding Changes to Enterprise Objects” (page 81), you can use 
undo or revert to selectively discard the changes you’ve made to enterprise objects. Using these 
methods preserves the original cache of values fetched from the database. But what if you want 
to flush your in-memory object view all together—in the most likely scenario, to see changes 
someone else has made to the database? You can invalidate your enterprise objects using the 
invalidateAllObjects method or the invalidateObjectsWithGlobalIDs method. (You can also use the 
method refetch, which simply invokes invalidateAllObjects). Unlike fetching with the 
EOFetchSpecification method setRefreshesRefetchedObjects set to true (described above), the 
invalidate... methods result in the refetch of your entire object graph. 

The effect of the invalidateAllObjects method depends on how you use it. For example, if you send 
invalidateAllObjects to an EOEditingContext, it sends invalidateObjectsWithGlobalIDs to its parent 
object store with all the globalIDs for the objects registered in it. If the EOEditingContext is 
nested, its parent object store is another EOEditingContext; otherwise its parent object store is 
typically an EOObjectStoreCoordinator. Regardless, the message is propagated down the object 
store hierarchy. Once it reaches the EOObjectStoreCoordinator, it’s propagated to the 
EODatabaseContext(s). The EODatabaseContext discards the row snapshots for these globalIDs 
and sends an ObjectsChangedInStoreNotification, thereby refaulting all the enterprise objects in 
the object graph. The next time you access one of these objects, it’s refetched from the database.

Sending invalidateAllObjects to an EOEditingContext affects not only that context’s objects, but 
objects with the same globalIDs in other EOEditingContexts. For example, suppose 
editingContext1 has objectA and objectB, and editingContext2 has objectA, objectB, and objectC. When you 



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

83

send invalidateAllObjects to editingContext1, objectA and objectB are refaulted in both editingContext1 
and editingContext2. However, objectC in editingContext2 is left intact since editingContext1 doesn’t 
have an objectC. 

If you send invalidateAllObjects directly to the EOObjectStoreCoordinator, it sends 
invalidateAllObjects to all of its EODatabaseContexts, which then discard all of the snapshots in 
your application and refault every single enterprise object in all of your EOEditingContexts.

The invalidate... methods are the only way to get rid of a database lock without saving your 
changes.

Working with Objects Across Multiple EOEditingContexts
Any time your application is using more than one EOEditingContext as described in the section 
“Using EOEditingContexts in Different Configurations” (page 74), it’s likely that one editing 
context will need to access objects in another.

On the face of it, it may seem like the most reasonable solution would be for the first editing 
context to just get the desired object in the second editing context and modify the object directly. 
But this would violate the cardinal rule of keeping each editing context’s object graph internally 
consistent. Instead of modifying the second editing context’s object, the first editing context 
needs to get its own copy of the object. It can then modify its copy without affecting the original. 
When it saves changes, they’re propagated to the original object, down the object store 
hierarchy. The method that you use to give one editing context its own copy of an object that’s 
in another editing context is faultForGlobalID.

For example, suppose you have a nested editing context configuration in which a user interface 
displays a list of objects—this maps to the parent editing context. From the list, the user can select 
an object to inspect and modify in a “detail view”—this maps to the child editing context. To give 
the child its own copy of the object to modify in the detail view, you would do something like 
the following:

EOEditingContext childEC, parentEC; // Assume these exist.
Object origObject;                // Assume this exists.
Object newObject;

newObject = childEC.faultForGlobalID(parentEC.globalIDForObject(origObject, childEC));

where origObject is the object the user selected for inspection from the list.



84

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

The child can make changes to newObject without affecting origObject in the parent. Then when 
the child saves changes, origObject is updated accordingly. 

Updates from the Parent EOObjectStore
When changes are successfully saved in an EOObjectStore, it broadcasts an 
ObjectsChangedInStoreNotification. An EOEditingContext receiving this notification synchronizes its 
objects with the committed values by refaulting objects needing updates so the new values are 
retrieved from the EOObjectStore the next time they are needed. However, locally uncommitted 
changes to objects in the EOEditingContext are by default reapplied to the objects, in effect 
preserving the uncommitted changes in the object graph. After the update, the uncommitted 
changes remain uncommitted, but the committed snapshots have been updated to reflect the 
values in the EOObjectStore.

You can control this process by implementing two delegate methods. Before any updates have 
occurred, the delegate method editingContextShouldMergeChangesForObject is invoked for each of the 
objects that has both uncommitted changes and an update in the EOObjectStore. If the delegate 
returns true, the uncommitted changes are merged with the update (the default behavior). If it 
returns false, then the object is invalidated (and refaulted) without preserving any uncommitted 
changes. As a side effect, the delegate might cache information about the object (globalID, 
snapshot, etc.) so that a specialized merging behavior could be implemented. At this point, the 
delegate should not make changes to the object because it is about to be invalidated. However, 
the delegate method editingContextDidMergeChanges is invoked after all of the updates for the 
ObjectsChangedInStoreNotification have been completed, including the merging of all uncommitted 
changes. By default, it does nothing, but this delegate method might perform the customized 
merging behavior based on whatever information was cached in 
editingContextShouldMergeChangesForObject for each of the objects that needed an update. See the 
interface EOEnterpriseObject for the descriptions of the methods changesFromSnapshot and 
reapplyChangesFromDictionary, which might be useful for implementing custom merging behaviors.

General Guidelines for Managing the Object Graph

When you fetch objects into your application, you create a graph of objects instantiated from 
database data. From that point on, your focus should be on working with the object graph—not 
on interacting with your database. This distinction is an important key to working with 
Enterprise Objects Framework.



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

85

You don’t have to worry about the database...
One of the primary benefits of Enterprise Objects Framework is that it insulates you from having 
to worry about database details. Once you’ve defined the mapping between your database and 
your enterprise objects in a model file, you don’t need to think about issues such as foreign key 
propagation, how object deletions are handled, how operations in the object graph are reflected 
in your database tables, and so on. 

This can be illustrated by considering the common scenario in which one object has a 
relationship to another. For example, suppose an Employee has a relationship to a Department. 
In the object graph, this relationship is simply expressed as an Employee object having an 
instance variable for its Department object. The Department object might in turn have an 
instance variable that’s an array of Employee objects. When you manipulate relationships in the 
object graph (for example, by moving an Employee to a different Department), Enterprise 
Objects Framework changes the appropriate relationship references. For example, moving an 
Employee to a different Department changes the Employee’s department instance variable and 
adds the Employee to the new Department’s employee array. When you save your changes to 
the database, Enterprise Objects Framework knows how to translate these object graph 
manipulations into database operations. 

...but you do have to worry about the object graph
As described above, you generally don’t need to concern yourself with how changes to the object 
graph are saved to the database. However, you do need to concern yourself with managing the 
object graph itself. Since the object graph is intended to represent an internally consistent view 
of your application’s data, one of your primary considerations should be maintaining its 
consistency. For example, suppose you have a relationship from Employee to Project, and from 
Employee to Manager. When you create a new Employee object, you must make sure that it has 
relationships to the appropriate Projects and to a Manager. 

Just as you need to maintain the internal consistency of an EOEditingContext’s object graph, you 
should never directly modify the objects in one EOEditingContext from another 
EOEditingContext. If you do so, you risk creating major synchronization problems in your 
application. If you need to access the objects in one EOEditingContext from another, use the 
method faultForGlobalID, as described in “Working with Objects Across Multiple 
EOEditingContexts” (page 83). This gives the receiving EOEditingContext its own copy of the 
object, which it can modify without affecting the original. Then when it saves its changes, the 
original is updated accordingly.



86

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

One of the implications of needing to maintain the consistency of your object graph is that you 
should never copy an enterprise object (though you can snapshot its properties), since this 
would be in conflict with uniquing. Uniquing dictates that an EOEditingContext can have one 
and only one copy of a particular object. For more discussion of uniquing, see the chapter 
“Behind the Scenes” in the Enterprise Objects Framework Developer’s Guide. Similarly, your 
enterprise objects shouldn’t override the equals method. Enterprise Objects Framework relies on 
this method checking implementation which checks instance equality rather than value equality.

Using EOEditingContext to Archive Custom Objects in 
WebObjects Framework 

In WebObjects, applications that use the Enterprise Objects Framework must enlist the help of 
the EOEditingContext to archive enterprise objects. The primary reason is so that the 
EOEditingContext can keep track, from one transaction to the next, of the objects it manages. But 
using an EOEditingContext for archiving also benefits your application in these other ways:

■ During archiving, an EOEditingContext stores only as much information about its enterprise 
objects as is needed to reconstitute the object graph at a later time. For example, unmodified 
objects are stored as simple references (by globalID) that will allow the EOEditingContext to 
recreate the object from the database. Thus, your application can store state very efficiently 
by letting an EOEditingContext archive your enterprise objects.

■ During unarchiving, an EOEditingContext can recreate individual objects in the graph only 
as they are needed by the application. This approach can significantly improve application 
performance.

An enterprise object (like any other object that uses the OpenStep archiving scheme) makes itself 
available for archiving by declaring that it implements the NSCoding interface, by 
implementing the interface’s method encodeWithCoder and by providing a constructor that takes 
an NSCoder object.

The enterprise object simply passes on responsibility for archiving and unarchiving itself to the 
EOEditingContext class, by invoking the encodeObjectWithCoder and initObjectWithCoder static 
methods. The EOEditingContext takes care of the rest. For more discussion of encodeWithCoder and 
the corresponding constructor, see the NSCoding interface specification in the Foundation 
Framework Reference.



O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s

87

EOEditingContext includes two additional methods that affect the archiving and unarchiving of 
objects: setUsesContextRelativeEncoding and usesContextRelativeEncoding. When you use context relative 
encoding, it means that enterprise objects that archive themselves using the EOEditingContext 
encodeObjectWithCoder method archive their current state (that is, all of their class properties) only 
if they (the objects) are marked as inserted or updated in the EOEditingContext. Otherwise, they 
archive just their globalID’s since their state matches what’s stored in the database and can be 
retrieved from there. If usesContextRelativeEncoding returns false, it means the current state will 
always be archived, even if the enterprise object is unmodified. The default is false for AppKit 
applications, and true for WebObjects applications.



88

O T H E R  R E F E R E N C E  E O E d i t i n g C o n t e x t . C o n c e p t s



89

O T H E R  R E F E R E N C E  

EOEventCenter.Concepts

Event Logging Overview

The event logging system defined by EOEventCenter and EOEvent allow the measurement of 
the length of certain instrumented operations. An EOEvent keeps information (such as duration 
and type) about a logged event, and an EOEventCenter manages those events. EOEvent is an 
abstract class whose subclasses are responsible for defining the events they track. For example, 
there are (private) subclasses for Sybase adaptor events, editing context events, WOApplication 
events, and so on. To enable event logging in an application, simply open the WOEventSetup 
page as described in “WOEventSetup page” (page 89) and enable logging for the event classes 
you want to see.

In addition to the framework support, the WOExtensions framework provides components for 
using the feature. WOEventSetup is a page you use to configure event logging, and 
WOEventDisplay is a page the displays event information. Both pages can be accessed in any 
WebObjects 4.5 application with a direct action.

WOEventSetup page

 The page used to set up the logging properties is accessed through a direct action named 
“WOEventSetup”. So for example, you can access the WOEventSetup page for an application 
named “MyApp” with a URL such as the following:



90

O T H E R  R E F E R E N C E  E O E v e n t C e n t e r . C o n c e p t s

http://myhost:aPort/cgi-bin/WebObjects/MyApp.woa/wa/WOEventSetup

On the WOEventSetup page, you can see all families of events that are registered for the 
application. Since the event classes are registered dynamically as the program executes, it is a 
good idea to “warm up” an application before accessing WOEventSetup.

The page lists the registered event classes, their subcategories, and a description of the kinds of 
events that can be logged. For instance, the EOEditingContext event class logs events for the 
saveChanges and objectsWithFetchSpecification methods. Logging for each class can be enabled and 
disabled with the corresponding check box; it isn’t possible to disable individual subcategories 
of an event class.

The logging mechanism is extremely fast and memory efficient. A standard 300MHz G3 can log 
more than 300,000 events per second, so event logging overhead is negligible compared to the 
time required to generate dynamic web pages.

User Defaults

In addition to the configuration you can do on the WOEventSetup page, the event logging 
system uses user defaults to additionally configure event logging behavior. The user defaults 
are:

■ EOEventLoggingEnabled, a boolean value that specifies whether or not to log registered 
event classes by default.

■ EOEventLoggingLimit, an integer value that specifies the number of events to log before 
suspending logging.

WOEventDisplay page

The page that displays collected events, WOEventDisplay, is also accessed through a direct 
action. For example, you can access the WOEventSetup page for an application named 
“MyApp” with a URL such as the following:

http://myhost:aPort/cgi-bin/WebObjects/MyApp.woa/wa/WOEventDisplay



O T H E R  R E F E R E N C E  E O E v e n t C e n t e r . C o n c e p t s

91

On this page, you can view events in four different ways:

■ Raw root events. In this view, all events at the root level (events without an encompassing 
event) are displayed. WOEventDisplay shows each event individually, which means that it’s 
possible for an event to appear multiple times if the thread of execution crossed its point 
more than once.

■ Aggregated root events. This view is similar to the raw root event view, except that multiple 
identical events are aggregated, and their combined time is displayed. In addition, the 
“Calls” column shows how many times an event was executed (in other words, how many 
events contributed to the displayed aggregate event).

■ Events grouped by page and component. In this view, the first level of display shows only page 
names. By expanding a page, you get a list of components in that page. Expanding a 
component shows all the events within that component. This means that even events which 
were collected “deep” within a component are shown immediately below the component 
name. All identical events are aggregated as in the aggregated root event view for easier 
reading. It’s possible to traverse the component event hierarchy by expanding the hyperlinks 
within a component.

Note that since a page is also a component, a page with no dynamic subcomponents seems 
as if it’s nested one level too deep. This is the correct behavior.

■ Events grouped by page only. This display is similar to the grouped by page and component 
view, except the events do not have a by-component subgrouping.

In any of these displays, if an event or event group has subevents, it can be expanded by clicking 
the hyperlink or triangle image.

Each view orders events by duration (in milliseconds) from the longest to the shortest. 
Aggregation induces rounding errors, which are a maximum of 1ms per event. In other words, 
an aggregate event consisting of ten events has at most 1ms deviation from the actual run time; 
however, manually adding ten individual events as displayed in the table might have up to a 
10ms deviation. Therefore, any displayed sum is always more accurate than adding up the 
durations of individual events. Also note that the sub-events of an event branch doesn’t 
necessarily add up to the duration of the branch event—the branch event’s duration might be 
larger. This because the parent event generally consists of more than just calling the methods 
causing the sub-events.



92

O T H E R  R E F E R E N C E  E O E v e n t C e n t e r . C o n c e p t s

Custom Event Logging

To define and log custom events, you create an event class, you define the event’s categories and 
subcategories, you register the event class with the WOEvent center, and you instrument the 
portions of code you want to log. This section describes these steps.

To create a custom event:

1. Create a subclass of EOEvent or an appropriate subclass. 

For example, to log events for a custom adaptor you’ve written, say MyAdaptor, create an 
EOEvent subclass named MyAdaptorEvent. Your subclass doesn’t usually have to override 
any of the inherited methods, but you can customize the default behavior. For more 
information, see the EOEvent class specification.

2. Create a description file for your event and add it to your project’s Resources folder.

An event’s description file defines the event categories and subcategories used in the 
WOEventDisplay page. The file’s contents is a dictionary in plist format. For the 
MyAdaptorEvent class, the file’s name is MyAdaptorEvent.description, and it might look like 
the following:

{
EOEventGroupName = “MyAdaptor Event”;
connect = “Connect”;
openChannel = “Open Channel”;
evaluateExpression = “Evaluate Expression”;
fetchRow = “Fetch Row”;
commitTransaction = “Commit Transaction”;

}

For more information, see the eventTypeDescriptions method description in the EOEvent class 
specification.

3. Register the event class with the EOEventCenter.

Typically you register an event class in the initialize method of the class whose code you’re 
instrumenting—MyAdaptor in this example.

static Class MyAdaptorEventLoggingClass = Nil;



static NSString *connectEvent = @”connect”;
static NSString *openChannelEvent = @”openChannel”;
static NSString *evaluateExpressionEvent = @”evaluateExpression”;
static NSString *fetchRowEvent = @”fetchRow”;
static NSString *commitTransactionEvent = @”commitTransaction”;

+ (void)initialize {
[EOEventCenter registerEventClass:[MyAdaptorEvent class]

classPointer:&MyAdaptorEventLoggingClass];
}

As in this example, you might want to define string constants for the keys in your event’s 
description dictionary.

4. Instrument the methods.

In any method you want to instrument, add the following code, substituting the appropriate 
event key. This code instruments the “connect” event of MyAdaptorEvent.

MyAdaptorEvent *event = nil;

// Setup and start logging
if (MyAdaptorEventLoggingClass) {

event = EONewEventOfClass(MyAdaptorEventLoggingClass, connectEvent);
EOMarkStartOfEvent(event, nil);

}

// Code to be timed goes here.

// Finish logging.
if(event) {

EOMarkEndOfEvent(event);

The second argument to EONewEventOfClass is an event key corresponding with an entry in 
the .description file. The corresponding value is used in the Title column of the 
WOEventDisplay page. If the argument isn’t a key in the description dictionary, 
EONewEventOfClass uses the argument instead.

For more information on the methods used in this example, see the appropriate method 
descriptions in the EOEventCenter class specification.



94

O T H E R  R E F E R E N C E  E O E v e n t C e n t e r . C o n c e p t s



95

O T H E R  R E F E R E N C E  

EOQualifier.Concepts

Creating a Qualifier

As described above, there are several EOQualifier subclasses, each of which represents a 
different semantic. However, in most cases you simply create a qualifier using the EOQualifier 
static method qualifierWithQualifierFormat:, as follows:

EOQualifier qual = Qualifier.qualifierWithQualifierFormat(“lastName = 'Smith'”, null);

The qualifier or group of qualifiers that result from such a statement is based on the contents of 
the format string you provide. For example, giving the format string “lastName = ’Smith’” as an 
argument to qualifierWithQualifierFormat returns an EOKeyValueQualifier object. But you don’t 
normally need to be concerned with this level of detail.

The format strings you use to create a qualifier can be compound logical expressions, such as 
“firstName = ’Fred’ AND age < 20”. When you create a qualifier, compound logical expressions 
are translated into a tree of EOQualifier nodes. Logical operators such as AND and OR become 
EOAndQualifiers and EOOrQualifiers, respectively. These qualifiers conjoin (AND) or disjoin 
(OR) a group of sub-qualifiers. This is illustrated in Figure 0-1, in which the format string “salary 
> 300 AND firstName = ’Angela’ AND manager.name = ’Fred’” has been translated into a tree 
of qualifiers.



96

O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

Figure 0-1 EOQualifier Tree for ’salary > 300 AND firstName = “Angela” AND manager.name = “Fred”’

The qualifierWithQualifierFormat method can’t be used to create an instance of EOSQLQualifier. 
This is because EOSQLQualifier uses a non-structured syntax. It also requires an entity. To create 
an instance of EOSQLQualifier, you’d use a statement such as the following:

EOQualifier myQual = new EOSQLQualifier(myEntity, myFormatString);

Constructing Format Strings

As described above, you typically create a qualifier from a format string by using 
qualifierWithQualifierFormat. This method takes as an argument a format string somewhat like that 
used with the standard C printf() function. The format string can embed strings, numbers, and 
other objects using the conversion specification %@. The second argument to 

EOAndQualifier

EOKeyValueQualifier

key salary
selector >
value 3000

EOKeyValueQualifier

key firstName
selector =
value "Angela"

EOKeyValueQualifier

key manager.name
selector =
value "Fred"



O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

97

qualifierWithQualifierFormat is an array that contains the value or result to substitute for any %@ 
conversion specifications. This allows qualifiers to be built dynamically. The following table lists 
the conversion specifications you can use in a format string and their corresponding data types.

If you use an unrecognized character in a conversion specification (for example, %x), an 
exception is thrown.

For example, suppose you have an Employee entity with the properties empID, firstName, 
lastName, salary, and department (representing a to-one relationship to the employee’s 
department), and a Department entity with properties deptID, and name. You could construct 
simple qualifier strings like the following:

lastName = ’Smith’
salary > 2500
department.name = ’Personnel’

The following examples build qualifiers similar to the qualifier strings described above, but take 
the specific values from already-fetched enterprise objects:

Conversion Specification Expected Value or Result

%@ It can either be an object whose toString (or description) 
method returns a key (in other words, a String), or a value 
object such as an String, Number, java.util.CalendarDate, and 
so on.

%% Results in a literal % character.

Conversion Specification Expected Value or Result

%s A constant C string (const char *).

%d An int.

%f A float or double.

%@ An id argument. The behavior of this conversion specification 
depends on its position. It can either be an object whose 
description method returns a key (in other words, an 
NSString), or a value such as an NSString, NSNumber, 
NSCalendarDate, and so on.

%% Results in a literal % character.



98

O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

Employee anEmployee;    // Assume this exists.
Department aDept;       // Assume this exists.
EOQualifier myQualifier;
NSMutableArray args = new MutableVector();

args.addObject(“lastName”);
args.addObject(anEmployee.lastName());
myQualifier = EOQualifier.qualifierWithQualifierFormat(“%@ = %@”, args);

args.removeAllObjects();
args.addObject(“salary”);
args.addObject(anEmployee.salary());
myQualifier = EOQualifier.qualifierWithQualifierFormat(“%@ > %f”, args);

args.removeAllElements();
args.addElement(“department.name”);
args.addElement(aDept.name());
myQualifier = EOQualifier.qualifierWithQualifierFormat(“%@ = %@”, args);

The enterprise objects here implement methods for directly accessing the given attributes: 
lastName and salary for Employee objects, and name for Department objects. Note that unlike a 
string literal, the %@ conversion specification is never surrounded by single quotes:

// For a literal string value such as Smith, you use single quotes.
EOQualifier.qualifierWithQualifierFormat(“lastName = 'Smith'”, null);

// For the conversion specification %@, you don’t use quotes
args.removeAllElements();
args.addElement(“Jones”);
EOQualifier.qualifierWithQualifierFormat(“lastName = %@”, args);

Typically format strings include only two data types: strings and numbers. Single-quoted or 
double-quoted strings correspond to String objects in the argument array, non-quoted numbers 
correspond to Numbers, and non-quoted strings are keys. You can get around this limitation by 
performing explicit casting.

The operators you can use in constructing qualifiers are  =, ==, !=, <, >, <=, >=, “like”, and 
“caseInsensitiveLike”. The like and caseInsensitiveLike operators can be used with wildcards 
to perform pattern matching, as described in “Using Wildcards and the like Operator” on page 
99.



O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

99

Checking for NULL Values

To construct a qualifier that fetches rows matching NULL, use either of the approaches shown 
in the following example:

NSMutableArray args = new NSMutableArray();

// Approach 1
EOQualifier.qualifierWithQualifierFormat(“bonus = nil”, null);

// Approach 2
args.addElement(NullValue.nullValue());
EOQualifier.qualifierWithQualifierFormat(“bonus = %@”, args);

Using Wildcards and the like Operator

When you use the like or caseInsensitiveLike operator in a qualifier expression, you can use 
the wildcard characters * and ? to perform pattern matching, for example:

@”lastName like ’Jo*’”

matches Jones, Johnson, Jolsen, Josephs, and so on.

The ? character just matches a single character, for example:

@”lastName like ’Jone?’”

matches Jones.

The asterisk character (*) is only interpreted as a wildcard in expressions that use the like or 
caseInsensitiveLike operator. For example, in the following statement, the character * is treated 
as a literal value, not as a wildcard:

“lastName = ’Jo*’”



100

O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

Using Selectors in Qualifier Expressions

The format strings you use to initialize a qualifier can include methods. The parser recognizes 
an unquoted string followed by a colon (such as myMethod:) as a method. For example:

point1 isInside: area
firstName isAnagramOfString: “Computer”

Methods specified in a qualifier are parsed and applied only in memory; that is, they can’t be 
used in to qualify fetches in a database.

Using EOQualifier’s Subclasses

You rarely need to explicitly create an instance of EOAndQualifier, EOOrQualifier, or 
EONotQualifier. However, you may want to create instances of EOKeyValueQualifier and 
EOKeyComparisionQualifier. The primary advantage of this is that it lets you exercise more 
control over how the qualifier is constructed.

If you want to explicitly create a qualifier subclass, you can do it using code such as the following 
excerpt, which uses EOKeyValueQualifier to select all objects whose “isOut” key is equal to 1 
(meaning true). In the excerpt, the qualifier is used to filter an in-memory array.

// Create the qualifier
EOQualifier qual = new EOKeyValueQualifier(“isOut”, EOQualifier.QualifierOperatorEqual,

new Integer(1));

// Filter an array and return it 
return Qualifier.filteredVectorWithQualifier(allRentals(), qual);

filteredArrayWithQualifier is a method that returns an array containing objects from the provided 
array that match the provided qualifier.



O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

101

Creating Subclasses

A custom subclass of EOQualifier must implement the EOQualifierEvaluation interface if they 
are to be evaluated in memory.



102

O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s



O T H E R  R E F E R E N C E  E O Q u a l i fi e r . C o n c e p t s

103





105

C L A S S  

EOCooperatingObjectStore

Inherits from: EOObjectStore

Implements: NSLocking

Package: com.webobjects.eocontrol

Class Description

EOCooperatingObjectStore is a part of the control layer’s object storage abstraction. It is an 
abstract class that defines the basic API for object stores that work together to manage data from 
several distinct data repositories.

 For more general information on the object storage abstraction, see “Object Storage Abstraction” 
(page 23) in the introduction to the EOControl Framework.

The interaction between EOCooperatingObjectStores is managed by another class, 
EOObjectStoreCoordinator. The EOObjectStoreCoordinator communicates changes to its 
EOCooperatingObjectStores by passing them an EOEditingContext. Each cooperating store 
examines the modified objects in the editing context and determines if it’s responsible for 
handling the changes. When a cooperating store has changes that need to be handled by another 
store, it communicates the changes to the other store back through the coordinator.

For relational databases, Enterprise Objects Framework provides a concrete subclass of 
EOCooperatingObjectStore, EODatabaseContext (EOAccess). A database context represents a 
single connection to a database server, fetching and saving objects on behalf of one or more 
editing contexts. However, a database context and an editing context don’t interact with each 
other directly—a coordinator acts as a mediator between them.



106

C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e

Interfaces Implemented

NSLocking

lock

unlock

Method Types

Committing or discarding changes

commitChanges

ownsGlobalID

rollbackChanges

EODatabase 
Context 

EOObjectStore 
Coordinator 

EODatabase 
Context 

EOEditing 
Context 

EOEditing 
Context 

EOEditing 
Context 



C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e

107

prepareForSaveWithCoordinator

recordChangesInEditingContext

recordUpdateForObject

Returning information about objects

valuesForKeys

Determining if the EOCooperatingObjectStore is responsible for an operation

ownsObject

ownsGlobalID

handlesFetchSpecification

Constructors

EOCooperatingObjectStore

public EOCooperatingObjectStore()

Description forthcoming.

Instance Methods

commitChanges

public abstract void commitChanges()

Overridden by subclasses to commit the transaction. Throws an exception if an error occurs; the 
error message indicates the nature of the problem.

See Also: ownsGlobalID, commitChanges, saveChangesInEditingContext (EOObjectStoreCoordinator)



108

C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e

handlesFetchSpecification

public abstract boolean handlesFetchSpecification(EOFetchSpecification fetchSpecification)

Overridden by subclasses to return true if the receiver is responsible for fetching the objects 
described by fetchSpecification. For example, EODatabaseContext (EOAccess) determines 
whether it’s responsible based on fetchSpecification’s entity name.

See Also: ownsGlobalID, ownsObject 

lock

public abstract void lock()

Conformance to NSLocking.

ownsGlobalID

public abstract boolean ownsGlobalID(EOGlobalID globalID)

Overridden by subclasses to return true if the receiver is responsible for fetching and saving the 
object identified by globalID. For example, EODatabaseContext (EOAccess) determines whether 
it’s responsible based on the entity associated with globalID.

See Also: handlesFetchSpecification, ownsObject 

ownsObject

public abstract boolean ownsObject(EOEnterpriseObject anEO)

Overridden by subclasses to return true if the receiver is responsible for fetching and saving anEO. 
For example, EODatabaseContext (EOAccess) determines whether it’s responsible based on the 
entity associated with anEO.

See Also: ownsGlobalID, handlesFetchSpecification 



C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e

109

performChanges

public abstract void performChanges()

Overridden by subclasses to transmit changes to the receiver’s underlying database. Raises an 
exception if an error occurs; the error message indicates the nature of the problem.

See Also: commitChanges, rollbackChanges, saveChangesInEditingContext (EOObjectStoreCoordinator)

prepareForSaveWithCoordinator

public abstract void prepareForSaveWithCoordinator(
EOObjectStoreCoordinator coordinator,
EOEditingContext anEditingContext)

Overridden by subclasses to notify the receiver that a multi-store save operation overseen by 
coordinator is beginning for anEditingContext. For example, the receiver might prepare primary keys 
for newly inserted objects so that they can be handed out to other EOCooperatingObjectStores 
upon request. The receiver should be prepared to receive the messages 
recordChangesInEditingContext and recordUpdateForObject.

After performing these methods, the receiver should be prepared to receive the possible 
messages ownsGlobalID and then commitChanges or rollbackChanges. 

recordChangesInEditingContext

public abstract void recordChangesInEditingContext()

Overridden by subclasses to instruct the receiver to examine the changed objects in the receiver’s 
EOEditingContext, record any operations that need to be performed, and notify the receiver’s 
EOObjectStoreCoordinator of any changes that need to be forwarded to other 
EOCooperatingObjectStores. 

See Also: prepareForSaveWithCoordinator, recordUpdateForObject 



110

C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e

recordUpdateForObject

public abstract void recordUpdateForObject(
EOEnterpriseObject anEO,
NSDictionary changes)

Overridden by subclasses to communicate from one EOCooperatingObjectStore to another 
(through the EOObjectStoreCoordinator) that changes need to be made to an anEO. For example, an 
insert of an object in a relationship property might require changing a foreign key property in 
an object owned by another EOCooperatingObjectStore. This method is primarily used to 
manipulate relationships.

See Also: prepareForSaveWithCoordinator, recordChangesInEditingContext 

rollbackChanges

public abstract void rollbackChanges()

Overridden by subclasses to roll back changes to the underlying database. Raises one of several 
possible exceptions if an error occurs; the error message should indicate the nature of the 
problem.

See Also: commitChanges, ownsGlobalID, saveChangesInEditingContext (EOObjectStoreCoordinator)

unlock

public abstract void unlock()

Conformance to NSLocking.

valuesForKeys

public abstract NSDictionary valuesForKeys(
NSArray keys,
EOEnterpriseObject anEO)

Overridden by subclasses to return values (as identified by keys) held by the receiver that 
augment properties in anEO. For instance, an EODatabaseContext (EOAccess) stores foreign keys 
for the objects it owns (and primary keys for new objects). These foreign and primary keys may 
well not be defined as properties of the object. Other database contexts can find out these keys 



C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e

111

by sending the database context that owns the object a valuesForKeys  message. Note that you use 
this for properties that are not stored in the object, so using key-value coding directly on the 
object won’t always work.



112

C L A S S  E O C o o p e r a t i n g O b j e c t S t o r e



113

C L A S S  

EOCustomObject

Inherits from: Object

Implements: EOEnterpriseObject
EODeferredFaulting (EOEnterpriseObject)
EOKeyValueCodingAdditions (EOEnterpriseObject)
EORelationshipManipulation (EOEnterpriseObject)
EOValidation (EOEnterpriseObject)
EOFaulting (EODeferredFaulting)
EOKeyValueCoding (EOKeyValueCodingAdditions)
NSKeyValueCoding (EOKeyValueCoding)
NSInlineObservable

Package: com.webobjects.eocontrol

Class Description

The EOCustomObject class provides a default implementation of the EOEnterpriseObject 
interface. If you need to create a custom enterprise object class, you can subclass 
EOCustomObject and inherit the Framework’s default implementations. Some of the methods 
are for subclasses to implement or override, but most are meant to be used as defined by 
EOCustomObject. For information on which methods you should implement in your subclass, 
see the EOEnterpriseObject interface specification.

EOCustomObject’s method implementations are described in the specification for the interface 
that declares them. For example, you can find a description of how EOCustomObject 
implements valueForKey (introduced in the EOKeyValueCoding interface) in the specification for 



114

C L A S S  E O C u s t o m O b j e c t

EOKeyValueCoding, and you can find a description of how EOCustomObject implements 
classDescription (introduced in the EOEnterpriseObject interface) in the specification for 
EOEnterpriseObject.

The only methods provided in EOCustomObject that aren’t defined in the EOEnterpriseObject 
interface are the following three static methods:

■ canAccessFieldsDirectly

■ shouldUseStoredAccessors

You would never invoke these methods, rather, they are provided in EOCustomObject to 
demonstrate the additional API your custom enterprise objects can implement. Similarly, 
EOCustomObject’s constructors are not meant to be invoked; you would never create an 
instance of EOCustomObject. Rather, EOCustomObject provides the constructors to 
demonstrate the constructors your custom enterprise objects should implement.



C L A S S  E O C u s t o m O b j e c t

115

Interfaces Implemented

EOKeyValueCoding and NSKeyValueCoding

storedValueForKey

takeStoredValueForKey

takeValueForKey

valueForKey

EOKeyValueCodingAdditions

takeValuesFromDictionary

valuesForKeys

EORelationshipManipulation

addObjectToBothSidesOfRelationshipWithKey

addObjectToPropertyWithKey

removeObjectFromBothSidesOfRelationshipWithKey

removeObjectFromPropertyWithKey

EOValidation

validateForDelete

validateForInsert

validateForSave

validateForUpdate

EOEnterpriseObject

allPropertyKeys

attributeKeys



116

C L A S S  E O C u s t o m O b j e c t

awakeFromFetch

awakeFromInsertion

changesFromSnapshot

classDescription

classDescriptionForDestinationKey

clearProperties

deleteRuleForRelationshipKey

editingContext

entityName

eoDescription

eoShallowDescription

inverseForRelationshipKey

invokeRemoteMethod

isToManyKey:

ownsDestinationObjectsForRelationshipKey

propagateDeleteWithEditingContext

reapplyChangesFromDictionary

snapshot

toManyRelationshipKeys

toOneRelationshipKeys

updateFromSnapshot

userPresentableDescription

willChange

EOFaulting

clearFault



C L A S S  E O C u s t o m O b j e c t

117

faultHandler

isFault

turnIntoFault

willRead

Constructors

EOCustomObject

public EOCustomObject()

Description forthcoming.

public EOCustomObject(
EOEditingContext anEOEditingContext,
EOClassDescription anEOClassDescription,
EOGlobalID anEOGlobalID)

You would never create an instance of EOCustomObject; rather, your subclasses can create 
constructors of this same form. A subclass’s constructors should create a new object and 
initialize it with the arguments provided.

See Also: createInstanceWithEditingContext (EOClassDescription)



Static Methods

canAccessFieldsDirectly

public static boolean canAccessFieldsDirectly()

Subclasses implement this method to return false if the key-value coding methods should never 
access the corresponding instance variable directly on finding no accessor method for a 
property. You don’t have to implement this method if the default behavior of accessing instance 
variables directly is correct for your objects.

See Also: valueForKey, takeValueForKey

shouldUseStoredAccessors

public static boolean shouldUseStoredAccessors()

Subclasses implement this method to return false if the stored value methods (storedValueForKey 
and takeStoredValueForKey) should not use private accessor methods in preference to public 
accessors. Returning false causes the stored value methods to use the same accessor 
method-instance variable search order as the corresponding basic key-value coding methods 
(valueForKey and takeValueForKey). You don’t have to implement this method if the default stored 
value search order is correct for your objects.

usesDeferredFaultCreation

public static boolean usesDeferredFaultCreation()

Conformance to EODeferredFaulting.



C L A S S  E O C u s t o m O b j e c t

119

Instance Methods

addObjectToBothSidesOfRelationshipWithKey

public void addObjectToBothSidesOfRelationshipWithKey(
EORelationshipManipulation anEORelationshipManipulation,
String aString)

Description forthcoming.

addObjectToPropertyWithKey

public void addObjectToPropertyWithKey(
Object anObject,
String aString)

Description forthcoming.

allPropertyKeys

public NSArray allPropertyKeys()

Description forthcoming.

attributeKeys

public NSArray attributeKeys()

Description forthcoming.

awakeFromClientUpdate

public void awakeFromClientUpdate(EOEditingContext anEOEditingContext)

Description forthcoming.



120

C L A S S  E O C u s t o m O b j e c t

awakeFromFetch

public void awakeFromFetch(EOEditingContext anEOEditingContext)

Description forthcoming.

awakeFromInsertion

public void awakeFromInsertion(EOEditingContext anEOEditingContext)

Description forthcoming.

changesFromSnapshot

public NSDictionary changesFromSnapshot(NSDictionary aNSDictionary)

Description forthcoming.

classDescription

public EOClassDescription classDescription()

Description forthcoming.

classDescriptionForDestinationKey

public EOClassDescription classDescriptionForDestinationKey(String aString)

Description forthcoming.

clearFault

public void clearFault()

Description forthcoming.



C L A S S  E O C u s t o m O b j e c t

121

clearProperties

public void clearProperties()

Description forthcoming.

deleteRuleForRelationshipKey

public int deleteRuleForRelationshipKey(String aString)

Description forthcoming.

editingContext

public EOEditingContext editingContext()

Description forthcoming.

entityName

public String entityName()

Description forthcoming.

eoDescription

public String eoDescription()

Description forthcoming.

eoShallowDescription

public String eoShallowDescription()

Description forthcoming.



122

C L A S S  E O C u s t o m O b j e c t

faultHandler

public EOFaultHandler faultHandler()

Description forthcoming.

handleQueryWithUnboundKey

public Object handleQueryWithUnboundKey(String aString)

Description forthcoming.

handleTakeValueForUnboundKey

public void handleTakeValueForUnboundKey(
Object anObject,
String aString)

Description forthcoming.

inverseForRelationshipKey

public String inverseForRelationshipKey(String aString)

Description forthcoming.

invokeRemoteMethod

public Object invokeRemoteMethod(String methodName, Class[] argumentTypes, Object[] arguments)

Description forthcoming.

isFault

public boolean isFault()

Description forthcoming.



C L A S S  E O C u s t o m O b j e c t

123

isToManyKey

public boolean isToManyKey(String aString)

Description forthcoming.

ownsDestinationObjectsForRelationshipKey

public boolean ownsDestinationObjectsForRelationshipKey(String aString)

Description forthcoming.

prepareValuesForClient

public void prepareValuesForClient()

Description forthcoming.

propagateDeleteWithEditingContext

public void propagateDeleteWithEditingContext(EOEditingContext anEOEditingContext)

Description forthcoming.

readResolve

protected Object readResolve()

Description forthcoming.

reapplyChangesFromDictionary

public void reapplyChangesFromDictionary(NSDictionary aNSDictionary)

Description forthcoming.



124

C L A S S  E O C u s t o m O b j e c t

removeObjectFromBothSidesOfRelationshipWithKey

public void removeObjectFromBothSidesOfRelationshipWithKey(
EORelationshipManipulation anEORelationshipManipulation,
String aString)

Description forthcoming.

removeObjectFromPropertyWithKey

public void removeObjectFromPropertyWithKey(
Object anObject,
String aString)

Description forthcoming.

snapshot

public NSDictionary snapshot()

Description forthcoming.

storedValueForKey

public Object storedValueForKey(String aString)

Description forthcoming.

takeStoredValueForKey

public void takeStoredValueForKey(
Object anObject,
String aString)

Description forthcoming.



C L A S S  E O C u s t o m O b j e c t

125

takeValueForKey

public void takeValueForKey(
Object anObject,
String aString)

Description forthcoming.

takeValueForKeyPath

public void takeValueForKeyPath(
Object anObject,
String aString)

Description forthcoming.

takeValuesFromDictionary

public void takeValuesFromDictionary(NSDictionary aNSDictionary)

Description forthcoming.

toManyRelationshipKeys

public NSArray toManyRelationshipKeys()

Description forthcoming.

toOneRelationshipKeys

public NSArray toOneRelationshipKeys()

Description forthcoming.

toString

public String toString()

Description forthcoming.



126

C L A S S  E O C u s t o m O b j e c t

turnIntoFault

public void turnIntoFault(EOFaultHandler anEOFaultHandler)

Description forthcoming.

unableToSetNullForKey

public void unableToSetNullForKey(String aString)

Description forthcoming.

updateFromSnapshot

public void updateFromSnapshot(NSDictionary aNSDictionary)

Description forthcoming.

userPresentableDescription

public String userPresentableDescription()

Description forthcoming.

validateClientUpdate

public void validateClientUpdate()

Description forthcoming.

validateForDelete

public void validateForDelete()

Description forthcoming.



C L A S S  E O C u s t o m O b j e c t

127

validateForInsert

public void validateForInsert()

Description forthcoming.

validateForSave

public void validateForSave()

Description forthcoming.

validateForUpdate

public void validateForUpdate()

Description forthcoming.

validateTakeValueForKeyPath

public Object validateTakeValueForKeyPath(
Object anObject,
String aString)

Description forthcoming.

validateValueForKey

public Object validateValueForKey(
Object anObject,
String aString)

Description forthcoming.

valueForKey

public Object valueForKey(String aString)

Description forthcoming.



128

C L A S S  E O C u s t o m O b j e c t

valueForKeyPath

public Object valueForKeyPath(String aString)

Description forthcoming.

valuesForKeys

public NSDictionary valuesForKeys(NSArray aNSArray)

Description forthcoming.

willChange

public void willChange()

Description forthcoming.

willRead

public void willRead()

Description forthcoming.

willReadRelationship

public Object willReadRelationship(Object object)

Description forthcoming.



129

C L A S S  

EODataSource

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EODataSource is an abstract class that defines a basic API for providing enterprise objects. It 
exists primarily as a simple means for a display group (EODisplayGroup from EOInterface or 
WODisplayGroup from WebObjects) or other higher-level class to access a store of objects. 
EODataSource defines functional implementations of very few methods; concrete subclasses, 
such as EODatabaseDataSource (defined in EOAccess) and EODetailDataSource, define 
working data sources by implementing the others. EODatabaseDataSource, for example, 
provides objects fetched through an EOEditingContext, while EODetailDataSource provides 
objects from a relationship property of a master object. For information on creating your own 
EODataSource subclass, see the section “Creating a Subclass” (page 63).

An EODataSource provides its objects with its fetchObjects method. insertObject and deleteObject 
add and remove individual objects, and createObject instantiates a new object. Other methods 
provide information about the objects, as described below.



130

C L A S S  E O D a t a S o u r c e

Method Types

Accessing the objects

fetchObjects

Inserting and deleting objects

createObject

insertObject

deleteObject

Creating detail data sources

dataSourceQualifiedByKey

qualifyWithRelationshipKey

Accessing the editing context

editingContext

Accessing the class description

classDescriptionForObjects

Constructors

EODataSource

public EODataSource()

Description forthcoming.



C L A S S  E O D a t a S o u r c e

131

Instance Methods

classDescriptionForObjects

public EOClassDescription classDescriptionForObjects()

Implemented by subclasses to return an EOClassDescription that provides information about 
the objects provided by the receiver. EODataSource’s implementation returns null.

createObject

public Object createObject()

Creates a new object, inserts it in the receiver’s collection of objects if appropriate, and returns 
the object. Returns null if the receiver can’t create the object or can’t insert it. You should invoke 
insertObject after this method to actually add the new object to the receiver.

As a convenience, EODataSource’s implementation sends the receiver’s EOClassDescription a 
createInstanceWithEditingContext message to create the object. If this succeeds and the receiver has 
an EOEditingContext, it sends the EOEditingContext an insertObject message to register the new 
object with the EOEditingContext (note that this does not insert the object into the 
EODataSource). Subclasses that don’t use EOClassDescriptions or EOEditingContexts should 
override this method without invoking super’s implementation.

See Also: classDescriptionForObjects, editingContext

dataSourceQualifiedByKey

public abstract EODataSource dataSourceQualifiedByKey(String relationshipKey)

Implemented by subclasses to return a detail EODataSource that provides the destination objects 
of the relationship named by relationshipKey. The detail EODataSource can be qualified using 
qualifyWithRelationshipKey to set a specific master object (or to change the relationship key). 
EODataSource’s implementation merely throws an exception; subclasses shouldn’t invoke 
super’s implementation.



132

C L A S S  E O D a t a S o u r c e

deleteObject

public abstract void deleteObject(Object anObject)

Implemented by subclasses to delete anObject. EODataSource’s implementation merely throws an 
exception; subclasses shouldn’t invoke super’s implementation.

editingContext

public EOEditingContext editingContext()

Implemented by subclasses to return the receiver’s EOEditingContext. EODataSource’s 
implementation returns null.

fetchObjects

public NSArray fetchObjects()

Implemented by subclasses to fetch and return the objects provided by the receiver. 
EODataSource’s implementation returns null.

insertObject

public abstract void insertObject(Object object)

Implemented by subclasses to insert object. EODataSource’s implementation merely throws an 
exception; subclasses shouldn’t invoke super’s implementation.

qualifyWithRelationshipKey

public abstract void qualifyWithRelationshipKey(
String key,
Object sourceObject)

Implemented by subclasses to qualify the receiver, a detail EODataSource, to display destination 
objects for the relationship named key belonging to sourceObject. key should be the same as the key 
specified in the dataSourceQualifiedByKey message that created the receiver. If sourceObject is null, the 
receiver qualifies itself to provide no objects. EODataSource’s implementation merely throws an 
exception; subclasses shouldn’t invoke super’s implementation.



133

C L A S S  

EODelayedObserver

Inherits from: Object

Implements: EOObserving

Package: com.webobjects.eocontrol

Class Description

The EODelayedObserver class is a part of EOControl’s change tracking mechanism. It is an 
abstract superclass that defines the basic functionality for coalescing change notifications for 
multiple objects and postponing notification according to a prioritized queue. For an overview 
of the general change tracking mechanism, see “Tracking Enterprise Objects Changes” (page 23) 
in the introduction to the EOControl Framework.

EODelayedObserver is primarily used to implement the interface layer’s associations and 
wouldn’t ordinarily be used outside the scope of a Java Client or Application Kit application (not 
in a command line tool or WebObjects application, for example). See the 
EODelayedObserverQueue class specification for general information.

You would never create an instance of EODelayedObserver. Instead, you use subclasses—
typically EOAssociations (EOInterface). For information on creating your own 
EODelayedObserver subclass, see “Creating a Subclass of EODelayedObserver” (page 67).



134

C L A S S  E O D e l a y e d O b s e r v e r

Constants

EODelayedObserver defines the following int constants to represent the priority of a notification 
in the queue:

EODelayedObserver also defines the following int constant to identify the number of defined 
priorities (8 by default).

■ ObserverNumberOfPriorities

Interfaces Implemented

EOObserving

objectWillChange

Method Types

Change notification

subjectChanged

objectWillChange

ObserverPriorityImmediate ObserverPriorityFourth

ObserverPriorityFirst ObserverPriorityFifth

ObserverPrioritySecond ObserverPrioritySixth

ObserverPriorityThird ObserverPriorityLater



C L A S S  E O D e l a y e d O b s e r v e r

135

Canceling change notification

discardPendingNotification

Getting the queue and priority

observerQueue

priority

Constructors

EODelayedObserver

public EODelayedObserver()

Description forthcoming.

Instance Methods

discardPendingNotification

public void discardPendingNotification()

Sends a dequeueObserver message to the receiver’s EODelayedObserverQueue to clear it from 
receiving a change notification. A subclass of EODelayedObserver should invoke this method 
when its done observing changes.

See Also: observerQueue



136

C L A S S  E O D e l a y e d O b s e r v e r

objectWillChange

public void objectWillChange(Object anObject)

Implemented by EODelayedObserver to enqueue the receiver on its 
EODelayedObserverQueue. Subclasses shouldn’t need to override this method; if they do, they 
must be sure to invoke super’s implementation.

See Also: observerQueue, enqueueObserver (EODelayedObserverQueue), objectWillChange 
(EOObserving)

observerQueue

public EODelayedObserverQueue observerQueue()

Overridden by subclasses to return the receiver’s designated EODelayedObserverQueue. 
EODelayedObserver’s implementation returns the default EODelayedObserverQueue.

See Also: defaultObserverQueue (EODelayedObserverQueue)

priority

public int priority()

Overridden by subclasses to return the receiver’s change notification priority, one of:

■ ObserverPriorityImmediate

■ ObserverPriorityFirst

■ ObserverPrioritySecond

■ ObserverPriorityThird

■ ObserverPriorityFourth

■ ObserverPriorityFifth

■ ObserverPrioritySixth

■ ObserverPriorityLater

EODelayedObserver’s implementation returns ObserverPriorityThird. See the 
EODelayedObserverQueue class specification for more information on priorities.



subjectChanged

public abstract void subjectChanged()

Implemented by subclasses to examine the receiver’s observed objects and take whatever action 
is necessary. EODelayedObserver’s implementation does nothing.



138

C L A S S  E O D e l a y e d O b s e r v e r



139

C L A S S  

EODelayedObserverQueue

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The EODelayedObserverQueue class is a part of EOControl’s change tracking mechanism. An 
EODelayedObserverQueue collects change notifications for observers of multiple objects and 
notifies them of the changes en masse during the application’s run loop, according to their 
individual priorities. For an overview of the general change tracking mechanism, see “Tracking 
Enterprise Objects Changes” (page 23) in the introduction to the EOControl Framework.

EODelayedObserverQueue’s style of notification is particularly useful for coalescing and 
prioritizing multiple changes; the interface layer’s EOAssociation classes use it extensively to 
update Java Client and Application Kit user interfaces, for example. Instead of being told that an 
object will change, an EODelayedObserver is told that it did change, with a subjectChanged 
message, as described in the EODelayedObserver class specification. Delayed observation is 
thus not useful for comparing old and new states, but only for examining the new state. Delayed 
observation also isn’t ordinarily used outside the scope of a Java Client or Application Kit 
application (in a command line tool or WebObjects application, for example).

The motivation for a delayed change notification mechanism arises mainly from issues in 
observing multiple objects. Any single change to an observed object typically requires the 
observer to update some state or perform an action. When many such objects change, it makes 
no sense to recalculate the new state and perform the action for each object. 
EODelayedObserverQueue allows these changes to be collected into a single notification. It 
further orders change notifications according to priorities, allowing observers to be updated in 



140

C L A S S  E O D e l a y e d O b s e r v e r Q u e u e

sequence according to dependencies among them. For example, an EOMasterDetailAssociation 
(EOInterface), which must update its detail EODisplayGroup (EOInterface) according to the 
selection in the master before any redisplay occurs, has an earlier priority than the default for 
EOAssociations. This prevents regular EOAssociations from redisplaying old values and then 
displaying the new values after the EOMasterDetailAssociation updates.

For more information on using EODelayedObserverQueues, see the sections

■ “Enqueuing a Delayed Observer” (page 69)

■ “Change Notification” (page 70)

■ “Observer Proxies” (page 70)

Constants

EODelayedObserverQueue defines the following int constant:

Method Types

Constructors

EODelayedObserverQueue

Getting the default queue

defaultObserverQueue

Enqueuing and dequeuing observers

enqueueObserver

Constant Description

FlushDelayedObserversRunLoopOrdering Determines when to notify delayed observers 
during end of event processing.



C L A S S  E O D e l a y e d O b s e r v e r Q u e u e

141

dequeueObserver

Sending change notifications

notifyObserversUpToPriority

Constructors

EODelayedObserverQueue

public EODelayedObserverQueue()

Creates and returns a new EODelayedObserverQueue with NSRunLoop.DefaultRunLoopMode 
as its only run loop mode.

Static Methods

defaultObserverQueue

public static EODelayedObserverQueue defaultObserverQueue()

Returns the EODelayedObserverQueue that EODelayedObservers use by default.

Instance Methods

dequeueObserver

public void dequeueObserver(EODelayedObserver anObserver)

Removes anObserver from the receiver.

See Also: enqueueObserver



142

C L A S S  E O D e l a y e d O b s e r v e r Q u e u e

enqueueObserver

public void enqueueObserver(EODelayedObserver anObserver)

Records anObserver to be sent subjectChanged messages. If anObserver’s priority is 
ObserverPriorityImmediate, it’s immediately sent the message and not enqueued. Otherwise 
anObserver is sent the message the next time notifyObserversUpToPriority is invoked with a priority 
later than or equal to anObserver’s. Does nothing if anObserver is already recorded.

The first time this method is invoked during the run loop with an observer whose priority isn’t 
ObserverPriorityImmediate, it registers the receiver to be sent a notifyObserversUpToPriority message at 
the end of the run loop, using FlushDelayedObserversRunLoopOrdering and the receiver’s run loop 
modes. This causes enqueued observers up to a priority of ObserverPrioritySixth to be notified 
automatically during each pass of the run loop.

When anObserver is done observing changes, it should invoke discardPendingNotification to remove 
itself from the queue.

See Also: dequeueObserver, priority (EODelayedObserver), 
discardPendingNotification (EODelayedObserver), 

notifyObserversUpToPriority

public void notifyObserversUpToPriority(int priority)

Sends subjectChanged messages to all of the receiver’s enqueued observers whose priority is 
priority or earlier. This method cycles through the receiver’s enqueued observers in priority 
order, sending each a subjectChanged message and then returning to the very beginning of the 
queue, in case another observer with an earlier priority was enqueued as a result of the message.

EODelayedObserverQueue invokes this method automatically as needed during the run loop, 
with a priority of ObserverPrioritySixth.

See Also: enqueueObserver, priority (EODelayedObserver)



143

C L A S S  

EODetailDataSource

Inherits from: EODataSource

Implements: EOKeyValueArchiving
Serializable

Package: com.webobjects.eocontrol

Class Description

EODetailDataSource defines a data source for use in master-detail configurations, where 
operations in the detail data source are applied directly to properties of a master object. 
EODetailDataSource implements the standard fetchObjects, insertObject, and deleteObject methods 
to operate on a relationship property of its master object, so it works for any concrete subclass of 
EODataSource, including another EODetailDataSource (for a chain of three master and detail 
data sources).

To set up an EODetailDataSource programmatically, you typically create it by sending a 
dataSourceQualifiedByKey message to the master data source, then establish the master object with a 
qualifyWithRelationshipKey message. The latter method records the name of a relationship for a 
particular object to resolve in fetchObjects and to modify in insertObject, and deleteObject. These 
three methods then manipulate the relationship property of the master object to perform the 
operations requested. See the individual method descriptions for more information.



144

C L A S S  E O D e t a i l D a t a S o u r c e

Method Types

Constructors

EODetailDataSource

Qualifying instances

qualifyWithRelationshipKey

Examining instances

masterDataSource

detailKey

masterObject

Accessing the master class description

masterClassDescription

setMasterClassDescription

Accessing the objects

fetchObjects

Inserting and deleting objects

insertObject

deleteObject

Accessing the master editing context

editingContext



C L A S S  E O D e t a i l D a t a S o u r c e

145

Constructors

EODetailDataSource

public EODetailDataSource(
EOClassDescription masterClassDescription,
String relationshipKey)

Creates and returns a new EODetailDataSource object. The new data source’s masterObject is 
associated with masterClassDescription, and relationshipKey is assigned to the new data source’s 
detailKey. The constructor invokes qualifyWithRelationshipKey specifying relationshipKey as the 
relationship key and null as the object.

See Also: masterClassDescription

public EODetailDataSource(
EODataSource masterDataSource,
String relationshipKey)

Creates and returns a new EODetailDataSource object. The new data source provides 
destination objects for the relationship named by relationshipKey from a masterObject in 
masterDataSource.

See Also: masterDataSource

Static Methods

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.



146

C L A S S  E O D e t a i l D a t a S o u r c e

Instance Methods

classDescriptionForObjects

public EOClassDescription classDescriptionForObjects()

Description forthcoming.

dataSourceQualifierByKey

public EODataSource dataSourceQualifiedByKey(String aKey)

Description forthcoming.

deleteObject

public void deleteObject(Object anObject)

Sends a removeObjectFromPropertyWithKey message (defined in the EORelationshipManipulation 
interface) to the master object with anObject and the receiver’s detail key as the arguments. 
Throws an exception if there’s no master object or no detail key set.

detailKey

public String detailKey()

Returns the name of the relationship for which the receiver provides objects, as provided to the 
constructor when the receiver was createdor as set in qualifyWithRelationshipKey. If none has been 
set yet, returns null.

editingContext

public EOEditingContext editingContext()

Returns the EOEditingContext of the master object, or null if there isn’t one.



C L A S S  E O D e t a i l D a t a S o u r c e

147

encodeWithKeyValueUnarchiver

public void encodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

fetchObjects

public NSArray fetchObjects()

Sends valueForKey (defined in the NSKeyValueCoding interface) to the master object with the 
receiver’s detail key as the argument, constructs an array for the returned object or objects, and 
returns it. Returns an empty array if there’s no master object, or returns an array containing the 
master object itself if no detail key is set.

insertObject

public void insertObject(Object anObject)

Sends an addObjectToBothSidesOfRelationshipWithKey message (defined in the 
EORelationshipManipulation interface) to the master object with anObject and the receiver’s 
detail key as the arguments. Throws an exception if there’s no master object or no detail key set.

masterClassDescription

public EOClassDescription masterClassDescription()

Returns the EOClassDescription of the receiver’s master object.

See Also: setMasterClassDescription, EODetailDataSource constructor

masterDataSource

public EODataSource masterDataSource()

Returns the receiver’s master data source.

See Also: detailKey, EODetailDataSource constructor



148

C L A S S  E O D e t a i l D a t a S o u r c e

masterObject

public Object masterObject()

Returns the object in the master data source for which the receiver provides objects. You can 
change this with a qualifyWithRelationshipKey message.

See Also: detailKey

qualifyWithRelationshipKey

public void qualifyWithRelationshipKey(
String relationshipKey,
Object masterObject)

Configures the receiver to provide objects based on the relationship of masterObject named by 
relationshipKey. relationshipKey can be different from the one provided to the constructor, which 
changes the relationship the receiver operates on. If masterObject is null, this method causes the 
receiver to return an empty array when sent a fetchObjects message.

See Also: detailKey

setDetailKey

public void setDetailKey(String detailKey)

Description forthcoming.

setMasterClassDescription

public void setMasterClassDescription(EOClassDescription classDescription)

Assigns classDescription as the EOClassDescription for the receiver’s master object.

See Also: masterClassDescription



149

C L A S S  

EOEditingContext

Inherits from: EOObjectStore

Implements: EOObserving
NSDisposable
NSLocking
EOKeyValueArchiving
Serializable

Package: com.webobjects.eocontrol

Class at a Glance

An EOEditingContext object manages a graph of enterprise objects in an application; this object 
graph represents an internally consistent view of one or more external stores (most often a 
database).

Principal Attributes

■ Set of enterprise objects managed by the EOEditingContext

■ Parent EOObjectStore

■ Set of EOEditor objects messaged by the EOEditingContext

■ A message handler



150

C L A S S  E O E d i t i n g C o n t e x t

Commonly Used Methods

Class Description

An EOEditingContext object represents a single “object space” or document in an application. 
Its primary responsibility is managing a graph of enterprise objects. This object graph is a group 
of related business objects that represent an internally consistent view of one or more external 
stores (usually a database).

All objects fetched from an external store are registered in an editing context along with a global 
identifier (EOGlobalID) that’s used to uniquely identify each object to the external store. The 
editing context is responsible for watching for changes in its objects (using the EOObserving 

objectsWithFetchSpecification Fetches objects from an external store.

insertObject Registers a new object to be inserted into the 
parent EOObjectStore when changes are saved.

deleteObject Registers that an object should be removed from 
the parent EOObjectStore when changes are 
saved.

lockObject Attempts to lock an object in the external store.

hasChanges Returns true if any of the receiver has any pending 
changes to the parent EOObjectStore.

saveChanges Commits changes made in the receiver to the 
parent EOObjectStore.

objectForGlobalID Given a globalID, returns its associated object.

globalIDForObject Given an object, returns its globalID.

setDelegate Sets the receiver’s delegate.

parentObjectStore Returns the receiver’s parent EOObjectStore.

rootObjectStore Returns the receiver’s root EOObjectStore.



C L A S S  E O E d i t i n g C o n t e x t

151

interface) and recording snapshots for object-based undo. A single enterprise object instance 
exists in one and only one editing context, but multiple copies of an object can exist in different 
editing contexts. Thus object uniquing is scoped to a particular editing context.

For more information on EOEditingContext, see the sections:

■ “Other Classes That Participate in Object Graph Management” (page 71)

■ “Programmatically Creating an EOEditingContext” (page 72)

■ “Using EOEditingContexts in Different Configurations” (page 74)

■ “Fetching Objects” (page 78)

■ “Managing Changes in Your Application” (page 78)

■ “Methods for Managing the Object Graph” (page 80)

■ “General Guidelines for Managing the Object Graph” (page 84)

■ “Using EOEditingContext to Archive Custom Objects in WebObjects Framework” (page 86)

Constants

EOEditingContext defines the following int constant to specifies the order in which editing 
contexts perform end of event processing in processRecentChanges.

■ EditingContextFlushChangesRunLoopOrdering

Messages with lower order numbers are processed before messages with higher order numbers. 
In an application built with the Application Kit, the constant order value schedules the editing 
context to perform its processing before the undo stack group is closed or window display is 
updated.

EOEditingContext also defines String constants for the names of the notifications it posts. See the 
section “Notifications” (page 179) for more information.



152

C L A S S  E O E d i t i n g C o n t e x t

Interfaces Implemented

EOObserving

objectWillChange

NSLocking

lock

unlock

Method Types

Constructors

EOEditingContext

Committing or discarding changes

saveChanges

refaultObjects

refetch

invalidateAllObjects

Registering changes

deleteObject

insertObject

insertObjectWithGlobalID

objectWillChange

processRecentChanges



C L A S S  E O E d i t i n g C o n t e x t

153

Checking changes

deletedObjects

insertedObjects

updatedObjects

hasChanges

Object registration and snapshotting

forgetObject

recordObject

committedSnapshotForObject

currentEventSnapshotForObject

objectForGlobalID

globalIDForObject

registeredObjects

Timestamping snapshots

defaultFetchTimestampLag

setDefaultFetchTimestampLag

fetchTimestamp

setFetchTimestamp

Locking objects

lockObject

lockObjectWithGlobalID

isObjectLockedWithGlobalID

setLocksObjectsBeforeFirstModification

locksObjectsBeforeFirstModification

Undoing operations

redo

undo



154

C L A S S  E O E d i t i n g C o n t e x t

setUndoManager

undoManager

Accessing the shared editing context

sharedEditingContext

setSharedEditingContext

Deletion and Validation Behavior

setPropagatesDeletesAtEndOfEvent

propagatesDeletesAtEndOfEvent

setStopsValidationAfterFirstError

stopsValidationAfterFirstError

Returning related object stores

parentObjectStore

rootObjectStore

Managing editors

editors

addEditor

removeEditor

Setting the delegate

setDelegate

delegate

Setting the message handler

setMessageHandler

messageHandler

Invalidating objects

invalidatesObjectsWhenFinalized

Interacting with the server

invokeRemoteMethod



C L A S S  E O E d i t i n g C o n t e x t

155

Locking

lock

unlock

Working with raw rows

faultForRawRow

Unarchiving from nib

defaultParentObjectStore

setDefaultParentObjectStore

setSubstitutionEditingContext

substitutionEditingContext

Nested EOEditingContext support

objectsWithFetchSpecification

objectsForSourceGlobalID

arrayFaultWithSourceGlobalID

faultForGlobalID

saveChangesInEditingContext

refaultObject

invalidateObjectsWithGlobalIDs

initializeObject

Archiving and unarchiving objects

encodeObjectWithCoder

initObjectWithCoder

setUsesContextRelativeEncoding

usesContextRelativeEncoding



156

C L A S S  E O E d i t i n g C o n t e x t

Constructors

EOEditingContext

public EOEditingContext()

Creates a new EOEditingContext object with the default parent object store as its parent object 
store. Shares objects with the default shared editing context (if any) unless you change its shared 
editing context with setSharedEditingContext.

public EOEditingContext(EOObjectStore anObjectStore)

Creates a new EOEditingContext object with anObjectStore as its parent object store. Shares objects 
with the default shared editing context (if any) unless you change its shared editing context with 
setSharedEditingContext. For more discussion of parent object stores, see “Other Classes That 
Participate in Object Graph Management” (page 71).

See Also: parentObjectStore, defaultParentObjectStore

Static Methods

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

defaultFetchTimestampLag

public static long defaultFetchTimestampLag()

Returns the default timestamp lag.



C L A S S  E O E d i t i n g C o n t e x t

157

defaultParentObjectStore

public static EOObjectStore defaultParentObjectStore()

Returns the EOObjectStore that is the default parent object store for new editing contexts. 
Normally this is the EOObjectStoreCoordinator returned from the EOObjectStoreCoordinator 
static method defaultCoordinator.

See Also: setDefaultParentObjectStore

encodeObjectWithCoder

public static void encodeObjectWithCoder(
EOEnterpriseObject object,
NSCoder encoder)

Invoked by an enterprise object object to ask the EOEditingContext to encode object using encoder. 
For more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in 
WebObjects Framework” (page 86).

See Also: initObjectWithCoder, setUsesContextRelativeEncoding, usesContextRelativeEncoding

initObjectWithCoder

public static Object initObjectWithCoder(
EOEnterpriseObject object,
NSCoder decoder)

Invoked by an enterprise object object to ask the EOEditingContext to initialize object from data 
in decoder. For more discussion of this subject, see “Using EOEditingContext to Archive Custom 
Objects in WebObjects Framework” (page 86).

See Also: encodeObjectWithCoder, setUsesContextRelativeEncoding, usesContextRelativeEncoding

setDefaultFetchTimestampLag

public static void setDefaultFetchTimestampLag(long lag)

Sets the default timestamp lag for newly instantiated editing contexts to lag. The default lag is 
3600.0 seconds (one hour).



158

C L A S S  E O E d i t i n g C o n t e x t

When a new editing context is initialized, it is assigned a fetch timestamp equal to the current 
time less the default timestamp lag. Setting the lag to a large number might cause every new 
editing context to accept very old cached data. Setting the lag to too low a value might degrade 
performance due to excessive fetching. A negative lag value is treated as 0.0.

setDefaultParentObjectStore

public static void setDefaultParentObjectStore(EOObjectStore store)

Sets the default parent EOObjectStore to store. You use this method before loading a nib file to 
change the default parent EOObjectStores of the EOEditingContexts in the nib file. The object 
you supply for store can be a different EOObjectStoreCoordinator or another EOEditingContext 
(if you’re using a nested EOEditingContext). After loading a nib with an EOEditingContext 
substituted as the default parent EOObjectStore, you should restore the default behavior by 
setting the default parent EOObjectStore to null. 

A default parent object store is global until it is changed again. For more discussion of this topic, 
see the chapter “Application Configurations” in the Enterprise Objects Framework Developer’s 
Guide.

See Also: defaultParentObjectStore 

setSubstitutionEditingContext

public static void setSubstitutionEditingContext(EOEditingContext anEditingContext)

Assigns anEditingContext as the EOEditingContext to substitute for the one specified in a nib file 
you’re about to load. Using this method causes all of the connections in your nib file to be 
redirected to anEditingContext. This can be useful when you want an interface loaded from a 
second nib file to use an existing EOEditingContext. After loading a nib with a substitution 
EOEditingContext, you should restore the default behavior by setting the substitution 
EOEditingContext to null. 

A substitution editing context is global until it is changed again. For more discussion of this 
topic, see the chapter “Application Configurations” in the Enterprise Objects Framework 
Developer’s Guide.

See Also: substitutionEditingContext



C L A S S  E O E d i t i n g C o n t e x t

159

setUsesContextRelativeEncoding

public static void setUsesContextRelativeEncoding(boolean flag)

Sets according to flag whether encodeObjectWithCoder uses context-relative encoding. For more 
discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in 
WebObjects Framework” (page 86).

See Also: usesContextRelativeEncoding, encodeObjectWithCoder

substitutionEditingContext

public static EOEditingContext substitutionEditingContext()

Returns the substitution EOEditingContext if one has been specified. Otherwise returns null.

See Also: setSubstitutionEditingContext

usesContextRelativeEncoding

public static boolean usesContextRelativeEncoding()

Returns true to indicate that encodeObjectWithCoder uses context relative encoding, false otherwise. 
For more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in 
WebObjects Framework” (page 86).

See Also: setUsesContextRelativeEncoding

Instance Methods

addEditor

public void addEditor(Object editor)

Adds editor to the receiver’s set of EOEditingContext.Editors. For more explanation, see the 
method description for editors and the EOEditingContext.Editors interface specification.

See Also: removeEditor 



160

C L A S S  E O E d i t i n g C o n t e x t

arrayFaultWithSourceGlobalID

public NSArray arrayFaultWithSourceGlobalID(
EOGlobalID globalID,
String name,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore. If the objects associated with the 
EOGlobalID globalID are already registered in the receiver, returns those objects. Otherwise, 
propagates the message down the object store hierarchy, through the parent object store, 
ultimately to the associated EODatabaseContext. The EODatabaseContext creates and returns a 
to-many fault.

When a parent EOEditingContext receives this on behalf of a child EOEditingContext and the 
EOGlobalID globalID identifies a newly inserted object in the parent, the parent returns a copy of 
its object’s relationship array with the member objects translated into objects in the child 
EOEditingContext. 

For more information on faults, see the EOObjectStore, EODatabaseContext (EOAccess), and 
EOFaultHandler class specifications.

See Also: faultForGlobalID

committedSnapshotForObject

public NSDictionary committedSnapshotForObject(EOEnterpriseObject object)

Returns a dictionary containing a snapshot of object that reflects its committed values (that is, its 
values as they were last committed to the database). In other words, this snapshot represents the 
state of the object before any modifications were made to it. The snapshot is updated to the 
newest object state after a save.

See Also: currentEventSnapshotForObject



C L A S S  E O E d i t i n g C o n t e x t

161

currentEventSnapshotForObject

public NSDictionary currentEventSnapshotForObject(EOEnterpriseObject object)

Returns a dictionary containing a snapshot of object that reflects its state as it was at the 
beginning of the current event loop. After the end of the current event—upon invocation of 
processRecentChanges—this snapshot is updated to hold the modified state of the object.

See Also: committedSnapshotForObject, processRecentChanges

delegate

public Object delegate()

Returns the receiver’s delegate. 

See Also: setDelegate 

deleteObject

public void deleteObject(EOEnterpriseObject object)

Specifies that object should be removed from the receiver’s parent EOObjectStore when changes 
are committed. At that time, the object will be removed from the uniquing tables.

See Also: deletedObjects 

deletedObjects

public NSArray deletedObjects()

Returns the objects that have been deleted from the receiver’s object graph.

See Also: updatedObjects, insertedObjects

dispose

public void dispose()

Description forthcoming.



162

C L A S S  E O E d i t i n g C o n t e x t

editingContextDidForgetObjectWithGlobalID

public void editingContextDidForgetObjectWithGlobalID(
EOEditingContext context,
EOGlobalID gid)

See the superclass’s method description of editingContextDidForgetObjectWithGlobalID in the class 
specification for EOObjectStore.

editors

public NSArray editors()

Returns the receiver’s editors. Editors are special-purpose delegate objects that may contain 
uncommitted changes that need to be validated and applied to enterprise objects before the 
EOEditingContext saves changes. For example, EODisplayGroups (EOInterface) register 
themselves as editors with the EOEditingContext of their data sources so that they can save any 
changes in the key text field. For more information, see the EOEditingContext.Editors interface 
specification and the EODisplayGroup class specification.

See Also: addEditor, removeEditor 

encodeWithKeyValueUnarchiver

public Object encodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

faultForGlobalID

public EOEnterpriseObject faultForGlobalID(
EOGlobalID globalID,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore. If the object associated with the 
EOGlobalID globalID is already registered in the receiver (or in the receiver’s sharedEditingContext), 
this method returns that object. Otherwise, the method propagates the message down the object 
store hierarchy, through the parent object store, ultimately to the associated 
EODatabaseContext. The EODatabaseContext creates and returns a to-one fault.



C L A S S  E O E d i t i n g C o n t e x t

163

For example, suppose you want the department object whose deptID has a particular value. The 
most efficient way to get it is to look it up by its globalID using faultForGlobalID.

If the department object is already registered in the EOEditingContext, faultForGlobalID returns 
the object (without going to the database). If not, a fault for this object is created, and the object 
is fetched only when you trigger the fault.

In a nested editing context configuration, when a parent EOEditingContext is sent 
faultForGlobalID on behalf of a child EOEditingContext and globalID identifies a newly inserted 
object in the parent, the parent registers a copy of the object in the child. 

For more discussion of this method, see the section “Working with Objects Across Multiple 
EOEditingContexts” (page 83). For more information on faults, see the EOObjectStore, 
EODatabaseContext (EOAccess), and EOFaultHandler class specifications.

See Also: arrayFaultWithSourceGlobalID

faultForRawRow

public EOEnterpriseObject faultForRawRow(
NSDictionary row,
String entityName)

public EOEnterpriseObject faultForRawRow(
NSDictionary row, 
String entityName, 
EOEditingContext context)

Returns a fault for the raw row row by invoking faultForRawRow with this as the editing context.

fetchTimestamp

public long fetchTimestamp()

Returns the receiver’s fetch timestamp.



164

C L A S S  E O E d i t i n g C o n t e x t

forgetObject

public void forgetObject(EOEnterpriseObject object)

Removes object from the uniquing tables and causes the receiver to remove itself as the object’s 
observer. This method is invoked whenever an object being observed by an EOEditingContext 
is finalized. You should never invoke this method directly. The correct way to remove an object 
from its editing context is to remove every reference to the object by refaulting any object that 
references it (using refaultObjects or invalidateAllObjects). Also note that this method does not have 
the effect of deleting an object—to delete an object you should either use the deleteObject method 
or remove the object from an owning relationship.

globalIDForObject

public EOGlobalID globalIDForObject(EOEnterpriseObject object)

Returns the EOGlobalID for object. All objects fetched from an external store are registered in an 
EOEditingContext along with a global identifier (EOGlobalID) that’s used to uniquely identify 
each object to the external store. If object hasn’t been registered in the EOEditingContext or in its 
sharedEditingContext (that is, if no match is found), this method returns null. Objects are registered 
in an EOEditingContext using the insertObject method, or, when fetching, with recordObject.

See Also: objectForGlobalID 

hasChanges

public boolean hasChanges()

Returns true if any of the objects in the receiver’s object graph have been modified—that is, if any 
objects have been inserted, deleted, or updated. 

initializeObject

public void initializeObject(
EOEnterpriseObject object,
EOGlobalID globalID,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore to build the properties for the object 
identified by globalID. When a parent EOEditingContext receives this on behalf of a child 
EOEditingContext (as represented by anEditingContext), and the globalID identifies an object 



C L A S S  E O E d i t i n g C o n t e x t

165

instantiated in the parent, the parent returns properties extracted from its object and translated 
into the child’s context. This ensures that a nested context “inherits” modified values from its 
parent EOEditingContext. If the receiver doesn’t have object, the request is forwarded the 
receiver’s parent EOObjectStore.

insertedObjects

public NSArray insertedObjects()

Returns the objects that have been inserted into the receiver’s object graph. 

See Also: deletedObjects, updatedObjects 

insertObject

public void insertObject(EOEnterpriseObject object)

Registers (by invoking insertObjectWithGlobalID) object to be inserted in the receiver’s parent 
EOObjectStore the next time changes are saved. In the meantime, object is registered in the 
receiver with a temporary globalID.

See Also: insertedObjects, deletedObjects, insertObjectWithGlobalID

insertObjectWithGlobalID

public void insertObjectWithGlobalID(
EOEnterpriseObject anEOEnterpriseObject,
EOGlobalID anEOGlobalID)

Registers a new object identified by globalID that should be inserted in the parent EOObjectStore 
when changes are saved. Works by invoking recordObject, unless the receiver already contains the 
object. Sends object the message awakeFromInsertion. globalID must respond true to isTemporary. When 
the external store commits object, it re-records it with the appropriate permanent globalID.

It is an error to insert an object that’s already registered in an editing context unless you are 
effectively undeleting the object by reinserting it.

See Also: insertObject



166

C L A S S  E O E d i t i n g C o n t e x t

invalidateAllObjects

public void invalidateAllObjects()

Overrides the implementation inherited from EOObjectStore to discard the values of objects 
cached in memory and refault them, which causes them to be refetched from the external store 
the next time they’re accessed. This method sends the message invalidateObjectsWithGlobalIDs to the 
parent object store with the globalIDs of all of the objects cached in the receiver. When an 
EOEditingContext receives this message, it propagates the message down the object store 
hierarchy. EODatabaseContexts discard their snapshots for invalidated objects and broadcast an 
ObjectsChangedInStoreNotification. (EODatabaseContext is defined in EOAccess.)

The final effect of this method is to refault all objects currently in memory. The next time you 
access one of these objects, it’s refetched from the database.

To flush the entire application’s cache of all values fetched from an external store, use a 
statement such as the following:

EOEditingContext.rootObjectStore().invalidateAllObjects();

If you just want to discard uncommitted changes but you don’t want to sacrifice the values 
cached in memory, use the EOEditingContext revert method, which reverses all changes and 
clears the undo stack. For more discussion of this topic, see the section “Methods for Managing 
the Object Graph” (page 80).

See Also: refetch, invalidateObjectsWithGlobalIDs

invalidateObjectsWithGlobalIDs

public void invalidateObjectsWithGlobalIDs(NSArray globalIDs)

Overrides the implementation inherited from EOObjectStore to signal to the parent object store 
that the cached values for the objects identified by globalIDs should no longer be considered valid 
and that they should be refaulted. Invokes processRecentChanges before refaulting the objects. This 
message is propagated to any underlying object store, resulting in a refetch the next time the 
objects are accessed. Any related (child or peer) object stores are notified that the objects are no 
longer valid. All uncommitted changed to the objects are lost. For more discussion of this topic, 
see the section “Methods for Managing the Object Graph” (page 80).

See Also: invalidateAllObjects



C L A S S  E O E d i t i n g C o n t e x t

167

invalidatesObjectsWhenFinalized

public boolean invalidatesObjectsWhenFinalized()

Returns true to indicate that the receiver clears and “booby-traps” all of the objects registered 
with it when the receiver is finalized, false otherwise. The default is true. In this method, 
“invalidate” has a different meaning than it does in the other invalidate... methods. 

invokeRemoteMethod

public Object invokeRemoteMethod(
EOEditingContext editingContext,
EOGlobalID globalID,
String methodName,
Class[] argumentTypes
Object[] objects)

Executes a remote method on the server. This method has the side effect of saving the changes 
in the receiver to the editing context in the server session. Note that none of the arguments or the 
result should be enterprise objects: use globalIDs to specify enterprise objects. The argumentTypes 
argument holds the types of the remote method’s (specified by methodName) arguments.

isObjectLockedWithGlobalID

public boolean isObjectLockedWithGlobalID(
EOGlobalID globalID,
EOEditingContext anEditingContext)

Returns true if the object identified by globalID in anEditingContext is locked, false otherwise. This 
method works by forwarding the message isObjectLockedWithGlobalID to its parent object store.

See Also: lockObject, lockObjectWithGlobalID,
locksObjectsBeforeFirstModification

lock

public void lock()

Locks access to the receiver to prevent other threads from accessing it. If the receiver has a 
sharedEditingContext, the receiver takes a reader lock on it, as well. You should lock an editing 
context when you are accessing or modifying objects managed by the editing context. The 
thread-safety provided by Enterprise Objects Framework allows one thread to be active in each 



168

C L A S S  E O E d i t i n g C o n t e x t

EOEditingContext and one thread to be active in each EODatabaseContext (EOAccess). In other 
words, multiple threads can access and modify objects concurrently in different editing contexts, 
but only one thread can access the database at a time (to save, fetch, or fault).

This method creates an NSAutoreleasePool that is released when unlock is called. Consequently, 
objects that have been autoreleased within the scope of a lock/unlock pair may not be valid after 
the unlock.

Similarly, when you catch exceptions, you need to retain the local exception before raising 
because the exception is in the lock’s pool.

lockObject

public void lockObject(EOEnterpriseObject anObject)

Attempts to lock anObject in the external store. This method works by invoking 
lockObjectWithGlobalID. Throws an exception if it can’t find the globalID for anObject to pass to 
lockObjectWithGlobalID.

See Also: isObjectLockedWithGlobalID, locksObjectsBeforeFirstModification

lockObjectWithGlobalID

public void lockObjectWithGlobalID(
EOGlobalID globalID,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore to attempt to lock the object 
identified by globalID in anEditingContext in the external store. Throws an exception if unable to 
obtain the lock. This method works by forwarding the message lockObjectWithGlobalID to its parent 
object store.

See Also: lockObject, isObjectLockedWithGlobalID, locksObjectsBeforeFirstModification



C L A S S  E O E d i t i n g C o n t e x t

169

locksObjectsBeforeFirstModification

public boolean locksObjectsBeforeFirstModification()

Returns true if the receiver locks object in the external store (with lockObject) the first time object is 
modified.

See Also: setLocksObjectsBeforeFirstModification, isObjectLockedWithGlobalID, lockObject, 
lockObjectWithGlobalID

messageHandler

public Object messageHandler()

Returns the EOEditingContext’s message handler. A message handler is a special-purpose 
delegate responsible for presenting errors to the user. Typically, an EODisplayGroup 
(EOInterface) registers itself as the message handler for its EOEditingContext. For more 
information, see the EOEditingContext.MessageHandler interface specification.

See Also: setMessageHandler 

objectForGlobalID

public EOEnterpriseObject objectForGlobalID(EOGlobalID globalID)

Returns the object identified by globalID, or null if no object has been registered in the 
EOEditingContext (or its sharedEditingContext) with globalID.

See Also: globalIDForObject 

objectsForSourceGlobalID

public NSArray objectsForSourceGlobalID(
EOGlobalID globalID,
String name,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore to service a to-many fault for a 
relationship named name. When a parent EOEditingContext receives a objectsForSourceGlobalID 
message on behalf of a child editing context and globalID matches an object instantiated in the 
parent, the parent returns a copy of its relationship array and translates its objects into the child 



170

C L A S S  E O E d i t i n g C o n t e x t

editing context. This ensures that a child editing context “inherits” modified values from its 
parent. If the receiving editing context does not have the specified object or if the parent’s 
relationship property is still a fault, the request is fowarded to its parent object store. 

objectsWithFetchSpecification

public NSArray objectsWithFetchSpecification(EOFetchSpecification fetchSpecification)

public NSArray objectsWithFetchSpecification(
EOFetchSpecification fetchSpecification,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore to fetch objects from an external 
store according to the criteria specified by fetchSpecification and return them in an array. If one 
of these objects is already present in memory, this method doesn’t overwrite its values with the 
new values from the database. This method throws an exception if an error occurs; the error 
message indicates the nature of the problem.

When an EOEditingContext receives this message, it forwards the message to its root object 
store. Typically the root object store is an EOObjectStoreCoordinator with underlying 
EODatabaseContexts. In this case, the object store coordinator forwards the request to the 
appropriate database context based on the entity name in fetchSpecification. The database context 
then obtains an EODatabaseChannel and performs the fetch, registering all fetched objects in 
anEditingContext or in the receiver if anEditingContext isn’t provided. (Note that EODatabaseContext 
and EODatabaseChannel are defined in EOAccess.)

objectWillChange

public void objectWillChange(Object object)

This method is automatically invoked when any of the objects registered in the receiver invokes 
its willChange method. This method is EOEditingContext’s implementation of the EOObserving 
protocol.   

parentObjectStore

public EOObjectStore parentObjectStore()

Returns the EOObjectStore from which the receiver fetches and to which it saves objects. 



C L A S S  E O E d i t i n g C o n t e x t

171

processRecentChanges

public void processRecentChanges()

Forces the receiver to process pending insertions, deletions, and updates. Normally, when 
objects are changed, the processing of the changes is deferred until the end of the current event. 
At that point, an EOEditingContext moves objects to the inserted, updated, and deleted lists, 
delete propagation is performed, undos are registered, and ObjectsChangedInStoreNotification and 
ObjectsChangedInEditingContextNotification are posted. You can use this method to explicitly force 
changes to be processed. An EOEditingContext automatically invokes this method on itself 
before performing certain operations such as saveChanges. This method does nothing in Java Client 
applications.

propagatesDeletesAtEndOfEvent

public boolean propagatesDeletesAtEndOfEvent()

Returns true if the receiver propagates deletes at the end of the event in which a change was 
made, false if it propagates deletes only right before saving changes. The default is true.

See Also: setPropagatesDeletesAtEndOfEvent 

recordObject

public void recordObject(
EOEnterpriseObject object,
EOGlobalID globalID)

Makes the receiver aware of an object identified by globalID existing in its parent object store. 
EOObjectStores (such as the access layer’s EODatabaseContext) usually invoke this method for 
each object fetched. When it receives this message, the receiver enters the object in its uniquing 
table and registers itself as an observer of the object.   



172

C L A S S  E O E d i t i n g C o n t e x t

redo

public void redo()

Sends editingContextWillSaveChanges messages to the receiver’s editors, and sends a redo message to 
the receiver’s NSUndoManager, asking it to reverse the latest undo operation applied to objects 
in the object graph. 

See Also: undo

refaultObject

public void refaultObject(
EOEnterpriseObject anObject,
EOGlobalID globalID,
EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore to refault the enterprise object 
object identified by globalID in anEditingContext. This method should be used with caution since 
refaulting an object does not remove the object snapshot from the undo stack. Objects that have 
been newly inserted or deleted should not be refaulted. 

The main purpose of this method is to break reference cycles between enterprise objects. For 
example, suppose you have an Employee object that has a to-one relationship to its Department, 
and the Department object in turn has an array of Employee objects. You can use this method to 
break the reference cycle. Note that reference cycles are automatically broken if the 
EOEditingContext is finalized. For more discussion of this topic, see the section “Methods for 
Managing the Object Graph” (page 80).

See Also: invalidateObjectsWithGlobalIDs

refaultObjects

public void refaultObjects()

Refaults all objects cached in the receiver that haven’t been inserted, deleted, or updated. 
Invokes processRecentChanges, then invokes refaultObject for all objects that haven’t been inserted, 
deleted, or updated. For more discussion of this topic, see the section “Methods for Managing 
the Object Graph” (page 80) in the class description.



C L A S S  E O E d i t i n g C o n t e x t

173

refetch

public void refetch()

Sends editingContextWillSaveChanges messages to the receiver’s editors, and invokes the 
invalidateAllObjects method. 

registeredObjects

public NSArray registeredObjects()

Returns the enterprise objects managed by the receiver. 

removeEditor

public void removeEditor(Object anObject)

Unregisters editor from the receiver. For more discussion of EOEditors, see the editors method 
description and the EOEditingContext.Editors interface specification.

See Also: addEditor 

reset

public void reset()

Forgets all objects and makes them unusable. This method also resets the fetchTimestamp as if the 
editing context were just initialized.

revert

public void revert()

Sends editingContextWillSaveChanges messages to the receiver’s editors, and removes everything 
from the undo stack, discards all insertions and deletions, and restores updated objects to their 
last committed values. Does not refetch from the database. Note that revert doesn’t automatically 



174

C L A S S  E O E d i t i n g C o n t e x t

cause higher level display groups (WebObject’s WODisplayGroups or the interface layer’s 
EODisplayGroups) to refetch. Display groups that allow insertion and deletion of objects need 
to be explicitly synchronized whenever this method is invoked on their EOEditingContext. 

See Also: invalidateAllObjects

rootObjectStore

public EOObjectStore rootObjectStore()

Returns the EOObjectStore at the base of the object store hierarchy (usually an 
EOObjectStoreCoordinator). 

saveChanges

public void saveChanges()

Sends editingContextWillSaveChanges messages to the receiver’s editors, and commits changes made 
in the receiver to its parent EOObjectStore by sending it the message saveChangesInEditingContext. If 
the parent is an EOObjectStoreCoordinator, it guides its EOCooperatingObjectStores, typically 
EODatabaseContexts, through a multi-pass save operation (see the EOObjectStoreCoordinator 
class specification for more information). If a database error occurs, an exception is thrown. The 
error message indicates the nature of the problem.

public void saveChanges(Object anObject)

Invokes the no-argument version, handling an exception using the message handler. For 
example, if a validation error occurs, the message handler (usually an EODisplayGroup) 
presents an alert panel with the text of the validation exception.

saveChangesInEditingContext

public void saveChangesInEditingContext(EOEditingContext anEditingContext)

Overrides the implementation inherited from EOObjectStore to tell the receiver’s EOObjectStore 
to accept changes from a child EOEditingContext. This method shouldn’t be invoked directly. 
It’s invoked by a nested EOEditingContext when it’s committing changes to a parent 
EOEditingContext. The receiving parent EOEditingContext incorporates all changes from the 
nested EOEditingContext into its own copies of the objects, but it doesn’t immediately save those 



C L A S S  E O E d i t i n g C o n t e x t

175

changes to the database. If the parent itself is later sent saveChanges, it propagates any changes 
received from the child along with any other changes to its parent EOObjectStore. Throws an 
exception if an error occurs; the error message indicates the nature of the problem.

setDelegate

public void setDelegate(Object anObject)

Set the receiver’s delegate to be anObject.

See Also: delegate 

setFetchTimestamp

public void setFetchTimestamp(long timestamp)

Sets the receiver’s fetch timestamp. When an editing context fetches objects from its parent object 
store, the parent object store can use the timestamp to determine whether to use cached data or 
to refetch the most current values. An editing context prefers that fetched values are at least as 
recent as its fetch timestamp. Note that the parent object store is free to ignore the timestamp; so 
this value should be considered a hint or request and not a guarantee.

The initial value for the fetch timestamp of a new non-nested editing context is the current time 
less the defaultFetchTimestampLag. A nested editing context always uses its parent’s fetch timestamp. 
setFetchTimestamp: raises if it’s invoked on a nested editing context.

setInvalidatesObjectsWhenFinalized

public void setInvalidatesObjectsWhenFinalized(boolean flag)

Description forthcoming.

Note:  Changing the fetch timestamp has no effect on existing objects in the 
editing context; it can affect only subsequent fetches. To refresh existing objects, 
invoke refaultObjects before you invoke setFetchTimestamp:.



176

C L A S S  E O E d i t i n g C o n t e x t

setSharedEditingContext

public void setSharedEditingContext(EOSharedEditingContext sharedEC)

Sets the receiver’s shared editing context. Raises if the receiver and sharedEC both contain the same 
object (otherwise object uniquing would be violated) or if sharedEC is not an instance of the 
EOSharedEditingContext class.

By default, an editing context that has no shared editing context listens for 
DefaultSharedEditingContextWasInitializedNotifications. If a notification is posted while the context 
has no registered objects, the editing context sets its shared editing context to the newly 
initialized default shared editing context.

Invoke this method with null to remove the receiver as an observer of this notification and to 
prevent the context from accessing any objects in the default shared editing context.

setLocksObjectsBeforeFirstModification

public void setLocksObjectsBeforeFirstModification(boolean flag)

Sets according to flag whether the receiver locks object in the external store (with lockObject) the 
first time object is modified. The default is false. If flag is true, an exception will be thrown if a 
lock can’t be obtained when object invokes willChange. There are two reasons a lock might fail: 
because the row is already locked in the server, or because your snapshot is out of date. If your 
snapshot is out of date, you can explicitly refetch the object using an EOFetchSpecification with 
setRefreshesRefetchedObjects set to true. To handle the exception, you can implement the 
EODatabaseContext delegate method databaseContextShouldRaiseExceptionForLockFailure:.

You should avoid using this method or pessimistic locking in an interactive end-user 
application. For example, a user might make a change in a text field and neglect to save it, 
thereby leaving the data locked in the server indefinitely. Consider using optimistic locking or 
application level explicit check-in/check-out instead. 

See Also: locksObjectsBeforeFirstModification

setMessageHandler

public void setMessageHandler(Object handler)

Set the receiver’s message handler to be handler. 

See Also: messageHandler 



C L A S S  E O E d i t i n g C o n t e x t

177

setPropagatesDeletesAtEndOfEvent

public void setPropagatesDeletesAtEndOfEvent(boolean flag)

Sets according to flag whether the receiver propagates deletes at the end of the event in which a 
change was made, or only just before saving changes.

If flag is true, deleting an enterprise object triggers delete propagation at the end of the event in 
which the deletion occurred (this is the default behavior). If flag is false, delete propagation isn’t 
performed until saveChanges is invoked.

You can delete enterprise objects explicitly by using the deleteObject method or implicitly by 
removing the enterprise object from an owning relationship. Delete propagation uses the delete 
rules in the EOClassDescription to determine whether objects related to the deleted object 
should also be deleted (for more information, see the EOClassDescription class specification and 
the EOEnterpriseObject interface informal protocol specification). If delete propagation fails 
(that is, if an enterprise object refuses to be deleted—possibly due to a deny rule), all changes 
made during the event are rolled back. 

See Also: propagatesDeletesAtEndOfEvent

setStopsValidationAfterFirstError

public void setStopsValidationAfterFirstError(boolean flag)

Sets according to flag whether the receiver stops validating after the first error is encountered, or 
continues for all objects (validation typically occurs during a save operation). The default is true. 
Setting it to false is useful if the delegate implements editingContextShouldPresentException to handle 
the presentation of aggregate exceptions.

See Also: stopsValidationAfterFirstError

setUndoManager

public void setUndoManager(NSUndoManager undoManager)

Sets the receiver’s NSUndoManager to undoManager. You might invoke this method with null if 
your application doesn’t need undo and you want to avoid the overhead of an undo stack. For 
more information on editing context’s undo support, see the section “Undo and Redo” (page 79).

See Also: undoManager 



178

C L A S S  E O E d i t i n g C o n t e x t

sharedEditingContext

public EOSharedEditingContext sharedEditingContext()

Returns the shared editing context used by the receiver.

stopsValidationAfterFirstError

public boolean stopsValidationAfterFirstError()

Returns true to indicate that the receiver should stop validating after it encounters the first error, 
or false to indicate that it should continue for all objects.

See Also: setStopsValidationAfterFirstError

tryToSaveChanges

public Throwable tryToSaveChanges()

Description forthcoming.

undo

public void undo()

Sends editingContextWillSaveChanges messages to the receiver’s editors, and sends an undo message 
to the receiver’s NSUndoManager, asking it to reverse the latest uncommitted changes applied 
to objects in the object graph. For more information on editing context’s undo support, see the 
section “Undo and Redo” (page 79).

See Also: redo

undoManager

public NSUndoManager undoManager()

Returns the receiver’s NSUndoManager. 

See Also: setUndoManager 



C L A S S  E O E d i t i n g C o n t e x t

179

unlock

public void unlock()

Unlocks access to the receiver so that other threads may access it. If the receiver has a 
sharedEditingContext, the receiver unlocks a reader lock on the shared context.

See Also: lock

updatedObjects

public NSArray updatedObjects()

Returns the objects in the receiver’s object graph that have been updated. 

See Also: deletedObjects, insertedObjects 

Notifications

The following notifications are declared (except where otherwise noted) and posted by 
EOEditingContext.

EditingContextDidSaveChangesNotification

public static final String EditingContextDidSaveChangesNotification

This notification is broadcast after changes are saved to the EOEditingContext’s parent 
EOObjectStore. The notification contains:

Notification Object
The EOEditingContext



180

C L A S S  E O E d i t i n g C o n t e x t

userInfo
A dictionary with the following keys (constants) and values

InvalidatedAllObjectsInStoreNotification
This notification is defined by EOObjectStore. When posted by an EOEditingContext, it’s the 
result of the editing context invalidating all its objects. When an EOEditingContext receives an 
InvalidatedAllObjectsInStoreNotification from its parent EOObjectStore, it clears its lists of inserted, 
updated, and deleted objects, and resets its undo stack. The notification contains:

An interface layer EODisplayGroup (not a WebObjects WODisplayGroup) listens for this 
notification to refetch its contents. See the EOObjectStore class specification for more 
information on this notification.

ObjectsChangedInStoreNotification
This notification is defined by EOObjectStore. When posted by an EOEditingContext, it’s the 
result of the editing context processing objectWillChange observer notifications in 
processRecentChanges, which is usually as the end of the event in which the changes occurred. See 
the EOObjectStore class specification for more information on ObjectsChangedInStoreNotification.

This notification contains:

Notification Object
The EOEditingContext

Key Value

EOObjectStore.UpdatedKey An NSArray containing the changed objects

EOObjectStore.InsertedKey An NSArray containing the inserted objects

EOObjectStore.DeletedKey An NSArray containing the deleted objects

Notification Object The EOEditingContext

userInfo Dictionary None.



C L A S S  E O E d i t i n g C o n t e x t

181

userInfo
A dictionary with the following keys (constants) and values

ObjectsChangedInEditingContextNotification

public static final String ObjectsChangedInEditingContextNotification

This notification is broadcast whenever changes are made in an EOEditingContext. It’s similar 
to ObjectsChangedInStoreNotification, except that it contains objects rather than globalIDs. The 
notification contains:

Notification Object
The EOEditingContext

userInfo
A dictionary with the following keys (constants) and values

Key Value

EOObjectStore.UpdatedKey An NSArray of EOGlobalIDs for objects whose properties have 
changed. A receiving EOEditingContext typically responds by 
refaulting the objects.

EOObjectStore.InsertedKey An NSArray of EOGlobalIDs for objects that have been inserted 
into the EOObjectStore.

EOObjectStore.DeletedKey An NSArray of EOGlobalIDs for objects that have been deleted 
from the EOObjectStore.

EOObjectStore.InvalidatedKey An NSArray of EOGlobalIDs for objects that have been turned 
into faults. Invalidated objects are those for which the cached 
view should no longer be trusted. Invalidated objects should be 
refaulted so that they are refetched when they’re next examined.

Key Value

EOObjectStore.UpdatedKey An NSArray containing the changed objects

EOObjectStore.DeletedKey An NSArray containing the deleted objects

EOObjectStore.InsertedKey An NSArray containing the inserted objects

EOObjectStore.InvalidatedKey An NSArray containing invalidated objects. 



182

C L A S S  E O E d i t i n g C o n t e x t

Interface layer EODisplayGroups (not WebObjects WODisplayGroups) listen for this 
notification to redisplay their contents.



183

C L A S S  

EOEvent

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EOEvent is an abstract class that provides concrete subclasses with a structure for storing 
information (such as duration) about a logged event.

Subclasses of EOEvent don’t need to override any inherited methods or implement any methods 
at all. You can customize the behavior if you want, but the EOEvent implementations are 
sufficient for most cases. Generally, to create a subclass of EOEvent, you merely declare it and 
create a description file that defines the events your subclass logs. The class itself usually 
declares no instance variables and implements no methods. The abstract implementation gets all 
the information it needs from the description file. For more information on the description file, 
see the eventTypeDescriptions method description. 

Most of the work involved in logging custom events is instrumenting your code. For more 
information on that and on the event logging system itself, see the EOEventCenter class 
specification.



184

C L A S S  E O E v e n t

Constants

EOAttribute defines the following int constant as a possible signature type for use with the 
methods signatureOfType, aggregateEvents, and groupEvents. 

■ EOBasicEventSignature

Additionally, EOEvent defines the following String constant to be used as a key into the 
dictionary returned by eventTypeDescriptions. The EOEventGroupName entry provides the description of 
the family of events represented by the event class.

■ EOEventGroupName

Method Types

Defining an event type

eventTypeDescriptions

description

Accessing information about the event

toString

title

startDate

duration

durationWithoutSubevents

setType

type

setInfo



C L A S S  E O E v e n t

185

info

comment

classDescription

Grouping and Aggregating Events

aggregateEvents

groupEvents

signatureOfType

Displaying event information

displayComponentName

Traversing the event hierarchy

parentEvent

subevents

Logging events

markAtomicWithInfo

markEnd

markStartWithInfo

Constructors

EOEvent

public EOEvent()

Description forthcoming.



186

C L A S S  E O E v e n t

Static Methods

aggregateEvents

public static NSArray aggregateEvents(
NSArray events,
int tag)

Returns an array of aggregated events. Gets the signature of type tag from each event in events 
and aggregates events with the same signature into a special, single event. The resulting array 
has an event for each different signature. The events in this array have a duration equal to the 
sum of the durations of its aggregated events. The subevents of these special events are the union 
of the subevents of its aggregated events.

This method is for use by the WOEventDisplay page. For more information, see 
“WOEventDisplay page” (page 90).

classDescription

public static String classDescription(Class aClass)

Description forthcoming.

eventTypeDescriptions

public static NSDictionary eventTypeDescriptions(Class aClass)

Returns a dictionary of event types and descriptions for the family of events represented by the 
event class specified by aClass. The keys of this dictionary are event types and the corresponding 
values are descriptions of events of the types. Subclasses don’t need to implement this method; 
EOEvent’s implementation is generally sufficient for subclasses.

EOEvent’s implementation reads the event types and their descriptions from a file. To define the 
types your event class represents, create a description file for your event and add it to your 
project’s Resources folder. An event’s description file defines the event categories and 
subcategories used in the WOEventDisplay page. The file’s contents is a dictionary in plist 
format.



C L A S S  E O E v e n t

187

For example, consider the ODBCAdaptorEvent that logs events for the ODBC adaptor. 
ODBCAdaptorEvent is a subclass of EOEvent. It uses EOEvent’s implementation of 
eventTypeDescriptions. The name of its description file is ODBCAdaptorEvent.description, and it looks like 
this:

{
EOEventGroupName = “ODBC Adaptor Event”;
connect = “Connect”;
openChannel = “Open Channel”;
evaluateExpression = “Evaluate Expression”;
fetchRow = “Fetch Row”;
commitTransaction = “Commit Transaction”;

}

Using the EOEvent implementation, the EOEventGroupName entry is mandatory; it describes the 
family of events logged by the event class. Any other keys are defined by the event class itself. 
In the ODBCAdaptorEvent class, the other keys (connect, openChannel, and so on) are the types of 
the events ODBCAdaptorEvent logs.

If the file doesn’t exist or if there’s an error reading the file, EOEvent creates a dictionary with a 
single entry; the entry’s key is EOEventGroupName and the value is the name of the event class (such 
as ODBCAdaptorEvent).

groupEvents

public static NSArray groupEvents(
NSArray events,
int tag)

Returns an array of grouped events. Gets the signature of type tag from each event in events and 
groups events with the same signature into a special, single event. The resulting array has an 
event for each different signature. The subevents of these special events are the grouped events.

This method is for use by the WOEventDisplay page. For more information, see 
“WOEventDisplay page” (page 90).



188

C L A S S  E O E v e n t

Instance Methods

comment

public String comment()

Returns type specific information about the event. EOEvent’s implementation returns a string 
representation of the receiver’s info.

description

public String description()

Returns a description of the family of events represented by the class. EOEvent’s 
implementation returns the event description for the EOEventGroupName key. For more information, 
see the eventTypeDescriptions method description.

displayComponentName

public String displayComponentName()

Returns the name of a WebObjects component to use to display the receiver’s logging 
information. EOEvent’s implementation uses the WOEventRow component, which is generally 
sufficient for subclasses.

duration

public long duration()

Returns the duration of the receiver, in milliseconds; returns 0 if the event is atomic (not a branch 
event) or if the branch is not yet closed.



C L A S S  E O E v e n t

189

durationWithoutSubevents

public long durationWithoutSubevents()

Returns the duration of receiver, in milliseconds, not including the time spent in its subevents (if 
any).

info

public Object info()

Returns the custom info for the receiver.

markAtomicWithInfo

public void markAtomicWithInfo(Object info)

Initializes the receiver, a newly allocated event, as an atomic event that has an absolute startDate 
(and not a duration), and assigns the event’s info. The newly allocated event is usually created 
with the EOEventCenter method newEventOfClass.

markEnd

public void markEnd()

Marks the end of a branch event, which has the side-effect of setting the duration.

Note:  Don’t invoke this method directly. Use the corresponding method defined in 
EOEventCenter instead.

Note:  Don’t invoke this method directly. Use the corresponding method defined in 
EOEventCenter instead.



190

C L A S S  E O E v e n t

markStartWithInfo

public void markStartWithInfo(Object info)

Initializes the receiver, a newly allocated event, to be a branch event (that possibly has nested 
subevents), and assigns it’s info to info. The newly allocated event is usually created with the 
EOEventCenter method newEventOfClass.

parentEvent

public EOEvent parentEvent()

Returns the parent event, if any, or null otherwise. Events logged at the root level do not have a 
parent. Other events return the event that was open at the time that they were started.

setInfo

public void setInfo(Object info)

Sets the custom event information for the receiver. This information is used to display event 
logging information in the WOEventDisplay page. The info argument can be any kind of object 
that responds to equals and toString.

setType

public void setType(String type)

Sets the receiver’s type to type. EOEvent’s implementation gets the set of available types from a 
description file. For more information, see the eventTypeDescriptions method description.

Note:  Don’t invoke this method directly. Use the corresponding method defined in 
EOEventCenter instead.



C L A S S  E O E v e n t

191

signatureOfType

public String signatureOfType(int tag)

Returns the requested receiver’s signature, which can be used to group and aggregate the 
receiver with other events that have the same signature. EOEvent defines one signature type, 
EOBasicEventSignature, which has the corresponding signature of the form “title - comment”. If the 
specified signature type is unknown, EOEvent’s implementation returns null otherwise.

See Also: aggregateEvents, groupEvents

startDate

public NSTimestamp startDate()

Returns the date at which the receiver was logged. For a non-atomic event, the return value is 
the time at which the event logging began, not when it ended.

subevents

public NSArray subevents()

Returns the receiver’s immediate subevents; that is, the events that were logged with this event 
as their parent.

title

public String title()

Returns the event type description corresponding with the receiver’s type. The title is used by the 
WOEventDisplay. EOEvent’s implementation returns the value from the eventTypeDescriptions 
dictionary for the receiver’s type. If there isn’t an entry in the eventTypeDescriptions dictionary for 
the receiver’s type, EOEvent’s implementation returns the name of the receiver’s class.

toString

public String toString()

Returns a description of the receiver. EOEvent’s implementation returns a string that includes 
the receiver’s title, comment, and duration or startDate.



192

C L A S S  E O E v e n t

type

public String type()

Returns the receiver’s type. Using the event type definition scheme implemented by EOEvent, 
the types are defined in a description file as described in the eventTypeDescriptions method 
description.



193

C L A S S  

EOEventCenter

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EOEventCenter collects and manages EOEvents to allow you to measure the duration of 
operations in your applications. Measurements allow you to profile an application and optimize 
its execution time. For this, Enterprise Objects Framework and WebObjects instrument key 
portions of their code to measure the elapsed time of functions and methods.

For more information on the event logging feature and on instrumenting your own code for 
event logging, see the following sections:

■ “Event Logging Overview” (page 89)

■ “WOEventSetup page” (page 89)

■ “WOEventDisplay page” (page 90)

■ “Custom Event Logging” (page 92)



194

C L A S S  E O E v e n t C e n t e r

Method Types

Registering event classes for logging

registerEventClass

registeredEventClasses

setRecordsEvents

recordsEventsForClass

Logging events

newEventOfClass

markAtomicEvent

markStartOfEvent

markEndOfEvent

cancelEvent

Accessing event centers

currentCenter

allCenters

Accessing events

allEventsForAllCenters

allEvents

eventsOfClassForAllCenters

eventsOfClass

rootEventsForAllCenters

rootEvents

rootEventsByDuration



C L A S S  E O E v e n t C e n t e r

195

Resetting and suspending event logging

resetLoggingForAllCenters

resetLogging

suspendLogging

resumeLogging

Constructors

EOEventCenter

public EOEventCenter()

Description forthcoming.

Static Methods

allCenters

public static NSArray allCenters()

Returns all event centers. Typically used only for post-processing of events and statistics 
gathering. Note that there is one event center per thread.

allEventsForAllCenters

public static NSArray allEventsForAllCenters()

Returns an array of all the events logged in all the event centers. The events in the returned array 
are in no particular order.

See Also: allEvents



196

C L A S S  E O E v e n t C e n t e r

cancelEvent

public static void cancelEvent(EOEvent event)

Cancels the recording of an in-progress event. This method doesn’t work with atomic events or 
with events that have already been ended with markEndOfEvent.

Generally you cancel an event when the operation being logged is aborted. For example, the 
ODBCAdaptorChannel cancels an “Open Channel” event if the openChannel method doesn’t 
successfully open a connection to the database.

currentCenter

public static EOEventCenter currentCenter()

Returns the event center for the calling thread.

eventsOfClassForAllCenters

public static NSArray eventsOfClassForAllCenters(
Class aClass,
String type)

Returns an array of all events (from all the event centers) that are instances of aClass and whose 
type is type. Specifying null for the class returns events of any class. Similarly, specifying null for 
the type returns events of any type.

See Also: eventsOfClass

markAtomicEvent

public static void markAtomicEvent(
EOEvent event,
Object info)

Initializes event, a newly allocated event, as an atomic event, and assigns it’s info to info. The 
newly allocated event is usually created with the EOEventCenter method newEventOfClass.



C L A S S  E O E v e n t C e n t e r

197

markEndOfEvent

public static void markEndOfEvent(EOEvent event)

Marks the time event ended.

markStartOfEvent

public static void markStartOfEvent(
EOEvent event,
Object info)

Marks event, a newly allocated event, to be a branch event (that possibly has nested subevents), 
and assigns it’s info to info. The newly allocated event is usually created with newEventOfClass.

There is a limit on the number of events the event logging system logs—200,000 by default. You 
can change the limit using the user default EOEventLoggingLimit. When the logging limit 
is reached, the logging system attempts to purge old events before logging new ones. If the 
system is unable to purge old events, event logging is aborted.

The system’s attempt to purge events can fail if the event logging limit is too small. This happens 
because the event system can’t purge the first event logged, and it can’t purge unclosed branch 
events.

newEventOfClass

public static EOEvent newEventOfClass(
Class aClass,
String aType)

Creates an event of the desired class and type. 

password

public static String password()

Description forthcoming.



198

C L A S S  E O E v e n t C e n t e r

recordsEventsForClass

public static boolean recordsEventsForClass(Class eventClass)

Returns true if the application logs events of the eventClass class.

registerEventClass

public static void registerEventClass(
Class aClass,
EOEventCenter.EventRecordingHandler handler)

Registers aClass as an event class. The handler argument is an object that the event logging system 
notifies when event logging is enabled or disabled for aClass. 

If the EOEventLoggingEnabled user default is set to true, this method enables logging for aClass. 
Programmatically, you can selectively enable or disable logging for a specific class with 
setRecordsEvents. It is more common, however, for users to enable and disable logging of a 
particular class through the WOEventSetup page—for more information, see “WOEventSetup 
page” (page 89).

When the event logging system enables logging for the ODBCAdaptorEvent class, it sends 
handler a setLoggingEnabled message with true as the flag and ODBCAdaptorEvent as the event 
class. handler is responsible for enabling logging in the instrumented code.

registeredEventClasses

public static NSArray registeredEventClasses()

Returns all the event classes registered in the application.

resetLoggingForAllCenters

public static void resetLoggingForAllCenters()

Discards all events in all event centers, restarting event collection for the entire application.

See Also: resetLogging



C L A S S  E O E v e n t C e n t e r

199

resumeLogging

public static void resumeLogging()

Resumes event logging in all centers. However, logging doesn’t actually resume until each 
invocation of suspendLogging is paired with an invocation of resumeLogging. Invoking resumeLogging 
without a corresponding suspendLogging isn’t harmful.

rootEventsByDuration

public static NSArray rootEventsByDuration()

Returns all root events from all event centers, sorted by decreasing duration.

See Also: rootEventsForAllCenters, rootEvents

rootEventsForAllCenters

public static NSArray rootEventsForAllCenters()

Returns all events from all event centers that are recorded at the root level; that is, it returns the 
events that don’t have parent events.

See Also: rootEvents

setPassword

public static void setPassword(String aString)

Description forthcoming.



200

C L A S S  E O E v e n t C e n t e r

setRecordsEvents

public static void setRecordsEvents(
boolean flag,
Class eventClass)

Sets according to flag whether event centers record events of the eventClass class (and its 
subclasses). By default, event centers don’t record events of any class. You can selectively enable 
logging for a particular event class with this method. To enable event logging for all event 
classes, set the user default EOEventLoggingEnabled. Then, you can selectively disable logging 
for a particular event with this method.

suspendLogging

public static void suspendLogging()

Suspends event logging in all event centers. Each invocation of suspendLogging must be paired with 
an invocation of resumeLogging to resume event logging.

Instance Methods

allEvents

public NSArray allEvents()

Returns the receiver’s events (in no particular order).

eventsOfClass

public NSArray eventsOfClass(
Class aClass,
String type)

Returns the subset of the receiver’s events that are instances of aClass and that have the type type. 
Specifying null for the class returns events of any class. Similarly, specifying null for the type 
returns events of any type.



C L A S S  E O E v e n t C e n t e r

201

resetLogging

public void resetLogging()

Discards all events in the event center for the calling thread.

See Also: resetLoggingForAllCenters

rootEvents

public NSArray rootEvents()

Returns the receiver’s events that were recorded at root level; that is, returns the events that 
don’t have a parent event.

See Also: rootEventsForAllCenters, rootEventsByDuration



202

C L A S S  E O E v e n t C e n t e r



203

C L A S S  

EOFaultHandler

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EOFaultHandler is an abstract class that defines the mechanisms that create faults and help them 
to fire. Faults are used as placeholders for an enterprise object’s relationship destinations. For 
example, suppose an Employee object has a department relationship to the employee’s 
department. When an employee is fetched, faults are created for its relationship destinations. In 
the case of the department relationship, an empty Department object is created. The Department 
object’s data isn’t fetched until the Department is accessed, at which time the fault is said to fire.

Subclasses of EOFaultHandler perform the specific steps necessary to get data for the fault and 
fire it. The Access Layer, for example, uses private subclasses to fetch data using an 
EODatabaseContext (defined in EOAccess). Most of EOFaultHandler’s methods are properly 
defined; you need only override completeInitializationOfObject to provide appropriate behavior. 

You create an EOFaultHandler using the standard constructor. To create a fault in an 
application, you invoke the static method makeObjectIntoFault with the object to turn into a fault 
and the EOFaultHandler. An EOFaultHandler belongs exclusively to a single fault, and 
shouldn’t be shared or used by any other object.

In a Java Client application you also create an EOFaultHandler using the standard constructor. 
To create a fault in a Java Client application, though, you send a newly-created object a 
turnIntoFault message and provide an EOFaultHandler that will help the fault to fire. In order for 
that newly-created object to be able to respond to turnIntoFault, the object must conform to the 



204

C L A S S  E O F a u l t H a n d l e r

EOFaulting interface. An EOFaultHandler belongs exclusively to a single fault, and shouldn’t be 
shared or used by any other object. In Java Client applications, the fault handler is the private 
property of the fault; you shouldn’t send any messages to the fault handler, instead dealing 
exclusively with the fault.

Firing a Fault
When a fault receives a message that requires it to fire, it sends a completeInitializationOfObject 
method to its EOFaultHandler. This method is responsible for invoking the clearFault method to 
revert the fault to its original state, and then do whatever is necessary to complete initialization 
of the object. Doing so typically involves fetching data from an external repository and passing 
it to the object.

Method Types

Creating and examining faults

createFaultForDeferredFault

clearFault

isFault

makeObjectIntoFault

handlerForFault

Firing a fault

completeInitializationOfObject

faultWillFire

Getting a description

descriptionForObject

eoShallowDescription



C L A S S  E O F a u l t H a n d l e r

205

Constructors

EOFaultHandler

public EOFaultHandler()

Description forthcoming.

Static Methods

eoShallowDescription

public static String eoShallowDescription(Object anObject)

See the method description for EOEnterpriseObject’s eoShallowDescription.

clearFault

public static void clearFault(Object aFault)

Restores aFault to its status prior to the makeObjectIntoFault message that created it. Throws an 
exception if aFault isn’t a fault.

You rarely use this method. Faults typically fire automatically when accessed, using the 
completeInitializationOfObject method. 

handlerForFault

public static EOFaultHandler handlerForFault(Object aFault)

Returns the EOFaultHandler that will help aFault to fire. Returns null if aFault isn’t a fault.



206

C L A S S  E O F a u l t H a n d l e r

isFault

public static boolean isFault(Object anObject)

Returns true if anObject is a fault, false otherwise.

makeObjectIntoFault

public static void makeObjectIntoFault(
Object anObject,
EOFaultHandler aFaultHandler)

Converts anObject into a fault, assigning aFaultHandler as the object that stores its original state and 
later converts the fault back into a normal object (typically by fetching data from an external 
repository). The new fault becomes the owner of aFaultHandler; you shouldn’t assign it to another 
object.

Instance Methods

completeInitializationOfObject

public abstract void completeInitializationOfObject(Object aFault)

Implemented by subclasses to revert aFault to its original state and complete its initialization in 
whatever means is appropriate to the subclass. For example, the Access layer subclasses of 
EOFaultHandler fetch data from the database and pass it to the object. This method is invoked 
automatically by a fault when it’s sent a message it can’t handle without fetching its data. 
EOFaultHandler’s implementation merely throws an exception.



C L A S S  E O F a u l t H a n d l e r

207

createFaultForDeferredFault

public Object createFaultForDeferredFault(
Object fault, 
EOEnterpriseObject eo)

Invoked by willReadRelationship to ensure that fault isn’t a deferred fault, and to replace it with a 
normal fault if it is. EOFaultHandler’s implementation simply returns its fault. A private 
subclass that handles deferred faulting implements this method to return a normal fault if fault 
is a deferred fault, so you should never need to override this method.

descriptionForObject

public String descriptionForObject(Object aFault)

Returns a string naming the original class of the receiver’s fault and giving aFault’s address, and 
also noting that it’s a fault. (The fault must be passed as aFault because EOFaultHandlers don’t 
keep references to their faults.)

faultWillFire

public abstract void faultWillFire(Object aFault)

Informs the receiver that aFault is about to be reverted to its original state. EOFaultHandler’s 
implementation does nothing.

targetClass

public Class targetClass()

Returns the target class of the receiver’s fault. The fault may, however, be converted to a member 
of this class or of a subclass of this class. For example, to support entity inheritance, the Access 
layer fires faults for entities with subentities into the appropriate class on fetching their data.

toString

public String toString()

Returns a String representation of the receiver.



208

C L A S S  E O F a u l t H a n d l e r



209

C L A S S  

EOFetchSpecification

Inherits from: Object

Implements: NSCoding
Cloneable
EOKeyValueArchiving
Serializable

Package: com.webobjects.eocontrol

Class Description

An EOFetchSpecification collects the criteria needed to select and order a group of records or 
enterprise objects, whether from an external repository such as a relational database or an 
internal store such as an EOEditingContext. An EOFetchSpecification contains these elements:

■ The name of an entity for which to fetch records or objects. This is the only mandatory 
element.

■ An EOQualifier, indicating which properties to select by and how to do so.

■ An array of EOSortOrderings, which indicate how the selected records or objects should be 
ordered when fetched.

■ An indicator of whether to produce distinct results or not. Normally if a record or object is 
selected several times, such as when forming a join, it appears several times in the fetched 
results. An EOFetchSpecification that makes distinct selections causes duplicates to be 
filtered out, so each record or object selected appears exactly once in the result set.



210

C L A S S  E O F e t c h S p e c i fi c a t i o n

■ An indicator of whether to fetch deeply or not. This is used with inheritance hierarchies when 
fetching for an entity with sub-entities. A deep fetch produces all instances of the entity and 
its sub-entities, while a shallow fetch produces instances only of the entity in the fetch 
specification.

■ A fetch limit indicating how many objects to fetch before giving the user or program an 
opportunity to intervene.

■ A listing of relationships for which the destination of the relationship should be prefetched 
along with the entity being fetched. Proper use of this feature allows for substantially 
increased performance in some cases.

■ A dictionary of hints, which an EODatabaseContext or other object can use to optimize or 
alter the results of the fetch.

EOFetchSpecifications are most often used with the method objectsWithFetchSpecification, defined 
by EOObjectStore, EOEditingContext, and EODatabaseContext. EOAdaptorChannel and 
EODatabaseChannel also define methods that use EOFetchSpecifications.

Interfaces Implemented

NSCoding

classForCoder

classForCoder

Method Types

Constructors

EOFetchSpecification

Setting the qualifier

setQualifier



C L A S S  E O F e t c h S p e c i fi c a t i o n

211

qualifier

Sorting

setSortOrderings

sortOrderings

Removing duplicates

setUsesDistinct

usesDistinct

Fetching objects in an inheritance hierarchy

setIsDeep

isDeep

setEntityName

entityName

Controlling fetching behavior

setFetchLimit

fetchLimit

setFetchesRawRows

fetchesRawRows

setPrefetchingRelationshipKeyPaths

prefetchingRelationshipKeyPaths

setPromptsAfterFetchLimit

promptsAfterFetchLimit

setRawRowKeyPaths

rawRowKeyPaths

setRequiresAllQualifierBindingVariables

requiresAllQualifierBindingVariables

setHints

hints



212

C L A S S  E O F e t c h S p e c i fi c a t i o n

Locking objects

setLocksObjects

locksObjects

Refreshing refetched objects

setRefreshesRefetchedObjects

refreshesRefetchedObjects

Constructors

EOFetchSpecification

public EOFetchSpecification()

public EOFetchSpecification(
String entityName,
EOQualifier qualifier,
NSArray sortOrderings)

public EOFetchSpecification(
String entityName,
EOQualifier qualifier,
NSArray sortOrderings,
boolean distinctFlag,
boolean deepFlag,
NSDictionary hints)

Creates a new EOFetchSpecification with the arguments specified. If no arguments are 
provided, the new EOFetchSpecification has no state, except that it fetches deeply and doesn’t 
use distinct. Use the set... methods to add other parts of the specification. Minimally, you must 
set the entity name.

If only entityName, qualifier, and sortOrderings are provided, the new EOFetchSpecification is deep, 
doesn’t perform distinct selection, and has no hints.



C L A S S  E O F e t c h S p e c i fi c a t i o n

213

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object 
decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

fetchSpecificationNamed

public static EOFetchSpecification fetchSpecificationNamed(
String name,
String entityName)

Returns the fetch specification that the entity specified by entityName associates with the fetch 
specification name name.

Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding.



214

C L A S S  E O F e t c h S p e c i fi c a t i o n

clone

public Object clone()

Conformance to Cloneable.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

entityName

public String entityName()

Returns the name of the entity to be fetched.

See Also: isDeep, setEntityName

fetchLimit

public int fetchLimit()

Returns the fetch limit value which indicates the maximum number of objects to fetch. 
Depending on the value of promptsAfterFetchLimit, the EODatabaseContext will either stop 
fetching objects when this limit is reached or it will ask the editing context's message handler to 
prompt the user as to whether or not it should continue fetching. Use 0 (zero) to indicate no fetch 
limit. The default is 0.



C L A S S  E O F e t c h S p e c i fi c a t i o n

215

fetchesRawRows

public boolean fetchesRawRows()

Returns true if rawRowKeyPaths returns non-nil.

fetchSpecificationWithQualifierBindings:

public EOFetchSpecification fetchSpecificationWithQualifierBindings(NSDictionary bindings)

Applies bindings from bindings to its qualifier if there is one, and returns a new fetch specification 
that can be used in a fetch. The default behavior is to prune any nodes for which there are no 
bindings. Invoke setRequiresAllQualifierBindingVariables with an argument of true to force an 
exception to be raised if a binding is missing during variable substitution.

hints

public NSDictionary hints()

Returns the receiver’s hints, which other objects can use to alter or optimize fetch operations. 

See Also: setHints

isDeep

public boolean isDeep()

Returns true if a fetch should include sub-entities of the receiver’s entity, false if it shouldn’t. 
EOFetchSpecifications are deep by default.

For example, if you have a Person entity with two sub-entities, Employee and Customer, 
fetching Persons deeply also fetches all Employees and Customers matching the qualifier. 
Fetching Persons shallowly fetches only Persons matching the qualifier.



216

C L A S S  E O F e t c h S p e c i fi c a t i o n

locksObjects

public boolean locksObjects()

Returns true if a fetch should result in the selected objects being locked in the data repository, 
false if it shouldn’t. The default is false.

See Also: setLocksObjects

prefetchingRelationshipKeyPaths

public NSArray prefetchingRelationshipKeyPaths()

Returns an array of relationship key paths that should be prefetched along with the main fetch. 
For example, if fetching from the Movie entity, you might specify paths of the form (“directors”, 
“roles.talent”, “plotSummary”).

promptsAfterFetchLimit

public boolean promptsAfterFetchLimit()

Returns whether to prompt user after the fetch limit has been reached. Default is false.

qualifier

public EOQualifier qualifier()

Returns the EOQualifier that indicates which records or objects the receiver is to fetch.

See Also: setQualifier

rawRowKeyPaths

public NSArray rawRowKeyPaths()

Returns an array of attribute key paths that should be fetched as raw data and returned as an 
array of dictionaries (instead of the normal result of full objects). The raw fetch can increase 
speed, but forgoes most of the benefits of full Enterprise Objects. The default value is nil, 
indicating that full objects will be returned from the fetch. An empty array may be used to 
indicate that the fetch should query the entity named by the fetch specification using the method 



C L A S S  E O F e t c h S p e c i fi c a t i o n

217

attributesToFetch. As long as the primary key attributes are included in the raw attributes, the raw 
row may be used to generate a fault for the corresponding object using EOEditingContext’s 
faultForRawRow method. (Note that this faulting behavior does not occur in Java Client.)

See Also: setFetchesRawRows

refreshesRefetchedObjects

public boolean refreshesRefetchedObjects()

Returns true if existing objects are overwritten with fetched values when they’ve been updated 
or changed. Returns false if existing objects aren’t touched when their data is refetched (the 
fetched data is simply discarded). The default is false. Note that this setting does not affect 
relationships

See Also: setRefreshesRefetchedObjects

requiresAllQualifierBindingVariables

public boolean requiresAllQualifierBindingVariables()

Returns true to indicate that a missing binding will cause an exception to be raised during 
variable substitution. The default value is false, which says to prune any nodes for which there 
are no bindings.

setEntityName

public void setEntityName(String entityName)

Sets the name of the root entity to be fetched to entityName.

See Also: isDeep, entityName

setFetchesRawRows

public void setFetchesRawRows(boolean fetchRawRows)

Sets the behavior for fetching raw rows. If set to true, the behavior is the same as if 
setRawRowKeyPaths were called with an empty array. If set to false, the behavior is as if 
setRawRowKeyPaths were called with a nil argument.



218

C L A S S  E O F e t c h S p e c i fi c a t i o n

setFetchLimit

public void setFetchLimit(int fetchLimit)

Sets the fetch limit value, which indicates the maximum number of objects to fetch. Depending 
on the value of promptsAfterFetchLimit, the EODatabaseContext either stops fetching objects when 
this limit is reached or asks the editing context's message handler to prompt the user as to 
whether or not it should continue fetching. Use 0 (zero) to indicate no fetch limit. The default is 0.

setHints

public void setHints(NSDictionary hints)

Sets the receiver’s hints to hints. Any object that uses an EOFetchSpecification can define its own 
hints that it uses to alter or optimize fetch operations. For example, EODatabaseContext uses a 
hint identified by the key CustomQueryExpressionHintKey. EODatabaseContext is the only class in 
Enterprise Objects Framework that defines fetch specification hints. For information about 
EODatabaseContext’s hints, see the EODatabaseContext class specification.

See Also: hints

setIsDeep

public void setIsDeep(boolean flag)

Controls whether a fetch should include sub-entities of the receiver’s entity. If flag is true, 
sub-entities are also fetched; if flag is false, they aren’t. EOFetchSpecifications are deep by 
default.

For example, if you have a Person entity /class /table with two sub-entities and subclasses, 
Employee and Customer, fetching Persons deeply also fetches all Employees and Customers 
matching the qualifier, while fetching Persons shallowly fetches only Persons matching the 
qualifier.

See Also: isDeep



C L A S S  E O F e t c h S p e c i fi c a t i o n

219

setLocksObjects

public void setLocksObjects(boolean flag)

Controls whether a fetch should result in the selected objects being locked in the data repository. 
If flag is true it should, if false it shouldn’t. The default is false.

See Also: locksObjects

setPrefetchingRelationshipKeyPaths

public void setPrefetchingRelationshipKeyPaths(NSArray prefetchingRelationshipKeyPaths)

Sets an array of relationship key paths that should be prefetched along with the main fetch. For 
example, if fetching from the Movie entity, you might specify paths of the form (“directors”, 
“roles.talent”, “plotSummary”).

Prefetching increases the initial fetch cost, but it can improve overall performance by reducing 
the number of round trips made to the database server. Assigning relationships to prefetch also 
has an effect on how an EOFetchSpecification refreshes. “Refreshing” refers to existing objects 
being overwritten with fetched values—this allows your application to see changes to the 
database that have been made by someone else. Normally, when you set an 
EOFetchSpecification to refresh using setRefreshesRefetchedObjects, it only refreshes the objects 
you’re fetching. For example, if you fetch employees, you don’t also fetch the employees’ 
departments. However, if you prefetch relationships, the refetch is propagated for all of the 
relationships specified.

setPromptsAfterFetchLimit

public void setPromptsAfterFetchLimit(boolean promptsAfterFetchLimit)

Sets whether to prompt user after the fetch limit has been reached. Default is false.

setQualifier

public void setQualifier(EOQualifier qualifier)

Sets the receiver’s qualifier to qualifier.

See Also: qualifier



220

C L A S S  E O F e t c h S p e c i fi c a t i o n

setRawRowKeyPaths

public void setRawRowKeyPaths(NSArray rawRowKeyPaths)

Sets an array of attribute key paths that should be fetched as raw data and returned as an array 
of dictionaries (instead of the normal result of full objects). The raw fetch can increase speed, but 
forgoes most of the benefits of full Enterprise Objects. The default value is nil, indicating that full 
objects will be returned from the fetch. An empty array may be used to indicate that the fetch 
should query the entity named by the fetch specification using the method attributesToFetch. As 
long as the primary key attributes are included in the raw attributes, the raw row may be used 
to generate a fault for the corresponding object using EOEditingContext’s faultForRawRow method. 
(Note that this faulting behavior does not occur in Java Client.)

See Also: setFetchesRawRows

setRefreshesRefetchedObjects

public void setRefreshesRefetchedObjects(boolean flag)

Controls whether existing objects are overwritten with fetched values when they have been 
updated or changed. If flag is true, they are; if flag is false, they aren’t (the fetched data is simply 
discarded). The default is false.

For example, suppose that you fetch an employee object and then refetch it, without changing 
the employee between fetches. In this case, you want to refresh the employee when you refetch 
it, because another application might have updated the object since your first fetch. To keep your 
employee in sync with the employee data in the external repository, you’d need to replace the 
employee’s outdated values with the new ones. On the other hand, if you were to fetch the 
employee, change it, and then refetch it, you would not want to refresh the employee. If you to 
refreshed it—whether or not another application had changed the employee—you would lose 
the changes that you had made to the object.

You can get finer-grain control on an EODatabaseContext’s refreshing behavior in 
com.webobjects.eocontrol than you can with an EOFetchSpecification by using the delegate 
method databaseContextShouldUpdateCurrentSnapshot. For more information see the 
EODatabaseContext class specification and EODatabaseContext.Delegate interface 
specification.

See Also: refreshesRefetchedObjects



C L A S S  E O F e t c h S p e c i fi c a t i o n

221

setRequiresAllQualifierBindingVariables

public void setRequiresAllQualifierBindingVariables(boolean allVariablesRequired)

Sets the behavior when a missing binding is encountered during variable substitution. If 
allVariablesRequired is true, then a missing binding will cause an exception to be raised during 
variable substitution. The default value is false, which says to prune any nodes for which there 
are no bindings.

See Also: fetchSpecificationWithQualifierBindings:

setSortOrderings

public void setSortOrderings(NSArray sortOrderings)

Sets the receiver’s array of EOSortOrderings to sortOrderings. When a fetch is performed with the 
receiver, the results are sorted by applying each EOSortOrdering in the array.

setUsesDistinct

public void setUsesDistinct(boolean flag)

Controls whether duplicate objects or records are removed after fetching. If flag is true they’re 
removed; if flag is false they aren’t. EOFetchSpecifications by default don’t use distinct.

See Also: usesDistinct

sortOrderings

public NSArray sortOrderings()

Returns the receiver’s array of EOSortOrderings. When a fetch is performed with the receiver, 
the results are sorted by applying each EOSortOrdering in the array.

toString

public String toString()

Returns a String representation of the receiver.



222

C L A S S  E O F e t c h S p e c i fi c a t i o n

usesDistinct

public boolean usesDistinct()

Returns true if duplicate objects or records are removed after fetching, false if they aren’t. 
EOFetchSpecifications by default don’t use distinct.

See Also: setUsesDistinct



223

C L A S S  

EOGenericRecord

Inherits from: EOCustomObject

Package: com.webobjects.eocontrol

Class Description

EOGenericRecord is a generic enterprise object class that can be used in place of custom classes 
when you don’t need custom behavior. It implements the EOEnterpriseObject interface to 
provide the basic enterprise object behavior. An EOGenericRecord object has an 
EOClassDescription that provides metadata about the generic record, including the name of the 
entity that the generic record represents and the names of the record’s attributes and 
relationships. A generic record stores its properties in a dictionary using its attribute and 
relationship names as keys.

In the typical case of applications that access a relational database, the access layer’s modeling 
objects are an important part of how generic records map to database rows: If an EOModel 
doesn’t have a custom enterprise object class defined for a particular entity, an 
EODatabaseChannel using that model creates EOGenericRecords when fetching objects for that 
entity from the database server. During this process, the EODatabaseChannel also sets each 
generic record’s class description to an EOEntityClassDescription, providing the link to the 
record’s associated modeling objects. (EOModel, EODatabaseChannel, and 
EOEntityClassDescription are defined in EOAccess.)



224

C L A S S  E O G e n e r i c R e c o r d

Creating an Instance of EOGenericRecord
The best way to create an instance of EOGenericRecord is using the EOClassDescription method 
createInstanceWithEditingContext as follows:

EOEnterpriseObject newEO;
String entityName;       // Assume this exists.

EOClassDescription description = 
ClassDescription.classDescriptionForEntityName(entityName);

newEO = description.createInstanceWithEditingContext(null, null);

createInstanceWithEditingContext is preferable to using the constructor because the same code works 
if you later use a custom enterprise object class instead of EOGenericRecord. You can get an 
EOClassDescription for an entity name as shown above. Alternatively, you can get an 
EOClassDescription for a destination key of an existing enterprise object as follows:

EOEnterpriseObject newEO;
EOEnterpriseObject existingEO;   // Assume this exists.
String relationshipName;       // Assume this exists.
EOClassDescription sourceDesc = existingEO.classDescription();
EOClassDescription desc =

sourceDesc.classDescriptionForDestinationKey(relationshipName);

newEO = desc.createInstanceWithEditingContext(null, null);

The technique in this example is useful for inserting a new destination object into an existing 
enterprise object—for creating a new Movie object to add to a Studio’s array of Movies, for 
example. 



C L A S S  E O G e n e r i c R e c o r d

225

Constructors

EOGenericRecord

public EOGenericRecord(
EOEditingContext anEditingContext,
EOClassDescription aClassDescription,
EOGlobalID globalID)

Creates a new EOGenericRecord. The new EOGenericRecord gets its metadata from 
aClassDescription. You should pass null for anEditingContext and globalID, because the arguments are 
optional: EOGenericRecord’s implementation does nothing with them. Throws an exception if 
aClassDescription is null.

You shouldn’t use these constructors to create new EOGenericRecords. Rather, use 
EOClassDescription’s createInstanceWithEditingContext method. See the class description for more 
information.

public EOGenericRecord()

Description forthcoming.

public EOGenericRecord(EOClassDescription classDescription)

Description forthcoming.

Static Methods

usesDeferredFaultCreation

public static boolean usesDeferredFaultCreation()

Returns true, specifying that EOGenericRecords use deferred faulting (which is more efficient 
than the regular faulting mechanism.)



226

C L A S S  E O G e n e r i c R e c o r d

Instance Methods

classDescription

public EOClassDescription classDescription()

Description forthcoming.

storedValueForKey

public abstract Object storedValueForKey(String key)

Overrides the default implementation to simply invoke valueForKey.

See Also: storedValueForKey (EOKeyValueCoding)

takeStoredValueForKey

public abstract void takeStoredValueForKey(
Object value,
String key)

Overrides the default implementation to simply invoke takeValueForKey.

See Also: takeStoredValueForKey (EOKeyValueCoding)

takeValueForKey

public void takeValueForKey(
Object value,
String key)

Invokes the receiver’s willChange method, and sets the value for the property identified by key to 
value. If value is null, this method removes the receiver’s dictionary entry for key. 
(EOGenericRecord overrides the default implementation.) If key is not one of the receiver’s 
attribute or relationship names, EOGenericRecord’s implementation does not invoke 
handleTakeValueForUnboundKey. Instead, EOGenericRecord’s implementation does nothing.



C L A S S  E O G e n e r i c R e c o r d

227

valueForKey

public Object valueForKey(String key)

Returns the value for the property identified by key. (EOGenericRecord overrides the default 
implementation.) If key is not one of the receiver’s attribute or relationship names, 
EOGenericRecord’s implementation does not invoke handleQueryWithUnboundKey. Instead, 
EOGenericRecord’s implementation simply returns null. This method calls willRead.





229

C L A S S  

EOGlobalID

Inherits from: Object

Implements: Cloneable
Serializable

Package: com.webobjects.eocontrol

Class Description

An EOGlobalID is a compact, universal identifier for a persistent object, forming the basis for 
uniquing in Enterprise Objects Framework. An EOGlobalID uniquely identifies the same object 
or record both between EOEditingContexts in a single application and in multiple applications 
(as in distributed systems). EOGlobalID is an abstract class, declaring only the methods needed 
for identification. A concrete subclass must define appropriate storage for identifying values 
(such as primary keys), as well as an initialization or creation method to build IDs. See the 
EOKeyGlobalID class specification for an example of a concrete ID class.

Temporary Identifiers
EOEditingContexts and other object stores support the insertion of new objects without 
established IDs, creating temporary IDs that get replaced with permanent ones as soon as the 
new objects are saved to their persistent stores. The temporary IDs are instances of the 
EOTemporaryGlobalID class.



230

C L A S S  E O G l o b a l I D

When an EOObjectStore saves these newly inserted objects, it must replace the temporary IDs 
with persistent ones. When it does this, it must post an GlobalIDChangedNotification announcing the 
change so that observers can update their accounts of which objects are identified by which 
global IDs. The notification’s userInfo dictionary contains a mapping from the temporary IDs 
(the keys) to their permanent replacements (the values).

Constants

EOGlobalIDdefines String constants for the names of the notifications it posts. For more 
information, see the section “Notifications” (page 232) below.

Interfaces Implemented

Cloneable

clone

Constructors

EOGlobaIID

public EOGlobalID()

Description forthcoming.



Instance Methods

clone

public Object clone()

Conformance to Cloneable.

equals

public abstract boolean equals(Object anObject)

Description forthcoming.

hashCode

public abstract int hashCode()

Description forthcoming.

isTemporary

public boolean isTemporary()

Returns false. See the class description for more information.



232

C L A S S  E O G l o b a l I D

Notifications

GlobalIDChangedNotification

public static final String GlobalIDChangedNotification

Posted whenever EOTemporaryGlobalIDs are replaced by permanent EOGlobalIDs. The 
notification contains:

Notification Object null

Userinfo A mapping from the temporary IDs (keys) to permanent IDs 
(values)



233

C L A S S  

EOKeyComparisonQualifier

Inherits from: EOQualifier

Implements: EOQualifierEvaluation
NSCoding
EOKeyValueArchiving

Package: com.webobjects.eocontrol

Class Description

EOKeyComparisonQualifier is a subclass of EOQualifier that compares a named property of an 
object with a named value of another object. For example, to return all of the employees whose 
salaries are greater than those of their managers, you might use an expression such as “salary > 
manager.salary”, where “salary” is the left key and “manager.salary” is the right key. The 
“left key” is the property of the first object that’s being compared to a property in a second object; 
the property in the second object is the “right key.” Both the left key and the right key might be 
key paths. You can use EOKeyComparisonQualifier to compare properties of two different 
objects or to compare two properties of the same object.

EOKeyComparisonQualifier implements the EOQualifierEvaluation interface, which defines 
the method evaluateWithObject for in-memory evaluation. When an EOKeyComparisonQualifier 
object receives an evaluateWithObject message, it evaluates the given object to determine if it 
satisfies the qualifier criteria.

In addition to performing in-memory filtering, EOKeyComparisonQualifier can be used to 
generate SQL. When it’s used for this purpose, the key should be a valid property name of the 
root entity for the qualifier (or a valid key path).



234

C L A S S  E O K e y C o m p a r i s o n Q u a l i fi e r

Interfaces Implemented

EOQualifierEvaluation 

evaluateWithObject

NSCoding

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Constructors

EOKeyComparisonQualifier

public EOKeyComparisonQualifier(
String leftKey,
NSSelector selector,
String rightKey)

Creates and returns a new EOKeyComparisonQualifier object that compares the properties 
named by leftKey and rightKey, using the operator method selector, one of:

■ QualifierOperatorEqual

■ QualifierOperatorNotEqual

■ QualifierOperatorLessThan



C L A S S  E O K e y C o m p a r i s o n Q u a l i fi e r

235

■ QualifierOperatorGreaterThan

■ QualifierOperatorLessThanOrEqualTo

■ QualifierOperatorGreaterThanOrEqualTo

■ QualifierOperatorContains

■ QualifierOperatorLike

■ QualifierOperatorCaseInsensitiveLike

Enterprise Objects Framework supports SQL generation for these methods only. You can 
generate SQL using the EOSQLExpression static method sqlStringForKeyComparisonQualifier.

For example, the following excerpt creates an EOKeyComparisonQualifier qual that has the left 
key “lastName”, the operator method EOQualifierOperatorEqual, and the right key 
“member.lastName”. Once constructed, the qualifier qual is used to filter an in-memory array. 
The code excerpt returns an array of Guest objects whose lastName properties have the same value 
as the lastName property of the guest’s sponsoring member (this example is based on the Rentals 
sample database).

NSArray guests; /* Assume this exists */
EOKeyComparisonQualifier qual = new EOKeyComparisonQualifier(“lastName”, 

EOQualifier.QualifierOperatorEqual, 
“member.lastName”);

return EOQualifier.filteredArrayWithQualifier(guests, qual);

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.



236

C L A S S  E O K e y C o m p a r i s o n Q u a l i fi e r

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

Instance Methods

addQualifierKeysToSet

public void addQualifierKeysToSet(NSMutableSet aSet)

Description forthcoming.

classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.



C L A S S  E O K e y C o m p a r i s o n Q u a l i fi e r

237

evaluateWithObject

public boolean evaluateWithObject(NSKeyValueCodingAdditions object)

Returns true if the object object satisfies the qualifier, false otherwise. When an 
EOKeyComparisonQualifier object receives an evaluateWithObject message, it evaluates object 
to determine if it meets the qualifier criteria. This method can throw one of several possible 
exceptions if an error occurs. If your application allows users to construct arbitrary qualifiers 
(such as through a user interface), you may want to write code to catch any exceptions and 
properly respond to errors (for example, by displaying a panel saying that the user typed a 
poorly formed qualifier).

leftKey

public String leftKey()

Returns the receiver’s left key.

qualifierWithBindings

public EOQualifier qualifierWithBindings(
NSDictionary,
boolean)

Description forthcoming.

rightKey

public String rightKey()

Returns the receiver’s right key.

selector

public NSSelector selector()

Returns the receiver’s selector.



toString

public String toString()

Description forthcoming.

validateKeysWithRootClassDescription

public void validateKeysWithRootClassDescription(EOClassDescription classDesc)

Ensures that the receiver contains keys and key paths that belong to or originate from classDesc. 
This method raises an exception if an unknown key is found, otherwise it returns null to indicate 
that the keys contained by the qualifier are valid.



239

C L A S S  

EOKeyGlobalID

Inherits from: EOGlobalID

Implements: NSCoding
Cloneable

Package: com.webobjects.eocontrol

Class Description

EOKeyGlobalID is a concrete subclass of EOGlobalID whose instances represent persistent IDs 
based on EOModel information: an entity and the primary key values for the object being 
identified. When creating an EOKeyGlobalID, the key values must be supplied following 
alphabetical order for their attribute names. EOKeyGlobalID defines the globalIDWithEntityName for 
creating instances, but it’s much more convenient to create instances from fetched rows using 
EOEntity’s globalIDForRow: method. (EOEntity and EOModel are defined in EOAccess.) Note that 
you don’t use a constructor to create EOKeyGlobalIDs.



240

C L A S S  E O K e y G l o b a l I D

Interfaces Implemented

NSCoding

classForCoder

decodeObject

encodeWithCoder

Method Types

Creating instances

globalIDWithEntityName

Getting the entity name

entityName

Getting the key values

keyValues

keyCount

keyValuesArray

Comparison

equals



C L A S S  E O K e y G l o b a l I D

241

Constructors

EOKeyGlobalID

protected EOKeyGlobalID (String entityName, int hashCode)

Description forthcoming.

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

globalIDWithEntityName

public static EOKeyGlobalID globalIDWithEntityName(
String entityName,
Object[] keyValues)

Returns an EOKeyGlobalID based on entityName and keyValues.

EOKeyGlobalIDs are more conveniently created using EOEntity’s globalIDForRow: method 
(EOAccess).



242

C L A S S  E O K e y G l o b a l I D

Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

entityName

public String entityName()

Returns the name of the entity governing the object identified by the receiver. This is used by 
EODatabaseContexts (EOAccess) to identify an EOEntity (EOAccess) in methods such as 
faultForGlobalID.

equals

public boolean equals(Object anObject)

Returns true if the receiver and anObject share the same entity name and key values, false if they 
don’t. 

See Also: entityName, keyValues



hashCode

public int hashCode()

Returns an integer that can be used as a table address in a hash table structure. If two objects are 
equal (as determined by equals), they must have the same hash value.

keyCount

public int keyCount()

Returns the number of key values in the receiver.

keyValues

public Object[] keyValues()

Returns the receiver’s key values.

keyValuesArray

public NSArray keyValuesArray()

Returns the receiver’s key values as an NSArray.

toString

public String toString()

Description forthcoming.



244

C L A S S  E O K e y G l o b a l I D



245

C L A S S  

EOKeyValueCoding.
DefaultImplementation

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EOKeyValueCoding.Support provides default implementations of the EOKeyValueCoding 
interface.

An EOCustomObject uses EOKeyValueCoding.Support’s default implementations. Typically 
your custom enterprise object classes inherit from EOCustomObject and inherit the default 
implementations. EOKeyValueCoding.Support also enables you to put non-enterprise objects 
into the interface layer by declaring that your class conforms to key-value coding.

The methods in the Support class are just like the methods defined by the EOKeyValueCoding 
interface, except they are all static methods and they take an extra argument—the enterprise 
object on which the default implementation should operate. For example, suppose you want to 
implement an Employee enterprise object class that doesn’t inherit from EOCustomObject but 
that uses Support’s default implementations. Employee’s valueForKey method would look like 
this:

public Object valueForKey(String key)
return EOKeyValueCoding.Support.valueForKey(this, key);

}



246

C L A S S  E O K e y Va l u e C o d i n g .  D e f a u l t I m p l e m e n t a t i o n

Method Types

Accessing values

storedValueForKey

takeStoredValueForKey

Handling error conditions

handleQueryWithUnboundKey

Static Methods

handleQueryWithUnboundKey

public static Object handleQueryWithUnboundKey(
Object anObject,
String key)

Throws an IllegalArgumentException.

storedValueForKey

public static Object storedValueForKey(
Object anObject,
String key)

Returns anObject’s property identified by key. Similar to the implementation of valueForKey, but 
storedValueForKey resolves key with a different method-instance variable search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). 
For example, with a key of “lastName”, storedValueForKey looks for a method named 
_getLastName or _lastName.



C L A S S  E O K e y Va l u e C o d i n g .  D e f a u l t I m p l e m e n t a t i o n

247

2. If a private accessor isn’t found, searches for an instance variable based on key and returns 
its value directly. For example, with a key of “lastName”, storedValueForKey looks for an 
instance variable named _lastName or lastName.

3. If neither a private accessor or an instance variable is found, storedValueForKey searches for a 
public accessor method based on key. For the key “lastName”, this would be getLastName or 
lastName.

See Also: storedValueForKey (EOKeyValueCoding)

takeStoredValueForKey

public static void takeStoredValueForKey(
Object anObject,
Object value,
String key)

Sets anObject’s property identified by key to value. Similar to the implementation of takeValueForKey, 
but it resolves key with a different method-instance variable search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). 
For example, with a key of “lastName”, takeStoredValueForKey looks for a method named 
_setLastName.

2. If a private accessor isn’t found, searches for an instance variable based on key and sets its 
value directly. For example, with a key of “lastName”, takeStoredValueForKey looks for an 
instance variable named _lastName or lastName.

3. If neither a private accessor or an instance variable is found, takeStoredValueForKey searches for 
a public accessor method based on key. For the key “lastName”, this would be setLastName.

See Also: takeStoredValueForKey (EOKeyValueCoding)



248

C L A S S  E O K e y Va l u e C o d i n g .  D e f a u l t I m p l e m e n t a t i o n



249

C L A S S  

EOKeyValueCodingAdditions.Utility

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The EOKeyValueCodingAdditions.Utility class is a convenience that allows you to access the 
properties of EOKeyValueCodingAdditions objects and non-EOKeyValueCodingAdditions 
objects using the same code.

Utility’s methods are just like the methods defined by the EOKeyValueCodingAdditions 
interface, except they are static methods and they take an extra argument—the object on which 
the method should operate. Utility’s methods simply check to see if the object on which they 
operate is an EOKeyValueCodingAdditions object and invoke the corresponding 
EOKeyValueCodingAdditions method on the object if it is. Otherwise, they invoke the 
corresponding DefaultImplementation method (formerly implemented in the Support class), 
passing the object on which to operate.

For example, suppose that you want to access an object with the EOKeyValueCodingAdditions 
API but you don’t know if the object is an EOKeyValueCodingAdditions object. To do so, you 
simply use the corresponding Utility API, as in the following line of code:

values = EOKeyValueCodingAdditions.Utility.valuesForKeys(object, keys);

The above line of code is simply a short-cut for the following:

if (object instanceof EOKeyValueCodingAdditions) {



250

C L A S S  E O K e y Va l u e C o d i n g A d d i t i o n s . U t i l i t y

values = ((EOKeyValueCodingAdditions)object).valuesForKeys(keys);
} else {

values = EOKeyValueCodingAdditions.DefaultImplementation.valuesForKeys(
        object, keys);
}

Instance Methods

takeValuesFromDictionary

public abstract void takeValuesFromDictionary(
Object object, 
NSDictionary dictionary)

If the specified object is an EOKeyValueCodingAdditions object, invokes 
takeValuesFromDictionary on that object; otherwise invokes 
EOKeyValueCodingAdditions.DefaultImplementation’s takeValuesFromDictionary method 
with the object as the object on which to operate.

valuesForKeys

public abstract NSDictionary valuesForKeys(
Object object, 
NSArray keys)

If the specified object is an EOKeyValueCodingAdditions object, invokes valuesForKeys on that 
object; otherwise invokes EOKeyValueCodingAdditions.DefaultImplementation’s 
valuesForKeys method with the object as the object on which to operate.



251

C L A S S  

EOKeyValueCodingAdditions.
DefaultImplementation

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The EOKeyValueCodingAdditions.DefaultImplementation class provides default 
implementations of the EOKeyValueCodingAdditions interface.

An EOCustomObject uses EOKeyValueCodingAdditions.DefaultImplementation’s default 
implementations. EOKeyValueCodingAdditions.Support also enables you to put 
non-enterprise objects into the interface layer by declaring that your class conforms to key-value 
coding.

The methods in the DefaultImplementation class are just like the methods defined by the 
EOKeyValueCodingAdditions interface, except they are all static methods and they take an 
extra argument—the enterprise object on which the default implementation should operate. For 
example, suppose you want to implement an Employee enterprise object class that doesn’t 
inherit from EOCustomObject but that uses DefaultImplementation’s default implementations. 
Employee’s valuesForKeys method would look like this:

public abstract NSDictionary valuesForKeys(NSArray keys)
return EOKeyValueCodingAdditions.Support.valuesForKeys(this, keys);

}



252

C L A S S  E O K e y Va l u e C o d i n g A d d i t i o n s .  D e f a u l t I m p l e m e n t a t i o n

Static Methods

takeValueForKeyPath

public static void takeValueForKeyPath(
NSKeyValueCoding anObject,
Object value,
String keyPath)

Sets anObject’s property identified by keyPath to value. A key path has the form 
relationship.property (with one or more relationships). Support’s implementation gets the 
destination object for each relationship using valueForKey, and sends the final object a 
takeValueForKeymessage with value and property.

takeValuesFromDictionary

public static void takeValuesFromDictionary(
NSKeyValueCoding anObject,
NSDictionary aDictionary)

Sets properties of anObject with values from aDictionary, using its keys to identify the 
properties. Support’s implementation invokes takeValueForKey for each key-value pair, 
substituting null for EONullValues in aDictionary.

See Also: takeValuesFromDictionary (EOKeyValueCodingAdditions)

valueForKeyPath

public static Object valueForKeyPath(
NSKeyValueCoding anObject,
String keyPath)

Returns anObject’s value for the derived property identified by keyPath. A key path has the form 
relationship.property (with one or more relationships). Support’s implementation of this 
method gets the destination object for each relationship using valueForKey, and returns the result 
of a valueForKey message to the final object.



valuesForKeys

public static NSDictionary valuesForKeys(
NSKeyValueCoding anObject,
NSArray keys)

Returns a dictionary containing anObject’s property values identified by each of keys. Support’s 
implementation invokes valueForKey for each key in keys, substituting EONullValues in the 
dictionary for returned null values.

See Also: valuesForKeys (EOKeyValueCodingAdditions)



254

C L A S S  E O K e y Va l u e C o d i n g A d d i t i o n s .  D e f a u l t I m p l e m e n t a t i o n



255

C L A S S  

EOKeyValueQualifier

Inherits from: EOQualifier 

Implements: NSCoding
EOKeyValueArchiving

Package: com.webobjects.eocontrol

Class Description

EOKeyValueQualifier is a subclass of EOQualifier that compares a named property of an object 
with a supplied value, for example, “salary > 1500”. EOKeyValueQualifier implements the 
EOQualifierEvaluation interface, which defines the method evaluateWithObject for in-memory 
evaluation. When an EOKeyValueQualifier object receives an evaluateWithObject message, it 
evaluates the given object to determine if it satisfies the qualifier criteria. 

In addition to performing in-memory filtering, EOKeyValueQualifier can be used to generate 
SQL. When it’s used for this purpose, the key should be a valid property name of the root entity 
for the qualifier (or a valid key path).



256

C L A S S  E O K e y Va l u e Q u a l i fi e r

Interfaces Implemented

EOQualifierEvaluation 

evaluateWithObject

NSCoding

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Constructors

EOKeyValueQualifier

public EOKeyValueQualifier(
String key,
NSSelector selector,
Object value)

Creates and returns a new EOKeyValueQualifier. 

If key, selector, and value are provided, the EOKeyValueQualifier compares values for key to value 
using the operator method selector. The possible values for selector are as follows:

■ QualifierOperatorEqual

■ QualifierOperatorNotEqual



C L A S S  E O K e y Va l u e Q u a l i fi e r

257

■ QualifierOperatorLessThan

■ QualifierOperatorGreaterThan

■ QualifierOperatorLessThanOrEqualTo

■ QualifierOperatorGreaterThanOrEqualTo

■ QualifierOperatorContains

■ QualifierOperatorLike

■ QualifierOperatorCaseInsensitiveLike

Enterprise Objects Framework supports SQL generation for these methods only. You can 
generate SQL using the EOSQLExpression static method sqlStringForKeyValueQualifier.

For example, the following excerpt creates an EOKeyValueQualifier qual that has the key 
“name”, the operator method QualifierOperatorEqual, and the value “Smith”. Once constructed, the 
qualifier qual is used to filter an in-memory array.

NSArray employees /* Assume this exists */
EOKeyValueQualifier qual = new EOKeyValueQualifier(“name”, 

EOQualifier.QualifierOperatorEqual, “Smith”);
return EOQualifier.filteredArrayWithQualifier(employees, qual);

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.



258

C L A S S  E O K e y Va l u e Q u a l i fi e r

Instance Methods

addQualifierKeysToSet

public void addQualifierKeysToSet(NSMutableSet aSet)

Description forthcoming.

classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

evaluateWithObject

public boolean evaluateWithObject(NSKeyValueCodingAdditions anObject)

Returns true if the object anObject satisfies the qualifier, false otherwise. When an 
EOKeyValueQualifier object receives the evaluateWithObjectmessage, it evaluates anObject to 
determine if it meets the qualifier criteria. This method can throw one of several possible 
exceptions if an error occurs. If your application allows users to construct arbitrary qualifiers 



(such as through a user interface), you may want to write code to catch any exceptions and 
properly respond to errors (for example, by displaying a panel saying that the user typed a 
poorly formed qualifier).

key

public String key()

Returns the receiver’s key. 

qualifierWithBindings

public EOQualifier qualifierWithBindings(
NSDictionary,
boolean)

Description forthcoming.

selector

public NSSelector selector()

Returns the receiver’s selector. 

toString

public String toString()

Description forthcoming.

value

public Object value()

Returns the receiver’s value. 



260

C L A S S  E O K e y Va l u e Q u a l i fi e r

validateKeysWithRootClassDescription

public voidvalidateKeysWithRootClassDescription(EOClassDescription classDesc)

Ensures that the receiver contains keys and key paths that belong to or originate from classDesc. 
This method raises an exception if an unknown key is found, otherwise it returns null to indicate 
that the keys contained by the qualifier are valid.



261

C L A S S  

EOKeyValueCoding.Utility

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The EOKeyValueCoding.Utility class is a convenience that allows you to access the properties of 
EOKeyValueCoding objects and non-EOKeyValueCoding objects using the same code.

Utility’s methods are just like the methods defined by the EOKeyValueCoding interface, except 
they are static methods and they take an extra argument—the object on which the method 
should operate. Utility’s methods simply check to see if the object on which they operate is an 
EOKeyValueCoding object and invoke the corresponding EOKeyValueCoding method on the 
object if it is. Otherwise, they invoke the corresponding DefaultImplementation method 
(formerly implemented in the Support class), passing the object on which to operate.

For example, suppose that you want to access an object with the EOKeyValueCoding API but 
you don’t know if the object is an EOKeyValueCoding object. To do so, you simply use the 
corresponding Utility API, as in the following line of code:

theValue = EOKeyValueCoding.Utility.storedValueForKey(object, key);

The above line of code is simply a short-cut for the following:

if (object instanceof EOKeyValueCoding) {
theValue = ((EOKeyValueCoding)object).storedValueForKey(key);

} else {



262

C L A S S  E O K e y Va l u e C o d i n g . U t i l i t y

theValue = EOKeyValueCoding.DefaultImplementation.storedValueForKey(
        object, key);
}

Static Methods

storedValueForKey

public static Object storedValueForKey(Object object, String key)

If the specified object is an EOKeyValueCoding object, invokes storedValueForKey on that object; 
otherwise invokes EOKeyValueCoding.DefaultImplementation’s storedValueForKey method with 
the object as the object on which to operate.

decodeWithKeyValueUnarchiver

public static void takeStoredValueForKey(Object object, Object value, String key)

If the specified object is an EOKeyValueCoding object, invokes takeStoredValueForKey on that object; 
otherwise invokes EOKeyValueCoding.DefaultImplementation’s takeStoredValueForKey method 
with the object as the object on which to operate.



C L A S S  E O K e y Va l u e C o d i n g . U t i l i t y

263



264

C L A S S  E O K e y Va l u e C o d i n g . U t i l i t y





266

C L A S S  E O K e y Va l u e C o d i n g . U t i l i t y



267

C L A S S  

EONotQualifier

Inherits from: EOQualifier

Implements: NSCoding
EOKeyValueArchiving

Package: com.webobjects.eocontrol

Class Description

EONotQualifier is a subclass of EOQualifier that contains a single qualifier. When an 
EONotQualifier object is evaluated, it returns the inverse of the result obtained by evaluating the 
qualifier it contains.

EONotQualifier implements the EOQualifierEvaluation interface, which defines the method 
evaluateWithObject for in-memory evaluation. When an EONotQualifier object receives an 
evaluateWithObject message, it evaluates the given object to determine if it satisfies the qualifier 
criteria.

You can generate SQL code for an EONotQualifier using the EOSQLExpression static method 
sqlStringForNegatedQualifier. 



268

C L A S S  E O N o t Q u a l i fi e r

Interfaces Implemented

EOQualifierEvaluation

evaluateWithObject

NSCoding

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Constructors

EONotQualifier

public com.webobjects.eocontrol.EONotQualifier(EOQualifier aQualifier)

Creates and returns a new EONotQualifier

If aQualifier is specified, it is used as the qualifier. For example, the following code excerpt 
constructs a qualifier, baseQual, and uses it to initialize an EONotQualifier, negQual. The 
EONotQualifier negQual is then used to filter an in-memory array. The code excerpt returns an 
array of Guest objects whose lastName properties do not have the same value as the lastName 
property of the guest’s sponsoring member (this example is based on the Rentals sample 
database). In other words, the EONotQualifier negQual inverts the effects of baseQual.

NSArray guests /* Assume this exists */



C L A S S  E O N o t Q u a l i fi e r

269

EOQualifier baseQual;
EONotQualifier negQual;

baseQual = EOQualifier.qualifierWithQualifierFormat(“lastName = member.lastName”, null);
negQual = new EONotQualifier(baseQual);
return EOQualifier.filteredArrayWithQualifier(guests, negQual);

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

Instance Methods

addQualifierKeysToSet

public void addQualifierKeysToSet(NSMutableSet aSet)

Description forthcoming.



classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

evaluateWithObject

public boolean evaluateWithObject(NSKeyValueCodingAdditions anObject)

Returns true if the object anObject satisfies the EONotQualifier, false otherwise. This method can 
throw one of several possible exceptions if an error occurs. If your application allows users to 
construct arbitrary qualifiers (such as through a user interface), you may want to write code to 
catch any exceptions and respond to errors (for example, by displaying a panel saying that the 
user typed a poorly formed qualifier).

qualifier

public EOQualifier qualifier()

Returns the receiver’s qualifier.



C L A S S  E O N o t Q u a l i fi e r

271

qualifierWithBindings

public EOQualifier qualifierWithBindings(
NSDictionary,
boolean)

Description forthcoming.

toString

public String toString()

Description forthcoming.

validateKeysWithRootClassDescription

public void validateKeysWithRootClassDescription(EOClassDescription classDesc)

Ensures that the receiver contains keys and key paths that belong to or originate from classDesc. 
This method raises an exception if an unknown key is found, otherwise it returns null to indicate 
that the keys contained by the qualifier are valid.



272

C L A S S  E O N o t Q u a l i fi e r



273

C L A S S  

EOObjectStore

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EOObjectStore is the abstract class that defines the API for an “intelligent” repository of objects, 
the control layer’s object storage abstraction. An object store is responsible for constructing and 
registering objects, servicing object faults, and saving changes made to objects. For more 
information on the object storage abstraction, see “Object Storage Abstraction” (page 23) in the 
introduction to the EOControl Framework.

EOEditingContext is the principal EOObjectStore subclass and is used for managing objects in 
memory—in fact, the primary purpose of the EOObjectStore class is to define an API for 
servicing editing contexts, not to define a completely general API. Other subclasses of 
EOObjectStore are:

■ EOCooperatingObjectStore

■ EOObjectStoreCoordinator

■ EODatabaseContext (EOAccess)

A subclass of EOObjectStore must implement all of its methods. The default implementations 
simply throw exceptions.



274

C L A S S  E O O b j e c t S t o r e

Constants

EOObjectStore defines the following String constants to be used as keys in the notifications it 
posts:

■ DeletedKey

■ InsertedKey

■ InvalidatedKey

■ UpdatedKey

Additionally, EOObjectStore defines String constants for the names of the notifications it posts. 
See the section “Notifications” (page 281) for more information on the notifications.

Method Types

Initializing objects

initializeObject

Getting objects

objectsWithFetchSpecification

objectsForSourceGlobalID

Getting faults

faultForGlobalID

arrayFaultWithSourceGlobalID

refaultObject

faultForRawRow



C L A S S  E O O b j e c t S t o r e

275

Locking objects

lockObjectWithGlobalID

isObjectLockedWithGlobalID

Saving changes to objects

saveChangesInEditingContext

Invalidating and forgetting objects

invalidateAllObjects

invalidateObjectsWithGlobalIDs:

editingContextDidForgetObjectWithGlobalID

Interacting with the server

invokeRemoteMethod (Java Client only)

Constructors

EOObjectStore

public EOObjectStore()

Description forthcoming.



276

C L A S S  E O O b j e c t S t o r e

Instance Methods

arrayFaultWithSourceGlobalID

public abstract NSArray arrayFaultWithSourceGlobalID(
EOGlobalID globalID,
String relationshipName,
EOEditingContext anEditingContext)

Implemented by subclasses to return the destination objects for a to-many relationship, whether 
as real instances or as faults (empty enterprise objects). globalID identifies the source object for the 
relationship (which doesn’t necessarily exist in memory yet), and relationshipName is the name of 
the relationship. The object identified by globalID and the destination objects for the relationship 
all belong to anEditingContext.

If you implement this method to return a fault, you must define an EOFaultHandler subclass 
that stores globalID and relationshipName, using them to fetch the objects in a later 
objectsForSourceGlobalID message and that turns the fault into an array containing those objects. See 
the EOFaultHandler class specification for more information on faults.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more 
information on how this method works in concrete subclasses.

See Also: faultForGlobalID

dispose

public void dispose()

Description forthcoming.



C L A S S  E O O b j e c t S t o r e

277

editingContextDidForgetObjectWithGlobalID

public abstract void editingContextDidForgetObjectWithGlobalID(
EOEditingContext context,
EOGlobalID gid)

Invoked to inform the object store that it can stop keeping data about an object it passed to a 
child. Don’t invoke this method; it is invoked automatically by the Framework.

faultForGlobalID

public abstract EOEnterpriseObject faultForGlobalID(
EOGlobalID globalID,
EOEditingContext anEditingContext)

If the receiver is anEditingContext and the object associated with globalID is already registered in 
anEditingContext, this method returns that object. Otherwise it creates a to-one fault, registers it in 
anEditingContext, and returns the fault. This method is always directed first at anEditingContext, 
which forwards the message to its parent object store if needed to create a fault.

If you implement this method to return a fault (an empty enterprise object), you must define an 
EOFaultHandler subclass that stores globalID, uses it to fetch the object’s data, and initializes the 
object with EOObjectStore’s initializeObject. See the EOFaultHandler class specification for more 
information on faults.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more 
information on how this method works in concrete subclasses.

See Also: arrayFaultWithSourceGlobalID, recordObject (EOEditingContext)

faultForRawRow

public abstract EOEnterpriseObject faultForRawRow(
NSDictionary row,
String entityName,
EOEditingContext anEOEditingContext)

Returns a fault for the enterprise object corresponding to row, which is a dictionary of values 
containing at least the primary key of the corresponding enterprise object. This is especially 
useful if you have fetched raw rows and now want a unique enterprise object. 



278

C L A S S  E O O b j e c t S t o r e

initializeObject

public abstract void initializeObject(
EOEnterpriseObject anObject,
EOGlobalID globalID,
EOEditingContext anEditingContext)

Implemented by subclasses to set anObject’s properties, as obtained for globalID. This method is 
typically invoked after anObject has been created using EOClassDescription’s 
createInstanceWithEditingContext or using EOGenericRecord’s or EOCustomObject’s constructors. 
This method is also invoked after a fault has been fired.

See Also: awakeFromInsertion (EOEnterpriseObject), awakeFromFetch (EOEnterpriseObject)

invalidateAllObjects

public abstract void invalidateAllObjects()

Discards the values of all objects held by the receiver and turns them into faults (empty 
enterprise objects). This causes all locks to be dropped and any transaction to be rolled back. The 
next time any object is accessed, its data is fetched anew. Any child object stores are also notified 
that the objects are no longer valid. See the EOEditingContext class specification for more 
information on how this method works in concrete subclasses.

This method should also post an InvalidatedAllObjectsInStoreNotification.

See Also: invalidateObjectsWithGlobalIDs:, refaultObject

invalidateObjectsWithGlobalIDs:

public abstract void invalidateObjectsWithGlobalIDs(NSArray globalIDs)

Signals that the objects identified by the EOGlobalIDs in globalIDs should no longer be considered 
valid and that they should be turned into faults (empty enterprise objects). This causes data for 
each object to be refetched the next time it’s accessed. Any child object stores are also notified 
that the objects are no longer valid.

See Also: invalidateAllObjects, refaultObject



C L A S S  E O O b j e c t S t o r e

279

invokeRemoteMethod

public Object invokeRemoteMethod(
EOEditingContext anEditingContext,
EOGlobalID receiverGID,
String methodName,
Class[] aClass
Object[] arguments)

Invokes methodName on the enterprise object identified by receiverGID in anEditingContext, using 
arguments. To pass an enterprise object as an argument, use its global ID. This method has the side 
effect of saving all the changes from the editing context all the way down to the editing context 
in the server session.

isObjectLockedWithGlobalID

public abstract boolean isObjectLockedWithGlobalID(
EOGlobalID globalID,
EOEditingContext anEditingContext)

Returns true if the object identified by globalID is locked, false if it isn’t. See the 
EODatabaseContext (EOAccess) class specification for more information on how this method 
works in concrete subclasses.

lockObjectWithGlobalID

public abstract void lockObjectWithGlobalID(
EOGlobalID globalID,
EOEditingContext anEditingContext)

Locks the object identified by globalID. See the EODatabaseContext (EOAccess) class specification 
for more information on how this method works in concrete subclasses.



280

C L A S S  E O O b j e c t S t o r e

objectsForSourceGlobalID

public abstract NSArray objectsForSourceGlobalID(
EOGlobalID globalID,
String relationshipName,
EOEditingContext anEditingContext)

Returns the destination objects for a to-many relationship. This method is used by an array fault 
previously constructed using arrayFaultWithSourceGlobalID. globalID identifies the source object for 
the relationship (which doesn’t necessarily exist in memory yet), and relationshipName is the name 
of the relationship. The object identified by globalID and the destination objects for the 
relationship all belong to anEditingContext.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more 
information on how this method works in concrete subclasses.

objectsWithFetchSpecification

public abstract NSArray objectsWithFetchSpecification(
EOFetchSpecification aFetchSpecification,
EOEditingContext anEditingContext)

Fetches objects from an external store according to the criteria specified by fetchSpecification and 
returns them in an array for inclusion in anEditingContext. If one of these objects is already present 
in memory, this method doesn’t overwrite its values with the new values from the database. 
Throws an exception if an error occurs.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more 
information on how this method works in concrete subclasses.

refaultObject

public abstract void refaultObject(
EOEnterpriseObject anObject,
EOGlobalID globalID,
EOEditingContext anEditingContext)

Turns anObject into a fault (an empty enterprise object), identified by globalID in anEditingContext. 
Objects that have been inserted but not saved, or that have been deleted, shouldn’t be refaulted. 
When using com.webobjects.eocontrol, use this method with caution since refaulting an object 
doesn’t remove the object snapshot from the undo stack.



C L A S S  E O O b j e c t S t o r e

281

saveChangesInEditingContext

public abstract void saveChangesInEditingContext(EOEditingContext anEditingContext)

Saves any changes in anEditingContext to the receiver’s repository. Sends insertedObjects, 
deletedObjects, and updatedObjects messages to anEditingContext and applies the changes to the 
receiver’s data repository as appropriate. For example, EODatabaseContext (EOAccess) 
implements this method to send operations to an EOAdaptor (EOAccess) for making the 
changes in a database.

Notifications

InvalidatedAllObjectsInStoreNotification

public static final String InvalidatedAllObjectsInStoreNotification

Posted whenever an EOObjectStore receives an invalidateAllObjects message. The notification 
contains:

ObjectsChangedInStoreNotification

public static final String ObjectsChangedInStoreNotification

Posted whenever an EOObjectStore observes changes to its objects. The notification contains:

Notification Object
The EOObjectStore that observed the change

Notification Object The EOObjectStore that received the 
invalidateAllObjects message.

Userinfo None



282

C L A S S  E O O b j e c t S t o r e

userInfo
A dictionary containing the following keys and values:

Key Value

UpdatedKey An NSArray of EOGlobalIDs for objects whose properties have changed. A 
receiving EOEditingContext typically responds by refaulting its 
corresponding objects.

InsertedKey An NSArray of EOGlobalIDs for objects that have been inserted into the 
EOObjectStore.

DeletedKey An NSArray of EOGlobalIDs for objects that have been deleted from the 
EOObjectStore.

InvalidatedKey An NSArray of EOGlobalIDs for objects that have been turned into faults.



C L A S S  E O O b j e c t S t o r e

283





285

C L A S S  

EOObjectStoreCoordinator

Inherits from: EOObjectStore

Implements: NSDisposable

Package: com.webobjects.eocontrol

Class Description

EOObjectStoreCoordinator is a part of the control layer’s object storage abstraction. An 
EOObjectStoreCoordinator object acts as a single object store by directing one or more 
EOCooperatingObjectStores in managing objects from distinct data repositories.

For more general information on the object storage abstraction, see “Object Storage Abstraction” 
(page 23) in the introduction to the EOControl Framework.

EOObjectStore Methods
EOObjectStoreCoordinator overrides the following EOObjectStore methods:

■ objectsWithFetchSpecification

■ objectsForSourceGlobalID

■ faultForGlobalID

■ arrayFaultWithSourceGlobalID

■ refaultObject



286

C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

■ saveChangesInEditingContext

■ invalidateAllObjects

■ invalidateObjectsWithGlobalIDs:

With the exception of saveChangesInEditingContext, EOObjectStoreCoordinator’s implementation of 
these methods simply forwards the message to an EOCooperatingObjectStore or stores. The 
message invalidateAllObjects is forwarded to all of a coordinator’s cooperating stores. The rest of 
the messages are forwarded to the appropriate store based on which store responds true to the 
messages ownsGlobalID, ownsObject, and handlesFetchSpecification (which message is used depends on 
the context). The EOObjectStore methods listed above aren’t documented in this class 
specification (except for saveChangesInEditingContext)—for descriptions of them, see the 
EOObjectStore and EODatabaseContext (EOAccess) class specifications

For the method saveChangesInEditingContext, the coordinator guides its cooperating stores through 
a multi-pass save protocol in which each cooperating store saves its own changes and forwards 
remaining changes to the other of the coordinator’s stores. For example, if in its 
recordChangesInEditingContext method one cooperating store notices the removal of an object from 
an “owning” relationship but that object belongs to another cooperating store, it informs the 
other store by sending the coordinator a forwardUpdateForObject message. For a more details, see the 
method description for saveChangesInEditingContext.

Although it manages objects from multiple repositories, EOObjectStoreCoordinator doesn’t 
absolutely guarantee consistent updates when saving changes across object stores. If your 
application requires guaranteed distributed transactions, you can either provide your own 
solution by creating a subclass of EOObjectStoreCoordinator that integrates with a TP monitor, 
use a database server with built-in distributed transaction support, or design your application 
to write to only one object store per save operation (though it may read from multiple object 
stores). For more discussion of this subject, see the method description for 
saveChangesInEditingContext.

Constants

EOObjectStoreCoordinator defines String constants for the notifications it posts. For more 
information, see the section “Notifications” (page 296).



C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

287

Method Types

Constructors

EOObjectStoreCoordinator

Setting the default coordinator

setDefaultCoordinator

defaultCoordinator

Managing EOCooperatingObjectStores

addCooperatingObjectStore

removeCooperatingObjectStore

cooperatingObjectStores

Saving changes

saveChangesInEditingContext

Communication between EOCooperatingObjectStores

forwardUpdateForObject

valuesForKeys

Returning EOCooperatingObjectStores

objectStoreForGlobalID

objectStoreForFetchSpecification

objectStoreForObject

Getting the userInfo dictionary

userInfo

setUserInfo



288

C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

Constructors

EOObjectStoreCoordinator

public EOObjectStoreCoordinator()

Creates and returns an EOObjectStoreCoordinator. 

Static Methods

defaultCoordinator

public static Object defaultCoordinator()

Returns a shared instance of EOObjectStoreCoordinator.

setDefaultCoordinator

public static void setDefaultCoordinator(EOObjectStoreCoordinator coordinator)

Sets a shared instance EOObjectStoreCoordinator.



C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

289

Instance Methods

addCooperatingObjectStore

public void addCooperatingObjectStore(EOCooperatingObjectStore store)

Adds store to the list of EOCooperatingObjectStores that need to be queried and notified about 
changes to enterprise objects. The receiver reuses its stores: they don’t go away until the 
EOObjectStoreCoordinator is destroyed or until the stores are explicitly removed. Posts the 
notification CooperatingObjectStoreWasAdded.

See Also: removeCooperatingObjectStore, cooperatingObjectStores

arrayFaultWithSourceGlobalID

public NSArray arrayFaultWithSourceGlobalID(
EOGlobalID anEOGlobalID,
String aString,
EOEditingContext anEOEditingContext)

Description forthcoming.

cooperatingObjectStores

public NSArray cooperatingObjectStores()

Returns the receiver’s EOCooperatingObjectStores. 

See Also: addCooperatingObjectStore, removeCooperatingObjectStore

dispose

public void dispose()

Conformance to NSDisposable.



290

C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

editingContextDidForgetObjectWithGlobalID

public void editingContextDidForgetObjectWithGlobalID(
EOEditingContext anEOEditingContext,
EOGlobalID anEOGlobalID)

Description forthcoming.

faultForGlobalID

public EOEnterpriseObject faultForGlobalID(
EOGlobalID anEOGlobalID,
EOEditingContext anEOEditingContext)

Description forthcoming.

faultForRawRow

public EOEnterpriseObject faultForRawRow(
NSDictionary aNSDictionary,
String aString,
EOEditingContext anEOEditingContext)

Description forthcoming.

forwardUpdateForObject

public void forwardUpdateForObject(
EOEnterpriseObject object,
NSDictionary changes)

Tells the receiver to forward a message from an EOCooperatingObjectStore to another store, 
informing it that changes need to be made to object. For example, inserting an object in a 
relationship property of one EOCooperatingObjectStore might require changing a foreign key 
property in an object owned by another EOCooperatingObjectStore.

This method first locates the EOCooperatingObjectStore that’s responsible for applying changes, 
and then it sends the store the message recordUpdateForObject.



C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

291

initializeObject

public void initializeObject(
EOEnterpriseObject anEOEnterpriseObject,
EOGlobalID anEOGlobalID,
EOEditingContext anEOEditingContext)

Description forthcoming.

invalidateAllObjects

public void invalidateAllObjects()

Description forthcoming.

invalidateObjectsWithGlobalIDs

public void invalidateObjectsWithGlobalIDs(NSArray aNSArray)

Description forthcoming.

isObjectLockedWithGlobalID

public boolean isObjectLockedWithGlobalID(
EOGlobalID anEOGlobalID,
EOEditingContext anEOEditingContext)

Description forthcoming.

lockObjectWithGlobalID

public void lockObjectWithGlobalID(
EOGlobalID anEOGlobalID,
EOEditingContext anEOEditingContext)

Description forthcoming.



292

C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

objectsForSourceGlobalID

public NSArray objectsForSourceGlobalID(
EOGlobalID anEOGlobalID,
String aString,
EOEditingContext anEOEditingContext)

Description forthcoming.

objectsWithFetchSpecification

public NSArray objectsWithFetchSpecification(
EOFetchSpecification anEOFetchSpecification,
EOEditingContext anEOEditingContext)

Description forthcoming.

refaultObject

public void refaultObject(
EOEnterpriseObject anEOEnterpriseObject,
EOGlobalID anEOGlobalID,
EOEditingContext anEOEditingContext)

Description forthcoming.

objectStoreForFetchSpecification

public EOCooperatingObjectStore objectStoreForFetchSpecification(EOFetchSpecification fetchSpecification)

Returns the EOCooperatingObjectStore responsible for fetching objects with fetchSpecification. 
Returns null if no EOCooperatingObjectStore can be found that responds true to 
handlesFetchSpecification.

See Also: objectStoreForGlobalID, objectStoreForObject



C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

293

objectStoreForGlobalID

public EOCooperatingObjectStore objectStoreForGlobalID(EOGlobalID globalID)

Returns the EOCooperatingObjectStore for the object identified by globalID. Returns null if no 
EOCooperatingObjectStore can be found that responds true to ownsGlobalID.

See Also: objectStoreForFetchSpecification, objectStoreForObject

objectStoreForObject

public EOCooperatingObjectStore objectStoreForObject(Object object)

Returns the EOCooperatingObjectStore that owns object. Returns null if no 
EOCooperatingObjectStore can be found that responds true to ownsObject. 

See Also: objectStoreForFetchSpecification, objectStoreForGlobalID

objectsForSourceGlobalID

public NSArray objectsForSourceGlobalID(
EOGlobalID anEOGlobalID,
String aString,
EOEditingContext anEOEditingContext)

Description forthcoming.

objectsWithFetchSpecification

public NSArray objectsWithFetchSpecification(
EOFetchSpecification anEOFetchSpecification,
EOEditingContext anEOEditingContext)

Description forthcoming.



294

C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

refaultObject

public void refaultObject(
EOEnterpriseObject anEOEnterpriseObject,
EOGlobalID anEOGlobalID,
EOEditingContext anEOEditingContext)

Description forthcoming.

removeCooperatingObjectStore

public void removeCooperatingObjectStore(EOCooperatingObjectStore store)

Removes store from the list of EOCooperatingObjectStores that need to be queried and notified 
about changes to enterprise objects. Posts the notification CooperatingObjectStoreWasRemoved.

See Also: addCooperatingObjectStore, cooperatingObjectStores

saveChangesInEditingContext

public void saveChangesInEditingContext(EOEditingContext anEditingContext)

Overrides the EOObjectStore implementation to save the changes made in anEditingContext. This 
message is sent by an EOEditingContext to an EOObjectStoreCoordinator to commit changes. 
When an EOObjectStoreCoordinator receives this message, it guides its 
EOCooperatingObjectStores through a multi-pass save protocol in which each 
EOCooperatingObjectStore saves its own changes and forwards remaining changes to other 
EOCooperatingObjectStores. When this method is invoked, the following sequence of events 
occurs:

1. The receiver sends each of its EOCooperatingObjectStores the message 
prepareForSaveWithCoordinator, which informs them that a multi-pass save operation is 
beginning. When the EOCooperatingObjectStore is an EODatabaseContext (EOAccess), it 
takes this opportunity to generate primary keys for any new objects in the EOEditingContext.

2. The receiver sends each of its EOCooperatingObjectStores the message 
recordChangesInEditingContext, which prompts them to examine the changed objects in the 
editing context, record operations that need to be performed, and notify the receiver of any 
changes that need to be forwarded to other stores. For example, if in its 
recordChangesInEditingContext method one EOCooperatingObjectStore notices the removal of an 



C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

295

object from an “owning” relationship but that object belongs to another 
EOCooperatingObjectStore, it informs the other store by sending the coordinator a 
forwardUpdateForObject message. 

3. The receiver sends each of its EOCooperatingObjectStores the message ownsGlobalID. This tells 
the stores to transmit their changes to their underlying databases. When the 
EOCooperatingObjectStore is an EODatabaseContext, it responds to this message by taking 
the EODatabaseOperations (EOAccess) that were constructed in the previous step, 
constructing EOAdaptorOperations (EOAccess) from them, and giving the 
EOAdaptorOperations to an available EOAdaptorChannel (EOAccess) for execution.

4. If ownsGlobalID fails for any of the EOCooperatingObjectStores, all stores are sent the message 
rollbackChanges.

5. If ownsGlobalID succeeds for all EOCooperatingObjectStores, the receiver sends them the 
message commitChanges, which has the effect of telling the adaptor to commit the changes. 

6. If commitChanges fails for a particular EOCooperatingObjectStore, that store and all subsequent 
ones are sent the message rollbackChanges. However, the stores that have already committed 
their changes do not roll back. In other words, the coordinator doesn’t perform the two-phase 
commit protocol necessary to guarantee consistent distributed update.

This method raises an exception if an error occurs.

setUserInfo

public void setUserInfo(NSDictionary dictionary)

Sets the dictionary of auxiliary data, which your application can use for whatever it needs.

See Also: userInfo

userInfo

public NSDictionary userInfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary 
information it needs.

See Also: setUserInfo



valuesForKeys

public NSDictionary valuesForKeys(
NSArray keys,
Object object)

Communicates with the appropriate EOCooperatingObjectStore to get the values identified by 
keys for object, so that it can then forward them on to another EOCooperatingObjectStore. 
EOCooperatingObjectStores can hold values for an object that augment the properties in the 
object. For instance, an EODatabaseContext (EOAccess) stores foreign key information for the 
objects it owns. These foreign keys may well not be defined as properties of the object. Other 
EODatabaseContexts can find out the object’s foreign keys by sending the EODatabaseContext 
that owns the object a valuesForKeys message (through the coordinator). 

Notifications

The following notifications are declared and posted by EOObjectStoreCoordinator.

CooperatingObjectStoreWasAdded

public static final String CooperatingObjectStoreWasAdded

When an EOObjectStoreCoordinator receives an addCooperatingObjectStore message and adds an 
EOCooperatingObjectStore to its list, it posts CooperatingObjectStoreWasAdded to notify observers.

Notification Object The EOObjectStoreCoordinator

userInfo Dictionary None



C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r

297

CooperatingObjectStoreWasRemoved

public static final String CooperatingObjectStoreWasRemoved

When an EOObjectStoreCoordinator receives a removeCooperatingObjectStore message and removes 
an EOCooperatingObjectStore from its list, it posts CooperatingObjectStoreWasRemoved to notify 
observers.

CooperatingObjectStoreNeeded

public static final String CooperatingObjectStoreNeeded

Posted when an EOObjectStoreCoordinator receives a request that it can’t service with any of its 
currently registered EOCooperatingObjectStores. The observer can call back to the coordinator 
to register an appropriate EOCooperatingObjectStore based on the information in the userInfo 
dictionary.

Notification Object
The EOObjectStoreCoordinator

userInfo Dictionary
Contains the following keys and values:

Notification Object The EOObjectStoreCoordinator

userInfo Dictionary None

Key Value

globalID globalID for the operation

fetchSpecification fetch specification for the operation

object object for the operation



298

C L A S S  E O O b j e c t S t o r e C o o r d i n a t o r



299

C L A S S  

EOObserverCenter

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

EOObserverCenter is the central player in EOControl’s change tracking mechanism. 
EOObserverCenter records observers and the objects they observe, and it distributes 
notifications when the observable objects change. For an overview of the change tracking 
mechanism, see “Tracking Enterprise Objects Changes” (page 23) in the introduction to the 
EOControl Framework.

You don’t ever create instances of EOObserverCenter. Instead, the class itself acts as the central 
manager of change notification, registering observers and notifying them of changes. The 
EOObserverCenter API is provided entirely in static methods.

EOObserverCenter is implemented using weak references (see the Sun documentation of 
java.lang.ref for details). Thus, if EOObserverCenter is the last object in your application with a 
reference to either an object which is registered to receive notifications, or to an object which is 
being observed, the object is garbage collected. 

Registering an Observer
Objects that directly observe others must implement the EOObserving interface, which consists 
of the single method objectWillChange. To register an object as an observer, invoke 
EOObserverCenter’s addObserver with the observer and the object to be observed. Once this is 



300

C L A S S  E O O b s e r v e r C e n t e r

done, any time the observed object invokes its willChange method, the observer is sent an 
objectWillChange message informing it of the pending change. You can also register an observer to 
be notified when any object changes using addOmniscientObserver. This can be useful in certain 
situations, but as it’s very costly to deal out frequent change notifications, you should use 
omniscient observers sparingly. To unregister either kind of observer, simply use the 
corresponding remove... method.

Change Notification
Objects that are about to change invoke willChange, a method defined by the EOEnterpriseObject 
interface. The implementations of this method invoke EOObserverCenter’s 
notifyObserversObjectWillChange, which sends an objectWillChange message to all observers registered 
for the object that’s changing, as well as to any omniscient observers. 
notifyObserversObjectWillChange optimizes the process by suppressing redundant objectWillChange 
messages when the same object invokes willChange several times in a row (as often happens when 
multiple properties are changed). Change notification is immediate, and takes place before the 
object’s state changes. If you need to compare the object’s state before and after the change, you 
must arrange to examine the new state at the end of the run loop.

You can suppress change notification when necessary, using the suppressObserverNotification and 
enableObserverNotification methods. While notification is suppressed, neither regular nor 
omniscient observers are informed of changes. These methods nest, so you can invoke 
suppressObserverNotification multiple times, and notification isn’t re-enabled until a matching 
number of enableObserverNotification message have been sent.

Method Types

Registering and unregistering observers

addObserver

removeObserver

addOmniscientObserver

removeOmniscientObserver



C L A S S  E O O b s e r v e r C e n t e r

301

Notifying observers of change

notifyObserversObjectWillChange

Getting observers

observersForObject

observerForObject

Suppressing change notification

suppressObserverNotification

enableObserverNotification

observerNotificationSuppressCount

Constructors

EOObserverCenter

public EOObserverCenter()

Description forthcoming.

Static Methods

addObserver

public static synchronized void addObserver(
EOObserving anObserver,
Object anObject)

Records anObserver to be notified with an objectWillChange message when anObject changes.

See Also: removeObserver



302

C L A S S  E O O b s e r v e r C e n t e r

addOmniscientObserver

public static synchronized void addOmniscientObserver(EOObserving anObserver)

Records anObserver to be notified with an objectWillChange message when any object changes. This 
can cause significant performance degradation, and so should be used with care. The 
ominiscient observer must be prepared to receive the objectWillChange message with a null 
argument.

See Also: addObserver, removeOmniscientObserver

enableObserverNotification

public static void enableObserverNotification()

Counters a prior suppressObserverNotification message. When no such messages remain in effect, 
the notifyObserversObjectWillChange method is re-enabled. Throws an exception if not paired with a 
prior suppressObserverNotification message.

notifyObserversObjectWillChange

public synchronized void notifyObserversObjectWillChange(Object anObject)

Unless change notification is suppressed, sends an objectWillChange to all observers registered for 
anObject with that object as the argument, and sends that message to all omniscient observers as 
well. If invoked several times in a row with the same object, only the first invocation has any 
effect, since subsequent change notifications are redundant.

If an observer wants to ensure that it receives notification the next time the last object to change 
changes again, it should use the statement:

EOObserverCenter.notifyObserversObjectWillChange(null);

An observable object (typically an enterprise object) invokes this method from its willChange 
implementation, so you should never have to invoke this method directly.

See Also: suppressObserverNotification, addObserver, addOmniscientObserver



C L A S S  E O O b s e r v e r C e n t e r

303

observerForObject

public static synchronized EOObserving observerForObject(
Object anObject,
Class aClass)

Returns an observer for anObject that’s a kind of aClass. If more than one observer of anObject is a 
kind of aClass, the specific observer returned is undetermined. You can use observersForObject 
instead to get all observers and examine their class membership.

observerNotificationSuppressCount

public static int observerNotificationSuppressCount()

Returns the number of suppressObserverNotification messages in effect.

See Also: enableObserverNotification

observersForObject

public static synchronized NSArray observersForObject(Object anObject)

Returns all observers of anObject.

removeObserver

public static synchronized void removeObserver(
EOObserving anObserver,
Object anObject)

Removes anObserver as an observer of anObject.

See Also: addObserver

removeOmniscientObserver

public static synchronized void removeOmniscientObserver(EOObserving anObserver)

Unregisters anObserver as an observer of all objects.

See Also: removeObserver, addOmniscientObserver



304

C L A S S  E O O b s e r v e r C e n t e r

suppressObserverNotification

public static void suppressObserverNotification()

Disables the notifyObserversObjectWillChange method, so that no change notifications are sent. This 
method can be invoked multiple times; enableObserverNotification must then be invoked an equal 
number of times to re-enable change notification.



305

C L A S S  

EOObserverProxy

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The EOObserverProxy class is a part of EOControl’s change tracking mechanism. It provides a 
means for objects that can’t inherit from EODelayedObserver to handle subjectChanged messages. 
For an overview of the general change tracking mechanism, see “Tracking Enterprise Objects 
Changes” (page 23) in the introduction to the EOControl Framework.

An EOObserverProxy has a target object on whose behalf it observes objects. EOObserverProxy 
overrides subjectChanged to send an action message to its target object, allowing the target to act as 
though it had received subjectChanged directly from an EODelayedObserverQueue. See the 
EOObserverCenter and EODelayedObserverQueue class specifications for more information.



Constructors

EOObserverProxy

public EOObserverProxy(
Object anObject,
NSSelector anAction,
int priority)

Creates a new EOObserverProxy to send anAction to anObject upon receiving a subjectChanged 
message. anAction should be a selector for a typical action method, taking one java.util.Object 
argument and returning void. priority indicates when the receiver is sent this message from 
EODelayedObserverQueue’s notifyObserversUpToPriority method.

Instance Methods

priority

public int priority()

Description forthcoming.

subjectChanged

public void subjectChanged()

Description forthcoming.



307

C L A S S  

EOOrQualifier

Inherits from: EOQualifier

Implements: NSCoding
EOKeyValueArchiving

Package: com.webobjects.eocontrol

Class Description

EOOrQualifier is a subclass of EOQualifier that contains multiple qualifiers. EOOrQualifier 
implements the EOQualifierEvaluation interface, which defines the method evaluateWithObject 
for in-memory evaluation. When an EOOrQualifier object receives an evaluateWithObject message, 
it evaluates each of its qualifiers until one of them returns true. If one of its qualifiers returns true, 
the EOOrQualifier object returns true immediately. If all of its qualifiers return false, the 
EOOrQualifier object returns false.



308

C L A S S  E O O r Q u a l i fi e r

Interfaces Implemented

EOQualifierEvaluation

evaluateWithObject

NSCoding

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Constructors

EOOrQualifier

public EOOrQualifier(NSArray qualifiers)

Creates and returns a new EOOrQualifier. If qualifiers is provided, the EOOrQualifier is 
initialized with the qualifiers in qualifiers. 



C L A S S  E O O r Q u a l i fi e r

309

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

Instance Methods

addQualifierKeysToSet

public void addQualifierKeysToSet(NSMutableSet aSet)

Description forthcoming.

classForCoder

public Class classForCoder()

Conformance to NSCoding.



encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

evaluateWithObject

public boolean evaluateWithObject(NSKeyValueCodingAdditions anObject);

Returns true if anObject satisfies the qualifier, false otherwise. When an EOOrQualifier object 
receives an evaluateWithObject message, it evaluates each of its qualifiers until one of them returns 
true. If any of its qualifiers returns true, the EOOrQualifier object returns true immediately. If all 
of its qualifiers return false, the EOOrQualifier object returns false. This method can throw one 
of several possible exceptions if an error occurs. If your application allows users to construct 
arbitrary qualifiers (such as through a user interface), you may want to write code to catch any 
exceptions and respond to errors (for example, by displaying a panel saying that the user typed 
a poorly formed qualifier).

qualifiers

NSArray qualifiers()

 Returns the receiver’s qualifiers.

qualifierWithBindings

public EOQualifier qualifierWithBindings(
NSDictionary,
boolean)

Description forthcoming.



C L A S S  E O O r Q u a l i fi e r

311

toString

public String toString()

Description forthcoming.

validateKeysWithRootClassDescription

public void validateKeysWithRootClassDescription(EOClassDescription classDesc)

Ensures that the receiver contains keys and key paths that belong to or originate from classDesc. 
This method raises an exception if an unknown key is found, otherwise it returns null to indicate 
that the keys contained by the qualifier are valid.



312

C L A S S  E O O r Q u a l i fi e r



313

C L A S S  

EOQualifier

Inherits from: Object

Implements: EOQualifierEvaluation
Serializable

Package: com.webobjects.eocontrol

Class Description

EOQualifier is an abstract class for objects that hold information used to restrict selections on 
objects or database rows according to specified criteria. With the exception of EOSQLQualifier 
(EOAccess), qualifiers aren’t based on SQL and they don’t rely upon an EOModel (EOAccess). 
Thus, the same qualifier can be used both to perform in-memory searches and to fetch from the 
database. 



314

C L A S S  E O Q u a l i fi e r

You never instantiate an instance of EOQualifier. Rather, you use one of its subclasses—one of 
the following or your own custom EOQualifier subclass:

The interface EOQualifierEvaluation defines how qualifiers are evaluated in memory. To 
evaluate qualifiers in a database, methods in EOSQLExpression (EOAccess) and EOEntity 
(EOAccess) are used to generate SQL for qualifiers. Note that all of the SQL generation 
functionality is contained in the access layer.

For more information on using EOQualifiers, see the sections

■ “Creating a Qualifier” (page 95)

■ “Constructing Format Strings” (page 96)

■ “Checking for NULL Values” (page 99)

■ “Using Wildcards and the like Operator” (page 99)

■ “Using Selectors in Qualifier Expressions” (page 100)

Subclass Purpose

EOKeyValueQualifier Compares the named property of an object to a supplied 
value, for example, “weight > 150”. 

EOKeyComparisonQualifier Compares the named property of one object with the 
named property of another, for example “name = 
wife.name”.

EOAndQualifier Contains multiple qualifiers, which it conjoins. For 
example, “name = ’Fred’ AND age < 20”.

EOOrQualifier Contains multiple qualifiers, which it disjoins. For 
example, “name = ’Fred’ OR name = ’Ethel’”.

EONotQualifier Contains a single qualifier, which it negates. For example, 
“NOT (name = ’Fred’)”.

EOSQLQualifier Contains unstructured text that can be transformed into a 
SQL expression. EOSQLQualifier provides a way to create 
SQL expressions with any arbitrary SQL. Because 
EOSQLQualifiers can’t be evaluated against objects in 
memory and because they contain database and 
SQL-specific content, you should use EOQualifier 
wherever possible.



C L A S S  E O Q u a l i fi e r

315

■ “Using EOQualifier’s Subclasses” (page 100)

■ “Creating Subclasses” (page 101)

Constants

EOQualifier defines the following NSSelector constants to represent the qualifier operators:

Interfaces Implemented

EOQualifierEvaluation

Method Types

Creating a qualifier

qualifierWithQualifierFormat

qualifierToMatchAllValues

qualifierToMatchAnyValue

qualifierWithBindings

QualifierOperatorEqual QualifierOperatorGreaterThanOrEqualTo

QualifierOperatorNotEqual QualifierOperatorContains

QualifierOperatorLessThan QualifierOperatorLike

QualifierOperatorGreaterThan QualifierOperatorCaseInsensitiveLike

QualifierOperatorLessThanOrEqualTo



316

C L A S S  E O Q u a l i fi e r

In-memory filtering

filterArrayWithQualifier

filteredArrayWithQualifier

evaluateWithObject

Converting strings and operators

operatorSelectorForString

stringForOperatorSelector

Get EOQualifier operators

allQualifierOperators

relationalQualifierOperators

Accessing a qualifiers keys

allQualifierKeys

addQualifierKeysToSet

Accessing a qualifier’s binding keys

bindingKeys

keyPathForBindingKey

Validating a qualifier’s keys

validateKeysWithRootClassDescription

Static Methods

allQualifierOperators

public static NSArray allQualifierOperators()

Returns an NSArray containing all of the operators supported by EOQualifier: =, !=, <, <=, >, >=, 
“like”, and “caseInsensitiveLike”.

See Also: relationalQualifierOperators



C L A S S  E O Q u a l i fi e r

317

filterArrayWithQualifier

public static void filterArrayWithQualifier(
NSMutableArray objects,
EOQualifier aQualifier)

Filters objects in place so that it contains only objects matching aQualifier.

filteredArrayWithQualifier

public static NSArray filteredArrayWithQualifier(
NSArray objects,
EOQualifier aQualifier)

Returns a new array that contains only the objects from objects matching aQualifier.

operatorSelectorForSelectorNamed

protected static NSSelector operatorSelectorForSelectorNamed(String aString)

Description forthcoming.

operatorSelectorForString

public static NSSelector operatorSelectorForString(String aString)

Returns an operator selector based on the string aString. This method is used in parsing a 
qualifier. For example, the following statement returns the selector QualifierOperatorNotEqual.

Selector selector = Qualifier.operatorSelectorForString(“!=”);

The possible values of aString are  =, ==, !=, <, >, <=, >=, “like”, and “caseInsensitiveLike”.

You’d probably only use this method if you were writing your own qualifier parser.

See Also: stringForOperatorSelector 



318

C L A S S  E O Q u a l i fi e r

qualifierToMatchAllValues

public static EOQualifier qualifierToMatchAllValues(NSDictionary dictionary)

Takes a dictionary of search criteria, from which the method creates EOKeyValueQualifiers (one 
for each dictionary entry). The method ANDs these qualifiers together, and returns the resulting 
EOAndQualifier.

qualifierToMatchAnyValue

public static EOQualifier qualifierToMatchAnyValue(NSDictionary dictionary)

Takes a dictionary of search criteria, from which the method creates EOKeyValueQualifiers (one 
for each dictionary entry). The method ORs these qualifiers together, and returns the resulting 
EOOrQualifier.

qualifierWithQualifierFormat

public static EOQualifier qualifierWithQualifierFormat(
String qualifierFormat,
NSArray arguments)

Parses the format string qualifierFormat and the specified arguments, uses them to create an 
EOQualifier, and returns the EOQualifier. Conversion specifications (occurrences of %@) in 
qualifierFormat are replaced using the value objects in arguments.

Based on the content of qualifierFormat, this method generates a tree of the basic qualifier types. 
For example, the format string “firstName = ’Joe’ AND department = ’Facilities’” generates an 
EOAndQualifier that contains two “sub” EOKeyValueQualifiers. The following code excerpt 
shows a typical way to use the qualifierWithQualifierFormat method. The excerpt constructs an 
EOFetchSpecification, which includes an entity name and a qualifier. It then applies the 
EOFetchSpecification to the EODisplayGroup’s data source and tells the EODisplayGroup to 
fetch.

EODisplayGroup displayGroup;     /* Assume this exists.*/
EOQualifier qualifier;
EOFetchSpecification fetchSpec;
EODatabaseDataSource dataSource;

dataSource = (EODatabaseDataSource)displayGroup.dataSource();
qualifier =



C L A S S  E O Q u a l i fi e r

319

EOQualifier.qualifierWithQualifierFormat(“cardType = 'Visa'”, null);
fetchSpec = new EOFetchSpecification(“Member”, qualifier, null), null);

dataSource.setFetchSpecification(fetchSpec);
displayGroup.fetch();

qualifierWithQualifierFormat performs no verification to ensure that keys referred to by the format 
string qualifierFormat exist. It throws an exception if qualifierFormat contains any syntax errors.

relationalQualifierOperators

public static NSArray relationalQualifierOperators()

Returns an NSArray containing all of the relational operators supported by EOQualifier: =, !=, 
<, <=, >, and >=. In other words, returns all of the EOQualifier operators except for the ones that 
work exclusively on strings: “like” and “caseInsensitiveLike”.

See Also: allQualifierOperators

stringForOperatorSelector

public static String stringForOperatorSelector(NSSelector aSelector)

Returns a string representation of the selector aSelector. For example, the following statement 
returns the string “!=”:

String operator =
EOQualifier.stringForOperatorSelector(EOQualifier.QualifierOperatorNotEqual);

The possible values for selector are as follows:

■ QualifierOperatorEqual

■ QualifierOperatorNotEqual

■ QualifierOperatorLessThan

■ QualifierOperatorGreaterThan

■ QualifierOperatorLessThanOrEqualTo

■ QualifierOperatorGreaterThanOrEqualTo

■ QualifierOperatorContains



320

C L A S S  E O Q u a l i fi e r

■ QualifierOperatorLike

■ QualifierOperatorCaseInsensitiveLike

You’d probably use this method only if you were writing your own parser.

See Also: operatorSelectorForString 

Instance Methods

addQualifierKeysToSet

public abstract void addQualifierKeysToSet(NSMutableSet qualKeys)

Adds the receiver’s qualifier keys to qualKeys. The subclasses in the EOControl framework do this 
by traversing the tree of qualifiers. Node qualifiers (such as EOAndQualifier) recursively invoke 
this method until they reach a leaf qualifier (such as EOKeyValueQualifier) which adds its key 
to the set. 

Subclasses of EOQualifier must implement this method.

allQualifierKeys

public NSSet allQualifierKeys()

Returns an NSSet of strings, which are the left-hand sides of all the qualifiers in the receiver. For 
example, if you have a qualifier

 salary > 10000 AND manager.lastName = 'smith'

allQualifierKeys returns an array containing the strings “salary” and “manager.lastName”.

Subclasses should not override this method, instead they should override addQualifierKeysToSet.



C L A S S  E O Q u a l i fi e r

321

bindingKeys

NSArray bindingKeys()

Returns an array of strings which are the names of the known variables. Multiple occurrences of 
the same variable will only appear once in this list.

clone

public java.lang.Object clone()

Description forthcoming.

evaluateWithObject

public boolean evaluateWithObject(NSKeyValueCodingAdditions object)

Implemented by subclasses to return true if object matches the criteria specified in the receiver, 
false otherwise. The argument, object, should be an enterprise object, a snapshot dictionary, or 
something that implements key-value coding.

keyPathForBindingKey

public String keyPathForBindingKey(String key)

Returns a string which is the “left-hand-side” of the variable in the qualifier. e.g. If you have a 
qualifier “salary > $amount and manager.lastName = $manager”, then calling bindingKeys 
would return the array (“amount”, “manager”). Calling keyPathForBindingKey would return salary 
for amount, and manager.lastname for manager.

qualifierWithBindings

public abstract EOQualifier qualifierWithBindings(
NSDictionary bindings,
boolean requiresAll)

Returns a new qualifier substituting all variables with values found in bindings. If requiresAll is 
true, any variable not found in bindings throws an exception. If requiresAll is false, missing variable 
values cause the qualifier node to be pruned from the tree.



322

C L A S S  E O Q u a l i fi e r

validateKeysWithRootClassDescription

public abstract voidvalidateKeysWithRootClassDescription(EOClassDescription classDesc)

Ensures that the receiver contains keys and key paths that belong to or originate from classDesc. 
This method raises an exception if an unknown key is found, otherwise it returns null to indicate 
that the keys contained by the qualifier are valid.



C L A S S  E O Q u a l i fi e r

323





325

C L A S S  

EOQualifier.ComparisonSupport

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The Java Client EOQualifier.ComparisonSupport class provides default implementations of the 
EOQualifierComparison interface.

The Java Client EOCustomObject uses EOQualifier.ComparisonSupport’s default 
implementations. Typically your custom enterprise object classes inherit from EOCustomObject 
and inherit the default implementations. If your custom enterprise object class doesn’t inherit 
from EOCustomObject, you should implement the EOQualifierComparison interface directly.

Method Types

Setting up automatic support

setSupportForClass

supportForClass



326

C L A S S  E O Q u a l i fi e r . C o m p a r i s o n S u p p o r t

Comparing two objects

compareValues

EOQualifierComparison methods

doesContain

isCaseInsensitiveLike

isEqualTo

isGreaterThan

isGreaterThanOrEqualTo

isLessThan

isLessThanOrEqualTo

isLike

isNotEqualTo

Static Methods

compareValues

public static int compareValues(
Object anObject,
Object anotherObject,
NSSelector selector)

Compares the two objects using selector. You should use this method to compare value objects 
instead of calling selector directly. This method is the entry point for the comparison support, 
and calls methods in support classes if appropriate.



C L A S S  E O Q u a l i fi e r . C o m p a r i s o n S u p p o r t

327

setSupportForClass

public static void setSupportForClass(
EOSortOrdering.ComparisonSupport supportClass,
Class aClass)

Sets supportClass as the support class to be used for comparing instances of aClass. When 
compareValues is called, the methods in supportClass are used to do the comparison for instances of 
aClass.

supportForClass

public static EOSortOrdering.ComparisonSupport supportForClass(Class aClass)

Returns the support class used for doing sort ordering comparisons for instances of aClass.

Instance Methods

doesContain

public boolean doesContain(
Object receiver,
Object anObject)

Returns true if receiver contains anObject, false if it doesn’t. NSObject’s implementation of this 
method returns true only if receiver is a kind of NSArray and contains anObject. In all other 
cases it returns false. This method is used in the Framework only by EOQualifier for in-memory 
evaluation.

isCaseInsensitiveLike

public boolean isCaseInsensitiveLike(
Object receiver,
Object anObject)

Returns true if receiver is a case-insensitive match for anObject, false if it isn’t. See “Using 
Wildcards and the like Operator” (page 99) for the wildcard characters allowed. This method is 
used in the Framework only by EOQualifier for in-memory evaluation.



328

C L A S S  E O Q u a l i fi e r . C o m p a r i s o n S u p p o r t

isEqualTo

public boolean isEqualTo(
Object receiver,
Object anObject)

Invokes equals and returns the result. This method is used in the Framework only by 
EOQualifier for in-memory evaluation.

isGreaterThan

public boolean isGreaterThan(
Object receiver,
Object anObject)

Invokes compare and returns true if the result is NSComparitor.OrderedDescending. This method 
is used in the Framework only by EOQualifier for in-memory evaluation.

isGreaterThanOrEqualTo

public boolean isGreaterThanOrEqualTo(
Object receiver,
Object anObject)

Invokes compare and returns true if the result is NSComparitor.OrderedDescending or 
NSComparitor.OrderedSame. This method is used in the Framework only by EOQualifier for 
in-memory evaluation.

isLessThan

public boolean isLessThan(
Object receiver,
Object anObject)

Invokes compare and returns true if the result is NSComparator.OrderedAscending. This method is 
used in the Framework only by EOQualifier for in-memory evaluation.



C L A S S  E O Q u a l i fi e r . C o m p a r i s o n S u p p o r t

329

isLessThanOrEqualTo

public boolean isLessThanOrEqualTo(
Object receiver,
Object anObject)

Invokes compare and returns true if the result is NSComparator.OrderedAscending or 
NSComparator.OrderedSame. This method is used in the Framework only by EOQualifier for 
in-memory evaluation.

isLike

public boolean isLike(
Object receiver,
Object anObject)

Returns true if receiver matches anObject according to the semantics of the SQL like 
comparison operator, false if it doesn’t. See “Using Wildcards and the like Operator” (page 99) 
for the wildcard characters allowed. This method is used in the Framework only by EOQualifier 
for in-memory evaluation.

isNotEqualTo

public boolean isNotEqualTo(
Object receiver,
Object anObject)

Invokes equals, inverts the result, and returns it. This method is used in the Framework only by 
EOQualifier for in-memory evaluation.



330

C L A S S  E O Q u a l i fi e r . C o m p a r i s o n S u p p o r t



331

C L A S S  

EOQualifierVariable

Inherits from: Object

Implements: NSCoding
EOKeyValueArchiving
Serializable

Package: com.webobjects.eocontrol

Class Description

EOQualifierVariable defines objects that serve as placeholders in the qualifier. When you create 
a qualifier programmatically, you typically do something like this:

aQual = [EOQualifier qualifierWithQualifierFormat:”dateReleased = %@”, aDate];

where aDate is a variable that contains the actual date you want to query upon. When you store 
the qualifier in an EOModel, there is no way to know the actual value to query upon or the 
variable that will contain that value. The EOQualifierVariable object acts as a placeholder for the 
actual variable that will represent the right side of the expression. You specify an 
EOQualifierVariable by using a $, as in the following:

dateReleased = $aDate

Variable values must be substituted for using qualifierWithBindings.



332

C L A S S  E O Q u a l i fi e r Va r i a b l e

Interfaces Implemented

NSCoding 

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Constructors

EOQualifierVariable

public EOQualifierVariable(String key)

Creates and returns a new EOQualifierVariable object with the specified name. For example, if 
your qualifier is “dateReleased = $aDate”, then this method would be invoked with the key 
“aDate”.



C L A S S  E O Q u a l i fi e r Va r i a b l e

333

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.

Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.



encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

key

public String key()

Returns the key of the variable qualifier.

toString

public String toString()

Description forthcoming.



335

C L A S S  

EOSharedEditingContext

Inherits from: EOEditingContext: 
EOObjectStore

Package: com.webobjects.eocontrol

Class Description

The EOSharedEditingContext class defines a mechanism that allows EOEditingContexts to 
share enterprise objects for reading. This mechanism can reduce redundant data and the number 
of fetches an application requires.

Shared enterprise objects are read-only and persist for the life of the application; they can’t be 
modified or deleted. They must be unique in the shared context and across all other editing 
contexts that share objects from the shared context.

Objects can be fetched into a shared context using objectsWithFetchSpecification and 
bindObjectsWithFetchSpecification. The latter method makes it easier to access result sets, using 
objectsByEntityNameAndFetchSpecificationName.

In multithreaded applications, shared objects can be used safely by many threads at once. Shared 
editing contexts use EOMultiReaderLocks to maintain thread safety. The methods 
objectsWithFetchSpecification bindObjectsWithFetchSpecification, faultForGlobalID, and objectForGlobalID 
are thread-safe, but you must lock the context before using any other shared context API.

It is possible to modify shared objects while an application is running, but only indirectly. You 
can create a regular editing context that doesn’t share objects by setting it’s sharedEditingContext to 
null. Fetch the object that you want to change into the regular context, modify or delete it, and 



336

C L A S S  E O S h a r e d E d i t i n g C o n t e x t

save. Since shared editing contexts listen for ObjectsChangedInStoreNotifications, the shared editing 
context updates when it learns that an object was modified. The shared context removes from its 
objectsByEntityName and objectsByEntityNameAndFetchSpecificationName dictionaries any objects that have 
been deleted, and it refaults any objects that have been updated. However, to register newly 
inserted objects in the shared editing context, you should refetch.

Constants

EOSharedEditingContext defines constants for the notifications it post. For more information, 
see “Notifications” (page 346).

Method Types

Accessing a shared editing context

defaultSharedEditingContext

setDefaultSharedEditingContext

sharedEditingContext

setSharedEditingContext

Accessing shared objects

bindObjectsWithFetchSpecification

objectsByEntityName

objectsByEntityNameAndFetchSpecificationName

objectsWithFetchSpecification

Locking a shared editing context

lockForReading

tryLockForReading



C L A S S  E O S h a r e d E d i t i n g C o n t e x t

337

unlockForReading

Overridden EOEditingContext methods

deleteObject

deletedObjects

faultForGlobalID

hasChangesinsertedObjects

insertObject

objectForGlobalID

objectWillChange

refaultObjectregisteredObjects

reset

saveChanges

setUndoManager

updatedObjects

validateChangesForSave

Constructors

EOSharedEditingContext

public EOSharedEditingContext(EOObjectStore anObjectStore)

Creates a new EOSharedEditingContext object with the defaultParentObjectStore as its parent 
object store. anObjectStore is ignored.

public EOSharedEditingContext()

Description forthcoming.



338

C L A S S  E O S h a r e d E d i t i n g C o n t e x t

Static Methods

defaultSharedEditingContext

public static EOSharedEditingContext defaultSharedEditingContext()

Returns the default EOSharedEditingContext. If a shared context hasn’t yet been created, this 
method creates one and posts a DefaultSharedEditingContextWasInitializedNotification.

setDefaultSharedEditingContext

public static synchronized void setDefaultSharedEditingContext(EOSharedEditingContext context)

Sets the default shared editing context. If context is null, object sharing is disabled in subsequently 
created EOEditingContexts.

Instance Methods

bindObjectsWithFetchSpecification

public void bindObjectsWithFetchSpecification(
EOFetchSpecification fetchSpecification,
String name)

Fetches objects with fetchSpecification and binds the results to fetchSpecification’s entity and 
fetchSpecification’s name, which is provided with the name argument. You can later retrieve the 
resulting shared objects using the methods objectsByEntityName and 
objectsByEntityNameAndFetchSpecificationName.



C L A S S  E O S h a r e d E d i t i n g C o n t e x t

339

deleteObject

public void deleteObject(EOEnterpriseObject object)

Raises an exception. You can’t modify or delete the shared objects in a shared editing context.

deletedObjects

public NSArray deletedObjects()

Returns an empty array. The shared objects in a shared editing context can’t be deleted.

dispose

public void dispose()

Description forthcoming.

faultForGlobalID

public EOEnterpriseObject faultForGlobalID(
EOGlobalID gid,
EOEditingContext context)

A thread-safe version of the superclass implementation.

See Also: faultForGlobalID (EOEditingContext)

forgetObject

public void forgetObject(EOEnterpriseObject anEO)

Description forthcoming.

globalIDForObject

public EOGlobalID globalIDForObject(EOEnterpriseObject anEO)

Description forthcoming.



340

C L A S S  E O S h a r e d E d i t i n g C o n t e x t

hasChanges

public boolean hasChanges()

Returns false. You can’t modify or delete the shared objects in a shared editing context.

initializeObject

public void initializeObject(
EOEnterpriseObject anEO,
EOGlobalID anID,
EOEditingContext aEC)

Description forthcoming.

insertedObjects

public NSArray insertedObjects()

Returns an empty array. You can’t insert objects into a shared editing context.

insertObject

public void insertObject(EOEnterpriseObject object)

Raises an exception. You can’t insert objects into a shared editing context. Instead, insert an 
enterprise object into a regular editing context and then fetch it into the shared context.

insertObjectWithGlobalID

public void insertObjectWithGlobalID(
EOEnterpriseObject anEO,
EOGlobalID anID)

Description forthcoming.



C L A S S  E O S h a r e d E d i t i n g C o n t e x t

341

invalidateAllObjects

public void invalidateAllObjects()

Description forthcoming.

invalidateObjectsWithGlobalIDs

public void invalidateObjectsWithGlobalIDs(NSArray arrayOfIDs)

Description forthcoming.

lock

public void lock()

Description forthcoming.

lockForReading

public void lockForReading()

Locks the receiver for reading.

See Also: tryLockForReading

objectForGlobalID

public EOEnterpriseObject objectForGlobalID(EOGlobalID gid)

A thread-safe version of the superclass implementation.

See Also: objectForGlobalID (EOEditingContext)



342

C L A S S  E O S h a r e d E d i t i n g C o n t e x t

objectsByEntityName

public NSDictionary objectsByEntityName()

Returns a dictionary of all the objects fetched into the shared context. The dictionary keys are 
entity names and the corresponding values are NSArrays of enterprise objects for that entity.

See Also: bindObjectsWithFetchSpecification

objectsByEntityNameAndFetchSpecificationName

public NSDictionary objectsByEntityNameAndFetchSpecificationName()

Returns the objects fetched into the receiver with bindObjectsWithFetchSpecification. The return 
value is a dictionary whose keys are entity names and whose values are subdictionaries. The 
keys of the subdictionaries are fetch specification names, and the values are NSArrays of the 
enterprise objects fetched with the corresponding fetch specification. The fetch specification 
names are the names specified in bindObjectsWithFetchSpecification. Generally these names are the 
same names used to identify stored fetch specifications in EOModeler.

objectsWithFetchSpecification

public NSArray objectsWithFetchSpecification(
EOFetchSpecification fetchSpecification,
EOEditingContext anEditingContext)

A thread-safe version of the superclass implementation that binds the results to 
fetchSpecification’s entity. You can later retrieve the resulting shared objects using the method 
objectsByEntityName.

See Also: objectsWithFetchSpecification (EOEditingContext)

Note:  The dictionary returned from this method might not contain all the receiver’s shared 
objects. It only contains objects fetched with a named fetch specification using 
bindObjectsWithFetchSpecification. Shared objects fetched into the receiver with other methods 
are not returned from this method.



C L A S S  E O S h a r e d E d i t i n g C o n t e x t

343

objectWillChange

public void objectWillChange(Object object)

Raises an exception. You can’t modify the shared objects in a shared editing context.

refaultObject

public void refaultObject(
EOEnterpriseObject object,
EOGlobalID gid,
EOEditingContext context)

See the refaultObject method description in the EOEditingContext class specification. Note that 
this method is not thread safe.

refaultObjects

public void refaultObjects()

Description forthcoming.

registeredObjects

public NSArray registeredObjects()

A thread-safe version of the superclass implementation.

See Also: registeredObjects (EOEditingContext)

reset

public void reset()

Overrides the superclass implementation to do nothing.



344

C L A S S  E O S h a r e d E d i t i n g C o n t e x t

retrieveReaderLocks

public void retrieveReaderLocks()

Description forthcoming.

saveChanges

public void saveChanges()

Raises an exception. You can’t modify the shared objects in a shared editing context.

setSharedEditingContext

public void setSharedEditingContext(EOSharedEditingContext sharedEC)

Raises an exception unless sharedEC is null.

setUndoManager

public void setUndoManager(NSUndoManager undoManager)

Raises an exception unless undoManager is null.

sharedEditingContext

public EOSharedEditingContext sharedEditingContext()

Returns null.

suspendReaderLocks

public void suspendReaderLocks()

Description forthcoming.



C L A S S  E O S h a r e d E d i t i n g C o n t e x t

345

tryLock

public boolean tryLock()

Description forthcoming.

tryLockForReading

public boolean tryLockForReading()

Tries to lock the receiver for reading. Returns true if the receiver is successfully locked, false 
otherwise.

unlock

public void unlock()

Description forthcoming.

unlockForReading

public void unlockForReading()

Unlocks the receiver for reading.

updatedObjects

public NSArray updatedObjects()

Returns an empty array. You can’t modify objects that are in a shared editing context.

validateChangesForSave

public void validateChangesForSave()

Overrides the superclass implementation to do nothing.



346

C L A S S  E O S h a r e d E d i t i n g C o n t e x t

Notifications

DefaultSharedEditingContextWasInitializedNotification

public static final String DefaultSharedEditingContextWasInitializedNotification

Posted when an EOSharedEditingContext is created and assigned as the 
defaultSharedEditingContext.

SharedEditingContextInitializedObjectsNotification

public static final String SharedEditingContextInitializedObjectsNotification

Posted when new objects are added to a shared editing context (by fetching or fault firing).

Notification Object None

userInfo Dictionary None

Notification Object The shared editing context

userInfo Dictionary NSArray of global IDs of the initialized objects



347

C L A S S  

EOSortOrdering

Inherits from: Object

Implements: EOKeyValueArchiving
NSCoding
Serializable

Package: com.webobjects.eocontrol

Class Description

An EOSortOrdering object specifies the way that a group of objects should be sorted, using a 
property key and a method selector for comparing values of that property. EOSortOrderings are 
used both to generate SQL when fetching rows from a database server, and to sort objects in 
memory. EOFetchSpecification objects use an array of EOSortOrderings, which are applied in 
series to perform sorts by more than one property.



348

C L A S S  E O S o r t O r d e r i n g

Sorting with SQL
When an EOSortOrdering is used to fetch data from a relational database, it’s rendered into an 
ORDER BY clause for a SQL SELECT statement according to the concrete adaptor you’re using. 
For more information, see the class description for EOSQLExpression. The Framework 
predefines symbols for four comparison selectors, listed in the table below. The table also shows 
an example of how the comparison selectors can be mapped to SQL. 

Using the mapping in the table above, the array of EOSortOrderings (nameOrdering) created in the 
following code example:

EOSortOrdering lastNameOrdering =
EOSortOrdering.sortOrderingWithKey(“lastName”, EOSortOrdering.CompareAscending);

EOSortOrdering firstNameOrdering =
(EOSortOrdering.sortOrderingWithKey(“firstName”, EOSortOrdering.CompareAscending);

NSMutableArray nameOrdering = new NSMutableArray();
nameOrdering.addObject(lastNameOrdering);
nameOrdering.addObject(firstNameOrdering);

results in this ORDER BY clause:

order by (lastName) asc, (firstName) asc

In-Memory Sorting
The methods sortedArrayUsingKeyOrderArray and sortArrayUsingKeyOrderArray are used to sort objects in 
memory. Given an array of objects and an array of EOSortOrderings, sortedArrayUsingKeyOrderArray 
returns a new array of objects sorted according to the specified EOSortOrderings. Similarly, 
sortArrayUsingKeyOrderArray sorts the provided array of objects in place. This code fragment, for 
example, sorts an array of Employee objects in place, by last name, then first name using the 
array of EOSortOrderings created above:

Defined Name SQL Expression

CompareAscending (key) asc

CompareDescending (key) desc

CompareCaseInsensitiveAscending upper(key) asc

CompareCaseInsensitiveDescending upper(key) desc



C L A S S  E O S o r t O r d e r i n g

349

SortOrdering.sortVectorUsingKeyOrderVector(employees, nameOrdering);

Constants

EOSortOrdering defines the following NSSelector constants:

The first two can be used with any value class; the second two with NSString objects only. The 
sorting methods extract property values using key-value coding and apply the selectors to the 
values. If you use custom value classes, you should be sure to implement the appropriate 
comparison methods to avoid exceptions when sorting objects.

Defined Name Method

CompareAscending compareAscending

CompareDescending compareDescending

CompareCaseInsensitiveAscending compareCaseInsensitiveAscending

CompareCaseInsensitiveDescending compareCaseInsensitiveDescending



350

C L A S S  E O S o r t O r d e r i n g

Interfaces Implemented

NSCoding

classForCoder

decodeObject

encodeWithCoder

EOKeyValueArchiving

decodeWithKeyValueUnarchiver

encodeWithKeyValueArchiver

Method Types

Constructors

EOSortOrdering

Examining a sort ordering

key

selector

In-memory sorting

sortedArrayUsingKeyOrderArray

sortArrayUsingKeyOrderArray



C L A S S  E O S o r t O r d e r i n g

351

Constructors

EOSortOrdering

public EOSortOrdering(
String key,
NSSelector selector)

Creates and returns a new EOSortOrdering object. If key and selector are provided, the new 
EOSortOrdering is initialized with them.

See Also: EOSortOrdering

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

decodeWithKeyValueUnarchiver

public static Object decodeWithKeyValueUnarchiver(EOKeyValueUnarchiver unarchiver)

Conformance to EOKeyValueArchiving.



352

C L A S S  E O S o r t O r d e r i n g

sortArrayUsingKeyOrderArray

public static void sortArrayUsingKeyOrderArray(
NSMutableArray objects,
NSArray sortOrderings)

Sorts objects in place according to the EOSortOrderings in sortOrderings. The objects are compared 
by extracting the sort properties using the NSKeyValueCoding method valueForKey and sending 
them compare... messages. See the table in “Sorting with SQL” for a list of the compare methods.

See Also: sortedArrayUsingKeyOrderArray

sortOrderingWithKey

public static EOSortOrdering sortOrderingWithKey(
String key,
NSSelector selector)

Creates and returns an EOSortOrdering based on key and selector.

See Also: EOSortOrdering constructor

sortedArrayUsingKeyOrderArray

public static NSArray sortedArrayUsingKeyOrderArray(
NSArray objects,
NSArray sortOrderings)

Creates and returns a new array by sorting objects according to the EOSortOrderings in 
sortOrderings. The objects are compared by extracting the sort properties using the added 
EOKeyValueCoding method valueForKey and sending them compare... messages. See the table in 
“Sorting with SQL” for a list of the compare methods.



Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.

encodeWithKeyValueArchiver

public void encodeWithKeyValueArchiver(EOKeyValueArchiver archiver)

Conformance to EOKeyValueArchiving.

key

public String key()

Returns the key by which the receiver orders items.

See Also: selector

selector

public NSSelector selector()

Returns the method selector used to compare values when sorting.

See Also: key



354

C L A S S  E O S o r t O r d e r i n g

toString

public String toString()

Description forthcoming.



355

C L A S S  

EOSortOrdering.ComparisonSupport

Inherits from: Object

Package: com.webobjects.eocontrol

Class Description

The Java Client EOSortOrdering.ComparisonSupport class provides default implementations of 
the EOSortOrderingComparison interface.

The Java Client EOCustomObject uses EOSortOrdering.ComparisonSupport’s default 
implementations. Typically your custom enterprise object classes inherit from EOCustomObject 
and inherit the default implementations. If your custom enterprise object class doesn’t inherit 
from EOCustomObject, you should implement the EOSortOrderingComparison interface 
directly.

Method Types

Setting up automatic support

setSupportForClass

supportForClass



356

C L A S S  E O S o r t O r d e r i n g . C o m p a r i s o n S u p p o r t

Comparing two objects

compareValues

EOSortOrderingComparison methods

compareAscending

compareCaseInsensitiveAscending

compareCaseInsensitiveDescending

compareDescending

Static Methods

compareValues

public static int compareValues(
Object anObject,
Object anotherObject,
NSSelector selector)

Compares the two objects using selector. You should use this method to compare value objects 
instead of calling selector directly. This method is the entry point for the comparison support, 
and calls methods in support classes if appropriate.

setSupportForClass

public static void setSupportForClass(
EOSortOrdering.ComparisonSupport supportClass,
Class aClass)

Sets supportClass as the support class to be used for comparing instances of aClass. When 
compareValues is called, the methods in supportClass will be used to do the comparison for instances 
of aClass.



C L A S S  E O S o r t O r d e r i n g . C o m p a r i s o n S u p p o r t

357

supportForClass

public static EOSortOrdering.ComparisonSupport supportForClass(Class aClass)

Returns the support class used for doing sort ordering comparisons for instances of aClass.

Instance Methods

compareAscending

public int compareAscending(
Object receiver,
Object anObject)

Returns NSComparator.OrderedAscending if anObject is naturally ordered after receiver, 
NSComparator.OrderedDescending if it’s naturally ordered before receiver, and NSComparator.OrderedSame if 
they’re equivalent for ordering purposes.

compareCaseInsensitiveAscending

public int compareCaseInsensitiveAscending(
Object receiver,
Object anObject)

Returns NSComparator.OrderedAscending if anObject is naturally ordered—ignoring case—after receiver, 
NSComparator.OrderedDescending if it’s naturally ordered before receiver, and NSComparator.OrderedSame if 
they’re equivalent for ordering purposes.

compareCaseInsensitiveDescending

public int compareCaseInsensitiveDescending(
Object receiver,
Object anObject)

Returns NSComparator.OrderedAscending if anObject is naturally ordered—ignoring case—
before receiver, NSComparator.OrderedDescending if it’s naturally ordered after receiver, and 
NSComparator.OrderedSame if they’re equivalent for ordering purposes.



compareDescending

public int compareDescending(
Object anObject,
Object anObject)

Returns NSComparator.OrderedAscending if anObject is naturally ordered before receiver, 
NSComparator.OrderedDescending if it’s naturally ordered after receiver, and NSComparator.OrderedSame if 
they’re equivalent for ordering purposes.



359

C L A S S  

EOTemporaryGlobalID

Inherits from: EOGlobalID

Implements: NSCoding

Package: com.webobjects.eocontrol

Class Description

An EOTemporaryGlobalID object identifies a newly created enterprise object before it’s saved to 
an external store. When the object is saved, the temporary ID is converted to a permanent one, 
as described in the EOGlobalID class specification.

Constants

EOTemporaryGlobalID defines the following int constant to specify the length (in bytes) of a 
global ID:

■ UniqueBinaryKeyLength



360

C L A S S  E O Te m p o r a r y G l o b a l I D

Interfaces Implemented

NSCoding

classForCoder

decodeObject

encodeWithCoder

Constructors

EOTemporaryGlobalID

public EOTemporaryGlobalID()

Creates and returns an EOTemporaryGlobalID as a unique instance. The returned object 
contains a byte string that’s guaranteed to be unique network-wide. As a result, 
EOTemporaryGlobalIDs can be safely passed between processes and machines while still 
preserving global uniqueness. The returned byte string has the format:

< Sequence [2], ProcessID [2] , Time [4], IP Addr [4] >

protected EOTemporaryGlobalID(byte[] globallyUniqueBytes)

Description forthcoming.



Static Methods

assignGloballyUniqueBytes

public static void assignGloballyUniqueBytes(byte[] uniqueBytes)

Description forthcoming.

decodeObject

public static Object decodeObject(NSCoder coder)

Conformance to NSCoding.

Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding.



362

C L A S S  E O Te m p o r a r y G l o b a l I D

equals

public boolean equals(Object anObject)

Description forthcoming.

hashCode

public int hashCode()

Description forthcoming.

isTemporary

public boolean isTemporary()

Returns true.

toString

public String toString()

Description forthcoming.



363

I N T E R F A C E  

EOClassDescription.ClassDelegate

(informal interface)

Package: com.webobjects.eocontrol

Interface Description

The EOClassDescription.ClassDelegate interface defines a method that the EOClassDescription 
class can invoke in its delegate. Delegates are not required to provide an implementation for the 
method, and you don’t have to use the implements keyword to specify that the object 
implements the ClassDelegate interface. Instead, declare and implement the method if you need 
it, and use the EOClassDescription method setClassDelegate method to assign your object as the 
class delegate. The EOClassDescription class can determine if the delegate doesn’t implement 
the delegate method and only attempts to invoke it if it’s actually implemented.



Instance Methods

shouldPropagateDeleteForObject

public abstract boolean shouldPropagateDeleteForObject(
EOEnterpriseObject anObject,
EOEditingContext anEditingContext,
String key)

Invoked from propagateDeleteForObject. If the class delegate returns false, it prevents anObject in 
anEditingContext from propagating deletion to the objects at the destination of key. This can be 
useful if you have a large model and a small application that only deals with a subset of the 
model’s entities. In such a case you might want to disable delete propagation to entities that will 
never be accessed. You should use this method with caution, however—returning false and not 
propagating deletion can lead to dangling references in your object graph.



365

I N T E R F A C E  

EODeferredFaulting

(informal interface)

Implemented by: EOEnterpriseObject
EOCustomObject
EOGenericRecord

Implements: EOFaulting

Package: com.webobjects.eocontrol

Interface Description

The EODeferredFaulting interface defines the method enterprise objects use to manage deferred 
faulting.

EOF uses faults as stand-ins for objects whose data has not yet been fetched. Although fault 
creation is much faster than fetching, fault instantiation still takes time. To further improve 
performance, enterprise objects can use deferred faults (which are more efficient).

In an object whose class enables deferred faulting, the object’s relationships are initially set to 
deferred faults. For a particular relationship, a single deferred fault is shared between all 
instances of an enterprise object class. This sharing of deferred faults can significantly reduce the 
number of faults that need to be created, and usually reduces the overhead of fault creation 
during a fetch.



366

I N T E R F A C E  E O D e f e r r e d F a u l t i n g

For example, consider a Movie class with a studio relationship. Without deferred faulting, 
during a fetch of twenty Movie objects, twenty faults are created for the studio relationship—
one fault for each movie. With deferred faulting, only one fault is created—a deferred fault that 
is shared by all the movies. 

Instance Methods

willReadRelationship

public abstract Object willReadRelationship(Object object)

Enterprise object instances that use deferred faulting invoke this method before accessing a 
relationship to ensure that the relationship isn’t a deferred fault. EOCustomObject and 
EOGenericRecord’s implementations check if object is a deferred fault, and create and return a 
regular fault if it is.

For example, suppose a Movie enterprise object uses deferred faulting. Then the accessors for its 
relationships—studio, for example—should invoke willReadRelationship before returning the 
object:

public Studio studio() {
return this.willReadRelationship(studio);

}

See Also: createFaultForDeferredFault (EOFaultHandler)



367

I N T E R F A C E  

EOEditingContext. Delegate

(informal interface)

Package: com.webobjects.eocontrol

Interface Description

The EOEditingContext. Delegate interface defines methods that an EOEditingContext can 
invoke in its delegate. Delegates are not required to provide implementations for all of the 
methods in the interface, and you don’t have to use the implements keyword to specify that the 
object implements the Delegate interface. Instead, declare and implement any subset of the 
methods declared in the interface that you need, and use the EOEditingContext method 
setDelegate method to assign your object as the delegate. An editing context can determine if the 
delegate doesn’t implement a delegate method and only attempts to invoke the methods the 
delegate actually implements.

Method Types

Fetching objects

editingContextShouldFetchObjects



368

I N T E R F A C E  E O E d i t i n g C o n t e x t .  D e l e g a t e

Invalidating objects

editingContextShouldInvalidateObject

Saving changes

editingContextWillSaveChanges

Handling failures

editingContextShouldValidateChanges

editingContextShouldPresentException

editingContextShouldUndoUserActionsAfterFailure

Merging changes

editingContextShouldMergeChangesForObject

editingContextDidMergeChanges

Instance Methods

editingContextDidMergeChanges

public abstract void editingContextDidMergeChanges(EOEditingContext anEditingContext)

Invoked once after a batch of objects has been updated in anEditingContext’s parent object store 
(in response to an ObjectsChangedInStoreNotification). A delegate might implement this 
method to define custom merging behavior, most likely in conjunction with 
editingContextShouldMergeChangesForObject. It is safe for this method to make changes to the objects in 
the editing context.



I N T E R F A C E  E O E d i t i n g C o n t e x t .  D e l e g a t e

369

editingContextShouldFetchObjects

public abstract NSArray editingContextShouldFetchObjects(
EOEditingContext editingContext,
EOFetchSpecification fetchSpecification)

Invoked from objectsWithFetchSpecification. If the delegate has appropriate results cached it can 
return them and the fetch will be bypassed. Returning null causes the fetch to be propagated to 
the parent object store.

editingContextShouldInvalidateObject

public abstract boolean editingContextShouldInvalidateObject(
EOEditingContext anEOEditingContext,
EOEnterpriseObject anObject,
EOGlobalID anEOGlobalID)

Sent when an object identified by globalID has been explicitly invalidated. If the delegate 
returns false, the invalidation is refused. This allows the delegate to selectively override object 
invalidations. 

See Also: invalidateAllObjects, reset

editingContextShouldMergeChangesForObject

public abstract boolean editingContextShouldMergeChangesForObject(
EOEditingContext anEditingContext,
EOEnterpriseObject object)

When an ObjectsChangedInStoreNotification is received, anEditingContext invokes this method in its 
delegate once for each of the objects that has both uncommitted changes and an update from the 
EOObjectStore. This method is invoked before any updates actually occur.

If this method returns true, all of the uncommitted changes should be merged into the object after 
the update is applied, in effect preserving the uncommitted changes (the default behavior). The 
delegate method editingContextShouldInvalidateObject will not be sent for the object in question.

If this method returns false, no uncommitted changes are applied. Thus, the object is updated to 
reflect the values from the database exactly. This method should not make any changes to the 
object since it is about to be invalidated.



370

I N T E R F A C E  E O E d i t i n g C o n t e x t .  D e l e g a t e

If you want to provide custom merging behavior, you need to implement both this method and 
editingContextDidMergeChanges. You use editingContextShouldMergeChangesForObject to save information 
about each changed object and return true to allow merging to continue. After the default 
merging behavior occurs, editingContextDidMergeChanges is invoked, at which point you implement 
your custom behavior.

editingContextShouldPresentException

public abstract boolean editingContextShouldPresentException(
EOEditingContext anEditingContext,
Throwable exception)

Sent whenever an exception is caught by an EOEditingContext. If the delegate returns false, 
exception is ignored. Otherwise (if the delegate returns true, if the editing context doesn’t have a 
delegate, or if the delegate doesn’t implement this method) exception is passed to the message 
handler for further processing, 

See Also: messageHandler 

editingContextShouldUndoUserActionsAfterFailure

public abstract boolean 
editingContextShouldUndoUserActionsAfterFailure(EOEditingContext anEditingContext)

Sent when a validation error occurs while processing a processRecentChanges message. If the 
delegate returns false, it disables the automatic undoing of user actions after validation has 
resulted in an error. 

By default, if a user attempts to perform an action that results in a validation failure (such as 
deleting a department object that has a delete rule stating that the department can’t be deleted if 
it contains employees), the user’s action is immediately rolled back. However, if this delegate 
method returns false, the user action is allowed to stand (though attempting to save the changes 
to the database without solving the validation error will still result in a failure). Returning false 
gives the user an opportunity to correct the validation problem so that the operation can proceed 
(for example, the user might delete all of the department’s employees so that the department 
itself can be deleted).



I N T E R F A C E  E O E d i t i n g C o n t e x t .  D e l e g a t e

371

editingContextShouldValidateChanges

public abstract boolean 
editingContextShouldValidateChanges(EOEditingContext anEditingContext)

Sent when an EOEditingContext receives a saveChanges message. If the delegate returns false, 
changes are saved without first performing validation. This method can be useful if the delegate 
wants to provide its own validation mechanism. 

editingContextWillSaveChanges

public abstract void editingContextWillSaveChanges(EOEditingContext editingContext)

Sent when an EOEditingContext receives a saveChanges message. The delegate can throw an 
exception to abort the save operation. 



372

I N T E R F A C E  E O E d i t i n g C o n t e x t .  D e l e g a t e



373

I N T E R F A C E  

EOEditingContext.Editors

(informal interface)

Package: com.webobjects.eocontrol

Interface Description

The EOEditingContext.Editors interface defines methods for objects that act as higher-level 
editors of the objects an EOEditingContext contains. An editing context sends messages to its 
editors to determine whether they have any changes that need to be saved, and to allow them to 
flush pending changes before a save (possibly throwing an exception to abort the save). See the 
EOEditingContext and EODisplayGroup (EOInterface) class specifications for more 
information.

Editors are not required to provide implementations for all of the methods in the interface. When 
you write an editor, you don’t have to use the implements keyword to specify that the object 
implements the Editors interface. Instead, simply use the EOEditingContext method addEditor 
method to assign your object as one of the EOEditingContext’s editors and then declare and 
implement any subset of the methods declared in the Editors interface. An EOEditingContext 
can determine if the editor doesn’t implement a method and only attempts to invoke the 
methods the editor actually implements.



Instance Methods

editingContextWillSaveChanges

public abstract void 
editingContextWillSaveChanges(EOEditingContext anEditingContext)

Invoked by anEditingContext in its saveChanges method, this method allows the receiver to flush any 
pending edits and, if necessary, prohibit a save operation. The receiver should validate and flush 
any unprocessed edits it has, throwing an exception if it can’t do so to prevent anEditingContext 
from saving.

editorHasChangesForEditingContext

public abstract boolean 
editorHasChangesForEditingContext(EOEditingContext anEditingContext)

Invoked by anEditingContext, this method should return true if the receiver has any unapplied edits 
that need to be saved, false if it doesn’t.



375

I N T E R F A C E  

EOEnterpriseObject

(informal interface)

Implemented by: EOCustomObject
EOGenericRecord

Implements: EOKeyValueCodingAdditions
EORelationshipManipulation
EOValidation
EODeferredFaulting
Serializable

Package: com.webobjects.eocontrol

Interface Description

The EOEnterpriseObject interface identifies basic enterprise object behavior, defining methods 
for supporting operations common to all enterprise objects. Among these are methods for 
initializing instances, announcing changes, setting and retrieving property values, and 
performing validation of state. Some of these methods are for enterprise objects to implement or 
override, and some are meant to be used as defined by the Framework. Many methods are used 
internally by the Framework and rarely invoked by application code.

Many of the functional areas are defined in smaller, more specialized interfaces and 
incorporated in the over arching EOEnterpriseObject interface:



376

I N T E R F A C E  E O E n t e r p r i s e O b j e c t

■ EOKeyValueCoding defines Enterprise Objects Framework’s main data transport 
mechanism, in which the properties of an object are accessed indirectly by name (or “key”), 
rather than directly through invocation of an accessor method or as instance variables.

■ EOKeyValueCodingAdditions defines extensions to the basic EOKeyValueCoding interface, 
giving access to groups of properties and to properties across relationships.

■ EORelationshipManipulation builds on the basic EOKeyValueCoding interface to allow you 
to modify to-many relationship properties.

■ EOValidation defines the way that enterprise objects validate their values.

■ EOFaulting and EODeferredFaulting define mechanisms for postponing an object’s 
initialization until its actually needed. 

The remaining methods are introduced in the EOEnterpriseObject interface itself and can be 
broken down into three functional groups discussed in the following sections:

■ “Initialization” (page 363)

■ “Change Notification” (page 364)

■ “Object and Class Metadata Access” (page 364)

■ “Snapshots” (page 365)

You rarely need to implement the EOEnterpriseObject interface from scratch. The Framework 
provides default implementations of the methods in EOCustomObject and EOGenericRecord. 
Use EOGenericRecords to represent enterprise objects that don’t require custom behavior, and 
create subclasses of EOCustomObject to represent enterprise objects that do. The section 
“Writing an Enterprise Object Class” (page 366) highlights the methods that you typically 
provide or override in a custom enterprise object class.

Method Types

Initializing enterprise objects

awakeFromFetch

awakeFromInsertion



I N T E R F A C E  E O E n t e r p r i s e O b j e c t

377

Announcing changes

willChange

Getting an object’s EOEditingContext

editingContext

Getting class description information

allPropertyKeys

attributeKeys

classDescription

classDescriptionForDestinationKey

deleteRuleForRelationshipKey

entityName

inverseForRelationshipKey

isToManyKey:

ownsDestinationObjectsForRelationshipKey

toManyRelationshipKeys

toOneRelationshipKeys

Modifying relationships

propagateDeleteWithEditingContext

clearProperties

Working with snapshots

snapshot

updateFromSnapshot

Merging values

changesFromSnapshot

reapplyChangesFromDictionary

Invoking behavior on the server (Java Client only)

invokeRemoteMethod (Java Client only)



378

I N T E R F A C E  E O E n t e r p r i s e O b j e c t

Getting descriptions

eoDescription

eoShallowDescription

userPresentableDescription

Instance Methods

allPropertyKeys

public abstract NSArray allPropertyKeys()

Returns all of the receiver’s property keys. EOCustomObject’s implementation returns the union 
of the keys returned by attributeKeys, toOneRelationshipKeys, and toManyRelationshipKeys.

attributeKeys

public abstract NSArray attributeKeys()

Returns the names of the receiver’s attributes (not relationship properties). EOCustomObject’s 
implementation simply invokes attributeKeys in the object’s EOClassDescription and returns the 
results. You might wish to override this method to add keys for attributes not defined by the 
EOClassDescription. The access layer’s subclass of EOClassDescription, 
EOEntityClassDescription, returns the names of attributes designated as class properties.

See Also: toOneRelationshipKeys, toManyRelationshipKeys

awakeFromClientUpdate

public abstract void awakeFromClientUpdate(EOEditingContext anEditingContext)

Description forthcoming.



I N T E R F A C E  E O E n t e r p r i s e O b j e c t

379

awakeFromFetch

public abstract void awakeFromFetch(EOEditingContext anEditingContext)

Overridden by subclasses to perform additional initialization on the receiver upon its being 
fetched from the external repository into anEditingContext. EOCustomObject’s implementation 
merely sends an awakeObjectFromFetch to the receiver’s EOClassDescription. Subclasses should 
invoke super’s implementation before performing their own initialization.

awakeFromInsertion

public abstract void awakeFromInsertion(EOEditingContext anEditingContext)

Overridden by subclasses to perform additional initialization on the receiver upon its being 
inserted into anEditingContext. This is commonly used to assign default values or record the time 
of insertion. EOCustomObject’s implementation merely sends an awakeObjectFromInsertion to the 
receiver’s EOClassDescription. Subclasses should invoke super’s implementation before 
performing their own initialization.

changesFromSnapshot

public abstract NSDictionary changesFromSnapshot(NSDictionary snapshot)

Returns a dictionary whose keys correspond to the receiver’s properties with uncommitted 
changes relative to snapshot, and whose values are the uncommitted values. In both snapshot and 
the returned dictionary, where a key represents a to-many relationship, the corresponding value 
is an NSArray containing two other NSArrays: the first is an array of objects to be added to the 
relationship property, and the second is an array of objects to be removed.

See Also: reapplyChangesFromDictionary

classDescription

public abstract EOClassDescription classDescription()

Returns the EOClassDescription registered for the receiver’s class.EOCustomObject’s 
implementation invokes the EOClassDescription static method a classDescriptionForClass.



380

I N T E R F A C E  E O E n t e r p r i s e O b j e c t

classDescriptionForDestinationKey

public abstract EOClassDescription classDescriptionForDestinationKey(String key)

Returns the EOClassDescription for the destination objects of the relationship identified by key. 
EOCustomObject’s implementation sends a classDescriptionForDestinationKey message to the 
receiver’s EOClassDescription.

clearProperties

public abstract void clearProperties()

Sets all of the receiver’s to-one and to-many relationships to null. EOEditingContexts use this 
method to break cyclic references among objects when they’re finalized. EOCustomObject’s 
implementation should be sufficient for all purposes. If your enterprise object maintains 
references to other objects and these references are not to-one or to-many keys, then you should 
probably subclass this method ensure unused objects can be finalized.

deleteRuleForRelationshipKey

public abstract int deleteRuleForRelationshipKey(String relationshipKey)

Returns a rule indicating how to handle the destination of the receiver’s relationship named by 
relationshipKey when the receiver is deleted. The delete rule is one of:

■ DeleteRuleNullify

■ DeleteRuleCascade

■ DeleteRuleDeny

■ DeleteRuleNoAction

For example, an Invoice object might return DeleteRuleNullify for the relationship named 
“lineItems”, since when an invoice is deleted, its line items should be deleted as well. For more 
information on the delete rules, see the method description for EOClassDescription’s 
deleteRuleForRelationshipKey in the class specification for EOClassDescription, the class in which 
they’re defined.

EOCustomObject’s implementation of this method simply sends a deleteRuleForRelationshipKey 
message to the receiver’s EOClassDescription.

See Also: propagateDeleteWithEditingContext, validateForDelete (EOValidation)



I N T E R F A C E  E O E n t e r p r i s e O b j e c t

381

editingContext

public abstract EOEditingContext editingContext()

Returns the EOEditingContext that holds the receiver.

entityName

public abstract String entityName()

Returns the name of the receiver’s entity, or null if it doesn’t have one. EOCustomObject’s 
implementation simply sends an entityName message to the receiver’s EOClassDescription.

eoDescription

public abstract String eoDescription()

Returns a string that describes the receiver. EOCustomObject’s implementation returns a full 
description of the receiver’s property values by extracting them using the key-value coding 
methods. An object referenced through relationships is listed with the results of an 
eoShallowDescription message (to avoid infinite recursion through cyclical relationships).

This method is useful for debugging. You can implement a toString method that invokes this one, 
and the debugger’s print-object command (po on the command line) automatically displays this 
description. You can also invoke this method directly on the command line of the debugger.

See Also: userPresentableDescription

eoShallowDescription

public abstract String eoShallowDescription()

Similar to eoDescription, but doesn’t descend into relationships. eoDescription invokes this method 
for relationship destinations to avoid infinite recursion through cyclical relationships. 
EOCustomObject’s implementation simply returns a string containing the receiver’s class and 
entity names.

See Also: userPresentableDescription



382

I N T E R F A C E  E O E n t e r p r i s e O b j e c t

inverseForRelationshipKey

public abstract String inverseForRelationshipKey(String relationshipKey)

Returns the name of the relationship pointing back to the receiver’s class or entity from that 
named by relationshipKey, or null if there isn’t one. With the access layer’s EOEntity and 
EORelationship, for example, reciprocality is determined by the join attributes of the two 
EORelationships. EOCustomObject’s implementation simply sends an inverseForRelationshipKey 
message to the receiver’s EOClassDescription. 

You might override this method for reciprocal relationships that aren’t defined using the same 
join attributes. For example, if a Member object has a relationship to CreditCard based on the 
card number, but a CreditCard has a relationship to Member based on the Member’s primary 
key, both classes need to override this method. This is how Member might implement it:

public String inverseForRelationshipKey(String relationshipKey) {
if (relationshipKey.equals(“creditCard”))

return “member”;
else

return super.inverseForRelationshipKey(relationshipKey);
}

invokeRemoteMethod

public abstract Object invokeRemoteMethod(
String methodName,
Class[] argumentTypes
Object[] arguments)

Invokes methodName using arguments. To pass an enterprise object as an argument, use its global ID. 
This method has the side effect of saving all the changes from the receiver’s editing context all 
the way down to the editing context in the server session.

isToManyKey:

public abstract boolean isToManyKey(String key)

Returns true if the receiver has a to-many relationship identified by key, false otherwise. 
EOCustomObject’s implementation of this method simply checks its toManyRelationshipKeys array 
for key.



I N T E R F A C E  E O E n t e r p r i s e O b j e c t

383

ownsDestinationObjectsForRelationshipKey

public abstract boolean ownsDestinationObjectsForRelationshipKey(String key)

Returns true if the receiver has a relationship identified by key that owns its destination, false 
otherwise. If an object owns the destination for a relationship, then when that destination object 
is removed from the relationship, it’s automatically deleted. Ownership of a relationship thus 
contrasts with a delete rule, in that the first applies when the destination is removed and the 
second applies when the source is deleted. EOCustomObject’s implementation of this method 
simply sends an ownsDestinationObjectsForRelationshipKey message to the receiver’s 
EOClassDescription. 

See Also: deleteRuleForRelationshipKey,  – ownsDestination (EOAccess’ EORelationship)

prepareValuesForClient

public abstract void prepareValuesForClient()

Description forthcoming.

propagateDeleteWithEditingContext

public abstract void propagateDeleteWithEditingContext(EOEditingContext anEditingContext)

Deletes the destination objects of the receiver’s relationships according to the delete rule for each 
relationship. EOCustomObject’s implementation simply sends a propagateDeleteForObject message 
to the receiver’s EOClassDescription. For more information on delete rules, see the method 
description for deleteRuleForRelationshipKey in the EOClassDescription class specification.

See Also: deleteRuleForRelationshipKey

reapplyChangesFromDictionary

public abstract void reapplyChangesFromDictionary(NSDictionary changes)

Similar to takeValuesFromDictionary, but the changes dictionary can contain arrays for to-many 
relationships. Where a key represents a to-many relationship, the dictionary’s value is an 
NSArray containing two other NSArrays: the first is an array of objects to be added to the 



384

I N T E R F A C E  E O E n t e r p r i s e O b j e c t

relationship property, and the second is an array of objects to be removed. EOCustomObject’s 
implementation should be sufficient for all purposes; you shouldn’t have to override this 
method.

See Also: changesFromSnapshot

snapshot

public abstract NSDictionary snapshot()

Returns a dictionary whose keys are those of the receiver’s attributes, to-one relationships, and 
to-many relationships, and whose values are the values of those properties, with EONullValue 
substituted for null. For to-many relationships, the dictionary contains shallow copies of the 
arrays. EOCustomObject’s implementation should be sufficient for all purposes; you shouldn’t 
have to override this method.

See Also: updateFromSnapshot

toManyRelationshipKeys

public abstract NSArray toManyRelationshipKeys()

Returns the names of the receiver’s to-many relationships. EOCustomObject’s implementation 
simply invokes toManyRelationshipKeys in the object’s EOClassDescription and returns the results. 
You might wish to override this method to add keys for relationships not defined by the 
EOClassDescription, but it’s rarely necessary: The access layer’s subclass of EOClassDescription, 
EOEntityClassDescription, returns the names of to-many relationships designated as class 
properties. 

See Also: attributeKeys, toOneRelationshipKeys

toOneRelationshipKeys

public abstract NSArray toOneRelationshipKeys()

Returns the names of the receiver’s to-one relationships. EOCustomObject’s implementation 
simply invokes toOneRelationshipKeys in the object’s EOClassDescription and returns the results. 
You might wish to override this method to add keys for relationships not defined by the 



I N T E R F A C E  E O E n t e r p r i s e O b j e c t

385

EOClassDescription, but it’s rarely necessary: The access layer’s subclass of EOClassDescription, 
EOEntityClassDescription, returns the names of to-one relationships designated as class 
properties. 

See Also: attributeKeys, toManyRelationshipKeys

updateFromSnapshot

public abstract void updateFromSnapshot(NSDictionary aSnapshot)

Takes the values from aSnapshot, and sets the receiver’s properties to them. EOCustomObject’s 
implementation sets each one using takeStoredValueForKey. In the process, EONullValues are 
converted to null, and array values are set as shallow mutable copies.

See Also: snapshot

userPresentableDescription

public abstract String userPresentableDescription()

Returns a short (no longer than 60 characters) description of an enterprise object based on its 
data. EOCustomObject’s implementation enumerates the object’s attributeKeys and returns the 
values of all of its properties, separated by commas (applying the default formatter for numbers 
and dates).

See Also: eoDescription, eoShallowDescription

willChange

public abstract void willChange()

Notifies any observers that the receiver’s state is about to change, by sending each an 
objectWillChange message (see the EOObserverCenter class specification for more information). A 
subclass should not override this method, but should invoke it prior to altering the subclass’s 
state, most typically in “set” methods such as the following:

public void setRoleName(String value) {
willChange();
roleName = value;

}



386

I N T E R F A C E  E O E n t e r p r i s e O b j e c t



387

I N T E R F A C E  

EOEventCenter.
EventRecordingHandler

Package: com.webobjects.eocontrol

Interface Description

The EOEventCenter. EventRecordingHandler interface, a part of the event logging system, 
declares the setLoggingEnabled method, which is invoked by the event logging system when event 
logging is enabled or disabled for an event class. Event recording handlers are responsible for 
enabling logging in instrumented code. An event recording handler only receives messages 
about event classes registered with registerEventClass. For more information on the event logging 
mechanism, see the EOEventCenter class specification.

Instance Methods

setLoggingEnabled

public abstract void setLoggingEnabled(
boolean flag,
Class aClass)

If flag is true, then instrumented code should log events of class aClass, and the receiver should 
enable updating in instrumented code (usually by setting a flag).

See Also: registerEventClass (EOEventCenter)





389

I N T E R F A C E  

EOFaulting

Implemented by: EODeferredFaulting:
EOEnterpriseObject:
EOCustomObject:
EOGenericRecord:

Package: com.webobjects.eocontrol

Interface Description

The EOFaulting interface together with the EOFaultHandler class forms a general mechanism 
for postponing an object’s initialization until its actually needed. In it’s pre-initialization state, 
an EOFaulting object is known as a fault. When the object is sent a message to which it can’t 
respond without initializing, it uses a fault handler to fire, or to finish initializing. Faults are 
most commonly used by the access layer to represent an object not yet fetched from the database, 
but that must nonetheless exist as an instance in the application—typically because it’s the 
destination of a relationship. Consequently, a fault typically fires when an attempt is made to 
access any of its data. In this case, firing a fault involves fetching the object’s data.

The default implementations of EOFaulting in EOCustomObject and EOGenericRecord are 
sufficient for most purposes. If you need custom faulting behavior, you typically create a 
subclass of EOFaultHandler to accommodate different means of converting faults into regular 
objects; there’s rarely a need to override the default implementations of EOFaulting.



390

I N T E R F A C E  E O F a u l t i n g

Creating a Fault
You create a fault with the EOFaultHandler method makeObjectIntoFault. In Java Client, you create 
a fault by sending an newly created object a turnIntoFault message, providing an EOFaultHandler 
that will later help the fault to fire. This fault handler should be considered completely the 
private property of the fault. You shouldn’t send it any messages, instead dealing exclusively 
with the fault.

Firing a Fault
A fault is fired when it can’t respond to a message without completing its initialization. Any of 
the object’s methods that requires initialization trigger the firing, This is generally accomplished 
by invoking the willRead method. For example, in the typical case of an object that needs to fetch 
it’s data from a database upon firing, willRead is invoked from the object’s “get” methods, such 
as the following:

public String roleName() {
willRead();
return roleName;

}

The default implementations of willRead provided by EOCustomObject and EOGenericRecord 
take care of using the object’s fault handler to finish initialization. For more information on a 
fault handler’s role, see the EOFaultHandler class specification.

Instance Methods

clearFault

public abstract void clearFault()

Restores the receiver to its status prior to the turnIntoFault message that turned the object into a 
fault. Throws an exception if the receiver isn’t a fault.

You rarely use this method. Rather, it’s invoked by an EOFaultHandler during the process of 
firing the fault. For more information, see the EOFaultHandler class specification.



faultHandler

public abstract EOFaultHandler faultHandler()

If the receiver is a fault, returns its fault handler; otherwise returns nil.

isFault

public abstract boolean isFault()

Returns true if the receiver is a fault, false otherwise.

turnIntoFault

public abstract void turnIntoFault(EOFaultHandler aFaultHandler)

(Java Client only) Converts the receiver into a fault, assigning aFaultHandler as the object that 
stores its original state and later converts the fault back into a normal object (typically by fetching 
data from an external repository). The receiver becomes the owner of aFaultHandler; you shouldn’t 
assign it to another object.

willRead

public abstract void willRead()

Fills the receiver with values fetched from the database. Before your application attempts to 
message an object, you must ensure that it has been filled with its data. To do this, enterprise 
objects invoke the method willRead prior to any attempt to access the object’s state, most typically 
in “get” methods such as the following:

public String roleName() {
willRead();
return roleName;

}



392

I N T E R F A C E  E O F a u l t i n g



393

I N T E R F A C E  

EOKeyValueCoding

(informal interface)

Implemented by: EOKeyValueCodingAdditions
EOEnterpriseObject
EOCustomObject
EOGenericRecord

Implements: NSKeyValueCoding
NSKeyValueCoding.ErrorHandling

Package: com.webobjects.eocontrol

Interface Description

The EOKeyValueCoding interface defines Enterprise Objects Framework’s main data transport 
mechanism, in which the properties of an object are accessed indirectly by name (or key), rather 
than directly through invocation of an accessor method or as instance variables. Thus, all of an 
object’s properties can be accessed in a consistent manner. EOCustomObject and 
EOGenericRecord provide default implementations of EOKeyValueCoding, which are sufficient 
for most purposes.

The basic methods for accessing an object’s values are takeValueForKey, which sets the value for the 
property identified by the specified key, and takeValueForKey, which returns the value for the 
property identified by the specified key. The default implementations provided by 
EOCustomObject use the accessor methods normally implemented by objects (or to access 
instance variables directly if need be), so that you don’t have to write special code simply to 
integrate your objects into the Enterprise Objects Framework.



394

I N T E R F A C E  E O K e y Va l u e C o d i n g

The corresponding methods takeStoredValueForKey and storedValueForKey are similar, but they’re 
considered to be a private API, for use by the Framework for transporting data to and from 
trusted sources. For example, takeStoredValueForKey is used to initialize an object’s properties with 
values fetched from the database, whereas takeValueForKey is used to modify an object’s properties 
to values provided by a user or other business logic. How these methods work and how they’re 
used by the framework is discussed in more detail in the section “Stored Value Methods” (page 
387).

The remaining methods, handleQueryWithUnboundKey, handleTakeValueForUnboundKey, and 
unableToSetNullForKey, are provided to handle error conditions. The default versions of 
handleQueryWithUnboundKey and handleTakeValueForUnboundKey throw an exception.

For more information on EOKeyValueCoding, see the sections:

■ “Stored Value Methods” (page 387)

■ “Type Checking and Type Conversion” (page 388)

Method Types

Accessing Values

storedValueForKey

takeStoredValueForKey



I N T E R F A C E  E O K e y Va l u e C o d i n g

395

Instance Methods

storedValueForKey

public abstract Object storedValueForKey(String key)

Returns the property identified by key. This method is used when the value is retrieved for 
storage in an object store (generally, this is ultimately in a database) or for inclusion in a 
snapshot. The default implementation provided by EOCustomObject is similar to the 
implementation of valueForKey, but it resolves key with a different method-instance variable search 
order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). For 
example, with a key of “lastName”, storedValueForKey looks for a method named 
_getLastName or _lastName.

2. If a private accessor isn’t found, searches for an instance variable based on key and returns its 
value directly. For example, with a key of “lastName”, storedValueForKey looks for an instance 
variable named _lastName or lastName.

3. If neither a private accessor or an instance variable is found, storedValueForKey searches for a 
public accessor method based on key. For the key “lastName”, this would be getLastName or 
lastName.

4. If key is unknown, storedValueForKey calls handleTakeValueForUnboundKey.

This different search order allows an object to bypass processing that is performed before 
returning a value through public API. However, if you always want to use the search order in 
valueForKey, you can implement the static method shouldUseStoredAccessors to return false. And as 
with valueForKey, you can prevent direct access of an instance variable with the method the static 
method canAccessFieldsDirectly.



396

I N T E R F A C E  E O K e y Va l u e C o d i n g

takeStoredValueForKey

public abstract void takeStoredValueForKey(
Object value,
String key)

Sets the property identified by key to value. This method is used to initialize the receiver with 
values from an object store (generally, this is ultimately from a database) or to restore a value 
from a snapshot. The default implementation provided by EOCustomObject is similar to the 
implementation of takeValueForKey, but it resolves key with a different method-instance variable 
search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). For 
example, with a key of “lastName”, takeStoredValueForKey looks for a method named 
_setLastName:.

2. If a private accessor isn’t found, searches for an instance variable based on key and sets its 
value directly. For example, with a key of “lastName”, takeStoredValueForKey looks for an 
instance variable named _lastName or lastName.

3. If neither a private accessor or an instance variable is found, takeStoredValueForKey searches for 
a public accessor method based on key. For the key “lastName”, this would be setLastName:.

4. If key is unknown, takeStoredValueForKey calls handleTakeValueForUnboundKey.

This different search order allows an object to bypass processing that is performed before setting 
a value through public API. However, if you always want to use the search order in 
takeValueForKey, you can implement the static method shouldUseStoredAccessors to return false. And 
as with valueForKey, you can prevent direct access of an instance variable with the method the 
static method canAccessFieldsDirectly. 



I N T E R F A C E  E O K e y Va l u e C o d i n g

397



398

I N T E R F A C E  E O K e y Va l u e C o d i n g



I N T E R F A C E  E O K e y Va l u e C o d i n g

399



400

I N T E R F A C E  E O K e y Va l u e C o d i n g



I N T E R F A C E  E O K e y Va l u e C o d i n g

401





403

I N T E R F A C E  

EOKeyValueCodingAdditions

(informal interface)

Implemented by: EOEnterpriseObject
EOCustomObject
EOGenericRecord

Implements: EOKeyValueCoding
NSKeyValueCodingAdditions

Package: com.webobjects.eocontrol

Interface Description

The EOKeyValueCodingAdditions interface defines extensions to the basic EOKeyValueCoding 
interface. One pair of methods, takeValuesFromDictionary and valuesForKeys, gives access to groups of 
properties. Another pair of methods, takeValueForKey and valueForKey give access to properties 
across relationships with key paths of the form relationship.property; for example, 
“department.name”. EOCustomObject and EOGenericRecord provide default implementations 
of EOKeyValueCodingAdditions, which you rarely (if ever) need to override. 



404

I N T E R F A C E  E O K e y Va l u e C o d i n g A d d i t i o n s

EONullValue in Collections
Because collection objects such as NSArray and NSDictionary can’t contain null as a value, null 
must be represented by a special object, EONullValue. EONullValue provides a single instance 
that represents the NULL value for object attributes. The default implementations of 
takeValuesFromDictionary and valuesForKeys translate EONullValue and null  between NSDictionaries 
and enterprise objects so your objects don’t have to explicitly test for EONullValues. 

Instance Methods

takeValuesFromDictionary

public abstract void takeValuesFromDictionary(NSDictionary aDictionary)

Sets properties of the receiver with values from aDictionary, using its keys to identify the 
properties. EOCustomObject’s implementation invokes takeValueForKey for each key-value pair, 
substituting null for EONullValues in aDictionary.

valuesForKeys

public abstract NSDictionary valuesForKeys(NSArray keys)

Returns a dictionary containing the property values identified by each of keys. 
EOCustomObject’s implementation invokes valueForKey for each key in keys, substituting 
EONullValues in the dictionary for returned null values.



405

I N T E R F A C E  

EOEditingContext.MessageHandler

(informal interface)

Package: com.webobjects.eocontrol

Interface Description

The EOEditingContext.MessageHandler interface declares methods used for error reporting 
and determining fetch limits. See the EOEditingContext, EODatabaseContext (EOAccess), and 
EODisplayGroup (EOInterface) class specifications for more information.

Message handlers are primarily used to implement exception handling in the interface layer’s 
EODisplayGroup, and wouldn’t ordinarily be used in a command line tool or WebObjects 
application.

Message handlers are not required to provide implementations for all of the methods in the 
interface. When you write a handler, you don’t have to use the implements keyword to specify that 
the object implements the EOEditingContext.MessageHandler interface. Instead, simply use the 
EOEditingContext method setMessageHandler method to assign your object as the 
EOEditingContext’s handler and then declare and implement any subset of the methods 
declared in the EOEditingContext.MessageHandler interface. An EOEditingContext can 
determine if the handler doesn’t implement a method and only attempts to invoke the methods 
the handler actually implements.



406

I N T E R F A C E  E O E d i t i n g C o n t e x t . M e s s a g e H a n d l e r

Instance Methods

editingContextPresentErrorMessage

public abstract void editingContextPresentErrorMessage(
EOEditingContext anEditingContext,
String message)

Invoked by anEditingContext, this method should present message to the user in whatever way 
is appropriate (whether by opening an attention panel or printing the message in a terminal 
window, for example). This message is sent only if the method is implemented. 

editingContextShouldContinueFetching

public abstract boolean editingContextShouldContinueFetching(
EOEditingContext anEditingContext,
int count,
int limit,
EOObjectStore objectStore)

Invoked by an objectStore (such as an access layer EODatabaseContext) to allow the message 
handler for anEditingContext (often an interface layer EODisplayGroup) to prompt the user 
about whether or not to continue fetching the current result set. The count argument is the 
number of objects fetched so far. limit is the original limit specified an EOFetchSpecification. 
This message is sent only if the method is implemented.



407

I N T E R F A C E  

EOObserving

Implemented by: EODelayedObserver
EOEditingContext

Package: com.webobjects.eocontrol

Interface Description

The EOObserving interface, a part of EOControl’s change tracking mechanism, declares the 
objectWillChange method, used by observers to receive notifications that an object has changed. 
This message is sent by EOObserverCenter to all observers registered using its addObserver 
method. For an overview of the general change tracking mechanism, see “Tracking Enterprise 
Objects Changes” (page 23) in the introduction to the EOControl Framework.

Instance Methods

objectWillChange

public abstract void objectWillChange(Object anObject)

Informs the receiver that anObject’s state is about to change. The receiver can record anObject’s 
state, mark or record it as changed, and examine it later (such as at the end of the run loop) to 
see how it’s changed.



408

I N T E R F A C E  E O O b s e r v i n g



409

I N T E R F A C E  

EOQualifier.Comparison

(informal interface)

Package: com.webobjects.eocontrol

Interface Description

The EOQualifierComparison interface defines methods for comparing values. These methods 
are used for evaluating qualifiers in memory.

In Java Client, support for these methods is provided for String, Number, and Date using 
EOQualifier.ComparisonSupport. You should implement this interface for any value classes you 
write that you want to be evaluated in memory by EOQualifier instances.

Method Types

Testing value objects

doesContain

isEqualTo

isGreaterThan

isGreaterThan



410

I N T E R F A C E  E O Q u a l i fi e r . C o m p a r i s o n

isLessThan

isLessThanOrEqualTo

isLike

isCaseInsensitiveLike

isNotEqualTo

Instance Methods

doesContain

public abstract boolean doesContain(Object anObject)

Returns true if the receiver contains anObject, false if it doesn’t.

isCaseInsensitiveLike

public abstract boolean isCaseInsensitiveLike(Object anObject)

Returns true if the receiver is a case-insensitive match for anObject, false if it isn’t. See “Using 
Wildcards and the like Operator” (page 99) for the wildcard characters allowed.

isEqualTo

public abstract boolean isEqualTo(Object anObject)

Returns true if the receiver is equal to anObject, false if it isn’t.

isGreaterThan

public abstract boolean isGreaterThan(Object anObject)

Returns true if the receiver is greater than anObject, false if it isn’t.



I N T E R F A C E  E O Q u a l i fi e r . C o m p a r i s o n

411

isGreaterThanOrEqualTo

public abstract boolean isGreaterThanOrEqualTo(Object anObject)

Returns true if the receiver is greater than or equal to anObject, false if it isn’t.

isLessThan

public abstract boolean isLessThan(Object anObject)

Returns true if the receiver is less than anObject, false if it isn’t.

isLessThanOrEqualTo

public abstract boolean isLessThanOrEqualTo(Object anObject)

Returns true if the receiver is less than or equal to anObject, false if it isn’t.

isLike

public abstract boolean isLike(Object anObject)

Returns true if the receiver matches aString according to the semantics of the SQL like comparison 
operator, false if it doesn’t. See “Using Wildcards and the like Operator” (page 99) for the 
wildcard characters allowed.

isNotEqualTo

public abstract boolean isNotEqualTo(Object anObject)

Returns true if the receiver is not equal to anObject, false if it is.



412

I N T E R F A C E  E O Q u a l i fi e r . C o m p a r i s o n



413

I N T E R F A C E  

EOQualifierEvaluation

Implemented by: EOAndQualifier
EOKeyComparisonQualifier
EOKeyValueQualifier
EONotQualifier
EOOrQualifier

Package: com.webobjects.eocontrol

Interface Description

The EOQualifierEvaluation interface defines a method, evaluateWithObject, that performs 
in-memory evaluation of qualifiers. All qualifier classes whose objects can be evaluated in 
memory must implement this interface.

Instance Methods

evaluateWithObject

public abstract boolean evaluateWithObject(NSKeyValueCodingAdditions object)

Returns true if the argument object satisfies the qualifier, false otherwise. This method can throw 
one of several possible exceptions if an error occurs, depending on the implementation.



414

I N T E R F A C E  E O Q u a l i fi e r E v a l u a t i o n



415

I N T E R F A C E  

EORelationshipManipulation

(informal interface)

Implemented by: EOEnterpriseObject
EOCustomObject
EOGenericRecord

Package: com.webobjects.eocontrol

Interface Description

The EORelationshipManipulation interface builds on the basic EOKeyValueCoding interface to 
allow you to modify to-many relationship properties. EOCustomObject and EOGenericRecord 
provide default implementations of EORelationshipManipulation, which you rarely (if ever) 
need to override.

The primitive methods addObjectToPropertyWithKey and removeObjectFromPropertyWithKey add and 
remove single objects from to-many relationship arrays. The two other methods in the interface, 
addObjectToBothSidesOfRelationshipWithKey and removeObjectFromBothSidesOfRelationshipWithKey, are 
implemented in terms of the two primitives to handle reciprocal relationships. These methods 
find the inverse relationship to the one identified by the specified key (if there is such an inverse 
relationship) and use addObjectToPropertyWithKey and removeObjectFromPropertyWithKey to alter both 
relationships, whether they’re to-one or to-many.



416

I N T E R F A C E  E O R e l a t i o n s h i p M a n i p u l a t i o n

The primitive methods check first for a method you might implement, addToKey or 
removeFromKey, invoking that method if it’s implemented, otherwise using the basic key-value 
coding methods to do the work. Consequently, you rarely need to provide your own 
implementations of EORelationshipManipulation. Rather, you can provide relationship 
accessors (addToKey or removeFromKey) whenever you need to implement custom business logic.

Instance Methods

addObjectToBothSidesOfRelationshipWithKey

public abstract void addObjectToBothSidesOfRelationshipWithKey(
EORelationshipManipulation anObject,
String key)

Sets or adds anObject as the destination for the receiver’s relationship identified by key, and also 
sets or adds the receiver for anObject’s reciprocal relationship if there is one. For a to-one 
relationship, anObject is set using takeValueForKey. For a to-many relationship, anObject is added 
using addObjectToBothSidesOfRelationshipWithKey.

This method also properly handles removing this and anObject from their previous relationship 
as needed. For example, if an Employee object belongs to the Research department, invoking this 
method with the Maintenance department removes the Employee from the Research 
department as well as setting the Employee’s department to Maintenance.

addObjectToPropertyWithKey

public abstract void addObjectToPropertyWithKey(
Object anObject,
String key)

Adds anObject to the receiver’s to-many relationship identified by key, without setting a 
reciprocal relationship. Similar to the implementation of takeValueForKey, EOCustomObject’s 
implementation of this method first attempts to invoke a method of the form addToKey:. If the 
receiver doesn’t have such a method, this method gets the property array using valueForKey and 
operates directly on that. For a to-many relationship, this method adds anObject to the array if it 
is not already in the array. For a to-one relationship, this method replaces the previous value 
with anObject.



I N T E R F A C E  E O R e l a t i o n s h i p M a n i p u l a t i o n

417

removeObjectFromBothSidesOfRelationshipWithKey

public abstract void removeObjectFromBothSidesOfRelationshipWithKey(
EORelationshipManipulation anObject,
String key)

Removes anObject from the receiver’s relationship identified by key, and also removes the 
receiver from anObject’s reciprocal relationship if there is one. For a to-one relationship, 
anObject is removed using takeValueForKey with null as the value. For a to-many relationship, 
anObject is removed using removeObjectFromPropertyWithKey.

removeObjectFromPropertyWithKey

public abstract void removeObjectFromPropertyWithKey(
Object anObject,
String key)

Removes anObject from the receiver’s to-many relationship identified by key, without modifying 
a reciprocal relationship. Similar to the implementation of takeValueForKey, EOCustomObject’s 
implementation of this method first attempts to invoke a method of the form removeFromKey:. If the 
receiver doesn’t have such a method, this method gets the property array using valueForKey and 
operates directly on that. For a to-many relationship, this method removes anObject from the 
array. For a to-one relationship, this method replaces anObject with null.





419

I N T E R F A C E  

EOSortOrderingComparison

(informal interface)

Implemented by: EONullValue

Package: com.webobjects.eocontrol

Interface Description

The EOSortOrderingComparison interface defines methods for comparing values. These 
methods are used for sorting value objects.

Support for these methods is provided for String, Number, and Date using 
EOSortOrdering.ComparisonSupport. EONullValue implements the interface directly. You 
should implement this interface for any value classes you write that you want to be properly 
sorted by EOSortOrdering instances.

Instance Methods

compareAscending
Returns NSComparator.OrderedAscending if anObject is naturally ordered after the receiver, 
NSComparator.OrderedDescending if it’s naturally ordered before the receiver, and 
NSComparator.OrderedSame if they’re equivalent for ordering purposes.



420

I N T E R F A C E  E O S o r t O r d e r i n g C o m p a r i s o n

compareCaseInsensitiveAscending
Returns NSComparator.OrderedAscending if anObject is naturally ordered—ignoring case—after 
the receiver, NSComparator.OrderedDescending if it’s naturally ordered before the receiver, and 
NSComparator.OrderedSame if they’re equivalent for ordering purposes.

compareCaseInsensitiveDescending
Returns NSComparator.OrderedAscending if anObject is naturally ordered—ignoring case—before 
the receiver, NSComparator.OrderedDescending if it’s naturally ordered after the receiver, and 
NSComparator.OrderedSame if they’re equivalent for ordering purposes.

compareDescending
Returns NSComparator.OrderedAscending if anObject is naturally ordered before the receiver, 
NSComparator.OrderedDescending if it’s naturally ordered after the receiver, and 
NSComparator.OrderedSame if they’re equivalent for ordering purposes.



421

I N T E R F A C E  

EOValidation

(informal interface)

Implemented by: EOEnterpriseObject
EOCustomObject
EOGenericRecord

Package: com.webobjects.eocontrol

Interface Description

The EOValidation interface defines the way that enterprise objects validate their values. The 
validation methods check for illegal value types, values outside of established limits, illegal 
relationships, and so on. EOCustomObject and EOGenericRecord provide default 
implementations of EOValidation, which are described in detail in this specification.

There are two kinds of validation methods. The first validates individual properties, and the 
second validates an entire object to see if it’s ready for a specific operation (inserting, updating, 
and deleting). The two different types are discussed in more detail in the sections “Validating 
Individual Properties” (page 415) and “Validating Before an Operation” (page 416).



422

I N T E R F A C E  E O Va l i d a t i o n

Instance Methods

validateForDelete

public abstract void validateForDelete()

Confirms that the receiver can be deleted in its current state, throwing an 
NSValidation.ValidationException if it can’t. For example, an object can’t be deleted if it has a 
relationship with a delete rule of EOClassDescription.DeleteRuleDeny and that relationship has 
a destination object.

EOCustomObject’s implementation sends the receiver’s EOClassDescription a message (which 
performs basic checking based on the presence or absence of values). Subclasses should invoke 
super’s implementation before performing their own validation, and should combine any 
exception thrown by super’s implementation with their own.:

See Also: propagateDeleteWithEditingContext (EOEnterpriseObject) ,  

validateForInsert

public abstract void validateForInsert()

Confirms that the receiver can be inserted in its current state, throwing an 
NSValidation.ValidationException if it can’t. EOCustomObject’s implementation simply 
invokes validateForSave.

The method validateForSave is the generic validation method for when an object is written to the 
external store. If an object performs validation that isn’t specific to insertion, it should go in 
validateForSave.

validateForSave

public abstract void validateForSave()

Confirms that the receiver can be saved in its current state, throwing an 
NSValidation.ValidationException if it can’t. EOCustomObject’s implementation sends the 
receiver’s EOClassDescription a validateObjectForSave message, then iterates through all of the 



I N T E R F A C E  E O Va l i d a t i o n

423

receiver’s properties. If this results in more than one exception, the exception returned contains 
the additional ones in its userInfo dictionary under the 
NSValidation.ValidationException.AdditionalExceptionsKey. Subclasses should invoke super’s 
implementation before performing their own validation, and should combine any exception 
thrown by super’s implementation with their own.

Enterprise objects can implement this method to check that certain relations between properties 
hold; for example, that the end date of a vacation period follows the begin date. To validate an 
individual property, you can simply implement a method for it.

See Also: NSValidation.ValidationException constructor

validateForUpdate

public abstract void validateForUpdate()

Confirms that the receiver can be inserted in its current state, 
NSValidation.ValidationException. EOCustomObject’s implementation simply invokes 
validateForSave.

The method validateForSave is the generic validation method for when an object is written to the 
external store. If an object performs validation that isn’t specific to updating, it should go in 
validateForSave.



424

I N T E R F A C E  E O Va l i d a t i o n



4/19/01

T H E  A P P L E  P U B L I S H I N G  S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system 
using Apple Macintosh computers and FrameMaker software. 

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some 
elements, such as program listings, are set in Adobe Letter Gothic.



426

C O L O P H O N  


	EOQualifier.QualifierVariableSubstitu tionException
	EOKeyValueUnarchiver.Delegate
	EOKeyValueArchiving.FinishInitializa tion
	EOKeyValueArchiving.Awaking
	EOKeyValueArchiving
	EOKeyValueArchiver.Delegate
	EOEditingContext.MessageHandler
	EOEditingContext.Editor
	EOAggregateEvent
	EOAndQualifier
	EOArrayDataSource  class:specification
	EOClassDescription  class:specification
	EOClassDescription  class:specification
	EODataSource  class:specification
	EODelayedObserver  class:specification
	EODelayedObserverQueue.Concepts
	EOEditingContext  class:specification
	EOEventCenter.Concepts
	EOClassDescription  class:specification
	EOCooperatingObjectStore  class:specification
	EOCustomObject
	EODataSource  class:specification
	EODelayedObserver  class:specification
	EODelayedObserverQueue  class:specification
	EODetailDataSource
	EOEditingContext  class:specification
	EOEvent
	EOEventCenter
	EOFaultHandler  class:specification
	EOFetchSpecification  class:specification
	EOGenericRecord  class:specification
	EOGlobalID  class:specification
	EOKeyComparisonQualifier
	EOKeyGlobalID  class:specification
	EOKeyValueCoding. DefaultImplementation
	EOKeyValueCodingAdditions.Utility
	EOKeyValueCodingAdditions. DefaultImplementation
	EOKeyValueQualifier
	EOKeyValueCoding.Utility
	EONotQualifier  class:specification
	EOObjectStore  class:specification
	EOObjectStoreCoordinator  class:specification
	EOObserverCenter  class:specification
	EOObserverProxy  class:specification
	EOOrQualifier  class:specification
	EOQualifier  class:specification
	EOQualifier.ComparisonSupport
	EOQualifierVariable
	EOSharedEditingContext
	EOSortOrdering  class:specification
	EOSortOrdering.ComparisonSupport
	EOTemporaryGlobalID  class:specification
	EOClassDescription.ClassDelegate
	EODeferredFaulting
	EOEditingContext. Delegate
	EOEditingContext.Editors
	EOEnterpriseObject
	EOObserving  class:specification
	EOFaulting
	EOKeyValueCoding
	EOKeyValueCodingAdditions
	EOMessageHandlers  protocol:specification
	EOObserving  class:specification
	EOQualifier.Comparison
	EOQualifierEvaluation  class:specification
	�EORelationshipManipulation
	EOSortOrderingComparison
	EOValidation

