

Getting Started With WebObjects

May 2001

Apple Computer, Inc.
© 2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be re-
produced, stored in a retrieval sys-
tem, or transmitted, in any form or by
any means, mechanical, electronic,
photocopying, recording, or other-
wise, without prior written permis-
sion of Apple Computer, Inc., with
the following exceptions: Any person
is hereby authorized to store docu-
mentation on a single computer for
personal use only and to print copies
of documentation for personal use
provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of Ap-
ple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial pur-
poses without the prior written con-
sent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application devel-
opers to develop applications only for
Apple-labeled or Apple-licensed
computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac, Macin-
tosh, and WebObjects are trademarks
of Apple Computer, Inc., registered
in the United States and other coun-
tries.

Enterprise Objects and Enterprise
Objects Framework are trademarks of
NeXT Software, Inc., registered in the
United States and other countries.
UNIX is a registered trademark in the
United States and other countries,
licened exclusively through X/Open
Company Limited.
Java is a registered trademark of Sun
Microsystems, Inc. in the United
States and other countries.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRAN-
TY OR REPRESENTATION, EITHER EX-
PRESS OR IMPLIED, WITH RESPECT
TO THIS MANUAL, ITS QUALITY, AC-
CURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PUR-
POSE. AS A RESULT, THIS MANUAL IS
SOLD “AS IS,” AND YOU, THE PUR-
CHASER, ARE ASSUMING THE EN-
TIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL, IN-
CIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possi-
bility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is au-
thorized to make any modification, exten-
sion, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liabil-
ity for incidental or consequential damag-
es, so the above limitation or exclusion
may not apply to you. This warranty gives
you specific legal rights, and you may
also have other rights which vary from
state to state.

3

 Apple Computer, Inc. May 2001

Contents

Preface

Preface

7

About WebObjects 7
About This Book 7
Where to Go From Here 8

Chapter 1

Creating a Simple WebObjects Application

9

Creating a WebObjects Application Project 11
Examining Your Project 14
Launching WebObjects Builder 16
Creating the Page’s Content 19

Entering Static Text 19
Using the Inspector 20
Creating Form-Based Dynamic HTML Elements 21
Resizing the Form Elements 23

Binding Elements 24
Creating Variables 24
Binding the Input Elements 27
Implementing an Action Method 29

Creating the Application’s Output 30
Building and Running Your Application 33

Chapter 2

Enhancing Your Application

37

Duplicating Your Project 37
Creating a Custom Guest Class 38

Binding the Class’s Instance Variables to the Form Elements 40
Creating a Table to Display the Output 41
Adding Dynamic Elements to Table Cells 43
Binding the Dynamic Elements in the Table 44
Creating the Guest Object 44

4

 Apple Computer, Inc. May 2001

C O N T E N T S

Keeping Track of Multiple Guests 47
Creating a Guest List 47
Adding Guests to the Guest List 49

Adding a Second Component 50
Using a Repetition 52
Adding the Finishing Touches 54

Clearing the Guest List 54
Adding a Dynamic Hyperlink 55

Chapter 3

Creating a WebObjects Database Application

59

The Movies Application 60
Enterprise Objects and the Movies Database 62

Enterprise Objects and Relationships 64
Defining the Model 65

Creating a New Model File 65
Choosing What to Include in Your Model 66
Choosing the Tables to Include 69
Specifying Primary Keys 70
Saving the Model 72

Designing the Main Page 74
Starting the WebObjects Application Wizard 74
Specifying a Model File 75
Choosing an Entity 76
Choosing a Layout 76
Choosing Attributes to Display 78
Choosing an Attribute to Display as a Hyperlink 79
Choosing Attributes to Query On 80
Running Movies 81

Examining Your Project 82
Examining the Variables 83
Examining the Bindings 85

Bindings in the Query Part 85
Bindings in the Repetition Part 86
Bindings in the Editing Part 87

Refining Main.wo 89
Specifying a Sort Order 91

C O N T E N T S

5

 Apple Computer, Inc. May 2001

Specifying Default Values for New Enterprise Objects 92
Setting a Date Format 93
Setting a Number Format 94
Optional Exercise 94

Adding the MovieDetails Page 98
Creating the MovieDetails Component 98
Storing the Selected Movie 98
Navigating from Main to MovieDetails 99
Designing MovieDetails’ User Interface 100
Adding Date and Number Formats 101
Navigating from MovieDetails to Main 102
Running Movies 102

Refining Your Model 103
Opening Your Model 103
Removing Foreign Keys as Class Properties 104
Adding Relationships to Your Model 105
Using the Advanced Relationship Inspector 108
Where Do Primary Keys Come From? 110

Setting Up a Master-Detail Configuration 111
Creating a Detail Display Group 111
Adding a Repetition 115
Configuring a Repetition 115
Running Movies 116

Updating Objects in the Detail Display Group 116
Managing a WODisplayGroup’s Selection 118
Adding a Form 118
Adding a Talent Display Group 119
Configuring the Browser 120
Adding Insert, Save, and Delete Buttons 122

Adding Behavior to Your Enterprise Objects 123
Specifying Custom Enterprise Object Classes 124
Generating Custom Enterprise Object Classes 124
Adding Custom Behavior to Talent 125
Providing Default Values in MovieRole 125
Running Movies 126

6

 Apple Computer, Inc. May 2001

C O N T E N T S

Glossary

127

About WebObjects

7

 Apple Computer, Inc. May 2001

P R E F A C E

Preface

About WebObjects

WebObjects is an object-oriented environment for developing and deploying World
Wide Web applications. A WebObjects application runs on a server machine and
receives requests from a user’s web browser on a client machine. It dynamically
generates HTML pages in response to the user’s requests. WebObjects provides a
suite of tools for rapid application development, as well as prebuilt application
components and a web application server.

WebObjects is flexible enough to suit the needs of any web programmer. You can
write simple WebObjects applications in a matter of minutes. For more complex
projects, WebObjects makes it easy by performing common web application tasks
automatically and by allowing you to reuse objects you’ve written for other
applications.

About This Book

This book contains three tutorials that help you learn what WebObjects is and how
to use it:

8

Where to Go From Here

 Apple Computer, Inc. May 2001

P R E F A C E

Preface

�

“Creating a Simple WebObjects Application” (page 9), teaches you the basic
concepts and steps involved in creating a WebObjects project, using the Project
Builder and WebObjects Builder tools. You’ll create a simple application that
takes input from a user and displays it.

�

“Enhancing Your Application” (page 37), extends the capabilities of your
application and shows you additional techniques you use when working with
WebObjects.

�

“Creating a WebObjects Database Application” (page 59), teaches you how to
create a more complex application, one that accesses a database.

WebObjects can run on several platforms. Screen shots in this book are for Windows
2000 systems; if you are running on a different platform, the look of your windows
may vary slightly.

Where to Go From Here

After you have worked through the tutorials in this book, you should have a good
working knowledge of WebObjects. For more in-depth information about how
WebObjects works, read the

WebObjects Developer’s Guide

.

Other valuable information about WebObjects is available on the WebObjects CD.
You can access all online information through the WebObjects home page.

9

 Apple Computer, Inc. May 2001

C H A P T E R 1

1 Creating a Simple
WebObjects Application

This chapter introduces you to the basic concepts and procedures of developing
WebObjects applications. You’ll develop, in stages, a simple application for the
World Wide Web. The application you’ll write is called GuestBook.

When you’ve finished the steps in this chapter, your application will have a single
web page containing a form that allows users to enter their names,
e-mail addresses, and comments. When the form is submitted, the application
redraws the page with the user’s information at the bottom.

10

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

In “Enhancing Your Application” (page 37), you will add features to the
application, including a second page, a table that displays information from
multiple users, and hyperlinks.

C H A P T E R 1

Creating a Simple WebObjects Application

Creating a WebObjects Application Project

11

 Apple Computer, Inc. May 2001

This application illustrates the basic techniques you use to create a WebObjects
application. You’ll use two primary tools, Project Builder and WebObjects Builder.

Project Builder is an integrated software-development application. It contains
a project browser, a code editor, build and debugging support, and many other
features needed to develop an application. In this tutorial, you’ll learn to use Project
Builder to:

�

Create a new WebObjects application project.

�

Write custom Java code to provide behavior in your application.

�

Build and launch your application.

WebObjects Builder is an application that provides graphical tools for creating
dynamic web pages (components). A web page consists of elements. WebObjects
Builder allows you to add most of the common HTML elements to a component by
using its graphical editing tools. In addition, WebObjects allows you to create
dynamic elements, whose look and behavior are determined at runtime. You’ll
learn to use WebObjects Builder to:

�

Create static content for your pages.

�

Add dynamic elements to your pages.

�

Bind the dynamic elements to variables and methods in your code.

Creating a WebObjects Application Project

A WebObjects application project contains all the files needed to build and maintain
your application. You use Project Builder to create a new project.

1. Launch Project Builder.

Launch Project Builder from the WebObjects program group in the Start menu.

2. Choose Project > New.

12

Creating a WebObjects Application Project

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

3. In the New Project panel, select Java WebObjects Application from the Project
Type pop-up list.

4. Click Browse.

5. Navigate to the directory where you want to save the project.

6. Type the name of the project you want to create (GuestBook).

7. Click Save.

The New Project panel shows the path you specified.

8. Click OK.

C H A P T E R 1

Creating a Simple WebObjects Application

Creating a WebObjects Application Project

13

 Apple Computer, Inc. May 2001

The WebObjects Application Wizard starts.

9. For Available Assistance, choose None.

If you are developing an application that accesses a database, you may wish to
use one of the levels of assistance that WebObjects provides. For more
information on these options, see “Creating a WebObjects Database
Application” (page 59).

10. Click Finish.

Project Builder creates a new application directory called

GuestBook

. This
directory contains the files you work with in both Project Builder and
WebObjects Builder.

14

Examining Your Project

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

Examining Your Project

Project Builder displays a browser showing the contents of your project. The first
column lists several categories of files that your project may contain. This section
describes some of the most important files you’ll use.

1. Select Web Components.

The next column displays a list with one element,

Main.wo

, which is a directory
containing the first

component

 in your application. In WebObjects terminology, a
component represents a page in your application (or possibly part of a page).
The Main component is the starting point of your application.

2. Select

Main.wo

.

The files you see displayed in the next column are some of the files you work
with when developing your component:

�

Main.html

 is the HTML template for your page. It can include tags for
dynamic WebObjects elements as well as regular HTML. Typically, you do
not edit this file directly; you create your page’s elements graphically using
WebObjects Builder.

�

Main.wod

 is the declarations file that specifies bindings between the dynamic
elements and variables or methods in your scripts. Normally, you don’t edit
this file directly; you use WebObjects Builder to generate the bindings for
you.

Your project’s components.

Files in the selected component.

Categories ("suitcases")
of project resources.

C H A P T E R 1

Creating a Simple WebObjects Application

Examining Your Project

15

 Apple Computer, Inc. May 2001

3. Select Classes in the first column of the browser.

You’ll see these files listed in the second column:

�

Main.java

 is a file that allows you to specify behavior associated with the
component. You do this by writing code in Java using Project Builder.

�

Application.java

 and

Session.java

 are other Java files that you may want to
work with.

Application.java

 defines

application variables

 that live as long as
the application does.

Session.java

 defines

session variables

 that exist for the
lifetime of one user’s session. In “Enhancing Your Application” (page 37),
you’ll add code to

Application.java

 and learn more about application and
session variables.

�

DirectAction.java

defines a subclass of WODirectAction that you use as a
container class for your action methods. You can rename this class or create
multiple subclasses of WODirectAction depending on your application
needs.

Your applications’s
Java class.

The selected class’s code.

16

Launching WebObjects Builder

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

Launching WebObjects Builder

Now that you’ve created your project, you’ll edit the Main component with
WebObjects Builder.

1. Select Web Components in the first column of the browser.

2. Double-click

Main.wo

 in the second column.

The WebObjects Builder tool launches and displays a window titled

Main.wo

.
This represents your application’s Main component.

You create your component graphically in the upper pane of the component
window. The browser at the bottom of the window (known as the

object browser

)
is used to display variables and methods your component uses. Note that there
are two variables already defined,

application

 and

session

. You’ll create others
later.

Other WebObjects
elements

Path view

Object browser

Inspector

Editing mode Dynamic elements Structures

C H A P T E R 1

Creating a Simple WebObjects Application

Launching WebObjects Builder

17

 Apple Computer, Inc. May 2001

The

path view

 lies between the upper pane and the object browser and shows the

element path

 to the selected element. Any element can be contained in a hierarchy
of several levels of elements and can in turn contain other elements. Here, the
path view shows the page element, which is the top level of the hierarchy. By
clicking the tags in the path view, you can easily choose different elements in the
hierarchy.

The toolbar at the top of the window contains several buttons that allow you to
create the content of your component. WebObjects Builder also has menu
commands corresponding to these buttons.

3. From the pop-up list at the left of the toolbar, choose .

This pop-up list allows you to switch between graphical editing mode and
source editing mode. When you choose source editing mode, the text of your
HTML template (

Main.html

) appears. It is a skeleton at this point, since the page
is empty. As you add elements graphically, their corresponding HTML tags
appear in this file.

18

Launching WebObjects Builder

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

The bottom pane shows your declarations (

Main.wod

) file. Later, when you bind
variables to your dynamic elements, this file stores the information. Normally,
you do not type directly in this file. You can add elements using the toolbar in
either source or graphical editing mode.

4. Switch back to graphical editing mode. For the rest of the tutorial, you’ll work in
this mode.

C H A P T E R 1

Creating a Simple WebObjects Application

Creating the Page’s Content

19

 Apple Computer, Inc. May 2001

Creating the Page’s Content

A web page consists of

elements

. In addition to the standard static HTML elements
found in all web pages, WebObjects allows you to create

dynamic elements

, whose
look and behavior are determined at runtime.

To create elements, you use the toolbar buttons. There are three groups of buttons:

�

Structures

.

 Use these buttons to create
paragraphs, lists, images, and other static HTML elements.

�

Dynamic form elements

.

 Use these buttons to
create form elements in which users enter information. WebObjects gives your
application access to the data entered by users by allowing you to associate, or

bind

, these elements to variables in your application.

�

Other WebObjects

.

 Use these buttons to create
other dynamic elements, that you can bind to variables and methods in your
program to control how they are displayed. Some of these (such as hyperlinks)
have direct HTML equivalents. Others are

abstract dynamic elements

, such as
repetitions and conditionals, that determine how many times an element is
displayed or whether it is displayed at all.

Entering Static Text

The simplest way to add text to a page is to type it directly into the component’s
window. To demonstrate this, add a title for the GuestBook’s page.

1. Type My Guest Book and press Shift-Enter (on the keyboard).

The text is displayed at the insertion point, in this case at the beginning of the
page.

2. Select the text you just typed.

3. Click the button in the toolbar. This converts the selected text to a heading
element and displays it in a larger font.

4. From the pop-up list in the toolbar, choose center justification.

20

Creating the Page’s Content

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

The toolbar also has buttons that allow you to apply text styles such as bold,
underline, and italics.

HTML provides several levels of headings. To change the level, you use the
Inspector panel. You’ll use this panel frequently throughout these tutorials.

Using the Inspector

You use the Inspector panel to set properties of the elements in your component.
The Inspector’s title and contents reflect the element you’ve selected in the
component window.

1. Click .

A panel titled Heading Inspector appears. It allows you to set the level of the
heading.

2. Click “2”.

The text is now part of an <H2> tag, and is displayed in a smaller font.

3. Click <BODY> in the path view.

Each element has its own Inspector that allows you to set properties appropriate
for the element. The Page Inspector allows you to set properties such as the
page’s title and its text color.

Click here to set the heading level.

C H A P T E R 1

Creating a Simple WebObjects Application

Creating the Page’s Content

21

 Apple Computer, Inc. May 2001

4. Type a title (such as “My Guest Book”, or something else of your choosing) in
the Title text field and press Enter. This is the title of the window that appears in
your web browser when you run the application.

Note:

 Be sure to press Enter after typing in the title; otherwise, it won’t “stick.”

5. Choose File > Save to save the Main component.

Although WebObjects Builder supports undo, it is always a good idea to save
your work frequently.

Creating Form-Based Dynamic HTML Elements

In this section, you’ll create a form with several elements to capture input from a
guest. The Submit and Reset buttons you add to the form will apply to all other
elements in the form. These elements look and act like HTML form elements but are
actually dynamic WebObjects elements, that enable your code to receive and
manipulate the data entered by the user. Refer to the screen shot that follows these
steps to see how the window should look.

1. Place the cursor on the second line after the “My Guest Book” text.

2. Click .

WebObjects Builder adds a form element to your component. The triangle at the
upper-left corner indicates that it is a dynamic form, as opposed to a static
form.The gray border indicates the extent of the form. You can increase its size
by adding elements inside it.

3. Type the text “Name: ” and press Shift-Enter.

This text replaces the word “Form” that was displayed by default.

4. Type “E-mail: ” and press Shift-Enter twice.

Enter page’s title here.

22

Creating the Page’s Content

 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

5. Type “Comments: ” followed by Shift-Enter.

You have just entered three lines (and a blank line) of static text inside the form.
Now you’ll enter some dynamic elements to receive input from the user: two
text fields and a multi-line text area.

6. Place the cursor to the right of the text “Name: ”.

7. Click to create a dynamic text field element (WOTextField).

8. Repeat steps 6 and 7 for “E-mail: ”.

9. Use the button to create a multi-line text area below the “Comments: ” line.

10. Press Shift-Enter twice to create two blank lines.

11. Click to create a Submit button, used to send the data in the form to the
server.

12. Click to create a Reset button, used to clear the data in the form.

The window should now look like this:

Dynamic form
elements buttons.

Rectangle indicates
extent of form.

Dynamic text
field elements.

Dynamic text
area element.

C H A P T E R 1

Creating a Simple WebObjects Application

Creating the Page’s Content

23

 Apple Computer, Inc. May 2001

Resizing the Form Elements

The text fields and text area are a bit small, so you’ll resize them using the Inspector
panel.

To inspect an element, you must first select it. Some elements (such as text fields and
text areas) can be selected simply by clicking them; they appear shaded.

You select text elements as you would in most text-editing applications (by
dragging, or by double-clicking words, or by triple-clicking lines); they appear
highlighted when selected.

1. Select the Name text field.

2. In the Textfield Inspector, change the setting of the pop-up list at the upper left
of the panel from Dynamic Inspector to Static Inspector.

All WebObjects elements have a dynamic inspector, that is, one that allows you to
set bindings (you’ll work with bindings in the next section). In addition, many
WebObjects elements (those with direct counterparts in static HTML) also have
a static inspector. This inspector allows you to set the standard HTML attributes
for that type of element.

In this panel, you can set various attributes of the static counterpart of a
WOTextField, which is an HTML <INPUT TYPE=TEXT> element.

3. In the Visible length field, enter 20 to set the width of the text field to 20
characters.

4. Repeat steps 1 and 3 for the E-mail field.

5. Select the multi-line text area.

24 Binding Elements
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

In the Text Area Inspector, you can set various attributes corresponding to those
of a <TEXTAREA> element.

6. Increase the size of the element by specifying the number of columns and
number of rows to, say, 30 and 6.

7. Save the Main component.

Don’t worry if you see a validation error message. That issue will be addressed
in “Binding Elements” (page 24).

Binding Elements

When a user enters information in form elements, your application needs a way of
accessing that information. This is done by binding the form elements to variables in
your application. When the user submits the form, WebObjects puts the data into
the variables you’ve specified.

Your application typically processes the data and returns a new page (or the same
page) displaying information that makes sense based on the user’s input. The
information displayed is usually represented by other dynamic elements that are
bound to variables and methods in your code.

This process of receiving a request (triggered by actions such as submitting a form
or clicking a hyperlink) and responding by returning a page is known as the
request-response loop. This loop is at the heart of WebObjects programming.

In this tutorial, you’ll have WebObjects return the same page, with the information
you received from the user displayed in a slightly different format at the bottom.

Creating Variables
In this section, you’ll declare individual variables in your code file (Main.java) to
hold the name, e-mail address, and comments entered by a single guest. Later on,
you’ll structure this information differently in order to work with data from
multiple users.

C H A P T E R 1

Creating a Simple WebObjects Application

Binding Elements 25
 Apple Computer, Inc. May 2001

WebObjects Builder allows you to declare variables without having to edit your
source file directly. At the bottom of the panel there is a pull-down menu titled Edit
Source. It has five items:

� Add Key allows you to add a key to your source file. A key can be either an
instance variable or a method that returns a value.

� Add Action allows you to add the template for an action method, which is a
method that takes no parameters and returns a component (the next page to be
displayed).

� Delete Key allows you to delete a key from your source file by deleting the
instance variable or the method that returns a value.

� Rename Key allows you to rename a key in your source file by renaming the
instance variable or the method that returns a value.

� View Source File opens the source file in a Project Builder window.

1. Choose Add Key from the pull-down menu.

The Add Variable/Method panel opens.

26 Binding Elements
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

2. Type guestName in the Name field.

3. To specify the variable’s type, select String from the combo box (or you can type
String directly in the box).

4. Click Add.

You have just created a variable called guestName of type String. It appears in the
first column of the object browser. A declaration for guestName also appears in
Main.java, which you’ll edit later.

5. Create the variables email and comments in the same way (they are also of
type String).

Note: You may also add variables by editing the source file in Project Builder.
Remember to save the file after editing in Project Builder to update WebObjects
Builder.

C H A P T E R 1

Creating a Simple WebObjects Application

Binding Elements 27
 Apple Computer, Inc. May 2001

Binding the Input Elements
Each dynamic element contains several attributes. These attributes determine what
happens when the element is displayed or when a form element is submitted. When
you bind an element, you actually bind one or more of its attributes.

For example, a WOText element (which represents a multi-line text area) is defined
as having two attributes:

� value specifies the string the user enters in the text area.

� name specifies a unique identifier for the text area.

In this tutorial, the only attribute you are concerned with is value, which represents
the string entered by the user in the comments field. You’ll bind this to the comments
variable. You don’t need to bind the name attribute in this application. In a later
example, you’ll bind more than one attribute of an element.

1. In the object browser, make a connection by pressing on the comments variable
and holding down the mouse button while dragging to the Comments text area.
Then release the mouse button.

28 Binding Elements
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

A menu appears, displaying the attributes for the text area.

2. Choose value.

In the Dynamic Inspector, comments appears in the Binding column next to the
value attribute of the text area, indicating that the binding has been made. Also,
the text comments appears in the text field to show that it has been bound.

3. Next, you will bind the guestName variable using another technique. Select the
Name WOTextField element. In the Inspector, select the Dynamic Inspector.

The Inspector displays the value attribute in red, indicating that this attribute
must be bound; otherwise, WebObjects displays an error message when you try
to run your application.

4. In the Inspector, double-click in the Binding column next to value. Type g and
press Enter. The Inspector fills in the rest of the “guestName” key for you.

5. Bind the email variable to the corresponding text field using one of the methods
above.

6. Save the Main component.

Click here to
complete binding.

Press the mouse down on the variable name
and drag to element to begin binding.

C H A P T E R 1

Creating a Simple WebObjects Application

Binding Elements 29
 Apple Computer, Inc. May 2001

Implementing an Action Method
When the user clicks the Submit button, your application will respond by
redisplaying the page with the submitted information shown at the bottom. To
make this happen, you implement an action method and bind that method to the
action attribute of the WOSubmitButton.

1. From the Edit Source menu at the bottom of the object browser, choose Add
Action.

2. Enter submit as the name of your action method.

3. From the “Page returned” combo box, select null.

The value returned by an action method represents the next page (component)
to be displayed. When you return null, the current page is redrawn. In a later
task, you’ll see how to return a new component.

4. Click Add.

The submit action appears below a horizontal line in the first column of the
object browser.

5. Make a connection from the submit action in the object browser to the Submit
button (press the mouse button down on the action, drag to the button, and
release the mouse button).

A menu appears with the Submit button’s attributes.

6. Choose action.

You just bound the submit method you created to the action attribute of the
WOSubmitButton. You don’t need to write any additional code, so your
application is now ready to run. However, you may want to look at your source
file.

7. From the pull-down list at the bottom of the window, choose View Source File.

Enter action name here.

Select response page name
from pop-up menu (use null
to return same page).

30 Creating the Application’s Output
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

Project Builder becomes active and displays the code for your component (in
Main.java). You’ll notice that this file contains declarations for the variables you
created earlier, as well as a declaration for the submit action method.

// Generated by the WebObjects Wizard ...

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*;

public class Main extends WOComponent {
 protected String guestName;
 protected String email;
 protected String comments;

 public Main(WOContext context) {
super(context);

}

public WOComponent submit() {
return null;

}
}

Creating the Application’s Output

So far, you have a way for the guest to enter information and a way for the
application to store that information. Now, the application needs to do something
with the information.

For now, you’ll have the application simply display the same information the user
entered, in a slightly different format. This allows you to verify that you have
correctly received the data. To do this, you’ll add dynamic string elements
(WOStrings) to the main page and bind them. In the next chapter, you’ll use more
complex forms of output.

C H A P T E R 1

Creating a Simple WebObjects Application

Creating the Application’s Output 31
 Apple Computer, Inc. May 2001

1. In WebObjects Builder, place the cursor at the end of the document, making sure
that it is outside the gray rectangle that represents the form, and press
Shift-Enter.

2. Click to create a horizontal rule (an <HR> element).

3. Press Shift-Enter to add a blank line.

4. Add a WOString element by clicking .

A WOString is a dynamic element whose value is determined at runtime. It is
shown as a small rectangle surrounded by two icons.

5. In the object browser, make a connection from the guestName variable to the
center rectangle of the WOString.

Notice that the name guestName appears inside the WOString, and the attribute
pop-up menu doesn’t appear. The message “Connected guestName to value”
appears in the upper-right corner of the panel.

WebObjects provides this shortcut for binding to the value attribute of
WOStrings because it is the attribute you most often want to bind. The value
attribute signifies the string that will be displayed when the page is drawn. If
you want to bind a different attribute, you make a connection to the left or right
icon, and the attribute pop-up menu appears as usual.

6. Click to the right of the WOString and press Shift-Enter.

7. Create two more WOStrings and bind them to email and comments, respectively.

Note that it isn’t necessary to resize the WOStrings as you did with the text
fields. They expand at runtime to display the value of the variables to which they
are bound.

8. Save your component. It should now look like this:

32 Creating the Application’s Output
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

C H A P T E R 1

Creating a Simple WebObjects Application

Building and Running Your Application 33
 Apple Computer, Inc. May 2001

In summary, when the user clicks the Submit button, a new request-response cycle
begins. WebObjects stores the data entered in the dynamic form elements in the
variables they are bound to (guestName contains the value in the Name field, email
contains the value in the E-mail field, and comments contains the value in the
Comments field). It then triggers the action method bound to the action attribute of
the WOSubmitButton. The action method returns a page (in this example, the same
page). When the page is redrawn, the dynamic strings at the bottom show the
values entered by the user.

Now you are ready to test your application.

Building and Running Your Application

1. Make Project Builder active. A quick way to do this from WebObjects Builder is
to choose View Source File from the pull-down list at the bottom of the window.

To build and launch your application, you use buttons in Project Builder’s
toolbar.

2. Click in the toolbar to open the Project Build panel.

3. Click in the Project Build panel.

34 Building and Running Your Application
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

The Project Build panel displays the commands that are being executed to build
your project. If all goes well, it displays the status message “Build succeeded.”

4. Close the panel.

5. Click in the toolbar to open the Launch panel.

6. Click in the Launch panel to launch your application.

The Launch panel displays a series of messages. If all goes well, you should see
messages such as the following, which mean that your application is running
successfully.

Click here to build
your application.

C H A P T E R 1

Creating a Simple WebObjects Application

Building and Running Your Application 35
 Apple Computer, Inc. May 2001

Your web browser (such as Netscape Navigator or Internet Explorer) should
launch automatically and load the correct URL for your application.

7. Test your application by entering information and submitting the form.

If all goes well, your page should look like the one shown at the beginning of this
chapter.

36 Building and Running Your Application
 Apple Computer, Inc. May 2001

C H A P T E R 1

Creating a Simple WebObjects Application

Duplicating Your Project 37
 Apple Computer, Inc. May 2001

C H A P T E R 2

2 Enhancing Your Application

In the previous tutorial, you learned how to create a web component that has input
and output elements and how to bind these elements to variables and methods in
your code.

Now you’ll add some additional features to your project that move it a bit more in
the direction of being a real-world web application. The application will

� Use a custom Java class to represent the data for a guest, rather than using three
separate variables.

� Maintain a guest list, that keeps track of all guest data (whether entered by you
or multiple users of your application), rather than just the current guest.

� Have a second component, so that the guest list is displayed in a new page rather
than the same page.

� Make use of additional interface elements (such as HTML tables).

Duplicating Your Project

Before proceeding, you’ll create a new project by copying the old one and renaming
it. This way, you can make changes and still retain your previous version.

1. In WebObjects Builder, close the component window.

If there are any unsaved files, you are prompted to save them.

2. In Project Builder, close GuestBook’s project window.

If there are any unsaved files, you are prompted to save them.

38 Creating a Custom Guest Class
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

3. In your computer’s file system, navigate to the directory where your project is
located.

4. Duplicate the GuestBook folder.

On Windows, select the folder, choose Edit > Copy, then Edit > Paste.

5. Rename the new folder (Copy of GuestBook) to GuestBookPlus.

6. Open the newly renamed folder and double-click the project file PB.project.

Project Builder opens a new browser window for this project. (Alternatively,
you could have opened the project from within Project Builder by choosing
Project > Open, then navigating to the project folder and selecting PB.project.)

7. Click in the toolbar to bring up the Project Build panel.

8. Click in the Project Build panel.

This command deletes all the files that were generated when you built the
project previously.

9. Click to open the Project Inspector.

10. Choose Project Attributes from the pop-up list at the top of the window.

11. In the Name field, enter GuestBookPlus and press Enter.

12. Respond No to the prompt that asks if you want to rename the folder.

You now have a new project called GuestBookPlus.

Creating a Custom Guest Class

In “Creating a WebObjects Application Project” (page 11), you created individual
variables to store a guest’s name, e-mail address, and comments. When keeping
track of multiple guests, it’s more useful to encapsulate all the data for a guest as a
single entity. You’ll do this by creating a Java class that contains the data for a single
guest.

1. In Project Builder’s browser, select Classes in the first column.

C H A P T E R 2

Enhancing Your Application

Creating a Custom Guest Class 39
 Apple Computer, Inc. May 2001

2. Choose File > New in Project.

3. Type Guest.java as the name of the file.

4. Click OK.

The newly created file contains a skeleton for a class called Guest.

5. Modify the code so it looks like this:

// Guest.java created by ...

import com.webobjects.foundation.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*
import com.webobjects.appserver.*;

public class Guest extends Object {
protected String guestName;
protected String email;
protected String comments;

Guest() {
guestName = ““;
email = ““;
comments = ““;

}
}

40 Creating a Custom Guest Class
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

A class stores information in its instance variables (also referred to as data
members). Here you’re declaring three instance variables for Guest: guestName,
email, and comments. Note that these declarations are the same as those that
appeared in the code for Main.java when you added the three variables using
WebObjects Builder. In WebObjects, a component is also a class, specifically a
subclass of the class WOComponent.

Java classes require a constructor to initialize an instance (or object) of a particular
class whenever one is created. A constructor has the same name as the class and
returns no value.

Whenever your application creates a new Guest object, its instance variables are
initialized with empty strings. (If you prefer, you can use different strings for
these initial values.)

6. Save Guest.java by choosing Save from the File menu.

Saving the file lets WebObjects Builder know about your newly created Guest
class.

Binding the Class’s Instance Variables
to the Form Elements
In “Creating a WebObjects Application Project” (page 11), you bound the input
elements to variables in Main’s code. Now you’ll modify the bindings to use the
class you just created.

1. Select Web Components in the first column of the browser.

2. Double-click Main.wo in the second column of the browser to open the
component in WebObjects Builder.

3. Using the Add Key panel, add a variable called currentGuest to your component
and specify its type as Guest. (Note that you can now choose Guest from the
Type combo box.)

An entry for currentGuest appears in the object browser. Notice the “>” symbol
to the right of its name. This means that there is additional data to be displayed
in the second column.

4. Select currentGuest in the object browser.

The second column displays the three fields of currentGuest, as determined by
the definition of its class, Guest.

C H A P T E R 2

Enhancing Your Application

Creating a Custom Guest Class 41
 Apple Computer, Inc. May 2001

5. Make a connection from guestName in the second column of the object browser
(next to currentGuest) to the Name text field (press the mouse button down on
the variable, drag to the element, and release the mouse button), and click value
in the pop-up menu.

This time, when the pop-up menu appears, there is a dot next to the value
attribute because you bound it in the first tutorial.

6. Bind the other two input elements to currentGuest.email and
currentGuest.comments.

Creating a Table to Display the Output
In the first chapter, you created three WOString elements to display the information
the guest entered. In this tutorial, you’ll create a different type of element, an HTML
table, to display the information. In later tasks, you’ll display data for multiple users
in the table.

1. Delete the WOString elements below the horizontal line in the Main component,
because you’ll be replacing them with a table. Select the WOString elements and
choose Cut from the Edit menu to delete them.

2. Click the button.

The New Table panel appears. On the right is the Preview pane, which displays
what your table will look like.

42 Creating a Custom Guest Class
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

3. In the Columns field, type 3 and press Tab. A third column appears in the
preview pane.

4. In the Border field, enter 1 and press Tab. A border appears around the table in
the preview pane.

5. Click “First row cells are header cells (<TH>)”. The top row text becomes bold
in the preview pane.

6. Click OK. The table appears in your page.

7. Select the upper-left cell of the table by clicking it.

8. Change the text in the cell to Name.

9. Open the Inspector if it is not already open.

The Inspector presents a number of modifiable settings that apply to the table
cell you’ve selected.

Enter the number of columns here.

Enter the border width here.

Preview paneClick here to turn the
 first row into header cells.

Click here to put the
table in your page.

C H A P T E R 2

Enhancing Your Application

Creating a Custom Guest Class 43
 Apple Computer, Inc. May 2001

10. Select pixels from the Width pop-up list. Enter 150 in the Width field and press
Tab.

The width of the column is set to 150 pixels.

11. Click in the component window, then press Tab.

Pressing Tab when editing a table causes the contents of the next cell to the right
to be selected (or the first cell of the next row if in the rightmost column).
Pressing Shift-Tab moves in the opposite direction through the table.

12. Repeat steps 8 through 11 for the second and third cells of the top row. Label the
middle column E-mail and set its width to 150 pixels. Label the third column
Comments and leave its width unset. (The comments field takes up the
remainder of the width of the table.)

Adding Dynamic Elements to Table Cells
Tables and cells are static HTML elements, so you can’t bind them to variables or
methods. To display dynamic information in cells, you add dynamic elements, such
as WOStrings, to the cells.

1. Select the first cell on the second row of the table and clear its contents.

2. Click to add a WOString to the cell.

3. Press the Tab key.

The contents of the next cell to the right are selected.

Note: It isn’t necessary to adjust the height of the columns—if left unset, they’ll
expand at runtime to accommodate the size of the text being displayed.

Select pixels here.

Enter table width here.

44 Creating a Custom Guest Class
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

4. Repeat steps 2 and 3 for the other two cells in the second row.

Binding the Dynamic Elements in the Table

1. Make a connection from currentGuest.guestName in the object browser to the
center of the WOString in the first column to bind its value attribute.

2. Similarly, bind currentGuest.email and currentGuest.comments to the
WOStrings in the second and third columns.

The table should now look like this:

3. Save the Main component.

Creating the Guest Object
Earlier in this chapter, you created a Java class of type Guest and wrote a constructor
for it. You also added a variable of that class, currentGuest, to the Main component.
However, adding a variable to the component doesn’t actually create a new Guest
object; you need to create one explicitly at some point in your code.

You’ll create the Guest object in the constructor method for your component. This
method is called when the component is first created; that is, the first time the user
accesses the component.

1. Choose View Source File from the pull-down list at the bottom of the window.

Project Builder becomes active and displays the code for Main.java. Notice the
following declaration that was added to your code when you added the
currentGuest variable:

protected Guest currentGuest;

2. Delete the declarations of guestName, email, and comments since you aren’t using
them anymore.

C H A P T E R 2

Enhancing Your Application

Creating a Custom Guest Class 45
 Apple Computer, Inc. May 2001

3. Add the constructor method inside the Main class definition:

public Main(WOContext context) {
super(context);
currentGuest = new Guest();

}

The first statement calls the constructor of Main’s superclass (which is
com.webobjects.appserver.WOComponent). The second statement allocates a new
empty Guest object and calls Guest’s constructor to initialize its instance
variables.

4. Save Main.java.

5. Build and run your application.

The application should work similarly to that in the first chapter, except that the
guest’s data is displayed in a table at the bottom of the page instead of as plain
text.

46 Creating a Custom Guest Class
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

At this point, your application still handles information from a single guest only; in
“Keeping Track of Multiple Guests” (page 47), you’ll modify the application so that
it can keep track of multiple guests.

C H A P T E R 2

Enhancing Your Application

Keeping Track of Multiple Guests 47
 Apple Computer, Inc. May 2001

Keeping Track of Multiple Guests

You’ve been using the variable currentGuest in the Main component to hold the
information entered by the user. You’ll need another variable (an array) to store the
list of all the guests who have registered.

Before doing this, it is important to understand the scope and life span of variables
in WebObjects:

� Component variables, such as currentGuest, exist for the lifetime of the
component. These variables are defined in the component (in this case,
Main.java) and are accessible only by its methods. Each user that uses a
component gets a separate instance of the variable.

� Session variables exist for the lifetime of one user’s session and are accessible by
all code in the session. They are defined in Session.java. An instance of each
session variable is created for each user.

� Application variables live as long as the application does and are accessible by all
code in the application. They are defined in Application.java. A single instance
of an application variable is shared by all users of the application.

Creating a Guest List
To store the information from all guests that have accessed the application, you’ll
create an application variable called allGuests, which exists for the life of the
application.

1. In Project Builder, select Classes in the first column of the browser. Then select
Application.java from the second column.

The application’s code appears in the window. The following listing shows the
code generated by the Wizard, along with code you will add.

// Generated by the WebObjects Wizard ...

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;

48 Keeping Track of Multiple Guests
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

import com.webobjects.eocontrol.*;

public class Application extends WOApplication {

protected NSMutableArray allGuests;

public static void main(String argv[]) {
WOApplication.main(argv, Application.class);

}

public Application() {
super();
allGuests = new NSMutableArray();
System.out.println("Welcome to " + this.name() + " !");
/* ** put your initialization code in here ** */

}

public void addGuest(Guest aGuest) {
allGuests.addObject(aGuest);

}

public void clearGuests() {
allGuests.removeAllObjects();

}
}

Note that there is one method already defined: Application, which is
the constructor for the Application object. The first line calls the constructor for
Application’s superclass (which is the class WOApplication). The second line
prints a message, that you see in the Launch panel when you launch your
application.

2. After the call to super, enter this code:

allGuests = new NSMutableArray();

This statement initializes allGuests to be a new object of class NSMutableArray.
This class provides methods to add, change, and delete objects from an array.

3. At the top of the Application class definition, enter this declaration:

protected NSMutableArray allGuests;

C H A P T E R 2

Enhancing Your Application

Keeping Track of Multiple Guests 49
 Apple Computer, Inc. May 2001

This declares allGuests to be of type NSMutableArray. Declaring it protected
means that it is accessible only from this class or one of its subclasses. It is
standard object-oriented practice for a class to prevent other classes from
directly manipulating its instance variables. Instead, you provide accessor
methods that other objects use to read or modify the instance variables.

4. Add the accessor methods addGuest and clearGuests, as shown in the listing.

The addGuest method adds an object of class Guest to the end of the allGuests
array, using the NSMutableArray method addObject.

The clearGuests method removes all the objects from the array using the
NSMutableArray method removeAllObjects.

5. Save Application.java.

Adding Guests to the Guest List
Now, when the user submits the form, you’ll add the information to the allGuests
array rather than displaying it directly.

1. Switch to the code for Main.java.

2. In the submit method, add the following code before the return statement:

((Application)application()).addGuest(currentGuest);
currentGuest = new Guest();

This code calls the application’s addGuest method, which adds an object (in this
case, currentGuest) to the end of the array. Then it creates a new Guest object to
hold the next guest’s data.

Note: The addGuest method is defined in the class Application, which is a
subclass of WOApplication. The component’s application method (called in the
above statement) returns an object of type WOApplication, so you must cast it
to Application in order to access its addGuest method.

Your next step is to create a new component to display the list of guests that
allGuests stores.

50 Adding a Second Component
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

Adding a Second Component

In this section, you’ll create a new component.

1. In Project Builder’s browser, click Web Components in the first column.

2. Choose File > New in Project.

Note that the Web Components suitcase is selected.

3. Type GuestList as the name of the new component, then click OK.

The WebObjects Component Wizard appears.

4. Choose None for Available Assistance.

5. Click Finish.

6. In the second column of the browser, double-click GuestList.wo to bring up the
component window in WebObjects Builder.

7. Create a heading for this page, as you did for the Main component. Call it “Guest
List” (or something else of your choosing), then press Enter twice.

8. Add a WOString below the heading. After the WOString, type the text “ guests
have signed this guestbook.” Press Shift-Enter twice.

You’re going to bind this WOString so that it reflects the number of guests who
have submitted this form.

9. In the object browser, click application.

There is an entry in the second column for the allGuests application variable
you created. This entry appears in the Main component as well, since
application variables are accessible from anywhere in the code.

If you click allGuests, you’ll see in the third column an entry for count. This is a
standard method that returns the number of objects in the array.

10. Make a connection from count to the center rectangle to bind it to the WOString’s
value attribute.

11. Save the GuestList component.

C H A P T E R 2

Enhancing Your Application

Adding a Second Component 51
 Apple Computer, Inc. May 2001

You need to do one more thing so that the GuestList page now displays when
the user submits the form.

12. Go back to Project Builder and view the source code for Main.java. Replace the
return statement in the submit method with the following code:

return pageWithName("GuestList");

pageWithName is a standard WebObjects method (defined in the WOApplication
class) that allows you to specify a new page to display.

At this point, the code for Main.java looks like this:

// Generated by the WebObjects Wizard ...
import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*;

public class Main extends WOComponent {
protected Guest currentGuest;

public Main(WOContext context) {
super(context);
currentGuest = new Guest();

}

public WOComponent submit() {
((Application)application()).addGuest(currentGuest);
currentGuest = new Guest();
return pageWithName(“GuestList”);

}
}

13. Save Main.java.

14. Build and run your application.

Each time you submit the form, the number of guests displayed in the WOString
should increase.

To return to the Main page, you’ll have to use your browser’s backtrack button.
Later in the tutorial, you’ll add a hyperlink to return to the Main page.

52 Using a Repetition
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

Using a Repetition

Now you’ll create a table to display the entire list of guests in the GuestList
component. To do so, you’ll use a dynamic element called a repetition (an instance
of the WORepetition class). Repetitions are one of the most important elements in
WebObjects, since it is quite common for applications to display repeated data
(often from databases) when the amount of data to be displayed isn’t known until
runtime. Typically, a repetition is used to generate items in a list or a browser,
multiple rows in a table, or multiple tables.

A repetition can contain any other elements—either static HTML or dynamic
WebObjects elements. In the GuestList component, you’ll create a repetition that
contains a table row.

You’ll bind the allGuests array to the WORepetition’s list attribute. This tells
WebObjects to generate the elements in the repetition once for each item in the
array. Each time WebObjects iterates through the array, it sets the repetition’s item
attribute to the current array object. You bind item to the variable currentGuest and
use currentGuest’s fields to bind the elements inside the repetition (such as
WOStrings). At runtime, the table will consist of one row (displaying name, e-mail
address, and comments) for each guest.

1. In WebObjects Builder, make the Main component window active (double-click
Main.wo).

2. Select the table at the bottom of the page by pressing outside it and dragging
across it.

3. Choose Edit > Copy.

4. Make the GuestList component active.

5. Place the cursor at the bottom of the page and choose Edit > Paste.

You have just copied the table from Main into GuestList. It has all the same
properties, including the bindings. The WOStrings in the table are still bound to
instance variables of currentGuest. Since currentGuest is a component variable
defined in Main, it isn’t accessible from GuestList. Therefore, you need to
declare it here.

C H A P T E R 2

Enhancing Your Application

Using a Repetition 53
 Apple Computer, Inc. May 2001

6. From the pull-down list at the bottom of the window, choose Add Key. Enter
currentGuest as the name of the variable and Guest as its type, and click Add.

7. Click in one of the cells in the second row. Click <TR> in the path view to select
the entire row.

8. Click in the toolbar.

When you wrap a repetition around a table row in this way, the WORepetition
symbol doesn’t appear in the table. Instead, the row appears in blue. For
additional examples of using repetitions, see “Creating a WebObjects Database
Application” (page 59).

9. In the object browser, select application in the first column.

10. In the second column, make a connection from allGuests to the
<WORepetition> tag in the path view.

11. In the attribute menu that appears, click list. This binds application.allGuests
to the WORepetition’s list attribute.

12. Bind currentGuest to the repetition’s item attribute.

By using the name currentGuest for the item attribute, you are taking advantage
of the fact that the strings in your table are already bound to the fields of
currentGuest.

You now have finished implementing the repetition. When the table is
generated, it will have one row for each item in the allGuests array.

13. Save the GuestList component.

14. Delete the table from the Main component, since you no longer need it.

15. Test your application.

Click in any cell
in this row...

... and click here to
select the entire row.

54 Adding the Finishing Touches
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

Note: In this case, you don’t have to rebuild or relaunch your application in
order to test it. Building is required only when you have made changes to Java
code. If you modify a component only, the changes take effect even if the
application is already running.

16. Try entering data for multiple guests and verifying that each guest appears in
the table.

Adding the Finishing Touches

There are a few additional things left to do to make your application a bit more user
friendly:

� Add a button that, when clicked, clears the guest list.

� Add a hyperlink to the GuestList page that allows users to return to the Main
page.

Clearing the Guest List
While developing your application, you may find it useful to be able to remove all
guests from the list. (Typically, you wouldn’t allow users to remove all guests from
the list.)

1. In WebObjects Builder, make the GuestList component window active.

2. Choose Add Action from the pull-down list at the bottom of the window. In the
panel, enter clearGuestList as the name of the action and set the page returned
to null. Click Add.

3. Choose View Source File from the pull-down list.

A new component, GuestList.wo, has been added to the Web Components
suitcase. Select GuestList.java in the Classes suitcase. You’ll notice that there is
a skeleton of the clearGuestList action method as well as the declaration for
currentGuest that you created previously.

4. Enter the following code before the return statement in clearGuestList:

((Application)application()).clearGuests();

C H A P T E R 2

Enhancing Your Application

Adding the Finishing Touches 55
 Apple Computer, Inc. May 2001

This code calls the application’s clearGuests method, that removes all the Guest
objects from the array.

5. Save GuestList.java by choosing Save from the File menu.

6. Go back to WebObjects Builder.

7. Place the cursor below the table and press shift-Enter.

8. Click to add a WOForm element to contain the button you’ll create in the next
step.

9. Click .

This creates a submit button that the user will click to clear the guest list.

10. Using the Inspector, double-click in the binding column next to the value
attribute and type “Clear Guest List”.

This changes the title of the button. Note that the quotes are necessary to indicate
that you’re binding a string, not a variable.

11. Bind the action attribute to clearGuestList.

When the user clicks the button, the clearGuestList action method is called, that
causes the guest list to be cleared and the page to be redrawn.

Adding a Dynamic Hyperlink
Now you’ll create a hyperlink that returns the user to the Main page.

1. Place the cursor below the submit button (outside the rectangle of its containing
form).

2. Click .

3. Type Return to Sign-in Page, replacing the selected text.

4. Inspect the hyperlink.

5. Select the pageName attribute, then double-click in the Binding column and type
"Main" (including the quotes).

Note: You must specifically type the quotation marks in “Main”, because you are
specifying a string representing the name of the page to be returned. If you left
off the quotes, you would be specifying a variable or method called Main.

56 Adding the Finishing Touches
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

6. Save the GuestList component.

7. Build and test your application.

The GuestList page should now look like this:

C H A P T E R 2

Enhancing Your Application

Adding the Finishing Touches 57
 Apple Computer, Inc. May 2001

58 Adding the Finishing Touches
 Apple Computer, Inc. May 2001

C H A P T E R 2

Enhancing Your Application

59
 Apple Computer, Inc. May 2001

C H A P T E R 3

3 Creating a WebObjects
Database Application

One of the most powerful features of WebObjects is its ability to provide access to
databases. To do so, it uses a framework called the Enterprise Objects Framework.
This chapter introduces you to the Enterprise Objects Framework by showing you
how to create a simple database application. The steps you take in creating this
application demonstrate the principles you’ll use in every other application you
develop with the WebObjects and Enterprise Objects frameworks.

The application you’ll create in this tutorial is called Movies. It makes use of a
sample database, the Movies database, that contains information about movies. In
this tutorial we’ll use the OpenBase Lite database that comes with WebObjects. If
you wish to use another database, you need to set up the Movies database as
described in the Post-Installation Instructions. Also, if you aren’t familiar with
Project Builder and WebObjects Builder, read the first tutorials in this book,
“Creating a WebObjects Database Application” (page 59) and “Enhancing Your
Application” (page 37), which introduce basic concepts and procedures you should
know before you go on.

In this tutorial, you will

� Use EOModeler’s wizard to create basic model file.

� Use the WebObjects Application Wizard to create a fully functional Main
component that reads and writes from the Movies database.

� Create custom enterprise object classes.

� Create and configure display groups for interacting with a database in terms of
objects.

� Create bindings between display groups and a user interface.

� Write code to manipulate display groups’ selected objects.

� Set up display groups in a master-detail configuration.

60 The Movies Application
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

� Use EOModeler to enhance a model file.

Along the way, you’ll learn basic Enterprise Objects Framework concepts you can
use to design your own database applications.

The Movies Application

The Movies application has two pages, each of which allows you to access
information from the database in different ways:

� MovieSearch (the main page) lets you search for movies that match user-specified
criteria. For example, you can search for all comedies starting with the letter
“A”. Once you find the movie you’re looking for, you can make changes to its
data or delete it. You can also use this page to insert new movies into the
database.

� MovieDetails displays the actors who star in a selected movie and the roles those
actors play. You can add new roles, change the name of a role, and assign a
different actor to a role.

Note: You can also develop database applications using Direct to Web, a
high-level framework based on WebObjects. Direct to Web instantly generates a
generic database application and allows you to modify its user interface, which
makes it a useful starting point for simple projects without very specific user
interface requirements. See WebObjects Tools and Techniques and Developing
WebObjects Applications With Direct to Web for more information.

C H A P T E R 3

Creating a WebObjects Database Application

The Movies Application 61
 Apple Computer, Inc. May 2001

62 Enterprise Objects and the Movies Database
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Enterprise Objects and the Movies Database

Enterprise Objects Framework manages the interaction between the database and
objects in the Movies application. Its primary responsibility is to fetch data from
relational databases into enterprise objects. An enterprise object, like any other object,
couples data with methods for operating on that data. In addition, an enterprise

Click a role to select it and display its
information in the editing part below.

Use the browser to choose
an actor for the selected role.

Edit the name of the selected role.

Click here to create a new, empty role.

Click here to delete the selected role.

Click here to save your work in the
database (add the new roles you inserted,
remove the roles you deleted, and save
changes you made to existing roles).

C H A P T E R 3

Creating a WebObjects Database Application

Enterprise Objects and the Movies Database 63
 Apple Computer, Inc. May 2001

object has properties that map to stored data. Enterprise object classes typically
correspond to database tables. An enterprise object instance corresponds to a single
row or record in a database table.

The Movies application centers around three kinds of enterprise objects: Movies,
MovieRoles, and Talents. A movie has many roles, and talents (or actors) play those
roles.

The Movie, MovieRole, and Talent enterprise objects in the Movies application
correspond to tables in a relational database. For example, the Talent enterprise
object corresponds to the TALENT table in the database, that has LAST_NAME and
FIRST_NAME columns. The Talent enterprise object class in turn has lastName and
firstName instance variables. In an application, Talent objects are instantiated using
the data from a corresponding database row, as shown in the following figure:

Talent

1028 Federighi Craig

1132 Feldman Corey

TALENT_ID LAST_NAME FIRST_NAME
TALENT

lastName "Federighi"
firstName "Craig"

64 Enterprise Objects and the Movies Database
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Enterprise Objects and Relationships
Relational databases model not just individual entities, but entities’ relationships to
one another. For example, a movie has zero, one, or more roles. This is modeled in
the database by both the MOVIE table and MOVIE_ROLE table having a
MOVIE_ID column. In the MOVIE table, MOVIE_ID is a primary key, while in
MOVIE_ROLE it’s a foreign key.

A primary key is a column or combination of columns whose values are guaranteed
to uniquely identify each row in that table. For example, each row in the MOVIE
table has a different value in the MOVIE_ID column, which uniquely identifies that
row. Two movies could have the same name but still be distinguished from each
other by their MOVIE_IDs.

A foreign key matches the value of a primary key in another table. The purpose of
a foreign key is to identify a relationship from a source table to a destination table.
In the following diagram, notice that the value in the MOVIE_ID column for both
MOVIE_ROLE rows is 501. This matches the value in the MOVIE_ID column of the
“Alien” MOVIE row. In other words, “Ripley” and “Ash” are both roles in the
movie “Alien.”

Suppose you fetch a Movie object. Enterprise Objects Framework takes the value for
the movie’s MOVIE_ID attribute and looks up movie roles with the corresponding
MOVIE_ID foreign key. The framework then assembles a network of enterprise
objects that connects a Movie object with its MovieRole objects. As shown below, a
Movie object has an array of its MovieRoles, and the MovieRoles each have a Movie.

1028
Ripley 501 501 Alien

1132
Ash 501 703 Toy Story

TALENT_ID MOVIE_ROLE MOVIE_ID MOVIE_ID TITLE

MOVIE_ROLE MOVIE

C H A P T E R 3

Creating a WebObjects Database Application

Defining the Model 65
 Apple Computer, Inc. May 2001

Defining the Model

A model associates database columns with instance variables of objects. It also
specifies relationships between objects in terms of database join criteria. You create
model files using the EOModeler application. The wizard can assist you in creating
a model using the schema information from an existing database as a starting point.
You can then use EOModeler to modify the model.

Creating a New Model File

1. Launch EOModeler.

The EOModeler application is located in the WebObjects application group.

2. Choose Model > New.

movieRoles

movie

movie

NSMutableArray

MovieRole

MovieRoleMovie

66 Defining the Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

The wizard’s adaptor selection panel appears. An adaptor is a mechanism that
connects your application to a database. WebObjecject provides a JDBC adaptor
that enables you to access any JDBC-compliant database. Make sure that JDBC
is selected in the selection list.

3. Click Next.

This panel lets you specify connection information to your database. The only
information required for the tutorial is the URL. On the URL field type
“jdbc:openbase://localhost/WOMovies” without the quotes.

4. Click OK.

Choosing What to Include in Your Model
In this next wizard page, you can specify the degree to which the wizard configures
your model.

C H A P T E R 3

Creating a WebObjects Database Application

Defining the Model 67
 Apple Computer, Inc. May 2001

The basic model the wizard creates contains entities, attributes, and relationships.
An entity is the part of the database-to-object mapping that associates a database
table with an enterprise object class. For example, the Movie entity maps rows from
the MOVIE table to Movie objects. Similarly, an attribute associates a database
column with an instance variable. For example, the title attribute in the Movie
entity maps the TITLE column of the MOVIE table to the title instance variable of
Movie objects.

A relationship is a link between two entities that’s based on attributes of the entities.
For example, the Movie entity has a relationship to the MovieRole entity based on
the entities’ movieId attributes (although the attributes in this example have the
same name in both entities, they don’t have to). This relationship makes it possible
to find all of a Movie’s MovieRoles.

How complete the basic model is depends on the completeness of the schema
information inside your database server. For example, the wizard includes
relationships in your model only if the server’s schema information specifies
foreign key definitions.

68 Defining the Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Using the options in this page, you can supplement the basic model with additional
information. (Note that the wizard doesn’t modify the underlying database.)

1. Check the “Assign primary keys to all entities” box.

Enterprise Objects Framework uses primary keys to uniquely identify enterprise
objects and to map them to the appropriate database row. Therefore, you must
assign a primary key to each entity you use in your application. The wizard
automatically assigns primary keys to the model if it finds primary key
information in the database’s schema information.

Checking this box causes the wizard to prompt you to choose primary keys that
aren’t defined in the database’s schema information. If your database doesn’t
define them, the wizard later prompts you to choose primary keys.

2. Check the “Ask about relationships” box.

If there are foreign key definitions in the database’s schema information, the
wizard includes the corresponding relationships in the basic model. However, a
definition in the schema information doesn’t provide enough information for
the wizard to set all of a relationship’s options. Checking this box causes the
wizard to prompt you to provide the additional information it needs to complete
the relationship configurations.

3. Uncheck the “Ask about stored procedures” box.

Checking this box causes the wizard to read stored procedures from the
database’s schema information, display them, and allow you to choose which to
include in your model. Because the Movies application doesn’t require the use
of any stored procedures, don’t check this box.

4. Uncheck the “Use custom enterprise objects” box.

An entity maps a table to enterprise objects by storing the name of a database
table (MOVIE, for example) and the name of the corresponding enterprise object
class (a Java class, Movie, for example). When deciding what class to map a table
to, you have two choices: EOGenericRecord or a custom class. EOGenericRecord
is a class whose instances store key-value pairs that correspond to an entity’s
properties and the data associated with each property.

If you don’t check the “Use custom enterprise objects” box, the wizard maps all
your database tables to EOGenericRecord. If you do check this box, the wizard
maps all your database tables to custom classes. The wizard assumes that each
entity is to be represented by a custom class with the same name. For example,
a table named MOVIE has an entity named Movie, whose corresponding custom
class is also named Movie.

C H A P T E R 3

Creating a WebObjects Database Application

Defining the Model 69
 Apple Computer, Inc. May 2001

Use a custom enterprise object class only when you need to add business logic;
otherwise use EOGenericRecord. The Movies application uses
EOGenericRecord for the Movie entity and custom classes for the Talent and
MovieRole entities. Later on, you’ll use EOModeler to specify the custom
classes.

5. Click Next.

Choosing the Tables to Include

1. In the wizard panel, select MOVIE, MOVIE_ROLE, and TALENT in the Tables
browser.

70 Defining the Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

The wizard creates entities only for the tables you select. Since the Movies
application doesn’t interact with any of the other tables (for example,
DIRECTOR, PLOT_SUMMARY, STUDIO, and TALENT_PHOTO), you don’t
need to include them in the model.

Click on Select None. Then select the MOVIE, MOVIE_ROLE, and TALENT
tables. You will need to use the Control key to make your selections.

2. Click Next.

Specifying Primary Keys
If you are using a database that stores primary key information in its database
server’s schema information, the wizard skips this step. The wizard has already
successfully read primary key information from the schema information and
assigned primary keys to your model.

However, if primary key information isn’t specified in your database server’s
schema information (as with Microsoft Access), the wizard now asks you to specify
a primary key for each entity.

C H A P T E R 3

Creating a WebObjects Database Application

Defining the Model 71
 Apple Computer, Inc. May 2001

1. Select movieId as the primary key for the Movie entity.

2. Click Next.

3. Select both movieId and talentId as the primary key for the MovieRole entity.

MovieRole’s primary key is compound; that is, it’s composed of more than one
attribute. Use a compound primary key when any single attribute isn’t sufficient
to uniquely identify a row. For MovieRole, the combination of the movieId and
talentId attributes is guaranteed to uniquely identify a row.

4. Click Next.

5. Select talentId as the primary key for the Talent entity.

6. Click Next.

72 Defining the Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

7. Click Finish.

Saving the Model
Once the wizard is finished gathering schema information, it’s ready to create the
model.

1. Choose Model > Save.

Navigate to a directory where you want to save the model.

2. Click Save.

3. Close EOModeler.

4. Type Movies in the “File name” field.

C H A P T E R 3

Creating a WebObjects Database Application

Defining the Model 73
 Apple Computer, Inc. May 2001

74 Designing the Main Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Designing the Main Page

Every WebObjects application has at least one component—usually named Main—
that represents the first page the application displays. In Movies, the Main
component represents the MovieSearch page.

To design the Main component, you’ll use the WebObjects Application Wizard. The
wizard performs all the setup that’s necessary to fetch database records and display
them in a web page. Specifying different wizard options yields different pages: The
MovieSearch page is an example of one of the many different layouts you can
generate with the wizard.

Starting the WebObjects Application Wizard

1. In Project Builder, choose Project > New.

2. In the New Project panel, select Java WebObjects Application from the Project
Type pop-up list.

3. Click Browse.

4. Navigate to a directory where you want to create your new project.

5. Type Movies in the “File name” field.

6. Click Save.

7. In the New Project panel, click OK.

This starts the WebObjects Application Wizard.

8. Choose Wizard under Available Assistance.

With this option, the wizard guides you through the creation of a Main
component for your application. When you finish, you can immediately build
and run your application without performing any additional steps and without
adding any code.

9. Click Next.

C H A P T E R 3

Creating a WebObjects Database Application

Designing the Main Page 75
 Apple Computer, Inc. May 2001

Specifying a Model File

1. Choose “Open existing model”.

2. Click Browse.

3. Navigate to the directory where you saved the model.

4. Select Movies.eomodeld.

5. Click Open.

6. Click Next.

76 Designing the Main Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Choosing an Entity
In this page, the wizard asks you to choose the entity around which the
Main component will be centered. Your Main component centers around
the Movie entity.

1. Select the Movie entity.

2. Click Next.

Choosing a Layout
The wizard provides several page layout options for formatting objects fetched
from the database.

1. Choose Selected Record.

2. Choose Matching Records.

C H A P T E R 3

Creating a WebObjects Database Application

Designing the Main Page 77
 Apple Computer, Inc. May 2001

Based on your specifications, the wizard shows you a preview of the page it will
generate. To see how the wizard’s preview corresponds with the actual page the
wizard will create, the finished page is shown below.

78 Designing the Main Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

There are three parts to this page: the query part (at the top of the page), which
contains fields in which users provide search criteria; the repetition part (in the
middle of the page), which contains a list of matching records fetched from the
database; and the editing part (at the bottom of the page), which allows you to
make changes to the selected record.

3. In the wizard panel, click Next.

Choosing Attributes to Display
The next step is to choose which of the Movie entity’s attributes to display in the
editing part at the bottom of the page.

1. Move attributes from the Don’t Include list to the Include list.

This is the query part, where
users type search criteria. Clicking
Match fetches movies that meet
the criteria and displays their
titles in the repetition part in the
middle of the page.

This is the repetition part. Clicking
a movie title selects the movie
and displays it in the editing part
at the bottom of the page.

This is the editing part, which
displays information about the
selected movie. You can use this
part to edit or delete the selected
movie, to create a new movie,
and to save your work.

C H A P T E R 3

Creating a WebObjects Database Application

Designing the Main Page 79
 Apple Computer, Inc. May 2001

The order in which you add the attributes determines the order in which they
appear on the page, so add them in the following order: title, category,
dateReleased, and revenue.

Don’t add any of the remaining attributes (for example, trailerName, studioId,
rated, and posterName)—they aren’t used in this tutorial.

2. Click Next.

Choosing an Attribute to Display as a Hyperlink
You now need to specify the attribute used in the repetition part of the page to
identify each record. This attribute will be displayed as a hyperlink. Clicking the
hyperlink displays the corresponding record in the detail part of the page.

1. Add the title attribute to the Include browser.

80 Designing the Main Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

2. Click Next.

Choosing Attributes to Query On
Specify the attributes to display in the query part of the page. The wizard creates
search criteria fields for each of the attributes you choose.

1. Add the title and category attributes to the Include browser.

2. Click Finish.

When the wizard finishes, your new project is displayed in Project Builder. The
wizard has produced all the files and resources for a fully functional, one-page
application. All you need to do before running your Movies application is build it.

C H A P T E R 3

Creating a WebObjects Database Application

Designing the Main Page 81
 Apple Computer, Inc. May 2001

Running Movies

Figure 3-1 Build and run the application as you did in the previous tutorials.

Experiment with the application by entering different search criteria and inserting,
updating, and deleting movies. For example:

1. Search for all movies beginning with the letter “A”.

Type A in the title field, and click Match.

2. Change the attributes of one of the movies and click “Save to database.”

When you’re done, perform another search to verify that your change was
saved.

Type matching criteria. A
database string matches if it
begins with the string in the
text field. For example,
strings match “The” if they
start with the string “The”.

Click a movie to select it and
display its information below.

Click here to delete the
selected movie.

Click here to fetch and
return matching movies.

Use these text fields to edit
the information about a movie.
Click here to create a
new, empty movie.
Click here to save your
work in the database (add
the new movies you
inserted, remove the movies
you deleted, and save
changes you made to
existing movies).

82 Examining Your Project
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

3. Create a new movie.

Click Insert/New to create a new, empty movie. Fill out all the fields, and click
“Save to database.” Search for your movie to verify that it was saved
successfully.

4. Delete your movie.

With your movie selected, click Delete and then click “Save to database.” When
you’re done, search for the movie again to verify that it’s been deleted.

Examining Your Project

Whenever you create a new project, Project Builder populates the project with
ready-made files and directories. What it includes depends on the choices you make
in the wizard, so this project has a set of files different from those of the GuestBook
project.

Like GuestBook, the Movies project contains a Main component (Main.wo). It also
includes some files that the GuestBook doesn’t have: a model file, and images used
by the Main component.

In Project Builder, navigate to the Movie project’s Resources category. This is where
the model, named Movies.eomodeld, is located. Later in this tutorial you’ll use
EOModeler to open the model and enhance it.

C H A P T E R 3

Creating a WebObjects Database Application

Examining Your Project 83
 Apple Computer, Inc. May 2001

Navigate to the Web Server Resources category. This is where your project’s images
are located: DBWizardUpdate.gif, DBWizardDelete.gif, and DBWizardInsert.gif, for
the “Save to database,” “Delete”, and “Insert/New” buttons, respectively.

The biggest difference between the GuestBook and Movies projects is their Main
components. Whereas the Main component you created for the GuestBook project
was empty, the Main component for the Movies project contains a fully functional
user interface. Also, the Main.java class already contains code that supplies the
component with behavior. In the next sections, you’ll examine the Movies project’s
Main.wo component and its Main.java class.

Examining the Variables

1. Double-click Main.wo in Project Builder’s Web Components category to open the
Main component in WebObjects Builder.

There are four variables in the object browser: the application and session
variables that are available in all components and two others, movie and
movieDisplayGroup.

84 Examining Your Project
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

The movie variable is an enterprise object that represents a row fetched from the
MOVIE table. movieDisplayGroup is a display group—an object that interacts with
a database, indirectly through classes in the Enterprise Objects Framework.
Display groups are used to fetch, insert, update, and delete enterprise objects
that are associated with a single entity. The entity of movieDisplayGroup is Movie,
which you specified in the wizard’s “Choose an entity” page.

2. In Project Builder, look at the class file Main.java to see how movie is declared.

The movie declaration (shown below) declares movie to be an
EOEnterpriseObject—a Java interface that describes the general behavior that all
enterprise objects must have.

/** @TypeInfo Movie */
protected EOEnterpriseObject movie;

At runtime, movie is a EOGenericRecord object. Recall that EOGenericRecord
is used to represent enterprise objects unless you specify a custom class. Since
you didn’t check the “Use custom enterprise objects” box in the wizard’s
“Choose what to include in your model” page, your application uses
EOGenericRecord for all its entities.

The comment (/** @TypeInfo Movie */) is used by WebObjects Builder to
identify movie’s entity (Movie). Knowing the entity allows WebObjects Builder
to display movie’s attributes (category, dateReleased, and so on). You can see
movie’s attributes if you select the movie variable in the WebObjects Builder’s
object browser.

3. In Project Builder, examine the movieDisplayGroup declaration in Main.java.

The declaration (shown below) declares movieDisplayGroup to be a
WODisplayGroup.

protected WODisplayGroup movieDisplayGroup;

Also note the comment explaining how movieDisplayGroup is initialized. The
Main.java class doesn’t have any code to create and initialize the display group.
Instead, it’s instantiated from an archive file, Main.woo, that’s stored in the
Main.wo component. You shouldn’t edit woo files by hand; they’re maintained by
WebObjects Builder. The woo file archiving mechanism is described in more
detail later in “Specifying a Sort Order” (page 91).

C H A P T E R 3

Creating a WebObjects Database Application

Examining Your Project 85
 Apple Computer, Inc. May 2001

Examining the Bindings
Now examine the bindings of your Main component in WebObjects Builder.

Remember that you can use WebObjects Builder’s Inspector to see the bindings for
an element’s attributes. Simply select the element to inspect, and click the

 button to open the Inspector.

Bindings in the Query Part

In the query part of the component, movieDisplayGroup.queryMatch.title is bound
to the title text field. There are similar bindings to the category text fields. The
queryMatch bindings allow users to specify search criteria to use when
movieDisplayGroup next fetches movies. The Match button is bound to
movieDisplayGroup.qualifyDataSource, that actually performs the fetch.

Everything within this gray
box is in a form.

This is a repetition.

This gray box identifies
another form.

This text field appears shaded
because it's selected.

This text field is in a table cell.

This is a WOImageButton.

This is a table with four rows
and two columns.

86 Examining Your Project
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

For example, to display all comedies, a user types “Comedy” in the Category text
field, and clicks the Match button. movieDisplayGroup then refetches, selecting only
movies whose category values are set to Comedy.

Bindings in the Repetition Part

In the repetition part of the component where matching movies are listed,
movieDisplayGroup.displayedObjects is bound to a repetition. More specifically,
displayedObjects is bound to the repetition’s list attribute, providing an array
of movies for the repetition to iterate over.

The movie variable is bound to the repetition’s item attribute to hold each movie in
turn, and movie.title is bound to the string element inside the repetition. These
bindings produce a list of movie titles.

The repetition’s string element is enclosed in a hyperlink. By clicking a movie title,
the user selects the corresponding movie.

1. Inspect the hyperlink.

Displays the binding for
the repetition’s list attribute.

Displays the binding for
the repetition’s item attribute.

Displays the binding for
the string’s value attribute.

C H A P T E R 3

Creating a WebObjects Database Application

Examining Your Project 87
 Apple Computer, Inc. May 2001

Its action attribute is bound to the action method selectObject.

2. Look in the Main.java class to see how the selectObject method is implemented.

The method (shown below) simply sets the selected object of movieDisplayGroup
to the movie the user clicked.

public void selectObject() {
movieDisplayGroup.selectObject(movie);

}

Bindings in the Editing Part

The text fields in the editing part are all bound to attributes of the movieDisplayGroup
object’s selectedObject—the movie on which the user clicked. Typing new values
into these fields updates the Movie enterprise object. To actually save the updated
values to the database, the user must click the “Save to database” button.

88 Examining Your Project
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

1. Inspect the middle image button.

Its action attribute is bound to the action method saveChanges.

2. Look in the Main.java class to see how saveChanges is implemented.

The method (shown below with comments omitted) simply saves any changes
that have been made to movieDisplayGroup’s objects to the database.

public void saveChanges() throws Exception {
try {

this.session().defaultEditingContext().saveChanges();
}
catch (Exception exception) {

NSLog.err.appendln("Cannot save changes ");
throw exception;

}
}

this.session() returns a Session object that represents a connection to the
application by a single user. A Session object provides access to an
EOEditingContext object. The expression

this.session().defaultEditingContext().saveChanges();

sends a saveChanges message to the Session’s defaultEditingContext. This
default EOEditingContext object manages graphs of objects fetched from the
database, and all changes to the database are saved through it. For more
information, see the EOEditingContext class specification in the Enterprise
Objects Framework Reference.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Main.wo 89
 Apple Computer, Inc. May 2001

An EOEditingContext’s saveChanges method uses other Enterprise Objects
Framework objects to analyze its network of enterprise objects (Movie objects
referenced by the application) for changes and then to perform a set of
corresponding operations in the database. If an error occurs during this process,
saveChanges throws an exception. The Main.java saveChanges method simply
raises the exception, having the effect of returning a diagnostic page. You could
return an error page that explains the reason for the save failure instead, but the
application in this tutorial uses the default behavior.

3. Inspect the first and third image buttons to see what their action attributes are
bound to.

They are bound to the movieDisplayGroup.insert and movieDisplayGroup.delete
methods respectively. The WODisplayGroup insert method creates a new
enterprise object, then inserts it into the display group’s list of objects just past
the current selection. The WODisplayGroup delete method deletes the display
group’s selected object. These changes happen only in memory—not in the
database. To actually insert a new row in the database (or delete a row), the user
must click the “Save to database” button, invoking saveChanges on the session’s
EOEditingContext. The editing context analyzes the enterprise objects in
memory; determines if any objects have been added, updated, or deleted; and
then executes database operations to sync the database with the application.

Refining Main.wo

You may have noticed that your application doesn’t list fetched movies in any
particular order. Also, when you insert a new movie, it appears in the list of movies
as a blank line.

90 Refining Main.wo
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

In this section you’ll tidy up the user interface to fix these things and a few others.
Specifically, you’ll

� Configure movieDisplayGroup to sort the movies it displays.

� Assign default values to new Movie objects.

� Change the way that dates and numbers are displayed.

You can also put the query part of the page in a table and capitalize Main.wo’s text
field labels—for example, use “Title” instead of “title” and “Date Released” instead
of “dateReleased.”

A newly inserted movie doesn’t
have a title set, so it appears in
the list of movies as a blank line.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Main.wo 91
 Apple Computer, Inc. May 2001

Specifying a Sort Order
You can change your application to sort movies alphabetically without writing any
code. Display groups manage sorting behavior, and WebObjects Builder provides a
Display Group Options panel for configuring this and other characteristics of
display groups.

1. Double-click the movieDisplayGroup variable in the object browser.

The Display Group Options panel opens for configuring movieDisplayGroup.

2. Select the title attribute in the Sorting pop-up list.

3. Select Ascending.

4. Click OK.

WebObjects Builder stores your settings in an archive that specifies how to create
and configure movieDisplayGroup at runtime. The archive is stored inside your Main
component in a file named Main.woo. You can’t see the file from Project Builder
because you’re not meant to edit it directly, but WebObjects Builder’s object
browser shows you which of your component’s variables are initialized from the
archive (or woo file) so you don’t have to view its contents directly.

Choose an attribute to sort on.

Select this option to sort from ‘A’ to ‘Z’.

92 Refining Main.wo
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Specifying Default Values for New Enterprise
Objects
When new enterprise objects are created in your application, it’s common to assign
default values to some of their properties. For example, in your Movies application
it makes sense to assign a default value for the title attribute so a new movie won’t
be displayed in the list of movies as a blank line.

You could write an action method for the Insert/New button instead of binding it
directly to the display group insert action method. In the custom action, you would
create a new Movie object, assign default values to it, and then insert the new object
into the display group. However, there are two additional ways to specify default
values for new enterprise objects, without making explicit assignments:

� Assign default values in the enterprise object class.

� Specify default values using a display group.

For a particular situation, one of the approaches is usually better than the other. If
the default values are intrinsic to the enterprise object, assign them in the enterprise
object class. For example, consider a Member class with a memberSince property. It’s
likely that you would automatically assign the current date to memberSince instead
of forcing a user to supply a value. You’ll see how to use this technique in “Adding
Behavior to Your Enterprise Objects” (page 123).

On the other hand, if the default values are specific to an application or to a
particular user interface, explicitly initialize the object in code or specify the default
values using a display group. In the Movies application, the need for default values
is motivated by Main’s user interface: you need to provide a default value so users

An image in this column means that
the variable can be initialized from the
component’s archive.

A means that initialization parameters are
already set. The variable is created and
initialized from the archive as a part of the
component’s initialization.

A means that no initialization parameters
have been set, and so the variable isn’t
automatically created. Double-click the
variable to configure it and add it to the archive.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Main.wo 93
 Apple Computer, Inc. May 2001

can tell when a newly inserted record is selected. In another situation, you might not
want a new movie to have a default title; you might instead want a new movie’s title
to be blank.

The Movies application specifies default values for newly created Movie objects
using the display group, movieDisplayGroup.

1. Open Main.java in Project Builder.

2. Change the Main class’ constructor so that it looks like the following:

public Main(WOContext context) {
super(context);
NSMutableDictionary defaultValues = new NSMutableDictionary();
defaultValues.setObjectForKey("New Movie Title", "title");
movieDisplayGroup.setInsertedObjectDefaultValues(defaultValues);

}

This method assigns the value “New Movie Title” as the default value for a new
movie’s title attribute. When movieDisplayGroup inserts a new movie (as it does
when a user clicks the Insert/New button), it creates a new movie and assigns
this default value to that movie.

Setting a Date Format
To change the way that dates are displayed, you assign a date format to the element
that displays the dates.

1. Using WebObjects Builder, inspect the dateReleased text field, which is near the
bottom of the Main component window.

Notice that the text field has a dateformat attribute that is bound to the string
“%m/%d/%Y”. This binding tells the text field that it’s displaying dates and
describes how to format them. The %m conversion specifier stands for month as
a decimal number, %d stands for day of the month, and %Y stands for year with
century.

2. Click the combo box on the right side of the binding column. Choose ”%d %B
%Y”.

94 Refining Main.wo
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

This date format displays dates as 14 Jan 2005. The %b conversion specifier
stands for abbreviated month name, and %Y stands for year with century. You
can create your own date formats with any of the conversion specifiers defined
for dates. For more information, see the NSTimestamp class specification in the
Foundation Framework Reference.

Setting a Number Format
In addition to a dateformat attribute, text field elements also have a numberformat
attribute.

1. Inspect the revenue text field.

The revenue text field’s numberformat attribute has no binding.

2. Enter “$###,##0” as the value of the numberFormat attribute (including the
quotes).

Using this number format, the Movies application formats the number 1750000
as $1,750,000. For more information on creating number formats, see the
NSNumberFormatter class specification in the Foundation Framework Reference.

Optional Exercise
You can tidy up the user interface even further by putting the query part of the page
in a table to match the editing part of the page. Also, you should consider
capitalizing Main.wo’s text field labels.

To put the query part of the page in a table, follow these steps:

Click here to choose date format

C H A P T E R 3

Creating a WebObjects Database Application

Refining Main.wo 95
 Apple Computer, Inc. May 2001

1. Put the cursor inside the form element before the “title” text field (in the Query
By Example segment).

2. Click the button in the toolbar to add a table.

The table panel appears.

3. Enter 2 in the Rows field and 2 in the Columns field.

4. Enter 0 for in the Border field to remove the appearance of a border.

5. Uncheck “First row cells are header cells.” The first row text will not appear in
bold.

6. Click OK. The table appears in your page.

7. Type the labels Title: and Category: in the cells in the first column.

The table doesn’t resize to accommodate new cell content until you’re done
typing; that is, until you move the cursor out of the edited cell.

8. Cut and paste the query text fields into their corresponding table cells.

Enter the number of columns here.

Enter the border width here.

Preview paneClick here to turn the
 first row into header cells.

Click here to put the
table in your page.

96 Refining Main.wo
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Just click a text field to select it. When a text field is selected, it appears shaded
with a box around it. Choose Cut from the Edit menu, double-click the cell to
select its text, and choose Paste from the Edit menu.

9. Delete the old query field labels.

When you’re done, the query part should look like this:

Now edit the text labels in the editing part of the page and put any other finishing
touches on the page that you want. The finished component might look something
like this:

C H A P T E R 3

Creating a WebObjects Database Application

Refining Main.wo 97
 Apple Computer, Inc. May 2001

98 Adding the MovieDetails Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Adding the MovieDetails Page

The MovieDetails page shows you the detailed information about a movie
you select in the Main page. For this to work, the Main page has to tell the
MovieDetails page which movie the user selected. The MovieDetails page keeps
track of the selected movie in its own instance variable. In this section, you’ll

� Create a new component whose interface you’ll create yourself.

� Assign Main’s selected movie to a variable in the MovieDetails page.

� Create a way to navigate from Main to MovieDetails and back.

In the sections following this one, you’ll extend the MovieDetails page to display
movie roles and the starring actors.

Creating the MovieDetails Component

1. In Project Builder, choose File > New in Project.

2. In the New File panel, click the Web Components suitcase.

3. Type MovieDetails in the Name field.

4. Click OK.

5. In the wizard panel, choose None for available assistance.

6. Click Finish.

7. Open the new component, MovieDetails.wo, in WebObjects Builder.

Storing the Selected Movie
Now, in the MovieDetails component, create a variable that holds the application’s
selected movie. Later on, you’ll add code to the Main.java class that assigns Main’s
selected movie to this variable.

1. Choose Add Key from the pull-down list.

C H A P T E R 3

Creating a WebObjects Database Application

Adding the MovieDetails Page 99
 Apple Computer, Inc. May 2001

2. Name the variable selectedMovie.

3. Set the variable’s type to Movie.

Movie isn’t actually a class; it’s an entity. It’s listed in the combo box as a type
along with entries for all the entities in your model. When you choose an entity
as the type for your variable, WebObjects Builder recognizes that the variable is
an enterprise object. Using information in the model, WebObjects Builder can
determine the entity’s corresponding enterprise object class and the properties
of that class.

4. Check the “An instance variable” box.

5. Check the “A method returning the value” box.

6. Check the “A method setting the value” box.

7. Click Add.

Navigating from Main to MovieDetails
To get to the MovieDetails page from the Main page, users use a hyperlink. Clicking
the hyperlink should set MovieDetail’s selectedMovie variable and then open the
MovieDetails page.

1. Add a hyperlink at the bottom of the Main component.

2. Replace the text “Hyperlink” with “Movie Details”.

Type the variable name here.

Choose Movie.

Select this.

Check each of these boxes.

Click here when you’re done.

100 Adding the MovieDetails Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

3. Choose Add Action from the pull-down list.

4. In the Add Action panel, type showDetails in the Name field.

5. Select MovieDetails from the “Page returned” combo box.

6. Click Add.

7. Bind the showDetails action to the hyperlink’s action attribute.

8. In Project Builder, modify the showDetails action in Main.java to look like the
following:

public MovieDetails showDetails() {
MovieDetails nextPage =

(MovieDetails)pageWithName("MovieDetails");

// Initialize your component here
EOEnterpriseObject selection =

(EOEnterpriseObject)movieDisplayGroup.selectedObject();
nextPage.setSelectedMovie(selection);

return nextPage;
}

This method creates the MovieDetails page and then invokes its
setSelectedMovie method with the movie that’s selected in the Main page. The
display group method selectedObject returns its selected object, which, in the
Main component, is set when a user clicks a movie title hyperlink.

Designing MovieDetails’ User Interface
Now lay out the user interface for MovieDetails. When you’re done, your
component should look like the following:

Add the hyperlink below
the horizontal rule.

C H A P T E R 3

Creating a WebObjects Database Application

Adding the MovieDetails Page 101
 Apple Computer, Inc. May 2001

1. Create a top-level heading with the text Movie Details.

Recall that to create a top-level heading, you type the text of the heading, select
the text, click the button to add a heading element around the text, and then
use the Inspector to set the heading’s level, as you did in “Using the Inspector”
(page 20).

2. Below the heading, add a string element.

3. With the string element selected, add a heading.

This adds a new level-1 heading element around the string. The MovieDetails
page will show the title of the selected movie in this heading.

4. Click <H1> in the path view. The Inspector now displays the Heading Level.

5. Click 3 in the Heading Inspector.

6. Add labels and string elements to display the selected movie’s category, date
released, and revenue.

7. Bold the labels.

8. Bind selectedMovie.title to the value attribute of the first string element (the
one in the heading).

9. Similarly, create bindings for the Category, Date Released, and Revenue strings.

10. At the bottom of the page, add a horizontal rule.

Adding Date and Number Formats
String elements have dateformat and numberformat attributes just like text field
elements. Create bindings for the Date Released and Revenue strings so that
dateReleased and revenue values are displayed the way they are in the Main page.

102 Adding the MovieDetails Page
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

1. Add the date format "%d %B %Y" to the Date Released string. You can select the
format from the combo box in the Inspector’s binding column.

2. Add the number format "$###,##0" to the Revenue string. You can select the
format from the combo box in the Inspector’s binding column.

Navigating from MovieDetails to Main
Now add a hyperlink to the MovieDetails page so users can navigate back to the
Main page from MovieDetails.

1. Add a hyperlink to the bottom of the page.

2. Label it Movie Search.

3. Bind the hyperlink’s pageName attribute to the text (including the quotes) "Main".
You can select “Main” from the combo box in the inspector’s binding column.

Recall that the pageName attribute is a mechanism for navigating to another page
without writing code. By setting the attribute to “Main”, you’re telling the
application to open the MovieSearch page when the hyperlink is clicked.

Running Movies
Be sure that all your project’s files are saved (including the components in
WebObjects Builder), and build and run your application. In the Main page, select
a movie and click the Movie Details link. The MovieDetails page should display all
the movie’s information.

Add the hyperlink here.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Your Model 103
 Apple Computer, Inc. May 2001

Refining Your Model

The model created for you by the wizard is just a starting point. For most
applications, you need to do some additional work to your model to make it useful
in your application. To refine your model so that it can be used in the Movies
application, you’ll ultimately need to do all of the following:

� Remove primary and foreign keys as class properties.

� Add relationships to your model if the wizard didn’t have enough information
to add them for you.

� Configure your model’s relationships in the Advanced Relationship Inspector.

� Generate source files for the Talent class.

These steps are described in more detail throughout the rest of this tutorial.

Opening Your Model

1. In Project Builder, click the Resources category.

2. Select Movies.eomodeld.

3. Double-click the model icon.

Double-click to
open the model.

104 Refining Your Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Project Builder opens your model file in EOModeler, launching EOModeler first if
it isn’t already running. EOModeler displays your model in the Model Editor. It lists
the entities for the tables you specified in the wizard—Movie, MovieRole, and
Talent.

Removing Foreign Keys as Class Properties
By default, the wizard makes all of an entity’s attributes, except primary keys, class
properties. When an attribute is a class property, it means that the property is a part
of your enterprise object, usually as an instance variable.

You should mark as class properties only those attributes whose values are
meaningful in the objects that are created when you fetch from the database.
Attributes that are essentially database artifacts, such as primary and foreign keys,
shouldn’t be marked as class properties unless the key has meaning to the user and
must be displayed in the user interface.

Eliminating primary and foreign keys as class properties has no adverse effect on
how Enterprise Objects Framework manages enterprise objects in your application.

1. In the left frame (or tree view), click the Movie entity.

The right frame switches from a view of the entities in the model to a view of
Movie’s attributes.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Your Model 105
 Apple Computer, Inc. May 2001

A symbol in the first column means that the attribute is a primary key for the
selected entity. A symbol in the second column means that the attribute is a
class property.

2. Click in the Class Property column to remove the symbol for the
studioId attribute, which is a foreign key. The wizard didn’t make movieId a
class property because it is a primary key.

Adding Relationships to Your Model
The Movies application uses two pairs of inverse relationships. The first pair defines
the relationship between the Movie and MovieRole entities, while the second pair
defines the relationship between the MovieRole and Talent entities. An Enterprise
Objects Framework relationship is directed; that is, a relationship has a source and a
destination. Generally models define a relationship for each direction.

1. Select the Movie entity.

The right frame of the Model Editor shows the Movie’s relationships as well as
its attributes.

Click an entity in this
frame to select the entity.

Click in an attribute’s
Class Property column
to remove it as a
class property.

The selected entity’s
relationships are
displayed here.

106 Refining Your Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

If your Movie entity doesn’t have a movieRoles relationship, it means that the
database server’s schema information for your database didn’t have enough
information for the wizard to create them. You need to create them by hand
now. The next several steps explain how.

2. Choose Property > Add Relationship.

A new relationship named “Relationship” is added in the table view at the
bottom of the Model Editor. The new relationship is already selected.

3. With the relationship selected in the right frame of the Model Editor, click the
 button (in the toolbar) to inspect the relationship.

4. In the Inspector, select the To Many option.

5. Select MovieRole as the destination entity.

6. Select movieId in the Source Attributes list.

7. Select movieId in the Destination Attributes list.

8. Click Connect.

Don’t change the relationship’s name,
because EOModeler updates the name for
you automatically when you connect the
Destination and Join properties.

First select whether the relationship
is to-one or to-many.

Then select a destination entity.

Select a source attribute...

...and a matching destination attribute.

When you’re done, click here.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Your Model 107
 Apple Computer, Inc. May 2001

EOModeler automatically renames the relationship based on the name of the
destination entity. For example, after connecting a to-many relationship from
Movie to MovieRole, EOModeler names the relationship “movieRoles”. To-one
relationships are named with the singular form of the destination entity’s name.
For example, EOModeler names the inverse to-one relationship (from
MovieRole to Movie) “movie”.

If the wizard created your relationship and used a name other than
“movieRoles”, consider renaming the relationship. The rest of this tutorial
assumes that your relationships are named using EOModeler’s naming
convention.

9. Repeat the steps above to create the following relationships (if they do not
already exist):

A to-one relationship named “movie” in the MovieRole entity where

� The destination entity is Movie.

� The source attribute is movieId.

� The destination attribute is movieId.

A to-one relationship named “talent” in the MovieRole entity where

� The destination entity is Talent.

� The source attribute is talentId.

� The destination attribute is talentId.

A to-many relationship named “movieRoles” in the Talent entity where

� The destination entity is MovieRole.

� The source attribute is talentId.

� The destination attribute is talentId.

10. Choose Tools > Diagram View to switch the Model Editor to Diagram View.

Use this pop-up list to
switch to a different view.

Switches to Table View.

Switches to Diagram View.

Switches to Browser View.

108 Refining Your Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

At this point your model has all the relationships it needs. The Diagram View gives
you an overview of the entities in the model and their relationships to other entities.

You can also use the Diagram View to edit your model. Double-click an attribute or
relationship to change its name. To create a relationship and its inverse,
Control-drag from the relationship’s source attribute to its destination attribute.

Using the Advanced Relationship Inspector
There are several additional settings you use to configure a relationship’s referential
integrity rules. For these, use the Advanced Relationship Inspector.

1. Inspect Movie’s movieRoles relationship.

2. In the Inspector, click the Advanced Relationship button.

C H A P T E R 3

Creating a WebObjects Database Application

Refining Your Model 109
 Apple Computer, Inc. May 2001

3. Ensure that the delete rule is set to Cascade.

If the wizard created relationships for you, the relationship’s delete rule should
already be set to Cascade. You specified this in the wizard. If you created your
relationships by hand, you’ll have to set the delete rule yourself.

4. Ensure that the Owns Destination box is checked.

As with the delete rule, if the wizard created relationships for you, the
relationship’s Owns Destination box should already be checked. If you created
your relationships by hand, you’ll have to check this box yourself.

5. Check the Propagate Primary Key box.

A relationship that propagates its primary key propagates its key value to newly
inserted objects in the destination of the relationship. In this case, checking the
Propagate Primary Key box means that if you create a new MovieRole and add
it to a Movie’s list of MovieRoles, the Movie object automatically assigns its
movieId value as the value for the new MovieRole’s movieId property.

Advanced Relationship button.

This should be selected.

This box should be checked.

110 Refining Your Model
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

This option is usually used with relationships that own their destination. For
more information on propagating primary keys, see “Where Do Primary Keys
Come From?” (page 110).

6. Ensure that Talent’s movieRoles relationship has its delete rule set to Deny.

7. Ensure that Talent’s movieRoles relationship owns its destination.

8. Set Talent’s movieRoles relationship to propagate its primary key.

9. Choose Model > Save to save your model.

Where Do Primary Keys Come From?
Enterprise Objects Framework uses primary keys to identify enterprise objects in
memory, and it works best if you never change an enterprise object’s primary key
from its initial value. Consequently, applications usually generate and assign
primary key values automatically instead of having users provide them. For
example, the Movies application assigns a movieId value to a new movie when it’s
created, and the value never changes afterward. The Movies interface doesn’t even
display movieId values because they aren’t meaningful to users of the application.

Enterprise Objects Framework provides several mechanisms for generating and
assigning unique values to primary key attributes. By default, Enterprise Objects
Framework uses a native database mechanism to assign primary key values. See the
chapter “Answers to Common Design Questions” in the Enterprise Objects
Framework Developer’s Guide for more information.

The Movies application generates primary key values for Movie and Talent objects
using the default mechanism, but MovieRole is a special case because

� MovieRole’s primary key is compound. The default behavior of generating a
primary key value using a native database mechanism works only on simple
(not compound) primary keys.

� A MovieRole’s primary key attributes, movieId and talentId, must match the
corresponding attributes in the MovieRole’s Movie and Talent objects. The
default mechanism generates new, unique values.

Instead of the default mechanism, Enterprise Objects Framework uses primary key
propagation to assign primary keys to MovieRole objects. By configuring the
Movie’s movieRoles relationship to propagate primary key, the Framework knows

C H A P T E R 3

Creating a WebObjects Database Application

Setting Up a Master-Detail Configuration 111
 Apple Computer, Inc. May 2001

to assign a new MovieRole’s movieId to the same value as the movieId of the
MovieRole’s Movie. Similarly, a new MovieRole’s talentId is set to the same value
as the talentId of the MovieRole’s Talent.

Setting Up a Master-Detail Configuration

So far your Movies application fetches, inserts, updates, and deletes only Movie
objects. Considered alone, a Movie object isn’t as interesting as it is when it’s related
to actors and roles. In this section, you’ll add MovieRole and Talent objects to the
Movies application.

The relationships defined in your model now come into play. Using Movie’s
movieRoles relationship, you can display the MovieRoles for the selected Movie. In
this type of configuration, called master-detail, a master display group holds
enterprise objects for the source of a relationship, while a detail display group holds
records for the destination. As individual records are selected in the master display
group, the detail display group gets a new set of enterprise objects to correspond to
the selection in the master.

In the Movies application, the master-detail configuration is built around Movie’s
movieRoles relationship. The configuration is split across two pages in the
application. The master, movieDisplayGroup, is in the Main component, while the
detail is in MovieDetails.

In this section, you’ll

� Create and configure the detail display group.

� Extend the MovieDetails user interface to hold MovieRole and Talent
information.

Creating a Detail Display Group
You can create a detail display group several different ways. You can write a
declaration for it in Project Builder, or you can use WebObjects Builder’s Add
Variable/Method command. But the easiest way to create a detail display group is
by dragging a relationship from EOModeler into your component, as described
below.

112 Setting Up a Master-Detail Configuration
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

1. In EOModeler’s tree view, expand the Movie entity.

2. Drag the Movie’s toMovieRole relationship from the tree view into the
MovieDetails component’s object browser.

An Add Display Group panel opens.

Click here to expand or
contract an entity.

 means that the entity
is already expanded.
Click the dash to contract
the entity.

 means that the entity
can be expanded to
display its relationships.
Click the plus to expand
the entity.

If an entity has neither
a dash nor a plus, the
entity has no relationships,
and therefore can’t be
expanded.

C H A P T E R 3

Creating a WebObjects Database Application

Setting Up a Master-Detail Configuration 113
 Apple Computer, Inc. May 2001

3. In the Add Display Group panel, change the name to
movieRoleDisplayGroup.

4. Click Add and Configure.

The Display Group Options panel opens so you can immediately configure the
newly created display group.

Ensure that the “Has detail data source” box is checked. This means that
movieRoleDisplayGroup gets its objects from a EODetailDataSource object.

All display groups use some kind of data source to fetch their objects. A data
source is an object that exists primarily as a simple means for a
WODisplayGroup to access a store of objects. It’s through a data source that a
display group fetches, inserts, updates, and deletes database records.

WebObjects Builder assigns
a default name based on the
relationship name.

Identifies this display group as
a detail display group.

You can’t set the entity of a detail
display group. The entity is computed
from the Master/Detail settings.

Sort MovieRole objects by roleName...

...from ‘A’ to ‘Z’.

Check this box so the display group
automatically fetches its objects.

114 Setting Up a Master-Detail Configuration
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

An EODetailDataSource is a subclass of EODataSource that’s intended for use in
master-detail configurations. A detail data source keeps track of a master object
and a detail key. The master object is typically the selected object in a master
display group, but a master display group isn’t strictly required. The detail key
is the name of the relationship on which the master-detail configuration is based.
When a detail display group asks its data source to fetch, the
EODetailDataSource simply gets the destination objects from the master object
as follows:

detailObjects = masterObject.valueForKey(detailKey);

In your master-detail configuration, the master object is the selected Movie, and
the detail key is movieRoles. When movieRoleDisplayGroup asks its data source
for its MovieRole objects, the detail WODisplayGroup returns the objects in the
selected Movie’s movieRoles array of MovieRoles. Similarly, when MovieRole
objects are inserted or deleted in movieRoleDisplayGroup, they are added and
removed from the master object’s movieRoles array.

5. Set the display group to sort alphabetically by roleName.

6. Check the “Fetches on load” box.

When “Fetches on load” is selected, the display group fetches its objects as soon
as the component is loaded into the application. You want this feature in the
MovieDetails page so that users are immediately presented with the selected
movie’s roles. In contrast, the Main page does not fetch on load; it shouldn’t
present a list of movies until the user has entered search criteria and clicked
Match.

7. Click OK.

8. In Project Builder, modify MovieDetail’s setSelectedMovie method to look like
the following:

public void setSelectedMovie(EOEnterpriseObject newSelectedMovie) {
selectedMovie = newSelectedMovie;
movieRoleDisplayGroup.setMasterObject(newSelectedMovie);

}

With this addition, whenever a user navigates to the MovieDetails page,
setSelectedMovie updates the master object of the movieRoleDisplayGroup so it
displays the corresponding MovieRole objects.

C H A P T E R 3

Creating a WebObjects Database Application

Setting Up a Master-Detail Configuration 115
 Apple Computer, Inc. May 2001

Adding a Repetition
Now you’ll extend the user interface of the MovieDetails component to display the
actors in the selected movie. Because different movies have different numbers of
roles, you need the dynamism of a repetition element. When you’re done adding
the repetition, your component should look like this:

1. In the MovieDetails component window, add the bolded text Starring: beneath
the Revenue line.

2. Below the Starring label, add a repetition.

3. Replace the “Repetition” text with three string elements.

The strings should all be on the same line, so don’t type carriage returns between
them.

4. Type a space between the first two strings and the word “ as ” (with a space
before and after) between the last two.

5. Add a carriage return after the last string.

Configuring a Repetition
Now configure MovieDetails’ repetition in a way similar to the way Main’s
repetition is configured. First you need to create a new variable to bind to the
repetition’s item attribute.

1. Use the Add Key command to add a new variable, movieRole, whose type is set
to the MovieRole entity.

Don’t create set and get methods for movieRole. You won’t need accessor
methods because the variable is used only within the MovieDetails component
and shouldn’t be visible to any other classes.

116 Updating Objects in the Detail Display Group
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

2. Bind movieRoleDisplayGroup.displayedObjects to the repetition’s list attribute.

3. Bind movieRole to the repetition’s item attribute.

4. Bind movieRole.toTalent.firstName to the value attribute of the first string in the
repetition.

5. Bind movieRole.toTalent.lastName to the value attribute of the second string.

6. Bind movieRole.roleName to the value attribute of the last string.

When you’re done, the repetition bindings should look like the following:

Running Movies
Be sure that all your project’s files are saved (including the components in
WebObjects Builder and the model in EOModeler), and build and run your
application. In the Main page, select a movie and click the Movie Details link. Now,
in addition to displaying all the movie’s information, the Movie Details page should
also display the movie’s roles and actors.

Updating Objects in the Detail Display Group

In this section, you’ll add the ability to insert, update, and delete movie roles. The
MovieDetails page will then look something like this:

C H A P T E R 3

Creating a WebObjects Database Application

Updating Objects in the Detail Display Group 117
 Apple Computer, Inc. May 2001

Many of the features in this page are similar to features in the Main page, but in this
section you perform by hand the tasks the wizard performed for you to create Main.
Already you’ve learned how to create a WODisplayGroup variable and how to bind
it to dynamic elements. In this section you’ll

� Write code to update a display group’s selected object.

� Create and configure a browser.

� Create a custom enterprise object class.

� Use display group actions to configure image buttons to insert, update, and
delete.

Click a role to select it and display its
information in the editing part below.

Use the browser to choose
an actor for the selected role.

Edit the name of the selected role.

Click here to create a new, empty role.

Click here to delete the selected role.

Click here to save your work in the
database (add the new roles you inserted,
remove the roles you deleted, and save
changes you made to existing roles).

118 Updating Objects in the Detail Display Group
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Managing a WODisplayGroup’s Selection
Remember how clicking a movie title in the Main page selects the corresponding
Movie object in movieDisplayGroup. MovieDetails has a similar behavior for
selecting a MovieRole object in movieRoleDisplayGroup.

First you need to add a hyperlink element around the repetition’s role name string
so that users can select a particular MovieRole. When a user clicks one of the movie
role hyperlinks, the application should select the corresponding MovieRole object
in the movieRoleDisplayGroup.

1. Select the repetition’s role name string element.

2. Click the Add WOHyperlink button in the toolbar to add a hyperlink element
around the string.

Now you need to create an action method to invoke when the hyperlink is
clicked.

3. Use the Add Action command in the pull-down list to add an action named
selectObject, returning null.

4. Bind the selectObject method to the hyperlink’s action attribute.

5. Now write the code for selectObject in MovieDetails.java. Modify the
selectObject action to look like the following:

public WOComponent selectObject() {
movieRoleDisplayGroup.selectObject(movieRole);
return null;

}

Adding a Form
Now lay out the user interface used to view and edit the selected MovieRole. When
you’re done, it should look like the following:

C H A P T E R 3

Creating a WebObjects Database Application

Updating Objects in the Detail Display Group 119
 Apple Computer, Inc. May 2001

1. Add another horizontal rule after the repetition.

2. Use the button to add a WOForm element between the two horizontal rules.

3. While the Form text is highlighted, click the button to replace the text with a
WOBrowser element.

4. Beneath the browser (within the bounds of the new form), type the bolded text
Role Name:.

5. Add a text field.

6. Bind the text field’s value attribute to
movieRoleDisplayGroup.selectedObject.roleName.

Adding a Talent Display Group
The browser you just created is going to display a list of Talent objects. Like a
repetition element, a browser has list and item attributes. As the browser moves
through its list, the browser sets item to the object at the current index. The Movies
application uses a display group to provide the browser with a list of Talent objects,
so now you need to create the new display group and a variable to bind to the
browser’s item attribute.

1. Use the Add Key command to create two new instance variables:

� talentDisplayGroup, whose type is WODisplayGroup

� talent, whose type is Talent

You don’t need to add set and get methods for the variables.

120 Updating Objects in the Detail Display Group
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

2. Using the Display Group Options panel, assign the talentDisplayGroup object’s
entity to Talent.

Remember that to open the Display Group Options panel, simply
double-click the talentDisplayGroup variable in the object browser. The icon
initially displayed next to the variable indicates that initialization parameters
have not yet been set.

3. Configure talentDisplayGroup to sort its objects alphabetically (ascending)
by lastName.

4. Configure it to fetch on load and click OK.

After you configure talentDisplayGroup, the object browser shows a icon
next to the variable.

The Movies application uses a display group to provide Talent objects, but you
could fetch the Talent objects from the database without one. Display groups
provide a simple way to fetch, insert, update, and delete enterprise objects without
writing much, if any, code. To get finer-grained control over these operations, you
can work directly with an EOEditingContext object. An editing context can do
everything a display group does and much more, but you have to write more code
to use one. For more information, see the EOEditingContext class specification in
the Enterprise Objects Framework Reference.

Configuring the Browser
Create your browser’s bindings. The steps are similar to those for creating bindings
for a repetition.

1. Bind talentDisplayGroup.displayedObjects to the browser’s list attribute.

2. Bind talent to the browser’s item attribute.

3. Bind talent.lastName to the browser’s value attribute.

The value attribute tells the browser what string to display. For each item in its
list, the browser evaluates the item’s value.

The browser in the MovieDetails page should display the actors’ full names, but
there isn’t an attribute for full name. In the next section, you’ll create a custom
Talent class that implements a fullName method, but for now just use
talent.lastName as the value attribute.

C H A P T E R 3

Creating a WebObjects Database Application

Updating Objects in the Detail Display Group 121
 Apple Computer, Inc. May 2001

A browser also has a selections attribute that should be bound to an array of
objects. A browser’s selection can be zero, one, or many objects; but in the Talent
browser, the selection should refer to a single object. Consequently, you need to
add two methods to manage the browser’s selection: one to return an array
containing the selected Talent and one to set the selected Talent from an array
object.

4. Add the method talentSelection to the MovieDetails.java class as follows:

public NSArray talentSelection() {
EOEnterpriseObject aTalent;
EOEnterpriseObject aMovieRole =

(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();

if (aMovieRole == null){
return null;

}
aTalent = (EOEnterpriseObject)aMovieRole.valueForKey("talent");
if (aTalent == null){

return null;
} else {

return new NSArray(aTalent);
}

}

Because the browser expects an array for its selections attribute, this method
packages the selected MovieRole’s talent object in an array. If the selected
MovieRole object is null, talentSelection simply returns null to indicate that
the browser shouldn’t set a selection.

5. Add the method setTalentSelection as follows:

public void setTalentSelection(NSArray talentArray){
if (talentArray.count() > 0){

EOEnterpriseObject aMovieRole =

(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();
EOEnterpriseObject selectedTalent =

(EOEnterpriseObject)talentArray.objectAtIndex(0);

aMovieRole.addObjectToBothSidesOfRelationshipWithKey(
selectedTalent, "talent");

}
}

122 Updating Objects in the Detail Display Group
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Again because the browser uses an array for its selections attribute, the
setTalentSelection method must take an array as its argument. If the size of
talentArray is nonzero, then this method sets the selected MovieRole’s talent to
the first object in the array. Note that by default, a user can’t select more than one
actor in a browser.

With the addition of these methods, WebObjects Builder now displays
talentSelection in MovieDetail’s object browser.

6. Save MovieDetails.java.

7. Bind talentSelection to the browser’s selections attribute.

Adding Insert, Save, and Delete Buttons
Now add the buttons that let users insert, save, and delete MovieRoles. When
you’re done, it should look like the following:

1. Inside the form, add three image buttons below the Role Name text field.

2. Inspect the first active image element.

3. Bind the filename attribute to the text (including the quotes)
"DBWizardInsert.gif".

4. Follow the same procedure to set the second image’s filename attribute to the
text (including the quotes) "DBWizardUpdate.gif".

5. Set the last image’s filename attribute to the text (including the quotes)
"DBWizardDelete.gif".

The WODisplayGroup class defines the actions insert and delete. You’ll bind
to the Insert/New and Delete buttons. It doesn’t, however, provide a save
method. You’ll have to provide that yourself.

Add the image buttons
inside the form element,
which is bounded by
a light gray box.

C H A P T E R 3

Creating a WebObjects Database Application

Adding Behavior to Your Enterprise Objects 123
 Apple Computer, Inc. May 2001

6. Copy the saveChanges method from the Main.java class and paste it into the
MovieDetails.java class:

public void saveChanges() throws Exception {
try {

this.session().defaultEditingContext().saveChanges();
}
catch (Exception exception) {

NSLog.err.appendln("Cannot save changes ");
throw exception;

}
}

7. Save MovieDetails.java.

8. Bind movieRoleDisplayGroup.insert to the Insert/New image’s action attribute.

9. Bind the saveChanges method to the “Save to database” image’s action attribute.

10. Bind movieRoleDisplayGroup.delete to the Delete image’s action attribute.

11. Save MovieDetails.wo.

Adding Behavior to Your Enterprise Objects

Right now, the Movies application maps all its entities to the EOGenericRecord
class. As the preceding sections illustrate, you can go quite far in an application
using just this default enterprise object class, but now you need to add some custom
classes to the Movies application.

In this section, you’ll learn how to:

� Generate source code for a custom enterprise object class.

� Provide default values in a custom enterprise object class.

You’ll create custom classes for the Talent and MovieRole entities. In the Talent
class, you’ll write a fullName method that concatenates a Talent’s first and last
names. You’ll use the method to populate MovieDetail’s browser element. In the
MovieRole class, you’ll provide default values for newly inserted MovieRoles so
they don’t show up in the list of movie roles as a blank line.

124 Adding Behavior to Your Enterprise Objects
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

Specifying Custom Enterprise Object Classes
Unless you specify otherwise, EOModeler maps entities to the EOGenericRecord
class. When you want to use a custom class instead, you need to specify that custom
class in the model.

1. In EOModeler, inspect the Talent entity.

2. In the Entity Inspector for Talent, type Talent in the Class field.

3. Set the MovieRole entity’s class to MovieRole.

Now you can generate the source files for your Talent and MovieRole classes.

Generating Custom Enterprise Object Classes
You can easily create a custom class to hold your business logic: EOModeler
provides a command to generate enterprise object classes.

1. In EOModeler, select the Talent entity.

2. Choose Property > Generate Java Files.

A Choose Class Name panel opens. If you opened the model file from Project
Builder, the Choose Class Name panel displays the project as the destination
directory and Talent.java as the default filename.

3. Ensure that the Movies project directory is selected.

4. Click Save.

Type the name of your custom class here.

C H A P T E R 3

Creating a WebObjects Database Application

Adding Behavior to Your Enterprise Objects 125
 Apple Computer, Inc. May 2001

A panel opens, asking if you want to insert the file in your project.

5. Click Yes.

EOModeler creates the source file Talent.java and adds it to your project.

6. Follow the same procedure for MovieRole.

Adding Custom Behavior to Talent
Now add the fullName method to Talent and bind it to the browser.

1. Open Talent.java in Project Builder.

The class file and implements set and get methods for all of Talent’s class
properties (firstName and lastName).

2. Add the method, fullName, as follows.

public String fullName(){
return firstName() + " " + lastName();

}

After you save, fullName appears in the object browser of WebObjects Builder as
a property of Talent.

3. Bind talent.fullName to the browser’s displayString attribute and unbind the
value attribute.

Providing Default Values in MovieRole
As discussed in “Specifying Default Values for New Enterprise Objects” (page 92),
there are two main ways to specify default values for new enterprise objects without
making explicit assignments:

� Assign default values in the enterprise object class.

� Specify default values using a display group.

For the Movie class, you specified default values using a display group. This
approach is also the more appropriate choice for the MovieRole class, but you’ll use
the other approach for MovieRole just to see how its done.

1. Open MovieRole.java in Project Builder.

126 Adding Behavior to Your Enterprise Objects
 Apple Computer, Inc. May 2001

C H A P T E R 3

Creating a WebObjects Database Application

2. Add the method, awakeFromInsertionInEditingContext, as follows

public void awakeFromInsertion(EOEditingContext context){
super.awakeFromInsertion(context);
setRoleName("New Role");

}

This method is automatically invoked right after your enterprise object class
creates a new MovieRole and inserts it into an editing context, which happens
when you use a display group to insert.

Running Movies
Be sure that all your project’s files are saved (including your model file), and build
and run your application. Now when a user clicks the Insert/New button on the
MovieDetails page, a new MovieRole is inserted, with “New Role” already
displayed as the role name.

127
 Apple Computer, Inc. May 2001

1 Glossary

adaptor, database A mechanism that
connects your application to a particular
database server. For each type of server you
use, you need a separate adaptor.
WebObjects provides an adaptor for
databases conforming to JDBC.

adaptor, WebObjects A process (or a part
of one) that connects WebObjects
applications to an HTTP server.

application object An object (of the
WOApplication class) that represents a
single instance of a WebObjects application.
The application object’s main role is to
coordinate the handling of HTTP requests,
but it can also maintain application-wide
state information.

attribute In Entity-Relationship modeling,
an identifiable characteristic of an entity. For
example, lastName can be an attribute of an
Employee entity. An attribute typically
corresponds to a column in a database table.
See also entity; relationship.

business logic The rules associated with
the data in a database that typically encode
business policies. An example is
automatically adding late fees for overdue
items.

CGI A standard for interfacing external
applications with information servers, such
as HTTP or Web servers. Short for Common
Gateway Interface.

class In object-oriented languages such as
Java, a prototype for a particular kind of
object. A class definition declares instance
variables and defines methods for all
members of the class. Objects that have the
same types of instance variables and have
access to the same methods belong to the
same class.

class property An instance variable in an
enterprise object that meets two criteria: it’s
based on an attribute in your model, and it
can be fetched from the database. “Class
Property” can either refer to an attribute or a
relationship.

column In a relational database, the
dimension of a table that holds values for a
particular attribute. For example, a table that
contains employee records might have a
column titled “LAST_NAME” that contains
the values for each employee’s last name. See
also attribute.

component An object (of the
WOComponent class) that represents a web
page or a reusable portion of one.

database server A data storage and
retrieval system. Database servers typically
run on a dedicated computer and are
accessed by client applications over a
network.

G L O S S A R Y

128
 Apple Computer, Inc. May 2001

Direct to Java Client A WebObjects
development approach that can generate a
Java Client application from a model.

Direct to Java Client Assistant A tool used
to customize a Direct to Java Client
application.

Direct to Web A WebObjects development
approach that can generate a HTML-based
Web applications from a model.

Direct to Web Assistant A tool that used to
customize a Direct to Web application.

Direct to Web template A component used
in Direct to Web applications that can
generate a web page for a particular task (for
example, a list page) for any entity.

dynamic element A dynamic version of an
HTML element. WebObjects includes a list of
dynamic elements with which you can build
your component.

enterprise object A Java object that
conforms to the key-value coding protocol
and whose properties (instance data) can
map to stored data. An enterprise object
brings together stored data with methods for
operating on that data. See also key-value
coding; property.

entity In Entity-Relationship modeling, a
distinguishable object about which data is
kept. For example, you can have an
Employee entity with attributes such as
lastName, firstName, address, and so on. An
entity typically corresponds to a table in a
relational database; an entity’s attributes, in
turn, correspond to a table’s columns. See
also attribute; table.

Entity-Relationship modeling A
Discipline for examining and representing
the components and interrelationships in a
database system. Also known as E-R
modeling, this discipline factors a database
system into entities, attributes, and
relationships.

EOModeler A tool used to create and edit
models.

faulting A mechanism used by WebObjects
to increase performance whereby destination
objects of relationships are not fetched until
they are explicitly accessed.

fetch In Enterprise Objects Framework
applications, to retrieve data from the
database server into the client application,
usually into enterprise objects.

foreign key An attribute in an entity that
gives it access to rows in another entity. This
attribute must be the primary key of the
related entity. For example, an Employee
entity can contain the foreign key deptID,
which matches the primary key in the entity
Department. You can then use deptID as the
source attribute in Employee and as the
destination attribute in Department to form a
relationship between the entities. See also
primary key; relationship.

HTML-based application approach A
WebObjects development approach that
allows you to create HTML-based Web
applications.

inheritance In object-oriented
programming, the ability of a superclass to
pass its characteristics (methods and instance
variables) on to its subclasses.

G L O S S A R Y

129
 Apple Computer, Inc. May 2001

instance In object-oriented languages such
as Java, an object that belongs to (is a member
of) a particular class. Instances are created at
runtime according to the specification in the
class definition.

Interface Builder A tool used to create and
edit graphical user interfaces like those used
in Java Client applications.

Java Browser A tool used to peruse Java
APIs and class hierarchies.

Java Client A WebObjects development
approach that allows you to create graphical
user interface applications that run on the
user’s computer and communicate with a
WebObjects server.

Java Foundation Classes A set of graphical
user interface components and services
written in Java. The component set is known
as Swing.

JDBC Informally stands for “Java Database
Connectivity.” An interface between Java
platforms and databases.

join An operation that provides access to
data from two tables at the same time, based
on values contained in related columns.

key An arbitrary value (usually a string)
used to locate a datum in a data structure
such as a dictionary.

key-value coding The mechanism that
allows the properties in enterprise objects to
be accessed by name (that is, as key-value
pairs) by other parts of the application.

locking A mechanism to ensure that data
isn’t modified by more than one user at a
time and that data isn’t read as it is being
modified.

look In Direct to Web applications, one of
three user interface styles. The looks differ in
both layout and appearance.

many-to-many relationship A relationship
in which each record in the source entity may
correspond to more than one record in the
destination entity, and each record in the
destination may correspond to more than
one record in the source. For example, an
employee can work on many projects, and a
project can be staffed by many employees.
See also relationship.

method In object-oriented programming, a
procedure that can be executed by an object.

model An object (of the EOModel class)
that defines, in Entity-Relationship terms, the
mapping between enterprise object classes
and the database schema. This definition is
typically stored in a file created with the
EOModeler application. A model also
includes the information needed to connect
to a particular database server.

Model-View-Controller An
object-oriented programming paradigm in
which the functions of an application are
separated into the special knowledge (Model
objects), user interface elements (View
objects), and the interface that connects them
(the Controller object).

G L O S S A R Y

130
 Apple Computer, Inc. May 2001

Monitor A tool used to configure and
maintain deployed WebObjects applications
capable of handling multiple applications,
instances, and application servers at the same
time.

object A programming unit that groups
together a data structure (instance variables)
and the operations (methods) that can use or
affect that data. Objects are the principal
building blocks of object-oriented programs.

primary key An attribute in an entity that
uniquely identifies rows of that entity. For
example, the Employee entity can contain an
EmpID attribute that uniquely identifies each
employee.

Project Builder A tool used to manage the
development of a WebObjects application or
framework.

property In Entity-Relationship modeling,
an attribute or relationship. See also
attribute; relationship.

record The set of values that describes a
single instance of an entity; in a relational
database, a record is equivalent to a row.

referential integrity The rules governing
the consistency of relationships.

relational database A database designed
according to the relational model, which uses
the discipline of Entity-Relationship
modeling and the data design standards
called normal forms.

relationship A link between two entities
that’s based on attributes of the entities. For
example, the Department and Employee

entities can have a relationship based on the
deptID attribute as a foreign key in
Employee, and as the primary key in
Department (note that although the join
attribute deptID is the same for the source
and destination entities in this example, it
doesn’t have to be). This relationship would
make it possible to find the employees for a
given department. See also to-one; to-many;
many-to-many; primary key; foreign key.

reusable component A component that can
be nested within other components and acts
like a dynamic element. Reusable
components allow you to extend the
WebObject’s selection of dynamically
generated HTML elements.

request A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the user’s Web browser to a Web server
that asks for a resource like a Web page. See
also response.

request-response loop The main loop of a
WebObjects application that receives a
request, responds to it, and awaits the next
request.

response A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the Web server to the user’s Web
browser that contains the resource specified
by the corresponding request. The response
is typically a web page. See also request.

row In a relational database, the dimension
of a table that groups attributes into records.

G L O S S A R Y

131
 Apple Computer, Inc. May 2001

rule In the Direct to Web and Direct to Java
Client approaches, a specification used to
customize the user interfaces of applications
developed with these approaches.

Rule Editor A tool used to edit the rules in
Direct to Web and Direct to Java Client
applications.

session A period during which access to a
WebObjects application and its resources is
granted to a particular client (typically a
browser). Also an object (of the WOSession
class) representing a session.

table A two-dimensional set of values
corresponding to an entity. The columns of a
table represent characteristics of the entity
and the rows represent instances of the
entity.

template In a WebObjects component, a file
containing HTML that specifies the overall
appearance of a web page generated from the
component.

to-many relationship A relationship in
which each source record has zero to many
corresponding destination records. For
example, a department has many employees.

to-one relationship A relationship in
which each source record has exactly one
corresponding destination record. For
example, each employee has one job title.

transaction A set of actions that is treated
as a single operation.

uniquing A mechanism to ensure that,
within a given context, only one object is
associated with each row in the database.

validation A mechanism to ensure that
user-entered data lies within specfied limits.

WebObjects Builder A tool used to
graphically edit WebObjects components.

132
 Apple Computer, Inc. May 2001

G L O S S A R Y

Glossary

	Getting Started With WebObjects
	Contents
	Preface
	About WebObjects
	About This Book
	Where to Go From Here

	Creating a Simple WebObjects Application
	Creating a WebObjects Application Project
	Examining Your Project
	Launching WebObjects Builder
	Creating the Page’s Content
	Entering Static Text
	Using the Inspector
	Creating Form-Based Dynamic HTML Elements
	Resizing the Form Elements

	Binding Elements
	Creating Variables
	Binding the Input Elements
	Implementing an Action Method

	Creating the Application’s Output
	Building and Running Your Application

	Enhancing Your Application
	Duplicating Your Project
	Creating a Custom Guest Class
	Binding the Class’s Instance Variables to the Form Elements
	Creating a Table to Display the Output
	Adding Dynamic Elements to Table Cells
	Binding the Dynamic Elements in the Table
	Creating the Guest Object

	Keeping Track of Multiple Guests
	Creating a Guest List
	Adding Guests to the Guest List

	Adding a Second Component
	Using a Repetition
	Adding the Finishing Touches
	Clearing the Guest List
	Adding a Dynamic Hyperlink

	Creating a WebObjects Database Application
	The Movies Application
	Enterprise Objects and the Movies Database
	Enterprise Objects and Relationships

	Defining the Model
	Creating a New Model File
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Saving the Model

	Designing the Main Page
	Starting the WebObjects Application Wizard
	Specifying a Model File
	Choosing an Entity
	Choosing a Layout
	Choosing Attributes to Display
	Choosing an Attribute to Display as a Hyperlink
	Choosing Attributes to Query On
	Running Movies

	Examining Your Project
	Examining the Variables
	Examining the Bindings
	Bindings in the Query Part
	Bindings in the Repetition Part
	Bindings in the Editing Part

	Refining Main.wo
	Specifying a Sort Order
	Specifying Default Values for New Enterprise Objects
	Setting a Date Format
	Setting a Number Format
	Optional Exercise

	Adding the MovieDetails Page
	Creating the MovieDetails Component
	Storing the Selected Movie
	Navigating from Main to MovieDetails
	Designing MovieDetails’ User Interface
	Adding Date and Number Formats
	Navigating from MovieDetails to Main
	Running Movies

	Refining Your Model
	Opening Your Model
	Removing Foreign Keys as Class Properties
	Adding Relationships to Your Model
	Using the Advanced Relationship Inspector
	Where Do Primary Keys Come From?

	Setting Up a Master-Detail Configuration
	Creating a Detail Display Group
	Adding a Repetition
	Configuring a Repetition
	Running Movies

	Updating Objects in the Detail Display Group
	Managing a WODisplayGroup’s Selection
	Adding a Form
	Adding a Talent Display Group
	Configuring the Browser
	Adding Insert, Save, and Delete Buttons

	Adding Behavior to Your Enterprise Objects
	Specifying Custom Enterprise Object Classes
	Generating Custom Enterprise Object Classes
	Adding Custom Behavior to Talent
	Providing Default Values in MovieRole
	Running Movies

	Glossary

