

XML Framework

Java API Reference

Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

F R A M E W O R K X M L

3

XML

Package:

com.apple.webobjects.xml

Introduction

The XML framework consists of two main classes—WOXMLCoder and WOXMLDecoder—
which can encode and decode objects as XML. These classes can be used to archive and
unarchive object data, or to parse and/or generate XML obtained from or destined for an
external source (such as the World Wide Web). When working with such “foreign” XML, you
describe the XML elements and properties and their mapping to objects in an XML-format
“mapping model” that you can create with either a text editor or an XML editor.

The mapping model provides greater control over the decoding process and is typically used
when you are encoding and decoding XML that is destined for, or originates from, an external
source. When the WOXMLCoder and WOXMLDecoder are used as an archiving mechanism, the
mapping model is usually not necessary. See “The Format of the Mapping Model” (page 4) for
more information on the contents and structure of the mapping model.

When archiving and unarchiving custom objects using the WOXMLCoder and
WOXMLDecoder without a mapping model, your custom classes need to:

■

implement the single method declared in the WOXMLCoding interface (your
implementation of this method is where you encode the custom class’s instance variables)

■

implement the single-argument constructor described in the WOXMLDecoder class
introduction

You don’t need to do the above if the object you are archiving and unarchiving—as well as any
encapsulated objects—are an instance of String, Number (or a subclass, providing that the
subclass doesn’t add any new instance variables), NSArray, NSDictionary, NSDate, NSData, or
EOEnterpriseObject (or a subclass, providing that all instance variables are either attributes or
relationships). You also don’t need to implement the above if you are working with a mapping
model.

Exceptions raised by the underlying SAX parser are, for simplicity’s sake, wrapped in a
WOXMLException object, greatly reducing the number of exceptions your code needs to catch.

4

F R A M E W O R K X M L

The Format of the Mapping Model

The mapping model is a text file—created manually with a text editor or an XML editor—that
consists of one or more

entity

 elements, each of which can enclose zero or more

property

elements, all enclosed within a single

model

 element.

The following is a simple mapping model:

<model>
 <entity name="Command" xmlTag="command">
 <property name="qty" xmlTag="quantity" attribute="YES"/>
 <property name="movie" xmlTag="movie"/>
 <property name="customer" xmlTag="customer"/>
 </entity>
 <entity name="MyMovie" xmlTag="movie">
 <property name="title" xmlTag="name" attribute="YES"/>
 <property name="dateReleased" xmlTag="date">
 <property name="roles" xmlTag="role">
 <property name="category" xmlTag="cat"/>
 </entity>
 <entity name="com.apple.yellow.foundation.EOGenericRecord" xmlTag="role">
 <property name="roleName" xmlTag="name" attribute="YES"/>
 </entity>
</model>

When creating a mapping model, be aware that mappings must be unique for a given property
when decoding (that is, you cannot have two mappings for the same property). The same applies
for XML tags when encoding: you cannot have two mappings for the same XML tag.

The “model” Tag

The

model

 tag has no attributes.

The “entity” Tag

The

entity

 tag has two required attributes and a number of optional ones:

name=

property

(required) The name of the property on the key-value coding side (the name of the
object, attribute, or dictionary key to which the XML data is to be mapped).

F R A M E W O R K X M L

5

xmlTag=

tag

(required) The XML tag.

unmappedTagsKey=

key

(optional) The name of the property on the key-value coding side to be used when,
while parsing the XML for the entity, a tag is encountered for which there is no
specified mapping in the mapping model.

ignoreUnmappedTags="YES" | "NO"

(optional) “YES” causes a WOXMLException to be thrown if

unmappedTagsKey

 isn’t
specified and, while parsing the XML for the entity, a tag is encountered for which
there is no specified mapping in the mapping model. Note that an exception isn’t
thrown if the object being decoded is an NSDictionary.

contentsKey=

key

(optional) The property name to be used for text enclosed by the XML element being
parsed. For example, if the mapping model contained the following:

...
<entity name=”com.apple.yellow.foundation.NSMutableDictionary” xmlTag=”text”
contentsKey=”contents”/>
...

And if the following was encountered while parsing XML:

<text>Hello, World!</text>

An NSMutableDictionary object would be created with a single key-value pair: the
key “contents” would have as its value an array containing two elements: the string
“Hello, “ and a dictionary with a single key-value pair: the key “b” would have as its
value the string ”World”.

The “property” Tag

Within an

entity

 element, you can have zero or more

property

 elements. The

property

 tag also
has two required attributes and a number that are optional:

name=

property

(required) The name of the property on the key-value coding side (the name of the
object, attribute, or dictionary key to which the XML data is to be mapped).

xmlTag=

tag

(required) The XML tag.

6

F R A M E W O R K X M L

attribute="YES" | "NO"

(optional) Used during encoding, “YES” causes a given property “a” to be encoded
like:

<foo a=”someValue”> .. </foo>

instead of:

<foo> <a>someValue .. </foo>

forceList="YES" | "NO"

(optional) Used for decoding only. “YES” causes a single enclosed element to be
decoded as an NSMutableArray with a single object of the appropriate type.
Decoding an XML structure like the following:

<foo>
 <a>value1
 <a>value2
</foo>

results in a key-value coding call with key

"foo"

 and value an NSMutableArray
containing the two “<a>” elements. When there is only a single enclosed element, as
in this example:

<foo>
 <a>some Value
</foo>

decoding will result in a key-value coding call with key

"foo"

 and value an object of
type “a”.

forceList

 alters this default behavior, causing the value in this instance to
be an NSMutableArray containing a single object of type “a”.

codeBasedOn="TAG"

(optional) The WOXMLCoder normally uses the value of the property’s

name

attribute as the key during key-value coding. This is the desired behavior in most
situations since the

name

 attribute typically indicates the name of an instance variable
in a custom class. When working with NSDictionary objects, however, you may
instead want to use the value of the

xmlTag

 attribute as the key. To do this, specify

codeBasedOn="TAG"

 in the property’s list of attributes.

reportEmptyValues="YES" | "NO"

(optional) When an empty element is encountered while decoding XML (for
instance,

<myElement></myElement>

), the WOXMLDecoder normally creates an empty
NSDictionary object. Setting

reportEmptyValues

 to “NO” prevents this empty object
from being created.

F R A M E W O R K X M L

7

outputTags="class"

 |

"property"

 |

"both"

 |

"neither"

(optional) Used when encoding, this attribute specifies which XML tag specified in
the mapping model should be output for the given property. “property”, the default,
specifies that the property’s XML tag should be output. “class” specifies that the
XML tag associated with the property’s enclosing class should be output instead.
“both” indicates that both the property and the class tags should be output, and
“neither” indicates that neither XML tag should be placed in the XML.
To illustrate the use of the

outputTags

 attribute, the following mapping model could
be used to produce HTML tags from an NSMutableDictionary object:

<model>
 <entity name=”com.apple.yellow.foundation.NSMutableDictionary”
xmlTag=”text”>
 <property name=”p” xmlTag=”ignore” outputTags=”neither”/>
 </entity>
 <entity name=”Paragraph” xmlTag=”p”>
 <property name=”text.contents” xmlTag=”text” outputTags=”class”/>
 </entity>
 <entity name=”ItemList” xmlTag=”ul”>
 <property name=”contents” xmlTag=”li” outputTags=”both”/>
 </entity>
 <entity name=”Item” xmlTag=”item”>
 <property name=”contents” xmlTag=”ignore” outputTags=”class”/>
 </entity>
 <entity name=”LineBreak” xmlTag=”br”/>
 <entity name=”ExternalLink” xmlTag=”a”>
 <property name=”url” xmlTag=”href” attribute=”YES”/>
 <property name=”anchorText” xmlTag=”ignore” outputTags=”neither”/>
 </entity>
</model>

8

F R A M E W O R K X M L

9

C L A S S

WOXMLCoder

Inherits from:

Object

Package:

com.webobjects.appserver.xml

Class Description

Use this class to encode objects as XML. Encoding can take place either with or without a
mapping model. The mapping model provides greater control over the encoding process and is
typically used when you are encoding and decoding XML that is destined for, or originates from,
an external source. When the WOXMLCoder and WOXMLDecoder are used as an archiving
mechanism, the mapping model is usually not necessary. For more information on the mapping
model, see the “The Format of the Mapping Model” (page 4) in the framework introduction.

When encoding without a mapping model, WOXMLCoder is able to encode any object as long
as the object and all of the objects it encapsulates either implement the WOXMLCoding interface
or are an instance of String, Number (or a subclass, providing that the subclass doesn’t add any
new instance variables), NSArray, NSDictionary, NSDate, NSData, or EOEnterpriseObject (or a
subclass, providing that all instance variables are either attributes or relationships). During the
encoding of an enterprise object, WOXMLCoder uses attribute information stored in the
EOModel when assigning an XML type tag to an object. For objects that don’t inherit from
EOEnterpriseObject, the tag supplied by WOXMLCoder’s

encodeObjectForKey

 method is used.

To encode an object, simply invoke the

encodeRootObjectForKey

 method. To perform the reverse
operation, generating an object from XML data, see the WOXMLDecoder class.

10

C L A S S W O X M L C o d e r

Method Types

Creating a WOXMLCoder

coder

coderWithMapping

Encoding an object graph

encodeRootObjectForKey

Implementing the WOXMLCoding interface

encodeBooleanForKey

encodeDoubleForKey

encodeFloatForKey

encodeIntForKey

encodeObjectForKey

Constructors

WOXMLCoder

protected WOXMLCoder

Description forthcoming.

C L A S S W O X M L C o d e r

11

Static Methods

coder

public static WOXMLCoder coder()

Creates and returns a new WOXMLCoder object.

coderWithMapping

public static WOXMLCoder coderWithMapping(String

mappingURL

)

Creates and returns a new WOXMLCoder object initialized with the mapping model specified
by

mappingURL

. See “The Format of the Mapping Model” (page 4) for a complete description of the
mapping model.

Instance Methods

cr

protected void cr()

Description forthcoming.

Note:

Windows NT uses backslashes where other systems use forward slashes. When
prepending the “file:” URL prefix to a path such as is returned by WOResourceManager’s

pathForResourceNamed

 method, on Windows NT the prefix must be “file:\\” while on all other
platforms the prefix must be “file://”. See the RelatedLinks example for one way to select the
proper prefix based upon the underlying system.

12

C L A S S W O X M L C o d e r

encodeBooleanForKey

public void encodeBooleanForKey(
boolean

flag

,
String

key

)

Invoke from within in your implementation of WOXMLCoding’s

encodeWithWOXMLCoder

 method to
append an element with XML tag

key

 to the WOXMLCoder object’s internal string buffer. The
element’s XML content is the string representation of

flag

—either

True

 or

False

—and the element
has an attribute named

type

 with a value of

boolean

. For example, the following call to

encodeBooleanForKey

:

encodeBooleanForKey(true, "myTag");

causes the following text to be appended to the WOXMLCoder’s internal string buffer:

<myTag type="boolean">True</myTag>

encodedClassName

protected String encodedClassName()

Description forthcoming.

encodeDoubleForKey

public void encodeDoubleForKey(
double

aDouble

,
String

key

)

Invoke from within in your implementation of WOXMLCoding’s

encodeWithWOXMLCoder

 method to
append an element of type

key

 to the WOXMLCoder object’s internal string buffer. The element’s
content is the string value of

aDouble

 and the element has an attribute named

type

 with a value of

double

. For example, the following call to

encodeDoubleForKey

:

encodeDoubleForKey(1.23, "myTag");

causes the following text to be appended to the WOXMLCoder’s internal string buffer:

<myTag type="double">1.23</myTag>

C L A S S W O X M L C o d e r

13

encodeFloatForKey

public void encodeFloatForKey(
float

aFloat

,
String

key

)

Invoke from within in your implementation of WOXMLCoding’s

encodeWithWOXMLCoder

 method to
append an element of type

key

 to the WOXMLCoder object’s internal string buffer. The element’s
content is the string value of

aFloat

 and the element has an attribute named

type

 with a value of

float

. For example, the following call to

encodeFloatForKey

:

encodeFloatForKey(1.23, "myTag");

causes the following text to be appended to the WOXMLCoder’s internal string buffer:

<myTag type="float">1.23</myTag>

encodeIntForKey

public void encodeIntForKey(
int anInt,
String key)

Invoke from within in your implementation of WOXMLCoding’s encodeWithWOXMLCoder method to
append an element of type key to the WOXMLCoder object’s internal string buffer. The element’s
content is the string value of anInt and the element has an attribute named type with a value of
int. For example, the following call to encodeIntForKey:

encodeIntForKey(123, "myTag");

causes the following text to be appended to the WOXMLCoder’s internal string buffer:

<myTag type="int">123</myTag>

14

C L A S S W O X M L C o d e r

encodeObjectForKey

public void encodeObjectForKey(
Object anObject,
String key)

Invoke from within in your implementation of WOXMLCoding’s encodeWithWOXMLCoder method to
append an element of type key to the WOXMLCoder object’s internal string buffer. The element’s
content depends on anObject’s class. anObject must meet the same criteria outlined in
encodeRootObjectForKey.

encodeRootObjectForKey relies upon this method to perform the actual encoding of objects.

encodedObjectInTag

protected void encodeObjectInTag(
String,
String,
String)

Description forthcoming.

encodeReferenceInTag

protected void encodeReferenceInTag(
int,
String,
String

Description forthcoming.

encodeRootObjectForKey

public synchronized String encodeRootObjectForKeyForKey(
Object anObject,
String key)

Encodes anObject as XML and returns the resulting XML string. The encoded root object is tagged
using key, and has a type attribute that indicates anObject’s class. anObject must be one of the
following:

■ an instance of String

C L A S S W O X M L C o d e r

15

■ an instance of NSArray

■ an instance of NSDictionary

■ an instance of NSDate

■ an instance of Number (or a subclass, providing that the subclass doesn’t add instance
variables)

■ an instance of NSData

■ an object that implements the WOXMLCoding interface

■ an instance of EOEnterpriseObject (or a subclass, providing that all instance variables are
either attributes or relationships)

If anObject is not one of the above, encodeRootObjectForKey throws an exception.

encodeStringInTag

protected void encodeStringInTag(
String,
String,
String)

Description forthcoming.

escapeString

protected String escapeString(String escapeString)

Description forthcoming.

typeNeedsIndentation

protected boolean typeNeedsIndentation(Object)

Description forthcoming.

16

C L A S S W O X M L C o d e r

xmlTagForClassNamed

protected String xmlTagForClassNamed(String className)

Description forthcoming.

xmlTagForPropertyKey

protected String xmlTagForPropertyKey(
String,
String)

Description forthcoming.

17

C L A S S

WOXMLDecoder

Inherits from: Object

Implements: NSKeyValueCoding

Package: com.webobjects.appserver.xml

Class Description

Use this class to construct (“decode”) an object from XML data. Decoding can take place either
with or without a mapping model. The mapping model provides greater control over the
decoding process and is typically used when you are encoding and decoding XML that is
destined for, or originates from, an external source. When the WOXMLCoder and
WOXMLDecoder are used as an archiving mechanism, the mapping model is usually not
necessary. For more information on the mapping model, see the “The Format of the Mapping
Model” (page 4) in the framework introduction.

Decoding XML Without a Mapping Model
On its own, without a mapping model, WOXMLDecoder is able to decode any object as long as
the object and all of its children either implement the WOXMLCoding interface or are an
instance of String, Number (or a subclass, provided that the subclass doesn’t add instance
variables), NSArray, NSDictionary, NSDate, NSData, or EOEnterpriseObject (or a subclass,
providing that all instance variables are either attributes or relationships). To construct an object
from XML data, invoke one of the decodeRootObject methods.

18

C L A S S W O X M L D e c o d e r

Objects that implement the WOXMLCoding interface must also implement a single-argument
constructor that takes a WOXMLDecoder object as the single argument if they are to be decoded.
Within this constructor you decode your object’s instance variables using WOXMLDecoder’s
various decode...ForKey methods.

The following simple “Person” class implements both the single-argument constructor needed
to decode objects of this class and the WOXMLCoding interface.

import com.apple.webobjects.xml.*;
import com.apple.yellow.foundation.*;
import java.lang.*;
import java.net.*;
import java.math.*;

public class Person extends Object implements WOXMLCoding {
 String name;
 boolean married;
 int children;

 public Person() {
 name = "John Smith";
 married = true;
 children = 2;
 }

 public void encodeWithWOXMLCoder(WOXMLCoder coder) {
 coder.encodeObjectForKey(name, "Name");
 coder.encodeBooleanForKey(married, "MaritalStatus");
 coder.encodeIntForKey(children, "NumberOfChildren");
 }

 // constructor required for decoding
 public Person(WOXMLDecoder decoder) {
 name = (String)decoder.decodeObjectForKey("Name");
 married = decoder.decodeBooleanForKey("MaritalStatus");
 children = decoder.decodeIntForKey("NumberOfChildren");
 }
}

See the XMLArchiving example (accessible through the WebObjects Info Center under
Examples > WebObjects > Java > XMLArchiving) for a more complete example.

C L A S S W O X M L D e c o d e r

19

Decoding XML With a Mapping Model
The mapping decoder gives you much greater control over the decoding process, since it
operates under the direction of an XML-format mapping model that you create. This mapping
model allows you to specify how XML elements and attributes are to be mapped to objects and
object attributes (the mapping is performed using key-value coding). Because of the added
power and flexibility the mapping model provides, the mapping decoder is particularly
well-suited to decode XML that wasn’t generated by the WOXMLCoder.

Suppose you had the following XML:

<command quantity="10">
 <customer><name>Ringle</name></customer>
 <fullMovie name="Alien">
 <date>1979-10-25 00:00:00 -0700</date>
 <cat>Horror</cat>
 <role name="Brett"></role>
 <role name="Kane"></role>
 <role name="Dallas"></role>
 <role name="Parker"></role>
 <role name="Lambert"></role>
 <role name="Ash"></role>
 <role name="Ripley"></role>
 </fullMovie>
</command>

Futher suppose that you wanted to decode the above XML into an object of the following class:

public class Command extends NSObject {
 public EOGenericRecord movie;
 public NSMutableDictionary customer;
 public int qty;
}

The WOXMLDecoder will do the job for you given the following mapping model:

<model>
 <entity name="Command" xmlTag="command">
 <property name="qty" xmlTag="quantity" attribute="YES"/>
 <property name="movie" xmlTag="movie"/>
 <property name="customer" xmlTag="customer"/>
 </entity>

20

C L A S S W O X M L D e c o d e r

 <entity name="MyMovie" xmlTag="movie">
 <property name="title" xmlTag="name" attribute="YES"/>
 <property name="dateReleased" xmlTag="date">
 <property name="roles" xmlTag="role">
 <property name="category" xmlTag="cat"/>
 </entity>
 <entity name="com.apple.yellow.eocontrol.EOGenericRecord" xmlTag="role">
 <property name="roleName" xmlTag="name" attribute="YES"/>
 </entity>
</model>

The above is a simple example; see the RelatedLinks example (accessible through the
WebObjects Info Center under Examples > WebObjects > Java > RelatedLinks) for a more
complete example illustrating the use of the WOXMLDecoder with a mapping model.

Interfaces Implemented

NSKeyValueCoding

takeValueForKey

valueForKey

Method Types

Creating a WOXMLDecoder

decoder

decoderWithMapping

Decoding XML

decodeRootObject

C L A S S W O X M L D e c o d e r

21

Reconstructing an object’s contents without a mapping model

decodeBooleanForKey

decodeDoubleForKey

decodeFloatForKey

decodeIntForKey

decodeObjectForKey

Working with the XML parser

parser

parserClassName

setParserClassName

Constructors

WOXMLDecoder

protected WOXMLDecoder()

Description forthcoming.

Static Methods

decoder

public static WOXMLDecoder decoder()

Creates and returns a new WOXMLDecoder object.

22

C L A S S W O X M L D e c o d e r

decoderWithMapping

public static WOXMLDecoder decoderWithMapping(String mappingURL)

Creates and returns a new WOXMLDecoder object that decodes XML based upon the mapping
model specified by mappingURL. For more information, see “Decoding XML With a Mapping
Model” (page 19).

Instance Methods

addObjectToCache

protected void addObjectToCache(_private._DecodingNode childNode, Object anObject)

For internal use only.

decodeBooleanForKey

public boolean decodeBooleanForKey(String key)

Invoke this method from within in your single-argument constructor to set a boolean instance
variable to the value of the key element within the XML being decoded. For example, to extract
the marital status from the following XML:

<element type="Person" objectID="4">
<Name type="java.lang.String" objectID="5">John Smith</Name>
<MaritalStatus type="boolean">True</MaritalStatus>
<NumberOfChildren type="int">2</NumberOfChildren>

</element>

You could use something similar to the following:

Note: Windows NT uses backslashes where other systems use forward slashes. When
prepending the “file:” URL prefix to a path such as is returned by WOResourceManager’s
pathForResourceNamed method, on Windows NT the prefix must be “file:\\” while on all other
platforms the prefix must be “file://”. See the RelatedLinks example for one way to select the
proper prefix based upon the underlying system.

C L A S S W O X M L D e c o d e r

23

married = decoder.decodeBooleanForKey("MaritalStatus");

decodeDoubleForKey

public double decodeDoubleForKey(String key)

Invoke this method from within in your single-argument constructor to set an instance variable
of type double to the value of the key element within the XML being decoded.

See Also: decodeIntForKey

decodeFloatForKey

public float decodeFloatForKey(String key)

Invoke this method from within in your single-argument constructor to set an instance variable
of type int to the value of the key element within the XML being decoded.

See Also: decodeIntForKey

decodeIntForKey

public int decodeIntForKey(String key)

Invoke this method from within in your single-argument constructor to set an instance variable
of type int to the value of the key element within the XML being decoded. For example, to extract
the number of children from the following XML:

<element type="Person” objectID="4">
<Name type="java.lang.String" objectID="5">John Smith</Name>
<MaritalStatus type="boolean">True</MaritalStatus>
<NumberOfChildren type="int">2</NumberOfChildren>

</element>

You could use something similar to the following:

children = decoder.decodeIntForKey("NumberOfChildren");

24

C L A S S W O X M L D e c o d e r

decodeObjectForKey

public Object decodeObjectForKey(String key)

Invoke this method from within in your single-argument constructor to set an instance variable
to a newly constructed object whose class and content depends upon the value of the key
element within the XML being decoded. The object being decoded must meet the same criteria
outlined in decodeRootObject; if not, or if an error arises during the construction of the object,
decodeObjectForKey throws a WOXMLException.

decodeRootObject

public synchronized Object decodeRootObject(NSData data)

public synchronized Object decodeRootObject(
org.xml.sax.InputSource inputSource)

public synchronized Object decodeRootObject(String XMLfileURL)

Decodes the indicated XML and constructs a corresponding object. decodeRootObject accepts XML
either in an NSData object, in a file, or through an InputSource. If the XML resides within a file,
XMLfileURL should be a URLthat identifies the file containing the XML. If the XML resides within
a String object, use a StringReader object to supply an InputSource, like this:

stringReader = new StringReader(xmlString);
is = new InputSource(stringReader);
// invoke setEncoding (on the input source) if the XML contains multibyte characters
decodedObject = (NSMutableArray)myDecoder.decodeRootObject(is);

In the above example, xmlString is a String object that contains the XML for an encoded
NSMutableArray object.

Each object encoded within the XML must have a type attribute that indicates the object’s class.
Each encoded object must be one of the following:

■ an instance of String

■ an instance of NSArray

■ an instance of NSDictionary

■ an instance of NSDate)

C L A S S W O X M L D e c o d e r

25

■ an instance of Number (or a subclass, providing that the subclass doesn’t add instance
variables)

■ an instance of NSData

■ an object that implements the WOXMLCoding interface

■ an instance of EOEnterpriseObject (or a subclass, providing that all instance variables are
either attributes or relationships)

Objects that implement the WOXMLCoding interface must also implement a special constructor;
see “Decoding XML Without a Mapping Model” (page 17) for more information and an
example.

If the parser is unable to parse the supplied XML, decodeRootObject throws a WOXMLException
that encloses either a SAXException or an IOException.

getChildNodeType

protected String getChildNodeType(_private._DecodingNode childNode)

For internal use only.

handler

protected _private._DecodingHandler handler()

For internal use only.

parser

public org.xml.sax.Parser parser()

Returns the XML parser (instantiating one based upon the parser class name, if necessary). This
method throws a ClassNotFoundException if the parser class cannot be located, and an
InstantiationException or IllegalAccessException if the parser cannot be created. The default
parser is the SAX parser (com.ibm.xml.parsers.SAXParser).

This method is invoked by decodeRootObject.

See Also: parserClassName, setParserClassName

26

C L A S S W O X M L D e c o d e r

parserClassName

public String parserClassName()

Returns the name of the XML parser’s class. By default, this is
“com.ibm.xml.parsers.SAXParser”.

See Also: parser, setParserClassName

setParserClassName

public void setParserClassName(String className)

Sets className as the name of the class to be instantiated and used as the XML parser. The default
parser class name is “com.ibm.xml.parsers.SAXParser”. This method must be invoked before
the parser is instantiated (by the parser method); once the parser has been instantiated,
setParserClassName has no effect.

See Also: parser, parserClassName

takeValueForKey

public void takeValueForKey(
Object,
String)

Description forthcoming.

toString

public String toString()

Returns a String description of the receiver suitable for debugging purposes.

valueForKey

public Object valueForKey(String aKey)

Description forthcoming.

27

C L A S S

WOXMLException

Inherits from: com.webobjects.foundation.NSForwardException

Package: com.webobjects.appserver.xml

Class Description

This class serves solely to wrap a number of exceptions that can arise during the parsing process,
reducing the number of exceptions your code has to catch. In particular, exceptions that are
thrown by the SAX parser are encapsulated in WOXMLException objects by WOXMLDecoder
and then re-thrown.

The WOXMLException class encapsulates both an exception and an optional text string that can
be retrieved with getMessage (this message is also prepended to the text that is returned from
toString).

28

C L A S S W O X M L E x c e p t i o n

Constructors

WOXMLException

public WOXMLException(String optionalMessage)

public WOXMLException(Throwable anException)

public WOXMLException(Throwable anException, String optionalMessage)

Creates and returns a new WOXMLException object. If optionalMessage is included, the message
text can later be retrieved with getMessage and is prepended to the string returned from toString.
If anException is supplied, the string returned by toString lists (among other things) anException’s
class.

Instance Methods

getMessage

public String getMessage()

Returns the optional message supplied when the WOXMLException was created, followed by
any optional message from the encapsulated exception.

toString

public String toString()

Returns a string representation of the WOXMLException object, including the optionalMessage (if
one was supplied when the WOXMLException was created) and the name of the encapsulated
exception.

29

I N T E R F A C E

WOXMLCoding

Implemented by: Custom objects that need to be encoded as XML

Package: com.webobjects.appserver.xml

Interface Description

When operating without a mapping model, the WOXMLCoder class is capable of encoding a
predefined set of Java classes, any object that is an instance of EOEnterpriseObject, and any
object that implements the WOXMLCoding interface. This interface consists of a single method,
encodeWithWOXMLCoder, in which you encode your object’s instance variables using WOXMLCoder’s
various encode...ForKey methods.

If you’ll be reconstituting objects from XML using WOXMLDecoder, your classes must have a
constructor that takes a WOXMLDecoder object as its sole argument. This constructor should
consist of a series of decode...ForKey method invocations that restore each of your object’s instance
variables.

The following simple “Person” class implements both the WOXMLCoding interface and the
single-argument constructor needed to later decode objects of this class.

import com.webobjects.appserver.xml.*;
import com.webobjects.foundation.*;
import java.lang.*;
import java.net.*;
import java.math.*;

public class Person extends Object implements WOXMLCoding {

30

I N T E R F A C E W O X M L C o d i n g

 String name;
 boolean married;
 int children;

 public Person() {
 name = "John Smith";
 married = true;
 children = 2;
 }

 public void encodeWithWOXMLCoder(WOXMLCoder coder) {
 coder.encodeObjectForKey(name, "Name");
 coder.encodeBooleanForKey(married, "MaritalStatus");
 coder.encodeIntForKey(children, "NumberOfChildren");
 }

 // constructor required for decoding
 public Person(WOXMLDecoder decoder) {
 name = (String)decoder.decodeObjectForKey("Name");
 married = decoder.decodeBooleanForKey("MaritalStatus");
 children = decoder.decodeIntForKey("NumberOfChildren");
 }
}

See the XMLArchiving example (accessible through the WebObjects Info Center under
Examples > WebObjects > Java > XMLArchiving) for a more complete example illustrating the
use of the WOXMLCoding interface.

Instance Methods

classForCoder

public abstract Class classForCoder()

Description forthcoming.

I N T E R F A C E W O X M L C o d i n g

31

encodeWithWOXMLCoder

public abstract void encodeWithWOXMLCoder(WOXMLCoder aCoder)

Implement this method using WOXMLCoder’s various encode...ForKey methods (invoked on
aCoder) to encode your object’s instance variables.

See Also: WOXMLCoder class

32

I N T E R F A C E W O X M L C o d i n g

4/15/01

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system
using Apple Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Adobe Letter Gothic.

WRITER
Greg Wilson

PRODUCTION EDITOR
Lorraine Findlay

34

C O L O P H O N

	WOXMLCoder
	WOXMLDecoder
	WOXMLException
	WOXMLCoding

